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Abstract

Robust Optimization (RO) is a popular approach for dealing with uncertain data
in optimization. In static robust optimization, decision variables represent here-
and-now decisions made without exact knowledge of uncertain parameters but
must be feasible when the actual data is within the uncertainty set. However, one
mechanism to overcome the limitations of the static RO approach is Adjustable
Robust Optimization (ARO), which leverages adaptability. The main difference
between static RO and ARO approaches is the decision-making manner. In ARO
problems, some variables are here-and-now decisions, while others are wait-and-
see decisions made later based on the observed parameters in the uncertainty
set.

In this PhD thesis, we address two main topics in mathematical optimization.
The first topic concerns a class of nonlinear ARO problems with uncertainty in
the objective function and constraints. By utilizing Fenchel’s duality, we derive
an equivalent dual reformulation that is a nonlinear static robust optimization
problem. We then apply perspective relaxation and an alternating method to
handle non-concavity and design a new dual-based cutting plane algorithm that
can find a reasonable lower bound for the optimal objective value. Through
numerical experiments, we show the effectiveness of the cutting plane algorithm
in producing locally robust solutions with an acceptable optimality gap.

The second topic focuses on the reformulation of quadratic optimization problems
using ARO. Quadratic Optimization (QO) has been extensively studied in the
literature due to its practical applicability in numerous problems. Despite its
practicality, QO problems are generally NP-hard. Consequently, researchers
have developed various numerical methods for finding approximate optimal
solutions. In this thesis, we analyze QO problems through the lens of robust
optimization techniques. We first demonstrate that any QO problem can be
reformulated as a disjoint bi-convex QO problem. Subsequently, we present
an equivalent ARO reformulation and utilize some methods from the relevant
literature to approximate this reformulation. Specifically, we show that employing
a so-called decision rule technique to approximate the ARO reformulation can
be interpreted as applying a linearization-relaxation technique to its bi-convex
reformulation problem. Additionally, we have designed an algorithm capable
of finding a solution that is close to optimal based on our new reformulations.
Our numerical results highlight the efficiency of our algorithm, particularly for
large-sized instances, in comparison with standard off-the-shelf solvers. This
work offers a novel perspective on quadratic problems and paves the way for
further research in this domain of mathematical optimization.
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Preface

In light of human advancements in numerous fields and the increasing demand for
resources on the one hand, and their limitations on the other hand, the need for
optimal use of resources becomes more crucial. Mathematical optimization has
become an important part of many decision-making problems in management,
economics, medicine, engineering, etc. In classical optimization models, all pa-
rameters are considered to be exactly known, resulting in deterministic problems.
In real life, however, many of the parameters are not known at the moment
of decision-making and have uncertainty in their essence. There are various
approaches for dealing with uncertainty in the optimization and mathematical
modeling literature. The most commonly used ones are stochastic optimization
and robust optimization.

In stochastic optimization, probabilistic information (distribution) on the uncer-
tain parameters is required and the decision-maker aims to optimize expected
objective values; for a more detailed description of stochastic optimization, we
refer to the textbook [107]. The main disadvantage of stochastic optimization is
that the exact distributions of uncertain parameters are often unknown. In con-
trast, Robust Optimization (RO) does not require any probabilistic information.
In RO, the best solution is chosen among those that are safe-guarded against all
scenarios in a pre-specified set, called uncertainty set.

The concept of static RO was first proposed by Soyster in the 1970s, who studied
a linear optimization problem with a box uncertainty set [111]. Later in the 1990s,
static RO was formally introduced [15, 16, 57] and its computational advantage
has resulted in its wide usage in applications, including in portfolio selection
[79, 121], scheduling [40], operations management [85], etc.

In static RO, all decision variables represent here-and-now decisions, meaning the
decisions are made before realization of the uncertain parameters [13]. However,
in many practical applications, the value of some decisions can be adjusted
after realization of (part of) uncertain parameters. These kinds of decisions
are called wait-and-see decisions. Adjustable Robust Optimization (ARO) is
an extension of the static RO wherein decision variables are divided into two
types: here-and-now and wait-and-see [14]. In recent years, the application of
ARO has been widespread in many areas such as network design [127], location-
transportation problems [88], facility location problems [56], chemical engineering
[73, 82], logistics [74], radiotherapy [103], to name a few.

Although ARO improves solution quality (in the sense of being less conservative),
its computational complexity is higher than static RO [123]. Under some circum-
stances, ARO and static RO are equivalent [87]; therefore, using the static RO
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model for some cases can be advantageous. Moreover, as wait-and-see decisions
are chosen after realizing uncertain parameters, they can be considered as decision
rules or functions of the uncertain parameters. A way to approximate an ARO
problem is by restricting wait-and-see variables to be affine in uncertain parame-
ters, and use the so-called affine decision rules (ADR). Under some conditions,
ADR can provide a “good” approximation of an ARO problem [14, 25]. Next to
ADR, there are also other decision rules, like piece-wise constant [100], quadratic
[119], and polynomial [29], each has their own advantages and disadvantages.
In addition to decision rules, there are several other approximation techniques
for solving linear ARO problems in the literature, including Benders decomposi-
tion [126], finite adaptability [67], partitioning the uncertainty set [23, 97], and
copositive approach [122].

This thesis aims to contribute to the growing literature on robust optimization
by proposing novel approaches to solving nonlinear ARO problems and indefinite
Quadratic Optimization (QO) problems. Chapter 1 provides the necessary defi-
nitions and notations. Chapter 2 briefly goes over the initial idea and birth of
the adjustable robustness concepts and reviews some approximations of linear
ARO problems. Chapter 3 focuses on a class of nonlinear ARO problems with
uncertainty in the objective function and constraints, proposing a cutting plane
algorithm to obtain locally robust solutions. Chapter 4 presents a new reformula-
tion technique for indefinite QO problems as ARO, offering new possibilities for
solving large-scale problems in the field of mathematical optimization. Finally,
Chapter 5 presents conclusions and future research.

Thesis Outline

Chapter 1

This chapter covers various definitions and notations, such as extended real-valued
functions, proper and closed functions, and convex conjugate functions. It also
provides illustrations to explain these concepts and discusses Fenchel duality,
which relates a primal convex optimization problem to its dual. Finally, the
chapter concludes by discussing two types of robust optimization, static and
adjustable, and highlights their differences.

Chapter 2

This chapter aims to provide a short review of the literature relating to linear
ARO problems. We address the limitations of static robust optimization, which
assumes that all decisions must be made before uncertainty is realized, and does
not apply to real-world problems where some decisions can be delayed until
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uncertainty is revealed. This chapter delves into non-decision policy approaches
for solving linear ARO. These approaches are presented and examined here to
provide a comprehensive understanding of how to handle uncertainty in linear
optimization problems effectively.

Chapter 3

This chapter is focused on a class of nonlinear ARO problems with uncertainty
in the objective function and constraints. We apply Fenchel’s duality on the
wait-and-see variables to obtain an equivalent dual reformulation as a nonlinear
static RO problem. We provide conditions for the ARO problem to be convex on
the here-and-now decision, and propose perspective relaxation and an alternating
method to handle non-concavity. By employing these techniques, we obtain an
upper bound and a lower bound for the optimal objective value of the ARO model.
We also present convergence analysis and numerical experiments to illustrate
the effectiveness of our cutting plane algorithm in producing locally robust
solutions with an acceptable optimality gap. Overally, this chapter presents a
novel approach to solving nonlinear ARO problems, based on the following paper:

• Khademi, A., Marandi, A., & Soleimani-damaneh, M. (2023). A New Dual-Based
Cutting Plane Algorithm for Nonlinear Adjustable Robust Optimization. Journal
of Global Optimization.

Chapter 4

The goal of this chapter is to demonstrate that any QO problem can be refor-
mulated initially as a disjoint bi-convex problem and subsequently as an ARO
problem with convex quadratic objective functions and constraints, thereby ren-
dering it suitable for ARO techniques. We further reveal that approximating
the ARO reformulation using a structured affine decision rule is tantamount
to applying relaxation techniques to the bi-convex reformulation. Additionally,
we introduce an algorithm to calculate bounds on the optimal value of QO
problems, employing a decision-rule approximation to establish a lower bound
and a mountain-climbing procedure to enhance the quality of the solutions.
We investigate several upper and lower bounds that can be applied to obtain
approximate solutions and provide computational results to demonstrate the
effectiveness of this method in solving large-scale problems. This chapter is based
on the following paper:

• Khademi, A., & Marandi, A. (2024). Quadratic Optimization Through the Lens of
Adjustable Robust Optimization. Submitted.
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Chapter 5

In this chapter, we summarize our contributions and explore several research
directions for the future.
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Chapter 1
Preliminaries

John von Neumann:
“If people do not believe that mathematics is simple, it is only because they do not
realize how complicated life is.”

In this thesis, we use the following definitions and notations. We first recall some standard

terminology from convex analysis.

Notation

We use [m] to denote the set {1,2, . . . ,m}, and [m0] to denote the set {0,1, . . . ,m}. The

column vector of all zeros will be denoted by 0. The sets of all non-negative and all extended-

real numbers are denoted by R+ ∶= [0,∞) and R̄ ∶= [−∞,∞], respectively. We denote by

ri(S) the relative interior of a set S ⊆ Rn.

1.1 Conjugacy and Perspective Function

An extended real-valued function is a function that can adopt the value plus infinity. Suppose

that f ∶ Rn → R∪ {∞}, the set of points above the graph of an extended real-valued function

f is called the epigraph of f , i.e., epi(f) = {(x, t) ∶ f(x) ≤ t} ⊆ Rn+1. The projection of the

epigraph onto the x space is referred to as the domain of f (see Figure 1.1).

An extended real-valued function f is proper if its domain is not empty, i.e., if f(x) > −∞ for

all x ∈ Rn and f(x) < +∞ for at least one x ∈ Rn. A function f is closed if its epigraph is a

closed set. The epigraph of a proper convex and closed function is convex, closed, non-empty,

and contains no vertical line.

1
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x

f(x)

epi(f)

dom(f)

∞∞

Figure 1.1: Domain and epigraph of an extended real-valued function.

Definition 1.1.1 (Conjugate Functions, [99]). 1 The conjugate of a function g ∶ Rn → R̄ is

the function g∗ ∶ Rn → R̄ defined as g∗(y) ∶= supx∈Rn {y⊺x − g(x)}, where y ∈ Rn.

This definition with n = 1 is visually represented in Figure 1.2. For given y, the highest value

of yx − g(x) is achieved when the derivative of g(x) equals y. At this point, the tangent line

of g intersects the y-axis at the coordinates (0,−g∗(y)) [101].

The indicator function of a set S ⊆ Rn, denoted by δS , is defined as

δS(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x ∈ S,

∞, x ∉ S.

The support function δ∗S ∶ Rn → R̄ of a set S ⊆ Rn is δ∗S(y) ∶= supx∈S {y⊺x}, where y ∈ Rn. It

is worth mentioning that the support function corresponding to S is the conjugate of δS .

Remark 1.1.1 (Support Function and Conjugacy). The conjugate function of g could be

expressed by using support function of epi(g) as g∗(y) = δ∗epi(g)(y,−1).

Definition 1.1.2 (Perspective Functions, [99, 129]). The convex perspective of a proper,

1This definition also known as convex conjugate function in the literature, since there exist concave conjugate
function of a function g ∶ Rn

→ R̄ which is the function g∗ ∶ Rn
→ R̄ defined as g∗(y) ∶= infx∈Rn {y⊺x − g(x)},

where y ∈ Rn. From now, if we say conjugate function it means that convex conjugate function.
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g(x)

0 x

−g∗(y)

yx

Figure 1.2: Convex conjugate function.

closed, and convex function g ∶ Rn → R̄ is the function gper ∶ Rn ×R+ → R̄ defined by

gper(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tg (xt ) , t > 0,

δ∗dom(g∗)(x), t = 0.

The convex perspective of a proper, closed, and convex function is also proper, closed, and

convex (more precisely, jointly in (x, t)); see [99, page 35] for convexity and properness, and

[99, page 67 and Theorem 13.3] for closedness. Figure 1.3 displays a proper, closed, and

convex function along with its convex perspective function.

Remark 1.1.2 ([27]). A proper, closed, and convex function g conforms to the following

relation with its convex conjugate and perspective functions

gper(x, t) = sup
y
{y⊺x − tg∗(y) ∣ y ∈ dom(g∗)} .

In the convex analysis literature, gper(x,0) is called the asymptotic function or recession

function of g. Moreover, gper(x,0) = lim inf
x′→x
t′↓0

t′g (x′t′ ) [7, 69].
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g(x)

x
t

gpers

x

t = 1

epi(gpers)

Figure 1.3: A proper, closed, and convex function and its convex perspective function.

Proposition 1.1.1. If g is a proper, closed, and convex function, then

sup
t>0,x∈Rn

gper(x, t) = sup
t≥0,x∈Rn

gper(x, t),

and

inf
t>0,x∈Rn

gper(x, t) = inf
t≥0,x∈Rn

gper(x, t).

Proof. Let x0 ∈ Rn. We have

gper(x0, t0 = 0) = lim inf
(xi,ti)→(x0,0)

gper(xi, ti > 0)

≤ sup
(xi,ti)→(x0,0)

gper(xi, ti > 0)

≤ sup
t>0,x∈Rn

gper(x, t).

So, supt>0,x∈Rn gper(x, t) = supt≥0,x∈Rn gper(x, t).

As inft>0,x gper(x, t) ≥ inft≥0,x gper(x, t), let ℓ ∈ {gper(x, t)∣t ≥ 0, x ∈ Rn}. We want to show

ℓ ≥ inft>0,x gper(x, t).

1. If ℓ = gper(x0, t0) for some x0 ∈ Rn and t0 > 0, then ℓ ≥ inft>0,x gper(x, t).
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2. If ℓ = gper(x0,0) for some x0 ∈ Rn, then

ℓ = gper(x0,0) = lim inf
(xi,ti)→(x0,0)

gper(xi, ti > 0)

≥ inf
(xi,ti)→(x0,0)

gper(xi, ti)

≥ inf
t>0,x∈Rn

gper(x, t).

The proof is complete.

As a consequence of the above proposition, we have

sup
t>0,x
−gper(x, t) = sup

t≥0,x
−gper(x, t).

The definitions are extended to partial conjugate and perspective. The partial conjugate

of a function g ∶ Rnx × Rny → R̄ with respect to its second argument (likewise for first

argument) is the function g∗2 ∶ Rnx × Rny → R̄ defined as g∗2(x,w) = supy∈Rny {w⊺y −

g(x, y)}, and its domain is denoted by dom(g2∗)(x, ⋅). If h ∶ Rnx × Rnu → R̄ is a proper,

closed, and concave function in its second argument, then its concave partial perspective

hper ∶ Rnx ×R+ ×Rnu → R̄ is defined as

hper(x, t, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

th (x, ut ) , t > 0,

−δ∗dom((−h)2∗(x,.))(u), t = 0.

Henceforth, for ease of notation, we use 0h (x,u/0) instead of hper(x,0, u).

Theorem 1 (Properties of conjugate functions, [99]). The conjugate of a function g is closed

and convex. Moreover, if g is closed and convex, then g∗∗ = g. Finally, a convex function g

is proper if and only if g∗ is proper.

In Table 1.1, we present some transformation rules that are useful for the computation of

conjugate functions.

Furthermore, support functions of several important sets are listed in Table 1.2.
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Table 1.1: Conjugate functions of some popular forms.

Number Function and assumptions Conjugate function Reference

1 f(x) + a f∗(y) − a [39, page 95]
2 f(x + a) f∗(y) − a⊺y [99, page 107]
3 f(x) + a⊺x f∗(y − a) [99, page 107]
4 af(x), a > 0 af∗ (ya) [99, page 140]
5 f(ax), a > 0 f∗ (ya) [99, page 107]

6
m

∑
i=1

fi(x) min
yi
{

m

∑
i=1

f∗i (yi) ∣
m

∑
i=1

yi = y} [99, page 145]

7
m

∑
i=1

fi (xi)
m

∑
i=1

f∗i (yi) [39, page 95]

8 f(Ax + b)
a A nonsingular f∗ (A−⊺y) − b⊺A−⊺y [99, page 107]
b otherwise inf {f∗(z) − b⊺z ∣ A⊺z = y} [101, Section B.4]

Note: The functions f(x) and fi(x) in this table are convex. In row 6, it is assumed that
∩mi=1ri(dom(fi)) ≠ ∅; if fi(x) is linear for some i, then the corresponding ri(dom(fi)) can be
replaced by dom(fi) in this condition. This is called the sum rule for conjugate functions. In row 7,
the partition of x is denoted as x1 . . . xm. Row 8 is called the linear substitution rule.

Table 1.2: Support functions of some popular sets.

