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RÉSUMÉ EN FRANÇAIS

Les résultats de recherche décrits dans ce manuscrit s’inscrivent dans le cadre d’un
projet collaboratif avec un éditeur de logiciels spécialisé dans l’agrégation des données
décrivant des activités de commerce maritime international (marchandises, parties prenan-
tes, navires, routes, règlementations, etc.). Un enjeu majeur de ce domaine d’activité est
de fournir des outils d’aide à l’analyse de ces données. Plus précisément, la probléma-
tique métier abordée dans ce projet est de détecter automatiquement des cas de sur et de
sous-facturation qui constituent le premier vecteur de blanchiment d’argent. Les données
sur les marchandises issues du commerce maritime sont regroupées en quelques catégories
de spectre très large, comme la catégorie téléphonie. Les données analysées au sein d’une
catégorie sont donc très hétérogènes, allant de l’accessoire de téléphone à 1€ au téléphone
satellitaire militaire valant plusieurs milliers d’euros. Déterminer si une valeur, telle qu’un
prix, est anormalement élevée ou faible nécessite de disposer d’une connaissance sur les
groupes de produits (accessoires, smartphone haut de gamme, téléphonie militaire, etc.).
Un score d’anormalité associé automatiquement à une marchandise n’est pas une infor-
mation suffisante lorsqu’il s’agit de construire des outils d’aide à la décision qui seront
utilisés par des êtres humains. Il est nécessaire de fournir des explications sur l’origine de
ce score et des connaissances additionnelles sur les données comparées.

La transposition de cette problématique en question de recherche a conduit à étudier les
méthodes de détection d’anomalies, i.e. de données suspectes, et de génération d’explica-
tions des raisons pour lesquelles un point est considéré comme anormal. Ces explica-
tions doivent être contextuelles, c’est-à-dire prendre en compte la structure des données
régulières, structure issue d’un partitionnement. Le prix mentionné n’est pas anormal
uniquement parce qu’il est trop bas, mais parce qu’il est trop bas pour un téléphone haut
de gamme. Alors que la génération d’explications contextuelles pourrait être effectuée en
utilisant trois méthodes distinctes liées à chaque problématique (détection d’anomalies,
partitionnement des données, explication d’anomalies) comme cela a été fait dans la lit-
térature, cette thèse propose une méthode unifiée réalisant les trois tâches et qui s’appuie
sur la notion de forêt d’isolation.
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Résumé en français

Contexte et travaux connexes

Dans le chapitre 1, la terminologie de la détection d’anomalies est tout d’abord rap-
pelée. Une distinction entre les notions de donnée aberrante, bruit, anomalie, nouveauté
et donnée régulière est faite. Puis, quelques notions sur la détection d’anomalies pro-
prement dite sont rappelées, notamment les concepts d’anomalies locale et globale, et
celui d’anomalies conditionnelles. Le chapitre se poursuit avec un état de l’art des méth-
odes automatiques de détection d’anomalies. Une analyse aboutissant à une taxonomie
des méthodes d’explication d’anomalies est ensuite présentée, taxonomie qui aura été
notre première contribution au domaine. En comparaison avec les taxonomies existantes,
qui se focalisent sur la méthode ayant généré les explications, notre taxonomie se con-
centre sur l’information véhiculée par l’explication générée. Nous établissons ainsi une
distinction entre les explications par importance d’attribut, les explications par valeurs
d’attributs, les explications par comparaison de points et les explications par analyse de
la structure intrinsèque des données. Les explications par importance d’attribut associent
à chaque attribut ou dimension un poids quantifiant son importance dans l’identification
de l’anomalie. Les explications par valeurs d’attributs sont constituées des régions dans
lesquelles se trouvent les anomalies. Les explications par comparaison de points renvoient
comme explication un point ou un groupe de points représentatifs de la normalité ou de
l’anormalité. Les explications par analyse de la structure intrinsèque des données quant
à elles établissent un lien avec les groupes de données régulières dans le jeu de données.
Ce dernier type d’explications, qui a été peu exploré dans la littérature, est le plus perti-
nent dans le cadre du projet SEA Defender à cause du rapprochement avec des groupes
de données régulières. Même si l’explication d’anomalies a été moins explorée dans la
littérature que l’explication des classifieurs et des réseaux de neurones, elle ne saurait être
considérée comme moins importante. Au contraire, étant donné le caractère imprévisible
des anomalies, fournir des explications quant à leur anormalité est d’un grand intérêt pour
les utilisateurs, avant tout pour se rassurer quant au fait que l’anomalie identifiée en est
vraiment une. Le chapitre 1 présente également un état de l’art des méthodes de par-
titionnement dites robustes. Alors que les méthodes de partitionnement classiques sont
perturbées par la présence d’anomalies dans le jeu de données, les méthodes de partition-
nement robustes tiennent compte des données anormales et sont par conséquent moins
vulnérables à la présence de ces dernières.
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Résumé en français

CADI

Dans le chapitre 2, nous présentons notre approche unifiée intitulée CADI pour Con-
textual Anomaly Detection using Isolation-Forest. Même si le nom de la méthode pour-
rait renvoyer aux méthodes de détection d’anomalies conditionnelles évoquées dans le
chapitre 1, le contexte ici est bel et bien relatif au rapprochement d’anomalies de la struc-
ture des données régulières. CADI s’appuie sur une version revisitée de l’algorithme des
forêts d’isolation. Une forêt d’isolation est un ensemble d’arbres construits en divisant
l’espace de données de manière récursive et aléatoire, avec l’hypothèse que les anoma-
lies seront isolées dans les feuilles plus rapidement que les données régulières. Les forêts
d’isolation demeurent un algorithme très efficace de détection d’anomalies qui possède
très peu d’hyper-paramètres et est interprétable à l’échelle des arbres. Tandis que les
forêts d’isolation classiques utilisent des séparations complètement aléatoires, CADI pos-
sède un critère de sélection des séparations. Les séparations conservées et utilisées pour
construire les arbres de la forêt sont celles qui ne séparent pas les points appartenant
au même cluster. Pour évaluer cela, une marge est définie autour de chaque séparation
tirée aléatoirement : si beaucoup de points se retrouvent dans cette marge, elle est po-
tentiellement en train de traverser un cluster. Elle est donc abandonnée au profit d’une
autre. Ce critère assez simple permet de ne pas rajouter trop de complexité à la méthode
classique des forêts d’isolation qui, moins complexe que la plupart de ses compétiteurs,
est aussi très efficace. La modification de la sélection complètement aléatoire des sépa-
rations donne lieu à trois types de feuilles dans les arbres de notre nouvelle forêt: des
feuilles contenant des points isolés, des feuilles ayant atteint la profondeur maximale des
arbres et enfin des feuilles contenant des points qui ne peuvent plus être séparés. Ces
dernières, appelées feuilles DN (pour Dense Node), contiennent donc des portions de
clusters. Elles sont ensuite fusionnées après l’identification des anomalies pour retrouver
une partition des données régulières. La combinaison des feuilles DN, qui est inspirée
du grid-based clustering, permet non seulement de découvrir des clusters non-elliptiques,
mais aussi de découvrir automatiquement le nombre de groupes dans le jeu de données,
tout en évitant de calculer des distances entre les paires de points. Après l’identification
des anomalies puis celle des clusters de données régulières, les anomalies sont rapprochées
des clusters identifiés. Ce rapprochement est effectué en analysant les arbres de la forêt et
en comptant le nombre de séparations entre les feuilles DN composant chaque cluster et
l’anomalie à rapprocher. Le chemin entre chaque feuille DN et l’anomalie est à nouveau
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Résumé en français

exploité pour générer des explications contextuelles des anomalies.

Expérimentation

Dans le chapitre 3, les expériences menées pour évaluer notre approche sont présentées.
Chaque composante, la détection d’anomalies, la reconstruction de la structure intrinsèque
des données, puis la génération d’explications contextuelles, est évaluée. S’agissant de
la détection d’anomalies, des jeux de données classiques de détection d’anomalies sont
exploités. CADI est comparée à la version initiale des forêts d’isolation, ainsi qu’à d’autres
algorithmes non supervisés de détection d’anomalies. La sensibilité de l’hyper-paramètre
additionnel exploité par CADI et contrôlant la largeur de la marge autour des séparations
est également évaluée. Il en ressort que la méthode est robuste au choix de cet hyper-
paramètre, mais aussi que CADI est capable de mieux identifier les anomalies locales
dans les jeux de données. Avant d’évaluer le partitionnement produit par CADI, nous
montrons d’abord que les informations contenues dans les feuilles des arbres, en particulier
les feuilles DN, peuvent être combinées pour obtenir une partition des données régulières.
Pour ce faire, une série de tests est réalisée sur des données synthétiques contenant des
anomalies et des clusters. Il en résulte que les feuilles DN contiennent des points proches
entre eux et séparés des points contenus dans les autres feuilles DN. La partition extraite
suite à la combinaison des feuilles DN est ensuite évaluée et comparée à celles produites
par d’autres algorithmes de partitionnement robuste. S’agissant de l’évaluation de la
contextualisation des anomalies (rapprochement aux clusters) ainsi que des explications,
il a fallu générer des données synthétiques avec des clusters, des anomalies locales ainsi que
les vraies informations sur le(s) cluster(s) dont se rapproche chaque anomalie et les vraies
informations concernant les attributs communs et discriminants entre chaque anomalie et
chaque cluster.

La conclusion de ce manuscrit résume nos contributions puis présente les perspec-
tives de ce travail. Parmi les perspectives, l’évaluation de l’impact de la profondeur
limite des arbres est particulièrement intéressante, ainsi que ses liens avec le choix des
valeurs des hyper-paramètres. D’autre part, l’évaluation des explications générées reste
un problème récurrent dans la communauté de l’intelligence artificielle explicable, qui
mérite d’être exploré. Finalement, CADI n’aura pas pu être testée sur des données issues
des transactions du commerce international. Une fois ces données disponibles, il serait
enrichissant d’appliquer l’approche et de voir dans quelle mesure des connaissances ex-
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Résumé en français

pertes sur l’interprétation des données issues du commerce international pourraient être
apportées à chaque étape du processus.
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INTRODUCTION

Context
Artificial Intelligence (AI) is becoming an increasingly important part of our lives.

From Deep Blue defeating Garry Kasparov in 1997 to autonomous vehicles, it has come
a long way and shows no signs of halting its ascent since. AI is now everywhere. Machine
Learning (ML) and its subset, Deep Learning (DL), are components of AI in which the
algorithm learns/discovers patterns from examples. The first step before applying these
and other data mining algorithms is usually to pre-process the data set. One stage of data
pre-processing, data cleaning, involves eliminating abnormal observations. These abnor-
mal observations, called outliers, lower the performance of ML algorithms. Discarding
them therefore often results in a performance improvement. However, some outliers may
indicate a problem in the data source, such as sensors fault, which deserves attention.
Outliers can also contribute to the understanding of the normal data. As a result, there
is a task devoted to the identification of these instances in a data set: outlier/anomaly
detection.

An observation which deviates so much from other observations as
to arouse suspicions that it was generated by a different mecha-
nism. [Haw80]

Definition 1: Outlier

In most applications, the data is created by one or more generating processes. When
the generating process behaves unusually, it results in the creation of outliers [Agg16].
While all outliers are deviating instances, including noise, anomalies are the most devi-
ating observations which are of interest to an analyst.

Anomaly detection has many applications in the real-world. One classic example is
spam detection where a mail server has to decide if an incoming mail is an unwanted mail
or not. In the banking domain, fraudulent credit card transactions are anomalies as they
are not performed by the owner of the card. Identifying those is of great benefit for the
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bank and the cardholder. Another application of anomaly detection is intrusion detection
in networks: unusual behaviours in networks traffic must be identified to fight against
intruders who can compromise a system. In High Performance Computing (HPC) archi-
tectures, or more generally in engineering systems, sensors are used to collect information
about different components of the system. Analyzing the records of these sensors, usually
in real-time, can help identify faulty behaviours of some components, and correct them
afterwards. For example, a very high temperature of a component could indicate that
the cooling system is not working correctly. In astronomy, images provided by telescopes
are studied by machines to detect the apparition of new celestial objects. In this field,
the expression novelty detection is often used to refer to the identification of new outliers.
Finally, in medicine, MRI photographs can be analyzed to identify cancerous cells.

An anomaly detection algorithm flags an instance as anomalous or not, sometimes
with a score indicating how abnormal the instance is. However, with the ubiquity of AI,
there is a need for algorithms to provide, in addition to their outputs, the reason why
they produced that output. The expression eXplainable Artificial Intelligence (XAI) was
born, coined by DARPA [GA19]. This expression gathers all the methods that provide
explanations to the output of algorithms. It has gained popularity, especially with the
outbreak of deep learning. Nowadays, there is hardly any major AI conference without
at least an XAI session. A great deal of work has been devoted to anomaly detection in
the literature, but not as much to anomaly explanation.

Motivation: The Sea Defender Project

The Sea Defender Project supported by the French Directorate General of Armaments
(DGA) aims at fighting against trade-based money laundering. Money laundering is the
process of concealing the existence, illegal source, or application of income derived from
a criminal activity, and the subsequent disguising of the source of that income to make
it appear legitimate [Zda09]. Trade-based money laundering occurs primarily through
abnormal pricing, that is, over- and under-invoicing. Over-(respectively under-)invoicing
happens when the price reported for the transaction is higher (respectively lower) than
the actual price. In addition to allowing its perpetrators and their accomplices to evade
income taxes or import duties, this illegal procedure contributes to the perpetuation of
terrorist activities. For example, it was reported that between 2006 and the first half of
2016, 821 millions of dollars were under-invoiced during copper exportations from Chile
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to Japan [HP19]. As a result, governments, with the help of banks, have deployed means
to identify false international trade invoicing. The methods employed include [Zda09]:

— a comparison between the average import/export price of the product in the country
involved and the average world price,

— the identification of invoice prices which are 50% below or above the average im-
port/export price,

— an inter-quartile range price analysis.

Among these methodologies, the inter-quartile range price analysis, which is the most
recent one and a standard since, is the most realistic. The first methodology was criticised
because it did not take into consideration the country/product heterogeneity. The second
one was criticized because the 50% filter was arbitrary. However, the inter-quartile range
price analysis still performs a coarse analysis of the prices. Let us assume that the
product imported/exported is a smartphone. Among smartphones, there are entry-level
smartphones costing around 150€, mid-range phones costing in average 400€, and high-
end phones whose prices can exceed 1200€. Analyzing the prices of smartphones as a
whole, and comparing them to the one specified on the invoice does not take into account
these disparities in characteristics. If the price marked on the invoice is 1400€, and
the smartphone has the characteristics of a high-end phone, this is certainly not a case
of under-invoicing. On the other hand, if the smartphone has the characteristics of an
entry-level phone, but for the same aforementioned price, there is definitely something
wrong.

Problem Statement

The scientific objective of the Sea Defender Project is to use more recent techniques
to identify these cases of abnormal pricing, while taking into consideration the disparities
mentioned previously. From an AI perspective, over- and under-invoicing are anomalies
when considering as data the set of transactions. Automatically identifying the disparities
across the regular transactions implies making homogeneous groups of data. As such, it
is related to data clustering. Finally, as the final users of the system are humans and the
domain is sensitive, the explanation component is crucial. To sum up, the objective is,
given a data set (set of transactions in the case of the project, or a more general data
set from a scientific perspective), to identify groups of regular data points, anomalies
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deviating from each group(s) and provide explanations of these anomalies in relation to
these identified groups of regular instances. This explanation is to say, for example, that
a 400€ iPhone 15 is an anomaly for high-end phones because, although it shares some
characteristics with the other high-end phones, its price is too low. This problem can be
solved using a pipeline. The first component of the pipeline would be an anomaly detector
separating regular instances from outliers. The second component would be a clustering
algorithm aiming at dividing the regular instances into groups. The last component would
make a contrast between the structure of the regular instances from the second component
and the outliers identified by the first component to generate explanations.

Can we replace that pipeline with a unified method?

Problem Statement

Contributions

The research presented in this manuscript provides an answer to the question above.
It therefore deals with anomaly detection and explanation, with an emphasis on the
latter. As mentioned earlier, anomaly explanation has been less explored in the literature
than anomaly detection. It also received less attention than the explanation of classifiers
outputs. As a result, our first contribution is a categorization of anomaly explanation
methods, followed by a review of existing works and motivated by the lack of state of the
art in the field. The second and main contribution of this work is a unified method to
identify and explain anomalies in relation to groups of regular data points, called CADI
for Contextual Anomaly Detection using Isolation-Forest. This method is based on a
revisited version of the Isolation Forest (IF) algorithm [LTZ12] which is a popular anomaly
detector. This extension allows to isolate anomalies, identify clusters of regular instances,
and generate contrastive explanations of each anomaly with regard to the clusters of
regular instances, altogether based on the same data structure. While the few existing
methods to extract contrastive explanations of anomalies depend on external anomaly
detectors and external clustering algorithms, CADI does not.

The source code is available to the scientific community at: https://gitlab.com/
yveronne/cadi.
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Introduction

Roadmap
The remainder of this dissertation is organized as follows:

— Chapter 1 first details the background on anomaly detection. It then presents our
taxonomy of anomaly explanation methods and our state of the art. The last section
of the chapter covers outlier-aware clustering.

— Chapter 2 details our dedicated approach to identify anomalies, groups of regular
data points and generate contrastive explanations of anomalies in relation to these
groups. Changes made to the Isolation Forest algorithm are specified, as well as the
new properties resulting from them.

— Chapter 3 extensively presents the results of the experiments conducted on the
proposed method. These experiments evaluate the anomaly detection component,
the clustering component and the explanation generation component.

The dissertation ends with a conclusion including a summary of the work performed
and the future directions.
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Chapter 1

BACKGROUND AND RELATED WORK

This chapter lays the foundations for this work. In Section 1.1, some notions about
anomalies are recalled. Then, the existing works on the three scientific problems addressed
in this work are reviewed. These are: anomaly detection (reviewed in Sec. 1.2), anomaly
explanation (Sec. 1.3) and outlier-aware clustering (Sec. 1.4). In Section 1.2, there is an
emphasis on the most popular methods.

Most of the content of this chapter has been published in the proceedings of the
AIMLAI workshop of ECML/PKDD 2021 [TSP21] and in the journal Data & Knowledge
Engineering (DKE) [YSP22].
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Chapter 1 – Background and Related Work

1.1 Terminology and Background
In the introductive chapter, we stated that the data is created by one or more gen-

erating processes, and that outliers are deviating instances arousing suspicion they were
generated by a different mechanism (Definition 1). In opposition to outliers are inliers
which do not deviate from the generating processes.

An observation generated by one of the processes creating the data.

Definition 2: Inlier

Inliers are also called regular or normal instances. Among the deviating instances,
noise, anomalies and novelties are found. An example of noise in a data set is a tem-
perature specified in Fahrenheit instead of Celsius. Observations qualified as noise are
often caused by an imperfection on the generating processes, measurement or reporting
errors. As a result, they slightly deviate from the inlying observations and sometimes do
not make sense at all. They are still generated by one of the processes, but perturbed
enough to not be fully considered as inliers.

A perturbed inlier; still generated by one of the process creating
the data, but deviating.

Definition 3: Noise

Anomalies on the other hand are those instances which deviate significantly enough
from inliers, to the point where they are more likely to have been generated by a different
process. While noise are incorrect and/or meaningless observations, anomalies are correct,
which causes the analyst to be even more suspicious. A temperature specified in Celsius
(like the other temperatures in the data set), but too high, is an anomaly.

A deviating observation potentially generated by a process different
than the ones creating the data.

Definition 4: Anomaly
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The definition above is similar to Definition 1 by Hawkins. For this reason, the defi-
nition by Hawkins is usually the one employed in the literature to refer to an anomaly. A
more general definition of an outlier, to make a contrast with inlying observations, which
is the seminal usage of the term, would be "a deviating instance". And then, according
to the deviation degree, the outlier can be noise or an anomaly.

Novelties are similar to anomalies. However, it is certain that they have been generated
by a different mechanism, previously unseen. A new star is a novelty given our assurance
that it has not been witnessed before.

A deviating observation generated by a newly identified stable pro-
cess, different from the ones creating the data.

Definition 5: Novelty

Figure 1.1 shows a data set in two dimensions.

