
HAL Id: tel-04466974
https://hal.science/tel-04466974v1

Submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Machine learning and convolutional networks for an
augmented expertise in biological dosimetry

Antonin Deschemps

To cite this version:
Antonin Deschemps. Machine learning and convolutional networks for an augmented expertise in
biological dosimetry. Machine Learning [stat.ML]. Université Rennes 1, 2023. English. �NNT : �.
�tel-04466974�

https://hal.science/tel-04466974v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

·······
·

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Signal, Image, Vision

Par

Antonin DESCHEMPS
Apprentissage machine et réseaux de convolution pour une
expertise augmentée en dosimétrie biologique

Thèse présentée et soutenue à Rennes, le 19 décembre 2023
Unité de recherche : Centre Inria de l’université de Rennes

Rapporteurs avant soutenance :

Daniel RACOCEANU Professeur, Sorbonne Université
David ROUSSEAU Professeur, Université d’Angers

Composition du Jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du jury doit être revue
pour s’assurer qu’elle est conforme et devra être répercutée sur la couverture de thèse

Président : Prénom NOM Fonction et établissement d’exercice (à préciser après la soutenance)
Rapporteurs : Daniel RACOCEANU Professeur, Sorbonne Université

David ROUSSEAU Professeur, Université d’Angers
Examinatrices : Maria VAKALOPOULOU Maitre de conférence, Centrale Supélec

Ruth WILKINS Adjunct Research Professor, Carleton University
Elisa FROMONT Professeure, Université de Rennes

Dir. de thèse : Charles KERVRANN Directeur de recherche, Inria Rennes
Co-dir. de thèse : Mohamedamine BENADJAOUD Chercheur, IRSN / SERAMED

TABLE OF CONTENTS

Notations and acronyms 17

Résumé en français 21

Introduction 31

1 Deep Learning for image analysis 41
1.1 Deep Learning architectures . 42

1.1.1 ImageNet and deep learning . 42
1.1.2 Deep neural networks . 42
1.1.3 Convolutional Neural Networks . 47

1.2 Unsupervised learning for image analysis 52
1.2.1 Generative models . 53
1.2.2 Similarity-based methods . 59

1.3 Approximate Bayesian deep learning . 65
1.3.1 SGD as an Orstein-Uhlenbeck process 66
1.3.2 Ensembling neural networks for performance and uncertainty esti-

mation . 68
1.4 Object detection with deep learning models 73

1.4.1 Object detection with Region-CNN 73
1.4.2 NMS-free object detection: Object as Points 77

1.5 Conclusion . 78

2 Image analysis for the automation of biological dosimetry 79
2.1 Basics of biological dosimetry . 79
2.2 Challenges of automated aberration counting 82
2.3 An historic example of automated dicentric scoring systems 84
2.4 ADCI: implementing an ADS framework 87

2.4.1 Chromosome feature extraction . 87
2.4.2 Chromosome classification . 88

3

TABLE OF CONTENTS

2.4.3 A pipeline for dose estimation . 90
2.5 Deep learning for biological dosimetry . 94
2.6 DCScore: evaluating an ADS in a semi-automatic regime 97

2.6.1 Evaluating DCScore in realistic scenarios 97
2.6.2 Exploring DCScore shortcomings 99

2.7 Conclusion . 102

3 Two-stage chromosomal aberration detection with patch classification 105
3.1 Datasets . 106

3.1.1 Patch dataset . 106
3.1.2 Skeleton datasets . 106

3.2 Chromosome classification . 109
3.2.1 Resnet-based classifier . 109
3.2.2 Chromosome patches autoencoder 111
3.2.3 Latent space classifier . 111
3.2.4 Performance results and commentary 111

3.3 Simulation of chromosome patches . 115
3.3.1 Simulating chromosomes with VAEs 115
3.3.2 Simulating chromosomes with pix2pix 118

3.4 Training Faster R-CNN on a synthetic dataset 118
3.5 Conclusion . 119

4 End-to-end chromosomal aberration detection in metaphase images 121
4.1 Related works . 122

4.1.1 Key-point regression in deep learning 122
4.1.2 Object detection and counting . 122
4.1.3 Model aggregation . 123

4.2 Methods . 124
4.2.1 Keypoint regression with heatmap regression models 124
4.2.2 Implicit ensembling of neural networks 127
4.2.3 Setting of model parameters . 128
4.2.4 Visualization of the training dynamics of single model 129

4.3 Materials . 132
4.3.1 Data description . 132
4.3.2 Evaluation metrics . 134

4

TABLE OF CONTENTS

4.4 Experimental results . 136
4.4.1 Performance of single model . 136
4.4.2 Performance of model ensemble . 139
4.4.3 Robustness to non-chromosome objects in metaphase images 140
4.4.4 Visualization of training trajectories 142
4.4.5 Transfer between training and calibration curve datasets 142

4.5 Discussion and future works . 145

Conclusion 147

A Sparsity in optical flow for microfluidics imaging 151
A.1 Introduction . 152
A.2 Unsupervised CNN-based method for sparse optical flow estimation 154

A.2.1 Definition of data term and loss function 154
A.2.2 Definition of spatial regularizers . 155

A.3 Experimental results and comparison of supervised and unsupervised meth-
ods . 157
A.3.1 Description of datasets . 157
A.3.2 Evaluation metrics for optical flow estimation 157
A.3.3 Description of competing methods 158
A.3.4 Experimental results . 159

A.4 Conclusion . 163

Bibliography 165

5

LIST OF FIGURES

1 Chronologie d’une estimation de dose de rayonnement ionisant en dosimétrie
biologique. Un échantillon sanguin est mis en culture pendant 48h, et la mi-
tose est inhibée durant la métaphase avec du Demecolcine. Les microscopes
modernes permettent une acquisition automatisée des métaphases, comme
montré en a). Les experts biologistes comptent les chromosomes dicen-
triques (entouré en rouge) et identifient également les fragments (en vert)
et les anneaux-centriques (en bleu), voir b). Finalement, le nombre moyen
d’aberrations par lymphocyte permet d’estimer la dose, comme montré en
c). 22

2 A) Figure montrant les variations possibles en terme d’illumination, de
longueur de chromosomes et de présence de noyaux et débris cellulaires B)
Figure montrant les variations possibles en terme de longueur de chromo-
some, de position du centromere et de repliement des chromatides 24

3 Prédictions d’un ensemble de quatres modèles différents. Le premier modèle
ne détecte pas le fragment de chromosome (en vert) en bas à gauche de
l’image. Les trois autres modèles de l’ensemble le détectent correctement.
Les quatres modèles prédisent le chromosome dicentrique près du centre de
l’image correctement. 28

4 Chronology of a biological dosimetry-based estimation of an ionizing ra-
diation dose. First, a blood sample is taken and cells are grown for 48
hours, Demecolcine is used to stop cells in the metaphase stage of mito-
sis. Metaphase acquisition is automated with modern microscopy systems,
as shown in a), and specalists count DCs (circled in red), fragments (cir-
cled in green) and ring-centric chromosomes (circled in blue) as displayed
in b). The proportion of chromosomal aberration is linked to the ionizing
radiation dose through a linear-quadratic relationship, see c). 32

6

LIST OF FIGURES

5 A) Figure showcasing possible variations in illumination, chromosome length,
chromosome debris and presence of nuclei and debris B) Figure showcas-
ing variations in chromosome length, centromere location and folding of
chromatides . 34

6 Prediction diversity for a set of four different models. The first model does
not predict the fragment in the bottom left corner, but the three next model
do. All four models predict the DC near the center of the image correctly. . 37

1.1 Backpropagation algorithm for a 2 layer neural network. The derivative of
every function node (in blue) is computed with respect to the previous one,
for all nodes on the path to a leaf (in red). Leaves are trainable parameters. 46

1.2 2D convolution with a (3 × 3) kernel. 47
1.3 2D convolution with a multi-channel kernel. 48
1.4 Left: input image, middle: horizontal gradient, right: vertical gradient. . . 49
1.5 Unfold-GEMM-Fold implementation of convolution showcased on a 1 chan-

nel image. 50
1.6 Receptive field in ConvNets. 52
1.7 Image-to-image translations capabilities of pix2pix [43]. 55
1.8 Latent factors learned by β-VAE on celebA: specific dimensions of the latent

space capture factors of semantic variations in images. Note that some
semantic factors are not disentangled, like age and gender in b). (Source:
[46]) . 59

1.9 Conceptual comparison of three contrastive loss mechanisms (empirical
comparisons are in Figure 3 and Table 3). Here we illustrate one pair of
query and key. The three mechanisms differ in how the keys are maintained
and how the key encoder is updated. (a): The encoders for computing the
query and key representations are updated end-to-end by back-propagation
(the two encoders can be different). (b): The key representations are sam-
pled from a memory bank [50]. (c): MoCo encodes the new keys on-the-fly
by a momentum-updated encoder, and maintains a queue (not illustrated
in this figure) of keys. (Source: [48]) . 60

1.10 In simCLR, fθ is trained to maximize similarity between different views
of every key in the batch (i.e matching keys), and to minimize similarity
between non-matching keys . 61

1.11 Swapping Assignments between Views (SWaV). (Source: [53]) 64

7

LIST OF FIGURES

1.12 SimSiam architecture. Note that the dimension of z and p are identical. . 65
1.13 In [58], parameter space is explored using a cyclical learning rate schedule.

An ensemble is sampled from saved checkpoints. 69
1.14 L2-regularized cross-entropy train loss (left) and test error (middle) as a

function of the interpolation parameter t between local minimas. Straight
lines between local minimas showcase a large increase in loss, while a Bezier
interpolation between both local minimas shows the presence of a low-
loss path between those models. "Polychain" (a polygonal chain between
minimas) shows similar behavior. 70

1.15 Comparison of the sampling of the posterior distribution for several meth-
ods. An ensemble of several DNNs trained separately [57] effectively pro-
vides several true samples of the posterior distribution. However, the num-
ber of samples is low. SWAG can cover a local minima of the loss function
(a mode of the posterior distribution) much more densely, but can only
cover one mode. Multi-SWAG covers several modes of the posterior distri-
bution by fitting several Gaussian distributions during training, to form a
mixture model of the posterior distribution. 72

1.16 For a proposed region, features from a ConvNet are retrieved. An adapta-
tive pooling mechanism called ROI pooling ensures that features have the
same spatial size, no matter the size of the proposed region. Pooled features
are used for classification and bounding box regression. (Source: [65]) . . . 74

1.17 For every pixel of the feature map produced by the backbone, the RPN
produces a set of regression vector modifying the pre-defined anchors, and
a set of objectness scores which quantify how likely each anchor is to contain
an object. (Source: [9]) . 75

1.18 Architecture of Faster R-CNN. A ConvNet produces a feature map for an
input image. This feature map is used to produce region proposals. Those
region proposals are selected, and an object detection network is trained
as presented in Figure 1.16. (Source: [9]) 76

1.19 Output of the CenterNet model. The center of the bounding box is pre-
dicted, a specific heatmap is predicted for every class in the dataset. For
every location of the heatmap, a (height, width) tuple is predicted, repre-
senting the size of the bounding box at this location. (Source: [67]) 77

2.1 Basic morphology of a metaphase chromosome. 80

8

LIST OF FIGURES

2.2 Chronology of a biological dosimetry-based estimation of an ionizing ra-
diation dose. First, a blood sample is taken and cells are grown for 48
hours, Demelcocine is used to stop cells in the metaphase stage of mito-
sis. Metaphase acquisition is automated with modern microscopy systems,
as shown in a), and chromosomal aberrations are counted, as displayed
in b). The proportion of chromosomal aberration is linked to the ionizing
radiation dose through a linear-quadratic relationship, see c). 81

2.3 Relative confidence interval size as a function of metaphase number and
dose. The lower the dose, the higher number of images is needed to get
a narrow confidence interval. Aberration counting takes about one hour
for 50 images, and a thousand image may be needed for a narrow enough
confidence interval for a small dose. 82

2.4 Four examples of metaphases showcasing variations in acquisision condi-
tions. Variations in chromosome spread, chromosome condensation, chro-
mosome thickness, chromosome texture and illumination are visible. Fur-
thermore, some metaphases contain more debris (cellular nuclei, filaments)
than other. 83

2.5 This figure depicts various degrees of SCS present in some Giemsa stained
chromosome cell images (a), b) anc c)) as well as some lenghty chromosomes
characteristic to those prepared at a cytogenetic laboratory (d), e) and f)).
(Source: [75]) . 85

2.6 Chromosomes showing the various structures from which feature values are
computed: (a) the chromosome and its computed symmetry axis, with can-
didate centromere positions marked by horizontal lines, (b) the longitudi-
nal profile of densities, (c) the chromosome boundary from which curvature
values are obtained, (d) the "crossing profiles", the density profiles across
the chromosome at the centromere candidates. The right-hand chromosome
has a false candidate, clearly distinguished by the bimodal crossing profile.
(Source: [70]) . 86

2.7 Chromosome centerlines proposed by the GVF + DCE algorithm proposed
in [81] . 88

9

LIST OF FIGURES

2.8 Chromosome images processed by ADCI, annotated with key segmenta-
tion features. (A) MC and (B) DC. Chromosome contour overlaid in green,
long-axis centreline in red. For reference, the minimum bounding box of
the contour is also displayed in magenta and green. Yellow and cyan mark-
ers on the centerline indicate the top-ranked and 2nd-ranked centromere
candidates, respectively, and all other candidates are indicated with a dark
blue marker. For each centromere candidate, their corresponding width
traceline (crossing through the candidate and running approximately or-
thogonal to the centerline) are displayed in dark blue. The arc lengths of
width tracelines running down the centerline (not all shown) are used to
construct a chromosomal width profile. Note that for the MC (A), the top-
ranked candidate correctly labels the true centromere location, while the
2nd-ranked candidate labels a minor non-centromeric constriction. Mean-
while, for the DC example (B), both the top and 2nd-ranked candidates
label true centromere locations. By comparing features extracted from the
top 2 candidates (including width and pixel intensity information), the
software determines if the chromosome is a MC or a DC. (Source: [84]) . . 89

2.9 Outputs of the 2014 version of ADCI at different steps of the pipeline as
shown in [86] . 90

2.10 Calibration curves of the 2016 version of ADCI introduced in Rogan et
al. [88]. The two human expertises are provided by HC, CNL (plotted as
AECL). Three calibration curves are plotted for ADCI, depending on the
hyperparameter σ of the MC-DC classifier. 91

2.11 Figure displaying the improvements brought by applying false positive fil-
ters implemented in the 2017 ADCI version introduced in Liu et al. in [84].
A) shows the calibration curve on a sample prepared by Health Canada
(HC), while B) shows the same for a sample prepared by Canadian Nu-
clear Laboratories (CNL). Green curves show ADCI performance without
false positive filters, while cyan curves show the performance after DC re-
classification using false positive filters. (Source: [84]) 92

10

LIST OF FIGURES

2.12 Figure displaying the improvements brought by applying false positve fil-
ters and manually curating metaphases on the Health Canada (HC) sample.
Although [84] implements metaphase selection algorithms, this figure dis-
plays the impact of manual metaphase selection. Green curve is evaluated
on a un-curated dataset, without false positive filters. Red curve is curated,
but estimated without false positive filters. Cyan curves uses false positive
filters but is evaluated on an un-curated dataset. Finally, blue curve is
evaluated on a curated dataset with false positive filters. 93

2.13 Figure displaying the input image (left) detections of the Counting Network
(CN) in the middle and Identification Network (IN), on the right. 95

2.14 Figure displaying the calibration curve estimated by the pipeline proposed
by Jang et al. in 2021 in [90]. This curves displays dicentric rate instead of
dicentric yield. Multiply dicentric rate by 46 (number of chromosomes in a
normal metaphase) to get dicentric yield. 96

2.15 Calibration curves for manual scoring (bold black dashed line) and semi-
automated scoring (bold black line) with manual review to supress false
positives. (Source: [93]) . 98

2.16 Calibration curves for automated (blue) and semi-automated (orange) DC-
Score. Left panel shows calibration curve for X-rays, right panel for γ-rays.
Note that the authors did not fit a linear-quadratic model to the dicentric
yield point cloud, which explains the unusual look of the calibration curve
compared to other examples in this thesis. (Source: [97]) 100

2.17 Figure showing the impact of chromosome count on calibration curves.
[98] uses three different blood samples, shown respectively with blue, red
and green calibration curves. Black calibration curve corresponds to pooled
dataset. Chromosome counts are shown in lower right corner of all quad-
rants. (Source: [98]) . 101

3.1 A grid of padded chromosome images. 107

3.2 A grid of samples of chromosome skeletons. 108

3.3 Cropped image of the synthetic dataset. The two DCs in this image are
indicated by red bounding boxes. 109

11

LIST OF FIGURES

3.4 Reconstruction grid of unseen chromosome patches. The first 2 rows are
unseen input images, the last 2 rows show their reconstruction by the VAE.
Notice that the reconstructions are smoother than the inputs. While the L2

criterion is a common reason for this effect, the output of the same model
trained with an L1 criterion are very similar. 110

3.5 Description of our weakly-supervised experimental setup. The fully super-
vised ResNet baseline is trained on a simple train-test split. The VAE is
trained in an unsupervised fashion (it does not use y) and its performance
is evaluated on a test split. Once the VAE is trained its encoder is used to
compute the latent repreentation for all images in X. We build K different
splits of this "embedded" dataset. Here, the training dataset is always less
than 10% of the complete dataset. Performance is evaluated on the test
set. As we have K different splits, the mean and variance of performance
can be computed, to evaluate the sensitivity of the logistic classifier to data
sampling. Results are visible in Figure 3.6. 112

3.6 Figure comparing the performance of several models. The dashed redline
indicates the performance of the ResNet supervised baseline. The solid blue
line indicates the mean performance of a logistic classifier trained on VAE
latent features, if 10% of the data is labelled. The purple and green lines
depict the performance of the same model, for supervision rates of 5%
and 1% respectively. The shaded area shows performance variation across
all splits (plus / minus one standard deviation). Finally, the dashed lines
depicts the same performance for PCA embeddings, instead of VAE. 114

3.7 a): Samples of the latent distribution estimated with KDE. b): Samples of
the latent distribution estimated with a Gaussian Mixture Model. In both
cases, those samples were decoded with the decoder of the VAE trained
earlier. 116

3.8 8 DC samples from pix2pix. Top 4 rows are "skeleton" inputs, bottom 4
rows are chromosome outputs. 117

3.9 Performance curves on simulated data, for models trained at 1, 2 and 5 Gy,
with training dataset sizes ranging between 100 and 2000 images.x-axis is
number of images, y-axis is Average Precision (AP), see Section 4.3.2 for
an explanation of this object detection metric. 119

12

LIST OF FIGURES

4.1 Visual comparison between regularized and unregularized model. First im-
age from the right: input image, second: bottom right crop, third: gradient
norm of the prediction for the unregularized model, fourth: gradient norm
of the prediction for the regularized model. 125

4.2 For each image, we compute the total variation of its prediction for the
regularized and unregularized model, as shown in Figure 4.1. This figure
represents the Cumulative Distribution Function (cdf) of the total variation
over all images in the test set. 126

4.3 Vote-based aggregation of checkpoints. DCs predictions are plotted in red,
and fragment predictions are plotted in green. For every image xi, the
heatmap prediction ϕθ(xi) is binarized (giving Λθ(xi)) with a confidence
threshold TC . Those maps are summed (giving Si), and regions of the image
receiving more than TA votes are considered as detections. Darker shades
of red and green indicates region of the images receiving more votes. 127

4.4 Procedure used to display feature separation in the latent space of the last
decoder block for a single epoch (i.e a single weight vector θ. For all images
x1, · · · , xn, the feature maps produced by the last layer of the decoder
are retrieved and treated as a set of independent, Cl-dimensional feature
vectors. Using PCA dimension reduction, we produce a 2D scatterplot that
shows how the model separates the different classes (background, dicentrics,
fragments) across training epochs. Note that the eigenvectors used for this
dimensionality reduction are computed over all epochs of training. 130

4.5 Repartition of images into aberration counts bins. 132

4.6 Sketch of model evaluation. The intersection I i between the binarized
ground truth ΛGT (yi) and the binarized prediction map Λθ(xi) is com-
puted. Objects appearing in both are true positives, objects appearing
only in Λθ(xi) are false positives, objects appearing only in ΛGT (yi) are
false negatives. In this case, we have two true positives, 1 false negative
and 1 false positive, so that Precision is TP/(TP + TP) = 2/3 and Recall
is TP/(TP + FN) = 2/3 . 133

13

LIST OF FIGURES

4.7 Precision, Recall and False Discovery Rate (FDR) as functions of confidence
for DCs (left) and fragments (right). Top: performance summary for the
unregularized model (i.e λ = 0 for the sparse variation term). Middle: per-
formance summary for λ = 0.2, ρ = 0.1. Bottom: performance summary for
the ensemble of checkpoints from the training of the regularized model for
a threshold of 2 votes. Shaded area indicates the [q0.05, q0.95] inter-quantile
interval, computed respectively over the last 50 checkpoints for single mod-
els, and over a 100 random samples of 10 checkpoints for the bottom plot
(ensemble). 137

4.8 Prediction diversity for a set of four different models. The first model does
not predict the fragment in the bottom left corner (a very low confidence
threshold would be required to consider it as a detection), but the three
next model do. All four models predict the DC near the center of the image
correctly. 139

4.9 Rejection of nuclei depending on model layer. First image from the left
shows the input image and ground truth Gaussian heatmap. Second image
shows PCA embedding of features at the output of the first encoder layer.
Third image shows PCA embeddings of features at the last encoder layer.
Rightmost image shows embeddings of features at the first decoder layer.
The embedded feature maps are resized from H ′, W ′ to H, W so that every
image has the same size. 140

4.10 Snapshot of the training trajectory in feature space. Each point of every
scatterplot represents a fixed location in an image (DC, fragment or back-
ground). Because of the stochasticity of training, the corresponding feature
vector moves in feature space. The contour map showcases the decision
boundary of a kernel SVM classifier trained to predict the type of feature
vector depending on its location in feature space. 143

4.11 Training trajectories of feature barycenters. The scatterplots displayed in
Figure 4.10 are clustered with K-Means to simplify visualization. The tra-
jectories of barycenters during training are displayed in this figure. The
thickness of the trajectory shows the number of feature points in the
barycenter. 144

14

LIST OF FIGURES

4.12 Cumulative Distribution Functions (CDF) of the maximum probabilities
predicted by every member of the ensemble for the DC (left) and fragment
(right) class over all images corresponding to a 4 Gy dose in the calibration
curve dataset. 145

4.13 Calibration curves estimated by the ensemble. Left: calibration curve before
setting a threshold per model and using domain knowledge. Right: calibra-
tion curve after model-adaptive thresholding and using domain knowledge.
To improve readability, we show the 4 curves closest to the manual calibra-
tion curve displayed in black. Metafer curve is displayed in red. 146

A.1 Schematic of the microfluidics device implemented in [123]. A ∼ 80 µm

channel is machined in PDMS (gray). A fluid (light blue) carrying objects
(cells, parasites) is pumped through the channel for analysis. An image
sensor (in green) is bounded directly to the channel. The channel is lit
from the opposite side to the image sensor. 153

A.2 Example of smearing in unsupervised optical flow estimation. Left: input
grayscale image, Right: flow field estimated by UFlow without any reg-
ularization. Bottom left: HSV wheel corner indicating how the flow map
(bottom) should be interpreted. Color indicates flow orientation, while sat-
uration indicates flow norm. 155

A.3 Single frame of the two sequence dataset used in this chapter. Left: crop
of a frame from the red blood cell (RBC) sequence. A red blood cell is
contained in the red square. Right: crop of a frame from the polystyrene
and yeast sequence. A polystyrene bead is localized in the white square and
a yeast in the blue square. 157

A.4 Comparison of all flow models evaluated in the chapter. First column is a
random sample of cells in the sequence, retrieved at the same timestep (first
image of the RBC sequence). Second column is the unregularized UFlow
model. Third column is UFlow regularized with first-order smoothness.
Fourth column is RAFT, and last column is UFlow regularized with Sparse
Variation. 159

A.5 Cell merging and fading issues in the flow field estimated by RAFT on the
RBC sequence. Four consecutive crops (frames 387, 390, 393 and 396) are
displayed. Although two cells are present, the boundaries estimation are
only correct if the the two cells are far enough. 160

15

LIST OF FIGURES

A.6 Crops of frames 278 (top) and 279 (bottom) of the flow field estimated by
RAFT on the RBC sequence. 160

A.7 IoU as a function of time. Top row is IoUs over time for RBC sequence.
Bottom row is IoUs over time for yeast sequence. Left column is IoU for
all cells, right column is IoU for detected cells only, as described in Sec-
tion A.3.2. Four models are compared: RAFT (red), UFlow without any
regularization (blue), UFlow with Sparse Variation regularization (green)
and UFlow with edge-alignment regularization (black). Shaded areas indi-
cates the (q5, q95) interval of counting performance over the last 5 epochs
of training, for all models except RAFT, where only the last epoch weights
were available in torchvision. 161

A.8 Counting error as a function of time. The error for both sequences is repre-
sented on the same figure, but both sequences are not the same length. The
RBC sequence (red, black, blue and green lines) is shorter than the yeast
sequence. Four models are compared: RAFT (red), UFlow without any
regularization (blue), UFlow with Sparse Variation regularization (green)
and UFlow with edge-alignment regularization (black). Shaded areas indi-
cates the (q5, q95) interval of IoU over the last 5 epochs of training, for all
models except RAFT, where only the last epoch weights were available in
torchvision. 162

16

NOTATIONS AND ACRONYMS

Notations

General

— R: set of real numbers
— 1K : vector where every component has value 1 of size K

— xT : transpose of x

— diag(x): square matrix with diagonal x

— ∥x∥2: L2-norm of x

— θ: parameters of a model
— E: expectation of random variable
— KL(X|Y): Kullback-Leibler divergence between distributions X and Y

— ∇θ: gradient with respect to variable θ (usually model parameters)
— Hθ Hessian with respect to θ

— D: training dataset
— J : batch of training data (random subset of D)
— |A|: number of elements in set A, for example |J | is the batch size
— σ: activation function of a neural network
— ∂f

∂x
: partial derivative of f with respect to variable x

— L: Risk criterion
— H, W : Height and Width of an image

Unet ensembling

— R: Sparse Variation regularization term
— ρ: Sparse Variation sparsity parameter
— λ: regularization strength parameter
— M : number of models in ensemble
— (u, v) ∈ Ω: pixel coordinates (Ω) is the set of all pixel coordinates, with |Ω| = H×W

— ϕθ: Unet model with parameters θ

17

Notations and acronyms

— yL: image downsampled by a factor L, i.e of size H/L, W/L

— ∇u,v: intensity gradients of image (with respect to image axes)
— Λθk

(xi): binarized prediction of ϕθk
on image xi

— ΛGT (yi): binarized ground truth
— I i: intersection between binarized prediction and ground truth
— TA: agreement threshold
— TC : single-model confidence threshold
— Si(u, v): sum of the binary predictions of ensemble members at location u, v for

image xi

— Di(u, v): binary agregated decision at location u, v for image xi

Acronyms

— IAEA: International Atomic Energy Agency / Agence Internationale pour l’Energie
Atomique

— DC: Dicentric Chromosome
— MC: Monocentric Chromosome
— LRAcc: Laboratory for Radiobiology of Accidental Exposures / Laboratoire pour

la Radiobiologie des Expositions Accidentelles
— IRSN: Radioprotection and Nuclear Safety Institute / Institut pour la Radiopro-

tection et la Sûreté Nucléaire
— SERPICO: Space-TimE RePresentations, Imaging and cellular dynamics of Molec-

ular COmplexes
— Inria: National Institute for Research in Informatics and Automatics / Institut

National pour la Recherche en Informatique et Automatique
— SSL: Self-Supervised Learning
— ADCI: Automated Dicentric Chromosome Identififer
— ADS: Automated Dicentric Scoring
— DL: Deep Learning
— CNN: Convolutional Neural Network
— R-CNN: Region CNN
— ConvNet: Convolutional Neural Network
— FCN: Fully Connected Network
— DNN: Deep Neural Network

18

Notations and acronyms

— SVM: Support Vector Machine
— SGD: Stochastic Gradient Descent
— MCMC: Monte Carlo Markov Chain
— GAN: Generative Adversarial Networks
— VAE: Variational AutoEncoders
— IoU: Intersection over Union
— ROC: Receiver Operating Characteristic
— AUC: Area Under the Curve
— MCMC: Monte Carlo Markov Chain
— UMAP Uniform Manifold Approximation and Projection

19

RÉSUMÉ EN FRANÇAIS

Contexte de la thèse

La dosimétrie biologique

La dosimétrie est la discipline qui vise à estimer les doses de radiation ionisantes reçues
par les être vivants ou les objets. Dans le cas où un dosimètre est disponible, l’estimation
peut en général être réalisée de manière rapide et fiable par lecture directe. Si le contexte
d’exposition est connu, la dose peut être reconstruite par simulation Monte-Carlo. Cepen-
dant, le scénario d’exposition peut être inconnu dans le cas d’une exposition accidentelle.
Dans ce contexte, la dosimétrie biologique propose des méthodes alternatives pour estimer
ces doses. Les rayonnements ionisants ayant des effets délétères sur les cellules du corps
humain, les traces résiduelles peuvent être exploitées pour estimer la dose initialement
reçue.

Actuellement, la méthodologie recommandée par l’Agence Internationale pour l’Energie
Atomique (AIEA) en matière de dosimétrie biologique cytogénétique est le comptage
de chromosomes dicentriques dans les lymphocytes périphériques. Plus exactement, le
biomarqueur d’intérêt est le nombre moyen de chromosomes dicentriques par cellule. Même
si les rayonnements ionisants produisent d’autres types d’aberration chromosomique,
comme les fragments de chromosome ou les chromosomes en anneau, le comptage de
ces derniers ne fait pas partie du protocole défini par l’AIEA. Au cours d’un examen, un
échantillon sanguin est collecté, et les cellules sanguines sont mises en culture pendant
48 heures. La mitose est inhibée durant la métaphase avec du Demelcocine 1. Ensuite,
l’échantillon sanguin est fixé sur une lame, coloré en Giemsa et examiné avec un micro-
scope optique. Le Giemsa est un colorant couramment utilisé en histologie, composé de
bleu de méthylène et d’éosine. Il adhère spécifiquement au groupes phosphate de l’ADN.
Par conséquent, c’est un outil couramment utilisé en cytogénétique pour la visualisa-

1. Le Demecolcine (également connu sous le nom de colcemid) est un médicament utilisé en chimio-
thérapie. Le Demelcocine inhibe la mitose pendant la métaphase en limitant la formation des micro-
tubules. Ce médicament permet de synchroniser les cellules cancéreuses en métaphase afin de maximiser
leur radio-sensibilité. Source: https://en.wikipedia.org/wiki/Demecolcine.

21

Résumé en français

Figure 1 – Chronologie d’une estimation de dose de rayonnement ionisant en dosimétrie
biologique. Un échantillon sanguin est mis en culture pendant 48h, et la mitose est inhibée
durant la métaphase avec du Demecolcine. Les microscopes modernes permettent une
acquisition automatisée des métaphases, comme montré en a). Les experts biologistes
comptent les chromosomes dicentriques (entouré en rouge) et identifient également les
fragments (en vert) et les anneaux-centriques (en bleu), voir b). Finalement, le nombre
moyen d’aberrations par lymphocyte permet d’estimer la dose, comme montré en c).

tion des chromosomes. Durant l’étape de métaphase, les chromosomes des lymphocytes
sont visibles. Pour cette raison, une image des 23 paires de chromosomes appartenant à
un lymphocyte en métaphase sera appelée une "métaphase" par les spécialistes du do-
maine, un terme que nous reprenons dans la suite du manuscrit. Un expert biologiste
examine ensuite la métaphase afin de compter les chromosomes dicentriques. Ces aberra-
tions sont rares, même pour une exposition à une dose élevée. Par exemple, en l’absence
d’exposition, environ une cellule sur mille contient un chromosome dicentrique. Une fois
ce nombre moyen d’aberrations calculé, une courbe de calibration permet de déterminer
la dose correspondante. La Figure 1 présente un résumé du protocole utilisé en dosimétrie
biologique par cytogénétique.

Une formation de plusieurs mois est nécessaire pour habiliter une personne à compter
fiablement les aberrations chromosomiques. Les chromosomes sont des objets déformables,
et certains chromosomes monocentriques peuvent être déformés de telle sorte qu’ils ressem-
blent à des chromosomes dicentriques. Si une population d’individus importante est ex-
posée à une source de radiation, le comptage manuel des aberrations pour chaque indi-
vidu est impossible. Le développement d’une solution automatisée est l’objet principal de
cette thèse pluridisciplinaire, réalisée dans le cadre d’une collaboration entre deux labo-
ratoires: le LRAcc (IRSN) et SERPICO (Inria). Le Laboratoire pour la Radiobiologie des
expositions Accidentelles (LRAcc) est l’un des rares laboratoires français détenant une
expertise en dosimétrie biologique. Il fait partie de l’Institut pour la Radioprotection et la

22

Résumé en français

Sûreté Nucléaire (IRSN), et est considéré comme l’expert de référence pour la dosimétrie
biologique en conditions accidentelles. L’expertise en matière d’imagerie biologique est
fournie par l’équipe Space-timE RePresentation, Imaging and cellular dynamics of molec-
ular COmplexes (SERPICO) de l’Institut National pour la Recherche en Informatique et
Automatique (Inria) de Rennes.

Cahier des charges pour un outil de dosimétrie biologique au-
tomatisée

La conception d’un système de détection automatique de chromosomes dicentriques
présente de nombreuses difficultés. Par exemple, l’adhésion du colorant Giemsa au chro-
mosomes présente une certaine variabilité, ce qui affectera le contraste entre les chromo-
somes et l’arrière plan. Même si la mitose est inhibée en métaphase par le Demelcocine,
les cellules ne sont pas toutes figées au même instant, ce qui induit une certaine vari-
abilité inter-cellulaire. Cela se traduit par des variations de longueur, d’épaisseur et de
texture des chromosomes (voir Figure 2 B)). Lorsque l’échantillon sanguin est fixé à la
lame, certaines cellules sont proches du rétroéclairage du microscope et d’autres sont
plus éloignées, ce qui induit des variations d’illumination dans les images. L’étalement de
l’échantillon sur la lame est par ailleurs un procédé aléatoire, sans garantie de produire
des métaphases suffisamment étalées pour pouvoir compter les chromosomes et identifier
les dicentriques (voir Figure 2 A)). Enfin, la déformabilité des chromosomes produit une
variabilité morphologique extrême qui complique la classification automatique des chro-
mosomes. Un système de détection automatique des aberrations se doit d’être robuste au
facteurs de variation visible sur la Figure 2.

