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ABSTRACT 

The use of biogas as fuel for transportation, electricity generation, heating and in cooking stoves, 

justify its production as alternative fuel to natural gas. Waste, posing serious danger to the 

environment, especially chicken manures (CM) containing disease-causing microorganisms, if 

utilized via anaerobic digestion to generate biogas will go a long way in mitigating its effect. This 

work hence, desires to turn the detrimental health challenges that these microbes could cause 

humans and animals to generate useful by-products. Therefore, this work aims at studying the 

kinetics of biogas production using CM. The objectives entail utilizing a bench-scale digester to 

produce biogas; studying the growth kinetics of microorganisms acting on the feedstock; profile 

the gas generated and using POLYMATH regression tool to study comparatively, the modified 

Gompertz, Cone, Transfert and Logarithmic biogas yield kinetic models. Method followed involves 

feeding the digester with 7 kg of CM after proximate analysis, determining the biomass 

concentration and daily gas production over a 40 days retention period using the biogas and cell 

growth data in models to describe the conditions inside the digesting system and the biogas 

potential of the CM substrate and lastly, analyzing the raw gas produced to know its constituent 

gases. CM with 24:1 carbon-to-nitrogen ratio, 47% moisture, 13.21% volatile solid and 17.06% 

protein content resulted in 0.883m3 of biogas containing 63% methane and 29% carbon dioxide. 

CM containing an initial average of 3.67 × 109 mg/L cell concentration grew over time giving 

𝜇𝑚𝑎𝑥 and 𝐾𝑠 parameters in the basic Monod model equivalent to 0.076 hr-1 and 3.838 × 108 mg/L 

respectively; satisfying further, the Han and Levenspiel, Loung, Wayman and Tseng, Monod with 

decay rates and Moser growth models. Estimates from Logistic, Cone, modified Gompertz and 

Transfert models, were proven to be the best in that order utilizing several statistical data. 

Information from the models would help scale up gas production if all conditions were satisfied. 

Possibility of achieving the same fit with other feedstock should be experimented. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Suitability of kinetic models to determine the importance of relationship between variables to 

guide empirical design, assess the experimental results and define the specific parameters of the 

system performance is regarded as kinetic study (Lim et al., 2021). Essentially, kinetics of biogas 

production deals specifically with production variation with time (Sukhesh & Rao, 2018). The 

variation could be growth of microorganisms during feedstock decomposition, concentration of 

pretreatment chemicals, substrate depletion and biogas generation with time. The anaerobic 

digestion utilizes organic waste feedstock such as municipal, agricultural and industrial waste in a 

bioreactor which results into the generation of biogas. Chicken manure (CM) is basically an 

agricultural waste obtained from households and poultry farms and is a good feedstock for biogas 

production (Ulusoy et al., 2018). The kinetic characteristics of microbes involved in the 

degradation of the feedstock provides information on how to optimize the process for high yield 

of biogas (Pecar et al., 2020). Other factors affecting a successful anaerobic digestion are pH, 

Chemical Oxygen Demand (COD), Retention Time (RT), temperature, Organic Loading Rate 

(OLR), pressure, inoculation ratio, nutrients and mixing technology (Bhatt and Tao, 2020; 

Fahriansyah and Sriharti, 2019). The resulting biogas contains methane, carbon dioxide, hydrogen, 

ammonia and moisture and can be upgraded to serve as an alternative fuel to natural gas for use in 

generating electricity, heat generation, fuel for transportation and in cooking stoves (Fuchs et al., 

2018; Granado et al., 2017). 

Modeling of anaerobic digestion system is required to reduce time and extent resources utilization 

in the system, to transform laboratory to industrial scale and, designing of system for optimum 

operational parameters (Kainthola et al., 2019). For scale-up purposes, kinetics of the anaerobic 

digestion (AD) process is a critical factor to study (Almomani, 2020). To assess the performance 

of AD systems, numerous kinetic models have been used by researchers, namely, Transference 

Function model,  Modified First Order model, Chen and Hashimoto model, Monod model, First 

Order model, Substrate Mass Balance model, Cone Model, Modified Gompertz model, Monod 

equation, Contois model, Moser model, Andrew model, and Tessier models (Rajput & 
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Visvanathan, 2018; Velazquez-Marti et al., 2018). Some of this models were used during kinetic 

study of biogas production from CM codigested with multiple biodegradable feedstock, previously 

( Jiang et al., 2021; Duan et al., 2018; Li et al., 2016). However, scholarly papers consulted in this 

study shows that Liu et al. (2018), Ma et al. (2021) and Selvaraj et al. (2018) digest CM and 

studied its kinetics utilizing only the modified Gompertz model, where they obtained varying 

results as a result of differences in conditions set up in their experiments. As for growth models, 

only cow manure kinetic data was analyzed using Contois model by Alqahtani (2013). Dependent 

variables, in most cases, cumulative biogas yield (CBY) and specific growth rates are generated 

using diverse methods and approaches. For instance, daily biogas yield can be measured using 

weighing devices or the liquid displacement method during complete or partial digestion of the 

CM feedstock. While researchers prefer to analyse kinetic results obtained from chemical nutrients 

(e.g. phenol) and wastewaters using growth models instead of organic matters such as manures 

and other biodegradable wastes. Obviously, there is no straight and clearly defined approach of 

obtaining kinetic data for growth model analysis as there are numerous feedstock to handle, 

millions of microorganisms to consider and several factors influencing the process. Hence, this 

study, coupled methods utilized at different stages of studies in literature on different samples to 

model procedure that takes into considerations factors affecting the production of biogas from CM 

from beginning to the end, as novelty of this work. Thus, using a clearly stated objectives, a 

comprehensive methodology from previous work studied with other substrates can be replicated 

for CM ass feedstock. 

1.2 Aim and Objectives of the Study 

The aim is to study the kinetics of biogas production using chicken manure. The specific objectives 

are to: 

i. produce biogas from chicken manure using a bench-scale anaerobic digester 

ii. study the growth kinetics of microbes aiding the degradation of the feedstock 

iii. profile the biogas produced and carry out a comparative kinetic study with existing model 

including the modified Gompertz, Cone, Transfert and Logarithmic models by 

POLYMATH regression software 
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1.3 Statement of the Problem 

Due to nutrient insufficiency often recorded in biogas production from chicken manure, it is mostly 

codigested with other feedstock thereby preventing its exploitation as sole biogas feedstock. 

Microorganisms responsible for biogas production are sensitive to conditions in their environment 

and may die when these conditions are unfavorable. Also, previous kinetic studies analysed biogas 

production from chicken manure for only few selected models developed by researchers. 

1.4 Significance of the Study 

Previous study has indicated the potential of chicken manure for biogas. Therefore, kinetics of 

biogas production from chicken manure feedstock critically aid control of anaerobic digestion for 

the purpose of optimizing its production. This study would help in knowing concentration of 

microorganism and substrate which will either accelerates or retards the yield of biogas. 

1.5 Scope of the Study 

The work is limited to the production of biogas using a bench-scale anaerobic digester, the study 

of kinetics of microbes and the use of regression software to compare different biogas yield kinetic 

models.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Chicken Manure (CM) Utilization 

A good raw material capable of generating biogas is CM, due to its high nitrogen content and low 

carbon-nitrogen ratio (Ulusoy et al., 2018; Wang et al., 2019; Eronmosele et al., 2020). They are 

obtained generally from poultry farms and chicken processing industries as chicken processing 

waste (CPW) in form of legs, blood, heads, skin, bones, feathers, viscera, besides the whole 

carcasses if the bird is dead (Li et al., 2016). These contents makes CM an organic matter that is 

highly biodegradable (Keskin et al., 2018; Yilmaz and Sahan, 2020) and an important bioenergy 

source to derive improved fuel (Tanczuk et al., 2019; Hakimi et al., 2021; Zahedi et al., 2020). 

Other significance could be poultry waste minimization when used as substrate for anaerobic 

digestion to manufacture biofertilizer, a co-product of the fermentation process (Ksheem, 2015; Li 

et al., 2016; Singh et al., 2018; Hakimi et al., 2021). 

CM is a promising feedstock for slow pyrolysis (Tanczuk et al., 2019). Certain nutrient sources 

such as sulphur, N2, potassium, phosphorus, fat, amino acids and protein can as well be recovered 

from the manure (Yilmaz and Sahan, 2020; Oosterkamp and Oosterbeek, 2018; Selvaraj et al., 

2018; Li et al., 2016; Ksheem, 2015). Ammonia and/or ammonium can also be recovered from 

CM by hydrothermal conversion of the high N2 content in it (Matsumura et al., 2021). A recent 

study carried out by Cheong et al. (2019), demonstrated the generation of electricity from the 

fluidized bed combustion of CM. Generally, utilization of CM fundamentally solves the 

environmental pollution problems (Wang et al., 2019). 

2.1.1 Environmental Impacts of Chicken Manure 

Amongst all agricultural activities, the poultry sector is one capable of generating huge amount of 

organic waste (Keskin et al., 2018). Livestock farmers, especially those handling poultry birds like 

geese, ducks, turkey, chicken, guinea fowl, quail, ostrich and pigeon in poultry houses disposes 

off the waste generated from these animals on the environment. Chicken waste are often applied 

on agricultural land as manure or compost as a traditional treatment approaches, dumped at 

landfill, or incinerated, contaminating the environment in the process (Ksheem, 2015; Cao et al., 

2016). For instance, too much of nitrogen and phosphorus in CM results in eutrophication during 
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landfill and composting (Cao et al., 2016). In addition, chicken waste provides a breeding 

environment for flies and parasites, pathogen release, eutrophication of surface waters, threat to 

local air quality when used as fertilizer, pollution to soil, health risks and groundwater 

contamination (Cao et al., 2016; Cayci et al., 2017; Hassan et al., 2017; Keskin et al., 2018). 

Its effect on soil properties is classified into three, and includes physical, chemical, and biological 

effects. CM in solid or liquid phases used on irrigated soils risks increased soil and groundwater 

salinity, excessive nitrate leaching to ground water as chemical effect. Biologically, problems 

arising are; introduction of pathogens, deterioration of soil carbon, and decreasing populations of 

desirable microbes (Ksheem, 2015; Hassan et al., 2017; Cheong et al., 2019). The soil physical 

property like structure/texture may also be affected (Hassan et al., 2017). Improper disposal of CM 

waste must be addressed to mitigate its effect on the ecosystem. CM should be pre-process or 

pretreated by thermo-chemical and/or physical processing technologies like torrefaction, ozone 

treatment, re-feeding to animals, composting, steam treatment, drying, ozone treatment, pyrolysis, 

esterification, gasification, co-gasification, fermentation or digestion, combustion and co-

combustion (Cheong et al., 2019; Tanczuk et al., 2019). Cheong et al. (2019) affirms that, 

combustion can be a viable and dependable way to treat CM, principally when coupled with energy 

recovery. 

2.1.2 Availability of Chicken Manure Feedstock 

In Turkey, Onay (2020), reported that 30 kilo tons of CM is produced daily, with potential for 

renewable energy recovery. Deqingyuan chicken farm, reckons as the chief egg farm plant in Asia 

and reap chicken manures from the farm for biogas production (Yilmaz and Sahan, 2020). 

Annually, China alone outputs about 15 million tons of chicken manure (Wang et al., 2021). 

Estimates of chicken manure global production stood at 457 million tonnes per year (Ksheem, 

2015; Zahedi et al., 2020). Number of poultry birds in a certain location could also signal its 

potential for manure recovery and subsequent utilization for anaerobic digestion. Relevant studies 

shows that a chicken farm with about 100,000 chickens is capable of producing up to 10t of chicken 

manure daily (Wang et al., 2021). In Indonesia for instance, Yusof et al. (2019), has it that, there 

are 523 million birds in that country. Brazil sat on the top global ranking of chicken exports 

(Barreto et al., 2019) and occupies the second position in chicken production in the world (Silva 

et al., 2021). In Europe, ≅ 1.886 × 109 poultry heads produced 107 tonnes of poultry manure 

according to Rubežius et al. (2020). Chicken population in Nigeria is 150.682 million (second in 
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Africa) of which 15% are semi-commercially farmed, 25% commercially and 68% in backyards, 

based on a report by Francis et al. (2016). One year after, a higher population of 180 million 

chicken are estimated to exist in Nigeria, of which only 21% are intensively reared. Specifically, 

83 million chickens are raised in extensive systems and 60 million in semi-intensive systems, most 

of which are indigenous chickens, contributing substantially to the nation’s gross domestic product 

(GDP) (Lasagna et al., 2017). In the North Eastern part of Nigeria, specifically Yobe State, it was 

reported that, there are 3.4 million chicken reared domestically (Annuar et al., 2008). Currently, 

the populations are sure to surpassed the previously reported figures by Annuar et al. (2008), 

Francis et al. (2016) and Lasagna et al. (2017). Maiduguri, an area in the same location, employed 

mostly, the deep litter rearing system, although facing challenges including, bad housing, poor 

management practices, inadequate vaccination, and diseases resulting in high mortality rate. 

Common diseases identified by Francis et al., (2016) faced by poultry farmers in Maiduguri 

metropolis are newcastle, fowl pox, gumboro, fowl typhoid, fowl cholera, chronic respiratory 

disease, helminthiasis, ectoparasitism and, coccidiosis. 

2.2 Biodigester for Biogas Production 

Bioreactors could be termed digesters (Nong et al., 2020). It is an airproof reactor tank or vessel 

(Jyothilakshmi and Prakash, 2016) that is simple, cheap, robust, easy to operate and maintained 

(Khayal, 2019). Biogas digesters or simply biodigesters are considered small-scale if subjected to 

domestic use and large-scale as in industrial digesters (IRENA, 2016). They are flexible because 

they can be made from plastics such as Polyvinyl Chloride (PVC), Low-Density Polyethylene 

(LDPE) or High-Density Polyethylene (HDPE) (Fahriansyah and Sriharti, 2019). Microorganisms 

such as fungi, microorganism and protozoa can survive in an oxygen free environment, degrading 

the feedstock to produce biogas and digestate. The process is identical to what happens in a cow’s 

stomach where stomach microorganism convert food into dungs and biogas (Lenkiewicz and 

Webster, 2017). 

Biogas is composed of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulphide 

(H2S), ammonia (NH3), nitrogen (N2), oxygen (O2) and water vapor (H2O) in varying amount. The 

more the waste is degraded, the more the gas is produced (Jaffar and Rehman, 2020). The 

decomposed substrate is the residue called the digestate  which is rich in macro- and micro 

nutrients, and used as biofertilizer (Jyothilakshmi and Prakash, 2016; Elalami et al., 2019; 



7 
 

Chowdhury et al., 2020). The digestate will have little or no smell if the digester is working 

perfectly (Lenkiewicz and Webster, 2017). 

Despite the multitude of compounds present in biogas, it is still 20% lighter than air, where its 

yield and composition depends on digestion condition, feedstock and co-substrate type (Neshat et 

al., 2017; Raja and Wazir, 2017; Bharathiraja et al., 2018). Biogas is a colorless and odorless gas 

whereas biomethane are upgraded biogas where composition of more than 40% methane will be 

responsible for characteristic flammability of gas (Lenkiewicz and Webster, 2017; Parsaee et al., 

2019; HomeBioGas, 2021). This flame is hotter than fire (Bharathiraja et al., 2018) and clear blue 

( Raja and Wazir, 2017; Aziz et al., 2019; HomeBioGas, 2021), similar to Liquefied Petroleum 

Gas (LPG). Biogas are characterized with low energy density, slow flame speed and partial 

combustion; a property that is considered negative (Bharathiraja et al., 2018). In addition, ignition 

temperature is in the range of 50-7500C (Raja and Wazir, 2017). Compounds including NH3, H2S 

and CO2 in biogas are poisonous, the main reason why biogas can suffocate one if exposed to in 

an enclosed area (Lenkiewicz and Webster, 2017). Though CO2 content could be brought to 

desirable level during upgrading process by scrubbing. Energy units of biogas is megajoules (MJ) 

(IRENA, 2016) and 1 m3 of raw biogas at STP containing 60% CH4 will give a heating value of 

21.5 MJ or 5.97 kW h (Bharathiraja et al., 2018). 

2.3 Anaerobic Digestion of Chicken Manure 

CM is an alkaline, semi-solid organic material that is made up of diverse composition of other 

organic materials (Ali et al., 2017; Lohani et al., 2020). Ali et al. (2017), reported that daily 

chicken excretion ranges from 80-125g (wet)/chicken. Dry matter content or total solid (TS) 

content of CM is 20-25% of the excreta which is rich in nitrogen, with high amount of 

biodegradable fraction and volatile solid (VS) content of 55-65% (Dalk and Ugurlu, 2015; Ali et 

al., 2017; Duan et al., 2018). Percentage water content of more than 70% in CM is considered 

unattractive for utilization (Cao et al., 2016). It also contain pathogens (methanogenic 

microorganism), high phosphorus, low C-N ratio, and high salinity level (Ksheem, 2015; Noori 

and Ismail, 2019). Lohani et al. (2020) reported a chicken manure with TS = 47.3%, pH = 8.1, VS 

= 68% and C-N ratio of 18. To prevent chicken manure from decomposing, prior to anaerobic 

digestion, they are often kept at a very low temperature of -20°C or higher (up to 4℃) (Li et al., 

2013). Dry fermentation has the merits of high biogas production rates, low water consumption 

and low cost (Li et al., 2020). 