Figure 1.1 – A data set in two dimensions

The points from the two big clusters in Fig 1.1 are the inliers. A few points in the
data set are suspicious: x1 to x11. Those data points are deviating from other obser-
vations: they are outliers. There are also two instances mildly deviating from the blue
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(circles) cluster and which are not annotated. These two observations may be consid-
ered as noise as they are a bit detached from the cluster. In other data sets, there may
be a randomly distributed noise. Yet, on Fig. 1.1, the instances x1 to x11 are the ones
capturing attention. Some authors [KN99] refer to noise as weak outliers to make a con-
trast with anomalies which are called strong outliers. In that case, outliers are all the
deviating instances, but anomalies are the strongest deviating instances. From the user
perspective, the latter are the most interesting ones as they make the user skeptical, even
in the presence of noise in the data set. They are therefore the main focus of outlier
detection algorithms, even if both weak and strong outliers can be identified. We will use
the words anomalies and outliers interchangeably throughout this work to refer to those
strong deviating instances. The expression novelty detection is also employed in the liter-
ature. Sometimes [MP03], it refers to the detection of anomalies, the concepts of anomaly
and novelty being interchanged without distinction. However, it also refers in some works
to the identification of new phenomena/generating processes, which is more in line with
Definition 5. We will therefore avoid using that expression and remain consistent with
the wording anomaly/outlier detection.

In general, anomalies can be divided into four types using two dimensions [LTZ10].
The first dimension considers the proximity to normal instances. A distinction is therefore
made between global anomalies deviating from the other points in the data set, and local
anomalies which deviate from a subset of the data set. In Fig. 1.1, x1 is a global anomaly
while x2, x3, x4 and x5 are local anomalies. The second dimension takes into account
the distribution of anomalies: scattered anomalies are dispersed throughout the data set,
while clustered/collective anomalies are close to each other, forming a small cluster. In
Fig. 1.1, x6 to x11 belong to the latter, while the other abnormal instances belong to the
former category. The two dimensions are not mutually exclusive: the instances x6 to x11

are collective global anomalies. In [Ruf+21] a distinction is made between point anoma-
lies, group anomalies, contextual anomalies, low-level sensory anomalies and high-level
semantic anomalies. Group anomalies are collective anomalies, while point anomalies are
individual outliers that can be local or global. Contextual anomalies, also called condi-
tional or dependency-based are a body of research on their own [Son+07; LP16; LL23].
A conditional anomaly is outlying given a specific context. This context can be time-
related: a temperature of 25◦C is abnormal in January in France, but perfectly normal
during summer. To identify these dependency-based outliers, the set of features is divided
into contextual features and behavioral features. Instances having the same context (e.g.:
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time) are expected to have similar values on behavioral features (e.g.: temperature).
Dependency-based anomaly detection flags as outliers the instances violating those con-
straints. Figure 1.2 depicts an example. Low-level and high-level anomalies occur when
there is a hierarchy on the features. Low-level anomalies can be character typos in words,
while semantic anomalies can be misposted news articles. These last two categories are
not much explored in the literature.

Figure 1.2 – The difference between point (left) and conditional (right) anomalies [LL23].
There is a linear relationship between height and weight. As a result, B is not a conditional
anomaly, since it does not violate the dependence.

In regards to the second taxonomy, our work falls in the point anomaly detection cat-
egory. Dependency-based anomaly detection assumes there is a partition of the features,
often provided by a domain expert. This is not an hypothesis that holds in our particular
scenario.

1.2 Anomaly detection
Let D be a data set containing n instances: D = {x1, x2, ..., xn}.
Let A = {A1, A2, ..., Ad} be the set of features/dimensions.

An anomaly detector is a function f : D → F ⊂ R.

Definition 6: Anomaly detector

F can be a 2-element set or a continuous set. When F is continuous, the anomaly
detector returns for each instance x in the data set an anomaly score indicating how ab-
normal/deviating the instance is. In this situation, the contrast between weak and strong
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outliers, mentioned in Sec. 1.1, is reflected in the score as illustrated on Fig. 1.3. When F

is binary, the anomaly detector just indicates if the instance is regular or abnormal. The
data set is then partitioned into two: the set of anomalies DO and the set of inliers DI ,
with |DO| ≪ |DI |. Even when the anomaly detection algorithm returns scores, a binary
partition of the data set can be obtained by selecting an anomaly score threshold.

Figure 1.3 – The spectrum from inliers to outliers [Agg16].

The earliest works on outlier detection stem from the statistics community. Examples
are extreme-value analysis and Gaussian Mixture Models (GMMs). These statistical-
based methods are mathematically more precise. However, they make simplified assump-
tions about data representations and have poor algorithmic scalability and interpretabil-
ity [Agg16]. ECOD (Empirical-Cumulative-distribution-based Outlier Detection) [Li+22]
is a statistical anomaly detection method which is interpretable. The outlier score of an
instance is the aggregate of its tail probabilities across all dimensions. ECOD therefore
assumes that all the features are independent from each other. Information-theory-based
outlier detection methods are also available. The hypothesis behind these methods is
that outliers increase the minimum length of the data summary. In the remainder of this
section, we focus on ML methods for outlier detection.

There is no unified taxonomy of anomaly detectors in the ML literature. According
to the availability of labels, a distinction is made between supervised algorithms and
unsupervised algorithms. Supervised anomaly detection methods use a labelled data set
during training. Identifying anomalies therefore becomes a binary classification task in
which there is high imbalance between the classes, since anomalies are far outnumbered
by inliers. If no labels are present, anomaly detection is performed in an unsupervised
manner: there is no training, the data are fed to the algorithm which identifies the outliers.
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The last setting is more convenient since labelling a data set is a daunting task and it
can be difficult to have access to already labelled data. Plus, all the anomalies may not
be known before building the algorithm: new anomalies different from all the previous
ones can appear and should be correctly identified as anomalies. Between the supervised
and unsupervised settings, authors may insert the semi-supervised setting where only
regular instances are used during the training. In that case, a model of the normal
instances is learned and outliers are the instances which do not fit the model. In theory,
all the methods, even the unsupervised ones, assume a model of normality. However,
with semi-supervised approaches, this model is explicitly discovered through examples. If
the training set is completely free of deviating instances (difficult to assume in practice),
the semi-supervised setting is equivalent to novelty detection in the exact sense. Since
outliers are few in the data set, and recently most of the semi-supervised methods are
robust enough to provide good results even with the presence of outliers in the training
set, we classify them into the unsupervised methods. Ultimately, what we include in
the set of unsupervised anomaly detection methods in this work are the ones which do
not require training (because they are completely unsupervised) and the ones requiring
training, but robust enough to not be perturbed by the presence of anomalies in the
training set. As mentioned before, the unsupervised setting is the most realistic one when
dealing with anomaly detection, especially given the context of the Sea Defender project
where labels are not available. Unsupervised methods will therefore be reviewed in the
upcoming paragraphs.

There is no unified taxonomy for unsupervised anomaly detection either. In [GU16]
for example, the authors make a distinction between nearest-neighbor-based, clustering-
based, statistical, subspace-based and classifier-based methods. In [CBK09], the cate-
gories are: classification-based, clustering-based, nearest-neighbor-based, statistical, in-
formation theoretic and spectral. In [Ruf+21], a contrast is established between classifi-
cation, probabilistic, reconstruction and distance-based techniques on one hand, and on
shallow (viz. non-deep-learning) and deep methods on the other hand. In [LTZ12] the au-
thors consider three sets of approaches: density-based, distance-based and model-based.
From our perspective, nearest-neighbor-based, distance-based and density-based methods
can be combined, since distances are computed to evaluate densities and they all neces-
sitate distances computations. Clustering-based methods do not belong to the previous
group, because in contrast to the previous techniques there is an explicit notion of clus-
ters, even though distances between data points are still computed. Model-based methods
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should be a distinct category to group robust semi-supervised methods and methods for
which a model of the data points is learned. The clustering-based methods belong to
this category, since a clustering is a model of the data set. We add to the two previous
categories the neural-network-based techniques containing all the deep learning anomaly
detection algorithms.

To sum up, we propose to divide the anomaly detection methods into three groups:
distance-based methods, model-based methods and neural-network-based methods. A
particular focus will be directed toward the most popular techniques of each category.
Distance-based methods are reviewed in §1.2.1. Model-based approaches are reviewed in
§1.2.2. Neural-networks-based methods are reviewed in §1.2.3.

1.2.1 Distance-Based Methods

All the strategies relying on distance computations to identify anomalies lie in this
category. Distances between data points can be used, for example, to compute densities
and flag as outliers data points which are located in low-density regions.

Local Outlier Factor (LOF) [Bre+00] compares the surrounding density of a data
point to the surrounding densities of its k nearest neighbors. The underlying theory
of the approach is that those quantities will be approximately the same for an inlier.
The surrounding density of a data point x in this context is the inverse of the average
(on the neighbors of x) of the maximum distance among the distance between x and
its neighbor and the distance from that neighbor to its farthest neighbor. This local
treatment is efficient in scenarios where there are clusters of different densities in the data
set: even for sparse clusters, the data points which are deep inside the cluster will have
approximately the same density as their closest neighbors. As a result, their LOF will be
close to 1. The LOF of a data point x is given by:

LOF k(x) =
∑

x′∈Nk(x)
lk(x′)
lk(x)

|Nk(x)| , (1.1)

where Nk(x) is the set of k−nearest neighbors of x and lk(x) is the local reachability
density of x defined by:

lk(x) = |Nk(x)|∑
x′∈Nk(x) max(d(x, x′), dk(x′)) . (1.2)
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In Equation 1.2, dk(x) is the distance D such that there are at least k data points x′

for which d(x, x′) ≤ D and there is at most k − 1 data points x′′ such that d(x, x′′) < D.
In other words, it is the distance between x and its kth−nearest neighbor.

The LOF of an outlier does not have a specific range of values, but it is bounded.
The formulas to compute the bounds are given in [Bre+00]. The incidence of k on the
LOFs of the data points is not clear. Increasing (resp. decreasing) the value of k does not
always increase (resp. decrease) the values of the LOF. As a result, the authors propose
a method to determine a range for the values of k. For the lower bound of k, even though
they specify that the value could be application-dependent, it is stated that picking 10
to 20 works well in general. Finally, the authors suggest to compute the LOFs of the
data points for the different values of k in the range found and to take aggregates like
the maximum, the minimum or the mean to find the final values of the LOFs. However,
taking the minimum may erase the outlying nature of a data point completely and taking
the mean may dilute the outlying nature of a data point [Bre+00]. Consequently, the
maximum is used in the experiments.

Because LOF uses the Euclidean distance to select the nearest neighbors of a data
point, its density estimation can be incorrect when features have a linear correlation as
highlighted in [GU16]. To solve that issue, Connectivity-based Outlier Factor (COF) [Tan+02]
was introduced. COF uses the chaining distance instead of the Euclidean distance and
computes the outlier scores in a way similar to LOF. The chaining distance of x is the
minimum of the sum of all distances from the k neighbors and x. Other variants of LOF
have been proposed in the literature, and they are presented extensively in [GU16].

Other distance-based techniques include k−nearest-neighbor (k-NN) [RRS00] where
the anomaly score of an instance is equal to its distance to its kth nearest neighbor. In
[AP02], the anomaly score is the average of the distances from the instance to its k nearest
neighbors. With both methods, it is not easy to select an appropriate threshold.

1.2.2 Model-Based Methods

The idea behind clustering methods for anomaly detection is to cluster the data set
and then flag as anomalies data points which do not belong to any cluster. To this
end, the clustering method must be robust enough to not be sensitive to the presence of
outliers in the data set. Outlier-sensitive methods try as much as possible to insert the
abnormal instances into clusters, which can lead those to be flagged as normal instances.
Sensitive methods can also simply throw away these outliers. Robust methods, like Find-
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Out [YSZ02], do not force the outliers into clusters. An evident drawback of this model
is that if there are clusters of anomalies in the data set they will be considered as regular
instances. This problem can be solved by a post-inspection of the clusters: dense large
clusters are considered normal and sparse or small clusters are considered anomalous.
In [MLC07] for example, the authors use the k−means clustering algorithm to cluster
a data set containing network traffic information. Then, an identification of the normal
and anomalous clusters is made, and data points which do not belong to any cluster are
flagged as normal or outliers depending on the type (regular or anomalous) of the cluster
they are closest to. Moreover, if the instance is located at a distance greater than a prede-
fined threshold from a normal cluster, it is classified as anomalous. To identify anomalies,
CBLOF (Cluster-Based Local Outlier Factor) [HXD03] first clusters the data set using
a clustering algorithm. Each cluster is either large or small, depending on the fraction
(controlled by two parameters) of points of the data set it contains. Then, each instance
in the data set is assigned an anomaly score. If the data point belongs to a small cluster,
the score is measured by the size of its cluster and the distance between the point and
its closest large cluster. If the data point belongs to a large cluster, its score is measured
by the size of its cluster and the distance between the point and the cluster it belongs to.
More outlier-aware clustering techniques are reviewed in Sec. 2.3.

After projecting the data in a higher dimensional space using a kernel, One-Class
Support Vector Machines (One-Class SVMs) [Sch+99] try to draw a boundary around the
data instances by solving an optimization problem. A decision function is then extracted
from this boundary. The value of the function is +1 for the data points inside the region
delimited by the boundary, and −1 for the others. From this description, it is obvious that
One-Class SVMs are a semi-supervised outlier detection method, as a model of the normal
points is learned. However, because One-Class SVMs, as described in [AGA13], are robust
enough to deal with the presence of anomalies in the training data, they are considered
unsupervised and outlined here. In [AGA13], the authors propose two enhanced versions
of One-Class SVMs, namely Robust One-Class SVMs and η One-Class SVMs to deal with
outlier detection in a completely unsupervised way. The two enhancements are similar to
the classic One-Class SVMs. However, there is an explicit assumption that outliers exist
in the data. For Robust one-class SVMs, slack variables already present in the classical
One-Class SVMs optimization objective are modified to consider outliers. In η One-Class
SVMs, there is an outlier suppression mechanism through the variable η which represents
the normality of a data point. For both methods, an outlier score based on the distance

22



1.2. Anomaly detection

of the data point to the decision boundary is computed. Normal data points have a score
between 0 and 1, and, the more outlying a data point, the larger its score.

Isolation Forest (IF) [LTZ12] is based on the idea that outliers are isolated in the
feature space. This principle is illustrated on Figure 1.4. Starting from a random sample
of the data set, the method randomly selects one attribute A ∈ A, then randomly selects
a split value v in the attribute range. The sample is then partitioned into two subsets
according to that split value: the data points for which the value of A is less than v and
the data points for which the value of A is greater than or equal to v. This process is
repeated recursively on each partition and a binary tree is obtained. Each node of the tree
is a splitting step. As a result, each node has two children representing the two subsets
obtained after the split. The tree building process is stopped when no partition can be
made anymore (when the size of the sample in the node is 1) or when a tree depth limit is
reached. A set of trees is constructed in this manner to obtain a forest. After building the
forest, every data point passes through every tree in the forest until it reaches a terminal
node. Then, the anomaly score of the data point is computed using its average depth in
the trees of the forest:

Figure 1.4 – The isolation principle [LTZ12].

Some limits of the Isolation Forest have been highlighted, which has lead to some
improvements of the method. One limit, displayed in [HKB21], is the inconsistency of the
anomaly scores towards the distribution of the data points in some situations illustrated
in the paper. To solve this issue, the authors of [HKB21] propose a variant of the Isola-
tion Forest called Extended Isolation Forest (EIF) which uses hyper-planes with random
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slopes instead of axis-parallel separations during the construction of the trees. Similar
to the classic Isolation Forest where two split parameters are stored (the feature and the
split value), two parameters are also stored in the Extended Isolation Forest: the slope
and the intercept. This idea of using hyper-planes had already been explored by SCI-
Forest [LTZ10], with a deterministic selection of the split points targeting local clustered
anomalies. In [MB21], the tree building process stays consistent with the traditional IF
approach, but five new functions to compute anomaly scores are suggested. Similarly,
in [Cha+22], the anomaly scores computation of IF is modified. In the latter, the score
of an instance is computed in each tree, then compared to the anomaly score threshold
and the instance is flagged as outlier or inlier at the tree level. Then, the method called
MVIForest (Majority Voting Isolation Forest) flags the instance as outlier if it is outlying
in more than half (half + 1) of the trees, avoiding the computation of the anomaly score
in the remaining trees. In [Cor21], axis-parallel separations are used. The split attribute
is selected uniformly at random, while the split value is chosen in a deterministic way
by maximizing a pooled information gain metric. The aim of the previous technique is
to better identify clustered anomalies, like SCIForest. The goal of Deep Isolation Forest
(DIF) [Xu+23] is to identify anomalies which are harder to isolate with linear separations.
It first maps the data into new created spaces using casually initialized neural networks.
Then, classic IF algorithm is applied in these new spaces. Since the new spaces are non-
linear combinations of the original spaces, applying axis-parallel separations in these new
spaces is equivalent to using non-linear separations in the original data space. The scores
computations are also revisited by adding to each edge a weight representing the devi-
ation between the feature value and the split value in the new space. Other tree-based
approaches less similar to IF are available [Guh+16; GSW19]. A more exhaustive review
of these techniques can be found in [Bar+22].

1.2.3 Neural-Networks-Based Methods

One of the earliest works on outlier detection with deep learning is [Haw+02] where
the authors use a Replicator Neural Network (RNN) with three hidden layers to perform
outlier detection.

Autoencoders (AEs), which have been previously used for dimensionality reduction,
and that have a structure similar to RNNs, are also utilized for outlier detection. Similar
to a RNN, an autoencoder takes a data point as input and endeavors to reconstruct it. A
first set of layers called the encoder transforms the input into another instance with less
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features in the space known as latent space. Then, another set of layers called the decoder
tries to transform the lower dimensional data into the original input. During the training,
the neural network strives to minimize the reconstruction error which is the difference
between the output x′ and the input x. With a perfect autoencoder the output is always
the original data point (x′ = x), with a reconstruction error of 0. The lower dimensional
data points are the latent representations of the original ones. Figure 1.5 below shows an
example of autoencoder:

Figure 1.5 – Example of autoencoder: The input space has 6 dimensions (d = 6) and the
latent space has 2 dimensions.

The usage of autoencoders for outlier detection assumes that outliers will always have
a higher reconstruction error than normal data points. This reconstruction error there-
fore represents a measure of outlierness. This assumption is justified by the fact that the
AE learns a model of normality: it should be able to reconstruct perfectly the regular
instances, and outliers which deviate from regular data points should be reconstructed
poorly. In theory, an AE is a semi-supervised anomaly detection method as it should be
trained only with regular instances, to ensure that outliers are easily detected because
of their high reconstruction error. In [Alf+20] for example, the authors use an AE for
anomaly detection in a semi-supervised way. However, with more robust architectures
taking into account the presence of outliers in the training data, autoencoders can be
classified in the unsupervised approaches for anomaly detection. In [Che+], an ensemble
of AEs, each with different random connections between the layers, is used for anomaly
detection. Each autoencoder of the ensemble is trained on a different sample of the data
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set. Finally, the median score over the ensemble is employed as the final anomaly score
for an instance. An ensemble of AEs is also used in [CGR20]: each autoencoder of the
ensemble performs anomaly detection on different features of the feature space. Autoen-
coders are not the only dimensionality reduction algorithms used for outlier detection.
Principal Component Analysis (PCA) sometimes also serves that purpose [Qi+18].

Using an ensemble of autoencoders is not the only way to make the architecture
robust enough to perform unsupervised anomaly detection. Autoencoder variants like
Variational Autoencoders (VAEs) are also employed. In [Ngu+19], the authors use a
VAE to detect anomalies in network traffic. VAEs are similar to autoencoders, but instead
of finding a lower dimensional representation of the input in the latent space, the VAE
aims at discovering the distribution from which the input has been generated. It means
that during the encoding step, the VAE will find the parameters of the distribution
that generated the input. Then, during the decoding step, the VAE will sample a data
point from the distribution found during the encoding step, and decode it. The goal
here is not only to minimize the reconstruction error between the output and the input,
but also to make the computed distributions close to the standard normal distribution.
VAEs are generative neural networks. Other types of generative neural networks like
Generative Adversarial Networks (GANs) are also used for anomaly detection. A GAN
consists of two components opposed to each other: a generator and a discriminator. The
generator attempts to generate instances which are close to real instances (trying to learn
the distribution of the data points). The discriminator tries to distinguish between real
instances and fake instances produced by the generator. A GAN is used in [Sch+19] in
combination with an AE to detect anomalies in medical images in a semi-supervised way.
Another AE variant, an Adversarial Autoencoder (AAE) is used in [Raj+19] to detect
anomalies in wireless spectra. An AAE is a mix of a classical autoencoder and a GAN:
the autoencoder still tries to reconstruct the instances. The generator generates instances
that seem to come from the latent space of the autoencoder. Finally, the discriminator of
the GAN has to find out if the instance that it faces comes from the latent space of the
AE or if it has been generated by the generator.