Finalement, le taux de base d’aberrations impose un taux de faux positifs très faible.
Tout taux de faux positifs dépassant 1 pour 1000 conduira nécessairement à une sur-
estimation de la dose. Par conséquent, le système doit être capable de mesurer l’incertitude
de prédiction: les faux positifs doivent être interprétés comme des détections incertaines.
Sur la base de ces constats, cette thèse vise à utiliser les avancées récentes de l’apprentissage
statistique et les réseaux de convolution profond pour élaborer un système de détection
automatique d’aberrations plus performant que les systèmes commerciaux actuels.

23

Résumé en français

Figure 2 – A) Figure montrant les variations possibles en terme d’illumination, de longueur
de chromosomes et de présence de noyaux et débris cellulaires B) Figure montrant les
variations possibles en terme de longueur de chromosome, de position du centromere et
de repliement des chromatides 24

Résumé en français

L’apprentissage profond en vision par ordinateur

Dans un article fondateur pour la vision par ordinateur, Krizhevsky et al. [1] on dé-
montré il y a une dizaine d’années qu’il était possible d’obtenir des performances élevées
sur ImageNet [2] (un jeu de données de classification) avec un réseau de neurones convo-
lutionnel (appelé AlexNet) dont les paramètres sont appris en minimisant une entropie
croisée via un algorithme de descente de gradient stochastique. Depuis, les réseaux convo-
lutifs ont fait l’objet de recherches extrêmement actives dans la communauté scientifique
de la vision par ordinateur pour résoudre des tâches comme la classification, la détection
d’objets, la segmentation d’image, l’estimation du flot optique, etc.

Les grandes bases de données annotées telles que ImageNet [2], Common Objects in
Context (COCO) [3] ou encore Pascal VOC [4] se sont révélées cruciales pour la recherche
sur les réseaux convolutionnels. En effet, ces modèles nécessitent en général d’importantes
quantités de données pour atteindre un haut niveau de performance. La performance
progresse presque continûment avec la taille de la base de données, ce qui n’était pas
nécessairement une caractéristique des modèles disponibles auparavant. Finalement, ces
bases de données permettent d’évaluer différentes architectures de manière objective, et
facilite les comparaisons entre les méthodes proposées par la communauté scientifique.

Cependant, ces grandes bases de données annotées sont plus rares dans le contexte
de l’imagerie biomédicale pour plusieurs raisons. Les annotations sont particulièrement
chronophages (et donc coûteuses) car les objets à détecter dans les images de microscopie
ou de scanner sont souvent ambigus. Construire des grandes de bases de données annotées
peut également poser des problèmes d’ordre juridique relatifs à la préservation de la vie
privée. La diversité des modalités d’imagerie et des contextes biologiques rend également
la construction d’une base de données "universelle" (similaire à ImageNet) impossible. Par
conséquent, pré-entraîner les réseaux convolutifs sur des données sans annotation est une
préoccupation majeure en apprentissage machine. Ce besoin est au coeur d’un champ de
recherche appelé "apprentissage auto-supervisé", ou Self Supervised Learning (SSL). En
apprentissage auto-supervisé, l’objectif est de construire des critères d’apprentissage qui
ne dépendent d’aucune annotation. Une fois qu’un modèle est pré-entraîné sur une grande
base de données sans annotation (en général plus facile à obtenir), il est possible d’utiliser
ce modèle comme initialisation pour un apprentissage sur une base de données supervisée.
Ce principe est appelée apprentissage par transfert (transfer learning).

Un autre problème majeur des les réseaux convolutifs est la quantification des incerti-
tudes. En effet, pour une tâche de classification, la probabilité prédite ne correspond pas

25

Résumé en français

au taux d’erreur observé sur cette classe [5]. Par exemple, un modèle prédisant une classe
avec une confiance moyenne de 99% aura en général un taux d’erreur supérieur a 1%
sur cette classe. En d’autre mots, la probabilité prédite ne peut pas être utilisée comme
indicateur de confiance du modèle. Cette caractéristique des modèles profonds est parti-
culièrement problématique dans le contexte de l’imagerie médicale, ou les conséquences
d’une erreur du modèle peuvent être très importantes. Construire des indicateurs de con-
fiance fiables est donc un domaine de recherche actif. Le paradigme Bayésien est une
manière naturelle de construire ces indicateurs de confiance, mais l’échantillonnage de
la distribution a posteriori des poids avec les méthodes habituellement utilisées (e.g.
méthode de Monte Carlo) n’est pas une option réaliste pour les réseaux convolutionnels
profonds, en raison du grand nombre de paramètres. Une approche alternative est celle
proposée par l’apprentissage profond Bayésien approximatif. La distribution a posteriori
est supposée Gaussienne, et plusieurs techniques ont été développées pour estimer les
paramètres sous-jacents. Par exemple, dans [6] les itérés de la descente de gradient sont
considérés comme des échantillons de la distribution a posteriori (un résultat démontré
dans [7]), et utilisés pour estimer la moyenne et la matrice de covariance de la distribution
a posteriori approximative. Cette distribution peut être échantillonnée pour construire un
ensemble de modèles afin de quantifier l’incertitude de la prédiction.

Contributions de cette thèse

La première partie de cette thèse (Chapitres 1 et 2) est consacrée à une présentation
(probablement incomplète) de l’état de l’art de l’apprentissage profond en vision par or-
dinateur et en dosimétrie biologique. Dans le Chapitre 1, nous présentons les éléments
de base de l’apprentissage profond, des réseaux convolutionnels, de l’apprentissage auto-
supervisé et de l’apprentissage profond Bayésien approximatif. Dans le Chapitre 2 nous
présentons un état de l’art de la dosimétrie biologique automatisée. Dans ce contexte, le
logiciel Automated Dicentric Chromosome Identifier (ADCI) fait l’objet d’une attention
particulière, car c’est la solution commerciale dont le fonctionnement est le mieux docu-
menté, à travers une série d’articles publiés de 2012 à 2019. Nous présentons également
l’évaluation de DCScore (une autre solution commerciale de détection de chromosomes di-
centriques) dans des contextes variés. Finalement, des avancées très récentes en matière de
dosimétrie automatisée, reposant sur l’apprentissage profond sont présentées. En décrivant
le fonctionnement de ces solutions, ce chapitre permet également de présenter les points

26

Résumé en français

de difficulté majeurs dans la conception d’un tel système, dont les prémices sont présentés
dans le Chapitre 3.

Les premières tentatives pour réaliser un tel système de détection d’aberrations chro-
mosomiques reposent sur un schéma en deux étapes: la détection de tous les chromo-
somes, puis la classification de ces derniers en deux classes (chromosomes monocentriques
et chromosomes dicentriques). Dans ce système analogue à ADCI, nous utilisons un réseau
convolutionnel profond appelé ResNet [8] comme classifieur monocentrique vs dicentrique.
Ce classifieur est entraîné sur une base de données de petites images annotées (appelées
patch). Ce classifieur permet d’atteindre des niveaux de performance élevés sur cette tâche
de classification binaire sans grande difficulté. Cependant, nous ne sommes pas parvenus
à reproduire ce niveau de performance avec des patches extraits par des modèles de dé-
tection d’objets simples, comme un clustering K-Means. Nous avons identifié deux raisons
principales à cet échec: i) la base de données n’était pas suffisamment représentative, ii) le
modèle de détection d’objets n’était pas suffisamment performant. Les patches à classer
contenaient parfois plusieurs chromosomes, ou des fragments de chromosomes entiers qu’il
n’était pas possible de classer correctement. La détection imparfaite des chromosomes dé-
grade in fine assez vite la performance de classification

Nous avons également tenté d’utiliser cette base de données de patches pour apprendre
à simuler des chromosomes afin de pré-entraîner des modèles de détection d’objets plus
sophistiqués (basés sur l’apprentissage profond) sur des données synthétiques. Construire
un simulateur de chromosomes performant s’est révélé particulièrement difficile en défini-
tive, et nous n’avons pas réussi à concevoir une solution véritablement satisfaisante. Afin
de tout de même pouvoir évaluer le comportement de modèles de détection d’objets sur
des données simulées, nous avons construit des métaphases synthétiques annotées (pour
lesquelles les chromosomes dicentriques sont localisés par des boites englobantes) à partir
de "squelettes" de chromosomes. Même si ces métaphases synthétiques ne sont pas par-
ticulièrement réalistes, nous les avons utilisées pour évaluer Faster R-CNN [9] dans un
contexte de détection d’objets rares (tel que la dosimétrie biologique). La rareté des chro-
mosomes dicentriques induit une dépendance forte entre la performance du modèle et le
nombre d’images utilisées pour entraîner le modèle. En effet, pour les doses les plus faibles,
une base de données d’apprentissage comprenant plusieurs milliers d’images ne contient
que quelques exemples de chromosomes dicentriques différents. Nous avons également con-
staté qu’un modèle entraîné sur des données associées à un scénario de dose forte (i.e.,
avec un nombre moyen élevé de chromosomes dicentriques par métaphase) s’avérait moins

27

Résumé en français

Figure 3 – Prédictions d’un ensemble de quatres modèles différents. Le premier modèle
ne détecte pas le fragment de chromosome (en vert) en bas à gauche de l’image. Les trois
autres modèles de l’ensemble le détectent correctement. Les quatres modèles prédisent le
chromosome dicentrique près du centre de l’image correctement.

performant lorsqu’il est évalué sur des données correspondant à un scénario de dose plus
faible. Sur-représenter les chromosomes dicentriques pour faciliter l’apprentissage tend à
augmenter le nombre de faux positifs pour les faibles doses. La simulation nous a permis
d’identifier ces problèmes et d’élaborer une autre stratégie plus efficace.

La contribution principale de cette thèse est une preuve de concept en dosimétrie au-
tomatisée qui exploite une grande base de données annotée, pour laquelle les centres de
chromosomes dicentriques et de fragments sont localisés dans les métaphases. Cette preuve
de concept repose sur l’architecture Unet [10], un terme de régularisation encourageant
une prédiction parcimonieuse [11] et l’algorithme d’optimisation Adam [12]. Notre ap-
proche utilise également les résultats récents d’Izmailov et al. [13] et de Mandt et al. [7] en
matière d’agrégation d’itérés de la descente de gradient collectés pendant l’apprentissage.
Les paramètres du modèle sont collectés à intervalles réguliers au cours de l’apprentissage,
et nous construisons un ensemble en tirant au hasard plusieurs vecteurs de paramètres.
Chacun de ces modèles atteint un haut niveau de performance, mais l’ensemble est égale-
ment suffisamment diversifié (comme le montre la Figure 3) pour qu’il soit possible d’être
plus performant en agrégant les prédictions de plusieurs modèles qu’en sélectionnant un
seul modèle. Les aberrations sont acceptées ou rejetées sur la base de l’accord entre les
différents modèles de l’ensemble. Finalement, en utilisant certaines connaissances a priori
sur la dosimétrie biologique, nous parvenons à dépasser les problèmes de transfert entre
les scénarios de dose identifiés sur les données simulées, et nous démontrons que notre
modèle parvient à estimer des courbes de calibration très satisfaisantes sur un jeu de
données de test non-annoté de plus de 21 000 images.

28

Résumé en français

Organisation du manuscript

Le Chapitre 1 présente quelques articles de référence de l’apprentissage profond pour
la vision par ordinateur. Ce Chapitre introduit les bases des réseaux de neurones ainsi
que des réseaux de convolutions, de la rétropropagation et des méthodes du premier
ordre utilisées pour entraîner cette classe de modèles. Les principales architectures en
apprentissage auto-supervisé sont également présentées, telles que les autoencodeurs et
les approches basées sur la consistence. Finalement, ce chapitre décrit les grands principes
de l’apprentissage Bayésien profond approximatif, car c’est une composante majeure de
la preuve de concept présentée dans le Chapitre 4.

Le Chapitre 2 est un état de l’art en dosimétrie biologique automatisée utilisant des
images colorées au Giemsa. Nous passons en revue deux logiciels conçus pour compter
automatiquement les chromosomes dicentriques. Tout d’abord, ADCI est une solution
commerciale développée par Cytognomix, une entreprise canadienne. Cette solution est
un pipeline "détection-classification" qui n’utilise pas de réseaux convolutionnels. Les arti-
cles présentant les composants de cette solution donnent une idée précise de son mode de
fonctionnement, ce qui est rare dans le contexte des solutions commerciales en imagerie
biomédicale. Ensuite, nous présentons une série d’articles issus principalement du LRAcc
qui évaluent DCScore, une autre solution commerciale de détection de chromosomes di-
centriques proposée par l’entreprise allemande MetaSystems. Même si DCScore n’est pas
suffisamment performant pour être utilisé de manière complètement automatisée, ce logi-
ciel peut être utilisé de manière semi-automatique, les chromosomes dicentriques détectés
font l’objet d’une revue manuelle. Finalement, nous présentons les solutions automatisées
existantes qui reposent sur le principe de l’apprentissage profond.

Le Chapitre 3 décrit nos travaux portant sur la reconnaissance de chromosomes indi-
viduels. Trois approches principales sont décrites: la classification de chromosomes, la syn-
thèse de chromosomes et l’évaluation de modèle de détection d’objets sur métaphases syn-
thétiques. Entraîner un classifieur de chromosomes est relativement aisé avec l’architecture
ResNet [8]. Cependant, la performance de ce classifieur sur des vraies métaphases dépend
de la représentativité de la base d’apprentissage, ainsi que de la qualité de notre détecteur
de chromosomes, et construire un pipeline efficace est une tâche difficile. Finalement, même
si nous ne sommes pas parvenus a construire un simulateur de chromosome performant,
l’entraînement de Faster R-CNN [9] sur une base de données de "squelette" de chromo-
somes nous a permis d’étudier le comportement de ce modèle en fonction du volume de

29

Résumé en français

données.
Dans le Chapitre 4 nous présentons notre détecteur de chromosomes dicentrique, qui

repose sur une architecture Unet, une méthode d’optimisation stochastique du premier
ordre (Adam), un terme de régularisation encourageant des prédictions parcimonieuses et
une technique d’agrégation de modèles. L’agrégation permet de quantifier en particulier
le niveau de confiance associé à une détection, et de rejeter les détections peu confiantes.
Notre méthode d’agrégation repose sur des paramètres interprétables, et atteint un haut
niveau de performance en considérant à la fois les métriques de détection d’objets et
l’estimation de courbes de calibration.

Communication scientifique

Notre preuve de concept pour un détecteur automatique de chromosomes dicentriques
a été décrite dans un article intitulé "Ensembling Unets, sparse representation and low
dimensional visualization for rare chromosomal aberration detection in light microscopy
images" (https://doi.org/10.1101/2023.09.11.557124), en cours de soumission à une revue
internationale. Cette preuve de concept a également été présentée lors de l’International
Conference on Radiation Research à Montréal en août 2023.

De juin à septembre 2022, j’ai réalisé un séjour scientifique dans le département En-
gineering Physics de l’université McMaster au Canada, sous la direction de Qiyin Fang.
Ce séjour avait pour objectif d’implémenter des méthodes d’estimation du flot optique
pour l’imagerie cellulaire microfluidique, dans le cadre d’une thèse (Tianqi Hong). Cette
méthode d’estimation du flot optique réutilise le régulariseur parcimonieux utilisé pour
la preuve de concept du Chapitre 4. Ce séjour a débouché sur la rédaction d’un pre-print
qui fait l’objet de l’Annexe A de cette thèse.

30

INTRODUCTION

Context and motivations

Biological dosimetry

Dosimetry is the branch of health physics dealing with estimating ionizing radiation
doses received by living organisms. If a dosimeter is available, the dose can be read directly
with this tool. Even if a dosimeter is not available, the dose can be reconstructed using
Monte-Carlo simulations if the exposition context is known. However, if the exposition is
accidental the exposition context is usually unknown. In this case, biological dosimetry
provides alternative tools to estimate doses of ionizing radiation. As radiation has dam-
aging effects on human cells, several biomarkers can be used to estimate this dose only
using information available after the exposition.

The current gold standard in cytogenetic biological dosimetry, defined by the Inter-
national Atomic Energy Agency (IAEA) is Dicentric Chromosome (DC) scoring [14] in
peripheral blood lymphocytes. More precisely, the biomarker of interest is the average
number of DC per cell, also called dicentric yield. While radiation induces additional
aberrations like chromatid fragments (usually abbreviated as "fragment") or ring-centric
chromosomes (usually abbreviated as "rings"), they are currently not considered in the
protocol defined by the IAEA.

To estimate a dose, a blood sample is taken from a patient and blood cells are grown.
After 48 hours, cell mitosis is inhibited with Demecolcine 2, the blood sample is stained
with Giemsa, mounted on a slide, and examinated with a brightfield microscope. Giemsa is
a well known histological stain composed of methylene blue and eosin. It binds specifically
to the phosphate groups of DNA. Because of this, it is commonly used in cytogenetics to
visualize chromosomes. With Giemsa staining, the chromosomes of lymphocytes are visible
during metaphase. Because of this, images of chromosomes belonging to a metaphase cell

2. "Demecolcine (also known as colcemid) is a drug used in chemotherapy [...] During cell division,
demecolcine inhibits mitosis at metaphase by inhibiting spindle formation. Medically, demecolcine has
been used to improve the results of cancer radiotherapy by synchronising tumour cells at metaphase, the
radiosensitive stage of the cell cycle". Source: https://en.wikipedia.org/wiki/Demecolcine.

31

Introduction

Figure 4 – Chronology of a biological dosimetry-based estimation of an ionizing radiation
dose. First, a blood sample is taken and cells are grown for 48 hours, Demecolcine is used
to stop cells in the metaphase stage of mitosis. Metaphase acquisition is automated with
modern microscopy systems, as shown in a), and specalists count DCs (circled in red),
fragments (circled in green) and ring-centric chromosomes (circled in blue) as displayed
in b). The proportion of chromosomal aberration is linked to the ionizing radiation dose
through a linear-quadratic relationship, see c).

are called "metaphases" by biological dosimetry experts. A trained specialist examines the
metaphase and detects DCs.

While any cell contains 23 chromosome pairs, i.e. 46 chromosomes, most chromosomes
are healthy Monocentric Chromosomes (MCs), even at high doses, and DCs are rare
events. The base rate of aberration (when there is no exposition) is around 1 DC per
1000 lymphocytes. Once the dicentric yield is computed, a calibration curve provides the
underlying dose. Figure 2.2 provides an overview of the chronologized steps of biological
dosimetry.

Training is needed to become proficient at aberration detection, as separating DCs
from normal MCs is difficult. Chromosomes are deformable objects and some MCs may
twist and become indistinguishable from a DC for an untrained expert. In the context
of a large scale exposition, manual aberration scoring is widely acknowledged to be a
bottleneck and automated solutions are required.

This thesis aims to explore recent advances in deep learning for computer vision to
improve on currently available commercial Automated Dicentric Scoring (ADS) systems.
This PhD has been a multidisciplinary endeavour and was completed between two labs.
The Laboratory for Radiobiology of Accidental Expositions (LRAcc) is one of the main
french laboratories researching biological dosimetry. It is part of the Institute for Radio-
protection and Nuclear Safety (IRSN). LRAcc is focused on dose estimation in irradiation
settings. The interest of LRAcc in automating DC detection led to the funding and su-

32

Introduction

pervision of this thesis.
As the LRAcc does not have any specific expertise in biomedical imaging, it was

provided by the Space-timE RePresentation, Imaging and cellular dynamics of molecular
COmplexes (SERPICO) team at the National Institute for Research in Informatics and
Automation (Inria).

Challenges and requirements of an automated DC detector

It is well established that building an ADS system is challenging. The Giemsa staining
process is inhomogeneous and staining does not bind to every chromosome evenly. This
leads to variations in intensities values of image pixels. While Demelcocine is used to
stop mitosis, cells are stopped at various degrees of metaphase which leads to variation
in chromosome length, width and texture. As the blood sample is spread on the glass
slide, some cells are very close to the center of the slide, while some others are closer to
the edges. This leads to variations in illumination, and therefore to variations in pixel
intensity values.

Furthermore, chromosome spread is inherently random and there is no way to guaran-
tee that metaphases are sufficiently spread for chromosome counting and DC detection,
as is shown in Figure 5 A). Finally, the deformability of chromosomes generates extreme
morphological variety (as shown in Figure 5 B)), which complicates automated chromo-
some classification. Any effective ADS system needs to be robust to the variations in
the chemical process, the changes in illumination and the morphological variations of
chromosomes, as shown in Figure 5.

Finally, the base rate of chromosomal aberration imposes extremely strict constraints
on the rate of false positives. Any system that produces more than one erroneous detection
every thousand cell overestimates the dose of a patient that was not irradiated. Because
of this, model uncertainty should be quantified: false positives should be low-confidence
detections. Accordingly, we investigated recent advances in deep learning to improve on
the performance of currently available commercial ADS solutions.

Deep learning for computer vision

Since Krizhevsky et al. [1] demonstrated state-of-the-art performance on the Ima-
geNet image classification dataset [2] using a Convolutional Network (ConvNet) model
called AlexNet trained with Stochastic Gradient Descent (SGD), ConvNets have been

33

Introduction

Figure 5 – A) Figure showcasing possible variations in illumination, chromosome length,
chromosome debris and presence of nuclei and debris B) Figure showcasing variations in
chromosome length, centromere location and folding of chromatides

34

Introduction

an extremely active area of research in computer vision. This class of model has been
used for tasks like object detection, object segmentation, image classification, optical flow
estimation, etc.

Large annotated benchmark datasets like ImageNet [2], Common Objects in Context
(COCO) [3] and Pascal VOC [4] have made research on ConvNets for computer vision
considerably easier. First, a large dataset is usually needed to reach a high level of perfor-
mance with ConvNets. It is worth noting that performance keeps improving as the dataset
grows, which was not always a given with previous image analysis models. Second, those
datasets are used as standardized benchmarks, which makes objective comparison between
methods possible.

However, biomedical imaging lacks benchmark datasets like those available in com-
puter vision for several reasons. Labels are much more expensive as they usually require
the expertise of trained medical experts and the relevant objects are harder to locate and
classify in microscopy or scanner images. Furthermore, curating such a dataset may run
into privacy issues. Finally, the wide variety of imaging modalities and biological settings
makes building an "universal" dataset unfeasible.

Therefore, the ability to pretrain ConvNets on un-labelled data is crucial. This re-
quirement has motivated works in Self-Supervised Learning (SSL) [15]. SSL focuses on
designing training criterion that do not use any label. Once a model is trained on a large
unlabelled dataset it can be fine-tuned on a smaller labelled dataset, a process called
"transfer learning".

Another issue facing ConvNets is uncertainty quantification. ConvNets trained on clas-
sification tasks are usually overconfident [5] which means that the predicted probability
does not match the error rate. A ConvNet that predicts a class with a probability of 99%
has an error rate greater than 1% on this class. In other words, predicted probability can-
not be used as a metric for model confidence. This unwanted characteristic of deep models
is especially problematic in medical imaging, where the consequences of a classification
error can be catastrophic.

Accordingly, building accurate confidence metrics for ConvNets becomes an active area
of research. The Bayesian framework is a natural way of modelling model uncertainty, but
sampling the posterior distribution over the networks weight with conventional methods
(like Monte Carlo Markov Chain) is usually computationally intractable, because of the
very large number of parameters in modern ConvNets.

Alternative solutions have been investigated. In approximate Bayesian deep learning,

35

Introduction

the posterior distribution over the weights is usually assumed to be Gaussian, and sev-
eral techniques have been developped to estimate the parameters of this distribution. A
noteworthy example is the one provided by Maddox et al. in [6]. In this paper successive
iterates of the network weights during SGD are taken as approximate samples of the pos-
terior distribution over the weights, as suggested by Mandt et al. in [7]. Those samples
are used to estimate the mean and the variance of the approximate posterior distribution.
This approximate posterior distribution can be used to sample an ensemble of models
which can be used for uncertainty quantification.

Contribution of this thesis

The first part of this thesis (Chapter 1 and 2) provides a introduction to deep learn-
ing and automated biological dosimetry. Chapter 1 includes the basics of deep learning,
ConvNets, unsupervised learning, and approximate Bayesian deep learning. In Chapter
2, we give an overview of automated biological dosimetry. Most importantly, we describe
the Automated Dicentric Chromosome Identifier (ADCI), a current comercially available
automated dosimetry solution. The components of this solution are described in several
papers published between 2012 and 2019.

We present a few papers written by researchers at LRAcc that evaluate DCScore in
various contexts. Finally, we mention two papers implementing ADS systems based on
deep learning. By describing current ADS solutions, Chapter 2 provides an overview of the
major technical difficulties encountered in the design of automated biodosimetry software.

In our first attempts at designing an ADS system, we tried to reproduce a two-step,
detection-classification ADS pipeline with a ResNet-based [8] MC-DC classifier. We used
a dataset of labelled chromosome patches to train the ResNet binary classifier used in the
second step.

While reaching a very high level of performance on this classification step was rela-
tively easy to achieve, reproducing this performance on real world data (i.e., chromosomes
extracted from arbitrary metaphases) proved to be much harder. We identified two main
reasons for this failure: our dataset was not representative enough, and our object detec-
tion model was not good enough, leading to ambiguous patches that could not be classified
accurately. In other words, the performance of the detection and classification steps were
strongly dependent.

Furthermore, we attempted to synthesize images of chromosomes, so that we could

36

Introduction

Figure 6 – Prediction diversity for a set of four different models. The first model does
not predict the fragment in the bottom left corner, but the three next model do. All four
models predict the DC near the center of the image correctly.

pre-train object detection models on simulated data. Designing a performant chromosome
simulator proved to be a challenging task and we failed to find a satisfying solution.

In order to investigate the performance of Faster R-CNN, a relatively modern, deep
learning-based object detection model, we simulated labelled metaphase images (metaphases
where DCs are located with bounding boxes) using chromosome "skeletons". Because of
the under-representation of DCs model performance exhibited a strong dependence to the
number of training images.

In a low dose scenario, a dataset containing several thousands images might only
contain a few examples of DCs. Furthermore, models trained on data corresponding to a
high dose scenario (with a high average number of aberrations per cell) performed worse
on "low-dose" data. This means that oversampling images containing large number of
aberrations to circumvent their under-representation leads to an increase in false positives.

While we did not build a viable ADS system with our chromosome dataset and did not
learn to synthesize realistic data, the insights of this simulation study have been helpful
to design an alternative strategy in the next chapter.

The main contribution of this thesis is a proof of concept for DC detection and dose
estimation. It is trained on large labelled dataset which was built over the course of
several months at LRAcc. In this dataset, the centers of all chromosomal aberrations
(including fragments and rings) are located in metaphases. Our solution is based on the
Unet architecture [10], a sparsity-promoting regularizing term [11] and gradient-based
training with Adam [12].

Furthermore, we benefit from recent results in DNN agregation by Izmailov et al. [13],
based on theoretical insight from Mandt et al. [7]. We build an ensemble from a random

37

Introduction

sample of the checkpoints collected at the end of each epoch. While each model of this
ensemble reaches a high level of performance, it is also highly diverse as shown in Figure
6.

This can be used to improve performance beyond the single-model baseline by ac-
cepting or rejecting aberration detections based on the agreement between the models
of the ensemble. Finally, using a priori knowledge on biological dosimetry, we overcome
the issues related to the transfer between different dose scenarios already identified on
simulated data. We show that our model is able to estimate very satisfying calibration
curves on a separate unlabelled testing dataset comprised of over 21 000 images.

Organization of the manuscript

In Chapter 1, we provide a review of relevant references in the deep learning litera-
ture for computer vision. The basics of neural networks, ConvNets, backpropagation, and
gradient-based training are introduced.

A few important references of the similarity-based unsupervised learning literature are
provided as examples of the dominant approach in the current state of the art. Finally, the
approximate Bayesian deep learning literature is given an introduction, as it is a major
component of the proof of concept introduced in Chapter 3.

In Chapter 2, the field of automated biological dosimetry in Giemsa-stained images is
introduced. As biological dosimetry remains a niche application in computer vision there
are only a few competing ADS solutions and to the best of our knowledge, all of them
being commercial software. First, a thorough overview of the Automated Dicentric Chro-
mosome Identifier (ADCI) software is given. ADCI is developed by a Canadian company
(Cytognomix). The papers covering ADCI provide detailed insight into the design of a
"pipeline" (detect, then classify) ADS system.

Second, we go over another set of papers written by researchers at LRAcc evaluating
DCScore, another proprietary ADS solution designed by MetaSystems. The performance
of DCScore in terms of DC detection is insufficient for fully automated use, but it can
still be of significant help in a semi-automated setting (where detected DCs are reviewed
manually). Finally, we review several recent solutions using deep learning for DC detection.

Chapter 3, describes our contributions at the chromosome level. Three main ap-
proaches are described: chromosome classification, chromosome synthesis and training
object detection models on synthetic metaphases. In Chapter 4, our proof of concept for

38

Introduction

a ConvNet-based ADS system is introduced. Training an effective chromosome classifier
is relatively easy with ResNet [8]. However, the performance of this classifier on true
chromosomes depends on the distribution gap between real metaphases and our training
dataset and on the quality of our chromosome detection algorithm. Building an effective
pipeline from this classifier proved to be a difficult task. We did not succeed in building
a performant chromosome simulator, but training Faster R-CNN [9] provided insight into
the relationship between training dataset size and performance in the context of biological
dosimetry.

Chapter 4 introduces our proof of concept for DC detection. This solution uses well-
known building blocks like Unet, stochastic first-order optimization, a sparsity-promoting
regularizer, and model ensembling. Agregation makes rejection of low confidence detec-
tions easy, and relies on interpretable parameters. This ensemble-based approach demon-
strates strong performance, both in terms of object detection metrics and in terms of
calibration curve estimation.

Scientific communication

The proof of concept for an ADS system was described in an article titled "Ensembling
Unets, sparse representation and low dimensional visualization for rare chromosomal aber-
ration detection in light microscopy images" (https://doi.org/10.1101/2023.09.11.557124),
which is currently being submitted a journal. This proof of concept was also presented at
the International Conference on Radiation Research in Montreal (August 2023).

From June to September of 2022, I stayed in the Engineering Physics department
at McMaster University, in Canada. This research stay was supervised by Qiyin Fang
and focused on assisting Tianqi Hong’s PhD work by designing methods for optical flow
estimation in microfluidics cell imaging. This optical flow estimation method uses the
same sparse regularizer as the proof of concept presented in Chapter 4. This research stay
led to a pre-print which is presented in Annex A.

39

Chapter 1

DEEP LEARNING FOR IMAGE ANALYSIS

Deep learning has been at the heart of significant progress in machine learning over
the past decade. Image analysis is one of the fields where the influence of Deep Neural
Networks (DNNs) has been the most significant. As the application of modern deep learn-
ing to chromosomal aberration detection was the driving force behind this PhD project,
we present useful references for the rest of the thesis in this chapter.

First, we give a brief introduction of deep learning in the context of image analysis. Af-
ter introducing Fully Connected Networks (FCNs) and their shortcomings for image data,
we give the rationale behind an ubiquitous alternative in image analysis: Convolutional
Networks (ConvNets). We introduce backpropagation, and the challenges associated with
training Deep Neural Networks (DNNs) using Stochastic Gradient Descent (SGD).

As labelled data is often sparse in biomedical imaging, we provide an introduction to
unsupervised deep learning for images. Two main approaches are highlighted: generative
models and similarity-based methods.

Providing an accurate modelling of model uncertainty is a key requirement for an
automated dosimetry system. Therefore, we provide a review of a few major references in
the approximate Bayesian deep learning litterature. In those references, the authors use
a Gaussian approximation for the posterior distribution over the weights of the networks.
Several ways of estimating the mean and covariance of this Gaussian distribution are
provided.

Finally, we give two examples of ConvNet-based object detection models, Faster R-
CNN and CenterNet. First, we present Faster R-CNN as an example of a two-stage object
detector. We focus on the technical complexity of this model. As an alternative, we high-
light the simplicity of one-stage object detectors using CenterNet as an example.

41

Chapter 1 – Deep Learning for image analysis

1.1 Deep Learning architectures

1.1.1 ImageNet and deep learning

The ImageNet database [2] was published in 2009 to investigate large scale image clas-
sification problems. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
ran yearly, to incentivize and publicize improvements in image classification research.
Initially, the best performing methods were popular machine learning techniques at the
time, like Support Vector Machines (SVMs) [16]. Those methods usually relied on con-
vex optimization which means that their convergence could be theoretically guaranteed.
Before the early 2010s, most methods used hand-crafted features, like Histogram of Gra-
dients (HOG) [17] or Scale Invariant Feature Transforms (SIFT) [18]. In a seminal paper
published in 2012, Krizhevsky et al. showed that ConvNets trained with SGD brought a
considerable improvement on the current performance state-of-the-art [1]. This sparked a
renewal of neural networks methods in machine learning, which were previously thought
to be very hard to train, owing to the non-convexity of their loss functions.

The development of ConvNets was enabled by the existence of the ImageNet database
but also by improvements in computing, both on the software and hardware front. With
an appropriate redefinition of the image that trades some memory for speed, convolu-
tion can be seen as a matrix multiplication between a kernel and an image, which is
an embarassingly parallel problem. The Compute Unified Device Architecture (CUDA)
framework made it relatively easy to write fast 2D convolution implementations running
on Nvidia Graphical Processing Units (GPUs) with hundreds of cores. While the initial
implementation of AlexNet relied on custom CUDA kernels (which required a working
knowledge of C++), higher level frameworks quickly made deep learning much more accessi-
ble by packaging so-called "primitives" (convolutions, Fourier transforms, etc) into simple
Application Programming Interfaces (APIs) like PyTorch and Tensorflow [19], [20].

