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Abstract

This Habilitation à Diriger des Recherches (HDR) thesis presents a comprehensive summary
of my research activities aimed at enhancing the resilience of large-scale transport networks
by joining a data-driven approach with complex network theory.

Ensuring the resilience of critical urban infrastructures, particularly the multi-modal
urban transportation network, is crucial for the economic and social development of mod-
ern cities. It constitutes a significant research challenge that involves multiple disciplines,
ranging from information and data science to economics and urban planning. The daily
transportation of people and goods to and from urban areas relies heavily on a robust multi-
modal transport network, capable of operating efficiently during normal and high-load sit-
uations, as well as adapting and recovering swiftly in the presence of recurrent and sudden
disruptions. However, major cities encounter vital challenges in achieving these objectives
due to urbanisation growth, extreme weather events, climate change impacts, health crises,
and high pollution resulting from greenhouse gas emissions. Therefore, novel solutions are
required to enhance the capability of city stakeholders to understand the actual function-
ing of the urban infrastructures, identify vulnerabilities and anticipate disruptions, as well
as promptly implement adaptation or damage mitigation strategies following unexpected
events.

My research work towards these goals is founded on three methodological pillars: (i)
processing large and diverse datasets to gain insights into human mobility and presence
practices, (ii) leveraging complex networks theory and methods to support real-time network
monitoring, and (iii) developing real-time big data platforms and algorithms for resilience-
oriented decision-making. The manuscript is organised into six chapters, as follows.

Chapter 1 lays the groundwork by introducing the core concepts of the manuscript and
identifying the research gaps that motivated the research activities reported in subsequent
chapters.

Chapter 2 delves into the potential of passively collected mobile phone data to support
the understanding and management of critical infrastructures. The exploration of this data
has been addressed according to two perspectives: firstly, using analytical tools to under-
stand cellular traffic demand through the lens of call detail records, towards the efficient
management and deployment of network resources; secondly, harnessing mobile phone data,
and particularly network signalling data, to enhance the understanding of travel demand by
accurately estimating Origin-Destination matrices.

Chapter 3 investigates further the potential of network signalling data for transportation
studies in urban settings, by employing unsupervised machine learning techniques to process
such data. First, it presents a framework developed to support the estimation of time-varying
mean spatial speeds of multiple urban zones of a given city. Subsequently, it delves into the
research efforts focused on reconstructing human mobility trajectories with unprecedented
spatio-temporal accuracy, comparable to GPS data.

Chapter 4 delves into the assessment and management of vulnerabilities within complex
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transport networks. This chapter describes the metrics and approaches identified to detect
the most critical components of large transport networks. It also explores the design of
resilient and sustainable on-demand mobility services, such as park-and-ride systems, capa-
ble of augmenting existing transportation networks with more resilient alternatives against
disruptions and unexpected events.

Chapter 5 introduces the innovative real-time big data platform, PROMENADE, pro-
posed to support the real-time monitoring and resilient management of large-scale urban
infrastructures. It also presents the platform prototype tailored to road traffic networks,
encompassing solutions for large-scale real-time traffic monitoring and agent-based control
to reduce traffic congestion and vulnerability.

Finally, Chapter 6 concludes the HDR thesis by summarising the primary contributions
and outlining short-term and long-term research perspectives that will shape future activities
in the years to come.
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Introduction

Over the last ten years, my research has progressively shifted across three major domains:
service computing, analytics for cognitive 5G networks, and human mobility modelling and
management. Despite this domain shift, the core of my activities has, however, remained
focused on one main goal: enabling efficient, scalable, robust, and sustainable util-
isation of complex networked systems in the face of dynamic and often unpre-
dictable usage loads and contexts. These last two terms, usage loads and contexts, may
assume specific meanings according to the reference domain. From a general point of view,
usage load refers to the amount of demand or activity being placed on a system by its users
at any given time. Understanding and managing usage load is critical for ensuring that these
systems remain stable and performant, even during periods of high or abnormal demand and
in the presence of disruptive exogenous or endogenous factors. Context can be defined as
the set of external factors and circumstances that affect the behaviour and performance of
these systems. Analysing, modelling, and monitoring contextual factors is paramount to
improve the scalability, reliability and recovery ability of the considered system, as well as
to provide a better user experience.

Building on these foundations, my research journey has addressed so far a rather wide
range of interrelated challenges, such as proposing solutions for data-driven understanding
and modelling of user demand, performing knowledge inference from large-scale and multi-
source datasets, implementing metrics, approaches and platforms for real-time monitoring
of networked systems, and devising decision-making tools to anticipate or respond quickly
to changes in user demand or external events. The diversity of the research topics has
required acquiring expertise in several disciplines, including distributed and big data pro-
cessing, complex network theory, data science and machine learning, telecommunications
and transportation.

In this HDR thesis, I aim to summarise and present my main research contributions,
with a particular focus on the activities from the last seven years. During this journey, I
have had the opportunity to collaborate with enthusiastic colleagues who have helped me to
achieve interesting findings in the aforementioned fields. I hope that this thesis adequately
summarises these outcomes and fruitful collaborations.

Early Research Topics

My research experience starts during the PhD program conducted at the Engineering De-
partment of University of Sannio, Italy, where I decided to address the problem of simplifying
the lives of Web users by devising novel approaches for automatically and efficiently com-
posing existing Web applications (i.e., published as Web/cloud services) to generate novel
value-added applications, able to satisfy complex users’ needs effectively. People using the
Web for digital tasks often struggle to find services that fully meet their needs directly.
Instead, they have to manually and repeatedly search and join multiple services from many
providers to achieve more complex tasks. For instance, when planning a long-range trip, it
is necessary to identify proper applications in order to solve specific sub-tasks, e.g., calcu-
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lating the best itinerary to move from point A to point B; buying tickets for each involved
transportation mode (e.g., flight, metro, bus); finding and booking accommodation, etc.
The general problem - referred to as discovery by composition - is known to be tedious when
performed manually and requires high computational and time resources (i.e., services are
to be searched on the entire Web). Thus, my PhD thesis proposed techniques to make dis-
covery by composition automated and scalable. In general, services and users’ requirements
are sensitive to their environment. The context is thus a crucial dimension, significantly
impacting service design, query specification, and service execution. It contains implicit
information essential for fully understanding users’ needs. The latter are rarely properly
described in computer-understandable language.

The main contribution of my PhD thesis can be summarised as follows: an integrated
approach and a tool to automatically generate concrete and executable service compositions
from existing Web services [1]; semantic support for enhancing context-awareness in service
design, discovery and execution [2]; a fully distributed Peer-to-Peer (P2P) and cooperative
approach to automatically and efficiently retrieve and join multiple services, based on epi-
demic diffusion protocols and semantic overlay networks [3]. We point the interested reader
to [4] for more details.

Evolution of the Research Context

During the last year of my PhD thesis, my advisor at the University of Sannio, Eugenio
Zimeo, invited me and other members of his research group to investigate the problem of
simplifying access to digital services and resources via data-driven content recommendation.
To identify targets for the recommendation task, the idea was to leverage massive data
on user preferences, either explicitly declared on social media (e.g., Facebook liked pages,
LinkedIn groups) or implicitly determined by previous service usages performed by the user
themselves or by their social environment (e.g., friends, work connections, etc.). In pursuing
such research activities in parallel with my main PhD topics, I was led to develop a new
theoretical and technical background in various disciplines encompassing distributed sys-
tems and Web service technologies. Data science and unsupervised machine learning (e.g.,
clustering) were necessary to analyse the data mined via social network APIs and identify
communities of interest; information theory (e.g., collaborative filtering, semantic similarity,
preference mining) was required to capture the semantics of user preferences and perform
item recommendation. Complex networks theory was a natural choice to model the topology
of users’ preferences and relationships as multi-layer networks, while social network analysis
tools (e.g., centrality metrics) were leveraged to spot opinion leaders within the identified
interest user communities. Finally, big data processing techniques and technologies (e.g.,
map-reduce batch programming, stream processing, Spark, NoSQL databases, such as Mon-
godb1 and Neo4j2) became quickly indispensable to handle the huge variety, velocity and
volumes, as well as the unstructured nature of the data retrieved from social networks (e.g.,
content of liked pages, user groups descriptions, etc.). Based on such techniques, I con-
tributed to laying the foundation of a social network platform for service recommendation,
which was subsequently further developed by the research team at University of Sannio [5].

This experience provided me with novel knowledge and perspectives that proved crucial
for my subsequent career advancement and has guided my research journey until the present
day. At the end of my doctoral studies, I sought to expand my academic career interna-
tionally, delving deeper in the research related to the processing and mining of large-scale
datasets, applied machine learning, big data technologies and network analysis, with a focus
on incorporating greater intelligence into the urban environment for increased resilience and
quality of service. This led me to apply and be selected for a CORDIS postdoctoral research
fellowship at the Urbanet team, now Agora of INRIA and the CITI laboratory of INSA

1https://www.mongodb.com
2https://neo4j.com
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Lyon. The postdoc was also supported by the research branch of Orange (Orange Labs,
now Orange Innovation), the major telecommunication network operator in France. This
marked the beginning of a strong and still-ongoing collaboration with the mobile provider,
which has supported a relevant part of my research since then.

The primary contribution of the INRIA postdoc involved mining massive records of mo-
bile phone activity, i.e., mobile traffic demand, in the form of Call Details Records (CDR),
to derive communication usage patterns for two main purposes: (i) performing data-driven
resource allocation in the provider’s network, aligned with the vision of 5G cognitive radio
networks [6, 7, 8], and (ii) inferring spatio-temporal insights on the socioeconomic charac-
teristics of the urban environment [9, 10], according to the idea that mobile phone data
could provide valuable support for the comprehension of urban metabolism. This notion in-
cludes, particularly, the capacity to provide dynamic descriptions of the presence, mobility
and activities of the urban population and its interactions with the urban infrastructures
to support resilient urban planning and management [11, 12]. The most relevant research
results related to these aspects are highlighted in Chapter 2.

Data-driven Urban Transport Resilience

At the end of my postdoctoral experience, I decided to join the Laboratoire d’Ingénierie
Circulation Transport (LICIT-ECO7) of the University Gustave Eiffel and École Nationale
des Travaux Publics de l’État (ENTPE), University of Lyon, where I am currently a per-
manent researcher and associate professor since October 2016. This was the opportunity of
applying and extending my previous research on mobile traffic demand analysis and delve
deeper into the study of data-driven resilient human mobility.

Ensuring the resilience of urban Critical Infrastructures (CIs), and particularly of the
multi-modal urban transport system, is vital for the economic and social development of
modern cities and represents a major research challenge involving multiple disciplines, from
information and data science to economics and urban planning. The daily transport of people
and goods to and from urban areas is highly dependent on a robust multi-modal transport
network, capable of efficiently operating during normal and high-load situations, as well as of
adapting and recovering itself quickly in the presence of recurrent and sudden perturbations.
However, major cities face crucial challenges in achieving these objectives. In 2009, for the
first time, more than half of the world’s population lived in urban areas and by 2030, cities are
expected to host 60% of the world’s population. The growing concentration of people results
in a continuous increase in demand for mobility, as well as frequent disruptions and significant
stresses on the urban transport infrastructures. These aspects make user travel demand
more uncertain and rapidly varying, degrade the mobility experience of users, deteriorate
air quality and increase the risk of malfunctioning and cascading failures, especially in the
presence of adverse weather conditions or extreme adverse situations. The recent COVID
pandemic has exacerbated the vulnerability of the mobility system, exposing people to a
high risk of contamination, deteriorated quality of service, and reduced and highly unequal
access to transport.

On the other hand, cities are becoming increasingly smart and, therefore, able to col-
lect vast amounts of data in real-time, via connected sensors, people and infrastructure.
The recent development of 5G telecommunication networks provides reliable and ultra-fast
connectivity, always-on broadband devices, and support for new computing paradigms such
as fog and edge computing. In this context, massive, real-time data become available at
unprecedented scales and resolution, with the great potential to provide very valuable infor-
mation about how, where and when citizens move, interact, work and live, making it possible
to continuously monitor and optimise the operations and usages of city infrastructures.

Based on such needs and challenges, my research activities of the last seven years at
the LICIT-ECO7 have focused on the understanding of mobility practices and network
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vulnerabilities, towards enhanced data-driven resilience of the transport system.
To achieve the stated objectives, my research has deliberately drawn upon previous

experience, as well as methods and knowledge from multiple disciplines, including mobile
phone data processing, edge/fog/cloud computing, complex network theory, machine learn-
ing methods, and big data technologies, that has flourished in a cohesive interdisciplinary
approach to urban resilience engineering.

In that respect, my research revolved around the three major axes:

1. Design and development of innovative data-driven tools for the fine-grained under-
standing of human mobility;

2. Definition of innovative approaches, metrics and strategies for vulnerability assessment
and monitoring of large-scale urban multi-modal transport networks;

3. Design and development of real-time data-driven decision tools and extensible plat-
forms to support the resilient management of human mobility, and, more in general,
of urban CIs.

As will be further detailed in the next chapters, these activities have been the result of
significant collaboration with PhD and Postdoctoral students, as well as researchers from
other (national or international) academic and industry institutions, that provided their
invaluable help to refine and implement my research goals, methods and solutions.

Structure of the Document

This document is organised in six chapters, as visually detailed in Fig. 1.

Figure 1: Structure of the document: a visual representation.
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Chapter 1 prepares the ground for the rest of the manuscript by introducing the main
massive data sources adopted in the reported research and by introducing the basic notions
related to resilience modelling, with a special focus on the conceptual frameworks proposed
by Hollnagel et al. [13] (i.e., the four cornerstones of resilience) and Bellini et al. [14]. The
research activities described in this HDR thesis can be seen as an effort to explore the four
cornerstones of resilience in an original way, i.e., by utilising novel sources of massive data
and combining methods from machine learning, network analysis, and big data solutions.

With this respect, the activities outlined in Chapters 2 and 3 relate to the learn corner-
stone, i.e., knowing what has happened, which involves understanding via descriptive ana-
lytics how CIs of the urban system, such as the mobile phone telecommunication network
and the multi-modal transportation system, are utilised by their users, in both recurring
and abnormal situations.

Specifically, the first part of Chapter 2 describes the activities on the topic of CDR ana-
lytics for cognitive networking and urban fabrics detection, carried out during my postdoc-
toral studies. It also reports on the preliminary activities performed on Network Signalling
Data (NSD) for travel demand estimation in the form of Origin-Destination (OD) matrices
at a regional scale. This topic has been the subject of the PhD thesis of Mariem Fekih that
I co-supervised.

Chapter 3 pushes forward the results of Chapter 2 by focusing on the reconstruction
of human mobility information at a finer spatial resolution, in urban settings. First, the
research activities related to mean speed estimation for urban regions are presented. To
that purpose, we proposed a generic data representation, called User Activity-Dependent
Positioning Data (UAPD), to model different kinds of mobile phone data. This topic was
the focus of Manon Seppecher’s PhD thesis, which I had the privilege of co-supervising. The
second part of the chapter focuses instead on the topic of leveraging NSD to reconstruct
Global Positioning System (GPS)-like human mobility trajectories in urban environment.
This research was the subject of Loïc Bonnetain’s PhD thesis, which I co-directed. This
chapter also discusses the approaches developed to satisfy anonymisation constraints with
mobile phone traces in order to ensure confidentiality in the collection, processing and shar-
ing of mobility indicators derived from NSD. This subject is one of the topics of another
ongoing PhD thesis (Benoit Matet) co-advised with the GRETTIA laboratory of University
Gustave Eiffel.

Chapter 4 outlines the research efforts focused on modelling, analysing, and managing
the vulnerabilities of multi-modal transport networks. First, we present research activities
centred on the cornerstone of resilience known as anticipating, i.e., knowing what to ex-
pect. These activities have been helpful in highlighting the limitations of current approaches
for identifying vulnerabilities to disruptions in complex and highly dynamic transportation
networks. Building on these insights, the chapter explores the combined use of complex
network metrics and mobility data for continuous monitoring. This approach enables quick
detection and anticipation of disruptive events in large-scale settings. Our methodology
offers a dynamic and reactive approach to the resilient management of transportation net-
works. It provides advantages over traditional vulnerability assessment methods by better
accounting for events that are hard to model and predict. This is in line with the mon-
itoring, i.e., knowing what to look for, aspect of resilience. Finally, we present an urban
planning strategy aimed at integrating multi-modality, specifically focusing on on-demand
shuttle services. This strategy aims to reduce the vulnerability of specific urban areas to
recurrent disruptions while preserving efficient network operations under typical conditions.
This aligns with the responding, i.e., knowing what to do, aspect of resilience. The research
reported in this chapter includes significant contributions from Elise Henry’s PhD thesis,
which I co-supervised.

Chapter 5 expands upon the findings of Chapters 3 and 4. It introduces the architec-
tural, technological, and algorithmic support developed to support the effective processing
of both large historical and real-time stream data. Moreover, it discusses the strategies
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implemented to address the two core elements of resilience introduced in the previous chap-
ter: continuous monitoring, i.e., knowing what to look for, and responding, i.e., knowing
what to do. Specifically, the first part of the chapter focuses on the design and prototyp-
ing of the PROMENADE general-purpose platform, its prototype for road networks and
related applications. The platform is part of the homonymous project, ANR JCJC PROM-
ENADE, which I have led from February 2019. Inspired by the principles of the Internet
of Things (IoT), cloud computing, and micro-services architectures, the platform supports
the continuous development of data-intensive and real-time applications. The second part
of the chapter delves with the applications of the platform prototype. A first one lever-
ages a betweenness-centrality-based approach for quasi-real-time monitoring of very large
networks. This application exploits a new algorithm for the rapid calculation of the between-
ness centrality indicator on large networks, which is also described in this chapter. A second
application focuses on the large-scale control of urban road traffic through a multi-agent
cooperative framework. Both applications were developed in the context of Cecile Daniel’s
PhD thesis, which I co-directed in collaboration with the LIRIS laboratory of University
Claude Bernard Lyon 1, and in collaboration with the University of Sannio.

The final Chapter 6 summarises the primary contributions of my research activities thus
far and highlights future research perspectives that I will be pursuing in the short and long
terms.
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Chapter 1

Basic Notions

This chapter introduces the foundational notions underpinning this manuscript, organised
into two primary sections.

In the first section, a succinct overview of the most relevant large-scale data sources
used in mobility studies is presented. The focus is solely on the data incorporated into my
research, with no intention of exhaustively covering the vast field of data-driven transporta-
tion studies. This section also includes a comparative analysis of NSD and CDR data, based
on a real-world dataset provided by Orange Innovation. The concepts introduced in this
section represent the necessary groundwork for the rest of the manuscript, particularly for
Chapters 2 and 3, which focus on the analysis and processing of mobile phone data.

The second section shifts to resilience modelling, introducing specific vocabulary to assist
the reader in accurately interpreting the manuscript when discussing resilience and related
concepts. Considering the broad nature of resilience, rooted in the fields of critical infras-
tructures and risk management, this section delves deeper into its nuances as it pertains to
transportation. Particularly, this section provides a thorough exploration of related work
on vulnerability assessment for multi-modal transport networks, and identifies the most
pertinent research gaps that motivated the activities described in Chapters 4 and 5.

1.1 Massive Data Sources for Mobility Studies

A key objective of my research at LICIT-ECO7 has been to investigate the potential of
large-scale mobility data sources in order to develop automatic approaches to derive insights
on human mobility. This exploration has contributed to enriching traditional modelling of
travel demand and enhancing the management of transport networks. In that respect, a
strong attention has been reserved to data sources preserving trajectory information at an
individual level, and, particularly, to mobile phone passive data. Working on such data
has come with various challenges, such as overcoming the inherent limitations in terms
of accuracy of these data sources, which are not explicitly thought to provide mobility
information, as well as identifying proper combinations of techniques and technologies to
enable the automatic processing of their huge volumes. In the following, the most relevant
sources of massive trajectory data are shortly (and definitely non-exhaustively) described,
together with a brief analysis of their main advantages and limitations (see Table 1.1). The
interested reader can refer to recent surveys on the topic, such as [15, 16, 17], for a more
detailed bibliography on these data sources and their applications in the field of human
mobility study and modelling.

For decades, household surveys, completed through phones, the Internet or face-to-face
interviews, have been the major source of data for analysing and modelling travel demand
at city, regional or even nation-wide scales. Actively compiled by travellers (or by operators
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Chapter 1. Basic Notions

Table 1.1: Advantages and disadvantages of novel data sources for human mobility modelling.

Data Source Advantages Disadvantages Related
Chapters

GPS • High spatial accuracy and
temporal resolution

• Speed data available

• Privacy concerns
• Small sample size
• Unavailability of data (e.g.,

tunnels)

• Chapter 3
• Chapter 4
• Chapter 5
• Chapter 6

Ticketing and
smart-card

• Large sample size
• Low collection cost

• Limited to transit users
• Incomplete trip records (e.g.,

missing tap-out)

• Chapter 3
• Chapter 6

BSS Data • Detailed urban mobility pat-
terns

• Reflects infrastructure utili-
sation and behavioural shifts

• Low collection cost

• Limited to users of the spe-
cific BSS

• Potential privacy concerns
• Data might be skewed in ar-

eas with lower BSS penetra-
tion and affected by exoge-
nous factors

• Chapter 6

LSBN • Can provides detailed infor-
mation on trip motifs (e.g.,
leisure, sport) and some
mode choices

• Limited geographic coverage
• Data accuracy issues

• Chapter 3,
in the form
of UAPD

Call Detail
Records

• Very large sample size
• Low collection cost

• Limited to telecommunica-
tion network users

• Spatial resolution limited to
antenna’s coverage area

• Limited temporal resolution

• Chapter 2

Network
Signalling Data

• Very large sample size
• Low collection cost
• High temporal granularity

• Privacy concerns
• Noise and oscillation effect

• Chapter 3
• Chapter 4

on their behalf) in the form of travel diaries, they have fed plenty of transportation studies
aimed to reconstruct mobility indicators, i.e., the daily number of trips, travel mode choices,
routes, motifs and typical travel times, usually defined between OD pairs of Transportation
Analysis Zones (TAZs).

However, as will be further discussed in Sec. 2.2, household travel surveys suffer from
multiple well-known issues [18]: they can be very expensive to conduct, become quickly
outdated, and, due to high non-response rates, are unavoidably biased towards the relatively
small part of the respondent population.

Other relevant sources of mobility data include loop detectors, camera, RAdio Detection
and Ranging (RADAR) and LIght Detection And Ranging (LIDAR) sensors, which usually
only provide aggregate counts of moving objects, thus not allowing to follow their movements
in space and time.

Triggered by new technologies, this situation has deeply changed with the emergence of
novel (often said opportunistic) sources of massive data for transportation. These data can
be collected via, among others, smart ticketing public transit systems, widely adopted navi-
gation systems and mobile applications (such as TomTom, Google Maps, Waze, etc.), highly
popular social media platforms, or mobile phone records collected by telecommunication
service providers. All these sources offer advanced possibilities to passively collect informa-
tion on large masses of travellers and, consequently, to extract large-scale spatio-temporal
patterns related to multi-modal travel demand and traffic variables.
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1.1.1 Main Sources of Trajectory Data

Among the most traditional sources of trajectory data, GPS logs are produced using in-
formation from multiple satellites that provide precise localisation of moving objects (like
smartphones, vehicles) equipped with a GPS receiver. Modern navigation systems can thus
use the GPS to record the trajectories of a users movement with a high degree of spatial
accuracy (around 5 meters) and high temporal resolution (in the order of a few seconds),
regularly uploading the collected data to the navigation service provider’s back-end system.
Floating Car Data (FCD) refers to the collection of traffic and mobility information from
moving vehicles, predominantly leveraging the GPS technology. In essence, vehicles act as
mobile sensors on the road, transmitting data about their speed, direction, and location.
Even though GPS-derived data could be very accurate, it is rare to achieve a high pene-
tration rate in the travellers’ population, which makes it complicated, if not impossible, to
perform at affordable costs city-wide or region-wide studies that require, e.g., the estimation
of vehicle flows. However, FCD remain an invaluable data source for accurately analysing
mobility trajectories and estimating and forecasting congestion states, especially at local
scales like road segments or areas crossed by heavily trafficked roads. Due to these proper-
ties, FCD are often used as a source of ground truth to measure the quality of reconstruction
methods that utilise other datasets (see Chapters 2 and 3). Moreover, FCD can be instru-
mental in identifying anomalies and responses to disruptions by comparing traffic conditions
during specific events to typical situations averaged over multiple days of observations (see
Chapter 4). GPS applications for mobility are extensively surveyed in [19].

Public transport authorities usually equip their transportation infrastructure (e.g., metro
and bus stations) and means (e.g., buses, tramways) with ticketing data collection systems,
which allow storing aggregate (e.g., hourly) and spatially localised counts of transit usage.
Recent public transit ticketing systems allow travellers to carry a personal smart-card, or
their own credit card, and check-in/check-out for boarding and alighting at public transport
stops. These systems can thus generate, at large scale, massive public transport trajectory
data including, i.e., card identifier, stop origin, boarding time, stop destination, alighting
time for each individual transit user. Smart-card data have thus the advantage to provide a
large coverage of public transport trips, even at an individual level, with very high accuracy
both in space and time (see Chapter 3 for their use to validate aggregate statistics on mobility
derived from NSD). Nevertheless, the data suffers from missing validations (faults, frauds,
etc.), and cannot provide any information on other transportation modes such as car, bike,
walk, train. A detailed analysis of mobility patterns detection via smart card data can be
found in [20].

As a sustainable alternative to motorised vehicles and transit, Bike-Sharing Systems
(BSSs) serve as a crucial data source from a research perspective, shedding light on active
mobility patterns, infrastructure utilisation, and evolving human behaviours. Typically, BSS
datasets capture trip duration, start and end points, and often include user demographics.
Analysing BSS data allows cities to appreciate the role of cycling as a resilient mode of
urban mobility, aligning with current health challenges and broader sustainable development
goals. Systems like Velo’v in Lyon and Vélib in Paris have evidenced the transformative
potential of BSSs, as demonstrated by the surge in cycling trips following their launches [21,
22]. The COVID-19 pandemic further underscored the significance of BSSs in steering
urban mobility transformations rooted in ecological awareness [23]. With public support,
infrastructure, and incentives, BSSs advocate for a transition to sustainable, multi-modal
mobility, especially in urban environments. However, it’s worth noting that while BSSs
provide a convenient commuting option, cycling is still influenced by external factors like
weather, topography, and urban design. These considerations present research challenges
that must be acknowledged when leveraging BSS data in transportation studies (see, e.g.,
Chapter 6). A comprehensive review on this topic can be found in [24].

Location-Based Social Networks (LBSN) data have more recently emerged with the
widespread diffusion of social networking applications such as Twitter (now X), Facebook,
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Instagram, Strava. These data typically include temporal and localisation information, to-
gether with content information (text, photos, ratings, etc.) related to the interaction of
people with places of the urban environment (e.g., check-ins at restaurants or museums,
sport activities in parks, participation to concerts and public events, etc.). LBSN data can
thus enable the identification of spatio-temporal patterns related to mobility, socioeconomic
urban activities as well as attendance and perception of places. Despite such advantages,
the availability of location data with LBSN is only limited to a small percentage of the social
networking population and app usages, which again hampers the possibility of performing
statistically relevant and large-scale studies on human mobility. A detailed survey on usages
of LBSN data for urban studies is provided in [25].

As already discussed in the introduction to this manuscript, CDR issued from mobile
network providers deserve a special attention as an indirect source of mobility data. CDR
are data collected by mobile network operators that contain information about the usage of
mobile phone services by customers. This data typically reports the date and time of call or
text message initiation and termination, the numbers of the calling and called party (before
anonymisation), the duration of the call or message, and the location of the phone when
the call or message took place [26]. The location of a Call Details Records log is usually
provided in terms of the identifier of the antenna where the communication event has taken
place. In recent data collections, CDR typically also report information on data connections
and the amount of traffic downloaded/uploaded by mobile phone apps running on the phone.
For privacy concerns, CDR are typically pseudo-anonymised1 and/or aggregated in time and
space. Multiple CDR logs related to different users are summarised by reporting the total
number of observed events at the given base station, with a given time periodicity (e.g.,
every hour). This is the kind of data used in the research activities described in Sec. 2.1.

CDR present a unique combination of desirable properties: (i) they offer unprecedented
penetration as they are available for the whole subscriber base of a network provider, which
typically covers tens or hundreds of millions of users; (ii) they are recorded continuously
over long time periods, allowing fine-grained longitudinal studies over months or years; and,
(iii) they are passively collected and maintained in curated databases for billing purposes,
which makes them a very cost-efficient source of data for secondary use and analysis.

Due to such interesting properties, CDR have become an important source of data for
various fields of research, such as telecommunications, urban planning, epidemiology, and
sociology. In telecommunications, CDR have been used to study patterns of communication,
the evolution of social networks, and the impact of mobile phone services on the economy. In
transportation and urban planning, CDR have been employed to derive and validate general
laws that govern human movements [27], reconstructing OD matrices [28], understanding
urban land use dynamics [9, 10] or inferring population density shifts over time [29]. In
epidemiology, CDR have been used to study the spread of infectious diseases [30]. In sociol-
ogy, CDR have been used to study social inequalities, community structures, and individual
behaviours [31]. In this sense, CDR are a primary source of information to learn the be-
haviours of urban complex systems and CIs. Results related to the use of aggregate CDR
data are reported in the first part of Chapter 2 (Sec. 2.1).

However, and despite their significant advantages for human-centric mobility studies,
CDR have fundamental limitations in terms of positioning accuracy in both space and time.
In space, the mobile device locations can only be mapped to the coverage area or position of
the base stations to which it is associated [32]; in time, the sampling process is driven by the
occurrence of voice call establishments or text message transmission, which are both sparse
and irregularly distributed [33]. Lastly, even though they might cover a significant portion of
the population depending on the operator’s market share, these data are inherently skewed
by the socio-economic traits of the provider’s network user base. Ultimately, these problems
limit the utility of CDR for studies that require a high level of spatio-temporal detail [34],
making it challenging to gain a detailed understanding of such behaviours.

1The identifiers of the caller and the callee are replaced by random identifiers.
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NSD represent another kind of mobile phone passive data, which allows to overcome such
limitations. NSD can be considered the latest generation of CDR-like data. Compared to
CDR, NSD convey richer information on the activity of a mobile phone user, and can be
collected for the entire subscriber base of a mobile telecommunication provider. They include
all the network data-plane events generated by every device associated with the provider’s
radio access network across 2G, 3G, 4G and, more recently, 5G cellular technologies. NSD
events are triggered by a variety of interactions: (i) voice and texting communications
(i.e., call establishments and SMS transmissions, which are fully equivalent to those logged
by CDR), (ii) handovers (i.e., device cell changes during communication), (iii) Location
Area (LA) and Tracking Area (TA) updates (i.e., cell changes that cross boundaries among
larger regions named LA in 2G/3G and TA in 4G, also affecting idle devices), (iv) active
paging (i.e., periodic requests to update the location of the device started from the network
side), (v) network attaches and detaches (i.e., devices joining or leaving the network as they
are turned on/off), and (vi) data connections (i.e., requests to assign resources for traffic
generated by mobile applications running on the device).

The diversity of events encompassed by NSD inherently enriches the data with additional
information and increases their temporal frequency compared to CDR. Due to such prop-
erties, these data are appealing to explore human mobility at scales impossible to analyse
with alternative data sources traditionally used in transportation, such as household sur-
veys or GPS data. However, NSD come with fundamental issues and limitations, such as
low accuracy in space, sparsity in time and high noise due to oscillation effects. These issues
make them not directly applicable for fine-grained mobility studies. Analysing the potential
of such data and addressing their issues for mobility analysis have been at the centre of the
research described in the second part of Chapter 2 (Sec. 2.2), which presents the results of
the initial research conducted on test instances of NSD. Despite the limitations associated
with these initial data, such activities allowed verifying the potential of novel generation
mobile phone data for reconstructing travel demand at a regional scale.

As further elaborated in Chapter 3, these attributes also make the data substantially
larger in size, and more prone to noise, manifested as higher oscillation occurrences, than
what is seen in traditional CDR data. Moreover, the characteristics of NSD don’t necessarily
enhance the spatial resolution of each logged event, which is still localised at the level of
a network base station. Consequently, more sophisticated machine-learning based process-
ing techniques are imperative to transform this raw data into meaningful and fine-grained
insights regarding human mobility. Utilising extensive individual mobile phone datasets,
Chapter 3 demonstrates the capability to derive detailed speed estimations (Sec. 3.1),
GPS-like trajectories (Sec. 3.2) and multi-modal routes within the transportation network
(Sec. 3.3). It also raises considerations about the need for anonymisation methods, and
suggests strategies to retain highly-detailed mobility information while upholding privacy
constraints (Sec. 3.4).

1.1.2 Analysis of a Massive Real-world NSD Dataset

To provide a basic understanding of how mobile phone data can provide useful information on
mobility trajectories, this section introduces a real-world large-scale NSD dataset provided
by Orange Innovation in the context of the ANR PROMENADE project, and related to
the cities of Paris and Lyon. This section also provides empirical evidence of the increased
accuracy of NSD when compared to CDR. This dataset has supported most of the research
studies described in Chapter 3.

Firstly, we separated the dataset in two parts, denoted as DP and DL, for Paris and
Lyon, respectively. DP and DL were gathered during three consecutive months in 2019,
from March 15 to June 15. The data collection, performed via the operator’s network
probes, was authorised by the Data Protection Officer (DPO) of Orange according to article
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89 of the General Data Protection Regulation (GDPR)2, which provides an exemption for
research, in particular for scientific and research purposes. The data were collected and
processed exclusively on the Orange Innovation secure Big Data platform. The data were
also pseudonymised and stored in a private directory in a server located in the operator
premises, and accessible only to authorised researchers. All source data were deleted 12
months after the collection. The datasets included more than 150 billions of logged events
overall, observed on a mobile phone network including more than 4,600 antennas. The
resulting total user base tallied to over 10 millions of individual mobile subscribers identifiers
(IMSI) and over 3 millions of estimated residents in the two considered cities. Additional
details on the DP and DL NSD datasets are reported in Tab. 1.2.

Table 1.2: Statistics on the large-scale network signalling data.

Dataset City Area Nb 2G events (·106) 3G events (·106) 4G events (·106)

(km2) antennas Nb
IMSI

Nb
events

Nb
IMSI

Nb
events

Nb
IMSI

Nb
events

DL Lyon 1,506 646 1.7 83 2.8 1,470 2.9 20,994
DP Paris 5,784 3,972 5.9 850 6.5 10,166 6.1 116,461

The main challenge we addressed consisted in reconstructing from DP and DL the sep-
arate trips of each mobile phone device with a high spatial accuracy to infer information
about the exact paths travelled (e.g., as the sequence of road segments, or the combination
of transport modes). City environments exacerbate the problem, as they feature difficult-
to-track short trips over entangled dense road layouts with multiple transportation modes.
Traditional CDR are not suitable to address the task, due to their limited spatial resolution
and sampling frequency. For instance, Fig. 1.1(a) shows the localisation samples recorded by
CDR for an exemplary urban displacement; a linear interpolation of the CDR samples (solid
red) is superposed to the same user trajectory, as observed via GPS data (dotted blue). The
figure makes it clear that inferring the actual movement from CDR is an arduous mission.

0 500 1000 m

© OpenStreetMap

CDR events
CDR trajectory
Ground truth
Antennas

(a) Trajectory from Call Detail Record

0 500 1000 m

© OpenStreetMap

NSD events
NSD trajectory
Ground truth
Antennas

(b) Trajectory from Network Signalling Data

Figure 1.1: Examples of inference of one trajectory of a volunteer from (a) CDR, and (b) NSD,
compared to the corresponding GPS trace (in blue) used as ground truth.

By visually comparing Fig. 1.1(b) to Fig. 1.1(a), it appears evident how the variety of
collected events with NSD may increase significantly the number of points observed for a
given user, paving the way to finer-grained studies of human mobility. The assortment of
situations captured by NSD (i.e., voice calls, text messages, handovers, location updates,
active paging, attaches/detaches and data connections) is much wider than the sole call-
and text-related events in CDR. This naturally leads to a much higher sampling frequency
of the locations of devices (hence, users) over time in NSD with respect to traditional CDR.

A quantitative inspection of the increased temporal accuracy of NSD is provided in
Fig. 1.2. The two plots present the Cumulative Distribution Function (CDF) of the time

2https://gdpr.eu/tag/gdpr/
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Figure 1.2: CDF of inter-event times recorded in NSD, CDR, and CDR+. The plots refer to (a)
median, and (b) average times per user.

between subsequent NSD events; specifically, the distributions are computed over the (a)
median and (b) mean inter-event time recorded for each device, hence they provide a fair view
of the statistics across the observed population. We also report equivalent CDF obtained
using other kinds of mobile network data: (i) CDR, which, as already mentioned, only
capture voice and texting communication events, and (ii) CDR augmented with LA and
TA update events, which we term CDR+. The rationale of this comparison is that CDR
are the most widely adopted source of data from mobile networks, whereas CDR+ have
been recently used for human mobility trajectory inference in some studies from the related
literature [35]. We directly extrapolated CDR and CDR+ from the available NSD database,
by simply retaining only the spatio-temporal samples generated by the events that are
captured by such data sources, while filtering out the information associated to all other
network event types.

The distributions in Fig. 1.2 yield a number of interesting observations. NSD grants a
median inter-event time below 1 minute for 90% of the users, while that figure grows to
5 minutes for CDR+ and over 30 minutes for CDR. Per-user averages that are biased by
long inactivity periods highlight even more the difference between the data sources: NSD
keeps averages below 15 minutes for 90% of the users, whereas CDR+ and CDR record mean
inter-arrivals of up to 1 hour and 3.5 hours for the same user fraction. The conclusion is
that NSD ensure a sampling rate increase of more than one order of magnitude with respect
to CDR and of a factor 5 over CDR+. Importantly, these results are fairly uniform over the
considered population.

NSD are not supposed to bring any advantage over other classes of mobile network
positioning data in terms of the absolute spatial accuracy of each location sample. As a
matter of fact, NSD, CDR, CDR+, and any other network data types, are collected on the
same radio access network infrastructure: therefore, the locations used to geo-reference the
events are those of a matching set of base stations to which mobile devices associate over
time. To prove our point, we run experiments with ground truth GPS data collected by a
small set of volunteers. For each volunteer, we computed the distance between the location of
the antenna associated to all generated network events and the corresponding GPS position
at the time. Repeating the process for all CDR, CDR+ and NSD events yielded very similar
average distances, between 0.26 and 0.28 km, in the three cases.

However, NSD provide a much more accurate spatial representation of the trajectory
as a whole, as a direct consequence of the increased sampling rate. This is clearly shown
in plots (a) and (b) of Fig. 1.1 for a single trajectory, as well as in plots (a) and (b) of
Fig. 1.3 for multiple trips of a same user. These figures highlight the capability of NSD to
capture individual mobility patterns in a much more exhaustive way compared to CDR. The
unprecedented spatio-temporal resolution of NSD is at the basis of the framework described
in Sec. 3.2.
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Figure 1.3: Sample weekly trajectories of one voluntary user inferred from (a) CDR, and (b) NSD.

An important aspect of the data employed for our study is that it covered three gen-
erations of cellular network technologies. This let us investigate the relevance of events
generated by 2G, 3G, and 4G events on the accuracy of the positioning data. Tab. 1.2
breaks down the number of unique devices observed under each technology, as well as the
number of events recorded, separately reported for the two large-scale datasets related to
Paris and Lyon, DP and DL, respectively. The figures evidence how the number of users
that can be monitored by the three radio access technologies is comparable, and partially
overlapping. However, the sets of geo-referenced NSD collected for the monitored devices
is completely different: the number of events grows by more than one order of magnitude
when moving from one cellular generation to the next.

While this is a clear result of the increased consumption of mobile services and asso-
ciated growth of mobile data traffic that newer network technologies support, it further
distinguishes our study from the many previous works that date back to the 2005-2015 pe-
riod, and that could only rely on limited 2G and 3G data (which includes also the results
discussed in Sec. 2.2).

1.2 Resilience Modelling

To guide readers through the vast and often misapplied terminology surrounding “resilience”,
a word already frequently used in this document without a precise definition, we present a
brief introduction below. It covers essential terms, definitions, and methodologies from the
realm of resilience modelling, which will be employed throughout this document

The word “resilience” is derived from the Latin term resilire, meaning “to bounce” or
“to rebound”. The term was initially used in material science to describe the resistance of
materials to physical shocks and has been since then widely used in other fields such as
biology [36], social sciences [37], and engineering [13] to denote the speed at which a com-
plex system bounces back from the degradation of its functions deriving from disruptive
events [38]. Resilience has also important relationships and differences with the concept of
reliability, the latter usually referring to the ability of a system to consistently perform its
functions for the period of time intended under a well-specified set of operating conditions
encountered [39]. Moreover, reliability typically assumes no or weak correlations among
the different system components that can exhibit failures as a consequence of a disrup-
tion. Conversely, resilience does not consider explicit assumptions on the nature and extent
of disruptions, which often have the nature of surprises [40], and presumes the existence
of possible complex interactions and inter-dependencies between the system components,
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forming a complex network [38]. These differences are particularly relevant in our context
of transportation networks, exposed to hardly predictable disruptive events and composed
of multiple topologies associated with different transport modes, typically interacting ac-
cording to complex spatio-temporal patterns, and often exhibiting long-range spatial corre-
lations [38].

Given the diverse and complex responses of systems to perturbations, as well as the highly
heterogeneous nature of the perturbations, resilience is a multifaceted and broad domain of
research. As a result, there is currently no consensus on the definition of resilience, as noted
in prior work [41]. First of all, as discussed in [42], resilience can be defined with respect
to four dimensions: technical, organisational, social, and economic. Technical resilience
relates to the ability of physical systems to perform well during disruptions through the
engineered features of the constituting and interacting components. Organisational resilience
refers to the capability of critical facilities management organisations to make decisions and
take actions that increase robustness, redundancy, resourcefulness, and rapidity. Social
resilience involves reducing negative consequences on communities due to the loss of critical
services. Economic resilience involves reducing both direct and indirect economic losses
caused by the occurred disruption. In this HDR thesis, we will mostly refer to technical
resilience, in an acceptation that revolves around four fundamental, partially overlapping
concepts [42, 40, 43, 38], defined as follows.

Firstly, robustness refers to the preparedness of the system to absorb and resist dis-
ruptions, thanks to the abundance of resources (i.e., redundancy) and the capability (i.e.,
resourcefulness) to identify problems, establish priorities, and mobilise resources when con-
ditions exist that threaten to disrupt some element of the system. Robustness usually refers
to a situation in which the system does not leave its stable state of operation despite the
occurrence of disruptions, which should be therefore fully absorbed by the system without
significantly affecting its performance. Vulnerability is a term strictly related to robustness.
Specifically, vulnerability can be considered the antinome of robustness [44]. Vulnerability is
defined as the expected damage (consequences C) that occurs in a system when a hazardous
event A occurs and the system is exposed to it [45]. The triplet (A,C,U) is the definition
of risk [45], with U representing the uncertainty of the occurrence of event A. Vulnerability
assessment tries therefore to quantify the uncertainty U as well as the severity of conse-
quences C, with associated probability P , given the knowledge K of the actual state of the
system under analysis, i.e., V = (C,P, U,K|A) [44].

Secondly, the terms rapidity, graceful extensibility or flexibility can all refer to the capa-
bility of the system to stretch its existing resources to meet priorities and achieve goals in a
timely manner to contain losses in the presence of disruptions. In particular, rapidity refers
to the time passing between the stable state of operation and the new state of operation
associated with a reduced level of service, while the extensibility capability of the system
determines the amount of performance loss associated with the new degraded state of oper-
ation. The residual capacity associated with the degraded state is normally identified with
the term of survivability.

Thirdly, recovery is a central aspect of resilience, corresponding to a system’s capability
to rebound to normal operation from the degraded state of equilibrium reached in the
aftermath of a disruption. Recovery capabilities are largely dependent on the procedures,
structures, and resources that have been developed before the occurrence of a disruption
to handle expected or unexpected emergency situations. They are especially relevant when
the event falls outside the scope of variations and disturbances that the system in question
is known to be capable of handling. The traditional notion of recovery corresponds to the
definition of ecological or static resilience, reflecting whether the system returns (or not) to
the same state of function after some external perturbation or shock. A second, more recent
notion of recovery corresponds instead to engineering or dynamic resilience, which refers to
the rapidity of this recovery to a new level of operation [46]. It is worth highlighting that
the new recovered state may not necessarily correspond to the initial normal state, as it
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can be associated with lower or higher levels of performance with respect to the situation
preceding the disruption.

Fourthly, adaptability refers to the capability of the system to sustain adaptation over its
life cycle, by changing its internal organisation, structure and components with respect to
predictable changes or sudden disruptions. This notion requires the system to be flexible in
its architecture in order to sustain changes over long scales, which normally include multiple
cycles of disruptions and failures.

It is important to note that these concepts are strictly interrelated and that a resilient
system should exhibit all these characteristics to varying degrees, depending on the specific
risk situation the system is exposed to (see Fig. 1.4(a)). We will explicitly refer to these
properties in this and the following chapters to clarify how the developed approaches and
tools support specific components of transport resilience.

1.2.1 Main Approaches to Assessing Resilience: a High-level Clas-
sification

The prologue of the book on resilience engineering from Hollnagel et al. [13] provides a
valuable conceptual framework to classify relevant approaches from the literature on the
subject of resilience quantification and management.

(a) The relationship between probability of occur-
rence and consequences of outcomes in a system’s
life-cycle

(b) The four resilience cornerstones

Figure 1.4: The general framework for resilience engineering proposed by Hollnagel et al., 2006.

Hollnagel et al. present resilience engineering as a field encompassing traditional safety
(or risk) management. Resilience engineering focuses in fact on both expected and unexpected
conditions rather than just avoiding failures, as normal outcomes are way more probable than
extreme events, incidents and disasters (see Fig. 1.4(a)). According to the authors, it is in
fact necessary to look at success as well as at failures precisely in order to understand failures
or why things can go wrong. This represents a very interesting definition that clarifies how
resilience engineering not only deals with safety but also with system efficiency, and that
no fundamental conceptual differences exist between performance that leads to failures and
performance that leads to successes. The framework also provides a clear description of
what kind of operational solutions one should consider for improving system resilience. As
graphically presented in Fig. 1.4(b), resilience engineering covers four main cornerstones,
namely: (i) knowing what to do, i.e., the set of prepared strategies to stretch and recover
in the presence of actual sporadic or recurrent disruptions; (ii) knowing what to look for,
i.e., the capability to monitor the actual or potential critical (external or internal) threats
a system is exposed to; (iii) knowing what to expect, i.e., the set of features that help
to anticipate potential future threats, changes and opportunities by means of adaptation
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capabilities; (iv) knowing what has happened, i.e., the ability to learn from past factual
success or failure stories in the system’s life-cycle.

Similar ideas were advanced by Bellini et al. in [14], where resilience-engineering is con-
sidered as composed of four key elements: respond, anticipate, monitor, and learn. The
authors suggest that digital technologies can enhance the efficiency and effectiveness of
resilience-building processes. For example, cloud computing, big data, and simulation tools
can be used to anticipate potential risks and test emergency responses. IoT sensing and
5G technologies can improve urban monitoring and warning systems. Real-time data pro-
cessing can contribute to more efficient emergency responses, while advanced data analysis
techniques based on machine learning and optimisation can support learning and policy-
making. The literature generally refers to this approach as resilience analytics [47, 48],
which involves using data-driven processes to support resilience through descriptive, predic-
tive, and prescriptive modelling.

In their recent survey [49], Serdar et al. analyse the abundant literature on resilience
assessment for urban transport, identifying the main approaches adopted so far in the field.
The authors identify five main categories of approaches: big data methods and technologies,
simulation methods, model optimisation, graph theory, and probability-based methods.

Big data methods and technologies involve the use of large volumes of data from various
sources, such as social media, mobile phone and GPS data, to analyse and monitor the
performance of transportation networks in real-time. The data can be structured, semi-
structured, or unstructured, and can be processed through different analytical tools and
algorithms to detect abnormalities and reflect on past events. The authors consider big data
methods suitable for assessing the resilience of transportation networks in terms of system
performance, and they can provide valuable insights for smart city applications. However,
the effectiveness and resource consumption of big data methods largely depend on using the
correct indicators and data type, being often not capable of predicting future performance
with respect to unprecedented events. Moreover, the authors insist on the absence of a
good understanding of the actual, multi-modal and time-varying travel demand, which is a
fundamental component that needs to be learned in order to anticipate and recover from
disruptions.

Simulation methods are identified as another crucial category of approaches for assess-
ing the resilience of transportation networks under fresh developments and unprecedented
events. They involve creating models of transportation networks and testing them under
different scenarios and traffic configurations. Simulation methods can consider different net-
work components and their interactions, but they are resource-demanding, which makes it
hard to scale up. They also require calibration and a deep understanding of the system to
apply them correctly.

Model optimisation is considered suitable for post-disaster planning, preparedness, and
recovery budget allocation. The approaches falling in this category involve developing math-
ematical models of transportation networks and optimising them to allocate resources effi-
ciently. Model optimisation methods can be used to optimally schedule and prioritise the
allocation of resources and evaluate the effectiveness of different mitigation plans. How-
ever, developing an efficient mathematical representation of the system requires a good
understanding of both the system and the threats it faces. Methods in this category often
combine with graph-based approaches for modelling the underlying transport network as
well as simulation to compute generalised costs included in the objective functions or in the
problem constraints.

Graph theory approaches to resilience engineering traditionally involve using network
topology modelling and connectivity analysis to study and monitor the performance of trans-
portation networks. Methods in this category generally adopt a simplistic representation
of the transport system, which has however the important advantage of resource efficiency,
thus being particularly suitable for analysing large networks. Graph theory methods do not
naturally account for traffic dynamics, congestion formation, redistribution, and capacity
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Table 1.3: Methods for resilience assessment, adapted and extended from Serdar et al., 2022.

Assessment
method

Remarks Related
Chapters

Big data,
IoT, Ma-
chine
Learning

Suitability/Strength
• Suitable for smart city applications and resilience assessment through

real-time system performance assessment, detecting the abnormalities,
and reflecting on previous events.

• Using correct indicators and the type of data (e.g., structured, semi-
structured, or unstructured) play a central role in its effectiveness and
resource consumption.

Limitations
• Under-exploited for understanding and modelling of multi-modal, time-

varying travel demand.
• Could be not suitable for predicting future performance toward unprece-

dented events.

Chapter 2,
Chapter 3,
Chapter 5

Simulation Suitability/Strength
• Suitable to assess fresh developments and unprecedented events, can con-

sider different traffic compositions, network components, and their inter-
actions.

Limitations
• Resource-demanding, which makes it hard to scale up.
• Require calibration and deep understanding to apply it correctly.

Chapter 4,
Chapter 5

Graph
theory
(complex
networks,
network
topology)

Suitability/Strength
• Suitable for large networks since it is simple and resource-efficient.
• Can be used in conjunction with other methods.
Limitations
• Usually does not account for traffic performance, travel demand, and the

dynamics of the urban transport system (traffic redistribution, congestion
formation, etc.)

• Basic static modelling of disruptions, mostly based on edge cut and nodes’
removal. Does not typically take into account partial capacity reduction
deriving from disruptions.

Chapter 3,
Chapter 4,
Chapter 5

Model opti-
mization

Suitability/Strength
• Suitable for post-disaster planning, preparedness, and recovery budget

allocation.
Limitations
• Require good understanding of the system and threats to develop an

efficient mathematical representation of the system.

Chapter 4

Probability-
based
methods

Suitability/Strength
• Suitable for assessing system resilience in terms of its reliability.
• Help to evaluate different arrangements and prioritizing severe distur-

bances mitigation plans.
Limitations
• Rely on the accuracy and representativeness of the statistical data used

in the development of probability estimations.

Chapter 5

reduction due to accidents, which represents one of the most relevant limitations of these
approaches, usually requiring them to be used in conjunction with other methods, such as
traffic simulation and big data processing. The modelling of time-related dynamics can
be addressed with more complex modelling approaches such as dynamic and multi-layer
networks.

Probability-based methods involve assessing the resilience of transportation networks by
modelling the probability of failures as well as the causal relationships among the system
components, usually leveraging Bayesian models or data-derived statistical models of system
performance. They help to evaluate different arrangements and prioritise severe disturbance
mitigation plans. The accuracy of probability-based methods strongly depends on the rep-
resentativeness of the statistical data used in the development of probability estimations.

- 18 -



1.2. Resilience Modelling

Tab. 1.3, borrowed and partially adapted from [49], summarises the main conclusions
from the authors and identifies the chapters of this HDR thesis that deal with each of the
mentioned categories.

1.2.2 Vulnerability Analysis of Transport Networks

In the following, we propose a concise literature review, largely based on [50, 46, 49], about
quantitative approaches and metrics for vulnerability analysis of urban transport networks,
leaving the interested reader to the numerous surveys on the broader topic of network
resilience engineering for more details [13, 38, 51, 47, 52].

In urban transportation, vulnerability refers to the degree of exposure of a system to
hazards and losses due to the risks present in its operating environment [53]. Analysing
the vulnerabilities of a system corresponds to the knowing what to expect dimension in the
general framework proposed by Hollnagel et al. [13] (see Fig. 1.4(b)).

In [43], one of the first general-purpose methods to model and quantify vulnerabilities by
measuring the impact of disruptions on a complex system was introduced. The framework
also allows evaluating the positive effect of recovery strategies on the disrupted system (i.e.,
the knowing what to do cornerstone). Specifically, the system under analysis is assumed
to be stressed at time te by a disruptive event ej that causes service loss to the system.
As a result, the system shifts from the original state of regular operation s0 to a disrupted
stable state sd at time td. Recovery actions are taken at time ts bringing the system to
a recovered state at time tf . The transition sequence is graphically described in Fig. 1.5,
borrowed from [43].

Figure 1.5: Transition among states of a disrupted system as proposed in Henry et al., 2012.

The resilience R(tr) of the system at time tr ∈ (td, tf ) is thus defined as the ratio of
recovery at time tr to loss suffered by the system at time td:

R(tr) =
Recovery(tr)

Loss(td)
(1.1)

The main idea behind this generic definition of resilience is that if the recovery equals
the loss, the system is entirely resilient. If no recovery action occurs, then the system has
shown no resilience. The value of resilience can be computed based on a figure-of-merit
F (·) representing a generic quantifiable indicator of whole system performance, such as
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connectivity, throughput, reliability, etc3. Resilience can be thus computed at time tr as:

R(tr|ej) =
F (tr|ej)− F (td|ej)
F (t0)− F (td|ej)

. (1.2)

In the previous equation, if F (tr|ej) = F (t0), the value of resilience R(tr|ej) equals
1, meaning a fully restored system. In a similar approach, Bruneau et al. [42] propose to
compute the area under the curve 1 − Q(t) to quantify resilience and compare different
recovery strategies, specifically:

R(tr) =

∫ tr

t0

[1−Q(t)] dt. (1.3)

where Q(t) represents the fraction of nominal performance exhibited by the system during
disruption, i.e., Q(t) =

F (t|ej)
F (t0)

, using the formalism from [43]. Sec. 4.1 will build upon
this approach to propose a solution to simulate the impact of day-to-day perturbations on
transport networks [55].

Similarly to Bruneau et al. (Eq. 1.3), Mattsson and Jenelius introduce in [46] the concept
of conditional transport vulnerability, defined as the aggregate consequence of a disruption
scenario. It is measured by the area between the dotted (blue) line of nominal behaviour
and the relevant curve representing the reduced level of function, as shown in Fig. 1.6. The
latter curves depend on ex ante mitigation or ex post adaptation actions. By knowing the
fragility points of a transport system, adequate proactive actions can be envisioned, thus
contributing to strengthening network resilience.

Figure 1.6: Resilience curve and conditional vulnerability as from Mattsson and Jenelius, 2015.

Based on these general concepts, multiple approaches and metrics have been proposed for
analysing and quantifying transport network vulnerabilities. As proposed in [46], they can
be categorised into two main groups: topological and system-based, detailed in the following.

Topological Vulnerability

In topological approaches, graph theory is used to model the transport network. The lat-
ter is represented as a graph, i.e., G = (V,E), with V denoting the set of nodes and E

3In our context related to transportation, candidate metrics could be traffic flow, the inverse of the total
travel time, network efficiency [54], etc., depending on the specific properties one would like to highlight in
the definition of resilience.
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the set of links connecting the nodes. When a transport network is composed of a single
mode, simple graphs can represent it. However, when multiple transport modes (e.g., bike,
car, bus/tramway/subway/railway lines, etc.) and/or the entire set of Public Transport
Network (PTN)/railway lines need to be represented at once, more complex representa-
tions, such as multi-layer network models, are necessary [56, 57]. In this case, a model
such as the one introduced in Sec. 3.3 for multi-modal path reconstruction via TRAjectory
inference at scale with mobile Network SIgnaling daTa (TRANSIT) is used. For a mono-
modal/mono-line transport network, nodes represent stations in the case of PTN/railway,
or road intersections in the case of the road infrastructure. Edges represent the connections
between transit/railway stops or road segments between pairs of road intersections, respec-
tively. Note that multiple formalisms exist, such as L-space and P-space, for representing
transit networks, as widely discussed in [58]. In some works, such as [59], a dual network
representation is used, with streets identified as nodes and intersections identified as links
of unit length. Similar approaches are used in modelling air transport networks (which are
not covered in the research activities described in this HDR thesis), with nodes representing
airports and edges representing direct connections between airports.

Graphs are traditionally unweighted or weighted by means of attributes, such as road
length, segment capacity, free-flow travel times, etc., that are static, i.e., do not change (or
change very slowly) over time. In topological approaches, it is typical to use complex net-
works metrics to identify the most important, and therefore vulnerable, components of the
transport network topology. Similarly to a reverse percolation process [60], disruptions are
traditionally modelled via removing edges or nodes from the network topology according to
random or targeted attack strategies [61]. The goal is to identify the specific set or the criti-
cal ratio of components that, once removed, would make the system incapable of performing
its operations. In targeted attack strategies, nodes or edges are removed based on degree,
betweenness or closeness centrality-based4 ranking [61, 63, 64]. Indicators used to measure
the impact of modelled disruptions include the size of the largest connected component, the
average path length, the global clustering coefficient, global and local efficiency [64, 65, 66].
Topological approaches have been consistently applied to road, public transport and air
transportation networks. These researches have usually indicated small-world properties5
of road networks [61, 67, 38], which thus appear very robust against attacks based on ran-
dom and degree strategies, while very vulnerable against attacks based on the betweenness
strategy, i.e., nodes and edges traversed by a high number of shortest paths should be signif-
icantly protected. Concerning transit, different works have proven the scale-free properties6
of some real-world transport networks (e.g., public transport of Bejing [68], public transport
network of several European cities [69], subway system of Shenzen [70]), which indicates
resistance to random failures but vulnerability to attacks on high-degree nodes; absence of
either scale-free or small-world properties for some subway networks [71, 72], which indicates

4Degree centrality is a node-based centrality measure that counts the number of edges incident to a node.
Betweenness centrality, on the other hand, is an edge or node-based centrality measure that quantifies the
extent to which a node or edge lies on the shortest paths between other pairs of nodes in the graph. Closeness
centrality is another node-based centrality measure that quantifies how quickly a node can reach other nodes
in the graph. It is the inverse of the sum of the shortest path distances from a node to all other nodes in
the graph. For formal definitions, the reader can refer to [62]. Betweenness centrality is widely discussed in
Sec. 4.1, 4.2.2 and 5.4. Degree centrality is instead more extensively studied in Sec. 4.2.1.