8 
 

The agricultural sector where CM is derived, is the main source of total ammonia emission into 

the atmosphere (Cayci et al., 2017; Baltrėnas et al., 2019). It has been stated clearly, that the high 

nitrogen content of CM makes it a suitable material for anaerobic digestion. However, nitrogen, 

together with sulphur inhibits the digestion process (Oosterkamp and Oosterbeek, 2018). The level 

of nitrogen in CM is attributed to the conversion of uric acid and undigested proteins into total 

ammonia nitrogen (TAN) during digestion (Dalk and Ugurlu, 2015). For a successful AD process, 

the inhibitory effect of NH3 (threshold value of 200 mg/L) as well as the low C-N ratio of CM 

must be overcome (Li et al., 2016; Cheong et al., 2019; Yilmaz and Sahan, 2020) as it may cause 

volatile fatty acid (VFA) to accumulate and inhibit microbial activities (Dalk and Ugurlu, 2015). 

Air stripping is a pretreatment technique to get rid of NH3 from CM wastewater (Fakkaew and 

Polprasert, 2021). TAN inhibition can be reduced by feeding the system with feedstock containing 

low TS (Dalk and Ugurlu, 2015). For a stable AD performance and a balanced nutrient, mono-

digestion of CM is often frown at. Anaerobic co-digestion of CM with other feedstock is mostly 

carried out by researchers as alternative method of solving the ammonia problem (Onay, 2020). 

Example is co-digestion of FW, goat manure and CM (Lohani et al., 2020) and co-digestion of 

ethanol plant effluent with CM among others (Cheong et al., 2019). 

2.3.1 Stages of Degradation and Factors Affecting Gas Production 

AD process consist of four stages (Rajput and Visvanathan, 2018; Parsaee et al., 2019; Sawyerr et 

al., 2019; Uche et al., 2020): namely hydrolysis, acidogenesis, acetogenesis and methanogenesis 

via various set of microbes (Raja and Wazir, 2017; Brémond et al., 2018; Kainthola et al., 2019). 

The acidogenesis and acetogenesis stages are sometimes coupled together as the acidification step 

making it a three stage process of: hydrolysis, acidification and methanogenesis (Uche et al., 

2020). Microorganisms acting in those stages are different and forms the constituent gases in 

biogas. 

Biogas yield is simply the resulting biogas output per unit mass of substrate or volatile solid (Wu 

et al., 2016). Factors influencing the production of biogas are feedstock type, pH, volatile fatty 

acids (VFA), nutrients, tank volume, retention time, pressure, organic loading rate (OLR), 

chemical oxygen demand (COD), temperature, trace elements, carbon to nitrogen (C/N) ratio, 

alkalinity and particle size ( IRENA, 2016; Neshat et al., 2017; Raja and Wazir, 2017; Fahriansyah 

and Sriharti, 2019; Kainthola et al., 2019; Sawyerr et al., 2019; Zhang et al., 2019; Bakraoui et 
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al., 2020; Bhatt and Tao, 2020). How these parameters are carefully chosen is crucial to optimizing 

AD for biogas production (Sarker et al., 2019). 

2.3.2 Kinetic Study 

How speed of a reaction will change under certain reaction conditions together with clarified 

information about the mechanism of such reaction is often regarded as kinetic study. More 

precisely, it is the study of rates of chemical reactions. Several factors have been highlighted to 

influence the anaerobic digestion of organic feedstock such as chicken manure for the production 

of biogas. However, these factors are mildly incorporated into kinetic models to explain the 

activities resulting in biogas production. Presently, there are three models that have been used 

consistently to describe the kinetics of the anaerobic decomposition of substrate. They are growth 

kinetics, kinetics of biogas production, and kinetics of substrate degradation models, among which 

kinetics of biogas production is the most important (Rea, 2014; Van et al., 2018; Momodu & 

Adepoju, 2021). 

2.4 Microbial Growth Kinetics 

In CM, there are mostly three types of micro-organisms, namely, Salmonella spp., Escherichia 

coli (E. coli), and Cryptosporidium. During anaerobic batch fermentation of CM, these 

microorganisms grow under a variety of physical, chemical, and nutritional conditions. They do 

so, by extracting nutrients from the medium (CM slurry) and converting them into biological 

compounds. This changes is accomplished through a cell’s use of a number of dissimilar enzymes 

in a strings of reactions to produce metabolic products, which either remain in the cell 

(intracellular), providing the cell with energy or be secreted from the cells (extracellular) as 

bioproducts (Liu, 2017). Growth therefore, is believed to mean, both replication of cells and 

change in cell size. The growth and multiplication of microorganism in controlled environments, 

thus arouse the interest of microbiologists, biochemical engineers and, cell-growth experts, as they 

instigate bioprocess simulation and control scheme design (González-figueredo et al., 2018). 

Generally, according to UlukardeŞler and Atalay (2018), kinetics of microorganisms growth can 

be investigated in two ways. One, is to measure the substrate concentrations during experiment, a 

procedure that is tiring and consumes a lot of time and a second, faster and easier methods that 

entails measuring the gas production rates in the course of the synthesis. Clearly, microbial growth 
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and substrate consumption rates are two parameters anaerobic digestion kinetics models focuses 

on (Tena et al., 2021). 

For bioreactors operating in batch mode, kinetics of biogas production is proportional to specific 

growth rate of methanogenic microorganism inside the digester (Noori and Ismail, 2019; 

Venkateshkumar et al., 2020). Two types of microbial growth models can be distinguished 

(González-figueredo et al., 2018): Structured Kinetic Models (SKMs) describing changes in cell 

population and classified into chemically structured models, morphologically structured models 

and, genetically structured models and, Unstructured Kinetic Models (UKMs) representing the 

metabolic behavior of the biomass cell production. The significance of these growth models are to 

estimate the growth of microorganisms under environmental conditions (Hawkins et al., 2019), 

predict the behavior of biochemical reactions (González-figueredo et al., 2018), assist engineers 

to design and control biological processes (Muloiwa et al., 2020) and, to determine the 

performance parameters influencing the product yield (Gallipoli et al., 2020). 

2.4.1 Determination of Cell Numbers by Serial Dilution 

Data of cell numbers or concentration (X) together with substrate concentration (S) over a specified 

time interval are parameters usually plugged into microbial growth kinetic models to estimate other 

performance constants. It is a usual practice for Microbiologists to estimate the number of cells in 

a sample, a procedure called microorganism count, which involves two major approaches. Cell 

numbers are measured via direct methods, where cells are counted or indirect method which 

depends on cell presence/activity measurement without necessarily counting individual cells 

(Datta, 2021). 

In direct cell counting, cells in a liquid culture or colonies on a plate are counted and is divided 

into pour plate and spread plate method. Prior to either of the two methods, serial dilution of culture 

is carried out. A dilution is created by measuring a known volume (usually, 1 ml) or weight of a 

sample containing microbes and adding it to a tube containing a known volume of sterile water, 

thus making the resulting solution less concentrated than the original. Initially, more of these tubes 

containing sterile water are arranged on a rack (O’Toole, 2016). When this process is repeated, as 

seen in Figure 2.2a, for each new tube, thus making a series of more and more dilute samples, it is 

called a serial dilution. 
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Figure 2.1: Depicting the Serial Dilution and Pour Plating Technique 

The number of serial dilution is selected based on an initial estimate of the culture density. After 

serial dilution, culture media, a mixture of nutrient and agar is prepared by mixing with appropriate 

amount of water, stirred and autoclaved to sterilize it at 1210C for some time before cooling to a 

temperature of 45oC. The liquid nutrient agar is poured on a petri dish and the diluted culture is 

poured on it (see Figure 2.1b) and incubated in order to form visible colonies. The choice of media 

influences the formation of colonies by some cells, as they may not form colonies in a wrong media 

(O’Toole, 2016; Um-e-Habiba et al., 2021). 

Colonies are counted on the agar surface following the incubation period of around 24 hours. The 

viable plate count is a count of viable or live cells and is based on the principle that viable cells 

replicate and give rise to visible colonies when incubated under suitable conditions for the 

specimen (Liu, 2017). Total viable count was according to procedure explained by Hossain et al. 



12 
 

(2017). If the numbers of visible colonies after plating is low, it is indirectly pointing to the fact 

that the community is dominated by slow-growing microorganism (Salvesen and Vadstein, 2000). 

Two to three plates are normally taken from each dilution and the mean of the number of colonies 

counted on each plate is recorded. Overall, rigorous mixing of samples with the dilution medium 

is essential to getting reliable results. The viable plate count requires precision and skill if accurate 

results are to be obtained, though seen as a low estimate of the actual number of cells (Datta, 2021). 

One limitation of the plate count method is that, large sizes of unculturable cells are often present 

(Salvesen and Vadstein, 2000). The units of the microbial count are usually expressed as colony-

forming unit per millilitre (CFU/ml) in liquid product or colony-forming unit per milligram 

(CFU/mg) in solid product (Marwan et al., 2018; Datta, 2021). Using the dilution factor, as shown 

in Equation 2.6, used to compute the number of cells in the actual cell culture, microbial 

concentration (X) or CFU/ml can then be calculated following Equation 2.7 (Um-e-Habiba et al., 

2021). 

 Dilution factor (DF) =
(Diluent volume)+(Stock solution)

Volume of stock transfered
  (2.6) 

 CFU/mL =
(No.  of colonies)×(Total dilution factor,   TDF)

Volume of culture in mL
   (2.7) 

2.4.2 Microbial Growth Curve 

Microorganisms grown in batch culture or closed culture, where no nutrients are added and 

majority of the waste is not removed, follow a reproducible growth pattern referred to as the growth 

curve. Lots of mathematical models have been proposed for microorganism growth curve in a 

batch culture of the AD (Selvaraj et al., 2018). Growth curve, as used in biology, chemistry and 

medical sciences, often displays a phase in which the specific growth rate, 𝜇 begins at a value of 

zero in a certain period (resulting in a lag time) and then increases to a maximal value (𝜇𝑚) 

(Kyurkchiev et al., 2016; Dinh et al., 2018). A plot of log 𝑋 with time is known as growth curve. 

When a batch system containing CM slurry is fed with known initial substrate concentration, 𝑆0, 

and known initial concentration of microbial cells or inoculum, 𝑋0, it will be observed that, 

overtime, the substrate concentration decreases with time (i.e. 
𝑑𝑆

𝑑𝑡
 is negative) as the cell 

concentration increases with time (i.e. 
𝑑𝑋

𝑑𝑡
 is positive). Kandasamy et al. (2020) had used CM to 

culture Cladocerans, Diaphanasoma sarsi and Ceriodaphnia cornuta and determine their 
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population. As clearly demonstrated in Figure 2.2, microorganism growth can be represented in 

four phases, namely, the lag phase, exponential phase, stationary phase, and death phase (Liu, 

2017; Marwan et al., 2018; Muloiwa et al., 2020). 

 

Figure 2.2: Typical Growth Curve for a Batch System (Perni et al., 2005) 

Immediately after inoculation, the lag phase occurs. It is a period illustrating the adaptation of cells 

to a new environment (
𝑑𝑋

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
= 0). In this phase, new enzyme systems are activated, cells are 

not replicating themselves and the length of this phase is influenced by the physiological state of 

the inoculum. The diauxic growth or multiple lag phases occurs when more than one medium is 

present, usually as a result of a shift in metabolic pathways in the middle of a growth cycle  (Liu, 

2017). The next phase where cells have adapted to the new environment is known as the maximum 

growth phase/exponential growth phase or logarithmic growth phase (
𝑑𝑋

𝑑𝑡
 and 

𝑑𝑆

𝑑𝑡
 are changing). It 

is represented by a straight line, a period of balanced growth, in which all of the cell components 

are growing at the same rate (pseudo-steady state), which follows the Malthus relation, 𝜇 =
1

𝑋

𝑑𝑋

𝑑𝑡
. 

The stationary phase is the stage where the total growth rate is zero or cell division rate equals to 

cell death rate. There is no longer an upsurge in viable microorganism cell numbers and cellular 

metabolic activity is reduced (Marwan et al., 2018). The death phase comes after the stationary 

phase. Here cells loose their viability or are destroyed by harsh environment, lysis, depletion of 
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nutrient or toxic by-product. Equation (2.8) (Ge et al., 2019) through (2.9) gives the relationship 

between temperature (T), specific growth rate, 𝜇 and kinetic constant of the death occurences, 𝑘𝑑 

(ℎ−1), 

 Cell death rate:  
𝑑𝑁

𝑑𝑡
= −𝑘𝑑𝑁     (2.8) 

     𝑁 = 𝑁𝑠𝑡𝑒
−𝑘𝑑 𝜏     (2.9) 

where 𝑁𝑠𝑡 = number of cells (conc.) in the medium at the end of the stationary phase, 𝑁 = number 

of cells at time t, into the death phase. 

Again, substrate balance can be carried out, assuming first order hydrolysis model represents the 

overall process (Gallipoli et al., 2020). Substrate-to-biomass yield or yield coefficient, Y, is the 

ratio of mass of new cells (dX) and the mass of substrate consumed (dS) (Abraham, 2018). 

Literature studies affirmed that, several simplified models have been applied for estimating 

performance parameters (such as 𝜇𝑚𝑎𝑥 and 𝐾𝑠) (Gallipoli et al., 2020; Tena et al., 2021). 

2.4.3 Substrate Utilization Model 

The notion that organisms consume substrate in 3 ways can be used to formulate relationships for 

the rate of substrate utilization, (−
𝑑𝑆

𝑑𝑡
) as follows: 

(1) Maintenance – substrate could be converted by the microbes into energy to maintain its 

standard of living (Bodegom, 2007). Rate of substrate consumed in order to maintain the 

cells is proportional to the number of cells as seen in Equation 2.10 (Mazaheri and 

Shojaosadati, 2013), where 𝑚𝑠 = maintenance coefficient (g substrate/g cell.h). 

−
dS

dt
|
maintenance

= msX     (2.10) 

The higher 𝑚𝑠 is, the more the substrate is depleted and this is used to describe multiple 

substrates. For convenience, 𝑚𝑠 was assumed as zero in this work. 

(2) Cell mass – substrate may be depleted to produce new cellular components leading to the 

formation of new cells. Rate of substrate consumed to produce more cells is proportional 

to the rate of new cells produced, where the cell yield coefficient, 𝑌𝑋/𝑆 is placed in front of 

−
𝑑𝑆

𝑑𝑡
 to give Equation 2.11. 

−
dS

dt
|
cells

=
1

YX/S
 
dX

dt
      (2.11) 
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(3) Products – substrate could also be used to synthesize chemical products. Here, the product-

to-substrate yield,  𝑌𝑃/𝑆 is the constant of proportionality. It was therefore assumed here 

that, no chemical product was formed, hence −
𝑑𝑆

𝑑𝑡
|
𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 in Equation 2.12 (Sakthiselvan 

et al., 2019) is zero. 

−
dS

dt
|
product

=
1

YP/S
 
dP

dt
     (2.12) 

Total sum of all these change in substrate consumption was carried out as shown in Equation 2.13 

to give Equation 2.14 (Yang et al., 2021), assuming substrate assimilated into energy for growth 

is negative. 

 −∆S = (−
dS

dt
|
maintenance

) + (−
dS

dt
|
cells

) + (−
dS

dt
|
product

)  (2.13) 

Specific substrate utilization rate, q (msubstrate/mcells.time), as well as the first order hydrolysis 

constant, 𝐾ℎ was estimated by combining equations in Equation 2.14 (Lin et al., 2008; 

Syaichurrozi & Rusdi, 2020). 

 −
dS

dt
=

1

YX/S
 
dX

dt
=

μX

YX/S
= qX = KhS     (2.14) 

Making S subject in Equation 2.16, substrate concentration data was generated via Equation 2.15 

and is termed S-experimented or 𝑆𝐸𝑥𝑝𝑡.. 

