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Résumé
La topologie, c’est-à-dire l’étude qualitative des formes et des espaces, constitue un

domaine classique des mathématiques depuis plus d’un siècle, mais il n’est apparu que
récemment que pour de nombreuses applications, il est important de pouvoir calculer in-
formatiquement les propriétés topologiques d’un objet. Ce point de vue est la base de la
topologie algorithmique, un domaine très actif à l’interface des mathématiques et de l’in-
formatique auquel ce travail se rattache. Les trois contributions de cette thèse concernent
le développement et l’étude d’algorithmes topologiques pour calculer des décompositions
et des déformations d’objets de basse dimension, comme des graphes, des surfaces ou des
3-variétés.

Le premier problème auquel nous nous attaquons traite de déformations : comment
peut-on tester si deux graphes dessinés sur une même surface sont isotopes, c’est-à-dire
si l’on peut déformer continûment l’un en l’autre ? Ce type de question est relié à des
problèmes pratiques que l’on rencontre par exemple dans les systèmes d’information géo-
graphique ou les métamorphoses (morphings). En nous appuyant sur des concepts de géo-
métrie hyperbolique et de la théorie des mapping class groups, nous établissons d’abord
un critère combinatoire pour caractériser l’isotopie, ce qui reprouve et améliore un résultat
de Ladegaillerie de 1984. Ensuite, en combinant ceci avec des algorithmes antérieurs pour
tester l’homotopie de courbes, nous fournissons des algorithmes efficaces pour résoudre ce
problème d’isotopie de graphes.

Nous déplaçons ensuite notre étude vers des problèmes de décompositions, en nous
intéressant à la découpe de surfaces le long de courbes ou de graphes respectant certaines
propriétés topologiques, ce qui est une routine importante en algorithmique des graphes ou
en infographie, parmi d’autres domaines. En établissant une forte connexion avec le cas
continu, ainsi qu’en étudiant un modèle discret de surfaces aléatoires, nous améliorons les
meilleures bornes connues pour plusieurs schémas de découpe. Cela prouve en particulier
une conjecture de Przytycka et Przytycki datant de 1993, et fournit également un nouvel
algorithme pour calculer des décompositions en pantalons courtes.

Enfin, nous montons d’une dimension, où les meilleurs algorithmes connus pour de
nombreux problèmes topologiques (comme le célèbre problème du nœud) sont exponen-
tiels. La plupart de ces algorithmes reposent sur les surfaces normales, un objet omnipré-
sent pour étudier les surfaces plongées dans une 3-variété. Nous étudions une relaxation
naturelle de cette notion, les surfaces normales immergées, dont la meilleure structure al-
gébrique en fait de bons candidats pour obtenir des algorithmes polynomiaux pour des pro-
blèmes topologiques. Dans ce travail, nous montrons qu’utiliser des surfaces normales im-
mergées mène naturellement à un problème de détection de singularités, et nous prouvons
que celui-ci est NP-dur ; c’est un résultat notable car l’on dispose de très peu de preuves de
difficulté en topologie en 3 dimensions. Notre réduction s’appuie sur une connexion avec
une classe restreinte de problèmes de satisfaction de contraintes qui a été partiellement
classifiée par Feder.



Abstract
Topology is the area of mathematics investigating the qualitative properties of shapes and
spaces. Although it has been a classical field of study for more than a century, it only
appeared recently that being able to compute the topological features of various spaces
might be of great value for many applications. This idea forms the core of the blossoming
field of computational topology, to which this work belongs. The three contributions of
this thesis deal with the development and the study of topological algorithms to compute
deformations and decompositions of low-dimensional objects, such as graphs, surfaces or
3-manifolds.

The first question we tackle concerns deformations: how can one test whether two
graphs embedded on the same surface are isotopic, i.e., whether one can be deformed con-
tinuously into the other? This kind of problems is relevant to practical problems arising
with morphings or geographic information systems, for example. Relying on hyperbolic
geometry and ideas from the theory of mapping class groups, we first establish a combina-
torial criterion to characterize isotopy, reproving and strengthening a result of Ladegaillerie
(1984). Combined with earlier algorithms on the homotopy of curves, this allows us in turn
to provide efficient algorithms to solve this graph isotopy problem.

We then shift our focus to decompositions, by investigating how to cut surfaces along
curves or graphs with prescribed topological properties, which is an important routine in
graph algorithms or computer graphics, amongst others domains. By establishing a strong
connection with the continuous setting, as well as studying a discrete model for random
surfaces, we improve the best known bounds for several instances of this problem. In
particular, this proves a conjecture of Przytycka and Przytycki from 1993, and one of our
new bounds readily translates into an algorithm to compute short pants decompositions.

Finally, we move up one dimension, where the best known algorithms for many topo-
logical problems, like for example unknot recognition, are exponential. Most of these
algorithms rely on normal surfaces, a ubiquitous tool to study the surfaces embedded in a
3-manifold. We investigate a relaxation of this notion called immersed normal surfaces,
whose more convenient algebraic structure makes them good candidates to solve topolog-
ical problems in polynomial time. We show that when working with immersed normal
surfaces, a natural problem on the detection of singularities arises, and we prove it to be
NP-hard – this is noteworthy as hardness results are very scarce in 3-dimensional topol-
ogy. Our reduction works by establishing a connection with a restricted class of constraint
satisfaction problems which has been partially classified by Feder.
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CHAPITRE 1

Introduction en français

En 1860, la plupart des scientifiques étaient convaincus qu’un corps mystérieux ap-
pelé l’éther formait la substance qui remplissait l’espace, et qu’il apparaissait dans toutes
les structures possibles de notre univers. Pour expliquer les différents éléments que l’on
pouvait observer dans la nature, Lord Kelvin proposa la Théorie du Vortex, qui postulait
que les atomes étaient en fait des vortex d’éther, et qui modélisait donc les éléments chi-
miques comme des nœuds ou des entrelacs, de telle sorte que les différences topologiques
entre les nœuds aient un impact sur les propriétés physiques des éléments correspondants.
Cette théorie avait un attrait remarquable car elle permettait d’expliquer certaines proprié-
tés discrètes de la matière que l’on pouvait déjà observer à l’époque, comme les longueurs
d’onde auxquelles les atomes émettent et absorbent la lumière. Par exemple, le célèbre
doublet d’émission du Sodium pourrait ainsi être hypothétiquement expliqué par sa forme
intrinsèque de nœud de Hopf, c’est-à-dire de deux cercle entremêlés, comme le montre la
figure 1.1.

Il a fallu peu de temps pour que la célèbre expérience de Michelson et Morley détruisît
cette théorie en mettant en évidence qu’il n’y avait probablement pas d’éther du tout. Mais
les dégâts avaient déjà été réalisés. Peter Guthrie Tait, en essayant d’étudier cette théorie du
vortex, avait déjà établi les premières tables classifiant les nœuds, ainsi que les premières
conjectures de la naissante théorie de nœuds qui leur correspondait ; il fut bientôt rejoint

FIGURE 1.1 – Le doublet d’émission du Sodium pourrait-il être expliqué par sa forme
intrinsèque de nœud de Hopf ?



2 Chapitre 1. Introduction en français

dans cette aventure par des armées de mathématiciens.
Sautons aux temps modernes, et l’on se rend compte que la théorie des nœuds, malgré

son échec initial pour décrire la matière, apparaît dans une multitude de domaines : pour ne
citer que quelques exemples, les brins d’ADN se retrouvent noués et dénoués par l’action
d’enzymes [240], on sait désormais synthétiser de très petites molécules nouées ou entrela-
cées [251] et le lecteur est probablement familier avec l’expérience pénible et systématique
de devoir dénouer des écouteurs en les sortant d’une poche trop serrée.

Dans une perspective un peu plus large, la théorie des nœuds n’est qu’un domaine
de la topologie, qui est l’étude mathématique des espaces et des formes. La topologie est
un champ de recherche très mûr, dont les premières ébauches comme la formule d’Euler
datent au moins du XVIIe siècle avec Descartes. C’est aussi un domaine très actif, comme
le montre la récente résolution de la conjecture de Poincaré par Perelman [195, 196].

Mais un nouvel aspect de cette discipline est apparu dans les dernières décennies, avec
la révolution accompagnant les technologies de l’information : on ne se satisfait plus de
la simple compréhension d’un objet topologique – qui est ce que les mathématiques four-
nissent traditionnellement – mais on veut également pouvoir calculer ces propriétés topo-
logiques. Dans le cas de la théorie des nœuds, la question suivante ressort directement de
cette perspective : comment peut-on déterminer algorithmiquement si un nœud est noué ?
Il s’avère que cette question est fondamentale et illustre bien les techniques et les objectifs
de ce nouveau point de vue. Développer des algorithmes systématiques pour s’attaquer à
des questions d’ordre topologique est le sujet de la topologie algorithmique, un champ de
recherche en pleine explosion, visant à la fois à revisiter de vieux problèmes topologiques
sous une nouvelle perspective, et à raviver la topologie avec de nouvelles directions de
recherche.

1.1 Approche

Cette thèse étudie des problèmes topologiques en basse dimension du point de vue
d’un informaticien théorique. Cette perspective nous amène à combiner des techniques de
plusieurs domaines à l’interface des mathématiques et de l’informatique.

Topologie. La topologie, et en particulier la topologie algébrique, vise à développer des
outils pour acquérir une bonne compréhension des formes et des espaces. Cette étude peut
emprunter différentes chemins, comme recomposer des espaces en des pièces plus simples
(théorie de la chirurgie), analyser les différents sous-espaces qu’ils contiennent (théories de
l’homotopie et de l’homologie), ou bien étudier la connexion entre leurs propriétés topolo-
giques et métriques (géométrisation). Ces techniques, rassemblées dans l’optique de créer
des algorithmes pour la classification et la décomposition des espaces de basse dimension,
forment la base commune de cette thèse.



1.1. Approche 3

Il y a une saveur très différente entre travailler en basse (deux, trois ou quatre) et en
haute dimension. Dans le second cas, l’espace supplémentaire permet d’utiliser de nom-
breux outils pour se déplacer qui sont inaccessibles en petite dimension. D’un point de vue
mathématique, cela rend de nombreux problèmes bien plus faciles en grandes dimensions,
comme l’illustre le cas de la conjecture de Poincaré. En effet, celle-ci a résisté bien plus
longtemps en dimension 3 qu’en dimensions supérieures à cinq, pour lesquelles Smale a
apporté une solution en 1961. D’un point de vue algorithmique en revanche, cet espace
additionnel est aussi une malédiction : comme nous le verrons dans le chapitre 4, beaucoup
de problèmes deviennent indécidables dès que l’on dépasse la dimension quatre, ce qui ré-
duit à néant toute espoir d’obtenir des algorithmes pour nombre de questions. Cette thèse
se focalise donc sur les espaces en dimension deux ou trois, c’est-à-dire essentiellement les
surfaces et les 3-variétés (espaces ressemblant localement à l’espace euclidien usuel), qui
sont le cadre de nombreux problèmes algorithmiques, à la fois résolubles et intéressants.

Structures discrètes. Un aspect important de notre angle d’attaque est qu’il nous amène
à considérer essentiellement des structures discrètes. Cela pourrait paraître contradictoire
de prime abord, puisque la continuité est une des notions les plus fondamentales de la
topologie. Cependant, l’idée n’est pas d’étudier des structures fondamentalement discrètes
comme des nuages de points, mais plutôt d’encoder des structures topologiques de façon
finie, afin de les manipuler algorithmiquement. Ainsi, au lieu de considérer des surfaces
comme des sous-variétés arbitraires d’un espace euclidien, nous préférerons les trianguler,
pour pouvoir les traiter comme des morceaux linéaires collés les uns aux autres 1. Cela
donne à notre travail une dimension très combinatoire, et permet d’établir des connexions
avec de nombreux domaines des mathématiques discrètes, en particulier avec la théorie des
graphes.

Algorithmes. Enfin, notre approche nous amène à nous focaliser fortement sur les al-
gorithmes. Notre objectif est de pouvoir effectuer des calculs efficaces sur les espaces
topologiques, et notre point de vue théorique exige que l’on prouve la correction de nos
algorithmes, et que l’on étudie leur complexité de la façon la plus précise possible, géné-
ralement d’un point de vue asymptotique. Une direction de recherche duale est d’établir
la difficulté de certains problèmes, c’est-à-dire de montrer qu’il n’existe pas d’algorithmes
efficaces pour effectuer certaines tâches. Dans les deux cas, nous sommes amenés à combi-
ner des outils de topologie et d’informatique théorique pour atteindre ces objectifs, ce qui
situe ce travail à l’intersection de ces deux domaines.

Nous remarquons que notre travail se situe au niveau des fondations, et que ces al-
gorithmes restent sur le plan théorique et n’ont pas été implémentés. Cependant, ils sont

1. Cette approche n’a rien de nouveau en topologie algébrique, où l’on modélise depuis longtemps les
espaces comme des complexes simpliciaux ou des CW-complexes, mais cela convient très bien à notre cadre
de travail.
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FIGURE 1.2 – a. Existe-t-il une déformation continue entre les deux graphes dessinés sur
ce double tore ?
b. Comment découper efficacement une surface en pièces plus simples ?
c. Ces deux nœuds sont-ils les mêmes, c’est-à-dire peut-on passer de l’un à l’autre par une
déformation continue ?

mûrs pour être appliqués et utilisés pour des applications où l’on a besoin de travailler
avec des formes, comme pour l’infographie, les systèmes d’information géographique, la
conception assistée par ordinateur, la robotique ou la bio-informatique. Nous présenterons
aussi d’autres applications plus surprenantes d’ingrédients topologiques dans le chapitre 4.
Développer soigneusement des implémentations robustes de nos résultats, pour les inclure
dans des librairies standards, serait un versant intéressant de notre travail – mais pas celui
sur lequel nous nous sommes concentrés jusque-là.

1.2 Contributions de cette thèse
Cette thèse revisite des concepts topologiques classiques d’un point de vue informa-

tique. La première partie de ce travail traite de déformations : Étant donnés deux objets
topologiques dans un espace, comment peut-on déterminer si l’un peut être continûment
déformé en l’autre ? Résoudre ce genre de questions nous permettrait ensuite de classifier
ces objets : la déformation nous fournit une notion précise d’équivalence, et donc une façon
de rassembler les objets en catégories ayant des propriétés topologiques similaires. Nous
étudions deux occurrences de ce problème de déformation. D’un côté nous nous intéressons
aux graphes plongés sur des surfaces, et nous fournissons des algorithmes efficaces pour
résoudre la question. D’un autre côté, nous regardons les plongements du cercle dans R3,
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où cela mène au problème du nœud précédemment mentionné. Bien que nous ne résolvions
pas le problème dans ce cas-là (c’est une des grandes questions ouvertes du domaine), nous
prouvons la difficulté d’une approche naturelle pour s’y attaquer. Le second thème de notre
étude tourne autour de décompositions : comment peut-on simplifier efficacement un es-
pace topologique en le coupant en plus petits morceaux ? Dans le cas des surfaces, nous
fournissons de nouveaux algorithmes et bornes pour plusieurs instances de cette question.

Tester l’isotopie de graphes sur les surfaces. Le problème d’isotopies de graphes pose
la question suivante : étant donné un graphe plongé (c’est-à-dire dessiné sans croisements)
de deux façons différentes sur une surface, existe-t-il une isotopie, c’est-à-dire une défor-
mation continue, entre les deux plongements ? D’un point de vue mathématique, c’est une
question fondamentale car l’isotopie est une relation d’équivalence très fine sur les graphes
plongés, en cela qu’elle identifie exactement les graphes plongés qui sont intuitivement
les mêmes. De plus, les graphes plongés apparaissent sous de très nombreuses formes en
topologie de basse dimension, par exemple de par leurs connexions avec les réseaux ferro-
viaires, que l’on décrira succinctement au chapitre 4, ou avec les diagrammes de Heegaard,
qui sont un outil fondamental en topologie des 3-variétés [131]. Tester l’isotopie a aussi
des applications plus pratiques : les cartes routières peuvent par exemples être modélisées
précisément par des graphes plongés, et tester l’isotopie permet de vérifier que deux cartes
ont les mêmes propriétés topologiques (cette maison est-elle du bon côté de la route ?). Les
domaines liés aux métamorphoses (morphings) ou à l’application de textures fournissent
également d’autres applications.

À partir de travaux antérieurs à la fois informatiques (algorithmes pour tester l’homoto-
pie de courbes plongées) et mathématiques (Ladegaillerie a fourni un critère combinatoire
pour tester l’isotopie de graphes), nous fournissons un algorithme efficace pour tester si
deux graphes sont isotopes. Un aspect particulier lorsqu’on travaille en basse dimension
est qu’il y a une très forte connexion entre la géométrie et la topologie, et nos techniques
reposent sur de la géométrie hyperbolique pour étudier la combinatoire de cette relation
d’isotopie, ainsi que pour montrer la correction de notre algorithme.

Inégalités systoliques discrètes et décompositions de surfaces triangulées. Dans une
seconde étape, nous déplaçons notre intérêt vers une problématique de décomposition. Dé-
composer une surface, c’est la découper en des morceaux plus petits et plus simples, et
cela constitue une étape fondamentale pour de nombreuses applications, car cela permet
de relier les propriétés topologiques de la surface à celles du plan qui sont très bien com-
prises. Cette démarche apparaît couramment par exemple pour développer des algorithmes
pour les graphes plongés sur des surfaces, où cela se révèle très pratique de se ramener au
cas planaire. Similairement, les décompositions de surface sont aussi pertinentes pour réa-
liser du maillage, de la paramétrisation ou pour de nombreuses autres applications ; nous
renvoyons à l’introduction du chapitre 6 correspondant.
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Lorsqu’on découpe une surface pour la simplifier, il est important de contrôler la lon-
gueur de la découpe : couper le long d’une courbe courte nous permet de limiter les mo-
difications induites par cette décomposition. C’est donc un problème naturel d’ajouter une
contrainte géométrique à une décomposition topologique en essayant de trouver la façon
la plus courte pour découper une surface et la simplifier. Il existe différents schémas pour
découper une surface, et nous étudions trois d’entre eux : les systoles, les décompositions
en pantalons et les graphes de découpe. Nous améliorons d’abord les meilleures bornes
connues sur les longueurs des systoles, ce qui répond à une conjecture de Przytycka et
Przytycki datant de 1993. Nous fournissons aussi un nouvel algorithme pour calculer des
décompositions en pantalons courtes, et nous identifions une obstruction à la présence de
courts graphes de découpe. Nos résultats reposent sur une connexion explicite avec le cas
continu, qui a été étudié en profondeur dans le cadre de la géométrie systolique, ainsi que
sur l’utilisation d’un modèle aléatoire de surfaces.

Surfaces normales immergées. Enfin, nous fixons notre attention sur des problèmes en
dimension 3. Le problème angulaire de la topologie algorithmique en cette dimension est le
célèbre problème du nœud auquel nous avons déjà fait référence précédemment : Comment
peut-on tester si un cercle plongé dans l’espace euclidien peut être isotopé en un cercle pla-
naire, ou en termes profanes si un nœud peut être dénoué ? C’est un des rares problèmes al-
gorithmiques pour lesquels aucun algorithme polynomial n’est connu, mais aucune preuve
de difficulté non plus. De façon analogue, de nombreux problèmes en 3 dimensions sont
encore assez mal compris et restent l’objet de nombreux efforts. Par exemple, alors que tes-
ter si deux surfaces sont homéomorphes (ou topologiquement équivalentes) est très simple,
le problème analogue en 3 dimensions, où les espaces sont décrits par des tétraèdres collés
les uns aux autres, est extrêmement délicat.

Un des outils principaux pour étudier un espace topologique est d’analyser les sous-
espaces qu’il contient. Similairement, les meilleurs algorithmes connus pour des problèmes
en 3 dimensions reposent tous sur le concept de surfaces normales, qui fournissent une
structure algébrique pour représenter et manipuler les surfaces plongées dans un espace
tridimensionnel. Dans ce travail, nous étudions une généralisation naturelle des surfaces
normales où celles-ci sont autorisées à être immergées et non plus plongées. Cela mène
naturellement à un problème de détection de singularités que l’on prouve être NP-difficile,
c’est-à-dire qu’on ne peut probablement pas trouver d’algorithme polynomial pour ce pro-
blème – ce genre de preuve est particulièrement précieux dans ce domaine puisque très
peu de résultats de difficulté y sont connus. Notre réduction s’appuie sur une connexion
avec une classe restreinte de problèmes de satisfaction de contraintes qui a été partielle-
ment classifiée par Feder. Nous étudions aussi quelques variantes autour de ce problème et
fournissons un algorithme pour le résoudre dans un cas restreint.
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1.3 Organisation
Dans le chapitre 3, nous commençons par introduire les différentes notions que nous

utiliserons et explorerons tout au long de cette thèse. Notre travail repose sur plusieurs
domaines mathématiques, que ce soit de la géométrie, de la topologie ou des mathématiques
discrètes, et le lecteur est encouragé à survoler les sujets avec lesquels il est familier et à se
focaliser sur les autres.

Le chapitre 4 dresse un état de l’art de différentes facettes de la topologie algorithmique.
Il est pensé comme une introduction approfondie aux problèmes que nous étudions dans
cette thèse, ainsi que plus largement au domaine de recherche auquel ils se rattachent.
Il est divisé en deux parties, suivant que l’on insiste plus sur l’aspect algorithmique ou
topologique.

Les chapitres 5, 6 et 7 exposent ensuite respectivement nos résultats sur les isotopies
de graphes, les décompositions de surfaces et les surfaces normales immergées. Ils sont
indépendants. Les résultats que nous y présentons ont été respectivement publiés dans les
articles [A, B, C]. Par rapport à ces articles, nous avons changé la présentation en de mul-
tiples occasions pour simplifier la lecture, et nous renvoyons aux débuts des chapitres pour
discuter précisément des modifications réalisées.

Enfin, nous concluons au chapitre 8 en récapitulant nos résultats principaux et en expo-
sant de futures directions de recherche en lien plus ou moins direct avec notre travail.

Pour alléger la lecture du chapitre 5, quelques arguments n’ont été qu’ébauchés et les
preuves complètes ont été renvoyées à l’annexe A.





CHAPTER 2

Introduction

In 1860, it was widely believed that a mysterious substance called æther constituted the fab-
ric of space and pervaded every possible structure in the universe. To explain the different
shapes we could observe in nature, Lord Kelvin advanced the Vortex Theory, postulating
that atoms were merely vortices of æther, and therefore that chemical elements were knots
or links, with differences in the topology of the knots impacting the physical properties of
the corresponding elements. This theory had a strong appeal since it could explain some of
the discrete features of matter that could already be observed, such as the wavelengths at
which atoms emit and absorb light. The famous Sodium doublet for example could be hy-
pothetically explained by its intrinsic structure as a Hopf link, i.e., two intertwined circles,
as in Figure 2.1.

Soon enough though, the Michelson-Morley experiment shattered this model by dis-
playing strong evidence that there was no æther at all. But the damage had already been
done. Peter Guthrie Tait, trying to investigate the vortex theory, established the first tables
classifying knots as well as the first conjectures of the nascent corresponding knot theory,
which would then be developed by countless mathematicians.

Fast forward to modern times, knot theory, despite its initial failure to describe matter,
appears in a wide variety of domains: DNA strands get knotted and unknotted through the
action of enzymes [240], much smaller linked and knotted molecules have been synthe-

FIGURE 2.1: Could the emission doublet of the Sodium be explained by its intrinsic nature
as a Hopf link?
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sized [251], and the reader is probably familiar with the painful untying one has to undergo
when pulling headphones out of a tight pocket.

Zooming out a little bit, knot theory is but a subfield of topology, which is the mathe-
matical study of spaces and shapes. Topology is a mature mathematical field, with some of
the foundational ideas, like Euler’s formula, dating back to the 17th century with Descartes.
It is also a very active one, as is showcased by the recent resolution of the Poincaré Con-
jecture by Perelman [195, 196].

However, a new focus has appeared in the last decades, with the revolution accompa-
nying information technologies: we are not satisfied anymore with the plain understanding
of a topological object – which is what mathematics traditionally provide – we also want
to compute its topological properties. In the case of knot theory, the following question
immediately arises from this perspective: how can one test algorithmically if a knot is
knotted? This question turns out to be fundamental and exemplifies the tools and the aim
of this approach. Devising systematic algorithms to tackle topological questions is the
topic of computational topology, a blooming area of research aiming both at revisiting old
problems from this fresh perspective and refueling topology with intriguing new research
directions.

2.1 Approach
This thesis investigates some low-dimensional topological problems from the point of view
of a theoretical computer scientist. This perspective leads us to combine tools from various
subfields at the interface of mathematics and computer science.

Topology. Topology, and especially algebraic topology, revolves around building tools to
acquire a good understanding of shapes and spaces. This study may take various paths, like
recombining shapes into simpler pieces (surgery theory), investigating the subspaces con-
tained therein (homotopy and homology theory), or looking at how the topological features
impact the metric properties of the space (geometrization); all of these approaches being
naturally highly intertwined. These techniques, brought together towards algorithms on the
classification and the decomposition of low-dimensional shapes, form the backbone of this
thesis.

There is a very different flavor between working in low (two, three, or four) and high
dimensions. In the latter case, the additional space allows to use several tools to move
spaces around. From a mathematical point of view, this makes some problems much easier
in higher dimensions, as is exemplified by the Poincaré conjecture: it resisted much longer
in three dimensions than in dimensions larger than four, for which Smale provided a solu-
tion as early as 1961. From a computational point of view however, this additional space is
also a curse: as we will survey in Chapter 4, many problems become undecidable as soon
as we hit dimension four, removing any hope to design algorithms for numerous questions.
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Therefore, in this thesis, we focus on spaces in dimensions two and three, that is, mostly on
surfaces and 3-manifolds (spaces looking locally like the ambient Euclidean space), which
are host to plenty of algorithmic questions both tractable and interesting.

Discrete structures. An important feature of our approach is the heavy focus on discrete
structures. This might seem contradictory at first, since continuity is one of the most funda-
mental notions of topology. Notwithstanding, the point is not to study the topology of truly
discrete sets like points clouds, but rather to find ways to encode topological structures in
finite space, and manipulate them algorithmically. For example, instead of thinking of sur-
faces as arbitrary sub-manifolds of the usual Euclidean space, we will prefer to triangulate
them, and manipulate them as linear pieces glued together 1. This gives a strong combina-
torial flavor to our work, and unveils important connections with classical topics in discrete
mathematics, and, in particular, graph theory.

Algorithms. Another key aspect of this work is the focus on algorithms. Our goal is to
be able to carry out efficient computations on topological spaces. The theoretical viewpoint
puts an emphasis on proving the correctness of the algorithms we design, as well as ana-
lyzing their complexity in the most accurate way possible, generally from an asymptotic
angle. The dual research direction is to establish the hardness of some problems, i.e., that
no efficient algorithm exists to carry out specific tasks. In both cases, we need to combine
tools from topology and from computer science to achieve our objectives, which places this
work at the interface of both fields.

We remark that these algorithms stay in the theoretical realm and have not been im-
plemented, as we are working at the level of foundations. However, this groundwork is
ripe to be exploited for further applications where one needs to deal with shapes, such as
computer graphics, geographic information systems, computer aided design, robotics, or
bioinformatics. We will also survey some more surprising applications of topological in-
gredients in Chapter 4. Developing careful and robust implementations of our results in
widely used libraries would be an interesting side of this work – though not one we chose
to focus on for now.

2.2 Contributions of this thesis

This work revisits some standard topological concepts from a computational viewpoint.
The first aspect of our work deals with deformations: given two topological objects in a
space, how to determine whether one can be continuously deformed into the other? Solving
this kind of problems allows in turn to classify these objects: deformation gives a precise

1. We do not claim novelty on this approach: modeling spaces as simplicial or CW-complexes is standard
in algebraic topology – but it fits very well within our framework.
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FIGURE 2.2: a. Is there a continuous deformation between the two graphs embedded on
this double torus?
b. How can one efficiently cut a surface into smaller pieces?
c. Are these two knots the same, i.e., is there a continuous deformation between one and
the other?

notion of equivalence, and being able to test for deformation allows to classify objects into
collections sharing similar topological properties. We investigate two different occurrences
of these problems. On one hand we study graphs embedded on surfaces, where we provide
efficient algorithms to solve this question. On the other hand we look at embeddings of the
circle in R3, where this leads to the aforementioned unknot problem. Although we do not
obtain an efficient algorithm in this case – this is a prominent open question of the field –
we prove the hardness of a natural approach to attack it. The second theme of this thesis
revolves around decompositions: how can one efficiently simplify a topological space by
cutting it into smaller pieces? In the case of surfaces, we provide new algorithms and
bounds for several instances of this problem.

Testing graph isotopy on surfaces. The graph isotopy problem asks the following ques-
tion: given a graph embedded in two different ways on a given surface, is there an isotopy,
i.e., a continuous deformation, between them? From a mathematical point of view, it is a
fundamental question, since isotopy is a very precise relation on embedded graphs, corre-
sponding well to the intuitive notion of being alike. Furthermore, embedded graphs are per-
vasive structures in low-dimensional topology, for example through their connections with
train tracks, which we will introduce in Chapter 4, or Heegaard diagrams, a fundamental
tool in 3-manifold topology [131]. Testing isotopy also has more practical purposes, as
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it is relevant for many applications: for example road maps can be accurately described
using embedded graphs, and testing isotopy allows to certify whether two maps feature the
same topological properties (is this house on the right side of the road?). Other applications
abound in morphing or texture mapping.

Building upon earlier works both computational (algorithms to test the homotopy of
embedded curves) and mathematical (Ladegaillerie provided a combinatorial criterion to
test the isotopy of graphs), we devise an efficient algorithm to test efficiently whether two
graphs are isotopic. One of the flavors of working in low dimensions is that there is a strong
interplay between geometry and topology, and our techniques rely on hyperbolic geometry
to investigate the combinatorics of the isotopy relation, as well as to prove the correctness
of our approach.

Discrete systolic inequalities and decompositions of triangulated surfaces. We then
shift our focus from classification to decomposition. Decomposing a surface is the process
of cutting it into smaller and simpler pieces, and this constitutes a fundamental step for
multiple purposes, as it relates a surface to the plane, of which topological properties are
very well understood. In turn, this allows for example to design algorithms for graphs
embedded on surfaces by relating them to planar graphs in a controlled way. Similarly,
surface decompositions are also relevant for surface meshing, parameterization, and many
other applications – we refer to the introduction of the corresponding Chapter 6.

When cutting a surface to simplify it, it is key to control the length of the cut: cut-
ting along a short curve will limit the modifications induced by this decomposition. It is
therefore a natural problem to add a geometric constraint to the topological decomposi-
tion and to try to find the shortest way to cut a discrete surface to simplify it. There exist
several different cut patterns, and we investigate three of them, namely systoles, pants de-
compositions and cut-graphs. We first improve the best known bounds on the lengths of the
systoles, which answers a longstanding conjecture of Przytycka and Przytycki from 1993.
We also provide a new algorithm to compute a short pants decomposition and identify a
new obstruction to short cut-graphs. This line of work relies on an explicit connection with
the continuous case, which leads to the heavily investigated theory of systolic geometry, as
well as the use of a random model for surfaces.

Immersed normal surfaces. Finally, we move up one dimension. The iconic problem of
computational topology in 3 dimensions is the famous unknot problem that we hinted at in
this introduction: How can one test whether an embedded circle in Euclidean space can be
isotoped to a planar circle, or in layman’s terms whether it can be unknotted? It is one of the
few algorithmic problems for which no polynomial-time algorithm is known, but no proof
of hardness either. Many other 3-dimensional problems are also poorly understood and are
the object of much scrutiny. For example, while testing whether two discrete surfaces are
topologically the same is very easy, the analogous problem in 3 dimensions (where spaces
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are modeled by gluing tetrahedra together) turns out to be extremely delicate.
One of the main ways to study a topological space is to investigate the subspaces it

contains. Similarly, the best algorithms for 3-dimensional problems all rely on normal sur-
faces, which provide a compact algebraic structure to represent and manipulate surfaces
embedded in a 3-dimensional space – they are now a ubiquitous tool in 3-dimensional
computational topology. In this work, we investigate a natural generalization of normal
surfaces, where we allow them to be immersed instead of embedded. This naturally leads
to a problem about detecting singularities, which we show to be NP-hard, that is, no
polynomial-time algorithm is to be expected for this problem – this is especially relevant
in this field since very few hardness results are known. Our reduction works by establish-
ing a connection with a restricted class of constraint satisfaction problems which has been
partially classified by Feder. We also investigate some variants of this problem and provide
a polynomial-time algorithm for a restricted case.

2.3 Organization
In Chapter 3, we begin by introducing the various notions we will be using and exploring
throughout this thesis. Our work uses tools from various mathematical subfields, be it
geometry, topology, or discrete mathematics, and the reader is encouraged to only skim
over the topics he is familiar with and focus on the other techniques.

Chapter 4 is a survey on various facets of computational topology. It is intended as a
thorough introduction to the problems that are investigated in this thesis, as well as more
generally to the research area they belong to. It is split into two different parts, depending
on whether the focus is more on the algorithmic or the topological side of computational
topology.

Chapters 5, 6 and 7 then respectively expose our results on graph isotopies, decompo-
sitions of surfaces and immersed normal surfaces. They can be read independently. The
results presented therein have been respectively published in the articles [A, B, C]. Com-
pared to these articles, we have changed the presentation in many occasions to ease the
reading, unify or draw a better global picture, the precise modifications being described at
the start of every chapter.

Finally, to conclude in Chapter 8, we recapitulate our main results and expose some
future avenues of research arising from our work.

To lighten the reading of Chapter 5, some of the arguments there have only been
sketched and the full proofs have been deferred to Appendix A.



CHAPTER 3

Preliminaries

In this chapter, we introduce the main notions that will be used throughout the thesis. By
essence, the exposition will be rather formal and rigorous, the reader might therefore want
to skip ahead on the first pass, and come back here to grasp the necessary concepts when
needed.

3.1 Geometric topology

Topology, and in particular algebraic topology, is both the main mathematical inspiration
and tool of this thesis. Although this section introduces all the necessary notions, getting
used to them might require a more lengthy exposition, which the reader can find in the
standard textbook of Hatcher [129], or in the one of Stillwell [238] for a more combinatorial
perspective.

3.1.1 Topology of surfaces

A surface S is a compact topological space such that an open neighborhood of every point
is locally homeomorphic to the plane or a closed half-plane. The points with boundary
homeomorphic to a half plane form the boundary of the surface. Usual examples of surfaces
include the sphere, the torus, the cylinder and the Möbius strip, which are pictured in
Figure 3.1. A surface is non-orientable if it contains a sub-surface homeomorphic to a
Möbius strip, and orientable otherwise.

Throughout this thesis, we only consider the surfaces up to homeomorphism, and our
denominations use this implicitly. For example, a disk means a surface homeomorphic to
the usual disk B2 ⊆ R2. This is motivated by the following fundamental classification
result about surfaces.



16 Chapter 3. Preliminaries

a. b. c. d.

FIGURE 3.1: A sphere, a torus, a cylinder and a Möbius strip.

Theorem 3.1.1 (Classification of surfaces). Every connected surface is homeomorphic to
either

• The orientable surface of genus g ≥ 0 with b ≥ 0 boundaries, which is obtained by
gluing g handles to a sphere and removing b open disks with disjoint closures.

• The non-orientable surface of genus g ≥ 0 with b ≥ 0 boundaries, which is obtained
by removing g open disks from a sphere, attaching g Möbius strips to the resulting
boundaries, and removing b open disks with disjoint closure.

Therefore, connected surfaces are entirely described by their genus g, the number of
boundaries b and their orientability. Throughout this thesis, we will, unless specified oth-
erwise, only consider connected and orientable surfaces, which we denote by Sg,b. As an
example, the surfaces in Figure 3.1 are respectively S0,0, S1,0, S0,2 and the non-orientable
surface with one boundary and no genus. Similarly, Figure 3.2 pictures the surface of
genus 2 and no boundaries, also known as a double torus. The Euler characteristic of an
orientable surface is defined by χ(Sg,b) = 2− 2g − b.

In many situations, the surfaces are the host spaces, and we are actually interested in the
elements that live on the surfaces. A path on a surface S is a continuous map p : [0; 1]→ S.
A loop is a path whose endpoints coincide, they form the basepoint of the loop. An arc is
a path whose endpoints lie on the boundary, and a cycle is a continuous map γ : S1 → S,
where S1 is the usual circle. Finally, a curve denotes either a cycle or a path. A curve is
simple if it is injective.

We now introduce the essential concept of cutting a surface S along a simple curve γ.
It corresponds to the intuitive definition of cutting along γ with a pair of scissors: We say
that Sγ has been obtained by cutting S along a simple curve γ if Sγ is equipped with a
homeomorphism h between two of its boundary components such that:

1. The quotient space Sγ/(h(x) ∼ x) is a surface homeomorphic to S,

2. The image of these distinguished boundary components under this quotient map is γ.
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Proving that such a surface Sγ always exists is easy when S and γ are smooth or
piecewise-linear. It is however a bit more intricate in the purely topological case, we refer
to Epstein [81, Appendix] to see how to reduce the problem to the piecewise-linear setting.