Number S,S ≠ ∅ δ∗S(y) Reference

1 {x ∣ Ax = b} min
z
{b⊺z ∣ A⊺z = y} [39, page 380]

2 {x ∣ Ax ≤ b} min
z
{b⊺z ∣ A⊺z = y, z ≥ 0} [39, page 380]

3 {x ∣ ∥x∥p ≤ ρ} ρ∥y∥q, 1
p +

1
q = 1 [12, page 272]

4 S =
m

⋂
i=1

Si min
yi
{

m

∑
i=1

δ∗Si
(yi) ∣

m

∑
i=1

yi = y} [99, page 146]

7 S = S1 ×⋯ × Sm

m

∑
i=1

δ∗Si
(yi) , y1 . . . ym is a partition of y [12, page 294]

1.2 Fenchel Duality

In mathematical programming, the duality concept provides a powerful tool for understanding

and solving optimization problems. Identifying relationships between the primal and dual

problems provides valuable insights and alternative formulations. Fenchel Duality is a specific

form of duality based on the conjugate function. In this section, we provide a brief overview

of Fenchel duality.
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Definition 1.2.1 (Fenchel’s Dual of a Convex Programming, [101, 129]). Consider the

following primal convex optimization problem:

inf
y

g0(y)

s.t. gi(y) ≤ 0, i ∈ [m],
(P)

where the functions gi ∶ Rn → R̄, i ∈ [m0], are proper, closed, and convex. The Fenchel dual

of (P) is defined as

sup
λ,{wi}mi=0

−g∗0(w0) −
m

∑
i=1
(g∗i )per(wi, λi)

s.t. λ ≥ 0,
m

∑
i=0

wi = 0, w0 ∈ dom(g∗0),

(wi, λi) ∈ dom ((g∗i )per) , i ∈ [m].

(D)

For the ease of notation in (D), we use λig
∗
i (w

i

λi
) to denote (g∗i )per(wi, λi), even for λi = 0.

So, we write (D) as follows:

sup
λ,{wi}mi=0

−g∗0(w0) −
m

∑
i=1

λig
∗
i (w

i

λi
)

s.t. λ ≥ 0,
m

∑
i=0

wi = 0, w0 ∈ dom(g∗0),

wi

λi
∈ dom(g∗i ), i ∈ [m],

where wi

λi
∈ dom(g∗i ) for λi = 0 means δ∗dom(gi)(w

i) <∞.

Remark 1.2.1. In problem (D), the constraints corresponding to the domain are essential

and in many cases, they also lead to convex constraints for (D). Moreover, since (D) is a

maximization problem, these constraints hold explicitly. These constraints, in many cases,

enable us to eliminate the variables wi. For brevity, in [101, 129] the dual problem has been

written as follows:

sup
λ,{wi}mi=0

−g∗0(w0) −
m

∑
i=1

λig
∗
i (w

i

λi
)

s.t. λ ≥ 0,
m

∑
i=0

wi = 0.
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Definition 1.2.2 (Slater regularity). Problem (P) is Slater regular if there exists some

ys ∈ ∩i∈[m0]ri (dom(gi)), such that gi(ys) < 0 for all i ∈ [m].

It is important to note that if (P) is Slater regular, then the optimal values of (P) and (D)

are equal [129].

The following example presents the Fenchel dual of a general linear programming problem.

Example 1.2.1 (Linear Programming). We consider the standard linear programming

problem

inf
x

c⊺x

s.t. Ax = b,

x ≥ 0.

(LP)

The objective function is f(x) ∶= c⊺x. Let δS1(x) and δS2(x) denote as the indicator functions

of the sets S1 ∶= {x∣ Ax = b}, and S2 ∶= {x∣ x ≥ 0}, respectively. In this case, we consider the

function h(x) defined by

h(x) ∶= f(x) + δS1(x) + δS2(x),

and get the unconstrained problem

inf
x

h(x) (LP1)

The Fenchel’s dual is given by

sup
w0

−h∗ (w0)

s.t. w0 = 0,

w0 ∈ dom(h∗).

Now according to the sum rule for conjugate functions (see Table 1.1), we get

sup
y0,y1,y2

−f∗ (y0) − δ∗S1
(y1) − δ∗S2

(y2)

s.t. y0 + y1 + y2 = 0.
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Note that

f∗(y) = 0, dom(f∗) = {c},

δ∗S1
(y) =min

z
{b⊺z ∣ A⊺z = y} ,

δ∗S2
(y) = 0, dom(δ∗S2

) = {y ∣ y ≤ 0}.

Substitution of the expressions for f∗ and δ∗Si
(i = 1,2) yields the following formulation of

the dual problem:

sup
z,y0,y1,y2

−b⊺z

s.t. y0 + y1 + y2 = 0,

y0 = c,

A⊺z = y1,

y2 ≤ 0.

We can eliminate the vectors yi, which gives

sup
z
−b⊺z

s.t. −A⊺z ≤ c.

Changing the sign of z leads to the following well-known duality problem for linear optimization

sup
z

b⊺z

s.t. A⊺z ≤ c.

1.3 Robust Optimization

The concept of robust optimization was first introduced by Soyster in 1973, and later

developed by El Ghaoui, Ben-Tal, Nemirovski, Bertsimas, and den Hertog [111, 13, 22].

Mathematically, robust optimization involves defining an uncertainty set that encompasses
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all potential parameter values that a decision-maker wants to protect against. The goal

is to generate solutions that are feasible for all of these values or, in other words, for the

worst-case scenario within the uncertainty set.

Static robust optimization assumes that decisions must be made before the value of uncertain

parameters is known. Its objective is to find solutions that are robust to changes in the

value of these uncertain parameters. In contrast, Adjustable Robust Optimization (ARO)

relaxes this assumption by allowing some decisions to be made before the values of uncertain

parameters are known, referred to as “here-and-now” decisions, while other decisions, called

“wait-and-see” decisions, can be made after (part of) the uncertain parameter values are

revealed [14]. Before delving into the mathematical definitions of these two optimization

issues, it is important to briefly mention some sources of uncertainty.

There are various factors that contribute to uncertainty in parameters, with some of them

being difficult to determine. For instance, measurement errors arise from inaccuracies in

physical devices, such as thermometers or incomplete inventory data. On the other hand,

forecast errors result from imprecise knowledge of future demand for products, discount

rates, or resource prices. Implementation errors occur when there are inaccuracies in the

application of devices, such as electrical power or metal component lengths. The reliability

of past data, also known as veracity in the context of Big Data, is affected by various factors

such as wrongly entered data, missing observations, and other forms of data unreliability.

Even slight deviations from assumed parameter values can have significant effects, leading to

infeasible constraints or considerable losses in the objective function value. Therefore, it is

essential to employ optimization methods that can effectively account for and accommodate

uncertainty, as highlighted in [13].

In the rest of this chapter, we recall some definitions for robust optimization. The general

form of an uncertain nonlinear optimization problem is as follows

inf
x∈X

inf
y∈Y(x,u)

f0 (x, y, u) (1.1)

where x ∈ Rnx is a vector containing non-adjustable (also known as here-and-now or static)

decisions, y ∈ Y(x,u) ⊆ Rny is a vector containing adjustable (also known as wait-and-
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see) decisions, Y(x,u) = {y ∈ Rny ∶ fj (x, y, u) ≤ 0, j ∈ [m]}, u ∈ U ⊆ Rnu is an uncertain

parameter, U is the uncertainty set, and X ⊆ Rnx is a set with additional constraints on x.

The static and adjustable robust counterparts corresponding to uncertain problem (1.1) can

be defined as follows.

Definition 1.3.1 (Static Robust Optimization, [87]). The static Robust Counterpart (RC)

for uncertain problem (1.1) is defined by

inf
x∈X ,y

sup
u∈U

f0 (x, y, u)

s.t. sup
u∈U

fj (x, y, u) ≤ 0, j ∈ [m].
(RC)

Notably, mandating the constraint to hold in the worst-case scenario is tantamount to

enforcing a constraint that necessitates the proposition to hold for all feasible values of u

within the uncertainty set U , i.e.,

sup
u∈U

fj (x, y, u) ≤ 0⇐⇒ fj (x, y, u) ≤ 0, ∀u ∈ U .

The first form of the constraint implies that it can be reformulated if fj exhibits concavity in

its third argument, as optimizing a concave function is considered to be an easy task. When

fj is concave in u, computationally tractable reformulations of the robust counterpart can

be found [12].

Example 1.3.1. We illustrate how parameter uncertainty affects the following problem

min
x1,x2

−2x1 − x2

s.t. (2 + u)x1 + 4x2 ≤ 12,

x1, x2 ≥ 0,

with u as an uncertain parameter. If u = 0, as this is a simple instance, we can easily obtain

the optimal solution, which is x1 = 6, x2 = 0, resulting in an objective value of −12. We

consider u = 0 as nominal value. The corresponding optimal value (solution) is called the
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2 4 6

1

2

3

0

x2

x1

Figure 1.4: The robust feasible region.

nominal optimal value (solution). It is evident that any value of u greater than 0 renders the

nominal solution infeasible. In order to acquire a robust solution, we define an uncertainty

set for the parameter u, and for now, we will adhere to set U = {u ∣ 0 ≤ u ≤ 1}.

The feasible regions for different values of u within U exhibit overlapping sections. The

darkest area in Figure 1.4 represents the robust feasible region, encompassing the solutions

that are feasible for all u ∈ U .

In order to obtain a solution that is robust, meaning feasible regardless of the variation in u

within the uncertainty set, we must solve the following model:

min
x1,x2

−2x1 − x2

s.t. (2 + u)x1 + 4x2 ≤ 12, ∀u ∈ U

x1, x2 ≥ 0,

(1.2)

The model has an infinite number of constraints. Fortunately, we can reformulate this
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constraint as below to overcome this issue

(2 + u)x1 + 4x2 ≤ 12, ∀u ∈ U

⇐⇒ 2x1 +max
u∈U
{ux1} + 4x2 ≤ 12,

⇐⇒ 2x1 +min
z
{z ∣ z ≥ x1, z ≥ 0} + 4x2 ≤ 12,

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 + z + 4x2 ≤ 12,

z ≥ x1,

z ≥ 0.

The equivalence in the second line arises from a worst-case perspective. In the third line, we

employ strong duality in linear programming. Finally, in the last line, we utilize the fact that

the constraint is satisfied for the minimizer z ≥ 0 if and only if there exists an x ≥ 0 that

satisfies both 2x1 + z + 4x2 ≤ 12 and z ≥ x1. It should be noted that in the final statement, z is

not necessarily required to be the minimizer. So, by employing duality, the whole optimization

problem can be reformulated into an equivalent system of deterministic constraints

min
x1,x2,z

−2x1 − x2

s.t. 2x1 + z + 4x2 ≤ 12,

x1 − z ≤ 0,

x1, x2, z ≥ 0.

Therefore, the optimal robust solution is x1 = 4, x2 = 0, and z = 4 with optimal objective value

is −8. Note that, we know (1.2) is equivalent with

min
x1,x2

−2x1 − x2

s.t. 2x1 + 4x2 +max
u∈U
{ux1} ≤ 12,

x1, x2 ≥ 0.

Another trick to reach a deterministic version is the fact that the worst-case problem is a

linear programming problem, and we know that its optimal value lies among the vertices of
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the uncertainty region. By using vertex enumeration we get

min
x1,x2

−2x1 − x2

s.t. 2x1 + 4x2 ≤ 12,

2x1 + 4x2 + x1 ≤ 12,

x1, x2 ≥ 0.

The optimal robust solution of the last problem is x1 = 4 and x2 = 0 with the same optimal

value as before.

Assumption 1. In (1.1), we assume that fj ∶ Rnx ×Rny ×Rnu → R̄, j ∈ [m0] are convex in

x, proper, closed, and convex in y, and concave in u.

Definition 1.3.2 (Adjustable Robust Optimization, [87]). The Adjustable Robust Counter-

part (ARC) for uncertain problem (1.1) is defined by

inf
x∈X

sup
u∈U

inf
y

f0 (x, y, u)

s.t. fj (x, y, u) ≤ 0, j ∈ [m],
(ARC)

where x ∈ Rnx is a vector containing static (or here-and-now) decisions, and y ∈ Rny is a

vector containing adjustable (or wait-and-see) decisions.

Figure 1.5 provides a visual representation of (ARC). Here-and-now decision x should be

chosen without knowledge of the uncertainty and here-and-now decision y can be adjusted

according to realizing scenarios {u1, u2, u3, u4}.

x y

u1

u2
u3

u4

Figure 1.5: Adjustable robust optimization. The blue square is the uncertainty set U .
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Remark 1.3.1. The following representation, expressed as

inf
x∈X ,y(u)

sup
u∈U

f0 (x, y(u), u)

s.t. ∀u ∈ U ∶ fj (x, y(u), u) ≤ 0, j ∈ [m]
(1.3)

serves as an equivalent formulation of (ARC). While both the formulations (ARC) and (1.3)

are commonly used in various papers without proof of their equivalence, [113] provides a

formal proof establishing their equivalence. The formulation (1.3) is more intuitive when

solving the models via decision rule policy.

Definition 1.3.3 (Fixed Recourse Problem, [87]). Problem (1.1) has fixed-recourse when

fj(x, y, u) = f̂j(x,u) + ĝj(x, y), j ∈ [m0].

In this thesis, we consider a special case of the above notion defined as follows.

Definition 1.3.4 (Separable Fixed Recourse Problem). We say (1.1) has separable fixed-

recourse when

fj(x, y, u) = f̂j(x,u) + gj(y), j ∈ [m0].

1.4 Adjustable Robust Optimization Approximations

There is a wide range of methods available in the literature to tackle ARO problems. In this

context, we will emphasize some of the most notable approaches.

• Finite Scenario Approach: This approach involves consideration of a limited subset,

drawn from the uncertainty set, comprising a finite number of scenarios. Instead of

making decision rules, one can introduce a new single optimization variable to each

scenario. It should be noted that this approach does not serve as a complete solution

method, as it only ensures feasibility for a portion of scenarios within the uncertainty

set. The decisions derived from this approach may be infeasible in practice, and the



Adjustable Robust Optimization Approximations 16

objective value merely acts as a lower bound for the optimal objective value of the

adjustable robust optimization model [20]. Nevertheless, it remains a valuable approach

for evaluating the effectiveness of other solution methods. With careful selection, a

small set of scenarios within the subset can provide robust lower bounds. One possible

strategy for scenario selection is to consider the set of scenarios that activate the affine

adjustable robust model, as introduced in [66].

• Affine Decision Rules: For linear adjustable robust optimization problems this is an

approximate solution technique. The wait-and-see decision can be uniquely adapted to

individual scenarios via the use of affine decision rules for the variable y, which is a

function of the scenario u ∈ U . The approximation for the wait-and-see decisions can

be expressed as follows:

y(u) ∶= z +Zu,

where z ∈ Rny and Z ∈ Rny×nu are the auxiliary variables and jointly optimized

alongside the here-and-now decision variable x. While an explicit theorem establishing

the optimality gap between solving (ARC) problem with this affine decision rule is

yet to be found, empirical evidence indicates its excellent performance, particularly in

inventory problems [13, 14, 28].

• Piece-wise Design Policies: Another strategy that can be employed to approach

the upper bound for the optimal value of the (ARC) problem is the utilization of

piece-wise decision policies. These methods involve partitioning the uncertainty set into

smaller subsets and applying decision policies to adjustable (wait-and-see) variables.

In piece-wise constant policies, a distinct copy of the adjustable variable is assigned

to each partition. This approach is commonly known as the finite adaptability or

K-adaptability approach [67, 97]. In piece-wise linear policies, a piece-wise affine

decision rule is applied to the adjustable variables associated with each partition. As

a result of using this decision strategy, an upper bound approximation to the (ARC)

problem is obtained [23]. These piece-wise design policies allow the decision-making

process to be tailored to the different subsets of the uncertainty sets.

The decision rule showcased in Figure 1.6 illustrates how a decision rule can be
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constructed using piece-wise constant and affine policies. In piece-wise constant

policies, the wait-and-see decisions do not follow a continuous pattern but remain

constant for each subset of uncertainty.

Affine Decision Policy

y(u)

u ∈ UU

Partitioning: Piece-wise Constant

y(u)

U =
3

⋃
i=1
Ui

u ∈ UU1 U2 U3

Figure 1.6: Affine and piece-wise constant decision policies.

• Partitioning Uncertainty Set: Closely tied to piece-wise design policy, this scheme

involves partitioning the uncertainty set into K distinct subsets and assigning decision

rules to each partition. This concept was first introduced in [11, 114], where a prede-

termined partitioning approach was initially emphasized. Subsequently, an algorithmic

methodology for iterative partition refinement was introduced in [23, 97]. These papers

provide compelling examples that highlight the strong performance of this method.

However, it is important to note that not every refinement guarantees improvement,

and convergence may not be achieved for all problem instances. Furthermore, as the

partition is further refined, the size of the model increases accordingly.

• Fourier-Motzkin Elimination: This approach provides a solution for addressing

linear ARO problems with fixed recourse by employing Fourier-Motzkin elimination

(FME) to eliminate adjustable variables. It is important to note that FME can intro-

duce a significant number of additional constraints, potentially growing exponentially.

However, in the context of ARO in the linear case with a small number of adjustable

variables, FME has demonstrated its effectiveness in determining the optimal solution
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by eliminating all adjustable variables [128]. When dealing with larger models, a

possible strategy involves eliminating a specific subset of adjustable variables and

applying decision rules to the remaining variables.

To conclude the discussion on solution approaches, we will illustrate the concepts we have

discussed using the following example.

Example 1.4.1. Let us consider the following linear ARO problem

min
x,y(.)