5A small-world network is characterised by high values of global clustering coefficient, i.e., neighbours of
a node tend to be neighbours in turn, combined with a small average path length between pairs of nodes.
Small-world networks are often observed in real-world networks, such as social networks, where there is a
high degree of local clustering, but also a relatively short path length between any two individuals in the
network.

6A scale-free network is characterised by a highly-skewed degree distribution, where a small number of
nodes have a very high degree, while the vast majority of nodes have a much lower degree. Scale-free networks
are often observed in real-world networks, such as the World Wide Web or biological networks, where a few
highly connected nodes (known as hubs) play a disproportionately important role in the network’s structure
and function. Formally, a network is considered to be scale-free if its degree distribution follows a power
law distribution, i.e., the probability P (k) of a node having degree k is proportional to k−γ , where γ is a
parameter that characterises the degree distribution of the network.
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high fragility of such transport infrastructures. Scale-free properties have also been observed
in air transportation networks [73].

System-based Vulnerability

Despite the interesting results, the main limitation of topology-based vulnerability ap-
proaches is the oversimplified representation of the transport system that completely ne-
glects both travel demand and the dynamics of traffic operations (see Sec. 4.1). Resilience is
in fact not purely a structural problem: for instance, road networks can easily become grid-
locked in presence of natural disasters that do not impact at all the physical infrastructure
(roads, bridges, and railways), but that totally shatter the typical mobility demand patterns
or the supply-side of the transport system. In other words, there is strong evidence that one
must monitor and control the dynamic states of the system in order to properly address the
resilience of networked CI [38].

To capture the dynamic nature of critical infrastructure systems, time-varying graphs
have been recently utilised to incorporate time-dependent interdependences into resilience
metrics: studies by Adjetey-Bahun et al. [74] and Lu [75] have compared the performance
of static and dynamic resilience metrics concluding that, under normal traffic conditions,
both metrics are equally effective. However, in the event of a disruption, interdependences
and passenger flows in the network render the static indicator less efficient and highlight the
need to consider the time dimension in vulnerability analysis. These studies represent the
basis of the modelling approach described in Sec. 4.2.

The system-based category of vulnerability analysis approaches involves the representa-
tion of transport systems through demand and supply models, utilising micro-, macro- and
mesoscopic traffic simulators to generate realistic time-varying variables such as travel times,
flow, and cost variables. These variables are then used to compute vulnerability indicators.
Additionally, network equilibrium is used to model route choice, taking into account conges-
tion and delays. Approaches in this category, mostly related to road network vulnerability,
consider disruption modelling via node or edge removal similar to topological-based method-
ologies. However, they differ in that they exploit the aforementioned demand-supply models
and simulation tools to generate realistic system dynamics and identify the most important
links or nodes with respect to such dynamics. Critical nodes or edges are defined as those
that, if removed, would have the most significant impact on either increasing the shortest
path duration or reducing the maximum flow between a given set of origin-destination pairs.
More advanced approaches consider the transport system’s performance with respect to fluc-
tuations [76] or significant variations [77] of travel demand or link capacity. Performance
is evaluated based on indicators such as travel time reliability (i.e., the probability that
a trip can be completed within a specified time interval) and capacity reliability (i.e., the
probability that a network can accommodate a specified level of travel demand).

Other approaches in this category propose different vulnerability indices. Researchers
have used the increase in the user-equilibrium (total) travel time [78, 79], the reduction of
the demand weighted global efficiency [80], the time to link re-opening [81] and the amount
of unsatisfied demand [78] to measure the decrease of service caused by the loss of a road
link. Similarly to what we propose in Sec. 4.1, some isolated works have also considered
more flexible modelling of disruptions with partial link capacity reduction modelling [82];
aggregate indices of vulnerability to characterise the exposure to risks of an area or of
the entire transport network [83, 84], (see Sec. 4.2.1); indicators of local vulnerability only
accounting for travel time increase for trips originating in a given region, when links in the
network are randomly closed [85]; indicators of global vulnerability derived from local events
by computing the total travel time increase observed when all links in a region are closed
[83]. The last approach is particularly relevant to model area-covering disruptions deriving
from snowstorms, floods and earthquakes.

Vulnerability has been also measured in terms of accessibility reduction or remoteness
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increase [86, 87], by also taking into account spatial data on population [88] in the definition
of accessibility. Some authors have studied the correlation between link importance metrics
and static topological properties of the link, (e.g., free flow speed, capacity, length, etc.) [85,
89]. According to probabilistic-based methods and historical data, some researchers have
modelled the development of traffic flows after network disruption based on past experience
and beliefs about future conditions [90]. Other approaches adopt mathematical modelling
and optimisation techniques to identify worst-case scenarios and best responses to the latter.
Solutions based on attacker/defender two-player games [91] and bi-level optimisation [92]
have also been proposed.

System-based approaches for vulnerability assessment have been considered for rail and
public transport networks. Subway and rail networks have been proven to be more sensitive
to disruptions than road networks because of the lack of excess capacity and the limited
amount of alternatives to redirect trains in case of disruptions. These features often lead to
total loss of service and high delays on subsequent trains. For instance, Rodríguez-Núñez and
García-Palomares [93], have evaluated among others, the importance of links in a subway
system and quantified the amount of unsatisfied demand in terms of trips following the
closure of the most important ones.

To account for the interactions between supply and demand and the accumulated effect of
disruption on PTN, Cats and Jenelius [94] have introduced a novel measure of betweenness
centrality that takes into account the expected number of trips and passengers between pairs
of stops over time periods. This dynamic and extended definition of betweenness centrality
is identified as a better indicator to evaluate the impact of disruptions on passenger welfare
than the static betweenness centrality, which is based solely on network topology. In a follow-
up work [95], the same authors investigated solutions for reducing the vulnerability of the
public transport network by increasing the capacity on lines that can serve as alternatives
when critical links are disrupted, and by identifying the lines where capacity increases are
the most effective.

Peterson and Church [96] developed a framework for modelling rail freight transport
vulnerability with similar approaches to those proposed in [78, 79] for road networks, based
on the notion of link importance. A statistics-based framework is proposed by Hong et al. [97]
to study the vulnerability of the Chinese railway system to floods and the effectiveness
of alternative mitigation strategies. Both studies highlight the relevance of betweenness
centrality as a means for selecting candidate links for vulnerability assessment and resilience
enhancement. Solutions for air transport based on the quantification of delayed flights versus
on-time flights during disruptions are considered in [98].

Overall, vulnerability analysis using system-based solutions is generally less straight-
forward when compared to topological approaches, as it requires (i) more computational
resources to simulate system dynamics, (ii) massive data to acquire knowledge on the trans-
portation system’s dynamic states. However, it is well known that system-based solutions
typically yield more realistic and reliable results because they incorporate both supply and
demand-side modelling in dynamic settings, and because they allow for a more accurate
and wider-spectrum representation of the consequences of disruptive events. These advan-
tages well-justify the growing interest of the research community towards these approaches,
which tend however to be increasingly used in conjunction with topological and big data
processing techniques for efficiency purposes. These ideas have been at the very core of
the research described in the next chapters, which propose solutions to evolve vulnerability
analysis (Chapter 4) and monitoring towards large-scale and real-time settings (Chapter 5).

In any case, both categories of approaches have traditionally ignored the complex multi-
modal nature of the transport system. Topological approaches have the merit to be more
easily adaptable to multi-layer networks that can be used to model multi-modal transport
networks. Some recent works have thus considered the problem of performing vulnerability
analysis on multi-modal transport networks [57, 99], using centrality metrics, extended to
multi-layer networks, to perform structural static analysis of multi-modal transport networks
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exposed to disruptions. Despite not explicitly addressing the problem of disruption analysis,
Bellocchi, Latora and Geroliminis [100] have very recently proposed a system-based mea-
sure, called dynamical efficiency, to evaluate the performance of a multi-modal time-varying
transportation network. The metric considers both the topology of the network and the
temporal changes in traffic flow to detect critical zones for traffic congestion and bottlenecks
in a transportation system. Dynamical efficiency for a given layer (i.e., a single transport
mode) is defined by considering the average ratio between the minimum travel time (i.e.,
free-flow travel time) of a path between any two nodes in the network to the actual travel
time of that path over a time period. The metric is extended to multi-modal settings by
considering shortest H paths, introduced by the authors to reduce the complexity of multi-
modal shortest path computation. Based on this notion, additional derived metrics, such as
the layer performance gain and station centrality, are proposed to quantify the relevance of
an entire transport mode or of specific stations of a multi-modal network. The effectiveness
of this approach has been verified on a real-world multi-layered transportation system, from
the city of Shenzhen, China. The introduced metrics appear to allow for the identification
of spatio-temporal congestion patterns, the quantification of the expected usage of inter-
modal junctions between two different transportation means, as well as the assessment of
equivalent transportation alternatives. These ideas, being already partially addressed in the
modelling framework of the PROMENADE platform described in Chapter 5, are also at the
centre of the longer-term perspectives which will focus on extending the notion of resilience
assessment and enhancement to a multi-domain context (Chapter 6).
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Chapter 2

Mobile Traffic Profiling and Travel
Demand Estimation

Over the last two decades, global mobile traffic has surged to unprecedented levels, with a
compound annual growth rate higher than that observed for Internet traffic during the surge
of the World Wide Web at the turn of the millennium. Current trends indicate this growth
persists, primarily driven by the global deployment of 5G technology. Within the last two
years alone, mobile network traffic has doubled. This is largely a result of increased video
content consumption and the rise in mobile subscriptions [101]. Projections indicate that by
2028, 5G subscriptions will reach 5 billion, accounting for 55% of all mobile subscriptions.

The surge in mobile demand poses substantial challenges for mobile network operators,
necessitating effective management of the initiation, modification, release, and relocation
of network resources [102]. To address these challenges, there is an urgent need for data-
driven algorithmic approaches that can analyse and predict mobile usage, specifically the
demand for communication services from users. Simultaneously, the abundance of probe data
collected by network operators, coupled with the richness of the associated spatio-temporal
information, as discussed in Chapter 1, can significantly enhance our understanding of both
communication and transportation demand.

This chapter explores the utilisation of mobile phone data from two closely related per-
spectives: firstly, understanding cellular service demand through analytical tools to effec-
tively manage network resources, and secondly, investigating the potential of mobile phone
data to enhance our understanding of travel demand. Due to the evolution of data collec-
tion technologies from mobile network providers, the research activities associated with the
first perspective leveraged CDR data, while the second perspective focused on the use of
new-generation passively collected mobile phone data, i.e., NSD.

During my postdoctoral research at the CITI-lab of INSA-Lyon, I developed unsuper-
vised strategies to classify usages of aggregated data related to historical mobile phone traffic
demand, specifically CDR. These insights are concisely showcased in the initial part of this
chapter (Sec. 2.1). My investigations have shed light on the intricacies of mobile traffic
demand and introduced methods for the sustainable roll-out of 5G telecommunication in-
frastructures. Such endeavours have formed the foundation for my subsequent research,
predominantly centred on resilience modelling for urban transport networks.

The second part of this chapter pivots to the promising potential of mobile phone data,
particularly NSD, in the field of transportation studies. The research discussed in Sec. 2.2,
corresponding to the initial activities at the LICIT-ECO7 laboratory, had as objective to
explore NSD to supplement traditional household travel surveys and provide a description
of the expected mobility demand. Specifically, we studied the applicability of signalling
data in generating OD matrices. This data was sourced from millions of anonymous mobile
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phone users in the Rhône-Alpes region, France. Notably, unlike CDR data, signalling data
provides a broader spectrum of network-based records, ensuring superior spatio-temporal
granularity. The results presented in the second part of this chapter (Sec. 2.2) have been
the outcome of research collaborations with Orange Innovation and tutoring activity of one
PhD student (i.e., Mariem Fekih). The data used in the context of OD flow estimation were
made available by Orange Innovation in the context of Mariem Fekih’s PhD thesis.

This chapter includes content from the following papers:

1. A. Furno, D. Naboulsi, R. Stanica, and M. Fiore, “Mobile demand profiling for cellular
cognitive networking”, IEEE Transactions on Mobile Computing, vol. 16, no. 3, pp.
772–786, 2016.

2. A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda, “A tale of ten cities:
Characterizing signatures of mobile traffic in urban areas”, IEEE Transactions on Mo-
bile Computing, vol. 16, no. 10, pp. 2682–2696, 2016.

3. A. Furno, M. Fiore, and R. Stanica, “Joint spatial and temporal classification of mobile
traffic demands”, in IEEE INFOCOM 2017-IEEE Conference on Computer Commu-
nications. IEEE, 2017, pp. 1–9.

4. M. Fekih, T. Bellemans, Z. Smoreda, P. Bonnel, A. Furno, and S. Galland, “A data-
driven approach for origin–destination matrix construction from cellular network sig-
nalling data: a case study of Lyon region (France)”, Transportation, vol. 48, pp.
1671–1702, 2021.

5. M. Fekih, L. Bonnetain, A. Furno, P. Bonnel, Z. Smoreda, S. Galland, and T. Belle-
mans, “Potential of cellular signaling data for time-of-day estimation and spatial clas-
sification of travel demand: a large-scale comparative study with travel survey and
land use data”, Transportation Letters, vol. 14, no. 7, pp. 787–805, 2022.

2.1 Mobile Traffic Demand Profiling with Call Detail
Records

This section describes the research aimed to improve the current understanding of the con-
sumption of mobile network resources in space and time, and to show and describe the
existence of correlations between mobile telephony data, the characteristics of human mo-
bility and the socio-economic functions of urban environments. Orange, one of the most
popular mobile operators in France, shared several months’ worth of anonymised CDR for
several French, Ivorian and Senegalese cities [103, 104]. Other data were made available for
several Italian cities by Telecom Italia Mobile (TIM), one of Italy’s leading operators in the
sector. Such data were provided in the context of the TIM Big Data Challenge [105], to
which our team has participated, being awarded as one of the top projects. The CDR used
in this research described the total volume of mobile traffic in terms of the number of voice
calls and messages exchanged between any two of the operator’s base stations, aggregated on
an hourly basis. It is interesting to note that this data is spatio-temporal: the information is
provided with the latitude and longitude of the base station where the event was recorded,
together with a timestamp indicating when a certain amount of traffic was observed.

2.1.1 Time Profiling of Mobile Traffic Demand

Based on previous work from the Urbanet team [7], we proposed in [6] a framework for
the automated discovery of mobile demand profiles in large-scale cellular networks. The
framework allows processing CDR for constructing sensible categories of the demand that
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are associated to macroscopic spatio-temporal routines of the user population. As an inter-
esting by-product, the framework can identify unusual behaviours in the demand, caused
by events (e.g., sudden traffic surges, reduced overall communication activity, etc.) biasing
the customary dynamics of a significant subscriber fraction. As further detailed next, such
events are typically related to public celebrations, sport events, concerts, holiday breaks or
strikes, showing the sensitivity of CDR to follow and, in some cases even anticipate, the
unfolding of urban events that move masses of people within or outside the city.

In a first phase, named the training stage, the framework leverages basic data pre-
processing techniques (i.e., data filtering and median aggregation) to extract hourly snap-
shots of typical user-generated mobile traffic over a city. Custom metrics of mobile traffic
snapshot distance are employed to compute the similarity between pairs of snapshots by con-
sidering the geographical characteristics of the city. The framework makes use of hierarchical
clustering with the average linking criterion to identify classes of related traffic snapshots.
This hierarchical clustering outputs a whole family of solutions that can be represented as
a dendrogram: it thus returns a richer information than a single-cluster set solution, as in
the case of, e.g., k-means. However, this also implies that some criteria must be adopted to
select the best clustering among all those in the family. To that purpose, a combination of
well-known cluster analysis stopping rules determines the best number of clusters to retain.
The approach is fully detailed in [6]. The training phase generates classes or schemes of
typical network usages that can be used by a network operator to drive resource adaptation
– via virtualisation solutions - in the mobile network. Moreover, such temporal classes have
proven to possess a more general and social value, by showing insights on the regularities
associated to human socio-economic activities, mobility patterns, and the different circadian
rhythms that characterise the pulse of a city or a nation.

In its second phase, named the classification stage, the framework uses the previously
identified schemes to classify the actual hourly CDR snapshots by relying on a modified
implementation of the K-means clustering algorithm. Such step allows checking whether
mobile traffic at given time belongs to the expected class and pinpointing anomalous situa-
tions otherwise.

The framework has been extensively evaluated over multiple CDR datasets collected from
different world cities, including the data provided from Orange on Ivory Coast, Senegal and
France, as well as the CDR data available for Italian cities from TIM. A few results are
reported, as an example, in Fig. 2.1, for the case of a typical week of traffic in the city of
Milan, Italy.

Fig. 2.1(a) graphically reports the network profiles identified by the framework during
the training phase (i.e., clustering of the hourly snapshots from the median week). Such
classes can be naturally mapped to activities taking place in dense urban areas during office
time or weekend night-life (C1), weekend-residential usages (C2), early morning behaviours
typically related to commuting (C0) and deep night with reduced communication activity
(C3). Fig. 2.1(b) shows instead the results of the online usage of the framework (i.e., the
classification stage). For each snapshot, the plot shows with a different colour the class
it belongs to. Additionally, the plot includes two graphical representations for detecting
outlying behaviours. First, snapshots that fall in a different category from the expected one
are represented with big squares, surrounded by a black border (e.g., December 14th between
15:00 and 18:00. Second, snapshots classified in the expected cluster (from Fig. 2.1(a)) are
represented with squares whose size is proportional to the normalised average distance from
the expected class (i.e., the smaller the size, the more correct the classification). In the figure,
most of the snapshots related to Christmas Day and other public holidays are classified as
outliers in the C0 cluster, instead of C1. During such holidays, traffic activity is quite low in
the city centre, with respect to typical working days, and mostly concentrated in transport
and residential areas. This is explained by the fact that most of the business activities are
closed and the presence of people in the urban area of Milan is significantly reduced with
respect to typical days.
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(b) Online usage of the framework and detection of outliers

Figure 2.1: Mobile traffic profile categories for the CDR of the city of Milan.

Some other snapshots, which are very close in time to public holidays (e.g., Tuesday,
December 24th or Monday, December 30th, 9:00 to 18:00), are classified in the C2 cluster
instead of C1. They present a higher activity in the city centre and a quite regular traffic
distribution in all the other zones and therefore clustered together with evening hours or
weekends.

The framework is also capable of detecting special events that occurred in Milan in
December 2013. For example, on December 7th afternoon, the “La Scala” theatre season
opening traditionally takes place in the city centre of Milan. The same day is also the feast
day of Saint Ambrose, the patron saint of Milan, with several public and religious events
celebrated in the city centre. Similarly, on Sunday, December 22nd at 20:45, one of the most
important football matches of the 2014-2015 season, i.e., Inter-Milan, was played in San
Siro stadium, registering a record presence of 79,311 spectators.

It is worth highlighting that the described framework has been used as an input to subse-
quent research on 5G cognitive networking, specifically, on data-driven dynamic 5G-networks
optimisation, in the context of a joint collaboration with CNAM Paris and the University
of Milan [106]. Moreover, it has marked the initiation of a long-lasting collaboration with
Orange France, which has proven crucial for the research results reported in Chapter 3.
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2.1.2 Spatial Profiling of Mobile Traffic Demand

The research experience outlined in the previous section has been pivotal in consolidating my
interest in large-scale data processing and sparked my curiosity to investigate further mobile
phone data towards automatic detection of recurrent patterns and anomalies of human
presence and activities in urban environments.

It is well known that individuals exhibit highly repetitive yet distinctive mobility and
activity patterns influenced by factors such as family life, work obligations, hobbies, oc-
cupations, and personal habits, as well as the availability of infrastructures, services, and
amenities. This naturally applies to mobile network subscribers and their communication
patterns as well. The uniform yet varied behaviour of mobile users results in heterogeneity in
subscribers’ profiles [107], periodic temporal demand [7], load fluctuations during large-scale
social events [108], and geographic diversity in mobile communications [109].

The next stage of my postdoctoral research was thus focused around these research
questions: can CDR data be leveraged to automatically infer the multiple urban fabrics
of a city? Is it possible to observe the same patterns from CDR in multiple cities or even
countries? Urban fabrics relate to the combination of infrastructures, such as transportation
and telecommunication systems, sports centres, educational institutions, and healthcare
facilities, and land use, including residential, industrial, touristic and commercial areas,
that characterise different zones within a metropolitan area. Previous research has confirmed
significant correlations between mobile demand and city cartography, including the diversity
of mobile activity within urban areas [110], high similarity in the temporal dynamics of traffic
in residential zones [111], as well as the existence of relevant shifts in communication load
peaks between different areas of the city throughout the day and during weekday-to-weekend
transitions [112]. Furthermore, during the time the activities described in this section were
undertaken, the use of mobile phone data, and particularly CDR, was gaining momentum
as a means of validating theories on creating liveable cities in urban planning [113].

With these findings in mind and the experience of my latest postdoctoral research,
I decided to further explore the spatial heterogeneity of mobile communication activities
and investigate unsupervised solutions to automatically identify relevant partitions of large
metropolitan areas from CDR. The central hypothesis was that the identified zones, distin-
guished by homogeneous patterns of mobile traffic usage, would exhibit equivalent or highly
similar urban fabrics. Another challenge consisted in defining a novel quantitative descrip-
tion of urban fabrics based on the identified regularities (i.e., a signature) of the observed
mobile traffic demand in the associated zones. Signatures could be helpful to unambiguously
and informatively describe the socio-economic activities in the identified areas, even in the
presence of mixed usages.

This research resulted in the development of a second framework built upon the concept
of mobile phone traffic signatures for the automatic identification of urban fabrics from
CDR. The framework is succinctly outlined below, along with some noteworthy outcomes.
The interested reader can refer to [9] for complete details.

The framework assumes the availability of a generic dataset D describing the communi-
cation activity of a mobile subscriber population during a set of days δ = {d}. For each day,
the mobile demand is assumed to be known as the aggregate volume of the traffic generated
by all users in the same area during a given time interval; the size of the area and duration
of the interval determines the spatial and temporal granularity of the dataset, respectively.
These assumptions are typically satisfied when working with traditional CDR data and their
more recent extensions (e.g., NSD). We name unit area the spatial aggregation level: the
whole geographic region under consideration a = {a} is thus divided1 into unit areas a. The
time granularity is instead characterised by the duration of a time slot, i.e., the interval
during which user activity is aggregated in each unit area. Each day d ∈ δ is thus split into

1The definition of unit area is general and can accommodate any tessellation of space. Unit areas can
map to, e.g., cell sector boundaries, coverage zones of base stations, Voronoi cells, or elements of a grid.
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a set t = {t} of time slots t. Overall, D = {va(d, t)}, where every element va(d, t) describes
the total mobile communication activity observed within each unit area a at time slot t of
day d. From such data, the framework includes two main stages aimed to: (i) building a
representative profile of the typical activity taking place in each unit area of the region of
interest; (ii) clustering unit areas with similar profiles for urban fabric detection.

Concerning the first phase, the raw traffic volumes of each unit area a are transformed
into the Median Week Signature (MWS) of the unit area. For the formal definition of
the MWS of the generic unit area a, let us first introduce the notion of weekly support δ,
corresponding to the time span of one week, i.e., δ = {mon,tue,wed,thu,fri,sat,sun}.
Let us also denote as δδ ⊂ δ the set of days in the dataset D that correspond to the day of
the week δ, with

⋃
δ∈δ δ

δ = δ. For instance, δmon groups all Mondays in the dataset. Then,
the generic element in the MWS of unit area a is defined as:

sa(δ, t) = µ1/2

({
va(d, t) | d ∈ δδ

})
, ∀a ∈ a, (2.1)

for time slots t during day of the week δ, and where µ1/2(·) represents the median of the set
within parenthesis. The complete MWS is then defined as the concatenation of time-ordered
samples on the temporal support δ of area a, or, formally:

sa = ||
δ∈δ

(
||
t∈t

sa(δ, t)
)
, ∀a ∈ a. (2.2)

where the || operator indicates the time-ordered concatenation of all elements in a set.
The second stage of the framework builds on the clustering approach described in

Sec. 2.1.1 using the same linkage clustering algorithm with the average distance criterion.
A distance metric based on the Pearson correlation coefficient is used to compute the dis-
similarity between pairs of MWS related to different unit areas, i.e.:

∆a,a′ = 1− Ca,a′ , ∀a, a′ ∈ a. (2.3)

with Ca,a′ corresponding to the Pearson correlation coefficient of sa and s′a. The skewness of
the cluster sizes is evaluated at the different levels of the dendrogram built by the hierarchical
clustering to select the number of clusters to retain: selecting the level with minimum
skewness allows grouping unit area signatures into classes of relatively comparable sizes.

The assessment of the framework has been carried out on a comprehensive collection
of datasets, including the CDR supplied by Orange France for six French cities and by
TIM for four Italian cities over several months and years. This represents a much larger
dataset than those ever used in previous studies, enabling us to generalise our findings and
examine similarities and differences across a significant number of diverse cities. Moreover,
the comparative evaluation reported in [114] has shown that our solution outperforms the
related work [115, 116, 117], by identifying mobile demand profiles that better agree with
reference data.

In Fig. 2.2, we report three major classes (c0, c1 and c3) identified by our framework
from the CDR records of the ten analysed cities. The characteristic signature s⋆0 of class c02

is portrayed in Fig. 2.2(a). The comparison with Points of Interest (PoIs) and land use data
from OpenStreetMap (OSM)3 highlights the absence of any noticeable infrastructure and a
dominant residential land use in the areas associated to cluster c0, only related to Italian
cities. This is outlined, in Fig. 2.2(b), Fig. 2.2(c) and Fig. 2.2(d), which show the extent of
unit areas in Milan, Turin and Rome whose signatures are in class c0. The corresponding
regions include suburban and mainly residential zones of these cities and exclude city centres
and well-known PoIs of the cities. Class c0 can be thus associated with residential urban
fabrics in Italy, often denoted by a mixture of private housing and small business activity.

2The characteristic signature of a cluster is computed as the average of all MWS signatures of unit areas
belonging to the given cluster.

3https://www.openstreetmap.org
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(f) Signature s⋆3 (g) Clusters c1 and c3,
Lyon 2015

(h) Clusters c1 and c3,
Marseille 2015

Figure 2.2: Residential urban fabrics. Characteristic signatures (with standard deviation) and
maps of related unit areas in representative city scenarios.

The characteristic signature s∗0 in Fig. 2.2(a) exhibits two comparable traffic peaks, at
11:00 and 17:00, repeating on all working days. The mobile activity in most urban areas in
Italy is comparatively reduced during the weekend (but higher on Saturdays) with a morning
peak higher than the afternoon one, which is also shifted towards later hours.

A similar discussion holds in the case of signatures classes c1 and c3, this time related to
French cities only. These classes designate residential urban fabrics in France, as exemplified
by the geographic coverage of the associated unit areas in Lyon and Marseille, shown in
Fig. 2.2(g) and Fig. 2.2(h), respectively. Concerning the characteristic signatures s⋆1 and s⋆3,
in Fig. 2.2(e) and Fig. 2.2(f), respectively, relevant similarities emerge in the semantics of
the two signatures. Both feature two traffic peaks, the afternoon one standing over the
morning one; the activity during weekends is comparable in the two cases, just scaled up in
s⋆3. The main difference between s⋆1 and s⋆3 appears thus to be the afternoon-to-morning peak
ratio, higher in the latter. We conclude that both c1 and c3 are representative of residential
and small business areas in France, although c3 is associated with a higher concentration
of residential land use than c1: indeed, the darker unit areas in Fig. 2.2(g) and Fig. 2.2(h),
mapping to c3, are more present in the urban outskirts and less so in city centres.

Comparing c0, c1, and c3 is also intriguing. The disparities between the baseline profiles
of mobile traffic demand in Italy and France are remarkable. The activity peaks are uneven
and shifted by approximately one hour in France, and the ratio is even inverted during
weekends. This diversity can be attributed to diverse routines in the two countries, raising
interesting sociological questions.

Fig. 2.3 presents the characteristic signatures and maps associated with another set of
major clusters identified by our framework, i.e., c2, c5 and c7. Interestingly, this time the
clusters are not separated between nations, with unit areas from both France and Italy
appearing in each of them. We relied again on OSM data as a source of information to
understand the kind of urban fabrics associated with the detected clusters. When super-
posing the urban surface covered by unit areas associated with c2 to OSM data, we notice
a good match with locations mostly related to office-hour work activities, highlighted with
blue-coloured polygons in the pictures4. Maps of exemplar case studies are provided in
Fig. 2.3(b), Fig. 2.3(d), and Fig. 2.3(f) for Turin, Milan, and Paris, respectively. The anal-

4Relevant PoIs are also marked with letters in the figures. The interested reader can refer to [9] for an
exhaustive description of this PoIs.
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(a) Signature s⋆2 (b) Cluster c2, Turin 2015
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(e) Signature s⋆7 (f) Clusters c2, c5 and c7, Paris 2015

Figure 2.3: Office fabric signatures s⋆2, s⋆5 and s⋆7 and maps of the related unit areas in Italian and
French cities, with OpenStreetMap data.

ysis of the related signatures (s∗2, s∗5 and s∗6) indicates a fairly constant and comparatively
higher activity during office hours, especially during morning time, and drastically reduced
during evening time, early morning and weekends, when a very small fraction of offices is
open. Based on these considerations, it appears reasonable to consider these clusters as
representative of office urban fabrics, i.e., urban areas featuring socio-economic activities
related to development, commercialisation and fruition of services and goods, with a typical
European working time during weekdays, 9:00 - 18:00.

Finally, in Fig. 2.4, we report clusters that have shown a strong connection to trans-
portation urban fabrics. This is, for instance, the case of cluster c4 (Fig. 2.4(b)): this class
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(a) Signature s⋆4 (b) Cluster c4, Paris 2015
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(c) Signature s⋆36 (d) Clusters c9, c10, other classes, Paris 2015

Figure 2.4: Transportation fabric signatures s⋆9, s⋆10 and s⋆36, and their maps for French and Italian
cities, with OpenStreetMap data.

regroups unit areas with a very peculiar signature with two major peaks (Fig. 2.4(a)), clearly
related to commuting, and a minor peak at noon, probably related to lunch activities around
offices and schools. The analysis of PoIs retrieved from OSM indicated a striking match with
subway stations of the city of Paris, reported in the figure as black dots. Similarly, the other
clusters reported in Fig. 2.4(d) have an almost perfect match with train stations and appear
associated with long-range commuting behaviours.

The aforementioned approach has been further refined, at the beginning of my activity
in the LICIT-ECO7 research laboratory, to achieve finer spatial granularity by means of an
original approach based on multi-source data, by fusing CDR and GPS taxi data. In [118],
we proposed an original stage-based fusion technique, in which the clustering approach
proposed for mobile phone data signatures is first applied to CDR to achieve a coarse-
grained classification of the city. Then, inside each retrieved cluster, the same technique is
re-applied over signatures built from taxi pick-ups and drop-offs, as obtained from the GPS
data. Such a combined use of mobile phone data and GPS traces has outperformed previous
approaches when confronted with ground-truth information and allows characterising land
use in greater detail.

2.1.3 Spatio-temporal Profiling of Mobile Traffic Demand

Both the framework for mobile traffic temporal classification and the approach for urban
fabric detection focus on one single dimension (either the temporal or the spatial one) to
discover hidden structures in mobile phone data, by means of clustering. In the last part
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of my postdoc, I focused on devising a novel solution for concurrently inspecting both the
space and the time dimensions, which is a much more challenging problem. Also, clustering
is traditionally limited by the fact that each element may belong to only one group, while
there can be situations where an object has mixed behaviours and should be, therefore,
partially associated with multiple classes. Such situations are not detectable with simple
clustering-based techniques.

Therefore, I’ve explored the application to mobile phone data of a data reduction tech-
nique, known as Exploratory Factor Analysis (EFA). EFA is a well-established instrument
in psychology research [119], but it was first applied to mobile phone data mining by our
research group [10]. EFA aims at identifying, in a fully automated way, latent factors that
cause the dynamics observed in the data. More precisely, given a set of random variables
(X ) observed over a large population of samples, a reduced number of dimensions, or latent
common factors (F), is assumed for decomposing the vector of observed variables into the
product of the hidden factors (F) and a matrix of loadings (Λ). The loadings describe the
importance of each observed variable with respect to the assumed factors.

When tailored to the specific use case of mobile traffic classification, EFA offers the
possibility of exploring the space and time dimensions of the data at once, depending on
how the observed variables are selected. This yields two significant advantages. First, the
same methodology can be cast to recognise factors that are temporal or spatial in nature,
solving the two problems of network activity temporal profiling (time intervals modelled as
the EFA variables) and urban fabric detection (base stations modelled as the EFA variables).
Second, our proposed EFA methodology allows immediate extrapolation of the structures
hidden in the secondary dimension of both problems above. In other words, it provides, at
no additional cost, knowledge of the spatial patterns that characterise each network activity
profile, and of the precise temporal dynamics that distinguish each land use. This plays an
important role in the interpretation of classification results.
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Figure 2.5: Land use detection. (a)-(d) EFA of the total communication activity (sum of in-
coming/outgoing calls and SMS) in the Orange-2014 dataset. Loadings of the 1596 Voronoi cells
(i.e., EFA variables) on four (out of fourteen) representative classes (i.e., EFA factors). (e)-(h)
Thurstone’s scores of the 91×24 hours (i.e., EFA samples) on a selection of the 16 classes (i.e., EFA
factors). Figure best viewed in colours.

In Fig. 2.5, we report the results obtained via EFA (cast for solving the urban fabrics de-
tection problem) when classifying the Orange data available for the city of Paris. First, the
approach shows results that are comparable to our previous results on urban fabric classifica-
tion in terms of spatial partitioning (compare Fig. 2.5(a):(e) with Fig. 2.3(f), Fig 2.4(b) and
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Fig 2.4(d)). Second, the methodology automatically outputs the temporal classification (in
Fig. 2.5(e):(h)), which provides insights for understanding how the factors are characterised
with respect to time. Finally, the methodology allows the identification of areas exhibiting
mixed usages, i.e., with high loadings on multiple factors.

2.2 Origin-Destination Flows at Regional Scale via Net-
work Signalling Data

Spatio-temporal data are extremely valuable for studying human mobility for transportation
and urban planning purposes [120, 121]. At large scales (e.g., regional levels), traditional
approaches rely on household travel surveys to collect mobility data, typically recording one
day of travel diaries per household. However, surveys are increasingly confronted with issues
during the sample construction phase [18], declining response rates [122], and unreported
trips [123], all of which reduce the quality of the mobility indicators derived from them.
Additionally, travel surveys typically involve high costs that limit their frequency (once or
twice per decade) and prevent tracking the dynamics of population mobility over time. While
travel surveys still provide highly useful data for constructing behavioural transport models
(e.g., route and transportation mode choice models) and coarse estimations of people’s
mobility in a city, they are less suitable for deriving reliable and time-varying mobility
indicators due to the aforementioned issues. This is particularly true for OD matrices, whose
accuracy and completeness can be severely compromised by the quality of the household
surveys used.

Data collected from cell phones have become one of the most important new data sources
to study travel behaviour [124]. Their attributes, such as large coverage of the geographic
area, significant penetration in population and highly detailed location information, have
attracted researchers to analyse them to support transportation studies. Several researches
have been conducted to use different types of mobile phone data (e.g., CDR, cellular network
data); but, few have attempted to validate the results with external sources due to the
different nature of mobile phone footprints. Yet, the validation process allows to identify
possible biases and to gain a clearer idea of their potential. Moreover, the quality and
accuracy of data is essential to ensure that investment or transport policy decisions are
based on reliable analyses. Therefore, considerable efforts are needed to pre-process mobile
phone data and to validate the related research outputs.

We pioneered the exploration of NSD for the accurate estimation of both static and
time-varying OD matrices. We worked on a small (and limited) test dataset, related to one
typical working day from 2017 (Thursday, June 1st 3:00 to Friday, June 2nd 3:00) provided by
Orange Innovation. This work was performed in the context of Mariem Fekih’s PhD thesis,
in collaboration with the LAET laboratory of ENTPE and CNRS, the Hasselt University,
Belgium, and the University of Bourgogne Franche-Comté, France. The primary objective
of this study was to assess the capability of NSD to capture the major spatio-temporal
mobility patterns of a mobile-device-equipped population at a large scale, by producing
realistic static regional OD matrices. An additional objective was to validate the consistency
of the reconstructed matrices with the ones obtained from household travel surveys, used as
a reference. It was paramount to confirm this hypothesis before exploiting massive NSD for
reconstructing mobility information at much finer spatio-temporal granularity based on the
inference of individual GPS-like trajectories of human mobility (Chapter 3).

2.2.1 Static OD Matrix Estimation

To achieve the aforementioned objectives, we developed a simple methodological chain aimed
to derive OD matrix via pre-processing of raw NSD data, and performed an extensive valida-
tion of the obtained results using the conventional OD matrix generated from a local travel
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(a) Location of the cell towers and their Voronoi tes-
sellation

(b) The 77 sectors of the EDR (labelled with unique
numerical identifiers) and their aggregation in 14
macro-zones (represented with different colours)

Figure 2.6: Cell tower locations (a), and (b) EDR sectors in the region of interest (Rhône-Alpes).

survey related to the region of Rhône-Alpes, France. The explored NSD dataset consisted
of 2G and 3G individual signalling records5 of over two million anonymous mobile phone
users in June 2017, totalling about 300 million records of device transactions. Concerning
the spatial dimension, this dataset covered the whole extent of the Rhône-Alpes region in
France, with 2,230 cell towers in the study area, and each cell tower possibly handling several
antennas.

Fig. 2.6(a) presents the cellular network coverage within the Rhône-Alpes region and
the aggregation in 3G Location Areas. The Rhône-Alpes household travel survey, called
Enquête Déplacements Régionale (Regional Travel Survey) (EDR) 2015, contained data
from 37,450 individuals aged over 11 years, identifying 143,000 trips. The sample was
constructed using geographical stratified random sampling of the population of 77 zones in
the region, graphically reported in Fig. 2.6(b). These 77 zones were spatially aggregated
into 14 macro-zones represented in Fig. 2.6(b) with different colours. The survey contains
socio-demographic characteristics and trip information, including transport mode, start and
end time, activity at origin and destination, and location. Lyon is the largest metropolitan
area in the region, and the survey only refers to working day trips during late autumn to
early spring.

The Framework: Basic Definitions and Main Steps

The proposed framework, graphically shown in Fig. 2.7 and extensively described in [125],
aggregates and transforms individual mobile phone signalling data (also called NSD user
trajectory) into an OD flow matrix, formally denoted as M = {δ(zi, zj) | (zi, zj) ∈ Z × Z},
with Z representing the set of 14 macro-zones, and δ(zi, zj) being the expanded daily count

5It is worth underlining that this first test release of NSD did not include any 4G communication data,
which as from 2019, constitutes more than 50% of the worldwide mobile telecommunication technologies
market. As detailed in Chapter 1, the absence of 4G data represents a substantial limitation in terms
of richness of spatio-temporal information, thus further explaining the rather coarse grain of the results
obtained in this preliminary study.
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Figure 2.7: The OD matrix reconstruction framework.

of trips estimated via NSD between zone zi and zone zj
6. The framework operates according

to the following main steps:

1. Filtering of (mobile) robot devices and identification of the most frequently observed
cell tower to detect the home location of each user device7 via time-based heuristics;

2. Identification of target resident users based on a condition of minimum required mobile
phone activity (e.g., each resident user should have a mobile event at least every 3
hours);

3. Estimation of expansion factors for each zone z ∈ Z to scale the detected population
of target resident users to the full population of travellers in the region of interest;

4. Trip detection and scaling up of the detected trips according to the estimated expansion
factors and reconstruction of the final OD matrix M.

It is worth remarking that the approach solely leverages NSD for user filtering and trip
extraction, while it depends on travel survey and census data in relation to zoning (for spatial
aggregation) and trip scaling (for determining the set of expansion factors), respectively.

The adopted definition of trips for NSD is based on the standard for travel survey in-
troduced by CEREMA (the French national agency for transport network and urban plan-
ning) [126], which is at the core of the considered EDR survey. A trip is defined as any
movement between pairs of stationary activities, each performed at a given zone. Thus, for
a given user u, the whole set of individual NSD trajectories is scanned to identify consecutive
observations on the mobile network of user u at the same zone for a minimum time thresh-
old τ . For the choice of τ , we have considered multiple values (e.g., 20, 30, 60 minutes) by

6We denote that in this work we did not take into account intra-zonal travel demand (i.e., zi ̸= zj in the
equation above). This restraining hypothesis was removed in the work described in Chapter 3.

7The framework assumes that a device corresponds to a single user. The two terms are used interchange-
ably in the following.
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(a) The NSD reconstructed OD
matrix. The matrix has been
obtained with a threshold τ of
30 minutes for trip detection
and aggregated at the level of
the 14 macro-zones

(b) The EDR OD matrix (on 14
macro-zones)

(c) The regression line has the follow-
ing equation with τ=30 minutes for
trip extraction: yij = 0.70·xij+2193,
with yij representing the OD travel
demand as seen via NSD data be-
tween zones zi and zj , and xij repre-
senting the EDR-based travel demand
between the same pair of zones. The
R2 coefficient equals 0.96

Figure 2.8: Graphical comparison between the NSD-reconstructed OD matrix (a) and the EDR
OD matrix (b). (c) Linear regression of the NSD OD matrix with respect to the EDR one.

taking into account the size of the zones (average area of EDR sector is 582 km2). Based on
such approach, each NSD user trajectory is ultimately converted into an ordered sequence
of stationary activities (A1, A2, ..., Ak), each associated to a given zone. The converted user
trajectory can thus be parsed to extract k−1 trips, each defined as a tuple (u,Oi, Di) where
u denotes the given user, Oi the zone of the generic stationary activity Ai and Di the zone
associated to the following stationary activity Ai+1, being Oi and Di the origin and the
destination zones of the ith trip of user u.

Expansion factors have been determined on a per zone basis, by considering population
data from census data provided by the INSEE (Institut national de la statistique et des
études économiques), aggregated at the level of the 77 sectors of the EDR survey. The
expansion factor ϵ(z) for the generic zone z is calculated according to the formula: ϵ(z) =
P (z)
R(z) , where P (z) and R(z) represent the amount of population older than 11 in zone z

from census data and the total amount of resident users detected via mobile phone data
in the same zone, respectively. Expansion factors are then associated to users based on
the detected home location, i.e., ϵ(u) = ϵ(z) | z = h(u), where h(u) denotes the function
that associates a home sector to user u. Finally, the static OD matrix M is computed per
pair of origin and destination zones (zi, zj): the expanded trips between the given pair are
summed up over the whole user basis, i.e., δ(zi, zj) =

∑
u∈U ϵ(u) · nu(zi, zj), with nu(zi, zj)

representing the total number of trips detected for user u between zones zi and zj .
The main outcome of the framework, i.e., the OD matrix M, is visualised in Fig. 2.8(a)

together with the OD matrix corresponding to the EDR survey, shown in Fig. 2.8(b).
The visual comparison of the distribution of OD trips from mobile phone and EDR

data shows very similar shapes even though the total numbers of trips are different. The
resemblance of the two matrices has been quantitatively confirmed by considering the Spear-
man’s rank correlation and the R2 coefficient of determination for a linear regression of the
NSD-reconstructed matrix as a function of the EDR one, at macro-zone level (i.e., 14 macro-
areas). We obtained a satisfying result of ρ = 0.95 with (p < 0.0001) and an R2 coefficient
of 0.96, which provides a high-confidence indication that the distributions of OD flows are
similar. Hence, although both signalling data and survey-based matrices are collected using
different techniques and technologies, and despite the limitation of the test dataset used for
this study (e.g., missing 4G data, one-day-only), they appear to resemble well, at least at
the level of the 14 identified macro-zones, thus demonstrating the feasibility of a large-scale
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Origin-Destination survey based on alternative passive real-world data, and motivating the
research on the topic detailed in the next sections.

2.2.2 Dynamic OD Matrix Estimation

The preliminary study described in the previous section encouraged a deeper exploration
into the use of NSD for OD matrices reconstruction by focusing on the challenge of using
mobile phone data to generate time-dependent travel demand matrices.

Understanding the dynamics of human mobility patterns is a core notion in transporta-
tion studies related to, e.g., traffic congestion management and transport infrastructure
planning [127]. However, traditional household travel surveys typically record only one or a
minimal number of days of travel diaries per household. Moreover, the high costs of conduct-
ing travel surveys restrict their frequency and prevent from following the mobility dynamics.
In this respect, they do not allow considering fine-grained and continual temporal analysis
of, e.g., the hourly, weekly or special-events related variability of trips [128].

Communication data have instead the potential to describe mobility trends over long
periods and with various time resolution scales, due to the ubiquitous and continuous use of
mobile devices by the moving population. Hence, it appears reasonable to leverage mobile
phone data to generate dynamic origin-destination flows by assigning the inferred trips into
target time windows. Some studies have been conducted along this line to extract dynamic
trip metrics using different forms of mobile phone data. Most of these studies have explored
CDR and developed techniques to figure out the temporal distribution of user trips in limited
geographical areas. However, it has been shown [129, 130] that these methods perform rather
poorly, especially in urban zones, due to the very low spatio-temporal resolution of CDR
data.

To answer the challenge of reconstructing dynamic OD flow at large-scale, we enhanced
the workflow described in Sec. 2.2.1 for NSD. Specifically, we included a novel temporal com-
ponent for estimating a start-time reference denoting the likely beginning of each observed
trip.

The Framework: Basic Definitions and Main Steps

The extended framework is reported in Fig. 2.9(a), together with a schematic representation
of the approach introduced to infer the trip start time (Fig. 2.9(b)). In the following, we
focus on the description of the temporal component, while the full approach, largely based
on the framework described in Sec. 2.2.1, is detailed in [131].

First, let us recall that in the approach of Sec. 2.2.1, each user’s trip is reconstructed
from NSD as an ordered sequence of stationary activities, i.e., (A1, A2, ...Ak). In this repre-
sentation, no intermediate point (i.e., way-point) between consecutive stationary activities
is preserved from the original NSD user trace. This was a deliberate choice due to the
reported limitation of the dataset (no 4G data). Moreover, this approach did not account
for a proper characterisation of the positive bias existing between the last observed event of
a stationary activity and the actual beginning of the trip. The problem of quantifying and
removing the bias on trip start (and end) time will be discussed in detail (see Sec. 3.1) in
the work [132].

In the framework, the trip taking place between two consecutive stationary activities
(Ai, Ai+1) is supposed to start at any specific time instant between the timestamp ti of
the last observed mobile network event associated to activity Ai and the timestamp ti+1 of
the first mobile network event associated to activity Ai+1. The absence of any way-point
between the two activities does not allow, in fact, any further assumption on the moment
the trip has started, apart from considering that the start time is uniformly distributed in
the time window [ti, ti+1]. An enhanced approach relying on way-points will be described
in Sec. 3.1. This procedure allows removing the biases on trip start and arrival times and
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(a) The extended framework (b) Start and end time trip imputation

Figure 2.9: Reconstruction of time-dependent OD matrices: (a) the extended framework; (b) The
approach for imputing trip starting time.

makes possible a more robust estimation of the trip features. In the restrictive settings
defined above, we were instead compelled to define the start time of a trip as the midpoint
of the time interval separating the two activities, specifically ti+ti+1

2 , which corresponds
to the mean of the uniform distribution. Based on this approach, the trip can be finally
represented as the tuple (u, ti, Oi, Di) where u denotes the given user, ti the estimated start
time of the trip, Oi the zone of the generic stationary activity Ai and Di the zone associated
to the following stationary activity Ai+1, being Oi and Di the origin and the destination
zones of the ith trip of user u.

Thus, the final dynamic OD matrix can be defined as a temporally-sorted sequence of
timestamped OD matrices (M(t) | t ∈ T ), with T the ordered set of time slots considered
within a typical day (e.g., 24 hourly time slots) and the generic timestamped OD matrix
M(t) = {δ(zi, zj , t) | (zi, zj) ∈ Z × Z}. In the previous equation, δ(zi, zj , t) represents the
number of expanded trips observed between zones zi and zj , i.e.,

∑
u∈U ϵ(u) · nu(zi, zj , t),

with nu(zi, zj , t) the total number of trips detected for user u between zones zi and zj with
start time within time slot t.

Empirical Evaluation

As a case study of the extended framework, we applied the methodology to the same NSD
records of Sec. 2.2.1 related to the city of Lyon, France (i.e., from 1st June 3:00 to June 2nd,
2017 3:00). As a comparative source of data, we used again the regional travel survey EDR
2015 conducted in the Rhône-Alpes region. The dynamic OD matrix was reconstructed at
the spatial resolution of the 77 EDR sectors.

The analysis of the reconstructed dynamic OD matrix M(t) unveils interesting insights
about the potential and the limitations of NSD for dynamic travel demand reconstruction.

The hourly total travel demand profile (i.e., the number of hourly trips generated from
all zones) is reported in Fig. 2.10(a) for both signalling and survey data. The total demand
observed from signalling data (i.e., SD) appears to be lower than the one reported in the

- 40 -



2.2. Origin-Destination Flows at Regional Scale via Network Signalling Data

(a) (b)

Figure 2.10: (a) Temporal demand profile from signalling data (SD) and survey data (EDR) and
demand difference between EDR and SD (red bars indicate an hourly EDR demand higher than
the SD one, and blue bars otherwise) (b) correlation between the hourly demand estimations from
SD and EDR.

survey (i.e., EDR), with less sharp morning and afternoon peaks, as clearly shown by the
hourly difference (MEDR − MSD) reported in the bottom part of the same figure. This
result could be explained by the existence of a large fraction of users in the mobile phone
data, referred to as static people in the following, for whom it is possible to detect the
home sector, but no trip can be observed, as the associated stationary activities produced
are all (or mostly) located at the home sector. The proportion of such static people in our
mobile phone dataset amounts to 46%. Travel demand reconstructed via NSD is unavoidably
correlated to the number of events generated by resident users. Therefore, even though a
certain portion of the identified static users could actually be stationary (e.g., elderly people),
it appears highly likely that another large portion of them is wrongly seen as static. The
framework fails in associating trips to such sub-population, probably due to their very low
mobile phone activity (e.g., during morning hours). Such reduced device usage inevitably
leads to an underestimation of the travel demand, which appears to be especially important
during morning time, and requires a proper bias removal procedure. However, despite this
underestimation, the hourly global demand profiles estimated from both data sources are
highly correlated (Pearson coefficient equal to 0.898), as shown in Figure 2.10(b). This
confirms that signalling data can provide a travel profile comparable to the well-known
typical demand profile for a working day.

The analysis of the differences between dynamic OD matrices generated via signalling and
survey data was performed not only from a temporal perspective but also from a geographical
point of view. Fig. 2.11(a) shows the number of trips emitted from each sector of the study
area, over the 24-hours reference period (i.e., trips are counted with respect to the sector
location of the trip’s origin and the related start time). The heatmap provides a spatio-
temporal representation of the absolute difference between the demand generated by each
zone from the survey and mobile phone data. Sectors are sorted from left to right by
decreasing density of urban land use, as retrieved from the CORINE Land Cover 2012 8

dataset. In highly-dense urban zones (on the left of Fig. 2.11(a)), the demand is higher with
EDR survey compared to that reconstructed via mobile phone, regardless of the hour of the
day. On the other hand, the hourly travel demand during the morning peak period is higher

8https://www.statistiques.developpement-durable.gouv.fr/corine-land-cover-0
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(a) Spatio-temporal distribution of the emitted demand difference between survey and signalling data

(b) Correlation between the emitted demand dif-
ference and urban land use percentage per sector

(c) Hourly demand distribution of EDR and Net-
work Signalling Data (SD) after application of the
de-biasing procedure

Figure 2.11: Analysis and correction of the biases in temporal NSD reconstructed travel demand.

in the survey compared to mobile phone regardless of the zone. This is confirmed by the plot
reported in Fig. 2.11(b) showing that the emitted demand difference between survey and
mobile phone is abnormally highly-correlated to the urban density of the sectors. In rural
areas, we can reasonably assume that signalling records provide more consistent estimations
since long-distance trips from/to these areas are typically better captured with mobile phone
passive data than surveys and for a larger sample of the population [133]. Instead, in urban
areas, the figures let us conclude that the proposed trip extraction method is unable to
capture short-distance trips, which are expected to occur with higher frequency in urban
areas than in rural ones. These preliminary analyses confirmed the existence of systematic
spatio-temporal bias in the data.

Two simple heuristics were proposed to cope with these biases and used to correct the
NSD-estimated travel demand. Concerning the geographical bias, we computed a spatial
correction (multiplicative) factor, which was applied to the NSD-estimated travel demand
on a per-zone basis. The correction factor was calculated using the following regression
equation:

DSurvey(x)−DSD(x) = 94835 · Ula(x)− 7395 (2.4)

The regression equation was obtained by fitting a linear equation to the data visualised
in Fig. 2.11(b), and expresses the demand difference between survey demand and NSD-
estimated demand as a function of the urban land use density. The correction factor is
therefore derived from Eq. 2.4 to remove the dependence on urban density from the differ-
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ence. The factor is defined as follows:

S(x) = 1 +
94835 · Ula(x)

DSD(x)
(2.5)

where Ula(x) and DSD(x) represent, respectively, the urban density (as computed from
land use data) and the emitted demand associated to each zone x (as estimated from the
signalling data). By applying this correction factor, we can decorrelate the difference with
respect to urban density.

Concerning the temporal bias, we have noticed that the observed underestimation (i.e., ,
between 5 and 9 am) of the travel demand also affects the temporal distribution of Location
Area Update (LAU) events (i.e., a kind of communication passively generated by the device
when changing the Location Area zone), which should not be normally affected by the time
of the day. Therefore, to address this bias, a uniform correction factor has been applied on
all mobile phone-based trips with a start time estimated during and around the morning
peak period [5–9 am]. This factor has been calculated as the ratio of the afternoon and
morning peaks in the LAU profile. Based on these considerations, the applied temporal
correction factor results equal to a value of 1.3.

(a) Cluster 2 (b) Cluster 5

(c) The land use composition of clusters

Figure 2.12: Average temporal demand profiles for a selection of clusters (a-b). Land use distri-
bution in all clusters (e).

Fig. 2.11(c) shows the final bias-corrected temporal profile comparatively to the EDR
one, which clearly exhibits a higher correlation (Pearson coefficient equals 0.94) with respect
to the survey-based one.

As a final validation step, we have developed a clustering methodology to identify groups
of zones showing similar temporal patterns in terms of the emitted, NSD-estimated hourly
demand9. The methodology detects a variety of temporal demand patterns within the study

9The clustering approach was in all similar to the one used for grouping MWS of mobile phone traffic
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area, partially reported in Fig. 2.12. The analysis of the average NSD-estimated emitted
demand in each cluster has been performed comparatively to the EDR one (Fig. 2.12(a)-
2.12(b)), and by taking into account the land use composition in each of the identified
clusters (Fig. 2.12(c)). The results of the clustering clearly show an agreement in terms of
demand profile between the two sources, as well as easily explainable dynamics with respect
to the land use configuration of each cluster. As an example, cluster 2 (Fig. 2.12(a)) is
mostly associated with rural areas, featuring a strong residential land use with a limited
presence of businesses or leisure activities. The emitted demand confirms this conclusion
with a profile unequivocally describing a large number of people leaving this cluster to
reach working places at the morning peak and coming back at the late-afternoon peak.
Conversely, cluster 5 (Fig. 2.12(b)) covers a large amount of industrialised urban areas.
These zones are characterised by a mixture of residential (high population density) and
industrial/office fabrics: they tend to generate a high number of commuting trips in the
morning but also attract a significant amount of demand from the surrounding areas. The
latter will massively leave the cluster (thus generating trips) later on, as confirmed by the
higher afternoon/evening peak.

These results confirmed the interest in using NSD for dynamic travel demand recon-
struction but also highlighted the absolute need for more structured processes that might
account for bias modelling, trajectory cleansing and reconstruction of missing observations,
towards estimating finer-grained mobility indicators.

activity detailed in Sec. 2.1.2), with the only difference that it was applied to 24-hours time series of emitted
travel demand.
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Chapter 3

Zonal Traffic Speed and Urban
Trajectory Reconstruction

The outcomes of the research described in the previous chapter demonstrated the possibility
to leverage individual massive mobile phone data to estimate OD matrices at coarse regional
scale, with accuracy consistent with that of traditional household travel surveys. Moreover,
these activities provided evidence that passively collected mobile phone data could enable
fine-grained inspection and continuous monitoring of human mobility.

This chapter describes the research conducted on mobile phone data to further advance
the understanding established in Chapter 2. Specifically, this chapter focuses on achieving
a higher level of spatial granularity in the estimation of traffic variables and mobility trajec-
tories by referring to small areas of the urban territory, ranging in size from a few tens to
hundreds of square meters. It also aims to capture these variables and mobility trajectories
at a shorter temporal scale, in the order of minutes or tenths of minutes. Moreover, all the
approaches developed in this chapter enable large-scale reconstruction of mobility informa-
tion, i.e., encompassing the whole urban area of a city, and, in some cases, even a whole
region or country.

In this direction, as part of Manon Seppecher’s PhD thesis, we investigated the possibil-
ity of using individual massive mobile phone data to estimate time-dependent zonal mean
spatial speeds1 of a partitioned urban road network. It is worth mentioning that, in this
research, we did not explicitly work on NSD or CDR. Instead, we opted for an abstract
data representation that we denoted as UAPD2. This representation can be customised to
suit a variety of datasets, such as CDR, NSD, LBSN data, or any similar dataset generated
by users who, while static or in motion, irregularly interact with a device to perform a task
(such as communicating, posting content on social media, etc.). The main outcomes of this
research are reported in Sec. 3.1.

In parallel to this research activity, we had the opportunity to work on an extensive,
complete, and exceptionally large-scale NSD dataset, already presented in Sec. 1.1.2 to
showcase the increased accuracy, from both the temporal and spatial points of view, of
NSD in comparison to CDR. This dataset was collected and made available by Orange
Innovation and provided a realistic representation of what a network operator could collect
with state-of-the-art network event probes3. The unique features of such datasets enabled

1The zonal mean spatial speed represents an essential variable for macroscopic traffic modelling, according
to the theory of the Macroscopic Fundamental Diagram [134].

2This choice was also imposed by a delay in the acquisition of real CDR data, which were supposed to
be available in the context of Seppecher’s PhD thesis, and the impossibility of using Orange data which was
not a partner of the project supporting these activities. The experimentation was therefore conducted on a
UAPD dataset obtained from a massive GPS data, artificially biased to resemble CDR and NSD data.

3For more details on the probe technology and approach adopted by Orange Innovation on the French
national network to collect NSD datasets, we refer the interested reader to [135].
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us to investigate the problem of utilising NSD to reconstruct human mobility trajectories in
urban environments with spatio-temporal accuracy of a few hundred meters, i.e., comparable
to the one that can be obtained with GPS data. Solving this problem at the scale of a whole
city, and for a large sample of the city population4, allows estimating high-quality and highly-
detailed mobility patterns, leading to a better understanding of human mobility in urban
settings. In Sec. 3.2, we describe the framework implemented to accurately reconstruct urban
mobility trajectories, while in Sec. 3.3, we present the enhanced solution adopted to perform
map-matching of the reconstructed trajectories on a multi-modal transport network.