1.1.2 Deep neural networks

DNNs are flexible models composed of stacks of linear and non-linear transformations
of the input data. For a two layer neural network, with some activation function σ and
an arbitrarily shaped input x, the output of this neural network can be written as:

ŷ = fθ(x) = σ(W T
2 σ(W T

1 x + b1) + b2) (1.1)

42

1.1. Deep Learning architectures

with θ = W1, W2, b1, b2 being trainable weights and biases respectively. For x ∈ Rk, W1 is
a matrix of size k×m where m is the feature dimension in the first layer, while b1 is of size
m. Here, m is a user-defined parameter. This architecture is arbitrarily flexible: one can
add layers, make them larger or smaller or build connections between different layers. The
number of successive layers is usually refered as the depth of the neural network. Neural
networks are often described as deep, without any agreed-upon standard on the number of
layers needed for this description. Because σ is a non-linearity (for example, σ(x) = 1

1+e−x

or σ(x) = max(0, x)), extremely complex, non-linear relationships between inputs and
outputs can be modelled. In fact, a number of universal approximation theorems exist. A
famous example was proven by George Cybenko [21]:

Theorem 1 Let In be the n-dimensional unit cube [0, 1]n. The space of continuous func-
tions on In is denoted as C(In). Let M(In) be the space of finite signed regular Borel
measures on In. We say that σ is discriminatory if for a measure µ ∈ M(In)

∫
In

σ(yT x + θ)dµ(x) = 0, (1.2)

for all y ∈ Rn and θ ∈ R implies that µ = 0. Let σ be any continuous discriminatory
function. Then finite sums of the form

G(x) =
N∑

j=1
αjσ(yT

j x + θj) (1.3)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0 there is a sum G(x)
for which

|G(x) − f(x)| < ε, ∀x ∈ In. (1.4)

Training DNNs with first order methods

While Theorem 1 suggest that DNNs are a very flexible class of functions, it tells us
nothing about how to approximate a desired function with a neural network i.e., learn
the parameters of the model. This is be done by optimizing some loss function L that
depends on data and model parameters. Cross entropy (for a classification problem) or
L2 distance (for a regression problem) are common examples of loss functions. For a set
of N input and output D = {(x1, y1)...(xN , yN)} sampled from some joint probability
distribution (X, Y), we can approximate the true risk E(X,Y) (L(X, Y)) with the empirical

43

Chapter 1 – Deep Learning for image analysis

risk, which is also our training criterion:

E(X,Y) (L(X, Y)) ≃
N∑

i=1
L(fθ(xi), yi). (1.5)

This empirical risk can be minimized with respect to the model parameters θ, which is
called training the model:

θ⋆ = arg min
θ

N∑
i=1

L(fθ(xi), yi). (1.6)

This simple idea has several issues:

— There is no unique solution to Equation 1.6, and no analytical description of the set
of solutions. Therefore, θ⋆ is be estimated using iterative methods that rely on the
efficient computation of ∇θ

∑
i L (fθ(xi), yi), as detailed in Section 1.1.2. Note that

∇θL (fθ(x), y) ∈ Rk, with k being the dimension of θ. Therefore, HθL (fθ(x), y) =
∇θ [∇θL (fθ(x), y)] ∈ Rk×k. As modern neural networks may feature billions of
trainable parameters, it is not even be possible to store the Hessian matrix in
memory let alone compute it in any reasonable time. Note that despite this fact, a
number of fast approximations of the Hessian of DNNs have been suggested, see the
papers of Ritter et al. [22], [23] or Martens et al. [24]. However, the overwhelming
majority of deep learning literature still relies on first order methods, like SGD [25]
or Adam [12].

— The number of training samples may be extremely large. Internal Google datasets
like JFT-3B contain billions of images: computing the gradient of the empirical
risk over the complete dataset is not feasible because of memory constraints. In-
stead, this gradirnt is approximated on a random subset J of the training data,
i.e ∇θ

∑
x,y∈D L (fθ(x), y) ≃ ∇θ

∑
x,y∈J L (fθ(x), y), with |J | < |D|. Thus, model

parameters are updated with a noisy estimate of the gradient.
— This training criterion is non-convex; there is no guarantee of finding the global

minimum and there is a large number of local minima, usually with comparable loss
values. Because of our noisy estimation of the gradient and the fact that we usually
do not have any curvature information the exploration of the parameter space is a
stochastic process: two successive training runs of the same model with identical
initialization but different batch samplings will reach two different parameter values
at the end of training. While this was initially seen as a insurmountable issue before

44

1.1. Deep Learning architectures

the revival of neural networks in the early 2010s, it has since been suggested that
the randomness in parameter space exploration may actually be a key positive
factor in deep learning performance. This hypothesis has been named implicit
regularization in the litterature, see [26], [27], and is discussed further in Section
1.3.

— Neural networks architecture are extremely flexible: the number of trainable pa-
rameters may be similar to the number of training samples, or it may even be
much larger. This means that there is a large set of values for θ that achieve a
training loss of zero. In fact, surprisingly, DNNs can fit the training data perfectly
and generalize very well on unseen test data, see [27]. As explained in the previ-
ous item, randomness in batch sampling helps to regularize training. Contrary to
previous assumptions, "bad" minimas that do not generalize are rare because of
implicit regularization but also thanks to architectural bias embedded in convolu-
tional architectures as we will see in Section 1.1.3.

Computing gradients in network architectures

To train a DNN with first order methods, we need an efficient way to compute
∇θL(fθ(x), y). Let us consider the same 2-layer FCN as before:

fθ(x) = σ(W2σ(W1x + b1) + b2), (1.7)

with θ = {W1, W2, b1, b2}, where W1, W2, and b1, b2 denote weights and biases respectively.
Let us also define two intermediate quantities at layer l, the output al of the activation
function σ (called the "activation" of the layer):

al = σ(zl), (1.8)

and zl an affine transform of the activations at the previous layer, i.e

zl = Wlal−1 + bl. (1.9)

Activations are defined in a recursive fashion: the activations al at layer l are a function of
the activations at layer l −1, composed of an affine transform Wlal−1 +bl and a non-linear
activation function σ applied element-wise. This recursive definition makes representing
this class of functions as a computational graph possible, as displayed in Figure 1.1. This

45

Chapter 1 – Deep Learning for image analysis

Figure 1.1 – Backpropagation algorithm for a 2 layer neural network. The derivative of
every function node (in blue) is computed with respect to the previous one, for all nodes
on the path to a leaf (in red). Leaves are trainable parameters.

graph has two types of nodes, either representing function evaluation (in blue) or model
parameters (in red) and data (in yellow). Terminal nodes (i.e., nodes that are not used as
input for any other node) are called leaves. Usually, leaves are model parameters. Every
function node has an associated derivative with respect to its input. During the forward
pass, the output of the network with respect to its input is computed. Activations at each
function nodes are retained, because they are needed for gradient computation.

During the backward pass, the derivatives of the criterion with respect to trainable
parameters are computed for every leaves of the graph. The derivative of this composition
of differentiable functions is computed with the chain rule. Derivatives of the loss with
respect to a specific leaf are computed by multiplying the derivatives computed at every
node along the path to this leaf. For example, the derivative of the loss function with
respect to W2 is

∂L(fθ(x), y)
∂W2

= ∂L(fθ(x), y)
∂fθ(x) × ∂σ(z2)

∂z2
× ∂z2

∂W2
, (1.10)

as seen in Figure 1.1. Note that ∂z2
∂W2

= a1: the gradient at note i depends on the acti-
vations (i.e the output) of the previous node, which is why all activations at every layer
are retained during the forward pass. This immensely flexible representation of chained
computations is at the core of autodifferentiation, and offers numerous possibilities:

— we can differentiate the loss function with respect to any terminal node (i.e any

46

1.1. Deep Learning architectures

Figure 1.2 – 2D convolution with a (3 × 3) kernel.

node that is not an input of another node), the difference between input data and
a trainable parameter is only semantic. This means that we can differentiate with
respect to training data, and even update the input of the model with respect to
some criterion. This has been used to find images maximizing the activation of a
specific neuron [28], or for style transfer [29] ;

— while neural networks can implement very complex functions, the computation of
derivatives is always analytic, without any approximation beyond the limitations of
representing real numbers as floats. This is extremely efficient (only one evaluation
of the function is needed), and enables the use of lower precision floats (float32,
or even float16) because the additional precision is not as if derivatives were
evaluated numerically, which saves memory and computation time.

— In PyTorch, the computational graph is defined lazily: for each sample xi, a node
is added to the graph if and only if a new (differentiable) function is called on the
output of a function node of the current computation graph. Nodes can be added
and removed based on user-defined conditions, with an automatic adaptation of the
backward pass. This means that the computation graph can be different for every
sample of the dataset, or modified based on external input. This flexibility is an
advantage of lazily defined graphs over compiled graphs, like the one implemented
in Tensorflow. However, this flexibility costs some performance.

1.1.3 Convolutional Neural Networks

Fully-connected neural networks architectures do not scale well to images: for an image
x of size H × W , a linear transform Wθ of x that does not change the resolution of the
input image has (H × W)2 parameters if we let Wθ be a dense matrix. For H = W = 256,
Wθ would contain 2564 float32, which is not feasible in practice. Implicitely, for any pixel

47

Chapter 1 – Deep Learning for image analysis

Figure 1.3 – 2D convolution with a multi-channel kernel.

of the image, this large matrix has a trainable coefficient modelling an interaction with
any other pixel. ConvNets make two simplifying assumptions:

— pixels usually exhibit high correlation with their closest neighbors but lower corre-
lation with pixels located far away. Instead of keeping the full matrix, long-range
interactions can be removed so that only interactions between neighboring pixels
are modelled which means that Wθ is block-sparse ;

— a good correlation model with neighboring pixels should be location-independent:
instead of learning a local correlation at every location on the image grid, the
assumption is that a single correlation model is valid for the whole image ;

In other words, we learn the parameters of a convolution kernel, a set of parameters
computing a local average at every location of the image. For any given image, local
content interacts with the convolution filter based on their similarity, as shown in Figure
1.2. Given the immense variety of natural images, if one wants to detect some type of
object reliably, a single convolutional filter is not enough: a filter providing a strong
response for some orientation and lighting condition might not be activated reliably by
the same object in other conditions. Furthermore, objects in natural images exhibit scale
variation, so that a filter might be activated by the object if it is sufficiently distant, but
it might not provide useful features if the object is closer. For those reasons, ConvNets
rely on a large number of convolution filters, stacked in successive "blocks", to provide an
expressive and hierarchical representation of the image, as shown in Figure 1.3. Obviously,
convolution did not appear in the deep learning litterature first, and has been a core
component of image analysis for decades. For example, horizontal and vertical gradients
can be computed using convolution filters, as shown in Figure 1.4.

48

1.1. Deep Learning architectures

Figure 1.4 – Left: input image, middle: horizontal gradient, right: vertical gradient.

Efficient implementation of 2D convolution

A naive implementation of convolution might rely on two for loops, iterating over the
height and width of the input image and multiplying the local intensities of the image
with the convolution kernel. However, this fundamental operation can be parallelized very
effectively, as described in this section.

Let us define a batch of J images, with spatial dimensions (H, W) and Ni channels.
For some convolution kernel with spatial size KH , KW , a stride S (the step size of the
convolution kernel) and a padding of P pixels, the output of the convolution operation
has the following spatial size:

Ho =
(

H − KH + 2P

S

)
+ 1, Wo =

(
W − KW + 2P

S

)
+ 1. (1.11)

Using this, the batch of images image can be divided into Np overlapping patches in an
unfolded view, which is an array with dimensions [J , KH × KW × Ni, Np]. Here, Np =
Ho × Wo with Ho and Wo being the spatial size of the convolutions output. Note that this
representation is redundant because patches are overlapping: some pixels are represented
multiple times. This means the unfolded representation takes up more memory than the
initial, "folded" representation.

For a 2D convolution taking an image with Ni channels as input and outputting
another image with No channels, the convolution kernel (i.e the trainable parameters) is
an array of size [No, Ni, KH , KW]. This convolution kernel can be flattened to an array of
size [No, Ni × KH × KW], so that the unfolded batch of size [J , KH × KW × Ni, Np] and
the flattened convolution kernel can be multiplied together. The output batch is of size

49

Chapter 1 – Deep Learning for image analysis

Figure 1.5 – Unfold-GEMM-Fold implementation of convolution showcased on a 1 channel
image.

[J , No, Np], i.e [J , No, Ho × Wo], which can be reshaped into [J , No, Ho, Wo].

The local averaging effect of the convolution can clearly be seen in the output shape:
the KH × KW term has disappeared, as the output at every spatial location of the input
corresponds to the sum of the element-wise product between the patch and the kernel.
Furthermore, this representation makes the fact that convolution is a linear operation
obvious. In turns, this explains why computing derivatives in ConvNets is easy, as they
are mostly stack of linear transforms and element-wise non-linearities.

As shown in Figure 1.5, 2D convolution can be implemented with General Matrix
Multiply (GEMM) , which makes parallel implementations easy. Because matrix multi-
plication is an embarassingly parallel problem, this makes accelerating this computation
of GPUs very easy, but increases memory consumption. This increase is the largest limi-
tation in scaling up convolutional models.

50

1.1. Deep Learning architectures

Architectural bias

Every ConvNet is a FCN, but even for small images where FCNs might be feasible,
ConvNets are usually much easier to train. This is because the assumptions made in
section 1.1.3 introduce architectural bias which makes modelling images easier. To use
an alternate wording, the statistical learning community would say that ConvNets are a
good prior model to describe images. This bias has been extensively studied, and has led
to a number of surprising discoveries:

— Completely random ConvNets can be effective image priors for image restoration
tasks, as shown in Deep Image prior [30]. For some noise vector z and a corrupted
image x, finding θ⋆ = arg minθ ∥fθ(x) − z∥2

2 with early stopping yields good per-
formance on inverse problems, even though the model is trained to reconstruct
noise;

— Training only the batch normalization parameters, or only a very small subset of
the model parameters is sufficient to reach non-trivial levels of performance, as
shown in [31], [32];

— ConvNets can be used as a prior for a FCN. In [33], d’Ascoli et al. find that the
weights of a trained convolutional neural network can be used as an initialization
for a FCN. FCNs initialized that way reach a higher level of performance than
purely convolutional architectures.

Receptive field

In most cases, convolutional architectures use downsampling to agregate information
from different spatial locations in the image, either by using large convolutional kernels
without padding, or by pooling pixels, retaining only the maximum or the average of the
sub-region of the image. This spatial agregation means that as we reach deeper layers of
the network, a single pixel in feature space agregates information from a large subset of
the input in image space.

More formally, for a fully convolutional neural network fθ, al is the output activation
volume at layer l. As we are in a convolutional architecture, we have al ∈ RH/K×W/K×Ni

with W, H the input image height and width, K some downsampling factor that depends
on the stride and padding of the successive convolutions and Ni a pre-defined number
of convolution kernels (also called channels). For a given feature pixel al[u, v] for u, v ∈
{0...H/K − 1} × {0...W/K − 1} (corresponding to a vector of size Ni), the receptive

51

Chapter 1 – Deep Learning for image analysis

Figure 1.6 – Receptive field in ConvNets.

field of this pixel corresponds to the specific subset of the input image x[U, V] (with
U, V a set of image coordinates) so that al[u, v] = fθ(x[U, V]), as shown in Figure 1.6.
There is a tradeoff between the receptive field and spatial resolution of a ConvNet: as the
receptive field grows larger and the model agregates information from distant locations
of the input image, the spatial resolution is reduced: a single pixel models a large part of
the input image. Therefore, accurately modelling objects at different scales in the same
image requires specific architectural choices.

1.2 Unsupervised learning for image analysis

The early successes of deep learning depended on the availability of large annotated
datasets like ImageNet [2], COCO (Common Objects in Context) [3] or Pascal VOC
[4]. However, curating large annotated datasets is expensive, especially when it requires
specialized knowledge, which is extremely common in biomedical imaging. While the deep
learning community quickly noticed that pre-training on ImageNet was usually an effective
way to achieve good results with limited amounts of data this solution is less effective when
there is a large domain gap between ImageNet and the application domain like in satellite
or biomedical imaging. Many imaging modalities found in those applications are not even
available in ImageNet, like hyperspectral or volumetric imaging.

Therefore, unsupervised training methods that do not rely on annotated data are
needed. Those training techniques should learn useful features from an unlabelled dataset
D = {x1, · · · , xN}. In other words, a pretext task is needed, which can be solved without

52

1.2. Unsupervised learning for image analysis

any labels. This pretext task is solved by training a feature extractor which can then be
reused for supervised downstream tasks. Designing effective pretext tasks is a longstanding
challenge, as different downstream tasks may requires different features. In this section,
we focus on two research directions for unsupervised learning in image analysis: generative
models, and similarity-based approaches.

A generative model is trained by learning a data distribution from a set of samples.
The curse of dimensionality makes it difficult for images, but a number of successful
methods have been proposed, like Generative Adversarial Networks (GANs) or Variational
Autoencoders (VAEs).

In similarity-based approaches, a similarity criterion is optimized between different
augmented views of the same image. Augmentations can be noise, blurring, flipping, color
shifting ... This way, the network learns features that are invariant to those perturbations.
The minimization of those criterions usually have trivial solutions, where the same fea-
tures are predicted for all images, which is called representation collapse. Preventing this
collapse is a central issue in similarity-based methods.

This section is not intended as an exhaustive survey of unsupervised feature learning
for images as thousands of pages could be written on the subject, even by restricting
ourselves to the deep learning literature. We focus on a few impactful architectures to
highlight the similarity, differences and tradeoffs between those training criterions.

1.2.1 Generative models

A number of approaches have tried approaching the unsupervised learning problem
as a distribution learning problem. As images are very high dimensional, non-parametric
distribution learning techniques suffer from the curse of dimensionality: sample density is
extremely low in image space [34]. In the deep learning era, two noteworthy approaches are
GANs [35] and VAEs [36]. While adversarial models have managed to produce impressive
samples [37], the adversarial criterion remains difficult to optimize [38]. On the other
hand, VAEs enjoy a more principled training criterion but fail to match GANs on sample
quality.

Generative Adversarial Networks

GANs learn to transform low dimensional Gaussian samples from a latent distribution
pz(z) into images with an adversarial training scheme between a generator G and a dis-

53

Chapter 1 – Deep Learning for image analysis

criminator D. The discriminator tries to predict wether or not any given image is sampled
from the learned generator distribution pg(x) or from the true data distribution pr(x).

In a seminal paper, Goodfellow et al. [35] showed that generating images using this
aforementioned adversarial game was possible. A generator function G(z, θ) : Rl → Rd

maps Gaussian samples to data space, with l < d. A discriminator D(x, ϕ) : Rd− > R
solves a binary classification task: it predicts wether the input is a sample of the generator
distribution pg(x) or the real data distribution p(x). Therefore, the discriminator outputs
a single scalar.

The generator G is trained to minimize log(1 − D(G(z))), i.e. the probability that the
discriminator correctly identifies the output of the generator as fake. On the other hand,
the discriminator is trained to maximize the probability of correctly classifying real and
fake samples. The training objective of a standard GAN, as proposed in Goodfellow et al.
is:

min
G

max
D

V (D, G) = Ex∼pr(x) [log D(x)] + Ez∼pz(z) [log(1 − D(G(z)))] . (1.12)

The min-max formulation makes optimizing this criterion difficult. Optimizing the dis-
criminator to convergence before updating the discriminator would be too costly, so most
GAN training schemes alternate updates of the generator and discriminator. Training
can also collapse rather easily, especially in early phases of training. When the generator
provides poor samples, classifying generator output is easy, so that D(G(z)) is very close
to 0. The generator gradient update (where m is the batch size)

∇ϕ
1
m

m∑
i=1

log (1 − D(G(zi))) , (1.13)

is very small. To prevent this, Goodfellow et al. suggest maximizing D(G(z)) instead,
but collapse of training because the discriminator is too strong remains an issue in GAN
training. In fact, [38] proved that the gradient updates of the generator tend to 0 as the
discriminator improves, under some conditions on pg(x) and pr(x). In [39], the authors
replace the FCNs used in [40], [41] with ConvNets, which improves training stability and
performance. Furthermore, they show that the discriminator of a GAN can be used as a
feature extractor to solve downstream task like image classification. Additional study of
GAN training stability was provided in [42]. In Mirza et al. [41], the training criterion of
(1.12) is rewritten for class-conditional generation:

min
G

max
D

V (D, G) = Ex∼pr(x) [log D(x, y)] + Ez∼pz(z) [log(1 − D(G(z, y)))] , (1.14)

54

1.2. Unsupervised learning for image analysis

Figure 1.7 – Image-to-image translations capabilities of pix2pix [43].

where y denotes labels. While initially, Mirza et al. showed that GANs can be condi-
tionned with class information, more sophisticated conditioned conditional GANs were
later demonstrated. For example, in [43] Isola et al. show that GANs can be conditioned
with images, for image-to-image translation, as shown in Figure 1.7. This architecture is
called pix2pix. The authors use the following criterion:

min
G

max
D

V (D, G) = Ex∼pr(x) [log D(x, y)]+Ez∼pz(z) [log(1 − D(G(z, y)))]+Ex,y,z [∥x − G(z, y)∥1] .

(1.15)
The Ex,y,z [∥x − G(z, y)∥1] term improves sample quality by forcing the generator to pro-
duce outputs that match the true input image. The generator G is conditioned both on
the noise z and the label y. However, the authors note that there is little stochasticity in
the decoder output: sampling new noise vectors does not lead to a diverse output of the
generator. Variants of pix2pix where the generator output does not depend on any noise
produce almost identical results to the model trained with the criterion in (1.15).

Deterministic and probabilistic autoencoders

This section introduces autoencoders, first as a compression model and then as a latent
variable model of a true data distribution, as introduced in the famous paper by Kingma
et al. [36]. The similarities and differences between the two approaches are highlighted,
as presented in [44].

Autoencoders rely on a simple idea: learning how to compress an image, and recon-
struct it from a low-dimensional latent representation requires learning good image fea-

55

Chapter 1 – Deep Learning for image analysis

tures. Image compression was frequently used as a pretext task in early deep learning
experiments [45]. This class of models can be described in the following way: an input
image x, with dimension d is compressed to a latent representation z ∈ Rk, k < d by
a parameterized function fϕ(x). This latent representation is decompressed into a recon-
struction of the input image x̂ = gθ(z) = gθ(fϕ(x)). The parameters (θ, ϕ) can be learned
by minimizing a reconstruction error, for example the squared euclidean norm:

θ⋆, ϕ⋆ = arg min
ϕ,θ

∥x − gθ(fϕ(x))∥2
2. (1.16)

If fϕ and gθ are defined as linear transforms and the reconstruction error is the L2 norm,
the optimal encoder and decoder correspond to the first k vectors of the Principal Com-
ponent Analysis (PCA) basis. Using DNNs, deep autoencoders can be trained with back-
propagation and first order optimization. Kingma et al. refined deep autoencoders further
in [36], by parameterizing a probability model for a random variable x with DNNs. In this
paper, the authors suggest modelling x as a function of a latent unobserved variable z:

X ∼ pθ(x|z) = p(x|gθ(z)), (1.17)

where gθ is a deterministic function mapping the latent space to the data space, usually
called a decoder. In the same way, the probability distribution over the latent space is
defined as

z ∼ qϕ(z|x) = q(z|fϕ(x)), (1.18)

where fϕ is a deterministic function mapping data space to latent space, usually called
an encoder. The likelihood (or model evidence) of this model is

p(x) =
∫

p(x, z)dz, (1.19)

which requires evaluating the joint distribution over the whole dataset. This integral is
usually intractable and an alternative formulation is needed. One can show that the log-
evidence can be decomposed as

log p(x) = ELBO(θ, ϕ) + KL [qϕ(z|x)|p(z|x)] , (1.20)

56

1.2. Unsupervised learning for image analysis

where p(z|x) is the true model posterior, defined as

p(z|x) = p(x|z)p(z)
p(x) , (1.21)

which again depends on the intractable model evidence. The Evidence Lower BOund
(ELBO) can be rewritten as

ELBO(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)] − KL [qϕ(z|x)|p(z)] , (1.22)

where p(z) is a prior on the latent space. Because of the Jensen inequality, the Kullback-
Leibler (KL) divergence between the true and parametric posterior is always positive, and
the model evidence p(x) is a constant. Therefore, maximizing the ELBO with respect to
the parameters ϕ, θ is equivalent to minimizing the KL divergence between the true and
parametric posterior. To optimize the lower bound of (1.22), specific probability models
for qϕ and pθ are needed. Usually, in the context of VAEs, Gaussian probability models
are chosen:

qϕ(z|x) = N (µϕ(x), σϕ(x)) , pθ(x|z) = N (µθ(z), (σθ(z)) , (1.23)

where µϕ, σϕ are functions outputting a mean and a variance for the latent probability
model, so that fϕ(x) = (µϕ(x), µσ(x)) and gθ(z) = (µθ(z), σθ(z)). The first expectation
term in the ELBO must be estimated with samples of the latent distribution. For com-
putational reasons, a single sample is usually used, which makes the decoder effectively
deterministic. Therefore, we have

Eqϕ(z|x) [log pθ(X|z)] = ∥x − µθ(µϕ(x))∥2
2. (1.24)

Let us focus more closely on z. Equation 1.23 tells us that the latent probability model is
a Gaussian variable. Therefore, we have

pϕ(z|x) = µϕ(x) + σϕ(x) ⊙ ε, ε ∼ N (0, I), (1.25)

Where ⊙ is point-wise multiplication (Hadamard product). Therefore, as pointed out by
Ghosh et al. in [44], in practice, VAEs are noise-regularized autoencoders. The determin-
istic latent representation is corrupted with Gaussian noise, and the variance of this noise
depends on the input image. Finally, the second term of (1.22) is a KL divergence between

57

Chapter 1 – Deep Learning for image analysis

two Gaussian distributions, which can be computed analytically:

KL(qϕ(z|x)|p(z)) = 1
2

(
∥µθ(x)∥2

2 + d +
d∑

i=1
(σϕ(x)i − log σϕ(x))

)
. (1.26)

This divergence is minimized if the trained encoder outputs a centered Gaussian with
unit variance. This is a regularization term that tends to smooth the latent space of the
autoencoder.

In the initial definition of the ELBO, the reconstruction term of (1.24) and the regular-
ization term of (1.26) are equally balanced. However, in practice, training this model can
be difficult. Often, some kind of annealing schedule is needed, where the training starts
without any regularization, and progressively increases the weight of the KL divergence
term of (1.26) in the ELBO. The training criterion of (1.22) can be rewritten to depend
on an hyperparameter β which balances reconstruction and regularization:

ELBO(θ, ϕ, β) = Eqϕ(z|x) [log pθ(x|z)] − βKL [qϕ(z|x)|p(z)] . (1.27)

Here, β can be increased beyond 1, which over-regularizes the model, trading off re-
construction performance for a smoother latent space. A surprising effect of this over-
regularization is that it tends to produce disentangled latent spaces, as shown in [46].

In a disentangled latent space, every dimension of the latent space controls a specific
type of variation in output space. This property has not received a rigourous definition,
because defining semantic variations identified by humans in images is close to impossible.
However, visual examples can provide a better intuition of this property, as shown in
Figure 1.8.

Regularized autoencoders

While VAEs provide a complete probability model for images, where traditional density
estimation methods (like kernel density estimation) usually fail, practical implementations
of this probability model are usually fairly simplistic. Noticing that VAEs are effectively
noise-regularized autoencoders, Ghosh et al. compare VAEs to Regularized Autoencoders
(RAEs) in [44]. The following criterion is optimized:

LRAE = LREC + βLRAE
Z + λLREG

= ∥x − gθ(fϕ(x))∥2
2 + β∥fϕ(x)∥2

2 + λLREG.

58

1.2. Unsupervised learning for image analysis

Figure 1.8 – Latent factors learned by β-VAE on celebA: specific dimensions of the latent
space capture factors of semantic variations in images. Note that some semantic factors
are not disentangled, like age and gender in b). (Source: [46])

We re-use the deterministic autoencoder notations introduced in Section 1.2.1. The βLRAE
Z

is used to constrain the latent variable near the origin of the latent space, to prevent
uncontrolled "growth" of the latent space which could lead to numerical issues.

The decoder gθ is architecturally close to a GAN generator, as it transforms a latent
representation into an image. Therefore, common GAN generator regularizer can be used.
Tikhonov regularization on the decoder weights is equivalent to weight decay, which is
commonly used. Two noteworthy examples for GAN generators are gradient penalty reg-
ularization, LREG = ∥∇ϕ,θgθ(fϕ(x))∥[42], and spectral normalization [47], where weight
matrices are divided by an estimate of their largest singular values.

Finally, the authors of [44] note that this deterministic formulation prevents any sam-
pling from the latent space, which is a major advantage of VAEs. To remedy this, they
fit a Gaussian mixture model on the latent space once model training is finished. For a
random sample znew of this mixture model, gθ(znew) provides a decoded view.

1.2.2 Similarity-based methods

While generative pretext tasks can be easy to train (although some of them are fairly
unstable, like GANs), there is no guarantee that the features learned during training will
be useful for discriminative downstream tasks like classification. Therefore, pretext tasks
that are better suited to discriminative tasks have been designed. In this section, we
review a broad class of methods that can be summarized as "similarity based": some kind
of similarity metric between augmented views of the same batch of images is optimized
during training.

59

Chapter 1 – Deep Learning for image analysis

Figure 1.9 – Conceptual comparison of three contrastive loss mechanisms (empirical com-
parisons are in Figure 3 and Table 3). Here we illustrate one pair of query and key.
The three mechanisms differ in how the keys are maintained and how the key encoder
is updated. (a): The encoders for computing the query and key representations are up-
dated end-to-end by back-propagation (the two encoders can be different). (b): The key
representations are sampled from a memory bank [50]. (c): MoCo encodes the new keys
on-the-fly by a momentum-updated encoder, and maintains a queue (not illustrated in
this figure) of keys. (Source: [48])

Contrastive learning

In contrastive learning, the pretext task is discriminative: the model is trained by
minimizing a classification loss. For a batch of images, two views are produced with
random augmentations for each image. The loss is computed over all pairs of images. The
model should attribute high probability to pairs of matching views, and low probability
to other pairs of images. In all contrastive approaches, selection of negative samples is a
major topic: if the set of negative samples is extremely small, trivial features might be
enough to solve the classification problem. On the other hand, enlarging the set of negative
samples brings computational challenges. We review two approaches in detail: simCLR
(Simple Contrastive Learning of Representations) and MoCo (Momentum Contrast) [48],
[49].

In MoCo [48], the authors frame the contrastive learning problem as a dictionnary
lookup task, which can be used as a general framework to highlight the difference between
the approaches suggested in the litterature. For any image x ∈ D = {x1, · · · , xN}, a query
encoder fq produces a query q ∈ Rd. This query is matched to a set of keys {k1, · · · , km}.
The dictionary contains a single positive key k+ (which corresponds to another augmented

60

1.2. Unsupervised learning for image analysis

Figure 1.10 – In simCLR, fθ is trained to maximize similarity between different views
of every key in the batch (i.e matching keys), and to minimize similarity between non-
matching keys

view of the same image), while all the other negative keys k− correspond to images
xj, j ̸= i. for a single key (i.e a single image), the training criterion is:

Lq = eq·k+∑
k− eq·k−

. (1.28)

This way, the similarity between views of the same image is maximized, while the sim-
ilarity between different images is minimized. The fact that the model simultaneously
maximize similarity between positive pairs and dissimilarity between negative pairs is the

61

Chapter 1 – Deep Learning for image analysis

key ingredient to prevent representation collapse. Contrastive methods for unsupervised
learning mostly differ in how the key encoder and the set of negative keys are defined, as
explained in Figure 1.2.2. In MoCo [48], the query encoder is a moving average of the key
encoder (with the same architecture), i.e

θk = mθk + (1 − m)θq, (1.29)

with θk, θq being respectively the parameters of the key and query encoder. In SimCLR
[49], The key and query encoder are shared, so that θk = θq. In MoCo, the set of keys
is continuously updated, but kept much larger than a single batch to avoid making the
discriminative task trivial. The set of keys is a queue: the oldest keys are removed at every
batch step, while the new batch represents the newest member of the dictionnary.

SimCLR [49] avoids queue mechanisms by using a very large batch sizes. This leads to a
very simple architecture, but requires very large batches (around 4k images on ImageNet),
which quickly becomes intractable with large images (like in biomedical imaging). In this
architecture, there is only one single shared model that is trained using a contrastive
loss. There is no dictionary, and for a positive key, the matching key corresponds to an
augmented view of the same image.

Clustering-based approaches

In supervised image classification, we have a class label yi for every image xi. Even if
this label is not available, we could still optimize a classification loss if we had some proxy
label that corresponds to semantic characteristics but does not rely on human annotations.
This pseudo-label should be retrieved in an automatic fashion, which is hard because this
is effectively equivalent to the supervised classification problem.

For datasets like MNIST featuring well-defined factors of variation [51], simple feature
learning methods like PCA might be enough to build relatively well-defined clusters based
on pixel values in an unsupervised fashion. However, this is not possible for rich and
complex datasets like ImageNet [2].

In [52], Caron et al. proposed an iterative strategy that relies on bootstrapped la-
bels and circumvents the need for human annotations. Initially, image embeddings are
computed using an untrained ConvNet. Then, pseudo-labels are built from cluster as-
signments computed with K-Means. Finally, the ConvNet is trained with a conventional
cross-entropy loss using those pseudo-labels. After every training epoch, cluster assign-

62

1.2. Unsupervised learning for image analysis

ments are re-computed, using the embeddings provided by the classification network.

To prevent a trivial solution where all images are mapped to a single cluster, the
centroid of an empty cluster is recomputed from the centroid of a non-empty cluster with
an additional random perturbation, and K-Means assignments are re-computed. This
effectively splits the non-empty cluster into two. Furthermore, to prevent the model from
predicting a single representation, the classification loss of a single sample is weighted
based on the number of images in the cluster, i.e, if we have K different clusters of sizes
{n1, · · · , nK}

L(X, Y) =
∑

i

λiyi log s(fθ(xi)), (1.30)

with λi = 1
np

if sample i belongs to cluster p. Therefore, high classification performance
on large clusters brings a lower reduction in loss, which prevents representation collapse.

While this approach is effective, cluster assignments are computed offline, which means
that it does not scale very effectively to large datasets. After every epoch of training,
clusters have to be re-computed with K-Means. In [53], Caron et al. optimize a similar
classification loss based on pseudo-labels. However, those pseudo labels are computed in
a different fashion: instead of computing assignments using K-Means on feature vectors,
assignments are computed using the Sinkhorn-Knopp algorithm [54], as explained below.

A set of B feature vectors Z = {z1, · · · , zB} needs to be mapped to a set of K

prototypes C = {c1, · · · , cK}. Feature vectors should be mapped to prototypes on the basis
of their similarity. This mapping Q ∈ RK×B

+ is the solution of the following optimization
problem:

arg max
Q∈Q

Tr(QT CT Z) + εH(Q) (1.31)

with H(Q) = ∑
i,j Qij log Qij, ε taking a low value (ε ≃ 0.001), and

Q =

Q ∈ RK×B
+ , Q1B = 1

K
1K , QT 1K = 1

B
1B

. (1.32)

The constraints in (1.32) prevent solutions where all images are mapped to the same
prototype, by ensuring that the distribution of feature vectors over the different prototypes
is roughly uniform.

The rest of the paper uses conventional ideas in unsupervised learning. We have two
augmented views xs, xt of the same batch of images. A ConvNet fθ builds two sets of
features zs = fθ(xs), zt = fθ(zs) from those augmented views. For each view, those features

63

Chapter 1 – Deep Learning for image analysis

Figure 1.11 – Swapping Assignments between Views (SWaV). (Source: [53])

are mapped to prototypes using the Sinkhorn-Knopp algorithm, yielding sets of codes
qs, qt. Finally, the ConvNet fθ is trained with the following criterion:

L(zs, zt) = −
(∑

k

qk
s log pk

t +
∑

k

qk
t log pk

s

)
(1.33)

with

pk
s =

exp
(

1
τ
zT

s ck

)
∑

k′ exp
(

1
τ
zT

s ck′

) . (1.34)

The model is trained by predicting the prototype assignments of one view from the fea-
tures of the other views. This ensures that fθ produces features that are invariant to the
augmentations used to produce the views xs, xt. This process is summed up in Figure
1.11.