In contrast to surfaces that are mainly considered up to homeomorphism, we need a
finer notion to distinguish between curves, for example because all the simple paths are
homeomorphic. The notion of homotopy formalizes the intuitive idea of a continous defor-
mation. The paths p and p′ are homotopic if there is a continuous map h : [0; 1]×[0; 1]→ S
such that h(0, t) = p(t), h(1, t) = p′(t) for all t ∈ [0; 1], and h(·, 0) and h(·, 1) are constant
maps. Similarly, two cycles γ and γ′ are (freely) homotopic if there is a continuous map
h : [0; 1] × S1 → S such that h(0, t) = p(t), h(1, t) = p′(t) for all t ∈ S1. A cycle is
contractible if it is homotopic to a constant map, and essential if it is not homotopic to a
point or a boundary component.

This definition of homotopy allows the curves we consider to self-intersect during the
deformation. Disallowing it leads to the neighborly concept of isotopy: The paths p and p′

are isotopic if there is a continuous map h : [0; 1] × [0; 1] → S such that h(0, t) = p(t),
h(1, t) = p′(t) for all t ∈ [0; 1], h(·, 0) and h(·, 1) are constant maps, and for every t,
h(t, ·) is a simple path. One defines similarly isotopic cycles. One can also define an
ambient isotopy i : S → S, which is a homeomorphism homotopic to the identity: there
exists a continuous family of homeomorphisms h : [0, 1]× S such that h(0) is the identity
and h(1) = i. Then two curves are ambient isotopic if there exists an ambient isotopy
sending one to the other. Using vector fields, it can be shown that these two notions of
isotopy are equivalent for curves disjoint from the boundary, see Farb and Margalit [96,
Proposition 1.11] or Hirsch [138, Theorem 1.3]. See also Appendix A where we will
investigate how to extend isotopies of graphs to ambient isotopies.

Furthermore, in many circumstances, the following theorem of Epstein allows us to
switch between isotopy and homotopy at will.

Theorem 3.1.2 ([81]). Let γ and γ′ be two essential cycles. Then γ and γ′ are isotopic if
and only if they are homotopic.

Loops can easily be inverted and concatenated. If γ is a loop with basepoint x, the
inverse loop γ−1 is defined by the map t 7→ γ(1 − t), and for γ1 and γ2 two loops with
basepoint x, the concatenation γ1 · γ2 is defined by the map t 7→ γ1(2t) for t ∈ [0, 1/2],
and t 7→ γ2(2(t− 1/2)) for t ∈ [1/2, 1]. With these operations, the set of homotopy classes
of loops with fixed basepoint x ∈ S constitutes a group called the fundamental group of
S and denoted by π1(S, x). The homotopy class of a loop c in π1(S, x) is denoted by [c].
It is easy to see that for different x ∈ S, the groups π1(S, x) are all isomorphic, and when
we are only interested in the algebraic structure of the fundamental group, we denote it
simply by π1(S). By definition, a homotopy of a loop fixes its basepoint. Forgetting this
basepoint x amounts to seeing loops as cycles, and one can show that two such loops –
or cycles with a point x in common – c and c′ are freely homotopic if and only if they are
conjugated in the fundamental group π1(S, x). The fundamental group of Sg can be defined
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a. b.

FIGURE 3.2: a. A canonical system of loops on a genus 2 surface. b. The octagon we
obtain after cutting along this system of loops.

U
x

ππ−1(U)

p

x̂

a. b.

p̂

FIGURE 3.3: a. A covering of the annulus, and one lift of a path p b. The universal cover
of a genus 2 surface is an octagonal tiling 1of the hyperbolic plane H2.

using 2g generators and one relation, giving the presentation π1(S) = {a1, b1 . . . ag,bg |
[a1, b1] . . . [ag, bg]} where [x, y] denotes a commutator. These generators, called canonical,
are pictured in Figure 3.2. One intuition for this group presentation is that when one cuts
along the canonical generators, one obtains a 4g-gon, and one can read the unique relation
out of the sequence of the boundaries.

There is a strong connection between the fundamental group of a surface and its cover-
ing spaces, that we will only touch upon. A covering space of S is a space Ŝ together with
a continuous surjective map π : Ŝ → S such that for every x ∈ S, there exists an open
neighborhood U of x such that π−1(U) is a disjoint union of homeomorphic copies of U .
The reader scared by this definition should look at the example of the annulus in Figure 3.3.
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A covering space allows to lift a path: if p is a path on S such that p(0) = x = π(x̂)

for some x̂ ∈ Ŝ, there is a unique path p̂ on Ŝ starting at x̂ such that p = π ◦ p̂, once
again this is pictured in Figure 3.3a. Two paths are homotopic on S if and only if they
have homotopic lifts. Similarly, cycles have a unique lift passing through a given point in
a cover, but the lift might be a path instead of a cycle. Homotopic cycles have homotopic
lifts, and furthermore, any lift of a contractible cycle is a cycle.

Every surface has a unique covering space S̃ in which every cycle is contractible, it is
called the universal cover of S. One convenient property of universal covers is that a cycle
on S is contractible if and only if its lifts in the universal cover are contractible as well.
Figure 3.3b. shows the universal cover of a genus 2 surface, where the canonical system
of loops induces an octagonal tiling on this cover (see also the next paragraph for some
introduction to the hyperbolic disk and the Poincaré model).

3.1.2 Geometry of surfaces
In this section, we introduce the different notions pertaining to the geometry of surfaces,
and more precisely to the metric structure one can endow a surface with. A good general
reference on Riemannian geometry is the book of Do Carmo [73].

A Riemannian metric on a surface S is an inner product gx on the tangent spaces TxS
that varies smoothly when x moves on S. Although we will only consider the correspond-
ing Riemannian surfaces (not to be confused with Riemann surfaces), the concepts intro-
duced in this section apply in any dimension to other manifolds. To this inner product
corresponds an Euclidean norm || · || on TxS, and this naturally defines a way to measure
the length of the curves drawn on the surface. For example if p is a path on S, its length is
defined by `(p) =

∫ 1

0
||p′(t)||. This then gives a metric structure on S, where the distance

between two points x and y in S is the infimum of the lengths of the paths joining x to y. A
geodesic on a Riemannian surface is a curve that is locally minimal, i.e., such that any local
perturbation increases its length. The reader should be wary that geodesics are in general
not shortest paths, although the converse is true – this situation is analogous to the one of
local versus global minima of a function.

The easiest example of a Riemannian metric is the one of a surface embedded in R3,
where the Euclidean structure of R3 naturally defines the inner product, and the distance is
the one naturally associated with the embedding. It is an intricate theorem of Nash [125]
that any Riemannian metric can be obtained this way. Although this point of view is en-
lightening for the intuition, it is generally more convenient to work with the intrinsic defi-
nition.

To a Riemannian surface S is naturally associated a notion of curvature. Recall that the
curvature of a planar curve measures quantitatively how far from being a straight line it is.
This can be generalized to surfaces in the following way. For a point x in the interior of S,

1. The hyperbolic tiling has been generated using Dmitry Bryant’s software Tessellation.
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any curve γx going through x has a normal curvature at that point, which is the curvature
of the curve γx projected onto the plane containing the tangent of γx at x and the normal of
the surface at x. The principal curvatures k1 and k2 on x are the infimum and the supremum
of all the normal curvatures at x of possible curves going through x. The curvature of S at
x, denoted by Kx is the product k1k2.

A fundamental insight lying at the origin of geometric topology is that there is a strong
interplay between the metric and topological properties of surfaces, and manifolds in gen-
eral. An easy illustration of this is given by the Gauss-Bonnet theorem, linking the curva-
ture of a surface to its Euler characteristic.

Theorem 3.1.3 (Gauss-Bonnet Theorem). Let S be a surface without boundary, then∫
S

KdA = 2πχ(S).

Amongst surfaces, some of particular interest are the surfaces with constant curvature,
because they exhibit the richest symmetries. Up to rescaling the metric, this constant cur-
vature can be 1, 0 or −1, which correspond respectively to spherical, Euclidean and hyper-
bolic manifolds. Following the Gauss-Bonnet theorem, we see that spherical, respectively
euclidean and hyperbolic structures can only exist on surfaces with a respectively positive,
zero or negative Euler characteristic – variants of the Gauss-Bonnet theorem provide the
same classification for surfaces with boundary. Since the curvature is only defined locally,
a cover of a surface with a Riemannian metric is naturally endowed with a Riemannian
metric as well. In the spherical, Euclidean and hyperbolic case, the universal covers are
respectively the usual sphere S2, the Euclidean plane E2 and the hyperbolic plane H2. The
last one may be a newcomer to some: an easy way to visualize it is to picture its geometry
using the Poincaré disk model. In this geometry, the hyperbolic plane is pictured in the
open disk D2, and a geodesic between two points is a portion of a (usual) circle meeting the
boundary circle with straight angles. For example, the lines in Figure 3.3b. are geodesics
on the Poincaré disk, which together form an octagonal tiling. For a further introduction
to hyperbolic geometry, we refer to the book [42] or the beginning of the lecture notes of
Thurston [246].

In the other direction, it is easy to see that the corresponding surfaces can be endowed
with a constant curvature metric. For example, for hyperbolic surfaces, one can start with
a geodesic 4g-gon with sides of equal length and interior angle sum 2π in the hyperbolic
plane H2 and glue opposing sides to get a hyperbolic metric on Sg.

3.1.3 3-manifolds and knots
Similarly to surfaces, a 3-manifold is a compact topological space such that every point
is locally homeomorphic to R3 or to the closed half space {x, y, z | x, y, z ∈ R, z ≥ 0}.
The notions of homotopy, fundamental group and ambient isotopy that we introduced for
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surfaces readily generalize to 3-manifolds (and any topological space). We will describe
3-manifolds using triangulations – or sometimes tetrahedrizations when we want to dis-
tinguish them from their 2-dimensional analogue: A triangulation T is a topological space
obtained from a disjoint set of t tetrahedra T = (T1, . . . , Tt) by (combinatorially) gluing
some pairs of two-dimensional faces of these tetrahedra; a gluing between two faces is
specified by a bijection from the vertex set of the first face to the vertex set of the second
face. As a result of these gluing, edges and vertices of tetrahedra are also identified; it is
also allowed to glue two zero-, one-, or two-dimensional faces of the same tetrahedron. A
face of a triangulation T is a two-dimensional simplex, incident to one or two tetrahedra
in T . The link of a vertex v in a triangulation is the surface obtained as the frontier of a
small regular neighbourhood of v.

Since in a 3-manifold, the neighborhood of every point has to be an open ball or a
half ball, the following conditions are necessary for a triangulation T to be a 3-manifold
(possibly with boundary):

1. Each vertex has a neighborhood homeomorphic to R3 or to the closed half-space;

2. After the gluings, no edge is identified to itself in the reverse orientation.

Conversely, it is known [189] that any 3-manifold M is the underlying space of such a
triangulation. Henceforth, T denotes a triangulation of a 3-manifold M . A normal isotopy
is an ambient isotopy of M that is fixed on the 2-skeleton of T .

The mathematical theory of knots, as pictured for example in the classic textbook of
Burde and Zieschang [28], is a daunting collection of intricate invariants. However, we
will use very little of this theory to study the relevant algorithmic problems, and everything
we need is introduced here and in Chapter 7.

A knot is a an embedding of the circle S1 in R3. Knots are generally considered up to
deformations, that is, ambient isotopies of R3, and we will say that two knots are equivalent
is they are ambient isotopic, or by a slight abuse of language simply consider them to be the
same knot. The unknot is the usual embedding of a circle into R3. For compacity purposes,
and since it does not change the definition nor the equivalence classes, knots are generally
considered in the one-point compactification of R3, that is, the 3-dimensional sphere S3.

A polygonal knot is a knot such that the embedding is realized by a finite set of line
segments. A tame knot is a knot equivalent to a polygonal knot, and since the focus on this
thesis is on discrete and computational mathematics, all the knots we will consider will be
tame knots from now on.

A theorem of Seifert [232] states that ifK is a knot, there exists a surface with boundary
S embedded in S3 such that ∂S = K. This surface is called the Seifert surface of the knot,
and the proof of its existence is algorithmic. It is easy to see that a knot K is the unknot if
and only if it bounds a disk, then called its Seifert disk: in one direction the ambient isotopy
preserves the topological nature of the disk, and in the other the disk provides an isotopy
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untying the knot. The genus of a knot is the genus of its Seifert surface with the smallest
genus. By the previous observation, the only knot of genus 0 is the unknot.

Knots are often studied via their complement. By taking a small open neighborhood
U of a knot K and considering S3 \ U , one obtains a 3-manifold with boundary. This 3-
manifold is a solid torus D2 × S1 if and only if the original knot is the unknot. Similarly,
for any knot K, the topology of K is entirely described by the topology of its complement
in S3. This key result is the Gordon-Luecke theorem [111], generally summed up as “The
knots are determined by their complements”. This justifies the study of the complement of
a knot as a means to study the knot itself.

3.2 Embedded graphs and maps

3.2.1 Embedded graphs

We generally use the classical terminology for graphs, and refer to Diestel [72] for
background on graph theory. By a slight abuse of language, most of the graphs we consider
will actually be multi-graphs, i.e. multiple edges and loops are allowed. When this is not
the case, we will say that the graph is simple. The vertices and the edges will always be
denoted by V and E, and the complete graph on n vertices is denoted by Kn while the
complete bipartite graph on n and m vertices by Kn,m.

A graph G = (V,E) can naturally be seen as a topological space, for example by
representing it in R3 and taking the induced topology. An embedding of a graphG = (V,E)
on a surface S is a continuous injective mapping fromG, considered as a topological space,
to S. Therefore, it maps vertices to distinct points and edges to disjoint paths intersecting
only at their endpoints, and we will generally identify a graph with its embedding. The
specific case where S = R2 or equivalently S = S2 gives rise to planar graphs. In more
generality, the study of embedded graphs is the starting point of topological graph theory,
and we refer to the book of Mohar and Thomassen [188] for an extensive study of their
properties. In this section, we only recall the basic notions that we will use. The genus of
a graph is the smallest possible genus of a surface on which it can be embedded. As an
illustration, the complete graph Kn has genus Θ(n2).

For a graph G embedded on a surface S, a face is a connected component of the com-
plement of the image ofG on S. The set of faces is denoted by F (G), or F when there is no
ambiguity. An embedding is cellular if every face is homeomorphic to a disk. The degree
of a face is the number of edges adjacent to it, and a triangulation is a cellularly embedded
graph where every face has degree exactly three. Similarly to the case of 3-manifolds men-
tioned before, by a result of Rado [206], every surface can be triangulated (this is not hard
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if iv

ie

FIGURE 3.4: A picture of a combinatorial map, with the three involutions iv, ie and if for
a flag (in bold).

to show, but there are pitfalls hiding behind the obvious feeling of this result; for example
not every 4-manifold can be triangulated [207]).

It is an old observation that when a graph G is cellularly embedded, it satisfies Euler’s
formula |V | − |E| + |F | = χ(S). In particular, if G is a simple graph (i.e, with no loops
or multiple edges), it satisfies |E| = |V | + O(g). This justifies the somewhat abusive
expression of the complexity of an embedded graph that will stand for O(|E|): it also
controls the genus, the number of vertices and the number of faces.

3.2.2 Combinatorial maps

When a graph G is cellularly embedded on a surface S, the precise location of the ver-
tices and the edges is unimportant: for most purposes, we only care about the “look” of the
graph. This is encoded in the combinatorial map of the embedding which essentially de-
scribes the circular order of the edges around each vertex of the surfaces. Then gluing disks
on the faces allows to recover an embedding of G on S. One also encounters the morally
equivalent notions of rotation systems [188], fat graphs [117], or ribbon graphs [78].

Many data structures exist to represent combinatorial maps [79, 153, 173], we describe
here a variant of the gem representation. The gem representation stores four flags per edge;
intuitively, if the edge is oriented, two flags close to its head, one to its left and one to its
right, and similarly for the tail. More formally, a flag represents an incidence between a
vertex, an edge, and a face of the embedding. Three involutions allow to move from a flag
to an “incident” flag in the graph: The first one, iv, keeps the same edge-face incidence
and moves to the opposite vertex; the second one, ie, keeps the same vertex-face incidence
and moves to the opposite edge; the last one, if , keeps the same vertex-edge incidence and
moves to the opposite face. Also, each flag has a pointer to the underlying vertex, edge,
and face of G. This data structure is pictured in Figure 3.4

The model of computation that will be always used implicitly in this thesis is the real
RAM mode [3], as is customary in computational geometry. Therefore, pointers are as-
sumed to be stored in constant space and accessed in constant time. This shows that our
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data structure has complexity linear in the number of edges of the graphs. Furthermore,
any reasonable operation one would like to perform on an embedded graph can be carried
out efficiently (i.e. in linear time) with this data structure, like traversing the edges adjacent
to a given face or even traverse all the vertices, edges and faces of the graph.

It is natural to wonder when two combinatorial maps have rigorously the same proper-
ties, and then what can be said about two embedded graphs with the same combinatorial
maps. This leads to the following definition. Two combinatorial maps of the same graph G
are isomorphic if there is a bijection ϕ between their sets of flags F1 and F2, commuting
with the three involutions, and such that the underlying vertex (resp., edge) of a flag f in F1

is the same as that of ϕ(f); such a bijection is called a map isomorphism. One can easily
test in linear time whether two combinatorial maps are isomorphic.

What information does the combinatorial map reveal about the embedding of a graph?
By the following lemma, it turns out to exactly coincide with the homeomorphism class of
the embedded graph.

Lemma 3.2.1. The combinatorial maps representing two cellular embeddings G1 and G2

of the same abstract graph G on S are isomorphic if and only if there exists a homeomor-
phism of S mapping G1 to G2.

Proof If there exists a homeomorphism of S mapping G1 to G2, then obviously the com-
binatorial maps of G1 and G2 are isomorphic. Conversely, any isomorphism of combina-
torial maps extends naturally to a homeomorphism between the tubular neighborhoods of
the graphs. (Informally, one can build a disk for each vertex and a strip for each edge of G,
and attach these disks and strips as prescribed by the combinatorial map of G1, so that their
union forms a tubular neighborhood of G1. And one can similarly do the same for G2,
the gluings being combinatorially the same since the combinatorial maps are isomorphic.)
This homeomorphism between the two tubular neighborhoods extends by radial extension
in every disk, and since all the faces are disks, we obtain therefore a homeomorphism of
the whole surface S.

3.2.3 Combinatorial and cross-metric surfaces
We now present the models that we will use to describe surfaces and objects embedded on
them. Both Chapters 5 and 6 deal with cycles or graphs embedded on surfaces, and they
occur either as input or output of the algorithms presented therein. Therefore, we need
to explain how these objects are stored and manipulated algorithmically. For embedded
graphs, and in particular for cellularly embedded graphs, it might be tempting to just use
the combinatorial map: indeed we just showed that it characterizes the graph embedding
up to a homeomorphism of the surface. But homeomorphism is quite a coarse measure of
similarity for embedded graphs, and we will want to distinguish homeomorphic but non
isotopic graphs, for example in Chapter 5. Even more, the homeomorphism class of an
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a. b. c. d.

FIGURE 3.5: First problem: the three different configurations in a. will be represented in
the same way b. on a combinatorial map. Second problem: the two close curves in c. will
be represented by the touching curves in d., although cutting along these curves does not
yield the same topological space in both cases.

embedded simple cycle gives little to no information on this cycle, for example because
all the nonseparating simple cycles on a surface are homeomorphic (this is a version of the
“change of coordinates”principle, see Farb and Margalit [96, Section 1.3.2]). Therefore,
we will use a more precise description of discrete surfaces, by the means of an embedded
cellular graph. Depending on the use, this setting will be declined in two flavors which are
dual to each other: combinatorial or cross-metric surfaces.

3.2.3.1 Combinatorial surfaces

Combinatorial surfaces are perhaps the more natural description one can think of. A com-
binatorial surface is a surface S coupled with a cellularly embedded graph G with nonneg-
ative weights on its edges. The curves we consider in this model are the walks on the graph
G, and the length of the curve is simply the sum of the length of the edges that the walk
follows. We emphasize that the walks do not have to be self-avoiding: in order to model
non-simple curves we may have crossings, or portions of a walk following the same edge.

3.2.3.2 Cross-metric surfaces

The combinatorial model is the easier way to model embedded cycles on the surface and
is the dominant one in the literature, but it is not well adapted for some purposes. We
illustrate their shortcomings with two difficulties that naturally arise:

1. Combinatorial surfaces are inaccurate regarding crossings of curves. When several
curves run along the same edge and end up crossing, the information of where the
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crossings take place and in which order is not encoded. This is pictured in Fig-
ure 3.5a. and b.

2. For many purposes, it is important to be able to cut a surface along a cycle, or a
set of cycles. On a combinatorial surface, two non-crossing but very close cycles
will be represented as running along the same edge. Cutting along these is then
topologically unsound, since the small space lying in-between disappears. This is
pictured in Figure 3.5c. and d.

It is possible to circumvent the second problem by awkwardly saying that the curves
actually lie in a ε-neighborhood of their representation; the first problem remains though.
Instead, it was noted by Colin de Verdière and Erickson [56] that resorting to the dual
setting leads to the model of cross-metric surfaces which lifts these issues in a convenient
way.

A cross-metric surface is a surface S together with a cellularly embedded graph G∗

with nonnegative weights on its edges. The curves that we consider in this model are the
one that are in general position with respect to G∗, i.e., the ones that intersect the edges of
G∗ transversely and away from the vertices. The length of a curve is simply its crossing
weight, which is the sum of the weights of the edges of G∗ that it crosses. One can think
of a cross-metric surface as a topological surface endowed with a discrete notion of metric:
the length of a curve jumps when it crosses an edge.

Cross-metric surfaces and combinatorial surface are naturally associated by duality, as
the notation suggests. Starting from a combinatorial surface G, one can transform it to the
cross-metric setting by putting a vertex on each face, and edges between adjacent faces, as
pictured in Figure 3.6 1. This gives the dual graph G∗, and combinatorial curves, that is,
walks on (S,G), become cross-metric curves on (S,G∗), up to choosing the location of the
crossing points when they run along the same edge. Note that the dual of a triangulation
will yield a graph where every vertex has degree 3, which we call a trivalent graph.

A family of (possibly self-intersecting) curves on a cross-metric surface (S,G∗) is en-
coded by maintaining the combinatorial arrangement of G∗ and the curves, which is the
combinatorial map associated with the superimposition of the graph and the curves. This
encodes the crossings and the relative positions of the graph and the curves unambiguously.
In this setting, it is easy to describe the cutting of a surface S along a simple curve γ: since
parallel portions of curves do not run along the same edge, it is simply the space S \ γ,
where one glues two disjoint copies of γ along the two new open ends. It is straightforward
to update the arrangement of the graph and the curves after such a cutting.

1. When the surface has a boundary, the construction of the dual graph gets more intricate, but the reader
can guess the general construction out of Figure 3.6.
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FIGURE 3.6: A graph embedded on an annulus, and the associated dual graph in dashed
lines.

3.3 Compressed structures

3.3.1 Normal curves

One striking feature of curves embedded on surfaces is that, when the surface is described
by a triangulation, they can be represented very compactly. The first natural way that
comes to mind, in order to represent a curve transversely embedded on a triangulation is to
encode the sequence of intersections with the edges of the triangulation. This is equivalent
to storing the arrangement of the curve with the triangulation that we introduced in the
last subsection. But in some cases, one can do much better by just storing the number of
intersections with each edge of the triangulation. This is the idea behind normal curves and
normal coordinates, which we now introduce. Although we will not manipulate normal
curves per se in this thesis, some of their properties will be discussed in the survey in
Chapter 4 and serve as a good introduction to normal surfaces around which Chapter 7
revolves.

Let S be a surface and T be triangulation of this surface. A curve γ embedded on S is
normal with respect to T if it is transverse to T , and the intersection of γ with every triangle
in T is comprised of a disjoint union of normal arcs, i.e., distinct paths whose endpoints
lie on distinct sides of the triangle, see Figure 3.7. One sees readily that there are three
possible types of normal arcs in each triangle (one for each pair of sides), and the normal
coordinates of γ are the number of each type of normal arc in every triangle. Therefore, if
the triangulation T consists of t triangles, a curve γ is described by 3t nonnegative integers,
that we view as a vector in Z3t

+ . Normal coordinates satisfy the matching equations, that
stipulate that the number of normal arcs hitting one side of an edge of the triangulation
equals the number of normal arcs hitting the other side.

The point of normal curves is that it is very easy to recover an embedded curve from
its normal coordinates if they satisfy the matching equations. Indeed, one can just draw
the normal arcs in every triangle, and the matching equations guarantee that there will be a
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FIGURE 3.7: Normal curves on two triangles. There are 6 different types of normal arcs
on two triangles, traced in different colors, and this normal curve can be encoded by the
vector (0, 2, 5, 4, 3, 4).

unique way to pair them to the neighborly segments, and to obtain in the end a closed mul-
ticurve. One important drawback is that the resulting multicurve needs not be connected,
and it is a nontrivial problem to detect when it is (we refer to the discussion in Chapter 4).

Normal curves have two main advantages compared to intersection sequences. The
first one is their compactness. Counting intersections allows for an exponential compres-
sion in some cases: for example if a curve spirals n times around a vertex of degree d,
the sequence of intersections has complexity O(nd) while the number of intersections
has complexity O(d log n). The second one is the algebraic structure they confer: nor-
mal coordinates correspond to a vector in R3t, and matching equations define a cone in
this space. Normal surfaces can then be added or multiplied by a scalar. We note that
the sum of two normal curves does not in general correspond to the disjoint union of the
two normal curves. For example, for the normal curves pictured in Figure 3.7, we have
(0, 2, 5, 4, 3, 4) = (0, 2, 0, 0, 2, 0) + (0, 0, 5, 4, 1, 4), but the reader can check that the de-
composition does not correspond to a disjoint union.

3.3.2 Normal surfaces

A normal surface in T is a properly embedded surface in T that meets each tetrahedron
in a possibly empty collection of triangles (cutting off a vertex) and quadrilaterals (sepa-
rating a pair of vertices), which are called normal disks. In each tetrahedron, there are 4
possible types of triangles and 3 possible types of quadrilaterals, pictured in Figure 3.8.
The intersection of an embedded normal surface with a face of the triangulation gives rise
to a normal arc. There are 3 possible types of normal arcs within each face: the type of a
normal arc is defined according to which vertex of the face it separates from the other two.

To each embedded normal surface, one can associate a vector in (Z+)7t, where t is the
number of tetrahedra in T , by listing the number of triangles and quadrilaterals of each
type in each tetrahedron. This vector provides a very compact and elegant description of
that surface.
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FIGURE 3.8: The seven types of normal disks within a given tetrahedron: Four triangles
and three quadrilaterals.

An embedded normal surface corresponding to a vector (Z+)7t, called its normal coor-
dinates , satisfies two types of conditions:

• The first type of conditions is the matching equations, which generalize the ones for
normal curves. Consider a normal arc type in a given non-boundary face f of T .
This normal arc type corresponds to exactly one triangle normal coordinate, vt,1, and
one quadrilateral normal coordinate, vq,1, in a tetrahedron incident with f . Similarly,
let vt,2 and vq,2 be the triangle and quadrilateral normal coordinates corresponding to
that arc type in the opposite tetrahedron. The matching equation for that arc type is,
by definition, vt,1 + vq,1 = vt,2 + vq,2.

• The second type of conditions, the quadrilateral conditions, stipulates that, within
any tetrahedron, at most one of the three quadrilateral coordinates must be non-
zero. Indeed, two quadrilaterals of different types within the same tetrahedron must
cross, and therefore this condition is needed to ensure that the surface does not self-
intersect.

Conversely, if T is a triangulation of size t and v ∈ (Z+)7t. Then v corresponds to
an embedded normal surface if and only if the matching equations and the quadrilateral
conditions are fulfilled. The reconstruction process can be depicted as follows:

• In each tetrahedron, by the quadrilateral conditions, there is at most one type of
quadrilateral. One places as many parallel copies of this quadrilateral as needed
in the tetrahedron, and then place the parallel triangles next to every vertex of the
tetrahedron. It is straightforward to do so without having any intersection between
triangles and quadrilaterals.

• One glues the faces on the triangulation together, and in the process, one needs to
glue normal arcs, i.e., triangles or quadrilaterals on the one side to triangles and
quadrilaterals on the other side. By the matching equations, the numbers fit, and the
gluing is imposed by the order in which the normal disks are placed in the tetrahedra.
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Therefore, an embedded normal surface is represented up to a normal isotopy by a vec-
tor in (Z+)7t satisfying the matching equations and the quadrilateral conditions. Moreover,
given a triangulation and normal coordinates, checking that the matching equations or the
quadrilateral conditions hold can trivially be done in linear time.

From this construction, one sees moreover that every vector of normal coordinates cor-
responds to a unique normal surface, up to a normal isotopy.



CHAPTER 4

Some background on computational topology

In this chapter, we survey various facets of computational topology. Most of the results
I am interested in can be split into two different subareas. In one case, we start with
an algorithmic problem, and we use a topological tool or notion to solve it, or classify
objects according to it. For example, solving or approximating optimization problems for
graphs embedded on surfaces fits well within this "topology for algorithms" framework.
On the other side, one also encounters purely topological tools or invariants that beg for
an algorithm to compute them. The problems of deciding if two cycles are homotopic, or
classifying 3-manifold are good examples of this "algorithms for topology" approach. This
survey follows this dichotomy, and is split into two independent parts. The first half of the
survey, in Section 4.1, is more tailored for computer scientists, and they might find it natural
to read it before Section 4.2. Mathematicians, on the other hand, could prefer reading it the
other way around. This chapter focuses on explaining how the various concepts fit together
through various examples instead of being exhaustive, though we generally mention the
relevant results adjacent to those presented.

Both algorithms and topology are fields of which one cannot overstate the depth nor
the width, therefore this exposition focuses on selected topics. Since this thesis revolves
around the computational topology of surfaces and 3-manifolds, our attention here is mostly
drawn on low-dimensional results, with a strong emphasis on subjects with connections to
our work, which we mention where appropriate. However, a survey is ontologically quite
digressive, and various other topics appear as well – in Section 4.1.3, we glimpse at other
concepts involving a mix of topology and combinatorics/computer science, and we quickly
present a couple of applications outside the realm of low-dimensional topology.

There are now many references introducing and discussing computational topology
under different premises. We refer the curious reader to the textbooks of Edelsbrunner and
Harer [76], Zomorodian [255] and Dey, Edelsbrunner and Guha [70] for a broad exposition,
and to the survey of Colin de Verdière in [55] as well as the lecture notes of Erickson [83].
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Although reading this chapter is not necessary to understand the following ones, it
forms a good introduction to the problems we consider. In particular, Chapters 5, 6 are
respectively related to the contents of Sections 4.2.1 and 4.1.2, while Chapter 7 is connected
to Sections 4.2.2 and 4.2.3.

4.1 Topology for algorithms

4.1.1 Planar graphs
Graphs are an ubiquitous structure in theoretical computer science, as they can model a
seemingly endless number of situations, and therefore solving algorithmic problems on
graphs has been the focus of the algorithmic community since its inception, and will prob-
ably remain so for a while. In this context, studying restricted classes of graphs allows to
grasp a better understanding of the general case, as well as devising specific algorithmic
techniques tailored to the problem at hand. We will be particularly interested in graphs
with a topological constraint, among which the prominent example is the case of planar
graphs. In this whole section, n designates the number of vertices of a graph, and, when
appropriate, g its genus.

Euler’s formula, in the planar case, provides the first nontrivial results on planarity:
if v, e and f are respectively the number of vertices, edges and faces of a planar simple
graph, we obtain that the number of edges is linearly bounded by the number of vertices,
and more precisely that the average degree of a planar graph is smaller than 6. Another
important topological feature of the plane is the Jordan curve theorem [123], stipulating
that every simple cycle separates it into two connected components (the interior and the
exterior). In this section, we will illustrate how these topological ingredients can be used
to give two interesting properties of planar graphs: we will first see that they can be cut
along small separators, and then that they have a characterization using forbidden minors.
We mention other results on planar graphs more quickly at the end of the section. The
reader might find this section unconvincing, since the topology of the plane is rather dull.
However, planar graphs are the first step towards graphs embedded on surfaces, which
are presented in the next section. They feature deeper topological properties, and we will
showcase that the planar case is actually the first building block or the inspiration for many
algorithms on them.

4.1.1.1 Planar separators

The basic definitions for this section have been introduced in Section 3.2.1.
The Jordan curve theorem shows that closed curves are a natural way to separate re-

gions on the plane. This suggests that planar graphs might be the right class of graphs to
consider when trying to partition a graph into smaller parts. This is the point of the pla-
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a. b. c. d.

FIGURE 4.1: a. A planar graph b. Its circle-packing 1c. A circle partitioning the circle
packing. d. The partition of the planar graph.

nar separator theorem of Lipton and Tarjan [174]. A basic paradigm in algorithm design
is the so-called “Divide and Conquer” method, consisting in cutting a problem into two
fairly independent sub-problems and solving these recursively. One of the difficulties in
this approach generally lies in the “fairly”, where one wants to control accurately how the
two sub-instances are correlated. In the case of graphs, one example of the corresponding
questions is the following: In a graph G, how many vertices (and their adjacent edges)
does one need to remove to obtain two disconnected components of controlled size (say
not containing more than two thirds of the vertices) ? For general graphs, no nontrivial
answer to this question exists: the example of the complete graph shows that one might
not even be able to disconnect the graph by doing so. But when the graph is specified to
be planar, one can do much better. Indeed, the aforementioned planar separator theorem
shows that if n is the number of vertices, there always exists a set of O(

√
n) vertices giving

a balanced separation. Moreover, this set of vertices can be computed in linear time. One
of the proofs of this theorem, though not very efficient algorithmically, uses the beautiful
Koebe-Andreev-Thurston Theorem (see Stephenson [237] for an entire book devoted to the
subject) that shows that any simple planar graph can be represented by a family of touching
circles in R2, where each circle corresponds to a vertex and the edges represent the adja-
cency between circles; this is called a circle packing. In this representation, one possible
separator can be found by choosing a circle C in R2 (but not one of those of the circle
packing) of well chosen size, and taking as separator the set of vertices corresponding to
the circles intersected by C. With carefully chosen parameters, this gives a separator of
size
√
n, see Figure 4.1 for an illustration of this technique.

One might feel fooled by the motivation using the Jordan curve theorem, since the sep-
arators produced by the Lipton-Tarjan algorithm need not have a circular structure. The
corresponding refinement is the purpose of Miller’s cycle separator theorem [185], which
shows that one can assume that all the vertices that we remove to partition the graph lie on
a Jordan curve that does not cross any edge. Various proofs and extensions [186, 187] once
again feature strong connections with the circle packing theorem. Several other variants of

1. The circle-packings have been generated using Kenneth Stephenson’s software CirclePack.
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the planar separator theorem have also been devised since then. Among them, by applying
repeatedly the planar separator theorem, one can obtain partitions of a planar graph into
arbitrarily small pieces, yielding the so-called r-division [104] of a planar graph. The pla-
nar separator theorem and its variants are pervasive in the algorithmic literature on planar
graphs, with applications in computing shortest paths [132], distance queries [245], flows
and cuts [143], and this is just a very restrictive picture.

4.1.1.2 Minors

Another combinatorial implication of being planar lies within the theory of graph minors.
A graph H is a minor of another graph G if H can be obtained from G by removing edges
and contracting edges. A family of graphs is minor-closed if every minor of a family is
also in this family. Since deletion and contraction preserves planarity, planar graphs are a
minor-closed family, and it is easy to see, but not that easy to prove, that the graphs K5 and
K3,3 are not planar. It is more striking to realize that the converse also holds. This is the
celebrated Wagner’s Theorem [250]: A graph is planar if and only if it does not contain K5

or K3,3 as a minor. The following generalization is even more striking: Every minor-closed
family of graphs is characterized by a finite set of excluded minors. This is the main result
of the Robertson-Seymour theory [215], and the proof is spread over more than twenty
papers and as many years. We will survey some aspects of the proof later on in this chapter.

Algorithmic applications of graph minors may not seem immediate at first. Wagner’s
theorem gives an algorithm to test whether a given graph is planar, but it is painfully slow
and for all purposes, a linear planarity testing algorithm by Hopcroft and Tarjan [139] is
favored. The strength of minors lies more in the structural insight that they give on graphs,
and this insight gives rise to powerful algorithmic techniques. Most notably, the study of
graph minors led to the discovery of the concept of tree-width (or the related branch-width),
which measures quantitatively how similar to a tree a graph is. It turns out that this captures
exactly the right way of decomposing a graph to do dynamic programming; this gave birth
to a flurry of algorithmic results, see for example the survey of Bodlaender [21] for an
introduction.

4.1.1.3 Other results

Planar graphs have been a thriving research area for several decades, and therefore we now
understand a vast amount of their properties. For example, it can be shown [103] that any
planar graph with no face of degree 1 or 2 has a vertex or degree at most four, or a vertex
of degree at most five incident to two vertices of degree at most six. This can be used to
prove that every graph is 5-colorable, and the infamous Four Color Theorem [11] actually
shows that four colors suffice.

On the algorithmic side, very efficient algorithms have been developed for the basic
problems: minimum spanning trees can be computed in linear time [182], as well as short-
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est path trees [209], which provides an O(n log n) time algorithm to compute minimum
cuts. Furthermore, some hard, problems on general graphs have polynomial solutions
when restricted to planar graphs. These include max-cut [121], graph isomorphism [140]
and computing the branch-width [233]. There are also a vast number of results both from
the viewpoint of approximation algorithms and parameterized algorithms. We refer to the
upcoming textbook of Klein and Mozes [154] for in-depth study of the algorithmic world
of planar graphs.