The increased accuracy and resolution of the retrieved mobility information, although
beneficial from the perspective of city management and planning, also raises fundamental
questions about users’ privacy. It could become in fact relatively easy to retrieve sensitive
information about people, such as the precise location at a specific time, their home and
work positions, and even to unveil a user’s identity when such sensitive information are cross-
referenced with other datasets. Therefore, we also dedicated significant research efforts to
the problem of devising anonymisation solutions aimed at reducing the sensitivity of the
reconstructed mobility indicators, while preserving the spatial and temporal granularity of
the mobility patterns at the finest possible level of detail. Sec. 3.4 reports on the methodology
developed to anonymise OD matrices derived from massive spatio-temporal trajectories of
human mobility.

The activities on mean speed dynamics estimation have been conducted in collaboration
with CITEPA, in the context of Manon Seppecher’s PhD thesis and the Green City Big
Data project (Jan. 2018 - Apr. 2022). The analysis and processing of massive NSD datasets
to enable the estimation of fine-grained mobility patterns has been one of the central topics
of the ANR JCJC PROMENADE (Feb. 2019 - July 2023) project, which I have led. The
framework presented in Sec. 3.2 has been a major contribution of Loïc Bonnetain’s PhD
thesis, which I co-directed, and the result of a successful collaboration with INRIA CITI Lab,
CNR Italy, and Orange Innovation. The framework has also been recently patented [136]5.
The research activities related to the anonymisation of mobile phone trajectories and of
the derived mobility indicators have their origins in the work described in [137], performed
as part of my post-doctoral activities. In such work, we introduced a novel algorithm,
called GLOVE, for the anonymisation of highly detailed trajectories derived from mobile
phone data. Based on these results, a novel approach to the anonymisation of mobile phone
signalling traces has been proposed in the context of the ANR PRCE MOBITIC (Jan. 2020 -
Dec. 2024) project, and are part of Benoit Matet’s PhD thesis, which I currently co-advise in
collaboration with researchers from the GRETTIA laboratory of University Gustave Eiffel.
They have also been part of a collaboration with the IMDEA Networks Institute of Madrid.

This chapter includes content from the following papers:

1. M. Seppecher, L. Leclercq, A. Furno, D. Lejri, and T. V. da Rocha, “Estimation of ur-
ban zonal speed dynamics from user-activity-dependent positioning data and regional
paths”, Transportation Research Part C: Emerging Technologies, vol. 129, p. 103183,
2021.

2. L. Bonnetain, A. Furno, N.-E. El Faouzi, M. Fiore, R. Stanica, Z. Smoreda, and C.
Ziemlicki, “Transit: Fine-grained human mobility trajectory inference at scale with
mobile network signaling data”, Transportation Research Part C: Emerging Technolo-
gies, vol. 130, p. 103257, 2021.

3. L. Bonnetain, A. Furno, and N.-E. El Faouzi, “Multi-modal fine-grained map-matching
of mobile phone network signaling data in urban areas”, 101st Transportation Research
Board Annual Meeting (TRB), 2022.

4Around 35% to 40% of people in France are customers of Orange. This represents a significantly larger
sample compared with 1% of persons reached by mobility surveys.

5https://data.inpi.fr/brevets/FR3125197
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4. B. Matet, A. Furno, M. Fiore, E. Côme, and L. Oukhellou, “Adaptative generalisa-
tion over a value hierarchy for the k-anonymisation of origin–destination matrices”,
Transportation Research Part C: Emerging Technologies, vol. 154, p. 104236, 2023.

These results are currently supporting further ongoing research related to resilience-
driven design and reconfiguration of multi-modal transport networks as well as multi-source
data fusion for travel demand anomaly detection and synthetic population generation, which
will be described in Chapters 4 and 6, respectively.

3.1 Estimation of Mean Spatial Speeds in Urban Areas

Estimating the dynamics of traffic speed in urban road networks is crucial for many ap-
plications, including traffic simulation and control, or greenhouse gas emission estimation
[138]. Targeting speeds from irregular and low-frequency positioning data is a challenging
task. The traditional bottom-up speed estimation methods from GPS floating vehicle tracks
[139, 140] rely on averaging individual speeds calculated at the road segment level. These
approaches cannot be easily transposed to mobile phone data such as CDR or NSD. As
highlighted in Chapter 2, the accurate estimation of start and end times of individual trips
– and thus travel times and speed values – from mobile phone trajectory data is problematic
even at a coarse commune scale due to the inherent spatio-temporal biases of mobile phone
data. However, these data provide an unprecedented spatio-temporal coverage of the urban
territory that cannot be efficiently achieved with other sources, such as GPS or pollution
sensors, thus justifying significant research efforts in the investigation of methods for reliable
speed estimation with UAPD.

One of the primary objectives behind the Green City Big Data project was in fact to
develop methods for estimating traffic variables and assessing, with the highest possible level
of details, traffic-related pollutant emissions at the scale of a whole metropolitan city. To
that end, we decided to approach this issue from an intermediate regional scale suitable for
precisely studying the dynamics of large urban road networks, but coarser than the road
segment level to properly handle the sparsity of mobile phone data. Based on such inter-
mediate scale, we identified specific emission models (i.e., the COPERT [141]) tailored to
the data characteristics, the urban scale of emission assessment, and the decision-making
context in which the tool was intended to operate. The COPERT model leverages mean
traffic speeds and vehicle features, such as motorisation and emission standards, to quan-
tify the emissions produced per unit of distance travelled. Consequently, estimating global
emissions at a regional and urban scale requires multiplying these factors by the total traffic
volume6. Specifically, the emissions of pollutant k can be estimated using:

Ek = TTD · Fk(V ) (3.1)

where TTD represents the Total Travel Distance (in km), V stands for the traffic speed (in
km/h), and Fk(V ) denotes the emission factor (in g/km).

Within the context of Manon Seppecher’s thesis, we developed a comprehensive modelling
chain that uses UAPD data, road network data, and census and survey data as inputs.
This chain produces the traffic variables required for emission estimation, including traffic
speeds, travelled distances and traffic volumes. The chain is structured around the speed
estimation process and employs different approaches for reconstructing the traffic volumes
related to two distinct user categories, i.e., regular and non-regular travellers of the selected
urban territory. In the following, we only focus on the framework for the estimation of the
mean spatial speeds. The methodologies related to the estimation of traffic volumes for the
different user categories and the overall framework for pollutant estimation can be found by
the interested reader in [142, 143].

6The total travelled distance TTDr within a region r is linked to the traffic flow qr in the region and the
average trip lengths Lr in r according to the following equation TTDr = qr · Lr [134].
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To estimate speeds, we considered R as the given regional partitioning of the urban road
network, with r being the generic region within this partitioning. These regions must be
characterised by homogeneous city fabric, demography, road network topology, and, most
importantly, traffic dynamics. Homogeneity of traffic dynamics is an essential requirement
for a robust estimation of aggregate traffic variables, as reported by the literature on the
Macroscopic Fundamental Diagram (MFD) theory [144], which underlies large-scale traffic
modelling and simulation. Following the network partitioning guidelines provided by this
literature, one can typically divide a city into a set of regions ranging from 5 to 20. This new
spatial scale determines the final spatial resolution of traffic speed estimates. Therefore, it
must be adapted to the precision requirements of the case study and to the resolution of the
available data, as mentioned above. Concerning the temporal scale, we assumed time to be
discretized into equal-length time slots t, drawn from a temporal set T , which corresponds to
the entire observation period (e.g., one day). The length of the time slots imposes the time
granularity of the speed estimates and must be chosen accordingly. In must be small enough
to reproduce the rapidly changing speed dynamics during peak hours, but sufficiently large
to ensure an adequate size of the trip sample population. We chose 15-minutes time slots in
this study, as commonly used in the literature.

Under these hypotheses, our aim was thus to accurately estimate the mean spatial speed
V t
r for each r ∈ R and t ∈ T , which is defined as follows:

V t
r =

TTDt
r

TTT t
r

=

∑
i L

i,t
r∑

i T
i,t
r

(3.2)

In this equation, TTDt
r represents the sum of the individual distances (i.e., network

lengths) travelled in region r during time slot t, i.e., Li
r,t. Meanwhile, TTT t

r represents the
sum of the individual travel times in region r during time slot t, i.e., T i,t

r .
The fundamental principle behind the speed estimation method we proposed is that the

overall sample size of the data can compensate for the low data quality at the individual
trip level. The method relies on the fusion of individual trip information and statistical
considerations to provide a reliable traffic speed estimation.

Basic Definitions

Similarly to the approach followed in Sec. 2.2, we adopted a definition of trip based on the
observed individual UAPD trajectory. Specifically, the trip is defined as the mobility phase
of a user between two consecutive stationary activities, named stays in the following. We
remind here that an important distinction must be made between the observed trip departure
and arrival times and the exact (but unknown) ones, as the varying communication rates of
users provide sparse information on their mobility. Based on these considerations, we used
the following definitions:

• The regional path is defined as the sequence of the successive regions travelled by a
user in a trip from its origin to its destination [145, 146]). It corresponds to a coarser
representation of the path followed by the traveller with respect to the road segment
scale, based on the considered partitioning into regions of the urban road network.

• We call trip the ternary structure defined by a regional path, an observed travel time
and an observed arrival time. Differently from the approach described in Sec. 2.2.2,
this definition of trip does not ignore way-points, i.e., events observed for a given
user between two successive stays. Intermediate user positions, represented as detec-
tion of the user at specific regions from the chosen partitioning, can provide precious
information to infer accurate speed estimations.

• The observed departure time of trip i is defined as the time when the last static event
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of the origin stay is observed. By definition, the observed departure time precedes the
actual one. Thus, ϵid represents the positive bias between these two values.

• Reciprocally, the observed arrival time of trip i is defined as the time when the first
static event of the destination stay is observed. By definition, the observed arrival
time follows the actual one. Thus, ϵia represents the positive bias between these two
values.

• The observed travel time T i
obs of trip i is defined as the time elapsed between two

consecutive stays, i.e., between the observed departure and the observed arrival times.
It is an overestimate of the actual travel time T i.

Based on these definitions, we thus have:

ϵi = T i
obs − T i = ϵid + ϵia (3.3)

The Framework: Main Steps

In the following, we provide a summary of the speed estimatino framework (see Fig. 3.1)
by focusing on the procedures for travel time bias removal and for speed estimation. The
interested reader can refer to [132] for the complete description of the approach.

The framework assumes the availability as inputs of: (i) a network partitioning into a
set R of homogeneous regions; (ii) a set of relevant regional trip length information. The
estimation of trip length information must be performed beforehand from external data
sources, on the same network partitioning that defines the adopted regional scale and paths.
We relied on previous work for the definition of the network partitioning [147] as well as for
the estimation of the regional trip lengths [146]. Specifically, this input corresponds to the
average regional trip length in each region along each possible regional path. We assume
this information to be available as a distance matrix L̂, whose rows (i) are the different
possible regional paths, and columns (j) are the different regions resulting from the spatial
tessellation. The cell value at (i, j) corresponds to the average distance travelled in the jth

region, when travelling along the ith regional path P . It is equal to zero if the path P does
not cross the jth region. This matrix was assumed to be constant over time in our framework,
but a time-dependent generalisation could be considered as well if such information can be
derived independently from another dataset [148].

Travel Time Bias Modelling and Removal

We modelled the bias as an additive component on the exact travel time of any trip observed
via UAPD7. Let P be a regional path and i be an individual trip observed along P . We
thus have:

T i
P,obs = T i

P + ϵi (3.4)

where T i
P,obs, T

i
P and ϵi are, respectively, the observed travel time of trip i along P , its exact

travel time, and the corresponding travel time bias. The latter can be expressed as:

ϵi = ϵid + ϵia (3.5)

Estimating this bias on an individual trip basis is difficult. However, the estimation of its
average is less challenging and can allow de-skewing, on average, the observed travel times.
To compute the average bias, we proposed merging overlapping trips and averaging their
observed travel times to build a unique aggregated biased travel time information per path
and per time slot.

7Non-additive and more complex forms of bias could have been considered, but we opted for the most
natural and simple representation in this work.
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Figure 3.1: Methodological framework for regional speed reconstruction.

Let t represent a generic time slot, and let ItP be the set of overlapping trips along P
that reach destination during t, with nt,P = |ItP |. Averaging Eq. 3.4 over ItP gives:

T̄ t
P = T̄ t

P,obs − ϵ̄tP (3.6)

where T̄ t
P , T̄ t

P,obs and ϵ̄tP are, respectively, the average actual travel time, the average ob-
served travel time, and the average bias of trips from set ItP .

Eq. 3.6 can be simplified by assuming that the bias is independent of the trip path and
time8. Thus, the distribution of individual biases ϵi can be modelled via a unique random
variable X. The construction of such a model, and the estimation of its first moment

8The frequency at which mobile phone users are observed through the mobile network, i.e., the inter-event
time, is known to depend on the hour of the day [149]. In particular, longer inter-event times are observed
during nighttime and early morning. This could make the bias, in turn, dependent on time. However, these
results normally account for all individuals, including the ones that are static and sleeping, while, in this
study, we were exclusively interested in the moving ones, for which it might be reasonable to make the
simplistic hypothesis of time independence. The spatial independence of the bias is similarly debatable and
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µX ≡ E(X), can offer an approximation of ϵ̄tP allowing the de-skewing of T̄ t
P,obs, provided

that the sample of individuals associated with this time slot and path is large enough:

T̄ t
P ≈ T̄ t

P,obs − µX (3.7)

Hence, if the departure and arrival temporal offsets ϵid and ϵia are themselves modelled by
the same random variable Y, Eq. 3.5 gives X = 2Y . Now, as discussed in Sec. 2.2.2 but with a
finer modelling taking into account way-points, the individual’s departure time from a stay
position can occur with a uniform probability between the pre-departure communication
event and the post-departure communication event. The delay between these two events
follows the distribution of the user’s inter-event times, which can be assimilated to the
population’s inter-event times distribution for the sake of simplicity.

Mathematically, this means that departure bias follows a uniform distribution law bounded
by the population’s inter-event time distribution. Symmetrically, the same reasoning applies
to the arrival bias. This modelling, focusing on the features of the whole population in
terms of communication patterns instead of considering specific properties of the individual
trip, represents a significant improvement with respect to the simple approach adopted in
Sec. 2.2.2 to estimate the duration of trips from individual passively collected traces.

We modelled the population’s inter-event time by considering an exponential law Z of
parameter λ. While in the literature the inter-event time distribution is often modelled as
a truncated power law distribution, we selected an exponential distribution for a matter
of simplicity. It requires a single parameter λ directly linked to the distribution average.
Enhancing this modelling choice represents a possible future research direction.

The considerations above leads to:

Z ∼ Exp(λ) (3.8)
Y |Z ∼ U(0, z) (3.9)

Hence, the probability density function of Z, and the conditional probability density
function of Y given the occurrence of the value z of Z can be written as:

fZ(z) = λe−λz (3.10)

and fY |Z(y | z) =

{
1
z 0 ≤ y ≤ z,

0 otherwise,
(3.11)

It can be proved (see [132]) that the probability density function of Y is:

fY (y) = λ

∫ +∞

0

e−λ(y+z)

y + z
dz (3.12)

and that the first two moments of Y are:

E(Y ) =
1

2λ
and V (Y ) =

5

12

1

λ2
(3.13)

Those results characterise the random variable Y which models the departure and the
arrival offsets. This gives for X = 2Y :

µX ≡ E(X) = 2E(Y ) =
1

λ
and V (X) = 4V (Y ) =

5

3

1

λ2
(3.14)

It is important to highlight here the importance of the size of ItP to ensure that µX is
representative of the average bias related to regional path P at time t: the larger the sample,

would deserve further study, since mobile phone or social network usages are known to be correlated with
socio-demographic characteristics.
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the more the theoretical average bias µX is representative of the sample’s average bias. This
is all the more important as with our bias model, as the variance of X increases with mean
inter-event time E(Z) = 1

λ :

V (X) =
5

3
E(Z)2 (3.15)

Eq. 3.15 shows that the larger the mean inter-event time is, the more scattered the trip
bias distribution will be, and the more data per time slot and per regional path will be
needed to ensure a reliable de-biasing process.

Regional Speed Estimation

The estimation of regional speed dynamics relies on the computation of mean regional path
travel times. Specifically, the individual regional travel time from Eq. 3.4 can be expressed
as the fraction of the distance travelled on trip i in r (i.e., Li

P,r) over the mean spatial speed
of i in region r (i.e., V i

r ), as described in Eq. 3.17.

∀i ∈ ItP , T i
P =

∑
r∈P

T i
P,r (3.16)

T i
P =

∑
r∈P

Li
P,r

V i
r

(3.17)

Due to the temporal sparsity of the individual UAPD trajectories, the terms Li
P,r, and

V i
r are considered unknown.

Although vehicles may experience different local and instantaneous speeds over an area,
their average speeds depend mostly on overall traffic conditions, and mainly on the accumu-
lation (i.e., number of vehicles in the region). These average speeds show little scatter among
individuals, and can be approximated by the mean spatial speed of all individuals travelling
in the region. This observation has sustained the development of the MFD theory [144, 150]
and motivates the choice of a network partitioning into sub-regions of consistent traffic dy-
namics. On this basis, it is possible to consider this equivalence for each trip i, being t the
time slot trip i refers to, i.e.,

V i
r = V t

r , ∀i (3.18)

where V t
r is the regional spatial mean speed at time slot t.

In Eq. 3.17, after summing on the It,P trips, this gives:

nt,P∑
i=1

T i
P =

nt,P∑
i=1

∑
r∈P

Li
P,r

V t
r

=
∑
r∈P

nt,P∑
i=1

Li
P,r

V t
r

(3.19)

Eq. 3.19 can easily be rewritten as follows:

nt,P∑
i=1

T i
P =

∑
r∈P

1

V t
r

nt,P∑
i=1

Li
P,r (3.20)

nt,P T̄
t
P =

∑
r∈P

nt,P

L̄t
P,r

V t
r

(3.21)

T̄ t
P =

∑
r∈P

L̄t
P,r

V t
r

(3.22)
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Again, a significant advantage of this averaging process over the sample ItP is that the
characterisation of individual regional trip lengths Li

P,r for any individual i becomes unnec-
essary. Instead, the sample mean value L̄t

P,r turns out to be sufficient. On the condition that
the sampling size is large enough, this can be replaced by its static estimate L̂P,r, drawn
from the exogenous trip length matrix L̂ described above:

T̄ t
P ≈

∑
r∈P

L̂P,r

V t
r

(3.23)

At this stage, the computed distance matrix is used to express, through Eq. 3.23, a
relationship between the average travel time along regional path P at t, and the underlying,
unknown mean traffic spatial speeds of the regions along P .

Although the actual average trip duration T̄ t
P is unknown, the knowledge of the average

time bias µX allows to estimate it from the average trip duration, i.e., T̄ t
P,obs, observed from

the UAPD data at each time slot t and for each path P . Based on Eq. 3.7, we thus get:

T̄ t
P,obs − µX ≈

∑
r∈P

L̂P,r

V t
r

(3.24)

Conversely, the constant distance parameters L̂P,r can be drawn from the aforementioned
estimated trip length matrix L̂. µX is assumed known as well. V t

r are the only unknowns
of the system. When applying in Eq. 3.24 the change of variable xt

r = 1/V t
r , we finally get

the unbiased system:

∀t, St = {T̄ t
P,obs − µX =

∑
r∈P

L̂P,rx
t
r, ∀P}. (3.25)

In Eq. 3.25, we name St the linear system composed of |R| unknowns (xt
r, r ∈ R) and as

many equations as the number of regional paths observed during the reference time slot t.
The UAPD data analysis and the parameters extracted from the trip length matrix allow
to fully characterise the system, which can be rewritten in matrix notation as follows:

∀t, St = {T t
obs − µX = L̂|txt} (3.26)

where T t
obs is the average observed travel time vector and L̂|t is the sub-matrix of L̂ restricted

to the regional paths observed at time slot t.
Given that the number of regional paths will generally exceed the number of regions

of the adopted partitioning, St is very likely over-determined. Consequently, the system
will probably have no exact solution, but an approximated one can be calculated using
regression analysis. To this purpose, we applied a non-negative least squares regression
method to solve the system. In our case, the non-negative constraint allows for taking into
account the non-negative nature of the zonal traffic speed.

Taking the reciprocal values of the solution vector xt
0 gives the optimal speed vector vt

0.
This resolution process can be iterated throughout the whole studied time span to estimate
the complete temporal speed trends.

Empirical Evaluation

We performed an extensive evaluation of the proposed framework by leveraging a cleaned
and map-matched dataset of GPS trajectories that we down-sampled and artificially biased
to mimic real-world mobile phone data. The GPS data were provided by a leader European
navigation system provider9 from October 2017 and September 2018 over the Greater Lyon

9https://be-mobile.com
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(a) Map of the urban regions (b) Map of the ring road regions. The ring road is
divided into three zones, which are themselves sepa-
rated into two according to the direction of traffic

Figure 3.2: Maps of the regions partitioning the city of Lyon, France.

area. The study area focuses on the urban area of Lyon and the neighbouring municipality
of Villeurbanne, located inside Lyon’s ring road. We partitioned this territory into 16
distinct regions, as displayed in Figure 3.2. The traffic variables were verified to be relatively
homogeneous in each region [147]. The trips used in this study were extracted from five
typical weekdays, i.e., from Monday, February 12, to Friday, February 16, 2018. Being
GPS data rather limited in sample size, we artificially extended the size of the dataset by
duplicating each trip 100 times. Moreover, as few trips were observed at night-time in our
dataset, the time span selected for our evaluation is restrained to day-time hours, i.e., in-
between 5 am and 8 pm. The data from the full month of February 2018 were used for the
offline calculation of the trip lengths matrix L̂.

Firstly, each GPS trajectory was transformed into our trip representation (i.e., regional
path, actual arrival time, and actual travel time), along with the trip id. This approach
corresponds to introducing a spatial down-sampling to replace the precise track information
with the regional path feature.

To reproduce the temporal sparsity of mobile phone data, we artificially introduced
temporal biases based on a given value of the average inter-event time, as from our bias
model. The value of the average inter-event time depends on the population observed or on
the type of data chosen: for example, NSD datasets will display shorter inter-event times
than CDR and LBSN. Therefore, we generated, for each day of data, five different down-
sampled datasets, one per inter-event time value. The selected average inter-event time
values were 4, 8, 12, 16, and 20 minutes, to cover a large range of average communication
rates. The introduction of the bias was performed on a per-trip basis, by sampling the
departure and arrival biases according to the probability density function defined via Eq. 3.12
using the average inter-event time values above. The actual travel time of each trip is thus
biased with the sum of the sampled departure and arrival biases to obtain the observed
travel time. Finally, the biased trips were grouped by regional paths and 15-minutes slots,
averaging the observed travel times in each of the resulting groups thus obtaining the T̄ t

P

values. By using our methodology as from Eq. 3.25, we obtained a speed profile in kilometres
per hour, per region, and per 15-minutes slots for each day of the evaluation.

To evaluate the reliability of the results, we compared the estimated regional speed profile
to the spatial mean speed V t

r in region r over t. The latter was computed from the original
GPS trajectories as the ratio of the total travelled distance TTDt

r and the total travel time
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Avg IET MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

4 7.894771 18.576767 10.773218 21.648403
8 12.970168 31.347989 16.233049 33.484246
12 16.918677 41.133133 20.600466 42.693440
16 19.920772 48.522253 24.008746 49.748655
20 22.204453 54.189049 26.608480 55.214964

Table 3.1: Average speed errors for each mean inter-event time (without de-biasing).

MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

Day 1 4.911907 7.174379 12.124498 15.264945
Day 2 5.057217 7.564531 12.024699 15.306312
Day 3 5.067316 7.505059 12.617445 15.839542
Day 4 4.848885 7.216612 13.006559 18.000039
Day 5 4.678821 6.591109 12.331655 15.714796

Table 3.2: Daily speed errors with de-biasing in the worst-case scenario (20-minutes IET)

TTT t
r in region r during t, as from Eq. 3.2.

Tab. 3.1 reports the performance metrics (i.e., Mean Absolute Error (MAE), Root Mean
Absolute Error (RMSAE), Mean Absolute Percentage Error (MAPE), Root Mean Square
Absolute Percentage Error (RMSAPE)) for each day as a function of the average inter-
event time, prior to applying the de-biasing procedure. The errors are quite high and
increase significantly with the average inter-event time, highlighting the importance of the
de-biasing method. This table can be contrasted with the results in Tab. 3.2, where the
worst-case scenario, corresponding to an average inter-event time of 20 minutes, is analysed
after applying our bias removal procedure. For all metrics and all days, there is a noticeable
improvement in performance indicators due to the de-biasing procedure. The errors remain
below a 20% limit when considering the daily RMSAPE, which is a significant improvement
compared to the average value of 55.2% observed in Tab.3.1.

Fig. 3.3 displays the smoothed speed estimation results for the five different average
inter-event time values, again after bias removal. The speed curves for different average
inter-event time values almost overlap, confirming the importance and effectiveness of our
bias removal approach. The results also show that the framework is generally capable of
reproducing speed trends and dynamics (i.e., good match with the blue curves in the figure),
with particularly good results for many of the considered urban areas and almost all of the
ring-road regions.

The less satisfactory results for some regions could be partially explained by the low
quantity or quality of the original GPS data in those areas. This issue may be related to
the presence of tunnels or a low penetration rate of the data provider in those areas, which
inevitably reduces the representativeness of the average travel times, despite the artificial
expansion of the dataset. In situations where the input data do not adequately describe
traffic conditions, the bias removal mechanism is inevitably insufficient for producing accu-
rate speed estimations. This highlights the need for more advanced processing solutions,
such as those that will be described in Sec. 3.2. It is also worth noting that validating the
obtained results on real NSD and CDR datasets remains a task for future work.

3.2 Trajectory Inference at Scale with Network Signalling
Data

To address the challenge of accurately reconstructing mobility trajectories from real-world,
massive individual NSD and fully exploit their potential for urban mobility, we proposed a
framework named TRANSIT, extensively described in [151].
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Figure 3.3: Speed dynamics after average bias removal. Ground truth speeds from the raw GPS
traces are reported as blue curves.

TRANSIT was conceived to explicitly leverage the high sampling rate of NSD and the
repetitive nature of human mobility, by building on interesting approaches from the literature
recently proposed to overcome location-related limitations of CDR and CDR+ datasets: the
Detect, Expand, Check and REmove (DECRE) [152] and the Cumulative Weighted Moving
Average (CWMA) [153, 154] frameworks.

DECRE is built on the principle of removing oscillations from CDR in order to reduce
spatial uncertainty for enhanced human mobility modelling. However, although such an
approach could effectively improve spatial accuracy by removing the noise deriving from the
oscillations, the resulting trajectory is still bounded to the original location information from
the cellular network (i.e., antennas coordinates), thus exhibiting large spatial uncertainty.
As for CWMA, the approach leverages oscillations to infer with increased accuracy user
locations. However, CWMA does not take into account the existence of high regularity in
human movements, and consequently in mobile phone events, which TRANSIT exploits to
enhance the spatio-temporal accuracy of the inferred mobility trajectories.

TRANSIT receives as input the set of NSD events of a mobile device i10, denoted by
10As in Sec. 2.2, we make the simplifying assumption in the following that a device corresponds to a given
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Input: set T i of NSD events of a mobile device i

Tagging of static antennas, as the antennas that have a daily
cumulated association time above a threshold Tw for user i

Labeling of static activity sessions ai
k, as each

continued time interval where all events of de-
vice i are only associated with static antennas

Removal of oscillations via a dedicated heuristic, consol-
idation of adjacent static activity sessions, and filtering
out of static activity sessions with duration below Ts

Refinement of the location of the static
activity sessions with spatial clustering

Tagging of all non-static events as mobile, and merging of
consecutive mobile events into continued mobile sessions mi

h

Intermediate result: set Ai of static activity ses-
sions, and set Mi of mobile sessions, i.e., trajectories

Spatial clustering of trajectories in Mi, based
on a pairwise Hausdorff distance measure

Spatial augmentation of trajectories in a same spatial clus-
ter, via a reconstructed standard itinerary of the cluster

Output: set Ai of static activity sessions of user i, and
the set M̂i of mobile sessions with augmented trajectories

Trajectory
Identification

Trajectory
Augmentation

Figure 3.4: Flowchart of TRANSIT.

T i = {ei1, . . . , ein, . . . , eiNi
}, where ein is the nth NSD event recorded for device i. Each NSD

event is the result of a communication activity between a mobile device and a base station
antenna of the telecommunication network, across all 2G, 3G and 4G technologies; it is
defined as a tuple ein = (cin, t

i
n), where cin is the antenna at location lin that handled the

network event, and tin is the timestamp of the instant at which the event was recorded. The
NSD events in a mobile phone trajectory T i are ordered by their timestamps tin, and Ni

denotes the number of events for device i. Then, TRANSIT processes T i in two successive
phases:

• Trajectory identification. The framework labels each NSD event ein ∈ T i as either
static, if the user i is deemed to be engaged in an activity at a same location at the
event time tin, or mobile, if i is performing a movement at tin. The labelling factually
allows telling apart the continuous time intervals during which an individual is moving
or not, and building a set Ai of static activity sessions and a set Mi of mobile sessions.
As a result, the set Mi also identifies all the trajectories, i.e., continued sequences of
movement in time, of user i.

• Trajectory augmentation. The framework enhances the trajectories associated to mo-
bile sessions in Mi, by exploiting the fact that the same individual typically performs
many trips between two given locations over time, generally following very similar
paths. This creates redundancy in the mobility information that can be used to in-

individual.
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crease the spatio-temporal accuracy of the trajectories. The resulting set of mobile
sessions possibly augmented trajectories is denoted as M̂i.

Ultimately, the output of TRANSIT are the set Ai of static activity sessions of user i,
and the set M̂i of mobile sessions with augmented trajectories. Fig. 3.4 presents a flowchart
of the stages of TRANSIT.

3.2.1 Trajectory identification

As anticipated, the trajectory segmentation step is applied to the individual set of NSD
events T i recorded for device i, and returns a subset of T i where each event is labelled as
static or mobile and detected oscillations are removed.

Fig. 3.5 illustrates the process of trajectory identification using TRANSIT. The interpo-
lation of NSD events is portrayed as the black solid line. Fig. 3.5(a) refers to static antennas
with daily accumulated association time above Tw. Fig. 3.5(b) identifies static activity
sessions as obtained from consecutive sequences of static antennas only, and detected oscil-
lations. Fig. 3.5(c) exhibits the final static activity sessions upon removal of oscillations, as
well as the consequent detected mobile sessions.

We start by assuming that the time spent by user i at the antenna cin associated to
event ein is tin+1 − tin, i.e., the temporal span to the subsequent event ein+1. Given the high
temporal resolution of NSD, this simple approach already provides a very good estimation
of the time the user is associated to a given antenna, at a low computational cost. Then,
a preliminary labelling is performed to trim down candidate static events. To this end, we
calculate the cumulated time spent by user i at each antenna cin, on a daily basis. As devices
stay connected to a limited set of antennas while still, we expect such antennas to yield a
non-negligible cumulated time during the target day. We thus tag as static antennas for user
i those antennas with a daily cumulated time above a threshold Tw. In our experiments,
we set Tw to 20 minutes, which falls within the range of commonly accepted values for
the typical minimum duration of a significant activity carried out by an individual at a
same location [131, 155], and is employed also with high-frequency longitudinal (e.g., GPS)
data [156]. An example is provided in Fig. 3.5(a).

A continued time interval where all events of device i are only associated with static
antennas is then denoted as a static activity session aik. Typically, during one day, a user
can have several static sessions, and each can be composed of one or multiple antennas. The
set of all such sessions across the whole observation period is Ai = {ai1, . . . , aiKi

}. It is worth
highlighting here an important aspect concerning the spatial extent of the static activities
detected by TRANSIT: while the approach proposed in Sec. 2.2 for OD matrix estimation
detects stationary activities at the level of EDR sectors, TRANSIT detects static sessions
at the level of the coverage area of one (or small groups of) antenna(s), which, in urban
areas, corresponds to an extent from one to three orders of magnitudes smaller than the
average area covered by EDR sectors. This represents a significant advancement in terms of
the spatial resolution adopted with TRANSIT. This also represents an improvement with
respect to the mean speed estimation framework described in Sec. 3.1. That framework relies
on a regional partitioning of the road network, where regions are defined by homogeneous
traffic analysis zones. These zones typically cover a significantly larger spatial extent than
the coverage area of antennas, especially in dense urban environments.

TRANSIT includes an additional step, addressing the removal of oscillations from the
mobile phone traces, to enhance the estimation of the duration and location of the detected
static sessions. After the stage above, only part of the antennas are labelled. Unlabelled
antennas are either encountered during movements, or the result of oscillations that are
known to characterise mobile device association to the radio access infrastructure [156].
Oscillations can in fact affect both static and mobile users. In the former case, they can cause
the separation of continuous static activities into different static sessions in Ai interleaved
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Figure 3.5: Main steps of the trajectory identification via TRANSIT.
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by non-static antennas. In order to address the issue, and remove oscillations from Ai,
TRANSIT adopts the following heuristic. If (i) two consecutive static sessions aik and aik+1

present at least one common (static) antenna, and (ii) the number of unique antennas
associated to events observed after aik and before aik+1 is below a threshold No, we merge
all the events in aik and aik+1 into a new, single static session. The new sessions replaces the
former pair in Ai. An example of oscillation detection and static sessions before the merging
process is shown in Fig 3.5(b).

The single events identified as oscillations in the previous stage are in fact removed from
T i entirely, so as to limit uninformative noise in the data. The revised static sessions in Ai

are further filtered based on their total duration, and only those with a time span higher
than a threshold Ts are retained. The value of Ts corresponds to the assumed minimum
duration of a static activity, so that we do not include, e.g., waiting periods at red traffic
lights for pedestrian or vehicular trips, or dwell times at stops for bus trips. For the same
reasons explained above in relation to threshold Tw, used to identify static antennas, the
value of 20 minutes has been adopted for Ts as well.

TRANSIT also enforces consistency in the locations of events associated to static activity
sessions, as follows. First, we compute the centroid of the locations lin of all events in each
session aik; then, the well-known DBSCAN clustering algorithm11 is run on the centroids
of all aik ∈ Ai. This lets us group together all static sessions related to a same activity,
and compute a consolidated location for the activity as the barycentre of all centroids in a
same cluster. The locations lin of all events in each session aik are then replaced with the
barycentre of the corresponding cluster. Note that the position of the static activity sessions
that are labelled as outliers by the DBSCAN algorithm are left unchanged. An example of
the resulting Ai is in Fig 3.5(c).

Finally, all events that have not been labelled as static are labelled as mobile. This
directly identifies the mobile sessions mi

h of user i, as the time-continuous sequences of
mobile events; an important remark is that the two static events immediately preceding and
following the mobile session are also integrated into mi

h to get a more precise indication of
the start and the end locations of the corresponding trip. As a result, the set of mobile
sessions is Mi = {mi

1, . . . ,m
i
Hi

}. Each mi
h corresponds to one trajectory of user i identified

by TRANSIT. An example with two detected mobile sessions is reported in Fig 3.5(c).

3.2.2 Trajectory Augmentation

The sequences of NSD events in T i that correspond to the single trajectories mi
h of user i are

still affected by the limited spatial accuracy that characterises NSD events as explained in
Sec. 1.1.2. In its second phase, TRANSIT thus aims at improving the geographical quality
of the movement information. As anticipated, the framework relies on the regularity of
human mobility; more precisely, we use the the information from multiple similar trajectories
identified for a same user to mutually improve their accuracy.

As a first step, a similarity measure is computed for all pairs of mobile session mi
h ∈ Mi.

We employ the Hausdorff distance [157], which is defined as:

dH(mi
h1
,mi

h2
) = max{D(mi

h1
,mi

h2
), D(mi

h2
,mi

h1
)}, (3.27)

where D(mi
h1
,mi

h2
) = sup

lin1
∈mi

h1

inf
lin2

∈mi
h2

d(lin1
, lin2

), (3.28)

where mi
h1

and mi
h2

are the two mobile sessions to be compared and d(·, ·) is the geodesic
distance between the two argument locations. This results in a matrix of pairwise distances
between all mobile sessions of a same user i.

11Details on the parameters used with the DBSCAN algorithm for static session clustering can be found
in [151].
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Figure 3.6: Trajectory reconstruction for a given pair of Origin-Destination path.

Then, DBSCAN is applied to the distance matrix, in order to group trajectories that
have similar spatial geometries, and correspond to diverse trips of the user between the same
two static activity locations. Fig. 3.6(a) shows an example of a set of mobile sessions, i.e.,
trajectories, grouped together in the same cluster by DBSCAN, for the origin-destination
activity locations in Fig. 1.1. Based on the result of DBSCAN, we can tell apart the mobile
sessions in Mi into two subsets: (i) trajectories that fall into a cluster, i.e., which refer
to a path that is recurrent in the mobility of user i, and which we denote as the set Mi

R;
and, (ii) outlier trajectories that represent unique movements of i, which are grouped in set
Mi

O = Mi \Mi
R.

For trajectories in Mi
R, TRANSIT operates a spatial augmentation, as follows. First,

the average duration is computed for all trajectories assigned to the same spatial cluster by
DBSCAN above; this corresponds to the expected time that user i takes to travel between
the same origin-destination activity locations. The time information is used to filter out
trajectories whose duration deviates from the median by 50% or more: these mobile sessions
are considered not representative of the routine mobility patterns along the target path.
The retained trajectories in the same cluster are then temporally scaled (i.e., stretched or
compressed) in time so as to match the average travel duration for the cluster. Finally, the
scaled trajectories are temporarily binned according to a fixed time period of one minute,
and the spatial coordinates of all different events that fall in the same time bin are averaged.

The previous steps lead to a set of positions, one per minute, which represent the recon-
structed itinerary. If there is no event within a particular time slot, the resulting enhanced
trajectory will have missing positions. All trajectories in the cluster are then matched to
the reconstructed one and become thus identical in the space dimension. However, they are
re-conducted to their original duration (i.e., via compression or stretching) so as to keep
them faithful to their recorded travel time in the NSD.

As a result, each original mobile session in Mi
R is replaced by a set of reconstructed

positions without any temporal deformation and is enriched with information derived from
multiple similar trajectories travelled by the same user. This set of enhanced mobile sessions
is referred to as M̂i

R. Fig. 3.6(b) shows the final spatial trajectory inferred from the cluster
in Fig. 3.6(a). Trajectories in Mi

O stay instead unchanged, corresponding to those obtained
from the simple interpolation of NSD data. The final set of mobile sessions is M̂i = M̂i

R ∪
Mi

O.

3.2.3 Performance Evaluation

The performance of TRANSIT has been evaluated by using ground-truth information on the
trajectories of a small set of four volunteers. More precisely, we collected a total of 310 high-
resolution trajectories using a high-frequency GPS logger running on their smartphones; also,
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we recovered the NSD data generated by the volunteers’ devices (which used Orange as their
network provider) during the same observation period. We stress the fact that, although
reduced in size, this validation dataset is among the few allowing a direct comparison of
NSD and GPS data. The details of the validation process are reported in the reference
paper [151], jointly with extensive sensitive analyses of the selected parameters as well as a
thorough investigation of the impact of mobility recurrence on the accuracy of the results.

Here, we report the key figures obtained with TRANSIT on the validation dataset,
relative to the two identified state-of-the-art solutions (i.e., DECRE and CWMA). We used
the classical precision, recall and F1 metrics to evaluate the performance of the trajectory
segmentation approaches. Formally:

Precision =
TP

(TP + FP )
, Recall =

TP

(TP + FN)
and F1 = 2 · Precision · Recall

(Precision + Recall)
(3.29)

where (i) the number of true positives TP is the number of NSD events labelled as static
when the user is also labelled as static in GPS data; (ii) the number of false positives FP
represents the number of NSD events labelled as static while the user is in fact mobile
according to the ground truth; (iii) the number of false negatives FN maps to the number
of NSD events labelled as mobile while the user is static in the GPS data. Specifically,
TRANSIT yields a 5% relative improvement, in terms of the F1 metric, with respect to
CWMA in the trajectory identification task (we remind that DECRE does not include any
classification procedure), with nearly perfect recall of static sessions.

More importantly, concerning trajectory enhancement, TRANSIT attains an average
geographical error as low as 190 meters, bringing it down to 130 meters for some users on
average, with global improvements in the order of 30% and 41% with respect to CWMA
and DECRE, respectively, when used on the same NSD datasets. The improvement raises
to 60% when CWMA is used on the CDR+ version of the dataset, and 72% when DECRE
is used on the CDR one. These results were obtained using the average of two distance
metrics computed on a per-trajectory and per-user basis as follows:

DGPS =
1

|mGPS |
∑

en′∈mGPS

min
en∈mNSD

d(ln′ , ln) (3.30)

DNSD =
1

|mNSD|
∑

en∈mNSD

min
en′∈mGPS

d(ln, ln′) (3.31)

where mGPS and mNSD are two corresponding trajectories inferred for a given user from
GPS and mobile network data, respectively. The operator | · | denotes the cardinality of the
argument set, i.e., the number of samples in the case of a trajectory, and d(·, ·) the geodesic
distance. We use both metrics as they are complementary: while DGPS is representative of
the error observed for continuously tracked user, DNSD measures the error specific to events
recorded by the mobile phone network.

The takeaway is that the relative improvement of TRANSIT does not simply derive from
the increased temporal resolution of NSD, but also by its capacity to enhance recurrent
trajectories via historical data.

3.2.4 Large-Scale Applications of TRANSIT

While the validation results were related to a reduced number of users, the interest of
TRANSIT reveals at city-wide scales, where it can enable a number of mobility-related
applications. In the following, we thus focus on four case studies of TRANSIT related
to urban mobility that fully leverage the large-scale NSD datasets DP and DL provided by
Orange Innovation for the cities of Paris and Lyon, respectively, and introduced in Sec. 1.1.2.
We stress the fact that such results have been obtained by means of specific optimisations
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Figure 3.7: Average weekly profiles of the number of concurrent trips in (a) Paris and (b) Lyon,
as inferred from TRANSIT and smart card data. Normalised versions of the same profiles are
presented in (c) and (d).

required in order to process the three months of NSD from the large-scale datasets DP and
DL. In particular, TRANSIT has been implemented in Spark by exploiting the Map-Reduce
distributed programming paradigm.

Urban Mobility and Public Transport

By counting the number of concurrent active trips inferred via TRANSIT over time, we
were able to reconstruct accurate temporal profiles of the travel demand in urban regions.
For such profiles to be dimensionally correct, a re-scaling procedure was needed to account
for the penetration rate of the technology (close to 100% in developed countries like France)
and the market share of Orange (at 37% over the French territory). The resulting average
weekly demand profiles computed in Paris and Lyon are depicted in blue in Fig. 3.7(a) and
Fig. 3.7(b), respectively. Our estimates are that around 1,300,000 individual trips occur at
the same time in Paris during commuting peaks, while the figure is at 180,000 for Lyon.

We compare the profiles obtained with TRANSIT with equivalent ones from smart card
data, which capture mobility via public transportation systems. For Paris, data were pro-
vided by the transportation company Ile-de-France-Mobilité. Concerning Lyon, data were
shared by the transportation company Keolis-Lyon. For both cities, public transport data
were provided in the same period of the year of NSD, and all smart-card transactions were
anonymised in the form of aggregate measures at the scale of the whole agglomeration.

Also in this case, a re-scaling was required: while the TRANSIT trajectories refer to
the resident population, the smart card data include both residents and non-residents. In
order to make the numbers comparable, we applied a scaling factor of 0.81 to the smart card
temporal profile; the factor has been calculated from the raw network signalling data, by
computing the average instantaneous fraction of resident subscribers present in the target
cities, over the total number of observed users. The weekly profiles from smart cards are su-
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perposed to the TRANSIT-inferred ones, as the orange curves in Fig. 3.7(a) and Fig. 3.7(b).
The comparison of the profiles reveals interesting facets of mobility in Paris and Lyon.

Clearly, the volume of trips identified by TRANSIT is higher than that reconstructed with
smart card data: NSD allows monitoring virtually all transport modes, including those be-
yond public means, e.g., private vehicles, biking, or walking. This lets us quantify which
proportion of trips is performed by underground, buses or tramways, and which using per-
sonal means. We find that a significant fraction of trips is performed using public transport
in both cities: we estimate the percentages of movements captured by smart card data to
66% and 39% of the total, in Paris and Lyon, respectively. The difference between these
values is explained by the more developed multi-modal transit network available in Paris,
as required to support mass mobility in such a large metropolis.

In addition, we can investigate the temporal incidence of public transport by looking
at versions of the same profiles that are normalised so that the integral of all curves is
one. Fig. 3.7(c) and Fig. 3.7(d) show the result. This perspective lets us appreciate how
in Paris public transport is especially important during commuting hours, but relatively
less used during the lunch break or weekends. A slightly different pattern emerges in Lyon,
where public transport is also intensely used around midday, but has a lower incidence
during evenings and Sunday mornings. We highlight that obtaining this type of insight is
hardly achievable by solely relying on surveying, which demonstrates the value of NSD and
a method like TRANSIT that can exploit them.

As a final remark, we highlight that the results in Fig. 3.7 can also be considered as a
partial validation of the trajectories inference mechanism performed by TRANSIT in large-
scale settings. Indeed, the near-perfect match of the timing of commuting peaks or overnight
low mobility among curves proves the capability of our trajectory segmentation approach
to identify trips that are very consistent with data collected in the field over time. It is also
worth underlining that, differently from the results reported in Sec. 2.2.2 and Sec. 3.1, no
de-biasing procedure was applied in relation to the start time of the mobility session or the
land use. The fact that the profiles from the two different sources align so well, without
any de-biasing mechanism, further proves the relevance of 4G communication events in the
dataset and the fundamental contribution of the processing taking place in the trajectory
identification and enhancement phases of TRANSIT.

Popular Paths of Commuting Trips

As a second application, we focused on inferring popular commuting trips within a city.
The knowledge of such trips is an extremely precious source of information for transport
authorities and city planners as: (i) they represent the largest share of the daily urban traffic
demand of a city; (ii) they identify the typical commuting behaviours of travellers which
regularly stress the transport network infrastructure, especially during peak hours; (iii) they
are hard-to-quantify and characterise at city-scale because of the absence of dedicated sensors
or probes that can precisely capture the multi-modal, diverse and time-varying nature of
such trips.

By applying our framework to the large-scale datasets DP and DL, we associated to
each user i of the two analysed cities a set of trips M̂i for the whole period of 3 months.
As explained above, M̂i can be divided into two subsets: M̂i

r, a subset of recurrent trips
enhanced by TRANSIT, and Mi

o, a set of non-recurrent trips of user u. Considering that
commuting trips are, by definition, recurrent, only subset M̂i

r was retained in this analysis.
Furthermore, to extract commuting trips from M̂i

r, we filtered only those trips associated
with the two most popular locations of each user, under the constraint that at least 10
trips were present between these two locations. The underlying assumption was that the
remaining set should mostly contain the two most popular trips performed by users in their
daily routine, i.e., home-to-work and work-to-home trips (commuting trips).

The spatial density (heatmap) of the reconstructed trips is represented in Fig. 3.8(a)
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for Lyon and Fig. 3.8(b) for Paris. As a first consideration, the recurrent trips appear to
have overall a good match with the multi-modal urban transportation network, graphically
overlapped to the heatmap in Fig. 3.8(c) for Lyon and in Fig. 3.8(d) for Paris. A more
in-depth inspection of the figures highlights that, for both cities, the subway network, the
tramway lines and most important urban roads clearly show up among the commuting trips
reconstructed via TRANSIT. In the case of Paris, NSD trips appear to have a near-perfect
match to the underlying multi-modal transport network. The less evident match for the case
of Lyon, especially characterising some peripheral roads (however present in the heatmap),
can be explained by the lower number of available trips and the lower density of the cellular
network of Lyon in these areas, compared to those from the capital city.

Of course, the fact that the majority of commuting trips maps to the public transporta-
tion network is not unexpected. However, TRANSIT opens the door to a detailed analysis
of these trips: the obtained trips can be map matched to the different transportation lines
and modes (see Sec. 3.3), showing their share of trips, on different days of the week and
at different times of the day. Such information would be highly valuable for any public
transportation company or municipality to perform, e.g., informed planning and efficient
resource deployment. Similarly, from a resilience perspective, highly congested routes or
transit lines could be easily spotted, even in real-time settings, for network monitoring and
vulnerability assessment.

(a) Heatmap of trips (D > 3km) in Lyon (b) Heatmap of trips (D > 3km) in Paris

(c) Heatmap of trips (D > 3km) in Lyon with the
multi-modal transportation network of Lyon

(d) Heatmap of trips (D > 3km) in Paris with the multi-
modal transportation network of Paris

Figure 3.8: Heatmap of commuting trips in Lyon and Paris.
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Human Mobility Analysis during Abnormal Events

As a third application, we used TRANSIT to detect abnormal mobility situations that
can occur in the city. In the perspective of resilient management of urban mobility such
knowledge could prove to be essential to learn how people react to specific kinds of abnormal
urban situations, such as accidents, sports events, and celebrations. For this, we segmented
the city of Paris into a grid with squares of dimension 800m × 800m, with a temporal
bin size of one hour. This spatio-temporal granularity makes it possible to analyse human
mobility at a fine-grained scale. For each zone, we computed the attraction demand profile,
which corresponds to the number of trips having as destination the studied zone at any given
hourly time slot. These profiles were obtained by retaining such trips from the whole set of
trajectories M̂i computed via TRANSIT on DP for each user i. This allowed us to build a
typical weekly attraction profile for each zone and, at the same time, to distinguish abnormal
patterns during certain events. We considered three such abnormal mobility situations,
reported as examples below.
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Figure 3.9: Typical/atypical weekly temporal demand profile during atypical events.

First of all, on Wednesday, the 1st of May 2019, a bank holiday, the Labour Day march
took place near Place d’Italie in Paris. Fig. 3.9(a) shows in blue the typical attraction profile
of this zone and in red the attraction profile of the week that includes the demonstration.
Whereas the attraction profile was similar to the typical profile for most days, we can see
that, on Labour Day, the attraction of the studied zone presents an unexpectedly high peak
after midday.

As a second event, we studied the fire of Notre Dame de Paris cathedral, on Monday the
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15th of April 2019. Fig. 3.9(b) shows in blue the typical attraction profile of this zone, and
in red the attraction profile of the week that includes the abnormal event. We can see a high
peak in the attraction profile right after the beginning of the fire on Monday 15th (around
6:30 pm). Contrary to the previous example, this event also affected mobility the following
days, when an attraction demand higher than usual is observed in the corresponding area.
The attraction profile progressively decreases after the event, but an upsurge on Sunday,
the Easter holiday, can be noticed, probably explainable by religious activities and nearby
gatherings of tourists and worshippers visiting the area surrounding the cathedral after the
fire on this special day.

Finally, we studied another special event, the Marathon of Paris, on Sunday the 14th of
April 2019, with its start and end in the proximity of the Arc de Triomphe. A high peak
on the attraction profile can be observed at the departure time of the marathon, at 9 am,
as shown in Fig. 3.9(c). A second peak is observed a few hours later, more spread over time
and lower in magnitude compared to the first one, corresponding to the marathon arrival.

These three examples are representative of the vast potential of TRANSIT towards build-
ing mobility profiles of the typical demand attracted by (or emitted from) a given zone, as
well as detecting and characterising mobility patterns during abnormal or special events.
These ideas were at the core of the real-time anomaly detection approach developed in the
context of the ANR project DISCRET and discussed in [158].

Ring Road Trajectory Analysis

As a fourth application, we leveraged TRANSIT to perform a fine-grained trajectory analysis
focused on the Paris périphérique (ring road). The mobility flow on this urban highway is
usually very high, often leading to heavy congestion, especially during peak hours. Transport
authorities are traditionally very interested in the possibility of tracing and quantifying the
flows of people moving along city major road axes. Such studies are necessary for urban
planning purposes, infrastructure renewal and road maintenance, and can be extremely
cost-demanding. They are normally based on travel diaries or GPS trajectory collection and
generally end up capturing only a small sample of the flow actually traversing the major
axis, with resulting limited accuracy. TRANSIT allows leveraging NSD to access a much
larger and more representative sample of this specific population.

In our case study related to the Paris périphérique, we considered four different zones
of interest: the east, west, north and south entries. The idea was to select a spatial zone
and study all the trajectories passing by the respective zone. The enhanced trajectories M̂i

produced by TRANSIT on DP allowed us to capture at scale the origin, the destination, and
the paths taken by the users passing by the studied zone, the kind of information usually
expected in the aforementioned studies. The result for the four zones of the périphérique
(north, west, south and east) are reported in Fig. 3.10(a), Fig. 3.10(b), Fig. 3.10(c) and
Fig. 3.10(d).

The obtained maps underline the major role of the périphérique in Paris, allowing people
to travel across the city and reach any area of interest. Some interesting patterns can be
distinguished as well. For example, the trips coming from the west side of the city show
a strikingly different pattern than the three other maps, with trajectories that appear less
scattered towards the centre of Paris and concentrated along a few major axis. This can
be explained by the fact that the west side of Paris is the richest area of the city, with
inhabitants who have a lifestyle involving shorter commuting trips. Moreover, the west side
of Paris is also the area with the highest density of offices, including the La Defense and
Boulogne neighbourhoods. This could explain why this area attracts a large amount of trips,
ever from faraway zones.

These results hint at the numerous perspectives brought by TRANSIT in the study of
major road arteries. These include fine-grained temporal analysis, the detection of usage and
attraction patterns, origin and destination profiling, etc.Ġenerally speaking, having access to
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(a) North Ring Road (b) West Ring Road

(c) South Ring Road (d) East Ring Road

Figure 3.10: Heatmap of recurrent trips for the Paris ring road (the black square shows the
catchment area)

detailed human mobility trajectories at scale, such as those produced by TRANSIT, enables
the in-depth study of any part of the transportation network.

3.3 Multi-modal Path Reconstruction via Hidden Markov
Model

The high spatial accuracy of the outputs produced by TRANSIT naturally raises the re-
search question of inferring the precise route taken by a mobile subscriber across the multi-
modal transportation network of a city. In other words, the goal was to reconstruct the
sequence of road segments, public transport stops or railroad paths followed by the observed
user during a trip. This challenge, known as multi-modal map-matching of sparse spatio-
temporal tracks, allows for achieving an extremely high level of detail in reconstructing
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Figure 3.11: Illustration of Hidden Markov Model based map-matching.

mobility trajectories paving the way to precise multi-modal pattern detection and traffic
variable estimation. In our specific case of NSD trajectories, we need to project the mo-
bile phone trace, potentially improved through TRANSIT, onto a multi-layer graph used
to represent the multi-modal transportation network of the target city. The problem is ex-
emplified in Fig. 3.11(a) from [159]: an ordered sequence of timestamped points (o1, o2, o3)
corresponding to observations of a moving user has to be matched to a sequence of nodes,
e.g., (v1, v5, v4, v6), defining a path on the underlying graph-based representation of the
transportation network. We addressed such research problem in [151, 160] by relying on
Hidden Markov Model (HMM)-based map-matching.

HMM-based map-matching represents the state-of-the-art for noisy and sparse loca-
tion data and, specifically, for mobile phone data traces [161]. A HMM can be defined
as a 5-tuple ⟨S,O, I, T,R⟩, with S = {s0, . . . , sN−1} representing a finite set of states;
O = {o0, . . . , oM−1} corresponding to a finite set of observations; I being the probability
distribution of the initial states; T representing a set of transition probability. The proba-
bility to transit from hidden state sm to hidden state sn is denoted as t(sm, sn). Finally, R
is a set of emission probability. The probability to emit observation ok from hidden state
sm is denoted as r(sm, ok). The matrices I, T and R represent the main hyper-parameters
of the HMM. Fig. 3.11(b) shows a possible HMM modelling of the toy example reported in
Fig. 3.11(a).

In this context, we modelled the multi-modal transport network under study as a weighted
directed multi-layer graph [56], G = (V,E, L), with L = {lq}Qq=1 the set of elementary layers,
each representing a specific transport mode q (among a total of Q different options), V the
set of nodes and E the set of edges. Each layer lq ∈ L contains a node subset Vq ⊂ V and
an edge one Eq ⊂ E. Each Vq corresponds to the set of road intersections, transit/train
stops, etc., associated to mode q. Each Eq represents the set of connections (road segments,
public transport lines, etc.) between the nodes of the same transport mode q. Edges are
directed according to the allowed direction of movement on the corresponding segment and
weights can represent, e.g., travel time, length, capacity or speed information associated to
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the segment. In the general model, the edge set E also includes a set of inter-layer edges
E(lqi ,lqj )

that allows to connect pairs of layers lqi , lqj , i.e., to switch between the two differ-
ent transport modes qi and qj . In our study, we assumed graph G to be composed only of
layers related to road, train and public transport, denoted as Groad, Gtrain and Gpt in the
following. It is worth noting that, with respect to the general network modelling approach,
TRANSIT allows the simplifying assumption to consider layers not connected to each other,
i.e., Elqi ,lqj

= ∅. The rationale behind this assumption is the following: in order to move
from one transport mode to another the user will need to spend a period of immobility at
a given location (e.g., in the proximity of a bus stop, i.e., under the coverage of a limited
subset of cellular antennas). If long enough, TRANSIT detects this waiting time as a static
activity of the user. Therefore, a multi-modal trip over these three networks will actually be
split in multiple sub-trips by TRANSIT, that can be each separately matched to the specific
sub-graph. Inter-modal trips are therefore not possible across the three main sub-graphs
Groad, Gpt and Gtrain, but can occur within the public transport network, i.e., Gpt, which
covers indeed three different transportation modes (i.e., subway, tramway and bus) and is
therefore a multi-layer graph itself.

In [160], we extended the TRANSIT framework with map-matching capabilities to fur-
ther enhance the spatial accuracy of its output: map-matching is performed on the whole set
of mobile sessions produced by TRANSIT, i.e., M̂i, which includes both raw signalling tra-
jectories (Mi

O) and TRANSIT-enhanced recurrent trajectories (M̂i
R). Specifically, we used

the following HMM formulation. Hidden states are modelled as the set of vertices (nodes) of
the generic transportation sub-network Gj . Emissions are modelled as the unique set of x-y
coordinates in M̂i. This set is composed of antennas coordinates from cellular network in
Mi

O and reconstructed positions in M̂i
R. Ultimately, given a sequence of observations, i.e.,

sequence of antennas for Mi
O and reconstructed positions for M̂i

R, the HMM is used to re-
trieve the most likely sequence of hidden states, i.e., sequence of nodes on the transportation
sub-network Gj .

In the related literature, a similar problem has been solved in [162, 163, 161]. However,
these approaches have two main drawbacks. They leverage supervised machine-learning
solutions that require a large amount of labelled cellular trajectories for training the pa-
rameters of the models. Ground-truth mode-labelled trajectories are very hard to obtain,
especially when dealing with highly dynamic and complex environments, such as urban ar-
eas. Moreover, most of the approaches match the cellular trajectories only to road networks,
without considering other sub-networks corresponding to alternative transportation modes,
such as tramway, subway, bus, etc.

Among the very few exceptions, it is worth mentioning the methodology proposed by
Asgari et al. [164]. Their solution, namely CT-Mapper, relies on an unsupervised HMM
model, which aims at mapping sparse cellular trajectories12 to a multi-layer transportation
network. Similarly, in our previous work [151], we studied the application of unsupervised
HMM-based map-matching for solving the same problem in more realistic settings, charac-
terised by the usage of real-world raw NSD and the analysis of a dense urban case study.