Similarity-maximization approaches

In [55], Chen et al. point out that a number of successful unsupervised learning archi-
tectures that avoid representational collapse have been designed (see Sections 1.2.2, 1.2.2).
However, there has been little interest in the simplest architecture that can avoid this is-
sue. For example, one could ask if negative samples are absolutely necessary to prevent
representation collapse. Chen et al. suggest that this is not the case, and an architecture

64

1.3. Approximate Bayesian deep learning

Figure 1.12 – SimSiam architecture. Note that the dimension of z and p are identical.

that relies only on maximizing similarity between positive samples is feasible. SimSiam [55]
relies on a encoder network fθ(x) : [0, 1]H×W ×C → Rd and a projector pθ(z) : Rd → Rd,
as shown in Figure 1.12. This neural network is trained using the following criterion:

L = 1
2D(p1, sg(z2)) + 1

2D(p2, sg(z1)), (1.35)

where sg denotes the stop-gradient operator. The similarity criterion is cosine similar-
ity, i.e.,

D(u, v) = uT v

∥u∥2∥v∥2
. (1.36)

The key ingredient to prevent representation collapse is the stop-gradient operator.
This means although z = fθ(x), no gradient is computed with respect to θ for this term
of the loss criterion. Without this stop-gradient operator, training quickly collapses to
a degenerate solution where the same representation is predicted for every image. This
technique does not rely on sampling negative examples like in [49], and there is no need
to maintain a key encoder like in [48].

1.3 Approximate Bayesian deep learning

Because DNNs are often perceived to be "black boxes", there has been particular
interests in modelling the sensitivity of the model output with respect to its parameters,
and Bayesian approaches are a natural fit for this task. However, computing a posterior
distribution over model parameters raises particular challenges, as modern DNNs have

65

Chapter 1 – Deep Learning for image analysis

been scaled to hundred of billions of parameters.

Bayesian deep learning techniques using tractable variants of Monte Carlo sampling
have been designed, but those methods are usually slower than gradient-based methods.
Furthermore, they require an accurate implementation of a completely different opti-
mization procedure than what is usually used in modern DNNs. This complexity and
computational cost has made them a relatively niche research direction [56].

Because of this, this section focuses on approximate Bayesian deep learning. First,
we briefly describe some theoretical work describing approximate Bayesian deep learning
based on SGD iterates. Then, we review some articles that use a set of models to improve
performance or provide uncertainty estimation, either by combining their predictions or
their weights. Finally, we review a several papers that focus on estimating approximate
posterior distributions over the weights of a neural network. The posterior weight distri-
bution is assumed to be a high-dimensional Gaussian. Several ways of fitting the mean
and variance of this Gaussian distribution are proposed, either based on gradient descent
iterates, or estimates of the Hessian matrix of the network.

1.3.1 SGD as an Orstein-Uhlenbeck process

In a well-known paper, Mandt et al. [7] used tools of the stochastic differential equa-
tions (SDEs) litterature to study the stationary distribution of SGD. Let us consider a
loss function over a dataset of size N that depends on model parameters θ:

L(θ) = 1
N

N∑
i=1

li(θ), g(θ) = ∇θL(θ), (1.37)

where each li is the contribution to the total loss of a single sample, i.e., li(θ) = li(x, θ).
In the case of a MAP estimate, the objective is the sum of a log-likelihood and a prior,
so that

li(θ) = log p(xi|θ) − 1
N

log p(θ). (1.38)

For computational reasons, the full gradient g(θ) is usually not computed, but estimated
on a random sample J of the full dataset, i.e

ĝS(θ) = ∇θLJ (θ), (1.39)

66

1.3. Approximate Bayesian deep learning

where LJ (θ) = 1
|J |
∑|J |

i=1 li(θ). The authors [7] make a set of assumptions to view SGD as
an Orstein-Uhlenbeck process:

— As the batch is a random sample of the full dataset, the stochastic gradient (and
therefore the gradient noise g(θ) − gJ (θ)) is a sum of identically distributed inde-
pendent contributions. According to the central limit theorem, it follows that

ĝJ (θ) ≃ g(θ) + 1√
|J |

∇g(θ), ∇g(θ) ∼ N (0, C(θ)), (1.40)

— the covariance matrix of the gradient noise is a symmetric positive-semidefinite
matrix which is approximately constant with respect to θ, i.e

C(θ) ≃ C = BBT , (1.41)

— the difference between two successive iterates is

∆θ(t) = −εg(θ(t)) + ε√
|J |

B∆W, W ∼ N (0, I). (1.42)

Furthermore, the authors assume that this finite-difference equation can approxi-
mate the following continuous-time SDE:

dθ(t) = −εg(θ)dt + ε√
|J |

BdW (t), (1.43)

— the stationary distribution of SGD iterates is constrained to a region where the
loss can be approximated in the following fashion:

L(θ) ≃ 1
2θT Aθ, (1.44)

where A is positive definite matrix, the Hessian of the loss at the optimum.
Thanks to those assumption, SGD can be defined as an Orstein-Uhlenbeck process and
the Gaussian stationary distribution q(θ) can be computed analytically:

q(θ) ∝ exp
[
−1

2θT Σ−1θ
]

. (1.45)

The authors note that those assumptions do not hold in the general case for DNNs. During
early phases of training, the iterates are not located in the vicinity local mininum. It is

67

Chapter 1 – Deep Learning for image analysis

only where the iterates are "close" to a local minima that the assumptions used above
prove correct. If we use a very long training schedule with large enough gradient steps,
several local minimas might be explored during training.

1.3.2 Ensembling neural networks for performance and uncer-
tainty estimation

In this subsection, we focus on papers [57]–[59] that use the intuitions detailed above,
even if they do not explicitely estimate the parameters of the approximate posterior
distribution. The authors of those papers combine several models, either by combining
their predictions or their weights.

In [57], Lakshminarayanan et al. evaluate the performance of ensembles of neural
networks for two specific goals: higher performance, and better model calibration. Cal-
ibration describes the relationship between model confidence and error rate. DNNs are
usually overconfident: their predicted probability does not match their error rate. In other
words, a classifier predicting a class with a probability of 0.99 does not achieve a 1% error
rate on this class.

Models in the ensemble are trained in a conventional way, aside from the use of ad-
versarial training [40]. For a set of weights θ and an image-label pair (x, y), an additional
"adversarial" training example x′ can be generated as

x′ = x + εsign (∇xL(θ, x, y)) , (1.46)

Where ε is a small random value. This additional training example has the same label y as
the original one but is displaced along the gradient of the loss with respect to the original
input x. As the model has to predict the same label for the original training sample and
the adversarial example, this technique regularizes training and makes the loss surface
smoother and the classifier more robust.

In [57] The authors note that conventional models usually need additional randomness
to ensure that the ensemble has enough diversity to provide an increase in performance.
This randomness can be injected by training the model on random samples of the data
(bagging), or by choosing a base learner with a stochastic training procedure (like random
selection of features for random forest). However, the batch sampling of DNNs usually

68

1.3. Approximate Bayesian deep learning

Figure 1.13 – In [58], parameter space is explored using a cyclical learning rate schedule.
An ensemble is sampled from saved checkpoints.

provides enough randomness. Models are agregated as an uniform mixture:

p(y|x) = 1
M

M∑
m=1

p(y|x, θm), (1.47)

where M is the number of models in the ensemble. For classification, this aggregation
method provides an improvement in performance, and improved model calibration. While
the authors demonstrate the potential improvements brought by ensembling DNNs, train-
ing M different models remain costly. In [58], the authors find that a specific training
schedule can be used to extract a diverse enough ensembles from checkpoint of a single
training run. To ensure a thorough exploration of the parameter space, the authors use
a cyclic learning rate schedule. When the learning rate is low, the model converges to a
local minima, and the modelling suggested in Section 1.3.1 is correct. When the learning
rate gets higher, gradient steps are larger and the model parameters escape the current
local minima. Figure 1.13 illustrates this phenomenon.

While this method is computationally cheaper than training M models, the period
of the cyclical learning rate remains high (around 10 epochs), so the training cost is
increased. In [59], Garipov et al. suggest an alternative. Noticing that most local minimas
are connected by curves where the loss stays low, they suggest retrieving model weights

69

Chapter 1 – Deep Learning for image analysis

Figure 1.14 – L2-regularized cross-entropy train loss (left) and test error (middle) as a
function of the interpolation parameter t between local minimas. Straight lines between
local minimas showcase a large increase in loss, while a Bezier interpolation between both
local minimas shows the presence of a low-loss path between those models. "Polychain"
(a polygonal chain between minimas) shows similar behavior.

along those curves. Ensembles can be built by averaging the predictions of the model
retrieved along curves linking a pair of local minimas. The low loss path along this curve
is shown in Figure 1.14.

The authors also confirm the insight of [58], but show that a strong ensemble can be
retrieved with a cyclical learning that has a much shorter period (2 to 4 epochs), with
improved performance.

All methods mentioned previously perform model agregation in prediction space. How-
ever, models can also be agregated in weight space. This is what Izmailov et al. demon-
strate in [13]. While using an Exponential Moving Average (EMA) of SGD iterates is fairly
common to stabilize training, this paper uses an uniform average of SGD iterates, called
Stochastic Weight Averaging (SWA). An early example of uniform weight averaging for
regularization is Polyak-Ruppert averaging [60], [61]. In this paper, the strength of this
idea is demonstrated even in the context of non-convex optimization for DNNs. The main
difference between SWA and Polyak-Ruppert averaging is that SWA uses a constant high
learning rate instead of a decaying learning rate, to ensure parameter space exploration.
The authors hypothesize that because once a local minima is reached, SGD samples the
posterior weight distribution (see Section 1.3.1), the barycenter of those weights is more
likely to lie near the "center" of the local minima. In this location, it is less likely that a
small step in weight space will lead to a large increase in loss. In other words, this minima
is "flatter", which has long been hypothesized to correlate with improved generalization
[62], [63].

While all of those papers use the insights provided by Mandt et al. in [7] and the lit-
terature dealing with the limit distribution of SGD in non-convex optimization in general,

70

1.3. Approximate Bayesian deep learning

none of them actualy estimate a posterior distribution over the weights of the model. We
cover a few references dealing with this problem in the next section.

Approximating a posterior distribution with SGD iterates

In [6], Maddox et al. approximate the posterior distribution over the model weights
θ as a Gaussian distribution, and call this method Stochastic Weight Average Gaussian
(SWAG). The mean of this distribution is estimated with the running mean of SGD
iterates, i.e the SWA solution θSW A as described in [13]:

θSW A = 1
T

T∑
i=1

θi. (1.48)

Several covariance approximations are possible, although computational costs are an issue,
as the size of the covariance matrix scales quadratically with the number of parameters.
Because of this, a diagonal covariance can be used:

Σdiag = diag(θ̄2 − θ2
SW A), (1.49)

with θ̄2 = 1
T

∑T
i=1 θ2

i . This diagonal covariance model can be enriched with an additional
low-rank covariance matrix. This approximation has the following form:

Σlr = 1
K − 1

K∑
i=1

(θi − θSW A)(θi − θSW A)T = 1
K − 1DDT . (1.50)

Note that as θSW A is not available until the end of training, it is approximated during
training by θ̄i, which is the running mean of the first i SGD iterates. D is a deviation
matrix with K columns of value θi − θ̄i. The number of columns K of D (the number
of considered SGD steps) is an hyperparameter. Both covariance approximations can be
combined, so that the final posterior approximation is N (θSW A, 1

2(Σdiag + Σlr)). One can
sample from this approximation with the following equation:

θ̃ = θSW A + 1√
2

Σ1/2
diagz1 + 1√

2(K − 1)
Dz2, (1.51)

where z1 ∼ N (0, Id) and z2 ∼ N (0, IK) where d is the number of parameters in the net-
work. This approximate posterior can be used to approximate a Bayesian Model Average
(BMA) [64]:

71

Chapter 1 – Deep Learning for image analysis

Figure 1.15 – Comparison of the sampling of the posterior distribution for several methods.
An ensemble of several DNNs trained separately [57] effectively provides several true
samples of the posterior distribution. However, the number of samples is low. SWAG can
cover a local minima of the loss function (a mode of the posterior distribution) much more
densely, but can only cover one mode. Multi-SWAG covers several modes of the posterior
distribution by fitting several Gaussian distributions during training, to form a mixture
model of the posterior distribution.

p(yt|D, xt) =
∫

p(yt|θ, xt)p(θ|D)dθ, (1.52)

where D is the data distribution, (xt, yt) is a test input-output pair and p(θ|D) is the pos-
terior weight distribution. This integral is approximated with samples of the approximate
posterior distribution estimated above:

p(yt|D, xt) ≃ 1
S

S∑
s=1

p(yt|θs, xt), θs ∼ p(θ|D). (1.53)

Ensembles generated from the posterior weight distribution bring improvements in terms
of perfomance and model calibration, and do so at a lower compute cost than ensembles
composed of separately trained models. However, true posteriors of neural networks are
very unlikely to be unimodal. The stationary distribution proposed in Mandt et al. [7]
is only relevant in the vicinity of a local minima. Therefore, while the approximation
proposed above provides performance improvements, it does not model this multimodality.
In Maddox et al. [6], the authors improve SWAG by representing the posterior distribution

72

1.4. Object detection with deep learning models

as a mixture of Gaussians, centered in several different basins of attraction of the loss
surface. Figure 1.15 provides a schematic summary of the idea.

1.4 Object detection with deep learning models

Object detection is most commonly defined as fitting axis-aligned bounding boxes
around objects of interest. This task is relevant in a number of fields, like autonomous
driving or medical imaging. Bounding boxes have an associated class label, so that any ob-
ject of interest is localized and classified. In two-stage object detectors, the detection task
is divided into three subtasks. First, there is a region proposal step, where a model pre-
dicts bounding boxes around foreground objects. Then, a bounding box regression model
refines those proposals, using the content of the region proposal. Finally, a classification
networks predicts a class label for the bounding box.

One-stage detectors do not have any region-proposal. This is done to improve inference
time, but usually lowers detection performance. In this section, we will review two object
detection models and explain how they solved the most common problems associated with
this task. First, we look at Faster R-CNN as a well-known example of a two-stage object
detector. Then, we study CenterNet as an example of a one-stage object detector, as it is
very simple to implement which makes it especially interesting.

1.4.1 Object detection with Region-CNN

Fast R-CNN

In "Fast R-CNN", Girshick et al. [65] describe the basic components of their object
detection model. Figure 1.16 gives a summary of the architecture. Fast R-CNN region
proposal step is separated from the object detection model. At the time, Selective Search
was used for region proposal [66]. Therefore, the complete architecture could not be trained
end-to-end.

For a given image, a feature map is produced by a ConvNet which is usually called
a backbone. Given that region proposals might have different size, the subsets of the
feature map corresponding to those region proposals will also have different sizes. To
ensure that features corresponding to those region proposals all have the same size, a
Region of Interest (ROI) pooling layer is used. This adaptive pooling layer agregates
a feature map to a constant output size, no matter the size of the input. Once this is

73

Chapter 1 – Deep Learning for image analysis

Figure 1.16 – For a proposed region, features from a ConvNet are retrieved. An adaptative
pooling mechanism called ROI pooling ensures that features have the same spatial size,
no matter the size of the proposed region. Pooled features are used for classification and
bounding box regression. (Source: [65])

done, two small neural networks are used for bounding box regression and bounding box
classification. The object detector is trained with the following criterion:

L(p, u, tu, v) = Lcls(p, u) + λ1u≥1Lloc(tu, v) (1.54)

with p the predicted probability distribution over the classes, and u the one-hot vector
describing the true class label. Lcls is a cross entropy loss. tu = (tu

x, tu
y , tu

h, th
w) is the

predicted bounding box regression vector and v the true bounding box vector. The first
two coordinates of the bounding box vector are the coordinates of the top right corner.
The last two coordinates indicate the height and width of the bounding box. The bounding
box regression loss is defined as the following robust loss:

Lloc(tu, v) =
∑

i∈{x,y,h,w}
smoothL1(tu

i − vi) (1.55)

with smoothL1 defined as:

smoothL1(r) =

1
2r2 |r| < 1

|r| − 1
2 |r| > 1.

(1.56)

Note that this bounding box regression loss is only active if the considered region does

74

1.4. Object detection with deep learning models

Figure 1.17 – For every pixel of the feature map produced by the backbone, the RPN pro-
duces a set of regression vector modifying the pre-defined anchors, and a set of objectness
scores which quantify how likely each anchor is to contain an object. (Source: [9])

not belong to the background. During training, background examples (regions with a
small intersection with a ground truth bounding box) are sampled to ensure that the
classification network accurately classifies the background.

Faster R-CNN

In [9] Ren et al. suggested training a model for regression proposal, called a Region
Proposal Network (RPN) so that the entire object detection model could be trained end-
to-end. This network uses the same backbone as the object detection model (see Section
1.4.1 for an explanation). Figure 1.18 shows the architecture of Faster R-CNN. For every
pixel of the feature map, there are k (where k is a tunable hyperparameter) anchor boxes,
usually with different aspect ratios or size, as shown in Figure 1.17. This is mostly because
the resolution of the output feature map is relatively low, so that a single anchor per pixel
would be insufficient to accurately locate every object in the image. Those anchors act as
pre-defined region proposals. The RPN refines those anchors by predicting a regression
vector (like the object detection model). Furthermore, the RPN predicts an objectness

75

Chapter 1 – Deep Learning for image analysis

Figure 1.18 – Architecture of Faster R-CNN. A ConvNet produces a feature map for
an input image. This feature map is used to produce region proposals. Those region
proposals are selected, and an object detection network is trained as presented in Figure
1.16. (Source: [9])

score for every anchor. This score corresponds to the likelihood that the current bounding
box contains an object, instead of background.

The RPN is trained like the object detection model, by minimizing the sum of a clas-
sification and regression loss. Here, the classification task is the rejection of background.
While this idea makes Faster R-CNN considerably faster than Fast R-CNN, there an is-
sue. For 2 adjacent pixels of the feature map at the output of the backbone, 2 anchors can
be adjusted to cover the exact same subset of the image. In other words, several regions
with a high objectness score can be proposed for a single object.

To deal with this issue, the set of region proposals is reduced by thresholding the ob-
jectness score. Furthermore, overlapping boxes in the set of object proposals are merged
using Non-Maximum Supression (NMS). If two boxes have high overlap (defined by their
Intersection Over Union, or IoU), only the one with the highest objectness score is kept.
This method is effective, but requires setting another hyperparameter, and the enumer-

76

1.4. Object detection with deep learning models

Figure 1.19 – Output of the CenterNet model. The center of the bounding box is predicted,
a specific heatmap is predicted for every class in the dataset. For every location of the
heatmap, a (height, width) tuple is predicted, representing the size of the bounding box
at this location. (Source: [67])

ation of region proposals in two-stage detectors is computationally costly. However, this
class of object detection models usually reaches a high level of performance. In the next
section, we discuss a one-stage object detector that does not require region proposal or
NMS.

1.4.2 NMS-free object detection: Object as Points

In [67] Zhou et al. proposed a simple one-stage object detector that does not need NMS
nor any pre-defined anchors. Instead, the object detection model (named CenterNet) is
implemented as a ConvNet with three output branches. For an image of size H × W , a
first branch outputs a heatmap of size H/K × W/K × C (with K a downsampling factor,
and C the number of classes) predicting the center of bounding boxes. A second branch
predicts the size of the bounding boxes as a (height, width) tuple for every location u, v

in the output of the heatmap branch, with u, v ∈ {1, · · · , H/K} × {1, · · · , W/K}. Figure
1.19 gives a visual depiction of the output of CenterNet. Bounding box height and width
are predicted for every location of the image, even when this location does not contain
any object. Bounding box height and width are only retrieved where the output of the
bounding box center prediction branch exceeds a pre-defined threshold.

Finally, the heatmap output has resolution H/K × W/K, which is lower than the
resolution of the input image. Therefore, a third output branch is used to predict an
offset for every location u, v ∈ {1, · · · , H/K} × {1, · · · , W/K} so that the model can
predict bounding box centers with sub-pixel accuracy.

77

Chapter 1 – Deep Learning for image analysis

Training

The heatmap branch is trained by minimizing a modified cross entropy loss called
Focal Loss [68], [69] between its output and a heatmap of Gaussian "spots" laid over the
center of bounding boxes. While one could predict a binary image where bounding box
centers would take value 1 and the background value 0, bounding box centers would be
too under-represented. Therefore, Zhou et al. [67] choose to blur the heatmap with a
Gaussian kernel.

Local maximas of the heatmap prediction are retrieved. Those location corresponds
to the predictions of the model. Bounding box size and offset are retrieved in the outputs
of the two other branches. Bounding box and offset errors are computed only in those
locations. Both branches are trained by minimizing a L1 distance between prediction and
ground truth.

1.5 Conclusion

Modern deep learning has received considerable attention in image analysis. Extremely
flexible architecture can be trained end-to-end with simple criterions, using backpropa-
gation and stochastic gradient descent. In spite of the non-convexity of commonly used
training criterions because of the non-linearities in this class of models, finding "good"
local minimas is relatively easy because of implicit regularization.

Bringing the benefits of this class of high-performing architectures to biomedical imag-
ing is more difficult, as labelled data is rare. SSL lets us pre-train models without any
labels, either by learning to generate images or by learning invariance to common image
augmentation techniques (noise, cropping, flipping, etc).

Because of the black box nature of modern DNNs, Bayesian deep learning has been an
active field of research. In approximate Bayesian deep learning, the posterior distribution
over the weights of the model is usually modelled as Gaussian. The parameters of this
distribution can be estimated with approximate samples, like SGD iterates.

Finally, DNNs can be used to build object detection models. Those models are usually
divided in two categories: one stage and two stage detectors. Two stage detectors are more
complex, but reach a higher level of performance. In Chapter 4, we explore the potential
of one-stage object detection models for chromosomal aberration detection.

78

Chapter 2

IMAGE ANALYSIS FOR THE AUTOMATION

OF BIOLOGICAL DOSIMETRY

In the first part of this chapter we introduce the basics cytogenetic biological dosime-
try. We review some biological factors that are especially relevant from a computer vision
perspective as they cause variations in image quality. Next, we review historical examples
of chromosomal aberration detection methods. We focus on a commercial solution devel-
oped by canadian researchers as its inner workings were explained in details in a series of
publications.

Finally, we review some references written by researchers at LRAcc dealing with evalu-
ating another commercial solution in a semi-automated regime. While the computer vision
techniques used in this solution were not described in the open scientific litterature its
evaluation by biological dosimetry specialists provides a benchmark to compare against
for the new methods developed in this thesis.

2.1 Basics of biological dosimetry

The goal of biological dosimetry is estimating a dose of ionizing radiation using
biomarkers instead of measuring it with instruments like a dosimeter [14]. This may
be necessary because dosimeter readings are unavailable, in the case of an accidental (or
potentially malicious) exposition. While several biomarkers of radiation have been iden-
tified, the average number of DC per peripheral blood lymphocytes (also called dicentric
yield) is the gold standard according to the IAEA [14].

Those aberrations can be observed during the metaphase step of mitosis, so that an
image of a peripheral blood lymphocyte undergoing metaphase is usually abbreviated to
"metaphase". Once a blood sample is collected, blood cells are grown and Demelcocine is
used to stop mitosis during metaphase. The blood sample is spread on a transparent slide
and observed with a bright-field microscope. The slide is backlit, and because chromo-

79

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.1 – Basic morphology of a metaphase chromosome.

somes are translucent objects, Giemsa staining is used to make them opaque and improve
contrast with the bright background [70], [71] (see Figure 2.2).

DCs have two centromeres, which is the visible constriction of its chromatides (like
at the center of a MC). For an example of a DC, see the shape circled in red in Figure
2.2 b). The presence of DCs and fragments in a metaphase (circled in green in Figure
2.2 b)) are highly correlated. The required cell culture duration for DC scoring is lower
than for other methods like micronuclei scoring [70]. Furthermore, the preparation pro-
cess is simple and relatively cheap. Other imaging modalities, like Fluorescence In Situ
Hybridization (FISH) offer significant advantages: probes can be used to highlight other
types of aberrations like translocations, or centromeres [72], [73]. However, FISH is sig-
nificantly more time consuming, and more expensive. MCs and DCs can be discriminated
using their morphological differences.MCs are X-shaped (see Figure 2.1), while DCs look
like a pair of MCs bound together.

The number of DCs in a metaphase is random. It follows a Poisson distribution,
where the parameter λ of this distribution is the average number of DC per cell (also
called dicentric yield) for the considered dose. This Poisson model is adequate in the
case of a whole body photon exposition. The relationship between DC yield and dose (in
Grays) is described by a calibration curve with a linear-quadratic shape. In the case of
a partial exposition, only some blood cells are exposed to ionizing radiation. The blood
sample is usually modelled as a mixture of an irradiated and a non-irradiated sample [74].
This effectively increases the number of cells without any DC, and partial expositions are
often modelled with Zero Inflated Poisson models. In this context, the DC distribution

80

2.1. Basics of biological dosimetry

Figure 2.2 – Chronology of a biological dosimetry-based estimation of an ionizing radiation
dose. First, a blood sample is taken and cells are grown for 48 hours, Demelcocine is used
to stop cells in the metaphase stage of mitosis. Metaphase acquisition is automated with
modern microscopy systems, as shown in a), and chromosomal aberrations are counted,
as displayed in b). The proportion of chromosomal aberration is linked to the ionizing
radiation dose through a linear-quadratic relationship, see c).

showcases overdispersion: the variance of the distribution is greater than the mean.
For a blood sample that was not exposed to ionizing radiation, the dicentric yield is

around 10−3: the vast majority of cell does not contain any aberration. For small doses, a
large number of metaphases has to be processed to accurately detect a deviation from the
basal aberration rate. This leads to stringent requirements in terms of false positives, to
prevent overestimation of low doses. Even at 5Gy, which corresponds to the median lethal
dose for a whole body exposure (also called LD50), there is only around 1 aberration per
cell. This means that in a single metaphase, on average, 45 chromosomes are healthy and
a single DC is observed.

To estimate dicentric yield, a sample of metaphase is checked for chromosomal aberra-
tions, a process called DC scoring. In practice, human experts perform binary classification
on each chromosome, sorting them between the MC and DC class. Furthermore, multi-
centrics chromosomes and fragments are identified. To this end, those experts undergo
several months of training and are then evaluated on benchmark datasets. This training
helps humans achieve an extremely low error rate. However, this error rate comes at a
cost: human can process a relatively low number of metaphases per hour (see Figure 2.3).
Cognitive load is high, and human experts can only count chromosomal aberrations for a
few hours at a time to keep the error rate low. Furthermore, a large number of metaphase
is needed to achieve usable confidence intervals for low doses, as illustrated in Figure 2.3.

Within the context of a large scale exposure there may not be enough human experts
to accurately triage patients between different therapeutical options. In this case, com-

81

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.3 – Relative confidence interval size as a function of metaphase number and dose.
The lower the dose, the higher number of images is needed to get a narrow confidence
interval. Aberration counting takes about one hour for 50 images, and a thousand image
may be needed for a narrow enough confidence interval for a small dose.

puterized expertise could provide invaluable help. This is the central motivatoin for the
deep-learning-based ADS proof of concept presented in this thesis.

2.2 Challenges of automated aberration counting

In Figure 2.2 a), the DC circled in red is relatively obvious even to the untrained
eye. Unfortunately, chromosomes are flexible objects and the chromatids of a MC may
fold in way that would make a MC indistinguisable from a DC. Human experts can shift
the focal plane of the microscope to disambiguate those cases, as folded chromatids and

82

2.2. Challenges of automated aberration counting

Figure 2.4 – Four examples of metaphases showcasing variations in acquisision conditions.
Variations in chromosome spread, chromosome condensation, chromosome thickness, chro-
mosome texture and illumination are visible. Furthermore, some metaphases contain more
debris (cellular nuclei, filaments) than other.

centromeres have different thickness. This can then be used to distinguish MCs from DCs,
as DCs have two centromeres. Because the microscope-mounted camera only acquires 2D
data, this information is not available in the data we are working with.

Beyond those issues, the process of cell culture and metaphase acquisition leads to
variation in image quality. In each cell, mitosis is stopped at a different level of chromosome
condensation, which leads to difference in chromosome size or texture. Giemsa staining
may bind to the chromosomes in a non-uniform manner. The location of the cell on the

83

Chapter 2 – Image analysis for the automation of biological dosimetry

glass slide leads to variations in backlight intensities between metaphases, or even in a
single metaphase, so that a gradient in backlight intensity could be observed even for
a single cell. A lot of metaphases contain cellular debris, which might be circular and
easy to reject but could also be filament-shaped and much harder to discriminate from
a chromosome fragment. In Figure 2.4 a few examples of metaphases showcasing those
variability factors in the image acquisition process are shown.

Any computer vision system aiming to accurately count chromosomal aberrations in
those conditions will need to deal with those sources of variability, either in an explicit or
implicit manner.

2.3 An historic example of automated dicentric scor-
ing systems

While biological dosimetry is a relatively niche field of study, it quickly became of
playground for advances in computer vision and image processing. One of the earliest
implementation of an ADS was called the Edinburgh dicentric hunter. It was introduced
in "Radiation dosimetry by automatic image analysis of dicentric chromosomes" by Bayley
et al. [70] in 1991. Because of the lack of sufficiently effective computer vision tools, the
authors choose to significantly restrict the range of DC they would try to detect. For
example, they do not attempt to detect DCs where the centromeres are very close to each
other, or DCs where one of the centromeres is located at the edge of the chromosome
(acrocentric chromosomes). Based on previous references, the authors assume that those
configurations amount to around 30% of all DCs.

The authors also note that one of the significant challenges in evaluating an ADS is
building a ground truth. Indeed, there is usually a high level of inter-observer disagreement
during a manual scoring session of DCs. In [70], DC scoring is divided in 5 steps:

— metaphase finding;
— image acquisition;
— segmentation of chromosomes;
— MC - DC classification;
— human review.

The metaphase finding step was implemented with the Cytoscan 110 metaphase finder,
which was evaluated in [76]. During metaphase acquisition, the images undergo global
thresholding. The software attempts to identify chromosome objects, reject debris and

84

2.3. An historic example of automated dicentric scoring systems

Figure 2.5 – This figure depicts various degrees of SCS present in some Giemsa stained
chromosome cell images (a), b) anc c)) as well as some lenghty chromosomes characteristic
to those prepared at a cytogenetic laboratory (d), e) and f)). (Source: [75])

split chromome clusters. Metaphases are accepted or rejected on the basis of their object
counts. Early and late metaphase cells are rejected by identifying the level of chromosome
condensation based on their mean aspect ratio. This prevents the selection of metaphases
containing chromosomes with excessive Sister Chromatide Separation (SCS). Sister chro-
matides are the "branches" of a chromosome. Depending on the preparation of the blood
sample, various levels of SCS might be encountered, as shown in Figure 2.5.

Once metaphase finding is completed, chromosome classification is performed. The
classifier used by [70] is described in [77]. A first-stage classifier extracts a set of centromere
candidates by retrieving points of contour constriction along the chromosome centerline.
Because of this, SCS can lead to spurious DC detections as constrictions points might
not correspond to centromeres. As the authors point out, chromosome shape variability is
usually much higher between cells than inside a single cell. Therefore, the centromere clas-

85

Chapter 2 – Image analysis for the automation of biological dosimetry

sifier must be adapted to every cell. This can be achieved by finding a within-chromosome
or within-cell normalization for feature values. A feature set is extracted at candidate
points, as illustrated by Figure 2.6.

Figure 2.6 – Chromosomes showing the various structures from which feature values are
computed: (a) the chromosome and its computed symmetry axis, with candidate cen-
tromere positions marked by horizontal lines, (b) the longitudinal profile of densities, (c)
the chromosome boundary from which curvature values are obtained, (d) the "crossing
profiles", the density profiles across the chromosome at the centromere candidates. The
right-hand chromosome has a false candidate, clearly distinguished by the bimodal cross-
ing profile. (Source: [70])

The set of centromere candidates is re-classified by a second-stage classifier which takes
this feature set as an input. The set of detected DCs is stored, and presented to a human
expert for review. The software retains the position of DCs in every cell, which makes
human review with a microscope (instead of on an image acquired by a camera) possible.
In practice, this possibility was found to increase analysis time, as human experts tended
to prefer lengthy reviews using the microscope over fast review using DCs candidates
extracted by the software.

In terms of performance, The Edinburgh dicentric hunter achieves a false positive rate
of around 0.5 DC per cell according to Bayley et al. The system has a recall of around
40%. The sensitivity for low doses is insufficient, which is not surprising given that no
attempt is made to detect around 30% of DCs. The results of Bayley et al. [70] were
confirmed by another evaluation of the same software in Finnon et al. [78].

To summarize, ADS for Giemsa stained images data back to the mid 1980s. The Ed-
inburgh dicentric hunter is an noteworthy example of early ADS dating back to 1991.
The overall workflow [70] by Bayley et al. is still used by the modern method presented
in Section 2.4. Other ADS systems have been designed with FISH imaging, which en-

86

2.4. ADCI: implementing an ADS framework

ables labeling centromeres or specific chromosomes. For example, Roy et al. [71] made a
comparison of ADS which includes fluorescence-based systems and Huber et al. [73] did
technical review of a version of Metafer for fluorescence imagery.

2.4 ADCI: implementing an ADS framework

This section aims to provide an overview of a comercially available ADS solution
developped by Cytognomix called Automated Dicentric Chromosome Identifier (ADCI).
The first version of this dose estimation pipeline was described in "Towards large scale
automated interpretation of cytogenetic biodosimetry data" by Li et al. [79] in 2012. While
there are other comercially available ADS, we have more insight in the inner workings of
ADCI through a series of paper providing details of its implementation.

ADCI does not use deep-learning-based object detection. DC counting is framed as two
successive tasks: chromosome detection, and chromosome classification. A large amount of
prior knowledge is used to solve those tasks. Metaphases are selected based on the number
of objects, so that images with overlapping objects are rejected, chromosome contours
are identified accurately for precise centerline extraction, centromeres are detected for
accurate DC classification, etc.

2.4.1 Chromosome feature extraction

First, an accurate chromosome extraction algorithm is needed. Noise may lead to incor-
rect chromosome extraction when global thresholding algorithms (like Otsu thresholding
[80]) are used, like in [70]. Accurate segmentation should rely on more than a single pixel
for its decision. In [81], the authors found that an active contour method called Gradient
Vector Flow (GVF) provided good segmentation results. Active contours ensure that the
chromosome segmentation method has a relatively regular boundary.

Once an accurate chromosome contour (and segmentation) has been extracted, the
centerline of the chromosome must be estimated. Usually, skeletonization is performed
using morphological operators (e.g. thinning).