It is an important question to quantify how far from being planar a given graph is. The
genus of the graph, discussed thereafter, can be one indicator of this, and another one is
the crossing number, which is the minimum number of crossings of a drawing of a graph
in the plane. Determining the crossing number of a graph is NP-hard, even for 1−planar
graphs, i.e., planar graphs with one additional edge [41]. A number of open questions on
crossing numbers and their variants remain unsolved; as an example the crossing number
of the complete graphs is not even known. The dynamic survey of Schaefer [222] discusses
the various questions of this theory.

4.1.2 Surface-embedded graphs
We now turn our attention to the case of surface-embedded graphs. Since every graph can
be embedded on a surface (intuitively, one can for example put every vertex on a ball and
connect them with tubes corresponding to the edges), these are not to be thought of as a
restricted family of graphs, and more as a parameterized one, where the parameter is natu-
rally the genus of the surface. In this section, we explain various aspects of the algorithmic
theory of embedded graphs, and how they are tied to the topology of the underlying surface,
as well as their connection with the planar case. A discussion on other aspects of surface
embedded graphs is presented at the end of this section.

4.1.2.1 On the genus of a graph

The first question one encounters is how to actually compute the genus of a graph. This
problem has been shown to be NP-hard by Thomassen [241], and from this result one can
deduce with simple gadgets [51] that it is also unapproximable to an additive error of nε

for any 0 ≤ ε < 1 unless P=NP. On the upper bound side, when the integer g is fixed,
Kawarabayashi, Mohar and Reed [151] gave a linear time algorithm to compute either an
embedding of a graph into a surface of genus at most g, or a certificate of non embed-
dability. Recent progress has been made in approximating the genus in the specific case of
bounded-degree graphs. A result of Chen, Kanchi and Kanevsky [51] allowed to compute
an O(

√
n)-approximation of the genus in this case, and it has been recently improved by

Chekuri and Sidiropoulos [50], who provide an algorithm that embeds a bounded degree
graph of genus g with n vertices on a surface of genus O(g14 log19/2 n). Without delving
into the details, this algorithm is a prime example of the algorithmic applications of the
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graph minors theory, where one devises two different algorithms depending on whether the
tree-width of the input graph is small or large. This line of work has surprising algorithmic
consequences: algorithms designed for surface embedded graphs have traditionally always
assumed that one was given an embedding of a genus g graph on a surface of genus g.
Approximating the genus and the embedding allows to bypass this assumption and obtain
algorithms that work for any graph. As an example, using this technique, the recent polyno-
mial algorithm by Erickson and Sidiropoulos [90] to approximate a variant of the Traveling
Salesman Problem on embedded graphs of bounded genus computes anO(log g/ log log g)-
approximation of the optimal solution even when no embedding is known a priori.

4.1.2.2 Graph structure theorem

The minor characterization of planar graphs extends to surface embedded graphs: for every
surface S, there exists a finite family of forbidden minors characterizing the graphs embed-
dable on S, see for example Diestel [72, Section 12.5] for a self contained proof. We note
that although the precise family of forbidden minors is known for the plane and the projec-
tive plane, the lists are unknown for any other surface, and the number of minors grows very
fast with the genus. One might see this result as a consequence of the Robertson-Seymour
Theorem on minor-closed family, but actually it goes the other way around: graphs embed-
ded on surfaces are a building block on this theorem. More precisely, the way Robertson
and Seymour prove their theorem is by first proving a finite forbidden-minor theorem for
graphs on surfaces [215], and then obtaining a structure theorem for minor-closed fami-
lies [214]. To state this last theorem we introduce the following definitions. A clique-sum
of order k of two graphs G and H is the graph obtained by identifying two cliques of size
k in G and H , and a vortex of a graph G in a subgraph with a path-like structure embedded
in a particular way (see for example Kawarabayashi and Mohar [150] for a precise defini-
tion). We say that a graph is k-nearly embedded on a surface S if one can remove at most k
vertices (called apices) and k vortices from this graph, such that the resulting graph is em-
beddable on S. Now, the structure theorem says that for any graphH , there exists an integer
k such that any graph excluding H as a minor can be obtained as a clique sum of at most
k graphs that can be k-nearly embedded on a surface on which H can not be embedded.
This shows that surface embedded graphs, which form an a priori purely topological clas-
sification of graphs, are fundamental tools in the study of the more abstract minor-closed
families of graphs. In more practical terms, this leads to the following classical evolution in
algorithm design for minor-closed graphs. First a specific technique is introduced to deal
with a problem on planar graphs, then the techniques are extended to surface embedded
graphs, and finally, they are generalized to minor-free graphs; by the structure theorem,
it just amounts to dealing with the apices, the vortices, and the clique-sums. Examples
of successful algorithms following this path include small separators [152], shortest paths,
and bigger classes of algorithmic problems including for example vertex cover and domi-
nating set [67, 220]. In the end, this is a surprising case where a topological condition bears
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the fruit of a much more general mathematical understanding, with very strong algorithmic
implications.

4.1.2.3 Graph Planarization

But before going to minor-free families, how does one generalize an algorithm for planar
graphs to one for graphs on surfaces ? We illustrate this question in the case of the planar
separator theorem. Gilbert, Hutchinson and Tarjan [110] (see also Eppstein [79]) gener-
alized the planar O(

√
n) bound to a O(

√
gn) bound for graphs embedded on a surface of

genus g. To obtain their result, they identified a set ofO(
√
gn) vertices, such that removing

them makes the graph planar. Then one can simply apply the planar separator theorem to
conclude. This framework, based on simplifying a graph embedded on surfaces to make
it planar, is central in algorithm design for embedded graphs, and has been applied for ex-
ample to connectivity problems like Steiner Tree or Subset TSP [23], approximate distance
oracle [149], matchings [62] or expansion parameters [193]. For example, one natural way
to simplify an embedded graph is to cut it along a non-contractible cycle, which will either
disconnect the graph or reduce its genus. This is where the topology of surfaces intervenes:
the various topological properties of the surface and the graph embedding will impact the
techniques to use to simplify them. We present here one important surface decomposition,
namely the cut-graph of a surface, where one cuts along a graph instead of a single cycle.

For a surface S, a cut-graph on S is an embedded graph G such that cutting S along
G results in a planar surface, as pictured for example in Figure 4.2. A natural algorithmic
problem that corresponds to this is the minimization variant: What is the length 1 of the
shortest cut-graph for a surface S? This problem has been introduced by Erickson and Har-
Peled [86], where they provide a NP-hardness proof, an exact but exponential algorithm
to solve this problem, as well as an O(log2 g)-approximation algorithm. Furthermore, it
is known that finding a shortest cut-graph when the set of vertices is prescribed can be
done in polynomial time [54]. This suggests that the difficulty of the problem comes from
the location of the vertices, for which there are

(
O(n)
O(g)

)
choices, and it has been open since

then whether the problem is fixed-parameter tractable when parameterized by the genus,
i.e. whether there exists an algorithm of complexity f(g)poly(n), where g is the genus of
S, f is any function, and n is the complexity of the cross-metric surface S. One possible
evidence in this direction is that the hardness proof proceeds by a reduction to the Steiner
tree problem, which is fixed parameter tractable with respect to the number of terminals –
the connectivity structure of a cut-graph is however more complicated, and the algorithms
for Steiner trees do not translate easily.

In addition to the purely algorithmic applications, such a cut-graph has a wide range of
applications in computer science. As an example we explain its role in computer graphics.
A parameterization [69, 254] of a surface S is a correspondence between S and a domain

1. We define the length of the graph via either the combinatorial or the cross-metric models defined in
Section 3.2.3.
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FIGURE 4.2: A cut-graph of a torus.

of the plane. A natural way to obtain one is to cut along a cut-graph, and compute a homeo-
morphism between the planar region we obtain and the target domain of the plane. In order
to have a faithful representation of the surface, it is necessary to have a cut-graph that is
not too invasive on the surface: taking the shortest one is the natural criterion. Parameter-
izing a surface has many practical applications: for example it provides a tool to visualize
a surface (it is a practical version of the atlas and maps used in differential geometry), it
also provides a way to map some planar texture on it, as well as a means to mesh it, i.e.
discretize it in pieces of some prescribed form.

With the same goal of simplifying a surface by cutting it along a cycle or a graph, a vast
literature has been devoted to optimization problems with a topological flavor, for example
the problems of computing shortest cycles with prescribed topological properties [38, 86]
(non contractible, non separating or splitting [46]), or tightening a cycle in a given homo-
topy class [56]. The tools used in these endeavors are quite diverse, and we refer to [55]
for a survey on these.

In Chapter 6, we present new results on the lengths of different kinds of graph decom-
positions: we investigate the lengths of cycles with prescribed topological properties, as
well as the lengths of cut-graphs and pants decompositions. We refer to this chapter for the
relevant definitions, results, and further discussion.

4.1.2.4 Flows and homology

In this section we present another interesting algorithmic insight regarding graphs on sur-
faces: the strong connection between homology and flows. Flows are a classical tool in
algorithm design that depicts how a fluid would propagate in a graph: there is a source and
a sink node in a graph, symbolizing the entry and exit point of the fluid, and each edge
is assigned a value representing the amount of fluid it contains, and this value must not
exceed a given capacity, which is specified for every edge. A feasible flow is an assign-
ment of values to the edges such that at every vertex, a Kirchhoff-like law is respected: the
amount of flow arriving is equal to the amount of flow leaving. The goal of a maximum flow
problem is to find a feasible flow maximizing the amount of fluid transiting between the
source and the sink. It turns out that this concept is very similar to the one of a homology
cycle, introduced by Poincaré [199] at the end of the nineteenth century, and which is one
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of the fundamental invariants of algebraic topology. A 1-dimensional homology cycle 1 on
a surface described by a cellularly embedded graph is an assignment of integer values to
its edges such that the values satisfy the same Kirchhoff law at the vertices as the flows.
Therefore, a flow is just a homology cycle violating this law at the source and the sink
node. Homology was originally designed to study topological spaces by the means of lin-
ear algebra, and this algebraic structures has very practical algorithmic applications: using
linear programming on these homology spaces, Chambers, Erickson and Nayyeri [48] ob-
tained efficient algorithms to compute maximum flows and different variants for embedded
graphs. Furthermore the max-flow min-cut theorem [102] shows that flows and cuts are
intimately connected, and therefore these algorithmic techniques apply to computing cuts
as well [85, 88].

4.1.2.5 Other results on surface embedded graphs

The study of the structural properties of embedded graphs is the subject of topological
graph theory, for which Mohar and Thomassen [188] and Gross and Tucker [117] are the
main references.

One important theme [216, 242] is that if an embedded graph is subdivided enough to
not see the topology of a surface locally (for example if the length of the shortest non-
contractible cycle is big enough), it shares many properties with planar graphs. For exam-
ple, under such an assumption, 3-connected graphs have a unique embedding on a given
surface S. Another application of this idea deals with graph coloring: while in general,
graphs embedded on surfaces might need an arbitrary number of colors (surprisingly, find-
ing the tight number of colors for a given surface is easier than in the planar case, see
Ringel [211]), for such locally planar graph, five colors suffice [243].

The dichotomy of our survey leaves aside the purely combinatorial aspects of surfaces,
and consequently some were omitted in this discussion. Most notably, there is a well
developed theory around the enumerative and bijective theory of maps [25] initiated by
Tutte [248], which leads to practical applications such as encoding [6, 7]. In another direc-
tion, the theory of random maps [165] has recently exploded into a myriad of results.

As we mentioned before, concepts stemming from minor graph theory like tree-width
and branch-width have a strong algorithmic impact on the theory of surface embedded
graphs. Most notably, in this direct lineage, the recent theory of bidimensionality [68] pro-
vides a framework to obtain approximations or parameterized algorithms for a vast class of
problems on surface embedded graphs (and sometimes minor-free graphs as well), includ-
ing domination, vertex cover, matching and feedback vertex set problems [67, 101].

Different techniques have also been introduced to simplify a surface: much progress
has been made on stochastic planarization [24, 142, 234], which aims at finding a random

1. Technically, homology is defined relatively to a ring, this informal discussion corresponds to the Z
case.
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mapping from an embedded graph to a planar graph, such that in average, the distances are
not too much distorted; the theory of random partitions [167] has been fruitful as well.

4.1.3 Other applications of topology
Finally, with an illustrative purpose, we quickly present two additional applications of
topology in computer science which use tools of a different flavor than graph theory. In
particular, the underlying topological spaces are not restricted to low dimensions. Other
topics in theoretical computer science and combinatorics where topology plays a crucial
role include fair-division problems [19, 146], Kneser’s conjecture [175], evasiveness of
graph properties [212], embeddability problems [179]; and in the wider world of computer
science, directed algebraic topology and its applications to concurrency [94] and the slow
revolution surrounding homotopy type theory [249].

4.1.3.1 Persistence

The theory of topological persistence is a very important emerging field dealing with data
analysis, for more information we refer the interested reader to the surveys of Ghrist [109]
or Edelsbrunner and Harer [75]. We illustrate how it works on a specific problem, the one of
recognizing a topological shape out of a point cloud sampled from this shape. One possible
idea is to consider balls of radius r centered at each point, and to grow r continuously.
For small r, the topology of the union of these balls will be uninteresting, i.e., the same
as the point cloud, while for big r, the size of the balls will obfuscate the whole picture,
thus making an observer unable to read any topological information about the shape. The
insight of the persistence theory is that a pertinent way to deal with this issue is to record
the lifetime of a topological feature, for example k-dimensional holes: we record both the
first r, the birth, at which a feature appears, and the r where its disappears, its death. The
relevant features of our shape will be the ones that survive for a long time. Instead of
homotopy (although some recent progress [169] in this direction has been made), of which
computation is delicate, the theory of persistence is mostly applied with homology 1; by
means of linear algebra, one can compute the evolution of the homology with the parameter
r very efficiently [256].

Persistent homology is a tool of strong generality, which makes it very relevant for prac-
tical purposes: linear algebra is very efficient, and techniques have been developed to deal
with noise and outliers [49], or to use different parameters instead of the size of the balls
(this is formalized through the concept of a filtration). While the range of applications of
persistence is hard to predict, it is already a common tool in data analysis, and some surpris-
ing results have already appeared. For example, a work of Carlsson, Ishkhanov, de Silva
and Zomorodian [43] has investigated a point cloud obtained by taking the high-contrast 3

1. The reader unfamiliar with k-dimensional homology should just think of it as a computably tractable
way to count the k-dimensional holes of a topological space for any k.



4.1. Topology for algorithms 41

by 3 pixel blocks out of a collection of natural images, i.e., random outdoor scenes. After
suitable normalization, the points look like they are uniformly distributed, but surprisingly,
further analysis using topological persistence reveals that the shape they represent is very
close to the one of a Klein bottle. They also provide a theoretical explanation for this fact.

4.1.3.2 Distributed computing

Finally, we quickly present a strong connection between algebraic topology and distributed
computing, which was discovered by Herlihy and Shavit [135]; there is an upcoming book
on the subject [133]. Instead of the framework of manifolds in which this thesis takes
mostly place, this connection is better exhibited in the terms of simplicial complexes, which
are obtained by abstractly gluing simplices. In 1 dimension, this gives rise to graphs, while
in the 2-dimensional case, these can be thought of as the spaces obtained by gluing triangles
together, without the natural rule that only two triangles are glued along a single edge.
This gives rise to branching points, or edges, and spaces with more topological richness
than surfaces. In this setting, a simplicial map is a continuous map between two simplices
sending each vertex to another vertex such that the simplices are preserved. We now explain
how to connect these spaces with classical problems of distributed computing. Typically,
distributed computing deals with independent processes that try to perform a task together
by following a protocol. Example tasks are the consensus problem, where the processes
start with a set of values and try to all agree on an output 1, or the k-set agreement where
they must output at most k different results (consensus is 1-set agreement). Consensus is
trivially solvable by a majority computation, but distributed systems are prone to failure,
therefore one wants a wait-free protocol, which is a protocol resilient to the failure of every
process but one.

One possible way to represent this is to model the input and the output as simplicial
complexes I and O, and the task as a map ∆ carrying every input simplex to a set of output
simplices. The input (respectively output) complex will consist of vertices representing
the processes and their input (respectively output) value. Every possible input or output
corresponds to a simplex linking the corresponding vertices. For example, for the consen-
sus problem with n processes, the input complex consists of vertices (P, v) where P is the
name of a process and v the value it is assigned as input. The simplices are put between all
the sets of vertices (P1, v1), . . . , (Pn, vn) where all the Pi are different. The output complex
has the same vertices, but the simplices are only put between the sets (P1, v1), . . . , (Pn, vn)
where all the Pi are different and all the vi are equal (this is the condition for a consensus).
Finally, the task is the map that carries each possible input, therefore each input simplex,
to the set of possible outputs that it can produce, and therefore to a set of output simplices.
This representation is pictured in Figure 4.3 for the consensus problem with two values and

1. The validity assumption stipulates that if they all start with the same value, they have to agree on this
one.
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(P1, 0) (P2, 1)

(P1, 1)(P2, 0)

(P1, 0) (P2, 1)

(P1, 1)(P2, 0)

a. b.

FIGURE 4.3: The 2-process consensus: a. The input complex b. The output complex. The
gray arrows represent the map ∆, by the validity assumption, some arrows are forbidden.

two processes, the simplicial complexes for this problem are simply graphs. Note that in
this case, the input process is a sphere, which is actually true for every value of n.

One can see, but we will not explain how, that the execution of a protocol can also be
modeled using a simplicial complex P , and for an input simplex S, there is an associated
subcomplex of P denoted by P (S). This leads to the following rephrasing of our distributed
problem: The existence of a protocol to solve a task (I, O,∆) is equivalent to the existence
of a protocol complex P and a simplicial map δ : P → O such that for all S ∈ I , and
for all T ∈ P (S), δ(T ) ∈ ∆(S). Putting restrictions on the protocol amounts to putting
restrictions on the complex P and the simplicial map δ one is looking for.

Although the simplicial formulation of a distributed computing problem might seem
like a pompous obfuscation of the underlying computational ideas, it allows to use the
whole machinery of algebraic topology to prove the nonexistence of maps, and therefore
the impossibility of a task. For example, Herlihy and Shavit [135] used this framework to
show that when processes are only allowed to write and to read on shared variables, the
topological conditions to solve the consensus problem are too stringent and make it impos-
sible. Although the impossibility of consensus has been known for some time [99], this
theory gives additional tools and has a wide applicability. For example, for more intricate
protocols, further study shows that there is a direct connection between the homology of
the associated protocol complex, and the number of processes for which one can solve the
consensus problem [136]. This theory has been applied to many more distributed com-
puting problems and led to a tight classification of solvable problems for some protocol
classes [135]. The optimist reader might conclude that the right tool has been found and
that everything in this branch of distributed computing should be classified soon enough,
but it has been proved by Gafni and Koutsoupias [105] that no algorithm exists for deciding
whether 3-processes tasks are decidable. Furthermore, in another intriguing display of the
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connection to topology, the tools used in this proof are also topological in nature: using the
same formalism, they built a reduction linking the solvability of a task to the contractibility
of a loop in a simplicial complex, which, as we will see in Section 4.2.1, is undecidable.
We also refer to Herlihy and Rajsbaum [134] for other results along these lines. It is an
exciting research perspective to explore the reverse direction, as to whether topological no-
tions could give insight on upper bounds on distributed protocols. Some work has appeared
along these lines, taking inspiration from the equivariant Hopf Theorem [12, 44].

4.2 Algorithms for topology

4.2.1 Decision problems on surface groups and variants

While the study of computers for themselves and algorithmics as a genuine field of interest
only really started in the second half of the twentieth century, various questions about how
to systematically compute things have appeared way earlier. Moreover, by its combinatorial
nature, algebraic topology has attracted algorithmic questions from the very start. As early
as 1911, Max Dehn [65] introduced the word problem, i.e., the problem of deciding sys-
tematically whether two words in a finitely generated groups represent the same element,
or equivalently whether a given word is equivalent to the empty word, as well as the sister
problems of conjugacy (are two elements conjugate?) and isomorphism (are two groups
isomorphic?). The next year, in [66], he solved the word and the conjugacy problems for
fundamental groups of surfaces of genus at least two. Extending what is now called Dehn’s
algorithm, as well as on the other side, studying the undecidability arising from the word
problem, have been major motivations in the development of algorithms in general, and in
particular computational topology.

4.2.1.1 Dehn’s problems on surfaces

The word problem is about deciding whether given a word w in a group, there are local
cancellations among the subwords of w that allow to simplify w up to the empty word.
When the group is the fundamental group of a surface, letters of a word correspond to loops,
and local cancellations to contractions of these loops. Therefore, Dehn’s main insight is that
the word problem for fundamental groups of surfaces is the same thing as the contractiblity
problem on the surface, i.e., deciding whether a given cycle can be contracted to a point.
Now, as described in Section 3.1.1, the universal cover of a surface of genus at least two
is the hyperbolic plane, and a canonical system of loops lifts to a tiling of this hyperbolic
plane, as pictured in Figure 4.4. Therefore, a contractible cycle on the surface lifts to a cycle
in this tiling of the universal cover. One can now use the combinatorial properties of the
hyperbolic plane to solve the contractibility problem. The key observation is that a cycle
in this hyperbolic tiling satisfies the following subpath property: either it contains a spur,
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a. b. d.c.

FIGURE 4.4: a. A canonical system of loops of a genus 2 surface b. The surface obtained
after cutting along the loops c. The hyperbolic tiling 1obtained by lifting the loops d. A
cycle on this tiling satisfying the subpath property.

i.e., it backtracks at some point, or it contains more than half of the edges of the boundary
of a polygon in succession, see Figure 4.4.c. In both cases, we get a computational way
to simplify the cycle to a point, certifying the contractibility. For the conjugacy problems,
one can see that it similarly relates to the homotopy problem for cycles on surfaces. Similar
tools, that are also dubbed Dehn’s algorithm, give a solution for this variant.

4.2.1.2 Generalizations of Dehn’s algorithms

The insight of Dehn’s algorithm can be rephrased in more abstract terms: the transforma-
tion to a geometric problem on the hyperbolic plane provides a subpath property, that when
pulled back to the original word problem, gives a cancellation property, that is, an easily
testable property on a word that leads to an algorithm to simplify them mechanically. One
can wonder whether such a cancellation property is specific to groups arising from topo-
logical settings. Identifying precisely what kind of cancellation property, relatively to the
presentation of the group, allows for an algorithm for the word problem, led to the small
cancellation theory. Initiated by Greendlinger [113, 114], it is a far-reaching generaliza-
tion of this observation to a wider class of groups, and became one of the cornerstones of
combinatorial group theory [176].

In a different direction, the graph we obtained by lifting the canonical polygon to the
universal tiling is an example of a Cayley graph. In general, given a group G with a set
of generators S, the Cayley graph is the graph obtained by taking the elements of G as
vertices, and every generator s as an edge between g and gs, for every g ∈ G. This
gives a geometric realization for any group, and in the case of surface groups, the subpath
property shows that the Cayley graph verifies a strong isoperimetric inequality: any cycle
of length ` encloses a number of disks bounded by some function of `. For example, in
the case pictured in Figure 4.4.d., one case see that the isoperimetric inequality is actually
a linear one. The theory of automatic groups [82] shows that when the Cayley graph of
a group possesses an isoperimetric inequality, there is a natural way to endow it with an

1. The hyperbolic tiling has been generated using Dmitry Bryant’s software Tessellation.
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automatic structure, i.e., with automata computing the group multiplication and testing
equality. This allows to solve the word problem in automatic groups in quadratic time.
Studying the geometry of Cayley graphs has been an active mathematical topic for a long
time now, and therefore this theory applies to a wide class of groups, essentially to all the
groups acting nicely enough on hyperbolic manifolds. More examples include mapping
class groups [190], and some small cancellation groups [108] 1. To tackle the conjugacy
problem, a variant called biautomatic groups have been introduced, but many questions
about them remain open [82].

Algorithms improve in two directions, and in addition to generalizing them, one also
wants to improve their efficiency. The quest for optimal algorithms for the contractibility
and homotopy problems on surfaces seemingly ended with Dey and Guha [71] who pro-
vided linear time algorithms for both problems using small cancellation theory. But a flaw
was recently discovered in their approach by Lazarus and Rivaud [164], who proposed an
alternative, more geometric, linear time solution. The main difficulty to handle the ho-
motopy problem is that unlike in the contractibility problem where we reach the empty
word/cycle, there is no canonical objective one wants to attain by doing simplifications.
One of Lazarus and Rivaud’s main contribution is to define canonical cycles in a homotopy
class, and showing how to reach them in very limited time. Naively, the shortest cycles
homotopic to a given one can be ordered from the left to right, and one canonical choice
is to pick the rightmost cycle in this class. Erickson and Whittlesey [92] subsumed both
approaches by showing how small cancellation theory also naturally led to these canonical
cycles.

The topological notion of homotopy captures fairly well the intuition of a continuous
deformation between two curves, except that, as mentioned in Section 3.1.1, in the process
of deformation, we may observe additional self-intersections. This motivates the simi-
larly looking isotopy problem, where one wants to find an isotopy between two curves.
For simple non-contractible cycles, Epstein’s Theorem 3.1.2 shows that both problems are
equivalent, and contractible cycles do not have much interest. On the other hand, general-
izing the problem to graphs gives a strong similarity criterion for embedded graphs, with
many algorithmic applications. The study of the corresponding graph isotopy problem is
the object of Chapter 5, where we give efficient algorithms both in a combinatorial model
and a more geometric one in the plane.

4.2.1.3 Limitations

Finally, we note that as soon as we deviate from surfaces, the word and conjugacy prob-
lems very quickly become intractable. In general, the word problem has been shown to be
undecidable by Novikov [192], and since every finitely presented group can be realized as
the fundamental group of a smooth 4−manifold, the word problem is undecidable for those

1. In a way, it has been shown that the theory of automatic groups supersedes small cancellation the-
ory [95].
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as well. One can reduce the isomorphism problem to the word problem, and building on
this, Markov [178] showed that the homeomorphism problem, i.e., deciding whether two
manifolds are homeomorphic, is undecidable as well for 4−manifolds (see [239] for a self-
contained proof). However, in the intermediate 3−manifold case, most problems are still
solvable, and the tale of some of these algorithms is the subject of the next section.

4.2.2 Topological problems with 3-manifolds
We advise the reader to be familiar with the notions introduced in Sections 3.1.3, 3.3.1
and 3.3.2 before reading this section and the next one.

When provided with a discrete description of a manifold, generally a triangulation or
a simplicial complex, the first question one has in mind is to recognize to which manifold
it corresponds, or equivalently being able to tell whether two descriptions correspond to
the same manifold. In the case of surfaces, this can be trivially solved by computing the
Euler characteristic and the orientability, which allows to classify every surface in linear
time. This “miracle” only appears in 2 dimensions though, as one can show using Poincaré
duality that the Euler characteristic of 3-manifolds is always zero [239, Section 8.2.2], and
therefore gives no information on its topology. In addition to being a natural problem,
recognizing specific 3-manifolds has immediate applications. For example, recall that a
knot embedded in S3 is unknotted if an only if its complement is a solid torus; therefore
being able to identify a solid torus gives a solution to the unknotting problem. As another
motivation, being able to recognize a 3-sphere is the fundamental step to test whether a
given 4-dimensional complex is a manifold, since it is enough to test that all the vertex
links are 3-spheres. We will survey the known algorithms for these two problems.

4.2.2.1 Knot recognition

The problem of detecting whether a knot is unknotted has a long history, and has been in-
triguing researchers for quite a long time. At first sight, it is unclear whether is it decidable
at all, as Turing stated in a famous paper [247] as early as 1954. The first algorithm was
proposed shortly after by Haken [122], and was subsequently improved by Hass, Lagarias
and Pippenger [128]. As a high level overview, their algorithm works as follows. Taking
the complement of a small neighborhood of a piecewise linear knot K and triangulating
it, we obtain a triangulated 3-manifold with boundary, such that there is a disk spanning
this boundary if and only if the initial knot is unknotted – this is the Seifert disk we intro-
duced in Section 3.1.3. The idea is to somehow enumerate all the possible surface spanning
this boundary, and test their topology by computing their Euler characteristic. Of course,
there are a priori an infinite number of surfaces, but Haken’s insight is that it is enough
to consider the normal surfaces: by putting the disks in general position and chopping off
undesired parts, one can safely assume that the disk we are looking for crosses the triangu-
lation transversely, and that these intersections are only normal disks. This allows to use the
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full strength of normal surfaces: seeing them as vectors in R7t, with the associated scalar
multiplication and addition, the normal surfaces having boundary K define a cone. One
can show that if it exists, the disk we are looking for lies on one of the extremal rays of the
cone, and that it does not have too big a complexity. It is then just a matter of enumerating
those 1. From a complexity viewpoint, this shows that the unknot problem is in NP , i.e.
that one can certify in polynomial time that a knot is unknotted: the certificate is the normal
coordinates of the disk.

There has also been work in the reverse direction, to certify whether a knot is knotted.
A surprising connection was made by Greg Kuperberg when he proved that, assuming the
Generalized Riemann Hypothesis [63], the unknotting problem is in co-NP [159], i.e. there
is a polynomial certificate of knottedness. The idea behind the proof is the following. It is
well known [28, Section 3.B] that the fundamental group of the complement of a knot is
abelian if and only if the knot is unknotted. Furthermore, Kronheimer and Mrowka [158]
showed that the fundamental group of a non trivial knot has a nonabelian representation 2

into SU(2) ⊆ SL(2,C), and that this representation can be described with polynomials.
It is then a matter of algebraic complexity to transform this representation into one into
SL(2,Z/pZ), and it results from work of Koiran [157] that it is doable with a polyno-
mial bound of p if the Generalized Riemann Hypothesis holds. We also note that Agol
announced an unconditional proof that unknotting is in co-NP, but no article nor preprint
has appeared yet [1].

For the unknot problem, new results have appeared recently in a direction apparently
disjoint from the previous works. Any knot can be projected onto a plane, giving rise to
a knot diagram, where one indicates which strand of a knot lies above the other one at
ever crossing. Then, one can try to simplify a knot diagram by just doing local moves
which obviously do not change its isotopy class. A possible choice of local moves is the
Reidemeister moves, pictured in Figure 4.5, and one can quite easily show that a knot
is unknotted if and only if there is a sequence of Reidemeister moves that realize this
unknotting. Now, let us observe that any bound on the size of this sequence immediately
gives an algorithm to test the unknot: it suffices to try all the possible sequences of length
smaller than this bound. In a recent breakthrough [161], Lackenby showed that for a knot
diagram with k crossings, there exists a sequence of Reidemeister moves using only a
number of moves polynomial in k. This gives an immediate algorithm, and furthermore
a polynomial-sized certificate of unknotting, and therefore an alternative proof that the
problem is in NP: one only needs do write down the sequence of Reidemeister moves.
Although this result is conceptually simpler than the use of normal surfaces, it is actually
a refinement of the previous algorithms, since the proof heavily relies on normal surface
theory as a means to "compress" the number of Reidemeister moves one needs to perform

1. Actually, using stronger tools coming from operational research [33], one can greatly optimize the
efficiency of the algorithm, experimentally reaching a polynomial-time behavior on all practical instances.

2. A representation of a group G in a linear group H is just a group homomorphism ϕ : G → H . It is
nonabelian if there exist two noncommutative elements under the image of ϕ.
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FIGURE 4.5: The three Reidemeister moves to simplify a knot.

to simplify a knot diagram.

4.2.2.2 Sphere recognition

We now turn our attention to 3-sphere recognition. This problem is intimately related to
the famous Poincaré conjecture, stating that every simply connected, closed 3-manifold is
homeomorphic to the 3-sphere, and it has been noted that many attempts at 3-sphere recog-
nition would actually imply a combinatorial proof of the Poincaré conjecture [126]. The
first algorithm for 3-sphere recognition is due to Rubinstein [217], and was greatly simpli-
fied by Thompson [244], we present its main ideas following the exposition of Hass [126].
A natural way to identify a topological n dimensional sphere is to use the fact that it is
foliated by (n− 1) spheres, i.e., that one can grow a continuous family of disjoint (n− 1)
spheres between two poles of the sphere, see Figure 4.6.a. for a 2-dimensional example.
When the sphere is a quite distorted, this foliation might take a different, more tree-like
shape, like on Figure 4.6.b. The idea is to use these (n − 1)-spheres as a certificate to
recognize the n-sphere.

More precisely, in the 3-dimensional case we are interested in, we only look for the
shortest and the longest 2-spheres of a foliation. The insight is that in the piecewise linear
setting, one can show that the shortest spheres correspond to normal spheres, while the
longest ones are almost normal spheres. Almost normal surfaces are slight variations of
normal surfaces where one allows one additional octagonal shape in the way the surface
intersects the triangulation; for our purpose, they share the same properties as normal sur-
faces, most notably in terms of algebraic structure. Once again one can show that both
the normal and almost normal spheres we are looking for lie on the extremal rays of the
(almost) normal surface cone. Therefore, the algorithm just 1 needs to look at a maximal
family of disjoint normal and almost normal spheres on these extremal rays, which can
be done by enumeration. Then, checking some conditions [126] on this family of spheres
allows to certify that the underlying 3-manifold is a sphere. Careful analysis of this proce-
dure shows that 3-sphere recognition lies in NP [230] (see also the discussion in the next
section), and tools similar to the ones used for the unknot can be used to show that it is
in co-NP as well [127], assuming the generalized Riemann hypothesis. We note that these
results imply that both the unknot and the 3-sphere recognition problems are likely not NP-

1. For technical reasons, one also needs to test the additional property that the 3-manifold has trivial
homology, but this is easy to compute.
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a. b.

FIGURE 4.6: a. The usual sphere foliated by circles. b. A distorted sphere with its
corresponding shortest and longest geodesics.

complete, and are thus good candidates to be either NP-intermediate, or simply polynomial
time solvable.

4.2.2.3 Other problems

We only touch a few words about the general problem of recognizing 3-dimensional man-
ifolds, and refer to the lecture notes of Jaco [144], the book [17, Section 1.4] or the arti-
cle [231] for additional reference. It follows from Thurston’s Geometrization conjecture,
which has been proved alongside the Poincaré conjecture, that every 3-manifold can be
“cut” into several pieces, each of which has a geometric structure, of which there are only
8 possible types. In contrast, in the two dimensional case, there are only 3 possible geome-
tries, as we saw in Section 3.1.2: the Euclidean, the spherical and the hyperbolic one. For
each specific type (the hyperbolic one being the most prevalent), specific algorithms have
been designed to exploit the geometric structure to identify the manifold. The proof of the
Geometrization conjecture showed that this set of algorithms is exhaustive, which coupled
with an algorithm to actually compute the decomposition, gives a complete algorithm to
identify a 3-manifold, or test whether there exists a homeomorphism between two of them.
The complexity of this algorithm cannot be overstated, and drastic improvements still need
to be found before an implementation can be dreamed of.

This geometrization approach to deal with algorithmic problems in 3−manifold theory
is actually commonplace, and to close the parallel with the previous sections, we note with-
out delving into details that the known solutions to the word [252] and the conjugacy [201]
problems in 3-manifold groups work in the same way: start by decomposing the 3-manifold
in geometric pieces, and design an algorithm using specific tools depending on the geom-
etry. For these two problems, no algorithm is known that does not use the Geometrization
Conjecture.
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4.2.3 Compressed structures in topology

In this section, we investigate how the study of curves embedded on surfaces, or surfaces
embedded in 3−manifolds, naturally leads to compact structures, and how to deal with
them algorithmically.

Recall that normal coordinates allow for a compact representation of embedded curves
on surfaces, when the surface is described a triangulation. One dimension higher, the
neighborly concept of normal surfaces gives a concise way to describe surfaces embedded
transversely to a tetrahedrization.

But as is usual with compressed data structures, the compactness of the representation
leads to challenges regarding their manipulation. In particular, the previously mentionned
results about the complexity of the unknotting and 3-sphere recognition problems already
contain some intricate issues, that are inherent to the manipulation of algorithms involving
normal curves or surfaces. We illustrate this with the problem of connectivity of normal
curves.

4.2.3.1 Connectivity of normal curves

We saw that any normal coordinates satisfying the matching equations naturally corre-
spond to an embedded 1-manifold. But this manifold needs not be connected. And due
to the compactness of the representation, it is a nontrivial problem to check connectivity
in time polynomial in the input, i.e. in the normal coordinates. For instance, a naive al-
gorithm would be to actually build the manifold, and count the number of components,
but “drawing” n normal arcs of the same type has exponential complexity in the input of
size O(log n). The connectivity problem has been open for some time before Agol, Hass
and Thurston introduced the first polynomial algorithm to test it in [2]. Their algorithm
actually deals with the following more abstract problem: Given a collection of k bijections
between subintervals of an interval [1, N ] ⊆ Z, they compute the number of orbits, i.e., the
number of equivalence classes given by the action of the bijections, in time O(k logN).
We illustrate the connection of this problem with normal curves in Figure 4.7: We label
the intersections of the normal arcs with the triangulation by 1 to N , and normal arcs give
a bijection between subintervals of [1, N ]. Counting the number of orbits under the action
of this bijection amounts exactly to counting the number of connected components of the
corresponding normal curve. The orbit counting algorithm is quite technical and we will
not delve into the description, but just remark that despite of the very combinatorial na-
ture of the problem, the idea behind the algorithm is a geometric one, and the exponential
speedup can be interpreted with hyperbolic geometry [2, Remark at the end of Section 4].
We remark that this algorithm works exactly the same way for normal surfaces and that this
orbit counting algorithm is fundamental in the proof that 3-sphere recognition lies in NP. It
also allows (and was initially designed) to show that the following knot genus problem is
in NP: What is the smallest genus of a surface having a knot K as a boundary ?
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f : [5, 7]→ [8, 10]

g : [1, 4]→ [15, 18]

h : [11, 14]→ [19, 22]1
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i : [3, 4]→ [25, 26]

j : [1, 2]→ [23, 24]

k : [5, 7]→ [27, 29]

15 16 17 18

FIGURE 4.7: A triangle with normal curves. The normal arcs induce the bijections f to k
between the intersection points of the arcs with the triangulation, described by subintervals
of [1, 29].