Our approach builds on such previous work and solves the HMM-based map-matching
problem according to a two-steps map-matching procedure. The first phase consists in an
optimised Viterbi algorithm [165]. The inputs of the Viterbi procedure are the following:
the generic transportation sub-network modelled as a (multi-layer) graph Gj , the possible
hidden states (set of the nodes of Gj), the emissions (the unique set of x-y coordinates
in M̂i), the HMM hyper-parameters (matrices I, T and R) and the input trajectory from
M̂i. By calculating all possible paths given the input trajectory, the output of the Viterbi
algorithm is the most likely sequence of graph nodes, one for each time instant in the input.
For real-time application, due to a large number of states and emissions, execution time is

12In their work, Asgari et al. used a variant of CDR data, characterised by localisation information
produced at a frequency, much higher than that observed with traditional CDR.
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critical. To improve performance, similarly to [163], we implemented an optimised version
of the Viterbi algorithm that eliminates all multiplications by zero thus reducing the search
space by keeping only states that can be emitted from each observable state. After inferring
the most likely states sequence using the optimized Viterbi implementation discussed above,
the output sequence of hidden states (nodes on a given sub-network Gj) does not neces-
sarily produce a connected path on the specific transport sub-network. Therefore, as the
second phase of the map-matching procedure, the final trajectory is further completed by
applying a traditional weighted shortest path detection algorithm on the underlying trans-
portation graph between any two consecutive nodes of the most likely sequence. The final
completed sequence of nodes on sub-network Gj represents the map-matched trajectory for
the processed trace from M̂i for user i.

3.3.1 Empirical Evaluation in the Lyon Case Study

In the following, we briefly describe the parametrisation of the HMM, as well as the main
results of the proposed solution that has been applied to the DL dataset of the city of Lyon.
More information about the pre-processing steps, parameter choices and detailed results can
be found in [160].

Initial Probability

All the nodes of the transportation network are initially equally assigned with a probability
of 1/N with N representing the total number of nodes in the transportation (sub-)network:

π(sm) =
1

N
(3.32)

Transition Probability

The transition probability corresponds to the probability that a mobile phone user moves on
the underlying transportation (sub-)network from hidden state sm at time t − 1 to hidden
state sn at time t. As in [166], the transition probability is assumed to depend on the travel
time over an edge. For the public transport and railway sub-networks, the travel time of each
edge is calculated by multiplying the reference free-flow speed associated to each mode13

and the edge length14. Additionally, for public transport, cross-layers edges connecting the
different lines and modes are associated to a typical waiting time of 5 minutes.

Finally, the transition probability t(sm, sn) between the generic pair of nodes sm and
sn is defined to be exponentially decreasing according to the travel-time weighted shortest
path between the two nodes sm and sn. Formally:

t(sm, sn) = e−β·ttsm,sn , ttsm,sn =
∑

∀(su,sv)∈SPmn
ttsu,sv (3.33)

where (su, sv) is the generic edge on the travel-time weighted shortest path SPmn connecting
the two nodes sm and sn in sub-graph Gj , computed via the Dijkstra algorithm. The length
of the weighted shortest path SPmn corresponds to the sum of the travel time over each
edge (su, sv) belonging to SPmn, while ttsu,sv denotes the travel time between each pair of
nodes su and sv. Finally, β is a damping factor controlling the impact of the travel time on
the transition probability.

13Speeds on the road network depend on the OSM type of route, ranging from 30 km/h to 90km/h. For
the subway, the tramway and the bus the reference speed has been estimated respectively to 30 km/h, 15
km/h and 15 km/h.

14The length of an edge has been computed as the geodesic distance between the two adjacent nodes of
the edge.
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Emission Probability

Similarly to [167], we modelled the emission probability as a Gaussian spatial noise centred
around the hidden state sm and an empirically estimated standard deviation of the distance
error between hidden states and observations:

r(sm, ok) =
1√
2πα

e
−0.5

(
dsm,ok

α

)2

(3.34)

where dsm,ok is the geodesic distance between the generic observation ok and the generic
node sm, while α is the standard deviation of a Gaussian random variable associated to the
error distance between the reconstructed and the real position of the mobile. Both α from
Eq. 3.34 and β from Eq. 3.33 are hyper-parameters that need to be properly estimated via
a sensitivity analysis.

Results

To evaluate the performance of the proposed HMM map-mathing solution, we used a refined
version of the same small dataset introduced in Sec. 3.2.3 for the performance evaluation of
TRANSIT. This dataset was also used to select the values of the α and β parameters of
Eq. 3.33 and Eq. 3.34 via a sensitivity analysis fully detailed in [160]. Concerning the GPS
trajectories, we manually labelled the transport mode of all trajectories by associating one
sub-graph Gj of G for each trajectory. The final ground-truth data contain 111 trajectories
related to public transport and 72 to car, for a total of 183 trajectories. TRANSIT was
applied to the NSD data available for the same set of volunteers to retrieve the mobile
sessions with augmented trajectories. The latter were used as the input of our map-matching
approach.

The results of the map-matching procedure were produced with and without prior knowl-
edge on the transportation mode. In the case of map-matching performed without any prior
knowledge on transportation mode, trajectories were matched to each of the considered
sub-graphs of G. The final reconstructed output was chosen as the one with the highest
likelihood from the Viterbi algorithm. In the other case, we considered that one could obtain
a rough estimation of the transport mode, such as the average speed of the user from the
observed NSD trajectory. With this information, and by associating a reference speed to
each sub-graph, it becomes possible to identity the most likely candidate sub-graph for the
reconstruction of the path for the given NSD trajectory.

To evaluate the map-matching performance, we used, among others, the distance metric
defined in Eq. 3.31 to measure the geographical error, denoted as Ge in the following, and
the matching rate, denoted as MR and defined as the percentage of correctly map-matched
edges by our approach. Formally:

MR =
TP

TP + FN + FP
(3.35)

where: (i) the number of true positives TP is the number of edges in common between the
ground-truth GPS and NSD map-matched trajectories; (ii) the number of false positives
FP represents the number of edges in the NSD map-matched trajectory that do not belong
to the corresponding ground-truth GPS map-matched trajectory; (iii) the number of false
negatives FN represents the number of edges from the ground-truth GPS map-matched
trajectory that do not belong to the NSD map-matched one.

The figures associated to these metrics indicate that the combination of TRANSIT with
the map-matching step significantly increases even more the accuracy of the mobility in-
formation contained in the NSD data. Specifically, when no prior knowledge about the
transport mode was assumed to be available, we obtained an overall matching rate (MR)
of 63%, and the geographical error (Ge) was 110 meters on average for the complete set
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(a) C1 - Reconstructed
popular paths - PT

(b) C1 - Ground-truth
popular paths - PT

(c) C1 - Reconstructed
popular paths - Road

(d) C1 - Ground-truth
popular paths - Road

(e) C2 - Reconstructed
popular paths - Train

(f) C2 - Ground-truth
popular path - Train

(g) C2 - Reconstructed
popular paths - Road

(h) C2 - Ground-truth
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(i) C3 - Reconstructed
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(j) C3 - Ground-truth
popular path - PT

(k) C3 - Reconstructed
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(l) C3 - Ground-truth
popular paths - Road

Figure 3.12: Comparison between popular paths reconstructed by our approach and ground-truth
popular paths for three case studies: C1, C2 and C2.

of mobile sessions. This level of spatial precision represents a first enhancement compared
to the results in Sec. 3.2.3. The results improve significantly when the mode of transport
of each trip is provided to select the sub-graph for the map-matching step, with a nearly
halved Ge of 60 meters and a 10% improvement in the MR, reaching a satisfactory value of
77%. Furthermore, the map-matching approach achieved superior results in public transport
scenarios than on roads, with values as low as 30 meters and as high as 86% for the metrics
Ge and MR, respectively, when the prior knowledge of the transport mode is used. The
reason for this outcome is the more complex topology of road networks compared to public
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transport, making the map-matching problem more challenging in the former case.
We conducted additional validation by processing the entire dataset DL from Sec. 1.1.2.

We used TRANSIT to extract all (possibly enhanced) trips for a limited subset of OD pairs.
For each selected OD pair, we identified the most common paths from the map-matched
TRANSIT-reconstructed trajectories, by isolating the transportation network edges with
the highest number of occurrences from the total set of map-matched trajectories. We also
retrieved typical multi-modal itineraries for the same OD pairs by exploiting a variety of
route planners15, using the latter as ground truth. The results are graphically presented in
Fig. 3.12, indicating an overall good match for most of the OD pairs considered.

In conclusion, the analysis demonstrated the potential for obtaining accurate route-
level mobility information by transportation mode via network signalling data using simple,
coarse transportation mode inference. Our approach can be applied at the scale of an
entire country, and with the possibility of frequently recomputing mobility patterns over
time or even in real-time. However, the map-matching approach still has many limitations,
especially in terms of its limited ability to automatically perform transport mode detection.
Several features, such as the probability that the Viterbi algorithm generates as output, the
start time/duration of the trip, and more realistic transition probabilities based on time-
dependent travel time information on the links of the transportation networks, could be
utilised to improve the proposed approach and achieve even higher accuracy.

3.4 Towards Privacy-aware Mobility Inference

TRANSIT provided clear evidence of the necessity for special care in the handling of mobility
data retrieved from massive NSD, as they might contain sensitive personal information. We
take as a reference the GDPR European regulation, which defines as personal any piece
of information pertaining to a particular individual. Based on this definition, mobility
trajectories are very sensitive because of their frequent uniqueness. Individuals tend to have
very different trajectories over the course of a day, which makes it difficult to extract trends
or group them in order to provide more privacy-preserving mobility reports [137]. This
problem applies anyway even to sparser and less pervasive sources of data such as CDR,
LBSN, GPS and even surveys, which can often provide unique trajectories or indicators of
individual mobility.

Let us consider for instance the case of a dynamic OD-matrix, a crucial indicator of
mobility describing the flows between origins o and destinations d over a time window
[t, t + ∆t). Typical values for ∆t range from 15 to 60 minutes, depending on the specific
transport application and the data sources used to produce them [168]. A set of OD-
matrices is then a regular, relational dataset with three attributes for each flow: an origin
o, a destination d, and a time t usually denoting the time step of the beginning of the
flow. Although they represent a dramatic simplification compared to trajectories, they still
preserve high levels of uniqueness. Flows between specific pairs of zones can be in fact
very small and isolated from others, and this problem is amplified when the adopted spatio-
temporal resolution is finer16. In such scenario, OD-matrices are characterised by a high
number of modalities17, i.e., the origin and the destination can be selected from sets of up
to thousands of areas. These features make OD-matrices thus harder to anonymise than
regular relational data.

To address this challenge, we proposed in [169, 170] a methodology to efficiently make
dynamic OD-matrices meet GDPR’s definition of anonymous data, i.e., the individual is

15https://www.google.fr/maps and https://www.viamichelin.fr/web/Itineraires
16As discussed in Sec. 3.2.4, TRANSIT can be used to generate such indicators at very detailed spatio-

temporal resolutions. We tested TRANSIT to reconstruct OD flows at spatial resolutions lower than 1 km2

and with temporal binning in the order of minutes.
17We call modality each pair of OD zones deriving from the adopted segmentation of the territory under

analysis.
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not or no longer identifiable (as from Recital 26 of the GDPR). The widely used criterion
of k-anonymity [171] was adopted to achieve this objective. An OD-matrix is said to be
k-anonymous if no flow represents less than k individuals. By k-anonymising an OD-matrix,
we can improve its safety against various categories of attacks [172], namely:

• Record linkage, also called re-identification attack. If a flow in the OD-matrix has
only one individual, an attacker can pinpoint a target individual in the data.

• Attribute linkage, also called homogeneity attack. If all the individuals from a
particular origin go to the same destination at a given time, then an attacker knowing
that a target left the origin area can infer where they went, without needing to pinpoint
the target first.

• Probabilistic attack. If an attacker knows anything about a target, then accessing
the OD-matrix can improve their knowledge about the target’s whereabouts.

Each one of these three attacks is a relaxation of the previous one, the goal being less
ambitious for the attacker but the success more likely. Note that probabilistic attacks may
be successful even if the target user is not actually in the data, as long as we consider the
OD-matrix to be representative of the population flows in the study area.

Technically, k-anonymity with k as low as 2 is secure against record linkage attacks,
although this would understandably not be a satisfying anonymity condition. In particular,
it would offer very limited protection against attribute linkage and probabilistic attacks.
State-of-the-art usually aims at k between 3 and 5 in the case of hard-to-anonymise datasets,
and up to 200 for simple datasets [173]18.

We used an approach to k-anonymisation based on generalisation and suppres-
sion [171], i.e., reducing the granularity (i.e., precision) of the data until the flows are
big enough (i.e., larger than k) and suppressing the ones that are not. A toy example of
10-anonymisation generalisation and suppression is illustrated in Fig. 3.13: flows A → A,
A → B and A → C are aggregated together in order to reach a volume above 10, and similar
aggregations are performed on the flows originating from C and D, and directed towards
destinations B, C and D. Flow B → A is suppressed, which can be preferable when a very
coarse aggregation becomes necessary to hide this flow among others.

Finding such a solution that minimises the loss in precision is known to be a NP-hard
problem [176]. Historically, the first k-anonymisation algorithm was Datafly [171], which
relies on a generalisation hierarchy describing how modalities should be merged together.
An example of such a generalisation hierarchy is illustrated in Fig. 3.14: for a dataset giving
the position of individuals in a study zone, the initial modalities are represented by the leaves
of the tree. If we choose to generalise the whole dataset one level higher, then the possible
modalities are the parents of the leaves. Datafly finds the best horizontal cut in the hierarchy,
meaning all individuals (in our case, the OD flows) in the data are generalised to the same
level, independently on the area they are localised into. This uniform generalisation
approach has the advantage of being scalable to huge volumes of data, as well as data
with numerous attributes. Within this category, the OIGH algorithm [177] represents the
latest and best adapted solution to an OD-matrix. In a bid to find a finer-grained result,
some approaches look for a generalisation at the individual level, which gives a solution
akin to a clustering [173]. In the specific field of mobility data, this approach is better

18A complementary property for data anonymisation is l-diversity [174], which holds when each gener-
alised value (e.g., the aggregate flow encompassing multiple modalities) covers at least l distinct modalities.
Together, k-anonymity combined with l-diversity ensures protection against attribute linkage attacks, and
significantly reduces the potential of probabilistic attacks. For even further protection, it is possible to
implement t-closeness [175], which holds when the distribution of attributes in each group of k is no farther
than a threshold t from the distribution of the overall population. However for OD-matrices, it can be argued
that k-anonymity alone, given a sufficiently high k, is enough to make the individuals no longer identifiable:
the areas of origin and destination can be large enough to avoid attribute linkage, and the low number of
attributes renders probabilistic attacks rather vacuous.
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Figure 3.13: Example of generalisation and suppression of a simple OD matrix. Note that the
flows here have been clustered without any kind of constraint. Some approaches seek particular
solutions, notably ones where the generalisations form a partitioning of the domain.
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Figure 3.14: Example of a spatial generalisation hierarchy. The root represents the whole study
area, and the children of a node form a partitioning of the parents. An individual present in area
A in the data can be generalised to be shown as present in area B, C or D depending on what is
necessary in order to hide them in a group of k individuals.

represented by Glove [137], which generalises points in a dataset of trajectories. However,
these approaches lack scalability for datasets characterised by a huge number of flows, as
is the case for data derived from mobile phone CDR and NSD: for example, Liang and
Samavi [173] report computing times in the order of hours for low values of k, and their
approach can be expected to take days for k ≥ 10 given its exponential time dependency.
Other solutions for general-purpose anonymisation rely on the notion of differential privacy,
a robust privacy principle introduced by Dwork et al. [178]. Differential privacy does not
apply to a dataset in itself but rather to a randomised algorithm taking the dataset as input
and returning a series of query results. An algorithm is said to satisfy differential privacy
if the probability of obtaining any output is not significantly different regardless of whether
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an individual’s data is included or not in the dataset.
To achieve rapid and accurate anonymization of OD-matrices, we developed an adaptive

approach, formulated as optimisation problem, that utilises generalisation and suppression
over a tree-based hierarchy. The problem aims at finding optimal partitionings (i.e., group-
ings) of the origin and destination areas that minimise the amount of introduced general-
isation, with the constraint of satisfying the generalisation hierarchy and keeping low the
number of suppressed records to a fixed maximum threshold. This last constraint is critical
to guarantee the representativeness of the produced OD matrices for useful transportation
applications. A comprehensive description of the optimisation problem can be found in [170]
for interested readers.

We employed state-of-the-art algorithms for dependency-constraint knapsack problems [179,
180] to solve the optimisation problem and developed an adaptive generalisation technique
that provides more refined results than uniform generalisation. Using this formulation, we
proposed the Adaptive Tree Generalisation (ATG) approach, a lightweight algorithm that
efficiently achieves k-anonymity. The ATG algorithm was developed in two versions, namely,
ATG-Dual and ATG-Soft, which correspond to two variations of the problem we solved.

We evaluated our approaches against an extensive benchmark of anonymisation methods
from the state of the art: general-purpose solutions from the field of anonymisation (i.e.,
OIGH [177] with uniform generalisation and Mondrian [181]), clustering from mobility
data anonymisation (i.e., Glove [137] and our custom Glove-sk simplified implementation
of Glove for large-scale datasets), and differential privacy (i.e., Laplace Noise). We also
considered in the benchmark the results obtained by performing suppression alone of all
flows that do not respect the k-anonimity constraint.

The approaches have been compared on a variety of datasets: New York City taxis
(nyc), available as open-data19, and the Senegal (senegal) and Cote d’Ivoire (civ) datasets,
available in the scope of the Data for Development (D4D) challenge [104, 103]. Several
variations on the senegal dataset were also considered: senegal_crop with only the 599
eastern-most base stations, which account for most of the activity; senegal_big which
increases the volumes in the data by summing together flows related to periods pertaining to
different, but possibly overlapping, sets of individuals; and senegal_split which artificially
increases the number of initial tiles by dividing the base stations in four and distributing
the flows non-uniformly between them.

name #matrices #tiles average
#flows density average

volume
%anon.
flows

%anon.
vol

nyc 7242 263 3058 4.4% 15009 15.8% 59.0%
civ 632 1221 3523 0.2% 3117 0.3% 2.6%
senegal 6752 1666 18276 0.7% 41027 5.7% 36.8%
senegal_crop 6528 599 13710 3.8% 29614 5.8% 37.8%
senegal_split 360 6664 305194 0.7% 956742 6.5% 46.0%
senegal_big 360 1666 100322 3.6% 956742 12.3% 80.7%

Table 3.3: Descriptive statistics of the datasets used for the experiments (#matrices: number
of matrices in the whole dataset, where each matrix represents the flows over a time step; #tiles:
number of initial tiles over which the matrices are set; density: average graph density of the matrices;
avg. #flows: average number of flows among the matrices in the dataset; avg. vol.: average sum of
the flows; %anon. flows: fraction of flows that are above k = 10; %anon. vol: fraction of individuals
that are in flows above k = 10.)

Table 3.3 summarises the main characteristics of the datasets: we detail in particular
the density of the matrix, computed as the number of non-null flows over the total possible
number of distinct flows (i.e., the squared number of tiles), averaged over the whole period
of observation, and the percentage of flows that are 10-anonymous in the original dataset.

19publicly available at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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The relatively low amount of these 10-anonymous flows corresponds to a significant share of
the total volumes of the data, as they are naturally associated with the OD pairs traversed
by the most significant amount of traffic. The part of the anonymous volume in the original
data is given under the column %anon_vol.

For the choice of performance indicators, we assumed that the generalised (i.e., aggre-
gate) areas provided as output by the anonymisation approach will most likely not be of
interest for the final users of the data. Therefore, it appeared reasonable to assume that
data users would rather be interested in drawing their own areas of interest and querying the
matrix for an estimation of the flow between these areas. In the absence of additional infor-
mation, the best estimation for such a custom flow is obtained by considering the volumes
to be uniformly distributed in their generalised areas, and, as a result, the flow between the
arbitrary areas can be derived proportionally to the overlaps with the intersected generalised
areas. We call this estimation process reconstruction.

It is then relevant to actually reconstruct the anonymised OD matrix over the original
segmentation and evaluate the difference with respect to the original OD matrix. The
error metric E reported in the results is thus the absolute difference across all flows of the
reconstructed anonymised matrix and the original one, i.e., formally:

E =
1

V

∑
o,d∈leaves(T )

|ṽo→d − vo→d| (3.36)

where ṽo→d denotes the reconstructed volume over the initial tiles (i.e., the leaves of the
generalisation hierarchy), and V =

∑
o,d∈leaves(T ) vo→d normalises the error by the total

volume of observed flows. Note that the sum is over the leaves of T , corresponding to the
initial tiles over which the OD matrix is defined.

We also evaluate the approaches with respect to their total generalisation error Ḡ, defined
as follows:

Ḡ =
1

V +

∑
o→d∈F+

(|o|+ |d|)vo→d (3.37)

where F+ represents the set of anonymous flows o → d such that vo→d ≥ k, and V + =∑
o→d∈F+ vo→d the total volume of anonymised flows. When the origins and destinations

are aggregated to roughly the same level as is normally the case, Ḡ represents roughly twice
the number of tiles in the origin or destination of the average generalised flow. A value of
Ḡ = 2 then means that no generalisation was performed. We also consider the fraction of
suppressed volumes S as an indicator of accuracy.

Finally, as a complementary metric to measure the distortion induced by the anonymisa-
tion, we evaluate the distribution distance D between each OD matrix and its anonymised
versions. This metric is slightly different than the reconstruction loss E as it considers OD-
matrices as normalised distributions, not penalising suppression. The distribution distance
is given by:

D =
∑

o,d∈leaves(T )

∣∣∣ ṽo→d

V +
− vo→d

V

∣∣∣ (3.38)

with the same notation as the previous definitions.
Table 3.4 summarises the average performance over all matrices in the small datasets

nyc, civ, senegal and senegal_crop, for which we were able to run Glove. We report the
mean value of Ḡ, E, D and S, and the total computing time to anonymise all the matrices.
Firstly, Glove stands out for its lack of scalability, making it impractical in huge-volume
cases.

Among the other solutions, the difference of a few minutes in the computing time is
relevant but not decisive. They must instead be compared based on Ḡ, for which ATG-Dual
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solver Ḡ E D time (s) S

ATG-Dual 24.90 1.18 1.14 23 9.99%
ATG-Soft 40.41 1.76 1.31 9 3.24%
oigh 53.62 1.34 1.30 56 9.87%
glove-sk 444.12 1.10 1.36 358 9.99%
glove 18.70 0.81 0.84 23203 9.98%
mondrian 27.39 0.95 1.02 688 0.00%
suppression — 0.33 1.34 — 39.46%
laplace_noise — 2.88 6.78 — -170.92%

Table 3.4: Performance on samples of the dataset senegal_crop, nyc, civ, and senegal. Ḡ: mean
generalisation error; E: normalized reconstruction loss; S: fraction of volumes suppressed; D:
distribution distance (Eq. 3.38). The reported time is the total computing time (in seconds) to
run the anonymisation of all matrices of all datasets. Note that laplace_noise adds volumes, as it
mostly applies a positive noise on a sparse matrix.

solver Ḡ E D time (s) S

ATG-Dual 19.85 0.72 0.78 111 9.92%
ATG-Soft 65.39 1.07 1.09 32 1.54%
oigh 29.68 1.10 1.15 985 9.79%
glove-sk 1361.51 1.04 1.25 3376 10.00%
mondrian 25.19 0.76 0.85 11541 0.00%
suppression — 0.49 1.02 — 59.00%
laplace_noise — 2.87 3.33 — -86.98%

Table 3.5: Performance on samples of the datasets senegal_big and senegal_split.

significantly improves state of the art, with Mondrian representing the second best solution,
with a very good E and D – primarily due to the fact that, differently from ATG approaches,
it does not suppress any volume – and a reasonable computation time.

For differential privacy, E and S mostly measure the volumes that have been added to
0-flows, as they represent more than 95% of possible flows in each OD-matrix. Because of
this, differential privacy performs worse than any generalisation technique when compared
based on the E metric. This matches the previous observation [182] that differential privacy
is not adapted for sparse data. As the interpretation of Ḡ is only relevant for generalisation,
we do not include it in the table for suppression and laplace_noise that do not use this
technique.

As Glove could not be evaluated for our biggest datasets, we compared the approaches in
a separate Table 3.5 for senegal_split and senegal_big. We see that the best computing
time we could hope for Glove, given by Glove-sk, is still not satisfactory in this situation.
Our approach is of particular interest here, as it offers a finer generalisation than OIGH
and Mondrian for a fraction of the time. The ATG-Soft alternative is even faster, making
it relevant for anonymising even bigger matrices, such as the total amount of base stations
of a highly urbanised country.

Even if our approach is more appropriate, uniform tree generalisation admittedly per-
forms well for OD matrix generalisation. Indeed, we could expect the best solution to show
a high disparity of aggregation levels between densely and sparsely populated areas, which
a uniform generalisation cannot offer. This effect is mitigated by the fact that the initial
tiles already partially reflect the disparity in activity density, as they rely on base stations
or administrative divisions, which are more densely distributed in populated areas. This
illustrates the importance of the generalisation hierarchies, but it is also partially explained
by some code adaptations we implemented for OIGH to run on hierarchies whose initial
leaves are not all at the same depth.

In conclusion, the proposed methods make a valuable contribution to efficiently anonymis-
ing large trajectory datasets in the form of dynamic OD matrices, while preserving input
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data resolution. Our approaches facilitate the development of aggregate mobility indicators
that enable fine-grained studies on human mobility while maintaining fundamental privacy
requirements. However, it is important to note that k-anonymity alone can be insuffi-
cient to protect against attribute linkage and probabilistic attacks. To achieve complete
privacy security, the method should also guarantee l-diversity and t-closeness. Neverthe-
less, the k-anonymity provided by our approach is a necessary initial step towards a more
comprehensive solution and meets the current requirements of the French regulator CNIL,
responsible for enforcing GDPR in France. Presently, mobility data are underutilised despite
their enormous potential, largely discussed in this chapter, due to their size and personal
nature, which makes their handling expensive and legally risky. Implementing an affordable,
quick, and reliable anonymisation process should thus go in the direction of facilitating their
widespread public use and promoting the extraction of useful insights to optimise and make
more resilient transportation networks, as detailed in the next chapter.
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Chapter 4

Assessing and Managing
Vulnerabilities in Transportation
Networks

Chapters 2 and 3 reported our findings on how massive data can provide accurate insights
into the dynamic performance and actual demand of a large-scale, multi-modal transport
system in both recurrent and non-recurrent situations. These insights contribute to learn-
ing from the past, a crucial aspect of resilience as discussed in Sec. 1.2. Specifically, we
demonstrated the efficacy of using passively-collected mobile phone data, particularly NSD,
to reliably reconstruct both aggregate and fine-grained spatio-temporal estimations of travel
demand and traffic variables in the form of OD matrices, regional speed dynamics, travel
mode choices, popular paths, etc.

Although having a proper understanding of travel demand and traffic performance based
on past observations is crucial for planning robust and efficient transportation systems,
such knowledge alone is insufficient for effectively protecting these systems from disruptive
events, for which data may be scarce or completely unavailable. Such events can lead to
severe declines in the quality of mobility services and impact vulnerable segments of the
transportation system and other urban infrastructures, thus potentially causing cascading
failures and significant economic and social losses.

To reduce the consequences of disturbances and infrequent events, vulnerability assess-
ment enables the analysis of how engineered systems, particularly cyber-physical ones, re-
spond to specific kinds of disruptions. As detailed in Sec. 1.2.2, vulnerability assessment
corresponds to the anticipating (knowing what to expect) cornerstone of resilience. It aims
to identify risk situations before they occur and spot the system’s components that might be
unable to cope with such events, thus requiring special attention and enhancements that can
increase the system’s robustness and recovery ability. State-of-the-art studies on transport
vulnerability traditionally neglect the complexity of multi-modal transport topologies and
the impact that traffic conditions and travel demand dynamics can have on the system’s
response to a disruptive event [66, 38].

Additionally, extreme weather and human-related events represent a fundamental risk
category that increasingly challenges transport systems and whose impact on such networks
can be hard to model and anticipate. Nevertheless, with proper metrics and real-time data
supporting continuous monitoring of the entire transport network, its surroundings and its
most critical components, detecting such events rapidly and deploying appropriate strategies
to mitigate their consequences may become possible. These aspects are related to enhancing
the monitoring (knowing what to look for) cornerstone of transport resilience.

We also denoted a scarcity of operational decision-making tools to support resilient-driven
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planning and management of multi-modal transport networks by considering the system’s
exposure to both recurrent and unexpected disruptive events. These tools correspond to
the knowing what to do cornerstone of resilience and are essential for properly responding to
frequent disruptions and unlikely events, thereby enabling transport networks to maintain
adequate operations even during abnormal situations.

Based on these observations, this chapter summarises the main contribution of my re-
search on transport vulnerability assessment, monitoring and management, aimed at an-
swering the following questions: (i) What are the most appropriate metrics to identify
vulnerabilities of a transport network? (ii) What approaches can be leveraged to model
the occurrence of disruptions, evaluate the response of the transport network, and measure
the consequences of such disruptions in terms of performance? (iii) How can data-driven,
fine-grained, and time-varying knowledge of travel demand and traffic-related variables be
integrated into the identified approaches for more accurate and rapid detection of disrup-
tions and network vulnerabilities on a large scale?(iv) How can new on-demand mobility
services be optimally designed and integrated into an existing transport network to reduce
vulnerability to disruptive events?

The contribution to these research questions is detailed in this chapter as follows. Sec. 4.1
outlines the findings of a comparative study of approaches and metrics for vulnerability
assessment. This study demonstrates the main limitations of traditional system-based and
graph-based topological approaches, highlighting the need for novel combined strategies
that can enact real-time monitoring of transport networks. Based on these findings, Sec. 4.2
proposes an original approach combining big data processing and complex network metrics
for promptly detecting and possibly anticipating disruption occurrence, thus being helpful in
implementing real-time monitoring of complex and dynamic networks. This study laid the
ground for the research on real-time monitoring of large-scale transport networks, which will
be detailed in Chapter 5. Finally, Sec. 4.3 discusses our solution based on multi-modality
and stochastic optimisation to support the resilience-oriented design of transport networks.

The reported research activities have been performed in the context of the ANR JCJC
PROMENADE project and have been at the core of Elise Henry’s PhD thesis on resilience
modelling of urban multi-modal transport networks, which I co-directed.

This chapter includes content from the following papers:

1. P. Gauthier, A. Furno, and N.-E. El Faouzi, “Road network resilience: how to identify
critical links subject to day-to-day disruptions”, Transportation Research Record, vol.
2672, no. 1, pp. 54–65, 2018.

2. E. Henry, A. Furno, and N.-E. E. Faouzi, “Approach to quantify the impact of dis-
ruptions on traffic conditions using dynamic weighted resilience metrics of transport
networks”, Transportation Research Record, vol. 2675, no. 4, pp. 61–78, 2021.

3. E. Henry, L. Bonnetain, A. Furno, N.-E. El Faouzi, and E. Zimeo, “Spatio-temporal
correlations of betweenness centrality and traffic metrics”, in 2019 6th International
Conference on Models and Technologies for Intelligent Transportation Systems (MT-
ITS). IEEE, 2019, pp. 1–10.

4. E. Henry, A. Furno, N.-E. El Faouzi, and D. Rey “Locating park-and-ride facilities for
resilient on-demand urban mobility”, Transportation Research Part E: Logistics and
Transportation Review, vol. 158, 102557, 2022

The research reported in this chapter is strongly related to the activities discussed in
Chapter 5. In particular, Chapter 5 describes the development of the PROMENADE ar-
chitectural and technological platform, which leverages cloud, IoT, micro-services and big
data solutions to provide the necessary support for enhancing resilience through real-time
monitoring and control in intelligent large-scale urban environments.
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4.1 Vulnerability Analysis: a Comparative Study

In Sec.1.2, we introduced the limitations of topological and system-based approaches to
the vulnerability assessment of transport networks. These limitations were empirically con-
firmed in our work[55], in which we proposed a novel system-based methodology, termed the
stress-test approach. This approach is based on dynamic mesoscopic simulation and aims to
identify the most critical links within a road network. The methodology was conceived to
model both day-to-day recurrent disruptions, such as accidents and mild weather-induced
traffic degradation affecting road link capacity, and extreme events leading to sudden and
significant variations in travel demand. The results obtained using this methodology were
compared with those garnered using topology-based static metrics. This comparison high-
lighted the limitations of the latter from a functional perspective and those of the former
from a performance perspective.

From a general point of view, stress testing consists of evaluating a system’s performance
under extreme conditions that go beyond normal usage, usually by relying on simulation.
Stress testing helps identify a system’s weaknesses or failure points and determine how it
can be made more resilient. It has been widely used in finance [183, 184], as well as in the
medical [185, 186] and the hydro-geology domains [187]. For instance, banks might conduct
stress tests to evaluate the resilience of lending portfolios by modelling the impact of severe
economic junctures on loan defaults. In the field of transportation, stress testing has been
traditionally performed via approaches that remove edges or nodes from a network to model
the occurrence of a (spatial) disruption, using performance indicators, e.g., based on total
travel time increase, to evaluate the impact of the modelled disruption [46, 188, 189, 82].

The large majority of research works on stress testing of road networks focuses on major
disruptive events [189, 190, 191], ignoring day-to-day disruptions that negatively and very
frequently affect the performance of traffic networks. It is also worth noting the lack of stud-
ies combining system-based with topological approaches, as already mentioned in Sec. 1.2.2.
Even though weighted graph-based models and metrics that include traffic flow data exist
in the literature, their applicability to system-wide, dynamic traffic models is still neither
widespread nor fully understood, being these metrics often inaccurate in highly dynamic
environments as well as prohibitive to compute on large scale networks [61, 192].

The research described in this section was motivated by these considerations and repre-
sented our first step in the direction of joining solutions from the two categories of vulner-
ability assessment approaches (i.e., topological and system-based stress-testing), as further
detailed in Sec. 4.2.

4.1.1 Graph-theory metrics

The topological metrics used in this study were based on Betweenness Centrality (BC),
originally proposed in [193]. BC measures how central a link in a graph is by considering
the number of the shortest paths that pass through the link, relative to the total number
of shortest paths connecting any given pair of nodes. As highlighted in Sec. 1.2.2, BC
represents one of the most widely used metrics in the literature to perform transport network
vulnerability analysis. Edge BC is formally defined as follows for the generic link l ∈ E of
a graph G(V,E):

BC(l) =
∑
i̸=l ̸=j

σij(l)

σij
, (4.1)

where:

• σij(l) is the number of shortest paths from node i to node j that traverse link l;

• σij is the total number of shortest paths from node i to node j.
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An equivalent formula, replacing the generic link l with the generic node n, corresponds to
the formal definition of node betweenness centrality, BC(n). In shortest path computation,
links can be unweighted or weighted, as for example by the associated estimated travel cost
(e.g., travel time). In this study, we tested and compared both cases.

In order to model different aspects of a road traffic network and accelerate the compu-
tation of BC on larger networks, we also considered multiple variants of the BC, mostly
consisting in calculating the shortest paths from travel demand entry to travel demand exit
nodes only1. This definition introduces two advantages: computation time is reduced; the
metric becomes more realistic from a demand-aware perspective since individuals tend to
start and finish their trips over a subset of road intersections. The formula is the same as
Eq. 4.1 with the following exceptions:

• i is selected from the entry-nodes subset, i.e., a limited number of intersections where
vehicles enter the road network;

• j is selected from the exit-nodes subset, i.e., a limited number of intersections where
vehicles leave the road network.

In conclusion, we considered four different formulations of the edge BC:

• Unweighted Betweenness Centrality (UBC)

• Travel-Time weighted Betweenness Centrality (TTBC)

• UBC on entry/exit nodes only (UBC entries-exits)

• TTBC from entry to exit nodes only (TTBC entries-exits)

It is worth remarking that we used static travel time information, i.e., travel time in free
flow conditions, to compute both TTBC and TTBC entries-exits.

4.1.2 Demand-sensitive Vulnerability Metric

Jenelius et al. introduced in [78] the demand-aware metric of link Importance (I) to charac-
terise transportation vulnerability. This metric allows measuring the network performance
loss induced by a disrupted link l, by using a generic metric of travel cost weighted by
the traffic demand. Differently from [78] that uses a binary approach in modelling link
disruptions (i.e., a link is either fully operational or completely closed), we considered the
possibility that the capacity of a link (i.e., the maximum number of vehicles that can tra-
verse the link) might be partially reduced of a percentage δ of the original capacity, due
to accidents or lane closure. This technique allows considering different possible intensities
of the disruptive event on a given link, which is especially helpful to model day-to-day dis-
ruptions. Such a metric appeared adequate in the scope of our methodological approach
as it captures travel demand and the dynamic phenomenon of congestion (i.e., travel costs
increase when the network is congested).

In our study, we considered travel cost on a given origin-destination pair as the travel
time to move from the origin to the destination divided by the associated travel distance.
It is therefore measured in seconds/kilometres. The importance of a link l is thus defined in
our work by the following equation:

I(l, δ) =

∑
i

∑
j ̸=i xij(c

δ
ij(l)− c0ij)∑

i

∑
j ̸=i xij

, (4.2)

1In a transportation network, not all nodes are responsible for generating and absorbing travel demand.
Entry and exit points serve as specialised nodes that naturally associate with some level of travel demand.
Their identification is generally tied to the definition of OD matrix zones and their urban topology, pin-
pointing specific nodes within each zone where trips can either commence or conclude.
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where:

• xij is the demand from origin node i to destination node j (measured as number of
vehicles);

• cδij(l) is the mean travel cost (measured in seconds/kilometres) from origin node i to
destination node j when link l is disrupted at level δ;

• c0ij is the mean travel cost (measured in seconds/kilometres) from node i to node j in
the base case, i.e., no disruption present in the network.

To model traffic dynamics and calculate travel costs on a vehicle basis, we used a dy-
namic mesoscopic simulator from our research team [194], based on the Lighthill-Whitham-
Richards model [195, 196] and a dynamic traffic assignment procedure for distributing ve-
hicles along the alternative paths in the network, according to the traffic conditions at the
moment the vehicle is generated.

4.1.3 Stress Testing Methodology

Our methodology for road network stress testing aims to identify the most critical links
in the road network that are considered vulnerable to different kinds of disruptions. The
methodology is composed of the following steps:

1. Simulating disruptive road events:
We proposed two strategies to perform this step. In the first, similarly to [82], we simu-
lated day-to-day road disruptions as link capacity drops. The capacity-disruption level,
denoted as δ in the following, is defined as the reduction in link capacity, expressed as a
fraction of the original one. As anticipated, we considered the possibility of modelling
partial capacity drops and analysing the evolution of the road network performance
depending on the capacity-disruption level. For simplicity, we only allowed 5 possible
capacity-disruption levels on each examined link, i.e., δ ∈ {0%, 20%, 40%, 60%, 80%}.
Ultimately, the following equation allows computing the maximum capacity of the
generic link l in the presence of a capacity-disruption level δ:

δ = 100 ·
(
1− qδmax(l)

q0max(l)

)
, (4.3)

where:

• δ is the capacity-disruption level applied to link l (percentage) with δ ∈ {0%, 20%,
40%, 60%, 80%};

• qδmax(l) is the capacity of link l (measured in vehicles/hours) when it is disrupted
at level δ;

• q0max(l) is the capacity of link l in the base case (measured in vehicles/hours);

As a second strategy to simulate disruptive road events, we considered increases in the
travel demand on specific entry/exit pairs of nodes of the network. By this approach, it
was possible to simulate exceptional situations like city evacuations following extreme
events (e.g., flooding, attacks, etc.) that typically put significant strain on the road
infrastructure and result in total congestion of the network. This strategy consists in
changing the OD matrix, i.e., increasing the traffic flow from given entries to specific
exit points, and comparing the stress testing results with the modified demand level.
Based on the selected strategy for disruptive road events, we set the parameters of
our mesoscopic simulator (e.g., link capacity, traffic demand) and we simulated the
network in the specific setting. For both strategies, travel costs were collected for all
vehicles in order to compute the performance metrics described in the following point.
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2. Computing overall performance loss:
This step aims to quantify the consequences of the simulated disruptive road event
on the operation of the whole road network. To this purpose, we used the notion of
road network performance, measured via the Importance metric from Sec. 4.1.2. The
overall Performance Loss (PL), when link l is disrupted, was defined as an adaption
of Eq. 4.2 to the situation where costs are known per vehicle:

PL(l, δ) =

n∑
v=1

cδv(l)− c0v
n

, (4.4)

where:

• PL(l, δ) is the overall performance loss when link l is disrupted at level δ (sec-
onds/kilometres);

• cδv(l) is the travel cost of vehicle v when link l is disrupted at level δ (sec-
onds/kilometres);

• c0v is the travel cost of vehicle v in the base case (seconds/kilometres);
• n is the number of vehicles in the network.

In order to compare links and identify the most critical ones, a unique value of criti-
cality must be associated with each link. To this purpose, we defined a global metric,
namely the Stress Test Criticality (STC), to aggregate the multiple loss values derived
from Eq. 4.4 for each possible capacity-disruption level (i.e., δ ∈ {0%, 20%, 40%, 60%, 80%})
applied to the given link l. The metric definition for the generic link l follows:

STC(l) =

∫
δ

PL(l, δ), (4.5)

where:

• STC(l) is the Stress Test Criticality when link l is stress-tested (seconds/kilometres)
• δ is the capacity-disruption level of link l (percentage)
• PL(l, δ) is the overall performance loss (seconds/kilometres) derived from one

simulation.

3. Analysing the results:
At the end of our simulations, we obtained the values of the STC metric for all or
a subset of the network links. We then computed the graph-based static indicators
described in Sec. 4.1.1. This step involves analysing and comparing the rankings of net-
work links produced by both the graph-based metrics and the overall performance loss
indicator STC. Links with higher values of these metrics were given higher rankings.

4.1.4 Evaluation

In this section, we present the results of our stress-testing methodology and discuss the link
ranking derived from the different selected metrics. We show that the ranking of critical
links on the same network can significantly vary when different indicators are used, thus
proving that simple modifications of one centrality indicator can have a relevant impact
on the capacity of the metric to capture different facets of network vulnerability. More-
over, we discuss the advantages and drawbacks of each different approach in assessing road
network vulnerability, towards the definition of new enhanced metrics and approaches for
vulnerability identification in large-scale networks.

Our analysis has been performed in two different case studies: a first one related to
a simple virtual network, used as a basic test-bed for our approach; and a second one
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Figure 4.1: Simple virtual road network.

corresponding to a real road network in France, which we used to confirm the validity of our
results in a realistic scenario and to support the discussion on advantages and drawbacks of
both simulation-based stress testing and topological metrics.

Toy Network Case Study

The simple toy network is composed of 9 links (roads) and 8 nodes. Nodes correspond to 4
road intersections, 2 entry points and 2 exits. The duration of each simulation was fixed at
10 minutes. Fig. 4.1 depicts the network with numbered links and flow directions.

Origin
Destination Exit 1 Exit 2

Entry 1 375 375
Entry 2 250 1000

Origin
Destination Exit 1 Exit 2

Entry 1 500 500
Entry 2 1200 300

Table 4.1: Origin-destination matrices for the simple virtual network with different demand levels
(A and B). Values are expressed as vehicles per hour.

We were able to measure the stress test criticality and all of the proposed topological met-
rics on all the links of the simple network, due to its limited size. To perform stress testing,
we used both strategies for modelling disruptions described in Sec. 4.1.3, i.e., link capacity
drop and traffic demand increase. Therefore, two different demand levels, reported as two
different origin-destination matrices (A and B) in Tab. 4.1, were defined. The measures of
stress-test criticality corresponding to the two different OD matrices are distinguished as
STC A and STC B, respectively. It is worth noting that STC A and B are calculated with
the same formula (Eq. 4.5) and the same simulation parameters, with the only exception
of the travel demand. In our simulations, we applied sequentially five capacity-disruption
levels (i.e., 0%, 20%, 40%, 60%, 80%) to each link. Then, we measured the network-wide
performance loss (i.e., Eq. 4.4) consequent to the disruptions applied to the link.

The overall performance loss when using travel demand A is reported on the y-axis of
Fig. 4.2(a), while the corresponding capacity-disruption levels (δ) are reported on the x-
axis. Results for different links are depicted with different colours and markers in the figure,
using linear interpolation. For the sake of readability, the figure only reports the five most
critical links (i.e., those with the highest overall performance loss). Intuitively, the overall
performance loss grows as the capacity-disruption level increases. In other words, a link
capacity drop translates into an increase in network-wide travel cost.

According to the definition provided in Eq. 4.5, the stress test criticality of a given link
corresponds to the area below the overall performance loss curve. Thus, in scenario A, link
9 is the most critical to the operation of the whole road network, followed by links 5, 1,
2 and 8. By using link ranking from stress test criticality as a baseline, it is possible to
compare the other link rankings as derived from the different topological metrics. Tab. 4.2
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(a) Scenario A (b) Scenario B

Figure 4.2: Stress testing on a simple test virtual network in two scenarios: performance loss for
the top-5 most critical links with different capacity-disruption levels

reports on such link rankings for both stress test criticality and the whole set of topological
metrics.

As a preliminary consideration, it can be observed that the rankings of critical links on
the same network may dramatically change depending on the selected metric, due to the
different properties of the network captured by each of them. As an example, link 5 is on top
of all the topological rankings whereas, in terms of stress-test criticality, it is ranked second,
below link 9. The top rank of link 5 with all the topological metrics can be motivated
considering the large number of shortest paths traversing this link: e.g., paths (4, 5), (3, 4,
5), (1, 3, 4, 5), (6, 4, 5), (7, 5, 8) are all shortest paths.

The different rankings issued by STC A can be easily explained. If link 5 is disrupted,
the alternative paths (1, 2, 8) and (1, 2, 9) exist for all individuals departing from entry
1. Conversely, when link 9 is disrupted, no alternative path exists for users willing to
travel to exit 2 from both entry 1 and entry 2, thus resulting in significant congestion
and consequent travel time increase for all individuals heading to exit 2. Additionally,
traffic demand for exit 2 is very high (see OD matrix in Tab. 4.1). That explains why
link 5 is more critical than link 9 in terms of topology, but less critical than link 9 when
considering demand data, as made possible by our stress-testing methodology (based on
dynamic simulations) and captured by the related criticality metric. This simple test clarifies
how traditional demand-agnostic approaches may fail in properly ranking edge criticality. It
also shows that alternative paths may become the shortest paths of the network when links
are disrupted by adverse events, thus attracting traffic flow previously directed through the
disrupted links. This is a critical factor that static graph-based approaches fail to capture.
However, it is essential to clarify that this does not mean topological metrics are poor
indicators of vulnerability. Instead, graph-based models of transportation networks should
incorporate dynamic elements derived from real-time data (e.g., traffic sensors, cellular
networks, IoT devices, etc.) and captured, e.g., via edge weights. Furthermore, metrics
like betweenness centrality should be recalculated almost continuously to quickly identify
significant disruptions in the network. These aspects are treated extensively in Sec. 4.2.

Another striking difference worth analysing regards link 2 : it is considered one of the
most critical ones according to the UBC metric from entries to exits, whereas it is the least
critical one for the TTBC and the TTBC from entries to exits. The peculiarity of link 2 is
its length: it is the longest in the network, thus demanding more time to travel than the
other links. Metrics like UBC and UBC from entries to exits are not weighted, i.e., all links
are valued equally, and are consequently unable to grasp this important aspect. Differently,
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Link STC A STC B UBC UBC
entries-exits TTBC TTBC

entries-exits
9 1st 4th 2nd 1st 4th 3rd

5 2nd 2nd 1st 1st 1st 1st

1 3rd 3rd 2nd 1st 4th 3rd

2 4th 5th 2nd 1st 7th 5th

8 5th 1st 2nd 1st 4th 3rd

6 5th 6th 4th 2th 5th 4th

4 5th 7th 2nd 2th 2nd 2nd

7 5th 8th 3th 1st 6th 4th

3 5th 8th 3th 2th 3rd 3rd

Table 4.2: Simple network link rankings generated by the different metrics of criticality

links with high travel times are not considered critical by the analysed weighted approaches,
because they are not often part of the shortest paths. The same consideration applies to
link 7, which is the second-longest link of the network.

Finally, it is worth noting that UBC values are often clustered. In particular, the UBC
from entries to exits has many equal values and only two different link ranks. Traditional
topological metrics appear to have minimal capability to discriminate link criticality at a
fine level. In this case, stress test criticality does not differentiate all links either, but this is
due to capacity-disruption levels. For links 8, 6, 4, 7 and 3, which are all ranked at the 5th

place with the same value, demand levels are not high enough, relatively to the other links,
to observe a significant performance loss compared to the base case. For example, when
capacity disruption is applied to link 8, the overall network performance does not change at
all (see Fig. 4.2(a)).

To further investigate this aspect, we stress-tested the same simple network with the
second travel demand OD matrix, reported as B in Tab. 4.1. Results are shown in Fig. 4.2(b)
and Tab. 4.2. Link ranking changes significantly when different demand levels are used. As
an example, Link 8 becomes the most critical link, whereas in the previous case, it involved
no performance loss. This is due to the large increase in demand level associated with exit
1, which is directly connected to link 8 (see Fig. 4.1).

Takeaways: Critical link ranking is highly variable as different approaches are used.
Vulnerability assessment via topological metrics is limited in the sense that such metrics do
not usually take into account traffic demand and network re-configurations following dis-
ruptive events. Conversely, the simulation-based stress testing approach is able to capture
these aspects thus providing more realistic rankings via the proposed performance loss met-
ric. Stress testing can also be used to compare different road networks and sub-networks,
by analysing their response to similar stresses. TTBC produces better estimations of link
criticality with respect to UBC, which treats all links equally.

Real Road Network Case Study

To confirm the results of our previous analysis in a realistic scenario, we considered a real-
world network, the DIRIF, situated in the South of Paris, France. It has 868 links and
827 nodes (657 intersections, 86 entries and 84 exits). Its roads are mostly highways. Each
simulation duration was fixed at 15 minutes. As the network is much larger than the toy
one, and as traffic flow can be very low on some links, we specified a longer simulation
duration to ensure that enough vehicles could travel through the whole network and that
we had a proper number of travel cost observations. The simulation was performed with
realistic demand data from 9:00 AM to 9:15 AM, corresponding to the morning peak time,
in order to increase the probability of observing performance loss as a consequence of the
higher demand. The network is graphically presented in Fig. 4.3.

Given the large size of this network and the high computation time associated with
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(a) DIRIF, geographic location (b) DIRIF network

Figure 4.3: The DIRIF road network in Paris agglomeration

Link STC UBC UBC
entries-exits

TTBC TTBC
entries-exits

Highest-
flow
links


95 117 2628 83 2628 83
93 102 660 83 660 83
94 101 1974 83 1974 83

Highest-
BC
links


802 42 192497 3029 192717 3039
803 27 192521 3029 192741 3039
607 27 192509 3029 192729 3039

608 44.6 192449 3029 192669 3039
397 15.8 83164 1139 83164 1139
672 14.5 10 1 10 1

Table 4.3: DIRIF network link values generated by the different metrics of criticality

each network simulation2, it was prohibitive to perform an exhaustive stress-test analysis
as in the simple network case. Therefore, we decided to perform stress tests on a limited
set of representative links: the three links with the highest flow of vehicles in the base
simulation with no disruption, the three ones with the highest UBC and three randomly
selected edges with UBC in three classes of values (i.e., high, medium and low). We discuss
in the following our simulations related to the realistic available values of travel demand
for the DIRIF network. Tab. 4.3 reports the actual values of the considered metrics for the
analysed links3.

Consistently with our previous analysis on the simple network, Tab. 4.3 shows that
rankings of critical links vary significantly when different metrics are used. As an example,
links 95, 93, 94 have a very high value of STC, whereas the topological metrics rate them
much less critical than links 802, 803, 607. As pointed out in the previous section, the
indications from the STC metric appear to be more reliable, since the metric seems to
capture the higher criticality of links 95, 93, 94 associated with higher demand.

On the small link subset considered in our analysis, taking into account travel times
(TTBC and TTBC entries-exits) does not significantly change rankings with respect to

2Stress testing one link from such a large network with 5 capacity drops takes more than 1 hour on
an Intel Xeon E3 CPU equipped with 8 GB of RAM running a Matlab implementation of the mesoscopic
simulator.

3Differently from Tab. 4.2, we do not report metric rankings but actual values of the metrics for each
analysed link. This was due to the impossibility of performing all the required simulations for computing
the STC metric for all network links.
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UBC, since lengths (and therefore the free-flow travel times) happen to be very similar
for all considered links. Finally, it is worth noting that in the DIRIF network, UBC values
(especially in the entries/exits variations) tend to significantly cluster themselves (i.e., many
edges have very similar values of UBC), thus exhibiting a lower discriminant power than in
the toy-network case study.

Takeaways: In a real-world scenario, stress testing proved to be a realistic and reliable
approach to evaluate network resilience. Our evaluation confirms the importance of traffic
demand and network dynamics for fine-grained ranking of the most vulnerable road-network
links. Stress testing has however the important drawback of requiring very high execution
times due to computationally intensive network simulations.

4.2 Graph Theory and Big Data Processing towards On-
line Transport Monitoring

As opposed to purely topological metrics, the system-based stress-testing approach described
in Sec. 4.1 confirmed its ability to take into account travel demand and traffic dynamics to
reliably identify links that are most critical to day-to-day disruptions and changes of travel
demand. In our follow-up work [197], we also extended this approach for handling area-
covering disruptive events, similarly to [83].

However, the stress-testing approach has a major drawback: it requires an extremely high
number of computationally intensive traffic simulations. Therefore, it is recommended only
for vulnerability analysis of small-sized networks, and as a preliminary step in application
scenarios that allow for a sufficiently long response time, such as vulnerability-aware network
design and maintenance planning (see Sec. 4.3). Another limitation of the stress-testing
approach is its limited capability to model complex and hardly predictable disruptions that
cannot be solely represented in terms of capacity reduction on single links or areas and/or
an increase in travel demand. This is especially true for cascading failures, which combine,
usually in sequence, multiple heterogeneous spatio-temporal disturbances causing major
anomalies in the mobility system.

In scenarios that require rapid response times, such as recovery of critical infrastruc-
ture or emergency evacuations, swiftly detecting complex and unpredictable disturbances
through real-time network monitoring is among the few viable strategies. However, effective
transport monitoring hinges on access to up-to-date and detailed data on travellers’ activity
and transportation supply within the network. It also depends on selecting highly respon-
sive metrics capable of quickly identifying or even anticipating the occurrence of disruptive
events.

This section describes our research efforts aimed at exploring how topological indicators,
specifically, indicators based on degree centrality (Sec. 4.2.1) and betweenness centrality
(Sec. 4.2.2), could become suitable metrics for online network monitoring when calculated
on a time-varying weighted graph. By this approach, the power of topological analysis
combines with the availability of data on a system’s dynamics, such as travel demand, speed
and traffic flow, the latter being typically associated with system-based approaches. The
outcomes of this research have confirmed that continuous data-driven monitoring of specific
weighted graph metrics represents a key solution to increasing transport resilience. These
studies represent the motivation at the basis of the platform and online tools for real-time
monitoring of CIs, which will be described in Chapter 5.
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4.2.1 Weighted Degree Centrality Metrics for Transport Network
Resilience

In [198], we proposed a dynamic modelling approach combining complex networks and big
data processing suitable for online continuous monitoring of road traffic networks.

Specifically, we focused on a specific metric, i.e., network heterogeneity, also known as
graph irregularity, traditionally used as a dynamic indicator of resilience for gene regulatory,
ecological and power supply systems. Heterogeneity provides global information on the di-
versity of network nodes connectivity [199]. When calculated over a time-varying, weighted
graph, the heterogeneity metric can account for traffic dynamics, making it sensitive to per-
turbations. Furthermore, the repeated observation of specific patterns associated with this
metric in the presence of disruptions suggests that it could be valuable for the development
of effective, real-time monitoring tools. These tools could enable the automatic and rapid
detection of such patterns and, consequently, of the associated disturbances.

The definition of heterogeneity is typically based on degree centrality. The degree central-
ity of a node describes the number of edges (or nodes) that are adjacent to the considered
node. On directed graphs, where each edge has a specific direction, it is possible to dis-
tinguish between in-degree and out-degree centrality by considering the number of edges
entering (respectively, exiting) the analysed node. The definition of this metric can also be
extended to the case of a weighted network (i.e., weighted degree centrality), considering the
sum of all the edge weights connected to the generic node i, i.e., Ci =

∑
j∈N(i) wi,j , where

Ci is the non-normalised weighted degree centrality of node i, N(i) is the set of neighbours
of node i, and wi,j represents the weight of the edge connecting nodes i and j. As with
the traditional degree centrality, the weighted degree centrality of the generic node i can be
distinguished into in-degree and out-degree centrality, being equal to the sum of the edge
weights that join the node i to its predecessors (respectively, successors) j.

Different definitions of network heterogeneity have been proposed in complex network
theory. For instance, in [200], the authors use the entropy of nodes degrees, concluding that
such metric captures the disorder of the analysed network and represents an effective measure
of network resilience to random failures. Indeed, variations of this statistical measure can
describe losses of information in a network and thus indicate the impact of disruptions in
terms of reduced information transfer. Similarly, Jacob et al. [199] propose a definition
of heterogeneity based on the degree spectrum rather than degree values. Specifically, a
graph is considered heterogeneous if all the nodes have a different degree. Conversely, a star
network is considered strongly homogeneous because only one node has a different degree
from all others. The study can be extended to the weighted case, by computing a weighted
degree and analysing the in-degree and the out-degree distributions. Gao et al. [201] identify
heterogeneity as a strong predictor of network resilience, with more heterogeneous networks
being more resilient to targeted attacks but less resilient to random failures. Heterogeneity
is computed over a directed weighted graph, according to the density functions of the in-
and out-degree variables (kin and kout, respectively), i.e., formally:

h =
σinσout

⟨k⟩
(4.6)

where σ2
in (respectively, σ2

out) is the variance of the density function of the weighted in-degree
P (kin) (respectively, out-degree P (kout)) and ⟨k⟩ is the average degree or network density,
defined as follows:

⟨k⟩ = 1

N

N∑
i=1

ki (4.7)

where N is the number of nodes in the network and ki is the degree centrality of the node
i, i.e., kin(i) + kout(i).

To quantify the resilience of different types of multi-dimensional systems, the authors
propose to use a combination of three network metrics derived from the degree centrality,
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Figure 4.4: The time-varying network modelling approach.

namely: heterogeneity h, density ⟨k⟩ and network symmetry S. Symmetry is defined as the
correlation coefficient of in-degree and out-degree, i.e., formally:

S =
⟨kinkout⟩ − ⟨kin⟩⟨kout⟩

σinσout
(4.8)

where ⟨kin⟩ (respectively, ⟨kout⟩) is the average in-degree (respectively, out-degree), ⟨kinkout⟩
the scalar product of both vectors (in-degree and out-degree).

We thus explored the possibility to apply the metrics proposed by Gao et al. in the
context of road traffic networks, by studying their sensitivity to different disruptions and
discovered the existence of relevant patterns, which could be exploited to quickly detect the
appearance of disruptions in the network and anticipate recovery actions.