The topic of deep anomaly detection is really wide and covering it entirely is beyond
the scope of this section. More detailed surveys can be found in [Pan+21] and [Ruf+21].
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1.2.4 Discussion

Neural-network-based methods are suitable for the identification of anomalies in com-
plex data types like images, graphs and sequence data (time series, videos, audios, text).
Even though more classic approaches have been utilized, neural networks remain appeal-
ing as they are able to automatically capture complex relationships in the data. Graph
anomaly detection, which is now mainly dealt with Graph Neural Networks, is particularly
challenging, especially because of the abundance of anomaly definitions for graphs [Ako21].
For more classical data like tabular data, the time and effort put in the training of a neu-
ral network can be disheartening, in particular in the absence of labels. Neural networks
often require a large training data set and possess an important list of (hyper)parameters
to set in comparison to other methods. Furthermore, the training time is not insignif-
icant, although there are specialized ecosystems for neural networks training nowadays.
Distance-based methods require distance computations which are time consuming. Even
when the distances are only computed between neighboring data points and some pruning
strategies are employed, the neighbors have to be identified and the size of the neighbor-
hood is generally a crucial parameter of the method. Plus, if we do not have tabular data,
the classical Euclidean distance may not be suitable anymore, and an appropriate distance
metric must be selected or designed, which is not always an easy task. On the other hand,
distance-based methods do not require any training and local techniques, like LOF, are
able to discover local outliers. The choice of the number of clusters in clustering-based
methods is of paramount importance. However, clustering methods are able to discover
different types of anomalies in the data. IF is one of the most effective methods, while
being simple to use and having few hyper-parameters to set.

Most of the approaches listed in this section are only devoted to anomaly detection.
There is no clue on why a data point is an outlier based on its characteristics. In the next
section, a complementary issue will be explored: anomaly explanation.

1.3 Anomaly Explanation
An anomaly detection algorithm just tells for each data point if it is abnormal or

not, sometimes with a score indicating a deviation degree. Even us computer scientists,
we are, in most cases, not able to explain why the algorithm identified a specific data
point as unusual relatively to others. It would not be fair to ask end-users, to whom the
anomaly detection system looks like a black-box, to blindly trust its output, especially
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when the system is used in sensitive domains like medicine. If in addition to the anomaly
score the machine could at least provide explanations on why it flagged a data point as
anomalous, a user could know without much additional effort if that anomaly is relevant
in the context or not. Plus, explanations could improve the trust (and consequently the
usage of the system) of the users towards the system as the latter would not be an opaque
box anymore.

In this section, we first propose a taxonomy of anomaly explanations according to
the information conveyed by the explanation (§1.3.1). We then position our taxonomy in
relation to the state of the art (§1.3.1), before reviewing the existing anomaly explanation
approaches (§1.3.2 to §1.3.5).

1.3.1 Taxonomy of Anomaly Explanations

For an algorithm which aims at recognizing in a set of images which ones are cat images
and which ones are dog images, the most natural way to tell users why the algorithm
tagged a picture as a cat instead of a dog is to return the group of pixels that helped the
algorithm establish difference. This group of pixels can represent the whiskers of the cat
on each image for example. The user will then notice that the whiskers are an attribute
that the cat possesses, and not the dog, and will therefore understand why the algorithm
decided that it is a cat picture. In general, identifying the features that have contributed
most to the decision of an algorithm is a good start and a classic method to provide
explanations. Anomaly detection is no exception to the rule. In Figure 1.6 below, to
mark the square data point as anomalous, one can look only at the feature A1 for all the
instances: in comparison to the regular data points in blue for which the values on the
attribute A1 vary between 3 and 5, it takes the value 6 on A1.

The same cannot be told for the feature A2 since the square instance has a value of
2 on that attribute, which is normal when comparing it with the values on A2 of the
regular instances. As a result, to explain that anomaly to the user, we can just say that
attribute A1 contributed to the abnormality of the square data point. This first category
of anomaly explanation is feature importance.

Stating which features are important is sometimes insufficient. In Figure 1.7, when
trying to explain the abnormality of the square instance using feature importance, we
note that both features have equal importance, because no feature helps identifying the
anomaly better than the other. The anomalous instance has a regular value for each of
the features taken independently. It is the combination of the values for both attributes
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Figure 1.6 – Anomaly explanation by feature importance: attribute A1 helps us to tag
the square data point as anomalous

which makes the data point irregular. In this setting, explanation by feature importance
returns the two attributes, which provides no information at all. In two dimensions, like
in our examples, it is easy for the user to plot the data. However, if we are in higher
dimension, which is generally the case, displaying a list of features with more than two
having the same importance is not really helping the user.

Figure 1.7 – Anomaly explanation by feature values: the square data point is anomalous
because A1 = 4 and A2 = 2, and that combination of values is abnormal.

It would have been clearer to the user to say, for instance, that the data point in
Figure 1.7 is anomalous because it has a value on the attribute A1 around 4 and a value
on the attribute A2 around 2, or more generally because 1 ≤ A1 ≤ 6 and −1 ≤ A2 ≤ 5.
This second category of explanation is the anomaly explanation by feature values.

Again, when the number of features involved in the explanation is increasing, it is dif-
ficult to use this kind of explanations because there are several conditions on the features.
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In addition to that, with the two previous categories of explanations, only information
regarding the anomaly is provided. We do not know what is the difference between anoma-
lies and regular data points. With the example in Figure 1.7, after discovering that the
instance is anomalous because 1 ≤ A1 ≤ 6 and −1 ≤ A2 ≤ 5, the user can wonder if a
data point with A1 = 8 and A2 = 8 is an outlier (without plotting the data set of course).
Explanations by feature importance and by features values do not provide an answer to
this question. A response would be delivered if the anomaly was explained by directly
comparing it to regular data points. Even if explanation by feature values returns regions
containing anomalies, it could be more interesting to have a link with the regular in-
stances, since it has been shown that people often prefer contrastive explanations [Mil19].
This has been done since the beginning of this section with figures, but visually: from
them, one can directly spot the irregular data point because there is a visual compari-
son with regular instances. This third category of explanations will be called anomaly
explanation by data point comparisons.

With a data set like the one in Figure 1.1, where there are multiple clusters and local
anomalies, the previous types of explanations show their limits. With feature importance
for example, the data points x2 and x4 receive the same explanation: attribute A1 is
responsible for their outlierness. When employing feature values, an explanation for x4

can be A1 ≥ 7.5 and A2 ≥ 6. With data points comparisons, an explanation for x4 is the
closest instance located at (7.6, 11). However, an important information is missing with all
the aforementioned categories: the locality of the anomalies. x2 and x4 are local anomalies
to two different clusters of regular instances. Explanations by data point comparisons
return the regular data points the closest to x2 and x4. These data points belong to two
distinct clusters and that information is lost. The most complete explanation for x2 would
be that it is an anomaly for the green (squares) cluster because the value of A1 is too
high. x4 is an outlier, this time for the blue (circles) cluster for the same reason.

To provide this kind of detailed explanations, an analysis of the intrinsic structure of
the data set is required, followed by a comparison of the anomaly(ies) with this intrinsic
structure. This last category of explanations is called explanation by structure analy-
sis. It starts at the anomaly detection level by identifying anomalies local to each group of
regular data points. This is the type of explanations needed for the Sea Defender project,
because there are categories of products that need to be identified through clustering.

To sum up, we found out that existing anomaly explanation approaches may be or-
ganised into the following four categories:

30



1.3. Anomaly Explanation

— explanation by feature importance,
— explanation by feature values,
— explanation by data point comparisons,
— explanation by structure analysis.
In the literature, the most recurrent categories of anomaly explanation methods are

model-agnostic vs model-specific, and local vs global. Model-specific methods are the
ones built for a particular machine learning algorithm, while model-agnostic methods
can be used with any algorithm. Local methods explain why a specific data point is
anomalous while global methods explain why anomalies are irregular as a whole, or why
a group of outliers is abnormal. In [Pan+22], the proposed categories are: methods
that rank anomalies, methods that reveal causal relationships between anomalies, and
methods that identify the attributes responsible for the abnormality of points or groups
of points. Method that rank anomalies cannot be considered as an explanation in our
opinion, because the anomaly score is just an indication of how much the instance is
deviating, not why the instance is deviating. Methods that reveal causal relationships
between anomalies focus on time-series anomaly detection and can be categorized as data
point comparisons. The last type of approaches is equivalent to explanation by feature
importance. In [LZV23], the taxonomy is based on six criteria. The first two distinctions
are related to the locality (local vs global) and the specificity (model-agnostic vs model-
specific) of the method. The third distinction is related to the data type, while the fourth
is related to the process time of the explanation (pre-model, in-model and post-model).
Pre-model techniques are constructed and implemented before the anomaly detection pro-
cess [LZV23]. It is therefore hard to consider them as explanation methods. The last two
criteria are the data perspective (feature-based, sample-based, feature&sample-based) and
the techniques (approximation-based, perturbation-based, gradient-based, visualisation-
based, etc). The distinction between techniques is probably too finely tuned, as it is not
exhaustive. The feature-based category brings together feature importance and feature
values methods. Sample-based approaches compare data points. Explanation by struc-
ture analysis is closely related to feature&sample-based methods which combine the two
former aspects. While the existing taxonomies are centered around the method generating
the explanations, our taxonomy is focused on the nature of the generated explanations.

To illustrate the remainder of this section, we will consider the following example: in
Table 1.1, we have a list of products along with their brand, model, unit weight and unit
price. We want to identify the anomalous products, using the information in Table 1.2.
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The latter corresponds to the real properties of the products. This a simpler version of
the kind of data to analyze in the Sea Defender project.

Table 1.1 – Running example: list of products

ID Brand Model Unit weight(g) Unit price(€)
1 Apple iPhone X 174 550
2 Apple iPhone 11 194 600
3 Apple iPhone 12 300 500
4 Samsung Galaxy S20 163 850
5 Samsung Galaxy S21 169 900
6 Samsung Galaxy Note 20 250 900
7 Xiaomi MI 11 100 500
8 Xiaomi MI 10S 208 300
9 Xiaomi POCO F2 Pro 260 800

Table 1.2 – Running example: true characteristics of the products

Brand Model Unit weight(g) Unit price range(€)
Apple iPhone X 174 [500-600]
Apple iPhone 11 194 [800-1000]
Apple iPhone 12 164 [1100-1500]
Samsung Galaxy S20 163 [800-900]
Samsung Galaxy S21 169 [900-1200]
Samsung Galaxy Note 20 192 [550-700]
Xiaomi MI 11 196 [450-600]
Xiaomi MI 10S 208 [100-350]
Xiaomi POCO F2 Pro 210 [200-300]

From the two tables, the anomalies are:

— the product 2 because of its low price,

— the product 3 because of its high weight and low price,

— the products 6 and 9 because of their high weight and high price,

— and the product 7 because of its low weight.

We now show that existing anomaly explanation approaches can be inserted in one of
the categories of our taxonomy.

32



1.3. Anomaly Explanation

1.3.2 Anomaly Explanation By Feature Importance

A distinction is made between the methods which identify the important features
without further details, and the methods weighting the features or providing an ordering
of the features according to their importance.

Non-weighted Feature Importance

An explanation by non-weighted feature importance is a subset of
features E ⊂ A containing the attributes that contributed to the
identification of the instance as an anomaly.

Definition 7: Explanation by non-weighted feature importance

The earliest work on anomaly explanation is a non-weighted feature importance ap-
proach. In [KN99], the authors identify outliers in subspaces of the attribute space using a
distance-based anomaly detection method. In our example, the outlier 2 can be identified
in the subspace (model, unitprice). This serves as explanation since the identified anoma-
lies are outliers in the specific subspaces found, meaning that the features constituting
the subspace are those that discriminate the most the instance. The authors introduce
the notions of strongest, weak and trivial outliers as mentioned in Sec. 1.1. An outlier
is non-trivial in a subspace A if it is not an outlier in any subspace included in A. A
strongest outlier is an outlier in a strongest outlying feature space (if no outlier exists
in any subspace included in A, then A is a strongest feature space). A weak outlier is a
non-trivial not strongest outlier. Algorithms are provided to identify (and thus explain)
strong and weak outliers. This anomaly explanation method is model-specific because it
is designed for distance-based methods. It is also local because it helps explaining one
outlier at a time.

Like the work in [KN99], some methods also explain anomalies by finding the set
of features that isolates them. In [Mic+13], the authors explain a given anomaly by
identifying the subspace of features that best separates that outlier from the rest of the
data set. More generally, anomaly detection methods which identify outliers in subspaces
of the original feature space like Subspace Outlier Degree (SOD) [Kri+09], or in subspaces
of a transformation of the original feature space like Correlation Outlier Probability (COP)
[Kri+12] can be considered as anomaly explanation methods using feature importance.
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Indeed, the features in the subspaces obtained are the most important for the identification
of the anomaly. These methods do not quantify the importance of each feature and are
thus non-weighted feature importance anomaly explanation methods.

The authors of [Gup+19] use focus plots to explain a group of outliers. Focus plots
are 2-dimensional feature plots. The explanation algorithm tries to find the set of features
pairs that best discriminate the outliers in the group. All possible combinations of pairwise
plots are generated, and, for each pair of features the outlier scores of the data points in
the group are computed using only the two features in the pair. The pair that gives the
highest anomaly score is kept. Some heuristics are used to limit the search in the features
space. This method named LookOut is model-agnostic. But, as highlighted in [Liu+20],
outliers can be diverse, and trying to explain a set of random outliers using LookOut is not
efficient as the algorithm will try to make a compromise between the outliers to produce
the final focus plots. The latter may therefore not include the best focus plot for each
outlier individually. For example, the best focus plot for outlier 2 is (model, unitprice)
and the best focus plot for outlier 3 is (unitweight, unitprice). If we want to explain
these two outliers using LookOut, the method may select the first focus plot, which is not
optimal for outlier 3. As a result, the authors of [Liu+20] propose a method to explain
clusters of outliers, clusters based on the behavior of the outliers, instead of random groups
of outliers. The outliers are clustered according to the features that separate the most
each of them from the other data points, and finally the features pairs which discriminate
the most a cluster of outliers from the other instances are returned. It is also possible for
the final user to retrieve the features pairs that best discriminate all the outliers of the
data set.

More generally, there is a set of data mining methods called Group Outlying Aspects
Mining (GOAM) which try to identify the features making a certain group of instances
distinct from the other instances. In this case the instances do not have to be outliers.
They could be regular data points and the user just wishes to know with which combina-
tion of features they are the most distinct from the others. An extensive exploration of
GOAM is provided in [Wan+18].

In [Qi+18], the authors explain anomalies in images using metadata. Anomaly detec-
tion is first performed using PCA. After the identification of anomalies, tags are generated
for each picture in the data set. Every tag is a word describing the picture, and these
tags constitute its metadata. Then, the tags corresponding to the greatest number of
anomalies are identified and returned as global explanations of anomalies. The identifi-
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cation of important tags, importance with regard to anomaly detection, is made using
algorithms like PRIM (Patient Rule Induction Method) whose objective is to find regions
in high-dimensional input space with large values of a real output variable [PW10]. This
explanation can be used with any anomaly detection algorithm. It is therefore a model-
agnostic method. It is an explanation by feature importance since the features space
has just changed from the space of pixels of the images to the space of metadata, but
ultimately the most relevant features/metadata are returned.

With Sequential Feature Explanations (SFEs) [Sid+19], a sequence of features is pre-
sented to a simulated analyst for a specific outlier. It is therefore a local explanation
method. If after using only the first feature in the sequence the analyst cannot conclude
that the data point is anomalous, the two first features are used and so on, until the data
point is found outlying using a sequence of features. The explanation for the outlier is the
smallest sequence of features that the analyst has used to conclude that the data point
is an outlier. SFEs are employed with distance-based anomaly detection methods, more
specifically with density-based methods that estimate a probability density function over
the data set. In our example, when trying to explain the outlier 6, the method can suggest
the feature model first. It is not enough to conclude that the data point is anomalous. It
can then suggest the feature brand. It is still not enough to conclude using the two first
features. After suggesting the feature unitweight, we can conclude that the data point is
anomalous using the triplet (model, brand, unitweight). The latter is finally returned as
an explanation.

Weighted Feature Importance

An explanation by weighted feature importance is a couple
(E , wE) ∈ (A × R). wE quantifies the importance of feature E in
the identification of the anomaly.

Definition 8: Explanation by weighted feature importance

Local Outlier Detection with Interpretation (LODI) [Dan+13] and Local Outliers with
Graph Projection (LOGP) [Dan+14] identify outliers in subspaces of the original feature
space and in subspaces of a transformation of the original feature space respectively, like
SOD and COP introduced before. However, LODI and LOGP provide weights quantifying
the importance of each identified feature.
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SHAP (SHapley Additive exPlanations) [LL17] is a model-agnostic method which
explains the prediction of an instance by computing the contribution of each feature to
the prediction. It has many variants like Kernel SHAP, Deep SHAP which is a model-
specific explanation method tailored for deep neural networks, or Tree SHAP designed
for tree models. SHAP values do not only say which features contributed to the anomaly
and by how much, but also which features tend to make the instance regular and by how
much. As an example, the feature unitprice will receive a higher SHAP value than the
feature unitweight for outlier 9 (Tables 1.1 and 1.2). They both contribute to making the
instance anomalous, but the feature unitprice contributes the most because it is further
away from the regular values than unitweight is, for that instance. The SHAP values
of features brand and model would be approximately the same, as they both make the
instance regular and none does it better than the other. In [ASR19], the authors use
Kernel SHAP locally to explain anomalies detected by an autoencoder. After detecting
an anomaly because of its high reconstruction error, the top features (the features having
the highest reconstruction errors for the anomaly) are identified. For each top feature,
the SHAP values -which indicate how the prediction of a model’s output changes when
a feature’s value changes- of all the other features are computed. The features are then
divided into two groups based on the SHAP values computed: the features contributing
to the anomaly (the features pushing the instance towards an anomalous state on the
top feature selected) and the features offsetting the anomaly (the features trying to make
the value of the top feature selected normal). Finally, for each top feature, the features
contributing the most to the anomaly and the features offsetting the most the anomaly are
returned. The authors of [GS19] produce similar explanations to time series anomalies
using an extension of Kernel SHAP, the anomalies having been identified by a GRU-
Autoencoder (Gated Recurrent Unit). SHAP values are based on Shapley values which
come from game theory. Shapley values represent the contribution of each feature in the
prediction of an instance. They are usually hard to compute, and it is the reason why
they are often approximated using SHAP values for example. Shapley values are also
exploited for anomaly explanation by feature importance in [Tak19], but using PCA as
anomaly detector. In [TK20], the computation of the Shapley values is generalized to
provide explanations to any semi-supervised anomaly detector.

DIFFI (Depth-based Feature Importance for the Isolation Forest) [CTS23] is a model-
specific method providing explanations to the output of an Isolation Forest. It gives
feature importance scores based on the results of the Isolation Forest. According to
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DIFFI, an important feature should induce the isolation of anomalies at small depth,
and should also produce higher imbalance on anomalous data points. After building the
Isolation Forest, DIFFI processes each tree separately to assign feature importance scores
to each feature for a specific tree. It then aggregates the scores to compute the feature
importance scores for the whole forest. In addition to these global feature importance
scores, DIFFI also provides local feature importance scores which help identify the features
that contributed the most to detecting a specific anomaly. The global scores identify the
features that contributed the most to isolating the anomalies in the samples that helped
building the forest.

Neural-network-based anomaly detection methods possess the advantage that they
can leverage explanation methods designed for neural networks:

— in [Ngu+19], the authors extract the gradients of the features from a trained Vari-
ational Autoencoder to explain why a data point is anomalous. The idea behind is
that if a small variation of a feature’s value for an outlier causes a huge variation of
its anomaly score, then that feature is highly responsible of the outlierness of that
instance. It is thus a local, model-specific anomaly explanation method;

— in [KMM20], the authors convert One-Class SVMs models into a neural network and
then perform anomaly detection using the neural network obtained. To provide ex-
planations to the output of the neural network, a Layer-wise Relevance Propagation
(LRP) with a Deep Taylor Decomposition is used to obtain the most important
features. It is a local, model-specific explanation method. Layer-wise Relevance
Propagation is also used in [AKM18], although anomaly detection is performed in
a supervised way using a neural network;

— in [Bro+18], attention mechanism is used with a Long Short-Term Memory (LSTM)
neural network to detect anomalies in system logs. An analysis of the attention
weights is performed afterwards in order to identify the most important features for
anomaly detection globally.