4.2.3.2 Straight-line programs

Another fruitful connection appeared while studying normal curves and surfaces. The nat-
ural way to describe a simple curve embedded on a triangulated surface, such that the in-
tersections with the edges of the triangulation are transverse, is to remember the successive
intersections of the curve with the triangulation. This corresponds to a word that we call
the intersection sequence of the simple curve. Now, there is an established theory study-
ing the different ways to compress a given word to make it more compact, the best known
compression method being probably the Lempel-Ziv encoding [168]. We will be using the
theory of straight line programs instead, which are easier to manipulate. A straight line
program over an alphabet

∑
is a sequence of assignments to variables w1 . . . wn such that

the right hand side of the assignment for wi only involves letters of
∑

or variable wj for
j < i. The word generated by a straight line program is the word corresponding to the last
variable, and its length is the sum of the lengths of the assignments. In some cases, the
size of a straight line program is exponentially more compact than the length of the word it
generates. For example, the word an for n a power of 2 can be encoded by the straight line
program w1 = a, w2 = w1w1, . . . wlogn = wlogn−1wlogn−1.

It is an important insight of Schaefer, Sedgwick and Štefankovič [227, 236] that normal
curves and straight line programs representing intersection sequences are roughly equiva-
lent, i.e., that the sizes of both representations are polynomially related, and that one can
switch between them in polynomial time. This allows to use the theory of straight line
programs to deal with the algorithmic challenges posed by normal surfaces. For example,
the problem of deciding the connectedness of a normal curve can be phrased as a word
equation over straight line programs, and one of a special structure that we know how to
solve efficiently. Related problems, like deciding whether two connected normal curves
are homotopic, or computing the intersection numbers of two normal curves, can also be
solved using the same tools [224, 226]. To illustrate the strength of this connection, this
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theory has been used to prove that the problem of recognizing string graphs, i.e., graphs
derived from the intersection of curves (strings) on the plane, is in NP [227, 228], while
it was not even known before whether it was decidable. We note that the relationship be-
tween normal curves and straight line programs can be carried over to normal surfaces for
a handful of problems, giving for example an alternate algorithm to decide the connectivity
of a normal surface [226].

4.2.3.3 Tracing normal curves

It is quite intuitive that, when drawing on a curve on the plane or a surface with expo-
nentially many crossings with a given triangulation, one ends up always repeating the
same patterns, for example spiraling, or being stuck between two other portions of curves
and following them for a long time. This intuition, and its limitations, have been stud-
ied in [223, 225], and have led Erickson and Nayyeri [89] to devise a polynomial time
algorithm to trace a normal curve embedded on a surface. The idea of this tracing is that
although the intersections of a normal curve with a triangulation may have exponential size
in the input, for many applications, like testing connectedness, one actually does not care
about the initial triangulation. If one is allowed to modify it, it becomes possible to output
a new cellular graph embedded on the surface, such that the normal curves are embed-
ded in its 1-skeleton, and this new graph can have polynomial complexity. To be able to
carry out this computation in polynomial time, the main insight is that one actually does
not need to follow a normal curve throughout its exponential number of intersections to
guess its whereabouts: if it starts to spiral, we can skip to the point where it leaves it, and
similarly when it is stuck behind two adjacent subcurves. This allows for the exponential
speedup in this tracing. Then, one can read a lot of information on the cellular graph, like
the connectedness or the contractibility, and this can all be done efficiently.

4.2.3.4 Different representations

Finally, a few other ways to describe simple curves on surfaces have been used in the math-
ematical community. Thurston introduced train tracks [191, 194] as a tool to study the
mapping class group of a surface, which describes the homeomorphisms of a surface to
itself. Train tracks can be obtained from an embedded curve on the surface by blurring
it, so that parallel portions merge and give rise to a graph looking like a train track, as is
picture in Figure 4.8: every portion of a train track is labeled by an integer representing
the number of arcs merged into it, and there are natural matching equations every time a
train track branches 1. The nice structure and drawability of train tracks make for a con-
venient analysis of their combinatorics from a mathematical point of view, but it is quite
straightforward to switch back and forth between them and normal curves, therefore they
pose no different algorithmic challenge. Generalizing train tracks to surfaces gives rise to

1. Note the close analogy with the matching equations of a normal curve.
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FIGURE 4.8: A closed curve (a) represented by a train track (b).

branched surfaces [100], which have been used to study embedded surfaces in 3-manifold
topology [161]. Another way to encode curves is by the means of the Dehn-Thurston coor-
dinates [97]: if we take a maximal family Γ of disjoint non homotopic and non contractible
simple cycles on a surface (such cycles form a pants decomposition, see Chapter 6), it is
natural to expect that counting the number of intersection of a given simple cycle with each
of the cycles in Γ should give an accurate picture of its homotopy class. It turns out that
if we additionally store the twisting of the cycle around every cycle of Γ, i.e. how many
times they run parallelwise, this characterizes the homotopy class, and provides a compact
representation of curves.

In Chapter 7, we study a relaxed variant of normal surfaces where quadrilaterals are
allowed to intersect each other. We show that, unlike in the previous examples where the
issues raised with compactness could be avoided with clever algorithmic techniques, the
main problem on this class of normal surfaces, immersibility, is NP-hard, and therefore
there is no hope to solve it efficiently.





CHAPTER 5

Isotopy of graphs on surfaces

In this chapter, we present efficient algorithms for the following problem:
Given two embeddings G1 and G2 of the same abstract graph G on an ori-
entable surface S, decide whether G1 and G2 are isotopic; in other words,
whether there exists a continuous family of embeddings between G1 and G2.

The results of this chapter, obtained with Éric Colin de Verdière, have been published in
Discrete and Computational Geometry [A], following an earlier conference version at the
Symposium on Computational Geometry. The techniques used are the same as in these
articles, except in the section about isotopies with fixed vertices (Section 5.6). In order to
showcase the more meaningful sides of our results, we added precisions and discussions
where needed, and some technical results are deferred to Appendix A.

5.1 Introduction

This chapter follows the line of work presented in Chapter 4, and particularly in Section 4.2
where we introduced various algorithms to solve topological problems. As we saw there,
topological problems on surfaces have been thoroughly investigated, since they are at the
same time non-trivial, interesting, and tractable, and since the underlying mathematics,
notably in the field of combinatorial group theory, are well-understood.

In this chapter, we investigate deformations of embedded graphs: Given two embed-
dings of a graph G on a surface, can we deform one continuously to the other without
introducing intersections between edges during the process? In other words, does there
exist an isotopy between these two graph embeddings?

This problem is motivated both by mathematical and practical purposes. On the mathe-
matical side, it is a natural variant of the homotopy problem. Instead of testing the similarity
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FIGURE 5.1: To design a visually appealing road network, a natural step is to straighten
the roads, but one should be careful while doing so and not place meaningful features of
the map (exemplified here by the pointer) on the wrong side of the road.

between two curves, we consider the more complicated structure of a graph, for which test-
ing isotopy is a natural criterion of similarity. Graphs embedded on surfaces are a pervasive
structure in geometric topology, underlying for example the description of train tracks (see
Section 4.2.3.4) and Heegard diagrams [131], and therefore it is key to be able to classify
them. From the point of view of topological graph theory, we also note that testing isotopy
is a much finer criterion than just testing graph isomorphism, in that it looks precisely at
the embedding, whereas isomorphism is just an abstract combinatorial notion.

For more practical applications, as a motivating special case, consider a finite set of
obstacle points P in the plane and a graph G embedded in R2 \P in two different ways, G1

and G2. Does there exist a “morph” between G1 and G2 (possibly moving the vertices and
bending the edges) that avoids passing over any obstacle? This is relevant for morphing
applications: To compute a morphing between two images, it is helpful to first build a de-
formation between compatible graphs representing the most salient features of the images.
In such applications, it is sometimes desirable to add some topological requirements on the
morphing, e.g., to force some area of the deforming image to always cover a fixed point of
the plane during the deformation. Such requirements can be encoded using obstacle points,
since a face of the graph containing an obstacle point has to contain it during the whole
deformation.

Another motivation for this problem comes from geographic information systems and
map simplification. When simplifying a road network, it is crucial that the features of
the map (cities, mountains) stay on the same side of the roads, as pictured on Figure 5.1.
This can be tested by considering these features as obstacle points and testing whether the
road networks obtained before and after straightening are isotopic; see, e.g., Cabello, Liu,
Mantler and Snoeyink [39].

More generally, assume that we have a triangulated surface in R3, and two embeddings
G1 and G2 of the same graph G on that surface (not necessarily on the skeleton of the
triangulation). Each graph Gi is encoded by its combinatorial arrangement with the trian-
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gulation. Can we continuously move G1 to G2? In this setting, the graphs G1 and G2 might
represent textures on the surface, and the question is whether one can continuously move
one texture so that it coincides with the other.

5.1.1 Related work

For a general purpose introduction to algorithmic problems stemming from topology, we
refer the reader to the survey in Chapter 4. In this section, we quickly discuss the additional
literature related to the specific problem of isotopy testing.

As we already saw, the related problem of testing homotopy of cycles embedded on a
surface S has been investigated by Dey and Guha [71], and later Lazarus and Rivaud [164]
as well as Erickson and Whittlesey [92]. They provided an algorithm to solve this problem
in optimal linear time if the input curves are represented as walks in a graph embedded
on S. Cabello et al. [39] give efficient algorithms for testing homotopy of paths in the
special case where the surface S is a punctured plane (a plane minus a finite set of obstacle
points) and the input paths are represented by polygonal paths in the plane. We will be
using the algorithms in both settings as black boxes.

A neighbourly problem, to which a large body of research is devoted, is that of com-
puting shortest homotopic paths or cycles. The study of this problem was initiated by
Hershberger and Snoeyink [137] for a triangulated surface where the vertices lie on the
boundary, and revisited by Efrat, Kobourov and Lubiw [77] and Bespamyatnikh [15] for
paths in a punctured plane. These algorithms, in particular, allow to decide whether two
paths are homotopic, and have a better complexity than the algorithm by Cabello et al. [39]
in some cases. Results on the shortest homotopic path/cycle problem are also known for
combinatorial surfaces [57, 58]: it is solvable in polynomial time [56].

The mapping class group of a surface (without boundary) S is, roughly, the set of
isotopy classes of all orientation-preserving homeomorphisms from S to S – see, e.g.,
Farb and Margalit [96] for a recent and exhaustive survey on this topic. Although we use
little of this vast theory, it is quite connected to our problem: If G1 and G2 are cellularly
embedded on S, a homeomorphism of S that maps G1 to G2 represents a unique element
of the mapping class group, and testing isotopy amounts to testing whether this element is
the identity. Hence it is closely related to the word problem in mapping class groups, which
can be solved in quadratic time [124, 190]. However, these algorithms take an input vastly
different to ours, which hinders any possible comparison. Note that if S is a n-punctured
sphere, the mapping class group of S corresponds to another classic mathematical object
called the pure braid group with n strands, which has garnered considerable algorithmic
attention in recent years, in particular due to its possible applications to cryptography [156].
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5.1.2 Our results
The input to our algorithm is a description of the surface S, the graph G, and the graph
embeddingsG1 andG2. All surfaces are assumed to be compact, connected, and orientable,
but they may have boundary. An embedding maps each vertex (or edge, or halfedge) of G
to the corresponding feature on the surface. In particular, the correspondence between the
vertices (or edges, or halfedges) of G1 and G2 is given.

Our algorithmic results come in two flavors, depending on the model used.
In the general model, G1 and G2 are embeddings of G on an arbitrary surface S. To

represent them, we use a model similar to the cross-metric surface model introduced in
Section 3.2.3.2, except that we disregard the underlying metric structure since we are only
interested in the topological features of the embedding. Thus, a graph embedding is repre-
sented by the intersections it forms with a given cellularly embedded graph. We emphasize
that this input does not consider the crossings betweeen G1 and G2.

The first result is a linear-time algorithm to decide whether G1 and G2 are isotopic:

Theorem 5.1.1. Let S be an orientable surface, possibly with boundary. Let H be a fixed
graph cellularly embedded on S. Let G1 and G2 be two graph embeddings of the same
graph G on S, each in general position with respect to H . Given the combinatorial map
of the arrangement of G1 with H (resp., G2 with H), of complexity k1 (resp., k2), we can
determine whether G1 and G2 are isotopic in O(k1 + k2) time.

We note that the surface S is not fixed in this result; the constant in the O(·) notation
does not depend on S.

We also study the complexity of the problem in the case where S is the plane minus
a finite set P of obstacle points, and G1 and G2 are piecewise-linear graph embeddings
of G in R2 \ P . In this case, the input is the point set P together with the embeddings G1

and G2, where each edge of each embedding is represented as a polygonal path – again, the
embeddings G1 and G2 may intersect arbitrarily.

In this setting, we obtain the second result:

Theorem 5.1.2. Let P be a set of p points in the plane, and letG1 andG2 be two piecewise-
linear graph embeddings of the same graph G in R2 \ P , of complexities (number of seg-
ments) k1 and k2 respectively. We can determine whether G1 and G2 are isotopic in R2 \P
in time O(n3/2 log n) time, where n is the total size of the input. In more detail, the running
time is, for any ε > 0,

O
(

(k1+p) log(k1+p)+(k2+p) log(k2+p) +min
{

(k1+k2)p , p1+ε+(k1+k2)
√
p log p

})
.

We note that the isotopy is a continuous family of topological embeddings; one may
assume that all these embeddings are piecewise-linear, but we claim no upper bound on
their complexities.
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a. b.

FIGURE 5.2: A graph embedded on the plane with obstacles (stars) in the two models.
The cross-metric model (b.) requires an underlying cellularly embedded graph (here a
triangulation) which makes it more cumbersome.

The discrepancy between the complexities of our algorithms might be startling at first:
the case of planar graphs is clearly included in the case of surface-embedded graphs, yet
the complexity is better in the latter case. This is justified by the difference of inputs:
storing the point set of a planar embedding is more compact than the cross-metric model,
as is pictured in Figure 5.2, and therefore efficient algorithms are harder to design – this is
similar to the situation with compressed structures we discussed in Section 3.3.

5.1.3 Overview of the techniques
If two graph embeddings G1 and G2 of the same graph G are isotopic, then clearly:

1. There is an oriented homeomorphism of the surface that maps G1 to G2
1;

2. if γ is a cycle in G (possibly with repeated vertices and edges), then its images in G1

and G2 are homotopic.

It was shown by Ladegaillerie [162] that such necessary conditions are, in fact, suffi-
cient. However, the second condition is not algorithmic, since there are infinitely many
cycles in G. A close inspection of Ladegaillerie’s proof reveals that O(g + b) pairs of
cycles need to be tested for homotopy, where g and b denote the genus and number of
boundary components of the surface. In Ladegaillerie’s construction, the complexity of the
family of cycles is not explicitly given. With some work, and using some of our techniques,
one might be able to obtain an explicit algorithm using his construction, but the running

1. assuming that G1 and G2 are in the interior of S, which is true by our general position assumption.
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time would certainly be larger, by at least an additional O(g) factor (since Ladegaillerie’s
decomposition contains a pants decomposition, see Chapter 6), if not more.

Using a very different method, we reprove Ladegaillerie’s characterization in a strength-
ened form, in Theorem 5.4.1 below: We provide an explicit set of cycles Λ in G of linear
overall complexity of which homotopy in the two embeddings of G, in addition to the
oriented homeomorphism between G1 and G2, suffices to ensure the isotopy of G1 and
G2. Our algorithmic results follow, since one can perform efficiently the homeomorphism
test (this essentially amounts to checking equality of two combinatorial maps, see Sec-
tion 5.2.2), as well as the test of homotopy between two given cycles using the aforemen-
tioned black boxes.

We note that it is not straightforward to find a suitable set Λ in G of overall linear
complexity satisfying the above condition. In particular, a natural candidate for Λ would
be the set of all facial cycles in G1 (and thus in G2). However, Figure 5.3 shows that this
family does not ensure isotopy of the graphs, even in the case where the surface is the
sphere with four punctures.

e1

e2 e3

e1

e2 e3

FIGURE 5.3: Two embeddings G1 and G2 of a one-vertex graph with three loop edges
on the sphere with four punctures. These two embeddings are not isotopic, although there
exists an oriented homeomorphism mapping one to the other, and the four cycles following
the boundaries of the faces are homotopic in G1 and G2

This chapter is organized as follows. We start with some quick preliminaries (Sec-
tion 5.2) introducing the few notions specific to this chapter. Then the ideas behind the
computation of the family Λ and the algorithms are cut into three parts.

1. First we show that when two families of cycles are stable, which is a topological cri-
terion we introduce, then testing homotopy and homeomorphism is enough to ensure
isotopy between the families (Section 5.3).

2. We then compute from G1 and G2 two stable arrangements of cycles Λ1 and Λ2 in
their tubular neighborhoods, which are isotopic if and only if G1 and G2 are iso-
topic. With the previous result about stable families, this proves the aforementioned
strengthened form of Ladegaillerie’s result (Section 5.4) 1.

1. There are some difficulties lurking behind this because the isotopy we obtain will not be pointwise –
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3. We then deduce our main computational results in Section 5.5.

Finally, in Section 5.6, we briefly indicate how our algorithms and results extend to the
case where we require some vertices of the graph to be fixed throughout the isotopy.

5.2 Preliminaries
In this chapter, we assume that the reader is familiar with the concepts introduced in the
preliminaries, especially in Sections 3.1.1, 3.1.2 and 3.2. We introduce a handful of addi-
tional notions that will be used only in this chapter.

5.2.1 Background
Henceforth, S is a compact, connected, orientable surface with genus g and b boundary
components. In this chapter, the curves we will be dealing with will mostly be cycles, i.e.,
(not necessarily simple) closed curves.

5.2.1.1 General position

A (finite) family of cycles on S is in general position if the cycles are in the interior of S,
there are finitely many (self-)intersection points, and each intersection is a transverse cross-
ing between exactly two pieces of cycles. Similarly, a (finite) family of graph embeddings
on S is in general position if all embeddings are in the interior of S, there are finitely many
intersection points between two different embeddings, and each intersection is a transverse
crossing of the interiors of exactly two edges. Classical approximation techniques, see for
example Epstein [81, Appendix], allow us to approximate every edge in a graph embedding
by a piecewise linear edge using an ambient isotopy. In particular, all graph embeddings
in this paper can be assumed to be piecewise-linear. By doing small perturbations if neces-
sary, this allows us to assume that, moreover, all the graph embeddings we consider are in
general position, and we will always make this assumption unless stated otherwise.

5.2.1.2 Homeomorphisms and isotopies

We will use homeomorphisms of the surface S at several occasions in this chapter, and we
need to outline some subtle nuances in the terminology we use. We will often consider a
homeomorphism h that maps a cycle c : S1 → S into another one, c′ : S1 → S. Unless
stated otherwise, this expression means that h ◦ c = c′, namely, h pointwise maps c to c′.
However, we will sometimes need weaker concepts. We say that h maps c to c′ not neces-
sarily pointwise, but only as sets, if they do so up to reparameterization; namely, if there

see the discussion in these sections for more detail.
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is a homeomorphism ϕ : S1 → S1 such that h ◦ c ◦ ϕ = c′. If furthermore the homeo-
morphism ϕ is increasing (intuitively, h maps c to the cycle c′ not necessarily pointwise,
but the orientations of h(c) and c′ are the same), we say that h maps c to c′ not necessarily
pointwise, but preserving the orientations of the cycles. We also need to introduce ori-
ented homeomorphisms – sometimes also called orientation-preserving homeomorphisms–
which are homeomorphisms that preserve the orientation of a surface, i.e. such that the
image of any contractible loop is a loop turning in the same direction.

Often we will also have an abstract G and two embeddings G1 and G2 of G on a
surface S; we say that a homeomorphism h maps G1 to G2 if it maps each edge of G1

(pointwise) to the corresponding edge ofG2. By a slight abuse of language, we will say that
two graphs, or two families of cycles, are homeomorphic if there exists a homeomorphism
of the surface mapping one to the other.

We recall that two homeomorphisms are isotopic if there exists a continuous family of
homeomorphisms between them, and that an ambient isotopy is a homeomorphism isotopic
to the identity; it follows that an ambient isotopy is oriented. For A ⊆ S, we say that a
homeomorphism h is an ambient isotopy relatively to A if there is a continuous family of
homeomorphisms between h and the identity such that each homeomorphism is the identity
on A. This notion of isotopy naturally translates to objects embedded on surfaces: we say
that two curves or graphs are ambient isotopic if there exists an ambient isotopy mapping
one to the other.

In Section 3.1.1, we introduced a more local notion of isotopy for cycles, and this can
also be done for graphs. Two embeddingsG0 andG1 of the same abstract graphG on S are
isotopic if there is a continuous family of embeddings (Gt)t∈[0,1] between G0 and G1. In
more detail, the data of an embedding is given by the choice of a point for each vertex and
a path connecting the appropriate vertices for each edge (with some conditions asserting
that no crossing occurs); a family (Gt) of embeddings is continuous if all these maps vary
continuously over t. (The vertices may, in particular, move.) When we talk about isotopies
between families of cycles, we implicitly consider the families of cycles are graphs and use
the previous definition.

It is natural to ask whether, as for cycles, the two notions of isotopy coincide. It turns
out to be a byproduct of our techniques, which we obtain in Corollaries 5.4.2 and 5.4.3.
See also the discussion at the end of the chapter for a pointer to another possible proof.

The following lemma will be used repeatedly in this chapter, it is one of the fundamental
tools in the topology of surfaces.

Lemma 5.2.1 (Alexander’s Lemma; see, e.g., Farb and Margalit [96, Lemma 2.1]). Let D
be a disk and h : D → D be a homeomorphism fixed on the boundary of D. Then h is an
ambient isotopy relatively to the boundary of D.

Proof We can assume that D is the unit closed disk in the plane. The continuous family
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of embeddings between h and the identity can be explicitly defined by

F (x, t) =

{
(1− t)h( x

1−t) if 0 ≤ |x| ≤ 1− t
x if 1− t ≤ |x| ≤ 1

for 0 ≤ t < 1, and F (x, 1) = x for each x ∈ D.

5.2.1.3 Hyperbolic properties

Recall from Section 3.1.2 that if S has a negative Euler characteristic and has no boundary,
it can be provided with a hyperbolic metric; this naturally induces a hyperbolic metric on
its universal cover S̃, which is then isometric to the open hyperbolic disk H2. Since is
is often more convenient to work with compact spaces, we introduce the compactification
of H2, which just amounts to adding a boundary ∂H2 so that the disk becomes a closed one,
which we denote by H2. We refer to [96, Chapter 1] for more details on this construction
and we just state the properties that we will use. A non-contractible cycle on S lifts into an
arc in H2, and adding the accumulation points on the boundaries gives a lift in H2. We call
its intersections with the boundary the endpoints of the lift or, according to the orientation
of the lift, its source and its target. One can see that two such lifts in H2 have common
endpoints if and only if they stay at a bounded distance from each other. If S has boundary,
S̃ is isometric to a totally geodesic subspace of H2, that is, a subspace M ⊆ H2 such that
every geodesic of M with its induced Riemannian metric is also a geodesic of H2.

We will be using the two following folklore facts of hyperbolic geometry, which hold
for any surface S with negative Euler characteristic:

• If two cycles on a surface S are homotopic, they have lifts in H2 with the same
endpoints [35, Lemma 1.6.5].

• Every non-contractible cycle is homotopic to a unique geodesic [96, Proposition 1.3].

5.2.2 Combinatorial maps for non-cellular embeddings
We saw in Section 3.2.2 a convenient data structure to manipulate the combinatorial maps
associated to cellularly-embedded graphs. In this chapter, we will also need to handle non
cellularly-embedded graphs, which leads to the following variant of combinatorial maps.

We adapt the gem representation (see Figure 5.4, it is also worthwhile to compare it
to Figure 3.4 in the preliminaries) to handle graphs that are not cellularly embedded, by
adding the following information. (For simplicity of exposition, we only consider graphs
without isolated vertices; it is not hard to extend the data structure to handle this case.)
First, each face may be incident to several cycles of G, and stores a list containing one flag
of each such cycle. Conversely, each flag has a pointer to the face it belongs to. Also, a
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g = 1
b = 2

g = 2
b = 0

if iv

ie

p1

p2p3

FIGURE 5.4: An example of extended combinatorial map, with the three involutions iv, ie,
and if for a given flag (in bold), and the pointers p1, p2 and p3 between a face and one flag
for each incident cycle

face may have non-zero genus and contain some boundary components of S, so we store
this genus and number of boundary components of S.

Two such extended combinatorial maps 1 are isomorphic if, in addition to the conditions
above for standard combinatorial maps, the corresponding faces have the same genus and
the same number of boundary components of the surface. The corresponding bijection will
be called an extended map isomorphism. As in the cellular case, one can check whether
two extended combinatorial maps of two embeddings G1 and G2 of G are isomorphic in
linear time in their complexity. And as in the standard case, we then have the following
lemma.

Lemma 5.2.2. Two extended combinatorial maps of G1 and G2 are isomorphic if and only
if there exists a homeomorphism of the surface mapping G1 to G2.

Proof The proof is similar to that of Lemma 3.2.1. The isomorphism extends to a homeo-
morphism between the neighborhoods of the graphs G1 and G2; since each face of G1 has
the same topology as the corresponding one in G2, this homeomorphism extends naturally
to the whole surface.

Our construction does not depend on whether S is orientable. If S is orientable, which
will always be the case in this chapter, a flag has a natural orientation, depending on
whether we turn clockwise or counterclockwise around the vertex of the flag when start-
ing on the edge of the flag, close to the vertex, and moving towards the face of the flag.
Furthermore, each of the three involutions reverses the orientation. An orientation of an
extended combinatorial map assigns an orientation “clockwise” or “counterclockwise” to
each flag such that each involution reverses the orientation of the flag. There exists an
orientation-preserving isomorphism between two oriented extended combinatorial maps if

1. We will drop the adjective “extended” when it is obvious from the context.
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γ1,1 γ1,2 γ2,1 γ2,2

FIGURE 5.5: Two families of cycles Γ1 = (γ1,1, γ1,2) and Γ2 = (γ2,1, γ2,2) such that Γ1

and Γ2, and each cycle is homotopic to the corresponding cycle in the other family, yet Γ1

and Γ2 are not isotopic.

they are isomorphic as extended combinatorial maps and the bijection between the flags
preserves the orientation. This can also be tested in linear time. Equivalently, there exists
an oriented homeomorphism of the surface mapping one graph embedding to the other.

5.3 Isotopies of stable families of cycles

We saw that given two families of cycles Γ1 and Γ2 embedded on a surface S, one can
efficiently test whether they are homeomorphic, and whether every cycle in Γ1 is homotopic
to the corresponding cycle Γ2. This section addresses the problem of finding an appropriate
hypothesis on the families of cycles so that these two tests are enough to ensure that there
exists an isotopy between Γ1 and Γ2. To see that an additional hypothesis is indeed needed,
we depict in Figure 5.5 an example of two families that satisfy both tests, yet are not
isotopic. To circumvent these examples, we introduce the notion of a stable family of
cycles, which leads to Theorem 5.3.1. However technical difficulties will appear: this
hypothesis will not allow us to ensure isotopy pointwise, but only preserving the orientation
of cycles, which in turn will lead to difficulties in the next section.

Let Γ be a family of cycles in general position on S. A k-gon in Γ, for k ≥ 1, is an
open disk on S whose boundary is formed by exactly k subpaths of Γ. A 0-gon is a disk
whose boundary is a single simple cycle in Γ. In general, k-gons may contain and may
be crossed by other pieces of the arrangement of Γ; if this is not the case, we say that the
k-gon is empty .

We say that Γ is stable if its arrangement contains no empty k-gon for k ≤ 3. In this
section, we prove the following result.

Theorem 5.3.1. Let S be an orientable surface and let Γ1 = (γ1,1, . . . , γ1,n) and Γ2 =
(γ2,1, . . . γ2,n) be two stable families of cycles on S in general position such that:

1. there exists an oriented homeomorphism h of S mapping each cycle γ1,j of Γ1 to the
corresponding cycle γ2,j of Γ2 not necessarily pointwise, but preserving the orienta-
tions of the cycles, and
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A B B A

FIGURE 5.6: A stable family comprised of a single cycle γ : S1 → S, drawn in two
different ways on a double torus. Letter A denotes the image of the same point of S1 in
both embeddings, and similarly for B. Both cycles are homotopic, some oriented homeo-
morphism of S maps one to the other pointwise, and there exists an isotopy of S (namely,
the identity) that maps one to the other, preserving their orientation; however, there exists
no isotopy of S that maps one to the other pointwise

2. each cycle of Γ1 is homotopic to the corresponding cycle of Γ2.

Then there is an isotopy of S that maps each cycle of Γ1 to the corresponding cycle of Γ2,
not necessarily pointwise, but preserving the orientations of the cycles.

We note that conversely, if there exists an ambient isotopy of S mapping Γ1 to Γ2, then
conditions (1) and (2) are satisfied.

As a side remark, we will actually use this result in a setting where we know that h
maps each cycle of Γ1 pointwise to the corresponding cycle of Γ2; however, even under this
stronger hypothesis, it does not always hold that there exists an isotopy of S that maps each
cycle in Γ1 pointwise to the corresponding cycle of Γ2; see Figure 5.6.

The remaining part of this section is devoted to the proof of Theorem 5.3.1 if the sur-
face S has negative Euler characteristic. The idea of the proof is to push the families of
cycles to an arbitrarily close neighborhood of their corresponding geodesics. This is where
the stability hypothesis intervenes: using an argument of de Graaf and Schrijver [64], we
show that when the families are stable, this pushing can be done with isotopies. Then, the
homotopy hypothesis shows that the geodesics corresponding to both families are the same,
since there is a unique geodesic in every homotopy class on hyperbolic surfaces. The last
ingredient is the oriented homeomorphism, which shows that in the small neighborhoods
of the geodesics, which we call corridors, the cycles in Γ1 and Γ2 are in the same order.
All in all, this provides an isotopy between Γ1 and Γ2 – but not a pointwise one.

The proof for the remaining surfaces uses slightly different tools and is deferred to
Appendix A.2.

5.3.1 Basic consequences of Euler’s formula
We start with simple consequences of Euler’s formula that show that excluding empty k-
gons is the same as excluding k-gons.
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Lemma 5.3.2. Assume just for this lemma that S is a sphere. Let G be a connected (hence
cellularly embedded) graph on S, such that every vertex has degree four. Then there are at
least three faces in G with degree smaller than four.

Proof Let v, e, and f denote the number of vertices, edges, and faces of G. The sum of
the degrees of all faces is 2e, which, by Euler’s formula v− e+f = 2 and double-counting
of the vertex-edge incidences 4v = 2e, equals 4f − 8. Since every face has degree at least
one, if at most two faces have degree smaller than four, the sum of the degrees of all faces
is at least 4f − 6. This is a contradiction.

A trivial corollary is the following:

Corollary 5.3.3. Assume just for this corollary that S is a sphere, a disk, or an annulus.
Let G be a connected graph embedded on S, such that every vertex has degree four. Then
there is at least one face in G with degree smaller than four.

Proof Let S̄ be the sphere obtained from S by attaching a disk to each of the boundary
components of S. The graph G is embedded on S̄, and by Lemma 5.3.2 it contains at
least three faces (on S̄) with degree smaller than four. At least one of these faces does not
contain the disks attached to S, since there are at most two such disks.

Lemma 5.3.4. Let Γ be a stable family of cycles in a surface S. Then no k-gon can exist
in Γ for k ≤ 3.

Proof Consider a hypothetical k-gon D for Γ, with k ≤ 3. We prove that D strictly
contains another k′-gon with k′ ≤ 3, which is a contradiction, since by induction this
would give an infinite family of k-gons in a finite graph.

Assume first that D has exactly k vertices on its boundary; in other words, no cycle
crosses the boundary of D. Since D cannot be an empty k-gon, there must be a connected
component Γ′ of the arrangement of Γ that is entirely insideD. Corollary 5.3.3 implies that
Γ′ contains empty k′-gons with k′ ≤ 3 inside D, and thus D contains a smaller k′-gon, as
desired.

Assume now that D has at least k + 1 vertices on its boundary, i.e., it intersects at least
another cycle in Γ. Consider the restriction of the arrangement of Γ to the closed disk D,
and let G be the connected component of that restriction that contains the boundary of D.
To prove the lemma, it suffices to prove that G has an interior face of degree at most three.
We now assume that every interior face of G has degree at least four, and will reach a
contradiction.

G has two types of edges: eext external edges lying on the boundary of the k-gon, and
eint internal edges. Similarly, it has three types of vertices: vint vertices in the interior of
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the k-gon, vflat degree-three vertices on the boundary of the k-gon, and vextr = k degree-
two vertices on the boundary of the k-gon. Let f denote the number of interior faces of G
in the plane. By double-counting arguments, we obtain:

vextr + vflat = eext (5.1)
4f ≤ 2eint + eext (5.2)

4vint + vflat = 2eint. (5.3)

Euler’s formula implies

4 = 4(vextr + vflat + vint)− 4(eext + eint) + 4f
(5.1)
= 4vint − 4eint + 4f

(5.3)
= −vflat − 2eint + 4f

(5.2)

≤ −vflat − 2eint + 2eint + eext.

With equation (5.1), this gives vextr ≥ 4 which yields a contradiction and concludes the
proof.

5.3.2 Following the geodesics
We recall that Γ1 = (γ1,1, . . . , γ1,n) and Γ2 = (γ2,1, . . . γ2,n) are two stable families of
cycles on S in general position satisfying the hypotheses of Theorem 5.3.1. Since we
assume that the Euler characteristic of S is negative, we can endow S with a hyperbolic
metric and identify S̃ with a totally geodesic subspace of the open hyperbolic disk. For
each j, if γ1,j is not null-homotopic, let gj be the unique geodesic homotopic to it. (Some
gj’s may be identical.)

The starting idea of our proof is that by shortening a simple cycle locally, i.e., in arbi-
trary small balls, one can push it arbitrarily close to its corresponding geodesic, and this
pushing can be done via an isotopy. But when one tries to do that with a family of cycles,
some may stand in the way of others, for example it is impossible to untie an empty 2-gon
just by using isotopies. Notwithstanding, it is a result of de Graaf and Schrijver [64] that if
one is further allowed to perform the subset of Reidemeister moves pictured in Figure 5.7,
then one can push a family of cycles to an arbitrarily close neighborhood of their geodesics.
The proof of this result is based on a slight refinement of Ringel’s theorem [210] for ar-
rangements of curves in the disk. In our case, since we are dealing with stable families, no
Reidemeister move at all is possible, therefore one can push the cycles to a neighborhood
of the geodesics by just performing isotopies. This leads to the following proposition.
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FIGURE 5.7: de Graaf and Schrijver show that one can push a family of cycles to their
geodesics using only isotopies and Reidemeister moves which do not increase the number
of crossings.

Proposition 5.3.5. No cycle in Γ1 and Γ2 is null-homotopic. Furthermore, for i = 1, 2, for
each ε > 0, up to replacing Γi with its image by an ambient isotopy of S, we may assume
that each cycle γi,j has a lift that belongs to an ε-neighborhood of a lift of gj .

Proof It follows from the aforementioned result by de Graaf and Schrijver [64, Proposition
13] that the cycles γi,j in Γi can be moved through Reidemeister moves (not increasing the
number of crossings) and ambient isotopies into cycles which have lifts that are ε-close
to some lift of a geodesic αj if γi,j is not null-homotopic, and ε-close to a point of S̃
otherwise. As Γi is stable, no Reidemeister move at all is possible, so the only possible
moves are actually isotopies of the surface.

Now, assume that γi,j is null-homotopic. For ε small enough, γi,j is a contractible cycle
in a disk; hence if it is simple, it forms a 0-gon; and if it is non-simple, by Corollary 5.3.3,
it contains a k-gon for some k ≤ 3. This contradicts the stability of Γ1 and Γ2, hence no
cycle γi,j is null-homotopic.

Now, since lifts of γi,j and αj are ε-close, they share the same endpoints and thus αj is
the unique geodesic homotopic to γi,j , which shows that αj = gj and concludes the proof.

So henceforth we assume that Γ1 and Γ2 satisfy the conclusion of the above proposition.
The union of the geodesics gj forms a graph, possibly with simple cycles without ver-

tices, on the surface S; we denote by E and V its edges and vertices, see Figure 5.8.
(Simple cycles without vertex are considered to be closed edges.) Each vertex has even
degree, and each geodesic arriving at a vertex from an edge leaves it via the opposite edge.