 YX/S =
g cell mass produced

g substrate consumed
= −

∆X

∆S
=

X−Xo

S−S0
    (2.15) 

 SExpt. = So −
XExpt.−Xo

YX/S
      (2.16) 

2.5 Existing Growth Kinetic Models 

Over the years, several microbial growth kinetic models had been proposed. Table 2.1, depicts 23 

models developed to analyze growth characteristics in batch bioreactors. 
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Table 2.1: Specific Growth Rate Models 

S/No. Model Name Expression Reference 

1 Monod 
𝜇 =

𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
 

(Dlangamandla et 

al., 2019) 

2 Monod with 

Decay rate 
𝜇 =

𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
− 𝑏 

(UlukardeŞler 

and Atalay, 

2018b) 

3 Contois 
𝜇 =

𝜇𝑚𝑎𝑥 𝑆

𝐾𝑠 𝑋 + 𝑆
 

(Ardestani, 2012) 

4 Contois with 

Decay rate 
𝜇 =

𝜇𝑚𝑎𝑥 𝑆

𝐾𝑠 𝑋 + 𝑆
− 𝑏 

(UlukardeŞler 

and Atalay, 

2018b) 

5 Andrew 𝜇 =
𝜇𝑚𝑎𝑥

1 +
𝐾𝑠

𝑆 +
𝑆
𝐾𝑖

 (González-

figueredo et al., 

2018; Xu et al., 

2018) 

6 Andrew with 

Decay rate 

𝜇 =
𝜇𝑚𝑎𝑥

1 +
𝐾𝑠

𝑆 +
𝑆
𝐾𝑖

− 𝑏 (UlukardeŞler 

and Atalay, 

2018b) 

7 Moser Model 
𝜇 =

𝜇𝑚𝑎𝑥𝑆
𝑛

𝐾𝑠 + 𝑆𝑛
 

(Lv et al., 2022) 

8 Tessier 𝜇 = 𝜇𝑚𝑎𝑥 (1 − 𝑒
−𝑆

𝐾𝑠
⁄ ) (Wang & 

Witarsa, 2016; 

Halmi et al., 

2014) 

9 Halden 
𝜇 =

𝜇𝑚𝑎𝑥 𝑆

𝐾𝑠 + 𝑆 +
𝑆2

𝐾𝑖

 
(Bayen et al., 

2018) 
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S/No. Model Name Expression Reference 

10 Haldane 
𝜇 =

𝜇𝑚𝑎𝑥 𝑆

(𝐾𝑠 + 𝑆) (1 +
𝑆
𝐾𝑖

)
 

(Xu et al., 2018; 

Halmi et al., 

2014) 

11 Verhulst 
𝜇 = 𝜇𝑚𝑎𝑥 (1 −

𝑋

𝑋𝑚
) 

 

(Muloiwa et al., 

2020; Annuar et 

al., 2008) 

12 Powell 

𝜇 = 𝜇𝑚𝑎𝑥  
1 +

𝑆
𝐾𝑠

+∝

2 ∝

[
 
 
 
 

1 − {1 −
4 ∝

𝑆
𝐾𝑠

(1 +
𝑆
𝐾𝑠

+∝)
2}

1
2⁄

]
 
 
 
 

 

(Muloiwa et al., 

2020; Annuar et 

al., 2008) 

13 Dabes 

𝜇 = 𝜇𝑚𝑎𝑥  
1 +

𝑆
𝐾𝑠

+∝

4 ∝

[
 
 
 
 

1 − {1 −
8 ∝

𝑆
𝐾𝑠

(1 +
𝑆
𝐾𝑠

+∝)
2}

1
2⁄

]
 
 
 
 

 

(Annuar et al., 

2008) 

14 Heijnen and 

Romein 𝜇 = 𝜇𝑚𝑎𝑥 [

𝑆
𝐾𝑠

𝑆
𝐾𝑠

− 1 + 2
1

𝑛⁄
]

𝑛

 

(Annuar et al., 

2008) 

15 Aiba-Edwards 
𝜇 = 𝜇𝑚𝑎𝑥

𝑆

𝐾𝑠 + 𝑆
𝑒

−𝑆
𝐾𝑖

⁄
 

(Tazdait et al., 

2013; González-

figueredo et al., 

2018; Xu et al., 

2018) 

16 Webb 

𝜇 =
𝜇𝑚𝑎𝑥 𝑆 (1 +

𝑆
𝐾𝑖

)

𝑆 + 𝐾𝑠 +
𝑆2

𝐾𝑖

 

(Muloiwa et al., 

2020) 

17 Luong 
𝜇 =

𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
[1 −

𝑆

𝑆𝑚
]
𝑛

 
(Hamitouche et 

al., 2012; Xu et 

al., 2018) 



18 
 

S/No. Model Name Expression Reference 

18 Yano and Koga 

𝜇 = 𝜇𝑚𝑎𝑥 (
𝑆

𝐾𝑠 + 𝑆 +
𝑆2

𝐾1
+

𝑆3

𝐾2
2

) 

(Tazdait et al., 

2013) 

19 Han and 

Levenspiel 𝜇 = 𝜇𝑚𝑎𝑥𝑆 [
(1 −

𝑆
𝑆𝑚

)
𝑛

𝑆 + 𝐾𝑠 (1 −
𝑆
𝑆𝑚

)
𝑚] 

(Halmi et al., 

2014) 

20 Wayman and 

Tseng 
𝜇 =

𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
− 𝑖(𝑆 − 𝑆𝜃) 

(Zhenlin et al., 

2019) 

21 Alagappan and 

Cowan 
𝜇 =

𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆 +
𝑆2

𝐾𝑖

− 𝑖(𝑆 − 𝑆𝜃) 
(Choi et al., 

2008) 

22 Double 

exponential 

𝜇 = 𝜇𝑚𝑎𝑥 [𝑒
−𝑆

𝐾𝑖
⁄ − 𝑒

−𝑆
𝐾𝑠

⁄ ] (Gummadi and 

Santhosh, 2010) 

23 Logarithmic 𝜇 = 𝑎 + 𝑏 ln(𝑆) (Muloiwa et al., 

2020) 

Broadly, growth models are divided into kinetic models with inhibition (e.g. Tseng and Wayman, 

Andrews, Webb, Aiba-Edwards and Tessier/Double Exponential) and kinetic models without 

inhibition (e.g. Tessier, Moser and Contois model) (Velazquez-Marti et al., 2018). According to 

Wang & Witarsa (2016), the feasibility of applying separate kinetics for substrate decomposition 

would lead to better simulations and needs to be addressed comprehensively. 

2.5.1 Monod Equation 

The simplest among them is the Monod equation (Jijai and Siripatana, 2017). The classical 

equation describes the proportional link between the 𝜇 and low S, in turn explaining the microbial 

growth, physiology, and biochemistry using a hyperbolic function of extracellular resource 

concentration (Amirian et al., 2022; González-figueredo et al., 2018). Monod equation for 

acidogenic microorganism kinetics is given by Equation (2.17) (Delgadillo-Mirquez et al., 2018), 
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 μ =
μmax S

Ks+S
     (2.17) 

where, μmax = maximum specific growth rate (hr-1), 𝐾𝑠 = saturation constant (mg/L), S = 

substrate concentration (mg/L) and 𝜇 = specific growth rate (hr-1). From there, knowing that 𝐷 =

𝜇 and making S the subject, Equation (2.18) for estimating substrate concentration knowing both 

𝐾𝑠 and 𝜇𝑚𝑎𝑥 can be formed; 

S =
DKs

μmax−D
=

μKs

μmax−μ
    (2.18) 

where, D = dilution (hr-1), μmax = maximum specific growth rate (hr-1), 𝐾𝑠 = saturation constant 

(mg/L), S = substrate concentration (mg/L) and 𝜇 = specific growth rate (hr-1). The Monod model 

assumes that the digesting culture media has only one limiting substrate (Muloiwa et al., 2020; 

González-figueredo et al., 2018). Two special cases for the Monod growth formulae exist. At high 

substrate concentration (i.e. 𝑆 ≫ 𝐾𝑠 with zero order), growth will occur at the maximal growth 

rate, 𝜇𝑚𝑎𝑥, making Equation (2.17) simplified to Equation (2.19) and (2.20): 

  
dX

dt
= μmaxX       (2.19) 

   μmax =
ln(

X

X0
)

t
      (2.20)     

where, 𝑋0 = initial cell concentration (CFU/ml), t = fermentation time (day), 𝜇𝑚𝑎𝑥 = maximum 

specific growth rate (hr-1) and X = cell concentration at time, t.  The integrated form of equation 

(2.19) gave rise to Equation (2.20) (Salvesen and Vadstein, 2000; Grow, 2017). And at low 

substrate concentration (i.e. 𝑆 ≪ 𝐾𝑠), growth will have a first order dependence on substrate 

concentration, as 𝜇 is highly sensitive to S and the Monod equation simplifies to Equation (2.21). 

  
dX

dt
=

μmax SX

Ks
        (2.21) 

To determine the Monod constant parameters, 𝜇𝑚𝑎𝑥 and 𝐾𝑠, a plot of 𝜇 againsts S obtained from 

experiments is done. From Figure 2.7a, the substrate-affinity constant, 𝐾𝑠, is the value of S at 

𝜇𝑚𝑎𝑥
2⁄  and 𝜇𝑚𝑎𝑥 is the tangent to the inflection point (Arifan et al., 2021). Alternatively, when 

the reciprocal of the Monod equation is taken, it allows the equation to be transformed into an 

equation of a straight line with known slope and intercept, to help determine 𝜇𝑚𝑎𝑥 and 𝐾𝑠. A plot 
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of 
1

𝜇
 againsts 

1

𝑆
 is known as the Lineweaver-Burke plot (Equation 2.22 and Figure 2.3b) (Germec 

& Turhan, 2021). 

  
1

μ
=

Ks

μmax
(
1

S
) +

1

μmax
     (2.22) 

 

Figure 2.3: (a) Monod Equation fit to Observed Data (b) Lineweaver-Burke Plot 

Alternative plots to the Lineweaver-Burke plot is shown in Figure 2.4. 

 

Figure 2.4: Alternative Plots to Determine Monod Parameters (Paar et al., 2019; Germec & 

Turhan, 2021) 



21 
 

Globally, it is agreed that the Monod model suffers some drawbacks. These limitations are 

(González-figueredo et al., 2018; Muloiwa et al., 2020): (a) Monod model not being able to 

describe specific growth rate in the presence of toxic substrate concentration or substrate inhibition 

effect, (b) separate entity, regulatory complex, adaptive sensitivity to environmental changes, and 

ability of cell organelles to produce various products in inherent metabolism cannot be considered, 

(c) at high S, the 𝜇𝑚𝑎𝑥 is independent of the substrate concentration, (d) at low S, growth is 

dependent on substrate concentration, (e) Monod model does not account for the fact that cells 

may require substrate for maintenance during the death phase and, (f) model does not account for 

the lag and death phase during the growth phase. To alleviate these disadvantages, other models 

incorporating several other parameters have been developed. 

2.5.2 Substrate Inhibition Model 

The Andrews’ equation for substrate inhibition is simple and widely accepted for describing 

growth inhibition kinetics of microorganisms (Tazdait et al., 2013; Velazquez-Marti et al., 2018). 

The same author went on to explain the inhibition constant. The inhibition constant, 𝐾𝑖 in 

Andrews’ model describes the degree of toxicity of the substrate towards the microorganisms 

population. Low 𝐾𝑖, shows the high sensitivity the microorganisms had to substrate inhibition. 

Therefore, 𝐾𝑖 is the S at which microorganisms’ growth or substrate degradation reduced to 50% 

of 𝜇𝑚 or maximum specific degradation rate of the substrate as a result of substrate inhibition. 

Halden model (Hamitouche et al., 2012) is an extended form of the Monod model by introducing 

the inhibition constant, 𝐾𝑖 at low and high substrate concentration, making the model being able 

to handle both toxic and non-toxic substrate (Delgadillo-Mirquez et al., 2018). It is also called the 

methanogenic microorganism kinetics used to emphasize the VFA accumulation causing 

inhibition in AD process (Delgadillo-Mirquez et al., 2018). 

Haldane model has been affirmed as good in describing some experimental data involving 

inhibition of enzymes and microbial growth. In the model, 𝜇 rises to an optimum value and then 

drops as S increases, where the curve shape is dependent upon the values of  𝐾𝑖 and 𝐾𝑠 (Alqahtani, 

2013). Webb model is a modified version of the Haldane model, describing 𝜇 as a function of S 

only. Though, Webb’s model intended to improve upon the Haldane model, an endeavor that 

wasn’t successful (Velazquez-Marti et al., 2018; Muloiwa et al., 2020). Another extension of the 

Monod equation is the unstructured and inhibitory model called Aiba-Edwards model. Aiba-
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Edwards model introduces an exponential to the ratio of S and inhibitory constant, 𝐾𝑖, a parameter 

that takes care of the presence of toxic S in the bioreactor. The model is capable of describing the 

lag and death phase but struggles when describing critical values of inhibitory substrate (González-

figueredo et al., 2018; Muloiwa et al., 2020). Heijnen and Romein in 1995 both came up with a 

universal microbial growth and substrate uptake model by simplifying cellular procedures to a 

coupled scheme of anabolic and catabolic reactions (Annuar et al., 2008). Luong model (Xu et al., 

2018) can also be used to describe the kinetics of substrate inhibition. It allows the description of 

substrate limitation observed at a low concentration and also allow substrate inhibition observe at 

high concentration to be accounted for through the parameter Sm, the maximum substrate 

concentration above which growth ceases (Hamitouche et al., 2012). Yano and Koga suggested a 

model after a theoretical study on the dynamic performance of single-vessel continuous digestion 

subject to growth inhibition at high concentrations of rate-limiting substrates (Tazdait et al., 2013). 

Using phenol, Han and Levenspiel tabled a general expression used previously to describe 

substrate inhibition (Alqahtani, 2013). 

2.5.3 Kinetic Model Without Inhibition 

One important feature about the Contois model is that, cell mass growth rate depends on both 

substrate and cell concentrations with growth being inhibited at high concentration of microbes 

(Bayen et al., 2018). The assumption here is that X is inversely proportional to 𝜇 (Yunardi et al., 

2015). It further explains the changes in population density that is of effect to the net specific 

growth rate through insertion of the biomass concentration, X, into the existing Monod structure 

(Annuar et al., 2008). The model had been used to examine the hydrolysis rate of extracellular 

enzymes in the course of production of a biochemical reaction by hydrolytic microorganism 

(Hassan et al., 2017). Just like the Monod model, Blackman model, and Tessier model, the Contois 

model cannot describe the lag and death phase and does not capture substrate inhibition (Muloiwa 

et al., 2020). In the analysis carried out by UlukardeŞler and Atalay (2018b), application of Contois 

equation with decay rate for CM gave 𝜇𝑚𝑎𝑥 = 0.3, B = 15 and b = 0.5 for CM having dry solid 

(%) of 26.975. Also, Contois model has been used to simulate the cleaning of wastewater by 

microorganisms, model aerobic degradation of wastewater originating from black olive industrial 

treatment and aerobic biodegradation of solid municipal organic waste, model anaerobic treatment 

of textile wastewater, anaerobic digestion of ice-cream wastewater, anaerobic reduction of 

sulphate by sulphate-reducing microorganism and anaerobic treatment of dairy manure, and to 
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carryout hydrolytic kinetics of swine waste, cellulose, sewage sludge and cattle manure (Alqahtani, 

2013; Wang and Li, 2014; Lv et al., 2022). 

Tessier model simply labels 𝜇 as an exponential function of the S, 𝜇𝑚𝑎𝑥, and 𝐾𝑆. It takes 

maintenance energy for cell activity into account, which means the maximum growth rate will be 

reduced when the S is lower and the microorganisms are competing for resources (Wang and 

Witarsa, 2016). Wang & Witarsa (2016) employed Contois and Tessier model to connote the 

biochemical rates of decomposing materials. Moser model integrated a tunable parameter ‘n’ into 

the Monod framework, so as to account for potential interactions between binding sites on the 

enzyme molecule (Velazquez-Marti et al., 2018; Muloiwa et al., 2020). Blackman model had 

similar assumptions as the Monod model. At low S, growth is dependent on substrate and at high 

S, when nutrients is limiting, growth is independent of substrate concentration (Muloiwa et al., 

2020). There is a first order relationship between 𝜇 and S at low S and a zero order relationship at 

higher S (Annuar et al., 2008). Powell looks at the influence of passive diffusion of a particular 

substrate as the key limiting step affecting microorganisms growth, without considering substrate 

inhibition, hence struggles to describe the lag and death phase (Annuar et al., 2008; Muloiwa et 

al., 2020). 

The worst model due to its weakness in describing the lag, stationary, and death phase is agreed to 

be the Logarithmic model. Logarithmic model is well known for overestimating cell growth, and 

if the S is low, it can produce negative growth rate (Muloiwa et al., 2020). As clearly seen in Table 

2.6, the model describes 𝜇 as a function of logarithm of S. Dabes derived a “3-parameter” model 

describing microorganisms growth on a single limiting substrate by considering that only 2 of the 

long series of catalyzed, reversible enzyme-substrate reactions involved in substrate metabolism 

had slow reaction rates (Annuar et al., 2008). Verhulst model gained prominent utilization in 

industrial and environmental microbiology, and was used to investigate the kinetics of filamentous 

fungi by Ardestani (2012). 

2.6 Kinetics of Biogas Production 

Kinetics of biogas production essentially targets the variation of the production as a function of 

time (Ali et al., 2018). Microorganisms are necessary to enable anaerobic digestion of feedstock 

to product as most kinetic models assumes that biogas produced are function of microbial growth 

(Selvaraj et al., 2018; Sukhesh & Rao, 2018). AD is regarded as a dynamic process affected by 

different other parameters including inoculum source, heating, mixing, addition or non-addition of 
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nutrients, pretreatment and storage condition (Li et al., 2016). Thus, caution should be taken while 

carrying out the batch analysis test using the fermentation process, as this is key to evaluating the 

kinetics of biogas production (Zeb et al., 2019). Empirical observations obtained from 

experimental data are sources for most kinetic growth models (González-figueredo et al., 2018). 

Kinetic studies helps in knowing the suitability of kinetic models to determine the significance of 

relationship between variables to guide the experimental design, assess the experimental results, 

and to define the specific parameters of the system performance (Lim et al., 2021). With real 

kinetic parameters, performing different simulations to explore the effect of changing experimental 

conditions is conceivable (Pecar et al., 2020). In addition, these parameters, which are maximum 

biogas production rate, biogas yield potential and duration of the lag phase of the reaction, will 

facilitate the design and scale-up of laboratory experiment into industrial size application, after 

obtaining them by fitting experimental values with the models  (Selvaraj et al., 2018; Ulukardesler, 

2021). It is pertinent to emphasize the significance of kinetic study of biogas production using 

chicken manure as feedstock as shown in Table 2.2: 
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Table 2.2: Merits of Biogas Kinetic Study 

S/No. Importance Reference 

1. Regulate and maximize the flow of gas generated (Delgadillo-Mirquez et 

al., 2018) 

2. Plant sizing/capacity and formulate relationship between 

dissimilar parameters affecting the AD process 

(Hassan et al., 2017) 

3. Evaluate empirical results, check initial hypothesis, control 

and predict the process performance, aid plant design 

optimization 

(Zhao et al., 2016; 

Parralejo et al., 2019) 

4. Scale up analysis and estimation of treatment efficiencies 

of full-scale bioreactors 

(Lim et al., 2021) 

5. Empirical kinetic studies results can be used for simulating 

the digester behavior and predicting biogas production 

(Lim et al., 2021) 

6. Construction and application of chemical and/or 

biochemical processes 

(Pecar et al., 2020) 

7. Gain insight on characteristics of the process for further 

optimization 

(Pecar et al., 2020) 

8. Understanding basic mechanism of complex AD process 

involving different microorganisms for process design and 

control 

(Sukhesh and Rao, 2018) 

9. Analyze the metabolic pathways and mechanisms involve 

during the AD 

(Opurum et al., 2021) 

10. Predict bioreactor efficiency (Opurum et al., 2021) 

11. Evaluate the hydrolytic process and make comparison 

among diverse lignocellulosic components. 