ACE (Anomaly Contribution Explainer) [Zha+19] is a model-agnostic method close
to LIME [RSG16] which explains the prediction of an anomaly detection algorithm by
feature importance. To compute the contribution of each feature to the anomaly score of
an instance, ACE builds a local linear model around the instance using its neighbors and
their anomaly scores as computed by the anomaly detection algorithm.
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1.3.3 Anomaly Explanation By Feature Values

All the explanations coming from decision-tree-based anomaly detection algorithms
lie in this category. Explanations are in the Disjunctive Normal Form (DNF), and each
literal of the DNF is a conjunction of predicates. Each predicate is a condition on the
value of a feature which has the form Aδv where A is a feature, δ is one of the signs
<,≤, =, >,≥, ∈, ⊂, /∈... and v is a feature value. As an illustration, an explanation by
feature values of outlier 9 can be: unitweight ≥ 210 and unitprice ≥ 300.

An explanation by feature values is a logical formula specifying the
bounds of the regions in which the anomaly/anomalies is/are found:
E = ∧pApδpvp.

Definition 9: Explanation by feature values

In [Bas+16] the authors use a random forest to identify anomalies in HPC systems.
The algorithm identifies the trees which classified the data point as anomalous. Then,
going from the leaves to the root of each tree, it finds the conditions which helped to flag
the data point as anomalous. The conditions regarding the same feature are consolidated
afterwards, in order to have the fewest possible number of predicates. Those conditions
are then displayed to a human analyst who identifies the most relevant ones. The human
analyst can then throw out the least interesting ones in order to prune the decision trees,
so that only relevant anomalies could be identified later.

In [BCB22], after using One-Class SVMs to detect outliers, the space containing the
inliers is divided into hyper-cubes recursively using a clustering algorithm (k−means++
in this case) until there is no outlier in any hyper-cube. Then, rules are extracted from
the boundaries of each hyper-cube. Each rule is a conjunction of predicates specifying the
condition of belonging to one hyper-cube and thus, being a regular data point. Finally,
the list of rules is returned. Noteworthy is that although the proposed method has been
applied on One-Class SVMs, it is a model-agnostic method as it could be used with
any outlier detection algorithm. With x-PACKS [MA18], a subspace clustering is first
performed on the data set containing anomalies and normal data points. Subsequent to
that phase, hyper-rectangles containing the maximum number of anomalous data points
and the minimum number of regular instances are obtained. Then, each hyper-rectangle
is refined into a hyper-ellipsoid in order to enclose as many outliers as possible and as few
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regular instances as possible. Finally, rules on every feature of the ellipsoid are generated
and constitute the explanations for the set of anomalies contained in the ellipsoid. The
explanations are computed after the anomalies identification which can be made using
any algorithm; it is therefore a model-agnostic method.

In [Son+18] the authors perform anomaly detection using an LSTM neural network.
They then approximate the neural network by a decision tree in order to retrieve the expla-
nations. Approximating a hardly explainable model by another, more easily explainable
one is a common practice to provide explanations. The target model is generally a tree-
based model because it is easier to extract explanations from such models, and the rules
generated are generally more human-understandable.

The Explainer [KPH20] is a model-agnostic anomaly explanation method. After iden-
tifying the anomalies using any anomaly detection algorithm, each outlier is explained
by exploiting a random forest composed of decision trees built using that outlier and a
subset of regular instances. The authors propose two explanation methods: minimal ex-
planation in which only one tree is used to extract the rules and maximal explanation in
which a set of trees is used. Each decision tree aims at separating the outlier from the
regular instances. Decision rules are extracted from each tree of the forest to explain the
abnormality of the data point in the form of a conjunction of predicates. For the maximal
explanation, the rules for all the trees concerning the outlier are aggregated to obtain
one compact DNF. To provide global explanations, the detected anomalies are clustered,
then the trees for all the anomalies of a specific cluster are aggregated into one forest and
explanations are extracted.

1.3.4 Anomaly Explanation By Data Point Comparisons

Angle-Based Outlier Detection (ABOD) [KSZ08] is an unsupervised anomaly detec-
tion method providing explanations. To detect outliers, the algorithm will compare the
variance of the angles between data points. The hypothesis is that when an instance is
regular, the set of angles between that instance and its neighbors has a high variance
because it is surrounded by other instances in many directions. The angles between an
outlier and its neighbors will not vary that much because the outlier is positioned out-
side of some sets of points that are grouped together [KSZ08]. To give explanations on
why an instance is outlying, ABOD finds its closest neighbor in the nearest cluster, then
computes and returns the difference vector between the two data points. The authors of
ABOD do not provide a more detailed justification on the choice of the closest data point,
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so nothing prevents it from being also an outlier and in this case the explanation will not
be correct. In addition to that, as remarked in [Mok19], only the closest neighbor is used
for the explanation. The other instances in the data set could contain more insights on
why a given instance is anomalous.

In [RL09], anomalies in network payloads (data contained in a packet, request or
connection) are explained by computing the difference between the vector representing
the anomaly and a vector which is the average of the regular instances. The difference
vector is then plotted for each feature in order to identifying the anomaly features having
a value really far from the average regular data points.

Kernel-based Supervised Hashing (KSH) [Li+18] constructs a group of hash functions
which map the original data points to lower dimensional expressions in a hash code space.
To build the hash functions, KSH uses a labelled training set. Data points having the
same label are similar/neighbors in the hashing space. To find out if a given data point
is anomalous or not, KSH searches for its (10) nearest neighbors in the hash code space
after hashing the data point. The class (anomalous or not) of the instance will be the
majority class among its neighbors, and these neighbors are returned as an explanation
of the abnormality.

In [Mia+19], the authors explain the abnormal value of a feature in the result of an
aggregate query on a database by the abnormal value of the same feature in another tuple.
An abnormally high number of publications by an author during a year can be explained
by the fact that he/she had an abnormally low number of publications the year before
due to rejection, and the publications that were previously rejected were accepted the
following year.

In [SRC19], anomaly detection is performed in a semi-supervised way using GANomaly
[AAB19] which consists of a GAN whose generator is an AE coupled with an encoder. To
provide explanations on why an instance is anomalous, two methods are proposed: display
the normal instance closest to the anomaly, or generate a synthetic normal instance that
is similar to the anomaly but without the features that make the anomaly outlying. The
authors also propose a feature importance anomaly explanation method by inspecting the
hidden layers of the GAN to find the most relevant attributes.

Counterfactual explanations can also be classified among this type of anomaly expla-
nation methods. Counterfactual explanations indicate which features values to change
(and how) in order to obtain a different prediction for an instance. For example, a coun-
terfactual explanation of the outlier 2 from our running example will indicate that the
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unit price must be increased by 200 to obtain a regular instance. Counterfactual explana-
tions in the context of anomaly detection are explored in [HJS21]. The authors generate
counterfactual explanations with an AE-based anomaly detection.

An explanation by data point comparisons is a set of representative
instances defined in the same space as instances from D:

E = {x ∈ dom(A1)× dom(A2)× ...× dom(Ad)}

x ∈ E can be a neighbor of the anomaly to explain, the difference
vector between the anomaly to explain and a regular instance, the
average of the regular instances in the data set...

Definition 10: Explanation by data point comparisons

1.3.5 Anomaly Explanation By Structure Analysis

This last category of explanations takes into account the structure of the data set.
An explanation is the set of properties shared with a regular pattern, and the set of
properties deviating from this pattern. Analyzing the structure means discovering in the
data set clusters of regular data points and instances which deviate from each group. In
the example from table 1.1, products can be grouped according to the model in order to
identify and explain the anomalies of each model. For example, outlier 2 is an outlier for
the model iPhone 12 because its price is lower than usual, for products of this model. An
explanation by structure analysis should provide this information. Besides that, regular
products can be grouped according to the true price range, in order to obtain different
ranges of products. For example in 1.1, high-end products can be those with a true price
range in the interval [800− 1500], entry-level products are those whose true prices range
from 100 to 400 and, mid-range products are those for which unitprice ∈ [450−700]. With
this breakdown, an explanation by structure analysis for the outlier 2 is that according
to its unitprice it is a mid-range product, but it is not an inlier because products of this
model are supposed to be high-end products. This kind of explanations can be provided
by scrutinizing thoroughly (possibly manually) the detected anomalies, but the goal is
to simplify the process as much as possible, for users and for the computer. Identifying
the anomalies and giving directly this type of detailed explanations could be very useful.
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Some works have been identified along these lines, but this type of explanation is sorely
lacking references.

Given a partition of D into k clusters (D = C1 ∪ C2 ∪ ... ∪ Ck), an
explanation by structure analysis is a pair (Eshared, Edev).
Eshared (resp. Edev) is the set of properties shared with
each cluster (resp. deviating from each cluster): Eshared =
{Eshared

1 , Eshared
2 , ..., Eshared

k } and Edev = {Edev
1 , Edev

2 , ..., Edev
k }, where

each Ei can take one of the forms in Definitions 7 to 10.
Eshared

i is the set of properties that the anomaly shares with the
cluster Ci. Edev

i is the set of properties making the anomaly deviate
from the pattern represented by the cluster Ci.

Definition 11: Explanation by structure analysis

Figure 1.8 – A data set (same as in Sec. 1.1)

A partition of the data set on Fig. 1.8 isD = C1∪C2, where C1 is the blue (circles) cluster
and C2 is the green (squares) cluster. An explanation by structure analysis of the anomaly
x4 can be the pair (Eshared, Edev), with Eshared = {{A2}, ∅} and Edev = {{A1}, {A1, A2}}.
In this example, each Ei is a non-weighted feature importance (Definition 7). x4 shares
the attribute A2 with the points of C1, while A1 makes x4 deviate from C1. x4 does not
share any attribute with C2. In contrast, A1 and A2 make x4 deviate from C2.

In [Mej10], clustering is used to detect anomalies. After the clustering, the smallest
cluster in terms of cardinality is considered anomalous. Then, the anomalous cluster

42



1.3. Anomaly Explanation

is compared to the other clusters in terms of features. This comparison is reported to
the final user as a text enumerating the features (along with the percentages) on which
the clusters are different. A global difference percentage between pairs of clusters is also
produced. The most dissimilar pairs of clusters can also be returned with the percentages
of differences between features. In [Shu+20], the authors derive a similarity measure from
an IF. A clustering (or more precisely an Agglomerative Hierarchical Clustering) of the
regularities and the outliers is then performed based on the similarity measure defined.
After that, each abnormal cluster is compared to regular clusters based on their distinctive
properties. Ultimately, linguistic summaries, describing not only the properties of each
cluster but also the differences between clusters, are generated.

The works that most closely belong to this category are the model-agnostic methods
COIN (Contextual Outlier INterpretation) [LSH18] and ATON (Attention-guided Triplet
deviation network for Outlier interpretatioN) [Xu+21]. COIN first identifies the nearest
regular neighbors of the outlier to explain. Then, these nearest neighbors are clustered.
After that, synthetic sampling is employed to expand the outlier to an anomaly class. A
set of classifiers are later trained to draw a linear boundary between the outliers and each
cluster of regular instances. The weight of each attribute is finally computed by aggregat-
ing the features importance from each linear classifier. In addition to feature importance
scores, COIN returns as explanation the set of nearest neighbors and an anomaly score.
With ATON, a set of triplets is first generated. Each triple is composed of the outlier to
explain and two random regular instances: one from the data set and one from the set of
neighbors of the outlier to explain. Then, the original feature space is transformed into
a new space. The feature mapping function is linear and attention is attached to each
embedding dimension. The separability between the outlier and the normal instances in
each triple is then learned. After that, the importance weights of each original features are
derived from those of the computed features. ATON also proposes a threshold setting ap-
proach to convert weighted feature importance into non-weighted feature importance. In
contrast to the previous approaches, ATON and COIN acknowledge the potential locality
of anomalies when generating explanations, through the use of nearest neighbors. COIN
even goes one step further by clustering these neighbors. Nevertheless, the explanations
ultimately produced are not really cluster-specific. In addition to that, they do not tell
anything to the user about the regular patterns in the data set.

43



Chapter 1 – Background and Related Work

1.3.6 Discussion

Explanation by feature importance is the most widely researched. Indeed, numerous
works belonging to this category were identified in the literature. The output of these
techniques can be a list of features (ordered or not) possibly with weights indicating the im-
portance of each feature, a pair of features or a list of feature pairs, or a plot picturing how
the outlier is separated from the others in a features subspace. Anomaly explanation by
feature importance can be used with any anomaly detection method. For distance-based
and clustering-based methods, the identification of feature subspaces that best separate
outliers and normal data points is relatively easy. Neural-network-based anomaly detec-
tion methods can benefit from the explanation methods designed for neural networks like
LRP or local gradients. For other anomaly detection methods, model-agnostic methods
like SHAP can be leveraged. Anomaly explanation methods based on feature importance
do not only provide information about why a specific data point is anomalous, but they
can also give a global understanding of the anomalies by identifying the features that
explain a set of anomalies or all the anomalies. However, the set of anomalies to explain
should be chosen carefully to avoid conflicts. Furthermore, feature importance can help
identify different groups of anomalies, like in [Ngu+19] where the authors propose a clus-
tering of the anomalies based on the feature gradients to identify the types of anomalies
located in the data set. However, anomaly explanation by feature importance remains
too coarse. Plus, if the original features are transformed prior to the anomaly detection,
feature importance scores will not be meaningful to the final users as they will not recog-
nize the features presented by the explanation system. This transformation can be made
using an algorithm like PCA, either to reduce the dimensionality of the data set or to
avoid the leak of sensitive information.

The output of an anomaly explanation by feature values method is typically a set of
rules on the features. It can also be a text in natural language, like in [Mun+19] where the
authors identify anomalies in time series data using a neural network. Anomaly detection
is performed in a supervised manner and, when a time series is classified as anomalous,
the parts of the time series that contributed to the anomaly are identified. These parts
are then checked against some predefined rules. The parts are finally compared to some
statistics about the time series and textual explanations are generated with the informa-
tion retrieved (statistical features comparison + rules checking). Anomaly explanation by
feature values is tailored for model-based anomaly detection methods, in particular with
tree-based methods. In that case, the rules are easily extracted (less easily when there
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are many trees, but still manageable). For other model-based anomaly detection methods
like One-class SVMs, it is also possible to extract explanations relying on the values of
the features, and it has been done in the literature; but this requires more work than
with tree-based methods. After using a neural network to identify the anomalies, using
explanation by features values is very difficult. In the work that was mentioned, the rules
extraction was not straightforward. The rules can easily become unreadable due to their
number. As a result, some authors chose to return a short list of rules, each rule having a
limited number of predicates. This can be sub-optimal because some less important (but
still important) information about why an instance is anomalous can be ignored. Another
flaw of this type of explanations is that, unlike feature importance, it is a bit complicated
to explain anomalies globally. In addition to that, extracting and consolidating rules is
more complex in terms of time processing. However, rules remain the most natural way
of explaining anomalies, and translating rules into natural language is relatively easy.

The possible outputs of anomaly explanation by data point comparisons methods
are the closest or the set of closest instances (irregular or not) of an anomaly, possibly
with the differences (visual or not) between the instances. This kind of explanations is
suitable for distance-based anomaly detection methods. Since the latter already requires
distance computation, it is easy, after the identification of anomalies, to evaluate the
difference between regular data points and outliers. It is applicable to cluster-based
methods too, because they also necessitate distances computations. More generally, it
can be employed with any anomaly detection algorithm. The difficulty of use comes
from the choice of an appropriate distance/similarity metric, which may turn out to be
complicated with complex data types. Even if the data type is not complex, explanation
by data point comparisons requires finding similar instances. We then find ourselves in
a situation where, even if we avoid using distances computation to identify anomalies,
we cannot escape them to generate explanations. Ultimately, displaying similar instances
and showing the differences between the anomalous instance and these similar instances
allow the user to discern clearly why a data point is irregular. However, this type of
explanations just provides a restricted overview of the data set.

Explanation by structure analysis provides insights about the abnormality of an in-
stance in relation to the global structure of the data set. As it was not heavily investigated
in the literature, the output can ideally be a set of discriminating features with each group
of regular data points, or even a set of rules, in addition to the set shared features. This
kind of explanations is suitable for model-based anomaly detection methods, especially
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cluster-based methods which provide a partition of the regular instances. It is more dif-
ficult to extract explanations by structure analysis with neural-network-based anomaly
detection methods since the structure of the data set is not really analyzed when using
neural networks. Providing this kind of explanations starts at the anomaly detection level
with the identification of clusters of regular instances and local anomalies. The approaches
labeled as belonging to this category are either incomplete or a sequence of steps (anomaly
detection → clustering → structure analysis of the clusters → explanations generation)
often relying on external methods. No method in the literature has been able yet to pro-
vide a unified algorithm going directly from the detection to the detailed explanations.
Because of the context, we will focus on this last category. However, it could be interest-
ing to compare the different categories according to the needs of the users. The example
from Tables 1.1 and 1.2 is simple. In the Sea Defender Project, there are more types of
products, hence the need for an automated framework with the explanatory component
to increase the trust of the customs officials.

1.4 Outlier-Aware Clustering

Most clustering algorithms suffer from the presence of outliers: the points that to do
not conform with the global structure of the data most often hinder the identification of
regular clusters. Robust clustering methods aim at addressing this issue, providing data
partitions that are not perturbed by outliers. They aim at outputting the same results as
would be obtained if the outliers had been removed from the data set, without requiring
to perform a preliminary step of outlier detection and removal.

Robust clustering can be roughly categorized into two types of methods [Bor+15].
Some methods proceed by automatically down-weighting atypical points. This is the case
in [Dot+18] where the initial proportion of outliers in the data set is controlled by a
fixed trimming level. This initial trimming level is set to a high value (thus discarding
a lot of data points), and clustering is applied. Then, the partition is refined by de-
creasing the trimming level through the inclusion of data points close to cluster centers.
In [CG13], the farthest points are discarded during the update of the clusters centers
in the k−means algorithm. DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [Est+96] is a robust clustering method classifying data points into three cat-
egories: core points, border points and anomalies. Core points are points containing at
least minPts in their ϵ neighborhood. The border points contain at least one core point
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in their neighborhood. The other data points are anomalies. The clusters are obtained
by combining density-reachable points. Density-reachable points are points located in the
neighborhood of core points.
While fuzzy clustering may assign to outliers equal membership to the different clus-
ters, possibilistic clustering [KK96; Pal+05] makes a clearer contrast between abnormal
and regular instances. In [MP98], normal distributions are replaced by multivariate t-
distributions which have longer tails to make the clustering more robust. Noise cluster-
ing [Dav91] assumes that all the outliers can fit in a cluster. A characterization of the
points belonging to the noise cluster is therefore required. Other methods, instead of ad-
justing weights, propose to replace the classic squared Euclidean distance, which is known
to be highly sensitive to outliers, by other distances [Seh+89; Jaj91; GJ01; RB99; FK96].

Although robust clustering methods are also able to identify abnormal instances in
the data set, they remain clustering methods. They are not the foremost thought when it
comes to identifying deviating instances. This is due to the fact that anomaly detection
is not their main focus but a secondary mission. Furthermore, robust clustering often
necessitates distance computations between data points, while there are anomaly detection
methods that do not.

1.5 Summary

In this chapter, we explored the background on anomaly detection, anomaly expla-
nation and robust clustering. In Section 1.1, some concepts are recalled. In Section 1.2,
we reviewed existing works on anomaly detection. In Section 1.3, we first introduced
our taxonomy of anomaly explanation approaches, before reviewing existing works. Sec-
tion 1.4 finally reviewed existing works on robust clustering. Our proposed taxonomy
of anomaly explanation methods contains four categories of approaches: explanation by
feature importance, explanation by feature values, explanation by data point compar-
isons and explanation by structure analysis. While the first two categories focus on the
anomaly to explain, explanation by data point comparisons introduces a contrast between
the anomalies and the regular instances. The last category provides even more contrast
by analyzing the structure of the data set (in terms of clusters) and generating contrastive
explanations with respect to these clusters. There are not many approaches in the litera-
ture falling in that category. However, it is the type of explanations needed in our context
and is therefore the focus of the work presented in this dissertation.
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The next chapter will present our approach to produce explanations by structure
analysis.
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Chapter 2

CADI: CONTEXTUAL ANOMALY

DETECTION WITH ISOLATION-FOREST

This chapter introduces our proposal to anomaly explanations by structure analysis.
Although techniques like COIN [LSH18] and ATON [Xu+21] consider the local context
of the outlier when generating explanations, this local context is either forgotten in the
explanations produced (ATON) or not specific enough (COIN). In this latter method, if
an outlier to explain is really close to one cluster, there is no information on the other
clusters in the data set. Furthermore, COIN relies on distance computations for the
nearest neighbors identification and on an external algorithm for clustering. Both ATON
and COIN are model-agnostic. In contrast to these approaches, we propose a unified
model-specific method to generate explanations by structure analysis. This method, called
CADI, stands for Contextual Anomaly Detection with Isolation-Forest, performs anomaly
detection, data clustering and finally generates data-structure-aware explanations of the
anomalies.