3x

s.t. x − y(u) ≤ −u, ∀u ∈ [0,1]

−x + y(u) ≤ u + 2, ∀u ∈ [0,1]

y(u) ≥ 1. ∀u ∈ [0,1]

▷ Finite scenario approach: We restrict ourselves to only finite scenarios exclusively, as

below

S = {12 ,
2
5
} ⊆ [0,1].

Now, we can assign two individual variables y1 and y2 to each considered scenarios. The

optimal objective value of the deterministic optimization model below represents a lower

bound because we only guarantee feasibility for a strict subset of the uncertainty region.

min
x,y1,y2

3x

s.t. x − y1 ≤ −1
2 , −x + y1 ≤

1
2 + 2, y1 ≥ 1,

x − y2 ≤ −2
5 , −x + y2 ≤

2
5 + 2, y2 ≥ 1.

The optimal value is z∗1 = −21
5 .

▷ Affine decision rule: This approximate approach provides an upper bound on the optimal

value of the problem. By considering affine policy y(u) ∶= wu + z, we get the following static
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robust optimization model

min
x,w,z

3x

s.t. x − (wu + z) ≤ −u, ∀u ∈ [0,1]

−x + (wu + z) ≤ u + 1, ∀u ∈ [0,1]

(wu + z) ≥ 1. ∀u ∈ [0,1]

We emphasize that w and z are the static (or here-and-now) decision variables. So, we can

use static RO techniques to solve it. By using vertex enumeration, the optimal solutions are

w∗ = 1, z∗ = 1, and x∗ = −1 with the optimal value z∗2 = −3. Overall, we get the upper bound

and a decision rule:

y(u) = u + 1.

So, the moment we have the value of the uncertain parameter u, we have a value for the

adjustable variable y.

▷ Finite adaptability approach: By partitioning the uncertainty set into smaller subsets

[0, 12] and [12 ,1]. Instead of making decision policies, we apply constant decision rules to

adjustable (wait-and-see) variables on each partition, i.e., we can attach two individual

optimization variables y1 and y2 to each of the partitions. Therefor, we get the following

static RO problem

min
x,y1,y2

3x

s.t. x − y1 ≤ −u, ∀u ∈ [0, 12]

−x + y1 ≤ u + 2, ∀u ∈ [0, 12]

x − y2 ≤ −u, ∀u ∈ [12 ,1]

−x + y2 ≤ u + 2, ∀u ∈ [12 ,1]

y1, y2 ≥ 1.

By using the vertex enumeration technique, the optimal value of the last static RO problem

is z∗3 = −3. Hitherto, the optimal value of the original problem is in [−21
5 ,−3].
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▷ Fourier-Motzkin elimination: Note that for given u ∈ [0,1], in the main problem, we can

eliminate adjustable variable y(u), since

x − u ≤y(u),

y(u) ≤ u + x + 2,

1 ≤y(u).

So, we have

1 ≤ u + x + 2,

⇐⇒ 0 ≤ x + u + 1.

Note that other constraint in elimination process is u ≥ −1, due to u ∈ [0,1], which is

redundant. Finally, the next static RO problem is an equivalent reformulation of the main

ARO problem

min
x

3x

s.t. 0 ≤ x + u + 1, ∀u ∈ [0,1].

Obviously, the optimal value is z∗ = −3.

1.5 Uncertainty Sets

In this section, we delve into the classical choices for uncertainty sets in robust optimization.

These uncertainty sets play a crucial role in handling uncertain parameters and ensuring

robustness in the optimization process. By carefully defining and selecting the appropriate

uncertainty sets, we can proficiently manage uncertainties and make sound decisions that

are resilient to adverse conditions.

One of the commonly used uncertainty sets is the box uncertainty set. Within this set,

uncertain parameters are presumed to reside within predetermined bounds, creating a
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hyperrectangle or a box. It is mathematically described as follows

Ubox = {u ∈ Rnu ∶ L ≤ u ≤ U} ,

where L,U ∈ Rnu are given parameters. The box uncertainty set provides simplicity and

tractability, but it may lead to overly conservative solutions if the actual uncertainty

distribution significantly diverges from the assumed bounds.

Another classical option is the ellipsoidal uncertainty set. In contrast to the rigid box set, the

ellipsoidal uncertainty set provides greater flexibility in representing uncertainty, allowing

for a wider range of potential parameter values. Formally, it is expressed as follows

Uellipsoid = {u ∈ Rnu ∶ ∥Qu∥2 ≤ 1} ,

where Q ∈ Rnu×nu is given shape matrix. One notable advantage is its capacity to manage

conservatism. However, a limitation arises when incorporating nonlinear functions into the

model, which can pose challenges.

Polyhedral uncertainty set is another widely favored option in robust optimization. The

uncertain parameters are restricted to a polyhedron characterized by a collection of linear

inequalities. It is expressed by given parameters D ∈ Rr×nu and d ∈ Rr, as follows

Upolyhedral = {u ∈ Rnu ∶ Du ≤ d} .

The polyhedral uncertainty set has the ability to capture intricate uncertainties and offers a

versatile framework for modeling uncertainty, rendering it suitable for diverse applications.

Nevertheless, solving optimization problems involving polyhedral uncertainty sets can present

computational difficulties, particularly in the case of high-dimensional problems.

In Figure 1.7, classical uncertainty sets are depicted in the two-dimensional space R2.
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u1

u2

Ubox

u1

u2

Uellipsoid

Diu = di

Upolyhedral

Figure 1.7: Classical uncertainty sets.

1.6 Convex Quadratic Problems

Convex quadratic problems and their corresponding duals are important issues in optimization

theory. These types of problems involve minimizing a convex quadratic function subject to

linear constraints, and their dual problems involve maximizing a concave quadratic function

subject to linear constraints. In Table 1.3, we can see a list of different convex quadratic

problems and their corresponding Dorn dual problems. Proof of Dorn duality theorems for

quadratic programs has been shown using the duality theorem for linear programs [55].
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Table 1.3: Convex quadratic problems and their corresponding Dorn duals.

Primal Problem Type Dual Problem

I
min
x

1
2x
⊺Cx + p⊺x

s.t. Ax ≥ b,
x ≥ 0.

max
u,v
− 1

2u
⊺Cu + b⊺v

s.t. A⊺v −Cu ≤ p,
v ≥ 0.

II

min
x

1
2x
⊺Cx + p⊺x

s.t. Ax ≥ b.

max
u,v
− 1

2u
⊺Cu + b⊺v

s.t. A⊺v −Cu = p,
v ≥ 0.

III
min
x

1
2x
⊺Cx + p⊺x

s.t. Ax = b,
x ≥ 0.

max
u,v
− 1

2u
⊺Cu + b⊺v

s.t. A⊺v −Cu ≤ p.

IV
min
x

1
2x
⊺Cx + p⊺x

s.t. Ax = b.

max
u,v
− 1

2u
⊺Cu + b⊺v

s.t. A⊺v −Cu = p.

Note: Notice that at the optimal solution, in all the types listed above, u∗ = x∗.



Chapter 2
Linear Adjustable Robust Optimization

George Dantzig:

“... it is interesting to note that the original problem that started my research is

still outstanding - namely the problem of planning or scheduling dynamically over

time, particularly planning dynamically under uncertainty. If such a problem

could be successfully solved it could eventually through better planning contribute

to the well-being and stability of the world.”

According to static Robust Optimization (RO), all decisions must be made before uncertainty

is realized. However, this assumption does not hold true in many real-world problems. For

example, a location-transportation problem can be complicated by the fact that while the

locations of the production/storage facilities need to be decided as quickly as possible, it is

possible to delay deciding how many goods to deliver to each customer until their respective

uncertain demands are revealed. The Adjustable Robust Optimization (ARO) problem was

introduced to address uncertainty in such problems [14]. The purpose of this chapter is to

provide a short review of the literature relating to linear AROs.

2.1 Introduction

Consider the following family of uncertain Linear Programming problems:

{min
z
{c⊺z ∶ Az ≤ b}}

ζ≡[A,b,c]∈Z
(2.1)

24
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the parameters ζ, which consist of A, b, and c, vary within a specified uncertainty set

Z ⊂ Rm×n ×Rm ×Rn. Mathematically, the robust counterpart of uncertain problem (2.1) is

min
z

⎧⎪⎪⎨⎪⎪⎩
sup

ζ≡[A,b,c]∈Z
c⊺z ∶ Az ≤ b, ∀ζ ≡ [A, b, c] ∈ Z

⎫⎪⎪⎬⎪⎪⎭
. (2.2)

In the static robust optimization approach, all variables represent decisions that need to

be made prior to obtaining knowledge about the uncertain actual parameter realization.

The decision-making process in the real world often consists of multiple stages, allowing

for certain decisions to be made either after obtaining knowledge of the uncertain data or

accurately predicting it. The next example clarifies this.

Example 2.1.1. Consider a factory that produces P (t) units to satisfy demand dt on day

t = 1, 2. The actual value of dt becomes known only at the end of day t. The decision on how

much to produce on day t must be made at the beginning of that day. When choosing P (1),

we have no information about the actual demand, so P (1) represents a static decision. For

P (2), we already know the actual demand d1, so we can say P (2) is a function of d1. In

other words, the adjustable variables depend on part of the uncertain data.

All variables that can be influenced by the realizations of the data are referred to as adjustable,

while the remaining variables are categorized as static. This leads us to partition the vector

z of variables in (2.1) as z = (x⊺, y⊺)⊺, where the sub-vector x represents the static variables

and y represents the adjustable variables.

By making a clear distinction between the static and adjustable variables, we can express

problem (2.1) in an equivalent form as follows:

min
(τ,x),y

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ ∶ c⊺
⎛
⎜⎜⎜
⎝

x

y

⎞
⎟⎟⎟
⎠
≤ τ,Ux + V y ≤ b

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭[U,V,b,c]∈Z

(2.3)

and treat (τ, x) as the static part of the solution. In the above reformulation (2.1), the

objective function remains unaffected by both the uncertain data and the adjustable variables

y. From this point onwards, without loss of generality, we can assume that an uncertain LP
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problem can be rewritten as follows:

LPZ = {min
x,y

c⊺x ∶ Ux + V y ≤ b}
ζ=[U,V,b]∈Z

. (2.4)

Definition 2.1.1 ([14]). The adjustable robust counterpart of the uncertain problem LPZ

is defined as

min
x
{c⊺x ∶ ∀(ζ = [U,V, b] ∈ Z)∃y ∶ Ux + V y ≤ b} . (ARC-LP)

In contrast, the robust counterpart of LPZ is:

min
x
{c⊺x ∶ ∃y∀(ζ = [U,V, b] ∈ Z) ∶ Ux + V y ≤ b} . (RC-LP)

The greater flexibility of the (ARC-LP) compared to the (RC-LP) is evident, as former has

a larger robust feasible set that allows for a better optimal value while still adhering to all

potential constraint realizations. The distinction between (ARC-LP) and (RC-LP) can be

remarkably substantial, as illustrated in the two subsequent examples.

Example 2.1.2 (from [14]). Let us consider an uncertain LP problem with a single equality

constraint:

αx + βy = 1,

where the uncertain data (α,β) can take values in the uncertainty set

Z = {(α,β) ∣ α ∈ [12 ,1] , β ∈ [
1
2 ,1]} .

Then the feasible set of (RC-LP) is {x ∣ ∃y∀(α,β) ∈ Z ∶ αx + βy = 1} = ∅. This happens

because in particular for α = 1, for each β ∈ [12 ,1] the constraint x+βy = 1 implies x = 1, y = 0

as the unique solution. And then for each α ∈ [12 ,1] , α(1) + β(0) = 1 does not hold. At the

same time, the feasible set of the (ARC) is {x ∣ ∀(α,β) ∈ Z ∃y ∶ αx + βy = 1} = R, since for

any fixed x̄, the constraint can be satisfied by taking y = 1−αx̄
β .
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Example 2.1.3 (from [14]). Consider the following uncertain LP:

min
x,y
{−x ∶ (1 − 2ξ)x + y ≥ 0, ξx − y ≥ 0, x ≤ 1}0≤ξ≤1

Note that here the uncertainty ξ influences both the first and second constraints. It can be

easily seen that the optimal value of the robust counterpart of this problem is

min
x
{−x ∣ ∃y∀(ξ ∈ [0,1]) ∶ (1 − 2ξ)x + y ≥ 0, ξx − y ≥ 0, x ≤ 1} = 0,

achieved at the unique solution x = 0 and y = 0. The optimal value of (ARC) is

min
x
{−x ∣ ∀(ξ ∈ [0,1])∃y ∶ (1 − 2ξ)x + y ≥ 0, ξx − y ≥ 0, x ≤ 1} = −1,

where for any x̄ ≤ 1 we can take y = ξx̄ to obtain feasibility.

2.2 Approximation of Linear ARO

In the rest of this short chapter will cover some of the methods and approaches that have

been suggested in the literature to handle linear ARO problems. Several of these approaches

have been reviewed in the previous chapter. Now, we will be reviewing a wide variety of

non-decision policy approaches to solving linear ARO, which are presented here.

2.2.1 Dual Formulations

Along the lines of [21], consider the following ARO problem:

min
x∈X

c⊺x

s.t. ∀ζ ∈ U ,∃y ≥ 0 ∶ Ax +By ≥ Rζ + r,
(2.5)

where X ⊂ Rn is a set with additional constraints on the here-and-now decisions. The

wait-and-see variable y has dimension k and we denote the number of constraints in the

model by m. So, B ∈ Rm×k. Furthermore, we have c ∈ Rn,A ∈ Rm×n,R ∈ Rm×L and r ∈ Rm.

The matrix R is chosen constant in this model, so the model only has uncertainty on the
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right-hand side. Furthermore, U ∶= {ζ ∈ RL∣ Dζ ≤ d, ζ ≥ 0} is the polyhedral uncertainty set.

The main contributions of this part come from the following dual formulation of (2.5).

min
x∈X

c⊺x

s.t. ∀w ∈ V,∃λ ≥ 0 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w⊺(Ax − r) − d⊺λ ≥ 0,

D⊺λ ≥ R⊺w,

(2.6)

where V = {w ≥ 0 ∶ B⊺w ≤ 0, e⊺w = 1}. The above formulation is obtained by dual of (2.5)

over y, and then over ζ, and exploits the scalar multiplicity of the adjustable dual variable λ.

The dual formulation (2.6) is again an adjustable linear optimization model. Therefore, all

existing solution approaches for adjustable models can be used to solve or approximate the

dual formulation. The new dual model differs from the primal formulation in its dimension

and uses a different description of the uncertainty set. The relation between the optimal

primal affine policy can be directly obtained from the optimal affine policy in the dual

formulation. The dual formulation can reduce computational time to solve the original

problem.

2.2.2 Column-and-Constraint Generation

The approach of column-and-constraint generation was initially presented in [126] to address

the challenges of solving adjustable robust linear optimization problems.

Consider the following linear adjustable robust problem

min
x∈X

max
u∈U

min
y

a⊺x + b⊺y

s.t. Ax +By +Cu ≥ c,

y ≥ 0.

(2.7)

where a ∈ Rn, b ∈ Rm, c ∈ Rr,A ∈ Rr×n,B ∈ Rr×m,C ∈ Rr×l are the problem’s parameters and

U is a polytope of the form {u ∈ Rl ∶Du ≤ d, u ≥ 0} such that D ∈ Rq×l and d ∈ Rq. In general,

the column-and-constraint generation algorithm is used to find an optimal solution to linearly

adjustable problems. Based on a finite number of uncertainty realizations, it finds both a
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lower bound on the objective value and the corresponding here-and-now decision x, as well

as an upper bound on the wait-and-see objective if x is known.

Before discussing the full algorithm, here we shortly present the optimization problem that

will be used to obtain the lower bound in the first part of the algorithm. Given x, for any

V = {u1, . . . , uk} ⊆ U , a lower bound for the second-stage cost of (2.7) can be obtained using

the following optimization problem

Z(x,V ) = min
θ,{ys}1≤s≤k

a⊺x + θ

s.t. b⊺ys ≤ θ, s = 1, . . . , k

Ax +Bys +Cus ≥ c, s = 1, . . . , k

ys ≥ 0, s = 1, . . . , k.

Notice that given a here-and-now decision x and an uncertainty parameter u, the second-stage

cost is given by

Z(x,{u}) = min
y

b⊺y

s.t. Ax +By +Cu ≥ c,

y ≥ 0.

Given a here-and-now decision x, an upper bound on the second-stage cost is given by

Z̄(x) =max
u∈U

Z(x,{u}) ≡ a⊺x +max
u∈U

min
y

b⊺y

s.t. Ax +By +Cu ≥ c,

y ≥ 0,

and the uncertainty realization that results in this cost is given by

u(x) ∈ argmax
u∈U

Z(x,{u}).

Given these notations, the column-and-constraint generation algorithm is presented below.
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Column-and-Constraint Generation Method

Input: X ,A,B,C, a, b, c,D, d, ϵ > 0, u0 ∈ U

Initialization:

UB0 =∞, LB0 = −∞, V 0 = {u0} , k = 0

Repeat

- Update k ← k + 1

- Compute xk = argmin
x∈X

Z (x,V k−1) and the corresponding lower bound value

LBk = Z (xk, V k−1)

- Compute uk = u (xk) and the corresponding upper bound UBk = Z̄ (xk) ≡

Z (xk,{uk}).

- Update V k ← V k−1⋃{uk}

Until: UBk−LBk

max(min(∣LBk ∣,∣UBk ∣),1) < ϵ.