(Yang et al., 2021) 

 

2.6.1 Modified Gompertz Model 

Modified Gompertz model is among the best, popular, most adequate and comprehensive biogas 

kinetic models for simulating batch organic waste anaerobic decomposition (Jijai and Siripatana, 

2017; Syaichurrozi et al., 2018; Zeb et al., 2019).  The semi-empirical model (Jijai and Siripatana, 

2017), is a modified form of the Gompertz equation that assumes cumulative biogas production is 

a function of hydraulic retention time (Ghatak and Mahanta, 2014; Latinwo and Agarry, 2015; 

Van et al., 2018; Alfa et al., 2020; Arifan et al., 2021). It is important in analyzing product 
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formation rate or cell growth rate because of the direct relationship between microbes and biogas 

yield (Syaichurrozi et al., 2018; Abid et al., 2021). For this reason, the modified Gompertz model 

is the most reliable model for defining microorganisms’ growth (Selvaraj et al., 2018). 

The model can describe cell density in the light of lag phase duration and exponential growth rates 

during microorganisms’ growth in anaerobic digestion processes (Alfa et al., 2020; Gallipoli et 

al., 2020; Ma et al., 2021). It fails to describe the beginning of the process, and no-sense of lag 

phase constant has been considered (Van et al., 2018).  It is common to estimate kinetic constants 

from the modified Gompertz models data obtained from experimental study and checked for 

fitness of the model (Ali et al., 2018; Kainthola et al., 2019; Gallipoli et al., 2020). The growth 

rate of the modified Gompertz equation curve is positive, and the curve shape is directly linked to 

the equation parameters, assuming growth is inhibited by substrate level logarithmically (Van et 

al., 2018; Hongguang et al., 2019). Table 2.3 presents different models on biogas kinetics together 

with their parameters. 

Table 2.3: Biogas Kinetic Models 

Models 

Name 

Equations Parameters Reference 

Modified 

Gompertz CBY = BPe−e
[
k.e
BP

(LP−t)+1]

 
BP, k, LP (Haryanto et al., 

2018; Keskin et 

al., 2018; Van et 

al., 2018) 

Logistic 
CBY =

BP

1 + e
[
4.k(LP−t)

BP
+2]

 
BP, LP, k (Gallipoli et al., 

2020; Lim et al., 

2021; Opurum, 

2021) 

Transfert 
CBY = BPe−e

[1− 
k.e
BP

(LP−t)]

 
BP, k, LP (Ali et al., 2018) 

Cone 
CBY =

BP

1 + (kt)−SF
 

BP, k, SF (Shen et al., 

2018; Jiang et 

al., 2021) 

where, CBY = cumulative biogas yield at digestion time t days (mL/g VS); BP = maximum biogas 

potential of the substrate (mL/g VS); 𝛽 = non-degradable fraction of the substrate; k = specific 

(maximum) biogas production rate (𝑑𝑎𝑦−1); LP = lag phase (day); e = logarithmic constant (= 
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2.718282); t = incubation or retention time (day) and; SF = shape factor or shape coefficient of the 

curve. Apart from CBY and t, all other parameters are referred to as kinetic parameters. Kinetic 

parameters are essential for biodigester design and optimal operation of large-scale anaerobic 

plants (Paritosh et al., 2017). They can be used to examine the effect of the substrate ratios on 

biogas production (Abdelhay et al., 2021) to see whether values of kinetic constants depended on 

substrates and degree of fragmentation (Szlachta et al., 2018). 

The lag phase, LP (Zeb et al., 2019), is the minimum time needed by anaerobic microorganism to 

adapt in the substrates before the microorganism produced biogas (Ghatak and Mahanta, 2014; 

Zhao et al., 2017; Syaichurrozi et al., 2018) or the time needed for active methanogenesis to occur 

(Iqbal et al. 2011). Though not specifically methanogenesis, it could mean, the initial duration 

required for hydrolysis, acidogenesis, and acetogenesis in producing acids, alcohols, and H2/CO2 

from organic matter (Sukhesh and Rao, 2018). More precisely, is the delay period (Sukhesh and 

Rao, 2018) or minimum time between inoculation and biogas appearance (Szlachta et al., 2018). 

When LP is less than zero (or negative), it implies that the system needs no lag time to produce 

biogas and LP can be taken as 0 day (Faraz, 2020). Ideally, LP is often longer than 1 day (Van et 

al., 2018). The parameter, k, is the rate at which biogas is generated at exponential phase of the 

digestion (Sukhesh and Rao, 2018). Specific Methanogenic Activity (SMA) is the ratio of  k and 

the amount of volatile solid or inoculum used (Cheong et al., 2019). It is obvious from Table 2.8 

that not all model captured the same kinetic parameters, others had included shape factor and 𝛽. 

2.6.2 Cone, Transfert and Logistic Model 

Cone model is less popular in the literature in terms of its application to simulate biogas formation 

(Syaichurrozi et al., 2018). It is one of the models that points to digestion efficiency and substrate 

biodegradability (Jiang et al., 2021). The Transfert and the modified Gompertz model takes similar 

parameters and are opposite as seen in the inner exponential term of their equation. Logistic kinetic 

model is among the complex models specifically developed to study the LP (Opurum, 2021). It is 

a sigmoid curve used to explain a time-dependent procedure in which at the starting stage, the 

exponential growth is witnessed and upon saturation, the growth slows down and achieve plateau 

at the end (Lim et al., 2021). Logistic function model finds application in biomethane potential 

tests and solid waste fermentation/methanation in landfills, taking into account that the rate of 

biogas production is directly proportional to the amount of gas already generated, k and BP 

(Gallipoli et al., 2020). The model describes CBY from batch digesters, assuming that the gas 
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generation is a function of microorganism growth (Deepanraj et al., 2015). An extension of the 

Logistic model is the Bi-logistic model (Opurum et al., 2021). It tried to include the diauxic growth 

effect in biogas production (Liu, 2017). 

2.6.3 Less Common Biogas Kinetic Model 

To predict the rate-limiting or hydrolysis step in anaerobic digestion for accurate representation of 

the extent of biodegradation, CBY, and the BP results, the classical First-Order kinetic model 

might be a model of choice to simulate dissimilar substrates (Li et al., 2013; Li et al., 2019; Abid 

et al., 2021). In complex substrate such as the lignocellulosic material, there are fluctuations in the 

non-degradable fraction, canceling out the reliability of the first order model to simulate the entire 

process. Hence, in 2013, a modified First-Order model to improve the simulation precision by 

encompassing the effect of biodegradability of substrate was proposed (Li et al., 2013). 

Just like the Fitzhugh and Richards model, they are the only model that incorporates the shape 

factor (n), a parameter that signals the presence or absence of lag phase (Zhao et al., 2016; Parralejo 

et al., 2019). Essentially, it allows the determination of k and the behavior of biogas production 

which is based on ‘n’. Also, the Fitzhugh model try to explore the hydrolytic and methanogenic 

performances of different digesters (Yang et al., 2021). The transference function is applied 

traditionally to measure the efficacy of conventional pretreatments, used to fit inputs and outputs 

mathematically in reaction curve-type model or black box model (Li et al., 2013).  The model 

predicts maximum biogas production uniquely based on methane production using a sigmoid curve 

following the principle that a process could be analyzed as a system receiving inputs and 

generating output; what is called control (Gallipoli et al., 2020). 

Venkateshkumar et al. (2020) proposed a new model he called the ‘Proposed model’ that relates 

CBY which depends on input parameters like individual substrates and its combinations and 

inoculation time. Chen and Hashimoto model (Pererva et al., 2020) has been applied satisfactorily 

for both batch and continuous AD processes for the evaluation of anaerobic fermentation reactions 

(Li et al., 2019). Lots of other models developed are not common in field applications. Table 2.4 

gives the results of regression to determine the unknown kinetic parameters of single or 

combinations of some of these models for mono-digestion and co-digestion of chicken manure and 

other feedstock. 
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Table 2.4: Estimates of Biogas Kinetic Parameters of Chicken Manure 

Author Model Kinetic Feedstock Outcome/Conclusion 

(Li et al., 

2016) 

First-Order 

Kinetic Model 

& Gompertz 

Model 

Chicken manure, 

chicken processing 

waste (CPW), 

miscanthus and 

seagrass 

Methane yield of CM = 400 ml g-1 VS  

(Ma et al., 

2021) 

Modified 

Gompertz 

Model 

Chicken manure BP = 13.8 L/gVS, k = 0.69 L/gVS/day, LP =5.20 days and RT = 80 days 

(Liu et al., 

2018) 

Modified 

Gompertz 

Model 

Chicken manure  LP = 343.5 h, BP = 345.2 ml, maximum CH4 yield rate = 0.948 ml/h and RT=930 hr 

(Selvaraj et 

al., 2018) 

Modified 

Gompertz 

Model 

Raw poultry litter BP = 18.77 l/kg VS, k = 1.08 (l/kg.day) and LP = 1.5 days 

(Jiang et al., 

2021) 

Cone & 

Modified 

Gompertz 

Model 

Chicken manure 

and corn straw 

Cone model: 𝑘 = 10.8850±0.2109 mL/(gVS·day), 𝐿𝑃 =7.0328±0.1241 day, 𝑅2 = 

0.9987, and AIC = 43.48. Modified Gompertz: 𝑘 = 0.0688±0.0000 day-1, 

𝑆𝐹 =3.7073±0.0985, 𝑅2 = 0.9989, and AIC = 39.41 

(Duan et al., 

2018) 

Logistic & 

Modified 

Gompertz 

Model 

Chicken manure + 

algal digestate 

Modified Gompertz: 𝑘 =7.71-12.07 mL/(gVS.day), 𝐿𝑃 = 11.37-15.73 day, and 

𝑅2 =0.9924-0.9984. Logistic model: 𝑘 =5.90-11.56 mL/(gVS.day), 𝐿𝑃 =11.48-15.80 

day, and 𝑅2 =0.9908-0.9966 
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2.6.4 Cumulative Biogas Measurement 

Gas is generated continuously during AD and is collected using a tube or balloon. Measuring the 

amount of gas generated at specified interval is important in calculating the CBY. In some studies, 

especially the liquid displacement technique explained by Syaichurrozi et al. (2018) and Uche et 

al., (2020), gas is measured but is lost at the same time as the method doesn’t favour the recovery 

of the gas generated. Less stressful, but fairly accurate measurement technique is to weigh the gas 

collector at every interval by opening a non-return valve. The weight of the collector measured is 

subtracted from previous measurement obtained to get the weight of the gas. Taking biogas density 

of 1.2 kg/m3, based on range reported by Teferra and Wubu (2018), the volume of biogas produced 

can be calculated by dividing biogas mass by density. Summing successively, the biogas weight 

at a certain time with the next, gives the CBY. Biogas composition is most often characterized 

using GC-MS as indicated by  Tetteh and Rathilal (2020) for the constituents compositions of the 

gas. 

2.7 POLYMATH and Regression Parameters 

POLYMATH is an educational software recommended for mathematicians, engineers and 

financial analysts. POLYMATH solves four types of numerical problems arising in those subjects, 

namely, system of nonlinear equations, system of ordinary differential equations (ODEs), data 

regression and system of linear equations. POLYMATH can solve up to 300 set of nonlinear\ 

equations with 300 explicit equations using four types of solution approaches, including 

‘safenewt’, ‘fastnewt’, ‘safebroydn’ and constrained nonlinear equations. Both the 

microorganisms growth kinetic model and the biogas kinetic model can be run in regression 

software to determine their respective kinetic parameters. The most extensively used statistical 

technique is regression analysis, which involves detecting, evaluating, and analyzing the 

connection between the dependent and variables. The regression window in POLYMATH is 

divided into 3 tabs, namely, ‘Regression’, ‘Analysis’ and the ‘Graph’ tab.  Parameters of nonlinear 

growth kinetics and those of biogas models can hence be estimated (Selvaraj et al., 2018; 

Syaichurrozi et al., 2018). Also, Origin Pro (an alternative software) as well as POLYMATH uses 

Levenberg-Marquardt method to estimate the unknown parameters of a non-linear model. Origin 

Pro provides the same regression capability seen in POLYMATH but has more advantage in its 

ability to compare models. 
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In the regression software, there are certain parameters used to describe the goodness of the fit 

(Venkateshkumar et al., 2020). To know if there is substantial difference between models with 

different number of parameters, in terms of the quality of fit to the same experimental data, various 

models such as coefficient of determination (R2), Normalized Root Mean Square Error (NRMSE), 

Bias Factor (BF), Root-Mean-Square Error (RMSE) and adjusted 𝑅2 (Barreto et al., 2019), 

Accuracy Factor (AF), Akaike Information Criterion (AIC) and F-test (Halmi et al., 2014). A 

regression parameter useful in estimating R2, AIC, BIC and in F-test is called the Residual sum of 

squares (RSS) given by Equation 2.23, 

RSS = ∑(|Measured biogas| − |Predicted biogas|)2   (2.23) 

where, RSS = Residual Sum of Squares. Most often, the coefficient of determination, R2, a 

magnitude of strength of relationship between experimental and predicted values of the biogas 

yield (Lim et al., 2021) in Equation (2.24) is applied (Pererva et al., 2020). 

 R2 = 1 −
∑(|Measured biogas|−|Predicted biogas|)2

∑(yi−y̅)2
   (2.24) 

It is applied when assessing the quality of fit of a model, but in nonlinear regression, where 

difference in the number of parameters between one model to another is normal, the adoption of 

the method does not readily provides comparable analysis (Pererva et al., 2020). In this case, an 

adjusted R2 is used to compute the quality of nonlinear models based on Equation (2.25): 

 Adjusted R2 = 1 −
RMS

Sγ
2 = 1 −

(1−R2)(n−1)

n−p−1
    (2.25)  

where, RMS = Residual Mean Square, 𝑠𝑦
2 is the total variance of the y-variable, p = number of 

independent variables in the model, excluding the constant, and n is the number of measurements. 

Similar to R2, the root mean square error (RMSE) explains the standard deviation value between 

measured and estimated biogas yield by measuring the difference between predicted and target 

values and shows also, the degree of linearity of predicted and target values (Najafi et al., 2019; 

Venkateshkumar et al., 2020). Specifically, it is the sum of squares of differences between the 

predicted and experimental values and of biogas yield (Sukhesh and Rao, 2018; Lim et al., 2021). 

RMSE are also called Root-Mean-Square Deviation (RMSD), Root Mean Square Prediction Error 

(RMSPE), or Standard Error of Estimate. RMSE value are very low (Venkateshkumar et al., 2020) 

and is given by Equation (2.26) (Kang et al., 2021), 
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 RMSE = √
1

n
∑(predicted − observed)2    (2.26) 

where, n = number of measurements. It is expected that the model with the smaller number of 

parameters will give a smaller RMSE values (Halmi et al., 2014). Mean Absolute Percentage Error 

(MAPE) as presented in Equation (2.27) can be calculated to find which model is best to fit the 

measured biogas yield during AD by assuming that at MAPE < 20%, the model could be said to 

be a good model (Syaichurrozi et al., 2018). 

 MAPE =
1

n
∑(

|Measured biogas−Predicted biogas|

|Measured biogas|
) × 100%  (2.27) 

This is followed by Equation (2.28) given the mean square percentage error: 

 MSPE =
1

n
∑(

|Measured biogas−Predicted biogas|

|Measured biogas|
)
2

   (2.28) 

where, n stands for number of measurements. Akaike’s Information Criterion (AIC) (Aragón-

noriega et al., 2015), serves the purpose of estimate the probability of a model to predict future 

values (Hawkins et al., 2019), determine a correct model by comparing kinetic models (Lim et al., 

2021), provides a relative approximation of the data lost from empirical sources, helps in model 

selection by determining the relative quality of specific statistical model for the experimental data 

available, and encourages non-use of complicated model for fitting empirical values (Halmi et al., 

2014). A negative AIC is preferred for a set of predicted model (i.e. a value of -12 is more preferred 

than -5), because a lower AIC value indicates a better fit (Halmi et al., 2014; Hawkins et al., 2019). 

The AIC expression is shown in Equation (2.29-2.31) (Pererva et al., 2020), 

 AIC = N. ln (
RSS

N
) + 2M +

2M(M+1)

N−M−1
      when  

𝑁

𝑀
< 40 (2.29) 

 AIC = N. ln (
RSS

N
) + 2M when  

𝑁

𝑀
≥ 40   (2.30) 

 BIC = ln (
RSS

N
) + M. ln(N)     (2.31) 

where N is the number of data points or observations, RSS is the residual sum of square of the 

vertical distances for the points from curve and M is the number of parameters fit by the model. 