This step emphasizes the importance of an accurate contour extraction, as the esti-
mated centerline location depends on the width of the estimated contour at every loca-
tion of the chromosome boundary. Furthermore, biological processes can make centerline
extraction difficult, the most likely being Sister Chromatide Separation (SCS) in late

87

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.7 – Chromosome centerlines proposed by the GVF + DCE algorithm proposed
in [81]

metaphase images. A further refinement of centerline extraction was introduced in [82].
Spurious branches may be produced during centerline extraction, especially if the

chromosome is bent. In those cases, the authors performed skeleton pruning with a Dis-
crete Curve Evolution (DCE) algorithm which was proposed in [83]. As explained in [81],
this centerline extraction algorithm relies on the adjustment of hyperparameters for the
snake algorithm. Those were set empirically. Figure 2.7 shows a few examples of extracted
centerlines.

This centerline can be used to estimate centromere location and number, which is a
common technique in biological dosimetry (see Section 2.3). This is done by building a
width profile of the chromosome around the centerline by retrieving the length of scan lines
that are perpendicular to the centerline.Indentifying constrictions in this width profile
provides a way to count centromeres, as shown in Figure 2.8.

2.4.2 Chromosome classification

In the first ADCI prototype introduced by Li et al. in 2012 [79], monocentric-dicentric
(MC-DC) classification relied on counting the minimas of the chromosome width profile,
like in early ADS systems like the Edinburgh dicentric hunter introduced by Bayley et al.
in 1991 [70].

The MC-DC classification was improved in Subasinghe et al. and Li et al. in 2016
[75], [85]. For centromere detection, a contour is extracted using GVF and DCE, and the

88

2.4. ADCI: implementing an ADS framework

Figure 2.8 – Chromosome images processed by ADCI, annotated with key segmentation
features. (A) MC and (B) DC. Chromosome contour overlaid in green, long-axis centre-
line in red. For reference, the minimum bounding box of the contour is also displayed in
magenta and green. Yellow and cyan markers on the centerline indicate the top-ranked
and 2nd-ranked centromere candidates, respectively, and all other candidates are indi-
cated with a dark blue marker. For each centromere candidate, their corresponding width
traceline (crossing through the candidate and running approximately orthogonal to the
centerline) are displayed in dark blue. The arc lengths of width tracelines running down
the centerline (not all shown) are used to construct a chromosomal width profile. Note that
for the MC (A), the top-ranked candidate correctly labels the true centromere location,
while the 2nd-ranked candidate labels a minor non-centromeric constriction. Meanwhile,
for the DC example (B), both the top and 2nd-ranked candidates label true centromere
locations. By comparing features extracted from the top 2 candidates (including width
and pixel intensity information), the software determines if the chromosome is a MC or a
DC. (Source: [84])

centerline is extracted, as introduced in [82]. Local minimas of the width profile of the
chromosome along this centerline are considered to be candidate points for centromeres.
A set of handcrafted features is build from those locations, like local curvature of the
contour, thickness of the chromosome at this point, distance from the candidate to the
closest end of the centerline, etc. Those features are used by a SVM classifier to accept
or reject candidate points as centromeres. The distance to the separating hyperplane is
used as confidence measure, called Candidate Based Centromere Confidence (CBCC). For
every chromosome two candidate points are extracted, as shown in Figure 2.8. Additional
steps were taken by Liu et al. [84] to reduce the number of false positive in MC-DC
classification. A set of filter was designed to correct SVM classifications. For example,
if the surface area of a candidate DC is too low, it should be rejected. Filters based on
chromosome maximum and median width, surface area, oblongness were designed.

89

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.9 – Outputs of the 2014 version of ADCI at different steps of the pipeline as
shown in [86]

2.4.3 A pipeline for dose estimation

Several iterations of the ADCI software have been published. All of them follow roughly
the same outline, but ADCI was improved over time to deal with its initial shortcomings.
Using the centerline extraction algorithm and the centromere detection method proposed
by Subasinghe et al. in 2010 [81], [87], Li et al. [79] introduced the first prototype of
ADCI and its parallelization over a compute cluster to deal with mass exposition in 2012.
Particular care was taken to ensure that the results are as independent as possible of
preparative methods in biodosimetry labs, as this is identified as a core factor of ADS
performance variation. Using the centerline extraction improvements proposed in [82], the
first iteration of the ADCI software beyond the prototype stage was introduced by Rogan
et al. in 2014 [86]. A flowchart of this pipeline is visible in Figure 2.9.

A new version of ADCI was introduced by Rogan et al. [88] in 2016. This version
uses an improved centromere location algorithm and MC-DC classifier introduced by
Subasinghe et al. and Li et al. in 2016 [75], [85]. This version of ADCI is compared to
human evaluation in terms of calibration curve fitting. First, the authors note that the

90

2.4. ADCI: implementing an ADS framework

Figure 2.10 – Calibration curves of the 2016 version of ADCI introduced in Rogan et
al. [88]. The two human expertises are provided by HC, CNL (plotted as AECL). Three
calibration curves are plotted for ADCI, depending on the hyperparameter σ of the MC-
DC classifier.

number of segmented objects is a very reliable feature for metaphase selection: if the
number is too low, it may be because its chromosomes are overlapping, therefore reducing
the number of detected objects. On the other hand, if the number of objects is too high,
the image may contain chromosomes from two cells instead of one. The parameter σ of
the improved SVM MC-DC classifier (which is the standard deviation of the radial basis
function used as a kernel) introduced in [85] can be tuned by the user to balance specificity
and sensitivity. If irradiation doses are known for a set of reference blood samples, ADCI
has the ability to estimate a calibration curve. In [88], this is done in comparison to
manual scoring provided by two labs, Health Canada (HC) and CNL (Canadian Nuclear
Laboratories, formerly Atomic Energy of Canada Limited, or AECL). The calibration
curve comparing ADCI to those laboratories is displayed in Figure 2.10.

Nevertheless, as shown in Figure 2.10, a large number of DC detections in this version
of ADCI are false positives, which tends to skew calibration curves upward at the origin.
While the aberration frequency for healthy patients (0 Gy) is around 10−3, we can see in
Figure 2.10 that ADCI estimates a much higher aberration frequency at 0 Gy. While it
is possible to reduce that number of false positives by imposing stricter thresholding in
the MC-DC classifier, this tends to skew the calibration further down for high doses. The

91

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.11 – Figure displaying the improvements brought by applying false positive
filters implemented in the 2017 ADCI version introduced in Liu et al. in [84]. A) shows
the calibration curve on a sample prepared by Health Canada (HC), while B) shows the
same for a sample prepared by Canadian Nuclear Laboratories (CNL). Green curves show
ADCI performance without false positive filters, while cyan curves show the performance
after DC reclassification using false positive filters. (Source: [84])

following paragraph taken from [88] explains the relationship between false positives and
dose estimation very well:

" False positives have a proportionately larger impact at low doses, causing a stronger
response in ADCI curves. At higher levels of radiation exposure, false positives tend to be
balanced out by an increase in false negatives, i.e. DCs missed by the SVM. Beyond the
level at which the number of false negatives exceed the number of false positives, the ADCI
calibration curves exhibit a weaker response than manually derived curves. "

Following versions of ADCI implemented changes that improved this false positive rate.
The 2017 version of ADCI introduced in Liu et al. [84] introduced the MD-DC classifier
improvements described in Section 2.4.2. Furthermore, metaphase quality has a large
impact on MC-DC classification performance. Therefore, this version of ADCI provides
improvements in metaphase selection. To adress this issue, a set of filters were designed
to rank metaphases based on morphological features like average length-width ratio of
chromosomes, centromere density (images containing closely clustered chromosomes are

92

2.4. ADCI: implementing an ADS framework

Figure 2.12 – Figure displaying the improvements brought by applying false positve filters
and manually curating metaphases on the Health Canada (HC) sample. Although [84]
implements metaphase selection algorithms, this figure displays the impact of manual
metaphase selection. Green curve is evaluated on a un-curated dataset, without false
positive filters. Red curve is curated, but estimated without false positive filters. Cyan
curves uses false positive filters but is evaluated on an un-curated dataset. Finally, blue
curve is evaluated on a curated dataset with false positive filters.

ranked lower), chromosome contour smoothness, total object count (metaphases with less
than 35 objects or more than 50 are ranked lower), ratio of identified to unidentified
objects, etc. A global image score was built as a linear combination of the previously
mentioned image features. The weights of this linear combination were optimized with a
grid search by minimizing the error to a known calibration curve. Finally, this weighted
sum was used to rank images to be processed by ADCI. The improvements caused by
re-classification of false positives can be seen in Figure 2.11. This figure also shows the
relationship between sample provenance and calibration curve shape, as the radiation
response of the Health Canada (HC) sample is almost linear, while the quadratic shape of

93

Chapter 2 – Image analysis for the automation of biological dosimetry

the calibration curve is much more visible for the Canadian Nuclear Laboratories (CNL)
sample.

False positives reclassification and image selection lead to a very low level of false
positives, and prevents the usual over-estimation of low doses in ADS systems. False
positives can be further reduced by curating metaphases. The impact of this curation
process can be seen in Figure 2.12.

the image selection models introduced in [84] rely on user-specified thresholds. In
the 2019 version of ADCI introduced in [89], Li et al. demonstrate a procedure to find
the parameters of those image selection models. A laboratory builds a calibration curve
dataset comprised of a set of slides irradiated at different doses. As the ground-truth dose is
known for each sample, it is possible to evaluate the dose estimation error. The parameters
of the image selection models described in [84] are enumerated exhaustively, and the best
model is chosen with respect to the calibration curve fitting error. Dose estimation is
therefore completely automated, as long as a reference sample from a laboratory can be
made available. On a laptop equipped with a GTX 960M, this implementation of ADCI
can process around 100 metaphases per minute.

2.5 Deep learning for biological dosimetry

While all the solutions described in this section rely on conventional computer vision
techniques, recent papers have used deep learning to solve the DC detection task at the
core of biological dosimetry.

In [90], Jang et al. evaluate Faster R-CNN as a model for DC detection. First, metaphases
are selected with a ResNet classifier, to reject images containing two metaphases, under-
spread metaphases or metaphases with exposition issues. Once this image selection step
is finished two Faster R-CNN-based models are trained: the Counting Network (CN) and
Identification Network (IN). Dicentric yield is estimated using the number of chromo-
somes counted by the CN and the number of DC counted by the IN. Figure 2.13 shows
the objects detected by the two models.

Both the Precision and Recall for the IN are around 90%, which means that around
10% of DC candidates are false positives, which is a relatively high false positive rate
for biological dosimetry. Therefore, while the pipeline is accurate for high doses, the
performance is unsatisfactory at low doses (below 1 Gy).

This pipeline is used to estimate a calibration curve on an independent sample (see

94

2.5. Deep learning for biological dosimetry

Figure 2.13 – Figure displaying the input image (left) detections of the Counting Network
(CN) in the middle and Identification Network (IN), on the right.

Figure 2.14). Note that in this plot, the "dicentric rate" (and not the usual dicentric yield)
is plotted as a function of dose. The dicentric rate corresponds to the probability for a
single chromosome to be dicentric. The dicentric yield, on the other hand, is the average
number of DC per metaphase. Assuming that every metaphase contains 46 chromosomes,
the dicentric rate should be multiplied by 46 to get the usual dicentric yield. At 0 Gy,
the model presented in [90] achieves a dicentric yield of around 0.01, which is approxima-
tively 10 times higher than the manual dicentric yield (depending on laboratory counting
protocol). Therefore, low doses are overestimated.

The approach proposed by Jang et al. partially circumvents the sophisticated metaphase
selection algorithms presented in Section 2.4. Indeed, Jang et al. treat wether or not any
chromosome is a DC as a Bernoulli-distributed random variable. Therefore, the radia-
tion dose is linked to the mean of this distribution, instead of the average number of
DC cell. Conventional calibration curves that link dicentric yield and dose rely on the im-
plicit assumption that every metaphase contains 46 chromosomes which makes metaphase
selection crucial. Incomplete metaphases quickly lead to an erroneous dicentric yield esti-
mation: if an incomplete metaphase contains 39 chromosomes and 1 DC, a predicted DC
count of 1 is likely to be biased downwards as the true (unknown) DC count can only
match or exceed 1. In this scenario, Jang et al. effectively weight the DC count of 1 by
a factor of 39

46 . As long as one can count chromosomes accurately and detect overlapped
chromosomes estimating the dicentric rate is always possible even if some metaphases are
incomplete.

Note that however, the training dataset of both neural networks relies on metaphases
annotated by humans. As those metaphases were selected with human quality standards
(good spread, object counts consistent with a single cell), some metaphase selection is still

95

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.14 – Figure displaying the calibration curve estimated by the pipeline proposed
by Jang et al. in 2021 in [90]. This curves displays dicentric rate instead of dicentric yield.
Multiply dicentric rate by 46 (number of chromosomes in a normal metaphase) to get
dicentric yield.

needed to ensure that the training and evaluation distribution match closely. However,
this step is considerably simplified as only a ResNet-based binary classifier is needed in
the proposed pipeline. Even if an incomplete metaphase is accepted the counting network
weights the DC count accurately instead of completely rejecting the metaphase. This
prevents the rejection of some DCs and improves recall which is especially relevant for
low doses as the blood sample might only contain a single-digit number of DCs. Overall,
the importance of metaphase selection is reduced but the step is not eliminated completely
although it certainly leads one to wonder wether or not it would be feasible.

Another approach was proposed by Shen et al. in [91]. Instead of training a model in an
end-to-end fashion to detect bounding boxes, chromosomes are detected with conventional
computer vision techniques and then classified with a ConvNet. First, the metaphase
image is segmented with K-Means. Chromosomes that are not adequately separated are
identified based on their morphology, and individual chromosomes are separated with a
watershed algorithm. Next, a binary classifier is trained with stochastic gradient descent to
solve the MC-DC classification problem. The authors of [91] do not estimate a calibration

96

2.6. DCScore: evaluating an ADS in a semi-automatic regime

curve with their DC detection method which makes objective comparison with other
approaches in this Chapter difficult.

2.6 DCScore: evaluating an ADS in a semi-automatic
regime

2.6.1 Evaluating DCScore in realistic scenarios

ADCI aims to provide a fully-automated ADS. This is challenging as the number of
false positives need to be controlled very tightly to prevent an overestimation of the dose.
In a series of papers, researcher at LRAcc evaluated DCScore, a commercial ADS system
provided by MetaSystems in a semi-automatic regime. An automated metaphase finder
is used, and metaphases are selected by hand based on their quality. DCs are detected
automatically and undergo a manual review by an expert. False positives are rejected
by hand during this review. While this approach still need human experts, expertise
time is reduced. It provides a good compromise between manual scoring (MS) and fully
automated approaches like ADCI.

Within the context of a mass exposure where physical dosimetry information is not
available, the IAEA established guidelines to ensure that victims receive adequate care
based on the received dose [14]. Once a blood sample is taken and the cell culture step is
done (as shown in Figure 2.2), an initial manual scoring of 50 metaphases (called the triage
step) allows one to classify victims in range of doses. This first step is mostly useful to
identify patients who received large doses. Once this is done, 500 images should be scored
to refine the dose estimation. As manual scoring is very time-consuming, the triage step
ensure that therapeutically relevant data is produced as soon as possible after exposure
to radiation.

In real-world cases, the triage step has been shown to almost always underestimate
the real dose as shown by Voisin et al. in 2001 [92]. ADS systems provide an alterna-
tive approach to this two step process, as the scoring time can be drastically reduced. In
2009, Vaurijoux et al. [93] compared the triage step to a different strategy where several
hundreds of metaphases were scored using DCScore. The number of metaphases scored
automatically was chosen so that the analysis time is roughly the same for the two strate-
gies. Both metaphases and DCs were selected semi-automatically. In both cases, DCScore
made suggestions, and a human operator performed a review. Vaurijoux et al. use real

97

Chapter 2 – Image analysis for the automation of biological dosimetry

data from 46 victims of the Dakar 2006 accident, where an iridium-192 source from a
gammagraphy instrument was not properly returned to its shielded container. The com-
parison between the DCScore and manual scoring calibration curve is shown in Figure
2.15.

Figure 2.15 – Calibration curves for manual scoring (bold black dashed line) and semi-
automated scoring (bold black line) with manual review to supress false positives. (Source:
[93])

Note that this calibration curve showcases significant differences from calibration
curves produced by other ADS systems like ADCI, as seen in Figure 2.10. This is be-
cause of the human review, which suppresses false positives very effectively. However, this
leads to a systematic underestimation of doses. This is because the recall is low which
leads to an underestimation of the true number of DCs.

Furthermore, the authors compare DCScore and manual scoring in their ability to
classify patients in range of doses. First, they note that misclassification during triage
is common with the 2006 Dakar data: 50% of patients were classified in a different dose
range depending on wether scoring was performed on 50 metaphases of 250. While this
may seem very high, this needs to be recontextualized as the dose range for the Dakar
accident is low, and it is likely that triage would perform better in higher dose scenarios.

On the contrary, dose range classification of DCScore and manual scoring are in agree-

98

2.6. DCScore: evaluating an ADS in a semi-automatic regime

ment in 96% of cases. Like with ADCI, slide-to-slide quality variations are identified as a
key factor of performance variation for DCScore. Again, shown in Figure 2.15 the low-dose
context of the 2006 Dakar accident is where DCScore shows the best performance, i.e.,
the lowest difference to the manual scoring calibration curve.

In [93], expositions are assumed to be uniform. However, accidental expositions may
also be partial. In the uniform case, the number of DCs follows a Poisson distribution,
as explained in Section 2.1. However, in the partial exposition case, the blood sample is
effectively a mixture of an unexposed sample and an exposed sample with an unknown
mixing factor. The distribution of aberration count follows a Zero-Inflated (ZIF) distri-
bution, where the probability of a cell containing zero aberration is much higher than
in the Poisson case. Wether or not DCScore can provide accurate triage in the case of
partial expositions was studied by Vaurijoux et al. [94] in 2012 using in vitro experiments.
Irradiated and un-irradiated samples are mixed in different proportions and the ability
of DCScore to provide an accurate dose estimation in this challenging context is evalu-
ated. The authors again observe high agreement between manual scoring results on 500
metaphases and ADS. Furthermore, as DCScore lets the authors process a much larger
number of cells than MS, they found that "ADS is able to detect a dose significantly dif-
ferent from zero in samples having a lower fraction of irradiated cells compared to the MS
method".

The results of [94] were refined in 2013 by Gruel et al. in [95] where a large scale
emergency is simulated in vitro. The authors provide finer bounds on the number of cells
needed for accurate triage with DCScore compared to manual scoring. As the suspected
dose gets lower, the number of metaphases to score in order to accurately estimate the dose
should be larger. For doses above 1 Gy, 1500 images scored with DCScore are sufficient,
but lower doses especially in the context of a partial exposition may require 3000 images
to be accurately estimated. Results from several european laboratories using this semi-
automated approach for large scale expositions were compared in 2013 by Romm et al. [96].
The overall biological dosimetry pipeline (from blood sampling to dose estimation) was
found to be sufficiently normalized, so that the difference in calibration curve estimation
between laboratories was minimal.

2.6.2 Exploring DCScore shortcomings

Metafer has several tunable parameters for metaphase discovery, like microscope scan-
ning speed and detector sensitivity. In this section, we discuss two recent papers (2019 and

99

Chapter 2 – Image analysis for the automation of biological dosimetry

Figure 2.16 – Calibration curves for automated (blue) and semi-automated (orange) DC-
Score. Left panel shows calibration curve for X-rays, right panel for γ-rays. Note that
the authors did not fit a linear-quadratic model to the dicentric yield point cloud, which
explains the unusual look of the calibration curve compared to other examples in this
thesis. (Source: [97])

2020) exploring the relationship between metaphase selection performance and accurate
dose estimation. In [97], Ryan et al. evaluated the relationship between those parame-
ters and dose estimation accuracy. Furthermore, they compared automated DC detection
with semi-automated detection. They found that for high doses (between 1 and 3 Gy),
DCScore can accurately estimate doses in an automated fashion, and is good enough for
preliminary triage of patients. Furthermore, manual review of metaphase images does
not improve performance. Like previous papers [93]–[95], they find that the false posi-
tive rate is too high for accurate low dose estimation, and that high doses tend to be
underestimated because of the insufficient recall. This pattern is very clear in Figure 2.16.

The performance of DCScore was found to depend strongly on the accurate rejection
of unusable images (images containing several cells, underspread cells or poorly exposed
cells). This is because dicentric yield estimation relies on the assumption that metaphases
are complete, i.e they contain all 23 pairs of chromosomes. However, automatically de-
tected metaphases may be incomplete because of failures in the metaphase detection
software. A lower number of chromosomes reduces the actual probability of observing a
DC in a specific cell, which means that a larger number of cells does not contain any
dicentric. This can be wrongly interpreted as a partial exposition. In [98], Endesfelder et
al. use the chromosome count provided by DCScore to adjust the uncertainty around the
dose estimated by DCScore. This strategy is analoguous to the one used by [90] and de-

100

2.6. DCScore: evaluating an ADS in a semi-automatic regime

Figure 2.17 – Figure showing the impact of chromosome count on calibration curves. [98]
uses three different blood samples, shown respectively with blue, red and green calibration
curves. Black calibration curve corresponds to pooled dataset. Chromosome counts are
shown in lower right corner of all quadrants. (Source: [98])

scribed in Section 2.5. The authors confirm that overdispersion is present (mean is greater
than variance) at high doses, suggesting that correcting dicentric yield estimation with
chromosome count is necessary. Excluding metaphases with low chromosome counts tends
to reduce overdispersion. This effect is shown in Figure 2.17.

101

Chapter 2 – Image analysis for the automation of biological dosimetry

2.7 Conclusion

In biological dosimetry, a radiation dose is inferred by estimating a dicentric yield.
This yield corresponds to a proportion of DCs per cell. Accurately identifying DCs is a
challenging computer vision problem, which has received significant attention over the
years, even going back to the late 1980s.

Those ADS systems relied on a pipeline of object detection and object classification.
DCs are identified based on their number of centromeres, which are identified by counting
constrictions in chromosomes width profile . The Edinburgh dicentric hunter is an example
of those early ADS systems [70]. Over the years improvements in computer vision and
pattern recognition led to better performing ADS systems. The ADCI is the leading
example for fully automated ADS systems, and reiceved continous upgrades over 7 years,
culminating in Li et al. [89], which was published in 2019. Another example is DCScore,
which was not described as precisely as ADCI. However, its potential as an ADS system
in emergency situations was assesed by several differents labs, as described in Section 2.6.

All of the ADS examples presented in this section are pipelines of processing step. Ob-
ject detection and classification are treated in consecutive, separate step. On one hand, this
offers unparalleled granular control over every step. This makes each step interpretable,
and it is usually very easy to know why a specific object is misclassified from its morpho-
logical features. On the other hand, a considerable amount of design work was needed.
Furthermore, errors in pipeline tend to compound: a segmentation error will often lead
to a classification error, which could lead to a dose estimation error. Therefore, each step
must be highly reliable, as the performance of every algorithm is strongly correlated.

While DCScore does not incorporate sophisticated metaphase selection algorithms for
fully automated operations, it has been shown to be very effective assistants to human
experts. In a series of papers published by LRAcc researchers [93]–[95] it was shown that
human post-processing of DCScore detections could provide usable dose estimation faster
than completely manual scoring. However manual scoring is more accurate, especially for
low doses. This remains true for challenging contexts like partial exposition detection.

More recently, several papers investigated ConvNets for DC detection. In a 2023 paper
[91], Shen et al. propose a conventional pipeline where chromosomes are first detected and
then classified. The binary MC-DC classifier is a ConvNet trained with SGD. While the
authors demonstrate high levels of precision and recall they do not present any calibration
curve estimate. In a 2021 paper [90] Jang et al. trained Faster R-CNN to detect DCs.

102

2.7. Conclusion

While annotating metaphases with bounding boxes is costly, this removes the need for a
sophisticated chromosome detection step.

103

Chapter 3

TWO-STAGE CHROMOSOMAL

ABERRATION DETECTION WITH PATCH

CLASSIFICATION

In this chapter, we work with a dataset of chromosome patches as a preliminary study.
Building such a patch classification dataset is much easier than the spatially labelled
datasets used later in this thesis. However, as we will see below, building components of
an ADS system using only this dataset is very challenging. We focus on several different
potential uses for this dataset within the context of an ADS system.

First, we investigated the performance of deep classifiers, and compare it to conven-
tional methods. While reaching a high level of performance (even in a semi-supervised
regime) on this classification dataset is relatively easy, it does not transfer to real metaphase
images. We provide potential explanations for this fact.

If we can learn to synthesize chromosomes in an unsupervised fashion, we would be
able to produce synthetic, annotated metaphases. This could be used to pre-train object
detection models. We investigates two chromosome simulation strategies, VAEs and a
specific GAN architecture called pix2pix (see Section 1.2.1). Both of those strategies
struggle with synthesizing diverse and realistic chromosomes without artifacts.

Finally, given our lack of success in synthesizing satisfying chromosomes, we build a
synthetic annotated metaphase dataset from chromosome "skeletons". Using this dataset,
we demonstrate that model performance depends on the number of images in the training
set, and on the dose. Models trained on one given dose usually do not reach the same
level of performance when evaluated on a different dose.

105

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

3.1 Datasets

3.1.1 Patch dataset

Our dataset is comprised of 17061 grayscale chromosome patches of varying sizes.
This dataset contains two classes, MCs and DCs. 6349 of those chromosomes are DCs,
while 10712 are MCs. In the remainder of this chapter, we denote this dataset as D =
{(x1, y1), · · · , (xN , yN)}, where N is the number of images. X = {x1, · · · , xN} is the set
of input image y = {y0, · · · , yN} is the set of labels, with yk ∈ {0, 1} ∀ 1 ≤ k ≤ N . yk = 0
if the k-th image is a MC, and 1 if it is a DC

The chromosome patches underwent a significant amount of pre-processing. First, the
images where segmented with K-Means to separate background and foreground. K-Means
was chosen instead of a global thresholding method because it dealt with the intensity
differences of chromosomes better. For example, the region between sister chromatides
usually exhibit higher intensity, and Otsu thresholding produces noisy segmentations in
this case. Once this step was completed, secondary object are rejected with connected
components, on the basis of their size. We keep the largest object in the patch, assuming
that it was the chromosome object. Finally, the image intensity values are normalized
between 0 and 1 in the following fashion:

x̃ = x − min(x)
max(x) − min(x) , (3.1)

where x̃ is the normalized image.

3.1.2 Skeleton datasets

Using the aforementioned patch dataset, we built a "skeleton" dataset. First, for every
chromosome, we extracted the centerline, and computed the distance between the bound-
ary and the centerline. Centromeres were identified by locating minimas of this distance.
A stylized chromosome representation was built using this information. A grid of chro-
mosomes using this skeleton representation is shown in Figure 3.2. To ensure that every
image has the same size,they are padded to a size of 128 by 128 pixels, i.e., x ∈ [0, 1]H×W ,
with H = W = 128. A grid of padded chromosome images is displayed in Figure 3.1.
We also built a labelled metaphase datasets using the chromosomes skeletons introduced
above. First, we extracted the locations of chromosomes in real metaphase images. Then,

106

3.1. Datasets

Figure 3.1 – A grid of padded chromosome images.

we sampled from our skeleton dataset at random and we overlaid those skeletons on a
white background, at the locations extracted previously. Chromosomes skeletons where
randomly rotated and resized, to increase metaphase diversity. Finally, we sampled a re-
alistic number of DCs using the manual calibration curve established by the LRAcc (see
Chapter 2). We built 3 different datasets at dose levels of 1 Gy, 2 Gy and 5 Gy. For every
dose level, we retrieved the corresponding average number of DC per metaphase using

107

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

Figure 3.2 – A grid of samples of chromosome skeletons.

the manual calibration curve, and sampled a Poisson distribution with this mean to get a
DC count per metaphase. In our first experiments with Faster R-CNN, we quickly found
that if we labelled every MC, the training of the model falls into a local minima where
minority classes are never predicted. Therefore, we only labelled chromosome aberrations
and MCs are effectively treated as background. Figure 3.3 gives an example of cropped
training image. For each dose, we built a test dataset of 5000 images.

108

3.2. Chromosome classification

Figure 3.3 – Cropped image of the synthetic dataset. The two DCs in this image are
indicated by red bounding boxes.

3.2 Chromosome classification

3.2.1 Resnet-based classifier

To establish a DNN-based, fully supervised chromosome classification baseline, we used
a ResNet model [8]. Our goal was to demonstrate that conventional DNN-based classifiers
could reach a high level of performance. This model is trained with Adam [12] (a variant
of SGD), with a learning rate of 0.0001, on the dataset D, as described in Section 3.1.1.
We did not use any data augmentation or learning rate scheduling. Furthermore, we did
not perform any architecture search or hyperparameter tuning. Therefore, we do not use

109

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

Figure 3.4 – Reconstruction grid of unseen chromosome patches. The first 2 rows are
unseen input images, the last 2 rows show their reconstruction by the VAE. Notice that
the reconstructions are smoother than the inputs. While the L2 criterion is a common
reason for this effect, the output of the same model trained with an L1 criterion are very
similar.

any validation set, and the performance was evaluated on a test set comprised of 20% of
the training data. The training dataset is comprised of the remaining 80 % of D.

110

3.2. Chromosome classification

3.2.2 Chromosome patches autoencoder

We trained a convolutional VAE as a simple unsupervised feature learning technique.
This model is trained on the dataset X with an L2 reconstruction criterion and a KL
weighting parameter of 1 (see Chapter 1, Section 1.2.1 for an overview of VAEs). We
chose a latent space dimension of 256. In Figure 3.4, we show some examples of patch
reconstruction on unseen data from this VAE.

3.2.3 Latent space classifier

The trained VAE model mentioned in Section 3.2.2 provides a way to map image
samples into a lower dimensional latent space of dimension d. We set d = 256 in our
experiments. Knowing the image labels associated with each low-dimensional feature vec-
tor, we can train simple binary classifiers, like a logistic regression model. Again, the goal
here was not to demonstrate the highest level of performance possible. Other methods
could have been studied, like gradient boosting, random forests or SVMs. Because of the
high number of latent vectors, this logistic classifier was trained with a batch stochastic
gradient method called SAGA [99]. We used the scikit-learn [100] implementation of
this algorithm in our experiments.

3.2.4 Performance results and commentary

First, we computed the performance of our ResNet classifier baseline in a conventional
fashion, with a test set comprised of 20% of overall images. Then we explored the potential
of classifiers trained on the embeddings of a variational autoencoder. Our goal was to
evaluate the potential of a logistic regression classifier trained on a small number of
embeddings from a VAE. If this strategy succeeded it would be possible to train an effective
MC-DC classifier using a large, unlabelled dataset of patches (to train a VAE) and a few
labelled patches. Therefore, we intentionally made the training set of our logistic classifier
small (at most 10% of the complete dataset). This classifier takes a VAE embedding
as input and outputs a probability distribution over both classes. Furthermore, we also
wanted to evaluate wether our logistic classifier was sensitive to shifts in the distribution
of its training data.

Therefore, we built k non-overlapping splits of the dataset D. Each one of those splits
Sk is composed of image-label pairs, i.e Sk = {{XT

k , yT
k }, {XE

k , yE
k }}, where XT

k ∈ RnT
k ×d

where d is the latent dimension of the autoencoder, so that nT
k + nE

k = N . Here, {XT
k , yT

k }

111

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

Figure 3.5 – Description of our weakly-supervised experimental setup. The fully super-
vised ResNet baseline is trained on a simple train-test split. The VAE is trained in an
unsupervised fashion (it does not use y) and its performance is evaluated on a test split.
Once the VAE is trained its encoder is used to compute the latent repreentation for all
images in X. We build K different splits of this "embedded" dataset. Here, the training
dataset is always less than 10% of the complete dataset. Performance is evaluated on the
test set. As we have K different splits, the mean and variance of performance can be
computed, to evaluate the sensitivity of the logistic classifier to data sampling. Results
are visible in Figure 3.6.

112

3.2. Chromosome classification

is a training set while {XE
k , yE

k } is a test set. Finally, we have XT
k

⋂XE
k = ∅∀k. Figure

3.6 shows the results of this evaluation.

The highest performance model is the fully-supervised ResNet baseline, reaching an
AUC of 0.98. However, it is possible to reach a very high level of performance with much
less labelled data and a strong feature learner, as the solid blue, purple and green lines
show. We trained a VAE on X, and computed the latent representation of every image in
X. We then used the embeddings and the corresponding labels to train classifiers. Those
classifiers are trained on respectively 10, 5 and 1% of the training data, and evaluated on
the rest. One can get over 90% of the performance of the supervised baseline with only
10% of the labelled data ! The non-linear embedding provided by the VAE leads to higher
downstream performance than the linear embedding of PCA, as the dashed curves show.
Furthermore, there is more performance variation in the downstream models that use
PCA embeddings. While this level of performance might lead us to think that "two-stage"
models which successively detect and classify chromosomes might be very simple to build,
in practice we did not succeed in reproducing this high level of performance with patches
extracted from metaphases.

The first reason we identified is the lack of representativity. In our dataset, all mono-
centric chromosomes correspond to chromosomes detected by DCScore (See section 2.6
for a review of papers examinating DCScore performance). We used a first patch dataset
where the DCs were also extracted by DCScore. However, DCScore is not able to recover
all DCs. For example, in some intensity conditions, the detection performance of DCScore
worsens, which means that especially bright or dark DCs are not present in the dataset.
This led to a phenomenon analoguous to label leakage; it became possible to separate
MCs and DCs with simple thresholds on the mean and variance of the patch intensity.
We corrected this problem by enlarging the dataset with manually detected DCs, to build
a more representative dataset. However, we still observed difference in validation perfor-
mance between the two subset of our dataset, depending on wether the DCs were detected
by DCScore or a human expert.

We identified another explanation for this low level of DC detection performance. The
performance of the detection model and the classifier are strongly linked. For example,
if the second centromere of a DC is very close to the end of this chromosome, slight
segmentation errors might lead to a bounding box that does not include this second
centromere. In this case, there is no chance of accurately classifying this chromosome as a
DC. In the same way, rejecting overlapping chromosomes is essential to ensure a high level

113

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

Figure 3.6 – Figure comparing the performance of several models. The dashed redline
indicates the performance of the ResNet supervised baseline. The solid blue line indicates
the mean performance of a logistic classifier trained on VAE latent features, if 10% of the
data is labelled. The purple and green lines depict the performance of the same model, for
supervision rates of 5% and 1% respectively. The shaded area shows performance variation
across all splits (plus / minus one standard deviation). Finally, the dashed lines depicts
the same performance for PCA embeddings, instead of VAE.

114

3.3. Simulation of chromosome patches

of performance for this class of "pipeline" DCs counters. Section 2.4 summarizes the level
of effort required to build an ADS that relies on conventional computer vision techniques.

DL-based object detection models like Faster R-CNN [9] might require less design
work and perform better, but large labelled datasets are required. Therefore, the next
section investigates chromosome generation to synthesize labelled datasets.

3.3 Simulation of chromosome patches

Investigating chromosome generation is appealing for two main reasons. First, for
VAEs, investigating links between latent variables and morphological variations might help
one to build a better classifier. Instead of relying on a logistic regression, simple functions
of some latent variables might be enough for classification. Second, a good chromosome
simulator could be used to generate fully annotated metaphase images, which could be
used to pre-train aberration detection models, or evaluate architectures on artifical data.