Return: xk, UBk.

This approach sometimes, and in some applications often, produces infeasible here-and-now

solutions, even though the problem is feasible. However, this concern was successfully

addressed and resolved in a later work, documented in [30].

2.2.3 Copositive Approach

It is possible to reformulate the linear adjustable problem as a copositive optimization

problem, which in turn leads to tractable, semi-definite-based approximations at least as

good as the affine policy under some assumptions [122].

In this section, we consider a robust linear optimization problem with uncertainty on the

right-hand side to review this approximation as follows:

min
x∈X

max
u∈U

min
y

c⊺x + d⊺y

s.t. Ax +By ≥ Fu,

(2.8)

where A ∈ Rm×n1 ,B ∈ Rm×n2 , c ∈ Rn1 , d ∈ Rn2 , F ∈ Rm×k and X ⊆ Rn1 is a convex and closed

set containing the here-and-know decision x. The nonempty full-dimensional uncertainty set
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U ⊆ Rk is convex and compact.

Within (2.8), define

π(x) ∶=max
u∈U

min
y∈Rn2

{d⊺y∣ By ≥ Fu −Ax} .

The dual of inner minimization is

max
w∈W
(Fu −Ax)⊺w,

where W ∶= {w ≥ 0∣ B⊺w = d}. Hence, strong duality for linear programming implies

π(x) = max
(u,w)∈U×W

(Fu −Ax)⊺w.

In [122] it has been proved that the copositive representation of the above is

π(x) =max tr ((F −Axe⊺1)
⊺
Z21)

s.t. diag (EZE⊺) = 0,

Z ∈ CPP (Û ×Rm
+ ) ,

tr ((g1g⊺1)⊺Z) = 1,

(2.9)

where Û is the full-dimensional homogenization cone of U , CPP (⋅) denote completely positive

cone, E ∈ Rn2×(k+m) is a matrix with structure E = (−de⊺1 B⊺), e1 ∈ Rk and g1 ∈ Rk+m are

the first unit vector, and Z ∈ R(k+m)×(k+m) is a symmetric matrix with the block structure

Z =
⎛
⎜⎜⎜
⎝

Z11 Z⊺21

Z21 Z22

⎞
⎟⎟⎟
⎠
. Then applying standard conic duality theory on (2.9) implies copositive

relation of original ARO. See [122] for more details.

2.3 Conclusion

We conclude this chapter with the last sentence of the survey paper [123]:

“Finally, adjustable robust nonlinear optimization appears to be very

difficult, and since there is almost no literature about this topic, much

more research is needed.”



Chapter 3
A Dual-Based Cutting Plane Algorithm for

Nonlinear Adjustable Robust Optimization

Werner Heisenberg:

“Uncertainty is NOT I don’t know. It is I can’t know. I am uncertain does not

mean I could be certain.”

3.1 Introduction

Most studies in Adjustable Robust Optimization (ARO) problems are focusing on linear and

integer-linear [5, 26, 68]; for more additional details, see the survey paper [123]. There are

only a few papers devoted to the nonlinear case due to its theoretical and computational

challenges. In [113], the authors considered a nonlinear ARO problem with a polytope

uncertainty set and proposed a method to solve such problems under some quasi-convexity

conditions. ARO models with second-order cone constraints and ellipsoidal uncertainty sets

are considered in [38], where the authors show that applying the affine decision rule would

result in a semi-definite optimization problem. In [52], the authors considered a nonlinear

ARO model with linear uncertainty (the functions are linear in the uncertain parameters

and the uncertainty set is a polyhedron), and derive an equivalent ARO problem, which is

linear in the wait-and-see decisions.

In this chapter, we show how to use duality to reformulation a general nonlinear ARO problem

and solve it. More specifically, the main contribution of our work can be summarized as

follows:

32
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• First, we consider a general nonlinear adjustable robust optimization problem. Applying

Fenchel’s duality and dualizing over the continuous wait-and-see decisions, we obtain

an equivalent static robust optimization reformulation (dual reformulation). Then, we

provide conditions under which the dual reformulation is convex on decision variables.

• Second, we show under some conditions that a convex relaxation of the dual refor-

mulation is equivalent to approximating the ARO problem using constant decision

rule.

• Finally, we design an algorithm based on the dual reformulation. The algorithm consists

of two main phases: In the first phase, we use an alternating method exploiting the

structure of the dual reformulation. We show under which conditions, the alternating

method converges to a local worst-case scenario within the uncertainty set. In the

second phase, we use finite-scenario approach, given the obtained scenarios in the first

phase, to find a solution. Given this solution, we find new local worst-case scenarios

and repeat this two-phase procedure until satisfying a stopping criterion. Using this

algorithm, we have a lower bound on the original problem and obtain a locally robust

solution (The term “local” is used as we obtain a robust solution taking a part of the

uncertainty set into account). We further improve the lower bound by introducing new

cuts. Our computational results show that our algorithm can provide a locally robust

solution with an acceptable optimality gap.

The main results of this chapter have been appeared in

[76] Khademi, A., Marandi, A., & Soleimani-damaneh, M. (2023). A New Dual-Based Cutting

Plane Algorithm for Nonlinear Adjustable Robust Optimization. Journal of Global

Optimization.

The rest of the chapter is organized as follows. We reformulate a general nonlinear adjustable

robust problem as a nonlinear static robust counterpart using Fenchel’s duality in Section

3.2. In Section 3.3, we apply a convex relaxation technique on the dual reformulation to

obtain an upper bound and show the relationship between the corresponding static robust

counterpart of the ARO problem and this relaxation. Finally, we propose a new algorithm in

Section 3.4 to construct a lower bound and obtain a locally robust solution. Our numerical
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results are presented in Section 3.5.

3.2 Dual Reformulation

In this section, we derive the dual formulation of (ARC). In the next theorem, we show how

Fenchel duality is used for this goal.

Theorem 2. Let Assumption 1 hold. Also, in (ARC) let us assume that

∀(x ∈ X , u ∈ U),∃y ∶ fj (x, y, u) < 0, j ∈ [m]. (3.1)

Then, (ARC) is equivalent to the nonlinear static robust counterpart

inf
x∈X ,τ

τ

s.t. −f∗20 (x,w0, u) −
m

∑
j=1

λjf
∗2
j (x, w

j

λj
, u) ≤ τ, ∀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ

{wj}mj=0

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Z,
(3.2)

where

Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ

{wj}mj=0

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Rm+ny(m+1)+nu

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

λ ≥ 0, u ∈ U ,
m

∑
j=0

wj = 0,

w0 ∈ dom (f∗20 (x, ⋅, u)) ,

wj

λj
∈ dom (f∗2j (x, ⋅, u)) , j ∈ [m]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. In (ARC), we consider the inner minimization problem over y for a given x ∈ X and

u ∈ U . Because of (3.1) and Assumption 1, we know for the given x ∈ X and u ∈ U , the inner

minimization is Slater regular. Therefore, we can apply Fenchel’s duality (Definition 1.2.1),
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and rewrite (ARC) as follows:

inf
x∈X

sup
u∈U

sup
λ,wj

−f∗20 (x,w0, u) −
m

∑
j=1

λjf
∗2
j (x, w

j

λj
, u)

s.t.
m

∑
j=0

wj = 0, λ ≥ 0,

w0 ∈ dom (f∗20 (x, ⋅, u)) , wj

λj
∈ dom (f∗2j (x, ⋅, u)) , j ∈ [m].

Therefore, (ARC) can be reformulated as

inf
x∈X

sup
u∈U ,λ,wj

−f∗20 (x,w0, u) −
m

∑
j=1

λjf
∗2
j (x, w

j

λj
, u)

s.t.
m

∑
j=0

wj = 0, λ ≥ 0,

w0 ∈ dom (f∗20 (x, ⋅, u)) , wj

λj
∈ dom (f∗2j (x, ⋅, u)) , j ∈ [m].

Using the definition of Z and epigraph reformulation, we may rewrite problem (ARC) as

(3.2), which completes the proof.

The above theorem shows that a nonlinear adjustable robust optimization can be reformulated

as a nonlinear static robust optimization under a Slater condition. In the equivalent dual

reformulation (3.2), the uncertain parameters include the dual multipliers (i.e., λ,{wj}mj=0),

in addition to the original uncertain parameter u.

The conjugate functions and their domains can be easily computed for a wide range of convex

functions; see, e.g., [101, Table E.1].

In the proof of the above theorem, we did not use the convexity of fj functions on x and

their concavity on u. However, we usually take convex functions on decision variables and

concave functions on uncertain parameters to get tractable models. The benefit of the dual

reformulation obtained in Theorem 2 is that we can get upper and lower bounds for the

optimal objective value of the original model (ARC). Later, in Sections 3.3 and 3.4, we

explain how to achieve these goals.

In the following corollary, we derive the formulation of the dual problem for cases where

fj(x, y, u), j ∈ [m0] are separable.
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Corollary 3.2.1. Consider the following ARC:

inf
x∈X

sup
u∈U

inf
y

f̂0(x) + h0(u) + g0(y)

s.t. f̂j(x) + hj(u) + gj(y) ≤ 0, j ∈ [m].
(3.3)

Let gj be proper, convex, and closed in y. Assume that there exists some y such that

gj(y) < − sup
x∈X

f̂j(x) − sup
u∈U

hj(u), j ∈ [m].

Then, the nonlinear ARC (3.3) is equivalent to the following static RO problem

inf
x∈X ,τ

τ

s.t.
m

∑
j=0

λj f̂j(x) +
m

∑
j=0

λjhj(u) −
m

∑
j=0

λjgj
∗(wj

λj
) ≤ τ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ

{wj}mj=0

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ P,

where

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ

{wj}mj=0

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

u ∈ U ,
m

∑
j=0

wj = 0,

λ0 = 1, λj ≥ 0,

wj

λj
∈ dom(g∗j ), j ∈ [m0]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. By setting fj (x, y, u) ∶= f̂j(x) + hj(u) + gj(y), for λj > 0 we have

λjfj
∗2(x, wj

λj
, u) = λj sup

y
{(wj

λj
)
⊺
y − fj (x, y, u)}

= sup
y
{(wj)⊺ y − λj (f̂j(x) + hj(u) + gj(y))}

= sup
y
{(wj)⊺ y − λj f̂j(x) − λjhj(u) − λjgj(y)}

= −λj f̂j(x) − λjhj(u) + sup
y
{(wj)⊺ y − λjgj(y)}

= −λj f̂j(x) − λjhj(u) + λj sup
y
{(wj

λj
)
⊺
y − gj(y)}

= −λj f̂j(x) − λjhj(u) + λjgj
∗(wj

λj
).
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Furthermore, for λj = 0 we have

λjfj
∗2(x, wj

λj
, u) = δ∗

dom((fj∗2)∗2(x,⋅,u))(w
j)

= δ∗dom(fj(x,⋅,u))(w
j)

= δ∗dom(gj)(w
j)

= δ∗dom(gj∗)∗(w
j),

where the first equality follows from the definition of the partial convex perspective, the

second equality holds because of the closedness and convexity of fj(x, ⋅, u). Therefore,

Theorem 2 and the above equivalences concludes the corollary.

A natural question is whether (ARC) (or its equivalent form (3.2)) is convex with respect

to x. In other words, for a given optimal decision rule and a worst-case scenario, whether

optimization on x is convex. The following example shows that the answer to this question

is negative in general.

Example 3.2.1. Consider an instance of (ARC) with m = 1, X = [1,+∞), U = [1,2],

f0(x, y, u) = x2uy, and f1(x, y, u) = −x + 1
2y

2 − u. The partial conjugate of f0 and f1 with

respect to their second argument are given by

f∗20 (x,w0, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, w0 = x2u,

∞, w0 ≠ x2u,
f∗21 (x,w1, u) = x + (w

1)2
2 + u.

Thus, the dual reformulation of (ARC) for this example is

inf
x∈X

sup
u∈U ,λ,w0,w1

−f∗20 (x,w0, u) − λf∗21 (x, w
1

λ , u)

s.t. w0 +w1 = 0, λ ≥ 0,

w0 ∈ dom (f∗20 (x, ⋅, u)) , w1

λ ∈ dom (f
∗2
1 (x, ⋅, u)) .

(3.4)
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For fixed x and u, if λ = 0, then

−λf∗21 (x, w
1

λ , u) = −δ∗
dom((fj∗2)∗2(x,⋅,u))(w

1)

= −δ∗dom(fj(x,⋅,u))(w
1)

= −δ∗R(w1) = −δ{0}(w1).

Thus, −λf∗21 (x, w
1

λ , u) = −∞ when w1 ≠ 0. Furthermore, w1 = 0 is infeasible, due to

w1 = −w0 = −x2u ≠ 0. So we can ignore λ = 0.

So, (3.4) is equivalent to

inf
x∈X

sup
u∈U

sup
λ,w0,w1

− (w
1)2
2λ − λ(x + u)

s.t. w0 +w1 = 0, λ > 0, w0 = x2u.
(3.5)

Given x and u, the inner suprimum can be written as

sup
λ>0
−x4u2

2λ − λ(x + u), (3.6)

as we know x ≥ 1 and u ≥ 1. Moreover, the objective function is concave in λ. So, the

supremum happens at λ =
√

x4u2

2(x+u) . Hence, (3.5) is equivalent to

inf
x∈X

sup
u∈U
−
√
2x2u

√
x + u.

Given x ≥ 1, the inner suprimum is sup{−
√
2x2u

√
x + u∣ u ∈ [1,2]}, whose objective function

is decreasing on the given interval [1,2]. Therefore, u = 1 is the worst-case scenario, and so

sup
u∈U
−
√
2x2u

√
x + u = −

√
2x2
√
x + 1.

Finally, we get inf
x
{−
√
2x2
√
x + 1∣ x ∈ X}, which is a non-convex problem.

Remark 3.2.1. Note that

fj
∗2(x,wj , u) = sup

y
{(wj)⊺ y − fj (x, y, u)}
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implies

−fj∗2(x,wj , u) = inf
y
{− (wj)⊺ y + fj (x, y, u)} .

Indeed, the function Kwj ,y,u(x) ∶= − (wj)⊺ y + fj (x, y, u) is convex on x for any wj , y, u,

but the inf operator breaks down the convexity. In other words, the conjugate function

−fj∗2(x,wj , u) is not convex in x. Therefore, based on the dual formulation, we see if the

conjugate function −fj∗2(x,wj , u) is convex in x, then the problem is a convex optimization

problem in x. In the next theorem, we show this for separable fixed-recourse problems.

Theorem 3. Under the assumption of Theorem 2, if (ARC) is separable fixed-recourse,

then the dual reformulation of (ARC) is convex in x.

Proof. Since fj(x, y, u) = f̂j(x,u) + gj(y) for all j ∈ [m0], according to Theorem 2, (ARC) is

equivalent to

inf
x∈X

sup
u∈U ,λj ,wj

m

∑
j=0

λj f̂j(x,u) −
m

∑
j=0

λjgj
∗(wj

λj
)

s.t.
m

∑
j=0

wj = 0, λ0 = 1, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0), wj

λj
∈ dom(g∗j ), j ∈ [m].

(3.7)

Note that f̂j(x,u) is convex on x for each j ∈ [m0]. By denoting

Fu,λ,wj(x) ∶=
m

∑
j=0

λj f̂j(x,u) −
m

∑
j=0

λjgj
∗(wj

λj
), and F(x) ∶= sup

u,λ,wj

Fu,λ,wj(x),

which are convex on x, problem (3.7) is equivalent to inf
x∈X
F(x) which is a convex optimization

problem.

Considering Theorem 3, we focus on separable fixed-recourse case in the rest of the chapter.
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3.3 On Upper Bound Calculation

In this section, we assume that the non-empty uncertainty set U has the following structure:

U ∶= {u ∈ Rnu ∣ ci(u) ≤ 0, i ∈ [t]} ,

where the function ci ∶ Rnu → R̄ is proper, closed, and convex for each i ∈ [t].

In the next theorem, we show how using perspective functions result in an upper bound for

(3.7).

Theorem 4. For any fixed x ∈ X , let f̂j(x,u) be proper and concave in u for each j ∈ [m0].

Then,

sup
u,λj ,wj ,θj

m

∑
j=0

λj f̂j(x, θ
j

λj
) −

m

∑
j=0

λjgj
∗(wj

λj
)

s.t.
m

∑
j=0

wj = 0, λ0 = 1, θ0 = u, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0), wj

λj
∈ dom(g∗j ), j ∈ [m],

λjci( θ
j

λj
) ≤ 0, j ∈ [m0], i ∈ [t],

(3.8)

provides an upper bound on the optimal value of

sup
u,λj ,wj

m

∑
j=0

λj f̂j(x,u) −
m

∑
j=0

λjgj
∗(wj

λj
)

s.t.
m

∑
j=0

wj = 0, λ0 = 1, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0), wj

λj
∈ dom(g∗j ), j ∈ [m],

ci(u) ≤ 0, i ∈ [t].