Much similar statistical analysis model is the Bayesian Information Criterion (BIC) given by 

Equation (2.31). Another important regression parameter applied in testing the goodness of fit of 
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kinetic models are the bias factor (BF) and the accuracy factor (AF). BF formulae is as shown in 

Equation (2.32) and its value equal to 1 is a demonstration of perfect match between observed and 

predicted values. 

  BF = 10
∑ log(Observed

Predicted⁄ )

n     (2.32) 

This means, for degradation studies or microbial growth curves, BF > 1 is a fail-safe model while 

a model given BF < 1 indicates a fail-dangerous model (Halmi et al., 2014). Halmi et al. (2014) 

also pointed out that AF is often ≥ 1, further stating that higher values points to a less precise 

prediction, as shown in Equation (2.33). Though, when the predicted and observed values match 

perfectly, BF = AF = 1 (Kang et al., 2021). 

  AF = 10
∑|log(Predicted

Observed⁄ )|

n    (2.33) 
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CHAPTER THREE 

METHODOLOGY 

3.1 Materials and Equipment Used 

Equipment used are digital colony counter, 5 mL syringe, culture plates, pH/Temperature meter 

(PH-2601), electric furnace-20141, laboratory incubator (NL9052-1), YX-280A portable 

autoclave, drying oven-nouvelle 6111 plus, car tyre tube, EDXRF analyzer, laboratory clamp, GC-

MS 6800, test-tube, test-tube rack, white translucent sample bottle, 500mL glass media storage 

bottle, 1601 (500mL) plastic measuring cylinder, digital weighing balance and spirit lamp. 

Materials used are chicken manure, distilled water, sterilized bottle water and nutrient agar was 

used in various stages of the research. 

3.2 Bioreactor Setup 

A fabricated cylindrical laboratory-scale anaerobic digester of height, 55.3cm, diameter, 27.5cm, 

thickness, 0.4cm and volume of 32850 cm3 as shown in Figure 3.1 was used as a batch reactor. 

 

Figure 3.1: Bioreactor for Biogas Production 

The top consists of an inlet that takes in feed for digestion, bottom outlet opening to collect mixed 

slurry or digestate for microbial count, and a gas outlet in which a pipe was connected to the gas 

holder. The pipe attached to the narrow tube gas outlet at the top is 3.81 cm and the circular rubber 

gas holding tube has 70 cm outer diameter, 24cm inner radius and 10cm width. A means of 

stopping the outflow of the gas generated within the digester (specifically a clamp) was attached 

at the top of the gas outlet. A manual stirrer of length equal to 49.53 cm that goes deep into the 

digester for intermittent stirring of liquid slurry is provided. At the end of it are two metal 
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horizontal blades for stirring aids attached to a long metal shaft and an L-shape handle which is 

seen outside the batch tank. The digester tank is made of iron and painted black to regulate heat 

transfer between the tank and the environment. 

3.3 Feedstock Preparation and Characterization 

Semi-solid CM with detectable amount of moisture containing chicken dung, blood, urine, feather, 

and poultry feeds was collected from the Faculty of Agriculture poultry farm of the University of 

Maiduguri was collected. The manure was then characterized for ash content, moisture content, 

volatile matter content, C/N ratio, nutrient content and elemental compositions via the stated 

empirical steps. Moisture content (MC) was calculated according to equation given by Matheri et 

al. (2017) while total solids (TS), carbon-to-nitrogen (C/N) ratio and ash content (AC) on wet basis 

were according to Najafi et al. (2019), Noori & Ismail (2019) and the American Society for Testing 

and Materials (ASTM) standard test method for ash content respectively. Organic matter (OM) 

content and particle density (PD) were based on Ksheem and volatile solid (VS) content was 

determined based on the American Public Health Association (APHA) standard method. Also, 

VS/TS value, a ratio that tells whether the substrate contains more organics suitable for biogas 

production was determined. Equation 3.1 reported by Li et al. (2013) and Noori and Ismail (2019) 

was then used to calculate the % crude protein content. 

   %𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 =
%𝑃𝑟𝑜𝑡𝑒𝑖𝑛

6.25
     (3.1) 

Elemental composition of the CM substrate was determined using EDXRF analyzer. 

3.4 Digester Start-Up 

3.4.1 Process Start-Up 

Using a digital weighing balance, 7.2 kg of dried CM was measured and mixed thoroughly with 

7.05 kg of water (H2O) to keep the substrate-to-H2O ratio at 1:1.05; approximately equal to 1:1 

agreed upon in majority of researches, to form a slurry in large container including Eronmosele et 

al. (2020) who used the ratio 1:1:1 of water, poultry droppings and waterleaf and poultry 

droppings, water and elephant grass. Substrate concentration, S, is the amount of substrate present 

that can be converted to product. With known mass of CM and known volume of H2O (i.e. 



36 
 

0.00756m3 taking 1000 kg/m3 as density of H2O), the initial substrate concentration, 𝑆𝑜, was 

calculated based on Equation 3.2. 

    So =
amount of sample

amount of H2O
    (3.2) 

𝑆𝑜 was used to estimate the biomass-to-substrate yield, YX/S, of the digestion process as it is an 

important constant parameter. After this step, the mixture pH and initial temperature was measured 

using a pH/temperature meter before injecting into the batch digester via the top inlet using a 

funnel and closed tightly. The bottom outlet of the digester was kept closed and the gas pipe and 

gas holder was connected to hold the generated gas. A clamp was put mid-way close to the top of 

the narrow gas outlet pipe to prevent the generated biogas from entering the gas holder. The 

biodigester was then kept at the surrounding temperature. 

3.4.2 Temperature and pH Measurement 

Using a pH-temperature meter 2601, both the pH and temperature inside the digester were read 

daily for 40 days. There wasn’t any heating of sought of the biodigester. The process relied on the 

ambient temperature of the environment to digest the CM feedstock. Some amounts of acid and 

base was added to neutralize the CM substrate for the microbial survival. 

3.5. Microbial Count 

3.5.1. Determination of Microbial Concentration 

To determine the initial cell or biomass concentration, 𝑋𝑜, 5ml of mixed sample was collected 

before it was charged into the reactor in a small bottle and closed tightly. 𝑋𝑜 was used together 

with 𝑆𝑜 when computing YX/S and procedures taken to obtain 𝑋𝑜 at t = 0 is based on the serial 

dilution prior to the pour plate method of cell concentration (X) measurement, according to 

Equation 3.3 (Shariful Islam et al., 2021; Okpokwasili and Nweke, 2005). 

  YX/S =
g cell mass produced

g substrate consumed
= −

∆X

∆S
=

X−Xo

S−S0
  (3.3) 

The microbial concentration was observed to decrease and subsequent values were determined 

repeating the same step. It has also been reported by Haleem et al. (2013) that a number of 

microbes are present in poultry meats and procedures followed to determine these microbial 

contents was similar to one explained here. 
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3.5.2 Serial Dilution 

Nine test-tubes arranged in a rack was used to run the serial dilution experiment (SDE). The 

experiment was conducted in triplicate (i.e. SDE1, SDE2 and SDE3). The dilution factors (DF) in 

all the SDEs was calculated using Equation 3.4 given by Reynolds (2016). 

 Dilution Factor(DF) =
Final volume (Vf)

Initial volume (Vi)
=

(Amount transfered)+(Diluent volume)

Amount transfered
    (3.4) 

The total dilution factor (TDF) in all SDEs was calculated. 

3.5.3 Preparation of Culture Media 

Following the method described in the Swe Biotech Nutrient Agar (NA) manual, the nutrient agar 

was prepared. In order to ensure proper dissolution of agar in H2O and also sterilize the media, the 

nutrient agar bottle was put inside an autoclave. Thus, sterile H2O was first poured in an autoclave 

to the level of the indicator line and the NA bottle was placed inside and lid covered tightly. The 

autoclave was set to temperature of 121℃ and heated until the pressure gauge reads a 0 psi after 

which the bottle was removed. The melted agar was allowed to cool to about 45℃ in a water bath. 

Normally, if the liquid agar is too hot, certain microorganism are killed automatically, and if very 

cold, it will solidify in the bottle or as it is poured into petri dishes or plates. Hence, serial dilution 

was carried out prior to media preparation so that the agar is used immediately it cools to 45℃. 

3.5.4 Pour Plate Technique 

After the dilutions, 1 ml of inoculum was transferred to the empty sterile dishes from the ninth 

tube of each run using a labelled syringe. The pour plate method using serial dilution is a method 

used for quantifying microorganism in a sample. The procedure was carried out by pouring the 

prepared media into 3 plates (for the SDEs) by first flaming the mouth of the vessel, making sure 

it covers the entire bottom surface of the plate and lastly covering the plates. The poured plates 

were gently swirled for about 30 seconds, not allowing them to splash onto the lid or over the edge. 

The media (or liquid agar) was observed to solidify after cooling and is more opaque than the 

yellowish liquid media prepared. After solidification, the plates were inverted to prevent moisture 

from condensing on the surface. The 3 plates of solidified agar were then incubated at 37℃ for 24 

hours to form visible cell colony. The test tubes were washed and allowed to dry to be used the 

next day. 
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3.5.5 Colonic Counting 

On day 2, the plates were removed from the incubator and colonies counted using the colonic 

counter and results recorded for SDE1, SDE2 & SDE3. CFU/ml was then calculated using 

Equation 3.5 (Um-e-Habiba et al., 2021; Arana et al., 2013). 

 CFU/ml =
(No. of colonies)(Total dilution factor, TDF)

Volume of culture plated in mL
   (3.5) 

Using TDF = 109 for 1ml of inoculum plated, CFU/ml of the triplicate step were recorded. The 

average of these data were then computed as initial microbial concentration of day 1 (𝑋0) of the 

CM feedstock. The used plates were then discarded. The method was carried out according to 

explanations given by Brugger et al. (2012). 

To ensure homogeneous composition of substrate, expedite cell growth and break possible 

agglutination of microial cells in the digester, the mixed CM slurry was stirred using the manual 

stirrer before taking the 5ml sample for microbial count. For subsequent days, microbial 

concentration, X, was determined repeating the serial dilution, pour plating and colonic counting 

procedures. Specifically, out of the 500ml of NA prepared, 3×20ml = 60ml was used a day and 

480 ml in 8 days before another culture media is prepared. When X starts to decrease, the death 

phase of the microorganism is therefore reached and cell counts stops. The microorganism 

concentrations recorded over this period was recorded as 𝑋𝐸𝑥𝑝𝑡. implying cell concentration gotten 

from the SDEs for the triplicate run of experiment. 

3.6 Cumulative Biogas Measurement 

Flow of biogas out of the digester as well as into the gas holder was restricted using two clamps. 

At time t = 0 day or the instances after the CM was fed into the batch fermenter and gas holder is 

connected, clamp 1 was used to clip the gas pipe (which is 1 ½ yards) at the top of the digester to 

prevent outflow of any gas generated inside the tank space to the gas collector. Initially, the weight 

of the empty gas holder was measured, and equals to 0.705 kg. With biogas generation, the size 

and weight of the gas collector was observed to increase following the removal of clamp 1. To 

measure the weight of the gas holder, so as to determine the amount of biogas generated, clamp 2 

was used to tighten the mouth of the tube close to the gas holder. The top clamp or clamp 1 was 

then removed for about 5 seconds to allow the generated gas flow out of the digester and is placed 

back immediately. Clamp 2 was then removed and weight of the gas holder was measured and left 
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freely. The difference in weight of gas plus gas holder was computed to determine the weight of 

gas generated daily and results were recorded. 

Taking biogas density of 1.2 kg/m3, based on range reported by Teferra and Wubu (2018), the 

volume of biogas produced was calculated by dividing biogas mass by density. CBY produced 

was computed and the biogas composition was characterized using GC-MS as indicated by  Tetteh 

and Rathilal (2020). 

3.7 Growth Kinetics 

In cell growth kinetics, growth infer cell replication plus a change in cell size. To keep growing, 

cells need to take nutrients from the CM slurry and change them to cellular matter (biomass) and 

energy. It is an autocatalytic process described by Equation 3.6 and 3.7. 

      Substrate/nutrient + cells/biomass → extracellular products + more cells    (3.6) 

    ∑ Sii + X → ∑ Pjj + nX,     n > 1        (3.7) 

Relationship between S, X, product (P) and associated models was used to study the kinetics of 

biogas production from CM. 

3.7.1 Growth Curve Plot 

To depict the microbial growth curve for the CM slurry containing microbes, the logarithm of the 

average cell concentration (𝑋𝑎𝑣𝑔.) from the 3 SDEs was taken. A plot of this logarithm versus time 

always gives the growth curve and was used to explain the different phases of the microbial growth 

and the resulting biogas output. 

3.7.2 Finding Generation Time and Decay Constant 

At the exponential phase, the population growth is caused by continuous binary fission or cell 

division into two new cells from an initial number of cells. The number of generation, n of these 

new cells was estimated using Equation 3.9 during the period of the exponential growth phase after 

linearizing Equation (3.8) (Um-e-Habiba et al., 2021). 

   N = N02
n     (3.8) 

   n =
logN−logN0

log2
    (3.9) 
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where, N0 = initial number of cells counted, N = number of cells at time, t. The doubling time, 𝑡𝑑 

or generation time, G, are same and was computed using Equation (3.10), where k = maximum 

specific utilization rate (g substrate/g of microorganisms/day) and t = time interval. 

   G =
t

n
=

1

k
     (3.10) 

Similarly, the first order model (
dX

dt
= μX) for a closed batch system was linearized so as to derive 

a new expression (from Equation 3.11 and Equation 3.12) for 𝑡𝑑. 

   μ =
ln(

X

X0
)

t
;      X = (% increase)X0  (3.11) 

   td =
ln 2

μ
     (3.12) 

The simplest procedure of finding G is through the use of Equation 3.10, by generating k data from 

the slope (=
log2

𝐺
) of the plot of log N against time (hr), looking at Equation 3.13. 

   logN = logN0 +
t

G
log 2   (3.13) 

In essence, G was found using Equation 3.10 and 3.12. At the death phase, the rate of cell death is 

given by Equation (3.14) (Ge et al., 2019), 

   
dX

dt
= −bX     (3.14) 

where, X = cell concentration (mg/L), b = decay constant (hr-1) and t = retention time (hr). Equation 

3.14 was integrated over the initial (𝑋𝐷,0) and final cell concentration (𝑋𝐷) within the period 

(Equation 3.15) and linearized (Equation 3.16) to estimate the first-order decay coefficient or 

kinetic constant of the death occurrences, b. 

   XD = XD,0e
−bt     (3.15) 

   ln(XD) = ln(XD,0) − bt   (3.16) 

Appropriately, 𝑋𝐷,0 = number of cells (concentration) in the medium at the end of the stationary 

phase while 𝑋𝐷 = number of cells at time t into the death phase. Using Equation (3.16), a plot of 

ln(𝑋𝐷) versus time was made and ‘b’ was calculated from the slope of the graph. 
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3.7.3 Substrate Concentration Determination 

Using the values of S0, X0, and YX/S (obtained in from Equation 3.3), the experimental S (or SExpt.) 

in mg/L was determined using Equation 3.17 for every experimental X (or XExpt.) (CFU/mL) 

   SExpt. = So −
XExpt.−Xo

YX/S
   (3.17) 

3.7.4 Material Balance 

For the well-mixed unsteady state batch biological system (Figure 3.2) where all nutrients are fed 

initially into the culture and cells produced in the culture grow until one or more nutrient is 

exhausted, material balance over this process was formed, and it follows Equation 3.18 through 

3.22. 

 

Figure 3.2: Flow Diagram of the Batch System 

 Overall balance: Accumulation = Input – Output + Generation  (3.18) 

  Cells:  
d(VX)

dt
= FinXin − FoutXout + rxV   (3.19) 

 Limiting substrate: 
d(VS)

dt
= FinSin − FoutSout + rsV   (3.20) 

  Product: 
d(VP)

dt
= FinPin − FoutPout + rpV   (3.21) 
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  Water:  
d(VW)

dt
= FinWin − FoutWout + rwV   (3.22) 

Subscript ‘in’ and ‘out’ implies input and output respectively, where F = flow rate, r = rate, S = 

substrate, X = cell, W = water and P = product. A batch process is a closed culture occurring when 

𝐹𝑖𝑛 = 𝐹𝑜𝑢𝑡 = 0 and volume, V is constant. The ideology was implemented for other possible 

assumptions which are (a) concentration of H2O remains the same (𝑊𝑖𝑛 = 𝑊𝑜𝑢𝑡) and insignificant 

water was generated (𝑟𝑤), (b) reactor was well-mixed (𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛; 𝑆𝑜𝑢𝑡 = 𝑆𝑖𝑛; 𝑋𝑜𝑢𝑡 = 𝑋𝑖𝑛), (c) no 

product in feed (𝑃𝑖𝑛 = 0) and (d) cell growth was greater than cell death rate (𝑟𝑥 = 𝜇𝑋) to give 

Equations 3.23 through 3.24. 

   Cells:  
dX

dt
= μX = rx   (3.23) 

   Substrate: 
dS

dt
= rs    (3.24) 

3.7.5 Generating Appropriate Data for Monod Plot 

Monod Equation given in Equation 3.25 (Um-e-Habiba et al., 2021; Sakthiselvan et al., 2019) was 

used to prove the fact that a relationship exists between S and 𝜇. 

    μ =
μmax S

Ks+S
    (3.25) 

Specific growth rate, 𝜇, can be positive (growth) or negative (death) and is a function of pH, 

temperature, osmotic pressure and concentration of inhibitors, product and substrate. Most 

importantly, calculated values of new X and S data, 𝑋𝑐𝑎𝑙𝑐 and 𝑆𝑐𝑎𝑙𝑐 was gotten by regression 

through estimation of two parameters, 𝐾𝑠 and 𝜇𝑚𝑎𝑥 necessary for optimization of the process via 

the listed steps. 