In the following, we provide a brief description of the methodology and the most rel-
evant outcomes of its evaluation. The reader can refer to [198] for more details on the
implementation, the dataset and the complete set of performed experiments.

Network Modelling Approach

We modelled the road network of the city of Lyon, France, as a weighted, time-varying,
directed graph, G(V,E,W t), with nodes V corresponding to road intersections and edges E
corresponding to road segments. Edge weights W t were assumed to indicate dynamic traffic
conditions (i.e., average speeds), computed every 30 minutes from available GPS floating
car data. The free-flow travel time was used when no observation was available on a given
edge at a given time slot in the reference period.

The first step of the proposed methodology consists in building a graph from the road
network topology of the analysed city. Edge weights, at time t, are computed in the range
[0, 1] by converting the average speed observed in that specific time slot into a traffic
congestion indicator, with 1 indicating the best traffic conditions and 0 indicating the worst
(Fig. 4.4(a)). In free flow conditions, all nodes are assumed to be connected at the best
possible level, and all edges receive a weight equal to one. When the observed average travel
time is higher compared to the free-flow travel time (fftt), the edge weight becomes closer
to zero, according to the ratio of fftt and the observed average travel time (tt) (i.e., the
orange curve in Fig. 4.4(b)), with zero corresponding to the case of a completely congested
edge, i.e., a road segment where vehicles are completely stuck. A discretization process was
applied to the edge weights in order to model bounded rationality in travellers’ route choice
behaviour [202]. The idea is that a small travel time increase should produce a negligible
impact on the edge weight (i.e., the step-wise function in Fig. 4.4(b)).

The analysis reported below explores the impact of selected disruptions on the road net-
work of Lyon, through the lens of heterogeneity (Eq. 4.6), density (Eq. 4.7) and symmetry
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(Eq. 4.8). The metrics are computed at each time step of 30 minutes, via the proposed
model, under both normal and disturbed conditions. The analysis aimed to prove that they
are indeed very sensitive to modifications of the travel demand, minor perturbations and
extreme weather conditions. The results of the analysis revealed clear patterns in how the
road traffic network reacts to day-to-day disruptions and more extreme disturbances, as ev-
idenced by variations in the aforementioned metrics with respect to typical values observed
in normal conditions. These findings are consistent with previous studies on static networks
in other domains, such as Gao et al. [201].

Experimental Results

We performed an extensive evaluation of the previously described degree-centrality metrics
in relation to four different disruptions that occurred in the period covered by the available
GPS data4. The specific days were chosen based on the severity of the event or observed
significant differences in speed or speed variance between disrupted and typical days.

On Monday, December 18th, 2017, a heavy snowfall in Lyon caused severe disruptions
in the road network, which lasted until the afternoon when traffic returned to normal. On
Tuesday, December 19th, 2017, the subway service was shut down for maintenance from 7:30
am to 4:15 pm. We studied the impact of this event on the road network because of the
potential modal shift it generated. On Wednesday, April 4th, 2018, several protests took
place in Lyon, affecting normal traffic circulation on the road network. Finally, on Saturday,
June 2nd, 2018, the Fourvière tunnel, which is crossed by over 100,000 vehicles daily, was
closed for renovations in the north-south direction for three days. Although some of these
disruptions affected the entire network, others were localised in specific areas of the city. We
report here results related to December 18th (heavy snowfall) and June 2nd (closed tunnel)
and refer readers to our paper [198] for further details on the other days.

We observed significant variance of the aggregate speed variable computed on our dataset
across the different days of the week (transparent margins in Fig. 4.4(c)). Therefore, we
compared the speed profiles of disrupted days with the typical speed profile of the same
day of the week (without major disruptions). For instance, if a disturbance occurred on
a Monday, we compared the traffic conditions of that day with a typical (non-disrupted)
Monday. A similar approach was used to study the time profile of the average degree (i.e.,
network density).

We begin by examining the typical speed profiles for vehicles on the same weekdays when
the snowfall and closed tunnel events occurred. These profiles are represented by the blue
curves in Fig. 4.5(a) for the snowfall scenario, and Fig. 4.5(b) for the closed tunnel scenario.
Upon comparison, we find that the typical speed in the snowfall scenario (Fig. 4.5(a)) is
lower than that in the closed tunnel scenario (Fig. 4.5(b)). This is because the first scenario
occurs on a weekday (Monday), while the second one occurs on a weekend day (Saturday),
with obviously different traffic conditions. The same trend appears in the typical degree
profile displayed in blue (Figures 4.5(c) and 4.5(d)). The histograms in Figures 4.5(e) and
4.5(f) report the degree distributions, focusing on the morning peak time, 7:30 am. This
is the time slot when we consistently noticed a significant gap between the typical average
speed profiles and those related to disrupted events. For all studied cases (Figures 4.5(e)
and 4.5(f)), we observe a higher number of nodes possessing a degree value between 6 and
9 in the typical distribution than in the disrupted one. However, for the ranges grouping
small degree values below 3, the trend is reversed: there are more nodes for such degree
values in the deteriorated situation than in the normal one. This result is not surprising and
indicates that, in the presence of disruptions, the degree distributions shift towards lower
values (worse traffic conditions). This is especially the case for the first disruption (Fig.

4The data, acquired by the FCD provider Media Mobile (now Be-Mobile), were available from October
2017 to September 2018 (see also Sec. 3.1, where the same data were used for speed estimation from UAPD
data).
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(d) Tunnel Closure, Average Degree Profile
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Figure 4.5: Average speed profile, average degree centrality profile and degree distribution during
two disruptive events: snow on December 18th, 2017 (left) and tunnel closure on June 2nd, 2018
(right).

4.5(e)), which has the most significant impact on the average speed profile (Fig. 4.5(a)).
The comparison of the gap between the average degree centrality curves in the two

disrupted scenarios confirms this result. Whereas the area between the curves is equal to
5.24 for the first disruption (Fig. 4.5(c)), it is only equal to 2.87 for the second one (Fig.
4.5(d)). In general, the average degree is always lower in disrupted conditions than in normal
conditions on the same day of the week, showing a certain sensitivity of this global metric to
events affecting the network. It is also worth highlighting that the gap is larger in the average
degree centrality than in the average speed profiles, likely due to the weight discretization
process, introduced to model bounded rationality in route choice.

We now focus on analysing the patterns associated with the combination of network
heterogeneity, symmetry and density, in both normal and disrupted conditions. Similarly
to [201], we visualise the values of these metrics in a three-dimensional plot (Fig. 4.6) in
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(a) Several disruptions at 7:30am (b) December 18th, temporal analysis
on typical/disrupted moments of the
day. Segments connect corresponding
time slots on the different days.

(d) December 18th, spatial analysis at 7:30am

Figure 4.6: Analysis of disruptions in the heterogeneity-symmetry-density space.

order to characterise the network under different traffic conditions.
In the presence of a disruption (symbol × in Fig. 4.6), the graph density and its hetero-

geneity decrease, while the symmetry increases compared to reference situations (symbol •
in Fig. 4.6). The previous observations concerning the degree distribution in the presence of
disruptions (i.e., values concentrating in lower ranges than in normal conditions due to re-
duced speeds in the presence of disruptions) easily explain the reduction in network density.
The decrease in heterogeneity (Eq. 4.6) can be instead explained via the lower observed
values of the standard deviation of the in-degree and out-degree distributions. Finally, the
increase in the symmetry value reflects an increase in the correlation coefficient of in-degree
and out-degree distributions. When a disruption occurs, both in-degree and out-degree val-
ues become generally lower, thus reducing the corresponding average degrees. However, this
reduction is accompanied by a stronger decrease in the standard deviation of the degrees,
which explains the increase in symmetry. Remarkably, the impact of disruptions (×) varies
in intensity. As Fig. 4.6(a) highlights, the effect of snowfall (red symbols) is stronger than
the other considered scenarios. Finally, the tunnel closure scenario (blue points and lines) is
rather isolated in the plot space with respect to the other disruptions. The former occurred
on a Saturday, while all others happened on weekdays when typical travel times are lower
(Fig. 4.4(c)), explaining the difference in network states.

Our dynamic graph modelling approach also allows, differently from [201], to follow the
evolution over time of the metrics in the three-dimensional plot. Specifically, we compared
heterogeneity, symmetry and density every 30 minutes on a typical Monday and on the day
(a Monday) of the heavy snow (Fig. 4.6(b)). The figure shows, with the same colour, but
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with a different symbol, the triple (h, ⟨k⟩, S) at each given time slot, for both the typical and
the disrupted situations. It can be noted that, in all cases, the time slots on the disrupted day
exhibit lower heterogeneity, lower density and higher or similar symmetry values, confirming
the already observed global trend. This aspect denotes that the disruption had negative
effects on traffic throughout the whole day but with increased intensity in specific moments
of the day. Specifically, on a regular Monday, the worst traffic conditions are observed at
7:00 am, i.e., during the morning peak hour (green • points in Fig. 4.6(b)), while good
traffic conditions can be observed, e.g., at 7:00 pm, in accordance with the speed profile
of working days (Fig. 4.4(c)). When considering the day disrupted by the snowfall, the ×
points always exhibit higher symmetry, lower density and lower heterogeneity with respect
to the regular day, independently of the time slot. The most significant changes between the
typical state and the disrupted one can be observed during morning, i.e., at 7:00 am and
9:00 am (Fig. 4.6(b)), corresponding to the moments when the snow had actually the most
disruptive impact on the transport network.

We also conducted a spatial analysis by separately computing the values of the three
metrics in four districts of the city, at 7:30 am. Fig. 4.6(d) presents the per-district network
density, heterogeneity, and symmetry on December 18th. It is relevant to underline that
all areas exhibit the usual pattern in the presence of disruption: density and heterogeneity
decrease, while the symmetry increases. For the typical Monday, the network states are
close, even overlapping, for the 6th and the 8th districts under normal conditions. During
the snowfall instead, in all cases, an increase of symmetry can be observed, but a significant
reduction of heterogeneity is only observed in the 6th district, more urbanised and probably
more affected by the snowfall. Similar considerations could be observed also for the other
disruptive events, in both the local and global analyses.

In conclusion, the proposed approach utilising a dynamic, graph-based model and incor-
porating the concepts of heterogeneity, symmetry, and average degree revealed interesting
insights into the behaviour of road traffic networks exposed to perturbations. The conducted
experiments identified a specific pattern, where lower values of density and heterogeneity
and higher values of symmetry appear to be associated with more significant deterioration of
traffic conditions. This indicates a disrupted behaviour in contrast to typical baseline scenar-
ios. Monitoring these topological indicators can thus provide valuable real-time information
about a potential incoming perturbation, thus helping in preparing and recovering from it.
Furthermore, these indicators can be used to compare different subsets of network nodes,
such as different neighbourhoods within a city, to assess their robustness to disruptions.

4.2.2 Correlation of Betweenness Centrality and Traffic Metrics

In our efforts to explore useful metrics for monitoring transport networks, we investigated
in [203] the properties of edge BC (Eq. 4.1) when computed on dynamically weighted graphs.
We followed a data-driven modelling approach similar to the one described in Sec. 4.2.1 but
with a different weighting procedure. Instead of using a congestion indicator, we assigned
the average travel time to each edge, periodically computed every 30 minutes. We chose
this approach to be able to determine temporal shortest paths in the definition of BC. In a
first case study, we computed average travel times from real GPS FCD, and in the second
study, we retrieved them through simulations using realistic data on demand and supply for
the city of Lyon, France. In the following, we report the main outcomes related to the first
case study. More details can be found in [203].

Our analysis confirmed the existence of a non-negligible correlation between BC and
traffic flow, as already observed in related literature [204, 205]. In addition, we explored
and clarified the nature of such correlation from a spatio-temporal perspective, as well as a
function of structural and behavioural traffic properties. Similarly to the topological static
approach discussed in Sec. 4.1.1, we considered different variations of edge BC, namely, (i)
UBC, in which the graph is considered static and unweighted; (ii) Free-Flow weighted Be-
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Figure 4.7: Correlation of per-edge average traffic flow and different BC metrics (UBC, FFBC,
TTBC).
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(b,c).

tweenness Centrality (FFBC), computed considering static free-flow travel times as weights
on each edge; (iii) TTBC, which uses our dynamic data-driven approach with travel time
information computed every 30 minutes and associated to the edges as weights.

In Fig. 4.7(a) and Fig. 4.7(b), we present the values of what we called spatial correlation.
The latter was obtained by performing a linear least squares regression between the selected
edge BC metrics (computed on a static graph) and the flows observed via loop detectors on
the corresponding network edges. Each point corresponds to an edge with associated values
of hourly flow (on the x-axis) and the edge’s value of BC (on the y-axis). The results show a
0.34 value of r2 for UBC and a 0.40 value of r2 for FFBC, pointing to some mild capability
of static BC metrics to explain flow distribution on the network.

We also found that TTBC is sensitive to traffic flow dynamics when computed on a time-
varying weighted graph with average travel time weights: the correlation of edge BC and
traffic flow varies, rather significantly, over time, decreasing during peak hours associated
to higher demand, and, consequently, congestion. Fig. 4.7(c) shows the evolution over the
different time slots of the r2 coefficient of the linear regression between flow and three metrics:
the static (UBC and FFBC) and the dynamic (TTBC) ones, the latter computed using
average taxi travel times. TTBC appears to be the most sensitive to traffic dynamics among
the three different metrics. Indeed, we observe an important drop of correlation during rush
hours 07:30-09:00 for TTBC whereas the correlation for the FFBC metric remains practically
constant, with mild variations only due to the dynamics of the traffic flow.

This phenomenon was partially explained by the existence of anti-correlation patterns
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(i.e., reduction of BC in the presence of increased traffic flow, and vice-versa) for some
edges of the analysed network, which was confirmed both in simulated and real-world exper-
iments. To identify these patterns, we studied what we called per-edge temporal correlation.
This correlation was computed by considering, for a given edge l of the graph, the vector
corresponding to the TTBC values over the available time slots and the vector of the corre-
sponding observed vehicle flows (measured as vehicles/hour). Hence, we calculated the linear
correlation score (which can be either positive or negative) for each edge l of the network.
The edge temporal correlation values are spatially visualised in Fig. 4.8(a). In the figure,
highly anti-correlated edges can be spotted (orange/red links) from the positively-correlated
ones (blue/green links), while yellow links correspond to weakly-correlated edges.

We analysed the dynamics related to TTBC and flows by focusing on a specific region
of the graph, including two roads with a mirror behaviour in terms of temporal correlation,
i.e., Quai Dr. Gailleton (QDG) and Quai Claude Bernard (QCB). Since the FFBC of
QDG is much higher than the FFBC of QCB (see values reported in Fig. 4.8(b)), QDG
should typically attract a larger flow than QCB, as confirmed by the observed average flow
of QDG equals to 2,679 veh/hour, significantly higher than the one observed on QCB (967
vehicles/hour). A high value of FFBC combined with a high average flow suggests that the
link can be often expected to be close to critical flow. We confirmed from the available speed
data that congestion is actually observed on QDG at two different time slots, i.e., 08:00 and
08:30. Our data also indicates that when congestion happens on this link, an increase in
travel time is also observed on the link. This is coupled to a decrease of TTBC, which thus
exhibits an anti-correlation behaviour with respect to traffic flow. Conversely, the QCB link,
which is characterised by lower demand, appears to be in free-flow conditions during the
whole observation period. As travel time is rather high for QDG during congestion, QCB
becomes then a viable alternative for drivers to avoid congestion on QDG. Consequently, we
observe that TTBC increases as well as its flow. This explains why the QCB edge exhibits
a highly positive temporal correlation. After the congestion phase (08:00 and 08:30), the
flow globally decreases in the area. As QDG becomes more fluid, the corresponding travel
time decreases to free-flow travel time and TTBC increases, i.e., thus maintaining an anti-
correlated tendency. Contextually, QCB appears to lose its attractiveness compared to
QDG as the flow decreases on this edge. TTBC decreases as well thus keeping the positively
correlated trend. The analysis is confirmed by the evolution of the flow and the TTBC,
which are known from the available data for both QDG and QCB as reported in Fig. 4.8(c).

To summarise, FFBC gives information on critical edges, i.e., road segments on which
a high flow and possible congestion should be expected. Then, by studying the dynamic
behaviour of TTBC, we highlighted different types of edges. On the one hand, anti-correlated
edges seem to be critical by nature with higher FFBC. Even when congestion is observed
on these links, the flow tends to remain high, whereas TTBC decreases. On the other hand,
positively correlated edges appear to correspond to alternative routes in terms of travel
time that become attractive when nearby roads are congested. In an intermediate situation,
neutral edges (low correlation) are characterised by either low or medium/high demand,
being able to dispatch such flow, without becoming congested.

Overall, the results of this study let us speculate that, if (i) people exploit the knowledge
about current traffic conditions, (ii) alternative paths are available, and (iii) no specific
constraint obliges travellers to follow specific routes, vehicles can re-distribute themselves in
the network more efficiently and better exploit it. In this particular case, it can be assumed
that edges with higher BC in a certain time slot represent critical (or very attractive)
components of the network where traffic flow will most likely significantly increase in the
near future. These properties could thus justify using this metric for the implementation of
next-generation proactive, data-driven urban monitoring systems that can use alternative
route recommendations to reduce traffic congestion and vulnerabilities.

These conclusions led us to investigate: (i) the possibility of computing in real-time, on
weighted time-varying graphs, BC on large networks, which is a very challenging task due
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to the high processing time of state-of-the-art BC computation algorithms; (ii) considering
traffic control solutions that could take into account real-time information on traffic flow
and BC to protect specific areas of the network, expected to attract massive traffic in the
future. The research related to these two problems related to real-time monitoring and
control is described in the next chapter. The following section focuses instead on managing
disruptive situations occurring with a known (relatively low) frequency via multi-modal
transport solutions for robust and sustainable network design.

4.3 Vulnerability-aware Multi-modal Network Design

The knowledge of a transport network’s vulnerabilities, acquired, e.g., with the tools intro-
duced in Sec. 4.1, can be harnessed in decision-making systems to enhance the network’s
ability to respond to specific disruptions. This corresponds to the knowing what to do corner-
stone of resilience, as illustrated in Fig. 1.4(b). Within this research scope, we have explored
on-demand and multi-modal mobility services as a means (i) to ensure greater robustness
in the face of atypical events and (ii) to improve adaptability to large variations in travel
demand that have already occurred.

Concerning the first point, i.e., increasing robustness to different kinds of disruptive
scenarios, we have explored, in collaboration with the University of New South Wales, Sidney,
Australia, the integration of on-demand mobility solutions into an existing large-scale urban
transport network by taking into account the occurrence probability and expected traffic
dynamics of a multitude of both regular and atypical scenarios [206]. In the same scope
of research, we have also proposed using metrics for multi-layer networks to schedule the
construction of new transit lines a transport operator might want to deploy to enrich its
mobility offer [207]. Such methodologies typically fall within the broad field of transit
network design. The novelty of these research activities [206, 207] lies in the consideration
of multi-modality as a way for improving transport resilience. As an additional contribution,
we considered the requirement of quick computation to allow for a rapid re-configuration of
the transport supply, towards possible applications even in emergency situations.

Regarding the second point, i.e., enhancing adaptability in the presence of extreme vari-
ations of travel demand, we have explored, in collaboration with Ghent University, Belgium,
optimisation and machine-learning-based solutions [208] for adapting transit supply to the
decreased use of public transportation. The methodology was tested in the COVID-19
pandemic scenario, during which lock-downs and safety-related restrictions led to an over-
capacitated and less efficient public transport system.

In the following, we summarise the methodological contribution and the main results
concerning the optimal deployment of an on-demand mobility service to increase transport
resilience [206]. The other mentioned contributions are left to be explored by the interested
reader in papers [207, 208].

4.3.1 Park-and-Ride for Resilient On-Demand Urban Mobility

In [206], we focused on designing a specific form of on-demand ride-sharing service, namely,
Park-and-Ride (PR), to improve the resilience of an urban transport network with respect
to disruptive scenarios.

PR systems are transportation services enabling people to drive their private vehicles
to designated pick-up locations, usually situated in the outskirts of a city. These pick-ups
have parking lots where travellers can commute to public or private ride-sharing modes such
as buses, subway, or on-demand shuttles. People can use these modes to move to drop-off
locations within the city and reach close-by destinations. The idea is to allow people to
reduce the costs of their trips and decrease the number of private vehicles circulating in the
urban area. In opposition to traditional fixed-schedule/fixed-routes transit systems, ride-
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sharing services offer flexibility in terms of routes, departure/arrival time, fleet size, etc.,
which can be helpful to reduce the total demand for car trips and increase city resilience [209].

Our study considered a PR facility location problem that captures users’ entire trip chains
– including access, transit and egress trips – in an urban mobility network. The PR system
is assumed to comprise a shuttle service that complements the existing mobility network.
User mobility outside of our PR system is captured through the reserve mode. In designing
the PR facility, both typical mobility conditions and recurrent disruptive scenarios are taken
into account. The objective is to maximise the overall ridership of the proposed PR system
across all considered scenarios. Disruptions are modelled as scenarios with predetermined
probabilities of occurrence, which must be known in advance. The aim was to specifically
account for weather-related events (such as heavy rain and snowfall), pollution peaks, and
other special events that could adversely affect regular transportation. The frequency of
these disruptive events can be estimated in advance for a given urban area, in relation to
typical traffic conditions. In our study, we quantified the attractiveness of the PR system
by incorporating a simple model of user mode-choice behaviours into the formulation. This
model is based on a multinomial logit choice model and seeks to maximise the expected
ridership within the PR system at the expense of users’ reserve travel option.

The proposed methodology provides: (i) the optimal location of pick-ups, i.e., the car
parks where commuters can transfer from their vehicle to shared mobility solutions (e.g.,
shuttle buses); (ii) the optimal location of drop-offs, i.e., the transit stops where users exit
the PR system and continue to their destination by other means, such as walking, micro-
mobility (e.g., bike-sharing, e-scooters) solutions or the regular public transportation; and
(iii) the expected flow share associated to the PR pick-up/drop-off pairs from the set of OD
pairs, in each considered scenario. We assume a given budget constraint for constructing
the car parks and transit stops.

Given the varying and hardly predictable nature of perturbations, as well as the large size
and complexity of typical metropolitan mobility networks, guaranteeing a low computation
time in solving the optimisation problem was considered a critical requirement to satisfy.
By quickly solving the optimisation problem whenever a novel set/probability distribution
of disturbances is identified, a different configuration of the park-and-ride system can be
dynamically enacted (e.g., changing the location of the drop-offs) by transport authorities.

The proposed solution builds on and significantly extends the approach of Aros-Vera et
al. [210], where the authors only focused on the pick-up and transit part of users’ trip, thus
ignoring the impact of drop-off location with respect to the final destination.

The main contributions of our study are: (i) the mathematical formulation of an inte-
grated PR system, which captures the entire user trip chain from the origin to the destination
via pick-up and drop-off nodes in a mobility network and accounting for mode choice; (ii)
the incorporation of a stochastic programming approach to take into account recurrent dis-
ruptions in an urban mobility network; (iii) the development of a customised Lagrangian
Relaxation Algorithm (LRA) able to provide competitive solutions, by out-performing com-
mercial Mixed-Integer Linear Programming (MILP) solver CPLEX, based on a branch-and-
cut search, for large-scale mobility networks in a restricted computational time; (iv) the
implementation of the proposed PR system on a realistic instance representing the city of
Lyon, France, which provides key insights for mobility service providers in urban areas. In
the following, we briefly detail points (i) and (iv), leaving the interested reader to paper [206]
for more details on the remaining contributions.

Mathematical formulation of an integrated PR system

We modelled the PR problem as a stochastic problem which aims at considering a set
Ω of different scenarios ω, with a probability of occurrence pω, representing both normal
conditions and recurrent disruptions, to optimise our PR system in an existing transport
network. The stochastic nature of the problem allows making resilient PR design, by tak-
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ing into account the probability of occurrence of multiple possible scenarios of disruptions.
Scenario-dependent variables and parameters are denoted with a superscript ω in the follow-
ing. The transport network is represented by a directed graph with |E| edges representing
the roads and |N | nodes corresponding to the road intersections. In each scenario, we de-
termined the set of the OD pairs (r, s) with a non-null total travel demand dωrs. This set is
called Wω = {(r, s) : dωrs > 0, r ∈ N, s ∈ N}.

For each OD pair, it is possible to identify the sets of the accessible pick-ups i and drop-
offs j. To be attractive, the generic PR pick-up i has to be reached from the origin r in
a reasonable time tωri lower than a fixed time taccess. Similarly, the destination s must be
reached from the drop-off j in a given time tωjs lower than the fixed egress time tegress. The
travel times tωri (respectively, tωjs) correspond to the shortest travel time between the origin
r and the pick-up i of our road network (respectively, the drop-off j and the destination
s). Ultimately, we introduced the set of the potential pick-ups Pω

r = {i ∈ P : tωri ≤ taccess}
among all the pick-ups P ⊆ N and the set of potential drop-offs Dω

s = {j ∈ D : tωjs ≤ tegress}
among all the drop-offs D ⊆ N . From these potential pick-ups and drop-offs, we extracted
for each OD pair the set Σω

rs = {(i, j) : i ∈ Pω
r , j ∈ Dω

s , (r, s) ∈ Wω} of the PR alternatives
which correspond to the possible combinations of pick-ups and drop-offs at each OD pair in
each scenario ω.

We defined a binary decision variable yi ∈ {0, 1}, ∀i ∈ P ∪ D, indicating the facility
locations by being equal to one when a car park (pick-up) or a transit stop (drop-off) is open.
Furthermore, we defined the decision variable xω

rijs ∈ R+, ∀ω ∈ Ω,∀(r, s) ∈ Wω,∀(i, j) ∈
Σω

rs ∪ {Rrs}, as the flow which determines the part of the scenario-dependent demand dωrs
associated to our PR system on the OD pair (r, s) using the pick-up i and the drop-off j.
The decision variable xω,Rrs

rs defines instead the part of the users that choose the reserve
mode on the OD pair (r, s).

To determine the mode choice via a market share model based on a logit formulation,
we used, for each itinerary, a generalised cost gωrijs composed of the travel cost between r
and s using the proposed PR system, that we considered equal to the travel time, between
the three parts of the path: (i) from the origin r to the pick-up i, i.e., caccess,ωri ; (ii) from
the pick-up i to the drop-off j, i.e., croute,ω

ij ; (iii) and from the drop-off j to the destination
s, i.e., cwalk

js . When using the reserve mode to realise the entire itinerary, symbolised as Rrs,
the travel cost cRrs,ω

rs , equal to the generalised cost gRrs
rs , is modelled as the travel time to

reach the destination s from the origin r by car. The probability that users choose the pair
i and j of the PR system corresponds to the xω

rijs decision variable, which can be expressed
as follows:

xω
rijs ≡

yiyje
−θgω

rijs∑
(m,n)∈Σω

rs∪{Rrs}
ymyne−θgω

rmns
∀(r, s) ∈ W, ∀(i, j) ∈ Σω

rs ∪ {Rrs}. (4.9)

In other words, variable xω
rijs represents the probability of using the reserve mode between

the OD pair (r, s), when i and j are equal to Rrs, as well as the probability of using the
proposed PR system by using a shuttle joining the pick up i to the drop off j for the OD
pair (r, s). Because both pick up and drop off have to be open to be considered as an option
in the mode choice, the exponential of the utility for all the transport mode possibilities are
multiplied by the pick up and the drop off location decision variables yi and yj . The closure
of a pick up, a drop off or both will remove the consideration of the associated transport
modes in the logit computation. We denoted θ the logit parameter corresponding to the
user’s sensitivity to the generalised cost. The higher θ, the more people are sensitive to the
travel cost and will choose the cheaper transport mode. Finally, −θgRrs,ω

rs (i.e., gRrs,ω
rs =

gωrijs with i and j equal to Rrs) corresponds to the utility of the reserve mode and −θgωrijs
represents the utility of the PR system from the pick-up i to the drop-off j for the path going
from the origin r to the destination s. Although simple, our utility function considers the
travel time preference in the mode choice. A more complex function could more accurately
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represent this mode choice, for instance, by being trip purpose-dependent [211].
A budget B is allowed to the construction of the pick-ups and the drop-offs whose costs

cloc
i mostly depend on the nature of the facility (Eq. 4.10b). Whereas car parks must be

constructed at the pick-up locations for users to park their cars and embark on the shuttles of
the PR system, transit stops are sufficient to leave the shuttle and reach the final destination
by walking.

The resulting PR facility location formulation summarised in (4.10) is a MILP.

max
∑
ω∈Ω

pω
∑

(r,s)∈Wω

dωrs
∑

(i,j)∈Σω
rs

xω
rijs (4.10a)

s.t.
∑

i∈P∪D

cloc
i yi ≤ B (4.10b)∑

(i,j)∈Σω
rs∪{Rrs}

xω
rijs = 1 ∀ω ∈ Ω,∀(r, s) ∈ Wω (4.10c)

xω
rijs ≤ xω

rmns

e−θgω
rijs

e−θgω
rmns

+ (2− ym − yn) ∀ω ∈ Ω,∀(r, s) ∈ Wω,

∀(m,n), (i, j) ∈ Σω
rs ∪ {Rrs} :

(i, j) ̸= (m,n) (4.10d)
xω
rijs ≤ yi ∀ω ∈ Ω,∀(r, s) ∈ Wω,∀(i, j) ∈ Σω

rs (4.10e)

xω
rijs ≤ yj ∀ω ∈ Ω,∀(r, s) ∈ Wω,∀(i, j) ∈ Σω

rs (4.10f)

yRrs
= 1 ∀ω ∈ Ω,∀(r, s) ∈ Wω (4.10g)

xω
rijs ≥ 0 ∀ω ∈ Ω,∀(r, s) ∈ Wω,∀(i, j) ∈ Σω

rs (4.10h)

yi ∈ {0, 1} ∀i ∈ P ∪D (4.10i)

By maximising the objective function (4.10a), the optimal solution will maximise the
portion xω

rijs of the demand dωrs using our PR system in each scenario ω. The higher the
probability pω related to the occurrence of a given scenario ω, the higher the weight this
scenario has in the objective function. The first constraint (4.10b) determines the ability to
build the facilities by satisfying the global cost of the open parks. Constraint (4.10c) ensures
that the whole demand is served for each origin-destination pair. Users must perform these
trips through the PR system or using the reserve mode. The second constraint (4.10d)
requires that the flow share of each mobility alternative obeys a linearised logit model.
In [206], we provided the mathematical proofs, based on the ones proposed by [210], that
lead to Eq. 4.10d from Eq. 4.9, which controls the proportion of the users for each mobility
alternative. For each OD pair, this choice is governed by the utility of mobility alternatives
through the PR system, which is a function of opened PR facilities and of the reserve mode.
For a given PR path (r, i, j, s), if the pick-up location yi or the drop-off location yj are
closed, the constraint is inactive due to linking constraints (4.10e) and (4.10f), forcing the
flow share to be lower than (or equal to) one when parks are open, and zero otherwise. For
a given OD pair (r, s), it is only possible to have a positive share of travellers using path
(r, i, j, s) if and only if yi = yj = 1. The decision variable representing the portion of users
going from the origin r to the destination s through the pick-up i and the drop-off j, xω

rijs,
must be positive (4.10h). Constraints (4.10g) and (4.10i) set the domain of binary variables
yi and fix all such variables to one for the mobility alternative corresponding to the reserve
mode.

The complexity of the problem highly increases with the graph size due to the number
of variables. For instance, with a small network composed of 59 nodes used in our numerical
experiments, the formulation corresponds to 267 000 constraints and 15 000 variables; the
problem grows to 15 000 000 constraints and 270 000 variables for a larger one, composed of
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(a) Locations of the origins (light green), des-
tinations (light red), potential pick-ups (dark
green) and potential drop-offs (dark red)

(b) Iris areas: territory divisions encompass-
ing 2 000 inhabitants

Figure 4.9: Network segmentation (a); and the network used for the real instance IR (b).

135 nodes. These figures made the problem hard or impossible to solve with commercial
solvers and led us to develop a decomposition approach based on Lagrangian Relaxation
(LR). The proposed LR, widely discussed in [206], provides upper bounds on the original
problem and uses customised heuristic algorithms to iteratively generate lower bounds during
the solution of the LR problem.

Experimental Results in a Realistic Case Study

The proposed formulation was solved in different case studies with both a commercial
CPLEX solver and our LRA. All of the case studies were based on the road network of
Lyon, France, composed of 10 905 nodes and 19 703 edges. The geography of the city, which
is characterised by a peninsula surrounded by two rivers, makes the city centre particularly
exposed to traffic disruptions and weather events, due to the limited number of alternative
routes. The city centre is also the location of major cultural events, tourist attractions,
and commercial establishments that attract large numbers of people. Finally, the pedes-
trianisation of Lyon’s peninsula is currently an active topic of discussion in the city. For
these reasons, we investigated the potential of an alternative, on-demand transport mode
to improve accessibility and reduce the use of private vehicles. We focused on trips from
outside the peninsula to the peninsula. All trip origins (r) and potential locations of pick-
ups (i) were placed outside the peninsula, while all potential locations of drop-offs (j) and
destinations (s) were considered within the first and second neighbourhoods that make up
the peninsula.

Travel costs were determined using the FCD from October 2017 to September 2018,
already introduced in Sections 4.2.1 and 3.1. The observed travel times were used to compute
travel costs between each origin and potential pick-up locations (i.e., caccess,ωri costs) and
between each pick-up and potential drop-off locations (i.e., croute,ω

ij costs). The travel costs
between the drop-offs and the destinations (i.e., cwalk

js ) were computed by assuming a walking
speed of 1.5m/s over the shortest paths of the road network. The travel costs associated with
the reserve mode (i.e., cRrs,ω

rs ) were calculated as the average observed travel times along
the shortest path for each OD pair. For the sake of simplicity, we ignored any additional
cost associated with the reserve transport mode (e.g., fuel, parking, congestion, pollution).
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Parameters MILP LRA

Instance taccess tegress Budget (%) Objective Gap (%) LB Gap (%) Gain (%)

IR 2 8 5 287.956 2.9 902.346 51.5 68.1
10 1 156.906 0.3 1 352.844 27.3 14.4
15 1 408.596 0.2 1 534.226 17.6 8.1
20 1 618.571 0.0 1 618.593 13.0 0.0

Table 4.4: Results on IR after 1 hour, with a heuristic time constraint of 20 minutes.

In the realistic case study, we considered four scenarios: i) a snowfall, ii) a public
transport disruption with two subway lines stopped, iii) a typical weekday, and iv) a typical
weekend day (see Sec. 4.2.1). Each scenario presents a different speed profile representative
of the traffic dynamics during the corresponding event. Regardless of the studied scenario,
we weighted the graph using the travel times recorded at 7:30 am, when the impacts of
disruptions were the worst. The occurrence probability of each scenario was computed as
follows. The snowfall was considered to have an impact similar to rainfall and we fixed its
occurrence to 35%. The subway disruption scenario was considered exemplary of a public
transport failure, representing a rather recurrent event. We fixed its probability to 30%.
Finally, the probability for the normal weekday (respectively, weekend day) was set to 25%
(respectively, 10%). Regarding the demand dωrs, we used realistic data reconstructed by
other members of our laboratory [212] by relying on a methodology combining survey-based
information, simulations and measures of flows collected via loop detectors installed in the
city of Lyon.

In our experiments, we assumed that the construction cost cloc
i of pick-up nodes is ten

times higher than that of drop-off nodes, as the former typically involves constructing a
car park while the latter may only require a transit stop. The budget allocated to facility
location construction, denoted as B, was defined as a percentage of the total cost for opening
all facility locations. In all our analyses, we considered four different budgets corresponding
to 20%, 40%, 60%, or 80% of the total construction cost. The trip generalised costs gωrijs
were determined by considering the travel costs cRrs,ω

rs , caccess,ωri , croute,ω
ij , cwalk

js , as well as the
demand dωrs and the construction costs of pick-up and drop-off nodes cloc

i . We conducted
multiple sensitivity analyses (reported in [206]) to compare the performance of the proposed
LRA approach with a direct MILP approach. Finally, only the morning peak hour was
considered in this study to configure the PR system, by considering that the role of pick-ups
and drop-offs would be reversed during the evening commute.

We assumed that the set of origins and destinations differs from the set of potential
pick-up and drop-off nodes (as shown in Fig. 4.9(a)). To distribute the potential pick-up
and drop-off nodes uniformly, we employed a segmentation of the city called Iris sectors (as
shown in Fig. 4.9(b)). These sectors were developed by the French Institute of Statistics to
divide the conurbation of Lyon into small geographical areas, each containing approximately
2,000 inhabitants5. We assumed that only one pick-up or drop-off node could be placed in
each Iris sector. The location of the potential pick-up or drop-off was chosen as the road
network node closest to the Iris area centroid. As for origin and destination nodes, we
selected them to correspond to one-tenth of the road intersection nodes in Lyon’s road
network and uniformly distributed them throughout the city network. The final instance
IR included 745 origins and 171 destinations with 155 potential pick-ups and 25 potential
drop-offs. The access and egress times were respectively fixed at taccess = 2 minutes and
tegress = 8 minutes. Such a problem corresponds to about 9 062 000 variables and induced
around 77 000 constraints, according to Formulation 4.106.

5https://www.insee.fr/fr/metadonnees/definition/c1523
6The proposed formulations and algorithms were implemented in Python on a machine with 16 Gb of

RAM and a CPU of 4.20 GHz (Intel(R) Core(TM) i7-7700K). All mixed-integer and/or linear programs
were solved using CPLEX’s Python API.
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Scenario Park-and-ride flow share

Description Prob. Budget 5% Budget 10% Budget 15% Budget 20%

Snowfall/Heavy Rainfall 0.35 42.67% 67.41% 76.84% 86.35%
Public transport disruption 0.30 46.95% 75.78% 82.70% 86.90%
Week day 0.25 54.82% 72.05% 86.25% 88.98%
Week-end 0.1 44.33% 69.56% 78.65% 82.79%

Table 4.5: Park-and-ride flow shares with different budgets, using θ = 0.1, taccess = 2 minutes,
and tegress = 8 minutes.

Tab. 4.4 summarises the results obtained with the realistic instance. The sensitivity
parameter to the generalised cost θ was chosen equal to 0.1. Whatever the allocated budget
(5%, 10%, 15% and 20%), the LRA always outperforms the MILP approach, by always
finding a feasible solution with a higher value of the objective function. For the smallest
budget, the gain between both solutions even exceeds 50%. Although the gap of the LRA is
important due to the small reduction of the upper bound, the lower bound, representing the
best found feasible solution, is very interesting to solve the complex problem of allocating
PR, respecting a market share model, on a large-scale network.

Table 4.5 summarises the flow shares using the PR system, depending on the allocated
budget for the facilities construction and the scenario. The higher the budget, the more
people use the PR due to the increase of possible path alternatives induced by the increase
in the number of open pick-ups and drop-offs (graphically reported with the related budget
in Fig. 4.10). The larger set of alternatives reduces the travel cost of the PR mode by
locating pick-ups and drop-offs closer to origins and destinations. It can be noticed how
the PR can properly handle recurrent disruptions, by being highly attractive even in the
presence of snowfall or public transport disruption. Although the flow share is not the same
for all the scenarios, the order of magnitude remains the same. Additional experiments also
proved that an increase in access and egress times generally leads to increased attractiveness
of the PR option by serving a larger part of the demand for the same allocated budgets.
Increasing the access and egress times makes PR alternatives accessible to more origins
and destinations, thus augmenting the part of the demand served with the same amount
of opened pick-ups and drop-offs. In these configurations with higher values of access and
egress time, the MILP approach could not provide a solution contrary to our LRA, proving
again the interest of our proposed methodology.

In conclusion, the results obtained on the realistic instance proved the ability of the
proposed LRA to provide information about the implementation of a budget-constrained
optimised PR system, adapted to recurrent disruptions in a large-scale network. The results
also provided insights about the flow share distribution between the reserve mode and the
PR for a given allocated budget. While flow shares of this magnitude may be unrealistically
high, this can be explained by the fact that only a single concurrent mobility mode was
considered – the reserve mode – which may not be sufficient to fully capture competition
effects across travel options in an urban multi-modal transportation network. This study has
focused on the design of PR systems with the aim to improve the resilience of urban mobility
networks in the presence of recurrent disruptions. However, the proposed facility location
approach can be generalised beyond PR systems to the design of flexible multi-modal and
on-demand mobility networks. Indeed, the proposed framework could be used to model
three-link trip chains in a generic context. We are currently working to incorporate fleet
sizing and vehicle or line capacity in the proposed framework. As another limitation of the
approach, it is worth noting that the addition of the PR system may influence transit flows
and subsequently traffic congestion in the network. The incorporation of congestion effects
in the proposed framework may be achieved by including a traffic and/or transit assignment
module in our formulations. Such extensions of the proposed formulation will be explored
in future works.
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(a) 5%: 12 P and 10 D (b) 10%: 20 P and 15 D

(c) 15%: 29 P and 20 D (d) 20%: 37 P and 20 D

Figure 4.10: Solutions found for the real instance: green nodes are origins (potential pick-ups)
and red nodes are the destinations (potential drop-offs).
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Chapter 5

Real-time and Large-scale
Solutions for Resilient Urban
Networks

As discussed in previous chapters, the resilience of transportation networks can significantly
benefit from the availability of extensive, multi-source human mobility data. The latter
typically arise from interactions between individuals and various communication devices,
sensors, and applications. These data are stored and curated for later use in offline settings
by traffic operators, telecommunication companies, and other service providers. As high-
lighted in Chapters 3 and 4, such data not only deepen our understanding of how trans-
port networks function but also enable advanced strategies for vulnerability assessment and
resilience-oriented design.

Modern cities have augmented this capability by generating real-time data streams
through IoT devices and digital infrastructures. These real-time data can be utilised across
various domains for numerous applications. These include, for instance, dynamic route
optimisation and immediate intervention in the case of accidents; guidance for emergency
vehicles and evacuation procedures during disasters; real-time repositioning of buses, taxis,
and other transit options to adapt to dynamic travel demand fluctuations; real-time crowd
management during special events; and urgent public health warnings, to name but a few.
In this respect, Chapter 4 explored the potential of combining traffic data with complex net-
work theory for resilience purposes. In particular, this synergy enables continuous surveil-
lance of transportation networks, thus facilitating the quick identification of unexpected and
difficult-to-predict disruptions [198, 213].

However, to unlock the full potential of both real-time data streams and extensive reposi-
tories of historical data, robust and heterogeneous technological support is imperative. From
a software architectural point of view, it is necessary to provide flexible, scalable, and reli-
able solutions to accommodate the multifaceted needs that can arise in urban environments.
Proper software infrastructure is required to manage a diverse array of envisioned services
across various domains, which are often difficult to anticipate but usually rely on the same
sources of data and share the same basic non-functional needs. Moreover, this support
framework must provide general-purpose and complex data modelling capabilities to pro-
vide the necessary building blocks to implement the most variegated city applications from
the available data. Importantly, it should be adept at managing the massive volumes of data
generated within urban settings, especially in real-time scenarios. Finally, the infrastruc-
ture should be capable of adapting to fluctuating levels of usage load for these applications,
ensuring that services remain accessible and responsive at all times.

Such support could thus take the form of a platform designed for the continuous and
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seamless life-cycle of services, from design and development to deployment and operation.
Over the past decade, several platforms designed for specific problems in various application
domains have been introduced. Despite some advancements, we identified a clear gap1 for
general-purpose city-oriented platforms that could be highly adaptable and easy to customise
for supporting city resilience according to a complete data-driven perspective.

Starting from these needs, in this chapter, we resume the research on software architec-
tural, algorithmic and technological solutions carried out within the ANR project PROM-
ENADE, culminated with the development of an open-source prototype platform of the
same name2. The platform was designed to facilitate the monitoring and management of
large-scale urban infrastructures towards data-driven resilience and sustainability, focus-
ing on a transportation-related prototypical implementation. In addition, we developed and
integrated into the platform two solutions for real-time monitoring and management of large-
scale traffic networks, i.e., rapid computation of betweenness centrality and real-time traffic
zonal control. These solutions, based on the research results described in Chapter 4, repre-
sented two case-study applications of the proposed platform that confirmed its relevance for
resilience enhancement and allowed for its performance evaluation.

The chapter is organised as follows. Sec. 5.1 details the requirements and modelling
approach adopted for the architectural design of the PROMENADE platform. The platform
global architecture and its main components are detailed in Sec. 5.2. The implementation
of the platform core and its specialisation for large-scale road traffic networks is described
in Sec. 5.3. This section also describes the realistic case studies that we considered for the
evaluation of the platform prototype, by relying on road traffic datasets in the context of real-
time road network monitoring. Sec. 5.4 describes our contribution to the exact computation
of the betweenness centrality metric on very large-scale networks, a metric that we used for
road monitoring purposes. Finally, Sec. 5.5 describes the proposed multi-agent cooperative
traffic zonal control solution.

The results presented in this chapter have been the outcome of an intense research
collaboration with University of Sannio, Italy, and have been at the core of the work of two
PhD students (Cecile Daniel and Lorenzo Goglia) and two postdoctoral fellows (Mohammed
Amine Merzoug and Pierre Lemaire) whom I have co-advised.

This chapter includes content from the following papers:

1. C. Colarusso, A. De Iasio, A. Furno, L. Goglia, M. A. Merzoug, and E. Zimeo,
“PROMENADE: A big data platform for handling city complex networks with dy-
namic graphs”, Future Generation Computer Systems, vol. 137, pp. 129–145, 2022.

2. C. Daniel, A. Furno, L. Goglia, and E. Zimeo, “Fast cluster-based computation of exact
betweenness centrality in large graphs,” Journal of Big Data, vol. 8, no. 1, pp. 1–39,
2021.

3. C. Daniel, P. Lemaire, A. Ladino, A. Furno, N.-E. E. Faouzi, and S. Hassas, “COM-
FORT: Cooperative multi-agent framework for large-scale routing-based traffic con-
trol”, in 102nd Annual Meeting of the Transportation Research Board (TRB), 2023.

5.1 Modelling Approach and Platform Requirements

Cities are highly complex environments with diverse technical infrastructures co-existing and
interacting continuously. For instance, city lights and water infrastructures are essential for
the proper functioning of the road system. In addition to this structural interdependency,
monitoring the vulnerabilities of a given city also means considering its inherent dynamism:

1The interested reader can refer to the related work section from [214].
2The source code of is available on GitHub, https://github.com/licit-lab/promenade_platform
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an electric blackout should be promptly signalled to warn vehicles entering the affected area;
the same may be said for emergencies due to floods.

According to the circumstances, city requirements may: (i) frequently change on a
temporal basis, and (ii) be relaxed or tightened to meet changing Service Level Agree-
ments (SLAs). In technical terms, approaching the complex needs of a city means fast
supporting the elicitation of new service requirements and satisfying the ever-changing non-
functional ones. This section discusses these requirement classes and other helpful general
features a city platform should be equipped with.

Moreover, city complexity requires factorising the infrastructures and related behaviours
in a unifying meta-model to reduce the platform complexity by focusing on a specific set of
functional and architectural choices and quickly extending it to address new and changing
needs. By harnessing the power of abstraction, these tasks can be eased by adopting an
underlying unified meta-model. The considerations reported in Chapter 4, motivated us to
adopt a graph-based meta-model, as will be further detailed below.

5.1.1 Complex network modelling of city infrastructures

Natural and human-engineered systems can be represented as a set of complex time-changing
entities that interact with one another through multiple complex time-changing relationships
(both entities and relationships can appear, disappear, and change their attributes over
time), that originate complex networks.

We consider as complex network a graph that has numerous non-trivial structural fea-
tures (e.g., multiple attributes on edges and nodes, multiple edges between the same pair of
nodes, attributes that change value over time, etc.) and can represent different real-world
systems such as city, social, biological, computer, and technological networks [215, 216].
Moreover, complex networks can also include other types of features such as (i) multiple
layers of semantically-different interactions between the modelled entities, and (ii) multiple
intra-layer sub-networks, each corresponding to a group of entities with specific properties
(e.g., entities within a delimited geographical area, entities belonging to a specific organisa-
tion, etc.).

PROMENADE has been designed to perceive city networks as dynamic complex net-
works in which nodes (vertices) represent different homogeneous or heterogeneous city enti-
ties, and links (edges) correspond to the diverse relationships existing between these entities.
Although a platform centred around the concept of complex network can be exploited to
monitor and study numerous complex dynamic systems in disparate contexts, we mostly fo-
cused on urban technical networks (and specifically transportation), which can be organised
in three levels of abstraction (see Fig. 5.1):

• At level 0, the bare physical space, which is represented by different (interdependent) city
complex systems, like, for instance, transportation infrastructures (road networks, buses,
trams, and metros), telecommunication/phone networks, electric grids, person networks,
etc.

• At level 1, the deployed IoT, Edge, Fog, and Cloud nodes, which are responsible for
providing the necessary technological resources to collect, transfer, store, and process
data coming from multiple real-time sources integrated with the complex systems from
level 0, at high-frequency, fine-resolution, and large spatio-temporal scales [217, 218].

• At level 2, complex network models and the different application services for knowledge
extraction, data visualisation, machine learning, etc.

At the topmost level (Fig. 5.1), the city-system under analysis is abstracted as a complex
multi-modal, multi-layer attributed time-varying network where nodes can have a hierar-
chical organisation (forming multiple physical or logical layers). These different layers can
be utilised to model specific perceptions of the same system or a combination of different
systems. For example, if we consider transportation systems, the obtained network can be
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Figure 5.1: Collecting and leveraging big smart city data as complex dynamic networks.

a multi-layer combination of road and urban transit networks, including buses, trams, and
metros. The considered city-system (each of its layers) can also be divided into numerous
geographical areas or logical groups that identify specific sets of nodes and links (Fig. 5.1:
level 2).

In addition, both nodes and links are characterised by multiple attributes belonging
to two types: (i) static attributes representing the monitored system (e.g., road network
topology and its basic features), and (ii) dynamic attributes obtained through different
continuous operations such as data sampling, aggregation, and computation (e.g., average
travel speed observations).

• Static attributes: to ensure the proper functioning of the platform, nodes and links must
have a non-empty set of static descriptive characteristics that depend on the considered
application. Along with these attributes, both nodes and links can have any additional
number of attributes, depending on the entities they represent. For instance, nodes and
links must have a unique identity (nodeID and linkID). As a second example, when entities
of level 0 (see Fig. 5.1) are non-mobile (have a fixed location) in the physical space, their
representative nodes can be characterised by two or three static parameters, depending on
whether a 2D or 3D space is considered: longitude, latitude, altitude. In some cases (e.g.,
road networks), links can also be located using the nodes that delimit them: fromNode,
toNode (which are the IDs of the adjacent nodes of each link3).

• Dynamic attributes: each operation performed on nodes and links (e.g., data sampling,
graph metric computation, etc.) to measure a dynamic attribute must include at least two
elements: (i) the identity of the entity to which the operation is associated and (ii) the
timestamp at which this operation was executed. This means that nodes and links must
be uniquely referenced through an identifier (ID). An example of attributes falling into
this category is the dynamic location of mobile entities of level 0.
3We recall that any two nodes connected by an edge or any two edges connected by a node are said to

be adjacent.
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5.1.2 Functional requirements

The graph-based meta-model can be exploited to implement the diverse inter-connected
systems composing a city in its entirety. By running specific standard or custom graph
algorithms, the platform enables to (i) analyse a city partially or as a whole, (ii) analyse a
single subsystem or a combination of them, and (iii) rapidly tackle emerging problems by
setting properties on the graphs.

According to this main pillar, we identified a (minimal) set of functional requirements a
graph-based smart city platform should satisfy:

• Static data upload and update: the platform must be able to upload and update the
essential static data (initial graph structure), which represent the main entities of the
targeted city system and their relationships.

• Dynamic data acquisition and storage: the platform should be able to continuously ingest
node and link dynamic attributes from different sources. The collected dynamic data
must be efficiently stored to be easily accessed via multiple frequent queries.

• (Graph-based) data processing support : the gathered big data may be useless if not trans-
formed into meaningful and valuable information. Therefore, the platform must provide
the necessary general-purpose (stream and batch) processing solutions to close the se-
mantic gap between raw data collected from the environment and the information needed
by the targeted services. At the same time, the processing middleware should be flex-
ible enough to easily integrate additional processing services. Moreover, the platform
must also provide graph-based data processing support. This set of functions or graph
algorithms (such as depth-first search, breadth-first search, Dijkstra single-source shortest
path, betweenness centrality, degree centrality, etc.) can be offered by specific graph-based
software or implemented using the general-purpose processing engine.

• Data visualisation: the platform must be able to provide a user-friendly, map-based
Graphical User Interface (GUI) to visualise city infrastructures, their digital represen-
tations, as well as the collected dynamic data, and to enable interaction with the platform
itself.

5.1.3 Non-functional requirements

The adoption of a graph meta-model for a large-scale system requires satisfying some non-
functional requirements as the model grows in complexity, such as:

• Time efficiency : the objective is to offer smooth, timely online and offline services to final
users. To do so, in addition to the possible pre-processing of Edge and Fog nodes, the
different implemented cloud software components must be highly time-efficient in terms
of data ingestion, storage, processing, and querying (both live-streaming and historical);

• Availability : the proposed architecture with all its components and services must be fault-
tolerant. That is, regardless of software and hardware failures, the system must be able
to continue delivering its requested functionalities, and recovery must be instantaneous
and transparent (without data loss or service interruption);

• Scalability : the proposed components must be highly scalable so that they can maintain
the required low-latency performance in front of both an increasing data volume (large-size
or large-amount of data attributes associated with graph entities) and increasing velocity
(high-throughput data);

• Flexibility : the system should be easily changed by adding, updating, or removing software
components at any time without interrupting the currently provided services. This point
is fundamental as one cannot foresee and provide in advance all possible services that can
be useful for a city.

By pairing DevOps, a methodology as well as a set of tools and practices that merge
and automate development and IT operations, with the adoption of the cloud-native mi-
croservices architectural style [219, 220], the effort to implement these requirements can be

- 113 -



Chapter 5. Real-time and Large-scale Solutions for Resilient Urban Networks

lessened.

5.1.4 Additional features

Other requirements depend on the applications and can be satisfied by orthogonal layers. In
general, a plug-in mechanism should be provided to decouple the platform core from every
end-user service that may be needed. The following are examples of possible additional
features for some applications.

• Data privacy : the collected IoT data can be personal and sensitive. They cannot be
utilised in their arrival raw state and must be pre-processed before use (anonymised,
filtered, etc.). Across Europe, as already mentioned in Sec. 3.4, to solve this issue and
harmonise data protection and privacy, the EU has specified a set of strict regulations and
rules, called GDPR4, which all digital businesses and services (using personal sensitive
data) must comply with. To anonymise and filter the received data according to the
consent of customers, the latter can be offered an online contract that lists all their
preferences (e.g., who can access their data, for how long, etc.), and allows them to access
and modify these preferences at any time. The solutions proposed in Sec. 3.4 based on
k−anonymity are an example in this direction.

• Security : whether in the case of collecting personal-sensitive information (such as personal
identification and localisation) or not, security mechanisms (i.e., confidentiality, integrity,
and availability of information) should be provided.

• Transaction integrity : some applications, such as the ones that deal with citizens data
for city services fruition, should ensure the collection of data as shared and immutable
transactions in order to avoid repudiation of the originated data.

Even though we acknowledge the importance of the aforementioned additional require-
ments, these features and those not mentioned here were not specifically addressed in the
prototypical implementation of the platform, being left for future work and platform exten-
sions.

5.2 PROMENADE architecture

PROMENADE is a set of interconnected microservices that can be operationally divided into
four layers and one plane (Fig. 5.2). The platform Initialization and Monitoring Plane (IMP)
is a set of software components dedicated to initialise and monitor the platform and its
different layers. It is responsible for uploading and updating the main static data of the
monitored system. It is also responsible for monitoring the health of the cloud nodes, the
hosted software components, their CPU, memory, and network usage, etc. All these features
can be offered to end-users/administrators via a Web-GUI, through which they can initialise,
monitor, and control the platform, its static and dynamic data, and its overall status.

The first three layers, which have been divided into stream and batch components, are
in charge of big data ingestion, storage, and processing: (i) Stream data Ingestion (SI) and
Historical data Ingestion (HI), (ii) Distributed Asynchronous producer-consumer Queue
(DAQ) and Permanent Storage (PS), (iii) Stream Processing (SP) and Batch Processing
(BP). The fourth Service offering layer (SVC) can query either or both the stream and
permanent storage (DAQ and PS), which can contain raw and processed data, to provide the
desired services to end-users. According to the Lambda architecture [221], PROMENADE
handles both live streams and historical data. However, due to the nature of the applications,
it mainly works on time windows of different sizes, often relying on Kappa architecture
principles [222] at the implementation level.

4General Data Protection Regulation; applicable as of May 25, 2018, in all member states of EU (https:
//gdpr-info.eu/).
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Figure 5.2: Detailed architecture of PROMENADE.

In the following, we detail the layers of PROMENADE in this order: (1) SI and HI,
(2) DAQ and PS, (3) SP and BP, and finally (4) SVC.

5.2.1 Live-stream and historical-data ingestion

Once the main software components (e.g., microservices) have been deployed and the plat-
form properly initialised with the underlying data (static attributes of nodes and links),
it is ready to start ingesting dynamic data and performing its required tasks. To achieve
this goal, the main role of this ingestion (SI and HI) layer is (i) gathering (stream and
historical) data from the defined sources (using predefined or custom software components)
and (ii) preparing this input by making it usable by the upper layers. The HI is a spe-
cific software component responsible for ingesting pre-recorded dynamic data from external
historical sources, while the SI provides live stream data ingestion from IoT devices. For
instance, if the adopted communication protocol is MQTT5, the SI component can be a high-
performance MQTT broker responsible for receiving, decoding, formatting, and handing the
output to the upper DAQ component [223].

5MQTT: The Standard for IoT Messaging, https://mqtt.org
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5.2.2 Temporary and permanent storage

Raw and processed data are stored in two modes: temporary stream queuing and permanent
historical storage.

• Temporary stream queuing : implemented through a DAQ, this component can mediate
the interaction between every other platform component, thus enabling an asynchronous
communication model. For example, the DAQ can receive both raw data coming from the
bottom ingestion (SI) components and processed data generated by the top processing
(SP and BP) components, making them consumable by any other interested component.

• Permanent storage: the PS component can be provisioned from three data sources: (i) ini-
tially by the IMP plane (with the structure and characteristics of the monitored system,
i.e., static node and link attributes), (ii) continuously from the previous DAQ component
located to its left in Fig. 5.2 (dynamic data continually flows from the temporary space to
the dedicated permanent storage), or (iii) at any time from the historical data ingestion
(HI) component located below it. For the received static and dynamic data to be effi-
ciently accessed and analysed at any subsequent time, we designed them to be separately
stored in two distinct non-ephemeral PS components (Fig. 5.2), and therefore undergo
different operations. Concerning static data (i.e., the nodes and the links, as well as their
static attributes), they can be created, updated, and deleted. This is not the case for
dynamic data (i.e., collected or computed attributes); they are recorded as immutable
append-only.

5.2.3 Stream and batch processing

Data are sent to the platform to be processed for immediate (stream) or subsequent (his-
torical) use. These two processing modes are based on the previously presented temporary
and permanent storage (Sec. 5.2.2).