To perform anomaly detection and data clustering using the same technique, there
are two options. The first one is to use a robust clustering method. The second one is to
extend an anomaly detector for data clustering. Employing a robust clustering method
entails that, within the prioritization structure, the clustering task takes precedence,
followed by the anomaly detection task. The main objective of robust clustering is to
perform clustering. It is not the case here. Anomaly detection is still the primary focus,
while clustering is a means to extract explanations by structure analysis. Even if there are
no clusters in the data set and we are not able to extract explanations, the method should
at least be able to identify anomalies. As a result, the second path, namely utilizing an
anomaly detector for data clustering, is the one we chose.

Which anomaly detector to choose as the backbone of our unified
method?
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Distance-based methods are good candidates. They already rely on distance computa-
tions between pairs of points. These distances could later be employed to identify clusters
in the data set. Model-based methods are also good candidates. Neural-network-based
methods are perhaps the least interesting candidates. They are often too complex and
it would therefore be difficult to recover the structural information of the data set as
this structural information is often lost during the anomaly identification. Furthermore,
neural networks are black-boxes. Explanations are generally provided by a post-hoc pro-
cess (e.g.: LRP or converting the neural network into a decision tree). There are more
interpretable anomaly detectors in the literature. Why explaining a black-box when we
can use an interpretable model, especially when the data can be handled relatively easily
by a shallow (in contrast to deep as in DL) method? [Rud19].

Among the model-based methods, the Isolation Forest algorithm is very appealing for
anomaly detection. It is unsupervised, fast, has few hyper-parameters and is interpretable
at the tree level. IF also makes no assumption regarding the distribution of the data
set. In addition to that, the efficiency and the robustness of the approach against the
choice of the hyper-parameters have been confirmed throughout the years by different
benchmarks [Han+22; Cha+23]. Several extensions of IF have been proposed in the
literature [LTZ10; HKB21; Cor21; Xu+23], but the performance of the seminal approach
especially considering its low complexity remains astonishing. This motivates us to select
IF as the backbone of CADI. The details of our approach are presented in this chapter.

The content of Sec. 2.2 has been published in the proceedings of EGC 2023 [Yep+23].
An extended version of the previous paper is under review for a special issue of the
journal DKE (best papers of EGC 2023). The remainder of the chapter is published in
the proceedings of SAC 2024 [Yep+24].

Contents
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Density-Aware Isolation forest . . . . . . . . . . . . . . . . . . . 52

2.2.1 Forest construction . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.2 Evaluation stage: anomaly scores . . . . . . . . . . . . . . . . . 59
2.2.3 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 Clustering from an Isolation Forest . . . . . . . . . . . . . . . . 61
2.4 Anomaly Explanation . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4.1 Local Structure-Aware Anomalies . . . . . . . . . . . . . . . . . 67
2.4.2 Common Attributes . . . . . . . . . . . . . . . . . . . . . . . . 68

50



2.4.3 Discriminating Attributes . . . . . . . . . . . . . . . . . . . . . 70
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

51



Chapter 2 – CADI: Contextual Anomaly Detection with Isolation-forest

2.1 Overview

CADI performs anomaly detection, data clustering and generates anomaly explana-
tions by structure analysis in a unified framework based on IF. The principle of IF is
recalled in Sec. 2.2. In contrast to the original IF where the separations are completely
random, CADI introduces a split selection criterion. The goal of this criterion is to avoid
splitting dense regions which most likely contain portions of clusters. These portions of
clusters are later combined to obtain a partition of the regular instances in the data set,
after the anomalies have been identified. Once the reconstruction of the regular data
inner structure done, anomalies are localized and explained by harnessing the trees from
the same forest. The attributes shared by the anomaly and the points in each cluster,
as well as the attributes making the instance deviating from each cluster, are identified.
Figure 2.1 illustrates the CADI framework.

(a) Anomaly detection (b) Clusters
identification

(c) Anomaly
localisation

(d) Anomaly
explanation

Figure 2.1 – The CADI framework

Section 2.2 details step a of Fig. 2.1. Sec. 2.3 details step b and Sec. 2.4 details steps
c and d.

2.2 Density-Aware Isolation forest

In the initial IF approach, an isolation tree is built through recursive splits of a data set
sample D. A split is a couple (A, v), where A is a randomly chosen attribute A ∈ A and v

a value from its observed domain v ∈ [minx∈D x.A, maxx∈D x.A] ⊆ dom(A). Algorithm 1
recalls the tree construction process of IF.

Figure 2.2 shows the isolation process on a sample of a data set.
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Algorithm 1 Isolation Forest : build_tree [LTZ12]
1: Inputs: a sample D ⊂ D, the depth d of the current node; d = 0 when the method

is first called
2: Output: a node in an isolation tree
3: if |D| = 1 or d ≥ hlim then
4: Return node(null, null, D, d, null, null) ▷ Leaf (terminal node)
5: else
6: A← random(A) ▷ Random attribute selection
7: v ← random(dom(A)) ▷ Random value selection
8: Dl ← {x ∈ D/x.A ≤ v}
9: Dr ← {x ∈ D/x.A > v}

10: Return node(build_tree(Dl, d + 1), ▷ Internal node
11: build_tree(Dr, d + 1), D, d, A, v)
12: end if

(a) A data set (b) Random sub-sampling and tree construction

Figure 2.2 – The isolation process
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An IF is a set of t trees built on different random samples of size Ψ of the data set.
Algorithm 2 recalls the forest construction process of IF.

Algorithm 2 Isolation Forest : build_forest [LTZ12]
1: Inputs: a data set D, a number of trees t, a sampling size Ψ, a depth limit hlim

2: Output: an Isolation Forest F
3: F = ∅
4: for i = 1 to t do
5: D = sample(D, Ψ) ▷ Sampling
6: F = F ∪ build_tree(D)
7: end for
8: Return F

An issue with IF in the prospect of reconstructing the structure of the regular data
points is that the separations are completely random. Nothing prevents points from
different clusters to be found in the same leaves in the trees. The only information
that can be derived from a forest is the ease of isolation of an instance, measured by its
average isolation depth in the trees. If an instance is not easily isolated, then it is a regular
instance. However, in order to partition the data, information about the proximity of the
instances is needed. An IF does not provide such information. Consequently, leveraging a
classic IF for data clustering would not be straightforward. It would require, for example,
to derive a similarity measure from an IF. This similarity could be computed between
pairs of points like in [Shu+20], which would be unfortunate since the original method
does not compute pairwise distances and it is one of its strengths. As a result, we propose
to revisit the classic IF approach in order to have more information on the proximity of
data points using a built forest, without computing pairwise similarity between instances.
This information about the proximity of instances would be provided by the leaves of
trees. More precisely, the goal is to have in the same leaf, data points which are close
in the original data space. A partition of the regular data would then be obtained by
combining leaves, and not data points. In order to have leaves containing close data
points, the split selection is revisited.

2.2.1 Forest construction

CADI revisits the completely random process of IF to keep only the splits that fall
in sparse regions. Anomalies being by definition detached from regular phenomena ma-
terialized by dense regions, the objective of this revisited isolation algorithm is to find
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separation lines in sparse areas surrounding dense regions. To do so, a density-based
constraint is added and determines if a split is actually performed or discarded. The hy-
pothesis is the following: if a significant number of points are found in the neighborhood
of the split, it is potentially separating a cluster.

If a significant number of points are found in the neighborhood of
a split, it is potentially separating a cluster. And, by opposition,
an informative split should separate dense regions from isolated
points.

Hypothesis 1

In that case, the split is discarded and another one is generated. The goal is to
surround the regular point clusters by the separations, so that dense regions of points
remain unseparated during the tree construction. One hyper-parameter is introduced
in addition to the IF hyper-parameters: the size of the margin around the separation
which represents its neighborhood. This margin size is controlled by the hyper-parameter
α which is a percentage of the attribute range of the points in the sample. Figure 2.3
depicts an example of split selection. The margin around the separation (A1, v1) contains
many data points. This split is therefore discarded. In contrast, the area surrounding the
split (A2, v2) is sparse, so the split is selected.

Figure 2.3 – Example of a discarded separation line (A1, v1) falling in a dense area (dashed
line) and a validated separation (A2, v2) (plain line)

Figure 2.4 illustrates the impact of the split selection criterion of CADI on the isola-
tion procedure. With the proposed criterion, the separations less often separate points
belonging to the same cluster, and the anomalies remain isolated.
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(a) Splits of a classic IF tree (b) Splits of a CADI tree

Figure 2.4 – Examples of splits, shown by the black lines, of a tree: (left) IF, (right)
CADI. The width of the line is inversely proportional to the depth of the split.

In the original IF method, sampling is performed. This sampling which is completely
random allows to build a tree on a smaller, but still representative, portion of the data set.
Building trees on different random samples and combining the information from the trees
at the forest level provides the opportunity to partially scan the data set, while maintain-
ing a good complexity and reducing memory cost. Sampling also lessens the impacts of
swamping and masking. Swamping occurs when the number of normal instances increases
or they become more scattered. Masking occurs when there are too many anomalies in
the data set which therefore conceal their own presence [LTZ12]. CADI also employs
sampling. Consequently, some splits may still separate points belonging to the same clus-
ter, despite the density constraint. In this case, points forming a cluster may be found in
different leaves of the trees. These leaves have to be combined to reconstruct the whole
data inner structure.

Alg. 3 details how density-aware isolation trees are constructed.
To learn from the discarded splits and to avoid generating separations in intervals

that have already been discarded -because they contain many data points-, the set of
tested intervals I (IA being the union of intervals on attribute A) is stored and passed
as a parameter through the recursive calls to the build_tree function (line 20 in Alg. 3).
If the method was not able to find a valid separation in the whole interval of values of
an attribute (line 10), this attribute is discarded (line 11). The discarded attributes are
therefore also stored (in the variable C). A separation is kept when the number of points
in the margin is less than the number of points which would fall in the margin if the
distribution was uniform (line 14). If the method is unable to find a valid separation on

56



2.2. Density-Aware Isolation forest

Algorithm 3 CADI: build_tree

1: Inputs: data subset D ⊂ D, depth d of the current node, margin width percentage α,
sets of tested intervals I = {IA1 , . . . , IAm}, set of covered attributes C, margin widths
margs; I and C are empty when the method is first called, d = 0, |D| = Ψ (sample
used to build the tree) and margs[A] = 1

2α(maxx∈D x.A−minx∈D x.A) ∀A ∈ A
2: Output: a node in an isolation tree
3: if C = A or |D| = 1 or d ≥ hlim then

▷ returns a leaf
4: Return node(null, null, D, d, null, null)
5: else

▷ random attribute selection
6: A← random(A \ C)

▷ random value selection
7: v ← random([minx∈Dx.A, maxx∈Dx.A] \ ∪J{J ∈ IA})
8: marg ← margs[A]
9: IA ← IA ∪ [v −marg, v + marg]

10: if [minx∈D x.A, maxx∈D x.a] ⊆ IA then
▷ A has been entirely scanned

11: C ← C ∪ {A}
12: end if

▷ points contained in the margin
13: Dm ← {x ∈ D/x.A ∈ [v −marg, v + marg]}
14: if |Dm| ≤ α× |D| then
15: Dl ← {x ∈ D/x.A ≤ v}
16: Dr ← {x ∈ D/x.A > v}

▷ returns an internal node
17: Return node(build_tree(Dl, d + 1, α, ∅, ∅, margs),
18: build_tree(Dr, d + 1, α, ∅, ∅, margs), D, d, A, v)
19: end if

▷ selection of another split
20: Return build_tree(D, d, α, I, C, margs)
21: end if
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any attribute (line 3), then a terminal node is returned (line 4), the current set of points
being considered as inseparable.

If the method is unable to find a valid separation on any attribute,
the current set of points is considered as inseparable.

Hypothesis 2

In a tree generated by CADI a leaf may be of three different types depending on the
termination condition that yields it:

— an Isolation Node (IN) stores a data point that has been isolated from the rest of
the data set; it is generated when the node contains one point (|D| = 1);

— a Dense Node (DN) gathers a set of inseparable points, viz. if |D| > 1 and all the
attributes have been discarded (C = A on line 3 in Alg. 3);

— a Depth-Limit Node (DLN) is a node which is terminal because the depth limit
has been reached, viz. d = hlim and C ̸= A.

Given a margin of width marg controlled by α, a leaf gather-
ing a set D′ of points is called a DN leaf iff., ∀A ∈ A and
∀v ∈ [minx∈D′x.A, maxx∈D′x.A]:

|{x ∈ D′, x.A ∈ [v −marg, v + marg]}| > α× |D′|,

where marg = 1
2α(maxx∈D x.A−minx∈D x.A)

Definition 12: DN leaf

In Definition 12, D is the sample used to build the tree. marg is therefore of fixed
size given α. More details will be provided in the first section of Chapter 3.

Whereas the original IF algorithm yields only nodes of type IN and DLN, the nodes
of type DN induced by the density constraint applied on the randomly generated splits
are particularly informative in the prospect of reconstructing the data inner structure
(Sec. 2.3).
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2.2.2 Evaluation stage: anomaly scores

With classic IF, after the forest construction, the evaluation stage begins. Each in-
stance traverses all the trees until it reaches a terminal node. The anomaly score of an
instance x in the data set is computed using the following formula:

s(x) = 2− h̄(x)
c(Ψ) , (2.1)

In Eq. 2.1, h̄(x) is the average path length of x. The path length of a data point in a
tree is computed using the method in Algorithm 4 1. This path length is the depth of the
terminal node containing x after it has traversed the tree.

Algorithm 4 Isolation Forest : path_length [LTZ12]
1: Inputs: an instance x ∈ D, an isolation tree T , the depth limit hlim, the current path

length h; h = 0 when the method is first called
2: Output: the path length of x in the tree T
3: if T is a terminal node then
4: Return h + c(T.size)
5: end if
6: A← T.splitAtt ▷ The split attribute of the current node
7: v ← T.splitV al ▷ The split value of the current node
8: if x.A ≤ v then ▷ The value of x on attribute A is less than the split value
9: Return path_length(x, T.left, hlim, h + 1)

10: else
11: Return path_length(x, T.right, hlim, h + 1) ▷ x goes to the right child
12: end if

When the depth limit is reached, the returned value is h plus an adjustment size
c(T.size). This adjustment represents an estimate of an average path length of a random
sub-tree which could be constructed using data of size T.size beyond the tree height
limit [LTZ12]. If the average depth is equal to c(Ψ) in Eq. 2.1, meaning that in every tree
the search of the data point was unsuccessful -because the tree depth limit was reached-,
then the anomaly score is equal to 0.5.

Leveraging the property that it is faster to isolate anomalies than regularities using
random splits, the anomaly score of a given point in the original IF relies solely on its

1. In the approach as described in [LTZ12], the depth limit only intervenes during the evaluation
stage. The trees are built until all the instances are isolated. However, because of line 4 of Alg. 4, the
outcome is the same (when stopping the tree construction at the depth limit VS when building the trees
until isolation and stopping the evaluation at the depth limit.)
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depth of isolation in the different trees of the forest. With the CADI approach, because
of the density constraint imposed on the randomly generated splits, a dense region may
be scanned completely without increasing the depth of the tree, resulting in a leaf of
type DN which contains a high number of inseparable points located at low depth. To
differentiate leaves of type IN from those of type DN, it therefore makes more sense to
define an anomaly score based on the cardinality of the set of points isolated in the same
terminal node, instead of its depth. Equation 2.2 is used to calculate an anomaly score
for a given point x that depends on the cardinality of the node it is isolated in:

si(x) = 1− |ηi(x)| − 1
Ψ , (2.2)

where ηi(x) is the node containing x in the tree Ti. The score si(x) varies in ]0, 1] taking
its maximum value when x is isolated alone in an IN leaf and is close to 0 when the whole
data sample ends in the same leaf. This last situation occurs when no separation line can
be validated on the whole universe: the data set consists of a single indivisible cluster.

The global anomaly score is the average over the whole forest containing t trees:

s(x) = 1
t

t∑
i=1

si(x). (2.3)

Algorithm 5 details the evaluation stage of the CADI approach.

Algorithm 5 CADI: compute_score

1: Inputs: an instance x ∈ D, an isolation tree T
2: Output: the score of x in the tree T
3: if T is a terminal node then
4: Return |T |
5: end if
6: A← T.splitAtt
7: v ← T.splitV al
8: if x.A ≤ v then
9: Return compute_score(x, T.left)

10: else
11: Return compute_score(x, T.right)
12: end if
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2.2.3 Complexity analysis

During the forest construction, a classic IF has a constant time complexity of O(2hlimtΨ)
in the worst case. At each node, the value of every data point on the randomly selected
split attribute is compared against the split value, and there are at most 2hlimt nodes
in the forest. The space complexity is O(2hlimt) in the worst case, for the storage of
the nodes. At the evaluation stage, the time complexity is in the worst case O(2hlimtn)
(linear) for the evaluation of the whole data set.

In addition to the classic IF cost, the forest construction stage of CADI induces an
overhead due to the split selection. This overhead is in the worst case linear in the number
of attributes. The time complexity of the split attribute selection is O(2hlimtd) in the worst
case, while the time complexity of the split value selection is O(2hlimt|IA|) (constant) in
the worst case. There are at most O(2hlimtΨ) comparisons for the points in the margin
and the other data points in the node. The overhead space complexity of CADI during
the forest construction is caused by the storage of scanned attributes and values, and the
storage of the margins. This overhead is linear in the number of attributes. During the
evaluation stage, the complexity of CADI is the same as IF.

2.3 Clustering from an Isolation Forest
A CADI forest has three types of terminal nodes: IN, DN, and DLN. Each IN leaf

contains a potential anomaly, as the data point was isolated. DLN leaves are those
containing points which have not been separated after a certain number of splits, just
like in IF. DN leaves contain points that could not be separated, no matter the attribute.
They therefore gather dense groups of points, corresponding to clusters or portions of
clusters. As sampling is performed and trees are built on different parts of the data set,
they most likely contain portions of clusters. Consequently, in order to obtain a complete
partition of the data set, these leaves may need to be combined.

The combination strategy of CADI’s DN leaves is inspired by grid-based cluster-
ing [Agr+98]. Grid-based clustering algorithms first partition the data space into a finite
number of cells/blocks/units to form a grid structure. Each cell of the grid is a combi-
nation of r intervals on every attribute in A. As such, each cell contains the data points
belonging to the small portion of the data space delimited by the bounds of the intervals,
based on their values on the attributes. As clusters correspond to regions that are more
dense in data points than their surroundings [AR14], the most dense contiguous cells are
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combined to form clusters. In GRIDCLUS [Sch96] for example, the cells are sorted in
decreasing order of density. The most dense cells are chosen as cluster centers. A neighbor
search is then applied on the cells to construct the rest of clusters. The neighbor search
is done recursively starting at each cluster center and adding contiguous dense units to
the cluster. Figure 2.5 illustrates the generic grid-based clustering process. The cells
combination in grid-based clustering allows to discover non-elliptic clusters.

(a) Data set (b) Grid construction (c) Dense cells
identification

(d) Final clustering

Figure 2.5 – Grid-based clustering

Like cells in grid-based clustering, DN leaves in CADI contain data points and delimit
areas within the data space. However, there are two major differences between cells and
DN leaves. First, the regions limited by DN leaves may overlap. At the tree level, there
is no overlap. The set of terminal nodes (including DN leaves) is a partition of the space
containing the sample. Each DN leaf delimits a region separated from the regions enclosed
by the other DN leaves of the same tree. However, each tree only paints an incomplete
picture of the data set and the potential clusters. The knowledge imparted by each tree in
the forest needs to be consolidated like during the anomaly detection phase. The regions
delimited by DN leaves coming from different trees may overlap, unlike grid cells. The
need for a combination of the information coming from different trees also engenders the
second major difference between DN leaves and cells: DN leaves coming from different
trees may have some points in common, whereas grid cells are disjoint in terms of points.
At this stage, two options are opened for consideration in order to obtain a partition
of the data set: combining the regions delimited by the DN leaves, or combining the
points contained in the DN leaves. In grid-based clustering, the first option is employed
because the contiguity of cells is relatively easy to verify, and the merging condition only
involves contiguity and density. With CADI DN leaves, the contiguity (or inclusion) is
much more complex to verify. Because of the random selection of the separations and
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the ensemble technique, the regions delimited by two DN leaves can be disjoint, one can
be fully included in the other or the intersection between the two can be non-empty like
in Fig. 2.6. In Fig. 2.6, l1 and l2 need to be combined to obtain a bigger part of the
cluster. However, if we have to combine the delimited regions (in grey), we may have to
check the intersection attribute by attribute, which is not optimal. There is no hypothesis
that could speed up the process. Even by restricting each interval of the region to the
minimum and maximum values of the data points in each leaf, there may still be some
overlap between the DN leaves that may be checked. The least complex solution is to
combine the leaves based on the common points. On Fig. 2.6, as l1 and l2 have many
points in common, they are probably parts of the same cluster.