Step 1 – the carrying capacity of the environment or maximal biomass concentration, 𝑋∞ was 

calculated using Equation 3.26. 

    X∞ = X0 + YS0   (3.26) 

Equation 3.27, used independently for estimating 𝜇 without Monod was combined with Equation 

3.23 and integrated to give Equation 3.30, following the steps shown in Equation 3.28 to 3.29. 

    μ = k (1 −
X

X∞
)   (3.27) 
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dX

dt
= μX = k (1 −

X

X∞
) X  (3.28) 

    ∫
dX

(1−
X

X∞
)X

X

X0
= ∫ kdt

t

0
   (3.29) 

    Xcalc =
X0ekt

1−
X0
X∞

[1−ekt]
   (3.30) 

Regression was performed using POLYMATH to find new data that fits 𝑋𝐸𝑥𝑝𝑡. versus time (hr) 

called 𝑋𝑐𝑎𝑙𝑐, thereby estimating 𝑘. 𝑆𝑐𝑎𝑙𝑐 was thus, computed using Equation 3.31. 

    Scalc = So −
Xcalc−Xo

YX/S
   (3.31) 

Step 2 – By combining Monod (Equation 3.25) and Equation 3.27, as Equation 3.32, 𝑋𝑐𝑎𝑙𝑐 data 

was used to determine 𝐾𝑠 by finding new set of S data (or 𝑆𝑟𝑒𝑔) that fits 𝑆𝑐𝑎𝑙𝑐 data using 

POLYMATH. 

    μ =
μmax S

Ks+S
= k (1 −

X

X∞
)  (3.32) 

𝐾𝑠, was guessed repeatedly to give 𝐾𝑠 and used together with 𝑌𝑋/𝑆 and 𝑋∞ mg/L to find 𝑆𝑟𝑒𝑔 in 

Equation 3.33 taking 𝑌𝑋/𝑆 =
μmax

k
 as given by Talaiekhozani et al. (2015). 

  Sreg =
Ks (

X∞−Xcalc
X∞

)

μmax
k

−(
X∞−Xcalc

X∞
)
=

Ks (
X∞−Xcalc

X∞
)

𝑌𝑋/𝑆−(
X∞−Xcalc

X∞
)
  (3.33) 

Both 𝑋𝑐𝑎𝑙𝑐 and 𝑆𝑐𝑎𝑙𝑐 as well as 𝑋𝐸𝑥𝑝𝑡. and 𝑆𝐸𝑥𝑝𝑡.. were plotted against time and graphs were 

compared. 

Step 3 – Rate of biomass growth, 
𝑑𝑋

𝑑𝑡
, was estimated using 𝑋𝑐𝑎𝑙𝑐 by substituting into Equation 3.28 

with known k. From the same equation, 𝜇 can be estimated using either Equation 3.34 or Equation 

3.27. 

     𝜇 =
1

𝑋𝑐𝑎𝑙𝑐

𝑑𝑋

𝑑𝑡
   (3.34) 

Step 4 – Equation 3.25 and 3.27 was compared and concluded that 𝜇𝑚𝑎𝑥 = 𝑘. This enable S to be 

customized from Equation 3.32 to compute 𝑆𝑀𝑜𝑛𝑜𝑑 given by Equation 3.35. 
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  SMonod =
Ks 

Xcalc
(X∞ − Xcalc) =

μ Ks

μmax−μ
  (3.35) 

Step 5 - 𝜇 in step 3 and 𝑆𝑀𝑜𝑛𝑜𝑑 in step 4 was plotted to give the Monod plot, selecting only values 

from the growth phase, as the Monod equation is only valid at the exponential phase. From the 

Monod plot, 𝜇𝑚𝑎𝑥 and 𝐾𝑠 was further confirmed. Rate of substrate utilization, 𝑟𝑠 or (
𝑑𝑆

𝑑𝑡
) as well as 

that of cell production, 𝑟𝑥 or (
𝑑𝑋

𝑑𝑡
) was determined using Equation 3.24 and 3.28 respectively and 

plotted against time. 

𝜇𝑚𝑎𝑥 and 𝐾𝑠 values was validated using Lineweaver-Burke plot, Hanes-Woolf pot or Eadie-

Hofstee plot. Ram et al. (2019) and Perni et al. (2005) explained vividly how the two optimization 

parameters can be estimated  from growth curve data. 

3.8 Kinetic Parameter Estimation 

CBY data with retention period recorded was then entered in the datasheet of the nonlinear 

regression section of the POLYMATH 6.10 Educational Release. One of the user-defined 

functions such as the Gompertz model, was entered into the model box and initial estimates of the 

unknown parameters (BP, LP, SF, k) were guessed and entered. POLYMATH then re-estimate 

these kinetic parameters using the Levenberg-Marquardt method, together with predicted values 

of CBY and the regression parameters, namely, R2, RMSE and adjusted R2. The guess was 

continuously adjusted until R2 values estimated is very much closer to unity. POLYMATH was 

then set to plot the measured CBY entered initially and predicted CBY estimated on the same axis 

together with time to display the fit. Selvaraj et al. (2018) and Syaichurrozi et al. (2018) were 

observed to use the same software to determine those regression parameters in their kinetic study. 

The same procedure was repeated for the remaining models as well as the growth kinetic models 

in order to determine the values of 𝜇𝑚𝑎𝑥, b, 𝐾𝑖, 𝑆𝜃, 𝑆𝑚, i, a, bb and 𝐾𝑠. Other regression parameters 

determined was MAPE, RSS, AF and BF. RSS, MAPE, BF and AF were calculated based on 

formulas given by Selvaraj et al. (2018) and Syaichurrozi et al. (2018), Halmi et al. (2014) and 

Kang et al. (2021). 

The biogas models were saved in Origin 2018 software as user-defined functions initially, to 

produce the CBY observed and predicted fitted plots, similar to POLYMATH. Next, in the Origin 

window, ‘Compare Models’ was entered under ‘Analysis’ in the Menu Bar to estimate the 
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Akaike’s Information Criterion (AIC), F-test and Bayesian Information Criterion (BIC), all used 

to state which model is most correct. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Manure Properties on Anaerobic Digestion 

4.1.1 Presence of Metallic Nutrient 

Figure 4.1 shows the concentrations (in mg/Kg or ppm) of CM characterized for metallic ions 

using EDXRF, as described in Horf et al. (2021). 

 

Figure 4.1: Metallic Nutrient Concentration in Chicken Manure 

Twenty-four metals have been identified in the CM and were divided into heavy metals (macro-

nutrient) and light metals (micro-nutrients). Heavy metals present are Fe, Ni, Mo, V, W, Cr, Cu, 

Zn, As, Sr, Ba, Pb, Cd and Sn in low concentrations ranging from 0-0.1956ppm. Mancini et al. 

(2018), reveals that heavy metals pose some danger to microbial activity; however, low 

concentrations obtained in this work had far less potential of inhibiting the growth of 

microorganism during AD. The concentrations of the heavy metals in poultry manure, according 

to Zhang et al. (2012) are 65.6mg/kg dm of Cu, 3.3 mg/kg dm of As and 1.6 mg/kg dm of Cd. 

Microbes need preferably, light metals such as Ca, Fe, Mg, K, Na, Al and P for growth according 

to Sawyerr et al. (2019) and Nsair et al. (2020). Moreover, most poultry manure contain 13 

nutrients including S, Cl, B, N, P, K, Ca, Mg, Mn, Cu, Zn, Fe and Mo. The presence of these 



47 
 

micro-nutrient in the chicken manure substrates, especially Na (0.3071ppm), P (0.44494ppm), K 

(0.7742ppm), Fe (0.18ppm) and Mg (0.191ppm) makes the chicken manure sample a suitable 

feedstock for AD as microorganisms present utilizes these nutrients for metabolism and growth. 

High Si (1.26ppm) content obtained was due the presence of bone, feather and soil particles in the 

chicken manure. Non-metallic elements such as C, O, S, H and N were included in the plot, though 

oxygen was expected to be very less as the microorganism requires no oxygen. Because these 

elements are also part of moisture, protein, carbohydrate and lipid content of the CM, they tend to 

be cumulatively high.  

4.1.2 Influence of Proximate Analysis Data of Chicken Manure 

In this study, the 47% moisture content seen in fresh CM (Table 4.1) will provide a good 

environment for metabolism. The reason of making the feed ratio 1:1 was because TS:MC ratio 

(53%:47%) was closer to that ratio. Thus, bringing the CM-to-water ratio to 1: –thick slurry 

moisture type as described by Piekutin et al. (2021) before charging into the reactor, makes it a 

semi-dry AD process, mostly employed for agricultural waste like CM. When water content is low 

(dry fermentation/high solid), mixing to ensure uniform composition inside the digester was 

difficult. Because, the CM will be too heavy for the mixer blades to push so as to evenly distribute 

the pH, nutrients and microbes within the CM slurry, resulting in dead zones or stagnant regions. 

Singh et al. (2018) and Dede and Ozer (2018) reported %MC of 39.73% and 25.23% respectively. 

Organic matter is basically the store house for the nutrient content as shown previously. Therefore, 

OM content in this work implies nutrient content of the feedstock including those in 12% ash 

(containing Mg, K, P, Ca and C) value of the CM. Dede and Ozer (2018) obtained a value of 

76.92% for broiler poultry manure that is closer to 88% reported in this work. An environment 

with such amount would invariably be a suitable environment for microrganism and is in 

consonance with VS/TS ratio of 0.25 shown in Table 4.1. 
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Table 4.1: Chicken Manure Characterization 

Property Amount Property Amount 

Moisture content 47% Volatile solid content 13.21% 

Total Solids 53% Fixed solid content 86.79% 

Ash content (dry 

basis) 

22.6% VS/TS 0.25 

Ash content (wet 

basis) 

12% Carbon content 66.17% 

Organic matter 

content 

88% Nitrogen content 2.73% 

Particle density 0.0163 g/cm3 Crude Protein 17.06% 

C/N Ratio 24:1   

The weight of individual solid particle that make up the CM per unit volume, otherwise called 

particle density (PD) is a determinant of the porosity and how easy microorganism breakdown the 

CM substrate. PD below 1.0 g/cm3 usually indicates high OM content. Additionally, the PD value 

of 0.0163g/cm3 obtained in this study and 543.8kg/m3 (0.5438g/cm3) reported by Brunerová et al. 

(2020) are both within the expected range. Though, the 53% TS seen is lower than the 74.77%  

reported by Dede and Ozer (2018); which means lower organic matter/nutrients for micro-

organisms to feed on which in turn imply, low microbial population. 

Adeyemo et al. (2019), Dede and Ozer (2018), and Singh et al. (2018) reported a nitrogen content 

of 3.87%, 5.13% and 3.83% in their CM sample. This, together with other literature works 

consulted shows that, nitrogen content in CM ranges from 2.6-5.7%, of which the 2.73% obtained 

in this study is within the boundaries of the percent range. Carbon content in this work is 66.17% 

which is higher compared to 21.12-34.93% obtained by the same authors. A much higher C/N ratio 

of 24:1 against those reported by Abubakar and Yunus (2021) and the mentioned authors is 

favorable because Dalk and Ugurlu (2015) affirms that low C/N ratio causes VFA accumulation 

and lowers the pH. Since the protein content (another source of nitrogen) is low (17.06%) 



49 
 

compared to 34.5% reported by Singh et al. (2018), chances of C/N ratio going to much over 

acceptable limit is reduced. 

4.2 Effect of Biodigester Condition 

4.2.1 pH and Temperature Effect 

Figure 4.2 shows daily record of mesophilic temperature and pH of the AD process over the 40 

days retention period. 

 

Figure 4.2: Daily pH and Temperature Record during Digestion Process 

Shapovalov et al. (2019) tabulated %TS content (15-30%) and temperature in respect to CH4 yield 

from CM, where it was seen that at high temperature (55-65℃), methane yield was negligible. 

This was attributed to the non-existence of thermophilic microorganism that are capable of 

adapting to such temperature. The temperature reported here was not constant but, it was within 

the mesophilic range – perfect for enzyme function and balanced free NH3 content and is in 

accordance with what Eronmosele et al. (2020) obtained by co-digesting poultry droppings and 

elephant grass. Based on Raja and Wazir (2017), the choice of temperature is based on the climate 

condition, biogas yield based on temperature in the range of 27-35℃ measured between October 

and December in Maiduguri would not be same if temperature is lower or higher. 
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Entire pH range (5.7-8.8) of the CM slurry during AD was a little bit out of the survival range of 

micro-organism reported by Elalami et al., (2019) (i.e. 6.0-8.0). The initial pH = 8.7 at t = 0 day 

for the CM agreed with Lohani et al. (2020), that CM was alkaline in nature. So, no growth was 

expected at this pH as microorganism fight to adapt to their environment. Again, further fall in pH 

was caused by microbial activity inside the digester. Fluctuations in pH affected CBY as shown in 

Figure 4.3. A positive microbial concentration was not expected when pH < 6, due to deaths. 

 

Figure 4.3: Cumulative Biogas Yield versus Daily Recorded pH 

4.2.2 Biogas Yield 

Total volume of biogas produced after 40 days of digestion was 0.883m3, an average of 

approximately 0.022m3/day. No phase records the highest biogas production than the exponential 

phase (0.681m3) followed by the stationary phase (0.176m3). This is because the phases had live 

cells that are actively converting the nutrients in the CM slurry to biogas. Hence, the phases 

mentioned cannot be compared with the lag phase (which is the beginning of microorganism 

acclimatization to their environment) and the death phase (where population of the microorganism 

drops quickly). So, volume of biogas generated is almost constant during the lag days, increasing 

to 0.068m3 (peak production) at the growth phase and then decreasing over the remaining phases. 

The CBY plotted against CM retention time is shown in Figure 4.4. 
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Figure 4.4: Cumulative Biogas Yield with Retention Time for the Chicken Manure 

Substrate 

According to AirFacts (2020), 100kg of chicken litter will generate ≅20m3 of biogas, 

corresponding with Bijman (2014)’s 200m3 of biogas from 1000kg of chicken litter containing 

55%DM and 42% OM in 30days. Biogas volume of 0.883m3 produced here for 40 days digestion 

of 7.2kg of CM with 53%DM and 88%OM content is less than those obtained by the two authors. 

Compared to cow dung and domestic waste generating 0.18m3 and 0.17m3 of biogas respectively, 

according to Jyothilakshmi and Prakash (2016), CM produces higher amount of biogas.  Since 1m3 

of biogas is equivalent to 2.1kWhe of electricity and 2.5kWth of heat according to Bijman (2014), 

0.883 m3 of biogas generated can produce 1.8543kWhe of electricity and 2.2kWth of heat in a 

biogas engine. GC analysis result where the component of the gas is displayed at different height 

versus run time is shown in Figure 4.5. 
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Figure 4.5: GC Biogas Analysis 

The compositions of the gas were found based on peak areas occupied by CH4 (178.87mm2), CO2 

(82.34mm2), H2 (16.47mm2), H2S (3.97mm2), NH3 (1.70mm2), N2 (0.28mm2) and H2O (0.28mm2) 

in the graph. Dividing the respective areas of the gas by the total area occupied gives the percentage 

of the component gases, which gives CH4 (63%), CO2 (29%), H2 (5.8%), H2S (1.4%), NH3 (0.6%), 

N2 (0.1%) and H2O (0.1%). Results obtained is within Abuabdou et al. (2020)’s and Granado et 

al. (2017)’s reported compositions for biogas. The produced biogas is not pure, but further 

purification makes it biomethane with natural gas qualities. For instance %CH4 > 40% here gives 

it a characteristic flammability according to Parsaee et al. (2019) even though it is not yet purified 

and implies a high resulting biomethane. Also, Bijman (2014) state that sulphur levels >2000ppm  

is corrosive and needs to be removed or reduced. 

4.3 Analysis of Growth Kinetics 

Microbial concentration (CFU/ml) of the triplicate SDE is shown in Figure 4.6a-c. 
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Figure 4.6: Cell Concentration Against Time for the SDEs 

The SDEs provides almost identical plot as shown in Figure 4.6d, a further demonstration of 

accuracy of results. It is further attributed to high TDF which enable microorganism colonies to 

be seen and counted. If TDF is low, colonies would be too numerous to count (TNTC). Colonies 

> 300 are considered TNTC and would make generation of data for kinetic study very difficult. 

Despite the colonies are an average of 48 colonies > 300, as shown in the Appendix, after 

incubation (maximum number of colonies for SDE1 = 350, SDE2 = 346 and SDE3 = 348, 

producing an average of 343 colonies beyond the theoretical counting limits when t = 30-37 days), 

the data poses no observable statistical challenge. O’Toole (2016) in his short write-up on the 

history and origin of colony number boundaries stated that researchers started by putting the 

acceptable range at 20-400, then 30-300 while others stood at 20-250. 

Even though Microbiologist do not prefer colonies that are < 30 or too few to count (TFTC), it is 

however, very significant in this study. Few colonies were counted for 13 days as shown in Figure 

4.6, which implies a very long LP or the presence of slow-growing microorganism struggling with 
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the alkaline CM fed at the beginning of the process. But the initial temperature of 31℃ was 

favorable for the survival of the microorganisms present to move to the next growth phase. Also, 

Datta (2021) reported few colonies he found in 17, 22 and 15 colonies at different DFs in tap water. 

Since data accuracy is assured, due to fits of the three X results as shown in Figure 4.6d, an average 

of the microbial concentration (log-log plot of Figure 4.7) will further be analyzed. 