• Stream processing : the SP is responsible for ensuring low-latency, high-throughput re-
trieval and processing of continuous IoT data streams temporarily stored in the lower
DAQ component. The SP is also responsible for data pre-processing. According to the
considered application, the continuously ingested streams can be sent to this component
to undergo all necessary beforehand cleansing, filtering, or aggregation. This stream pro-
cessing component can retrieve data from both the stream and permanent (DAQ and PS)
storage, but can only write (the obtained results) to the stream queue (DAQ). For in-
stance, after pre-processing stream data, the modified data can be returned to the DAQ,
and from there stored in the dedicated permanent storage (Fig. 5.2). This architectural
choice provides time and synchronisation decoupling, which among other things help pre-
vent backpressure issues.

• Batch processing : the BP is responsible for processing historical data. Similar to SP, this
component can also read data from both the permanent and temporary storage (DAQ
and PS), and can only write to the stream DAQ. As examples of possible tasks assigned
to this component, we mention searching, querying, and applying different machine learn-
ing algorithms (classification, clustering, anomaly detection, etc.) to the large available
historical data.

5.2.4 Service offering

Services can perform data processing or data reporting, where the latter may depend on the
former. In particular, processing services, deployed at the level of the stream and historical
pipelines, further process the incoming data and either expose their insight to the upper layer
or persist them back into the storage components. On the other side, reporting services,
which are either consuming raw data or exploiting the processing services output, offer
fully-fledged dashboards.
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5.3 Platform implementation and its specialisation in road
network monitoring

This section discusses the implementation of the platform core framework, called PROMENADE-
v2.0 (Sec. 5.3.1), and then tackles the specialisation of this core for road network monitoring
(Sec. 5.3.2). The empirical evaluation of the platform performance is not reported in this
document for brevity: readers can refer to the full paper [214] for a detailed presentation of
the conducted experiments. This study allowed us to assess the scalability of PROMENADE-
v2.0, and to set the main architectural parameters that significantly impact the performances
of the proposed solution.

5.3.1 Platform core implementation

PROMENADE-v2.0 is the evolution of two previous versions proposed in [224] and [225]. In
the following, we first introduce the underlying software and hardware technologies on top
of which this core has been implemented and then present its main components and their
technological choices. It is worth underlining that the development of the platform is an
ongoing process and that only a part of the components has been fully implemented in the
prototype, as graphically detailed in Fig. 5.4.

Underlying software and hardware technologies

The deployment environment of PROMENADE-v2.0 is a software/hardware infrastructure
composed of:

• An open-source middleware built around Docker6, Kubernetes, and Red Hat OpenShift
(Fig. 5.3), the currently most popular DevOps tools to create and orchestrate containers.
6Docker: https://www.docker.com/
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Figure 5.3: Underlying software and hardware technologies of PROMENADE-v2.0.
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• A virtualization environment built atop OpenStack7 that provides services for provisioning
virtual machines (Nova), providing networking capabilities (Neutron) and managing disks
(Cinder) to offer a block storage system.

• Five physical machines to host the OpenStack services and virtual machines. One of the
physical machines operates as an OpenStack controller (with 1 CPU at 3.20GHz with
4 cores/4 threads), while the other four are configured to work as either Compute or
BlockStorage nodes (each with 2 CPUs Intel Xeon, running at 2.20 or 2.40 GHz, more
than a hundred of GB of RAM, TBs of hard disk, and two 1 Gb/s Ethernet adapters).
The characteristics of the controller, physical hosts (Host 0, 1, 2, and 3) as well as their
corresponding guest VMs (Master, Infra, Compute 1, 2, 3, 4, 5, and 6) are summarized
in Fig. 5.3.

The overall infrastructure provides dynamically provisioned computing units, called
Pods, that can contain one or multiple containers. To satisfy the desired non-functional
requirements, the infrastructure is specialised to govern the way such Pods are built, de-
ployed, and kept in their desired state. This is performed by different layers of controllers
and mechanisms such as: ReplicaSet (self-healing, scalability, ...), Deployment (updates and
rollbacks), StatefulSet, Jobs, Services, Routes, Custom Resource Definition (CRD), Oper-
ators, etc. We redirect the reader to the specific technical documentation to have more
details about the concepts introduced above.

The main role played by each component of PROMENADE has been discussed in Sec-
tions 5.2.1 to 5.2.4. In the following, we discuss the implementation of these components
using open-source software technologies, which have been chosen not only because of their
popularity, stability, and efficiency, but also because they comply with the design objective
of PROMENADE. Tab. 5.1 compiles and maps the components of PROMENADE-v2.0 to
their corresponding Kubernetes objects.

Live-stream ingestion

As Fig. 5.4 shows, Apache ActiveMQ Artemis8 is the stream ingestion tool used to collect
dynamic data from the lower IoT/Edge networks. To face any increase/decrease in the size
of the monitored network, the deployed Artemis broker instances can be scaled up and down
respectively (manually or automatically as needed). Also, to maintain the persistence and
consistency of the data in case of possible crashes of the broker instances, a StatefulSet
controller has been used (Tab. 5.1). These two points apply to any other component of the
architecture that needs such control.

7OpenStack: https://www.openstack.org/
8Artemis: https://activemq.apache.org/components/artemis/

Component K8s object
ActiveMQ Artemis Stateful Set (STS) with 2 Persistent Volume Claims

(PVCs) of 8 GiB each.
Neo4J Three read-write cores (STS) and one read replica

(Deployment). The three read-write cores consist of
1 leader and 2 followers with 3 PVCs of 10 GiB each.

Kafka STS with 3 brokers/pods (0, 1, and 2) that have each
one PVC of 10 GiB.

ZooKeeper STS (0, 1, and 2) with 6 PVCs of 10 GiB each.
Kafka Center Deployment.
kafka-Artemis source connector Deployment.
Kafka-Mongodb sink ingestion/processing connector Deployment.
MongoDB Deployment with 1 PVC of 20 GiB.
Spark The considered cluster is composed of one master.

(CPU: 1 core, RAM: 1 GiB) and one worker
(CPU: 32 cores, RAM: 200 GiB).

Table 5.1: Mapping of PROMENADE-v2.0 components to their corresponding K8s objects.
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Figure 5.4: Detailed architecture of PROMENADE-v2.0. Gray boxes indicate that the corre-
sponding components are not implemented in the current prototype of the platform.

As discussed in Sec. 5.1.1, the considered city-system (at each layer) can be split into
logical groups (e.g., geographical areas) of nodes and links. To implement this design, we
considered a one-to-one mapping between the groups and the internal data structures of
SI, DAQ, and PS components. For instance, a group corresponding to a geographical area
in a city can be mapped to an Artemis queue (SI component). It is worth remembering
that these groups can be defined via the initialisation component from the IMP plane. The
implementation details about the one-to-one mapping of the DAQ and PS components will
be presented in the next subsections. This partitioning configuration allowed us to achieve
better performances.

Temporary queuing storage

The popular Apache Kafka9 and its discovery service ZooKeeper have been considered to
comply with the design of the queuing component. To deal with data persistence while pro-
viding fault-tolerance, a StatefulSet controller has been used for both Kafka and ZooKeeper,
as is the case for Artemis (Tab. 5.1). This way, if one of the stream brokers goes down, it
will be recreated anew while retaining the old session.

9Kafka: https://kafka.apache.org/
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In accordance with the temporary nature of this component, data is not permanently
stored: depending on the chosen retention policy, data can be retained for one hour, one
day, one week, etc. However, an important point about data-flow concerns the source and
sink connectors, which are respectively in charge of getting data in and out of Kafka. We
used three connectors to implement PROMENADE-v2.0 (Fig. 5.4): one customized source
connector (which links Kafka to Artemis) and two out-of-the-box sinks (which both connect
Kafka to MongoDB for ingestion and processing, respectively). The role of MongoDB is
explained in the next subsection.

The adopted Kafka source connector was implemented through an adapter that retrieves
packets from Artemis queues, uniforms their format, and forwards them to Kafka topics.
The two sink connectors work as follows: when Kafka receives data from the Artemis-based
SI component, the first connector writes the received dynamic data of links and nodes (e.g.,
average travel time data of links) from Kafka to MongoDB, while the second is responsible
for writing the computed node and link attributes (e.g., betweenness centrality of nodes or
any other information computed at the SVC level) from Kafka to MongoDB.

As done for Artemis (SI component), to implement the logical grouping of city entities,
also this DAQ component requires a specific topic to be associated to each group.

Permanent historical storage

As detailed in Sec. 5.2.2, PROMENADE-v2.0 handles static and dynamic data with two
distinct non-ephemeral components. To implement this design, we opted for two popular
technologies: Neo4J10 and MongoDB11, for static and dynamic data, respectively.

The former is an open-source NoSQL graph DBMS implemented in Java that supports
efficient graph-based queries of static data (structure and characteristics of the monitored
system). To this end, Neo4J uses Cypher, a declarative query language similar to SQL but
optimized for graph databases.

MongoDB is an open-source NoSQL document DBMS, developed in C++ around two
main concepts: documents and collections. A collection is a group of documents, and a
document is a data structure composed of field-value pairs (JSON objects). We used Mon-
goDB for dynamic data because samples in the form of JSON documents can be immediately
stored, while embedded documents and arrays reduce the need for expensive joins. More-
over, the dynamic schema support, which means that collections do not enforce any schema,
ensures high flexibility for handling different kinds of data.

For each logical group of city entities, we created specific MongoDB collections. Each of
these collections is ultimately in charge of storing the node and link samples coming from
the stream ingestion component, and the node and link attributes computed by the data
processing component.

Data processing

To satisfy the functional requirements listed in Sec. 5.1.2, PROMENADE-v2.0 offers both
general-purpose and graph-based data processing support. The former has been implemented
by leveraging a general-purpose engine for large-scale data processing. Specifically, as shown
in Fig. 5.4, we opted for the well-known Apache Spark12 framework, which can work on both
data streams and data at rest. This way, by injecting appropriate (general-purpose or graph-
based) algorithms into this data processing component, the platform can be easily extended
to provide end-users with fine-grained services catering to the different problems that should
be solved.

10Neo4J: https://neo4j.com/
11MongoDB: https://www.mongodb.com/
12Spark: https://spark.apache.org/
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The basic functions of the graph-based support are provided by Neo4J (which is used
for storing and querying static data). For instance, the library of Neo4J contains implemen-
tations of path discovery and centrality algorithms13. The first category helps to identify
shortest paths and perform search tasks (e.g., depth-first search, breadth-first search, Di-
jkstra single-source shortest path, etc.), whereas the second determines the importance of
distinct nodes in a network (e.g., betweenness, degree, eigenvector centrality, etc.). Other
examples of provided algorithms include community detection, similarity functions, topo-
logical link prediction, node embeddings, node classification, and link prediction.

5.3.2 Specialisation for Road Network Resilience

To assess the flexibility of the proposed platform architecture and prototype, we report in this
section how PROMENADE-v2.0 has been specialised for real-time road traffic monitoring
and management applications.

Data model

Instantiating the general platform means (i) instantiating the graph-based meta-model (of
Sec. 5.1.1) into a specific model related to the considered specialisation, and (ii) provid-
ing the necessary dynamic (node and link) values for this graph through appropriate data
sources, whereas the desired non-functional requirements are satisfied as a consequence of the
application-level choices and the available hardware resources. In particular, we specialised
PROMENADE-v2.0 for road traffic monitoring and management by (i) modelling the mon-
itored road infrastructure as a one-layer directed multi-attributed graph, and (ii) consuming
the constantly changing traffic conditions (dynamic observations) retrieved from its links.

Formally, the road network graph is denoted as GRN = (V,E,A,B), where V is the set of
vertices or road intersections, E is the set of edges or road segments, A is the set of attributes
associated to nodes, i.e., {Av|v ∈ V } and B is the set of attributes associated to the edges,
i.e., {Be|e ∈ E}. The attributes associated to nodes and edges in such a graph could be
static (not frequently changing) or dynamic. More specifically, as shown in Tab. 5.2, nodes
static attributes include: a unique identifier (osmID14), a latitude-longitude value, and their
area name. On the other hand, edges static attributes include: linkID, fromNode, toNode,
street name, street length, speed limit, estimated free-flow speed, area name, and coordinates;
fromNode and toNode are the osmID of the adjacent nodes of an edge and coordinates is its
geometry. The choice of the attributes listed above is dictated by the available fields in the
datasets used in our case study evaluation. However, nodes and links can have other static
attributes depending on the specific application. For instance, our dataset allows further
characterising a link via the width (in meters), the number of lanes, the presence of bridge
or tunnel for the associated road segment. These attributes were ignored in this work as
irrelevant to our case study.

As an additional feature, the single layer of our graph, i.e., GRN , is composed of multiple
sub-networks Gz

RN , each representing a different geographical area z ∈ Z (from a given
segmentation of the modelled city) identifiable via the area name parameter. More formally,
Gz

RN is the sub-network induced by the set of nodes V z ⊆ V and edges Ez ⊆ E that are
geographically located in the given area z.

The mandatory and non-mandatory static characteristics of road networks (Tab. 5.2)
are injected into the implemented platform during the initialisation phase. Once configured
and ready, the platform can then be continuously fed with dynamic attributes (in our case,
average travel time of links, as from Tab. 5.3). The values of the link attributes can be
thus used to produce insightful vulnerability indicators such as the betweenness centrality

13Neo4j Graph Algorithms: https://neo4j.com/developer/graph-data-science/graph-algorithms/
14OpenStreetMap ID (https://www.openstreetmap.org/).
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Node attrib. Type Description

osmID long OpenStreetMap ID14.
longitude double Longitude (x-coordinate in decimal degrees).
latitude double Latitude (y-coordinate in decimal degrees).
area name String Node area name.

Link attrib. Type Description
linkID long Link ID.
fromNode long OsmID of first adjacent node u.
toNode long OsmID of second adjacent node v.
name String Link (street) name.
length double Link length (meters).
speedLimit int Maximum speed (km/h); 0 if not applicable.
ffs double Estimated free-flow speed (km/h).
areaName String Link area name.
coordinates List(double,

double)
Sequence of (lat, long) points representing a street between two
intersections (going from u to v).

Table 5.2: Road segments (links) and intersections (nodes): static data provided to
PROMENADE-v2.0.

Link attrib. Type Description
linkID long Link ID.
timestamp dd/mm/yyyy hh:mm:ss Data aggregation time.
average tt double Average travel time (s).

Node attrib. Type Description
osmID long Node ID.
timestamp dd/mm/yyyy hh:mm:ss Data computation time.
BC double Betweenness centrality.

Table 5.3: Road segments (links) and intersections (nodes): dynamic data collected and produced
by PROMENADE-v2.0.

of nodes (see Sec. 4.2.2), which represents, in turn, a time-varying attribute of nodes (as
reported again in Tab. 5.3).

Stream data generation

The IoT networks correspond to the underlying level on top of which the platform was built
(Fig. 5.4). Although being crucial, in the implemented version of our platform specialisation,
they have been emulated by playing back an available offline dataset. This choice was
motivated by two main reasons. First, the strong dependency of the IoT/Edge systems on
the physical infrastructure of cities, and second, the flexibility of generating data as needed.
The dataset used in the emulation to reproduce realistic road traffic conditions was the same
as the one used in Sec. 4.2 for our experimental studies on vulnerability assessment related
to the city of Lyon. This dataset was organised according to the structure presented in
Tab. 5.2 and Tab. 5.3.

We implemented the emulation software visualised in Fig. 5.5: it can be (i) exploited and
parameterised to stress and test the developed platform while considering extreme conditions
(something that is not possible or very difficult in a physical environment), (ii) easily reused
to study and analyse other complex networks for which offline historical data is available, and
(iii) rapidly and straightforwardly substituted whenever physical IoT networks are available.
Moreover, it does not reduce the overall validity of the platform. It is worth noting that the
emulation focuses on data generation and does not consider edge-to-cloud communication
delays, which were left out of scope for our prototype implementation.

From a technical point of view, the main task of the emulator is to consume the provided
historical dynamic (raw) data (described in Tab. 5.4) and behave similarly to a set of Edge
nodes.

Specifically, we coded the emulator to continuously produce the aggregate (average)
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Figure 5.5: Architecture of the IoT data-driven emulation software.

travel time on links (Tab. 5.3) based on measures of speed observed from individual vehicles.
To this end, the emulator was designed (see Fig. 5.5) to be a multi-threaded Java application
that is composed of three main layers: sensors layer, Edge processing layer, and Edge control
layer :

• Sensors layer : its role boils down to emulating data readings at the Edge. As shown in
Fig. 5.5, it retrieves all samples (raw non-aggregated data of Tab. 5.4) and sends them
as messages to the different queues of the Edge processing layer, based on the area name
attribute from the link static data file of Tab. 5.2. In fact, the Edge processing layer hosts
a queue for each geographic area. By this approach, we kept the geographic division inside
the digital model by implementing it at the level of software components.

• Edge processing layer : the role of each Edge node of this layer is to consume raw samples
(vehicle speed readings from sensors or on-board connected GPS devices) that are con-
tinuously coming to its respective queue (from the emulated sensors layer) and operates
as follows. During the aggregation interval (e.g., 3 minutes in our case), an emulated
Edge node just handles a given vehicle sample by (i) increasing the number of observa-
tions for the link crossed by the vehicle (link.numObservations++), (ii) computing the
vehicle travel time (vtt)15, and (iii) adding the computed (vtt) value to the link statistics
(link.stats). When the aggregation interval expires (after 3 minutes), the node computes
and writes the aggregation result of its links (e.g., avgTravelTime, stdDevTravelTime, ag-
gTimestamp, etc.) to a JSON file that refers to a specific area represented by the queue

15vtt = (link.length * msg.vehicleCoverage) / msg.vehicleSpeed
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from which it consumes the raw data (Fig. 5.5).
• Edge control layer : mimics the behaviour of multiple parallel Edge nodes. More specifi-

cally, once the previous layer has finished its task of aggregating all data, this layer can
start using its output JSON files. As shown in Fig. 5.5, this layer is composed of one
main thread and n Edge threads (corresponding to the n areas of the city of Lyon). The
role of the main thread is to control the online Edge threads by creating, starting, and
synchronising them. Upon their creation, Edge threads sleep indefinitely and wait to be
awakened. Once awaken, each Edge thread reads its corresponding aggregation file, sends
data to Artemis, and then goes back to sleep (waiting for the next aggregation interval to
come).

Link attribute Type Description
linkID long Link ID.
timestamp dd/mm/yyyy

hh:mm:ss
Data collection time.

v_ID int Vehicle or observation ID.
v_speed double Measured vehicle speed (km/h).
v_coverage double How much of the road segment has been covered by the

vehicle when the sample was taken (0 ≤ coverage ≤ 1).

Table 5.4: Road segments: dynamic raw (non-aggregated) data of vehicles.

The emulation process has been designed to be configurable. It can be realistic (samples
generated according to their original timestamps) or virtual (samples generated at a very
high or low speed to enable several analysis scenarios). To be able to do so, a temporal factor
is utilised to allow control of the frequency at which samples are generated while retaining
their respective order. Moreover, each emulated Edge node can either compute the average
travel time (of each link during a given time interval, e.g., every 3 minutes), or it can behave
differently depending on the considered application. For instance, it can act as a collector
by forwarding raw samples to the Cloud platform.

We recall that the one-to-one mapping between geographical/logical partitions and queues
implemented in the emulated Edge processing layer is also adopted in the SI, DAQ, and PS
components of PROMENADE-v2.0.

Implemented services

The specialisation of PROMENADE-v2.0 for road network monitoring provides two main
classes of services: real-time monitoring and traffic management. We also implemented
visualisation support for real-time presentation of the observed traffic conditions.

Real-time monitoring exploits the betweenness centrality as a metric to continuously
detect critical elements of the network, i.e., those characterised by higher values of central-
ity [213]. Introduced in [193], BC measures the importance of nodes or links for the flow of
information in a graph. It is widely used to identify opinion leaders or influential people in
social network analysis [226], vulnerabilities in computer networks [227], and threats from
terrorist networks [228]. As discussed in Chapter 4, BC can also help detect critical inter-
sections in transportation networks [213, 229, 230, 231, 232] and be used as a vulnerability
indicator. The knowledge of critical nodes or links may enact appropriate control actions,
provide relevant recommendations, and guide drivers through less vulnerable itineraries not
traversing high-BC nodes.

Based on Brandes’ algorithms [192, 233], the BC solutions provided by Neo4J are ineffi-
cient [213]. Thus, we used the general-purpose processing engine available in PROMENADE
(Spark) to run our algorithmic approach proposed in [213] for approximate BC computation
on directed and weighted graphs. The latter has been further enhanced in [234] for the exact
computation of BC on undirected and unweighted graphs (see Sec. 5.4). These algorithms
have been integrated as a core feature in PROMENADE-v2.0 to periodically compute the
BC values of large-scale time-varying networks.
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(a) Global state of the road network at 05:45:00 am.

(b) Global state of the road network at 05:45:00 pm.

Figure 5.6: GUI examples - Map with vulnerability indicator (BC). The hottest spots of the
heatmap represent critical nodes with high BC values.

The collected dynamic data, together with the computed BC values (sent to Kafka and
then stored in MongoDB), can be exploited by other additional data processing and visual-
isation services. We used two different connectors for collecting traffic conditions (i.e., the
average travel times) and for producing the real-time vulnerability indicators (i.e., the BC
values of nodes). The first connector is based on a RESTful API and operates in a pull mode,
whereas the second exploits WebSockets and works in a push mode to provide continuous
updates. The Kafka broker handles these operations: whenever an update/event occurs,
it triggers the process of retrieving the necessary data and serving subscriptions. Fig. 5.6
reports an example of the output produced by the platform. BC values are represented in
two different moments of a day using a heatmap layer, showing the evolution of the most
central nodes over the day depending on varying traffic conditions.

The details of the adopted BC algorithm for real-time traffic monitoring are described
in the next section, focusing on the solution proposed for rapid exact computation on large-
scale undirected and unweighted networks [234], leaving the interested reader to our pa-
pers [235, 213] for a detailed description of the approximate versions for weighted and di-
rected networks.

The solutions implemented for real-time traffic management are instead reported in
Sec. 5.5.

5.4 Fast Cluster-based Computation of Betweenness Cen-
trality in Large Graphs

Despite its great potential, BC requires a considerable computation time, which often rep-
resents a barrier to applying this metric in large-scale contexts, especially with dynamic
graphs, whose topology or weights change frequently.

In recent years, the Floyd method [236], which requires O(n3) computation time, has
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been overcome by the well-known Brandes’ algorithm [192]. Given a graph G(V,E), it
exhibits O(n + m) space complexity, O(nm) time complexity for unweighted graphs, and
O(nm + n2log(n)) for weighted ones, where n = |V | is the number of nodes and m = |E|
the number of edges. However, the polynomial complexity of Brandes’ algorithm is still an
obstacle for analysing very large networks. Such a problem becomes even more evident and
limiting if centrality is used for real-time (or quasi-real-time) analysis of dynamic networks.

By building on our previous work on approximated BC computation for unweighted-
undirected graphs [237, 232] and weighted-directed ones [235, 213], we developed, as part of
Cecile Daniel’s PhD thesis, a novel algorithm (widely discussed in [238, 234]) which makes
it possible to perform the exact calculation of BC on large, undirected graphs with a high
speedup when compared to Brandes’ algorithm and a significant improvement over recent
variants of Brandes’ algorithm based on clustering [239].

Undirected graphs are very common in real-world systems: examples include social net-
works, communication networks, protein interaction graphs, people interaction graphs, finite
element meshes, and the topology of transport networks. Among these graphs, scale-free and
Barabási-Albert graphs [240] represent an ideal candidate for the analysis of the proposed
algorithm, since they model many real-world systems, such as the World Wide Web, the
Internet and other computer networks, citation networks, social networks, airline networks,
financial networks, etc. However, considering the application of our approach for real-time
monitoring of road traffic networks, we also examined small-world networks by including in
our benchmark the real-world road network of Lyon, France.

In the following, we introduce the notation used throughout the paper and briefly describe
Brandes’ algorithm. Then, we present our algorithm and the most relevant performance
evaluation results. The presentation of the literature review, the details of the algorithm
implementations (a Scala map-reduce parallel and a sequential one), the mathematical proofs
and detailed performance analyses are left out of this document for brevity but can be found
in the aforementioned publications [238, 234].

5.4.1 Background

Let G(V,E) be an undirected unweighted graph with V representing the set of n vertices
(or nodes) and E the set of m edges (or links). Let s, t ∈ V be two generic nodes of G. We
denote by es,t the edge connecting s and t. The neighbours of a vertex s are all vertices u
such that es,u ∈ E. The distance between s and t, denoted by dG(s, t), is the length of the
shortest path(s) connecting them in G. The number of shortest paths between s and t is
denoted by σs,t, whereas the number of shortest paths between s and t that cross a generic
node v ∈ V is denoted by σs,t(v). It is worth noting that since the graph is undirected, dG
and σ are symmetric functions, thus dG(s, t) = dG(t, s), σs,t = σt,s and σs,t(v) = σt,s(v).
Given a generic node w ∈ V, Ps(w) = {u ∈ V : eu,w ∈ E, dG(s, w) = dG(s, u) + 1} is the
set of direct predecessors of vertex w on shortest paths from s.

The Betweenness Centrality (BC) of a vertex v ∈ V is defined as follows:

BC(v) =
∑

s̸=v ̸=t∈V

σs,t(v)

σs,t
(5.1)

BC(v) thus represents the fraction of shortest paths containing v among all the shortest
paths in the graph between any generic pair of nodes s and t, summed over all possible pairs
s and t with s ̸= v, s ̸= t and v ̸= t.

We refer to Tab. 5.5 for a summary of the notation used in the paper.
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Notation Description

G undirected unweighted input graph
Ĝ a connected sub-graph of G

V set of vertices of G (|V| = n)
VĜ set of vertices of G inducing Ĝ (set of vertices of Ĝ)
VĜ set of vertices in V \VĜ
VHSN set of vertices of HSN

E set of edges of G (|E| = m)
es,t edge connecting vertices s and t

dG(s, t) distance between vertices s and t in G

d̂G(s, t) normalised distance between vertices s and t in G

σs,t number of shortest paths between vertices s and t
σs,t(v) number of shortest paths between vertices s and t which cross vertex v
σ̂s,t normalised number of shortest paths between vertices s and t

Ps(v) set of direct predecessors of vertex v on shortest paths from vertex s
Ps(V) set of direct predecessors of vertices in V on shortest paths from vertex s

BC(v) betweenness centrality of vertex v
δs,t(v) pair-dependency of the pair of vertices (s, t) on the intermediary vertex v
δs,•(v) dependency score of vertex s on vertex v due to all destination vertices
δs,V

Ĝ
(v) dependency score of vertex s on vertex v due to all destination vertices in VĜ

C set of clusters of G
Ci a generic cluster in C
C(v) the cluster vertex v belongs to
C∗ set of extended clusters in G
C∗

i a generic extended cluster in C∗

K set of all the equivalence classes
Ki an equivalence class
KCi

set of equivalence classes of cluster Ci

P set of all the pivots
ki pivot node of the equivalence class Ki

EN set of all the external nodes
ENCi

set of external nodes of cluster Ci

BN set of all the border nodes
BNCi

set of border nodes of cluster Ci

BNCi
(s, t) set of border nodes of cluster Ci on shortest paths from s ∈ VCi

to t ∈ VCi

bi a generic border node in BN

δγs,•(v) global dependency score of s on v due to all t ∈ VC(s) (same as δγ
s,VC(s)

(v))

δγs,VC(v)
(v) global dependency score of s on v due to all t ∈ (VC(s) ∩VC(v))

δγ(v) sum of all the global dependency scores (global BC) on v

δλs,•(v) local dependency score of s on v due to all t ∈ VC(s) = VC(v)

δλ(v) sum of all the local dependency scores (local BC) on v

δϵs,•(v) dependency score of s on v, as external node, due to all t ∈ VC(s)

δϵ(v) sum of all the dependency scores on v as external node

Table 5.5: The notation used with the BC exact computation algorithm.

5.4.2 Brandes’ algorithm

Brandes’ algorithm is the fastest known general-purpose sequential algorithm for computing
BC. It is based on the notions of pair-dependency and dependency score. Let us consider two
generic nodes s, t ∈ V. Given shortest paths counts σs,t(v) and σs,t, the pair-dependency
δs,t(v) of a pair s, t on an intermediary node v ∈ V is defined as follows:

δs,t(v) =
σs,t(v)

σs,t
(5.2)
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The pair-dependency represents the fraction of shortest paths between s and t crossing
v. The dependency score δs,•(v) of a vertex s on a vertex v ∈ V is then defined as follows:

δs,•(v) =
∑

t∈V\{s,v}

δs,t(v) (5.3)

BC can thus be redefined in terms of dependency score:

BC(v) =
∑

s̸=v ̸=t∈V

σs,t(v)

σs,t
=

∑
s ̸=v ̸=t∈V

δs,t(v) =
∑
s∈V

δs,•(v) (5.4)

The key observation of Brandes’ algorithm is that the dependency score obeys a recursive
formula that considers the dependency scores of the successors of node v, i.e., δs,•(w). In
particular, for each s ∈ V we have:

δs,•(v) =
∑

w:v∈Ps(w)

σs,v

σs,w
· (1 + δs,•(w)) (5.5)

Brandes’ algorithm runs in two phases, exploiting equation 5.5. For each (source) node
s ∈ V, in the first phase, a Single-Source Shortest-Paths (SSSP) algorithm, based on
Breadth-First Search (BFS), is executed on G to find all the shortest paths rooted in s.
In the second phase, dependency scores are accumulated by backtracking along the discov-
ered shortest paths using the recursive relation in Eq. 5.5. In backtracking, nodes are visited
in descending order of distance from the source. During these two phases, for each node
v ∈ V, the algorithm builds and exploits the following data structures: the set of direct
predecessors Ps(v) on shortest paths from the source, the distance dG(s, v) from the source,
the number of shortest paths σs,v from the source and the dependency score δs,•(v) that
accumulates the contribution of the source on node v due to all destinations during the
back-propagation step.

5.4.3 Equivalence class

To reduce the number of SSSP explorations in the Brandes’ algorithm, and thus lower
the BC computation time, we exploited the concept of equivalence class. The algorithm
leverages structural properties of graphs to find classes of equivalent nodes: by selecting
one representative node for each class, it becomes possible to calculate BC by significantly
reducing the number of SSSP explorations and thus accelerating its computation.

Formally, given a connected sub-graph Ĝ of G induced by the set of nodes VĜ ⊂ V,
we define an equivalence class Ki as any subset of nodes in VĜ that produce the same
dependency score on all nodes - and for destinations - outside sub-graph Ĝ when used as
sources for SSSP explorations.

By choosing only one representative node (called pivot) for each class, the correct depen-
dency scores of nodes can be computed by multiplying the scores computed via the SSSP
rooted in the pivot by the cardinality of the class. Let ki be a pivot of Ki and v /∈ VĜ, i.e.,
a node outside sub-graph Ĝ. According to our definition, we have:∑

s∈Ki

∑
t/∈VĜ

δs,t(v) = |Ki| ·
∑

t/∈VĜ

δki,t(v)

which, according to our notation, can be re-written as:∑
s∈Ki

δs,VĜ
(v) = |Ki| · δki,VĜ

(v) (5.6)

with ki representing the pivot node of equivalence class Ki. Equation 5.6 clearly shows that
a low number of classes significantly reduces the computation time, by allowing to skip a
high number of SSSP explorations.
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5.4.4 Clustering and BC computation

A possible technique to identify equivalence classes is to consider reference nodes. Given
a generic sub-graph Ĝ, the reference nodes in VĜ are those that need to be traversed to
reach, via shortest paths from nodes in VĜ, any other node in VĜ.

To easily identify reference nodes, we used clustering, and to increase the chances of
identifying a low number of equivalence classes, we considered a clustering technique based
on modularity (i.e., the Louvain method [241]), which allows reducing the amount of con-
nections among groups of nodes belonging to different clusters, and, consequently, lowers
the number of reference nodes to be considered for discovering equivalence classes.

Equivalence class with clustering

Let us assume a given graph G is split into a set of clusters C, where a single cluster Ci is
a connected sub-graph of G induced by a set of nodes VCi ⊂ V.

For each cluster Ci ∈ C, it is possible to identify a set of border nodes BNCi
. A border

node bi ∈ BNCi is a node belonging to Ci and having at least one neighbor belonging to
another cluster, as graphically presented in Fig. 5.7 (circled nodes are border nodes).

To discover equivalence classes, for each cluster Ci, it is possible to group nodes based
on their distance and number of shortest paths to the border nodes. To this end, we can
leverage the following theorem (see [234] for the proof).

Theorem 5.4.1 Let k ∈ R+ and l ∈ R, let Ci be a generic cluster of graph G with border
nodes BNCi , and s, p ∈ VCi . If ∀ bj ∈ BNCi σs,bj = k ·σp,bj and dG(s, bj) = dG(p, bj)+ l,
then δs,VCi

(v) = δp,VCi
(v), ∀v ∈ VCi

.

In other words, any given pair of nodes s, p belonging to the sub-graph induced by nodes
in cluster Ci (i.e., s, p ∈ VCi), produces the same dependency score on all nodes v ∈ VCi

for destinations t ∈ VCi
if the distances and the number of shortest paths from s and p

to every border node of Ci are the same, except for an additive or multiplicative factor,
respectively.

From the previous theorem, we can derive the following corollary:

Corollary 5.4.1 If ∀ bj ∈ BNCi
: σ̂s,bj = σ̂p,bj and d̂G(s, bj) = d̂G(p, bj), then δs,VCi

(v) =

δp,VCi
(v), ∀v ∈ VCi

.

where d̂G(s, bj) represents the normalised distance of the generic node s to the generic border
node bj , defined as follows:

d̂G(s, bj) = dG(s, bj)−minbk∈BNCi
dG(s, bk)

and σ̂s,bj represents the normalised number of shortest paths from the generic node s to the
generic border node bj , and is defined as:

σ̂s,bj = σs,bj/minbk∈BNCi
σs,bk

Normalised distance and normalised shortest paths simplify the identification of classes
since they are characterised by the same vector of normalised distances and shortest paths
as explained below with an example and the support of a graphical representation.

Let G be the simple graph reported in Fig. 5.7(a), decomposed in three clusters, each
separately shown in Fig. 5.7(b). We focus on the blue cluster, denoted as C1, in order to
illustrate the concept of equivalence class (see Tab. 5.6 and Fig. 5.8).
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(a) Example of clustered graph

(b) Three sub-graphs originated by clustering the graph

Figure 5.7: Example of clustering.

Figure 5.8: Classes of equivalent nodes in the blue cluster C1

In C1, nodes 1 and 2 are border nodes (also denoted as b1 and b2 in Tab. 5.6). The
nodes of C1 are related to b1 and b2 according to the properties detailed in Tab. 5.6: for
each node the normalised distances and normalised number of shortest paths to the border
nodes are reported. According to our previous definitions, nodes 3, 4, 6, 14 and 5, 1 can be
grouped in two classes respectively, whereas node 2 is assigned to a singleton class. Nodes
1, 2 and 14 are the pivots16.

16In our previous version of the algorithm, the pivots were chosen to minimise the error. Here, as we will
explain later, any node in a class can be a pivot.
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node v d̂C1 (v, b1) d̂C1 (v, b2) σ̂vb1 σ̂vb2
1 0 2 1 2
2 2 0 2 1
3 0 0 1 1
4 0 0 1 1
5 0 2 1 2
6 0 0 1 1
14 0 0 1 1

Table 5.6: Normalised distances and normalised number of shortest paths for the blue cluster C1.
Note that the values of d̂ and σ̂ are computed considering external node 17, as from Fig. 5.9(b).

Cluster-based exact BC computation

The equivalence classes allow us to compute the dependency score on nodes - and for des-
tinations - that do not belong to the same cluster of the source node, which means that
the contributions computed via this approach are only partial. To obtain the total BC, we
rewrite Eq. 5.4 as follows:

BC(v) =
∑
s∈V

δs,•(v)

=
∑
s∈V

∑
t∈VC(s)

δs,t(v) +
∑
s∈V

∑
t/∈VC(s)

δs,t(v)

=
∑

s∈VC(v)

∑
t∈VC(v)

δs,t(v)︸ ︷︷ ︸
sum of local dependency scores = δλ(v)

+
∑
s∈V

∑
t/∈VC(s)

δs,t(v)

︸ ︷︷ ︸
sum of global dependency scores = δγ(v)

+
∑

s/∈VC(v)

∑
t∈VC(s)

δs,t(v)

︸ ︷︷ ︸
sum of dependency scores on external nodes = δϵ(v)

(5.7)

In Eq. 5.7, the term
∑

s∈V

∑
t∈VC(s)

δs,t(v) is decomposed in two terms, by splitting the
external sum operation (i.e.,

∑
s∈V) into two parts, (i.e., s ∈ VC(v) and s /∈ VC(v)), given

that t ∈ VC(v) is equivalent to t ∈ VC(s), when s ∈ VC(v).
As a result, we can distinguish two main components in Eq. 5.7, local and global de-

pendency scores. The third additional term is necessary to properly take into account the
possible existence of shortest paths connecting nodes of the same cluster via nodes belonging
to one or more different clusters, i.e., external nodes.

We define the local dependency score of a node s on a node v, δλs,•(v), as the sum of
pair dependency scores for which source s, the destinations and node v belong all to the
same cluster. We define the local BC of a node v, δλ(v), as the BC of v computed on the
sub-graph C(v).

Local BC is computed using Brandes’ algorithm inside each cluster17, which generates,
as a by-product, additional information (i.e., the number of shortest paths and distances to
border nodes). This information is later used to group nodes into equivalence classes and to
fasten the computation of global dependency scores.

The global dependency score of a node s on a node v, δγs,•(v), is the sum of all the pair
dependency scores for which destinations do not belong to the same cluster of source node
s. The global BC of the generic node v, δγ(v), is thus the sum of the global dependency
scores for source node s ranging over the whole set of nodes V.

The dependency score of a node s on an external node v, i.e. C(v) ̸= C(s), noted as
δϵs,•(v), is the sum of all the pair dependency scores for which destinations belong to the

17As explained later, in the special case where there are external shortest paths in the cluster, the local
BC is actually computed inside the extended cluster.
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same cluster of the source node s. We denote by δϵ(v) the sum of all the dependency scores
on v, when v is an external node and the sources and destinations are in the same cluster,
different from C(v).

This last term δϵ(v) is equal to zero when the clustering is ideal, i.e. when all the
shortest paths between any pair of nodes of a cluster only contain nodes from that same
cluster. When this condition is not fulfilled, multiple side effects due to the presence of
external nodes have to be taken into account, as discussed below.

External nodes/shortest paths

Given a cluster Ci, two nodes s, t ∈ Ci and two border nodes b1, b2 ∈ Ci, there may exist
shortest paths between s and t that exit Ci through b1, cross a certain number of nodes
belonging to other clusters and then re-enter Ci through b2. We call these shortest paths
external shortest paths and the nodes lying on them that do not belong to Ci, ENCi

,
external nodes of Ci. If the existence of such external shortest paths is neglected, BC
computation will be affected by an error due to the incorrect values of the lengths and the
counts of shortest paths between pairs of nodes inside the same cluster. Consequently, an
error in the computation of the local BC, δλ, and in the identification of equivalence classes
will be introduced. This was one of the approximation errors that affected the previous
versions of our algorithm [237, 232]. To remove this intra-cluster error, we borrowed the
idea proposed by the authors in [239]. After clustering, we build a Hierarchical Sub-Network
(HSN), i.e., a sub-graph of G induced by the border nodes of all the clusters and nodes
lying on the intra-cluster shortest paths between pairs of border nodes of the same cluster.

By retrieving all the shortest paths between pairs of border nodes of the same cluster via
the HSN, we can identify possible external nodes for that cluster. Afterwards, we can extend
each cluster with the related external nodes and use the extended clusters as sub-graphs to
identify equivalence classes and pivots. Thus, local BC δλ can be correctly computed inside
these extended clusters instead of the initial ones. The computation of local BC on the
extended clusters also allows, as a by-product, computing the pair dependency scores on
the external nodes. By accumulating the contributions on each external node from different
clusters (in case a node is external to multiple clusters), it becomes trivial to compute the
δϵ(v) term in Eq. 5.7.

Formally, an extended cluster C∗
i of a cluster Ci ∈ C is defined as a connected sub-graph

induced by nodes VC∗
i
= VCi

∪ENCi
.

(a) Hierarchical Sub-Network from
clusters in Fig. 5.7(b)

(b) Cluster C1, extended with the external node 17

Figure 5.9: Example of external node found through the HSN.

We provide an illustrative example to better understand how the HSN is built and how
it is used to form the extended clusters. Let us consider again the clustered graph from
Fig. 5.7. In cluster C1, nodes 1 and 2 are border nodes, while node 4 lies on the only
intra-cluster shortest path between them. In cluster C2, nodes 17 and 20 are border nodes
and nodes 15, 21, 19 and 16 lie on the intra-cluster shortest paths between them. Finally,
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in cluster C3, there is only border node 8. All the aforementioned nodes build up the HSN
(see Fig. 5.9(a)). If we now consider the shortest paths between border nodes 1 and 2 via
the HSN, we notice that node 17 lies on a shortest path connecting the two former nodes.
Consequently, it represents an external node of C1 (see Fig. 5.9(b)).

Dependency score of pivots

From the equivalence class relationship described in Sec. 5.4.3, a pivot of such a class only
represents the dependency scores on nodes v - and for destinations t - which do not belong
to its own cluster. In fact, given a cluster Ci ∈ C and all its equivalence classes KCi

, from
Eq. 5.6, we have: ∑

s∈Ki

δs,VCi
(v) = |Ki| · δki,VCi

(v) ∀v ∈ VCi ,Ki ∈ KCi . (5.8)

This equation can be exploited to speed up the computation of BC, by building on
Brandes’ algorithm and SSSP explorations, but only holds if v ∈ VCi

. Thus, it cannot be
directly applied to correctly compute values of global BC when v is in the same cluster of
the source. Therefore, the algorithm requires a more elaborated approach to properly and
efficiently calculate the contribution from the pivot of KCi to the BC of nodes v ∈ VCi

18.
First of all, let us decompose the global dependency scores from Eq. 5.7 based on the

cluster of node v as follows:

δγ(v) =
∑

s/∈VC(v)

∑
t/∈(VC(v)∪VC(s))

δs,t(v)+
∑

s/∈VC(v)

∑
t∈VC(v)

δs,t(v)+
∑

s∈VC(v)

∑
t/∈VC(v)

δs,t(v) (5.9)

The previous equation can be further simplified by considering the following claim (see
[234] for the proof):

Claim 5.4.1 In undirected graphs:∑
s∈VC(v)

∑
t/∈VC(v)

δs,t(v) =
∑

s/∈VC(v)

∑
t∈VC(v)

δs,t(v) (5.10)

By relying on Eq. 5.10, it becomes possible, for any given node v, to replace with zero
the sum of the pair-dependencies δs,t(v) for which s ∈ VC(v) and t ∈ VC(v) (the third
term in Eq. 5.9) and compensate later the lack of this term by doubling the sum of the
pair-dependencies δs,t(v) for which s ∈ VC(v) and t ∈ VC(v) (the second term in Eq. 5.9).
In other words, Eq. 5.9 can be rewritten for undirected graphs as follows:

δγ(v) =
∑

s/∈VC(v)

∑
t/∈(VC(v)∪VC(s))

δs,t(v) + 2 ·
∑

s/∈VC(v)

∑
t∈VC(v)

δs,t(v) (5.11)

With this formulation, the computation of global BC for any given node v can be per-
formed by only considering the contributions that source nodes have on nodes v and for
destinations t, where both v and t are outside the source’s cluster. This satisfies the require-
ment for applying equivalence classes to compute dependency scores. Therefore, we can now
use pivots as sources to efficiently compute the exact global BC.

In particular, let δγs,VC(v)
(v) and δγ

s,VC(v)
(v) be the global dependency scores from node

s on node v for destinations not belonging to C(s), but belonging to C(v), and the global
18In our previous version of the algorithm, we used Eq. 5.8 without taking into account the cluster of v

and the pivots were chosen to minimize the error. Here, we avoid such an error during the computation of
global dependency scores by exploiting the properties of undirected graphs, as explained later.
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dependency score from node s on node v for destinations not belonging to C(s) and C(v).
Eq. 5.11 can be rewritten as follows:

δγ(v) =
∑

s/∈VC(v)

[2 · δγs,VC(v)
(v) + δγ

s,VC(v)
(v))] (5.12)

Therefore, given a cluster Ci ∈ C and all its equivalence classes KCi
, we have:

∀v /∈ VCi
,Ki ∈ KCi

,∑
s∈Ki

(
2 · δγs,VC(v)

(v) + δγ
s,VC(v)

(v)
)
= |Ki| ·

(
2 · δγki,VC(v)

(v) + δγ
ki,VC(v)

(v)
)

(5.13)

Eq. 5.13 means that, during the back-propagation phase, we should distinguish between
contributions due to destinations inside the same cluster of v and contributions due to
destinations outside the cluster of v (and the cluster of s).

(a) Problem with nodes belonging to clusters
of pivots (e.g., 1, 2). Dependency scores from
node 14 are set to null.

(b) Solution for undirected graphs. The
contributions on nodes of the blue cluster
(e.g., 1, 2) are corrected by doubling depen-
dency scores from sources of other clusters
for destinations inside the blue cluster).

Figure 5.10: Global SSSP explorations from pivots

For a better understanding of the formulas above, let us consider an illustrative example
by leveraging again the clustered graph from Fig. 5.7 and the equivalence classes of cluster
C1 from Fig. 5.8.

The pivot node of the equivalence class composed of nodes {3, 4, 6, 14} is node 14.
According to the proposed approach, we calculate the dependency scores from node 14 on all
nodes of clusters C2 (orange) and C3 (green) and multiply them by 4, avoiding to calculate
the dependencies scores from nodes 3, 4 and 6. This way, the computation time is divided
by 4. However, while it is correct to multiply by 4 the dependency scores for nodes in C2

and C3, it is not for nodes belonging to the same cluster of the pivot (see Fig. 5.10(a))
since nodes 14, 3, 4, 6 of the class are indeed equivalent, but only with respect to border
nodes of cluster C1 (i.e., nodes 1, 2). Therefore, we cannot multiply by 4 the dependency
scores on the nodes internal to cluster C1 (i.e., 1, 2, 3, 4, 5, 6) since these scores are not
the same when computed, for instance, from node 14 or node 4. To avoid the problem, we
put these dependency scores to 0 during the SSSP explorations performed from pivot node
14. These neglected scores will be later compensated (via multiplication by two) during the
SSSP explorations performed from the pivot nodes of C2 and C3 (see Fig. 5.10(b)).
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Back-propagation. Differently from Brandes’ algorithm, it is not possible to directly
express the global dependency score19 of a node v, δγs,•(v), in terms of the global dependency
scores of w, δγs,•(w) , where v ∈ Ps(w). Indeed, when C(v) ̸= C(w) (i.e., when crossing a
cluster), the set of destinations of w which do not belong to C(w) can be composed of both
destinations belonging to C(v) and destinations not belonging to C(v): for the former, the
pair-dependencies have to be multiplied by 2, whereas for the latter no further operation is
needed (see Eq. 5.13).

To overcome this problem, we decided to apply the classic recursive formula of Brandes’
algorithm (Eq. 5.5) on a vector of contributions while propagating the global dependency
scores δγs,•(v). The dimensions of this vector of contributions correspond to the number of
clusters, so that the contribution due to a destination t is assigned to δγs,VC(t)

(v). Formally,
we have the following recursive formula:

∀Ci ∈ C \C(s) : δγs,VCi
(v) =

∑
w:v∈Ps(w)

σs,v

σs,w
∗ (1w∈Ci

+ δγs,VCi
(w)), (5.14)

where 1w∈Ci represents a Boolean variable equal to 1 if w ∈ Ci, 0 otherwise20. At the
end of the back-propagation phase, we put the dependency scores of nodes v belonging to
the same cluster of the (pivot) source node to 0, whereas the dependency scores of nodes
belonging to the other clusters are computed using the following formula:

δγ
s,VC(s)

(v) = 2 · δγs,VC(v)
(v) +

∑
Ci ̸=C(v)

δγs,VCi
(v) (5.15)

Finally, according to Eq. 5.13, δγs,•(v) is multiplied by the cardinality of the equivalence
class s belongs to.

5.4.5 Empirical Evaluation with Synthetic and Realistic Networks

We compared the execution times obtained with the implementation of our algorithm (named
E1C-FastBC ) to those obtained with other algorithms by using the Algorithmic Speedup
(AS). Given two algorithms, a1 and a2, the AS of a1 over a2 with p cores, noted as AS

a1/a2
p ,

is defined as T a2
p /T a1

p , where T a2
p and T a1

p are the computation times obtained with p cores
using algorithms a2 and a1, respectively. Hence, the larger the value of AS, the faster a1 is
compared to a2 with the same computing resources. For example, AS

a1/a2
p = 2 means that

the time taken by a1 is half the time taken by a2 and therefore that a1 is two times faster
than a2.

In particular, we compared the E1C-FastBC algorithm, labelled with E , with Brandes’
algorithm, labelled as B and with the solution proposed in [239], labelled with H. We chose
this algorithm for comparison because it belongs to the same category as ours (cluster-based
computation) and it addresses the problem of exact BC computation.

However, due to the unavailability of source/executable code for H, we only considered
the AS metric in sequential mode, by relying on the indications provided by the authors in
the paper for its computation (see Eq. 7 in [239]).

To further explore the performance of our solution, we also analysed the efficiency of
the E1C-FastBC algorithm, based on the canonical definition of speedup. Specifically, the
speedup obtained with p cores is defined as Sp = Ts/Tp, where Ts is the computation time
in sequential mode and Tp is the computation time with p cores. The efficiency with p cores,
noted as Ep, is then defined as Sp/p

21.
19δγs,•(v) is equivalent to δs,VC(s)

(v)
20This is the part of contribution due to w as a destination
21Efficiency Ep is strictly, but non linearly, related to the AS metric when used to compare to different

algorithms. From the definition of speedup: Ta2
p = Ta2

s /Sa2
p , where Ta2

s and Sa2
p are the execution time
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In all reported tests, we checked the accuracy of our solution by always observing zero
error on BC values.

Datasets and Experimentation Testbed

In our experimental tests, we considered both synthetic and real graphs.
For the first category, we focused on scale-free graphs generated using the implementation

of the Barabási-Albert model provided by the Python library NetworkX. According to that
model, a graph of n nodes is grown by attaching new nodes, one at a time, each with m′

edges that are preferentially attached to existing nodes with high degree. In our case, m′,
which is called the preferential attachment coefficient, was chosen equal to 1. This led us to
consider graphs with m = n − 1 edges and an average degree approximately equal to 222.
This choice was motivated by the features of the current implementation of our algorithm
that benefits of high modularity. In other words, this class of dataset was considered as
the best-case scenario. However, as mentioned in the introduction, this does not limit the
applicability of our solution because many real-world systems can be represented with the
Barabási-Albert model. In particular, to analyse the algorithm in terms of performance and
scalability, we generated graphs with different sizes (see Table 5.7).

Graph n m davg dmax ccavg

Synthetic

barabási-albert 6,250 6,249 1.999 126 0.000
barabási-albert 12,500 12,499 " 225 "
barabási-albert 25,000 24,999 " 344 "
barabási-albert 50,000 49,999 " 463 "
barabási-albert 100,000 99,999 " 1,138 "
barabási-albert 200,000 199,999 " 676 "
barabási-albert 400,000 399,999 " 1,142 "
barabási-albert 800,000 799,999 " 1,587 "

Real

web-webbase-2001 [242] 16,062 25,593 3.187 1,679 0.224
ego-twitter [243] 22,322 31,823 2.851 238 0.072

internet [242] 124,651 193,620 3.107 151 0.062
lyon-road-network 156,102 178,845 2.291 8 0.017
email-euAll [244] 224,832 339,925 3.024 7,636 0.079

Table 5.7: Topological information of synthetic & real graphs. The names of the graphs are
given in the first column, whereas the number of nodes and edges are given in the second and
third columns. davg and dmax are the average and max degree, respectively. ccavg is the average
clustering coefficient.

For the second category, we focused on real graphs23 available in public datasets. Table
5.7 reports all the graphs used, together with some relevant properties. In particular, for
each graph, the table reports the average degree (davg), the max degree (dmax) and the
average clustering coefficient (ccavg).

All the datasets, except the one related to the Lyon road network24, are scale-free graphs.
For the sake of brevity, we only report results related to the synthetic graphs and the lyon-
road-network dataset in this document.
in sequential mode and the speedup obtained with p cores of algorithm a2. Similarly, Ta1

p = Ta1
s /Sa1

p .
By these equations, the AS metric can be rewritten as: AS

a1/a2
p = (Ta2

s /Ta1
s ) · (Sa1

p /Sa2
p ). Since for a

given number of cores p, the ratio of the speedups equals the ratios of efficiency of the two algorithms, i.e.,
Sa1
p /Sa2

p = Ea1
p /Ea2

p , we thus have AS
a1/a2
p = (Ta2

s /Ta1
s ) · (Ea1

p /Ea2
p ). The relationship between AS and

Ep suggests that if a1 and a2 have comparable efficiency with p cores, then the AS only depends on the
ratio of the execution times of the two algorithms in sequential mode, thus providing interesting insights to
analyse the two different solutions comparatively.

22Each link contributes 2 to the sum of the degrees. Thus, the sum of all degrees in the network is
2 · (N − 1). For large values of N , the average degree approaches 2.

23For each graph, we extracted the largest connected component. Then, the latter was converted in an
unweighted undirected graph.

24The lyon-road-network dataset was supplied by the French National Institute of Geographic Information
(IGN). https://www.ign.fr

- 136 -

https://www.ign.fr


5.4. Fast Cluster-based Computation of Betweenness Centrality in Large Graphs

The tests were conducted on the PROMENADE-v2.0 platform prototype (Sec. 5.3.1),
using the Spark BP component for our experiments. It was deployed on a server machine
with 128 GB of RAM and 2 sockets Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with
14 physical cores and 2 threads per core for a total of 28 logical cores per socket and 56
virtual cores in hyper threading, running Linux Debian as operating system. Both Brandes’
algorithm and E1C-FastBC were implemented in Scala.

Synthetic Graphs Analysis

Fig. 5.11 shows the algorithmic speedup of E1C-FastBC over Brandes’ algorithm, AS
E/B
p ,

obtained on the synthetic graphs in both sequential and parallel modes. In particular, we
doubled the number of nodes from 25,000 to 800,000, and we considered a number of cores
p equal to 1, 5, 10, 15, 20 and 25. We estimated by log-log regression the computation times
with Brandes’ algorithm for the graphs with 400,000 and 800,000 nodes, since executions
would have required weeks to complete, whereas our algorithm completed in maximum 31.5
minutes and 1.64 hours, respectively (sequential mode).
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Figure 5.11: Comparison with Brandes’ algorithm. Algorithmic speedup analysis -
AS

E/B
p=[1,5,10,15,20,25]

As shown in Fig. 5.11, AS
E/B
p increases with the size of the graph, meaning that E1C-

FastBC is not only faster than Brandes’ algorithm but its speedup grows with larger graphs.
This is due to the fact that the computation of our algorithm is strongly dependent on the
number of border nodes (|BN|), pivots (|K|) and external nodes (|EN|), in addition to the
number of nodes (n) and edges (m). The first two variables increase slowly compared to the
number of nodes and edges, while the third is almost always zero (only in one case it was
equal to 2). The drawback is that AS

E/B
p decreases as the number of cores increases. This

behaviour is due to the fact that the Brandes’ algorithm is more efficient than E1C-FastBC
(see Fig. 5.12).

This means that the ratio Ea1
p /Ea2

p in the relationship between the AS metric and the
efficiency is lower than 1. Consequently, the AS value in the sequential case is not preserved
as the number of cores increases. However, as the following efficiency analysis will further
clarify, this does not mean that E1C-FastBC is less scalable than Brandes’ algorithm, but
rather that it needs very large graphs to better exploit the available computing resources.
This statement is also confirmed by Fig. 5.11, which clearly shows that when the graph size
is 400,000, a higher number of cores performs even better than a smaller one: in particular,
we have that the AS

E/B
p is better with 5 cores than with 1 core. To have a similar behaviour

even for a number of cores greater than 5, we should consider larger graphs.
To better understand the performance of E1C-FastBC, we investigated its efficiency with

respect to that of Brandes’ algorithm. Fig. 5.12 reports the results of the efficiency analysis
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Figure 5.12: Comparison with Brandes’ algorithm. Efficiency analysis - Ep=[1,5,10,15,20,25]

performed for the two algorithms. In both cases, it is possible to observe that: (i) the
efficiency decreases as the number of cores increases and (ii) for a given number of cores, it
increases as the number of nodes increases.

However, it is worth highlighting that in the efficiency analysis, we use different but
overlapping ranges of values for the number of nodes. In particular, for our solution, we
select larger graphs since we aim to show that our algorithm scales well, especially with
very large graphs. In fact, the efficiency trend is almost the same in the two cases reported
in Fig. 5.12. Moreover, given the maximum values of the number of nodes for the two
algorithms (800,000 for ours, 200,000 for Brandes’), efficiency values are approximately the
same with 5 cores (i.e., the first considered parallel configuration) but significantly diverge
as the number of cores increases. In particular, efficiency of E1C-FastBC decreases with a
higher rate than that of Brandes.

The reason for this behaviour lies in the reduced amount of computation required by
our solution, which can be satisfied with limited parallelism (i.e., number of cores). Indeed,
pivots allow to significantly decrease the number of (modified) Brandes’ SSSP explorations
performed on the whole graph, which represent the heaviest part of the whole computation,
thus reducing the workload of each core.

Our solution also introduces another benefit: it allows to mitigate the variability of the
computation times due to the different topological characteristics of the graphs and to the
partitioning of data performed by Spark during executions. Indeed, there may exist some
partitions of the RDDs characterized by a high concentration of nodes that generate the most
complex shortest path trees. The time required to process these partitions directly impacts
the time required to process the whole RDD, since partitions are processed in parallel.
However, Spark tasks process each single partition sequentially. This aspect, combined with
the fact that the number of partitions of an RDD is always equal to the number of cores
and the default partitioning scheme of Spark distributes data evenly across the partitions,
explains the punctual efficiency drops that can be observed in the plot related to Brandes’
algorithm, when using graphs with 50,000 and 100,000 nodes and a low number of cores
(i.e., the cavity that can be observed for 50,000 and 100,000 nodes with 5-10 cores in the
3d plot of Fig. 5.12(b)).

Fig. 5.13(a) reports the algorithmic speedup of E1C-FastBC over Brandes’ algorithm,
AS

E/B
p=1 , alongside with the algorithmic speedup of the approach in [239] over Brandes,

AS
H/B
p=1 , on synthetic graphs and in sequential settings. AS

H/B
p=1 is analytically computed

based on Eq. 7 provided in [239].

Using such equation, it is possible to observe that: (i) AS
H/B
p=1 depends on the number
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of clusters (|C|) and the average degree (davg), and (ii) when |C| + 2 ≫ davg/2, it can
be approximated with davg/2. Therefore, since for synthetic graphs the average degree is
constant and the number of clusters increases with the number of nodes, AS

H/B
p=1 is always

approximately equal to 1 (the average degree is 2). In particular, the higher the number of
clusters, the closer to 1 the AS

H/B
p=1 . This means that the algorithm proposed in [239] cannot

improve that of Brandes. Conversely, ours improves Brandes by a large multiplicative factor.
We can thus conclude that our solution always outperforms the one in [239] with synthetic
graphs.