(a) DN l1 (b) DN l2

Figure 2.6 – Two DN coming from different trees

In grid-based clustering, the merging condition is for both cells to be dense and neigh-
bors (contiguous). With CADI, the merging condition is for both leaves to be sufficiently
similar in terms of points. In the grid-based clustering algorithm CLIQUE [Agr+98],
after identifying dense cells in subspaces of the original feature space, a graph G = (V ,E)
is built. Each vertex of the graph is a cell and there is an edge E between two vertices
V1, V2 ∈ V if the corresponding cells are contiguous. The connected components of the
graph are later extracted, and each connected component is a cluster. In CADI, instead
of creating an edge between two vertices V1 and V2 if the corresponding leaves l1 qnd l2

are contiguous, an edge E is created if the two leaves are somehow similar in terms of
points. This similarity is measured by the Jaccard index between the two leaves and is
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the weight of E:
wE = |l1 ∩ l2|

|l1 ∪ l2|
(2.4)

with E = (V1, V2) ⇔ (l1, l2). Like in CLIQUE, each connected component is a cluster.
This strategy first allows to automatically discover the number of clusters in the data
set. Second, it helps obtaining a partition of the data set without computing similarity
between pairs of points, but instead between pairs of DN leaves. There are at most
2hlimt ≪ n DN leaves in the forest. The most similar leaves are merged first, and the
weakest edges are deleted. These weakest edges may correspond to edges whose weights
are less than a specified percentile of the weights, which is another hyper-parameter τ .
These steps are illustrated on Figure 2.7.

(a) DN leaves (b) Computing the
similarity between leaves
and building the graph

(c) Extracting the
connected components

Figure 2.7 – CADI clustering

A set of DN leaves Cm = {l1, l2, . . . , lp} is a cluster iff.:

∀li ∈ Cm, ∃lj ∈ Cm s.t. li and lj are sufficiently similar.

Definition 13: Cluster

The data points not affected to a cluster, because they were not part of any sample
used to build the forest, traverse each tree until they reach a DN leaf. A majority vote
is then performed among the corresponding DN leaves to assign these points to a cluster.
This is illustrated on Figure 2.8.

Before the extraction of the connected components, a pre-processing step is applied:
the leaves included in other leaves are deleted from V to remove redundancies. Algorithm 6
details the clustering stage of CADI.

The space complexity of the clustering phase is quadratic in the number of DN leaves,
which is a constant for hlim and t fixed: (2hlimt)2. The time complexity is also quadratic
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Figure 2.8 – Out-of-samples cluster assignation: x is found in leaves l1, l2 and l5. It is
therefore assigned to cluster C1 after a majority vote.

Algorithm 6 CADI: clustering

1: Input: a CADI forest F ,
2: Output: a partition C = C1 ∪ . . . Ck of the data set D
3: Compute anomaly scores of points in D using Alg. 5
4: Remove anomalies
5: L ← DN leaves of F
6: Pre-processing: remove from L the leaves included in others
7: Compute pairwise similarities between elements of L using Eq. 2.4
8: Build graph G
9: Remove the weakest edges

10: C ← connected_components(G)
11: Assign clusters to out-of-samples instances
12: Return C
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in the number of DN leaves for the pre-processing, the computation of weights and the
removal of the weakest edges. The extraction of the connected components is linear in the
number of DN leaves. The worst time complexity of the out-of-samples cluster assignation
is linear in the data set size.

2.4 Anomaly Explanation
At this stage of the CADI framework, we have on the one hand the anomalies and on

the other hand the regular data structure (viz. the clusters). The following task involves
explaining the anomalies in relation to this structure.

In the COIN approach [LSH18], an outlier explanation has three parts. The first one
is a quantification of the point abnormality. The second one is a local positioning of the
anomaly to explain in relation to the surrounding regular instances. This is equivalent,
for the method, to a set of clustered neighbors of the point. The last part of an anomaly
explanation in the COIN approach is the set of attributes weighted by their relative con-
tribution to the abnormality of the suspicious instance. These weights are obtained by
training local linear classifiers to distinguish between the outlying class (obtained after
employing synthetic over-sampling on the anomaly to explain) and the regular class (rep-
resented by a cluster of neighbors). The ATON [Xu+21] approach returns as explanation
of an anomaly the set of weighted features, with the local context (regular neighbors of
the instance) having been harnessed for the construction of the embedding space.

As mentioned in Section 1.3 when reviewing the existing taxonomies of explanations,
an anomaly score does not explain why the instance is abnormal. It instead provides
the extent to which the instance is deviating, which is the role of the anomaly detector.
Furthermore, although the neighboring instances of the anomaly to explain are utilized
to build the embedding space and later compute weights in ATON, there is no reference
to them in the final explanation. COIN does include these neighboring instances in the
final explanation and even clusters them. Yet, there is a dearth of information concerning
clusters farther away. If the anomaly to explain is really close to one cluster, all the
neighbors will be drawn from this cluster, and the information regarding the other clusters
will be lost. In addition to that, there is no clue as to whether the anomaly is closest
to a particular cluster. CADI enriches the explanations with these two information. An
outlier explanation with CADI therefore consists of three components:

1. A quantification of its proximity to the different clusters.
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2. The set of weighted common features with each cluster.

3. The set of weighted discriminating features with each cluster.

These three parts of a CADI explanation provide an answer to the following questions:
1) Which cluster is the anomaly to explain closer to? 2) How much does each attribute
contribute to making the anomaly an element of each cluster? 3) How much does each
attribute contribute to making the point an anomaly for each cluster, viz. which attributes
make the instance an anomaly of each cluster?

Where COIN combines the weights coming from the different local cluster-specific
classifiers, CADI does not average the weights and instead provides a global view relative
to each identified cluster.

2.4.1 Local Structure-Aware Anomalies

In its original version, an IF detects points that may be easily separated from the rest
of the data set, the so-called global anomalies. Local anomalies are also identified by an
IF, but no distinction between local and global anomalies is made in the output of the
method. The first part of the explanatory component of CADI makes such distinction,
by specifying the proximity of an anomaly to the different clusters. Let us now show that
a forest generated by CADI embeds all the necessary structural knowledge to identify
possible links between anomalies and clusters.

Let x be a point whose anomaly score s(x) is sufficiently high to consider that it
is an anomaly. The first component of E(x), the explanation of x, determines for each
cluster C ∈ C if x can be considered as an abnormal deviation of the regular phenomenon
modelled by C. Let {l1, . . . , lp} be the set of DNs making up C: C = l1 ∪ . . . ∪ lp. Let
Tli , i = 1...p be the tree in which li is found.

Using the structural knowledge embedded in Tli only, viz. without having to choose
an appropriate distance measure, a contextual score denoted by c(x, C) is computed as
an aggregation of the comparisons between x and the lis forming C. In a tree Tli , the
path from the root to the leaf li consists of different separations each narrowing the region
originally enclosed by the root. As a result, if x and the points in li are found in the same
node deep in the tree, they are more likely to be close to each other in the feature space.
By applying this principle to all the lis in a cluster C, a score corresponding to the local
deviation of x from C is computed. This contextual score depends on the depth of the
deepest common ancestor between x and each li in the corresponding Tli (Fig. 2.9):
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c(x, C) = 1
p

p∑
i=1

h∇li
x

hlim

, (2.5)

where ∇li
x is the deepest common ancestor of x and the leaf node li, and h∇fi

x
is its depth.

The higher the contextual score, the closer to the cluster the instance. Global anoma-
lies have similar scores with all the clusters, indicating that they are not close to a par-
ticular cluster.

The process described above is illustrated on Figure 2.9. On Fig. 2.9a, two clusters C1

and C2 have been identified: C1 = {l1, l2} and C2 = {l3, l4, l5}. The contextual score of x

with each cluster is computed using the depth of the deepest common ancestor between
x and each li (Fig. 2.9b). These contextual scores are therefore given by: c(x, C1) =
(5/hlim + 4/hlim)/2 = 9/2hlim and c(x, C2) = (2/hlim + 1/hlim + 1/hlim)/3 = 4/3hlim. In
conclusion, x is a local anomaly of C1.

(a) Clusters C1 and C2 (b) Deepest common ancestors (blue octo-
gons) between x and the lis (green squares).
Partial trees are displayed.

Figure 2.9 – Contextual/Local anomaly detection: leveraging CADI trees and DN leaves

2.4.2 Common Attributes

In addition to the contextual scores computed between an anomaly x and each cluster
C ∈ C, CADI determines which attributes make x a local anomaly of a given cluster C.
Each attribute is associated with a weight denoted by ecom(x, C, A) that indicates if the
value taken by x on A (x.A) is shared with other members of C. To quantify this weight,
the paths in each Tli from its root to ηi(x) and li respectively are analyzed. In a tree Tli ,
the path from the root to the deepest common ancestor ∇li

x of ηi(x) and li contains splits
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that were not able to separate x from the points in li. Each split, therefore reinforces
the closeness of x and li. Consequently, the weight of the attribute associated to the
split must increase to take into consideration this reinforcement. The degree eli(x, A)
quantifies the contribution of attribute A to explain x as a local anomaly of the dense
subset of points gathered in the leaf li. It is simply the number of times attribute A is
used as split attribute in the path from the root of Tli to ∇li

x (excluded, since x and the
points in li are separated at ∇li

x ). The weight of A is therefore the average, on the different
DN leaves li composing C, of eli(x, A).

ecom(x, C, A) = 1
p

p∑
i=1

ωi(A), (2.6)

where ωi(A) is the number of times attribute A is used as a separation attribute in the
path from the root of Tli to ∇li

x (excluded).
Following the example from Fig. 2.9, Figure 2.10 shows the attributes of each separa-

tion from the roots of the trees to the deepest common ancestors.

Figure 2.10 – Example from Fig. 2.9: common attributes

The weights of each attribute are: ω1(A1) = 2, ω1(A2) = 3, ω2(A1) = 2, ω2(A2) = 2,
ω3(A1) = 0, ω3(A2) = 2, ω4(A1) = 1, ω4(A2) = 0, ω5(A1) = 1 and ω5(A2) = 0. As a result,
ecom(x, C1, A1) = 2, ecom(x, C1, A2) = 2.5, ecom(x, C2, A1) = 2/3 and ecom(x, C2, A2) =
2/3.

Noteworthy is that ecom can be computed only for the closest clusters (greatest c(x, C)
from Eq. 2.5).
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2.4.3 Discriminating Attributes

The discriminating attributes are the ones making the instance x abnormal for the
cluster C. Each attribute is associated with a weight denoted by edisc(x, C, A) indicating
how much the attribute A contributes to the abnormality of x with regard to C. A

contributes to the abnormality of x with regard to C if A is frequently separating x from
the instances in C. This separation occurs right at the deepest common ancestor ∇li

x for
a given li. In other words, the discriminating weight of A is the average over the lis of the
number of times A was the split attribute of the deepest common ancestor of x and li.

edisc(x, C, A) = 1
p

p∑
i=1

δ(A,∇li
x ), (2.7)

where δ(A,∇li
x ) = 1 if A is the split attribute of ∇li

x and 0 otherwise.

Following the example from Fig. 2.9, Figure 2.11 shows the split attribute at the
deepest common ancestor. edisc(x, C1, A1) = 1, edisc(x, C1, A2) = 0, edisc(x, C2, A1) = 2/3
and edisc(x, C2, A2) = 1/3.

Figure 2.11 – Example from Fig. 2.9: discriminating attributes

Noteworthy is that edisc can be computed only for the closest clusters (greatest c(x, C)
from Eq. 2.5).

The final explanation returned by CADI for an anomaly is illustrated on Figure 2.12.
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Figure 2.12 – Final explanation returned by CADI: c(x, Ci), ecom and edisc.

2.5 Summary
This chapter offered a comprehensive presentation of CADI, our unified approach to

extract anomaly explanations by structure analysis. The modifications performed on the
original IF approach were detailed in Section 2.2. The main revision is the introduction
of a split selection criterion, or rather a split preservation criterion. The splits are still
generated uniformly at random, but the separations falling into dense areas are discarded.
The introduction of this criterion caused an update of the anomaly scores computation,
as explained in §2.2.2. It also refrained from adding too much complexity to the initial
approach. The new trees have three types of leaves, among which the leaves containing
groups of inseparable points are combined to obtain a partition of the data set. The
combination strategy is inspired by grid-based clustering. However, instead of combining
the regions delimited by the leaves, the leaves somehow similar in terms of points are
merged. That similarity is measured by the Jaccard index between leaves (Sec. 2.3). In
Section 1.3, the explanation generation process is extensively described. The separations
between the instance to explain and the leaves composing each cluster are utilized.

In the next chapter, the performance of CADI will be assessed.
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Chapter 3

EXPERIMENTS

This chapter details the experiments conducted to assess the performance of CADI.
Answers to the following questions are sought:

Q.1) Is CADI able to accurately detect anomalies in a data set?

Q.2) Do CADI’s DN leaves gather compact and homogeneous sets of points that can be
combined to retrieve a partition of the regular instances a the data set?

Q.3) Is CADI able to combine those DN leaves to retrieve an accurate partition?

Q.4) Is CADI able to identify contextual anomalies in relation to clusters of regular
instances?

Q.5) Is CADI able to provide accurate explanations by structure analysis of the anoma-
lies?

Q.1 is addressed in Section 3.2. Q.2 and Q.3 are explored in Sec. 3.3. Q.4 is addressed
in Sec. 3.4 and Q.5 is addressed in Sec. 3.5. The chapter ends with a summary of the
experiments and results obtained in Sec. 3.6.
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3.1. Experimental Setting

3.1 Experimental Setting

As a reminder, CADI possesses the following hyper-parameters: the number of trees
in the forest t, the sample size Ψ, the depth limit hlim, α which controls the size of the
margin around each separation and τ , the threshold on edge weights during clustering.
These hyper-parameters are set to these default values: t = 100, Ψ = 256, hlim = 8 and
α = 5%. The margin size is α× the attribute’s initial range. The threshold τ for the
removal of the weakest edges is set to 0 unless specified otherwise.

The default values of t, Ψ and hlim are the same as those of IF. The intuition behind
a fixed value of the margin size is the following: if two points are separated by less than
α× dom(A) on an attribute A, they should remain together during the tree building pro-
cess. However, the value of that parameter can be adjusted with some knowledge about the
data. For example, if the user wants to keep together data points having a difference in val-
ues on a specific attribute A lower than a quantity β, then the value of α for this attribute
can be set to β/dom(A). This fixed value of α causes an update on line 14 in Alg. 3. If the
data distribution is uniform, then marg/(maxx∈D x.A−minx∈D x.A)×|D| points should be
expected in the margin of fixed size marg. Nevertheless, α is a lower bound of the quantity
marg/(maxx∈D x.A−minx∈D x.A), as the quantity (maxx∈D x.A−minx∈D x.A) decreases
with separation and α = marg/(maxx∈sample x.A − minx∈sample x.A). Consequently, a
value lower than α×|D| is also lower than marg/(maxx∈D x.A−minx∈D x.A)×|D|. Line
14 is therefore not modified in the implementation and the experiments.

3.2 Anomaly Detection

This section of the experiments aims at evaluating the anomaly detection performance
of CADI.

3.2.1 Data sets

Thirteen data sets, including 2 synthetic ones, are used. These data sets are the same
as those used in [LTZ12] to evaluate IF. The dimension, number of instances and number
of anomalies of each data set are presented in Table 3.1 and available in [Ray16]. Each
data set contains inliers and outliers.
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Table 3.1 – Considered anomaly detection data sets: dimension, number of instances and
number of anomalies.

Name d n # of anomalies
Annthyroid 6 7200 534
Arrhythmia 271 420 57
Breast 9 683 239
Cover 10 286048 2747
Hbk (synthetic) 4 75 14
Http 3 567498 2213
Ionosphere 32 351 126
Mammography 6 11183 260
Pima 8 768 268
Satellite 36 6435 2036
Shuttle 9 58000 3511
Smtp 3 95156 30
Wood (synthetic) 6 20 4

3.2.2 General Assessment against IF

Evaluating the effectiveness of an anomaly detection algorithm is a difficult task in
the unsupervised setting without labels. Fortunately, anomaly detection data sets are
generally adapted from imbalanced classification, and the rare labels are used as surrogates
for the ground-truth outliers [Agg16; Cor21]. It is the case for the real-world data sets
from Table 3.1. Unsupervised algorithms can therefore be evaluated using those data sets.

The Area Under the Precision-Recall Curve (AUPRC) and the Area Under the Re-
ceiver Operating Characteristic Curve (AUROC) can be both employed as metrics to
evaluate an anomaly detector, because they are independent of the anomaly score thresh-
old. For an anomaly detector f outputting an anomaly score for each instance, a score
threshold γ has to be selected in order to obtain a binary partition of D composed of
the set of inliers and the set of outliers. Let P(γ) be the set of predicted outliers given
the threshold γ, and G the set of ground-truth outliers. The size of G is fixed, while the
size of P(γ) depends on γ. As γ decreases, more instances are reported as outliers. The
precision of f is the proportion of true anomalies among those identified as such:

Precision(γ) = |P(γ) ∩ G|
|P(γ)| .

The recall of f is the proportion of true anomalies correctly identified:

76



3.2. Anomaly Detection

Recall(γ) = |P(γ) ∩ G|
|G|

.

The Precision-Recall (PR) curve displays the precision against the recall for different
values of γ. The Receiver Operating Characteristic (ROC) curve on the other hand plots
the True Positive Rate (TPR) against the False Positive Rate (FPR) for different values
of γ. The TPR is the recall. The FPR is the proportion of inliers wrongly reported as
outliers. It is given by:

FPR(γ) = |P(γ) ∩ G|
|D − G|

.

For two given detectors f1 and f2, the dominance of the PR curve of f1 over f2 is
equivalent to the dominance of the ROC curve of f1 over f2. There is therefore no need
to plot both curves to have a general assessment. However, the ROC curve is monotonic
and, while the areas under both curves are independent of γ, the AUROC has a simple
probabilistic interpretation [HM82]:

Given a ranking or scoring of a set of points in order of their propen-
sity to be outliers (with higher ranks/scores indicating greater out-
lierness), the ROC AUC is equal to the probability that a randomly
selected outlier-inlier pair is ranked correctly (or scored in the cor-
rect order).

The AUROC is therefore the most used metric in the literature, and the one that will
be employed here.

CADI is first compared to the classic IF approach in terms of AUC. IF is still one
of the best unsupervised anomaly detection methods, even better than some DL ap-
proaches [Han+22]. The means and standard deviations of the AUC after ten runs of
each method are reported in Table 3.2. To provide a fair comparison, the default hyper-
parameters are used for each approach.

In general, the AUCs of CADI and IF are close. CADI performs better than IF on 6
data sets, and IF also performs better than CADI on 6 data sets. Both approaches obtain
the same perfect results on the artificial data set hbk. In most data sets, there is no
significant difference between CADI and IF. However, on mammography, CADI performs
much better than IF with a gain of +0.196 in mean AUC. In average, CADI performs
better than IF, with an average gain of +0.015 in mean AUC. Another observation is that
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Table 3.2 – CADI vs IF: AUC

Data set CADI IF
Annthyroid 0.762 ± 0.013 0.810 ± 0.014
Arrhythmia 0.812 ± 0.016 0.794 ± 0.035
Breast 0.994 ± 0.001 0.981 ± 0.003
Cover 0.816 ± 0.047 0.873 ± 0.028
HBK 1.0 ± 0.0 1.0 ± 0.0
HTTP 0.998 ± 0.002 0.999 ± 0.001
Ionosphere 0.829 ± 0.006 0.848 ± 0.006
Mammography 0.839 ± 0.011 0.643 ± 0.038
Pima 0.701 ± 0.011 0.683 ± 0.009
Satellite 0.700 ± 0.014 0.699 ± 0.016
Shuttle 0.992 ± 0.002 0.995 ± 0.001
SMTP 0.880 ± 0.011 0.886 ± 0.008
Wood 0.967 ± 0.029 0.885 ± 0.057
Mean AUC 0.868 0.853

the standard deviations of the AUCs with CADI are generally slightly lower, implying
that the results obtained are more stable. This stability is caused by the fact that some
properties of CADI are controlled in a deterministic manner. Consequently, though CADI
remains a random method, it is less random than classical IF.