 

Figure 4.7: Average Cell Concentration Versus Time on a Log-log Scale 

From an initial microbes concentration, 𝑋0 = 3.67 × 109CFU/ml at t = 0 day maintained for 7 

days, concentration increases exponentially to X = 3.40 × 1011CFU/ml at t = 23 days, maintaining 

an average value of X = 3.38 × 1011CFU/ml for 7 days and falling to X = 1.40 × 1011CFU/ml. 

These change in X pattern forms what is referred to as growth curve. 

4.3.1 Microbial Growth Phases 

Logarithm of the average cell concentration plotted against fermentation time as shown in Figure 

4.8, illustrates four significant phases of cell growth. 
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Figure 4.8: Microbial Growth Curve 

The plot is identical to Figure 4.7, depicting the lag phase where microorganism acclimatize by 

synthesizing necessary enzymes to degrade substrate and other biochemicals. That is, rate of cell 

accumulation, 
𝑑𝑋

𝑑𝑡
= 0. The growth phase is where rate of growth > rate of death, which follows 

the equation for exponential growth given by 
𝑑𝑋

𝑑𝑡
= 𝜇𝑋. At this point, gas production increases 

rapidly. The population begins to decline to a point where rate of growth is equivalent to the rate 

of death or 
𝑑𝑋

𝑑𝑡
= 0. Death phase is caused by cell destruction and decomposition and is usually a 

short period of time observed in minimal increase in biogas generation as earlier depicted in Figure 

4.4. between t = 37-40 days. At the acceleration phase, available cells 𝑁0 = 3.67 with 

concentrations 𝑋0 = 3.67 × 106mg/L, begin to multiply by continuously forming duplicates. 

From the phase through the growth phase to the final decline phase, generation time can be 

estimated from Figure 4.9. 
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Figure 4.9: Biomass Doubling Time Estimation 

It is true that different microorganism have different growth phase, thus, slight curving of the 

supposed linear plot in Figure 4.9 might be linked to superimposed growth rates of the respective 

microorganism inside the CM. Percentage increase in the microbial population undergoing 

exponential growth in this work was computed for the period of 552 hours spent and was found to 

be 92.55%. Hence, G = 84.56hrs = 3.52 days cannot be compared with literature works that mostly 

reports G for specific microorganism inside their substrate. At the death phase, where 
𝑑𝑋

𝑑𝑡
= −𝑏𝑋, 

first order decay constant or the kinetic constant of death occurrences ‘b’ obtained from the slope 

of the linear plot of Figure 4.10 gave −0.0006 hr-1. The negative sign implies a declining state of 

the microbial population which lasts only for 3 days (72 hrs) in this study. A very long death phase 

implies failure of the process, either due to pH, temperature or low nutrient content in the 

biodigester causing early deaths of useful microorganisms. 
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Figure 4.10: Determination of Death Constant 

Figure 4.11 and 4.12 shows that as microorganism population increases, substrate concentration 

decreases as generally agreed. 
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Figure 4.11: Substrate and Biomass Concentration from SDE and Kinetic Equation 

Predicted data plot in Figure 4.11b fits properly to the experimental results and hence estimates 

the parameters k = 0.0076 hr-1 and 𝐾𝑠 = 3.838 × 108mg/L correctly using 𝑋∞ = 384619046.7 

mg/L. Figure 4.11a also shows the behavior of the CM substrate concentration through the various 

phases of the growth of microorganism. It is high (𝑆0 = 952380.95 mg/L) initially and decreases 

to an average constant value (= 115476.1881 mg/L) at the stationary phase. At the end of the 

stationary phase, only few microorganism are alive to further decompose the feedstock and hence 

reduce the substrate concentration. Concentration of the substrate at the death phase is the 

remaining amount in the reactor and might increase slightly due to added weight of the dead 

microorganism. This increase is shown in Figure 11a at RT = 912-960 hours of the measured data 

which is insignificant and is basically theoretical as it was calculated using Equation 3.37. The 

predicted data resulting in S-line of Figure 11b strikes out the shoot in amount of S at the death 
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phase which is believed to be the ideal situation, because a digester with CM and no microorganism 

remains the same. So, the concentration of the remaining substrate can only be taken from the 

predicted data or measured experimentally. 

Linear relationship between the substrate concentration and the cell concentration exists. Figure 

4.12 better explains this relationship looking at it from the bottom right upwards (where X is high 

and S is low). Accuracy in microbial population count is very difficult, though this data assumes 

that single microorganism grow to form a single colony, multiple microorganism forming single 

colony hides some number of viable cells that were unknowingly counted as one. Values of X 

therefore doesn’t guarantee a 100% precise data because it fails to include gain in concentration 

due to growth in weight/size of the microorganism. Against the typical mass of microorganism 

which is 1pg, microorganism inside the slurry are capable of growing to 1ng or their sizes might 

be even less (e.g. 1fg). Though, assuming a weight of 1ng in this work wouldn’t pose much 

problem to kinetic analysis.  Despite this, plot as the one shown in Figure 4.12 must depict ideal 

conditions of X and S as explained earlier. 

 

Figure 4.12: Showing the Relationship Between Substrate Concentration and Cell 

Concentration 
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4.3.2 Effect of Substrate Concentration on Specific Growth Rate 

The rectangular hyperbola in Figure 4.13 is called the Monod plot based on cell growth at the 

exponential phase. 

 

Figure 4.13: Monod Plot Based on 𝝁 and S Computed from Experimental Values of 

Microbial Concentration 

The curve starts from S = 0 mg/L corresponding to 𝜇 = 0 ℎ𝑟−1,  to a peak value, 𝜇𝑚𝑎𝑥 where S is 

also high. The plot is divided into 3-sections based on S amount.  For low S (i.e. 𝑆 ≪ 𝐾𝑠), growth 

have first order dependence on S (growth is highly sensitive to S) and the Monod equation reduces 

to 𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠
. That is, when S (nutrient) is very little, cells had to compete for it. This points to the 

fact that amount of substrate limits how fast the cells can grow. So, addition of more substrate 

causes proportional increase in cell growth rate. The center region is called the mixed order section 

that satisfies the Monod equation proper. When S is high (i.e. 𝑆 ≫ 𝐾𝑠), growth is at 𝜇𝑚𝑎𝑥 and 

kinetics reduces to a zero-order expression 𝜇 = 𝜇𝑚𝑎𝑥. Here, each cell can have as much nutrient 

or substrate as they so desire due to its abundance because the specific growth rate is high and 

constant. Lineweaver-Burke plot, Hanes-Woolf pot and Eadie-Hofstee plot (all linear), as shown 

in Figure 4.14, emerged as a result of manipulations done to the actual Monod equation and 

provides a much easier approach of estimating the Monod kinetic parameters (𝜇𝑚𝑎𝑥 and 𝐾𝑠). 
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(a) Lineweaver-Burke Plot 

 

(b) Hanes-Woolf Plot 

 

(c) Eadie-Hofstee Plot 
 

Figure 4.14: Alternative Plot for Determining Monod Parameters 

The S data used for estimating these parameters excluded toxic S that are capable of inhibiting 

microbial growth. Effect of toxic S is seen in models proposed by Andrew, Halden, Aiba-Edwards, 

Haldane, Webb, Alagappan & Cowan and the Double Exponential model. The explanation of the 

substrate relationship with the 𝐾𝑠 was earlier explained by Maier (2009) which is in accordance 

with this work. Equations of the respective Lineweaver-Burke Plot, Hanes-Woolf Plot and the 

Eadie-Hofstee Plots for results obtained here are given in Equations 4.1-4.3: 
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1

μ
=

3.838×108

0.007316
(
1

S
) +

1

0.007316
   (4.1) 

  
S

μ
=

3.838×108

0.007316
+

1

0.007316
𝑆   (4.2) 

  μ = 0.007316 − 3.838 × 108 μ

𝑆
  (4.3) 

The above model equations can hence be used for S and μ estimates spanning the period of the 

experimental growth phase. 

4.4 POLYMATH Kinetic Data Fitting 

4.4.1 Growth Model and Comparison of Regression Parameter 

In this study, the 23 growth kinetic models identified in the literature were fitted to empirical data 

so as to estimate their respective kinetic parameters. The fitted plots are shown in Figures 4.15-

4.22, where five models including Monod with decay rate, Wayman & Tseng, Han & Levenspiel, 

Luong and Moser models had R2 = 1, which imply that all the points lie on the regression line 

(with no errors).  RMSE’s of these models were closer to 0, also indicating a good fit with same 

estimates (𝜇𝑚𝑎𝑥 = 0.0076201ℎ−1 & 𝐾𝑠 = 3.838 × 108 𝑚𝑔/𝑙) compared to Monod parameters. 

Coefficient of determination, R2 = 0.999777 in Webb model was 99.98% fitted to the Monod line, 

though type of parameters estimated were not the same in all the six models so far mentioned. 

If models are to be compared based on unique parameters estimated, then Monod with decay rate 

(with estimated parameters:  𝜇𝑚𝑎𝑥, 𝐾𝑠, 𝐾𝑖 & b), Wayman and Tseng (with estimated parameters:  

𝜇𝑚𝑎𝑥, 𝐾𝑠, 𝑖, 𝐾𝑖 & 𝑆𝜃), Webb (with estimated parameters:  𝜇𝑚𝑎𝑥, 𝐾𝑠 & 𝐾𝑖) and Luong (with 

estimated parameters:  𝜇𝑚𝑎𝑥, 𝐾𝑠, 𝑛, m & 𝑆𝑚) are models that fits perfectly to Monod plot or 

experimental data obtained in this work. Models such as Double exponential, Haldane, Aiba-

Edwards, Andrew, Halden, Andrew with decay rate and Webb model estimated the same inhibition 

constant,  𝐾𝑖 = 1.01 × 1012 except for Alagappan and Cowan where 𝐾𝑖 = 2.643 × 108. 

Alagappan and Cowan model can be said to be the worst model as none of the estimated parameters 

was positive and it showed a deviating curve in Figure 4.16. Han and Levenspiel and Luong models 

are the only two models with maximum substrate concentration, 𝑆𝑚, presenting a 100% fit (Figure 

4.21. 
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Figure 4.15: Fitting Powel and Dabes Model 

to Monod Plot 

 
Figure 4.16: Fitting (i) Wayman & Tseng 

and (ii) Alagappan & Cowan Model to 

Monod Equation 

 

 
Figure 4.17: Estimating 𝝁𝒎𝒂𝒙, 𝑲𝒔 & 𝑲𝒊 by 

Fitting Six Growth Models to Monod Data 

 
Figure 4.18: Contois and Tessier Model 

Parameter Estimation by Regression 



64 
 

 
Figure 4.19: Estimating Growth 

Parameters by Data Fit using Monod 

 
Figure 4.20: Monod Fitted to Models Based 

on Substrate Decay Rate 

 

 
Figure 4.21: Luong and Han & Levenspiel 

Microbial Growth Parameter Estimate by 

Regression with Monod Equation 

 
Figure 4.22: Verhulst, Logarithmic and 

Yano & Koga Estimates of Growth 

Parameters from Monod Data 

Values of μmax and Ks obtained in majority of the growth models in Table 4.2 are approximately 

same. 
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Table 4.2. Growth Kinetics and Statistical Parameter Estimates from POLYMATH 

Model Parameter R2 Adj. R2 RMSE 

Monod μmax = 0.0076201 

Ks = 3.838 × 108 

1.0000 1.0000 1.05E-06 

Monod with 

Decay rate 

μmax = 0.0076201 

Ks = 3.838 × 108 

b = −8.207 × 10−8 

1.0000 1.0000 1.05E-06 

Contois μmax = 0.0069123 

Ks = 1.649958 

0.98033 0.97944 0.0012 

Contois with 

Decay rate 

μmax = 0.0053514 

Ks = 3.684928 

b = −0.001763 

0.99502 0.99456 0.0006 

Andrew μmax = 0.0060722 

Ks = 2.142 × 108 

Ki = 1.01 × 1012 

0.39251 0.33465 0.0033 

Verhulst μmax = 0.0067649 

Xm = 4.566 × 108 

0.41148 0.38474 0.0035 

Powell μmax = 0.0054542 

Ks = 2.301 × 108 

α = 1.158878 

0.99557 0.99515 0.0005 

Aiba-

Edwards 

μmax = 0.007104 

Ks = 2.013 × 108 

Ki = 1.01 × 1012 

0.91568 0.90766 0.0022 

Webb μmax = 0.0076046 

Ks = 3.764 × 108 

Ki = 1.01 × 1012 

0.99977 0.99976 0.0001 

Luong μmax = 0.0076201 

Ks = 3.838 × 108 

Sm = 1.01 × 1012 

n = −0.0003264 

1.0000 1.000 2.44E-08 
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Model Parameter R2 Adj. R2 RMSE 

Wayman and 

Tseng 

μmax = 0.0076201 

Ks = 3.838 × 108 

Sθ = 8.276 × 108 

i = −1.67 × 10−20 

1.0000 1.000 1.356E-09 

Logarithmic a = −0.0015569 

b = 0.0003353 

0.58252 0.56355 0.0053 

Andrew with 

Decay rate 

μmax = 0.0012249 

Ks = 8.621 × 108 

Ki = 1.01 × 1012 

b = −0.0042405 

0.474 0.39568 0.006745 

Moser μmax = 0.0076201 

Ks = 3.838 × 108 

n = 0.999999 

1.000 1.0000 1.18E-05 

 

Tessier μmax = 0.0068388 

Ks = 5.061 × 108 

0.976 0.97458 0.001287 

Halden μmax = 0.0074275 

Ks = 3.063 × 108 

Ki = 1.01 × 1012 

0.988 0.98677 0.000868 

Haldane μmax = 0.0074154 

Ks = 3.035 × 108 

Ki = 1.01 × 1012 

0.987 0.98589 0.000899 

Dabes μmax = 0.0031107 

Ks = 3.187 × 108 

α = 1.402752 

0.848 0.83370 0.002885 

Heijnen and 

Romein 

μmax = 0.0065558 

Ks = 8.411 × 104 

n = 0.0587962 

0.553 0.5105374 0.005043 

Yano and 

Koga 

μmax = 0.0153219 

Ks = 1.521 × 109 

K1 = 1.01 × 1010 

K2 = 4.157 × 109 

0.135 0.0053872 0.005634 
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Model Parameter R2 Adj. R2 RMSE 

Han and 

Levenspiel 

μmax = 0.0076103 

Ks = 3.833 × 108 

Sm = 4.57 × 1011 

n = −0.0003408 

m = 1.532309 

1.000 1.0000 8.53E-08 

Alagappan 

and Cowan 

μmax = −0.04822 

Ks = −9.9 × 109 

Ki = −2.643 × 108 

i = −5.61 × 10−13 

Sθ = −2.452 × 109 

0.952 0.9421286 0.001577 

Double 

exponential 

μmax = 0.004602 

Ki = 1.01 × 1012 

Ks = 5.407 × 108 

0.033 -0.058988 0.008705 

Note that, Ks estimated by POLYMATH was negative in Alagappan & Cowan models, deviating 

from the norms in both value and its plot which appeared curved upward as a result. Those with 

near 100% R2 and adjusted R2 demonstrated a perfect fit. As regards CM, none of this can be 

compared with literature findings as only cattle manure has its kinetic parameters estimated from 

Contois model (Alqahtani, 2013). The study satisfied the two cases of the Contois model that 

points to inverse relationship between 𝜇 and X. One, it is first-order kinetics for biomass growth, 

where 𝑆 𝑋⁄ ≫ 𝐾𝑠 leading to 𝜇 ≅ 𝜇𝑚𝑎𝑥𝑋. Two, it is first-order kinetics for substrate consumption, 

where 𝑆 𝑋⁄ ≪ 𝐾𝑠 leading to 𝜇 = 𝜇𝑚𝑎𝑥 (
𝑆

𝐾𝑠
), which means X population rises and obstruct substrate 

uptake and growth of microbe. In the Haldane model, two explanations can be given its curve; 

proportional rate increase with S occurs at low S, making Ks ≫ 𝑆 +
𝑆2

𝐾𝑖
 and 𝜇 ≅ 𝜇𝑚𝑎𝑥 (

𝑆

𝐾𝑠
), and 

inverse relationship between rate and S occurs at high S, making Ks + 𝑆 ≪
𝑆2

𝐾𝑖
 and 𝜇 ≅ 𝜇𝑚𝑎𝑥 (

𝐾𝑖

𝑆
). 

4.4.2 Biogas Kinetics Model Fitting 

The Cone, Transfert, Modified Gompertz and Logistic models can be fitted to measured CBY 

versus retention time plot as shown in Figures 4.23 and 4.24. Similar approach in fitting empirical 
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CBY data has been followed by Abubakar et al. (2022) and Chinenyenwa et al. (2022) utilizing 

liquid manure and yam peels for the biogas feedstock using some selected models. The four models 

properly fit the empirical result. Though, proper fit is not a measure of correctness of the data, 

some models give close estimates of BP, k, LP and SF values while others deviate. 

 

Figure 4.23: Fitted Cone & Transfert Models to CBY versus RT Plot 

 

Figure 4.24: Fitted Modified Gompertz & Logistic Models to Measured CBY 
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From Table 4.3, R2 of all the biogas models are closer to unity (demonstrating a good fit), k 

estimated in Transfert model doesn’t compare favorably with the rest of the models. Therefore, 

plots of Modified Gompertz, Logistic and Cone model fits the measured data as they have similar 

and same number of parameter  as well as being non-linear according to Pererva et al. (2020). 