3.3.1 Simulating chromosomes with VAEs

Simulating chromosomes with a VAE can be done by sampling the latent space prior
(which is a Gaussian with zero mean and unit variance), and decoding those samples
into image space. While this is what the authors of [36] suggest, there are several caveats
with this approach. First, as pointed in the introduction of [44], the true posterior over
the latent variables rarely matches the prior. Therefore, sampling from this unit variance
Gaussian prior might lead to low quality samples. To circumvent this issue, we investigate
two alternative methods to sample from this posterior.

First, we projected latent space samples in an orthogonal basis, using PCA. We es-
timated the probability distribution of PCA loadings for every coordinate of the latent
space using a Kernel Density Estimation (KDE). We estimate the bandwidth using the
cross-validation algorithm implemented in [100]. A grid of chromosome samples is dis-
played in Figure 3.7 a). Those samples show low diversity, and are not very realistic. As
the dimension of the latent space is quite high (256), density estimation methods struggle
because of the high distance between samples. Therefore, we fitted a Gaussian Mixture
Model (GMM) on the latent space of the VAE. Again, we sampled from this GMM, and
used those samples as an input for the decoder of a pre-trained VAE. A grid of samples
is shown in Figure 3.7. This improves samples quality and diversity, but introduces arti-

115

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

Figure 3.7 – a): Samples of the latent distribution estimated with KDE. b): Samples of
the latent distribution estimated with a Gaussian Mixture Model. In both cases, those
samples were decoded with the decoder of the VAE trained earlier.

116

3.3. Simulation of chromosome patches

Figure 3.8 – 8 DC samples from pix2pix. Top 4 rows are "skeleton" inputs, bottom 4 rows
are chromosome outputs.

117

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

facts. Overall, we found generating samples in a completely unsupervised fashion to be
very difficult.

3.3.2 Simulating chromosomes with pix2pix

We use the pix2pix architecture [43] to synthesize chromosomes as illustrated by Fig-
ure 3.8 which shows a grid of samples from pix2pix. While chromosome samples have no
artifacts, distinguishing MC and DC chromosomes remains difficult. Thin chromosomes
often have completely indistinguishable chromatides which makes telling wether the syn-
thetic chromosome is a MC or a DC basically impossible. This prevents one from using
this technique to synthesize artificial metaphases to pre-train object detection models.

3.4 Training Faster R-CNN on a synthetic dataset

We trained Faster R-CNN (see Section 1.4.1 for a description of this model) on the
synthetic datasets introduced in Section 3.1.2. To evaluate the relationship between model
performance and the number of training image, we trained several models on 100, 200,
300, 400, 500, 1000 and 2000 images. Furthermore, we evaluated models trained on a
specific dose on the test sets of other doses. For example, the 5Gy model was evaluated
on the 1 Gy and 2 Gy test sets. This lets us see how much a change in dose affects model
performance. This performance evaluation is summarized in Figure 3.9.

Because this is a simulation study intended to study the scaling behaviour of Faster R-
CNN in rare object detection, we did not compute the counting distributions produced by
our models. Instead, we computed a conventional object detection metric called Average
Precision (AP), see Section 4.3.2 and[101] for detailed explanations on AP computation.

Overall, the conclusions are fairly intuitive: performance improves with the number of
images in the training dataset. Cross-evaluations reveal that a model trained on a specific
dose does not perform as well on other dose levels. Models always perform better in terms
of AP at higher dose levels, where the proportion of DCs is higher.

We also note that training models at lower doses is difficult, because DCs become even
more under-represented as the dose get lower. At 1 Gy, there might only be one DC every
20 metaphases, which means that the model does not get any gradient feedback for most
images. We found that training models at doses lower than 1 Gy was unfeasible, as the
trained model would not predict any bounding boxes. Another important detail is that

118

3.5. Conclusion

Figure 3.9 – Performance curves on simulated data, for models trained at 1, 2 and 5
Gy, with training dataset sizes ranging between 100 and 2000 images.x-axis is number
of images, y-axis is Average Precision (AP), see Section 4.3.2 for an explanation of this
object detection metric.

at low doses (less than 0.5 Gy), small datasets might not contain any aberration, making
training completely impossible.

3.5 Conclusion

Training classifiers on datasets of chromosome patches provided limited result. Avoid-
ing label leakage and building a truly representative datasets are very difficult tasks. This
is further confirmed by the review presented in Chapter 2, which suggests that building

119

Chapter 3 – Two-stage chromosomal aberration detection with patch classification

a two-stage ADS system requires a significant amount of engineering to deal with edge
cases.

Training a DL-based object detection model to detect chromosomal aberrations seems
much easier at first glance, as those can be trained end-to-end, and have been shown
to reach a high level of performance in a wide variety of domains. However, a large
labelled dataset is required. We used our classification dataset as a training dataset for
image generation methods but the performance was unsatisfying. Both VAEs and GANs
showcased low diversity, and low sample quality.

In the end, we used a "skeletonized" variant of this classification dataset to produce a
supervised metaphase-level dataset. This was used to run a simulation study on the scaling
performance of Faster R-CNN for DC detection. Faster R-CNN reached a non-trivial level
of performance using as little as 1000 annotated images, without any architecture search
or hyperparameter optimization. However, this result depends strongly on the dose of the
dataset the model is trained on. Training on representative lower dose datasets performs
worse, and requires a larger number of images. Furthermore, models trained on a specific
dose perform differently on other doses, because of the difference in dicentric yields.

While our simulated data is much simpler than real world metaphases, this simulation
study alleviated the largest concern, which was that DL-based object detectors would not
be trainable with an attainable number of labelled images.

120

Chapter 4

END-TO-END CHROMOSOMAL

ABERRATION DETECTION IN METAPHASE

IMAGES

As we saw in Chapters 2 and 3, designing a "pipeline" ADS system is difficult. The
performance of every step is linked, sometimes in unexpected ways. ADS systems relying
on conventional computer vision techniques may experience sudden performance degra-
dation because of minute variations in image quality, as shown in the papers discussing
DCScore performance in 2.6. To prevent this, ADCI relies on sophisticated image selection
models, as explained in Section 2.4. On the other hand, DL-based models can be trained
to be robust to changes in image quality. Our goal in this chapter is to use this ability to
build simpler DC detection models.

We use a labelled object detection dataset to build a simpler, more effective model
taking inspiration from keypoint regression. Our model predicts Gaussian "heatmaps"
composed of circular spots localized in the center of the chromosomal aberration bounding
box. Predicting one heatmap per class makes dealing with several aberration types easy.
This model performs localization and classification in a single step and reaches a high level
of performance, both in terms of object detection metrics and calibration curve fitting.
We improve performance and provide a simple way to model prediction uncertainty by
considering an ensemble of Unets.

The rest of this Chapter is organized as follows. First, we present some of our in-
spirations for our ensemble-based architecture. Then, we describe our training proce-
dure, the evaluation of our model, and its object detection performance. We discuss the
high requirements of biological dosimetry, and why simple object detection metrics are
not necessarily informative in this context. Using domain knowledge, we improve the
false positives performance of our ensemble, and present state-of-the-art results for fully-
automated dose estimation. Finally, we provide visual explanations for some key abilities

121

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

of our model, namely its ability to reject non-chromosome objects, and the uncertainty
modelling brought by ensembling.

4.1 Related works

4.1.1 Key-point regression in deep learning

In keypoint regression, Gaussian spots are predicted over specific landmarks of the
image, like the eyes on a human face or the joints of a skeleton. It is a subtask of a large
number of computer vision tasks like facial recognition or pose estimation [102], [103]. It
can be solved with common image segmentation models by minimizing the L2 distance
between a predicted heatmap and the corresponding ground truth over a training dataset.
While heatmap regression and object detection are different tasks at first glance, and
heatmap regression does not predict bounding box extent, several authors have proposed
a unified method that consists in predicting a center point and bounding box dimensions
[67], or the corners of a bounding box as key-points [69] (see Section 1.4.2 for a detailed
discussion). To our knowledge, key-point regression has never been used in biological
dosimetry.

4.1.2 Object detection and counting

Object counting is a common computer vision task, and a wide variety of solutions
have been suggested in the literature. Density-based methods aim to predict counts by
integrating a density map [104], [105]. This class of methods is usually simple to imple-
ment and reaches a high level of performance. However, it does not detect objects, and
summary statistics like Precision and Recall cannot be computed. Alternatively, counting
can be solved as a subtask of object detection, by enumerating the bounding boxes be-
longing to a certain class. However, accurately predicting bounding boxes is more difficult
than predicting a density map, and detection-based methods usually perform worse than
density-based ones [106]. In [107], the authors propose a detection-based method that
relies on predicting a Gaussian spot centered on the object, but does not predict bound-
ing box extent. In [69], the author propose a model that uses the same heatmap-based
technique, but also predicts a (height, width) tuple for a bounding box.

122

4.1. Related works

4.1.3 Model aggregation

A large number of papers have studied ensemble methods for neural networks, either
to improve model calibration, for uncertainty modelling or to improve performance. The
authors focus either on sampling a diverse set of models to build an ensemble, or on the
properties of the aggregated prediction.

For classification models, Lakshminarayanan et al. [57] showed that ensembles of neural
networks improved on the performance and calibration of single models. As an ensemble
of M models requires M training runs, [58] showed that a carefully chosen learning rate
schedule could encourage loss landscape exploration to get a collection of models with
high diversity in a single training run by retrieving checkpoints. In [108], samples and
checkpoints are re-weighted according to their performance, like AdaBoost [109].

In semantic segmentation, ensemble methods have received attention because they
improve performance and provide a localized measure of uncertainty, usually by computing
the entropy of the ensemble average for every pixel in the image. In [110], an ensemble of
fully convolutional neural networks is used to segment aerial images. In [111], a diverse
ensemble is built by training several Unets [10] with different encoders, and predictions
are aggregated with a weighted average. In [112], the authors provide a review of ensemble
methods for polyp segmentation.

For bounding-box based detection models, aggregation is required, as several boxes
localizing the same object may overlap. Non-Maximum Suppression (NMS) [113] is then
used and consists in sorting the boxes with respect to their confidence levels. Lower
confidence boxes overlapping a high confidence box beyond a specific IoU (Jaccard index)
threshold are discarded. In [114], box merging algorithms are explicitly considered in a
particular model aggregation framework. The authors suggest computing an "average"
box by weighting coordinates based on the box confidence.

Approximate Bayesian deep learning

Common techniques used to sample the posterior distribution are intractable for mod-
ern neural networks given their large parameter counts. In [7], Mandt et al. demonstrate
that SGD can be seen as an Orstein-Uhlenbeck process with some limit Gaussian distri-
bution. SGD can be seen as Langevin sampling of the posterior weight distribution, and
SGD samples can be used to estimate the mean and covariance of the Gaussian posterior
distribution. This provides a cheap and simple way to retrieve samples of this distribution

123

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

during the training procedure.
in [59], Garipov et al. al show that local minima are connected by low-loss paths,

and that one could average weight vectors along deterministic trajectories between those
local minima to improve performance. In [13], Izmailov et al. confirm the theoretical
analysis of [7] by showing that averaging SGD iterates leads to wider minima and improved
generalization in practice.

Using the theoretical insights explained in [7], Maddox et al. [6] approximate the limit
posterior weight distribution with a Gaussian distribution, where the covariance matrix
is defined as the covariance of the last gradient descent iterates. New sets of weights can
be sampled from this posterior distribution for ensemble and uncertainty estimation. In
[115], the authors go further by sampling an ensemble from several modes of the posterior
weight distribution to increase ensemble diversity and therefore performance.

Finally, other approximations of the posterior weight distribution have been proposed.
In [116], the authors use Kalman filtering to derive a sequential estimate of the posterior
distribution over the weights.

4.2 Methods

In this section, we first give a precise definition of the data and model, including
the loss for training. Second, we explain our aggregation procedure, going from a set of
continuous heatmap predictions for a single image to a set of binary decisions maps and
finally, to an aggregated ensemble-level prediction. Finally, we explain the PCA-based
visualization techniques used to justify the performance gains of the ensemble and its
robustness to the presence of debris in metaphase images.

4.2.1 Keypoint regression with heatmap regression models

In Heatmap Regression Models (HRMs), objects of interest are represented as Gaus-
sian spots. The model is trained to predict spot positions in the image domain, with
a labelled dataset D = {(x1, y1), · · · , (xn, yn)} comprised of n realizations of a pair of
random variables (X, Y). For each image xi, we have xi(u, v) ∈ [0, 1] at each location
(u, v) ∈ Ω, where Ω denotes the image grid of size |Ω| = H × W .

124

4.2. Methods

Figure 4.1 – Visual comparison between regularized and unregularized model. First im-
age from the right: input image, second: bottom right crop, third: gradient norm of the
prediction for the unregularized model, fourth: gradient norm of the prediction for the
regularized model.

Model design and sparsity promoting loss function

Our heatmap regression model is a convolutional neural network ϕθ(x) : x ∈ [0, 1]H×W →
y ∈ [0, 1]H×W . The final output is constrained between 0 and 1 with a sigmoid layer. We
use the Unet architecture [10] to predict a low resolution heatmap. The image yL is of size
(H/L, W/L) for some arbitrary downsampling factor L, as the location accuracy provided
by the highest resolution output is not useful. For Unet-based architectures, images are
usually downsampled (or upsampled, in the decoder) by a factor of 2 at each layer: at
layer l of the encoder, features have a spatial size of H/2l × W/2l. For the sake of simplic-
ity, notations are given in the single-channel case. Additional classes of aberrations (like
fragments) are modeled with additional channels, so that a third index is added. In the
remainder of this Chapter, we consider two aberration classes, DCs and fragments. The
parameters θ are learned by solving the following optimization problem:

θ⋆ = arg min
θ

n∑
i=1

L(ϕθ(xi), yi) + λ R(ϕθ(xi)), (4.1)

where λ is an hyperparameter that balances the data fidelity term and the regularization
term. In our modelling approach, the data fidelity term L has the following form:

L(ϕθ(xi), yi) = ∥ϕθ(xi) − yi∥2
2 (4.2)

Because the number of aberrations is very low compared to the number of pixels in
the image, the background is expected to be 0, except in a small number of "hot" spots
corresponding to locations containing aberrations. The Sparse Variation (SV) regularizer

125

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

Figure 4.2 – For each image, we compute the total variation of its prediction for the
regularized and unregularized model, as shown in Figure 4.1. This figure represents the
Cumulative Distribution Function (cdf) of the total variation over all images in the test
set.

(4.3) has been specifically considered here to encourage the emergence of a very small
number of "hot" spots as aberrations are rare events in Giemsa-stained images. This
regularizer is defined as [11]:

R(ϕθ(xi)) =
∑

(u,v)∈Ω

√
ρ2∥∇u,vϕθ(xi)∥2

2 + (1 − ρ)2ϕθ(xi)2(u, v), (4.3)

where ρ is a parameter that balances the sparsity and the smoothness terms in the pre-
dicted heatmap. The components of the gradient vector are computed with respect to the
image coordinate axes as follows:

∇u,vϕθ(xi) =
ϕθ(xi)(u, v) − ϕθ(xi)(u + 1, v)
ϕθ(xi)(u, v) − ϕθ(xi)(u, v + 1)

 . (4.4)

As this is a simple linear transformation of the image, computational overhead is minimal.
The criterion (4.2) is highly non-convex because of non-linearities in ϕθ. Therefore,

finding a global minimum is hopeless. Nevertheless, a good local minima may be found

126

4.2. Methods

using iterative first order methods, usually some variant of SGD. The exact gradient of
the training criterion with respect to θ is estimated on a random subset J of the complete
dataset D, because of memory constraints:

∇θ

n∑
i=1

L(ϕθ(xi), yi) + R(ϕθ(xi)) ≃ ∇θ

|J |∑
j=1

L(ϕθ(xj), yj) + R(ϕθ(xj)). (4.5)

In Figure 4.2, we reported two curves corresponding the cumulative distributions func-
tions of the total variation images computed over the prediction maps regularized with the
sparse variation regularizer (blue curve) and without (red curve). See 4.1 for an example
of images on which this total variation is computed.

4.2.2 Implicit ensembling of neural networks

Figure 4.3 – Vote-based aggregation of checkpoints. DCs predictions are plotted in red,
and fragment predictions are plotted in green. For every image xi, the heatmap predic-
tion ϕθ(xi) is binarized (giving Λθ(xi)) with a confidence threshold TC . Those maps are
summed (giving Si), and regions of the image receiving more than TA votes are considered
as detections. Darker shades of red and green indicates region of the images receiving more
votes.

To reduce the number of false positives (i.e, improve Precision) at a fixed recall level,
we investigated the ensemble method introduced in [57]. Because training a deep neural
network is a stochastic process, successive training runs of the same model tend to explore
different regions of the parameter space. Those local minimas are usually very close in
terms of validation loss, but their predictions are not identical. This behavior has received
significant attention in the literature [58], [59]. As shown in [58], it may not even be
necessary to run several successive training runs. A carefully chosen learning rate schedule

127

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

may be enough to achieve enough parameter space exploration to build a diverse ensemble
from checkpoints of a single training run. In our case, we even find that the gradient
noise introduced by stochastic batch sampling leads to sufficient checkpoint diversity for
agregation to be worthwile without any specific learning rate schedule. Therefore, we do
not have to deal with the training instability mentioned in [6].

More formally, SGD can be seen as a Langevin sampling of the posterior weight dis-
tribution p(θ| D) [7]. To avoid excessive autocorrelation between samples, we store the
vectors θ at the end of each epoch, instead of every gradient step. This can be interpreted
as a variant of thinning, also used in Monte Carlo Markov Chain inference. For each image
xi, i ∈ {1, · · · , n} in the test set, we consider a set {ϕθ1(xi), · · · , ϕθM

(xi)} of predictions,
where M is the number of predictions (or models). Using a confidence threshold TC , we
build a set {Λθ1(xi), · · · , ΛθM

(xi)} of M different binary predictions for each test image
xi, that we sum over all members of the ensemble at each location (u, v) ∈ Ω as follows:

Si(u, v) =
M∑

m=1
Λθm(xi)(u, v), (u, v) ∈ Ω . (4.6)

Finally, we set an agreement threshold TA to compute the agreement between the artificial
"experts". The setting of thresholds TA and TC impact the final decision. If the confidence
threshold TC is high and the voting threshold TA is low, the decision will be made from a
small set of experts. Otherwise, a small value of TC but a high voting threshold TA means
that low confidence predictions are considered, but a higher agreement between them is
needed to confirm a detection. In the end, we get a precision surface depending on TC

and TA. Our aggregated decision for any image xi is a binary image Di such that value
at location (u, v) is 0 if no aberration is predicted, and 1 otherwise (See Figure 4.3 for
illustration):

Di(u, v) = 1[Si(u, v) > TA], (u, v) ∈ Ω. (4.7)

The agreement threshold TA can be adjusted by the end user to optimize either Precision
or Recall scores, like the confidence threshold TC . We discuss the effects of choosing a
specific threshold in Section 4.3.2.

4.2.3 Setting of model parameters

We trained Unet for Ne = 100 epochs epochs with Adam [12], with a constant learning
rate of 3 × 10−4, a weight decay parameter of 0.1 and a batch size of 12 on a single

128

4.2. Methods

Tesla V100. The learning rate was unchanged during training to ensure parameter space
exploration, using an analoguous reasoning to the one provided in [13].

We did not use data augmentation for two reasons. First, we found that the wide
variety of chromosome morphology and orientations in our dataset was enough for our
model to learn this invariance. We did not observe detection failures based on object
orientation. Second, more agressive data augmentation like noise or blurring quickly made
monocentrics and dicentrics indistinguishable. Training stability was very sensitive to
the variance of the blurring kernel or the Gaussian noise, because accurate chromosome
classification relies on very small details.

We predict a lower resolution heatmap of size H ′ = 224, W ′ = 252, where height and
width are downsampled by a factor of 4. While batch sampling (and therefore parameter
space exploration) is randomized, parameter initialization is fixed between training runs.
We ran a grid search with log10 spacing for λ regularization parameter with 10 and 10−4

as upper and lower bound of the search interval. Training was implemented in PyTorch
[20], and uses segmentation_models_pytorch implementation of Unet.

4.2.4 Visualization of the training dynamics of single model

As an additional visual explanation for aggregation performance gain, it may be in-
formative to display training trajectories in feature space. Classification networks output
a single classification vector per image, so that plotting training dynamics over time us-
ing dimensionality reduction is relatively easy (see [117]). A scatterplot of classification
vectors embedded in a lower dimension at each epoch provides a good view of how classes
are progressively separated during training. Usually, UMAP [118] is used, which requires
a pairwise distance matrix between classification vectors. However, this visualization does
not work for models outputting a probability distribution for all locations u, v of the input
image, like Unet.

To address this issue, we adapt the approach [117] to our context. We consider feature
maps as bags of independent feature vectors. Figure 4.4 provides a visual summary of
our approach. We do not retain feature vectors for all locations u, v in the feature map.
Instead, we only select feature vectors corresponding to the locations of aberrations, and
retrieve some feature vectors at random ’background’ (i.e., where there are no aberrations)
locations. This bag of features is projected on the 2D plane using its PCA decomposition.
By retrieving the same locations across several training steps, we can visualize how the
both aberration classes and the background are separated during training. An SVM clas-

129

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

Figure 4.4 – Procedure used to display feature separation in the latent space of the last
decoder block for a single epoch (i.e a single weight vector θ. For all images x1, · · · , xn,
the feature maps produced by the last layer of the decoder are retrieved and treated as
a set of independent, Cl-dimensional feature vectors. Using PCA dimension reduction,
we produce a 2D scatterplot that shows how the model separates the different classes
(background, dicentrics, fragments) across training epochs. Note that the eigenvectors
used for this dimensionality reduction are computed over all epochs of training.

sifier fitted on the embeddings retrieved for a single epoch is used to map regions of the
latent space to a specific class, which helps visualize the dynamics of training. The rest
of this section gives a formal overview of our visualization technique.

Formally, for an input image xi of size H × W , the ℓ-th layer of our Unet produces
a feature volume f ℓ

i of size H ′ × W ′ × Nℓ (see Section 4.4.3 and Figure 4.4 (a)). Here,
we choose the second-to-last layer of the decoder and we drop the superscript ℓ to im-
prove readability, so that f ℓ

i = fi. For the last layer, Nℓ = 128 (see illustration in Fig-
ure 4.4). We retrieve the set of feature vectors that correspond to the spatial locations
of aberrations (dicentrics and fragments) in image xi. For a set of N i

a aberrations lo-
cated at X i

a = {(u1, v1), · · · , (uN i
a
, vN i

a
)} in image xi, we build a set of feature vectors

130

4.2. Methods

f i
a = {fi(u1, v1), · · · , fi(uN i

a
, vN i

a
)} ∈ RN i

a×Nℓ . We retrieve the feature vectors correspond-
ing to all aberrations in every image the test set. We also sample an additional set of
N i

b background pixels, denoted as f i
b at locations X i

b = {(u′
1, v′

1), · · · , (u′
N i

b
, v′

N i
b
)}. Those

locations are randomly sampled, provided the locations do not correspond to aberration
pixels. Therefore, they correspond to background, monocentric or debris. Finally, we de-
fine f i

a,b = f i
a ∪ f i

b so that the total number of feature vectors in fi is N i
a + N i

b , as shown in
Figure 4.4b). It is worth noting that f i

a,b is a subset of the complete feature map fi. This
makes the visualizations described less cluttered, and reduces computation time. Finally,
this feature set f i

a,b is retrieved for each image xi in the test set, to build a large feature
set Fe = {f 0

a,b · · · fn
a,b}, where e corresponds to the set of model parameters retrieved at

epoch e.

The set of feature vector Fe is retrieved for each epoch e ∈ {1, · · · , Ne}. These sets are
concatenated in global set F = {F1, · · · , FNe}. Although all the subsets of F correspond
to the same locations, they are different at each epoch e because of the stochasticity of
gradient descent. PCA can be used to visualize those feature sets as 2D scatterplots, and
in particular to check how well aberrations are separated from the background at every
epoch. The set F1 is chosen as a reference feature set and Fe, e ∈ {2, · · · , Ne} is registered
with respect to F1 using the Procrustes method [119]. This guarantees that latent space
scale shifts or rotations are removed for visualization. A PCA decomposition is computed
on F , and for each epoch e, each feature set in Fe is projected on the first two principal
components of this decomposition. This provides a 2D visualization of the trajectory of
each feature vectors during training.

Furthermore, we train a kernel SVM classifier pe on the 2D embeddings of Fe to
predict which aberration class corresponds to a location in 2D embedding space. This
classifier takes a 2D embedding (a vector of Fe) as an input, and outputs a proba-
bility distribution over three classes: background, DCs and fragments. For all epochs
1 ≤ e ≤ Ne, we train a different classifier, and predict a probability distribution over
a grid that samples the 2D aberration space uniformly. For all positions (u, v) of this
grid, a probability distribution over the total number Nr aberration classes pe(u, v, r) ∈
[0, 1], r ∈ {0, · · · , Nr},

∑Nr
r=1 pe(u, v, r) = 1 is predicted at epoch e. As all the point clouds

are aligned and a single set of principal components is computed for all time steps, the
changes in the decision boundary from one epoch to the next can be solely attributed to
the dynamics of training.

Finally, to visualize the displacement of class boundaries across training, we define the

131

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

averaged classifier:

p̄(u, v) = 1
Ne

Ne∑
e=1

pe(u, v). (4.8)

Visualizing the spread of the distribution of p̄ can be done by computing the entropy of
the distribution predicted by the averaged classifier:

H(p̄)(u, v) = −
Nr∑
r=1

p̄(u, v, r) log p̄(u, v, r). (4.9)

4.3 Materials

4.3.1 Data description

Figure 4.5 – Repartition of images into aberration counts bins.

Our training dataset is composed of 5430 labelled images of size H = 888, W = 1008,
padded to H = 896, W = 1008 to ensure that downscaling has an integer height and
width. Labels are binary images with size H ′ = 202, W ′ = 252, taking value 0 everywhere
except at the center of chromosomal aberrations (roughly between the two centromeres
for a DC), where it takes value 1. There is one binary image per aberration classes for
each image, so that aberration classification is possible. Chromosomal aberrations are

132

4.3. Materials

Figure 4.6 – Sketch of model evaluation. The intersection I i between the binarized ground
truth ΛGT (yi) and the binarized prediction map Λθ(xi) is computed. Objects appearing
in both are true positives, objects appearing only in Λθ(xi) are false positives, objects
appearing only in ΛGT (yi) are false negatives. In this case, we have two true positives, 1
false negative and 1 false positive, so that Precision is TP/(TP + TP) = 2/3 and Recall
is TP/(TP + FN) = 2/3

the only labelled objects, neither debris nor monocentric chromosomes are labelled. We
chose this labelling scheme instead of semantic segmentation or bounding boxes as it
lead to the lowest labelling time, which in turn meant a greater number of images could
be labelled for the same labelling budget. For the same reason, we did not label debris
or monocentric chromosomes. This also prevented the discovery of trivial models where
chromosomes would be detected but always labelled as monocentric, as they outnumber
dicentric ones by an extremely large margin. As explained in Section 4.2.1, this binary
image is blurred with a Gaussian kernel, to reduce the underrepresentation of the labels
against the background.

Images have been selected so that each images contains only the chromosomes corre-
sponding to a single cell, i.e., no image contains more (or less) than 46 chromosomes. Our
dataset contains 5021 dicentrics and 7540 fragments, Figure 4.5 shows the repartition of
images of images into aberration counts bins. Images with a high aberration count are

133

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

much rarer than images with a low aberration count. This training dataset is a subset of a
much larger archive of patient data (containing around 80k images). It contains all images
with at least one aberration in the archive. This reduces training time considerably, and
prevents the discovery of trivial models where no object is ever predicted. However, this
also means that it is not an accurate representation of real-world metaphase. As a normal
metaphase contains 23 chromosome pairs, this means that even in this case, the over-
whelming majority of chromosomes are healthy (i.e monocentric) ones. In our evaluation
setting, the training set consists of 80% of those image. 10% of the images are retained
for a validation set, used for hyperparameter selection. Finally, 10% of the data is held as
a test set for a fair performance evaluation.

As this training dataset is not representative of a real-world exposition, we use another
dataset to estimate the calibration curve of our model. This dataset was built by collecting
metaphases from samples irradiated at specific, known doses. The aberrations in this
dataset are not labelled. It contains 21215 metaphases taken from samples irradiated at
0 Gy, 0.1 Gy, 0.2 Gy, 0.3 Gy, 0.5 Gy, 0.7 Gy, 0.9 Gy, 1 Gy, 1.5 Gy, 2 Gy, 3 Gy and 4 Gy.

4.3.2 Evaluation metrics

Performance of a single model

While our predicted heatmap ϕθ(xi) can take any value between 0 and 1 at each spatial
position (u, v) in the image, ultimately a binary decision needs to be taken with regard
to the presence or absence of aberration at location (u, v) ∈ Ω. In the next step ϕθ(xi) is
used to build a binary map Λθ(xi) given an arbitrary threshold TC :

Λθ(xi)(u, v) = 1[ϕθ(xi)(u, v) > TC], (u, v) ∈ Ω, xi ∈ {x1, · · · , xn}, (4.10)

where 1[.] is the indicator function. Furthermore, a ground truth binary map is defined
given a confidence threshold TGT , which is set to a small fixed value (e.g., 0.01).

ΛGT (yi)(u, v) = 1[yi(u, v) > TGT], (u, v) ∈ Ω, yi ∈ {y1, · · · , yn} . (4.11)

Once a binary decision for the presence of an object is made at each location in the
image, we define true positives, false positives and false negatives. In object detection,
true positives are usually defined up to a small location error, as matching the ground
truth perfectly would be too stringent. In our case, the spots are small compared to the

134

4.3. Materials

object size so that the position error remains very small even in the cases where the
intersection between the predicted and ground truth spot is the smallest possible one
(one pixel) (see Figure 4.6). Therefore, we consider any overlap between a prediction and
a ground truth spot to be a true positive, as long as this ground truth spot has not been
predicted before. If this is the case, the prediction is considered to be a false positive.
Predicted objects that do not overlap ground truth spots are also considered to be false
positives. Finally, objects in the ground truth heatmap that are not predicted by the model
are considered to be false negatives. True negatives are ill-defined in object detection, and
are not considered. With those three values, we can compute Precision and Recall.

More formally, the intersection image I i between Λθ(xi) and ΛGT (yi) is computed as
the pixel-wise product of ground truth and prediction

I i(u, v) = Λθ(xi)(u, v) × ΛGT (yi)(u, v), (u, v) ∈ Ω, i ∈ {1, · · · , n} . (4.12)

Finally, we compute the number of connected components Ncc(I i), Ncc(Λθ(xi)) and Ncc(ΛGT (yi))
in I i, Λθ(xi) and ΛGT (yi), respectively. The number of true positives, false positives and
false negatives are defined as follows:

TP = Ncc(I i) ,

FP = max(0, Ncc(Λθ(xi)) − TP) ,

FN = max(0, Ncc(ΛGT (yi)) − TP).

(4.13)

Hence, we compute Precision = T P
T P +F P

and Recall = T P
T P +F N

for a single (Λθ(xi), yi)
pair. Note that Precision and Recall are functions of the chosen confidence level TC ; a
higher confidence threshold increases Precision but decreases Recall. In what follows, we
report results for a set of confidence thresholds {TC1 , · · · , TC10} to analyze this tradeoff.
Moreover, we decided to report the Precision and Recall scores separately instead of
providing an aggregated metric like Average Precision (AP), as the tradeoff between those
metrics in the context of biological dosimetry is especially important.

Because training is a stochastic process, the maximum predicted probability over the
test set is not exactly 1; different models may get a different maximum confidence value.
In other words, two sets of weights θ and θ′ will give two different maximum probabilities
pθ and pθ′ , so that for each model, the performance metrics are computed over different
confidence thresholds. Therefore, each performance metric curve is linearly interpolated

135

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

over a common confidence grid {0.1, 0.2, · · · , 0.9}. For the set of confidence thresholds that
exceed the maximum probability over the complete test set, Precision is not defined. In
this case, it is arbitrarily chosen to be 1 (and Recall is 0). To provide a metric showcasing
performance variation across training, we reported performance quantiles (5% and 95%)
for each threshold. This means that, for each threshold, 50 Precision and Recall values
are computed (one for every considered epoch) and the aforementioned quantiles of those
values are reported.

Performance of model ensemble

For the ensemble, we use the same evaluation procedure as in the single model case
(described in Section 4.3.2), but with the agregated binary decision map Di described
in Section 4.2.2. However, as explained in Section 4.2.2, the performance of the ensemble
depends on an agreement threshold TA and a confidence threshold TC . Therefore, instead
of a Precision curve, we get a Precision surface, which makes comparison with the single
model case more difficult. Instead, we set a specific vote threshold, and report the same
Precision curve as in the single model case. Finally, to evaluate the sensitivity of the
performance to the sampling of the ensemble, we sampled 100 random ensembles, and
computed q05 and q95 for every confidence threshold in the grid mentioned in the Section
4.3.2.

4.4 Experimental results

In this section, we discuss model performance, both in term of object detection and
calibration curve estimation. First, we discuss the results of the single-model training
and the impact of regularization term. We also show a visualization which suggests that
our model is robust to the presence of debris, without the need for specific labelling or
architectural choices. Finally, we discuss the performance improvements obtained with
the ensemble approach, and we provide PCA-based approach to visualize model feature
trajectories during training.

4.4.1 Performance of single model

In Table 4.2, the single non-regularized model already achieves significant gain in terms
of Precision and Recall when compared to Metafer in the case of MC versus DC classifica-

136

4.4. Experimental results

Figure 4.7 – Precision, Recall and False Discovery Rate (FDR) as functions of confidence
for DCs (left) and fragments (right). Top: performance summary for the unregularized
model (i.e λ = 0 for the sparse variation term). Middle: performance summary for λ =
0.2, ρ = 0.1. Bottom: performance summary for the ensemble of checkpoints from the
training of the regularized model for a threshold of 2 votes. Shaded area indicates the
[q0.05, q0.95] inter-quantile interval, computed respectively over the last 50 checkpoints for
single models, and over a 100 random samples of 10 checkpoints for the bottom plot
(ensemble). 137

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

tion (Metafer is not designed to detect fragments), although some performance variation
is noticeable during training, as confirmed by the inter-quantile range of performance.
This variation suggests that there is sufficient parameter space exploration to get enough
prediction diversity for aggregation to be worthwhile.