(3.9)

Proof. We show that any feasible solution to (3.9) corresponds to a feasible solution to (3.8)

with the same objective value. For this goal, for any solution (u,λ,{wj}mj=0), define θj ∶= λju

for each j ∈ [m]. We prove that (u,λ,{wj}mj=0,{θj}mj=1) is a feasible solution to (3.8). For

each j ∈ [m] and i ∈ [t] with λj > 0 obviously we have λjci( θ
j

λj
) ≤ 0. If λj = 0 for some j ∈ [m],

we get θj = 0 and

0ci(0/0) = δ∗dom(c∗i )(0) = 0, ∀i ∈ [t],
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where the first equality follows from the definition of the convex perspective, and the

second equality holds because the conjugate function of a proper convex function is also

proper (from [9, Theorem 4.5]), and so dom(c∗i ) ≠ ∅. All other constraints of (3.8) are

clearly satisfied. Now, we show that the objective value at (u,λ,{wj}mj=0) in (3.9) equals

to that value at (u,λ,{wj}mj=0,{θj}mj=1) in (3.8). To this end, it is sufficient to show that

λj f̂j(x, θ
j

λj
) = λj f̂j(x,u) for all j ∈ [m]. It is trivial for the case λj > 0. If λj = 0 for some

j ∈ [m], then θj = 0, and so

0f̂j(x,0/0) = −δ∗dom((−f̂j)∗2(x,.))(0) = 0 = 0f̂j(x,u),

where the first equality follows from the definition of the partial concave perspective, and

the second equality holds because (for any x) the partial conjugate (−f̂j)∗2(x, .) of proper

convex function −f̂j(x, .) is also proper, leading to dom ((−f̂j)∗2(x, .)) ≠ ∅.

Problem (3.9) is not a convex programming in general, while problem (3.8) is. More

specifically, by lifting the problem to a higher dimension and using the perspective functions,

we obtain a concave relaxation on λj ,w
j , θj . This approach has been recently used in the

literature of nonlinear optimization for other purposes [50, 81, 117]. In the next example, we

show that this relaxation may not be tight.

Example 3.3.1. Let x ∈ X . Consider an instance of problem (3.9) with t =m = 1, nu = 1,

ny = 2, f̂0(x,u) = −u2, f̂1(x,u) = 1
u , c1(u) = u + 1, g0(y) = y1, and g1(y) = 1

2y
⊺y + y2. Set

p0 ∶= (1,0)⊺, p1 ∶= (0,1)⊺. The conjugates of g0 and g1 are given by

g∗0(w0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, w0 = p0,

∞, w0 ≠ p0,

g∗1(w1) = 1
2
(w1 − p1)⊺ (w1 − p1) .
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Hence, problem (3.9) in this example reads as

sup
u,λ1,w0,w1

f̂0(x,u) + λ1f̂1(x,u) − g∗0(w0) − λ1g
∗
1(w

1

λ1
)

s.t. λ1 ≥ 0, w0 +w1 = 0, u ≤ −1,

w0 = p0.

If λ1 = 0 in some feasible solution of the above problem, then

−λ1g
∗
1(w

1

λ1
) = −δ∗dom(g1)(w

1) = −δ{0}(w1).

So, −λ1g
∗
1(w

1

λ1
) = −∞ when w1 ≠ 0. Furthermore, w1 = 0 is infeasible, due to w1 = −w0 =

−p0 = (−1,0)⊺. Hence, we can ignore λ1 = 0. Now, due to w0 = p0 and w0 +w1 = 0, the last

problem can be rewritten as

z1 ∶= sup
u,λ1

−u2 + λ1

u −
1
2 (λ1 + 1

λ1
)

s.t. λ1 > 0, u ≤ −1.

Let us denote the objective function of the last problem by

J(u,λ1) = −u2 + λ1

u −
1
2 (λ1 + 1

λ1
) .

This function is bounded above over the feasible set K = {(u,λ1)∣ u ≤ −1, λ1 > 0}. To obtain

z1, first we examine the points for which the gradient of J(⋅, ⋅) vanishes. We have

∇J(u,λ1) = (−2u − λ1

u2 ,
1
u −

1
2 +

1
2λ2

1
)⊺.

Thus, ∇J(u,λ1) = 0 implies λ1 = −2u3, and −4u6 + 8u5 + 1 = 0. On the other hand, u ≤ −1

(feasibility) leads −4u6 + 8u5 + 1 < 0. So, the maximizers of J(u,λ1) are not in the interior

of the feasible set K. They are on the boundary of K, i.e., λ1 = 0 or u = −1. As λ1 > 0, we
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continue with u = −1, and we have

sup
λ1>0

−1 − λ1 − 1
2 (λ1 + 1

λ1
) .

The optimal solution of the above problem occurs at λ1 = 1√
3
, and hence z1 = −1 −

√
3.

Analogously, problem (3.8) in this example is

z2 ∶= sup
u,λ1,θ1

−u2 + (λ1)2
θ1
− 1

2 (λ1 + 1
λ1
)

s.t. λ1 > 0, u ≤ −1, θ1 ≤ −λ1.

It is not difficult to see that −2 is an upper bound for the objective function of the above

problem on its feasible region. Furthermore, the objective value at the feasible sequence

{un = −1, (λ1)n = 1, (θ1)n = −n}n≥1 equals to −2 − 1
n which goes to −2 as n → +∞. This

implies z2 = −2. Therefore, z1 = −1 −
√
3 < −2 = z2.

In Theorem 4, x ∈ X is fixed and arbitrary. Now, by taking minimum over all x ∈ X in (3.9)

and (3.8), we obtain an upper bound for the separable fixed-recourse version of the dual

reformulation of (ARC) as follow:

inf
x∈X

sup
u,λj ,wj ,θj

m

∑
j=0

λj f̂j(x, θ
j

λj
) −

m

∑
j=0

λjgj
∗(wj

λj
)

s.t.
m

∑
j=0

wj = 0, λ0 = 1, θ0 = u, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0), wj

λj
∈ dom(g∗j ), j ∈ [m],

λjci( θ
j

λj
) ≤ 0, j ∈ [m0], i ∈ [t].

(PERS)

We call this problem (PERS) as it is obtained by using a perspectification approach corre-

sponding to problem (3.7). Moreover, (PERS) is a convex-concave programming, while it is

not the case for (3.7).

Problem (PERS) can be seen as a relaxation of the dual reformulation of (ARC) when it

has fixed-recourse. So, it is important to know the interpretation of such a relaxation for the

primal problem, i.e., (ARC). The next theorem shows that (PERS) is actually equivalent to
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the static robust counterpart (RC) in the separable fixed-recourse case when the uncertainty

set is compact.

Theorem 5. Consider (RC) with separable fixed-recourse as follows:

inf
x∈X ,y

sup
u∈U

f̂0(x,u) + g0(y)

s.t. sup
u∈U

f̂j(x,u) + gj(y) ≤ 0, j ∈ [m].
(3.10)

Suppose that the uncertainty set U is compact, f̂j is proper concave in u, and gj is closed

convex and real-valued, for each j ∈ [m0]. If

∀x ∈ X ∃y such that sup
u∈U

f̂j(x,u) + gj(y) < 0, j ∈ [m],

then (PERS) and static robust counterpart (3.10) are equivalent.

Proof. Without loss of generality, since U is compact, we assume that there exists some i,

for which ci(u) = ∣∣u∣∣2 − ρ, for some ρ > 0. By setting Fj(x) ∶= sup
u
{f̂j(x,u)∣ u ∈ U} for each

j ∈ [m0] and x ∈ X , we can rewrite (3.10) as

inf
x∈X ,y∈Rny

F0(x) + g0(y)

s.t. Fj(x) + gj(y) ≤ 0, j ∈ [m].
(3.11)

By applying the Fenchel’s duality over y, (3.11) is equivalent to

inf
x∈X

sup
λj ,wj

m

∑
j=0

λjFj(x) −
m

∑
j=0

λjgj
∗(wj

λj
)

s.t.
m

∑
j=0

wj = 0, λ0 = 1, λj ≥ 0, j ∈ [m],

w0 ∈ dom(g∗0), wj

λj
∈ dom(g∗j ), j ∈ [m].

(RC-1)

Now, we show that, for a given x ∈ X , the inner suprimums of (RC-1) and (PERS) have the

same optimal value. To prove this claim, let x ∈ X be fixed. Let (u,λ,{wj}mj=0,{θj}mj=1) be a

feasible solution for the inner suprimum in (PERS).
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If λj > 0, then

λjci( θ
j

λj
) ≤ 0, ∀i ∈ [t]⇒ ci( θ

j

λj
) ≤ 0, ∀i ∈ [t]

⇒ θj

λj
∈ U ⇒ f̂j(x, θ

j

λj
) ≤ Fj(x)

⇒ λj f̂j(x, θ
j

λj
) ≤ λjFj(x).

If λj = 0, then θj = 0. To prove this, as ci(u) = ∥u∥2 − ρ for some ρ > 0 and some i ∈ [t], by

taking λj = 0 into account, we have

0 ≥ λjci( θ
j

λj
) = δ∗dom(c∗i )(θ

j) = sup
∥γ∥2≤1

{γ⊺θj} = ∥θj∥2 ≥ 0.

This implies θj = 0. Hence, in this case

λj f̂j(x, θ
j

λj
) = −δ∗dom((−fj)∗2(x,.))(0) = 0 = λjFj(x),

where first equality comes from the definition of the partial concave perspective, and the

second equality holds as dom ((−fk)∗2(x, .)) ≠ ∅. So,

λj f̂j(x, θ
j

λj
) ≤ λjFj(x), j ∈ [m0].

Summing over j yields ∑j λj f̂j(x, θ
j

λj
) ≤ ∑j λjFj(x). Thus,

m

∑
j=0

λj f̂j(x, θ
j

λj
) −

m

∑
j=0

λjgj
∗(wj

λj
) ≤

m

∑
j=0

λjFj(x) −
m

∑
j=0

λjgj
∗(wj

λj
).

Therefore, the optimal value of the objective function of the inner suprimum in (PERS) is

less than or equal to that in (RC-1).

Conversely, let (λ̄,{w̄j}mj=0) be a feasible solution for inner suprimum of (RC-1). By choosing

ūj ∈ argmax{f̂j(x,u)∣ u ∈ U}, j ∈ [m0],
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and setting

θ̄j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ̄j ū
j , λj > 0,

0, λj = 0,
j ∈ [m],

and then setting θ̄0 = ū0, the vector (ū0, λ̄,{w̄j}mj=0,{θ̄j}mj=1) is feasible for (PERS). Further-

more, for λ̄j > 0,

λ̄jFj(x) = λ̄j sup
u∈U

f̂j(x,u) = λ̄j f̂j(x, ūj) = λ̄j f̂j(x, θ̄
j

λ̄j
).

This equality is trivial for λ̄j = 0. Hence,

m

∑
j=0

λ̄jFj(x) −
m

∑
j=0

λ̄jgj
∗( w̄j

λ̄j
) =

m

∑
j=0

λ̄j f̂j(x, θ̄
j

λ̄j
) −

m

∑
j=0

λjgj
∗( w̄j

λ̄j
).

This implies that the optimal value of the objective function of (RC-1) is less than or equal

to that in (PERS). This completes the proof.

Theorem 5 states that, under some assumptions, the upper bound obtained based on

the perspective relaxation of the dual reformulation of (ARC) is the same as the robust

counterpart, which is a conservative approximation. In other words, the perspectification

approach yields an upper bound for (ARC); nevertheless, there are stronger upper bounds in

the literature of adjustable robust optimization, such as K-adaptability or finite adaptability

approaches [97, 112], which can straightforwardly be extended to nonlinear problems. One

way to obtain a stronger upper bound is by applying a piece-wise constant decision rule to

(ARC) using finite adaptability approach. In this approach, the uncertainty set is partitioned

into subsets and a constant decision rule is obtained for each of the subsets. In the numerical

experiments, we show how much stronger the upper bound obtained by finite adaptability

compared to the one obtained from (PERS).

3.4 Lower Bound Calculation

In Section 3.2, we showed that the dual reformulation of (ARC) in the fixed-resource case

is a convex programming on here-and-now decision variables. We have also shown how to
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construct an upper bound. In this section, we design methods to approximate (ARC) from

below. Let us set

v ∶=
⎛
⎜⎜⎜
⎝

λ

{wj}mj=0

⎞
⎟⎟⎟
⎠
∈ Rm ×Rny(m+1),

G(v) ∶= −g∗0(w0) −
m

∑
j=1

λjgj
∗(wj

λj
),

V ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v =
⎛
⎜⎜⎜
⎝

λ

{wj}mj=0

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

m

∑
j=0

wj = 0, λ ≥ 0,

w0 ∈ dom(g∗0),

wj

λj
∈ dom(g∗j ), j ∈ [m]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since λjgj
∗(wj

λj
) is jointly convex in (wj , λj), the set V is convex and G is a concave function.

The next proposition proves the convexity of the set V and the concavity of the function G.

Proposition 3.4.1. The set V is convex, and G is a concave function on V.

Proof. We consider two points v̄ =
⎛
⎜⎜⎜
⎝

λ̄

{w̄j}mj=0

⎞
⎟⎟⎟
⎠
, ṽ =

⎛
⎜⎜⎜
⎝

λ̃

{w̃j}mj=0

⎞
⎟⎟⎟
⎠
∈ V and ℓ ∈ [0,1]. Since

w̄j

λ̄j
, w̃

j

λ̃j
∈ dom(g∗j ), and λjgj

∗(wj

λj
) for each j is jointly convex in (wj , λj), we have the

following possible cases:

Case 1. ℓλ̄j + (1 − ℓ)λ̃j > 0 ∶ In this case,

(ℓλ̄j + (1 − ℓ)λ̃j)g∗j (
ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

) ≤ ℓλ̄jg
∗
j (

w̄j

λ̄j
) + (1 − ℓ)λ̃jg

∗
j (

w̃j

λ̃j

) <∞

⇒ ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

∈ dom(g∗j )

Case 2. ℓλ̄j + (1 − ℓ)λ̃j = 0 ∶ In this case, if 0 < ℓ < 1, then λ̄j = 0 = λ̃j , and so

(ℓλ̄j + (1 − ℓ)λ̃j)g∗j (
ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

) = δ∗dom(gj)(ℓw̄
j + (1 − ℓ)w̃j)

≤ δ∗dom(gj)(ℓw̄
j) + δ∗dom(gj)((1 − ℓ)w̃

j)

<∞.
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If ℓ = 0, then λ̃j = 0, and hence

(ℓλ̄j + (1 − ℓ)λ̃j)g∗j (
ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

) = δ∗dom(gj)(ℓw̄
j + (1 − ℓ)w̃j)

= δ∗dom(gj)(w̃
j) <∞.

If ℓ = 1, then λ̄j = 0, and thus

(ℓλ̄j + (1 − ℓ)λ̃j)g∗j (
ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

) = δ∗dom(gj)(ℓw̄
j + (1 − ℓ)w̃j)

= δ∗dom(gj)(w̄
j) <∞

So, in all above three cases, we get

(ℓλ̄j + (1 − ℓ)λ̃j)g∗j (
ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

) = δ∗dom(gj)(ℓw̄
j + (1 − ℓ)w̃j) <∞

⇒ ℓw̄j + (1 − ℓ)w̃j

ℓλ̄j + (1 − ℓ)λ̃j

∈ dom(g∗j ).

Convexity in all other constraints of V obviously holds. So, ℓv̄ + (1 − ℓ)ṽ ∈ V which shows

that V is a convex set. The function G on the convex set V is a concave function due to the

concavity of each −λjgj
∗(wj

λj
).

Also, let us set

F (x,u) ∶= (f̂0(x,u), . . . , f̂m(x,u),0, . . . ,0)
⊺ ∈ Rm+1 ×Rny(m+1),

L(x,u, v) ∶= (1, v⊺)F (x,u) +G(v).

Thus, the dual formulation of (ARC) in the separable fixed-recourse case reads as

inf
x∈X

sup
u∈U
v∈V

L(x,u, v). (3.12)

Given x̄ ∈ X , we define Lx̄(u, v) ∶= (1, v⊺)F (x̄, u) +G(v). Clearly, Lx̄(u, v) is concave in u
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and concave in v. Therefore,

sup{Lx̄(u, v) ∣ u ∈ U , v ∈ V} , (3.13)

is a disjoint biconcave maximization problem. A common way to find a solution for such

problems is by using alternating methods, which obtain a local optimizer. In these methods,

a decision variable is divided into several blocks, and optimization can be performed explicitly

in each block when the variables of other blocks are fixed (see Chapter 14 of [9] for more

details). These methods also appears in the literature as block coordinate methods. The

performance of the alternating method is closely related to finding the optimizers for each

block.

3.4.1 Alternating Iterative Algorithm

As was mentioned above, we use a two-block alternating method to solve (3.13). In this

method, we alternatively fix u to find v and fix v to find u until no improvement is achieved

or the prescribed computational limit is reached. This method is described follow in detail.

Alternating Method

Input: initial value ū(0) ∈ U

Initialization:

Set iteration counter k ← 0, choose v̄(0) ∈ argmax
v∈V

Lx̄(ū(0), v).

Repeat

Find optimal u: ū(k+1) ∈ argmax
u∈U

Lx̄(u, v̄(k)),

Find optimal v: v̄(k+1) ∈ argmax
v∈V

Lx̄(ū(k+1), v),

Update iteration counter k ← k + 1,

Until: time limit is reached, or no improvement is possible.

Return: (ū(k), v̄(k)).

In Theorem 6 below, we discuss the convergence of the addressed alternating method.