Alternatively, it could be said that, best model is Logistic and Cone model based on the highest 

value of the adj. R2 followed by modified Gompertz and Transfert models (two of which cannot 

be concluded as they have equal adj. R2 = 0.99613. RMSE values ranges from 0.009375-0.137137, 

as shown in Table 4.3. 

Table 4.3: MAPE, RMSE and Bias and Accuracy Factors of the Model 

Model MAPE RMSE AF BF 

Modified Gompertz 24.38987 0.020248 1.980345 1.90345 

Cone 34.21464 0.137137 3.907264 3.907264 

Logistic −38.5674 0.009375 1.215339 0.8822816 

Transfert 24.38968 0.020248 1.980317 1.980317 

 

Venkateshkumar et al. (2020) reported that lower RMSE indicate a better fit. This confirms the 

selected models based on the R2 criteria and Syaichurrozi et al. (2018)  who based model selection 

on MAPE. An MAPE<20% can be taken as a good model, hence Logistic is favored compared to 

other models.  A 100% fit  imply a BF=AF=1 according to (Kang et al., 2021), whereas BF>1 in 

modified Gompertz, Cone and Transfert models are considered a fail-safe model and BF<1 in 

Logistic model is considered a fail-dangerous model according to Halmi et al. (2014).  The AF 

estimates are > 1, where higher values suggest less precise prediction (as in Cone model). 

To select the best biogas kinetic model, in this case, AIC, BIC and F-test were compared using 

values obtained from Origin Pro. Logistic function model has lower AIC value compared to 

modified Gompertz, Cone and Transfert model and so is more likely to be correct. Cone model 

has lower AIC compared to modified Gompertz and Transfert model and is therefore more likely 

to be correct. AIC comparison also favor modified Gompertz model over Transfert model. BIC 

difference >10 ranks the models, starting from the most correct model as; Logistic, Cone, modified 

Gompertz and Transfert model, just in a similar fashion as AIC, but a BIC difference < 2 obtained 

by comparing modified Gompertz and Transfert model renders the result inconclusive. Dinh et al. 

(2018) experiment shows that, modified Gompertz model have lower AIC = 39.41 compared to 
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AIC = 43.48 of Cone model estimates from CM and corn straw digestion, making it the correct 

model. 

Modified Gompertz, Transfert and Logistic function models has the LP in their respective model 

equations of which estimates gives 14.328days for modified Gompertz and Transfert model and 

14.713days for Logistic model against the 7 days period obtained from measurement. However, 

this estimates is in the range of  values obtained by Duan et al. (2018) which were between 11.37-

15.73 days for modified Gompertz model and 11.48-15.8days for Logistic model for CM plus algal 

digestate substrate used.  Though, the Duan et al. (2018)’s data cannot be used  to compare 

estimates in Table 4.3 as they are gotten from co-digested AD process, Liu et al. (2018)’s LP = 

14.29 days for CM substrate estimated from modified Gompertz model  is approximately identical 

to LP obtained in this work. But  Ma et al. (2021)’s LP = 5.20 days for layer CM from modified 

Gompertz model and Dinh et al. (2018)’s LP = 7.0328 days from Cone model for CM plus corn 

straw AD  are  around the 7 days experimental LP period in this work. Maximum specific biogas 

production rate, k = 0.0688day-1 according to Dinh et al. (2018)  from modified Gompertz model  

for CM versus corn straw processed,  almost satisfy 3 models given positive k in Table 4.4 for 

CM. Negative value of k in Transfert model makes it the worst performing model. According 

Origin Pro, the data are too small to make conclusions on F-test for the models analyzed. But RSS 

values used during F-test suggest Logistic model as the preferred model because it has a small 

RSS value. 
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Table 4.4: Regression Parameter Estimated from Fitted Biogas Kinetic Model 

Model Parameter R2 Adj. R2 RSS AIC BIC 

Modified 

Gompertz 

BP = 1.073076 m3 

k = 0.0447788 day-1 

LP = 14.32809 day 

0.99632 0.99613 0.01681 −310.66405 −304.92087 

Cone BP = 1.06351 m3 

k = 0.03814 day-1 

SF = 4.36841 day 

0.99723 0.99708 0.01266 −322.27873 −316.53555 

Logistic BP = 0.9325659 m3 

k = 0.0503514 day-1 

LP = 15.71288 day 

0.99921 0.99917 0.0036 −373.8043 −368.06112 

Transfert BP = 1.073082 m3 

k = −0.0447783 

day-1 

LP = 14.32796 day 

0.99632 0.99613 0.01681 −310.66402 −304.92084 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The following conclusions can be made: 

1. Approximately 1m3 of biogas consisting of 63% CH4 and 29% CO2 was generated after 40 

days from the nutrient-rich CM sample utilized. The temperature, pH and water content of 

the digesting substance resulted in an efficient biogas production, and where they deviate, 

sufficient adjustment was done to favour microbial growth. 

2. Colony counting reveals the presence of microorganisms inside the CM substrate which 

undergoes varying growth phases inside the bioreactor, from X = 3.67 × 109 to 

3.34 × 1011 mg/L. The basic Monod equation helps significantly in explaining the cell 

demand for nutrients and the nutrient/substrate utility. It could be seen that not all 

developed models on growth kinetics satisfy the recorded data. Only Monod with decay 

rate, Wayman and Tseng, Han and Levenspiel, Loung and Moser models fit the Monod 

plot, which shows that inhibition doesn’t significantly affect the process, as they are 

estimated low by the models (also evident in low Ki = 1.01 × 1012 value obtained). 

3. Regression parameters, AIC and BIC was able to rank the models based on the most correct 

from Logistic (−373.8043 & −368.06112), Cone (−322.27873 & −316.53555), modified 

Gompertz model (−310.66405 & −304.92087) and lastly Transfert model (−310.66402 & 

−304.92084). POLYMATH has proven to be an effective analytical software for 

estimating unknown parameters in user-define nonlinear models as evidenced in the fitted 

biogas models to empirical data. Also, profiling has resulted in a raw biogas with sufficient 

CH4 content that can serve the same purpose as natural gas if upgraded. 

5.2 Recommendations 

The following recommendations are made: 

1) Other sustainable feedstock such as fruit waste, human waste and farm residues should be 

considered for kinetic study. 
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2) It is recommended that separate kinetic study be carried out on individual microorganisms 

categorized into fungi, protozoa, microorganism, and viruses or groups involving soluble 

substrate degraders, lignin degraders and hemi-cellulose degraders. 

3) Importance of pH and temperature has been highlighted in the study. Due to fluctuations, 

these two parameters are often taking as range of values. To address this challenge, pH and 

temperature controllers are recommended to be embedded to the biogas feedstock tank or 

container to record changes to maintain at desired set points.  
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APPENDICES 

A. Colony forming unit of SDE1, 2 and 3 

  SDE1   SDE2  SDE3  

Date 

Time 

(days) 

No. of 

colonies CFU/mL log X 

No. of 

colonies CFU/mL log X 

No. of 

colonies CFU/mL 

 

log X 

18/10/2021 0 2 2.00E+09 9.30103 4 4.00E+09 9.60205999 5 5.00E+09 9.698970004 

19/10/2021 1 4 4.00E+09 9.60205999 3 3.00E+09 9.47712125 4 4.00E+09 9.602059991 

20/10/2021 2 3 3.00E+09 9.47712125 4 4.00E+09 9.60205999 4 4.00E+09 9.602059991 

21/10/2021 3 5 5.00E+09 9.69897 3 3.00E+09 9.47712125 3 3.00E+09 9.477121255 

22/10/2021 4 4 4.00E+09 9.60205999 5 5.00E+09 9.69897 2 2.00E+09 9.301029996 

23/10/2021 5 4 4.00E+09 9.60205999 3 3.00E+09 9.47712125 4 4.00E+09 9.602059991 

25/10/2021 6 4 4.00E+09 9.60205999 3 3.00E+09 9.47712125 4 4.00E+09 9.602059991 

26/10/2021 7 3 3.00E+09 9.47712125 4 4.00E+09 9.60205999 4 4.00E+09 9.602059991 

27/10/2021 8 5 5.00E+09 9.69897 5 5.00E+09 9.69897 6 6.00E+09 9.77815125 

28/10/2021 9 10 1.00E+10 10 9 9.00E+09 9.95424251 8 8.00E+09 9.903089987 

29/10/2021 10 11 1.10E+10 10.0413927 12 1.20E+10 10.0791812 14 1.40E+10 10.14612804 

30/10/2021 11 17 1.70E+10 10.2304489 18 1.80E+10 10.2552725 20 2.00E+10 10.30103 

1/11/2021 12 25 2.50E+10 10.39794 24 2.40E+10 10.3802112 20 2.00E+10 10.30103 

2/11/2021 13 25 2.50E+10 10.39794 39 3.90E+10 10.5910646 28 2.80E+10 10.44715803 

3/11/2021 14 39 3.90E+10 10.5910646 39 3.90E+10 10.5910646 42 4.20E+10 10.62324929 

4/11/2021 15 57 5.70E+10 10.7558749 53 5.30E+10 10.7242759 46 4.60E+10 10.66275783 

5/11/2021 16 59 5.90E+10 10.770852 54 5.40E+10 10.7323938 60 6.00E+10 10.77815125 

6/11/2021 17 71 7.10E+10 10.8512583 60 6.00E+10 10.7781513 77 7.70E+10 10.88649073 

8/11/2021 18 75 7.50E+10 10.8750613 65 6.50E+10 10.8129134 78 7.80E+10 10.8920946 

9/11/2021 19 91 9.10E+10 10.9590414 81 8.10E+10 10.908485 94 9.40E+10 10.97312785 

10/11/2021 20 100 1.00E+11 11 96 9.60E+10 10.9822712 112 1.12E+11 11.04921802 

11/11/2021 21 116 1.16E+11 11.064458 101 1.01E+11 11.0043214 117 1.17E+11 11.06818586 

12/11/2021 22 125 1.25E+11 11.09691 115 1.15E+11 11.0606978 120 1.20E+11 11.07918125 

13/11/2021 23 132 1.32E+11 11.1205739 149 1.49E+11 11.1731863 142 1.42E+11 11.15228834 
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15/11/2021 24 150 1.50E+11 11.1760913 154 1.54E+11 11.1875207 178 1.78E+11 11.25042 

16/11/2021 25 179 1.79E+11 11.252853 173 1.73E+11 11.2380461 178 1.78E+11 11.25042 

17/11/2021 26 197 1.97E+11 11.2944662 194 1.94E+11 11.2878017 185 1.85E+11 11.26717173 

18/11/2021 27 238 2.38E+11 11.376577 250 2.50E+11 11.39794 220 2.20E+11 11.34242268 

19/11/2021 28 242 2.42E+11 11.3838154 251 2.51E+11 11.3996737 273 2.73E+11 11.43616265 

20/11/2021 29 290 2.90E+11 11.462398 265 2.65E+11 11.4232459 287 2.87E+11 11.4578819 

22/11/2021 30 340 3.40E+11 11.5314789 345 3.45E+11 11.5378191 334 3.34E+11 11.52374647 

23/11/2021 31 341 3.41E+11 11.5327544 346 3.46E+11 11.5390761 336 3.36E+11 11.52633928 

24/11/2021 32 339 3.39E+11 11.5301997 344 3.44E+11 11.5365584 334 3.34E+11 11.52374647 

25/11/2021 33 336 3.36E+11 11.5263393 340 3.40E+11 11.5314789 324 3.24E+11 11.51054501 

26/11/2021 34 343 3.43E+11 11.5352941 341 3.41E+11 11.5327544 333 3.33E+11 11.52244423 

27/11/2021 35 339 3.39E+11 11.5301997 345 3.45E+11 11.5378191 335 3.35E+11 11.52504481 

29/11/2021 36 347 3.47E+11 11.5403295 334 3.34E+11 11.5237465 348 3.48E+11 11.54157924 

30/11/2021 37 350 3.50E+11 11.544068 330 3.30E+11 11.5185139 322 3.22E+11 11.50785587 

1/12/2021 38 242 2.42E+11 11.3838154 277 2.77E+11 11.4424798 249 2.49E+11 11.39619935 

2/12/2021 39 174 1.74E+11 11.2405492 182 1.82E+11 11.2600714 181 1.81E+11 11.25767857 

3/12/2021 40 135 1.35E+11 11.1303338 147 1.47E+11 11.1673173 138 1.38E+11 11.13987909 

B. Substrate Concentration, pH, Temperature and Cumulative Biogas Yield 

Time 

(hr) 

No. of 

Microor

ganism 

(N) 

X (Expt.) 

(mg/L) 

S (Expt.) 

(mg/L) 

Tem

p. 

(℃) pH 𝝁 (𝒉𝒓−𝟏) 

S (Monod) 

(mg/L) 

Volume of gas 

(m3) CBY (m3) 

0 3.67 3.67E+09 952380.95 31 8.7 0.007547 39875324542.53 0 0 

24 3.67 3.67E+09 952380.95 31 8.7 0.007533 33210805839.82 0.000833333 0.000833333 

48 3.67 3.67E+09 952380.95 30 8.8 0.007516 27660154172.64 0.000833333 0.001666667 

72 3.67 3.67E+09 952380.95 32 8.4 0.007495 23037204593.72 0.000833333 0.0025 

96 3.67 3.67E+09 952380.95 35 8.5 0.007471 19186906630.40 0.001666667 0.004166667 

120 3.67 3.67E+09 952380.95 31 8.5 0.007441 15980124000.99 0.001666667 0.005833333 

144 3.67 3.67E+09 952380.95 34 7.6 0.007407 13309303474.81 0.001666667 0.0075 
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168 3.67 3.67E+09 952380.95 31 7.7 0.007365 11084867612.65 0.001666667 0.009166667 

192 5.33 5.33E+09 948214.2833 31 7.6 0.007316 9232210402.48 0.005833333 0.015 

216 9.00 9.00E+09 939047.6167 29 7.5 0.007258 7689195026.42 0.005833333 0.020833333 

240 12.33 1.23E+10 930714.2833 30 7.5 0.007189 6404069835.58 0.005833333 0.026666667 

264 18.33 1.83E+10 915714.2833 30 7.5 0.007109 5333732636.27 0.011666667 0.038333333 

288 23.00 2.30E+10 904047.6167 32 7.5 0.007014 4442285072.71 0.016666667 0.055 

312 30.67 3.07E+10 884880.95 35 7.3 0.006904 3699828621.52 0.016666667 0.071666667 

336 40.00 4.00E+10 861547.6167 34 7.4 0.006776 3081461816.29 0.019166667 0.090833333 

360 52.00 5.20E+10 831547.6167 30 7.3 0.006629 2566445069.92 0.019166667 0.11 

384 57.67 5.77E+10 817380.95 31 7.5 0.00646 2137505083.50 0.02 0.13 

408 69.33 6.93E+10 788214.2833 32 7.4 0.006269 1780255512.00 0.025833333 0.155833333 

432 72.67 7.27E+10 779880.95 31 7 0.006053 1482714456.44 0.025833333 0.181666667 

456 88.67 8.87E+10 739880.95 29 6.9 0.005813 1234902599.38 0.025833333 0.2075 

480 102.67 1.03E+11 704880.1167 30 6.9 0.005549 1028508505.69 0.0325 0.24 

504 111.33 1.11E+11 683215.1167 30 6.7 0.005262 856609862.84 0.035 0.275 

528 120.00 1.20E+11 661547.6167 31 6.8 0.004955 713441311.43 0.0375 0.3125 

552 141.00 1.41E+11 609047.6167 29 6.8 0.00463 594201079.08 0.046666667 0.359166667 

576 160.67 1.61E+11 559880.1167 32 6.6 0.004292 494889932.40 0.046666667 0.405833333 

600 176.67 1.77E+11 519880.1167 31 6 0.003946 412177045.47 0.046666667 0.4525 

624 192.00 1.92E+11 481547.6167 31 6.4 0.003598 343288286.32 0.0525 0.505 

648 236.00 2.36E+11 371547.6167 32 6.4 0.003253 285913174.50 0.056666667 0.561666667 

672 255.33 2.55E+11 323215.1167 29 6.1 0.002918 238127389.16 0.068333333 0.63 

696 280.67 2.81E+11 259880.1167 32 6.3 0.002596 198328228.73 0.03 0.66 

720 339.67 3.40E+11 112380.1167 28 6.4 0.002293 165180857.40 0.03 0.69 

744 341.00 3.41E+11 109047.6167 30 6.2 0.002011 137573535.67 0.05 0.74 

768 339.00 3.39E+11 114047.6167 29 6 0.001752 114580333.44 0.03 0.77 

792 333.33 3.33E+11 128215.1167 27 6 0.001517 95430074.88 0.04 0.81 

816 339.00 3.39E+11 114047.6167 28 6.3 0.001307 79480473.81 0.02 0.83 

840 339.67 3.40E+11 112380.1167 29 6.1 0.001121 66196591.85 0.015 0.845 

864 343.00 3.43E+11 104047.6167 29 5.8 0.000957 55132896.96 0.014 0.859 

888 334.00 3.34E+11 126547.6167 30 5.8 0.000814 45918320.60 0.007 0.866 
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912 256.00 2.56E+11 321547.6167 31 5.7 0.000691 38243812.37 0.005 0.871 

936 179.00 1.79E+11 514047.6167 29 5.9 0.000584 31851974.67 0.007 0.878 

960 140.00 1.40E+11 611547.6167 28 5.8 0.000493 26528429.76 0.005 0.883 

 

C. Rate of Cell Growth and Rate of Substrate Consumption 

 