Metafer relies on conventional computer vision techniques. The chromosome objects
in the metaphase are segmented and then classified. Segmentation errors can lead to clas-
sification errors, for example when one chromosome is split during segmentation. Overall,
the performance of both tasks (segmentation and classification) is not very robust to vari-
ations in image quality induced by variations in acquisition circumstances like illumation
or staining quality. For example, for the segmentation task, the Recall of Metafer lies
between 35% and 75%. For the classification task, The Recall is around 35%, and the
Precision around 40%. Note that the performance figures given for Metafer in Table 4.2
are not computed on the dataset mentioned in Section 4.3.1, but taken from [93] instead.
Although the performance of Metafer is uncertain, and we did not compute it on our
dataset, we feel confident that our model brings a very significant improvement in chro-
mosomal aberration, as the uncertainty around the ensemble performance is low enough
that even in the worst case scenario, it achieves very significant performance improvements
over Metafer.

Finally, training with a loss that promotes sparsity improves Precision and Recall for
fragments and DCs. this improvement in precision is especially relevant for automated
use, as keeping the number of false positives low is required to avoid overloading care
facilities. Because all chromosomes may not be correctly retrieved (Recall is less than 1),
this model tends to underestimate doses.

M1 (unregularized) M2 (regularized) ensemble (3 votes, TC = 0.5)
Pr (frags) 70.8% (62.0,77.4) 79.3% (71.8, 84.2) 81.0% (78.5, 83.3)
Rc (frags) 49.4% (37.8, 59.7) 55.0 % (46.0, 66.3) 65.5 % (62.4, 68.5)

Table 4.1 – Comparison between model 1 (denoted as M1, TC = 0.6, λ = 0), model 2
(denoted as M2, TC = 0.6, λ = 0.2, ρ = 0.1) and ensemble (4 votes, TC = 0.5) for the
fragment class. [q5%, q95%] interval is reported in parenthesis. For model 1 and model 2, this
interval is computed over the last 50 epochs of training. For the ensemble, it is computed
over a 100 randomly sampled ensembles (ensembles are sampled from checkpoints during
training). All performance metrics are computed on the test set.

138

4.4. Experimental results

M1 (unregularized) M2 (regularized) ensemble (3 votes, TC = 0.5) Metafer
Pr (dics) 76.6% (68.8, 84.7) 83.6% (75.4, 92.2) 85.8% (83.7, 88.3) ∼ 40%
Rc (dics) 45.2% (31.6, 56.4) 51.2% (37.0, 62.7) 61.7% (57.1, 65.8) ∼ 35%

Table 4.2 – Comparison between model 1 (denoted as M1, TC = 0.6, λ = 0), model 2
(denoted as M2, Tc = 0.6, λ = 0.2, ρ = 0.1), ensemble (4 votes, TC = 0.5), and Metafer
for the DC class (where Metafer performance is available). All performance metrics are
computed on a separate test set. Metafer performance is retrieved from previous work,
and was not evaluated on the dataset used in this Chapter. Metafer performance should
only be taken as a rough point of reference, see Section 4.4.1 for additional discussion of
this point.

4.4.2 Performance of model ensemble

Figure 4.8 – Prediction diversity for a set of four different models. The first model does
not predict the fragment in the bottom left corner (a very low confidence threshold would
be required to consider it as a detection), but the three next model do. All four models
predict the DC near the center of the image correctly.

In this section, we report the results obtained with the ensemble procedure. The pa-
rameter space of the model is explored through SGD. Although the selected checkpoints
reach a similar validation performance, the predictions they yield vary, as shown by Figure
4.8. As mentioned earlier, this can be used to filter spurious predictions, as those are less
likely to be present in all models of the ensemble.

Precision is a monotonously increasing function of voting and confidence thresholds,
while Recall decreases with higher confidence and higher voting thresholds. End-users may
fine-tune the balance between both of those metrics depending on their goal by choosing a
specific (TC , TA) pair. To estimate the sensitivity of Precision and Recall to the sampling
of the checkpoints, we evaluate those metrics for 100 samples ensembles and report the
q05, q95 interval for Precision and Recall in Figure 4.7).

139

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

To ensure that ensemble results are easily readable, we do not report surfaces for
Precision and Recall. Instead, we select a single voting threshold and report the results
over all agreement thresholds, like with the single model results. The ensemble provides
a significant performance improvement over the single-model baseline; aggregation does
help to filter out spurious detections and improves Precision and Recall, as reported in
Tables 4.1 and 4.2. We chose the (TC , TA) parameters to keep Precision broadly similar
across all models, for DCs and fragments. This makes Recall improvements more salient,
but one could choose other values for confidence and vote thresholds. Overall, there is
a wide set of threshold combinations that yield large performance improvements over
the Metafer baseline. Furthermore, ensembling also reduces performance variation: the
performance is closer between different ensembles than between single checkpoints. This
suggests that our results are not dependent on a specific sampling or selection of the
ensemble.

4.4.3 Robustness to non-chromosome objects in metaphase im-
ages

Figure 4.9 – Rejection of nuclei depending on model layer. First image from the left
shows the input image and ground truth Gaussian heatmap. Second image shows PCA
embedding of features at the output of the first encoder layer. Third image shows PCA
embeddings of features at the last encoder layer. Rightmost image shows embeddings of
features at the first decoder layer. The embedded feature maps are resized from H ′, W ′

to H, W so that every image has the same size.

An automated dosimetry system should always distinguish between chromosome and
non-chromosome (nuclei, debris) objects. Current automated methods reject non-chromosome
objects using explicit shape analysis. For example, a nuclei can be rejected using the fact
that it is broadly circular and has a uniform texture. However, the shape of debris is
usually more complex, which makes metaphase selection more difficult in most dosimetry

140

4.4. Experimental results

systems.

In our approach, we do not detect debris and nucleis explicitely, as they are not
annotated in our dataset. Instead, Unet learns to reject debris from the training data,
without the need for specific annotations or handcrafted object detection algorithms. In
the rest of this section, we propose a simple visualization of this fact, using PCA.

For an image xi and a set of parameters θ, the activation volume provided by the ℓ-th
layer of the neural network is defined as:

f ℓ
i = σ(θℓf

ℓ−1
i + bℓ), f ℓ

i ∈ RH′×W ′×Nℓ , (4.14)

where Nℓ the number of convolution filters in layer ℓ, i.e the number of channels of the
output of this convolution layer. For a set of n images {x1, · · · , xn}, the corresponding
activation volume is of size Rn×H′×W ′×Nℓ . This volume can be flattened in a matrix Eℓ ∈
R(n×H′×W ′)×Nℓ , containing n×H ′ ×W ′ samples (rows) of a random vector of size Nℓ. Once
Eℓ is centered and standardized, the eigenvectors of ET

ℓ Eℓ form the usual PCA orthogonal
basis Qℓ ∈ RNℓ×Nℓ , so that EℓQ

K
ℓ (with QK

ℓ ∈ RNℓ×K) projects each pixel of the activation
volume (Nℓ-sized vectors) onto the first K components (columns) of this basis.

By choosing K = 3 and normalizing the projected vectors to sum to one, we can plot
a visualization of the activations in RGB space (Figure 4.9). Note that a different Qℓ is
computed for each layer considered in Figure 4.9. Therefore, the colors do not have any
specific meaning. The second image of Figure 4.9 from the left shows that the projection
of feature vectors belonging to chromosomes and nuclei on the PC basis are highly similar,
as the color of those regions is identical. The main reason is that the convolution filters in
early layers have a small receptive field (see [120]) and mostly capture texture and edge
information, which is close for subsets of chromosomes and nuclei. In the early stages of
the encoder, non-chromosome objects are not differentiated from chromosomal objects.

The third and last images of Figure 4.9 from the left show that in the deepest layer
of the encoder, the feature vectors belonging to nuclei and chromosomes are mapped
to different principal components, corresponding respectively to blue and red pixels. By
stacking convolutions the model aggregates information from a larger subset of the image
(the receptive field increases), which is suitable to distinguish chromosomes from nuclei
on the basis of their differences in shape. This is a first indication that our model learned
to reject debris and nuclei without domain knowledge, which is further confirmed by our
performance results.

141

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

4.4.4 Visualization of training trajectories

In this section, we discuss the visualizations produced by the method described in
Section 4.2.4. In Figure 4.10, we see the latent space of Unet at 6 different epochs. Red
points on the scatterplot represent locations containing DCs, blue points fragments and
gray points are background locations. Because those snapshot are taken at regular intervals
at the end of training, classes are well separated. We see that the decision boundary of the
SVM classifier changes from timestep to timestep. Some locations remain well separated
in latent space from others, but this is not true for all samples. Regions in the latent space
where classes overlap correspond to areas of uncertainty.

While locations with high prediction uncertainty are hard to detect because neural
networks tend to be overconfident [5], an ensemble of models can be used to retrieve
this information. This fact is also visible in the latent space of Unet, as shown by Figure
4.11. In this Figure, we performed K-Means classification on our bag of features in the
latent space for the last considered epoch in Figure 4.10. Once this is done, we plot the
trajectories of the barycenters of those clusters over time. As we see, most cluster centers
are well separated across epochs. This is reflected by the fact that if we consider the
average of SVM classifiers across epochs, most feature vectors are in low-entropy regions.
Feature vectors belonging to high-entropy regions correspond to uncertain detections can
be filtered as described in Section 4.2.2.

4.4.5 Transfer between training and calibration curve datasets

As explained in Section , most images routinely analyzed by biologists do not contain
any aberration, even for high doses. In the previous section, we saw that the model
described in this Chapter performs very well in terms of object detection metrics. However,
we still need to investigate wether a model trained on this dataset could accurate estimate
aberration counts on a more realistic dataset.

Initial calibration curve estimates were unsatisfying: our ensemble would overestimate
low doses, and underestimate high doses. Two additional details were needed to improve
performance. First, we investigated the Cumulative Distribution Function (CDF) of the
maximum probabilities predicted by the members of the ensemble for the DC and frag-
ment class. Those CDFs were estimating using the 4 Gy subset of the calibration curve
dataset, and are shown in Figure 4.12. Instead of setting a single threshold for all model,
we picked a quantile and retrieved the corresponding CDF value for each model. Fur-

142

4.4. Experimental results

Figure 4.10 – Snapshot of the training trajectory in feature space. Each point of every
scatterplot represents a fixed location in an image (DC, fragment or background). Because
of the stochasticity of training, the corresponding feature vector moves in feature space.
The contour map showcases the decision boundary of a kernel SVM classifier trained to
predict the type of feature vector depending on its location in feature space.

143

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

Figure 4.11 – Training trajectories of feature barycenters. The scatterplots displayed in
Figure 4.10 are clustered with K-Means to simplify visualization. The trajectories of
barycenters during training are displayed in this figure. The thickness of the trajectory
shows the number of feature points in the barycenter.

thermore, we used domain knowledge to reject spurious DC detection. We considered DC
detections if and only if at least one fragment was present in the same image. As usual
in biological dosimetry, we fitted a linear-quadratic model to the point cloud of average
DC count retrieved on the calibration curve dataset. This led to a large improvement
in our calibration curve estimation, as shown in Figure 4.13. Furthermore, the Metafer
calibration curve is semi-automated: DCs undergo a manual review, because of the very
high FPR of the algorithm, as described in Section 4.4.1. On the contrary, our calibration
curve is obtained in a fully automated setting.

144

4.5. Discussion and future works

Figure 4.12 – Cumulative Distribution Functions (CDF) of the maximum probabilities
predicted by every member of the ensemble for the DC (left) and fragment (right) class
over all images corresponding to a 4 Gy dose in the calibration curve dataset.

4.5 Discussion and future works

In biological dosimetry, estimating the average number of chromosomal aberrations
per peripheral blood lymphocyte metaphase is necessary to estimate an ionizing radia-
tion dose. However, human expertise is required and is therefore a bottleneck to scale
chromosome counting beyond a few hundred images per patient.

In this Chapter, we evaluated Unet as an aberration detection model for biological
dosimetry. Unet outperformed Metafer (a current commercial solution) in terms of Preci-
sion and Recall by a wide margin. Our approach is learning-based and differs significantly
from the current state of the art in terms of how much domain knowledge of chromosome
morphology is incorporated. We demonstrated a high level of performance without the
need for significant shape modelling. Feature visualization suggests that the model learns
to reject debris and nuclei in an unsupervised manner, without the need for object-specific
annotations for monocentric chromosomes or debris. Furthermore, a simple regularization
term modelling the intrinsic heatmap sparsity helps performance.

We pushed this performance further by ensembling several checkpoints collected dur-
ing training. We proposed a visualization of the latent features of Unet during training
to explore the relationship between the dynamics of training and this performance im-
provement. Furthermore, we showed that the variation in performance between different
(randomly sampled) ensembles is lower than between single checkpoints of a training run.

145

Chapter 4 – End-to-end chromosomal aberration detection in metaphase images

Figure 4.13 – Calibration curves estimated by the ensemble. Left: calibration curve before
setting a threshold per model and using domain knowledge. Right: calibration curve after
model-adaptive thresholding and using domain knowledge. To improve readability, we
show the 4 curves closest to the manual calibration curve displayed in black. Metafer
curve is displayed in red.

This is especially relevant in the context of the deployment of a deep learning model in
an automated fashion in a medical setting. Those improvements can be achieved without
the need for any architectural modifications or extensive hyperparameter calibration.

Our training dataset is not representative of real world data: the average number of
aberration per cell is over 1, which corresponds to an extremely high dose of ionizing
radiation. It is very likely that some of the spurious detections can be attributed to this
training set imbalance. We evaluated our ensemble of Unet in a realistic setting, on a
calibration curve dataset. Using model-adaptive thresholding and the domain knowledge
of co-occurence of DCs and fragments, we reach a very competitive calibration curve,
widely outperforming the Metafer baseline. Furthermore, our ensemble can be used in
a fully automated fashion, while the Metafer solution requires manual review to reduce
the number of false positives. It is therefore possible to build a competitive aberration
detection system even with a large distribution gap between training and inference images.

146

CONCLUSION

Contributions

The main contribution of this thesis is a proof of concept based on deep learning
for a chromosomal aberration detection model in cytogenetic biological dosimetry. This
model relies on the Unet architecture. It is trained by minimizing a L2 loss and a sparsity-
promoting regularization term over a large, labelled dataset. We use the fact that gradient
descent samples can be seen as approximate samples for the posterior distribution of
the network to retrieve a diverse ensemble of models during training, and we build an
interpretable agregation function for this ensemble. This function relies on two thresholds,
a confidence thresholds and an agreement thresholds, which can be set by the end-user
to balance between precision and recall.

In our labelled dataset, all images contain at least one dicentric chromosome, which
means that aberrations are much more prevalent than in real life. This oversampling
prevents the discovery of trivial models during training, where no aberration is every
predicted. However, this also means that there is a distribution gap between a real blood
sample and our training dataset. Using some domain knowledge, like the co-occurence
of DCs and fragments, we reject a large number of spurious detections, and improve the
false positive rate.

Using this domain knowledge, the counts provided at each dose match the manually
estimated calibration curve very closely. Furthermore, unlike the previous semi-automated
tool used at IRSN where semi-automatic, our solution achieves this false positive rate in
a fully automated fashion.

Moreover, we provide a PCA-based visualization of the features of our model. This
allows one to display the differences between the features corresponding to chromoso-
mal objects and non-chromosomal objects. This rejection of non-chromosomal objects is
achieved without the need for specific modelling or labelling. This contrasts with current
commercial solutions that need to reject non-chromosomal objects based on their shape
or texture during the chromosome detection step. The deep learning paradigm, where rich
image features are learned on large datasets instead of modelled explicitely proved rele-

147

vant in this specific biomedical imaging application, in spite of the all the issues identified
in Section 2.2.

Furthermore, we used PCA to provide a visualization of the training trajectories of
Unet outputs. By plotting the trajectories of pixels corresponding to aberrations in feature
space, we are able to evaluate how well our model separates aberrations from background
during training. We trained several SVM classifiers, each corresponding to a different
epoch, and therefore a different feature space. Visualizing the entropy of the distribution
predicted by the average classifier allows one to justify our ensembling gains. Low entropy
regions in feature space correspond to aberrations receiving a high number of votes, as
most members of the ensemble agree on the object class. On the other hand, high entropy
regions correspond to aberrations receiving a lower number of votes.

Perspectives

While our model reaches a high level of performance, both in terms of object detection
metrics and calibration curve estimation, it may not be considered as a complete dose es-
timation pipeline. Because of variations in image quality some metaphases are completely
unusable. Chromosomes may be underspread, or the image may be to blurry for accu-
rate chromosome classification. Currently, both of our datasets (training and calibration
curve estimation) are comprised of metaphases that are good enough for human scoring.
A fully automated dose estimation pipeline needs a metaphase selection step. Metaphase
selection with conventional computer vision techniques was explored in [89] to guarantee
that every metaphase is complete, i.e., that it contains 23 pairs of chromosomes. More
recently, a ConvNet was trained to perform metaphase selection, reaching over 99% accu-
racy [90]. However, the metaphase selection step does not segment chromosome explicitely
and relies on a ResNet-based binary classifier instead.

Metaphase selection could be solved with several architectures mentioned in Chapter
1, like Faster R-CNN [9] or ResNet [8]. To ensure that metaphases are complete, Faster
R-CNN is appropriate. However, this means that we need bounding box labels for ev-
ery single chromosome which is time consuming. In [121], Pachitariu et al. proposed an
active learning biomedical image segmentation software called Cellpose. The underlying
segmentation model is trained on biomedical images, and predictions can be edited to
re-train the model. This approach could be used to train a chromosome segmentation
model without building a large labelled dataset.

148

Furthermore, while our training dataset is comprised of 5430 labelled images, this
dataset is extracted from a larger database containing around 80 000 images. Our train-
ing subset is comprised of all images containing at least 1 aberration. Even if this larger
archive does not contain any chromosomal aberration, it still brings a much larger reposi-
tory of MC and cellular debris examples which would help MC-DC discrimination provided
that we can design an effective pre-training task. It has been shown that because con-
ventional similarity-based SSL techniques discard spatial information with global average
pooling, they are less effective for pre-training dense models [122]. Therefore, designing
pretext tasks for dense prediction models can be considered in future works. However,
pretraining models on this large dataset would also be significantly more costly. The in-
creased computation time suggests that the exploration of small architecture changes or
new hyperparameter configurations is slowed down considerably, which makes designing
such a pretext task more challenging.

149

Appendix A

SPARSITY IN OPTICAL FLOW FOR

MICROFLUIDICS IMAGING

From June to September of 2022, I stayed at the Engineering Physics department
of McMaster University, in Canada. This research stay was supervised by Qiyin Fang
and focused on assisting Tianqi Hong’s PhD work by designing methods for optical flow
estimation in microfluidics cell imaging. This optical flow estimation method uses the
same sparse regularizer as the proof of concept presented in Chapter 4. This method is the
subject of this Appendix.

Abstract

Building labelled optical flow datasets is very challenging, which makes the training
and evaluation of those on unseen sequences difficult. To overcome this difficulty, opti-
cal flow models are often trained on benchmark datasets composed of synthetic image
sequences. This means that during inference on unseen image sequences, there will be
a distribution gap between the training and testing data. This distribution gap leads to
errors if unseen data does not match the training distribution. This is often the case in
biological, medical of satellite images, because those applications showcase unusual object
sizes, viewpoints and levels of optical resolution or noise. In this context, a pre-trained,
supervised model might fail to estimate a flow field where the flow discontinuities match
the object boundaries for small objects. Furthermore, slow objects cannot be continuously
detected by those pre-trained models, and they tend to be merged in the background.

The main context for this chapter is shadow imaging in microfluidics applications,
where the issues mentioned above are especially relevant. Cells are very small with respect
to the field of view, and showcase variations in speed. Because of this, the estimated
flow discontinuities do not match cell boundaries, and slow cells are not detected. We
evaluate boundary mismatch and speed dependence using the agreement between motion

151

field segmentation and cell masks as a proxy measurement of flow quality. Moreover, we
propose a novel regularizer to adapt unsupervised optical flow models to microfluidics
imaging.

A.1 Introduction

Lensless microscopy systems relying on cost-efficient Commercial-Off-The-Shelf (COTS)
hardware are proposed as an alternative to flow cytometry methods [123]. The image sen-
sor used for acquisition is mounted over the transparent microfluidics channel. The channel
is backlit with incoherent lighting. Usually, the considered samples (red blood cells, para-
sites) have enough transparency for shadow imaging. The optical resolution of the device
depends on the distance between the channel and the sensor, but cannot exceed twice the
pixel size. Nevertheless, lensless devices have several advantages. They are cheaper than a
flow cytometer, which is the current gold standard for fluid analysis in the medical field.
They also offer a very wide field of view, which improves the throughput of the device.
Figure A.1 provides a schematic of the device implemented in [123]. In return, sophisti-
cated image processing is required to reproduce the functionality of flow cytometers, like
cell identification or cell counting. Because cell rotation motion can be used to classify
cells, estimating a motion field from pairs of images is a crucial step to build a COTS
flow cytometer using microfluidics imaging.

Optical flow estimation was traditionally formulated as an optimization problem [124]–
[127]. Variational methods generally penalized the norm of the gradient of the motion
field to favor piecewise smoothness [124]. For several decades, variational methods were
considered to be the most competitive methods for optical flow estimation [127]. However
the errors generated by the pixel-wise data term are often compensated by an undesirable
over-smoothing. An alternative approach consisted in fitting parametric motion models
in the neighborhood of each pixel [128]. The motion field is estimated from a region-
based data term that exploits the consistency of several pixels in the region. Despite their
superior robustness to noise, these methods are usually unable to compete with global
methods in terms of accuracy at low levels of noise [127], in various application fields (fluid
mechanics [129], cell imaging and microscopy [130]–[133]). The reason is the difficulty to
determine the boundaries of regions where the motion can be accurately approximated by
a parametric motion model. However, it has been shown that when appropriate regions
are chosen, local parametric models can yield good performance [134].

152

Figure A.1 – Schematic of the microfluidics device implemented in [123]. A ∼ 80 µm
channel is machined in PDMS (gray). A fluid (light blue) carrying objects (cells, parasites)
is pumped through the channel for analysis. An image sensor (in green) is bounded directly
to the channel. The channel is lit from the opposite side to the image sensor.

More recently, convolutional neural networks have been shown to be very effective
models in a wide variety of computer vision tasks, including optical flow estimation. The
first example of supervised flow estimation using deep learning was FlowNet, which uses
a Unet-like architecture [135]; it is trained using labelled datasets, usually built from
synthetic video sequences; in this line of research, the current state-of-the-art method is
Recurrent All-Pairs Field Transforms (RAFT) [136]. Several unsupervised methods were
also published [137]–[139]. Those methods still use the basic components introduced by
[128], but they use convolutional neural networks (or transformers) as non-linear feature
learners. Furthermore, they consider specific training methods that leverage the advan-
tages of deep architectures. Current deep-learning-based unsupervised optical flow esti-
mation provides strong results [138], [140], even in cases where large motions or occlusions
are present.

The remainder of this chapter is organized as follows. In Section A.2, we present
the basics of unsupervised optical flow estimation with convolutional networks, with a
special focus on regularized training losses. In Section A.3, we present the dataset, as

153

well as a detailed reasoning for our use of segmentation as a proxy measurement when
ground truth optical flow is unavailable in the context of microfluidics imaging. Finally,
we show qualitative and quantitative results for the competing models also introduced in
this section.

A.2 Unsupervised CNN-based method for sparse op-
tical flow estimation

A.2.1 Definition of data term and loss function

For a pair of consecutive grayscale images I1, I2 ∈ [0, 1]H×W , let us consider a vector
field f12, where at each location (u, v) ∈ Ω = {0, · · · , H} × {0, · · · W} we have f12(u, v) =
(∆u, ∆v) so that I2(u+∆u, v+∆v) = I1(u, v). This vector field quantifies the displacement
of pixels. Note that the displacement is assumed to be small to derive linear equations
with respect to image displacement. This is usually correct if the timesteps are small
enough, i.e the framerate is high enough.

If the flow f12 was perfectly estimated, we would be able to reconstruct I2 from I1 by
resampling I1 at the new locations given by the flow field. This resampling step is defined
as a warping function:

w(I1, f12) = I2. (A.1)

The reconstruction of I2 from I1 and the estimated flow field f12 provides a natural
criterion to evaluate the quality of the estimated flow field, usually called the photometric
consistency criterion:

D(I1, I2, f12) =
∑

u,v∈Ω
ρ (I2(u, v), w(I1, f12)) , (A.2)

where ρ is a robust loss criterion (e.g. ρ(x) =
√

x2 + ε2). In general, variational meth-
ods minimize a cost function directly with respect to f12 [127]. In deep-learning-based
approaches, the major difference is that the training loss is minimized with respect to
the estimator parameters. In our case, f12 = gθ(I1, I2) where gθ, which is a deep convolu-
tional neural network parameterized by a set of weights θ. Given a dataset of image pairs
{(I1, I2)1, · · · , (I1, I2)n}, the model parameters are obtained by minimizing the following

154

Figure A.2 – Example of smearing in unsupervised optical flow estimation. Left: input
grayscale image, Right: flow field estimated by UFlow without any regularization. Bottom
left: HSV wheel corner indicating how the flow map (bottom) should be interpreted. Color
indicates flow orientation, while saturation indicates flow norm.

criterion as follows:

θ⋆ = arg min
θ

n∑
i=1

∑
u,v

ρ (I2(u, v), w(I1, gθ(I1, I2)(u, v)) . (A.3)

Because of the non-linearities of gθ, this training loss is not convex, and finding a global
minimum is not feasible. Accordingly, θ⋆ usually corresponds to a local minima of the loss
function.

A.2.2 Definition of spatial regularizers

Because of occlusions near object boundaries, matching a pixel between I1 and I2 may
be very difficult. A single pixel in I1 might have several low-error (in terms of intensity)
matches in I2. Because of this, unsupervised flow estimates often exhibit "smear", that is
the flow boundaries do not match object boundaries, as shown in Figure A.2. As the data
fitting may not be informative, regularization is used to impose some prior. The following
1st-order smoothness is commonly used in optical flow to adapt to object boundaries:

R(f12, I1) = β

[∑
u,v

∥∇u,vf12∥1e
−α|∇u,vI1(u,v)|

]
, (A.4)

155

where α modulates edge weighting, and

∇u,vf12 =
f12(u, v) − f12(u + 1, v)
f12(u, v) − f12(u, v + 1)

 . (A.5)

Note that this is a simple linear transformation of the image so that the computational
overhead is minimal. While this criterion forces the alignment of image and flow bound-
aries, it is unsatisfying because while object edges should also be flow boundaries, not all
edges are object edges. Objects with internal edges can exhibit over-regularized flow with
this regularizer.

In the context of microfluidics imaging, we know a priori that objects are small and
exhibit relatively small motion. The background, which is most of the surface of the image,
is expected to exhibit zero flow. Therefore, the flow field is expected to be sparse, that is
the number of locations where the flow is non-zero is very low. Therefore, we can consider
the following sparse variation regularizer, introduced in [11]:

RSV (f12) = λ

∑
(u,v)

ρ2∥∇u,vf12∥2
2 + (1 − ρ)2f 2

12(u, v)
 . (A.6)

The first term encourages a smooth flow field, while the f 2
12 term controls the sparsity

of the flow. The two terms are balanced with the hyperparameter ρ, usually ρ ≃ 0.1. If
ρ = 1, (A.6) is nothing else than the popular Tikhonov regularizer. In [11], the square
root of this regularization term was taken to ensure convexity, which is not relevant in our
training framework, as the non-linearities of gθ makes the training objective non-convex.

In our implementation of Sparse Variation, we found that it is necessary to regularize
the flow estimate at all layers of the feature pyramid of UFlow (see Section A.3.3 for details
of UFlow). However, as the criterion in (A.3) is a sum over all pixels, the hyperparameter
λ in (4.3) needs to be adjusted at each scale to ensure it scales with the magnitude of the
loss. As the height and width are divided by a factor 2 at each layer, we multiply λ by a
factor 4, and we optimize the average regularization over all layers:

RSV A(f12) = 1
L

L∑
ℓ=1

4ℓλRSV (f ℓ
12), (A.7)

where f ℓ
12 the estimated flow at layer ℓ.

156

Figure A.3 – Single frame of the two sequence dataset used in this chapter. Left: crop of
a frame from the red blood cell (RBC) sequence. A red blood cell is contained in the red
square. Right: crop of a frame from the polystyrene and yeast sequence. A polystyrene
bead is localized in the white square and a yeast in the blue square.

A.3 Experimental results and comparison of super-
vised and unsupervised methods

A.3.1 Description of datasets

Our experiments were performed on several sequences acquired through shadow imag-
ing in a microfluidics channel. In the two sequences used for illustration in this Section,
each frame is of size W = 1920, H = 1080. In the first image sequence (yeast sequence)
composed of 586 frames, the fluid carries polystyrene beads and yeast through the mi-
crofluidics channel. In the second image sequence (RBC sequence) comprised of 400 im-
ages, a blood sample is imaged, also with shadow imaging. The density of cells is much
higher in the RBC sequence, which makes estimating flow boundaries accurately challeng-
ing. In Figure A.3, crops from each sequence are shown. As the camera is not moving and
the objects are relatively small (around 10 by 10 pixels in a FullHD image), we estimated
the background (for background subtraction) using a simple average of the sequence. In
what follows, we only consider the background subtracted sequences.

A.3.2 Evaluation metrics for optical flow estimation

In optical flow benchmark datasets, the ground truths are generally available [127].
If this is not the case, flow fields can be evaluated qualitatively. However, this might
not be an objective way to compare several optical flow estimation methods. To provide

157

a fair comparison, we built segmentation annotation for the yeast and RBC sequences
with Ilastik interactive segmentation tool [141]. Those annotations are used to build a
proxy quality measurement for optical flow, focusing on the difference between flow and
object boundaries. This is achieved by building a segmentation map of our optical flow
estimation, and using conventional image segmentation metrics like Intersection Over
Union (IoU).

To separate cells from the background using an optical flow estimate (i.e., to build a
segmentation map), we chose to threshold the L2 norm of the flow field. We translated the
histogram of the norm to the [0, 1] interval to ensure that thresholds are comparable from
frame to frame. Given that the speed of the cells varies during the sequence (especially for
the RBC sequence), we estimated a new threshold for each frame using the Otsu method
[80].

Moreover, the speed variation of cells inside a microfluidics channel may complicate
the evaluation procedure. While background subtraction ensures that there is no truly
stationary cell in the dataset, very slow cells might be estimated as background. Therefore,
some segmentation errors are due to slow cells which are missing completely (i.e., every
pixel of the cell is predicted to be a static, background pixel), and others are caused by
imperfect flow discontinuities. Because of this, we split the segmentation error into two
parts and compute two IoUs. For each cell in the true segmentation map, we check if there
is a non-zero intersection with the segmented flow map. If this is not the case, the pixels of
this cell are labelled as background. Here, IoUboundary is computed between this new true
segmentation map and the flow segmentation map. IoUboundary corresponds exclusively
to cell boundary estimation error. IoUall is the IoU between the original segmentation
map and the segmented flow map. Therefore, IoUboundary > IoUall. This decomposition
allows one to verify if a model reaches a better IoU because it detects slow cells better,
or because it provide a better estimation of cell boundaries.

Finally, we also evaluate the model by comparing cell counts, which gives an indication
of how well the model is able to separate close cells. If adjacent cells are insufficiently
separated, the global cell count is underestimated. On the other hand, small segmentation
artifacts leads to an overestimated cell count.

A.3.3 Description of competing methods

In our experiments, We compared two different architectures. First, we choose RAFT
[136] as the baseline method for supervised optical flow estimation, because of its high

158

Figure A.4 – Comparison of all flow models evaluated in the chapter. First column is a
random sample of cells in the sequence, retrieved at the same timestep (first image of
the RBC sequence). Second column is the unregularized UFlow model. Third column is
UFlow regularized with first-order smoothness. Fourth column is RAFT, and last column
is UFlow regularized with Sparse Variation.

performance and availability in the torchvision package. We did not modify RAFT, and
used the pre-trained weights available in torchvision. Second, we considered UFlow [137]
as it is a performant and flexible unsupervised optical flow estimation architecture. UFlow
[137] consists in a feature pyramid, where both images are repeatedly downsampled, and
progressively deeper features are built using convolutional layers. At each layer, a cost
volume is computed [135], and an optical flow field is estimated. In [137], the final flow
field is estimated at 1/4 of the input resolution and then upsampled to compute the
photometric loss. Nevertheless, we made some modifications compared to the original
UFlow implementation to better fit our case study. Because dense mention is crucial to
accurately estimate cell rotation, and therefore to identify cells, optical flow is estimated
at the highest possible resolution, instead of 1/4 of the input resolution. We did not use
bidirectional losses, occlusion estimation or self-supervision to keep training as simple as
possible. In the end, three models are trained: UFlow without any regularization, UFlow
regularized with a Sparse Variation criterion (ρ = 0.1 and λ = 2 × 10−10) and UFlow
regularized with an edge-alignment criterion (β = 0.1 and α = 100). We ran training for
25 epochs on the RBC sequence, using a batch size of 2, and a learning rate of 0.0001.

A.3.4 Experimental results

Qualitative evaluation Figure A.4 shows a qualitative comparison of the different flow
estimation methods. In the flow field estimated by RAFT, some cells that exhibit positive

159

Figure A.5 – Cell merging and fading issues in the flow field estimated by RAFT on
the RBC sequence. Four consecutive crops (frames 387, 390, 393 and 396) are displayed.
Although two cells are present, the boundaries estimation are only correct if the the two
cells are far enough.

Figure A.6 – Crops of frames 278 (top) and 279 (bottom) of the flow field estimated by
RAFT on the RBC sequence.

flow in frame t will exhibit zero flow in frame t + 1. The cell is effectively "switched off".
While a stationary cell should exhibit 0 flow even though the pixel intensities are non-zero,
the instantaneous switch background and foreground for specific cells is not realistic. Slow-
ing cells should exhibit a progressively decreasing average flow norm. This also prevents
long-term tracking of cells, which is especially problematic because long-term rotation
patterns are a crucial feature for cell classification, as shown in [123]. Furthermore, Figure
A.5 shows that RAFT sometimes merges cells that are close to each other. This prevents
accurate cell counting, and makes cell identification harder. In Figure A.4, we see that
1st-order smoothness tends to produce flow fields with well separated cells. Nevertheless,
its worth noting that this regularizer generates unrealistic square cell borders.

Unsupervised models trained directly on the RBC sequence mitigate the issue of dis-
appearing cells. However, the flow and cell boundary do not match as accurately as with
RAFT. Regularization seems to improves this shortcoming.

160

Figure A.7 – IoU as a function of time. Top row is IoUs over time for RBC sequence.
Bottom row is IoUs over time for yeast sequence. Left column is IoU for all cells, right
column is IoU for detected cells only, as described in Section A.3.2. Four models are
compared: RAFT (red), UFlow without any regularization (blue), UFlow with Sparse
Variation regularization (green) and UFlow with edge-alignment regularization (black).
Shaded areas indicates the (q5, q95) interval of counting performance over the last 5 epochs
of training, for all models except RAFT, where only the last epoch weights were available
in torchvision.

Quantitative evaluation of boundary estimation In Figure A.7, we see the results
for the yeast sequence on the bottom row. The Sparse Variation model achieves the highest
IoU for all cells. Interestingly, if we only consider detected cells, the performance gap with
the unregularized model is very low which is also true for the RBC sequence, as shown
in the top row of Figure A.7. This suggests most of the variation in terms of IoU across
time is due to disappearing cells.