Now, following ideas by de Graaf and Schrijver [64], we introduce a polygonal decom-
position of an ε-neighborhood of the graph (V,E); see Figure 5.8. To each edge e ∈ E,
we associate an edge polygon Pe (actually, a quadrilateral), and to each vertex v ∈ V of
degree 2d, we associate a vertex polygon Pv with 2d sides, such that each edge e = uv lies
in the interior of Pe ∪ Pu ∪ Pv and v lies in the interior of Pv, and such that the union of
all the polygons forms a tubular neighborhood of the cycles gi. 1 We can assume that all

1. In the case where a geodesic coincides with a boundary of the surface, one of the edges of each polygon
of that geodesic actually lies on this boundary. Also, for simple cycles without vertex, we introduce an edge
polygon with two opposite sides glued together.
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FIGURE 5.8: 1. Two geodesics on a double torus, and the associated graph. 2. The
corridors associated to them. 3. Cycles in the corridors. In vertex polygons, they intersect
in a grid-like pattern

the polygons are mutually disjoint, except for Pe and Pu for u a vertex incident to e, which
share an edge.

Let us call a corridor the polygonal neighborhood of a single geodesic gi, that is
⋃
Pe∪⋃

Pu for all e and u in gi. Every cycle in Γi belongs to a single corridor.
The following proposition is proved using Lemmas 5.3.2 and 5.3.4 and by standard

flipping arguments.

Proposition 5.3.6. For i = 1, 2, up to replacing Γi with its image under an ambient isotopy
of S, we may assume that:

• each maximal piece of a cycle in Γi within a polygon is simple, and has its endpoints
on opposite sides of the polygon;

• two such pieces cross at most once; moreover, if they cross, then the four endpoints
of these two pieces are all in different sides of the polygon (in particular, the polygon
is a vertex polygon).

Proof If a maximal piece of Γi within a polygon is non-simple, it forms a 1-gon, which is
impossible (Lemma 5.3.4). If two pieces cross twice, they form a 2-gon, which is impossi-
ble for the same reason.

If such a piece has its endpoints on two different sides of a polygon that are not opposite
in that polygon, that polygon is a vertex polygon, and the corresponding cycle does not
belong to a single corridor, which is impossible by construction.

If such a piece p has its endpoints on the same side s of a polygon, without loss of
generality assume that the disk D bounded by s and p contains no other piece with both
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endpoints on s. Thus the pieces inside D are simple, pairwise disjoint (otherwise these two
pieces would form a 3-gon with p), and connect s to p; so with an isotopy of the surface,
we can push p across s, decreasing the total number of intersections between the cycles and
the sides of the polygon. After finitely many such operations, no such piece p exists.

There only remains to prove that there cannot be any (self-)intersection among cycles
in the same corridor C. We distinguish two cases:

• If C contains at least one vertex polygon, some cycle crosses every cycle in C; if
there were a (self-)intersection in C, there would be a 3-gon.

• On the other hand, if the corridorC contains no vertex polygon, thenC is an annulus.
Consider the arrangement of the cycles in Γ, and assume there is a crossing. One con-
nected component of this arrangement is a graph where all vertices have degree four.
Thus, by Corollary 5.3.3, Γ contains a k-gon for k ≤ 3, contradicting Lemma 5.3.4.

We can now assume that Γ1 and Γ2 satisfy the conclusion of Proposition 5.3.6. It
follows that all the arcs of Γi in a given edge polygon Pe are simple, disjoint, and belong to
different cycles. Moreover, each polygon Pv is actually a quadrilateral, because otherwise
three arcs in Pv coming from six different sides would cross inside Pv, yielding a 3-gon
because of the general position assumption, which is impossible (Lemma 5.3.4). Finally,
within each polygon Pv, the arcs intersect in a grid-like fashion, as in Figure 5.8.

5.3.3 A technical result on corridors
We now show that the orders of the cycles in Γ1 and Γ2 are the same in the corridors.

Henceforth, let us choose an arbitrary orientation on S. Let C be a corridor, oriented
in the direction of its geodesic g; let Cl and Cr be the left and right boundaries of C,
respectively. We recall that h is the oriented homeomorphism specified in the hypotheses
of Theorem 5.3.1.

Let ΓC1 be the subfamily of cycles in Γ1 that belong to C, and let ΓC2 be its image
by h. Recall that ΓCi has no crossing in an edge polygon Pe. For i = 1, 2, the ordering
of ΓCi along C is defined as follows: Consider an arc in an edge polygon Pe, going from Cl
to Cr, crossing each cycle in ΓCi exactly once, and record the index of the cycles in Γi
encountered, in this order along the arc. By construction, this ordering does not depend on
the choice of the polygon and arc.

Lemma 5.3.7. The orderings of ΓC1 and ΓC2 are the same.

Proof We first claim that the oriented homeomorphism h : S → S lifts to an oriented
homeomorphism h̃ : S̃ → S̃. Indeed, if we denote by π the projection π : S̃ → S
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and apply the lifting theorem 1to h ◦ π, we get a continuous map h̃ : S̃ → S̃ satisfying
π ◦ h̃ = h ◦ π. Let x ∈ S̃ and y = h̃(x). Similarly, we lift h−1 to a continuous map h̃−1

such that h̃−1(y) = x. Then h̃−1 and h̃ are inverse continuous maps on S̃, so h̃ is a
homeomorphism. Furthermore, h̃ is oriented because h is oriented.

Let g̃ be the lift of a geodesic inside a lift C̃ of C. The homeomorphism h̃ maps g̃
into a possibly different lift of C. However, up to composing h̃ with a deck transformation
of S̃ 2, we may assume that h̃ maps g̃ into C̃. Furthermore, g̃ and its image by h̃ have the
same orientation in C̃, because otherwise the endpoints of each lift of ΓC1 in C̃ would be
exchanged under h̃, which is not the case since h preserves the homotopy classes of the
cycles in ΓC1 . Therefore, h̃ maps g̃ to a path in C̃ with the same source and target. Since h̃
is oriented, the orderings of the cycles in Γ̃C1 and Γ̃C2 , from left to right in C̃, are the same.
It follows that they are also the same in C.

5.3.4 End of proof
Proof of Theorem 5.3.1 Let Pv and Pe be incident vertex and edge polygons, respectively,
and let p be the path that is their common boundary. We first build an isotopy of the
surface such that, when restricting to p, the image of each cycle in Γ1 is the same as the
corresponding cycle in Γ2. For this purpose, note that the restriction of Γ1 to p is a finite
set of points, and similarly for Γ2; furthermore, the numbers of points are the same (by
Lemma 5.3.7). We can easily push the intersection points on p so that they coincide, by
an isotopy of S that is the identity outside a neighborhood of p. Lemma 5.3.7 now implies
that, after this isotopy, each arc in Pe corresponds to the same cycle in Γ1 and Γ2.

We can do this operation for every intersection p of a vertex and an edge polygon. Now,
within each edge polygon, the arcs of Γ1 are simple, pairwise disjoint and in the same order
as the arcs of Γ2; thus, there exists a homeomorphism from Pe to Pe that is the identity on its
boundary and maps the image of Γ1 inside Pe to the image of Γ2 inside Pe. By Alexander’s
lemma, this homeomorphism is an ambient isotopy. Now, within each edge polygon Pe,
the images of Γ1 and Γ2 are the same, and each arc corresponds to the same cycle in Γ1

and Γ2.
Now, within each vertex polygon Pv, the endpoints of the arcs of Γ1 and Γ2 coincide;

moreover, they form combinatorially isomorphic arrangements of arcs (namely, grids) in-
side Pv. The same argument as above shows that an isotopy of Pv maps the arcs of Γ1 to
the arcs of Γ2.

Finally, we have found an ambient isotopy i of S that maps each cycle γ1,j in Γ1 to the

1. The lifting theorem is a classical result in algebraic topology giving conditions for a function to lift
to one of its covers. See for example [129, Proposition 1.33] for a proof and discussion. In our case, the
hypotheses are trivially fulfilled since the universal cover has trivial fundamental group.

2. Deck transformations are homeomorphisms of S̃ which preserve the projection π : S̃ → S. Therefore,
composing with a deck transformation amounts to choosing the “correct” lift of h.



5.4. Isotopies of graph embeddings 73

corresponding cycle γ2,j in Γ2, as sets but not necessarily pointwise. Furthermore, since
i(γ1,j) is homotopic to γ1,j , it is also homotopic to γ2,j , so the ambient isotopy i preserves
the orientations of the cycles.

5.4 Isotopies of graph embeddings

In the last section, we showed that if two stable families of cycles pass the homotopy and
the homeomorphism test, then they are isotopic, although not necessarily pointwise. The
next step is thus to build two stable families of cycles Λ1 and Λ2 out of our input graphs
G1 and G2, such that the isotopy of the families of cycles translates to an isotopy of the
graphs. In doing this one also needs to ensure that the complexities of Λ1 and Λ2 is not too
big compared to the ones of the input graphs. We will then apply the result of the previous
section to obtain an isotopy between the stable families – however, this isotopy does not
have to be pointwise, and it requires quite a bit of work to handle this difficulty.

The main result of this section is the following.

Theorem 5.4.1. Let G1 and G2 be two graph embeddings of a graph G on an orientable
surface S. Assume that there is an oriented homeomorphism h of S mapping G1 to G2.
There exists a family Λ of cycles in G such that the following holds: If, for each cycle γ
in Λ, the images of γ inG1 andG2 are homotopic, then there exists an ambient isotopy of S
taking G1 to G2 pointwise.

Furthermore, the cycles in Λ use each edge of G at most four times in total and, given
only the combinatorial map of G1 on S, one can compute the cycles of Λ in linear time in
the complexity of that combinatorial map.

Note that, by the homeomorphism condition, the combinatorial maps of G1 and G2

on S have to be the same. We also emphasize that in contrast to Theorem 5.3.1, the ambient
isotopy we obtain is pointwise.

Conversely, ifG1 andG2 are isotopic (in particular, if there is an ambient isotopy taking
G1 to G2), there must exist an oriented homeomorphism mapping one to the other, and the
images of any cycle of G in G1 and G2 are homotopic. Therefore, Theorem 5.4.1 implies
Ladegaillerie’s result [162] stated in the introduction, and also:

Corollary 5.4.2. Let G1 and G2 be two graph embeddings of a graph G in the interior of
an orientable surface S. Assume that there exists an isotopy between G1 and G2. Then
there exists an ambient isotopy of S between G1 to G2.

In our proof of Theorem 5.4.1, if the input graph embeddings are piecewise-linear with
respect to a fixed triangulation of S (which we can assume, after an ambient isotopy, by
using techniques as in Epstein [81, Appendix]), our ambient isotopy can be chosen so as to
be piecewise-linear. In particular:
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Corollary 5.4.3. Let G1 and G2 be two piecewise-linear graph embeddings of a graph G
in the interior of an orientable surface S. Assume that there exists a (not necessarily
piecewise-linear) isotopy betweenG1 andG2. Then there exists a piecewise-linear ambient
isotopy of S between G1 to G2.

For the proof of Theorem 5.4.1, one difficulty of the construction resides in the fact
that the families Λ1 and Λ2 (the images of Λ in G1 and G2) must have small complexity.
In a sense, Λ1 forms a topological decomposition of the tubular neighborhood of G1 using
cycles. However, all known topological decompositions of surfaces made of cycles (like
pants decompositions [57], octagonal decompositions [56], or systems of loops [91]) have
worst-case complexity Ω(gn), where n is the complexity of the surface; our construction
has linear size in the complexity of the object studied. We suspect that our construction can
be useful for other purposes as well.

The proof of Theorem 5.4.1 starts by some preprocessing of the graphs, which reduces
the problem to the case where either G1 and G2 are cut-graphs, or none of their faces are
disks. Then we will compute stable families of cycles Γ1 and Γ2 in the tubular neighbor-
hood of G1 and G2 that “surround” the graphs, so that isotoping them also naturally iso-
topes the graphs. However, this does not yield a pointwise isotopy. To reach that stronger
conclusion, we will add a handful of cycles to the families Γ1 and Γ2, yielding Λ1 and Λ2.
The somewhat intricate details of this construction are different depending on the output of
the preprocessing. For the sake of readability, we only present the main part of our con-
struction in this chapter and defer the technicalities related to the additional cycles to the
Appendix A. This should help the reader to initially focus on obtaining isotopies as sets,
and only look at the subtleties needed for pointwise isotopy in a second pass.

5.4.1 Preprocessing step
For the proof of Theorem 5.4.1, we assume for simplicity of exposition that G1 and G2 are
known. It is immediate to check that, actually, only the combinatorial map of G1 on S is
needed in the constructions.

Proposition 5.4.4. Without loss of generality, we may assume that (1) G1 has a single face,
or none of its faces is a disk, and (2) G1 has no vertex of degree zero or one. Via the
oriented homeomorphism h, the same holds for G2.

Intuitively, the proof is simple: Whenever e is an edge of G bounding two different
faces, at least one of which is a disk, removing e in G1 and G2 does not change whether
G1 and G2 are isotopic. Similarly, removing vertices of degree zero has no effect on the
existence of an isotopy.

In more detail, we will need the following two lemmas.

Lemma 5.4.5. Let e be an edge of G bounding two different faces, at least one of which is
a disk, in the embedding G1 (and thus also in G2). Let G′1 and G′2 be the embedded graphs
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obtained after the removal of e. Then G1 and G2 are ambient isotopic if and only if G′1
and G′2 are ambient isotopic.

Proof The direct implication is obvious. Now, assume we have an isotopy i mapping G′1
to G′2; we want to deduce that there is an isotopy mapping e1 to e2 (the images of e in G1

and G2). By composition with i, we may assume that G′1 = G′2. By the existence of h,
we know that e1 and e2 are arcs with the same endpoints in the same face of G′1 = G′2;
furthermore, that face is split into two pieces, one of which is a disk, by e1 (resp., e2).

e1 e2
c c c

FIGURE 5.9: Illustration of the proof of Lemma 5.4.5.

The rest of the proof is illustrated in Figure 5.9. Since one of the faces bounded by e1 is
a disk, e1 can be isotoped (with fixed extremities) to a neighborhood of the curve c closing
this disk, and the same goes for e2. After this isotopy, consider a disk neighborhood of c
containing both e1 and e2. Since these two edges have the same endpoints in this disk, the
Jordan–Schönflies theorem implies that there is a homeomorphism of the disk, fixed on the
boundary, that maps one to another; then, by Alexander’s lemma, that homeomorphism can
be obtained by an isotopy of the disk.

Lemma 5.4.6. Let v be a vertex of G of degree one, and let e be its incident edge. Let G′1
and G′2 be the embedded graphs obtained after the removal of e and v. Then G1 and G2

are ambient isotopic if and only if G′1 and G′2 are ambient isotopic.

Proof Again, one direction is trivial; the converse can be proved using similar ideas as
the previous lemma. Here, the topological statement that is used is the following: Let p
be a point on the boundary of a disk, and let e1 and e2 be two simple paths having p as an
endpoint and intersecting the boundary of the disk exactly at p; then there is an ambient
isotopy of the disk, fixed on its boundary, that maps e1 to e2. This again follows by an
application of the Jordan–Schönflies theorem and Alexander’s lemma (by first extending
e1 and e2 to simple arcs with the same endpoints).

Proof of Proposition 5.4.4 We show below how to build in linear time a subgraph G′′ of G
satisfying the desired properties and such that, if G′′1 (resp., G′′2) denotes the restriction
of G1 (resp., G2) to G′′, then G1 and G2 are ambient isotopic if and only if G′′1 and G′′2 are
ambient isotopic. This is enough to prove the proposition.

Let G = (V,E). We initially set E ′ := E, and, for each edge of E ′ in turn, we remove
it from E ′ if and only if it is incident to two distinct faces of (V,E ′), at least one of which
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is a disk (in the embedding G1 or G2). This is easy to do in linear time, by initially labeling
each face of (V,E ′) with its topology (genus and number of boundary components) and
maintaining this labeling during the process.

Let G′1 and G′2 be the embeddings of (V,E ′) induced by G1 and G2, respectively.
Lemma 5.4.5 implies that G1 and G2 are isotopic if and only if G′1 and G′2 are isotopic.
Furthermore, if G′1 has at least two faces, one of which is a disk, there exists an edge
in G′1 incident to a disk and to another face; such an edge would have been removed in the
process, which is a contradiction. So the first condition is satisfied.

Moreover, we can, in linear time, iteratively remove all degree-one vertices with their
incident edges, until no degree-one vertex remains. (Put all degree-one vertices in any list-
type data structure; while the structure is non-empty, extract any vertex; if it still has degree
one, remove it with its incident edge; if the opposite vertex on that edge has now degree
one, add it to the structure; repeat.) Lemma 5.4.6 implies that G1 and G2 are isotopic if and
only if these new graph embeddings, G′′1 and G′′2, are isotopic.

Finally, if G′′1 (and G′′2) have isolated vertices, we can safely remove them: Since there
is a homeomorphism of S taking G1 to G2, the isolated vertices belong to the same faces
in both embeddings.

Proposition 5.4.4 leads us to distinguish two cases, leading to slightly different con-
structions depending on whether after the preprocessing, G1 has a single face, or none of
its faces are disks. We focus on the latter case, since it contains the most important ideas.
In order to ease the reading of this section, we deferred some proofs to Appendix A. Firstly,
the proof of Theorem 5.4.1 relies on Proposition 5.4.8, which will only be proved in the
Appendix A.1.1. Secondly, the case when G1 has a single face builds on the other case and
is deferred to Appendix A.1.2.

5.4.2 Proof of Theorem 5.4.1 if no face is a disk
In this section, we present the main part of the proof of Theorem 5.4.1 in the special case
where no face of G1 (or, equivalently, G2) is a disk. We can assume without loss of gener-
ality that G1 satisfies the properties of Proposition 5.4.4.

5.4.2.1 Construction of the stable family Γ.

We first build a family Γ of cycles in G whose images in G1 or G2 are slight perturbations
of stable families Γ1 and Γ2. If the images of each cycle in Γ in G1 and G2 are homotopic,
then this almost implies thatG1 andG2 are isotopic, which suffices to prove Theorem 5.4.1.
Unfortunately, this is not entirely true, and we need to test a larger family Λ ⊃ Γ for
homotopy.

Proposition 5.4.7. In linear time, we can construct a family of cycles Γ in G such that:
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• each edge of G is used at most twice by all the cycles in Γ;

• there exists a stable family Γ1 on S whose cycles are homotopic (by an arbitrarily
small perturbation) to the cycles in the images of Γ in G1;

• G1 does not meet the interior of the faces of the arrangement of Γ1 that are not disks.

Proof It is actually simpler to explain the construction of Γ1 first; see Figure 5.10 for
an example. For simplicity of notation, we let G1 := (V,E). Recall that the cyclomatic
number of a connected graph is the minimum number of edges one needs to delete to obtain
a tree. Equivalently, it equals its number of edges minus its number of vertices plus one.

1. 2.

FIGURE 5.10: Top: A crossover along an edge ofE′\E′′. Middle: An embedded graphG1

on a genus 3 surface. Bottom: The corresponding family Γ1

Let (V ′, E ′) be a connected component of (V,E). By Proposition 5.4.4, we can assume
that each vertex has degree at least two; in particular, (V ′, E ′) has cyclomatic number at
least one.

• If (V ′, E ′) has cyclomatic number one, then it must be a single cycle. In this case,
we add that cycle to Γ1.

• Otherwise, (V ′, E ′) has cyclomatic number at least two. We add to Γ1 the cycles that
are the boundaries of a tubular neighborhood of (V ′, E ′). Let E ′′ be the edge set of a
spanning tree of (V ′, E ′). For each edge e ∈ E ′ \ E ′′, we introduce a “crossover” as
in Figure 5.10 (top) on the two pieces of Γ1 that run along edge e: Instead of locally
having two pieces of cycles that run along edge e without touching it, we now have
two pieces of cycles in the neighborhood of edge e that cross at a single interior point
of e. Of course, this operation may change the number of cycles of Γ1 and create
self-intersections. See Figure 5.10.
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We now prove that Γ1 is a stable family. By construction, for each connected component,
the cycles in Γ1 do not intersect the chosen spanning tree of (V ′, E ′). Let f be a face of
the arrangement of the cycles in Γ1. We have to prove that f is not a k-gon with k ≤ 3.
Following the definition of Γ1, we observe that f is either an inner disk, namely, a disk
containing entirely a spanning tree (V ′, E ′′) of some connected component of (V,E), or is
contained entirely in a single face of (V,E).

• Assume first that f is an inner disk, containing the spanning tree (V ′, E ′′). By con-
struction, (V ′, E ′) has cyclomatic number at least two, so |E ′ \ E ′′| ≥ 2. Each edge
e ∈ E ′ \E ′′ corresponds to a single crossing between cycles of Γ1, and this crossing
appears twice along the boundary of f ; so f has 2|E ′ \E ′′| ≥ 4 crossings of Γ along
its boundary.

• Otherwise, f has the same topology as a face of (V,E), and therefore cannot be a
disk.

Hence Γ1 is a stable family. It follows from the construction that the computation of Γ1

takes linear time in the complexity of the combinatorial map of G1. The cycles in Γ1 have
been constructed in a tubular neighborhood of the graph G1; more precisely, by construc-
tion, they run along a side of the edges of G1, swapping side whenever they run along an
edge not in a spanning tree. Therefore (by retracting the tubular neighborhood) they nat-
urally correspond to a family of cycles Γ in G, and deducing the family Γ from Γ1 takes
linear time. All these cycles use each edge of G at most twice. Furthermore, also by
construction, G1 is included in Γ1 and in the faces of Γ1 that are disks.

Now, the basic idea of the proof of Theorem 5.4.1 is as follows. Assume that each cycle
in Γ1 is homotopic to the corresponding cycle in Γ2. Theorem 5.3.1 implies that, after an
ambient isotopy of S, we can assume that each cycle in Γ1 coincides with the corresponding
cycle in Γ2 not necessarily pointwise, but with the same orientation. If this was the case
pointwise, then, since Gi is “surrounded” by cycles in Γi, this would imply that G1 and G2

almost coincide and could be moved one into the other by another isotopy. However, the
first isotopy does not necessarily map Γ1 to Γ2 pointwise, and we need to test that a few
more pairs of cycles are homotopic to ensure that it is the case. This is summarized in the
next proposition.

Proposition 5.4.8. In linear time, we can construct a family of cycles Λ in G such that:

• each edge of G is used at most thrice by all the cycles in Λ.

• if we denote by Λ1 and Λ2 the images of Λ in G1 and G2, if every cycle in Λ1 is
homotopic to its counterpart in Λ2, then an ambient isotopy of S maps Γ1 to Γ2

pointwise.

For the sake of readability, the proof of Proposition 5.4.8 is deferred to Appendix A.1.1,
as it gets technical and not very enlightening – though by no means easy.
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5.4.2.2 End of proof of Theorem 5.4.1

We now conclude the proof of Theorem 5.4.1 if none of the faces of G1 are disks.
According to the hypotheses, for all the cycles γ ∈ Λ, the images of γ in G1 and G2 are

homotopic, which implies by Proposition 5.4.8 that we can assume that Γ1 = Γ2 pointwise.
Then, each face of Γ1 is mapped by h to itself, because h is an oriented homeomorphism.

In particular, G1 ∩ Γ1 = G2 ∩ Γ2. In every disk of S \ Γ1 = S \ Γ2, the oriented
homeomorphism h is the identity on the boundary; therefore, by Alexander’s lemma, it is
an ambient isotopy relatively to the boundary. This gives us an isotopy between G1 and G2

on every such disk, relatively to Γ1 = Γ2. By gluing these isotopies together along their
boundaries, we get an isotopy of S mapping G1 to G2, because G1 and G2 are included in
the closures of the faces of Γ1 = Γ2 that are disks (Proposition 5.4.7).

Since the family Λ covers each edge of G at most thrice, it has linear complexity. As
it can be computed in linear time, this concludes the proof of Theorem 5.4.1 if none of the
faces of G1 are disks.

5.4.3 Proof of Theorem 5.4.1 if the only face of G1 is a disk
To lighten the reading of this chapter, this proof is deferred to Section A.1.2.

5.5 Algorithms
The previous sections showed that the problem of testing isotopy amounts to testing ori-
ented homeomorphism and homotopy. Indeed, to prove Theorems 5.1.1 and 5.1.2, it suf-
fices to be able to test the existence of an oriented homeomorphism between G1 and G2,
and of homotopies between the cycles in Λ, as computed by Theorem 5.4.1, in the indi-
cated amount of time. We prove Theorems 5.1.1 and 5.1.2 in Sections 5.5.1 and 5.5.2,
respectively.

5.5.1 Surfaces
Recall that, in Theorem 5.1.1, the input of the algorithm consists of a fixed graph H cellu-
larly embedded on a fixed surface S, and of embeddings G1 and G2 of a graph G. Further-
more, k1 (resp., k2) denotes the complexity of the combinatorial map of the arrangement
of G1 (resp., G2) with H .

Homeomorphism test. For the case of graphs on surfaces, the existence of an oriented
homeomorphism that maps G1 to G2 can be checked in O(k1 + k2) time. Indeed, let us
choose an arbitrary orientation on S; this induces an orientation of the combinatorial map
of H , and hence an orientation of the combinatorial map of the arrangement of Gi and H ,
for i = 1, 2. Computing the number of boundary components of S in each face, as well as
the genus of each face (using the Euler characteristic), and “erasing” the graph H in both
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arrangements gives us oriented combinatorial maps for each Gi. They are isomorphic if
and only if there exists an oriented isomorphism of S between G1 and G2 (Lemma 5.2.2),
and this can be checked in linear time.

Homotopy tests. The homotopy tests can also be performed in O(k1 +k2) time. Indeed,
recall that the input to the algorithm consists of the combinatorial maps of the arrangement
of G1 and H on one hand, and of G2 and H on the other hand, where H is a fixed cellular
graph embedding; k1 and k2 denote the complexities of these two maps. In O(k1 +k2) total
time, we can compute the cyclically ordered list of edges ofH crossed by each cycle of Λ in
the embeddings G1 and G2. This gives us a set of pairs of cycles in the dual graph H∗ of H
that have to be tested for homotopy. The total complexity of these cycles is O(k1 + k2),
and H∗ has complexity O(k1 + k2) as well. Lazarus and Rivaud, and later Erickson and
Whittlesey [92, 164] prove that, after a preprocessing linear in the complexity of the cellular
graph H∗, one can test homotopy of cycles in H∗ in time linear in the complexities of
these cycles. (An earlier paper by Dey and Guha [71] claims a similar result, except for
some low-genus surfaces, but Lazarus and Rivaud point out some problems in their proof.)
These papers address only the case of surfaces without boundary, but the case of surfaces
with boundary is easier, as the fundamental group is free; alternatively, homotopy tests for
cycles on surfaces with boundary can be performed using an algorithm for surfaces without
boundary by first attaching a handle to each boundary component, which does not change
the outcomes of the homotopy tests.

This concludes the proof of Theorem 5.1.1.

5.5.2 Punctured plane
We now give our algorithm for the punctured plane model; so let G1 and G2 be two embed-
dings of a graph G in the punctured plane R2 \ P . Let P be a set of disjoint open polygons
(for example squares), one around each point of P , that avoid G1 and G2; also, let B be
a large closed square such that G1, G2, and the closure of P , are in the interior of B. By
compactness, any isotopy between G1 and G2, if it exists, must avoid neighborhoods of P
and stay in a bounded area of the plane; therefore, such an isotopy exists if and only if such
an isotopy exists in B \ P . In other words, since B \ P is a surface with boundary, we
are exactly in the topological setting of the previous sections, except that the input to the
algorithm is given in a different form.

As above, our algorithm relies on two subroutines: a test for the existence of an oriented
homeomorphism, and a test for homotopy between cycles. We actually give two algorithms
for the latter problem, because, depending on the ratio between k1 + k2 and p, one is faster
than the other.

Homeomorphism test. To test whether there exists an oriented homeomorphism of the
plane that maps G1 to G2 in R2 \ P , we compute the oriented combinatorial map of G1 in
the punctured plane using a sweep-line algorithm for G1 ∪ P in O((k1 + p) log(k1 + p))
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time [14]. Then we apply the same procedure with G2 instead of G1, and check that the
two resulting oriented combinatorial maps are isomorphic.

First algorithm for homotopy tests. We transform the input into the surface model.
For this purpose, we compute a triangulation T of B in O(p log p) time (for example, a
Delaunay triangulation). We can then easily determine the arrangement of G1 with T in
O(k1p) time, because each segment in G1 has O(p) crossings with T ; that arrangement has
complexity O(k1p). We can apply the same procedure to G2. After a slight modification
of T that does not affect its complexity, we may assume that T is a triangulation of the
bounding box minus a set of small square obstacles. We can then test homotopy of cycles
in time linear in the number of their crossings with T , either by computing and comparing
their cyclically reduced crossing words with T (since the fundamental group is a free group)
or by applying the algorithm by Lazarus and Rivaud or the one by Erickson and Whittlesey.
This takes O((k1 + k2)p) time.

Second algorithm for homotopy tests. To get a subquadratic running time in the input
size, we improve the homotopy test by adapting an algorithm by Cabello et al. [39, Sec-
tion 4]. Their algorithm tests homotopy for paths in the punctured plane, not homotopy
for cycles; however, it can be modified to handle this case also. More precisely, we show
below that, after O(p1+ε) preprocessing time (for any ε > 0), one can test homotopy of
two (possibly non-simple) cycles γ1 and γ2 of complexities m1 and m2, respectively, in
O((m1 +m2)

√
p log p) time.

The main idea is to replace the triangulation T in the first algorithm above with a cellular
decomposition ofB that has a nicer property: Each line in the plane crosses at mostO(

√
p)

segments of that decomposition. Cabello et al. [39] show how to compute such a cellular
decomposition in O(p1+ε) time. The two input cycles γ1 and γ2 cross this decomposition
O((m1 + m2)

√
p) times. Then, computing the cyclically ordered lists of edges of the

decomposition crossed by these two cycles takes O((m1 + m2)
√
p log p) time using ray

shooting, as done also in the paper by Cabello et al. We conclude using the same method
as in the first algorithm, with the cellular decomposition in place of the triangulation. This
proves Theorem 5.1.2.

5.6 Graph isotopies with fixed vertices

In this section, we briefly indicate how the previous techniques extend to the graph isotopy
problem where, in addition, we require the isotopy to fix some vertices. Formally, for G1

and G2 two embeddings of a graph G = (V,E) on the interior of a surface S and a set
Vf ⊆ V such that the embeddings of Vf are the same in both graphs, we want to test
whether there exists an isotopy ht between G1 and G2 such that ht|Vf is the identity for all
t ∈ [0, 1]. We call this the fixed-vertices graph isotopy problem.

Our strategy is to reduce this problem to the usual graph isotopy problem by applying
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→
v γv

FIGURE 5.11: Gadget reducing the case of fixed vertices to the general case: A fixed
vertex v of degree d is replaced with d vertices and edges forming a cycle γv around a new
boundary component of the surface.

the gadget in Figure 5.11. It is very clear intuitively that the existence of an isotopy with
fixed vertices is equivalent to the existence of a usual isotopy where every fixed vertex is
replaced by the pictured gadget. It is however somewhat hard to prove under the minimal
hypothesis of a continuous (i.e., not necessarily smooth nor piecewise-linear) isotopy. The
key difficulty is that in this setting there are up to our knowledge no results showing that
isotopies and ambient isotopies of graphs are equivalent notions. This led us to use an alter-
native approach in the journal article [A] corresponding to this chapter, basically following
every step of the proof for the basic graph isotopy problem with slight modifications. But
similarly to the situation already observed in Corollary 5.4.2, this approach actually proves
the equivalence theorem that we need. For the sake of clarity, in this thesis we will take
a shortcut and use this theoretical result as a black-box to prove the correctness of our
reduction, and thus to give an easy solution to the fixed-vertices graph isotopy problem.

Theorem 5.6.1 ([A, Section 6]). Let G1 and G2 be two graph embeddings of a graph G
in the interior of an orientable surface S, with a specified set V of vertices in common.
Assume that there exists an isotopy between G1 and G2 fixing V . Then there exists an
ambient isotopy of S between G1 and G2 fixing V .

Relying on this theorem, the proof of the correctness of the reduction easily boils down
to Alexander’s Lemma.

Proposition 5.6.2. Let G1 and G2 be two graph embeddings of a graph G on a surface
S, with a specified set V of vertices in common. Then G1 and G2 are isotopic with fixed
vertices V if and only if G′1 and G′2 are isotopic, where G′1 and G′2 are the graphs obtained
by replacing the fixed vertices with the gadget pictured in Figure 5.11.

Proof of Proposition 5.6.2 If G1 and G2 are isotopic with fixed vertices V , then by The-
orem 5.6.1, they are ambient isotopic, where the ambient isotopy i also fixes the vertices
V . This ambient isotopy also maps G′1 to G′2 pointwise, except possibly for the edges of
the circles added by the gadgets. But since these bound disks (on S), applying Alexander’s
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Lemma separately on every circle gives a pointwise isotopy between G′1 and G′2, as the
isotopy interpolated by Alexander’s Lemma fixes the new boundary component.

The reverse direction follows exactly the same proof, applying Alexander’s Lemma in
every disk to obtain the isotopy between G1 and G2, since the ambient isotopy obtained
through Alexander’s Lemma fixes the center of the disk if the target homeomorphism fixes
it.

Using this reduction, we obtain algorithms to test isotopy with fixed vertices, with the
same guarantees on the run-time as the standard isotopy tests.

Although this reduction is conceptually simple, its correctness relies on Theorem 5.6.1,
of which proof is rather long-winded. Although we did not find a rigorous proof of Theo-
rem 5.6.1 in the literature apart from ours, the Appendix A in [166] discusses the proof of an
isotopy extension theorem for graphs embedded cellularly on the sphere. It seems that the
techniques used there, based on complex analysis, could be adapted to handle the general
case of graphs embedded on surfaces and thus to provide a direct proof of Theorem 5.6.1.





CHAPTER 6

Discrete systolic inequalities and decompositions
of triangulated surfaces

In this chapter, we investigate the following question: How much cutting is
needed to simplify the topology of the surface? We provide new bounds for
several instances of this question, answering an old conjecture of Przytycka
and Przytycki from 1993, and we also provide a new algorithm to compute a
short decomposition into pair of pants. These results rely on several construc-
tions inspired by the continuous case, as well as a random model for discrete
surfaces.

The results of this chapter have been obtained with Éric Colin de Verdière and Alfredo
Hubard. A conference version will appear in the Proceedings of the Thirtieth Symposium
on Computational Geometry [B], and it has been invited to a special issue of the journal
Discrete and Computational Geometry. Compared to the conference article, this chapter is
a more comprehensive account of our work, as it contains all the proofs that had been left
out due to page limits.

6.1 Introduction
After studying deformations, and therefore classification, of embedded graphs in Chap-
ter 5, we now shift our interest to a different side of discrete surfaces: the problems around
decompositions. As we quickly surveyed in Section 4.1.2.3, this topic has been much
studied in the recent computational topology literature; a lot of effort has been devoted
towards efficient algorithms for computing shortest non-trivial curves, or shortest topolog-
ical decompositions of surfaces [38, 40, 85–87, 91, 93, 160] (we also refer to the recent
surveys [55, 84]). These objects provide “canonical” simplifications of surfaces, which
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turn out to be crucial for algorithm design in the case of surface-embedded graphs, where
making the graph planar is needed [37, 45, 47, 167]. These topological algorithms are
also relevant in a number of applications that deal with surfaces with non-trivial topology,
notably in computer graphics and mesh processing, to remove the topological noise on a
surface [119, 253], for approximation [52] and compression [9] purposes, and to split a
surface into planar pieces, for texture mapping [171, 197], surface correspondence [172],
parameterization [118], and remeshing [8].

In this chapter, we study the worst-case length of shortest curves and graphs with pre-
scribed topological properties on combinatorial surfaces. An important parameter in topo-
logical graph theory is the notion of edge-width of an (unweighted) graph embedded on a
surface [38, 213], which is the length of the shortest closed walk in the graph that is non-
contractible on the surface (cannot be deformed to a single point on the surface). The model
question that we study is the following: What is the largest possible edge-width, over all
triangulations with n triangles, of a closed orientable surface of genus g? It was known
that an upper bound is O(

√
n/g log g) [141], and we prove that this bound is asymptot-

ically tight, namely, that some combinatorial surfaces (of arbitrarily large genus) achieve
this bound. We also study similar questions for other types of curves (non-separating cy-
cles, null-homologous but non-contractible cycles) and for decompositions (pants decom-
positions, and cut-graphs with a prescribed combinatorial map), and give an algorithm to
compute short pants decompositions.

We always assume that the surface has no boundary, that that the underlying graph of
the combinatorial surface is a triangulation, and that its edges are unweighted; the curves
and graphs we seek remain on the edges of the triangulation. Lifting any of these three
restrictions transforms the upper bound above to a function with a linear dependency in n.
In many natural situations, such requirements hold, such as in geometric modeling and
computer graphics, where triangular meshes of closed surfaces are typical and, in many
cases, the triangles have bounded aspect ratio (which immediately implies that our bounds
apply, the constant in the O(·) notation depending on the aspect ratio).

Most of our results build upon or extend to a discrete setting some known theorems
in Riemannian systolic geometry, the archetype of which is an upper bound on the systole
(the length of shortest non-contractible cycles – a continuous version of the edge-width)
in terms of the square root of the area of a closed Riemannian surface (or more generally
the dth root of the volume of an essential Riemannian d-manifold). Riemannian systolic
geometry [116, 147] was pioneered by Loewner and Pu [205], reaching its maturity with
the fantastic work of Gromov [115].