It is done assuming some appropriate conditions, under which the alternating method is

well-defined and the sequence {(uk, vk)}k≥0 admits limit point(s).
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Theorem 6. Let Lx̄(⋅, ⋅) be continuously differentiable and bounded above on Cartesian

product of two closed convex sets U and V. Suppose that every sub-problem of the alternating

method has an optimal solution and {zk ≡ (uk, vk)}k≥0, as the sequence generated by the

alternating method, has at least a limit point. Then, every limit point of {zk}k≥0 is a

stationary point of problem (3.13).

We first recall optimality condition for a constrained differentiable problem (for more details

see e.g., [10]). Consider a (non-convex) problem of the form

sup
y
{g(y)∣ y ∈ S} , (3.14)

where g is a real-valued continuously differentiable function, and S is a nonempty closed

convex set. A vector y∗ ∈ S is called a stationary point of problem (3.14) if

∇g(y∗)⊺(y − y∗) ≤ 0, ∀y ∈ S,

where ∇g(y∗) is the gradient of g at y∗.

Lemma 6.1. Let g be a real-valued continuously differentiable function defined on the

Cartesian product of two closed convex sets C1 ⊆ Rn1, C2 ⊆ Rn2. Suppose that ȳ = (ȳ1, ȳ2) ∈

C1 ×C2. Then

∇g(ȳ)⊺(y − ȳ) ≤ 0, ∀y ∈ C1 ×C2, (3.15)

if and only if the following properties hold:

(i) ∇1g(ȳ)⊺(y1 − ȳ1) ≤ 0, ∀y1 ∈ C1,

(ii) ∇2g(ȳ)⊺(y2 − ȳ2) ≤ 0, ∀y2 ∈ C2,

where the vector y is partitioned into two component vectors y1 ∈ Rn1 , y2 ∈ Rn2 , as y ≡ (y1, y2),

and ∇1g(ȳ) = ( ∂g
∂y1
(ȳ)), and ∇2g(ȳ) = ( ∂g

∂y2
(ȳ)) denote the corresponding gradient vectors.

Proof. (⇒) Let y = (y1, y2) ∈ C1 ×C2. By setting y ∶= (y1, ȳ2) and y ∶= (ȳ1, y2) in inequality

(3.15), inequalities (i) and (ii) are derived.

(⇐) Clearly, (i) and (ii) lead (3.15).
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Now we are ready to prove Theorem 6. The main line of reasoning can be found in [64] but

given here for completeness.

Proof of Theorem 6. Suppose that z∗ = (z1∗, z2∗) is a limit point of the sequence

{zk}k≥0. Without loss of generality, we assume that zk = (uk, vk)→ (z1∗, z2∗). Our goal is

to show that for any ζ = (ζ1, ζ2) ∈ U × V, we have

∇Lx̄(z∗)⊺(ζ − z∗) ≤ 0.

According to Lemma 6.1, the above inequality is equivalent to

∇1Lx̄(z∗)⊺(ζ1 − z1∗) ≤ 0, ∀ζ1 ∈ U , (3.16)

∇2Lx̄(z∗)⊺(ζ2 − z2∗) ≤ 0, ∀ζ2 ∈ V, (3.17)

where ∇Lx̄(z∗) = (∇1Lx̄(z∗)⊺,∇2Lx̄(z∗)⊺)⊺ is the gradient of Lx̄ at z∗. By contradiction,

suppose that there exists a vector ζ̃2 ∈ V, such that

∇2Lx̄(z∗)⊺(ζ̃2 − z2∗) > 0. (3.18)

Set rk ∶= ζ̃2 − vk. As the sequence {vk}k≥0 converges to z2∗, the sequence {rk}k≥0 converges

to ζ̃2 − z2∗. Thus, due to the continuity of the gradient, there exists N > 0 such that for all

k > N we have

∇2Lx̄(zk)⊺rk > 0.

So, dk ∶= (0⊺, (rk)⊺)⊺ is an ascent direction of Lx̄ at zk. By backtracking line search [10,

Lemma 4.3], for given parameter α ∈ (0,1), there exists a step size tk ∈ (0,1) such that

Lx̄(zk + tkdk) −Lx̄(zk) ≥ αtk∇Lx̄(zk)⊺dk, ∀k > N.

Therefore

Lx̄(uk, vk + tkrk) −Lx̄(uk, vk) ≥ αtk∇2Lx̄(zk)⊺rk > 0, ∀k > N. (3.19)
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Since V is convex, we have

vk + tkrk = (1 − tk)vk + tkζ̃2 ∈ V, ∀k > N.

Hence,

Lx̄(uk+1, vk+1) ≥ Lx̄(uk, vk+1) ≥ Lx̄(uk, vk + tkrk) > Lx̄(uk, vk), ∀k > N.

So, the sequence of function values {Lx̄(uk, vk)} is non-decreasing and also bounded above.

Therefore, it is convergent. The last inequality and the convergence of {Lx̄(uk, vk)} implies

lim
k→∞
Lx̄(uk, vk + tkrk) −Lx̄(uk, vk) = 0.

The above equation and (4.17) gives

∇2Lx̄(z∗)⊺(ζ̃2 − z2∗) = 0,

which contradicts (3.18). This prove (3.17). The inequality (3.16) can be proved similarly.

Theorem 6 provides conditions under which the limit points of the sequence obtained by the

alternating method are helpful in solving problem (3.13). These conditions can be checked

for (1.1). More specifically, L is continuously differentiable if f̂j and g∗j are so. Furthermore,

it is bounded above if static robust counterpart (3.10) has an optimal solution. Finally, V is

a closed set when dom(g∗j ) is closed for all j.

Remark 3.4.1. In Theorem 6, it is established that all limit points of the sequence

generated by the alternating method are stationary. Generally, stationarity is necessary for

local optimality [10]. However, stationary points are not necessarily optimal solutions. Such

a property requires (generalized) concavity assumption to hold. Under generalized concavity

assumptions on problem (3.13), the alternating method globally converges; For more details,

see [64, Proposition 6] and [124].

Using this theorem, we can find a lower bound for (ARC) in the following way: starting from

initial solution x(0) and initial scenario u(0), we can find the limit points of {zk}, denoted
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by z̄(0). Let us denote by W̄ the set of limit points after each iteration. Limiting ourselves

to W̄, we can find a here-and-now solution x(ℓ) using the following optimization problem

inf
x,τ

τ

s.t. L(x, ū(i), v̄(i)) − τ ≤ 0, 1 ≤ i ≤ ∣W̄ ∣,

x ∈ X .

(P-1)

By fixing this decision, we can find new limit point z̄(ℓ) to be added to W̄. Algorithm 1

provides the pseudo-code of this procedure.

Algorithm 1

Input: ϵ > 0, initial value x(0) ∈ X , u(0) ∈ U .

Initialization: Set iteration counter ℓ← 0, and set W̄ = ∅.

Repeat: Execute the following steps:

(Step 1) obtain (ū(ℓ), v̄(ℓ)) as a stationary point of Lx(ℓ)(u, v) by applying

Alternating Method. Set W̄ = W̄ ∪ {(ū(ℓ), v̄(ℓ))}.

(Step 2) Find (x∗, τ∗) by solving (P-1).

Update iteration counter ℓ← ℓ + 1, and set

x(ℓ) ← x∗,

τ (ℓ) ← τ∗,

Until: ∥τ (ℓ) − τ (ℓ−1)∥ ≤ ϵ.

Return: x(ℓ), τ (ℓ).

It can be seen that the optimal value of (P-1) in Algorithm 1 is a lower bound for problem

(3.12). Since, we add one more constraint to (P-1) in each iteration, the sequence of the

lower bounds is non-decreasing.

Another way to generate lower bounds is to use finite-scenario approach. In the next section,

we show how we can improve the lower bounds obtained by finite-scenario approach using

the results we have.
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3.4.2 Dual-Based Cutting Plane Algorithm

Based on the original form of (ARC), one can find a lower bound by using finite-scenario

approach and only considering a finite subset {u1, ..., uℓ} of U . This idea leads to the following

convex programming problem:

inf
x∈X ,τ
{yk}k

τ

s.t. fj(x, yk, uk) ≤ 0, j ∈ [m], k ∈ [ℓ],

f0(x, yk, uk) ≤ τ, k ∈ [ℓ],

(3.20)

which is called finite-scenario approach of the (ARC) problem. A technique to obtain a finite

set of scenarios is by (i) approximating (ARC) with a suitable decision rule and (ii) finding

the active scenarios in the uncertainty set [66]. Since we are considering a nonlinear problem,

we use constant decision rule. So, we first find an optimal solution (x∗, y∗) of (RC) with the

optimal value t∗. After that, by fixing the obtained (x∗, y∗), we take an active (binding)

scenario on each constraint

fj(x∗, y∗, u) ≤ 0, j ∈ [m],

f0(x∗, y∗, u) ≤ t∗.
(3.21)

The optimal value of the finite-scenario approach problem is a lower bound for the optimal

objective value of the original (ARC) model since feasibility is fulfilled for only a subset of

the uncertainty set.

In Theorem 7 we show how to construct a better lower bound by means of dual cuts.

Theorem 7. Let {u1, ..., uℓ} ⊆ U and {v1, ..., vℓ} ⊆ V. Then optimal value of

inf
x∈X ,τ
{yk}k

τ

s.t. fj(x, yk, uk) ≤ 0, j ∈ [m], k ∈ [ℓ],

f0(x, yk, uk) ≤ τ, k ∈ [ℓ],

L(x,uk, vk) ≤ τ, k ∈ [ℓ],

(3.22)
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provides a lower bound for (ARC).

Proof. Let us denote the optimal value of (ARC) by Opt. Also, we have the following

inequality due to the weak duality

∀x ∈ X sup
u∈U
T (x,u) ≥ sup

u∈U
v∈V

L(x,u, v),

where T (x,u) ∶= inf
y∈Rny

{f0(x, y, u) ∶ fj(x, y, u) ≤ 0, j ∈ [m]}. Therefore,

Opt = inf
x∈X
τ∈R

τ

s.t. sup
u∈U
T (x,u) ≤ τ,

sup
u∈U
v∈V

L(x,u, v) ≤ τ,

where the second constraint is redundant. Let Ū ⊆ U and V̄ ⊆ V. Then

Opt ≥ inf
x∈X ,τ

τ

s.t. sup
u∈Ū
T (x,u) ≤ τ,

sup
u∈Ū
v∈V̄

L(x,u, v) ≤ τ.

So, if Ū = {u1, ..., uℓ} and V̄ = {v1, ..., vℓ}, then we have

Opt ≥ inf
x∈X ,τ

τ

s.t. inf
y∈Rny

{f0(x, y, uk) ∶ fj(x, y, uk) ≤ 0, j ∈ [m]} ≤ τ, k ∈ [ℓ],

L(x,uk, vk) ≤ τ, k ∈ [ℓ],

(3.23)

which is equivalent to (3.22).

Using Theorem 7, we develop Algorithm 2, which generates potentially better lower bounds

compared to Algorithm 1 and finite-scenario approach.
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Algorithm 2

(Step 1) Find (x∗, y∗) as a static solution.

(Step 2) Given (x∗, y∗), find the active scenarios {u0, u1, ..., um}.

(Step 3) Use Alternating Method, to find (ū(k), v̄(k)) as a stationary point of

Lx∗(u, v) starting from uk (k ∈ [m0]).

(Step 4) Given {(ū(k), v̄(k))}
k
, solve

inf
x∈X ,τ
{yk}k

τ

s.t. f0(x, yk, ū(k)) ≤ τ, k ∈ [m0],

fj(x, ū(k), yk) ≤ 0, j ∈ [m], k ∈ [m0],

L(x, v̄(k), ū(k)) ≤ τ, k ∈ [m0].

We emphasize that the algorithms to construct a sequence of lower bounds are applicable for

any nonlinear ARO problem.

3.5 Numerical Experiments

In this section, we illustrate the performance of the discussed algorithms. All the numerical

results were carried out on a laptop featuring Intel(R) Core(TM) i5-3210M CPU, 2.50 GHz

processor, and 8 GB of RAM. We implemented the algorithms in MATLAB (2022a) and

used YALMIP toolbox [84] to pass the optimization problems to MOSEK as a solver [91].

All results of this section are presented with four decimals.

3.5.1 Problem Setting

We consider the following uncertain problem:

inf
x∈X

inf
y∈Y(x,u)

f̂0(x,u) + ∥A0y − b0∥2 − (p
0)⊺ y + q0, (3.24)

where

Y(x,u) = {y ∶ f̂j(x,u) + ∥Ajy − bj∥2 − (p
j)⊺ y + qj ≤ 0, j ∈ [m]} ⊆ Rny ,
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Aj ∈ Rr×ny , bj ∈ Rr, and pj ∈ Rny . For j ∈ [m], let us set

gj(y) ∶= ∥Ajy − bj∥2 − (p
j)⊺ y + qj .

Thus, the perspective functions corresponding to the conjugate of gj(y) is given by

λj > 0 ∶ λjg
∗
j (w

j

λj
) = inf

zj
{λj((bj)⊺zj − qj)∣ ∥zj∥2 ≤ 1, (Aj)⊺zj − pj = wj

λj
} ,

λj = 0 ∶ λjg
∗
j (w

j

λj
) = δ∗dom(gj)(w

j) = δ∗Rny (wj) = δ{0}(wj).

Now we consider (ARC) version of the uncertain problem (3.24). According to Theorem 2,

after dualizing over the wait-and-see variable y, with some algebra (see Section 6.4 of [101]),

we get the following equivalent dual reformulation:

inf
x∈X

sup
u∈U ,λj ,zj

m

∑
j=0

λj f̂j(x,u) +
m

∑
j=0
(λjqj − λj (bj)

⊺
zj)

s.t.
m

∑
j=0
(λj(Aj)⊺zj − λjp

j) = 0,

∥zj∥
2
≤ 1, λ0 = 1, λj ≥ 0, j ∈ [m0].

(3.25)

Let us consider the parameters in a matrix form, i.e.,

A⊺ ∶= [(A0)⊺ . . . (Am)⊺] ∈ Rny×r(m+1),

P ∶= [p0 . . . pm] ∈ Rny×(m+1),

b⊺ ∶= [( b0 )⊺ . . . ( bm )⊺] ∈ Rr(m+1),

z̄j ∶= λjz
j , z̄⊺ ∶= [( z̄0 )⊺ . . . ( z̄m )⊺] ∈ Rr(m+1).

In addition, by setting

v⊺ ∶= (λ⊺, z̄⊺) ,

V ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v

RRRRRRRRRRRRRRRRRR

A⊺z̄ − P
⎛
⎜⎜⎜
⎝

1

λ

⎞
⎟⎟⎟
⎠
= 0, λ ≥ 0, ∥z̄0∥

2
≤ 1, ∥[z̄]j∥

2
≤ λj , j ∈ [m]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

L(x,u, v) ∶= (1, λ⊺)f̂(x,u) + (1, λ⊺)q − z̄⊺b,



Numerical Experiments 58

where f̂(x,u) is a vector-valued function with components f̂j(x,u), and

[z̄]j = [z̄]jr+1,...,(j+1)r,

we can write (3.25) as

inf
x∈X

sup
u∈U ,v∈V

L(x,u, v).

We use the optimality gap to compare the quality of the lower bounds obtained by applying

the finite-scenario approach (3.20), Algorithm 1, and Algorithm 2:

OptGap = ( UB −LB
∣LB∣ + 10−4) × 100,

where LB is the obtained lower bound, and UB is the best obtained upper bound for a given

instance. Note that the constant 10−4 is added to the denominator to avoid division over

zero.

We consider two classes of randomly generated instances, each containing 100 instances.

Class One: In this class, we consider small-sized instances. We consider ny = 2, nx = 2, m = 2,

and r = 5. Furthermore,

U = U1 ∶= {u ∈ R2 ∶ ∥u∥2 ≤ 1},

X = X1 ∶= {x ∈ R2 ∶ x1 + 2x2 ≤ 3, 2x1 + x2 ≤ 3, x1, x2 ≥ 0} ,

and

f̂j(x,u) ∶= cj
⊺
x + αj⊺u, j ∈ [m0].

In this class, we obtained upper bounds by solving the static robust counterpart problem,

which is equivalent to the perspectification approach. Additionally, we employed the K-

adaptability approach to obtain upper bounds. The K-adaptability approach involves

splitting the uncertainty set U into K partitions (U = ∪Kk=1Uk) and solves the following
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problem

inf
x∈X ,τ
{yk}k

τ

s.t. f̂j(x,u) + ∥Ajy
k − bj∥

2
− (pj)⊺ yk + qj ≤ 0, j ∈ [m], k ∈ [K],∀u ∈ Uk,

f̂0(x,u) + ∥A0y
k − b0∥

2
− (p0)⊺ yk + q0 ≤ τ, k ∈ [K],∀u ∈ Uk.

We set K = 8 and partitioned the uncertainty set into eight regions, each being an octant.

Class Two: This class contains large-sized instances. We consider ny = 100, nx = 100, m = 5,

and r = 120. Furthermore,

U = U2 ∶= {u ∈ R20 ∶ ∥u∥2 ≤ 1},

X = X2 ∶= {x ∈ R100 ∶ ∥x∥2 ≤ 1, e⊺x ≤ 1, d⊺x ≥ 0} ,

where e ∈ Rnx is the vector of all ones, d ∈ Rnx is a random vector, and

f̂j(x,u) ∶= cj
⊺
x + αj⊺u, j ∈ [m0].