The variation of IoU across time is much higher for the RBC sequence than for the

161

yeast sequence, like for counting performance in Figure A.8. As explained before, this
performance can be decomposed into an IoU for detected cells, and an IoU for all cells.
Thanks to this decomposition, we can confirm that disappearing cells are the largest
reason for this drop in IoU across time, as the IoU for detected cells is consistently much
higher across time.

Figure A.8 – Counting error as a function of time. The error for both sequences is rep-
resented on the same figure, but both sequences are not the same length. The RBC se-
quence (red, black, blue and green lines) is shorter than the yeast sequence. Four models
are compared: RAFT (red), UFlow without any regularization (blue), UFlow with Sparse
Variation regularization (green) and UFlow with edge-alignment regularization (black).
Shaded areas indicates the (q5, q95) interval of IoU over the last 5 epochs of training, for all
models except RAFT, where only the last epoch weights were available in torchvision.

162

Quantitative evaluation of cell counting As we see in Figure A.8, cell counting
results are heavily speed-dependent, especially in the RBC sequence, although some ar-
chitectures fare better than others. RAFT produces the highest overestimation of the
number of cells. Worse, this overestimation is inconsistent, with very high peaks. Those
peaks correspond to frames where RAFT produces high-error outputs, as displayed in
Figure A.6. In those frames, the optical flow estimation is over-smoothed, with a very
strong background motion. Furthermore, the cells are not visible anymore.

UFlow produces a much more accurate cell count, especially for two models: the unreg-
ularized model (in blue in Figure A.7), and the model regularized with Sparse Variation
(in green). While the unregularized model produces slightly better results for the RBC se-
quence, the variation in IoU across training epochs (materialized by the shaded confidence
intervals) is much higher.

In the yeast sequence, we see that the counting error shows less variation across time,
because of the constant speed of the cells in the channel. The Sparse Variation model
achieves the lowest counting error, and the lowest variability across training epochs.

A.4 Conclusion

This chapter shows the limitations of pre-trained, supervised optical flow models for
analyzing the modetion of small objects in a microfluidics setting. Because of the distri-
bution gap between the training and testing dataset, the estimation of an accurate flow
field for slow cells is unsatisfying. Cells tend to disappear unexpectedly, even though cells
are not stationnary.

Unsupervised optical flow estimation adresses this issue, but the discontinuities of the
flow do not match the object boundaries. While edge-alignment regularization is used very
often in optical flow to adress this issue, it performs worse that our novel Sparse Variation
regularization. The model trained with Sparse Variation regularization achieves the best
performance (sometimes tied with the unregularized model), and the lowest variation in
terms of IoU and cell counting performance over training epochs.

163

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, « ImageNet Classification with Deep
Convolutional Neural Networks », in Advances in Neural Information Processing
Systems (NeurIPS), vol. 25, 2012.

[2] O. Russakovsky, J. Deng, H. Su, et al., « ImageNet Large Scale Visual Recognition
Challenge », International Journal of Computer Vision, vol. 115, pp. 211–252,
2015.

[3] T.-Y. Lin, M. Maire, S. Belongie, et al., « Microsoft COCO: Common Objects in
Context », in European Conference on Computer Vision (ECCV), 2014, pp. 740–
755.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
« The Pascal Visual Object Classes (VOC) Challenge », International Journal of
Computer Vision, vol. 88, pp. 303–338, 2010.

[5] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, « On Calibration of Modern
Neural Networks », in International Conference on Machine Learning (ICML),
2017, pp. 1321–1330.

[6] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson, « A
simple baseline for bayesian uncertainty in deep learning », Advances in Neural
Information Processing Systems (NeurIPS), vol. 32, 2019.

[7] S. Mandt, M. Hoffman, and D. Blei, « Stochastic Gradient Descent as Approximate
Bayesian Inference », Journal of Machine Learning Research, vol. 18, 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun, « Deep Residual Learning for Image Recog-
nition », in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778.

[9] S. Ren, K. He, R. Girshick, and J. Sun, « Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks », in Advances in Neural Infor-
mation Processing Systems (NeurIPS), vol. 28, 2015.

[10] O. Ronneberger, P. Fischer, and T. Brox, « U-Net: Convolutional Networks for
Biomedical Image Segmentation », en, in Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2015, pp. 234–241.

165

[11] S. Prigent, H.-N. Nguyen, L. Leconte, et al., « SPITFIR(e): a supermaneuverable
algorithm for fast denoising and deconvolution of 3D fluorescence microscopy im-
ages and videos », Scientific Reports, vol. 13, p. 1489, 2023.

[12] J. B. Diederik Kingma, « Adam: A Method for Stochastic Optimization », in In-
ternational Conference on Learning Representations (ICLR), 2015.

[13] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. Wilson, « Averaging
Weights Leads to Wider Optima and Better Generalization », 2018.

[14] I. A. E. Agency, « Cytogenetic Dosimetry: Applications in Preparedness for and
Response to Radiation Emergencies », International Atomic Energy Agency, Text,
2011, p. 1.

[15] R. Balestriero, M. Ibrahim, V. Sobal, et al., A Cookbook of Self-Supervised Learn-
ing, arXiv:2304.12210 [cs], 2023.

[16] C. Cortes and V. Vapnik, « Support-vector networks », Machine Learning, vol. 20,
pp. 273–297, 1995.

[17] N. Dalal and B. Triggs, « Histograms of Oriented Gradients for Human Detection »,
in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2005, pp. 886–893.

[18] D. G. Lowe, « Distinctive Image Features from Scale-Invariant Keypoints », Inter-
national Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[19] M. Abadi, P. Barham, J. Chen, et al., « TensorFlow: a system for large-scale ma-
chine learning », in USENIX conference on Operating Systems Design and Imple-
mentation, 2016, pp. 265–283.

[20] A. Paszke, S. Gross, F. Massa, et al., « PyTorch: An Imperative Style, High-
Performance Deep Learning Library », in Advances in Neural Information Pro-
cessing Systems (NeurIPS), vol. 32, 2019.

[21] G. Cybenko, « Approximation by superpositions of a sigmoidal function », Math-
ematics of Control, Signals and Systems, vol. 2, pp. 303–314, 1989.

[22] A. Botev, H. Ritter, and D. Barber, « Practical Gauss-Newton Optimisation for
Deep Learning », in International Conference on Machine Learning (ICML), 2017,
pp. 557–565.

166

[23] H. Ritter, A. Botev, and D. Barber, « A Scalable Laplace Approximation for Neu-
ral Networks », in International Conference on Learning Representations (ICLR),
2022.

[24] J. Martens and R. Grosse, « Optimizing neural networks with Kronecker-factored
approximate curvature », in International Conference on Machine Learning (ICML),
2015, pp. 2408–2417.

[25] H. Robbins and S. Monro, « A Stochastic Approximation Method », The Annals
of Mathematical Statistics, vol. 22, pp. 400–407, 1951.

[26] S. L. Smith, B. Dherin, D. Barrett, and S. De, « On the Origin of Implicit Regular-
ization in Stochastic Gradient Descent », in International Conference on Learning
Representations (ICLR), 2020.

[27] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, « Understanding deep
learning requires rethinking generalization », in International Conference on Learn-
ing Representations (ICLR), 2016.

[28] K. Simonyan, A. Vedaldi, and A. Zisserman, « Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps », in Interna-
tional Conference on Learning Representations (ICLR), Y. Bengio and Y. LeCun,
Eds., 2014.

[29] L. A. Gatys, A. S. Ecker, and M. Bethge, « Image Style Transfer Using Convo-
lutional Neural Networks », in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 2414–2423.

[30] D. Ulyanov, A. Vedaldi, and V. Lempitsky, « Deep Image Prior », International
Journal of Computer Vision, vol. 128, pp. 1867–1888, 2020.

[31] A. Rosenfeld and J. K. Tsotsos, « Intriguing Properties of Randomly Weighted Net-
works: Generalizing While Learning Next to Nothing », in Conference on Computer
and Robot Vision (CRV), 2019, pp. 9–16.

[32] J. Frankle, D. J. Schwab, and A. S. Morcos, « Training BatchNorm and Only Batch-
Norm: On the Expressive Power of Random Features in CNNs », in International
Conference on Learning Representations (ICLR), 2020.

[33] S. d’Ascoli, L. Sagun, G. Biroli, and J. Bruna, « Finding the Needle in the Haystack
with Convolutions: on the benefits of architectural bias », in Advances in Neural
Information Processing Systems (NeurIPS), vol. 32, 2019.

167

[34] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning:
data mining, inference, and prediction (Springer series in statistics), 2nd ed. New
York, 2009.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., « Generative Adversarial Nets »,
in Advances in Neural Information Processing Systems (NeurIPS), vol. 27, 2014.

[36] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, arXiv:1312.6114
[stat.ML], 2022.

[37] T. Karras, M. Aittala, S. Laine, et al., « Alias-Free Generative Adversarial Net-
works », in Advances in Neural Information Processing Systems (NeurIPS), vol. 34,
2021, pp. 852–863.

[38] M. Arjovsky and L. Bottou, « Towards Principled Methods for Training Generative
Adversarial Networks », in International Conference on Learning Representations
(ICLR), 2016.

[39] A. Radford, L. Metz, and S. Chintala, « Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks », in International Con-
ference on Learning Representations (ICLR), 2016.

[40] I. J. Goodfellow, J. Shlens, and C. Szegedy, « Explaining and Harnessing Adversar-
ial Examples », in International Conference on Learning Representations (ICLR),
Y. Bengio and Y. LeCun, Eds., 2015.

[41] M. Mirza and S. Osindero, Conditional Generative Adversarial Nets, arXiv:1411.1784
[cs.LG], 2014.

[42] L. Mescheder, A. Geiger, and S. Nowozin, « Which Training Methods for GANs
do actually Converge? », arXiv:1801.04406 [cs.LG], 2018.

[43] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, « Image-to-Image Translation with
Conditional Adversarial Networks », in IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017, pp. 5967–5976.

[44] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Scholkopf, « From Vari-
ational to Deterministic Autoencoders », arXiv:1903.12436 [cs.LG], 2019.

[45] G. E. Hinton and R. Zemel, « Autoencoders, Minimum Description Length and
Helmholtz Free Energy », in Advances in Neural Information Processing Systems
(NeurIPS), vol. 6, 1993.

168

[46] I. Higgins, L. Matthey, A. Pal, et al., « Beta-VAE: Learning Basic Visual Con-
cepts with a Constrained Variational Framework », in International Conference
on Learning Representations (ICLR), 2016.

[47] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, « Spectral Normalization
for Generative Adversarial Networks », in International Conference on Learning
Representations (ICLR), 2018.

[48] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, « Momentum Contrast for Unsuper-
vised Visual Representation Learning », in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 9726–9735.

[49] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, « A Simple Framework for
Contrastive Learning of Visual Representations », in International Conference on
Machine Learning (ICML), 2020, pp. 1597–1607.

[50] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, « Unsupervised Feature Learning via Non-
parametric Instance Discrimination », in 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 3733–3742.

[51] Y. LeCun, C. Cortes, and C. Burges, MNIST handwritten digit database. [Online].
Available: http://yann.lecun.com/exdb/mnist/.

[52] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, « Deep Clustering for Un-
supervised Learning of Visual Features », in European Conference on Computer
Vision (ECCV), V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., 2018,
pp. 139–156.

[53] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, « Un-
supervised Learning of Visual Features by Contrasting Cluster Assignments »,
in Advances in Neural Information Processing Systems (NeurIPS), vol. 33, 2020,
pp. 9912–9924.

[54] P. A. Knight, « The Sinkhorn–Knopp Algorithm: Convergence and Applications »,
SIAM Journal on Matrix Analysis and Applications, vol. 30, pp. 261–275, 2008.

[55] X. Chen and K. He, « Exploring Simple Siamese Representation Learning », in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 15 750–15 758.

169

http://yann.lecun.com/exdb/mnist/

[56] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig,
« Laplace Redux - Effortless Bayesian Deep Learning », in Advances in Neural
Information Processing Systems, vol. 34, 2021, pp. 20 089–20 103.

[57] B. Lakshminarayanan, A. Pritzel, and C. Blundell, « Simple and Scalable Pre-
dictive Uncertainty Estimation using Deep Ensembles », in Advances in Neural
Information Processing Systems (NeurIPS), vol. 30, 2017.

[58] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger, « Snap-
shot Ensembles: Train 1, Get M for Free », in International Conference on Learning
Representations (ICLR), 2016.

[59] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson, « Loss
Surfaces, Mode Connectivity, and Fast Ensembling of DNNs », in Advances in
Neural Information Processing Systems (NeurIPS), vol. 31, 2018.

[60] D. Ruppert, « Efficient Estimations from a Slowly Convergent Robbins-Monro Pro-
cess », Tech. Rep., 1988.

[61] B. Polyak, « New stochastic approximation type procedures », Avtomatica i Tele-
mekhanika, vol. 7, pp. 98–107, 1990.

[62] S. Hochreiter and J. Schmidhuber, « Flat Minima », Neural computation, vol. 9,
pp. 1–42, 1997.

[63] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, « On
Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima »,
in International Conference on Learning Representations (ICLR), 2016.

[64] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, « Bayesian model
averaging: a tutorial », Statistical Science, vol. 14, 4, pp. 382–401, 1999.

[65] R. Girshick, « Fast R-CNN », in IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1440–1448.

[66] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M. Smeulders,
« Selective Search for Object Recognition », International Journal of Computer
Vision, vol. 104, pp. 154–171, 2013.

[67] X. Zhou, D. Wang, and P. Krähenbühl, Objects as Points, arXiv:1904.07850 [cs.CV],
2019.

170

[68] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, « Focal Loss for Dense
Object Detection », IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, pp. 318–327, 2020.

[69] H. Law and J. Deng, « CornerNet: Detecting Objects as Paired Keypoints », In-
ternational Journal of Computer Vision, vol. 128, pp. 642–656, 2020.

[70] R. Bayley, A. Carothers, X. Chen, et al., « Radiation dosimetry by automatic image
analysis of dicentric chromosomes », Mutation Research/Environmental Mutagen-
esis and Related Subjects, vol. 253, pp. 223–235, 1991.

[71] L. Roy, M. Delbos, N. Paillole, V. Durand, and P. Voisin, « Comparaison de sys-
tèmes d’analyse d’images cytologiques en dosimétrie biologique », Radioprotection,
vol. 38, pp. 323–340, 2003.

[72] L. Roy, I. Sorokine-Durm, and P. Voisin, « Comparison between fluorescence in
situ hybridization and conventional cytogenetics for dicentric scoring: a first-step
validation for the use of FISH in biological dosimetry », International Journal of
Radiation Biology, vol. 70, pp. 665–669, 1996.

[73] R. Huber, U. Kulka, T. Lörch, et al., « Technical report: application of the Metafer2
fluorescence scanning system for the analysis of radiation-induced chromosome
aberrations measured by FISH-chromosome painting », Mutation Research/Genetic
Toxicology and Environmental Mutagenesis, vol. 492, pp. 51–57, 2001.

[74] B. C. Shirley, J. H. M. Knoll, J. Moquet, et al., « Estimating partial-body ion-
izing radiation exposure by automated cytogenetic biodosimetry », International
Journal of Radiation Biology, vol. 96, 11, pp. 1492–1503, Nov. 2020.

[75] A. Subasinghe, J. Samarabandu, Y. Li, et al., « Centromere detection of human
metaphase chromosome images using a candidate based method », F1000Research,
Tech. Rep., 2016.

[76] P. Finnon, D. C. Lloyd, and A. A. Edwards, « An assessment of the metaphase
finding capability of the Cytoscan 110 », Mutation Research, vol. 164, pp. 101–108,
1986.

[77] J. Piper and J. Sprey, « Adaptive classifiers for dicentric chromosomes », Journal
of Radiation Research, vol. 33, pp. 159–170, 1992.

[78] P. Finnon and D. Lloyd, « A preliminary evaluation of the Edinburgh dicentric
hunter », Journal of Radiation Research, vol. 33 Suppl, pp. 215–221, 1992.

171

[79] Y. Li, A. Wickramasinghe, A. A. Subasinghe, et al., « Towards large scale auto-
mated interpretation of cytogenetic biodosimetry data », in IEEE International
Conference on Information and Automation for Sustainability, 2012, pp. 30–35.

[80] N. Otsu, « A Threshold Selection Method from Gray-Level Histograms », IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 62–66, 1979.

[81] A. Subasinghe Arachchige, J. Samarabandu, J. Knoll, W. Khan, and P. Rogan,
« An image processing algorithm for accurate extraction of the centerline from
human metaphase chromosomes », in IEEE International Conference on Image
Processing, 2010, pp. 3613–3616.

[82] A. S. Arachchige, J. Samarabandu, J. H. M. Knoll, and P. K. Rogan, « Inten-
sity Integrated Laplacian-Based Thickness Measurement for Detecting Human
Metaphase Chromosome Centromere Location », IEEE Transactions on Biomedi-
cal Engineering, vol. 60, pp. 2005–2013, 2013.

[83] X. Bai, L. Latecki, and W.-y. Liu, « Skeleton Pruning by Contour Partitioning with
Discrete Curve Evolution », IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, pp. 449–462, 2007.

[84] J. Liu, Y. Li, R. Wilkins, F. Flegal, J. H. Knoll, and P. K. Rogan, « Accurate
cytogenetic biodosimetry through automated dicentric chromosome curation and
metaphase cell selection », F1000Research, vol. 6, p. 1396, 2017.

[85] Y. LI, J. Knoll, R. Wilkins, F. Norton, and P. Rogan, « Automated discrimina-
tion of dicentric and monocentric chromosomes by machine learning-based image
processing », Microscopy Research and Technique, vol. 79, 2016.

[86] P. K. Rogan, Y. Li, A. Wickramasinghe, et al., « Automating dicentric chromosome
detection from cytogenetic biodosimetry data », Radiation Protection Dosimetry,
vol. 159, pp. 95–104, 2014.

[87] A. S. A., J. Samarabandu, J. Knoll, W. Khan, and P. Rogan, « An Accurate Im-
age Processing Algorithm for Detecting FISH Probe Locations Relative to Chromo-
some Landmarks on DAPI Stained Metaphase Chromosome Images », in Canadian
Conference on Computer and Robot Vision, 2010, pp. 223–230.

[88] P. K. Rogan, Y. Li, R. C. Wilkins, F. N. Flegal, and J. H. M. Knoll, « Radiation
Dose Estimation by Automated Cytogenetic Biodosimetry », Radiation Protection
Dosimetry, vol. 172, pp. 207–217, 2016.

172

[89] Y. Li, B. C. Shirley, R. C. Wilkins, F. Norton, J. H. M. Knoll, and P. K. Rogan,
« Radiation Dose Estimation By Completely Automated Interpretation Of The
Dicentric Chromosome Assay », Radiation Protection Dosimetry, 2019.

[90] S. Jang, S.-G. Shin, M.-J. Lee, et al., « Feasibility Study on Automatic Interpreta-
tion of Radiation Dose Using Deep Learning Technique for Dicentric Chromosome
Assay », Radiation Research, vol. 195, pp. 163–172, 2021.

[91] X. Shen, T. Ma, C. Li, Z. Wen, J. Zheng, and Z. Zhou, « High-precision automatic
identification method for dicentric chromosome images using two-stage convolu-
tional neural network », Scientific Reports, vol. 13, p. 2124, Feb. 2023.

[92] P. Voisin, M. Benderitter, M. Claraz, et al., « The cytogenetic dosimetry of recent
accidental overexposure », Cellular and Molecular Biology, vol. 47, pp. 557–564,
2001.

[93] A. Vaurijoux, G. Gruel, F. Pouzoulet, et al., « Strategy for population triage based
on dicentric analysis », Radiation Research, vol. 171, pp. 541–548, 2009.

[94] A. Vaurijoux, E. Gregoire, S. Roch-Lefevre, et al., « Detection of Partial-Body Ex-
posure to Ionizing Radiation by the Automatic Detection of Dicentrics », Radiation
Research, vol. 178, pp. 357–364, 2012.

[95] G. Gruel, E. Grégoire, S. Lecas, et al., « Biological dosimetry by automated dicen-
tric scoring in a simulated emergency », Radiation research, vol. 179, 2013.

[96] H. Romm, L. Ainsbury, S. Barnard, et al., « Automatic scoring of dicentric chro-
mosomes as a tool in large scale radiation accidents », Mutation research, vol. 756,
May 2013.

[97] T. L. Ryan, M. B. Escalona, T. L. Smith, J. Albanese, C. J. Iddins, and A. S. Bala-
jee, « Optimization and validation of automated dicentric chromosome analysis for
radiological/nuclear triage applications », Mutation Research/Genetic Toxicology
and Environmental Mutagenesis, vol. 847, p. 503 087, Nov. 2019.

[98] D. Endesfelder, U. Kulka, J. Einbeck, and U. Oestreicher, « Improving the accuracy
of dose estimates from automatically scored dicentric chromosomes by accounting
for chromosome number », International Journal of Radiation Biology, vol. 96, 12,
pp. 1571–1584, Dec. 2020.

173

[99] A. Defazio, F. Bach, and S. Lacoste-Julien, « SAGA: a fast incremental gradient
method with support for non-strongly convex composite objectives », in Advances
in Neural Information Processing Systems (NeurIPS), 2014, pp. 1646–1654.

[100] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., « Scikit-learn: Machine Learning
in Python », Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[101] R. Padilla, S. L. Netto, and E. A. B. da Silva, « A Survey on Performance Met-
rics for Object-Detection Algorithms », in International Conference on Systems,
Signals and Image Processing (IWSSIP), 2020, pp. 237–242.

[102] A. Bulat and G. Tzimiropoulos, « Binarized Convolutional Landmark Localizers for
Human Pose Estimation and Face Alignment with Limited Resources », in IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 3726–3734.

[103] A. Bulat and G. Tzimiropoulos, « How far are we from solving the 2D and 3D Face
Alignment problem? (and a dataset of 230,000 3D facial landmarks) », in IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 1021–1030.

[104] V. Lempitsky and A. Zisserman, « Learning To Count Objects in Images », in
Advances in Neural Information Processing Systems (NeurIPS), vol. 23, 2010.

[105] J. P. Cohen, G. Boucher, C. A. Glastonbury, H. Z. Lo, and Y. Bengio, « Count-
ception: Counting by Fully Convolutional Redundant Counting », 2017, pp. 18–
26.

[106] P. Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Batra, and D. Parikh, « Count-
ing Everyday Objects in Everyday Scenes », in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 4428–4437.

[107] I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and M. Schmidt,
« Where Are the Blobs: Counting by Localization with Point Supervision », in
European Conference on Computer Vision (ECCV), vol. 11206, 2018, pp. 560–576.

[108] F. Wang, G. Wei, Q. Liu, J. Ou, x. wei xian, and H. Lv, « Boost Neural Networks by
Checkpoints », in Advances in Neural Information Processing Systems (NeurIPS),
vol. 34, 2021, pp. 19 719–19 729.

[109] R. E. Schapire, « A brief introduction to boosting », in IJCAI International Joint
Conference on Artificial Intelligence, vol. 2, 1999, pp. 1401–1406.

174

[110] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler, M. Datcu, and U. Stilla,
« Semantic Segmentation Of Aerial Images With An Ensemble Of CNNs », ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 3, pp. 473–480, 2016.

[111] K. Shaga Devan, H. A. Kestler, C. Read, and P. Walther, « Weighted average
ensemble-based semantic segmentation in biological electron microscopy images »,
Histochemistry and Cell Biology, vol. 158, pp. 447–462, 2022.

[112] L. Nanni, C. Fantozzi, A. Loreggia, and A. Lumini, « Ensembles of Convolutional
Neural Networks and Transformers for Polyp Segmentation », Sensors, vol. 23,
p. 4688, 2023.

[113] A. Neubeck and L. Van Gool, « Efficient Non-Maximum Suppression », in Inter-
national Conference on Pattern Recognition (ICPR), 2006, pp. 850–855.

[114] R. Solovyev, W. Wang, and T. Gabruseva, « Weighted boxes fusion: Ensembling
boxes from different object detection models », Image and Vision Computing,
vol. 107, p. 104 117, 2021.

[115] A. G. Wilson and P. Izmailov, « Bayesian Deep Learning and a Probabilistic Per-
spective of Generalization », in Advances in Neural Information Processing Sys-
tems (NeurIPS), vol. 33, 2020, pp. 4697–4708.

[116] G. Franchi, A. Bursuc, E. Aldea, S. Dubuisson, and I. Bloch, « TRADI: Tracking
Deep Neural Network Weight Distributions », in European Conference on Com-
puter Vision (ECCV), Series Title: Lecture Notes in Computer Science, vol. 12362,
2020, pp. 105–121. doi: 10.1007/978-3-030-58520-4_7.

[117] M. Li and C. Scheidegger, Comparing Deep Neural Nets with UMAP Tour, 2021.

[118] L. McInnes, J. Healy, N. Saul, and L. Großberger, « UMAP: Uniform Manifold
Approximation and Projection », Journal of Open Source Software, vol. 3, 29,
p. 861, 2018.

[119] J. C. Gower, « Generalized procrustes analysis », Psychometrika, vol. 40, pp. 33–
51, 1975.

[120] A. Araujo, W. Norris, and J. Sim, « Computing Receptive Fields of Convolutional
Neural Networks », Distill, 2019.

175

https://doi.org/10.1007/978-3-030-58520-4_7

[121] M. Pachitariu and C. Stringer, « Cellpose 2.0: how to train your own model »,
Nature Methods, vol. 19, 12, pp. 1634–1641, Dec. 2022, Number: 12 Publisher:
Nature Publishing Group.

[122] W. Zhang, J. Pang, K. Chen, and C. C. Loy, « Dense Siamese Network for Dense
Unsupervised Learning », in European Conference on Computer Vision (ECCV),
2022, pp. 464–480.

[123] J. Kun, M. Smieja, B. Xiong, L. Soleymani, and Q. Fang, « The Use of Motion
Analysis as Particle Biomarkers in Lensless Optofluidic Projection Imaging for
Point of Care Urine Analysis », Scientific Reports, vol. 9, p. 17 255, 2019.

[124] B. K. P. Horn and B. G. Schunck, « Determining optical flow », Artificial Intelli-
gence, vol. 17, pp. 185–203, 1981.

[125] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, « High Accuracy Optical Flow
Estimation Based on a Theory for Warping », in European Conference on Com-
puter Vision (ECCV), T. Pajdla and J. Matas, Eds., 2004, pp. 25–36.

[126] E. Mémin and P. Pérez, « Hierarchical Estimation and Segmentation of Dense
Motion Fields », International Journal of Computer Vision, vol. 46, pp. 129–155,
2002.

[127] D. Fortun, P. Bouthemy, and C. Kervrann, « Optical Flow Modeling and Compu-
tation: A Survey », Computer Vision and Image Understanding, vol. 134, 2015.

[128] B. D. Lucas and T. Kanade, « An iterative image registration technique with
an application to stereo vision », in International Joint Conference on Artificial
Intelligence (IJCAI), vol. 2, 1981, pp. 674–679.

[129] E. Mémin and P. Pérez, « Dense estimation and object-based segmentation of the
optical flow with robust techniques », IEEE Transactions on Image Processing,
vol. 7, pp. 703–719, 1998.

[130] J. Delpiano, J. Jara, J. Scheer, O. A. Ramírez, J. Ruiz-del-Solar, and S. Härtel,
« Performance of optical flow techniques for motion analysis of fluorescent point
signals in confocal microscopy », Machine Vision and Applications, vol. 23, pp. 675–
689, 2012.

176

[131] D. Fortun, P. Bouthemy, P. Paul-Gilloteaux, and C. Kervrann, « Aggregation of
patch-based estimations for illumination-invariant optical flow in live cell imag-
ing », in IEEE International Symposium on Biomedical Imaging, 2013, pp. 660–
663.

[132] D. Fortun, N. Debroux, and C. Kervrann, « Spatially-Variant Kernel for Optical
Flow Under Low Signal-to-Noise Ratios Application to Microscopy », in IEEE
International Conference on Computer Vision Workshops (ICCVW), 2017, pp. 42–
48.

[133] S. Manandhar, P. Bouthemy, E. Welf, G. Danuser, P. Roudot, and C. Kervrann,
« 3D flow field estimation and assessment for live cell fluorescence microscopy »,
Bioinformatics, vol. 36, 5, pp. 1317–1325, 2020.

[134] D. Fortun, P. Bouthemy, and C. Kervrann, « Aggregation of local parametric can-
didates with exemplar-based occlusion handling for optical flow », Computer Vision
and Image Understanding, Light Field for Computer Vision, vol. 145, pp. 81–94,
2016.

[135] A. Dosovitskiy, P. Fischer, E. Ilg, et al., « FlowNet: Learning Optical Flow with
Convolutional Networks », in IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 2758–2766.

[136] Z. Teed and J. Deng, « RAFT: Recurrent All-Pairs Field Transforms for Optical
Flow », in European Conference on Computer Vision (ECCV), vol. 12347, 2020,
pp. 402–419.

[137] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige, and A. An-
gelova, « What Matters in Unsupervised Optical Flow », in European Conference
on Computer Vision (ECCV), 2020, pp. 557–572.

[138] L. Liu, J. Zhang, R. He, et al., « Learning by Analogy: Reliable Supervision From
Transformations for Unsupervised Optical Flow Estimation », in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6488–
6497.

[139] Z. Huang, X. Shi, C. Zhang, et al., « FlowFormer: A Transformer Architecture for
Optical Flow », in European Conference on Computer Vision (ECCV), vol. 13677,
2022, pp. 668–685.

177

[140] A. Stone, D. Maurer, A. Ayvaci, A. Angelova, and R. Jonschkowski, « SMURF:
Self-Teaching Multi-Frame Unsupervised RAFT with Full-Image Warping », in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 3886–3895.

[141] S. Berg, D. Kutra, T. Kroeger, et al., « Ilastik: interactive machine learning for
(bio)image analysis », Nature Methods, vol. 16, pp. 1226–1232, 2019.

178

Titre : titre (Apprentissage machine et réseaux de convolution pour une expertise augmentée
en dosimétrie biologique

Mot clés : Apprentissage profond, Agrégation de modèles, Incertitude, Détection d’objets,

Imagerie médicale

Résumé : La dosimétrie biologique
est la branche de la physique de la
santé qui se préoccupe de l’estimation
de doses de rayonnement ionisants à
partir de biomarqueurs. Dans le procédé
standard défini par l’AIEA, la dose
est calculée en estimant la fréquence
d’apparition de chromosomes dicentriques
lors de la métaphase des lymphocytes
périphériques. La variabilité morphologique
des chromosomes, ainsi que celle des
conditions d’acquisition des images rend ce
problème de détection d’objets complexe. De
plus, l’estimation fiable de cette fréquence
nécessite le traitement d’un grand nombre
d’image. Etant donné les limites du comptage

humain (faible nombre de personnes
qualifiées, charge cognitive), l’automatisation
est une nécessité dans le contexte
d’exposition de masse. Dans ce contexte,
l’objectif de cette thèse est de tirer parti des
progrès récents en vision par ordinateur (et
plus spécifiquement en détection d’objets)
apportés par l’apprentissage profond. La
contribution principale de ce travail est une
preuve de concept pour un modèle de
détection de chromosomes dicentriques.
Ce système repose sur l’agrégation de
modèles pour parvenir à un haut niveau
de performance, ainsi qu’a une bonne
quantification de son incertitude, une exigence
essentielle dans un contexte médical.

Title: titre (Machine learning and convolutional networks for automated biological dosimetry

Keywords: Deep learning, Model Agregation, Uncertainty, Object detection, Medical imaging

Abstract: Biological dosimetry is the branch
of health physics dealing with the estimation of
ionizing radiation doses from biomarkers. The
current gold standard (defined by the IAEA)
relies on estimating how frequently dicentric
chromosomes appear in peripheral blood lym-
phocytes. Variations in acquisition conditions
and chromosome morphology makes this a
challenging object detection problem. Further-
more, the need for an accurate estimation
of the average number of dicentric per cell
means that a large number of image has to
be processed. Human counting is intrinsically

limited, as cognitive load is high and the num-
ber of specialist insufficient in the context of a
large-scale exposition. The main goal of this
PhD is to use recent developments in com-
puter vision brought by deep learning, es-
pecially for object detection. The main con-
tribution of this thesis is a proof of concept
for a dicentric chromosome detection model.
This model agregates several Unet models to
reach a high level of performance and quantify
its prediction uncertainty, which is a stringent
requirement in a medical setting.

	Notations and acronyms
	Résumé en français
	Introduction
	Deep Learning for image analysis
	Deep Learning architectures
	ImageNet and deep learning
	Deep neural networks
	Convolutional Neural Networks

	Unsupervised learning for image analysis
	Generative models
	Similarity-based methods

	Approximate Bayesian deep learning
	SGD as an Orstein-Uhlenbeck process
	Ensembling neural networks for performance and uncertainty estimation

	Object detection with deep learning models
	Object detection with Region-CNN
	NMS-free object detection: Object as Points

	Conclusion

	Image analysis for the automation of biological dosimetry
	Basics of biological dosimetry
	Challenges of automated aberration counting
	An historic example of automated dicentric scoring systems
	ADCI: implementing an ADS framework
	Chromosome feature extraction
	Chromosome classification
	A pipeline for dose estimation

	Deep learning for biological dosimetry
	DCScore: evaluating an ADS in a semi-automatic regime
	Evaluating DCScore in realistic scenarios
	Exploring DCScore shortcomings

	Conclusion

	Two-stage chromosomal aberration detection with patch classification
	Datasets
	Patch dataset
	Skeleton datasets

	Chromosome classification
	Resnet-based classifier
	Chromosome patches autoencoder
	Latent space classifier
	Performance results and commentary

	Simulation of chromosome patches
	Simulating chromosomes with VAEs
	Simulating chromosomes with pix2pix

	Training Faster R-CNN on a synthetic dataset
	Conclusion

	End-to-end chromosomal aberration detection in metaphase images
	Related works
	Key-point regression in deep learning
	Object detection and counting
	Model aggregation

	Methods
	Keypoint regression with heatmap regression models
	Implicit ensembling of neural networks
	Setting of model parameters
	Visualization of the training dynamics of single model

	Materials
	Data description
	Evaluation metrics

	Experimental results
	Performance of single model
	Performance of model ensemble
	Robustness to non-chromosome objects in metaphase images
	Visualization of training trajectories
	Transfer between training and calibration curve datasets

	Discussion and future works

	Conclusion
	Sparsity in optical flow for microfluidics imaging
	Introduction
	Unsupervised CNN-based method for sparse optical flow estimation
	Definition of data term and loss function
	Definition of spatial regularizers

	Experimental results and comparison of supervised and unsupervised methods
	Description of datasets
	Evaluation metrics for optical flow estimation
	Description of competing methods
	Experimental results

	Conclusion

	Bibliography