After the preliminaries (Section 5.2), we prove three independent results (Sections 6.4–
6.6), which are described and related to other works below. This chapter is organized so
as to showcase the more conceptual results before the more technical ones. Indeed, the
results of Section 6.4 exemplify the strength of the connection with Riemannian geometry,
while the results in Sections 6.5 and 6.6 are perhaps a bit more specific, but feature deeper
algorithmic and combinatorial tools.
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6.2 Our results

Systolic inequalities for cycles on triangulations Our first result (Section 6.4) gives a
systematic way of translating a systolic inequality in the Riemannian case to the case of tri-
angulations, and vice-versa. This general result, combined with known results from systolic
geometry, immediately implies bounds on the length of shortest curves with given topolog-
ical properties: On a triangulation of genus g with n triangles, some non-contractible cycle
has length O(

√
n/g log g), and, moreover, this bound is best possible. We also obtain the

same bound for non-separating and null-homologous but non-contractible cycles.
These upper bounds are new, except for the non-contractible case, which was proved

by Hutchinson [141] with a worse constant in the O(·) notation. The optimality of these
inequalities is also new. Actually, Hutchinson [141] had conjectured that the correct up-
per bound was O(

√
n/g); Przytycka and Przytycki refuted her conjecture, building, in a

series of papers [202–204], examples that show a lower bound of Ω(
√
n log g/g). They

conjectured in 1993 [203] that the correct bound was O(
√
n/g log g); here, we confirm

this conjecture.

Short pants decompositions A pants decomposition is a set of disjoint simple cycles that
split the surface into pairs of pants, namely, spheres with three boundary components. In
Section 6.5, we focus on the length of the shortest pants decomposition of a triangulation.
As in all previous works, we allow several curves of the pants decomposition to run along
a given edge of the triangulation (formally, we work in the cross-metric surface that is dual
to the triangulation).

The problem of computing a shortest pants decomposition has been considered by sev-
eral authors [80, 200], and has found satisfactory solutions (approximation algorithms)
only in very special cases, such as the punctured Euclidean or hyperbolic plane [80]. Strik-
ingly, no hardness result is known; the strong condition that curves have to be disjoint, and
the lack of corresponding algebraic structure, makes the study of short pants decomposi-
tions hard [120, Introduction]. In light of this difficulty, it seems interesting to look for
algorithms that compute short pants decompositions, even without guarantee compared the
optimum solution.

Inspired by a result by Buser [35, Th. 5.1.4] on short pants decompositions of Rieman-
nian surfaces, we prove that every triangulation of genus g with n triangles admits a pants
decomposition of length O(g3/2n1/2), and we give an O(gn)-time algorithm to compute
one. In other words, while pants decompositions of length O(gn) can be computed for ar-
bitrary combinatorial surfaces [58, Prop. 7.1], the assumption that the surface is unweighted
and triangulated allows for a strictly better bound in the case where g = o(n) (it is always
true that g = O(n)). We note that the greedy approach coupled with Hutchinson’s bound
only gives a subexponential bound on the length of the pants decomposition, since after
cutting along a short cycle, one needs to glue disks along new boundaries before finding
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the new cycle to cut along [13, Introduction].
On the lower bound side, some surfaces have no pants decompositions with length

O(n7/6−ε), as proved recently by Guth, Parlier and Young [120] using the probabilistic
method: They show that polyhedral surfaces obtained by gluing triangles randomly have
this property.

Shortest embeddings of combinatorial maps Finally, in Section 6.6, we consider the
problem of decomposing a surface using a short cut-graph with a prescribed combinatorial
map. To build a homeomorphism between two surfaces, a natural approach is to cut both
surfaces along a cut-graph, and put both disks in correspondence. For this approach to
work, however, cut-graphs with the same combinatorial map are needed. In this direction,
Lazarus, Pocchiola, Vegter and Verroust [163] proved that every surface has a canonical
systems of loops (a specific combinatorial map of a cut-graph with one vertex) with length
O(gn), which is worst-case optimal, and gave an O(gn)-time algorithm to compute one.

There is, however, no strong reason to focus on canonical systems of loops: It is fairly
natural to expect that other combinatorial maps will always have shorter embeddings (in
particular, by allowing several vertices on the cut-graph instead of just one). However, we
prove (essentially) that, for any choice of combinatorial map of a cut-graph, there exist
triangulations with n triangles on which all embeddings of that combinatorial map have a
superlinear length, actually Ω(n7/6−ε) (since n may be O(g), there is no contradiction with
the result by Lazarus et al. [163]). In particular, some edges of the triangulation are tra-
versed Ω(n1/6−ε) times. This result translates to the case of polyhedral surfaces obtained by
gluing together n equilateral triangles: In this model, some edges are intersected Ω(n1/6−ε)
times. From the case of cut-graphs, we can also deduce the same results for all cellular
graph embeddings with prescribed combinatorial maps.

Our proof uses the probabilistic method in the same spirit as the aforementioned article
of Guth, Parlier and Young [120]: We show that combinatorial surfaces obtained by gluing
triangles randomly satisfy this property asymptotically almost surely. This also sheds some
light on the geometry of these “random surfaces”, which have been heavily studied re-
cently [106, 177] because of connections to quantum gravity [198] and Belyi surfaces [26]

Another view of our result is via the following problem: Given two graphs G1 and G2

cellularly embedded on a surface S, is there a homeomorphism ϕ : S → S such that G1

does not cross the image of G2 too many times? Our result essentially says that, if G1

is fixed, for most choices of trivalent graphs G2 with n vertices, for any ϕ, there will be
Ω(n7/6−ε) crossings between G1 and ϕ(G2). This is related to recent articles [107, 181],
where upper bounds are proved for the number of crossings for the same problem, but with
sets of disjoint curves instead of graphs. During their proof, Matoušek, Sedgwick, Tancer
and Wagner [181] also encountered the following problem (rephrased here in the language
of this chapter): For a given genus g, does there exist a universal combinatorial map cutting
the surface of genus g into a genus zero surface (possibly with several boundaries), and with
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a linear-length embedding on every such surface? We answer this question in the negative
for cut-graphs.

6.3 Preliminaries

This chapter builds upon most of the concepts on the topology and geometry of surfaces
that we introduced in Chapter 3. In this chapter, unless otherwise noted, all combinatorial
surfaces are triangulated (each face is a disk with three sides) and unweighted (each edge
has weight one). Dually, all cross-metric surfaces are trivalent (each vertex has degree
three) and unweighted (each edge has crossing weight one). Furthermore, for the sake
of clarity, we only consider orientable surfaces: although the results of Section 6.4 readily
apply in the non-orientable case, this is not the case for our results on pants decompositions
and cut-graphs. Let us also repeat that in contrast with the usual terminology used in graph
theory, the cycles that we consider on embedded graphs may have repeated vertices or
edges. We now introduce a few more notions specific to this work.

6.3.1 A few additional concepts

The focus on this work is on surface decompositions, and therefore it is natural to introduce
these first. To that end, we will first make a detour through the 1-dimensional homology
(over Z2). It is easy to define it for cycles embedded on combinatorial surfaces: a cycle
γ embedded on S is null-homologous or homologically trivial if the faces of S can be
partitioned into F1 and F2 such that every edge of γ is adjacent to a face of F1 and a face
of F2. This definition extends naturally by duality to cycles embedded on cross-metric
surfaces. However, we will also be dealing with cycles embedded on continuous surfaces,
where defining homology gets more intricate. We refer to Hatcher [129] for the precise
definitions and just provide the intuition that a cycle is null-homologous if it is the boundary
of a subsurface of S.

If the cycle γ is simple, this is equivalent to being a separating cycle, i.e., cutting
along γ gives two connected components. By a slight abuse of language, we will say non-
separating instead of non-null-homologous, even for non-simple cycles.

We will consider three ways to decompose a triangulated surface. The first one is sim-
ply to cut it along a cycle with specific topological properties, and in particular we will be
interested in non-contractible, non-separating and null-homologous non-contractible cy-
cles. We will also consider cutting along a family of disjoint cycles: a pants decomposition
of S is a family of disjoint simple closed curves Γ such that cutting S along all curves in Γ
gives a disjoint union of pairs of pants. Every surface Sg,b except the sphere, the disk, the
annulus, and the torus admits a pants decomposition, with 3g+b−3 cycles. Finally, cutting
along a graph leads to the concept of cut-graphs, which we already discussed quickly in



90
Chapter 6. Discrete systolic inequalities and decompositions of triangulated

surfaces

Section 4.1.2.3: A graph G embedded on a surface S is a cut-graph if the surface obtained
by cutting S along G is a disk.

It will be useful to estimate on the area of balls of radius r on arbitrary surfaces. In
the usual Euclidean case, it is obviously πr2, and when the metric is different, it is to be
expected that the variation in area is controlled by the curvature for small values of r. This
intuition was made into the following theorem, where Kp denotes the curvature at p:

Theorem 6.3.1 (Bertrand–Diquet-Puiseux [235, Chapter 3, Prop. 11]). The area of the
ball B(p, r) of radius r centered at p equals πr2 −Kpπr

4 + o(r4).

Finally, if P = {p1, . . . , pv} is a set of points on a surface S, we define by

Vi := {x ∈ (S,m) | ∀j 6= i, d(x, pi) ≤ d(x, pj)}

the Voronoi regions of the pi, which partition S along the Voronoi graph. The Delaunay
graph is the dual of the Voronoi graph, where the vertices are placed exactly at the points
of P .

6.3.2 Systolic geometry
The field of systolic geometry revolves around finding bounds linking the length of the
systole (or variants) of a Riemannian space, i.e., the shortest non-contractible cycle, to its
volume – or area in the case of surfaces, which is the one we will be interested in. As a
simple heuristic to see why such bounds ought to exist, consider a shortest non-contractible
cycle γ of length `, and grow cylinders of height `/4 on both sides of γ. The shortest non-
contractible cycle on these cylinders will have length at least `, and they will not meet as
this would create a shorter non-contractible cycle as well 1. Therefore, they are disjoint and
have area at least `2/16, see Figure 6.1. This explains why the systole should have length
O(
√
A) where A is the area and the constant depends on g; the difficulty lying in a precise

estimate of this constant.
We now collect the results from systolic geometry that we will use; for a general pre-

sentation of the field, see, e.g., Gromov [116] or Katz [147].

Theorem 6.3.2 ([36, 115, 116, 148, 221]). There are constants c, c′, c′′, c′′′ > 0 such that,
on any Riemannian surface with genus g 6= 0 and area A:

1. some non-contractible cycle has length at most c
√
A/g log g;

2. some non-separating cycle has length at most c′
√
A/g log g;

1. We take `/4 instead of `/2 because we might need to follow a half of the systole to link the paths in
both cylinders.
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γ

r r

FIGURE 6.1: A systole of length ` and cylinders of height r grown from both sides. If
r ≤ `/4, the cylinders are disjoint, otherwise we could find a shorter non-contractible
cycle.

3. If g ≥ 2, some null-homologous non-contractible cycle 1 has length at most c′′
√
A/g×

log g.

Furthermore,

4. for an infinite number of values of g, there exist Riemannian surfaces of constant
curvature−1 (hence area A = 4π(g−1)) and systole larger than 2

3
√
π

√
A/g log g−

c′′′. In particular, the three previous inequalities are tight up to constant factors.

The bounds (1) and (2) are due to Gromov [115, 116], (3) is due to Sabourau [221], and
(4) is due to Buser and Sarnak [36, p. 45]. Furthermore, Gromov’s proof yields c = 2/

√
3

in (1), which has been improved asymptotically by Katz and Sabourau [148]: They show
that for every c > 1/

√
π there exists some integer gc so that (1) is valid for every g ≥ gc.

6.4 A two-way street
In this section, we prove that any systolic inequality regarding closed curves in the con-
tinuous (Riemannian) setting can be converted to the discrete (triangulated) setting, and
vice-versa.

6.4.1 From continuous to discrete systolic inequalities
Theorem 6.4.1. Let (S,G) be a triangulated combinatorial surface of genus g, without
boundary, with n triangles. Let δ > 0 be arbitrarily small. There exists a Riemannian
metric m on S with area n such that for every cycle γ in (S,m) there exists a homotopic
closed curve γ′ on (S,G) with |γ′|G ≤ (1 + δ) 4

√
3 |γ|m.

This theorem, combined with the aforementioned theorems from systolic geometry,
immediately implies:

1. If g = 1, no non-contractible cycle is null-homologous, because the fundamental group and the 1-
dimensional homology group over Z are the same.
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Corollary 6.4.2. Let (S,G) be a triangulated combinatorial surface with genus g and
n triangles, without boundary. Then, for some absolute constants c, c′, and c′′:

1. some non-contractible cycle has length at most c
√
n/g log g;

2. some non-separating cycle has length at most c′
√
n/g log g;

3. If g ≥ 2, some null-homologous non-contractible cycle has length at most c′′
√
n/g×

log g.

Proof of Corollary 6.4.2 The proof consists in applying Theorem 6.4.1 to (S,G), obtain-
ing a Riemannian metric m. For each of the different cases, the appropriate Riemannian
systolic inequality is known, which means that a short curve γ of the given type exists
on (S,m) (Theorem 6.3.2(1–3)); by Theorem 6.4.1, there exists a homotopic curve γ′

in (S,G) such that |γ′|G ≤ (1 + δ) 4
√

3 |γ|m, for any δ > 0.

Plugging in the best known constants for Theorem 6.3.2 (1) allows us to take c = 2/ 4
√

3,
or any c > 4

√
3/π2 asymptotically using the refinement of Katz and Sabourau.

Furthermore, we note that, by Euler’s formula and double-counting, we have n = 2v+
4g − 4, where v is the number of vertices of G. Thus, on a triangulated combinatorial
surface with v ≥ g vertices, the length of a shortest non-contractible cycle is at most
2
√

2 4
√

3 ·
√
v/g log g < 3.73

√
v/g log g. This reproves a theorem of Hutchinson [141],

except that her proof technique leads to the weaker constant 25.27. This constant can be
improved asymptotically to 4

√
108/π2 < 1.82 with the aforementioned refinement.

` 1 ` 1

γ

α

β

FIGURE 6.2: A piecewise linear double torus with area A such that the length of a short-
est splitting cycle is Ω(A) (left), but the length of a shortest homologically trivial non-
contractible curve, concatenation of αβα−1β−1, has length Θ(1).
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We also remark that, in (3), we cannot obtain a similar bound if we require the curve to
be simple (and therefore to be splitting [46]). Indeed, Figure 6.2 shows that the minimum
length of a shortest homologically trivial, non-contractible cycles can become much larger
if we additionally request the curve to be simple.

Proof of Theorem 6.4.1 The first part of the proof is similar to Guth, Parlier and Young [120,
Lemma 5]. Define mG to be the singular Riemannian metric given by endowing each tri-
angle of G with the geometry of a Euclidean equilateral triangle of area 1 (and thus side
length 2/ 4

√
3): This is a genuine Riemannian metric except at a finite number of points, the

set of vertices of G. The graph G is embedded on (S,mG). Let γ be a cycle γ : S1 → S.
Up to making it longer by a factor at most

√
1 + δ, we may assume that γ is piecewise

linear and transversal to G. Now, for each triangle T and for every maximal part p of γ that
corresponds to a connected component of γ−1(T ), we do the following. Let x0 and x1 be
the endpoints of p on the boundary of T . (If γ does not cross any of the edges ofG, then it is
contractible and the statement of the theorem is trivial.) There are two paths on the bound-
ary of T with endpoints x0 and x1; we replace p with the shorter of these two paths. Since
T is Euclidean and equilateral, elementary geometry shows that these replacements at most
doubled the lengths of the curve. Now, the new curve lies on the graph G. We transform it
with a homotopy into a no longer curve that is an actual closed walk in G, by simplifying it
each time it backtracks. Finally, from a closed curve γ, we obtained a homotopic curve γ′

that is a walk in G, satisfying |γ′|G = 4
√

3/2 |γ′|mG
≤
√

1 + δ 4
√

3 |γ|mG
.

The metric mG satisfies our conclusion, except that it has isolated singularities. How-
ever, we show in Lemma 6.4.3 that it is possible to smooth and scale mG to obtain a
metric m, also with area n, that multiplies the length of all curves by at least 1/

√
1 + δ

compared to mG. This metric satisfies the desired properties, and this concludes the proof.

There remains to explain how to smooth the metric. There is a very classic way to do
this using a partition of unity, which is a setR of topological functions from S to [0, 1] such
that for every x ∈ S,

• there exists a neighborhood N of x such that only a finite number of functions of R
are nonzero on N ;

•
∑

ρ∈R ρ(x) = 1.

It is then a standard result [218, Theorem 2.13] that for any open cover (Ui)i∈I of S,
there exists a partition of unity R = (ρi)i∈I such that for any i in I , the support of ρi is
contained in Ui.

Lemma 6.4.3. With the notations of the proof of Theorem 6.4.1, there exists a smooth
Riemannian metric m on S, also with area n, such that any cycle γ in S satisfies |γ|m ≥
|γ|mG

/
√

1 + δ.
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Proof The idea is to smooth out each vertex v of G to make mG Riemannian, as follows.
On the ball B(v, 2ε), consider a Riemannian metric mv with area at most δ/3 such that

any path in that ball is longer under mv than under mG. This is certainly possible provided
ε is small enough: For example, build a diffeomorphism from B(v, 2ε) onto the unit disk
in the plane in the natural way (v being mapped at the center of the disk, and the trace of
the edges of G being mapped to line segments forming equal angles); endow the disk with
a metric just large enough so that the corresponding metric on B(v, 2ε) is larger than mv.
If ε is taken small enough, the area that is needed for the new metric can be made as small
as we want.

We now use a partition of unity to define a smooth metric m̂ that interpolates be-
tween mG and the metrics mv. By choosing an appropriate open cover, and therefore
an appropriate partition of unity ρ, we obtain a metric m̂ = ρGmG+

∑
v∈V ρvmv such that:

• outside the balls centered at a vertex v of radius 2ε, we have m̂ = mG;

• inside a ball B(v, ε), we have m̂ = mv;

• in B(v, 2ε) \B(v, ε), the metric m̂ is a convex combination of mG and mv.

The area of m̂ is at most the sum of the areas ofmG and themv’s, which is at most n(1+δ).
Moreover, for any curve γ, we have |γ|m̂ ≥ |γ|mG

.
Finally, we scale m̂ to obtain the desired metric m with area n; for any curve γ, we

indeed have |γ|m ≥ |γ|m̂/
√

1 + δ.

6.4.2 From discrete to continuous systolic inequalities
Here we prove that, conversely, discrete systolic inequalities imply their Riemannian ana-
logues. The idea is to approximate a Riemannian surface by the Delaunay triangulation
of a dense set of points, and to use some recent results on intrinsic Voronoi diagrams on
surfaces [74].

Theorem 6.4.4. Let (S,m) be a Riemannian surface of genus g without boundary, of
area A. Let δ > 0. For infinitely many values of n, there exists a triangulated combi-
natorial surface (S,G) embedded on S with n triangles, such that every cycle γ in (S,G)

satisfies |γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G.

We have stated this result in terms of the number n of triangles; in fact, in the proof
we will derive it from a version in terms of the number of vertices; Euler’s formula and
double counting imply that, for surfaces, the two versions are equivalent. Together with
Hutchinson’s theorem [141], this result immediately yields a new proof of Gromov’s clas-
sical systolic inequality:

Corollary 6.4.5. For every Riemannian surface (S,m) of genus g, without boundary, and
area A, there exists a non-contractible curve with length at most 101.1√

π

√
A/g log g.
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Proof Let δ > 0, and let (S,G) be the triangulated combinatorial surface implied by
Theorem 6.4.4 with n ≥ 6g − 4 triangles. Euler’s formula implies that the number v of
vertices ofG is at least g, hence we can apply Hutchinson’s result [141], which yields a non-
contractible curve γ on G with |γ|G ≤ 25.27

√
(n

2
+ 2− 2g)/g log g. By Theorem 6.4.4,

|γ|m ≤ 101.08(1+δ)√
π

√
A/g log g.

On the other hand, using this theorem in the contrapositive together with the Buser–Sarnak
examples (Theorem 6.3.2(4)) confirms the conjecture by Przytycka and Przytycki [203,
Introduction]:

Corollary 6.4.6. For any ε > 0, there exist arbitrarily large g and v such that the following
holds: There exists a triangulated combinatorial surface of genus g, without boundary, with
v vertices, on which the length of every non-contractible cycle is at least 1−ε

6

√
v/g log g.

Proof Let ε > 0, let (S,m) be a Buser–Sarnak surface from Theorem 6.3.2(4), and let G
be the graph obtained from Theorem 6.4.4 from (S,m), for some δ > 0 to be determined
later. Combining these two theorems, we obtain that every non-contractible cycle γ in G
satisfies

(1 + δ)

√
32

π

√
A

n
|γ|G ≥

2

3
√
π

√
A

g
log g − c′′′,

where A = 4π(g − 1). If δ was chosen small enough (say, such that 1/(1 + δ) ≥ 1− ε/2),
and g was chosen large enough, we have |γ|G ≥ 1−ε

3
√

8

√
n
g

log g. Finally, we have n ≥ 2v by

Euler’s formula.

Before delving intro the proof of Theorem 6.4.4, we make a little detour to introduce
a Riemannian notion that we will need. The strong convexity radius at a point in a Rie-
mannian surface (S,m) is an invariant that refines the well-known injectivity radius. It is
the supremum of the radius ρx such that for every r < ρx the ball of radius r centered at x
is strongly convex, that is, for any p, q ∈ B(x, r) there is a unique shortest path in (S,m)
connecting p and q, this shortest path lies entirely within B(x, r), and moreover no other
geodesic connecting p and q lies within B(x, r), we refer to Klingenberg [155, Def. 1.9.9]
for more details. The strong convexity radius is positive at every point, and its value on the
surface is continuous (see also Dyer, Zhang and Möller [74, Sect. 3.2.1]). It follows that
for every compact Riemannian surface (S,m), there exists a strictly positive lower bound
on the strong convexity radius of every point. We will need the following lemma, which is
a result of of Dyer, Zhang and Möller [74, Corollary 2].

Lemma 6.4.7. Let (S,m) be a Riemannian surface, let ρ > 0 be smaller than the half of
the strong convexity radius of any point in (S,m), and let P a point set of S in general
position such that for every x on S, there exists a point p of P such that dm(x, p) ≤ ρ. Then
the Delaunay graph of P is a triangulation of S.
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Proof of Theorem 6.4.4 Let η, 0 < η < 1/2 be fixed, and ε > 0 to be defined later (depend-
ing on η). Let P be an ε-separated net on (S,m), that is, P is a point set such that any two
points in P are at distance at least ε, and every point in (S,m) is at distance smaller than ε
from a point in P . For example, if we let P be the centers of an inclusionwise maximal
family of disjoint open balls of radius ε/2, then P is an ε-separated net. In the following
we put P in general position by moving the points in P by at most ηε; in particular, no
point in the surface is equidistant with more than three points in P .

Let P = {p1, . . . , pv}, and denote by Vi be the Voronoi region of pi. Since every point
of (S,m) is at distance at most (1 + η)ε from a point in P , each Voronoi region Vi is
included in a ball of radius (1 + η)ε centered at pi. Note that if Vi ∩ Vj 6= ∅, then the
corresponding neighboring points of the Delaunay graph are at distance at most 2(1 + η)ε.

It turns out that under these assumptions, and choosing ε smaller than 1/(1 + η) times
the strong convexity radius of (S,m), the Delaunay graph, which we denote by G, can be
embedded as a triangulation of S with shortest paths representing the edges; this follows
from Lemma 6.4.7 with ε small enough so that (1 + η)ε ≤ ρ.

Consider a cycle γ on G. Since neighboring points in G are at distance no greater than
2(1 + η)ε on (S,m), we have |γ|m ≤ 2(1 + η)ε|γ|G. To obtain the claimed bound, there
remains to estimate the number v of points in P . By compactness, the Gaussian curvature of
(S,m) is bounded from above by a constant K. By the Bertrand–Diquet–Puiseux theorem,
the area of each ball of radius 1−2η

2
ε is at least π(1 − 2η)2 ε2

4
−Kπ(1 − 2η)4 ε4

16
+ o(ε4) ≥

π(1−2η)3 ε2

4
if ε > 0 is small enough. Since the balls of radius (1−2η) ε

2
centered at P are

disjoint, their number v is at mostA/(π(1−2η)3 ε2

4
). In other words, ε ≤ 2√

π(1−2η)3

√
A/v.

Putting together our estimates, we obtain that

|γ|m ≤
4(1 + η)√
π(1− 2η)3

√
A

n/2− 2g + 2
|γ|G,

where n is the number of triangles of G. Thus, if ε > 0 is small enough, n can be made
arbitrarily large, and the previous estimate implies, if η was chosen small enough (where

the dependency is only on δ) that |γ|m ≤ (1 + δ)
√

32
π

√
A
n
|γ|G.

6.5 Computing short pants decompositions
Recall that the problem of computing a shortest pants decomposition for a given surface
is open, even in very special cases. In this section, we describe an efficient algorithm that
computes a short pants decomposition on a triangulation. Technically, we allow several
curves to run along a given edge of the triangulation, which is best formalized in the dual
cross-metric setting. If g is fixed, the length of the pants decomposition that we compute is
of the order of the square root of the number of vertices:
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Theorem 6.5.1. Let (S,G∗) be an (unweighted, trivalent) cross-metric surface of genus
g ≥ 2, with n vertices, without boundary. In O(gn) time, we can compute a pants decom-
position (γ1, . . . , γ3g−3) of S such that, for each i, the length of γi is at most C

√
gn (where

C is some universal constant).

Actually, we can obtain that the length of γi is at most C
√
in with a little more effort,

but for the sake of clarity we focus on the weaker bound.
The inspiration for this theorem is a result by Buser [35], stating that in the Riemannian

case, there exists a pants decomposition with curves of length bounded by 3
√
gA. The

proof of Theorem 6.5.1 consists mostly of translating Buser’s construction into the discrete
setting and making it algorithmic. The key difference is that for the sake of efficiency,
unlike Buser, we cannot afford to shorten the cycles in their homotopy classes, and we
have to use contractibility tests in a careful manner.

Given cycles Γ in general position on a (possibly disconnected) cross-metric surface
(S,G∗), cutting S along Γ, and/or restricting to some connected components, gives another
surface S ′, and restricting G∗ to S ′ naturally yields a cross-metric surface that we denote
by (S ′, G∗|S′). Also, to simplify notation, we denote by |c| (instead of |c|G∗) the length of a
curve c on a cross-metric surface (S,G∗).

The main tool is to cut off a pair of pants of a surface with boundary, while controlling
the length of the boundary of the new surface:

Proposition 6.5.2. Let (S,G∗) be a possibly disconnected cross-metric surface, such that
every connected component has non-empty boundary and admits a pants decomposition.
Let n be the number of vertices of G∗ in the interior of S. Assume moreover that |∂S| ≤ `,
where ` is an arbitrary positive integer.

We can compute a family ∆ of disjoint simple cycles of (S,G∗) that splits S into one
pair of pants, zero, one, or more annuli, and another possibly disconnected surface S ′

containing no disk, such that |∂S ′| ≤ ` + 2n/` + 8. The algorithm takes as input (S,G∗),
outputs ∆ and (S ′, G∗|S′), and takes linear time in the complexity of (S,G∗).

We first show how Theorem 6.5.1 can be deduced from this proposition: It relies on
computing a good approximation of the shortest non-contractible cycle, cutting along it,
and applying Proposition 6.5.2 inductively.

Proof of Theorem 6.5.1 To prove Theorem 6.5.1, we consider our cross-metric surface
without boundary (S,G∗), and we start by computing a simple non-contractible curve γ
whose length is at most twice the length of the shortest non-contractible cycle. Such a
curve can be computed in O(gn) time [38, Prop. 9] (see also Erickson and Har-Peled [86,
Corollary 5.8]) and has length at most C

√
n, where C is a universal constant, see Sec-

tion 6.4. This gives a surface S(1) with two boundary components.
The end of the proof just consists of applying Proposition 6.5.2 inductively: We start

with S(1), and applying it to S(k) gives another surface S(k)′, in which we remove all the pair
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FIGURE 6.3: (a) Splitting phase. (b) Merging phase.

of pants. We denote the resulting surface by S(k+1) and apply Proposition 6.5.2 again. We
apply this induction until we obtain a surface S(m) that is empty. Note that, for every k, S(k)

contains no disk, annulus, or pair of pants, and that every application of Proposition 6.5.2
gives another pair of pants. Therefore, we obtain a pants decomposition of S by taking the
initial curve γ together with all the curves in ∆ in all the applications of Proposition 6.5.2
and, when there are homotopic curves, by removing all of them except the shortest one.
Therefore, the number of applications of Proposition 6.5.2 is bounded by the maximum
size of a pants decomposition of S, i.e., 3g − 3. The length of the pants decomposition is
at most the sum, over k, of `k = |∂S(k)|. The sequence `k satisfies the induction `k+1 ≤
`k + 2n/`k + 8, with `1 ≤ C

√
n. A small computation gives that `k ≤ C

√
kn for C larger

than 16 and k ≤ 3n, which proves the bound on the lengths since k ≤ 3g − 3 ≤ 3n. The
total complexity of this algorithm is O(gn) since we applied O(g) times Proposition 6.5.2,
which takes linear complexity.

Now, onwards to the proof of the main proposition.

Proof of Proposition 6.5.2 The idea is to shift the boundary components simultaneously
until one boundary component splits, or two boundary components merge. This is analog
to Morse theory on the surface with the function that is the distance to the boundary. How-
ever, in order to control the length of the decomposition, some backtracking is done before
splitting or merging, as pictured in Figure 6.3.

Let Γ = (γ1
0 , . . . , γ

k
0 ) be (curves infinitesimally close to) the boundaries of S. Initially,

let γi = γi0. We orient each γi so that it has the surface to its right at the start. We will shift
these curves to the right while preserving their simplicity and homotopy classes. We will
only describe how ∆ is computed, since one directly obtains S ′ by cutting along ∆ and
discarding the annuli and one pair of pants.

Shifting phase: We say that two simple cycles on (S,G∗) are tangent if they both have
a subpath in a common face of G∗. When a single cycle has two subpaths in the same
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FIGURE 6.4: (a) Pushing a curve across a vertex. (b) The effect of a shifting step, if no self-
tangency or tangency occurs. (c) A portion of a self-tangent curve. (d) The corresponding
subcurves. (e) The curve after the removal of contractible subcurves.

face of G∗, it will be called a self-tangent cycle. The curves we handle in this phase are
simple and homotopic to the γi. Since each such curve is separating, in a self-tangency,
the two portions of a curve are oppositely oriented (Figure 6.4(c)). Therefore, “rewiring”
such a curve at a self-tangency naturally splits it into two tangent cycles, which we call its
subcurves, see Figure 6.4(d).

We define below how we shift a curve by one step to the right. The whole shifting
phase consists of shifting the curves in a round robin way, i.e., we shift γ1 by one step,
then γ2, . . . , γk, and we reiterate. This phase is interrupted immediately whenever some
tangency or self-tangency occurs, see below. To shift γi by one step, for every successive
edge of G∗ crossed by γi, in the order induced by γi, we push γi across the vertex adjacent
to the edge (Figure 6.4(a)). The result of a shifting step is shown in Figure 6.4(b). Since
G∗ is trivalent, tangencies appear one at a time, determined by only two portions of curves.
As soon as there is one (including before the very first step), we do the following:

• If γi is self-tangent, we test the two resulting subcurves for contractibility. If one of
them is contractible, we discard it (Figure 6.4(e)) and continue the shifting process
with the other one. Otherwise, both are non-contractible, and we go to the splitting
phase below.

• If γi is tangent to γj for some j 6= i, we go to the merging phase below.

This finishes the description of the shifting phase. Let r be the integer such that each curve
has been shifted between r and r + 1 steps to the right. For each i, 1 ≤ i ≤ k, and each c,
1 ≤ c ≤ r, let γic be the curve γi shifted by c steps. At every step of the shifting phase, we
also maintain the sum of the lengths of the current curves. Then, at the end we denote by s
the largest c ≤ r such that

∑k
i=1 |γic| ≤ `. (Remember that this is the case for c = 0 by

hypothesis.)

Splitting phase: When a curve becomes self-tangent, we do a splitting, as is pictured
on the top of Figure 6.3. For simplicity, let γ1 denote the curve that became self-tangent
during the shifting phase. First, for every i 6= 1, we add γis to the family ∆. During the
shifting phase, the closed curve γ1 split into two non-contractible cycles α and β. Let η
be the shortest path with endpoints on γ1

s that goes between α and β. This path can be
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computed in linear time (in the complexity of the portion of the surface swept during the
shifting phase) by shifting back, at the end of the shifting phase, γ1 to γ1

s , and adding pieces
of η at every step. The path η cuts γ1

s into two subpaths µ and ν, one of them being possibly
empty. We denote by δ1 the concatenation of µ and η, and by δ2 the concatenation of ν and
η. Then we add δ1 and δ2 to the family ∆ and we are done.

Merging phase: When two shifted curves are tangent, we do a merging (Figure 6.3,
bottom), by computing a curve δ homotopic to their concatenation. For simplicity, let us
denote by γ1 and γ2 two curves that became tangent during the shifting phase. First, for
every i 6= 1, 2, we add γis to the family ∆. Let η be the shortest path from γ1

s and γ2
s ,

which we can, similarly as above, compute in linear time. The curve δ is defined by the
concatenation η−1 · γ1

s · η · γ2
s . Now, we simply add δ to ∆ and we are done.

Analysis: After joining or merging, we added curves to ∆ that cut the surface into an
additional pair of pants, (possibly) some annuli, and the remaining surface S ′. We first ob-
serve that we did not add any contractible cycle to ∆; thus, S ′ has no connected component
that is a disk.

After the joining or the merging phase, we added curves in ∆ that cut the surface into
a new pair of pants, some annuli, and a new subsurface S ′. There remains to prove that
the length of the boundary S ′ satisfies |∂S ′| ≤ ` + 2n/` + 8. We first explain the intuition
behind the algorithm. The subtlety is the way the value of s was chosen: If s was equal
to r (perhaps the most natural strategy), the boundary of S ′ would contain (at least) one
curve γir, and we would have no control on its length. On the opposite, if we had chosen
s = 0, we would have no control on the lengths of the arcs η involved in the merge or the
split. The choice of s gives the right trade-off in-between: the lengths of the curves γsi are
controlled by this threshold, while the lengths of the arcs are controlled by the area of the
annulus between γis and γir.

Lengths after the splitting phase After a splitting phase with the curve γ1, the boundary
∂S ′ of S ′ consists of all the other curves γis in Γ, and of the two new curves, whose sum of
the lengths is bounded by |γ1

s | + 2|η|. Hence |∂S ′| ≤ |γ1
s | + 2|η| +

∑k
i=2 |γis|, which is at

most `+ 2|η| by the choice of s. Furthermore, by construction, |η| ≤ 2(r − s+ 1).
Lengths after the merging phase After a merging phase with the curves γ1 and γ2, the

boundary ∂S ′ of S ′ consists of all the other curves γis of Γ, and of the new cycle, whose
length is bounded by |γ1

s |+ |γ2
s |+ 2|η|. Hence similarly, |∂S ′| ≤ `+ 2|η|. Furthermore, by

construction, |η| ≤ 2(r − s+ 1).
Final analysis Thus, after either the splitting or the merging phase, we proved that

|∂S ′| ≤ `+ 4(r − s+ 1). To conclude the proof, there only remains to prove that r − s ≤
n
2`

+ 1.
Let c ∈ {s, . . . , r − 1}. The curves γic and γic+1 bound an annulus Ki

c. The number
A(Ki

c) of vertices in the interior of this annulus, its area, is at least |γic| + |γic+1| (see
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Figure 6.4(b)—this is where we use, in a crucial way, the fact that G∗ is trivalent), because
we may only have added vertices in the annulus when we discarded contractible curves.

For c ∈ {s, . . . , r − 1} and i ∈ {1, . . . , k}, the annuli Ki
c have disjoint interiors, so

the sum of their areas is at most n. By the above formula, this sum is at least Us + Ur +
2
∑r−1

c=s+1 Uc ≥ 2
∑r−1

c=s+1 Uc, where Uc =
∑k

i=1 |γic|. On the other hand, we have Uc ≥ `
if s + 1 ≤ c ≤ r, by definition of s. Putting all together, we obtain n ≥ 2(r − s − 1)`, so
r − s ≤ n

2`
+ 1.

Complexity: The complexity of the splitting phase or the merging phase is clearly linear
in n. The complexity of outputting the new surface (S ′, G∗|S′) is linear in the complexity
∂S ′, which is, by construction, also linear in n. To conclude, it suffices to prove that the
shifting phase takes linear time, and to do that it suffices to prove that the contractibility
tests take linear time in total.

To perform a contractibility test on two subcurves α and β, we perform a tandem search
on the surfaces bounded by α and β, and stop as soon as we find a disk. If we find one,
the complexity in the tandem search is at most twice the complexity of this disk, which is
immediately discarded and never visited again. If we do not, the complexity is linear in n,
but the shifting phase is over. Therefore, the total complexity of the contractibility tests is
linear in the number of vertices swept by the shifting phase or in the disks, until the very
last contractibility test, which takes time linear in n. In the end, the shifting phase takes
time linear in n, which concludes the complexity analysis.

6.6 Lower bounds for the length of cellular graphs with
prescribed combinatorial map

In this section, we essentially prove that, for any combinatorial map M of any cellular
graph embedding (in particular, of any cut-graph) of genus g, there exists an (unweighted,
trivalent) cross-metric surface S with n vertices such that any embedding of M on S has
length Ω(n7/6). We are not able to get this result in full generality, but are able to prove
that it holds for infinitely many values of g. On the other hand, the result is stronger
since it holds “asymptotically almost surely” with respect to the uniform distribution on
unweighted trivalent cross-metric surfaces with given genus and number of vertices.