3.2.3 Identified Anomalies

Why does CADI perform better than IF on some data sets? There are two aspects to
the answer to this question. The first aspect can be observed on the statistical data set
wood. On this data set, CADI frequently assigns a higher score to the real anomalies in
comparison to IF, having a perfect AUC several times. It is not the case for IF. Table 3.3
shows the 10 data points that receive the highest anomaly scores with both methods
during one execution. Using the same representation as in [LTZ12], Figure 3.1 shows the
first two principal components of the data set.

The four highest-ranked instances by CADI are the actual anomalies of the data set
(instances 4, 6, 8 and 19), whereas IF scores the instance 10 first. Observing the two
principal components on Figure 3.1 shows that instance 10, although regular, lies in a low
density region. Since with IF the anomaly score only depends on the average isolation
depth of a data point (Eq. 2.1), it is more difficult for the method to make a distinction
between real anomalies and regular data points located in low density regions. On the
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Table 3.3 – Anomaly ranking of the wood data set: bold-faced indexes are actual anoma-
lies.

Rank CADI IF
1 19 10
2 4 19
3 6 4
4 8 8
5 7 20
6 12 7
7 11 1
8 9 12
9 1 11
10 20 17

other hand, CADI takes the local density surrounding the data point into consideration
while generating the splits and during the score computation (Eq. 2.3). As a result, CADI
offers a better contrast between regular data points located in low density zones (but still
surrounded by data points when the local density is considered) and anomalies (isolated).
LOF also correctly identifies the true anomalies, and ranks them first [LTZ12]. With LOF,
there is also no ambiguity because instance 10 has a surrounding density similar to the
one of its neighbors. CADI combines separability -anomalies are far from the other data
points- and local density information -anomalies have a lower local density in comparison
to their neighbors- during the identification of anomalies.

The second difference between IF and CADI lies in the identification of local anomalies.
This phenomenon can be observed on the data set on Figure 3.2. On this Figure, the
opacity of each data point is proportional to its anomaly score. The scores are min-
max scaled. It appears that CADI gives higher scores than IF to local anomalies. As a
refresher, local anomalies are instances deviating from a portion of the data set.

3.2.4 Hyper-parameters Sensitivity

How much does the choice of the hyper-parameters influence the anomaly detection
performance of CADI?

As a reminder, CADI introduces one additional hyper-parameter for anomaly detec-
tion: α, which controls the width of the margin surrounding the split. The default margin
size is α× the attribute’s initial range, with α = 5% (Sec. 3.1). When α = 0, a classic IF
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Figure 3.1 – First two principal components of the wood data set. Instances 4, 6, 8, 10
and 19 are displayed.

(a) CADI (b) IF

Figure 3.2 – Scores distribution: CADI vs IF
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is built.
For different values of α ∈ {1.25%, 2.5%, 7.5%, 10%} and for each data set, ten CADI

forests are built. The means and standard deviations for each value of α and for each
data set are displayed on Fig. 3.3 and detailed in Table 3.4. The mean and standard
deviation using default parameters are also added to Table 3.4. They had already been
shown earlier in Table 3.2.

Figure 3.3 – Influence of α on the AUC

It appears that the AUCs do not vary much with the different values of α. Furthermore,
no value of α is systematically better than the others across all the data sets. However,
lower values of α tend to produce better results. α = 2.5% provides the highest average
AUC and the lowest average standard deviation, while α = 10% delivers the worst average
AUC and also the highest average standard deviation.
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Table 3.4 – Means and standard deviations after 10 runs for different values of α

Data set α = 1.25% α = 2.5% α = 5% α = 7.5% α = 10%
Annthyroid 0.783 ±

0.017
0.768 ±
0.019

0.762 ±
0.013

0.758 ±
0.017

0.742 ±
0.014

Arrhythmia 0.818 ±
0.012

0.818 ±
0.012

0.812 ±
0.016

0.821 ±
0.011

0.810 ±
0.009

Breast 0.994 ±
0.001

0.993 ±
0.001

0.994 ±
0.001

0.994 ±
0.001

0.994 ±
0.001

Cover 0.911 ±
0.019

0.871 ±
0.038

0.816 ±
0.047

0.823 ±
0.043

0.811 ±
0.024

Hbk 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Http 0.989 ±

0.009
0.997 ±
0.002

0.998 ±
0.002

0.997 ±
0.002

0.997 ±
0.003

Ionosphere 0.833 ±
0.006

0.829 ±
0.008

0.829 ±
0.006

0.828 ±
0.014

0.826 ±
0.012

Mammography 0.834 ±
0.017

0.837 ±
0.010

0.839 ±
0.011

0.848 ±
0.010

0.848 ±
0.008

Pima 0.654 ±
0.017

0.687 ±
0.010

0.701 ±
0.011

0.713 ±
0.005

0.708 ±
0.007

Satellite 0.675 ±
0.012

0.691 ±
0.009

0.700 ±
0.014

0.697 ±
0.017

0.696 ±
0.014

Shuttle 0.993 ±
0.001

0.993 ±
0.001

0.992 ±
0.002

0.991 ±
0.002

0.992 ±
0.001

Smtp 0.902 ±
0.009

0.897 ±
0.009

0.880 ±
0.011

0.870 ±
0.014

0.873 ±
0.006

Wood 0.944 ±
0.053

0.984 ±
0.029

0.967 ±
0.029

0.949 ±
0.041

0.868 ±
0.106

Mean AUC 0.871 0.874 0.868 0.868 0.856
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Can CADI yield better results with less trees in the forest? As the separations are
not always completely random, we might wonder whether CADI’s trees are so much more
informative that less trees are required. The impact of the number of trees on the AUC is
therefore also analyzed. Figure 3.4 illustrates, for each data set, the mean AUC obtained
with forests containing 30 to 100 trees.

From Fig. 3.4, we cannot conclude that smaller forest in terms of number of trees
yield better results, since there is a convergence around 100 trees on almost all the data
sets. For the data set satellite where better AUCs are obtained with 50 and 60 trees,
the performance cannot be attributed solely to the number of trees in the forest, as the
samples also have an impact.

3.2.5 Assessment against Unsupervised Algorithms

In this last batch of experiments related to anomalies identification, CADI is compared
against other unsupervised anomaly detection algorithms. The selected baselines are
EIF [HKB21], SCIForest [LTZ10], LOF [Bre+00], COF [Tan+02], CBLOF [HXD03] and
the statistical anomaly detection algorithm ECOD [Li+22]. The default values of the
hyper-parameters are used for each algorithm to provide a fair comparison. In [Bre+00],
the default value of the number of neighbors is not specified. In the original IF paper,
this number is set to 10. Here we use the default value of k = 20. The implementations of
EIF and SCIForest are provided in the package isotree 1. The implementations of LOF,
COF, CBLOF and ECOD are parts of the PyOD library [ZNL19]. Table 3.5 shows the
results obtained by each method. For non deterministic methods, the average over 10
runs is displayed.

SCIForest and ECOD rank first the most (on four data sets). CADI has the best
average AUC and the best average rank. COF struggles on data sets containing many
instances, being unable to produce results in reasonable time. This is due to the compu-
tation of chaining distances which involves calculating the sum of all distances connecting
k neighbors to the data point.

1. https://github.com/david-cortes/isotree/blob/master/README.md
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Figure 3.4 – Evolution of the AUC with the forest size
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3.3 Clustering

In this section, the ability of CADI to build a partition of the regular instances in the
data set is evaluated. Before evaluating the clustering process, the properties of the new
trees and the DN leaves in particular are analyzed.

3.3.1 Data sets

The data sets used in this section are illustrated on Figure 3.5. They are constrained
to 2D and 3D description spaces, to control the behavior of the method. Each data set
contains clusters and anomalies: 2 clusters of regular data for D1, D2 and D4, 3 clusters of
regular data for D3 and 4 clusters of regular data for D5. D5 is a three-dimensional data
set in which each cluster is located in a 2-dimensional subspace. Its generation process is
explained in [PHL04]. D4 is the data set moons composed of two interleaving half circles,
to which anomalies have been added manually. D1, D2, D3 and D4 also contain anomaly
clusters.

(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

Figure 3.5 – Data sets for the clustering experiments
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3.3.2 Towards Identifying the Data Inner Structure

This part of the experiments aims at analyzing the properties of the CADI trees, in
order to provide an answer to Q.2 (Do CADI’s DN leaves gather compact and homoge-
neous sets of points that can be combined to retrieve a partition of the regular instances
a the data set?). The goal is to investigate whether a relevant partition of the regular
data points can be inferred from a CADI forest.

Leaf Cardinalities and Tree Depths

The impact of the split selection in CADI on the size of the leaves is first evaluated.
With IF, the separations are completely random until a point is isolated or the depth
limit is reached. It is therefore expected to have on one hand leaves containing isolated
points (IN), and on the other hand leaves which have reached the depth limit and contain
more than one point (DLN). With CADI, it is expected to have, in addition to IN and
DLN leaves, leaves containing points that could not be separated, the so-called DN leaves.
Ideally, there should be many DN leaves, depending on the chosen depth limit, because
the objective is to preserve the clusters. Therefore, CADI trees should have a smaller
height (the depth limit being more difficult to reach than in the classical version) and the
leaves should contain more data points.

A classic IF and a CADI forest are built on each data set. The leaves containing
isolated instances (IN leaves) are discarded. Then, the average cardinality of the leaves
as well as the average depths of the trees of each forest type are computed. The means
and standard deviations across 10 runs are reported in Table 3.6.

Table 3.6 – Statistics on the tree structures built by IF and CADI

Data set Leaf sizes Tree depths
IF CADI IF CADI

D1 7.27 ± 0.30 28.37 ± 0.82 8.0 ± 0.0 4.77 ± 1.65
D2 8.76 ± 0.30 27.35 ± 1.12 8.0 ± 0.0 5.92 ± 1.06
D3 10.22 ± 0.46 21.52 ± 0.81 8.0 ± 0.0 6.12 ± 0.88
D4 6.64 ± 0.12 17.77 ± 0.49 7.99 ± 0.02 5.78 ± 0.80
D5 9.49 ± 0.63 13.34 ± 0.53 8.0 ± 0.0 7.50 ± 0.50

As expected, CADI leaves contain more points than the leaves of a classical isolation
forest, and this on all the data sets. As for the trees, they are indeed more compact than
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the classical isolation trees.

Types of Leaves

We then study the proportion of leaves that have reached the depth limit (DLN), as
compared to the proportion of leaves containing points that are no longer separable (DN):
a CADI forest is built and these two values are computed. Table 3.7 reports the means
and standard deviations across 10 runs of this experiment.

Table 3.7 – Percentages of the different types of leaves

Data set DLN leaves (%) DN leaves (%)
D1 22.50 ± 3.40 77.50 ± 3.40
D2 36.85 ± 3.49 63.15 ± 3.49
D3 38.30 ± 2.15 61.70 ± 2.15
D4 24.16 ± 3.37 75.84 ± 3.37
D5 69.08 ± 3.10 30.92 ± 3.10

It appears that a significant proportion of leaves are DN. This phenomenon is verified
on data sets D1 to D4, but not on data set D5. The latter also contains fewer points in
the leaves, as compared to the other data sets and the trees of the CADI forest, although
smaller than the classical isolation trees, are still deeper than those of the forests built
on the other data sets (Table 3.6). This is explained by the fact that in D5, each cluster
"exists" in only two of the three dimensions. However, the isolation process continues by
separating the points on the third dimension, where they are distributed almost uniformly.
The depth limit is not a function of the number of dimensions. However, as the dimension
of the data set increases, there are more options for the split choice. As a result, the
depth limit is more often reached. Increasing the depth limit taking into account the
dimensionality mitigates the aforementioned problem. For example, by using a depth
limit of 15 for D5 instead of the default value of 8, the percentage of DLN leaves decreases
to 21.82± 2.03.

Data Point Proximity

This part intends to check if CADI preserves groups of close data points. This prox-
imity is measured in the original data space by the Euclidean distance. To measure
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this proximity in CADI we introduce the inseparability index between two points as the
average number of times they co-occur in the same DN. It is defined as follows:

sim(x1, x2) = 1
t

∑
l∈L

1l(x1, x2) (3.1)

with L the set of leaves of type DN in the forest, and 1l(x1, x2) = 1 if {x1, x2} ⊆ l and 0
otherwise.

For each pair of points in the data set, the Euclidean distance between them is calcu-
lated, as well as the inseparability index. Both values are min-max scaled. The results
of the comparison between these two measures are displayed for each data set on Fig-
ure 3.6: for each pair of points, on the x-axis the inseparability index and on the y-axis
the Euclidean distance.

(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

Figure 3.6 – Euclidean distance vs inseparability index

Two seemingly counter-intuitive phenomena are observed when analyzing these results,
but can be explained as follows. First, some data points, despite being close in Euclidean
space (small Euclidean distance), are rarely found in the same leaf (inseparability index
close to 0). This occurs when the two points, although close in the Euclidean space, are
separable and thus belong to different clusters, for example the instances (14.22,−0.70)
and (8.59,−0.89) in D3. It is especially the case when they have similar values on some
dimensions. A separation between these two points can be kept if their neighborhood is
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not dense. The aforementioned situation also occurs when one of the two points is very
close to the cluster containing the other point, without being part of it, or when one of
the two points is located at the border of the cluster and is therefore often separated from
the others (e.g. points (−7.10, 4.57) and (−6.03, 3.16) in D2).

It can also be observed that some data points distant in the Euclidean space are
sometimes found in the same leaves. This occurs when the two points, although distant
in the Euclidean space, are part of the same cluster, for example when the cluster is
stretched. This phenomenon frequently occurs in the data set D5 where all the four
clusters are stretched.

This analysis suggests that three random points x1 and x2 then x1 and x3 can be
located at the same Euclidean distance, but, using the information provided by the CADI
forest, x1 and x2 are part of the same cluster, and x3 is not, because many splits separate
x1 and x3. The local density evaluation during the split selection therefore brings an
additional knowledge useful for clustering.

Average Distances within and between Leaves

A cluster is a group of close points (compactness) which are separated from the groups
of points in the other clusters (separability). This experiment therefore aims at checking
whether CADI’s leaves are portions of clusters containing close points forming compact
and separated groups. To verify that, the average Euclidean distance between the points
of each leaf and the center of the leaf is calculated for both forest types. It is the average
distance within leaves. The average Euclidean distance between the centers of the leaves is
also computed. The results are reported in Table 3.8. Ideally, the average distance within
leaves should be small (compactness) and the average distance between leaves should be
high (separability).

The average distance within leaves is larger in CADI in almost all data sets, which is
understandable because classic isolation leaves contain less points as seen earlier in the
experiments, and these data points are close. CADI’s leaves in contrast contain larger
groups of close data points. On D5, the average distance within leaves is larger in IF:
for data points belonging to two clusters located in different subspaces, the distance is
much larger. On the other hand, the distance between leaves is systematically larger in
CADI, which reflects the fact that there is a better separability between leaves on CADI,
in comparison to IF. CADI leaves are consequently more likely to be portions of clusters
than IF leaves.
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Table 3.8 – Average distances within and between leaves, means and standard deviations
after 10 runs

Average distance within leaves Average distance between leaves
IF CADI IF CADI

D1 0.102 ± 0.002 0.159 ± 0.002 1.684 ± 0.007 2.467 ± 0.032
D2 0.233 ± 0.004 0.395 ± 0.004 4.114 ± 0.034 5.058 ± 0.043
D3 1.142 ± 0.037 1.345 ± 0.033 13.250 ± 0.182 18.597 ± 0.400
D4 0.117 ± 0.004 0.143 ± 0.002 1.256 ± 0.006 1.393 ± 0.011
D5 0.341 ± 0.008 0.246 ± 0.007 1.419 ± 0.009 1.630 ± 0.013

Inseparability Index and Clustering

The purpose of this experiment is to verify whether, when two points have a low
inseparability index (Eq. 3.1), they indeed belong to the same cluster. If it is the case, it
would mean that CADI leaves contain points belonging to the same cluster.

For each data set, a CADI forest is built and anomalies are identified. The anomaly
score threshold is set to γ = 0.95 2. Then, the inseparability index between each pair of
points is computed and an Agglomerative Hierarchical Clustering (AHC) using average
linkage is performed on the obtained similarity matrix. As the number k of clusters in
the data set is known, the AHC is stopped when k groups are constructed.

The obtained clusters are compared to the expected ones using the Adjusted Rand In-
dex (ARI), that equals 1 if the two partitions are identical. Table 3.9 shows the maximum
ARI obtained on each data set, compared with the maximum ARI obtained when using
the Euclidean distance as the distance measure for the AHC. In the ARI calculation,
anomalies are considered as part of an isolated cluster.

Except on the data set D1, the ARI is higher when using the inseparability index. On
D3, the separability information conveyed by the inseparability index allows to reconstruct
the three regular clusters, whereas the Euclidean distance combines the upper-half of the
biggest cluster to the cluster at the top left (Fig. 3.7a).

As DN leaves may be parts of clusters, their combination can lead to the discovery of
non elliptic clusters. This is observed on data set D4.

On D5, the clusters are stretched and located in different subspaces. Consequently,

2. In practical anomaly detection, the user can either choose a threshold or consider as abnormal the
p instances which receive the highest anomaly score, where p is a small percentage of the data set.
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Table 3.9 – AHC on the data sets using inseparability index vs Euclidean distance: Ad-
justed Rand Indexes

Data set Inseparability index Euclidean distance
D1 1.0 1.0
D2 0.927 0.866
D3 0.982 0.485
D4 0.972 0.413
D5 0.876 0.623

(a) Euclidean distance + AHC (b) Inseparability index + AHC

Figure 3.7 – AHC results on D3: Euclidean distance vs inseparability index
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and as observed on Figure 3.6e, points belonging to the same cluster may be far away from
each other when considering the Euclidean distance. The inseparability index however is
not tricked by that subtlety of the data set because the instances are frequently located
in the same DN leaves. On the other hand, points belonging to different clusters are
sometimes close when clusters are poorly separable. Again, whereas the combination
Euclidean distance + AHC merges those two clusters, the inseparability index is able to
keep them separated. Figure 3.8 illustrates these results.

(a) Euclidean distance + AHC (b) Inseparability index + AHC

Figure 3.8 – AHC results on D5

Points found in the same DN leaves are therefore indeed part of the same cluster. In
the next paragraph, we will evaluate the leaves combination strategy.

3.3.3 Clustering Assessment

The previous experiments showed that DN leaves contain data points which are close to
each other and may be combined to reconstruct the data inner structure. The combination
strategy of DN leaves in order to retrieve a partition of the regular instances described in
Section 2.3 is now assessed.

Baselines and Experimental Setting

CADI is compared with two baselines. The first baseline is the robust density-based
clustering algorithm DBSCAN [Est+96]. The second one is the robust clustering algo-
rithm k−means-- [CG13]. Both approaches were described in Sec. 1.4.

The choice of DBSCAN for comparison is motivated by three main reasons:
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1. DBSCAN, like CADI, automatically discovers the number of clusters and therefore
does not require it as an input parameter.

2. DBSCAN is able to discover non-elliptical clusters.
k−means-- on the other hand are a variant of the k−means clustering algorithm de-

tecting clusters and anomalies simultaneously. It has two input parameters: the number
k of clusters to produce and the number l of outliers to identify. At each step of the
algorithm, k−means-- discard the l farthest instances when updating the clusters cen-
ters. The implementation of DBSCAN from scikit-learn 3 is used. The implementation of
k−means-- used is part of the library ELKI 4.

The data sets from Fig. 3.5 are still employed.
As k−means-- takes as inputs the number of clusters and the number of anomalies to

identify, the true values are passed as parameters to the algorithm. The most important
hyper-parameter of DBSCAN, ϵ, controls the size of the neighborhood. The default value
of ϵ is 0.5.

Results

The best ARI obtained when using CADI, DBSCAN and k−means-- on the data
sets are reported in Table 3.10. These results are obtained sometimes after tweaking
the hyper-parameters. The optimized values of the hyper-parameters are specified when
different to the default ones.