We use static approximation to obtain an upper bound on the optimal value of the instances

in this class.

To generate random instances, for each j ∈ [m0], we randomly generate Aj , pj , bj , αj , cj ,

and d by drawing their (entries) values from a standard normal distribution using a built-in

MATLAB function “randn".

3.5.2 Numerical results

In this section, we present the results of the numerical experiments.

Class One: We present the statistic on the optimality gaps of the finite-scenario approach

(3.20), Algorithm 1, and Algorithm 2 in Table 3.1 (details can be found in Table 3.3). Since

the upper bound obtained using the K-adaptability approach for the instances of this class

is lower than the one from the perspectification approach, which is equivalent to the static

approximation, we report the gap using the former. As one can see, Algorithm 2 outperforms
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the other methods on average.

Table 3.1: Statistic of optimality gaps of instances in Class One.

Method Mean Standard deviation
Algorithm 1 26.4925 75.3803
Algorithm 2 22.2883 72.4447
Finite-scenario approach 49.7797 336.4677

Figure 3.1 compares the optimality gaps of the solutions obtained by Algorithm 1, Algorithm

2, and the finite-scenario approach, where each point corresponds to an instance. As shown

in Figures 3.1a and 3.1b, Algorithms 1 and 2 outperform the finite-scenario approach. More

specifically, in 84 instances, Algorithm 2 generates better lower bounds, while the finite-

scenario approach generates better lower bounds in only 15 instances. We should emphasize

that if the scenarios considered in both approaches are the same, Theorem 7 shows that

the lower bound obtained by Algorithm 2 should outperform the finite-scenario approach.

However, these two methods do not generate the same scenarios. Additionally, Figure 3.1c

shows that the solutions obtained by Algorithm 2 have a similar or better optimality gap to

the ones obtained from Algorithm 1.

Next to the quality of the approaches, we also report their solution times.

The average solution times for Algorithm 1, Algorithm 2, and finite-scenario approach are

0.0500, 0.0483, and 0.2253 seconds, respectively. Figure 3.2 depicts a scatter plot comparing

the solution times in each instance. Illustrated in Figures 3.2a and 3.2b, Algorithms 1 and

2 reach lower bounds more rapidly compared to the finite-scenario approach. In Figure

3.2c, each point represents an instance, with the horizontal and vertical axes indicating the

solution times of Algorithm 1 and Algorithm 2, respectively. For most of the instances in

this class, we observe that Algorithm 2 reached a solution faster than Algorithm 1.

Hitherto, we have seen that Algorithm 2 performs well in the instances in Class One. In

what follows, we analyze the performance of the algorithms in the instances of Class Two.

Class Two: We present the statistic on the optimality gaps of the solutions obtained by

different algorithms in Table 3.2 (details can be found in Table 3.4). As one can see,
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Figure 3.1: The comparison of the optimality gaps of the solutions obtained by Algorithm
1, Algorithm 2, and finite-scenario approach for the instances in Class One.

Algorithm 1 outperforms the other methods on average.

Table 3.2: Statistic of optimality gaps of instances in Class Two.

Method Mean Standard deviation
Algorithm 1 56.5417 83.8414
Algorithm 2 57.7425 88.1209
Finite-scenario approach 64.5980 114.8234

To have a clearer comparison, we illustrate the optimality gaps in Figure 3.3. Remarkably,

both algorithms exhibit better performance in nearly all instances compared to the finite-

scenario approach (Figures 3.3a and 3.3b). Furthermore, as one can see in Figure 3.3c, the

optimality gap of the solutions obtained by Algorithms 1 and 2 are close, and in all instances

(except two of them), Algorithm 1 provides a solution with a slightly lower optimality gap

compared to Algorithm 2.

The average solution times for Algorithm 1, Algorithm 2, and finite-scenario approach are
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Figure 3.2: The comparison of the solution time of Algorithm 1, Algorithm 2, and finite-
scenario approach for the instances in Class One.

7.5085, 3.6327, and 0.5417 seconds, respectively. Figure 3.4 presents the scatter plot of the

solution times of these approaches on each instance. In this class, the computation times of

Algorithms 1 and 2 are higher than the finite-scenario approach because they solve more

(sub-)optimization problems than the finite-scenario approach to reach a lower bound (as

shown in Figures 3.4a and 3.4b). From Figure 3.4c, across a significant proportion of instances

within this classification, it is evident that Algorithm 2 exhibited notable performance in

achieving solutions faster than Algorithm 1.

Overall for Class Two, our findings demonstrate the competitive performance of both

Algorithm 1 and Algorithm 2 on average.
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Figure 3.3: The comparison of the optimality gaps of the solutions obtained by Algorithm
1, Algorithm 2, and finite-scenario approach for the instances in Class Two.

3.6 Conclusions

This chapter studied a general nonlinear ARO model with objective and constraint uncertainty.

We obtained an equivalent dual formulation by applying Fenchel’s duality on the wait-and-see

variable, a nonlinear static robust optimization. We investigated when the dual formulation

is convex in the decision variables. Also, we explored reaching upper and lower bounds

for the original problem based on the dual formulation. Thanks to the equivalent dual

reformulation, we presented and analyzed two algorithms. These algorithms aimed to find

a lower bound on the optimal objective value of the general nonlinear ARO model. We

demonstrated by numerical results that our algorithm could produce a locally robust solution

with an acceptable optimality gap.
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Figure 3.4: The comparison of solution times between Algorithm 1, Algorithm 2, and the
finite-scenario approach for instances in Class Two.
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Table 3.3: Detailed numerical results from Class One.

Case LB1 LB2 LB3 UB8 UB1 Case LB1 LB2 LB3 UB8 UB1

1 259.1977 259.1977 259.1946 260.0564 261.3407 51 3.3127 3.3127 3.3122 3.3225 3.3274
2 9.3817 9.3817 9.3658 9.6877 10.0478 52 0.4577 0.5206 0.5252 1.1068 3.6220
3 6.9970 6.9935 6.7271 7.5588 7.9666 53 2.9971 2.9971 2.9971 2.9971 3.0049
4 2.7486 2.7486 2.7103 2.9390 3.0800 54 0.8657 0.8657 0.8653 1.6291 1.9446
5 11.0089 11.0090 10.8160 11.4931 11.8715 55 8.7115 8.7115 8.7114 8.7119 8.7119
6 15.3520 15.3520 15.2586 16.3023 17.8020 56 0.8995 0.8865 1.2330 1.8994 3.1152
7 -1.9373 -1.9373 -1.9373 -1.9357 -1.9357 57 3.3758 3.3751 3.3751 3.3934 3.4227
8 9.3109 9.3109 9.3063 10.2061 11.1458 58 2.8508 2.8508 2.8508 2.8508 3.3457
9 10.6770 10.6762 11.7674 13.5560 15.4325 59 3.4591 3.4590 3.4419 3.5102 3.5223
10 5.4643 5.4643 5.3333 6.6699 8.1682 60 4.7327 4.7327 4.7325 10.3711 19.4164
11 5.4997 5.4970 5.4996 5.5553 5.7042 61 2.1088 2.1088 1.9812 2.2950 2.4424
12 4.8946 4.8946 4.4919 5.4370 5.6290 62 2.4899 2.4899 2.4305 2.6931 2.8786
13 -1.7771 -1.2453 -1.2531 -0.7450 -0.2057 63 3.5704 3.5704 3.5606 4.3928 5.2596
14 15.0970 15.0970 14.8494 15.7447 16.1069 64 2.4027 2.4027 2.4027 2.4027 2.4215
15 3.1803 3.1803 3.1792 3.1816 3.1816 65 4.0104 4.0104 3.9697 4.0845 4.1758
16 32.7964 32.7964 32.7964 32.7979 32.8014 66 3.4362 3.4362 3.3095 4.4646 5.5969
17 0.1421 0.1421 0.0323 1.1248 2.3101 67 18.8952 18.8952 17.9105 20.1629 21.3240
18 16.5824 16.5824 15.0801 18.8211 19.4832 68 2.8023 2.8023 2.8023 2.8025 2.9026
19 3.6685 3.6685 3.3255 4.7357 5.8387 69 1.6128 1.5944 1.5914 1.9228 1.9755
20 7.0912 8.6052 8.5969 8.9749 9.3419 70 3.9882 3.9882 3.9630 4.0116 4.0224
21 49.5685 49.5685 49.5664 50.9667 52.7088 71 31.4786 31.4786 31.3828 32.6877 33.7343
22 7.3621 7.3621 7.3552 8.8104 11.2659 72 756.1827 756.1827 756.1826 756.2022 756.2175
23 21.5784 28.4078 28.3726 31.0675 38.7033 73 6.4255 6.4255 6.2120 6.9449 7.2463
24 12.5946 12.5946 12.5854 15.6238 20.4960 74 2.4011 2.4010 2.4000 2.4714 2.6531
25 14.1311 14.1311 14.1301 14.1403 14.1403 75 2.0766 2.0766 2.0765 2.3492 2.4106
26 52.2638 52.2638 52.2504 53.0016 53.6820 76 3.0271 3.0215 3.1531 3.2083 3.5310
27 -0.4110 -0.4110 -0.4118 -0.4073 -0.3732 77 2.2849 2.2849 2.2849 2.3563 2.4955
28 393.0423 393.0423 377.7744 436.0650 452.3473 78 1.3092 1.3092 1.3092 1.3112 1.3126
29 7.9651 7.9651 7.6756 9.2498 10.8485 79 7.8062 7.8062 5.9023 15.1441 23.1083
30 30.2205 30.2205 28.6526 34.9758 38.2203 80 3.3318 3.4906 3.4497 3.8514 4.1593
31 7.2094 7.2094 7.1337 7.3583 7.3583 81 2.6656 2.8999 2.8545 3.1747 3.6565
32 6.6596 6.6595 6.6530 6.7380 6.9949 82 7.9201 7.9201 7.9107 7.9570 8.3552
33 95.2210 95.2210 94.9450 102.2506 110.4956 83 4.1187 4.1080 3.9211 4.6071 4.9426
34 21.5530 21.5530 21.5225 21.7216 21.9525 84 3.4734 3.4734 3.2243 3.7412 3.9954
35 4.7314 4.7314 4.6987 4.8901 4.9057 85 3.5410 3.6188 3.5939 4.3623 5.8730
36 18.2915 18.2916 18.2899 18.5365 19.1278 86 11.5812 11.5660 10.9026 13.7476 15.7727
37 5.8375 16.7701 16.7202 17.6550 18.3373 87 10.9663 10.9663 10.9658 10.9887 10.9990
38 5.6850 7.2390 6.4109 9.2046 11.3974 88 14.1618 14.1618 14.1615 14.1639 14.1641
39 86.3898 86.3898 86.3881 86.5066 86.5195 89 5.0708 5.0023 5.0490 6.0166 7.0369
40 -0.3083 -0.3083 -0.3084 -0.1944 0.0310 90 4.8473 4.8461 4.8483 5.5185 5.8588
41 75.7971 75.7971 75.7851 76.0008 76.6293 91 9.3160 9.3160 9.2139 9.6205 10.2391
42 10.9392 10.9392 10.8825 12.9686 18.0775 92 45.8951 45.8951 45.3398 48.8046 50.3318
43 32.2960 32.2960 32.2940 32.3780 32.3964 93 1.9520 1.9519 3.8607 4.0389 4.4740
44 -0.6766 -0.6766 -0.6766 -0.6766 -0.6185 94 0.7561 0.7561 0.6361 1.3990 2.2513
45 1.1652 1.1652 1.1425 1.3013 1.4361 95 -0.7423 -0.6797 -0.6980 -0.4079 0.0277
46 2.5419 2.5419 2.5418 2.8630 3.2250 96 22.3622 22.3622 22.2758 23.3531 23.9807
47 1.0582 1.0582 1.0431 1.3847 2.2834 97 3.6372 5.7130 5.6500 6.8904 7.9793
48 3.6334 3.6334 3.5831 4.1290 4.8998 98 6.6315 6.6315 6.3300 6.9888 7.1655
49 22.1946 22.1946 22.1167 24.3342 27.4000 99 18.9985 18.9985 18.9977 19.5478 20.0648
50 3.3475 3.3475 3.3208 3.4439 3.4843 100 2.7358 2.7358 2.7216 2.8101 2.8288

Note. The column Case contains the instance number, columns LB1, LB2, and LB3 are the lower
bounds obtained by Algorithm 1, 2, and the finite-scenario approach, respectively, and the columns
UB1 and UB8 are the upper bounds obtained by perspectification approach and 8-adaptability
approach respectively. The accuracy digit is four. In this table, for each instance, the best lower
bound is in boldface.
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Table 3.4: Detailed numerical results from Class Two.

Case LB1 LB2 LB3 UB1 Case LB1 LB2 LB3 UB1

1 3.9001 3.8934 3.8854 4.8279 51 -2.9744 -2.9971 -3.0021 -1.9376
2 9.6268 9.6178 9.6015 10.4601 52 3.5619 3.5499 3.5264 4.6196
3 1.6344 1.6123 1.6121 2.8872 53 -1.7460 -1.7904 -1.8189 -0.3012
4 10.8829 10.8773 10.8506 11.6009 54 3.2074 3.1680 3.1807 4.5110
5 12.2019 12.1472 12.1530 13.5152 55 -1.0219 -1.0273 -1.0839 0.0784
6 2.7891 2.7762 2.7543 3.8914 56 -5.9077 -5.9099 -6.0075 -4.5074
7 4.2798 4.2738 4.2123 5.3923 57 9.0173 8.9964 9.0082 10.0026
8 -1.6253 -1.6291 -1.6727 -0.7387 58 -5.3944 -5.4257 -5.4375 -4.3260
9 3.5420 3.5370 3.5318 4.2847 59 5.9016 5.9016 5.8349 6.3315
10 0.2770 0.2365 0.1944 1.6372 60 0.9850 0.9656 0.8858 2.2989
11 -1.3185 -1.3505 -1.3593 -0.3106 61 7.2530 7.2352 7.2083 8.2546
12 -2.0551 -2.1027 -2.1003 -0.5346 62 0.5393 0.5800 0.5150 2.0891
13 8.1494 8.1280 8.1285 8.9722 63 5.2223 5.1960 5.1005 6.5493
14 8.3511 8.3408 8.3322 8.8412 64 -8.0248 -8.0617 -8.0568 -6.4983
15 -1.9698 -2.0357 -1.9960 -0.9572 65 7.0972 7.0572 6.9516 8.5001
16 7.3853 7.3711 7.3958 8.3874 66 -0.4458 -0.5322 -0.5025 1.1889
17 16.0063 15.9723 15.9882 17.1185 67 -0.5969 -0.6999 -0.6607 1.2182
18 2.9578 2.9267 2.9187 4.1038 68 -1.1199 -1.1293 -1.1896 -0.0657
19 2.4222 2.4132 2.4054 3.4077 69 2.2536 2.2530 2.1678 3.1326
20 -1.6671 -1.6730 -1.7801 -0.5029 70 7.2135 7.2085 7.1412 8.6105
21 1.0836 1.0649 1.0506 1.8063 71 9.6860 9.6677 9.6259 10.3959
22 9.8687 9.8084 9.8125 11.3247 72 4.5704 4.5428 4.5342 5.5110
23 0.6145 0.5376 0.5527 1.9393 73 -3.7698 -3.7862 -3.7970 -2.8077
24 -9.4925 -9.5133 -9.5277 -8.5633 74 -5.0022 -5.0044 -5.1230 -3.4930
25 2.1541 2.1525 2.0924 2.9331 75 -1.3936 -1.4183 -1.4138 -0.2234
26 9.5053 9.4669 9.4446 10.8387 76 5.3090 5.2698 5.2504 6.7112
27 -1.2397 -1.2863 -1.3041 0.8808 77 -2.0718 -2.0727 -2.0879 -1.5332
28 10.8428 10.8244 10.7536 11.8421 78 16.0217 16.0155 15.9792 16.7758
29 4.6773 4.6652 4.6285 5.9266 79 8.1416 8.1328 8.1075 8.9623
30 9.9538 9.9512 9.8376 11.3559 80 0.7576 0.7532 0.7278 1.4189
31 0.6215 0.6172 0.5307 1.6204 81 4.5890 4.5885 4.4751 5.6660
32 4.5631 4.5559 4.5147 5.2915 82 6.3865 6.3751 6.3194 7.4986
33 7.0305 6.9845 6.9944 8.0498 83 6.1873 6.1780 6.0546 7.2406
34 9.9680 9.8466 9.9100 11.3081 84 2.9913 2.9078 2.9352 4.7038
35 0.8044 0.7829 0.7239 2.0848 85 10.6753 10.6411 10.6368 11.7620
36 -4.8340 -4.9150 -4.8925 -3.5569 86 -7.7191 -7.7389 -7.7566 -6.2191
37 4.9906 4.9789 4.9619 5.9426 87 11.0850 11.0523 11.0027 12.4703
38 -7.6116 -7.6907 -7.7910 -6.0688 88 10.3312 10.2796 10.3872 12.3348
39 15.8386 15.8279 15.8049 16.7978 89 8.9459 8.9313 8.8954 10.1933
40 0.3786 0.3694 0.2224 1.7918 90 7.6131 7.6069 7.5995 8.3429
41 -2.2577 -2.2625 -2.3401 -0.9587 91 4.7490 4.6998 4.6915 5.9225
42 0.8659 0.8557 0.8168 1.9483 92 10.1188 10.0803 10.0249 11.2766
43 12.2575 12.2277 12.2335 13.1937 93 -1.0054 -1.0080 -1.0731 -0.2399
44 4.7063 4.7037 4.6871 5.1994 94 -2.3783 -2.3824 -2.5552 -1.1306
45 7.1076 7.0944 7.0682 8.0319 95 1.3148 1.2884 1.2675 2.9579
46 -1.0208 -1.0213 -1.3427 0.4856 96 -2.4070 -2.4142 -2.4486 -1.4270
47 5.6107 5.5709 5.5854 6.8776 97 3.6744 3.6589 3.6323 4.6726
48 7.9571 7.9486 7.9025 9.0604 98 1.8353 1.8244 1.7627 3.2556
49 5.8116 5.8047 5.7952 6.4533 99 -5.3745 -5.4029 -5.4231 -4.3001
50 2.9529 2.9124 2.8474 4.2576 100 7.8266 7.8138 7.7616 8.7882

Note. The column Case contains the instance number, columns LB1, LB2, and LB3 are the lower
bounds obtained by Algorithm 1, 2, and the finite-scenario approach, respectively, and the columns
UB1 is the upper bound obtained by perspectification approach. In this table, for each instance, the
best lower bound is in boldface.