Real Graphs Analysis

Fig. 5.13(b) reports the results of the analysis of AS
E/B
p=1 and AS

H/B
p=1 carried out on real

graphs. AS
H/B
p=1 is computed again using Eq. 7 provided in [239]. In all cases, our solution

outperforms the one in [239].
To further confirm the considerations on the scalability of our solution, reported in the

previous section, we analyse in the following both the algorithmic speedup and efficiency
values of E1C-FastBC on the lyon-road-network graph, for which we observed a very high
number of pivots (about 60% of the number of nodes) and the lowest algorithmic speedup
factor. As shown in Fig. 5.14(a), the AS is always greater than 1, thus confirming the
usefulness of our solution, although the reported values are not comparable to those obtained
on synthetic graphs (see Fig. 5.11) with a similar number of nodes (100,000 and 200,000). In
spite of this, the algorithm becomes more scalable and efficient than in the case of synthetic
graphs with 100,000 and 200,000 nodes due to the increased amount of computation resulting
from the higher number of border nodes, pivots and external nodes (see Fig. 5.14(b)).

In conclusion, our performance analysis confirmed the possibility to use E1C-FastBC for
faster computation of BC and motivated its integration in the PROMENADE-v2.0 platform
core. Specifically, we observed computation times in the order of few minutes to few seconds
for analysing a large road network (more than 150,000 nodes and 170,000 links) such as
that of Lyon, France, depending on the available hardware, and with limited parallelism.
These figures indicate that our solution can effectively support (quasi) real-time monitoring
of large networks, thereby representing a useful tool in the context of resilience enhancement
of rapidly varying networks.
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Figure 5.13: Comparison with the HSN solution for synthetic (a) and real graphs (b).
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Figure 5.14: Performance analysis of the E1C-FastBC algorithm versus Brandes on the real graph
lyon-road-network.

Moreover, our solution could benefit from customised clustering methods for more effec-
tive identification of border nodes in (synthetic and real) graphs with different topologies
and further improve its scalability. The efficiency of E1C-FastBC could be also improved by
means of a better mapping of the algorithm on distributed resources, when data-parallelism
is exploited, and by improving locality especially when different Spark executors are used.

5.5 Multi-agent-based Large-Scale Traffic Control

As a second case study of the PROMENADE platform, we proposed a multi-agent macro-
scopic solution for large-scale traffic control in urban environments [245].

Traffic control strategies are fundamental to reducing congestion and pollution, but they
require to address multiple challenges to be effective, especially if the goal is to address
large traffic networks encompassing multiple and heterogeneous road axis and multi-modal
mobility options. This is typical in urban areas of large metropolitan modern cities. More-
over, besides efficiency and scalability, the control strategy should respect user privacy by
relying on a minimum to null amount of personal information, preserving accessibility by
not penalising specific travellers or city areas, and introducing minimal burden to individu-
als with respect to the travel experience. Furthermore, large-scale control strategies should
help achieve resilience objectives, i.e., by reducing circulation in highly-vulnerable areas and
enforcing effective rerouting in the presence of accidents or for emergency evacuation.

Traditional approaches to traffic control include perimeter control [246] and optimal
route guidance [247]. Despite their proven effectiveness in controlled environments and
some successful small-scale on-the-field application, such approaches usually suffer in real-
world settings, either in terms of application to large metropolitan networks (i.e., they tend
to simply move congestion outside the controlled areas) or in terms of user acceptability as
they depend completely upon the users following the rerouting suggestions. Moreover, such
solutions typically rely on centralised approaches, which significantly reduces their scalability
[248].

Based on these considerations, we designed and experimented, in the last part of Ce-
cile Daniel’s thesis, a novel decentralised control strategy, named COoperative Multi-agent
FramewOrk for large-scale Routing-based Traffic control (COMFORT). The solution aims
at homogeneously distributing road traffic between zones of a large urban network. The
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idea is to periodically assess, in a real-time like fashion, the traffic conditions locally to
each zone, by relying on traffic sensors (such as loop detectors) and the MFD theory [249].
Local information about traffic congestion is shared between zones via gossiping to guaran-
tee rapid reaction to congestion formation and indirectly transmitted to vehicles through
rerouting suggestions. The choice of being rerouted and the possible new route computation
are performed at the vehicle level, ensuring privacy by design25 and leaving the final choice
of rerouting to the driver26.

Differently from [248] and by fully adhering to the principles of the PROMENADE ar-
chitecture in terms of scalability requirements, we adopted a fully decentralised approach.
The latter is based on a cooperative Multi-Agent System (MAS) paradigm partially inspired
by the work of Lequay et al. [250] related to reducing energy consumption in an electric-
ity distribution network. We designed and implemented a simulation-based prototype of
COMFORT as part of the PROMENADE platform.

According to the MAS paradigm, vehicles were considered in COMFORT as one specific
kind of agent. Geographical zones were also considered as agents. They process information
related to the accumulation of vehicle agents within the corresponding spatial region and
accomplish specific interactions (mainly control actions, but also information sharing) with
vehicles and neighbouring zone agents. This inherently defines a multi-layer framework. The
main interactions between the two considered kinds of agents are reported in the activity
diagram of Fig. 5.15.
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Figure 5.15: Activity diagram of the interactions between agents in COMFORT.

The zone agents are associated with attributes that represent the main time-dependent
variables involved in the control strategy: (i) total flexibility, f tot

i (t), a time-dependent func-
tion inversely related to the congestion state of the zone, i.e., the difference between the

25In our approach, vehicles do not communicate their final destination or the route they are following.
Instead, they only signal the next area they are willing to traverse to the zone they are currently in.

26It is worth noting that COMFORT assumes a share of travelling vehicles to be connected via the urban
infrastructure or via a software mobile application available to the driver. Connected vehicles are the only
vehicles that can receive recommendations for rerouting from the area they are travelling through. On the
contrary, traffic conditions (estimated via sensors) include both connected and non-connected vehicles. To
model different scenarios of connectivity and user acceptability, we tested different values for the probability
of a vehicle accepting a rerouting suggestion.
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critical accumulation (derived from the MFD of the zone) and the current observation of
traffic conditions in the zone27; (ii) actual flexibility, fi(t), representing the evolution of
traffic accumulation in the zone, computed over consecutive discrete time steps and corre-
sponding to the number of vehicles actually accepted by the given zone during the last time
step; (iii) grade, gi(t), expressing the ability of the zone to cooperate with its neighbours
by reliably engaging its flexibility over time, i.e., by accepting a sufficiently high number of
vehicles with respect to its total flexibility. The core concept of the control strategies is to
generate rerouting advice for vehicles before they enter a congested area. This is achieved by
computing a rerouting timeout, which depends on a combination of the following variables:
the level of congestion (i.e., lower total flexibility) and the reliability (i.e., the grade) of the
neighbouring zone. Essentially, the more congested and less reliable a given neighbouring
zone is, the sooner a vehicle expected to enter it will be advised to compute an alternative
route, avoiding that zone. A detailed description of the aforementioned variables and of the
rerouting strategy can be found by the interested reader in [245].

The preliminary prototype of COMFORT has been evaluated through simulation on a
grid Manhattan network with 3,712 nodes and 10,324 edges, partitioned into 25 (5X5) zones,
enabling a comparison of our control strategy performance depending on the zone size and
density. We considered the Total Travel Time Reduction (%TR), expressed in percentage,
to evaluate the impact of our strategy and compare the results to a no-control baseline:

%TR =
TTTnocontrol − TTTcontrol

TTTnocontrol
(5.16)

with TTTi representing the total travel time, i.e., the sum of the duration of all trips gen-
erated during the simulation, when using a specific control strategy i. A positive %TR
indicates the control strategy has been capable of improving the reference no-control sce-
nario, whereas a negative %TR points out a pejorative impact of the control strategy with
respect to the reference situation. An additional element to be considered to evaluate the
effectiveness of the control strategy is the number of generated reroutings. We hypothesised
that rerouting represents a cost for the driver, and thus the strategy should be tuned to
maximising %TR with a low number of vehicle rerouting.

In the Manhattan scenario, we measured a consistent improvement in terms of %TR
over the reference no-control situation, with respect to different combinations of hyper-
parameters. The best configuration allowed achieving a %TR up to 16%, for a total number
of approximately 2 500 reroutings (with respect to 16, 743 vehicles considered in the simula-
tion).

Similar analyses were performed also in the realistic case of the road network of Lyon,
France (see Fig. 5.16). We observed an improvement in terms of %TR up to 18% in the best
hyper-parameter configuration. Very few reroutings were necessary to improve the reference
situation. The maximum percentage of rerouted vehicles was 6.7%, corresponding to 4, 700
rerouted vehicles.

The results reported in this section are encouraging and represent a first step towards an
efficient and privacy-aware real-time traffic control solution for large-scale urban networks.
Additional efforts are needed to refine the control strategy and prove the applicability and
efficiency of the proposed solution. In particular, the prototype requires an extensive eval-
uation in terms of the actual acceptability rate of the rerouting suggestions by travellers
as well as the critical amount of connected vehicles necessary to significantly reduce the
overall urban congestion. In that respect, we are considering a real-world deployment of the
COMFORT prototype on the PROMENADE platform, which would require the real-time
collection of traffic flow data, jointly with the development of a mobile application to pro-
vide a real-time rerouting service to vehicles. We are also currently exploring the potential
integration of the proposed approach with our existing solutions for efficiently computing

27A zone has a high flexibility when it can accept a high number of vehicles with respect to its critical
capacity.
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Figure 5.16: The northern region network of the conurbation of Lyon (3rd, 6th district of Lyon
and Villeurbanne). The network contains 1,883 nodes, 3,383 links and is divided in 17 zones. Each
zone is represented by a distinct colour.

betweenness centrality. The primary idea involves incorporating an additional term, repre-
senting a time-varying zone-criticality indicator, into the rerouting trigger. This indicator
is computed by aggregating the BC values of nodes within neighbouring zones. The aim
is to mitigate the pressure on areas that could become more prone to grid-locks at any
given moment due to a high traffic concentration and limited alternative routes available to
bypass emerging traffic bottlenecks or capacity drops (e.g., due to accidents or other disrup-
tive events). Lastly, to further minimise reaction time and introduce proactive measures in
managing traffic congestion and disruptions, we are working on developing traffic forecasting
solutions (see Chapter 6) that could be integrated into the control strategy.
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Chapter 6

Conclusion and Perspectives

In this document, I have attempted to summarise the main results I have attained in the
past seven years of research within the interdisciplinary and challenging domain of human
mobility resilience. This contribution has been presented in terms of three main methodolog-
ical axes: (i) mining of large and heterogeneous data, (ii) modelling and analysis of complex
and large networks, and (iii) development of real-time big data platforms and algorithms.

These axes have been explored in the context of four different aspects of resilience:
(i) learning from the past, (ii) anticipating what to expect, (iii) monitoring the critical
properties of the system, and (iv) responding with the help of proper decision-making tools.

More specifically, the contribution that I consider the most relevant among the different
results achieved are the following:

• We demonstrated the possibilities offered by passively collected mobile phone data,
and, particularly, Network Signalling Data, to accurately estimate travel demand and
traffic performance indicators, as well as precisely reconstruct mobility trajectories in
urban environments.

• We have developed state-of-the-art approaches to k-anonymise trips reconstructed from
mobile phone data, with minimal loss of information and reduced computation time,
paving the way to the possibility of making the resulting datasets available to the
community in an open, privacy-aware aggregate format (dynamic Origin-Destination
matrices).

• We have combined solutions from two different but increasingly close fields - data
science and complex network theory - to identify metrics and approaches that can help
perform real-time monitoring of transportation networks and anticipate the occurrence
of disruptive events.

• We have combined historical data analysis with numerical programming to identify
resilient and sustainable on-demand flexible mobility services (i.e., Park-and-Ride sys-
tems), which can complement the existing transport offer with a solution that can
withstand a large set of likely-occurring disruptive scenarios.

• We have leveraged distributed computing, cloud and big data technologies to build
the foundation of a novel extensible platform for real-time monitoring and control of
large-scale networks, and, more in general, complex and interdependent urban systems.

• We have developed a state-of-the-art algorithm for the fast computation of Between-
ness Centrality, a fundamental metric for discovering opinion leaders and vulnerable
components of different kinds of networks.
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Once more, I am grateful to all the researchers I have had the opportunity to collaborate
with over the past years, as their invaluable contributions deserve a substantial portion of
credit for these achievements.

In the rest of this chapter, I will highlight some ongoing works, presented as short-term
perspectives (Sec. 6.1), that will further develop the main findings described above. The
planned short-term research has fairly well-identified objectives and methodological bases,
and I, therefore, expect conclusive results in the next few months and years. In section 6.2,
I will instead outline some broader scientific directions that are likely to drive my research
in the longer term, and for which the boundaries and precise methodologies are inevitably
less clear. Nevertheless, I will try to identify more specific research themes or questions to
help implement my research plan and facilitate the achievement of concrete results in the
long term.

6.1 Short-term Perspectives

In the short term, my primary objective is to finalise and extend the work conducted within
various research projects I have recently been or am still involved in. This section provides
an overview of this ongoing work, capturing its current state and outlining my immediate
future directions. These activities revolve around three main topics: (i) travel demand
analysis and modelling with a special focus on multi-modal demand variations in the presence
of disruptive events; (ii) accurate short-term traffic forecasting, in multi-modal settings
and with respect to atypical events; and (iii) synthetic generation of presence and multi-
modal mobility data. It is worth underlining that these themes all relate to some extent
to enhancing the resilience of multi-modal transport networks, as will be further detailed
below.

The first and second research subjects are strongly interrelated, as they globally aim to
develop accurate models of multi-modal transport network dynamics by advancing the un-
derstanding of travel demand changes during non-recurrent events with respect to recurrent
ones. These advancements will ultimately contribute to the state-of-the-art in the field of
mobility management during atypical events. For the first topic, we are leveraging unsu-
pervised machine learning solutions to identify and characterise travel demand variations in
the presence of disrupted mobility episodes by mining heterogeneous data sources covering
large periods of observations. Concerning the second one, we are exploring supervised deep
learning frameworks to enhance the quality of short-term traffic prediction. Specifically, we
are focusing on graph neural networks and transformer-based architectures, which represent
the state-of-the-art in the field. The initial results of these studies are reported in the two
subsections of Sec. 6.1.1.

The third research subject focuses on the generation of synthetic data by employing sta-
tistical inference techniques to fuse multiple available sources of real data, such as mobile
telephony data, population statistics, survey data, and OD matrices. The goal of this re-
search is to obtain rich and reliable synthetic population, travel demand and transport-mode
choice data that closely mirror real-world conditions, as reported in the input data. These
synthetic dataset can have useful applications in terms of resilience, enabling researchers to
conduct in-depth and realistic vulnerability analyses and experiments without compromising
user privacy. Ultimately, this research shall contribute to developing more robust and sus-
tainable transportation design and management strategies. Our current approach, further
detailed in Sec. 6.1.2, not only has the potential to enhance the accuracy of simulation tools
but also ensures the privacy and anonymity of individuals represented in the generated data.

Parts of the following text are drawn from papers that are currently being written or
under review and might be published as conference proceedings or journal papers between
the writing of this chapter and the public defence of my HDR. Whenever possible, references
to pre-print or preliminary versions are provided within the text.
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6.1.1 Short-term Multi-modal Traffic Forecasting: looking for the
atypical

Forecasting traffic-related variables, such as flow, speed or travel demand, plays a critical
role in traffic monitoring and control as it allows for anticipating changes and proactively
developing mitigation strategies to handle potential disruptions and ensure resilient mobil-
ity. In our ongoing research, we aim to tackle the challenge of understanding, modelling and
predicting fluctuations in traffic variables during highly dynamic and non-recurrent situa-
tions, such as peak hours, holidays, and special or disruptive events. We believe that this
topic represents an under-explored area of research that should occupy a central position at
the intersection of traffic modelling and transport resilience engineering.

To achieve this objective, we are currently investigating the dynamics of multi-modal
demand during atypical events as well as the integration into deep-learning forecasting ar-
chitectures of multi-modal travel demand data and context-specific information, such as
weather conditions, planned road closures, accidents, and public events. Our aim is to de-
velop innovative machine learning solutions capable of accurately forecasting1 multi-modal
traffic variations in both regular and atypical traffic scenarios. Ultimately, such prediction
tools can be integrated into scenario analyses and decision-making solutions aimed to op-
timise the response of the transport network to stress situations. Existing literature on
this topic is limited [251]. Traditional forecasting methods are typically designed for stable
time frames and specific geographical areas, neglecting rarer and more uncertain situations.
Extreme examples of such dynamic conditions that we would like to address include the
COVID-19 pandemic, population protests, and exposure to climate-change-related events
like heavy rainfall, floods and heatwaves.

The preliminary outcomes of our research on the topic are reported below and have
been mostly obtained in the context of the ANR PRCE MOBITIC project and the PhD
theses of Ali Benam and Romain Rochas. These results represent our first steps towards
answering the following research questions: (i) Can we automatically identify and model
categories of irregular travel demand behaviours and use them to further improve short-
term multi-modal traffic prediction? (ii) Which deep-learning frameworks are most suitable
for short-term traffic prediction? (iii) Are graph neural network solutions appropriate for
predicting multi-modal travel demand? (iv) What level of performance can be achieved in
perturbed and unstable mobility scenarios?

Moreover, the study of travel volume variations and modal shifts due to abnormal events
is at the core of the research that will be carried out within the scope of Paul Denailly’s
postdoctoral fellowship. This research is funded by the ANR MOBITIC project and super-
vised in collaboration with the GRETTIA lab at the University Gustave Eiffel, focusing on
the identification and understanding, via data fusion techniques, of the impacts on mobility
induced by the COVID-19 pandemic.

Multi-source data-driven identification and classification of multi-modal travel
demand variations during atypical events

We have developed a preliminary methodology to automatically detect and analyse multi-
modal travel demand variations following disruptive events. Currently, the methodology can
be applied to perform anomaly detection at a network-wide scale and is partially inspired
by the mobile-phone signature-based approach described in Sec. 2.1.2.

Previous research [252, 253] has examined the passenger responses to disruptions in
transport systems using surveys and mobile or public transport ticketing data to analyse the

1We consider traffic forecasting as related to predicting, e.g., OD pairs travel demand or average speed
at the level of road sections, zones or the entire transport network, depending on the specific case study.
We refer to short-term prediction with respect to prediction horizons in the order of minutes or hours, by
relying on historical time series of several hours, days or a week.
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demand dynamics and shifts between two specific modes during certain events. However,
current literature lacks an integrated, automated approach that goes beyond single-kind
disruption events and accounts for multiple urban transport modes. Our work provides a
general data-driven methodology for the identification and categorisation of complex multi-
modal demand dynamics during disruptive events.

The developed methodological framework comprises four main steps, as detailed in Fig-
ure 6.1, and has been evaluated in a case study related to the multi-modal transport demand
for the city of Lyon, France. A brief summary is provided below, while more details can be
found in [254].

Inputs: , , 

Step 1: Resampling and merging the data, creating the dataset  with
respective counts 

Step 2: Defining and calculating an hourly signature  for expected
demand counts

Step 3: Defining a variable  as the standardised deviance of each count 
from the expected demand

Step 4: Filtering out hours with normal demand, and clustering the remaining
anomalous hours based on their multi-modal deviance 

Output: Clusters of hours with distinct multi-modal dynamic characteristics

Figure 6.1: Methodology flowchart

In step 1, a compressed representation of the typical demand for each transport mode is
constructed by unifying multi-source datasets. Traffic observations are aggregated hourly,
per each mode. A unified dataset is thus produced with demand counts, denoted as
Ddemand = {Nq

t }. Nq
t represents the observed demand count for mode q on the generic

1-hour time slot t from the data availability period. In our case study, q ∈ Q = {bus, tram,
metro, bike, car}.

In step 2, the methodology defines a rolling signature Sq
(m,d,h) that represents the ex-

pected demand for the generic mode q over a given reference period (e.g., a given week m,
on the generic hour h of day of the week d). The definition of signature is based on a com-
pressed representation combining the hourly mean (µ) and standard deviation (λ) counts
computed from past and future demand observations. The temporal support (WK

m , d, h)
used for the aggregation includes a subset of weeks (WK

m ⊂ M), with K indicating the num-
ber of past and future weeks (with respect to week m) used for the aggregation, selected
weekdays (d ∈ ∆), and selected hours of the day (h ∈ H).

Sq
(m,d,h) = µq

(WK
m ,d,h)

± λq
(WK

m ,d,h)
(6.1)

An example of a signature for each transport mode is reported in Fig. 6.2.
In step 3, the continuous variable δqt is computed as formulated in Equation 6.2. δqt

represents the standardised deviation of the observed demand from the expected demand
for a particular mode at a given hour. By pivoting the data on the deviance variable δqt ,
we produce a dataset Ddeviance with transport modes for columns, hours for rows, and
standardised deviance of expected demand for values.

δqt =
Nq

t − µq
(WK

m ,d,h)

σq
(WK

m ,d,h)

(6.2)
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(a) The signature for the number of car observations
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(b) The signature for the average recorded speed of
cars
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(c) The signature for the number of bike retractions
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(d) The signature for the number of bus validations
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(e) The signature for the number of metro validations
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(f) The signature for the number of tram validations

Figure 6.2: The weekly signature of counts and observations for a week in March 2019

In step 4, as we are solely looking through anomalous hours for their categorisation, we
omit hours in which demand in all modes falls inside the expected signature in a new dataset
denoted as Danomaly. This dataset is produced by filtering out regular hours; thus, it only
includes hours where at least one mode’s absolute value of deviance |δqt | is larger than the
range amplitude of the signature λq

(WK
m ,d,h)

. We then apply clustering to this dataset to
identify groups of time slots corresponding to categories of anomalies regarding multi-modal
demand dynamics.

For the evaluation of the methodology, we focused on road traffic GPS observations,
public transport ticket validations (tap-in for trams, metro, and bus lines) and shared-bike
trips in the greater Lyon area, France, between 2019 and 2020. These sources of data have
been simplistically leveraged as proxies of travel demand for the corresponding mode (i.e.,
motorised vehicles, transit and cycling).

For each identified cluster, we selected all hours belonging to the cluster to study how
that cluster manifested a particular multi-modal dynamic. We averaged the deviance δqt for
each mode in the given cluster and produced a multi-modal demand profile for each cluster.
We then used radar plots to illustrate these multi-modal profiles. Additionally, we labelled
the dates and the hours of anomalies belonging to each cluster to explore their temporal
correspondence to traceable events.

Fig. 6.3 shows three clusters of anomalous data using radar plots to illustrate the average
deviance of each mode in each cluster. Cluster 1 indicates lower public transport demand
on national holidays, Cluster 2 shows decreased shared-bike use during periods of higher
precipitation, and Cluster 3 represents metro service disruptions with passengers shifting
to other modes. The findings were validated using news and weather data, supporting the
explainability of the multi-modal dynamics within the clusters.

The results presented in this section instil confidence in the potential to develop a com-
prehensive framework for detecting and analysing the spatio-temporal dynamics of the multi-
modal travel demand. Ultimately, our goal is to inspect the retrieved anomalous dynamics
and infer a general model of modal shifts in the presence of the associated non-recurrent
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Figure 6.3: Average deviance of each mode per cluster (three largest identified clusters).

events, at various spatio-temporal granularities. While the current approach focuses on
network-wide resolution, we are exploring the feasibility of defining reliable signatures at
the level of public transport lines and geographical areas (e.g., TAZ, IRIS zones, etc.) with
promising initial results. By defining spatially-anchored multi-modal signatures, it should
become possible to explore smaller-scale anomalies in travel demand, such as those due to
localised events and disruptions. This approach is expected to facilitate the study of demand
variation propagation in both space and time, thus offering the opportunity to identify areas,
transport modes, or lines that are most vulnerable, i.e., susceptible to disruptions, and with
less accessibility, i.e., with reduced possibility of modal shifts. These areas should be the
target of transport policy aimed at reinforcing the mobility offer of the city by preserving
equal access to transportation means.

Our short-term plans also involve integrating the signature-based approach with deep-
learning forecasting models, which will be presented in the next subsection. By training such
models with historical data related to multi-modal travel demand variations and contextual
details of the corresponding anomalies, an ambitious objective would be to create forecasting
tools capable of anticipating the increase or decrease in travel demand for one or multiple
modes when specific disruptions are likely to occur or known to have recently occurred
in an area of the city or network-wide. This research shall extend the state-of-the-art in
deep learning-based traffic forecasting solutions for transport resilience, by enabling accurate
predictions in both recurrent and non-recurrent scenarios and proactive decision-making in
response to disruptive events.

Travel demand prediction during atypical events

The importance of traffic forecasting applies to all modes of transportation, including public
transport and soft modes such as private and shared cycling. By accurately knowing such
demand and anticipating its variations over time, transport operators can plan, develop and
adapt the city mobility infrastructure to accommodate varying needs, promoting active and
sustainable transportation, and reducing dependence on cars. Furthermore, incorporating
context information into traffic prediction models is crucial for improving accuracy and en-
hancing the usefulness of forecasts. Factors like weather conditions, such as rain, snow, or
extreme temperatures, can significantly impact travel demand and traffic patterns. For ex-
ample, during inclement weather, travellers may choose to abandon active modes and switch
to public transportation or private cars, leading to shifts in demand and traffic congestion.
By integrating meteorological data into forecasting models, transportation authorities can
anticipate these changes and implement appropriate measures, such as adjusting public
transportation schedules or providing real-time information to connected vehicles. Special
events, such as concerts, sports games, or festivals, can also have a significant impact on
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traffic patterns and demand. Predicting the influence of these events allows transporta-
tion authorities to prepare for increased demand, provide additional transportation services,
or implement temporary traffic management measures to minimise disruptions. In a simi-
lar way, incorporating real-time data on accidents, road closures, or construction activities
can improve forecasting accuracy, allowing authorities to inform travellers about alternative
routes to mitigate congestion.

With these objectives in mind, we are currently investigating the performance of state-of-
the-art Graph Neural Networks (GNN) and Graph Convolutional Neural Networks (GCNN)-
based solutions for travel demand prediction. As a preliminary step, we have focused on
single-mode OD travel demand prediction for shared bikes, with the goal to highlight the
limitations of such solutions when it comes to anticipate variations of demand in the pres-
ence of disruptive events. Bike-sharing systems serve as connection on the multi-modal
transport network [255], allowing for reduced travel times, cost-effectiveness, and a smaller
spatial and environmental footprint compared to traditional modes of transportation. While
demand forecasting in this domain has historically relied on statistical and machine learn-
ing techniques, the advent of deep learning, and, more recently, GNNs, has ushered in a
new era of forecasting algorithms, promising improved accuracy. Various models exist for
bike-sharing demand prediction, ranging from station level forecast [256], to cluster-based
prediction [257], and many other variations deeply detailed in surveys such as [258]. How-
ever, only a limited number of studies have focused on OD travel demand prediction [259].
OD prediction poses unique challenges, as the final destinations are usually unknown, and
OD matrices generated are sparse [260]. Moreover, forecasting demand in the case of atypical
phenomena, such as non-recurrent events, remains a challenge [261]. Bike-sharing demands
exhibit temporal and calendar dependencies tied to factors such as weekdays, public hol-
idays, workdays, and school holidays [262]. Furthermore, they are influenced by weather
conditions such as wind, humidity, temperature, and, particularly, rainfall [262].

We have chosen to investigate a state-of-the-art prediction algorithm, the Spatio-Temporal
Encoder-Decoder Residual Multi-Graph Convolutional network (ST-ED-RMGC), recently
proposed by Ke et al. [260] to perform bike-sharing OD demand forecast. ST-ED-RMGC
consists in an encoder-decoder based model, where the encoder is composed by a temporal
module which takes into account the temporal dependencies of all OD pairs, and a spa-
tial module with several Residual Multi-graph Convolutional networks (RMGCs), which
take several adjacency matrix and the graph OD demand as inputs. The RMGC com-
bines a residual module with a multi-graph convolution to capture the spatial correlation
between OD pairs. The residual module is introduced to tackle the issue of gradient ex-
plosion/gradient vanishing in complex deep networks. The multi-graph convolution applies
graph convolution on stacked weighted adjacency matrices.

By focusing on the prediction of bike-sharing trip count between IRIS zones of the city of
Lyon, we have explored the possibility of incorporating contextual information such as time,
weather conditions, and multi-modal data (e.g., road car flow data) in order to improve the
forecasting accuracy of the original ST-ED-RMGC algorithm. The details of the proposed
enhanced ST-ED-RMGC architecture can be found in [263, 264].

Both the extended and the original ST-ED-RMGC algorithms have been trained on a
dataset including hourly trip counts from January 8th, 2019 to November 9th, 2019. We
considered 2500 ODs of the selected territory covering the cities of Lyon and Villeurbanne,
France. For performance evaluation, we have considered a test dataset covering the 7 a.m.
and 9 p.m. period for all days between December 1th, 2019, and March 10th, 2020. Alongside
this test dataset, named global scenario in the following, we also identified specific weather-
related scenarios to assess the accuracy of bike-sharing demand prediction under degraded
weather conditions. All these scenarios were employed to make a comparative evaluation
between the original ST-ED-RMGC, used as a baseline, and our enhanced model, which
incorporates contextual data.

To construct the weather-related scenarios, we selected subsets from the global scenario
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based on two factors computed from the available weather-related historical time series: the
observed daily cumulative rainfall level (dcr) and the hourly amount of rain (hr). Since the
choice of bike sharing as a mode of travel can be greatly influenced by ongoing, expected or
recently concluded rainfall episodes, we considered in our scenarios: peak hours with rain
(denoted as hr > 0), peak hours without rain (denoted as hr = 0), and peak hours with a
significant level of daily cumulative rainfall. The metrics used to evaluate the models were
the Mean Squared Error (MSE) and the MAPE. With no surprise, in scenarios without
rain (hr = 0, dcr = 0) and in the global scenario, the variations of the ST-ED-RMGC model
with weather features (both historical and forecast) exhibit only marginal improvement
compared to the baseline ST-ED-RMGC model. However, in rainfall scenarios (hr > 0), all
models incorporating weather information outperform the baseline, showing up to 20% and
27% improvements in MSE and MAPE, respectively. Notably, rainfall duration emerged
as a relevant predictor of bike-sharing demand during degraded weather conditions. The
initial findings of this study emphasise the significance of the considered contextual data,
particularly weather and calendar-related information, in forecasting bike-sharing demand,
especially during adverse weather conditions.

Despite such initial promising results, further investigation is needed, particularly regard-
ing non-recurrent events beyond weather-related occurrences. First of all, this study serves
as a stepping stone towards extending the proposed approach to encompass multi-modal
travel demand prediction. We are currently working on modifying the original architecture
for incorporating data on public transportation usage, car flow, and speed data. This inte-
gration aims to develop a versatile framework that could capture inter-modal travel demand
relationships jointly with contextual data to perform accurate multi-modal travel forecast-
ing. Although the literature on this subject is relatively limited, the work from Liang et
al. [265] presents an interesting research direction. The authors of this paper combine multi-
relational spatio-temporal GNN with attention-based mechanisms to capture the complex
spatio-temporal patterns across multiple modes and accurately predict multi-modal demand.

Another notable challenge that we aim to address in the short-term is the scarcity of
atypical events in the available datasets. To address this issue, an intriguing research di-
rection involves exploring transfer-learning-based approaches to test the trained model on
diverse traffic-related datasets from various cities and transport modes, thereby expanding
its applicability.

As another research direction, we are attempting to leverage additional data sources,
particularly mobile phone app consumption data, to develop innovative traffic forecasting
solutions capable to better capture dynamic contextual information on both human presence
and human mobility to anticipate traffic variations. Mobile phone app consumption data
offer valuable insights into the activities individuals perform at the specific locations where
they use their mobile phones, such as browsing the web, utilising navigation apps, streaming
audio/video content, or engaging with social media platforms. Sudden fluctuations in the
overall usage of a particular service could serve as an indicator of the initiation of an event,
which, in turn, may result in subsequent traffic state or demand changes. For instance, a
sudden surge in social network usage might be indicative of individuals witnessing an attack
or an extreme event, which could potentially lead to a mass evacuation in the near future.
By incorporating such real-time mobile app consumption data into our analysis, we aim to
enhance our ability to detect and respond to emerging mobility patterns, ultimately enabling
more effective management of transportation systems in response to unforeseen events.

Finally, a more ambitious research direction will focus on integrating traditional traffic
flow models with neural-network-based forecasting algorithms towards increased accuracy,
interpretability and adaptability to unseen traffic scenarios. This approach follows the prin-
ciples of physics-guided machine learning, a methodology recently investigated in traffic fore-
casting with promising results [266]. Traffic flow models typically encapsulate conservation
laws that are similar to those observed in fluid dynamics. The incorporation of these phys-
ical laws into machine learning frameworks serves to enhance not only predictive accuracy
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but also the model’s level of interpretability. This effectively mitigates a significant limita-
tion often associated with purely data-driven methods. When calibrated with empirically
derived travel demand data and substantiated by realistic mode choice models, these physics-
informed machine learning models should be expected to faithfully reproduce complex traffic
scenarios. Such models can be, therefore, leveraged to swiftly detect discrepancies between
real-time data and projected traffic patterns. This capability should enable more informed
and timely anomaly detection, contributing to more resilient traffic management strategies.
Concurrently, it may be worthwhile to investigate emergent learning frameworks such as
Liquid Neural Networks (LNN), initially introduced in [267]. LNN constitute a category of
brain-inspired, continuous-time neural-network models that demonstrate capability to cap-
ture causal relationships and adaptability under changing conditions, as evidenced in [268],
where they were successfully deployed for robust flight navigation using autonomous drones
in unpredictable and out-of-distribution scenarios. The integration of biologically inspired
priors into LNN results in flexible, robust, and interpretable forecasting solutions that can
be adapted to new environments and conditions. These attributes make LNN particularly
well-suited for developing versatile learning frameworks capable of performing forecasting
across a diverse array of rapidly evolving and unobserved traffic scenarios.

6.1.2 Synthetic Population Generation via Multi-Source Data

Agent-based models in transportation traditionally rely on synthetic travel demand, which
involves creating a synthetic population of households and individuals with socio-demographic
attributes, along with daily activity patterns in both time and space. This approach allows
for studying traffic evolution and evaluating the impact of specific transport supply and
travel demand variations. However, for the generated simulations to be realistic and mean-
ingful, it is crucial that the synthetic population accurately represents the actual population
and its multi-modal travel practices.

Creating a realistic synthetic population of agents is a challenging task, traditionally
involving multiple data sources that are processed according to the following steps [269]:
(i) ensuring that the marginal distributions of the socio-economic features of the actual
population, such as gender, age, and occupation, known from sources like census data, match
those of the synthetic population; (ii) associating daily activity patterns to the synthesised
population by statistically matching the trip chains derived from a second smaller-scale input
population sample, such as regional household travel surveys.

A critical limitation of current synthetic population generation approaches is that they
traditionally match activity chains without synthesising realistic location information for
activities due to the difficulty in identifying reliable and high-resolution spatial data sources
for agent locations. While the home location is generally known via census data, it is rarer
that work/study and secondary activity locations are actually inferred from real data. The
main methods used to generate location activities include gravity models for commuting pat-
terns [270], discrete destination choice models for workplace assignments [271], and applying
space–time constraints for the selection of discretionary activity locations [272]. However,
while these approaches can produce reasonable trips in some circumstances, the reliability
of the final synthetic travel demand remains limited compared to real-world-data matching
possibilities.

We are currently working on extending the state-of-the-art pipeline proposed in [269]
with a novel data-driven approach for the location of activities, leveraging anonymised mo-
bile phone data from the telecommunications provider Orange. As complete trajectories can
be computationally heavy to process, and feature a significant privacy risk, our idea consists
in using the time-dependent OD matrix from mobile-phone NSD reconstructed trajecto-
ries [273], obtained with the approaches described in Sec. 3.2 and Sec. 3.4. OD matrices are
lighter and more manageable than whole trajectory datasets. This makes them more readily
available, easier to process and safer regarding the privacy of transportation users. More-
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over, they are built based on high-penetration and high-spatial-resolution data on human
mobility 3.2, which makes them an ideal candidate for realistically reconstructing activity
locations.

The main originality of the proposed approach lies in interpreting the OD matrix as a
transition probability between two locations, which is used to sample the location chain.
Additionally, the total number of trips in the OD matrix for each time of the day is utilised
as a target to match the population agendas, achieved through hierarchical re-scaling for
individuals and trips.

Currently, multiple alternative approaches are being investigated to draw location in-
formation associated with a whole activity chain of an agent from the OD-based transition
probability matrix. While census data are used to determine a pre-defined home location
for each agent, unlike state-of-the-art methods, we do not rely upon sources other than the
OD matrix to pre-define work, study, or secondary activity places. This decision is justified
by the fact that 45% of trips in the activity chains of the population are commute trips,
while the mobile data contain the distribution of the sum of commute and non-commute
trips. Using them only for the latter purpose would be invalid.

Among the most promising solutions to associate location information with each agent’s
activity, an approach based on Markov Chain Monte Carlo (MCMC) sampling is being
considered, integrated as an additional step to the base pipeline defined in [269]. Our
MCMC-based sampling process begins by fixing the agent’s home location from census data
and ensuring that all work-related activities of any single agent are drawn only once from the
OD-based transition probability matrix, remaining the same for all activity chains containing
them, assuming each agent has only one work or study place. The MCMC sampling then
proceeds by assigning known values to all pre-defined states (e.g., the agent’s known home
location at the beginning and end of their activity chain) and random values to all other
states. Subsequently, a new value is successively drawn for each state with dependency on
the other states considered known. Through iterative sampling of the unknown locations a
large number of times, MCMC converges to the stationary distribution within an acceptable
error.

The proposed methods have been evaluated for an area of 25,600 meters wide centred
around Lyon, divided into 515 distinct zones, representing municipalities or spatial units
(IRIS) common to many statistical analyses in France. We used the census performed by
the French statistics institute INSEE to generate the synthetic population of travellers.
Each of the 487,628 rows for our study zone features socioeconomic variables and a non-
integer scaling coefficient for a total of 1,366,072 persons. The activity chains were taken,
without location information, from the household travel survey (named Enquête Ménage
Déplacements (EMD)) performed by the French agency for urban planning [274], which
details the complete agendas of 25,203 persons in the Lyon region. Finally, we used OD-
matrices from TRANSIT spatio-temporally describing the movement of residents of the
region of Lyon. These data cover three months, from 19th March 2019 to 18th June 2019
and contain information about 49,681,883 distinct flows. As the scope of the other data
sources is restricted to working days, we removed weekends and main holidays in France.

The current validation of the generated synthetic population primarily relies on verifying
the agreement between the distributions from the input data (i.e., census data, mobile phone
OD matrix, and household travel surveys) to those derived from the synthetic population.
Naturally, the algorithms aim to match the distributions derived from these sources, which
should ideally correspond closely to those related to the synthetic population. However,
discrepancies in the data sources pose challenges in effectively and jointly matching them.
Among other limitations of the data sources, in particular, the socio-economic population
sample is small and thus not fully representative of the entire population. In Fig. 6.4(a), we
illustrate how the socioeconomic composition of our population matches the official census
better than the EMD survey. Each red point represents the share of the population with
a given socio-economic feature value, in the case of the actual one (on the x-axis) versus
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(a) Matching of the socioeconomic marginals of
our rescaled synthetic population (in red) com-
pared to the HTS (in green).

(b) Distribution of trips taken during the day.

(c) Distribution of trips taken during the day.

Figure 6.4: Average deviance of each mode per cluster.

the synthetic one (on the y-axis). The same comparison is reported with green points for
the EMD population. As the EMD represents only a small number of people, it is normal
that the totals have a higher variance. Our synthetic population can then be seen as a
version of the EMD that fully agrees with the census on the socioeconomic distribution of
the population. Fig. 6.4(c) graphically presents the distribution of trips during a typical
day as measured from mobile data (in orange), our synthetic data (in red), and the survey
EMD (in green). In this case, we considered the observed volumes from the mobile data to
be the ground truth. With no surprise, it can be noted that our population perfectly fits
the ground truth2. On the contrary, the EMD seems to overestimate the volumes of the
morning, noon, and evening peaks while underestimating the volumes during the rest of the
day.

Finally, we compared the flows obtained with our approaches with the ones observed from
the mobile data. A first natural way of comparing the flows is to compare the distributions
of destinations P (d|o, t). In Fig. 6.4(b), we illustrate how the probability of destinations
given origin and hour fits the probability table derived from the OD matrix. Each point
corresponds to a combination of destination, origin, and time of the day. Its x-coordinate
is the probability P (d|o, t) observed in the OD matrix, while its y-coordinate is the same
probability as observed in the trips of our synthetic population. We observe a bi-modality in
the ground truth, and a generally good fit of the synthetic population flows with the mobile
phone OD matrix.

The reported results represent a preliminary step in developing the complete method-
ology, but further improvements and assessments must be considered. While it can be

2Here, we consider the mobile phone data trip volumes as ground truth.
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expected that our synthetic demand data matches well the distribution P (D|O, T ), we have
observed that the distribution of trips P (O,D|T ) is not the same as in the input OD ma-
trix. This is because although we sample the destinations using P (D|O, T ) as a transition
probability, we have no mechanism to ensure that the correct number of agents leave each
origin O at each time step T . This problem can be addressed by decomposing each time
slice of the transition matrix into a sum of transition matrices depending on O, T , and on
the time step of the next trip of the agent. This new decomposition of the OD matrix in
our future work amounts to adding explanatory variables to the mobile data. By carefully
choosing such a decomposition, we can make sure the agents taking a trip before time step
T are assigned to destinations such that the map of agents leaving for a trip at time step
T corresponds to the map of origins of trips in the OD matrix. Additional future research
directions include refining the structure of the OD transition matrix by distinguishing recur-
ring commuting trips from non-recurring ones, as well as introducing additional constraints
on trip distance and transport modes for more accurately matching location activities, by
possibly including additional data sources in the pipeline. We also aim to perform validation
using, as ground truth, external data sources that were not considered within the population
generation pipeline. For instance, we plan to incorporate aggregate statistics on mobility in
the considered region from different data providers to validate, e.g., the distributions of trip
distances, transport mode shares, and the joint distribution of activity locations based on
socio-economic features. This validation will help us gain further confidence in the reliability
of our methodology and outcomes.

Additionally, we aim to conduct multi-modal traffic simulations with in-house macro-
scopic simulators, properly calibrated with external data sources, including multi-modal
travel demand data, loop detector flow data, FCD speed data, and ticket validation data.
The resulting simulated traffic states will be compared to those obtained using a multi-
agent multi-modal traffic simulator, such as MATSim [275], using our generated synthetic
population as the main input to run simulations.

6.2 Longer-term Perspectives

In the long term, my primary research objective is to investigate and enhance the resilience
characteristics of urban networks within a multi-domain context and according to a holis-
tic vision. The ultimate goal is to contribute to developing an integrated, data-driven
digital framework enabling by-design to assess and promote the joint resilience of diverse
inter-related urban technical networks, such as those related to mobility, energy, telecom-
munications, and more.

These long-term perspectives find their reason in the urgency of addressing climate
change, whose effects are especially critical in large metropolitan areas due to the pres-
ence of heterogeneous yet highly interdependent infrastructures [276, 277]. For example,
electricity pylons collapsing from the consequences of extreme weather-related events can
disrupt traffic by impeding vehicle evacuations, power outages can compromise mobility by
affecting traffic lights and electrified transport means, and a lack of communication networks
may hinder future connected and autonomous vehicle mobility.

Considering the fragility of these interconnected infrastructures, their susceptibility to
climate change and the cascading effects of weather-related disruptions, it appears unavoid-
able to rethink the traditional in-silo approach to resilience modelling according to a new
holistic approach aimed to investigate, model, monitor, and optimise as a whole the various
networks constituting the urban infrastructure ecosystem, while prioritising energy efficiency,
sustainability and user-privacy requirements.

The vision of resilience as a crucial urban commodity – involving the synergistic in-
teraction of multiple stakeholders, resources and infrastructures – is becoming increasingly
significant in each of the mentioned fields [278, 279, 280] and ties into the notion of Resilience-
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as-a-Service (RaaS). The term was initially introduced in the context of high-performance
computing [281] to provide cloud solutions with a highly available, distributed, and scalable
fault-tolerant service. Very recently, the term has been introduced in the field of transporta-
tion [282], defining a conceptual and operational framework where the available resources of
various service providers could be integrated to manage and improve over time the resilience
of a system faced by hard-to-predict disruptions and extreme events.

Despite some isolated attempts to apply this concept in a multi-domain urban con-
text [283, 284], significant research is still needed to implement and generalise this vision
on a large scale, encompassing diverse infrastructural networks within a city. In particular,
by considering again the parallel between the urban critical infrastructures and the cloud
computing paradigm, I believe this vision should further emphasise the need for targeted
and energy-efficient data collection and processing, network-level sensing, continuous and
explainable learning, as well as real-time network monitoring and control. These function-
alities should all be conceived as pivotal elements of an integrated urban network digital
architecture for the realistic and large-scale implementation of RaaS.

To achieve this, three key macro-objectives are described in the following as the pillars
of my future research.

The City Digital Twin

A key research objective involves the joint modelling of urban, multi-domain, and multi-
modal networks as an integrated and autonomous digital system that mirrors physical re-
ality, and which could be named the city digital twin. This objective aims to leverage
real-time, multi-source data – spanning malfunctions, service usages, and contextual infor-
mation from various service networks – as primary resources. These data would enable
automated solutions to identify standard operational patterns, detect anomalies, and au-
tonomously implement mitigation, adaptation, and emergency-response strategies. This vi-
sion is gaining more concrete ground for real-world implementation from emerging network
infrastructures, including 6G telecommunication networks [285], IoT-enabled smart grids
and micro-grids [286], fleets of autonomous connected vehicles for public transport [287],
which are expected to integrate sensing and actuating mechanisms as standard features.
The objective aligns closely with the expanding scope of urban digital twins [38, 288], a
concept referring to the widespread adoption of digital twins technology across the urban
ecosystem. This includes buildings, energy systems, vehicles, and telecommunication fa-
cilities and devices. A city digital twin shall push this vision further, thus functioning as
an accurate digital replica of the physical urban environment as a whole. The city digi-
tal twin shall be endowed with advanced sensing capabilities, and autonomous interactions
with the physical urban infrastructures, and provide self-diagnostic and self-repair functions
that are aware of the inter-connections and inter-dependencies among the different technical
components of the urban environment.

Coupled Vulnerability Assessment

A pivotal focus will be the identification and systematic analysis of critical interdependencies
across a range of modelled networks. This effort aims to cultivate a modular and extensi-
ble platform specifically engineered for conducting coupled vulnerability assessments. The
platform shall be capable of modelling, simulating, and quantifying the impacts of a diverse
set of disruptive scenarios on various urban networks. A particular emphasis will be placed
on understanding cascading effects, which result from failures in one network influencing
others [289]. Central to this aim will be the design of the platform’s core as middleware,
crafted to facilitate seamless integration among a variety of simulation and modelling tools.
This core will serve as the backbone for a unified framework wherein dynamic models for,
e.g., flood, communication, electrical, and traffic simulation, can coexist and dynamically
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interact. Such interaction will enable these models to respond collaboratively to simulated
stressors like heavy rainfall, heatwaves and other kinds of shocks. This integrated approach
will provide holistic insights into the vulnerabilities inherent in the urban environment and
allow for the assessment of the effectiveness of various resilience strategies.

Multi-domain Resilience Strategies

The last fundamental objective I would like to develop concerns the exploration of decision-
making tools and strategies that promote the synergistic integration of various urban net-
works and services. The aim is to enhance the sustainability, robustness, adaptability, and
mitigation capabilities of the urban system in the face of extreme events and network failures.
For instance, optimal scheduling of mitigation and repair actions – such as reinforcing dis-
tribution poles or towers, pre-installing battery backup systems at signalised intersections,
deploying emergency vehicles, and rerouting traffic to facilitate access to disrupted facilities
– serves as a straightforward example aimed at bolstering the resilience of the integrated
transport, electricity, and telecommunications systems. More ambitious initiatives could
focus on the joint optimisation and emergency operation of the integrated urban networks.
These can be enabled by the monitoring capabilities of the city digital replica and by the in-
sights derived from the joint vulnerability assessments, in line with approaches very recently
proposed in the literature [289]. For example, Electric and electrified Vehicles (EVs) can
serve as emergency mobile resilience assets during prolonged power outages, supplying power
to critical buildings like hospitals. Similarly, a fleet of EVs could power nearby facilities or
even assist in restarting substation transformers following a natural disaster [290].

Energy efficiency, reduced carbon footprint and cybernetic resilience shall also be con-
sidered central requirements in this vision for a resilient and sustainable urban landscape.
For instance, I plan to explore data-frugal processing frameworks, such as continual learn-
ing [291], which aim to optimise the capabilities of machine learning models. The objective
here is to store key information from previous data observations, minimise the impact of
catastrophic forgetting [292], and adapt swiftly to changing data distributions. Achieving
this allows for a reduction in data footprint. Specifically, it reduces the computational and
storage resources needed for data processing and analysis.

These perspectives and objectives will serve as the backbone for a European Research Coun-
cil (ERC) consolidator project that I plan to submit in the coming years. Additionally, I
am actively contributing to the development of a large-scale project on this topic with the
Gustave Eiffel Foundation. My involvement includes participating in a dedicated working
group on urban resilience that focuses on the study of the vulnerabilities of city technical
networks, and the definition of proper adaptation strategies.

- 158 -



Bibliography

[1] L. Bevilacqua, A. Furno, V. S. Di Carlo, and E. Zimeo, “A tool for automatic genera-
tion of ws-bpel compositions from owl-s described services,” in 2011 5th International
Conference on Software, Knowledge Information, Industrial Management and Appli-
cations (SKIMA) Proceedings. IEEE, 2011, pp. 1–8. 2

[2] A. Furno and E. Zimeo, “Context-aware composition of semantic web services,” Mobile
Networks and Applications, vol. 19, no. 2, pp. 235–248, 2014. 2

[3] ——, “Self-scaling cooperative discovery of service compositions in unstructured p2p
networks,” Journal of Parallel and Distributed Computing, vol. 74, no. 10, pp. 2994–
3025, 2014. 2

[4] A. Furno, “Scalable service composition in autonomic computing,” PhD dissertation,
Univesity of Sannio, Department of Engineering, 2014. [Online]. Available:
https://people.licit-lyon.eu/furno/documents/phd_thesis_angelo_furno.pdf 2

[5] P. Suppa and E. Zimeo, “A context-aware mashup recommender based on social net-
works data mining and user activities,” in 2016 IEEE International Conference on
Smart Computing (SMARTCOMP). IEEE, 2016, pp. 1–6. 2

[6] A. Furno, D. Naboulsi, R. Stanica, and M. Fiore, “Mobile demand profiling for cellular
cognitive networking,” IEEE Transactions on Mobile Computing, vol. 16, no. 3, pp.
772–786, 2016. 3, 26, 27

[7] D. Naboulsi, R. Stanica, and M. Fiore, “Classifying call profiles in large-scale mobile
traffic datasets,” in IEEE INFOCOM 2014-IEEE conference on computer communi-
cations. IEEE, 2014, pp. 1806–1814. 3, 26, 29

[8] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Deepcog: Cognitive
network management in sliced 5g networks with deep learning,” in IEEE INFOCOM
2019-IEEE conference on computer communications. IEEE, 2019, pp. 280–288. 3

[9] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda, “A tale of ten cities:
Characterizing signatures of mobile traffic in urban areas,” IEEE Transactions on
Mobile Computing, vol. 16, no. 10, pp. 2682–2696, 2016. 3, 10, 29, 31

[10] A. Furno, M. Fiore, and R. Stanica, “Joint spatial and temporal classification of mobile
traffic demands,” in IEEE INFOCOM 2017-IEEE Conference on Computer Commu-
nications. IEEE, 2017, pp. 1–9. 3, 10, 34

[11] C. Kennedy, S. Pincetl, and P. Bunje, “The study of urban metabolism and its appli-
cations to urban planning and design,” Environmental pollution, vol. 159, no. 8-9, pp.
1965–1973, 2011. 3

[12] D. N. Bristow and C. A. Kennedy, “Urban metabolism and the energy stored in cities:
Implications for resilience,” Journal of Industrial Ecology, vol. 17, no. 5, pp. 656–667,
2013. 3

- 159 -

https://people.licit-lyon.eu/furno/documents/phd_thesis_angelo_furno.pdf


BIBLIOGRAPHY

[13] E. Hollnagel, D. D. Woods, and N. Leveson, Resilience engineering: Concepts and
precepts. Ashgate Publishing, Ltd., 2006. 5, 14, 16, 19

[14] E. Bellini and P. Nesi, “Exploiting smart technologies to build smart resilient cities,”
in Routledge handbook of sustainable and resilient infrastructure. Routledge, 2018,
pp. 685–705. 5, 17

[15] V. Mahajan, N. Kuehnel, A. Intzevidou, G. Cantelmo, R. Moeckel, and C. Antoniou,
“Data to the people: a review of public and proprietary data for transport models,”
Transport reviews, vol. 42, no. 4, pp. 415–440, 2022. 7

[16] C. Wang and D. B. Hess, “Role of urban big data in travel behavior research,” Trans-
portation research record, vol. 2675, no. 4, pp. 222–233, 2021. 7

[17] X. Kong, M. Li, K. Ma, K. Tian, M. Wang, Z. Ning, and F. Xia, “Big trajectory data:
A survey of applications and services,” IEEE Access, vol. 6, pp. 58 295–58 306, 2018. 7

[18] P. R. Stopher and S. P. Greaves, “Household travel surveys: Where are we going?”
Transportation Research Part A: Policy and Practice, vol. 41, no. 5, pp. 367–381, 2007.
8, 35

[19] M. Lin and W.-J. Hsu, “Mining gps data for mobility patterns: A survey,” Pervasive
and mobile computing, vol. 12, pp. 1–16, 2014. 9

[20] O. Cats, “Identifying human mobility patterns using smart card data,” arXiv preprint
arXiv:2208.05352, 2022. 9

[21] S. Bührmann, “New seamless mobility services: Public bicycles,” NICHES Policy
Notes, 2007. 9

[22] S. A. Shaheen, S. Guzman, and H. Zhang, “Bikesharing in europe, the americas, and
asia: past, present, and future,” Transportation research record, vol. 2143, no. 1, pp.
159–167, 2010. 9

[23] J. Song, L. Zhang, Z. Qin, and M. A. Ramli, “Spatiotemporal evolving patterns of bike-
share mobility networks and their associations with land-use conditions before and
after the covid-19 outbreak,” Physica A: Statistical Mechanics and its Applications,
vol. 592, p. 126819, 2022. 9

[24] J. Zhou, Y. Guo, J. Sun, E. Yu, and R. Wang, “Review of bike-sharing system studies
using bibliometrics method,” Journal of traffic and transportation engineering (English
edition), vol. 9, no. 4, pp. 608–630, 2022. 9

[25] T. H. Silva, A. C. Viana, F. Benevenuto, L. Villas, J. Salles, A. Loureiro, and D. Quer-
cia, “Urban computing leveraging location-based social network data: a survey,” ACM
Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–39, 2019. 10

[26] V. D. Blondel, A. Decuyper, and G. Krings, “A survey of results on mobile phone
datasets analysis,” EPJ data science, vol. 4, pp. 1–55, 2015. 10

[27] M. C. González, C. A. Hidalgo, and A.-L. Barabási, “Understanding individual
human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, 6 2008. [Online].
Available: http://www.nature.com/doifinder/10.1038/nature06958 10

[28] M. S. Iqbal, C. F. Choudhury, P. Wang, and M. C. González, “Development of
origin–destination matrices using mobile phone call data,” Transportation Research
Part C: Emerging Technologies, vol. 40, pp. 63–74, 3 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X14000059/ 10

- 160 -

http://www.nature.com/doifinder/10.1038/nature06958
https://www.sciencedirect.com/science/article/pii/S0968090X14000059/


BIBLIOGRAPHY

[29] R. W. Douglass, D. A. Meyer, M. Ram, D. Rideout, and D. Song, “High resolution
population estimates from telecommunications data,” EPJ Data Science, vol. 4, no. 1,
p. 4, 12 2015. [Online]. Available: http://www.epjdatascience.com/content/4/1/4 10

[30] A. Wesolowski, C. O. Buckee, K. Engø-Monsen, and C. J. E. Metcalf, “Connecting
mobility to infectious diseases: the promise and limits of mobile phone data,” The
Journal of infectious diseases, vol. 214, no. suppl_4, pp. S414–S420, 2016. 10

[31] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Large-scale mobile traffic analysis:
a survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 124–161,
2015. 10

[32] Q. Xu, A. Gerber, Z. M. Mao, and J. Pang, “AccuLoc: Practical localization of
performance measurements in 3G networks,” in MobiSys’11 - Compilation Proceedings
of the 9th International Conference on Mobile Systems, Applications and Services and
Co-located Workshops. New York, New York, USA: ACM Press, 2011, pp. 183–195.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1999995.2000013 10

[33] G. Chen, A. C. Viana, M. Fiore, and C. Sarraute, “Complete trajectory reconstruction
from sparse mobile phone data,” EPJ Data Science, vol. 8, no. 1, pp. 1–24, 2019. 10

[34] G. Ranjan, H. Zang, Z.-L. Zhang, and J. Bolot, “Are call detail records biased
for sampling human mobility?” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 16, no. 3, pp. 33–44, 12 2012. [Online]. Available:
https://dl.acm.org/doi/10.1145/2412096.2412101 10

[35] D. Bachir, V. Gauthier, M. E. Yacoubi, and G. Khodabandelou, “Using mobile
phone data analysis for the estimation of daily urban dynamics,” in 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 10
2017, pp. 626–632. [Online]. Available: http://ieeexplore.ieee.org/document/8317956/
13

[36] H. R. Meredith, V. Andreani, H. R. Ma, A. J. Lopatkin, A. J. Lee, D. J. Anderson,
G. Batt, and L. You, “Applying ecological resistance and resilience to dissect bacterial
antibiotic responses,” Science Advances, vol. 4, no. 12, p. eaau1873, 2018. 14

[37] T. Parsons, E. A. Shils, and N. J. Smelser, “The social system,” in Toward a General
Theory of Action. Routledge, 2017, pp. 190–233. 14

[38] X. Liu, D. Li, M. Ma, B. K. Szymanski, H. E. Stanley, and J. Gao, “Network resilience,”
Physics Reports, vol. 971, pp. 1–108, 2022. 14, 15, 19, 21, 22, 81, 157

[39] R. Billinton and R. N. Allan, Reliability evaluation of engineering systems. Springer,
1992, vol. 792. 14

[40] D. D. Woods, “Four concepts for resilience and the implications for the future of
resilience engineering,” Reliability Engineering & System Safety, vol. 141, pp. 5–9,
2015. 14, 15

[41] L. Fisher, “More than 70 ways to show resilience,” Nature, vol. 518, no. 7537, pp.
35–35, 2015. 15

[42] M. Bruneau, S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. M. Reinhorn,
M. Shinozuka, K. Tierney, W. A. Wallace, and D. Von Winterfeldt, “A framework to
quantitatively assess and enhance the seismic resilience of communities,” Earthquake
spectra, vol. 19, no. 4, pp. 733–752, 2003. 15, 20

[43] D. Henry and J. E. Ramirez-Marquez, “Generic metrics and quantitative approaches
for system resilience as a function of time,” Reliability Engineering & System Safety,
vol. 99, pp. 114–122, 2012. 15, 19, 20