Let (S,G∗) be a cross metric surface without boundary, and M a combinatorial map
on S. The M -systole of (S,G∗) is the minimum among the lengths of all graphs embedded
in (S,G∗) with combinatorial map M . Given g and n, we consider the set S(g, n) of triva-
lent unweighted cross-metric surfaces of genus g, without boundary, and with n vertices,
where we regard two cross-metric surfaces as equal if some self-homeomorphism of the
surface maps one to the other (note that vertices, edges, and faces are unlabeled). This
refines the model introduced by Gamburd and Makover [106]. Here is our precise result:
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a. b. c.

d. e. f.

FIGURE 6.5: a. The graph H , obtained after cutting S open along C. The vertices in B
(on the outer face) and the vertices of G∗ (not on the outer face) are shown. The chords are
in thick (black) lines. b. The graph H1. c. The graph H2. d., e.: The exchange argument
to prove (i). f.: Two chords violating (ii).

Theorem 6.6.1. Given strictly positive real numbers p and ε, and integers n0 and g0, there
exist n ≥ n0 and g ≥ g0 such that, for any combinatorial map M of a cellular graph
embedding with genus g, with probability at least 1 − p, a cross-metric surface chosen
uniformly at random from S(g, n) has M -systole at least n7/6−ε.

We remark that a tighter estimate on the number h(g, n) of triangulations with n tri-
angles of a surface of genus g could lead to the same result for any large enough g, in-
stead of for infinitely many values of g. The general strategy is inspired by Guth, Parlier
and Young [120], proving a related bound for pants decompositions, but the details of the
method are rather different. The main tool is the following proposition.

Proposition 6.6.2. Given integers g, n, and L, and a combinatorial map M of a graph
embedding of genus g, at most

f(g, n, L) = 2O(n)L (L/g + 1)12g−9
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cross-metric surfaces in S(g, n) have M -systole at most L.

Proof First, note that it suffices to prove the result for cut-graphs with minimum degree at
least three. Indeed, one can transform any cellular graph embedding into such a cut-graph
by removing edges, removing degree-one vertices with their incident edges, and dissolving
degree-two vertices, namely, removing them and replacing the two incident edges with a
single one. So let M be the combinatorial map of such a cut-graph of genus g; let (S,G∗)
be a cross-metric surface in S(g, n), and let C be an embedding of M of length at most L.
Euler’s formula and double-counting immediately imply that C has at most 4g− 2 vertices
and 6g − 3 edges.

Let H ′ be the graph that is the overlay of G∗ and C. Cutting S along C yields a
topological disk D, and transforms H ′ into a connected graph H (Figure 6.5(a)) embedded
in the plane, where the outer face corresponds to the copies of the vertices and edges of the
cut graph C. The set B of vertices of degree two on the outer face of H exactly consists of
the copies of the vertices of C; there are at most 12g − 6 of these. A side of H is a path on
the boundary of D that joins two consecutive points in B.

Given the combinatorial map of H in the plane, we can (almost) recover the combi-
natorial maps corresponding to H ′ and to (S,G∗). Indeed, the set B of vertices of degree
two on the outer face of H determines the sides of D. The correspondence between each
side of D and each edge of the combinatorial map M is completely determined once we
are given the correspondence between a single half-edge on the outer face of H and a half-
edge of C; in turn, this determines the whole gluing of the sides of H and completely
reconstructs H ′ with C distinguished. Finally, to obtain G∗, we just “erase” C. Therefore,
one can reconstruct the combinatorial map corresponding to the overlay H ′ of G∗ and C,
just by distinguishing one of the O(L) half-edges on the outer face of H .

A chord of H is an edge of H that is not incident to the outer face but connects to
vertices incident to the outer face. Two chords are parallel if their endpoints lie on the
same pair of sides of D. We claim that we can assume the following:

(i) no chord has its endpoints on the same side of H (Figure 6.5(d));

and that (at least) one of the two following conditions holds:

(ii) the subgraph of H between any two parallel chords only consists of other parallel
chords (Figure 6.5(f) shows an example not satisfying this property), or

(ii’) there are two parallel chords such that the subgraph of H between them contains all
the interior vertices of H .

Indeed, without loss of generality, we can assume that our cut-graphC has minimum length
among all cut-graphs of (S,G∗) with combinatorial map M . If a chord violates (i), one
could shorten the cut-graph by sliding a part of the cut-graph over the chord (Figure 6.5(d–
e)), which is a contradiction.
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c1 c2

p1

p2

FIGURE 6.6: The exchange argument to prove (ii) or (ii’). Left: Two chords violating (ii).
Middle: The exchange argument, in case p1 and p2 have different perturbed lengths. Right:
A schematic view of the situation, in case p1 and p2 have the same perturbed length.

For (ii) and (ii’), the basic idea is to use a similar exchange argument as to prove (i),
but we need a perturbation argument as well. Specifically, let us temporarily perturb the
crossing weights of the edges of G∗ as follows: The weight of each edge e of G∗ be-
comes 1 + we, where the we’s are i.i.d. real numbers strictly between 0 and 1/L. Let C be
a shortest embedding of M under this perturbed metric.

It is easy to see that C is also a shortest embedding of M under the unweighted met-
ric: Indeed, two cut-graphs C1 and C2 with respective (integer) lengths `1 < `2 ≤ L in
the unweighted metric have respective lengths `′1 < `′2 in the perturbed metric, since the
perturbation increases the length of each edge by less than 1/L.

We claim that either (ii) or (ii’) holds for this choice of C. Assume that (ii) does not
hold; we prove that (ii’) holds. So the region R of D between two parallel chords c1 and c2

of D contains internal vertices; without loss of generality (by (i)), assume that the region R
contains no other chord in its interior. Let p1 and p2 be the two subpaths of the cut-graph
on the boundary of R. If p1 and p2 have different lengths under the perturbed metric, e.g.,
p1 is shorter, then we can push the part of p2 to let it run along p1 and shorten the cut-graph,
which is a contradiction. Therefore, p1 and p2 have the same length under the perturbed
metric, which implies with probability one that they cross exactly the same set S of edges
of G∗. (We exclude from S the edges on the endpoints of p1 and p2.) Since none of the
edges in S are chords, all the endpoints of the edges in S belong to the region ofD bounded
by p1, p2, c1, and c2, which implies (ii’). This concludes the proof of the claim.

We now estimate the number of possible combinatorial maps for H , by “splitting” it
into two connected plane graphs H1 and H2, estimating all possibilities of choosing each
of these graphs, and estimating the number of ways to combine them.

Let H1 be the graph (see Figure 6.5(b)) obtained from H by removing all chords and
dissolving all degree-two vertices (which are either in B or endpoints of a chord). H1
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is connected, trivalent, and has at most n vertices not incident to the outer face, so O(n)
vertices in total. By a classic calculation (see for example [120, Lemma 4]), there are thus
2O(n) possible choices for the combinatorial map of this planar trivalent graph H1.

On the other hand, let H2 be the graph (see Figure 6.5(c)) obtained from H by re-
moving internal vertices together with their incident edges and dissolving all degree-two
vertices not in B. Since the chords are non-crossing and connect distinct sides of D, the
pairs of sides connected by at least one chord form a subset of a triangulation of the poly-
gon having one vertex per side of D. To describe H2, it therefore suffices to describe
a triangulation of this polygon with at most 12g − 6 edges, which makes 2O(g) possi-
bilities, and to describe, for each of the 12g − 9 edges of the triangulation, the number
of parallel chords connecting the corresponding pair of sides. Since there are at most
L chords, the number of possibilities for the latter numbering is at most the area of the
simplex {(x1, . . . , x12g−9) | xi ≥ 0,

∑
i xi ≤ L+ 12g − 9} (since this simplex contains all

the copies of the unit cube translated by the non-negative integer points (x1, . . . , x12g−9)
with total sum at most L), which is, using Stirling’s formula,

1

(12g − 9)!
(L+ 12g − 9)12g−9 ≤

(
e(L+ 12g − 9)

12g − 9

)12g−9

.

Finally, in how many ways can we combine given H1 and H2 to form H? Let us first
assume that (ii) holds; the parallel chords joining the same pair of sides are consecutive, so
choosing the position of a single chord fixes the position of the other chords parallel to it.
Therefore, given H1, we need to count in how many ways we can insert the O(g) vertices
of B on H2 into H1, and similarly the O(g) intervals where endpoints of chords can occur,
respecting the cyclic ordering. After choosing the position of a distinguished vertex of H2,
we have to choose O(g) positions on the edges of the boundary of H1, possibly with repe-
titions, which leaves us with

(
O(n+g)
O(g)

)
≤ 2O(n+g) = 2O(n) possibilities. In case (ii’) holds,

a very similar argument gives the same result. The claimed bound follows by multiplying
the number of all possible choices above.

Proof of Theorem 6.6.1 Let g0, n0, p, ε be as indicated. Euler’s formula implies that a
cross-metric surface with n vertices has genus g ≤ (n + 2)/4. We now show that, if
n is large enough,

(n+2)/4∑
g=g0

f(g, n, n7/6−ε) ≤ n(1−ε)n/2 (∗).

Indeed, we have
f(g, n, n7/6−ε) ≤ 2C0n

(
n7/6−ε/g + 1

)12g−9

for some constant C0. We need to sum up these terms from g = g0 to (n+2)/4. For n large
enough, the largest term in this sum is for g = (n+ 2)/4. Thus the desired sum is bounded
from above by

n2C0n
(
4n1/6−ε + 1

)12(n+2)/4−9
,
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which is at most 2C1nn(1/6−ε)3n (for n large enough, for some constant C1), which in turn
is at most n(1−ε)n/2 for n large enough.

Furthermore, let h(g, n) = |S(g, n)| be the number of (connected) cross-metric surfaces
with genus g and n vertices. We have

∑(n+2)/4
g=0 h(g, n) ≥ eCnnn/2 if n is large enough and

even, for some absolute constant C, the proof is deferred to Lemma 6.6.3. But, if g is fixed,
h(g, n) = O(eC

′n) for some constant C ′ [120, Lemma 4]. Thus, since g0 is fixed, there is a
constant C ′′ such that, for n large enough and even,

∑(n+2)/4
g=g0

h(g, n) ≥ eC
′′nnn/2 (**).

Choose any (even) n ≥ n0 such that n−εn/2e−C′′n ≤ p and such that (*) and (**) hold.
This implies that, for some g ≥ g0, we have

f(g, n, n7/6−ε)/h(g, n) ≤ n(1−ε)n/2/(eC
′′nnn/2) ≤ p

and the denominator is non-zero. In other words, among all h(g, n) cross-metric surfaces
with genus g and n vertices, for any combinatorial map M of a cellular graph embedding
of genus g, a fraction at most p of these surfaces have an embedding of M with length at
most n7/6−ε.

To conclude the proof, there remains to prove the bound on the number of connected
surfaces.

Lemma 6.6.3. The number of (unweighted, trivalent) connected cross-metric surfaces with
n vertices is, for n even large enough, at least eCnnn/2 for some absolute constant C.

Proof By duality, this is equivalent to counting triangulations with n triangles. Guth,
Parlier and Young [120, Lemma 3] prove that, for n ≥ 2 even and large enough, the number
of possibly disconnected triangulations with n triangles is between eKnnn/2 and eK′nnn/2,
where K and K ′ are absolute constants. Like us, they actually need to prove such bounds
for connected surfaces. We shall fill this gap here.

Every disconnected triangulation with n triangles can be expressed as the disjoint union
of two (possibly disconnected) triangulations with k and n − k triangles, respectively.
Therefore, the number of disconnected triangulations with n triangles is bounded from
above by ∑

2≤k≤n/2
k even

eK
′nkk/2(n− k)(n−k)/2.

This sum is dominated by its first term, so the number of disconnected triangulations with
n triangles is

O
(
eK
′n(n− 2)(n−2)/2

)
.

Therefore, the number of connected triangulations with n triangles is at least eKnnn/2 −
K ′′eK

′n(n− 2)(n−2)/2 for some constant K ′′, which is Ω
(
eKnnn/2

)
, as desired.
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a. b. d.c.

FIGURE 6.7: Illustration of the proof of Theorem 6.6.4. a.: Two triangles of the graph G,
the corresponding part of the tubular neighborhood N , made of disks and strips, and the
dual cross-metric graph G∗, whose traces on the strips constitute the paths Ps. b.: A part
of C. c.: Pushing the pieces not incident to vertices of C into N . d.: Pushing the vertices
of C.

We can obtain a similar result in the case of polyhedral triangulations, obtained by
gluing n equilateral triangles with sides of unit length. We first note that an element of
S(g, n) naturally corresponds to a polyhedral triangulation by gluing equilateral triangles
of unit side length on the vertices. The notion of M -systole is defined similarly in this
setting, and we now prove that Theorem 6.6.1 implies an analogous result for polyhedral
triangulations:

Theorem 6.6.4. Given strictly positive real numbers p and ε, and integers n0 and g0, there
exist n ≥ n0 and g ≥ g0 such that, for any combinatorial map M of a cellular graph
embedding with genus g, with probability at least 1− p, a polyhedral triangulation chosen
uniformly at random from S(g, n) has M -systole at least n7/6−ε.

Proof As in the proof of Theorem 6.6.1, it suffices to prove the result for maps M that
are cut-graphs with minimum degree three, which have at most 4g − 2 vertices and 6g −
3 edges. Let G be the vertex-edge graph of a polyhedral triangulation on a surface S with
genus g. Assume that M has an embedding C of length O(n7/6−ε) on that polyhedral
surface. We prove that M has an embedding of length O(n7/6−ε) in the dual cross-metric
surface (S,G∗). Since, by Theorem 6.6.1, the proportion of such surfaces is arbitrarily
small, this implies the theorem.

Without loss of generality, we assume thatC is piecewise-linear, and in general position
with respect to G. We consider a tubular neighborhood N of G (Figure 6.7(a)), obtained
by first building a small disk around each vertex of G, and then building a rectangular strip
containing each part of edge not covered by a disk. The disks are pairwise disjoint, the
strips are pairwise disjoint; each strip intersects only the disks corresponding to the incident
vertices of the corresponding edge, along paths. We first push C into N as follows. First
consider the maximal pieces of edges C that lie inside a triangle, but do not contain a vertex
of C. It is easy, using elementary geometry in equilateral triangles, to prove that one can
push, by an isotopy, all such pieces, without moving their endpoints, into C, while at most
doubling their total length (Figure 6.7(b–c)). Finally, we push the O(g) vertices of C into
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the disks, thereby pushing also the incident pieces intoN ; this addsO(g) to the length of C
(Figure 6.7(d)).

For each strip s, draw a shortest path Ps with endpoints on its boundary, that separates
the two sides touching disks. If a piece of C inside s crosses Ps, it forms a bigon with Ps;
by flipping innermost bigons, without increasing the length of C, we can assume that each
piece of C inside s crosses Ps at most once.

Now we extend the paths Ps to form the graph G∗ (Figure 6.7(a)). By the paragraph
above, each crossing of a path Ps corresponds to a piece of a path of C that crosses the
strip containing Ps, and thus has length at least 1 − δ, for δ > 0 arbitrarily close to zero.
Therefore, the length of C on the cross-metric surface (S,G∗) is at most (1− δ) times that
of the length of C on the polyhedral triangulated surface.



CHAPTER 7

On the complexity of immersed normal surfaces

In this chapter, we investigate a natural variant of normal surfaces towards bet-
ter algorithms for topological problems in 3 dimensions. This variant, called
immersed normal surfaces, naturally leads to a problem about detecting singu-
larities, which we show to be NP-hard. We also investigate variants, and give
an algorithm to test for a local version of this problem.

The results of this chapter were obtained with Benjamin A. Burton and Éric Colin de
Verdière. An extended abstract has been presented at the European Workshop on Com-
putational Geometry [C], but it was very brief due to the four page limit. This is the full
version of this work, including ampler details and context as well as full proofs. The al-
gorithm we provide to test for local immersibility is also new. We advise the reader to be
familiar with the material in Sections 3.1.3, 3.3.2 and 4.2.2 before delving into this chapter.

7.1 Introduction
In this chapter, we deal with topological problems in 3 dimensions. This story starts where
Section 4.2.2 of the survey ended. As we saw there, the complexity of many problems in
3-dimensional topology, like unknot or 3-sphere recognition, is the object of much scrutiny,
since it is not known to be polynomial, yet no hardness proof is known. The best known
algorithms to solve these problems are exponential at best and heavily rely on normal
surfaces.

These provide a compact and structured way to analyze and enumerate the most inter-
esting surfaces embedded in a 3-manifold. Starting with a triangulation T of a 3-manifold
M with t tetrahedra, a normal surface is a vector in R7t describing one or multiple em-
bedded surfaces in M . Many interesting surfaces, such as for example a Seifert disk for
the unknot, are witnessed by a normal surface having coordinates at most exponential in t.
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This is the starting point of many algorithms based on the enumeration of normal surfaces,
which naturally have an exponential complexity.

In addition to providing a succinct representation of embedded surfaces, normal sur-
faces also possess an additional algebraic structure. Indeed, the natural addition and scalar
multiplication of vectors translate to operations on normal surfaces, and the space of nor-
mal surfaces in R7t is characterized by a set of equations: the matching equations and the
quadrilateral conditions. The former are linear equations specifying the way to glue nor-
mal surfaces locally, while the latter are non-linear and ensure that the resulting surface
is embedded. Spaces defined by linear constraints can be studied by the means of linear
programming [180], which provides a very powerful framework to deal with decision and
optimization problems. This motivates the study of a notion of relaxed normal surfaces,
where we remove the quadrilateral conditions to obtain a polyhedral structure on the space
of normal surfaces.

As we shall see later, removing the quadrilateral conditions amounts to removing the
embeddedness of normal surfaces. Therefore, it amounts to dealing with singular normal
surfaces. Among these, the immersed normal surfaces are well behaved, in the sense that
while they can self intersect, they are still 2-manifolds locally. Moreover, their Euler char-
acteristic depends linearly on their normal coordinates —this fact is crucial in algorithms
that work with embedded normal surfaces, but does not hold in general for singular nor-
mal surfaces. By coupling singular normal surface theory with an algorithm that efficiently
separates immersed normal surfaces from the others, we would have powerful tools at our
disposal: this could lead to efficient algorithms to find immersed low genus surfaces in
3-manifolds. Furthermore, through classical topological results like Dehn’s lemma or the
loop theorem [130] we would obtain embedded surfaces, which are the key behind the
unknot problem and many others.

In this chapter, we show some inherent limitations of this method by proving in Theo-
rem 7.3.1 that it is NP-hard to detect whether a singular normal surface is immersed 1.

Immersed normal surfaces have been studied from a mathematical point of view by
Letscher [170] and from a computational perspective by Aitchinson, Matsumoto and Ran-
nard [4], Rannard [208] and Matsumoto and Rannard [183], in the particular case of the
figure-eight knot complement. In the latter papers, the authors devise and implement an
algorithm to decide whether a given singular normal surface is immersed. While the com-
plexity of this algorithm is not explicitly computed, it is at least doubly exponential in
the input size. Our main result shows that the problem is inherently hard and that no
polynomial-time solution is to be expected.

The complexity reduction used in the proof of this theorem works by reducing the prob-
lem to a satisfiability problem, which may sound straightforward and lackluster. However,
the flavor of this reduction is that in this problem, it turns out to be very hard to obtain more

1. To be accurate, our theorem is actually stated in terms of normal coordinates and immersibility, we
refer to the preliminaries for more detail.
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than two copies of every variable. Our proof thus relies on relatively intricate classifica-
tion theorems on the complexity of Boolean constraint satisfaction problems where every
variable occurs at most twice [61, 98]. This approach is thus, to some extent, original,
and might prove useful to obtain hardness proofs that could be hard to achieve by other
traditional means.

Hardness results are scarce in 3-dimensional computational topology, and to our knowl-
edge all the other difficulty results are deduced from the Agol, Hass and Thurston construc-
tion [2], except for the recent hardness results on computing taut angle structures[30] and
optimal Morse matchings [32]. Our result displays a different intractability aspect of this
theory. In contrast to the aforementioned result by Agol, Hass and Thurston [2], we also
prove that this problem is NP-hard even when the input triangulation is a sub-manifold of
R3, which is for example the case for the very important class of knot complements.

On the upper bound side, it is a very natural question to wonder whether this problem
is fixed-parameter tractable with respect to the size of the triangulation. As a partial evi-
dence for this, the aforementioned work of Matsumoto and Rannard [183] suggests that the
problem may be solved in polynomial time in the very specific case of the figure-eight knot
complement. Although we make no progress on this question in full generality, we show
that if the triangulation just consists of tetrahedra all sharing a single edge, the problem has
a polynomial-time solution as it can solved by computing a maximum flow. Another view
on this algorithm is that it can certify local immersibility, where the locality means that it
can only check whether there is an obstruction to being immersed around every edge, but
it is not global since ensuring immersibility as some point might force a branch point at
some other point for the triangulation. Another natural and connected question would be
to study whether the problem is in NP, since the natural certificate (the global gluing, see
Section 7.2) may have exponential complexity in the input.

This chapter is organized as follows. We start by explaining in detail the variant of nor-
mal surface theory that we will be investigating, as well as some background on Boolean
constraint satisfaction problems in Section 7.2. In Section 7.3, we describe our reduc-
tion and prove the main theorem. Section 7.4 explores some variants of the immersibility
problem that remain NP-hard. Finally, in Section 7.5, we provide an algorithm to test the
immersibility in the very restricted case of tetrahedra glued around a single edge.

7.2 Preliminaries

In this section, we will introduce the new concepts specific to this chapter. For the needed
background on triangulations of 3-manifolds and normal surfaces, we refer the reader to
Chapter 3, especially Sections 3.1.3 and 3.3.2.
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7.2.1 Singular and immersed normal surfaces

Consider a vector v ∈ (Z+)7t of normal coordinates satisfying the matching equations, but
not necessarily the quadrilateral equations. For each i ∈ {1, . . . , 7t}, build vi normal disks
of the corresponding type in the corresponding tetrahedron, in general position, in a way
that, on each non-boundary face f of T , the images of the normal arcs arising from both
sides of f agree. The matching equations imply that such a construction is always possible.
Note that, with this gluing, we do not forbid intersections between normal disks in a single
tetrahedron, and that such intersections are actually necessary if two different quadrilateral
coordinates within the same tetrahedron are non-zero.

More precisely, consider a given normal arc type in a given non-boundary face f of T ,
corresponding (as above) to two normal coordinates vt,1 and vq,1 in a tetrahedron incident
to f , and also to two normal coordinates vt,2 and vq,2 in the adjacent tetrahedron. Recall that
the matching equations imply that vt,1 +vq,1 and vt,2 +vq,2 are equal. The data of a bijection
between these vt,1 + vq,1 normal disks in the first tetrahedron with these vt,2 + vq,2 normal
disks in the second tetrahedron is called the local gluing of that arc type. The aggregated
information of all the local gluings is called the global gluing. Let us emphasize right away
that the complexity of a global gluing can be exponential in the normal coordinates, since
the latter ones are compressed by the bit-wise representation.

FIGURE 7.1: A branch point of a singular normal surface.

The union of these normal disks glued according to such rules is the image of a surface
under a continuous map, since abstractly gluing triangles and quadrilaterals by pairwise
identifications of edges always results in a surface (whose actual geometric realization in T
may self-cross). This is called a singular normal surface. The continuous map may either
be locally one-to-one, or have branch points, as pictured in Figure 7.1. Since normal disks
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are embedded within each tetrahedron, any branch point of a singular surface is necessarily
on an edge of the triangulation. A singular normal surface is an immersed normal surface
if it is the image of a continuous map that is locally one-to-one.

(a) (b) (c)

(d) (e)

FIGURE 7.2: A block, namely, a set of tetrahedra sharing a common non-boundary edge,
depicted with a part of a singular normal surface inside it, and its abstract representation.

To describe the singular normal surfaces more accurately, we now introduce a schematic
representation of singular normal surfaces.

We will draw a family of tetrahedra that all have one edge in common, which we call
a block like in Figure 7.2(a); we always assume that the edge is not on the boundary of T .
Since we want to picture cleanly what happens on the back of this block, we will unfold it as
in Figure 7.2(b), with the implicit convention that the rightmost face is glued to the leftmost
face. Although normal disks can be drawn inside this block, the pictures easily become
congested when there are several of them. Instead, we will forget the edge in common
in the representation and represent the normal disks by their normal arcs, i.e., by their
intersection with the front faces (Figure 7.2(c)). These normal arcs are glued together and
form possibly self-intersecting closed curves, called block curves. Abstracting a bit more,
horizontal lines will represent triangles, while diagonal ones will stand for quadrilaterals
(Figure 7.2(d)). Finally, to make these pictures even more readable, we will draw the edges
between the tetrahedra vertically, only linking them at the extreme top and bottom parts of
the figures (Figure 7.2(e)).
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(a) (b) (c)

FIGURE 7.3: Normal coordinates drawn (a) without specifying gluings, (b) with a speci-
fied gluing, (c) with the opposite gluing from (b).

We will use the following convention in the figures: Whenever we want to represent
normal coordinates, without a specific gluing, the normal arcs are drawn so that they con-
nect the midpoints of the corresponding edges of the triangulation. Whenever we want
to represent normal coordinates with a particular gluing, we perturb these normal arcs to
emphasize the crossings, as pictured in Figure 7.3.

7.2.2 The immersibility problem
Recall that any branch point is necessarily on an edge of the triangulation. Let e be an edge
of T , and consider the block around that edge. The singular normal surface has a branch
point at e if and only if some block curve “winds more than once” around e or, equivalently,
self-intersects, like in Figure 7.4. With this in mind, it is easy to see that a branch point can
only occur on a non-boundary edge of T .

FIGURE 7.4: A branch point and its representation by a block curve winding twice around
an edge.

Therefore, given the data of normal coordinates satisfying the matching equations, to-
gether with a global gluing, we can easily determine whether the corresponding singular
normal surface is immersed or not, in time linear in the size of the input (namely, sum of
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all the normal coordinates, of the complexity of the triangulation T and the complexity of
the global gluing).

However, consider now only the data of normal coordinates satisfying the matching
equations. Then, depending on the choice of the gluings, some of the resulting surfaces
may be immersed while some other may have branch points. If there exists a global gluing
whose corresponding singular surface is immersed, we say that the normal coordinates
are immersible. In this chapter, we study the computational complexity of the following
problem.

Problem 7.2.1 (IMMERSIBILITY).
Input: A triangulation T and normal coordinates N .
Output: Are the normal coordinates N immersible?

Two difficulties lie at the heart of this problem: Not only do we need to guess a “good”
gluing, but this gluing may have an exponential complexity in the input, since the normal
coordinates are naturally compressed by the bit representation – this is similar to the issues
we discussed in Section 4.2.3. Therefore, the naive algorithm (implemented by Matsumoto
and Rannard [183]) is doubly exponential.

7.2.3 Boolean constraint satisfaction problems
In this section, we recall a few basic results about Boolean constraint satisfaction problems;
our presentation is inspired from Dalmau and Ford [61]. For a more detailed account of
this tremendous body of research, we refer to Creignou, Khanna and Sudan [60].

We start by introducing the generalized satisfiability problem SAT(R), which is a vari-
ant of the usual SAT problem. A r-ary relation R is any nonempty subset of {0, 1}r. A
CNF(R)-formula is a finite conjunction of clauses C1 ∧ . . . ∧ Cn such that each clause,
Ci, is an atomic formula of the form R(v1, . . . , vr) where v1 . . . vr are Boolean variables.
An atomic formula R(v1, . . . vr) is satisfied by a variable assignment f : V → {0, 1} if
and only if (f(v1) . . . f(vr)) ∈ R, and a CNF(R) formula is satisfiable if and only if there
exists an assignment satisfying all its clauses simultaneously. Each relation R gives rise to
the generalized satisfiability problem SAT(R): given a CNF(R)-formula, is it satisfiable?

It is sometimes convenient to assume that constants can appear in CNF(R)-formulas:
Each clause is an atomic formula of the form R(v1, . . . , vr) where each vi is a Boolean
variable or a constant (0 or 1). We call any formula obtained this way a CNFC(R)-formula.
Similarly, the generalized satisfiability problem with constants, SATC(R), is defined with
CNFC(R)-formula.

The computational complexity of the generalized satisfiability problem with constants
has been completely classified by Schaefer in a celebrated paper [229]. We introduce the
following definitions in order to state this classification. Here, the symbols ∧, ∨, and ⊕:
{0, 1}r×{0, 1}r → {0, 1} denote the usual logical operations AND, OR and XOR, applied
bit-wise.
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A relation R is

• Horn if x, y ∈ R→ x ∧ y ∈ R,

• dual-Horn if x, y ∈ R→ x ∨ y ∈ R,

• bijunctive if x, y, z ∈ R→ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) ∈ R,

• affine if x, y, z ∈ R→ x⊕ y ⊕ z ∈ R.

A relation R is Schaefer if it is Horn, dual-Horn, bijunctive or affine.

Theorem 7.2.2 ([229]). Let R be a relation. If R is Schaefer, then SATC(R) is in P, other-
wise it is NP-complete.

For our reduction, we will restrict ourselves to constraint satisfaction problems where
the number of occurrences of every variable is at most 2. We denote by SAT(2, R) the
instances of SAT(R) in which every variable occurs at most twice. Similarly, we denote by
SATC(2, R) the instances of SATC(R) in which every variable occurs at most twice. The
following definition is key to the classification of these problems.

Let R ⊆ {0, 1}r be a relation. Let x, y, x′ ∈ {0, 1}r, then x′ is a step from x to y if
d(x, x′) = 1 and d(x, x′) + d(x′, y) = d(x, y), where d is the Hamming distance. R is a
∆-matroid (relation) if it satisfies the following two-step axiom:

For all x, y ∈ R and for all x′ a step from x to y, either x′ ∈ R or there exists
x′′ ∈ R which is a step from x′ to y.

We now come to the classification theorem for SATC(2, R):

Theorem 7.2.3 ([98]). LetR be a relation that is not a ∆-matroid relation. Then SATC(2, R)
is polynomially equivalent to SATC(R).

Theorems 7.2.2 and 7.2.3 immediately imply the complexity result that we will use:

Corollary 7.2.4. Let R be a relation that is not Schaefer (that is, not Horn, dual Horn,
bijunctive, or affine) and not a ∆-matroid. Then SATC(2, R) is NP-complete.

7.3 NP-hardness of detecting immersibility
In this section, we prove the following theorem.

Theorem 7.3.1. The problem IMMERSIBILITY is NP-hard.

The proof of Theorem 7.3.1 will proceed by a reduction of SATC(2, R) to the problem
IMMERSIBILITY for a relation R that is neither Schaefer nor a ∆-matroid, which implies
by Corollary 7.2.4 that SATC(2, R) and hence IMMERSIBILITY are NP-hard.
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7.3.1 Gadgets
We now show how to reduce SATC(2, R) to the problem IMMERSIBILITY. To this end,
we use a 6-ary relation R which we will describe later. We start with a formula Φ that is,
by definition, a conjunction of clauses of the form R(xi1 , xi2 , xi3 , xi4 , xi5 , xi6), where xi is
either a variable or a constant, and every variable appears at most twice in Φ.

The gadgets that we use for our reduction are of three types. Each clause is represented
by a clause gadget, a block of six tetrahedra glued together around an edge. For each
variable occurring exactly twice in Φ, we connect these two occurrences in the clauses
using tubes, which are also blocks of six tetrahedra. Finally, the constant gadgets are
used to represent the constants 0 or 1 appearing in the clauses. The idea for the proof is
that a clause is satisfiable if and only if the normal coordinates in the clause gadget are
immersible; the tubes then enforce consistency between the clauses. Therefore, the whole
formula will be satisfiable if and only if the associated normal coordinates are immersible.

The clause gadget. Consider the gadget G pictured in Figure 7.5. It consists of six tetra-
hedra that all have an edge in common, and contain each three normal disks: two triangles
and one quadrilateral. For every clause in Φ, we create a copy of the clause gadget G; these
copies will be connected using tubes, described below.

1

2

3

4

5

66

FIGURE 7.5: The clause gadget. The pair of faces corresponding to the variable x1 is
shaded.

The rationale behind this gadget is the following. At the interface of two adjacent
tetrahedra, exactly two gluings can be done (see Figure 7.6). This choice of gluing can be
described by a variable xi ∈ {0, 1}, where 0 corresponds to the gluing (a) and 1 to (b).
Equivalently, a value of 1 corresponds to the fact that the two block curves at the specified
position cross. Therefore, each variable in a clause has a pair of associated faces on the
boundary of the clause gadget; for example, the two shaded triangles in Figure 7.5 are the
pair of faces associated to variable x1.
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This way, a global gluing of the singular normal surface inG is described by an element
x ∈ {0, 1}6. The order on the six variables is pictured in Figure 7.5.

a. b.

FIGURE 7.6: a. Local gluing corresponding to xi = 0. b. Local gluing corresponding to
xi = 1.

We define the following relation R on 6 variables:

R =
{

(0, 0, 0, 0, 0, 0); (0, 0, 0, 1, 0, 1); (0, 0, 1, 0, 1, 0); (0, 1, 0, 0, 0, 1); (0, 1, 0, 1, 0, 0);

(0, 1, 1, 0, 1, 1); (1, 0, 0, 0, 1, 0); (1, 0, 1, 0, 0, 0); (1, 0, 1, 1, 0, 1); (1, 1, 0, 1, 1, 0);

(1, 1, 1, 1, 1, 1)
}

This allows us to get to the following lemma.

Lemma 7.3.2. The singular normal surface in the gadget G specified by the gluing x ∈
{0, 1}6 is immersed if and only if x ∈ R.

Proof of Lemma 7.3.2 The proof is done by exhaustive checking, i.e., checking for every
possible 6-tuple whether there is a branch point around the central edge or not. As an
example, Figure 7.7 pictures the singular normal surfaces obtained with the global gluings
(1,0,1,1,0,1) and (1,0,1,1,1,1), yielding in one case an immersed normal surface and in the
other a singular normal surface with a branch point.

The relation R. We now show that the relation R is neither Schaefer nor a ∆-matroid.
The proofs are somewhat tedious but straightforward.

Proposition 7.3.3. The relation R is not Schaefer, that is, neither (i) Horn, (ii) dual Horn,
(iii) bijunctive, nor (iv) affine.
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(a) (b)

FIGURE 7.7: (a) Immersed normal surface corresponding to coordinates (1,0,1,1,0,1),
yielding three block curves (b) Singular normal surface corresponding to coordinates
(1,0,1,1,1,1), yielding two block curves. The one winding twice around the central edge
witnesses a branch point.

Proof of Proposition 7.3.3

(i) (1, 0, 1, 0, 0, 0) and (1, 1, 0, 1, 1, 0) are in R, but their conjunction (1, 0, 0, 0, 0, 0) is
not.

(ii) (1, 0, 1, 0, 0, 0) and (1, 1, 0, 1, 1, 0) are in R, but their disjunction (1, 1, 1, 1, 1, 0) is
not.

(iii) If we take x = (1, 0, 1, 0, 0, 0), y = (1, 1, 0, 1, 1, 0), and z = (0, 0, 0, 0, 0, 0), (x ∧
y) ∨ (x ∧ z) ∨ (y ∧ z) = (1, 0, 0, 0, 0, 0), which is not in R.

(iv) If we take x = (1, 0, 1, 0, 0, 0), y = (1, 1, 0, 1, 1, 0), and z = (0, 0, 0, 0, 0, 0), we have
x⊕ y ⊕ z = (0, 1, 1, 1, 1, 0), which is not in R.

Proposition 7.3.4. The relation R is not a ∆-matroid.

Proof of Proposition 7.3.4 We take x = (1, 1, 1, 1, 1, 1), y = (1, 0, 0, 0, 1, 0), and x′ =
(1, 0, 1, 1, 1, 1), x and y are in R and x′ is a step from x to y, but x′ is not in R and there
does not exist any x′′ ∈ R which is a step from x′ to y.

The tubes. A tube is the block pictured in Figure 7.8; it is comprised of six tetrahedra
that all have one edge in common, and contain each two normal disks: either a pair of one
triangle and one quadrilateral, or a pair of triangles of different types. As in Figure 7.8, we
denote by A1 and A2 the two pairs of faces that are crossed by two adjacent quadrilaterals.

Similarly as for the clause gadget, the gluings in a tube gadget at A1 and A2 can be
specified by two variables, again with the convention of Figure 7.6: 0 and 1 respectively
for non-crossing and crossing block curves.
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Lemma 7.3.5. The singular normal surface in a tube specified by the gluing is immersed
if and only if both variables of the tube are equal.

Proof This is immediate by checking the four possible assignments of the variables.

A1

A2

1

2

FIGURE 7.8: A tube, where the shaded regions denote the locations where the tube will
be connected to clauses.

Consider a variable v appearing exactly twice in Φ, in clauses C1 and C2 (it may be
that C1 = C2). Let G1 and G2 be the copies of the clause gadget corresponding to C1

and C2, respectively; let B1 be the pair of faces in G1 corresponding to the occurrence of
the variable v in G1, and similarly let B2 be the other pair of faces in G2 corresponding to
the occurrence of the variable v inG2. We create a tube Tv, and we glue the pair of facesA1

to B1 and A2 to B2.