Table 3.10 – Clustering performance: ARI

Data set CADI DBSCAN k−means--
D1 1.0 0.968 1.0
D2 0.920 0.990 0.973

D3 0.980 0.961
(ϵ = 1.5) 0.405

D4
0.957

(τ = 25th percentile)
0.996

(ϵ = 0.25) 0.316

D5 0.871 0.975 0.338
Mean 0.946 0.978 0.606

On the data set D1 which is quite easy to cluster, CADI and k−means-- obtain a
perfect ARI. DBSCAN obtains a slightly lower ARI, but this is due to the fact that it

3. https://scikit-learn.org/stable/modules/clustering.html#dbscan
4. https://elki-project.github.io
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considers the anomalous cluster as a regular cluster. On D3 and D5, the same phenomenon
observed when combining the Euclidean distance and the AHC occurs with k−means--,
hence the poor performance on these data sets. k−means-- also struggles with D4, as
the clusters are non-elliptical. DBSCAN and CADI are however able to discover these
non-elliptical clusters. Noteworthy is that the threshold τ on the edges of CADI’s graph
was set to the 25th percentile on this data set. The method was not able to discover two
clusters with the default value τ = 0. DBSCAN was also not able to discover two clusters
with ϵ = 0.5. The value had to be lowered to 0.25. The anomalous cluster was also
treated like a regular cluster, hence the obtained ARI. On the data set D3, the parameter
of DBSCAN was also fine-tuned. The default value ϵ = 0.5 resulted in an ARI of 0.490.
The ARI from Table 3.10 was obtained when setting ϵ to 1.5. The abnormal clusters were
again considered regular by DBSCAN, lowering the ARI. Finally, the ARIs of CADI on
D2 and D5 were also lowered because the anomaly score threshold: many instances were
considered anomalous. With a higher threshold, better ARIs are obtained on these two
data sets.

The two hyper-parameters of k−means--, namely the number of clusters and the num-
ber of anomalies, are crucial. However, as an extension of the k−means algorithm, the
approach struggles with non-elliptical clusters, and modifying these hyper-parameters
does not solve this issue. Conversely, DBSCAN and CADI can detect non-elliptical pat-
terns. Furthermore, they do not require as input the number of clusters. However, the
other inputs (the weights threshold τ for CADI and the size ϵ of the neighborhood) affect
the number of clusters discovered by the method. Nevertheless, τ seems to have less
impact on CADI’s performance than ϵ on DBSCAN’s.

Assessment on a non-synthetic data set: Iris

In this final experiment related to clustering, we use a small but non-synthetic data
set: the well-known data set iris. It is a 4-dimensional data set containing 150 instances
and 3 clusters of 50 instances each. It is assumed that it does not contain any anomaly.
Consequently, we will perform clustering on this data set under this hypothesis. This
means that the anomaly score threshold is set to γ = 1.0.

Classic k−means obtains an ARI of 0.730 on the data set iris for k = 3. k−means--
follows the trend, with an ARI equal to 0.716 for k = 3 and l = 0. With the default
hyper-parameters, CADI obtains an ARI of 0.216 on iris. When the depth limit is set
to Ψ − 1 (fully grown trees), the ARI reaches 0.676. Increasing only the margin width
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(α = 10% instead of 5%) also results in a performance increase, with the ARI reaching
0.709. As for DBSCAN, the ARI on the iris data set is 0.521 using the default value of
ϵ. It increases to 0.568 with ϵ = 1. However, the method only discovers two clusters. For
lower values of ϵ, like 0.25, DBSCAN obtains three clusters, but more than half of the
data set is considered outlying.

The performance improvement observed when building deeper trees confirms that the
dimensionality of the data set should be taken into consideration when setting the tree
depth limit hlim of CADI. When hlim is too restrictive, there are many DLN leaves that are
not used during clustering, and less DN leaves. Increasing the margin width also produces
more DN leaves, hence the performance improvement. The sensitivity of DBSCAN to the
choice ϵ was also corroborated.

3.4 Local Anomaly Detection

This section of the experiments evaluates the local/contextual anomaly detection com-
ponent of CADI, viz. its ability to position anomalies in relation to clusters of regular
instances as detailed in §2.4.1.

3.4.1 Data sets and Experimental Setting

Unfortunately, there is no information on the real-world data sets from Table 3.1 on
the locality of anomalies. We will therefore use synthetic data sets in this section. These
data sets contain clusters and anomalies, and for each anomaly we know from which
cluster(s) it is deviating. These data sets are similar to the ones used for the clustering
assessment. They are described in Table 3.11 and illustrated on Figure 3.9.

In D6, each anomaly is close to only one cluster. The outlying attributes in relation
to the corresponding cluster are the ground-truths. In D7, some anomalies share some
attributes values with more than one cluster. D8 contains anomalies that deviate from
all the clusters. D9 contains, in addition to local and global anomalies, a cluster of
anomalies. To evaluate the ability of CADI to discover non-spherical clusters, D7 and D8

contain stretched clusters. In addition to that, D9 is the moons data set, to which we
manually added outliers.

Anomaly detection and clustering are first performed on these data sets. The results
of the clustering in terms of ARI are presented in Table 3.12. The performance is similar
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Table 3.11 – Data sets for local anomaly detection

Data set d # clusters n # anomalies Description
D6 2 2 900 25 Spherical clusters. Local anoma-

lies only.
D7 2 3 1508 8 Two spherical and one stretched

clusters. Local and global
anomalies.

D8 3 4 408 8 Four stretched clusters. Each
pair of clusters located in only
two dimensions. Local and
global anomalies.

D9 2 2 517 17 Two moons. One anomaly clus-
ter. Local and global anomalies.

(a) D6 (b) D7

(c) D8

(d) D9

Figure 3.9 – Data sets for local anomaly detection
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to the one observed in §3.3.3.

Table 3.12 – Clustering performance: ARI

Data set CADI DBSCAN k−means--
D6 0.986 0.914 1.0
D7 0.970 0.963 0.994
D8 0.936 0.971 0.333
D9 0.992 0.999 0.287
Mean 0.971 0.962 0.653

k−means-- obtains the best ARI on D6 and D7. This behavior was expected, since
the classic k−means algorithm is efficient for extracting spherical clusters. On D8 and
D9, k−means-- struggles, just like the original k−means would do on these data sets. On
D8, the same problem identified on Figure 3.8 with AHC combined to Euclidean distance
is observed on k−means--. DBSCAN and CADI on the other hand do not struggle to
discover non-elliptical clusters. CADI obtains the best ARI in average.

In addition to identifying anomalies and groups of regular data points, CADI provides
some insight about the cluster(s) from which each anomaly may be deviating. As, to the
best of our knowledge, no method in the literature is able to do so without relying on dis-
tances computations, there is no baseline for comparison. However, since the true cluster
affectations are known for each anomaly in the generated data sets, the performance of
CADI regarding the contextual anomaly detection can be evaluated. To do so, for each
outlier o, let P be the set of predicted clusters for o, viz. the set of clusters from which o

may be deviating according to CADI. Given an outlier o and the quantities c(o, Ck) for
Ck ∈ {C1, ..., Cp} (set of identified clusters) computed using Eq. 2.5, the set of predicted
clusters for o is composed of the clusters Ck with maximum integer values of c(o, Ck):

P = argmax⌊c(o, Ck)⌋

Let T be the set of ground-truth clusters for o, viz. the set of clusters from which
o is deviating. The precision and recall are computed as Precision = |P ∪ T |/|P| and
Recall = |P ∪ T |/|T |.

3.4.2 Results

For each data set D6 to D9, the precision and recall is averaged over the outliers. The
results are shown in Table 3.13.
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Table 3.13 – Contextual anomaly detection performance

Data set Precision Recall
D6 1.0 1.0
D7 1.0 1.0
D8 0.875 0.875
D9 0.941 1.0

CADI performs well on all the data sets, with perfect precision and recall on D6 and
D7. The method is more challenged by D8, as this data set contains several data points
deviating from more than one cluster.

3.5 Explanations By Structure Analysis
The last part of CADI’s assessment is the evaluation of the generated contextual

explanations.

3.5.1 Baselines and Experimental Setting

Evaluating an explanation on real-world data sets is not an easy task, because of the
absence of ground-truths. With some knowledge about the data, it is possible to have
an insight on these ground-truth explanations. Without that knowledge, some strategies
must be developed. In the anomaly explanation literature, a common practice is to add so-
called noise attributes [LSH18; CTS23]. The hypothesis behind this practice is that true
explanations should lie among the original (viz. non-noise) attributes. We believe that
an evaluation using this scheme is not faithful enough, since the true outlying attributes
must be part of the original ones. This scheme therefore only evaluates the ability of a
method to provide non-aberrant explanations. In [Xu+21], another technique to generate
ground-truth explanations on real-world data sets is proposed. The outlying degree/score
of true outliers in every possible subspace of the original feature space is computed using
an anomaly detector. The ground-truth explanation is the subspace where the anomaly
received the highest score. Three different anomaly detectors are used, among which the
IF. Depending on the detector used, there are different ground-truth outlying attributes
that are used separately during the evaluation. With this scheme, there is no information
regarding the clusters of regular data points if any.

In contrast to real-world data sets, the true outlying attributes are known during the
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generation of synthetic data sets. Furthermore, since the generation process is known,
data sets containing clusters and local anomalies can be produced. It is the case for the
data sets from Table 3.11. We followed a strategy similar to the one described in [LSH18]
for the generation of synthetic data sets.

CADI outputs as explanation for an outlier o a list of discriminative feature weights
with each identified cluster (edisc from Eq. 2.7). COIN [LSH18] also outputs a list of
feature weights, but with respect to the local context of o only, points close to o, and not
the set of clusters in the data set. ATON [Xu+21] also outputs a list of feature weights, but
does not return the local context of o as explanation like COIN, even though it is used to
compute feature importance scores. Both COIN and ATON need the outlier o to explain
as input to the methods. It is not the case for CADI which performs anomaly detection
prior to the explanation. COIN and ATON will nonetheless serve as baseline for the
evaluation. In addition to these two, CADI is compared to the ground-truth explanation
extraction procedure introduced in [Xu+21]. The IF is used as detector for this method
called ATON-GT from here onwards. ATON-GT outputs for each specified outlier o, the
subspace in which it received the highest anomaly score. The implementations of COIN,
ATON and ATON-GT were made available by the respective authors.

Considering all the above-mentioned differences across CADI, COIN, ATON and
ATON-GT, we propose the following evaluation procedure to provide a fair comparison:

— Since COIN, ATON and ATON-GT do not identify outliers per se, explanations
for true outliers only are requested from all the four methods. This allows to also
evaluate the ability of CADI to provide accurate explanations even for outliers the
method was not able to identify as such.

— The ground-truth explanations are a list of discriminating attributes with respect
to each cluster. As a result, for the methods outputting feature importance scores
(CADI, COIN and ATON), the top k discriminating features are retrieved, with k

being the length of the true explanatory subspace.

— For all four methods, the precision and recall of the explanations are computed in
a similar manner as during contextual anomaly detection performance evaluation
(Sec. 3.4). If T is the ground-truth attribute subspace and P is the predicted
attribute subspace, then the precision for a given outlier o is |T ∩P|/|P|. The recall
is computed for a single instance o with the formula |T ∩P|/|T |. This procedure is
also used in [Xu+21]. For each data set, the precision and recall over all the outliers
are computed.
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— As CADI should not only produce the good cluster(s) but also the good explana-
tory subspaces with respect to these clusters, the two information should match.
Consequently, during the precision and recall computation, the predicted cluster
is compared to the ground-truth cluster first, before comparing the explanatory
subspaces.

— For COIN, ATON and ATON-GT, the generated explanatory subspace is compared
with the explanatory subspace of o with respect to the true cluster(s) from which it
is deviating, as these methods do not indicate from which cluster o may be deviating.

3.5.2 Results

The precision and recall for each data set and each method are shown in Table 3.14.

Table 3.14 – Outlier interpretation performance

Precision Recall
CADI COIN ATON ATON-GT CADI COIN ATON ATON-GT

D6 1.0 0.76 0.76 0.76 1.0 0.76 0.76 1.0
D7 1.0 0.81 0.60 0.81 1.0 0.81 0.69 1.0
D8 0.89 0.69 0.87 1.0 0.89 0.69 0.87 0.75
D9 1.0 1.0 0.94 0.67 1.0 1.0 0.94 0.91

CADI has a high precision and recall on all the data sets, meaning that it is able not
only to identify the cluster(s) from which an instance is deviating, but also to provide
a faithful explanation in relation to these clusters in terms of discriminative attributes.
COIN performs better than ATON on D6, D7 and D9. This may be because of the
clustering step of COIN that allows to mitigate the influence of different group of points
on the attributes importance. ATON and ATON-GT perform better than COIN on D8.
In this data set, clusters are located in different subspaces and local anomalies can also be
identified in these subspaces. And, as ATON-GT explores different subspaces during the
explanation generation process, it has a slight advantage. CADI is also able to discover
clusters (and consequently outliers) in subspaces because of the split generation procedure.
As a result, it does not fall far behind ATON-GT in terms of precision on D8. In general,
ATON-GT has a high recall, because it tends to overestimate the size of the explanatory
subspace. For example, on the data set D6, the explanatory subspace returned by ATON-
GT for the red square outlier on Figure 3.10 is the full attribute space. Although only
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Chapter 3 – Experiments

feature A1 is sufficient (regardless of the local context or not), that outlier is more easily
isolated in the full feature space than in A1.

Figure 3.10 – Data set D6. For the outlier represented by a red square, ATON-GT returns
as explanatory subspace the full feature space.

3.6 Summary
The objective of this chapter was to evaluate CADI. Due to the lack of unified method

to perform anomaly detection, data clustering and generate explanations of anomalies in
relation to clusters of regular data points, each component of CADI was compared to dif-
ferent baselines on several data sets. It appeared that CADI is competitive against other
unsupervised anomaly detection algorithms, clustering algorithms and anomaly expla-
nation approaches, and sometimes clearly more effective, while possessing the advantage
that it does not rely on external methods. It was also shown that the results are relatively
stable with the choice of the hyper-parameters. However, on higher dimensional data sets,
it was observed that the depth limit has an influence on the clustering results, because of
the small number of DN leaves that are combined to retrieve a partition. Thus, a research
perspective would be to investigate the impact of the depth limit on the clustering re-
sults, and to propose a depth limit threshold which is a function of the dimensionality of
the data set. Moreover, as the DLN leaves are not employed for clustering because they
convey only a partial information (the points could not be separated after hlim number of
splits), it may also be worth investigating their combination when hlim is not a function
of the dimensionality.
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CONCLUSION AND PERSPECTIVES

Summary

In this dissertation, we addressed three scientific problems, namely anomaly detec-
tion, clustering and anomaly explanation, with a unified method called CADI. CADI,
which relies on a modified version of the Isolation Forest algorithm, performs the three
aforementioned tasks without relying on external algorithms. In contrast to the existing
anomaly explanation approaches, CADI produces explanations about anomalies in rela-
tion to clusters of regular data, explanations which are important in the context of the
Sea Defender project of which this thesis is a part. To extract these explanations, a split
selection criterion is introduced during the construction of isolation trees to avoid as much
as possible the separation of dense regions of points. A CADI tree therefore has three
types of leaves, among which the leaves containing points that could not be separated
are of paramount importance when trying to retrieve a partition of the regular instances.
Whereas the so-called IN leaves containing isolated instances like in the classic IF ap-
proach are important for anomaly detection, the former terminal nodes called DN leaves
correspond to portions of clusters that can be combined to retrieve a partition of the data
set. The combination strategy is adapted from the one used in grid-based clustering and
therefore allows to retrieve non-elliptical clusters and automatically discover the number
of clusters in the data set. The same trees are finally analyzed to position the identified
anomalies in relation to clusters, and extract contextual explanations of the anomalies in
relation to the clusters.

Experiments conducted on real-world data sets for anomaly detection, and mostly
synthetic data sets for the other components, showed that CADI demonstrates superior
results compared to other unsupervised anomaly detection methods for anomaly detection,
to robust clustering algorithms for clustering, and to anomaly explanation approaches
taking into account the local context of the anomaly to explain. It was also shown that
CADI is able to correctly position the anomalies in relation to clusters, therefore filling
a gap in the local anomaly detection literature. The CADI approach was our second
contribution, the first one being a taxonomy of anomaly explanation methods. Whereas
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the existing taxonomies focus on the explanation extraction method, our taxonomy focus
on the information conveyed by generated explanations. Four categories of explanations
are therefore proposed, among which explanations by structure analysis, scarcely explored
in the literature, is the one produced by CADI.

Limitations and Future Directions

The work presented in this dissertation can be improved and extended in several ways.
First of all, besides the anomaly detection component, the approach has not been assessed
on high dimensional data sets. This requires the generation of higher dimensional data
sets containing anomalies and clusters, and ground-truth knowledge about the context
and explanation of each anomaly. It is the primary future direction of this work. Along
the same lines, the impact of the depth limit threshold hlim has not been thoroughly
investigated, as well as its relationship with the value of the hyper-parameter. During the
experiments related to clustering (Sec. 3.3), it was observed that this parameter may be
important when the dimensionality of the data set increases. In the original IF method and
in most of its variants (including CADI), the depth limit is not set by taking into account
the dimensionality of the data set. However, in [LTZ10] and [Cor21], it was suggested
that deeper trees may produce better results even for anomaly detection. Still related to
the depth of the trees, CADI, in contrast to classic IF, does not leverage the depth of
the node containing the instance in the computation of its anomaly score (Eq. 2.2). It
may be worth examining the combination of the depth information and the cardinality
information during the computation of anomaly scores.

Explainable Artificial Intelligence has been trending for several years now. However,
the evaluation of the explanations generated is still an open problem. As XAI is at the
crossroad of AI and cognitive sciences, there are mainly two categories of approaches to
evaluate explanations [VL20]: objective explanations which employ objective metrics, and
human-centered evaluations relying on user studies which are therefore subjective. The
objective metrics include the correctness and the length of the explanation, for instance.
However, since explanations are intended for humans, they should not be left out during
the evaluation stage, hence the need for user studies to make sure that the targets of the
explanations are satisfied. In the anomaly explanation literature and in this work, only the
correctness/fidelity of the explanations with respect to the true explanations is generally
assessed [MCS21]. Nevertheless, to acknowledge the subjective nature of explanations, it
may be of interest to devise objective metrics (like in [Nau+23], but with an emphasis
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on anomaly explanation) among which the user can select the most appropriate ones
according to his/her needs.

From an application perspective, although this thesis was part of the Sea Defender
project, CADI has not yet been employed on international trade data, because the banks
are reluctant to share their data, waiting to test the tools first. This application of CADI
on the real-world data it was designed for, as well as the exploration of human knowledge
integration (for example during the selection of the hyper-parameter α) are also two
perspectives of this work.
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Titre : Contribution à la détection et à l’explication d’anomalies : une méthode unifiée basée
sur les forêts d’isolation
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Résumé : Cette thèse de doctorat se
concentre sur l’explication des anomalies, pro-
blématique qui a été beaucoup moins explo-
rée dans la littérature que l’explication des sor-
ties des réseaux de neurones et des classi-
fieurs. Sa première contribution est une taxo-
nomie des méthodes d’explication des ano-
malies basée sur la nature de l’information
qu’elle véhicule. La deuxième contribution est
une méthode spécifique d’explication des ano-
malies, appelée CADI et reposant sur une ver-
sion revisitée de l’algorithme des forêts d’iso-
lation. Alors qu’une forêt d’isolation classique
n’identifie que les anomalies, CADI reconstruit

également une partition des instances régu-
lières, puis positionne et explique chaque ano-
malie par rapport à ces groupes de régula-
rités, tout ceci sans s’appuyer sur des algo-
rithmes externes et sans trop rajouter de com-
plexité à la méthode originale. Elle s’attaque
par conséquent à trois problèmes avec une
méthode unifiée : la détection des anomalies,
le partitionnement et l’explication des anoma-
lies. Des expériences menées sur des jeux
de données réels et synthétiques démontrent
l’efficacité et la robustesse de l’approche par
rapport aux approches dédiées à l’une de ces
trois tâches.

Title: Contribution to Anomaly Detection and Explanation: A Unified Method based on Isolation
Forest

Keywords: anomaly detection, anomaly explanation, clustering, isolation forest, local/contextual

anomaly

Abstract: This Ph.D. thesis focuses on
anomaly explanation, which has been much
less explored in the literature than the ex-
planation of neural networks and classifiers
outputs. Its first contribution is a taxonomy
of anomaly explanation methods based on
the information conveyed by the explanation.
Its second contribution is a model-specific
anomaly explanation method, called CADI,
and relying on a revisited version of the Iso-
lation Forest algorithm. Whereas a classic
Isolation Forest only identifies the anomalies,
CADI also clusters the regular instances, then

positions and explains each anomaly in rela-
tion these groups of regular instances without
relying on external algorithms and without in-
creasing the complexity of the original method
too much. It therefore tackles three problems
with a unified method: anomaly detection,
clustering and anomaly explanation. Experi-
ments conducted on real-world and synthetic
data sets demonstrate the effectiveness and
the robustness of the approach when com-
pared to state-of-the-art approaches realizing
each of the three tasks separately.
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