- 161 -

http://www.epjdatascience.com/content/4/1/4
http://portal.acm.org/citation.cfm?doid=1999995.2000013
https://dl.acm.org/doi/10.1145/2412096.2412101
http://ieeexplore.ieee.org/document/8317956/


BIBLIOGRAPHY

[44] R. Steen and T. Aven, “A risk perspective suitable for resilience engineering,” Safety
science, vol. 49, no. 2, pp. 292–297, 2011. 15

[45] T. Aven, “Risk assessment and risk management: Review of recent advances on their
foundation,” European Journal of Operational Research, vol. 253, no. 1, pp. 1–13, 2016.
15

[46] L.-G. Mattsson and E. Jenelius, “Vulnerability and resilience of transport systems–
a discussion of recent research,” Transportation research part A: policy and practice,
vol. 81, pp. 16–34, 2015. 15, 19, 20, 83

[47] J. S. Cañavera-Herrera, J. Tang, T. Nochta, and J. M. Schooling, “On the relation be-
tween ‘resilience’and ‘smartness’: A critical review,” International Journal of Disaster
Risk Reduction, p. 102970, 2022. 17, 19

[48] K. Barker, J. H. Lambert, C. W. Zobel, A. H. Tapia, J. E. Ramirez-Marquez, L. Albert,
C. D. Nicholson, and C. Caragea, “Defining resilience analytics for interdependent
cyber-physical-social networks,” Sustainable and Resilient Infrastructure, vol. 2, no. 2,
pp. 59–67, 2017. 17

[49] M. Z. Serdar, M. Koç, and S. G. Al-Ghamdi, “Urban transportation networks resilience:
indicators, disturbances, and assessment methods,” Sustainable Cities and Society,
vol. 76, p. 103452, 2022. 17, 19

[50] E. Henry, “Resilience modeling of urban multimodal transport networks,” Ph.D. dis-
sertation, Université de Lyon, 2021. 19

[51] Y. Cheng, E. A. Elsayed, and Z. Huang, “Systems resilience assessments: a review,
framework and metrics,” International Journal of Production Research, vol. 60, no. 2,
pp. 595–622, 2022. 19

[52] B. Rathnayaka, C. Siriwardana, D. Robert, D. Amaratunga, and S. Setunge, “Improv-
ing the resilience of critical infrastructure: Evidence-based insights from a systematic
literature review,” International Journal of Disaster Risk Reduction, p. 103123, 2022.
19

[53] J. Douglas, “Physical vulnerability modelling in natural hazard risk assessment,” Nat-
ural Hazards and Earth System Sciences, vol. 7, no. 2, pp. 283–288, 2007. 19

[54] V. Latora and M. Marchiori, “Efficient behavior of small-world networks,” Physical
review letters, vol. 87, no. 19, p. 198701, 2001. 20

[55] P. Gauthier, A. Furno, and N.-E. El Faouzi, “Road network resilience: how to identify
critical links subject to day-to-day disruptions,” Transportation research record, vol.
2672, no. 1, pp. 54–65, 2018. 20, 83

[56] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter,
“Multilayer networks,” Journal of complex networks, vol. 2, no. 3, pp. 203–271, 2014.
21, 69

[57] A. Aleta, S. Meloni, and Y. Moreno, “A multilayer perspective for the analysis of urban
transportation systems,” Scientific reports, vol. 7, no. 1, p. 44359, 2017. 21, 23

[58] J. Lin and Y. Ban, “Complex network topology of transportation systems,” Transport
reviews, vol. 33, no. 6, pp. 658–685, 2013. 21

[59] B. Jiang and C. Claramunt, “Topological analysis of urban street networks,” Environ-
ment and Planning B: Planning and design, vol. 31, no. 1, pp. 151–162, 2004. 21

- 162 -



BIBLIOGRAPHY

[60] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic
cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp. 1025–
1028, 2010. 21

[61] Y. Duan and F. Lu, “Robustness of city road networks at different granularities,”
Physica A: Statistical Mechanics and its Applications, vol. 411, pp. 21–34, 2014. 21,
83

[62] E. Estrada, The structure of complex networks: theory and applications. Oxford
University Press, 2012. 21

[63] J. Wang, “Resilience of self-organised and top-down planned cities—a case study on
london and beijing street networks,” PloS one, vol. 10, no. 12, p. e0141736, 2015. 21

[64] M. Akbarzadeh, S. Memarmontazerin, S. Derrible, and S. F. Salehi Reihani, “The role
of travel demand and network centrality on the connectivity and resilience of an urban
street system,” Transportation, vol. 46, pp. 1127–1141, 2019. 21

[65] A. Nair and J. M. Vidal, “Supply network topology and robustness against disruptions–
an investigation using multi-agent model,” International Journal of Production Re-
search, vol. 49, no. 5, pp. 1391–1404, 2011. 21

[66] E. Jenelius and L.-G. Mattsson, “Resilience of transport systems,” in Encyclopedia of
Transportation. Elsevier Amsterdam, Netherlands, 2020. 21, 81

[67] S. Dong, A. Mostafizi, H. Wang, J. Gao, and X. Li, “Measuring the topological robust-
ness of transportation networks to disaster-induced failures: A percolation approach,”
Journal of Infrastructure Systems, vol. 26, no. 2, p. 04020009, 2020. 21

[68] J. Wu, Z. Gao, H. Sun, and H. Huang, “Urban transit system as a scale-free network,”
Modern Physics Letters B, vol. 18, no. 19n20, pp. 1043–1049, 2004. 21

[69] C. von Ferber, B. Berche, T. Holovatch, and Y. Holovatch, “A tale of two cities:
Vulnerabilities of the london and paris transit networks,” Journal of Transportation
Security, vol. 5, pp. 199–216, 2012. 21

[70] Y. Meng, X. Tian, Z. Li, W. Zhou, Z. Zhou, and M. Zhong, “Comparison analysis on
complex topological network models of urban rail transit: A case study of shenzhen
metro in china,” Physica A: Statistical Mechanics and Its Applications, vol. 559, p.
125031, 2020. 21

[71] C. Von Ferber, T. Holovatch, Y. Holovatch, and V. Palchykov, “Public transport net-
works: empirical analysis and modeling,” The European Physical Journal B, vol. 68,
pp. 261–275, 2009. 21

[72] C. Han and L. Liu, “Topological vulnerability of subway networks in china,” in 2009
International Conference on Management and Service Science. IEEE, 2009, pp. 1–4.
21

[73] M. E. O’Kelly, “Network hub structure and resilience,” Networks and Spatial Eco-
nomics, vol. 15, pp. 235–251, 2015. 22

[74] K. Adjetey-Bahun, J.-L. Planchet, B. Birregah, and E. Châtelet, “Railway transporta-
tion system’s resilience: Integration of operating conditions into topological indica-
tors,” in NOMS 2016-2016 IEEE/IFIP Network Operations and Management Sympo-
sium. IEEE, 2016, pp. 1163–1168. 22

[75] Q.-C. Lu, “Modeling network resilience of rail transit under operational incidents,”
Transportation Research Part A: Policy and Practice, vol. 117, pp. 227–237, 2018. 22

- 163 -



BIBLIOGRAPHY

[76] M. A. Taylor, “Travel through time: the story of research on travel time reliability,”
Transportmetrica B: transport dynamics, vol. 1, no. 3, pp. 174–194, 2013. 22

[77] R. D. Connors and D. P. Watling, “Assessing the demand vulnerability of equilibrium
traffic networks via network aggregation,” Networks and Spatial Economics, vol. 15,
pp. 367–395, 2015. 22

[78] E. Jenelius, T. Petersen, and L.-G. Mattsson, “Importance and exposure in road net-
work vulnerability analysis,” Transportation Research Part A: Policy and Practice,
vol. 40, no. 7, pp. 537–560, 2006. 22, 23, 84

[79] D. M. Scott, D. C. Novak, L. Aultman-Hall, and F. Guo, “Network robustness in-
dex: A new method for identifying critical links and evaluating the performance of
transportation networks,” Journal of Transport Geography, vol. 14, no. 3, pp. 215–227,
2006. 22, 23

[80] A. Nagurney and Q. Qiang, “Fragile networks: identifying vulnerabilities and synergies
in an uncertain age,” International Transactions in Operational Research, vol. 19, no.
1-2, pp. 123–160, 2012. 22

[81] E. Jenelius, “User inequity implications of road network vulnerability,” Journal of
Transport and Land Use, vol. 2, no. 3/4, pp. 57–73, 2010. 22

[82] J. L. Sullivan, D. C. Novak, L. Aultman-Hall, and D. M. Scott, “Identifying critical
road segments and measuring system-wide robustness in transportation networks with
isolating links: A link-based capacity-reduction approach,” Transportation Research
Part A: Policy and Practice, vol. 44, no. 5, pp. 323–336, 2010. 22, 83, 85

[83] E. Jenelius and L.-G. Mattsson, “Road network vulnerability analysis of area-covering
disruptions: A grid-based approach with case study,” Transportation research part A:
policy and practice, vol. 46, no. 5, pp. 746–760, 2012. 22, 91

[84] E. Mitsakis, A. Papanikolaou, G. Ayfadopoulou, J. Salanova, C. Doll, G. Giannopou-
los, and C. Zerefos, “An integrated framework for linking climate change impacts to
emergency adaptation strategies for transport networks,” European Transport Research
Review, vol. 6, no. 2, pp. 103–111, 2014. 22

[85] E. Jenelius, “Network structure and travel patterns: explaining the geographical dis-
parities of road network vulnerability,” Journal of Transport Geography, vol. 17, no. 3,
pp. 234–244, 2009. 22, 23

[86] M. A. Taylor, S. V. Sekhar, and G. M. D’Este, “Application of accessibility based
methods for vulnerability analysis of strategic road networks,” Networks and Spatial
Economics, vol. 6, pp. 267–291, 2006. 23

[87] M. A. Taylor et al., “Remoteness and accessibility in the vulnerability analysis of
regional road networks,” Transportation research part A: policy and practice, vol. 46,
no. 5, pp. 761–771, 2012. 23

[88] R. Nyberg and M. Johansson, “Indicators of road network vulnerability to storm-felled
trees,” Natural hazards, vol. 69, pp. 185–199, 2013. 23

[89] V. L. Knoop, M. Snelder, H. J. van Zuylen, and S. P. Hoogendoorn, “Link-level vul-
nerability indicators for real-world networks,” Transportation Research Part A: Policy
and Practice, vol. 46, no. 5, pp. 843–854, 2012. 23

[90] X. He and H. X. Liu, “Modeling the day-to-day traffic evolution process after an unex-
pected network disruption,” Transportation Research Part B: Methodological, vol. 46,
no. 1, pp. 50–71, 2012. 23

- 164 -



BIBLIOGRAPHY

[91] J. Yates and S. Sanjeevi, “A length-based, multiple-resource formulation for short-
est path network interdiction problems in the transportation sector,” International
Journal of Critical Infrastructure Protection, vol. 6, no. 2, pp. 107–119, 2013. 23

[92] H. Ho, A. Sumalee, W. H. Lam, and W. Szeto, “A continuum modeling approach
for network vulnerability analysis at regional scale,” Procedia-Social and Behavioral
Sciences, vol. 80, pp. 846–859, 2013. 23

[93] E. Rodríguez-Núñez and J. C. García-Palomares, “Measuring the vulnerability of pub-
lic transport networks,” Journal of transport geography, vol. 35, pp. 50–63, 2014. 23

[94] O. Cats and E. Jenelius, “Dynamic vulnerability analysis of public transport networks:
mitigation effects of real-time information,” Networks and Spatial Economics, vol. 14,
pp. 435–463, 2014. 23

[95] ——, “Planning for the unexpected: The value of reserve capacity for public transport
network robustness,” Transportation Research Part A: Policy and Practice, vol. 81,
pp. 47–61, 2015. 23

[96] S. K. Peterson and R. L. Church, “A framework for modeling rail transport vulnera-
bility,” Growth and Change, vol. 39, no. 4, pp. 617–641, 2008. 23

[97] L. Hong, M. Ouyang, S. Peeta, X. He, and Y. Yan, “Vulnerability assessment and
mitigation for the chinese railway system under floods,” Reliability Engineering &
System Safety, vol. 137, pp. 58–68, 2015. 23

[98] M. Janić, “Modelling the resilience, friability and costs of an air transport network
affected by a large-scale disruptive event,” Transportation Research Part A: Policy
and Practice, vol. 81, pp. 77–92, 2015. 23

[99] D. Yin, W. Huang, B. Shuai, H. Liu, and Y. Zhang, “Structural characteristics anal-
ysis and cascading failure impact analysis of urban rail transit network: From the
perspective of multi-layer network,” Reliability Engineering & System Safety, vol. 218,
p. 108161, 2022. 23

[100] L. Bellocchi, V. Latora, and N. Geroliminis, “Dynamical efficiency for multimodal
time-varying transportation networks,” Scientific reports, vol. 11, no. 1, pp. 1–14,
2021. 24

[101] “Ericsson mobility report,” Nov 2022. [Online]. Available:
https://www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/
documents/2022/ericsson-mobility-report-november-2022.pdf 25

[102] Key technological challenges of the EC H2020 5G Infrastructure PPP. [Online].
Available: http://5g-ppp.eu/ 25

[103] V. D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F. Morlot,
Z. Smoreda, and C. Ziemlicki, “Data for development: the d4d challenge on mobile
phone data,” 2012. [Online]. Available: https://arxiv.org/abs/1210.0137 26, 77

[104] Y.-A. de Montjoye, Z. Smoreda, R. Trinquart, C. Ziemlicki, and V. D. Blondel,
“D4d-senegal: The second mobile phone data for development challenge,” ArXiv, vol.
abs/1407.4885, 2014. 26, 77

[105] T. Italia, “Telecom italia big data challenge,” URL
https://dandelion.eu/datamine/open-big-data, 2015. 26

[106] A. Ceselli, M. Fiore, A. Furno, M. Premoli, S. Secci, and R. Stanica, “Prescriptive ana-
lytics for mec orchestration,” in 2018 IFIP Networking Conference (IFIP Networking)
and Workshops. IEEE, 2018, pp. 1–9. 28

- 165 -

https://www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
https://www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
http://5g-ppp.eu/
https://arxiv.org/abs/1210.0137


BIBLIOGRAPHY

[107] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, “Understanding traffic
dynamics in cellular data networks,” in 2011 Proceedings IEEE INFOCOM. IEEE,
2011, pp. 882–890. 29

[108] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, S. Venkataraman, and J. Wang, “A first
look at cellular network performance during crowded events,” ACM SIGMETRICS
performance evaluation review, vol. 41, no. 1, pp. 17–28, 2013. 29

[109] R. Ahas, A. Aasa, Y. Yuan, M. Raubal, Z. Smoreda, Y. Liu, C. Ziemlicki, M. Tiru,
and M. Zook, “Everyday space–time geographies: using mobile phone-based sensor
data to monitor urban activity in harbin, paris, and tallinn,” International Journal of
Geographical Information Science, vol. 29, no. 11, pp. 2017–2039, 2015. 29

[110] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Large-scale measurement and
characterization of cellular machine-to-machine traffic,” IEEE/ACM transactions on
Networking, vol. 21, no. 6, pp. 1960–1973, 2013. 29

[111] S. Almeida, J. Queijo, and L. M. Correia, “Spatial and temporal traffic distribution
models for gsm,” in Gateway to 21st Century Communications Village. VTC 1999-
Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No. 99CH36324), vol. 1.
IEEE, 1999, pp. 131–135. 29

[112] M. R. Vieira, V. Frias-Martinez, N. Oliver, and E. Frias-Martinez, “Characterizing
dense urban areas from mobile phone-call data: Discovery and social dynamics,” in
2010 IEEE Second International Conference on Social Computing. IEEE, 2010, pp.
241–248. 29

[113] M. De Nadai, J. Staiano, R. Larcher, N. Sebe, D. Quercia, and B. Lepri, “The death
and life of great italian cities: a mobile phone data perspective,” in Proceedings of the
25th international conference on world wide web, 2016, pp. 413–423. 29

[114] A. Furno, R. Stanica, and M. Fiore, “A comparative evaluation of urban fabric detec-
tion techniques based on mobile traffic data,” in Proceedings of the 2015 IEEE/ACM
international conference on advances in social networks analysis and mining 2015,
2015, pp. 689–696. 30

[115] V. Soto and E. Frías-Martínez, “Automated land use identification using cell-phone
records,” in Proceedings of the 3rd ACM international workshop on MobiArch, 2011,
pp. 17–22. 30

[116] S. Grauwin, S. Sobolevsky, S. Moritz, I. Gódor, and C. Ratti, “Towards a comparative
science of cities: Using mobile traffic records in new york, london, and hong kong,”
Computational approaches for urban environments, pp. 363–387, 2015. 30

[117] B. Cici, M. Gjoka, A. Markopoulou, and C. T. Butts, “On the decomposition of cell
phone activity patterns and their connection with urban ecology,” in Proceedings of the
16th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
2015, pp. 317–326. 30

[118] A. Furno, N.-E. El Faouzi, M. Fiore, and R. Stanica, “Fusing GPS probe and mobile
phone data for enhanced land-use detection,” in 2017 5th IEEE International Con-
ference on Models and Technologies for Intelligent Transportation Systems (MT-ITS).
IEEE, 2017, pp. 693–698. 33

[119] I. T. Joliffe and B. Morgan, “Principal component analysis and exploratory factor
analysis,” Statistical methods in medical research, vol. 1, no. 1, pp. 69–95, 1992. 34

[120] T. Arentze, H. Timmermans, F. Hofman, and N. Kalfs, “Data needs, data collection,
and data quality requirements of activity-based transport demand models,” Trans-
portation research circular, no. E-C008, pp. 30–p, 2000. 35

- 166 -



BIBLIOGRAPHY

[121] F. Giannotti and D. Pedreschi, Mobility, data mining and privacy: Geographic knowl-
edge discovery. Springer Science & Business Media, 2008. 35

[122] P. Bonnel, “Postal, telephone, and face-to-face surveys: How comparable are they?” in
Transport survey quality and innovation. Emerald Group Publishing Limited, 2003,
pp. 215–237. 35

[123] J. Wolf, M. Oliveira, and M. Thompson, “Impact of underreporting on mileage and
travel time estimates: Results from global positioning system-enhanced household
travel survey,” Transportation research record, vol. 1854, no. 1, pp. 189–198, 2003. 35

[124] F. Wang and C. Chen, “On data processing required to derive mobility patterns from
passively-generated mobile phone data,” Transportation Research Part C: Emerging
Technologies, vol. 87, pp. 58–74, 2018. 35

[125] M. Fekih, T. Bellemans, Z. Smoreda, P. Bonnel, A. Furno, and S. Galland, “A data-
driven approach for origin–destination matrix construction from cellular network sig-
nalling data: a case study of lyon region (france),” Transportation, vol. 48, pp. 1671–
1702, 2021. 36

[126] l. e. l. c. p. F. Centre d’études sur les réseaux, les transports, L’enquête ménages, dé-
placements" standard Certu". Ministère de l’écologie, de l’énergie, du développement
durable et de l . . . , 2008. 37

[127] M. Shafiei, M. Nazemi, and S. Seyedabrishami, “Estimating time-dependent origin–
destination demand from traffic counts: extended gradient method,” Transportation
Letters, vol. 7, no. 4, pp. 210–218, 2015. 39

[128] A. Kuppam, R. Copperman, J. Lemp, T. Rossi, V. Livshits, L. Vallabhaneni, K. Jeon,
and E. Brown, “Special events travel surveys and model development,” Transportation
Letters, vol. 5, no. 2, pp. 67–82, 2013. 39

[129] M.-H. Wang, S. D. Schrock, N. Vander Broek, and T. Mulinazzi, “Estimating dynamic
origin-destination data and travel demand using cell phone network data,” Interna-
tional Journal of Intelligent Transportation Systems Research, vol. 11, pp. 76–86, 2013.
39

[130] Z. Zhao, S.-L. Shaw, Y. Xu, F. Lu, J. Chen, and L. Yin, “Understanding the bias of
call detail records in human mobility research,” International Journal of Geographical
Information Science, vol. 30, no. 9, pp. 1738–1762, 2016. 39

[131] M. Fekih, L. Bonnetain, A. Furno, P. Bonnel, Z. Smoreda, S. Galland, and T. Belle-
mans, “Potential of cellular signaling data for time-of-day estimation and spatial clas-
sification of travel demand: a large-scale comparative study with travel survey and
land use data,” Transportation Letters, vol. 14, no. 7, pp. 787–805, 2022. 39, 58

[132] M. Seppecher, L. Leclercq, A. Furno, D. Lejri, and T. V. da Rocha, “Estimation
of urban zonal speed dynamics from user-activity-dependent positioning data and
regional paths,” Transportation Research Part C: Emerging Technologies, vol. 129, p.
103183, 2021. 39, 49, 51

[133] M. Janzen, M. Vanhoof, Z. Smoreda, and K. W. Axhausen, “Closer to the total? Long-
distance travel of French mobile phone users,” Travel Behaviour and Society, vol. 11,
pp. 31–42, 4 2018. 42

[134] M. Saberi, H. S. Mahmassani, T. Hou, and A. Zockaie, “Estimating network fundamen-
tal diagram using three-dimensional vehicle trajectories: extending edie’s definitions
of traffic flow variables to networks,” Transportation Research Record, vol. 2422, no. 1,
pp. 12–20, 2014. 45, 47

- 167 -



BIBLIOGRAPHY

[135] S. Uppoor, C. Ziemlicki, S. Secci, and Z. Smoreda, “On mobile traffic distribution over
cellular backhauling network nodes,” in 2016 13th IEEE Annual Consumer Commu-
nications & Networking Conference (CCNC). IEEE, 2016, pp. 726–731. 45

[136] N.-E. El Faouzi, A. Furno, L. Bonnetain, and M. Fiore, “Détermination de trajectoires
à partir de données de téléphonie mobile,” January 2023, FR3125197, EP4117318. 46

[137] M. Gramaglia, M. Fiore, A. Furno, and R. Stanica, “Glove: towards privacy-preserving
publishing of record-level-truthful mobile phone trajectories,” ACM/IMS Transactions
on Data Science (TDS), vol. 2, no. 3, pp. 1–36, 2021. 46, 74, 76, 77

[138] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-driven in-
telligent transportation systems: A survey,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 12, no. 4, pp. 1624–1639, 2011. 47

[139] Y. Zheng, F. Liu, and H.-P. Hsieh, “U-air: When urban air quality inference meets big
data,” in Proceedings of the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2013, pp. 1436–1444. 47

[140] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, “Inferring gas consumption and
pollution emission of vehicles throughout a city,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2014, pp.
1027–1036. 47

[141] L. Ntziachristos, D. Gkatzoflias, C. Kouridis, and Z. Samaras, “Copert: a european
road transport emission inventory model,” in Information Technologies in Environmen-
tal Engineering: Proceedings of the 4th International ICSC Symposium Thessaloniki,
Greece, May 28-29, 2009. Springer, 2009, pp. 491–504. 47

[142] M. Seppecher, L. Leclercq, A. Furno, T. Vieira da Rocha, J.-M. André, and J. Boutang,
“Identification of aggregate urban mobility patterns of nonregular travellers from mo-
bile phone data,” Future Transportation, vol. 3, no. 1, pp. 254–273, 2023. 47

[143] M. Seppecher, “Mining call detail records to reconstruct global urban mobility patterns
for large scale emissions calculation,” Ph.D. dissertation, Université de Lyon, 2022. 47

[144] C. F. Daganzo, “Urban gridlock: Macroscopic modeling and mitigation approaches,”
Transportation Research Part B: Methodological, vol. 41, no. 1, pp. 49–62, 2007. 48,
52

[145] M. Yildirimoglu and N. Geroliminis, “Approximating dynamic equilibrium conditions
with macroscopic fundamental diagrams,” Transportation Research Part B: Method-
ological, vol. 70, pp. 186–200, 2014. 48

[146] S. Batista, L. Leclercq, and N. Geroliminis, “Estimation of regional trip length distri-
butions for the calibration of the aggregated network traffic models,” Transportation
Research Part B: Methodological, vol. 122, pp. 192–217, 2019. 48, 49

[147] G. Mariotte, L. Leclercq, S. Batista, J. Krug, and M. Paipuri, “Calibration and vali-
dation of multi-reservoir mfd models: A case study in lyon,” Transportation Research
Part B: Methodological, vol. 136, pp. 62–86, 2020. 49, 54

[148] S. Batista, L. Leclercq, and M. Menendez, “Dynamic traffic assignment for regional
networks with traffic-dependent trip lengths and regional paths,” Transportation Re-
search Part C: Emerging Technologies, vol. 127, p. 103076, 2021. 49

[149] G. Chen, S. Hoteit, A. C. Viana, M. Fiore, and C. Sarraute, “Enriching sparse mobility
information in call detail records,” Computer Communications, vol. 122, pp. 44–58,
2018. 50

- 168 -



BIBLIOGRAPHY

[150] N. Geroliminis and C. F. Daganzo, “Existence of urban-scale macroscopic fundamental
diagrams: Some experimental findings,” Transportation Research Part B: Methodolog-
ical, vol. 42, no. 9, pp. 759–770, 2008. 52

[151] L. Bonnetain, A. Furno, J. Krug, and N.-E. E. Faouzi, “Can we map-match individual
cellular network signaling trajectories in urban environments? data-driven study,”
Transportation Research Record, vol. 2673, no. 7, pp. 74–88, 2019. 55, 60, 62, 69, 70

[152] W. Wu, Y. Wang, J. B. Gomes, D. T. Anh, S. Antonatos, M. Xue, P. Yang, G. E. Yap,
X. Li, S. Krishnaswamy et al., “Oscillation resolution for mobile phone cellular tower
data to enable mobility modelling,” in 2014 IEEE 15th International Conference on
Mobile Data Management, vol. 1. IEEE, 2014, pp. 321–328. 56

[153] B. C. Csáji, A. Browet, V. A. Traag, J.-C. Delvenne, E. Huens, P. Van Dooren,
Z. Smoreda, and V. D. Blondel, “Exploring the mobility of mobile phone users,” Physica
A: statistical mechanics and its applications, vol. 392, no. 6, pp. 1459–1473, 2013. 56

[154] D. Bachir, G. Khodabandelou, V. Gauthier, M. El Yacoubi, and J. Puchinger, “Infer-
ring dynamic origin-destination flows by transport mode using mobile phone data,”
Transportation Research Part C: Emerging Technologies, vol. 101, pp. 254–275, 2019.
56

[155] S. Jiang, J. Ferreira, and M. C. Gonzalez, “Activity-based human mobility patterns
inferred from mobile phone data: A case study of singapore,” IEEE Transactions on
Big Data, vol. 3, no. 2, pp. 208–219, 2017. 58

[156] P. Katsikouli, M. Fiore, A. Furno, and R. Stanica, “Characterizing and removing oscil-
lations in mobile phone location data,” in 2019 IEEE 20th International Symposium
on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM). IEEE,
2019, pp. 1–9. 58

[157] A. A. Taha and A. Hanbury, “An efficient algorithm for calculating the exact hausdorff
distance,” IEEE transactions on pattern analysis and machine intelligence, vol. 37,
no. 11, pp. 2153–2163, 2015. 60

[158] E. Akopyan, A. Furno, N.-E. El Faouzi, and E. Gaume, “Unsupervised real-time
anomaly detection for multivariate mobile phone traffic series.” in ESANN, 2021. 67

[159] L. Bonnetain, “Unlocking the potential of mobile phone data for large scale urban
mobility estimation,” Ph.D. dissertation, Université de Lyon, 2022. 69

[160] L. Bonnetain, A. Furno, and N.-E. E. Faouzi, “Multi-modal fine-grained map-
matching of mobile phone network signaling data in urban area,” in 101st Annual
Meeting of the Transportation Research Board (TRB), 2022. [Online]. Available:
https://people.licit-lyon.eu/furno/documents/trb_2022_bonnetain.pdf 69, 70, 71, 72

[161] Z. Shen, W. Du, X. Zhao, and J. Zou, “Dmm: Fast map matching for cellular data,”
in Proceedings of the 26th annual international conference on mobile computing and
networking, 2020, pp. 1–14. 69, 70

[162] R. Mohamed, H. Aly, and M. Youssef, “Accurate real-time map matching for challeng-
ing environments,” IEEE Transactions on Intelligent Transportation Systems, vol. 18,
no. 4, pp. 847–857, 2016. 70

[163] E. Algizawy, T. Ogawa, and A. El-Mahdy, “Real-time large-scale map matching using
mobile phone data,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 11, no. 4, pp. 1–38, 2017. 70, 71

- 169 -

https://people.licit-lyon.eu/furno/documents/trb_2022_bonnetain.pdf


BIBLIOGRAPHY

[164] F. Asgari, A. Sultan, H. Xiong, V. Gauthier, and M. A. El-Yacoubi, “Ct-mapper:
Mapping sparse multimodal cellular trajectories using a multilayer transportation net-
work,” Computer Communications, vol. 95, pp. 69–81, 2016. 70

[165] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE transactions on Information Theory, vol. 13, no. 2, pp.
260–269, 1967. 70

[166] R. Raymond, T. Morimura, T. Osogami, and N. Hirosue, “Map matching with hidden
markov model on sampled road network,” in Proceedings of the 21st international
conference on pattern recognition (icpr2012). IEEE, 2012, pp. 2242–2245. 71

[167] P. Newson and J. Krumm, “Hidden markov map matching through noise and sparse-
ness,” in Proceedings of the 17th ACM SIGSPATIAL international conference on ad-
vances in geographic information systems, 2009, pp. 336–343. 72

[168] F. Asgari, A. Amrani, and M. Khouadjia, “Scaling time-dependent origin-destination
matrix using growth factor model,” in 2021 International Symposium on Computer
Science and Intelligent Controls (ISCSIC). IEEE, 2021, pp. 51–57. 74

[169] B. Matet, E. Côme, A. Furno, L. Bonnetain, L. Oukhellou, and N.-E. El Faouzi, “A
lightweight approach for origin-destination matrix anonymization.” in ESANN, 2021.
74

[170] B. Matet, A. Furno, M. Fiore, E. Côme, and L. Oukhellou, “Adaptative generalisa-
tion over a value hierarchy for the k-anonymisation of origin–destination matrices,”
Transportation Research Part C: Emerging Technologies, vol. 154, p. 104236, 2023.
74, 77

[171] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and sup-
pression,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, vol. 10, no. 05, pp. 571–588, 2002. 75

[172] M. Fiore, P. Katsikouli, E. Zavou, M. Cunche, F. Fessant, D. Le Hello, U. M. Aivodji,
B. Olivier, T. Quertier, and R. Stanica, “Privacy in trajectory micro-data publishing:
a survey,” Transactions on Data Privacy, vol. 13, pp. 91–149, 2020. 75

[173] Y. Liang and R. Samavi, “Optimization-based k-anonymity algorithms,” Computers
& Security, vol. 93, p. 101753, 2020. 75, 76

[174] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber, “Privacy: Theory
meets practice on the map,” in 2008 IEEE 24th international conference on data
engineering. IEEE, 2008, pp. 277–286. 75

[175] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity
and l-diversity,” in 2007 IEEE 23rd international conference on data engineering.
IEEE, 2006, pp. 106–115. 75

[176] C. Bettini, X. S. Wang, and S. Jajodia, “Protecting privacy against location-based
personal identification,” in Secure Data Management: Second VLDB Workshop, SDM
2005, Trondheim, Norway, September 2-3, 2005. Proceedings 2. Springer, 2005, pp.
185–199. 75

[177] W. Mahanan, W. A. Chaovalitwongse, and J. Natwichai, “Data privacy preservation
algorithm with k-anonymity,” World Wide Web, vol. 24, pp. 1551–1561, 2021. 75, 77

[178] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foun-
dations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407,
2014. 76

- 170 -



BIBLIOGRAPHY

[179] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 01 2004. 77

[180] N. Maiti, P. Pathak, and B. Samanta, “An efficient algorithm for the precedence
constraint knapsack problem with reference to large-scale open-pit mining pushback
design,” Mining Technology, vol. 130, no. 1, pp. 8–21, 2021. 77

[181] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-
anonymity,” in 22nd International conference on data engineering (ICDE’06). IEEE,
2006, pp. 25–25. 77

[182] G. Cormode, M. Procopiuc, D. Srivastava, and T. T. Tran, “Differentially private
publication of sparse data,” arXiv preprint arXiv:1103.0825, 2011. 79

[183] A. Haldane, “Why banks failed the stress test,” BIS Review, vol. 18, p. 2009, 2009. 83

[184] T. Schuermann, “Stress testing banks,” International Journal of Forecasting, vol. 30,
no. 3, pp. 717–728, 2014. 83

[185] N. Goldschlager, A. Selzer, and K. Cohn, “Treadmill stress tests as indicators of pres-
ence and severity of coronary artery disease,” Ann Intern Med, vol. 85, no. 3, pp.
277–286, 1976. 83

[186] S. W. Baertschi, K. M. Alsante, and R. A. Reed, Pharmaceutical stress testing: pre-
dicting drug degradation. CRC Press, 2016. 83

[187] L. M. Zhang, L. Gao, S. Y. Zhou, R. W. Cheung, and S. Lacasse, “Stress testing
framework for managing landslide risks under extreme storms,” in Workshop on World
Landslide Forum. Springer, 2017, pp. 17–32. 83

[188] J. Clarke and E. Obrien, “A multi-hazard risk assessment methodology, stress test
framework and decision support tool for transport infrastructure networks,” Trans-
portation Research Procedia, vol. 14, pp. 1355–1363, 2016. 83

[189] W. Wisetjindawat, A. Kermanshah, S. Derrible, and M. Fujita, “Stochastic modeling
of road system performance during multihazard events: Flash floods and earthquakes,”
Journal of Infrastructure Systems, vol. 23, no. 4, p. 04017031, 2017. 83

[190] B. Donovan and D. B. Work, “Using coarse gps data to quantify city-scale transporta-
tion system resilience to extreme events,” arXiv preprint arXiv:1507.06011, 2015. 83

[191] M. Omer, A. Mostashari, and R. Nilchiani, “Assessing resilience in a regional road-
based transportation network,” International Journal of Industrial and Systems En-
gineering, vol. 13, no. 4, pp. 389–408, 2013. 83

[192] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical
sociology, vol. 25, no. 2, pp. 163–177, 2001. 83, 124, 126

[193] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry,
pp. 35–41, 1977. 83, 124

[194] A. Duret, L. Leclercq, and N.-E. El Faouzi, “Data assimilation using a mesoscopic
lighthill–whitham–richards model and loop detector data: Methodology and large-
scale network application,” Transportation Research Record: Journal of the Trans-
portation Research Board, no. 2560, pp. 26–36, 2016. 85

[195] M. J. Lighthill and G. B. Whitham, “On kinematic waves. ii. a theory of traffic flow on
long crowded roads,” in Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 229, no. 1178. The Royal Society, 1955, pp.
317–345. 85

- 171 -



BIBLIOGRAPHY

[196] P. I. Richards, “Shock waves on the highway,” Operations research, vol. 4, no. 1, pp.
42–51, 1956. 85

[197] E. Henry, A. Furno, and N.-E. El Faouzi, “A graph-based approach with simulated
traffic dynamics for the analysis of transportation resilience in smart cities,” in TRB
2019, 98th Annual Meeting Transportation Research Board, 2019, p. 21p. 91

[198] E. Henry, A. Furno, and N.-E. E. Faouzi, “Approach to quantify the impact of dis-
ruptions on traffic conditions using dynamic weighted resilience metrics of transport
networks,” Transportation research record, vol. 2675, no. 4, pp. 61–78, 2021. 92, 93,
94, 109

[199] R. Jacob, K. Harikrishnan, R. Misra, and G. Ambika, “Measure for degree heterogene-
ity in complex networks and its application to recurrence network analysis,” Royal
Society open science, vol. 4, no. 1, p. 160757, 2017. 92

[200] B. Wang, H. Tang, C. Guo, and Z. Xiu, “Entropy optimization of scale-free networks’
robustness to random failures,” Physica A: Statistical Mechanics and its Applications,
vol. 363, no. 2, pp. 591–596, 2006. 92

[201] J. Gao, B. Barzel, and A.-L. Barabási, “Universal resilience patterns in complex net-
works,” Nature, vol. 530, no. 7590, pp. 307–312, 2016. 92, 94, 95, 96

[202] H. G. Ramirez, L. Leclercq, N. Chiabaut, C. Becarie, and J. Krug, “Travel time and
bounded rationality in travellers’ route choice behaviour: A computer route choice
experiment,” Travel Behaviour and Society, vol. 22, pp. 59–83, 2021. 93

[203] E. Henry, L. Bonnetain, A. Furno, N.-E. El Faouzi, and E. Zimeo, “Spatio-temporal
correlations of betweenness centrality and traffic metrics,” in 2019 6th International
Conference on Models and Technologies for Intelligent Transportation Systems (MT-
ITS). IEEE, 2019, pp. 1–10. 97

[204] H. Wang, J. M. Hernandez, and P. Van Mieghem, “Betweenness centrality in a weighted
network,” Physical Review E, vol. 77, no. 4, p. 046105, 2008. 97

[205] L. Dall’Asta, A. Barrat, M. Barthélemy, and A. Vespignani, “Vulnerability of weighted
networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2006, no. 04,
p. P04006, 2006. 97

[206] E. Henry, A. Furno, N.-E. El Faouzi, and D. Rey, “Locating park-and-ride facilities for
resilient on-demand urban mobility,” Transportation Research Part E: Logistics and
Transportation Review, vol. 158, p. 102557, 2022. 100, 101, 103, 104, 105

[207] E. Henry, A. Furno, and N.-E. El Faouzi, “Reinforce: rapid augmentation of large-scale
multi-modal transport networks for resilience enhancement,” Applied Network Science,
vol. 6, pp. 1–24, 2021. 100

[208] M. Guillot, A. Furno, E.-H. Aghezzaf, and N.-E. El Faouzi, “Transport network down-
sizing based on optimal sub-network,” Communications in Transportation Research,
vol. 2, p. 100079, 2022. 100

[209] D. Li, Y. Liu, Y. Song, Z. Ye, and D. Liu, “A framework for assessing resilience in
urban mobility: Incorporating impact of ridesharing,” International Journal of Envi-
ronmental Research and Public Health, vol. 19, no. 17, p. 10801, 2022. 101

[210] F. Aros-Vera, V. Marianov, and J. E. Mitchell, “p-Hub approach for the
optimal park-and-ride facility location problem,” European Journal of Operational
Research, vol. 226, no. 2, pp. 277–285, 4 2013. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0377221712008223 101, 103

- 172 -

https://linkinghub.elsevier.com/retrieve/pii/S0377221712008223
https://linkinghub.elsevier.com/retrieve/pii/S0377221712008223


BIBLIOGRAPHY

[211] T. Andrejszki, A. Torok, and M. Csete, “Identifyingy the utility function of transport
services from stated preferences,” Transport and Telecommunication, vol. 16, no. 2,
pp. 138–144, 6 2015. 103

[212] J. Krug, A. Burianne, C. Bécarie, and L. Leclercq, “Refining trip starting and ending
locations when estimating travel-demand at large urban scale,” Journal of Transport
Geography, vol. 93, p. 103041, 2021. 105

[213] A. Furno, N.-E. E. Faouzi, R. Sharma, and E. Zimeo, “Graph-based ahead monitoring
of vulnerabilities in large dynamic transportation networks,” PloS one, vol. 16, no. 3,
p. e0248764, 2021. 109, 124, 125, 126

[214] C. Colarusso, A. De Iasio, A. Furno, L. Goglia, M. A. Merzoug, and E. Zimeo, “Prom-
enade: A big data platform for handling city complex networks with dynamic graphs,”
Future Generation Computer Systems, vol. 137, pp. 129–145, 2022. 110, 117

[215] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex net-
works: Structure and dynamics,” Physics reports, vol. 424, no. 4-5, pp. 175–308, 2006.
111

[216] S. H. Strogatz, “Exploring complex networks,” nature, vol. 410, no. 6825, pp. 268–276,
2001. 111

[217] A. Azzara, M. Petracca, and P. Pagano, “The icsi m2m middleware for iot-based
intelligent transportation systems,” in 2015 IEEE 18th Int. Conference on Intelligent
Transportation Systems. IEEE, 2015, pp. 155–160. 111

[218] A. Al-Dweik, R. Muresan, M. Mayhew, and M. Lieberman, “Iot-based multifunc-
tional scalable real-time enhanced road side unit for intelligent transportation sys-
tems,” in 2017 IEEE 30th Canadian conference on electrical and computer engineering
(CCECE). IEEE, 2017, pp. 1–6. 111

[219] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables
devops: Migration to a cloud-native architecture,” Ieee Software, vol. 33, no. 3, pp.
42–52, 2016. 113

[220] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Relationship of devops to agile, lean
and continuous deployment,” in International Conference on Product-Focused Soft-
ware Process Improvement. Springer, 2016, pp. 399–415. 113

[221] N. Marz and J. Warren, Big Data: Principles and best practices of scalable real time
data systems. Manning Publications, 2013. 114

[222] J. Kreps, “Questioning the lambda architecture,”
https://www.oreilly.com/radar/questioning-the-lambda-architecture/, August 2014.
114

[223] S. Chouali, A. Boukerche, A. Mostefaoui, and M. A. Merzoug, “Formal verification and
performance analysis of a new data exchange protocol for connected vehicles,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15 385–15 397, 2020. 115

[224] A. Furno, N. E. Faouzi, R. Sharma, V. Cammarota, and E. Zimeo, “A graph-based
framework for real-time vulnerability assessment of road networks,” in 2018 IEEE In-
ternational Conference on Smart Computing, SMARTCOMP 2018, Taormina, Sicily,
Italy, June 18-20, 2018, 2018, pp. 234–241. 117

[225] A. De Iasio, A. Furno, L. Goglia, and E. Zimeo, “A microservices platform for moni-
toring and analysis of iot traffic data in smart cities,” in 2019 IEEE Int. Conference
on Big Data (Big Data). IEEE, 2019, pp. 5223–5232. 117

- 173 -



BIBLIOGRAPHY

[226] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, “Network analysis in the social
sciences,” Science, vol. 323, no. 5916, pp. 892–895, 2009. 124

[227] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability of complex
networks,” Physical Review E, vol. 65, no. 5, p. 056109, 2002. 124

[228] T. Carpenter, G. Karakostas, and D. Shallcross, “Practical issues and algorithms for
analyzing terrorist networks,” in Proceedings of the western simulation multiconfer-
ence, 2002. 124

[229] D. King, A. Shalaby, and P. Eng, “Performance metrics and analysis of transit network
resilience in toronto,” Transportation Research Record, pp. 16–2441, 2016. 124

[230] Y. Zhang, X. Wang, P. Zeng, and X. Chen, “Centrality characteristics of road network
patterns of traffic analysis zones,” Transportation research record, vol. 2256, no. 1, pp.
16–24, 2011. 124

[231] B. Berche, C. Von Ferber, T. Holovatch, and Y. Holovatch, “Resilience of public trans-
port networks against attacks,” The European Physical Journal B, vol. 71, pp. 125–137,
2009. 124

[232] A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Two-level clustering fast
betweenness centrality computation for requirement-driven approximation,” in 2017
IEEE International Conference on Big Data (Big Data). IEEE, 2017, pp. 1289–1294.
124, 126, 132

[233] U. Brandes and C. Pich, “Centrality estimation in large networks,” International Jour-
nal of Bifurcation and Chaos, vol. 17, no. 07, pp. 2303–2318, 2007. 124

[234] C. Daniel, A. Furno, L. Goglia, and E. Zimeo, “Fast cluster-based computation of
exact betweenness centrality in large graphs,” Journal of Big Data, vol. 8, no. 1, pp.
1–39, 2021. 124, 125, 126, 129, 133

[235] A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Fast approximated between-
ness centrality of directed and weighted graphs,” in Complex Networks and Their
Applications VII: Volume 1 Proceedings The 7th International Conference on Com-
plex Networks and Their Applications COMPLEX NETWORKS 2018 7. Springer,
2019, pp. 52–65. 125, 126

[236] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5,
no. 6, p. 345, 1962. 125

[237] P. Suppa and E. Zimeo, “A clustered approach for fast computation of betweenness
centrality in social networks,” in 2015 IEEE International Congress on Big Data.
IEEE, 2015, pp. 47–54. 126, 132

[238] C. Daniel, A. Furno, and E. Zimeo, “Cluster-based computation of exact betweenness
centrality in large undirected graphs,” in 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 2019, pp. 603–608. 126

[239] Y. Li, W. Li, Y. Tan, F. Liu, Y. Cao, and K. Y. Lee, “Hierarchical decomposition for
betweenness centrality measure of complex networks,” Scientific Reports, vol. 7, no. 1,
p. 46491, 2017. 126, 132, 135, 138, 139

[240] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science,
vol. 286, no. 5439, pp. 509–512, 1999. 126

[241] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of com-
munities in large networks,” Journal of statistical mechanics: theory and experiment,
vol. 2008, no. 10, p. P10008, 2008. 129

- 174 -



BIBLIOGRAPHY

[242] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in AAAI, 2015. [Online]. Available: http:
//networkrepository.com 136

[243] J. Mcauley and J. Leskovec, “Learning to discover social circles in ego networks,” NIPS,
vol. 1, pp. 539–547, 01 2012. 136

[244] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters,” ACM Trans Knowledge Discov Data, vol. 1, 04 2006. 136

[245] C. Daniel, P. Lemaire, A. Ladino, A. Furno, N.-E. E. Faouzi, and S. Hassas,
“COMFORT: Cooperative multi-agent framework for large-scale routing-based traffic
control,” in 102nd Annual Meeting of the Transportation Research Board (TRB),
2023. [Online]. Available: https://people.licit-lyon.eu/furno/documents/comfort_
furno_et_al_2022.pdf 140, 142

[246] J. Haddad, “Optimal perimeter control synthesis for two urban regions with aggregate
boundary queue dynamics,” Transportation Research Part B: Methodological, vol. 96,
pp. 1–25, 2017. 140

[247] I. I. Sirmatel and N. Geroliminis, “Economic model predictive control of large-scale
urban road networks via perimeter control and regional route guidance,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1112–1121, 2017.
140

[248] L. Leclercq, A. Ladino, and C. Becarie, “Enforcing optimal routing through dynamic
avoidance maps,” Transportation Research Part B: Methodological, vol. 149, pp. 118–
137, 2021. 140, 141

[249] L. Leclercq, N. Chiabaut, and B. Trinquier, “Macroscopic fundamental diagrams: A
cross-comparison of estimation methods,” Transportation Research Part B: Method-
ological, vol. 62, pp. 1–12, 2014. 141

[250] V. Lequay, M. Lefort, S. Mansour, and S. Hassas, “Ajustement diffus et adaptatif de
la consommation électrique résidentielle par un système multi-agent auto-adaptatif,”
Revue des Sciences et Technologies de l’Information-Série RIA: Revue d’Intelligence
Artificielle, vol. 31, no. 4/2017, pp. 427–447, 2017. 141

[251] J. D. Caicedo, M. C. González, and J. L. Walker, “Public transit demand prediction
during highly dynamic conditions: A meta-analysis of state-of-the-art models and
open-source benchmarking infrastructure,” arXiv preprint arXiv:2306.06194, 2023.
147

[252] S. Zhu, H. Masud, C. Xiong, Z. Yang, Y. Pan, and L. Zhang, “Travel behavior reactions
to transit service disruptions: study of metro safetrack projects in washington, dc,”
Transportation Research Record, vol. 2649, no. 1, pp. 79–88, 2017. 147

[253] H. Budnitz, L. Chapman, and E. Tranos, “Better by bus? insights into public transport
travel behaviour during storm doris in reading, uk,” Weather, vol. 73, no. 2, pp. 54–60,
2018. 147

[254] A. S. Benam, A. Furno, and N.-E. E. Faouzi, “Exploring the multi-modal demand dy-
namics during transport system disruptions,” arXiv preprint arXiv:2307.00877, 2023.
148

[255] C. Zhang, L. Zhang, Y. Liu, and X. Yang, “Short-term prediction of bike-sharing usage
considering public transport: A lstm approach,” in 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 1564–1571. 151

- 175 -

http://networkrepository.com
http://networkrepository.com
https://people.licit-lyon.eu/furno/documents/comfort_furno_et_al_2022.pdf
https://people.licit-lyon.eu/furno/documents/comfort_furno_et_al_2022.pdf


BIBLIOGRAPHY

[256] D. Chai, L. Wang, and Q. Yang, “Bike flow prediction with multi-graph convolutional
networks,” in Proceedings of the 26th ACM SIGSPATIAL international conference on
advances in geographic information systems, 2018, pp. 397–400. 151

[257] L. Chen, D. Zhang, L. Wang, D. Yang, X. Ma, S. Li, Z. Wu, G. Pan, T.-M.-T.
Nguyen, and J. Jakubowicz, “Dynamic cluster-based over-demand prediction in bike
sharing systems,” in Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2016, pp. 841–852. 151

[258] W. Jiang, “Bike sharing usage prediction with deep learning: a survey,” Neural Com-
puting and Applications, vol. 34, no. 18, pp. 15 369–15 385, 2022. 151

[259] Y. Li and B. Shuai, “Origin and destination forecasting on dockless shared bicycle in
a hybrid deep-learning algorithms,” Multimedia Tools and Applications, vol. 79, pp.
5269–5280, 2020. 151

[260] J. Ke, X. Qin, H. Yang, Z. Zheng, Z. Zhu, and J. Ye, “Predicting origin-destination
ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph
convolutional network,” Transportation Research Part C: Emerging Technologies, vol.
122, p. 102858, 2021. 151

[261] J. An, L. Fu, M. Hu, W. Chen, and J. Zhan, “A novel fuzzy-based convolutional neural
network method to traffic flow prediction with uncertain traffic accident information,”
Ieee Access, vol. 7, pp. 20 708–20 722, 2019. 151

[262] K. Kim, “Investigation on the effects of weather and calendar events on bike-sharing ac-
cording to the trip patterns of bike rentals of stations,” Journal of transport geography,
vol. 66, pp. 309–320, 2018. 151

[263] R. Rochas, A. Furno, and N.-E. E. Faouzi, “Empirical analysis of the forecasting accu-
racy of ST-ED-RMGC with bike-sharing data under atypical weather-related scenar-
ios,” in Proceedings of the 14th International Conference on Application of Statistics
and Probability in Civil Engineering (ICASP14), to appear. 151

[264] ——, “Contextual data integration for bike-sharing demand prediction with graph
neural networks in degraded weather conditions,” in Proceedings of the 26th IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC 2023), to appear.
151

[265] Y. Liang, G. Huang, and Z. Zhao, “Joint demand prediction for multimodal systems:
A multi-task multi-relational spatiotemporal graph neural network approach,” Trans-
portation Research Part C: Emerging Technologies, vol. 140, p. 103731, 2022. 152

[266] J. Ji, J. Wang, Z. Jiang, J. Jiang, and H. Zhang, “Stden: Towards physics-guided
neural networks for traffic flow prediction,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 4, 2022, pp. 4048–4056. 152

[267] R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “Liquid time-constant net-
works,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9,
2021, pp. 7657–7666. 153

[268] M. Chahine, R. Hasani, P. Kao, A. Ray, R. Shubert, M. Lechner, A. Amini, and
D. Rus, “Robust flight navigation out of distribution with liquid neural networks,”
Science Robotics, vol. 8, no. 77, p. eadc8892, 2023. 153

[269] S. Hörl and M. Balac, “Synthetic population and travel demand for paris and île-de-
france based on open and publicly available data,” Transportation Research Part C:
Emerging Technologies, vol. 130, p. 103291, 2021. 153, 154

- 176 -



BIBLIOGRAPHY

[270] A. Ahrens and S. Lyons, “Do rising rents lead to longer commutes? a gravity model
of commuting flows in ireland,” Urban Studies, vol. 58, no. 2, pp. 264–279, 2021. 153

[271] B. J. Vitins, A. Erath, and K. W. Axhausen, “Integration of a capacity-constrained
workplace choice model: Recent developments and applications with an agent-based
simulation in singapore,” Transportation Research Record, vol. 2564, no. 1, pp. 1–13,
2016. 153

[272] A. Justen, F. J. Martínez, and C. E. Cortés, “The use of space–time constraints for the
selection of discretionary activity locations,” Journal of Transport Geography, vol. 33,
pp. 146–152, 2013. 153

[273] L. Bonnetain, A. Furno, N.-E. El Faouzi, M. Fiore, R. Stanica, Z. Smoreda, and
C. Ziemlicki, “TRANSIT: Fine-grained human mobility trajectory inference at scale
with mobile network signaling data,” Transportation Research Part C: Emerging Tech-
nologies, vol. 130, p. 103257, 2021. 153

[274] Cerema, “lil-1023: Enquête ménage déplacement, lyon / aire métropolitaine lyonnaise,”
2015, available online: https://data.progedo.fr/studies/doi/10.13144/lil-1023. 154

[275] K. W Axhausen, A. Horni, and K. Nagel, The multi-agent transport simulation MAT-
Sim. Ubiquity Press, 2016. 156

[276] R. Gasper, A. Blohm, and M. Ruth, “Social and economic impacts of climate change
on the urban environment,” Current Opinion in Environmental Sustainability, vol. 3,
no. 3, pp. 150–157, 2011. 156

[277] M. Salimi and S. G. Al-Ghamdi, “Climate change impacts on critical urban infras-
tructure and urban resiliency strategies for the middle east,” Sustainable Cities and
Society, vol. 54, p. 101948, 2020. 156

[278] A. Rehman, K. Haseeb, T. Saba, J. Lloret, and Z. Ahmed, “Towards resilient and secure
cooperative behavior of intelligent transportation system using sensor technologies,”
IEEE Sensors Journal, vol. 22, no. 7, pp. 7352–7360, 2022. 156

[279] V. M. Nik, A. Perera, and D. Chen, “Towards climate resilient urban energy systems:
a review,” National Science Review, vol. 8, no. 3, p. nwaa134, 2021. 156

[280] K. T. Chui, P. Ordóñez de Pablos, C.-w. Shen, M. D. Lytras, and P. Vasant, “Towards
sustainable smart city via resilient internet of things,” in Resilience in a Digital Age:
Global Challenges in Organisations and Society. Springer, 2022, pp. 117–135. 156

[281] J. Villamayor, D. Rexachs, E. Luque, and D. Lugones, “Raas: Resilience as a ser-
vice,” in 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2018, pp. 356–359. 157

[282] R. Amghar, S. Jaber, S. H. M. Moghaddam, N. Bhouri, and M. Ameli, “Resilience as
a service for transportation networks: Definition and basic concepts,” Transportation
Research Record, p. 03611981231170180, 2023. 157

[283] Q. Zou and S. Chen, “Enhancing resilience of interdependent traffic-electric power
system,” Reliability Engineering & System Safety, vol. 191, p. 106557, 2019. 157

[284] X. Lu, K. Hinkelman, Y. Fu, J. Wang, W. Zuo, Q. Zhang, and W. Saad, “An open
source modeling framework for interdependent energy-transportation-communication
infrastructure in smart and connected communities,” IEEE Access, vol. 7, pp. 55 458–
55 476, 2019. 157

[285] M. Fiore et al., “Full network sensing: Architecting 6g beyond communications,” IEEE
Network, 2023. 157

- 177 -



BIBLIOGRAPHY

[286] A. Goudarzi, F. Ghayoor, M. Waseem, S. Fahad, and I. Traore, “A survey on iot-
enabled smart grids: Emerging, applications, challenges, and outlook,” Energies,
vol. 15, no. 19, p. 6984, 2022. 157

[287] F. Poinsignon, L. Chen, S. Jiang, K. Gao, H. Badia, and E. Jenelius, “Autonomous
vehicle fleets for public transport: scenarios and comparisons,” Green Energy and
Intelligent Transportation, vol. 1, no. 3, p. 100019, 2022. 157

[288] J. Ferré-Bigorra, M. Casals, and M. Gangolells, “The adoption of urban digital twins,”
Cities, vol. 131, p. 103905, 2022. 157

[289] J. Mao, L. Cao, C. Gao, H. Wang, H. Fan, D. Jin, and Y. Li, “Detecting vulnerable
nodes in urban infrastructure interdependent network,” in Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4617–
4627. 157, 158

[290] A. Hussain and P. Musilek, “Resilience enhancement strategies for and through electric
vehicles,” Sustainable Cities and Society, vol. 80, p. 103788, 2022. 158

[291] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change: Continual
learning in deep neural networks,” Trends in cognitive sciences, vol. 24, no. 12, pp.
1028–1040, 2020. 158

[292] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catas-
trophic forgetting in neural networks,” Proceedings of the national academy of sciences,
vol. 114, no. 13, pp. 3521–3526, 2017. 158

- 178 -


	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Early Research Topics
	Evolution of the Research Context
	Data-driven Urban Transport Resilience
	Structure of the Document

	Basic Notions
	Massive Data Sources for Mobility Studies
	Main Sources of Trajectory Data
	Analysis of a Massive Real-world NSD Dataset

	Resilience Modelling
	Main Approaches to Assessing Resilience: a High-level Classification
	Vulnerability Analysis of Transport Networks


	Mobile Traffic Profiling and Travel Demand Estimation
	Mobile Traffic Demand Profiling with Call Detail Records
	Time Profiling of Mobile Traffic Demand
	Spatial Profiling of Mobile Traffic Demand
	Spatio-temporal Profiling of Mobile Traffic Demand

	Origin-Destination Flows at Regional Scale via Network Signalling Data
	Static OD Matrix Estimation
	Dynamic OD Matrix Estimation


	Zonal Traffic Speed and Urban Trajectory Reconstruction
	Estimation of Mean Spatial Speeds in Urban Areas
	Trajectory Inference at Scale with Network Signalling Data
	Trajectory identification
	Trajectory Augmentation
	Performance Evaluation
	Large-Scale Applications of TRANSIT

	Multi-modal Path Reconstruction via Hidden Markov Model
	Empirical Evaluation in the Lyon Case Study

	Towards Privacy-aware Mobility Inference

	Assessing and Managing Vulnerabilities in Transportation Networks
	Vulnerability Analysis: a Comparative Study
	Graph-theory metrics
	Demand-sensitive Vulnerability Metric
	Stress Testing Methodology
	Evaluation

	Graph Theory and Big Data Processing towards Online Transport Monitoring
	Weighted Degree Centrality Metrics for Transport Network Resilience
	Correlation of Betweenness Centrality and Traffic Metrics

	Vulnerability-aware Multi-modal Network Design
	Park-and-Ride for Resilient On-Demand Urban Mobility


	Real-time and Large-scale Solutions for Resilient Urban Networks
	Modelling Approach and Platform Requirements
	Complex network modelling of city infrastructures
	Functional requirements
	Non-functional requirements
	Additional features

	PROMENADE architecture
	Live-stream and historical-data ingestion
	Temporary and permanent storage
	Stream and batch processing
	Service offering

	Platform implementation and its specialisation in road network monitoring
	Platform core implementation
	Specialisation for Road Network Resilience

	Fast Cluster-based Computation of Betweenness Centrality in Large Graphs
	Background
	Brandes' algorithm 
	Equivalence class 
	Clustering and BC computation
	Empirical Evaluation with Synthetic and Realistic Networks

	Multi-agent-based Large-Scale Traffic Control

	Conclusion and Perspectives
	Short-term Perspectives
	Short-term Multi-modal Traffic Forecasting: looking for the atypical
	Synthetic Population Generation via Multi-Source Data

	Longer-term Perspectives

	Bibliography