The constants. A constant gadget is one of the blocks pictured in Figure 7.9 (since each
gadget only consists of one tetrahedron, we did not adopt the schematic representation in
this drawing). The gadgetCG0 for the constant 0 consists of one tetrahedron containing two
triangles, while the gadget CG1 for the constant 1 consists of one tetrahedron containing
two crossing quadrilaterals. In both cases, the pair of faces A, at which the constant will be
connected to a clause gadget, is made of the two front faces in Figure 7.9.

Whenever a constant 0 appears in Φ, we create a copy of the constant gadget CG0, and
attach the corresponding pair of faces in the clause gadget to the pair A in the constant
gadget. The same holds for the constant 1, with CG1 instead of CG0.

7.3.2 Proof of the reduction
We now have all the tools to prove Theorem 7.3.1. Starting with a formula Φ, we build
a triangulation T and normal coordinates N with the clause gadgets, the tubes, and the



7.3. NP-hardness of detecting immersibility 121

A A

FIGURE 7.9: Left: The gadget CG0. Right: The gadget CG1. In both cases, the two front
faces constitute the pair A. The trace of the singular normal surface on A is the same in
both cases.

constant gadgets. We first prove that this triangulation forms a 3-manifold with boundary.

Proposition 7.3.6. The triangulation T corresponding to a formula Φ is a 3-manifold with
boundary.

Proof of Proposition 7.3.6 First, we show that every vertex v of T has a neighborhood
homeomorphic to the closed half-space. The vertex v is adjacent to a clause gadget C as
well as between zero and three tubes or constant gadgets. We focus on the case with three
tubes T1, T2 and T3, the other ones being handled similarly. Since gadgets are glued along
discs with disjoint interiors, and the tubes are locally disjoint except at their intersection
with C, the neighborhood around v is the one pictured in Figure 7.10. One readily sees that
this neighborhood is homeomorphic to a half-space.

v

C

T1 T2

T3

FIGURE 7.10: The local picture around a vertex v of the triangulation T .

Moreover, by construction, no edge is identified to itself in reverse. This shows that T
is a 3-manifold with boundary.
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Proposition 7.3.7. The normal coordinates N correspond to an immersible surface if and
only if the formula Φ is satisfiable.

Proof of Proposition 7.3.7 We will use the following observation. Consider an edge e be-
tween the two faces forming a pair of faces in a gadget. The block around e is made of
three or four tetrahedra, depending on whether a constant gadget or a tube is glued to the
pair on the clause gadget. Then the singular surface has no branch point on e if and only
if the values of the variables on the two pair of faces are identical, and, in case one of the
gadget is a constant gadget, the value takes the value specified by that gadget.

Assume first that the normal coordinates N correspond to an immersible surface. The
gluings corresponding to variables appearing exactly once in Φ define a partial assignment
of the variables. For the ones appearing twice, Lemma 7.3.5 implies that the two variables
in the same tube are equal. Since they are glued to the pairs of faces representing their
two occurrences in the clause gadgets, and by the observation, this defines a consistent
assignment of the variables; moreover, again by the observation, the variables on the pair
of faces on the clause gadgets corresponding to the constants take the appropriate values.
Finally, since no branch point arises in a clause gadget, Lemma 7.3.2 implies that each
clause is satisfied by the assignment of variables.

Conversely, assume that Φ is satisfiable. The satisfying assignment naturally defines
the values of the variables on each pair of faces. We prove that these gluing rules do not
create branch points. Branch points only occur on edges of the triangulation, and each
edge is either (1) an edge in a clause gadget, (2) an edge in a tube gadget, (3) an edge at the
interface between two pairs of faces, or (4) a boundary edge of T . No edge of type (1), (2),
or (3) contains a branch point, by Lemmas 7.3.2 and 7.3.5 and the observation, respectively.
Furthermore, no edge of type (4) can contain a branch point, since branch points occur on
interior edges. This concludes the proof.

7.4 Variants
We now establish a few corollaries, settling the complexity of a few variants of the IM-
MERSIBILITY problem.

The first one settles the complexity of the problem k-BOUNDED-IMMERSIBILITY,
which is the one of testing immersibility when all the normal coordinates are bounded
by k ≥ 1.

Corollary 7.4.1. The problem k-BOUNDED-IMMERSIBILITY is NP-complete.

Proof of Corollary 7.4.1 The NP-hardness reduction for Theorem 7.3.1 only involves nor-
mal coordinates bounded by 1, so k-BOUNDED-IMMERSIBILITY is NP-hard as well.

The certificate we use to prove the membership in NP is the global gluing for an im-
mersed surface. At an interface, the local gluing can be described by a permutation in Sk,
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which is of finite size since k is fixed. Since the number of interfaces is bounded by the size
of the triangulation, the certificate has polynomial size. As mentioned in the preliminaries,
when one is provided with normal coordinates and a global gluing, one can test in linear
time whether the corresponding singular normal surface is immersed.

The gadget we use to show the NP-hardness of IMMERSIBILITY only outputs a 3-
manifold with boundary, but can be easily tweaked to handle the problem with boundaryless
manifolds, which we name BOUNDARYLESS-IMMERSIBILITY.

Corollary 7.4.2. The problem BOUNDARYLESS-IMMERSIBILITY is NP-hard.

Proof of Corollary 7.4.2 The triangulation TΦ with normal coordinates N obtained by the
reduction in Theorem 7.3.1 can become boundaryless by doubling it, i.e., by taking TΦ

⊔
TΦ

and gluing one onto the other with the identity homeomorphism on their boundaries. It is
straightforward to check that N is immersible in TΦ if and only if N

⊔
N is immersible in

TΦ

⊔
TΦ.

As we mentioned in the preliminaries, the triangulations we consider in this chapter
may not be simplicial complexes, and indeed the gadgets we use in our reduction may
display some slightly pathological behavior. For example, if a tube links the variables 1 and
5 of a clause gadget, the central edge of the tube has its endpoints identified. This can be
avoided by replacing each tube gadget by two copies of itself, glued to each other along the
pairs A1 and A2. These “double tubes” are glued to the clause gadgets as usual ones. Then
it can be checked that the resulting triangulation is a simplicial complex, and this shows
that IMMERSIBILITY is also NP-hard when the triangulation is a simplicial complex.

As a last remark, we note that since the triangulation obtained by the reduction in
Theorem 7.3.1 consists of balls linked by tubes, it can be embedded in R3. This shows
that IMMERSIBILITY is NP-hard even when restricted to submanifolds of R3, which is for
example the case of knot complements.

7.5 Testing local immersibility
In this section, we provide a polynomial-time algorithm to test whether normal coordinates
are immersible when the triangulation is just a block, i.e., a collection of tetrahedra glued
around a single edge. When applied to every edge of a more complicated triangulation,
this provides a local test for immersibility, in that it detects local obstructions but not more
involved ones, as pictured in Figure 7.11.

For the rest of this section, we denote by T a triangulation comprised of a single block,
and N the normal coordinates for this triangulation.

The algorithm works by reducing the problem to a flow computation on directed graphs.
The construction of the directed graph G corresponding to a block and normal coordinates
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FIGURE 7.11: When these two blocks are made into a single triangulation by gluing them
along the shaded regions, the normal coordinates are locally immersible around every edge,
but not globally immersible.

s1 t1

s2 t2

x1 x1

x2 x2

FIGURE 7.12: The directed weighted graph G is obtained by choosing an orientation
around the block, adding a single directed edge for every normal disk type, and setting the
capacity of an edge to be equal to the corresponding normal coordinate.

is pictured in Figure 7.12: every triangle type or quadrilateral type is associated to a directed
edge, and the corresponding normal coordinate is carried over as the capacity of that edge.
We denote by s1 and s2 the extremal vertices of this graph on one side of the block, and t1
and t2 the vertices on the other side. Note that in the triangulation, both sides of the block
are identified, and therefore for i = 1, 2, si corresponds to the same vertex as ti, which we
denote by x1 and x2. The algorithm then simply computes the maximum flow between s1

and t1, and checks whether it is equal to the sum of the capacities of the edges going out of
s1.

The correctness of this algorithm is warranted by the following lemma.

Lemma 7.5.1. The normal coordinates N are immersible if and only if the maximum flow
between s1 and t1 equals the sum of the capacities of the edges going out of s1.

Proof of Lemma 7.5.1 For the first implication, if the normal coordinates are immersible,
there exists a gluing inducing no branch point. The associated normal surface is therefore a
union of disks winding exactly once around the central edge. Every such disk corresponds
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in G to a weight 1 flow going from s1 to t1 or s2 to t2. Therefore, the maximum flow going
from s1 to t1 is the sum of the capacities going out of s1.

In the other direction, such a maximum flow naturally defines a gluing corresponding
to an immersed surface. Indeed, every unit of flow corresponds to a normal disk, and the
flow equations at every vertex allow to specify how to glue these normal disks together.
Therefore, the maximum flow corresponds to a partial gluing of the normal disks, which
yields a union of embedded disks passing through x1. The gluing of the other normal disks
will not be described by this flow, but it is easy to see that they will necessarily also form
a union of embedded disks passing through x2. All in all, we obtain an immersed surface,
which completes the proof.

It is an intriguing problem to extend this algorithm to deal with more complicated trian-
gulations. With some work, we can for example obtain a polynomial-time algorithm to test
immersibility for the triangulation pictured in Figure 7.11. Finding a general polynomial-
time algorithm is ruled out by our main Theorem 7.3.1 though.





CHAPTER 8

Conclusions

In this thesis, we have studied topological problems on graphs, surfaces and 3-manifolds
from a computational point of view, and we have provided new insights on their algorith-
mic properties, whether by designing algorithms, obtaining better combinatorial bounds or
establishing hardness. We now investigate the work that lies ahead of us, first directly in
the continuation of the three chapters, then on a broader scale.

8.1 Summary and continuations

Testing isotopy of graphs on surfaces. In Chapter 5, we have provided efficient algo-
rithms to test whether two graphs embedded on a surface are isotopic. Our algorithms came
in two flavors, depending on whether the surface is the plane and the input is described by
coordinates, or the graphs are described by their arrangements on an arbitrary cross-metric
surfaces. Our tools rely on previous algorithms to test homotopy, which we use as a black
box, and a combinatorial characterization of isotopy which may be useful in its own right.
Many interesting variants of this problem remain unsolved and may form the basis of future
work.

For starters, our characterization heavily relies on testing the existence of an oriented
homeomorphism; it is not clear how to adapt this test in the non-orientable case. We note
that the research on mapping class groups, from which we drew parts our inspiration, is
mostly focused on the orientable case, and a first step would be to identify which fragments
of this theory still hold in the non-orientable world and whether they could be applied for
our problem.

Regarding the case of the punctured plane, the most obvious open question is to improve
the running time of the algorithm. Bespamyatnikh [16, Theorem 7] describes an O(n4/3×
polylog(n))-time algorithm for testing path homotopy; however, it is not clear that this
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algorithm extends to the homotopy test for cycles. One obstacle for this extension is that
our cycles are not simple and may make turns always in the same direction: the algorithm
by Bespamyatnikh [16, Section 5.5] considers maximal subpaths that always turn in the
same direction, but in our case such maximal subpaths may be cycles without “starting”
and “ending” points, for which the same approach does not seem to work.

Also, we only test the existence of a topological isotopy: The edges are allowed to bend
during the deformation. It is easy to see that, in the presence of obstacles, the existence of a
topological isotopy between two straight-line embeddings does not imply the existence of
a straight-line isotopy, in contrast to the case without obstacles [18, 112]. Could it be that,
in such a situation, there exists a straight-line isotopy after splitting each edge in two (or a
constant number of) segments? Computing such an isotopy efficiently may not be an easy
task, but related techniques [5, 10] might apply.

Finally, in both the surface model and the punctured plane model, computing shortest
graph embeddings within a given isotopy class would be very interesting, and would gen-
eralize known results for computing shortest paths within a given homotopy class [15, 56–
58, 77, 137], even though we expect the problem to be much harder.

Discrete systolic inequalities and decompositions of triangulated surfaces. Our con-
tribution in Chapter 6 is threefold. Firstly, we improved the best bounds on the length of
topologically meaningful cycles on combinatorial surfaces. Secondly, by adapting a con-
struction from the Riemannian case, we improved the bound on the length of a shortest
pants decomposition, and provided an algorithm to compute such a decomposition with
guarantees on its length. Finally, a careful analysis of the case of random surfaces gave
strong lower bounds for the length of cut-graphs with a prescribed topological map.

There are many avenues for pursuing this work. A first line of research involves further
investigations on the problems around graph decomposition. The complexity of computing
shortest pants decomposition is still hanging between polynomial and NP-complete, and
similarly it is unknown whether computing a shortest cut-graph is fixed-parameter tractable
in the genus of the surface, or whether it is approximable within a constant factor.

We believe that we can further our understanding of these problems in two directions.
A first aspect is to get better algorithms, either from a complexity or an approximation
point of view. To that end, the general framework of brick decompositions [23] allows
to get efficient approximation schemes and fixed-parameter algorithms out of algorithms
for surface-embedded graphs with bounded tree-width 1. This can be attacked by the use
of dynamic programming combined with tree decompositions with an added topological
structure, such as surface cut/split decompositions [22, 219]. It is the subject of ongoing
work to adapt these tools to obtain a fixed-parameter tractable approximation scheme to
compute the optimal cut-graph of a surface.

1. Recall that the tree-width of a graph measures quantitatively how close it is to a tree, we surveyed some
of its uses in Section 4.1.
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Regarding lower bounds, our work and previous results [120] have shown that random
surfaces display a pathological behavior both for cut-graphs and pants decompositions. It
is therefore key to study this behavior in order to prove difficulty results. The tree-widths of
cut-graphs are a natural bottleneck, and it is reasonable to expect that random surfaces lead
to cut-graphs with high tree-width. Hence, investigating whether random surfaces could be
used as hard instances for this problem looks like a promising perspective.

It is also worthwhile to study random surfaces for their own sake. As we mentioned,
they were introduced because of strong connections with theoretical physics [198], and
also as a discrete approximation to random Riemann surfaces [26] – getting a thorough
understanding of their properties could lead to important insights, in the same vein as the
impressive impact of random graph theory on combinatorics. In particular, there remains
an important open question on the genus of these random surfaces: it is known that it grows
like log 3n where n is the number of triangles, but the second order term is evasive, and it
conjectured to be the Euler-Mascheroni constant γ [198].

Finally, we described how our bounds for cut-graphs translate by duality to a problem
on crossing-numbers of graphs, which is about embeddings two graphs on a surface while
minimizing the number of intersections. This is strongly connected with the theory of
simultaneous embeddings, a topic in graph drawing concerned with finding the correct way
to display multiple embedded graphs at the same time. A strong theory has emerged in the
planar case [20], but it still remains unscratched in the case of surface-embedded graphs.

On the complexity of immersed normal surfaces. In this chapter, we have investigated
how the theory of immersed normal surfaces could be used to improve the complexity
of algorithms in 3-manifold topology. We showed that it naturally leads to the problem
of detecting immersibility, which we showed to be NP-hard. Although this constitutes a
serious roadblock to this approach, all hope is not lost. We provided an algorithm to solve
this problem at a very local scale, and there is still room to study what can be done despite
this hardness.

The main open question is whether this immersibility problem is fixed-parameter trac-
table with respect to the size of the triangulation. A promising approach is to generalize our
approach with flows to certify local immersibility to handle the broader picture of global
immersibility. It is the subject of ongoing work to see if techniques coming from integer
programming in fixed dimensions could be adapted to handle this problem.

Another natural question is whether this approach can still work for restricted classes of
triangulations. Once again, it turns out that the tree-width is a natural parameter to consider,
and a lot of work has been devoted to studying the complexity of 3-manifold problems for
spaces such that the dual of the triangulation has bounded tree-width [30–32, 34], because
some “practical” spaces that arise tend to have this property. In our case, since the gadget
we use certainly incurs unbounded tree-width, it is also a natural question to investigate.
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8.2 Perspectives

As we surveyed in Section 4, many topics lie at the intersection of topology and theoretical
computer science and beg to be explored. In the following we expose two broad research
directions that fit well with our research themes, although not directly in line with the works
we have presented in this thesis. Compared to the issues we discussed in the previous
section, the perspectives we introduce here are more ambitious and include problems that
have been open for quite some time, but we feel that the expertise we developed in this
thesis gives us a solid basis, or dare we say an edge, to tackle them.

Combinatorics of 3-manifolds. There are many combinatorial open questions in 3-mani-
fold theory. As we discussed in Section 4.2, in a recent breakthrough, Marc Lackenby [161]
showed that when a knot is unknotted, i.e., can be continuously deformed to the usual circle,
this unknotting procedure can be done in at most a polynomial number of Reidemeister
moves. The natural way to improve on this result is to study whether a similar bound can
be established for other classes of knots, for example starting with genus 1 knots. Looking
at the proof, this would involve extending several techniques from the planar case to the
case of surfaces, for which the tools around decomposition that we introduced in Chapter 6
might be handy.

In a different direction, when dealing with triangulated 3-manifolds, the Pachner moves
are a natural analogue of the Reidemeister moves: they allow to transform a triangulation
locally, and it is known that if two 3-manifolds are the homeomorphic, there exists a se-
quence of moves going from the first to the second. The bounds on the numbers of these
moves are, when they exist, astronomical, and it is a daunting task to improve them, since it
would imply improving the algorithm for 3-manifold recognition. While this last problem
is notoriously difficult, simplifying 3-spheres may be more tractable: there is a doubly ex-
ponential bound on the number of moves to do so [184], and experimental evidence seems
to suggest that the bounds should be much lower [29]. There is now a wide body of re-
search on 3-sphere recognition, and it seems ripe to be combined with Lackenby’s work
– in particular, the now standard machinery of 0-efficient triangulations [145] and almost
normal surfaces could perhaps be adapted to this framework.

Random and extremal complexes. Triangulated surfaces are obtained by gluing trian-
gles together such that every edge is adjacent to at most two triangles. Lifting this adja-
cency condition gives rise to 2-dimensional simplicial complexes. While the combinatorics
of graphs embedded on surfaces are fairly well understood, since many properties are con-
trolled by the Euler characteristic, there are many open questions about 2-dimensional sim-
plicial complexes. Mimicking the tremendous success of the theory of random graphs,
random (Linial-Meshulam) complexes have been the subject of active study recently, and
their geometric and topological properties are now quite well understood [53, 59]. On the
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other hand, the topological properties of extremal complexes are mostly open for investiga-
tion. In particular, the following extremal questions are wide open: What is the maximal
number of 2-dimensional simplices in an n-vertex simplicial complex which does not con-
tain a surface ? What about specifying a fixed surface ? In the case of the sphere, it is a
classical result of Brown, Erdős and Sòs [27] that O(n2.5) is the tight bound, but strikingly
the value of the exponent is unknown for the remaining cases. On a wider combinatorial
point of view, even in the 2-dimensional case, very little is known on the extremal prop-
erties of simplicial complexes – or hypergraphs – and studying their topological aspects
might shed light on the main open questions on this area.





APPENDIX A

Appendices on graph isotopy testing

In this appendix, we present the proofs that have been stripped off from Chapter 5 to make
it more streamlined. Section A.1.1 explains how to add additional cycles to the stable
family computed in Section 5.4, to ensure that we obtain a pointwise isotopy, Section A.1.2
proves Theorem 5.4.1 whenG1 is a cut-graph and Section A.2 shows how to deal with non-
hyperbolic surfaces, namely (punctured) spheres and tori.

A.1 Additional proofs for Theorem 5.4.1

A.1.1 Fixing the map automorphism
In this section, we prove the following proposition.

Proposition 5.4.8. In linear time, we can construct a family of cycles Λ in G such that:

• each edge of G is used at most thrice by all the cycles in Λ.

• if we denote by Λ1 and Λ2 the images of Λ in G1 and G2, if every cycle in Λ1 is
homotopic to its counterpart in Λ2, then an ambient isotopy of S maps Γ1 to Γ2

pointwise.

We will need the following rather independent lemma in the course of the proof.

Lemma A.1.1. Let C be a family of simple cycles on S, pairwise disjoint except at a single
point p, where two cycles may or may not cross. Assume that no component of S\C is a disk
bounded by one or two cycles. Then the cycles in C are pairwise (freely) non-homotopic.

Proof We will use the fact that two simple homotopic cycles cross transversely an even
number of times (because they form bigons [96, Proposition 1.7]).
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First, no cycle in C is contractible; otherwise, it would bound a disk on the surface.
The cycles inside that disk are all contractible, and therefore do not cross at p because of
the aforementioned fact. Taking an innermost such cycle, we obtain a component of S \ C
bounded by one cycle, contradicting the assumption.

Assume now for the sake of a contradiction that two cycles c1 and c2 are homotopic.
They meet at point p without crossing transversely. After a local perturbation, these cycles
become disjoint, and therefore bound an annulus [81, Lemma 2.4]. Thus, the unperturbed
cycles can be viewed as two loops `1 and `2 based at p that bound a disk. There may be
other cycles inside that disk, but in all cases a face inside it is a disk bounded by one or two
cycles, which is impossible.

The proof of Proposition 5.4.8 revolves around finding additional cycles to add to the
family Γ to ensure that the isotopy we get is pointwise. From the hypothesis that no face
of the input graphs is a disk, one deduces that the inner disk in each connected component
is mapped to itself by the homeomorphism between Γ1 and Γ2. Then, one just needs to
ensure that this homeomorphism, restricted to each inner disk, is isotopic to the identity –
to do so it is enough to add one well chosen cycle to Γ for each connected to component.

Proof of Proposition 5.4.8 The family Λ is the union of the stable family Γ defined in
Proposition 5.4.7 and of the family Φ defined as follows. Recall that in the proof of Propo-
sition 5.4.7, we considered each connected component (V ′, E ′) of the graph G = (V,E)
in turn. If (V ′, E ′) had cyclomatic number at least two, we considered the edge set E ′′ of
a spanning tree of (V ′, E ′). A fundamental cycle of (V ′, E ′) is a simple cycle in (V ′, E ′)
containing exactly one edge in E ′ \ E ′′. We put in Φ an arbitrary fundamental cycle for
each connected component (V ′, E ′) of cyclomatic number at least two. The fundamental
cycles of a connected component (V ′, E ′) can be extended towards an arbitrary root p of
the spanning tree (V ′, E ′′) and then slightly perturbed on S so that they become simple
and pairwise disjoint except at p, where they may or may not cross. The faces of this new
family C of perturbed cycles correspond to the faces of (V ′, E ′). Moreover, C satisfies the
hypotheses of Lemma A.1.1: Indeed, if there is a disk in S \ C bounded by one or two
cycles, there must be at least one connected component of G1 inside it because no face
of G1 is a disk; but then this connected component is contractible, which is absurd since
the preprocessing removed all the contractible components of G1. Hence, the fundamental
cycles of any given connected component (V ′, E ′) are pairwise non-homotopic.

Clearly the family Λ = Γ ∪ Φ can be computed in linear time and uses each edge of G
at most thrice. Assume that, for each cycle λ in Λ, the images of λ in G1 and G2 are
homotopic. There remains to prove that some isotopy of S maps Γ1 to Γ2 pointwise.

By Proposition 5.4.7, Γ1 is a stable family, and of course Γ2 := h(Γ1) as well. Since
each cycle in Γ1 is homotopic to the corresponding cycle in Γ2, Theorem 5.3.1 implies that
some isotopy of S takes Γ1 to Γ2, not necessarily pointwise, but preserving the orientations
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of the cycles. 1 Therefore, up to composing with this isotopy, we can assume that each cycle
in Γ1 coincides, as a set, with the corresponding cycle in Γ2, and with the same orientation.
Hence, this isotopy induces an orientation-preserving map isomorphism i between Γ1 and
Γ2, and since Γ1 and Γ2 have the same extended combinatorial maps, i can be viewed as
an orientation-preserving map automorphism of Γ1. As each cycle in Γ1 is isotoped to the
corresponding cycle in Γ2, i maps each connected component of Γ1 to itself, and it maps
each crossing of Γ1 to a crossing of Γ1.

We now want to ensure that i is the identity map automorphism, which would imply
the existence of a pointwise ambient isotopy between Γ1 and Γ2. However, this is not
necessarily the case, as was pictured in Figure 5.6.

Let (V ′, E ′) be a connected component of G; let Γ′1 be the arrangement of the cycles
of Γ1 corresponding to that connected component. If (V ′, E ′) has cyclomatic number one,
by construction, Γ′1 is just a cycle, which i maps to itself, preserving its orientation; so i is
the identity map automorphism on Γ′1.

Γ1
v

v′

ϕ
ϕ′

FIGURE A.1: A graph Γ1 drawn on a sphere with four holes. The inner disk is the darker
part, and the orientations at each vertex are pictured according to the orientation of the
single cycle. If i(v) = v′, ϕ is sent to ϕ′ which is not homotopic to it.

Otherwise, (V ′, E ′) has cyclomatic number at least two. We first note that Γ′1 is con-
nected; indeed, the inner disk D of (V ′, E ′) is bounded by all cycles in Γ′1. Moreover, the
faces of Γ1 that are disks are exactly the inner disks; so i maps inner disks to inner disks,
and therefore maps D to itself.

Let v be the vertex of Γ′1 corresponding to the cycle ϕ in Φ = Λ \Γ (see Figure A.1). If
i maps v to another vertex v′ of Γ′1, as the inner disk is mapped to itself, i necessarily maps

1. Actually, if S has nonnegative Euler characteristic, the results in Section A.2 show that the isotopy can
be chosen so as to be pointwise, which concludes the proof of this proposition.
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ϕ to a cycle in the inner disk crossing v′ once, i.e. another fundamental cycle in (V ′, E ′),
which is, as shown above, not homotopic to ϕ; this is a contradiction. So i maps v to
itself. Furthermore, if we orient the four edges incident to v with the orientation of the
corresponding cycles, v has two outgoing edges, consecutive in the cyclic order around v,
and two incoming edges, also consecutive. Since i maps each edge to another edge with
the same orientation, it maps v to v, and it is an orientation-preserving map automorphism,
it must thus map each edge incident to v to itself, with the same orientation. Since Γ′1 is
connected, by propagation we deduce that i is the identity map automorphism on Γ′1, which
concludes the proof.

A.1.2 Proof of Theorem 5.4.1 if the only face of G1 is a disk
By Proposition 5.4.4, either (1) G1 has no face that is a disk, or (2) G1 has a single face,
and that face is a disk. We proved Theorem 5.4.1 in case (1) in the previous section, and
shall now deal with case (2). In other words, we assume that G1 is a cut-graph.

In that case, the above construction does not seem to work: Since inner disks are not
the only faces of Γ1 that are disks, there is no guarantee that an inner disk is mapped to
itself in the proof of Proposition 5.4.8. To circumvent this issue, the high-level idea is the
following: We remove one cycle from G1 so that the only face of G1 is not a disk anymore
but a cylinder, in which case the results from the previous section apply. We then check that
the remaining cycle and its counterpart in G2 are homotopic, and prove that this guarantees
the existence of an isotopy between G1 and G2.

Since G1 is a cut-graph, S has no boundary. Moreover, G is connected, and G1 is made
of a spanning tree T = (V ′, E ′) (as in section 5.4.2.1) and 2g additional edges. Let e be
one of these edges (chosen arbitrarily); let γe be the fundamental cycle with respect to T
corresponding to edge e. Let G′ be the graph G with edge e removed, and let G′1 and G′2
be the restrictions of G1 and G2 to G′. Note that G′1 has a single face, which is a cylinder.

We can now apply the result of the previous section to G′1 and G′2: We obtain a family
Λ′ of cycles in G′ with the property that, if their images in G′1 and G′2 are homotopic, then
G′1 and G′2 are isotopic. Furthermore, Λ′ can be computed in linear time, and uses each
edge of G′ at most thrice.

To prove Theorem 5.4.1 for our graph G, we take Λ := Λ′ ∪ {γe}. Obviously, Λ can be
computed in linear time and uses each edge of G at most four times in total. Assume now
that the images of each cycle of Λ in G1 and G2 are homotopic. It suffices to prove that,
under this condition, some ambient isotopy of S takes G1 to G2. Since the images of each
cycle in Λ′ in G′1 and G′2 are homotopic, we may assume that G′1 = G′2. There remains to
prove that an isotopy of the surface allows to push the image e1 of e in G1 to the image e2

of e in G2.
The surface obtained after cutting S along G′1 = G′2 is a cylinder C, and the images of

e on C become arcs a1 and a2 with the same endpoints, one on each boundary, as shown
on Figure A.2. (Indeed, if both endpoints were on the same boundary, a1 would bound two
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faces on C which would correspond to two faces on S, reaching a contradiction.) Now, to
conclude, we only need to show that a1 and a2 are isotopic relatively to the boundary of
this cylinder.

1. 2.

G′1
e1e2

a1

a2

b b′

FIGURE A.2: 1. The graph G′1 = G′2 and the edges e1 and e2. 2. The cylinder C obtained
after cutting along G′1, with the arcs a1 and a2 corresponding to e1 and e2, and the cycles
b and b′. If a1 and a2 are not isotopic, the images of γe in G1 and G2 cannot be (freely)
homotopic

The end of the proof uses some elementary notions of homology, which we did not
introduce in this thesis. It is a coarser notion of similarity for cycles than homotopy – we
refer to [129] for the definitions. Assume, for the sake of a contradiction, that a1 and a2 are
non-isotopic arcs relatively to the boundary of C. This implies that they are non-homotopic
on C [81, Theorem 3.1]. Hence there exists an integer n 6= 0 such that a2 is homotopic
to a1 · bn, where b is a loop that is a boundary of the cylinder C. Since the images of γe
in G1 and G2 are (freely) homotopic on S, they are Z-homologous. This implies that bn,
and thus b, has zero Z-homology. By translating along the cylinder, b is homotopic on S to
a simple cycle b′ that crosses e1 exactly once and crosses G1 nowhere else, as pictured on
Figure A.2. Hence b′ is a simple cycle on S that crosses the image of γe in G1 exactly once;
thus b′ is non-separating, and therefore cannot have zero Z-homology. This contradiction
completes the proof of Theorem 5.4.1.

A.2 Exceptional surfaces

In this section, we prove that Theorem 5.3.1 also holds for surface of nonnegative Euler
characteristic. We note that in these cases we obtain a stronger theorem that in the gen-
eral case, as the ambient isotopy we obtain maps the families of cycles pointwise. We
split the proof in two parts depending on whether the surface is a plane with boundaries in
Section A.2.1 or a torus in Section A.2.2. As a foreword, we note that the results of Lem-
mas 5.3.2, Corollary 5.3.3, and Lemma 5.3.4 and the first result of Proposition 5.3.5 (no
cycle in a stable family is null-homotopic) also hold in the nonnegative Euler characteristic
case.
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A.2.1 Sphere, disk, and annulus
Since the Euler characteristic of a surface is χ(S) = 2 − 2g − b, the only cases where the
surface is a plane with boundaries and has nonnegative Euler characteristic are the sphere,
the disk, and the annulus. In these cases, the proof of Theorem 5.3.1 is a simple corollary
of Lemmas 5.3.2 and 5.3.4. We even obtain a slightly stronger statement, because we can
take the isotopy to map pointwise Γ1 to Γ2:

Theorem A.2.1. Let S be a sphere, a disk or an annulus and let Γ1 = (γ1,1, . . . , γ1,n) and
Γ2 = (γ2,1, . . . γ2,n) be two stable families of cycles on S in general position such that:

1. there exists an oriented homeomorphism h of S mapping each cycle γ1,j of Γ1 to the
corresponding cycle γ2,j of Γ2 not necessarily pointwise, but preserving the orienta-
tions of the cycles, and

2. each cycle of Γ1 is homotopic to the corresponding cycle of Γ2.

Then there is an ambient isotopy of S mapping each cycle of Γ1 to the corresponding cycle
of Γ2 pointwise.

Proof If the surface S is a sphere or a disk, all the cycles in Γ1 and Γ2 are null-homotopic,
which is impossible as noted above. Hence these families are empty and the theorem is
trivial.

If the surface is an annulus, for i = 1, 2, we claim that there are no crossing points in
Γi, i.e., all the cycles are simple and two distinct cycles do not intersect each other. Indeed,
if there were a crossing point, the connected component of Γi containing it would form a
planar graph such that every vertex has degree four. Hence, by Corollary 5.3.3, there would
be at least a k-gon with k ≤ 3, contradicting, with Lemma 5.3.4, the stability of the family
Γi.

Thus, Γ1 is a family of disjoint simple cycles homotopic to the boundaries of the an-
nulus, and the same holds for Γ2. There is an isotopy of S mapping one family into the
other if and only if they have the same ordering, as defined in the proof for the hyperbolic
case. But this is exactly what the oriented homeomorphism between them ensures. This
concludes the proof.

A.2.2 Torus
The proof in the case of the torus is slightly more involved. Let us introduce a few defi-
nitions before delving into it. We choose a Euclidean metric on the torus, which induces
one on its universal cover R2. This allows to define translations on the torus, which are
projections of the usual translations of R2. Geodesics on the torus lift to straight lines in
the plane, and two geodesics are homotopic if and only if these lines have the same slope,
as a slope s = m

n
determines a unique element (m,n) with m ∧ n = 1 of the fundamental
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group of the torus. When we mention the slope of a geodesic on the torus, we refer to the
slope of one of its lifts in the universal cover. Note that as a translation is an isometry, it
maps a geodesic to another geodesic.

Theorem A.2.2. Let S be a torus and let Γ1 = (γ1,1, . . . , γ1,n) and Γ2 = (γ2,1, . . . γ2,n) be
two stable families of cycles on S in general position such that:

1. there exists an oriented homeomorphism h of S mapping each cycle γ1,j of Γ1 to the
corresponding cycle γ2,j of Γ2 not necessarily pointwise, but preserving the orienta-
tions of the cycles, and

2. each cycle of Γ1 is homotopic to the corresponding cycle of Γ2.

Then there is an ambient isotopy of S mapping each cycle of Γ1 to the corresponding cycle
of Γ2 pointwise.

Proof For all the cycles γ in Γ1 or Γ2, we start by applying de Graaf and Schrijver [64,
Proposition 13] as in the proof of Proposition 5.3.5: Up to applying an isotopy of S, we can
assume that γ is contained in the ε-neighborhood of one of its corresponding geodesics (or
of a point, if γ is contractible). As in the proof of Proposition 5.3.5, we infer that γ is not
contractible. Since in a torus, geodesic cycles are either simple or multiple concatenations
of the same simple cycle, their ε-neighborhoods are annuli. Hence, every cycle in Γ1 and
Γ2 can be assumed to lie in an annulus.

If one of these cycles γ ∈ Γi is non-simple, it forms a graph embedded on an annulus
such that every vertex has degree four. By Corollary 5.3.3, one of the faces of this graph
is a disk with degree lower than four, which with Lemma 5.3.4 contradicts the stability of
Γi. Thus all the cycles in Γ1 and Γ2 are simple. By the same argument, for i = 1, 2, two
homotopic cycles in Γi do not cross each other.

The isotopy can then be found as follows. We split the proof in two cases.
Case 1: If all the cycles in Γ1 are homotopic or inverse homotopic 1, we just pick an

arbitrary one, say γ1,1, and apply the pointwise isotopy mapping it to γ2,1, which exists
because they are homotopic 2. Cutting the surface along γ1,1 = γ2,1 gives an annulus. In
this annulus, since all the other cycles in Γ1 and Γ2 are disjoint from these, the existence
of an isotopy between them follows from the case of the annulus in Section A.2.1. After
gluing back the boundaries together, this gives the desired isotopy of the torus.

Case 2: If there are at least two homotopy classes (modulo inversion) in Γ1, we pick
two representatives, say γ1,1 and γ1,2. As two couple of lines with the same slopes pairwise
can be moved one to the other with a translation, by doing a translation of the torus, we can
assume that γ1,1 and γ2,1 lie in the neighborhood of the same geodesic, as well as γ1,2 and

1. We say that γ1 and γ2 are inverse homotopic if γ1 is homotopic to γ−1
2 .

2. Simple and noncontractible cycles which are homotopic are also isotopic, as proved by Eppstein [81,
Theorem 2.1].
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γ2,2, and furthermore that the crossing points between γ1,1 and γ1,2 lie in a ε-neighborhood
of the corresponding crossing points between γ2,1 and γ2,2

1.
We are now in the same situation as in Section 5.3.2: Since both couples of cycles γ1,1

and γ2,1 and γ1,2 and γ2,2 lie in the ε-neighborhood of the same geodesic, if we take as stable
families Γ′1 = γ1,1 ∪ γ1,2 and Γ′2 = γ2,1 ∪ γ2,2, we can similarly define corridors, as well as
edge and vertex polygons. Then Proposition 5.3.6 holds with exactly the same proof. Since
there is only one cycle of Γ′1 in each corridor, Lemma 5.3.7 also holds trivially. Hence
by applying the same techniques, we can conclude that there exists an ambient isotopy
mapping Γ′1 to Γ′2. Note that here, since the crossing points of the cycles in Γ′1 have been
matched, the isotopy we obtain is also pointwise.

Finally, cutting along these cycles cuts the surface into one or more disks, and the
isotopy between Γ1 and Γ2 is obtained by applying Alexander’s lemma separately on each
of these disks.

1. This is not necessarily the case a priori, since a given crossing point c between γ1,1 and γ2,1 can be
matched to another crossing point than h(c). Note that this is why the result in the torus case in stronger than
in the general case, in which the crossing points can not necessarily be matched.
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word view, Algorithmica, 60 (2011), pp. 609–626. Cited on page 52

[226] M. SCHAEFER, E. SEDGWICK, AND D. ŠTEFANKOVIČ, Algorithms for normal
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