Chapter 4
Quadratic Optimization Through the Lens of

Adjustable Robust Optimization

Ralph Tyrrell Rockafellar:

“The great watershed in optimization isn’t between linearity and nonlinearity, but

convexity and non-convexity.”

4.1 Introduction

Various practical problems in different domains, including financial mathematics [89], machine

learning [47], resource allocation [71], computer vision [31], game theory [32], robotic systems

[77], graph theory [60], and image processing [41], to mention few, can be formulated as

quadratic optimization problems. Thus, developing efficient techniques to solve general

quadratic optimization problems is of great importance.

Let us consider a quadratic optimization (QO) problem of the form:

min
x∈X

x⊺Qx + c⊺x, (QO)

where X ⊆ Rnx is a nonempty convex set, Q ∈ Rnx×nx is a real matrix, and c ∈ Rnx is a

real vector. Without loss of generality, we assume that Q is a symmetric matrix. If Q is a

positive semi-definite matrix, we have a convex QO, which is solvable in polynomial time

[80, 98]. In contrast, even when Q has only one negative eigenvalue, (QO) is NP-hard [94].

Besides, identifying local minimizers of (QO) over a polyhedron is not simpler than finding

global minimizers from a complexity perspective [1].

67
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Due to the NP-hardness of indefinite QO problems, there has been a lot of research on

constructing upper bounds via finding “good” solutions [18, 51], and lower bounds to identify

the quality of a candidate solution, which are mainly based on linear or conic approximations

[90, 102, 125]. A customary way to approximate a QO problem is by relaxing it into linear

optimization problems, which is achieved through Reformulation-Linearization Techniques

(RLT) [3, 110]. For an overview of RLTs, we refer the reader to the chapter [108] and the

references therein.

Among the conic relaxations, copositive relaxations have been considered the most powerful

as it was shown that they result in tight bounds [33, 43]. In such relaxations, the primary

computational challenge shifts to deal with the copositive cone using tractable inner and

outer approximations [42, 63, 78], or use a KKT-based branch-and-bound method [48].

Another important conic relaxation for QO problems is the positive semi-definite relaxations.

In the last thirty years, the field of semi-definite optimization (SDO) has undergone significant

and swift advancement [118]. The SDO framework has led to many semi-definite relaxations

due to their efficiency; these relaxations are reviewed and compared in [8, 116, 131]. Moreover,

[44, 45] develop branch-and-bound approaches based on semi-definite relaxations to solve a

QO problem.

In addition to directly approximating QOs, a research direction is to reformulate them into

other well-studied problems. In [70] and [120], the authors show how a QO problem is

reformulated as a mixed-integer linear optimization (MILO) problem. Moreover, since any

quadratic function can be written as the difference between two convex quadratic functions

(see, e.g. [59] and [95] for different representations and their properties), a QO can be

reformulated as a difference-of-convex (DC) optimization problem.

Next to methods developed for general QO problems, there are techniques to solve or

approximate special classes. One class is when the matrix Q has a few negative eigenvalues.

In [46], the authors propose a solution scheme that involves solving a series of convex

QO problems over the original feasible region. Additionally, [86] introduces an alternative

direction-based method to solve QO problems in this class.

Another class is standard QO problems, where the feasible region is the unit simplex. For
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more details on lower bound approximations for this class of QO problems, we refer the

reader to [34, 35, 37, 61, 62, 106].

In this paper, we focus on the relation between QO problems and adjustable robust optimiza-

tion problems. The adjustable robust optimization (ARO) framework, initially introduced

in [14], has gained significant attention among researchers due to its ability to handle

decision-making problems in the presence of uncertain parameters. This approach involves

adaptive decision-making by considering two types of decision variables: static and adjustable

decisions. Static (or ‘here-and-now’) decisions are made based on available information,

while adjustable (or ‘wait-and-see’) decisions are made in response to the actual values of

uncertain parameters. In recent years, the ARO framework has been successfully applied

to tackle complex optimization problems such as convex maximization [105] and bi-linear

optimization [130].

To obtain an approximate solution for an ARO problem, various techniques, such as the

finite scenario approach [66], partitioning method [24, 97], Fourier-Motzkin elimination [128],

decision rules [58], can be employed, particularly in the case of linear ARO problems. By

using these methods, one can estimate the optimal value or obtain an approximated solution

for the original problem. For more information on ARO, we refer to the tutorial by [54] and

the survey paper by [123].

However, while linear ARO has effective approximation tools, the literature sparsely covers

non-linear ARO problems due to their inherent complexity. In [53], the authors show a class

of non-linear ARO problems featuring a polyhedral uncertainty set that can be transformed

into an equivalent linear ARO problem, thereby enabling the application of approximations

techniques available for linear cases. In a recent study [76], the authors employ Fenchel’s

duality to convert a non-linear ARO problem into its dual formulation and introduce a

cutting-plane algorithm to find locally robust solutions.

In this chapter, we make a four-fold contribution to the literature to connect the two fields

of quadratic optimization and adjustable robust optimization. First, we show that any QO

problem can be reformulated as a disjoint bi-convex quadratic optimization problem. Using

this new reformulation, we further show that any QO problem can be reformulated as an
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ARO problem, where the objective functions and constraints are convex quadratic on the

decision variables and linear on the uncertain parameter. Moreover, the ARO reformulation

has right-hand-side uncertainty, implying that available ARO techniques are applicable to

approximate it.

Second, we show how one can interpret an approximation of the ARO reformulation on the

original QO problem. More specifically, we prove that applying a structured affine decision

rule to approximate the ARO formulation is equivalent to applying an RLT to approximate

the disjoint bi-convex reformulation.

Third, we design an algorithm to construct a bound on the optimal value of (QO). More

specifically, we apply a decision-rule approximation to obtain a lower bound. Then, based on

the solution and the structure of the ARO problem, we construct “good” feasible solutions.

In the final step, we apply the mountain-climbing procedure to improve the quality of the

solution.

Finally, we conduct an extensive numerical experience to illustrate the efficiency of our

algorithm. Based on the numerical results, we see that the solution obtained from the

algorithm is close to optimum and, in most cases, has the optimality gap of 1%. Regarding

speed, our algorithm is computationally efficient and significantly outperforms the available

off-the-self solvers.

The main results of this chapter have been appeared in

[75] Khademi, A., & Marandi. (2024). Quadratic Optimization Through the Lens of Adjustable

Robust Optimization. Submitted.

The rest of this chapter is structured as follows: in Section 4.1.1, we define the notation

used throughout this chapter. Section 4.2 introduces the reformulation of a QO problem

as a bi-convex optimization problem and outlines its equivalent ARO problem. In Section

4.3, we approximate this problem using available techniques and prove the equivalence to an

RLT for the original QO problem. Subsequently, in Section 4.4, we design an algorithm that

provides a near-optimal solution for a QO problem using the ARO reformulation. Section

4.5 presents numerical results, demonstrating the efficiency of our ARO-based algorithm,

particularly for large-sized instances. Finally, in Section 4.6, we summarize our findings and
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present our conclusions.

4.1.1 Notation

In this section, we introduce notations used in this chapter. For a symmetric matrix B, we

use B ⪰ 0 (B ≻ 0) to show B is positive semi-definite (positive definite), i.e., that it has

non-negative (positive) eigenvalues. The smallest and largest eigenvalues of a symmetric

matrix B are denoted by λmin(B) and λmax(B), respectively. For a given matrix B, and

integers i and j, we denote by Bi, Bj , and Bij , the i-th row, the j-th column, and the ij-th

entry of B, respectively. For a matrix B, vec(B) denotes the vector formed by concatenating

all of the rows of the matrix B. We use (⋅)⊺ to refer to the transpose operator for both

matrices and vectors. We denote the n × n identity matrix by In, the vector of all ones by e,

and the i-th unit vector by ei. To avoid overcomplicating notation, we do not specify the

dimensions of e and ei but make sure they are always evident from the context. We misuse

the notation and denote the real number zero, the vector of all zeroes, and the matrix of all

zeroes by 0.

We use Rn to refer to the n-dimensional real-valued Euclidean space, where ∥ ⋅ ∥2 is the

Euclidean norm. The standard or unit simplex in Rn, given by {x ∈ Rn ∶ e⊺x = 1, x ≥ 0}, is

denoted by ∆.

4.2 New Reformulations for Quadratic Optimization Prob-

lems

In this section, we propose two reformulations for a quadratic optimization problem (QO).

We first show how we can reformulate (QO) to a disjoint bi-convex quadratic optimization

problem. Using this reformulation, we further provide an equivalent adjustable robust

optimization problem. So, we start with the following theorem.

Theorem 8. Let Q+,−Q− ⪰ 0, and X ⊆ Rnx be an arbitrary set. Then,

min
x∈X

x⊺(Q+ +Q−)x + c⊺x (4.1)
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is equivalent to

min
x,y∈Rnx

{1
2x
⊺Q+x + 1

2y
⊺Q+y + x⊺Q−y + 1

2c
⊺x + 1

2c
⊺y ∶ x, y ∈ X} . (Bi-QO)

Proof. It is clear that

min
x∈X

x⊺(Q+ +Q−)x + c⊺x

= min
x,y∈Rnx

{1
2x
⊺Q+x + 1

2y
⊺Q+y + x⊺Q−y + 1

2c
⊺x + 1

2c
⊺y ∶ x = y, x, y ∈ X}

≥ min
x,y∈Rnx

{1
2x
⊺Q+x + 1

2y
⊺Q+y + x⊺Q−y + 1

2c
⊺x + 1

2c
⊺y ∶ x, y ∈ X} ,

where the inequality is due to the fact that the feasible region of the last optimization

problem is contained in the feasible region of the middle optimization problem.

To show “≤”, we use the negative semi-definiteness of Q−. Let x, y ∈ Rnx be arbitrary. Because

Q− ⪯ 0, we have (x − y)⊺Q−(x − y) ≤ 0. Hence, x⊺Q−x + y⊺Q−y ≤ 2x⊺Q−y. This implies that

for any x, y ∈ Rnx ,

x⊺(Q+ +Q−)x + y⊺(Q+ +Q−)y ≤ x⊺Q+x + y⊺Q+y + 2x⊺Q−y.

So,

x⊺(Q+ +Q−)x + y⊺(Q+ +Q−)y + c⊺x + c⊺y ≤ x⊺Q+x + y⊺Q+y + 2x⊺Q−y + c⊺x + c⊺y.

Now, by taking the minimum over x, y ∈ X , we have

min
x∈X
{x⊺(Q+ +Q−)x + c⊺x} +min

y∈X
{y⊺(Q+ +Q−)y + c⊺y}

≤ min
x,y∈X

{x⊺Q+x + y⊺Q+y + 2x⊺Q−y + c⊺x + c⊺y} .

The fact that

min
x∈X
{x⊺(Q+ +Q−)x + c⊺x} =min

y∈X
{y⊺(Q+ +Q−)y + c⊺y} ,
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completes the proof.

It is worth noting that the proof of Theorem 8 does not rely on the specific structure of the

feasible set X . If X is convex, then the proposition asserts that any indefinite QO can be

reformulated as a disjoint bi-convex quadratic optimization problem, where the variables x

and y are linked only in the objective function.

Remark 4.2.1. In (QO), we can assume, without loss of generality, that the matrix Q is

symmetric; otherwise, we can replace the objective function with x⊺(Q
⊺+Q
2 )x + c⊺x. Now,

for a symmetric matrix Q, we know that the eigenvalues are real [92]. So, for an indefinite

matrix Q, we can construct the matrices in Theorem 8 as follows:

Representation 1:

Q+ ∶= Q − (λmin(Q) − ϵ)I, and Q− ∶= (λmin(Q) − ϵ)I,

Representation 2:

Q+ ∶= (λmax(Q) + ϵ)I, and Q− ∶= Q − (λmax(Q) + ϵ)I,

where ϵ is a small positive constant chosen to ensure that Q+,−Q− ⪰ 0. Later, we discuss

which of these formulations can provide a better approximation.

The next proposition aims to establish a relation between the optimal solutions of the (QO)

and (Bi-QO) problems, showcasing how solutions from one problem can be used to obtain

optimal solutions for the other.

Proposition 4.2.1. Let Q = Q+ + Q− where Q ∈ Rnx×nx, and Q+,−Q− ≻ 0. If x∗ is an

optimal solution of (QO), then (x∗, x∗) is an optimal solution of (Bi-QO). If (x̂, ŷ) is an

optimal solution of (Bi-QO), then x̂ and ŷ are optimal solutions of (QO).

Proof. Suppose x∗ is an optimal solution to (QO). It is clear that the tuple (x∗, x∗) is also

an optimal solution to (Bi-QO). To prove the reverse direction, assume that (x̂, ŷ) is an
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optimal solution of (Bi-QO). Therefore,

1
2
(x̂⊺Q+x̂ + ŷ⊺Q+ŷ + c⊺x̂ + c⊺ŷ) + x̂⊺Q−ŷ ≤ 1

2
(x̂⊺Q+x̂ + x̂⊺Q+x̂ + c⊺x̂ + c⊺x̂) + x̂⊺Q−x̂,

1
2
(x̂⊺Q+x̂ + ŷ⊺Q+ŷ + c⊺x̂ + c⊺ŷ) + x̂⊺Q−ŷ ≤ 1

2
(ŷ⊺Q+ŷ + ŷ⊺Q+ŷ + c⊺ŷ + c⊺ŷ) + ŷ⊺Q−ŷ.

(4.2)

When these inequalities are combined, the result is:

2x̂⊺Q−ŷ ≤ x̂⊺Q−x̂ + ŷ⊺Q−ŷ. (4.3)

Now, note that x̂⊺(−Q−)ŷ = ((−Q−)
1
2 x̂)

⊺
((−Q−)

1
2 ŷ), where (−Q−)

1
2 is the square roots of

the matrix (−Q−). Therefore, we can apply the Cauchy-Schwarz inequality, which implies

that
2x̂⊺(−Q−)ŷ ≤ 2∥(−Q−)

1
2 x̂∥ .∥(−Q−)

1
2 ŷ∥

= 2
√
x̂⊺(−Q−)x̂

√
ŷ⊺(−Q−)ŷ

≤ x̂⊺(−Q−)x̂ + ŷ⊺(−Q−)ŷ,

(4.4)

where the reason for the last inequality is that, for any two non-negative scalars a and c,

2
√
ac ≤ (a + c). Hence, we have

2x̂⊺Q−ŷ ≥ x̂⊺Q−x̂ + ŷ⊺Q−ŷ. (4.5)

Thus, by (4.3) and (4.5), we obtain that

2x̂⊺Q−ŷ = x̂⊺Q−x̂ + ŷ⊺Q−ŷ, (4.6)

which is the same as

(x̂ − ŷ)⊺Q−(x̂ − ŷ) = 0. (4.7)

From −Q− ≻ 0, we have x̂ − ŷ = 0, i.e. x̂ = ŷ. So, x̂ is an optimal solution of (QO).

A straightforward result, which follows from the proof of the above proposition, is that when

(x̂, ŷ) represents an optimal solution to problem (Bi-QO), x̂ and ŷ must be equal. The next

corollary states this fact.
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Corollary 4.2.1. Let Q = Q+ +Q− where Q ∈ Rnx×nx, and Q+,−Q− ≻ 0. If (x∗, y∗) is an

optimal solution to problem (Bi-QO), then x∗ = y∗.

From now on, let us restrict the feasible region of (QO) to polytopes. So, we assume that

X = {x ∈ Rnx ∣ Ax = b, x ≥ 0} for some A ∈ Rmx×nx and b ∈ Rmx , so that X is compact. In

the next theorem, we show that we can reformulate (QO) problem to an adjustable robust

optimization problem.

Theorem 9. Let Q = Q+ + Q− where Q ∈ Rnx×nx, and Q+,−Q− ⪰ 0. Assume that X =

{x ∈ Rnx ∣ Ax = b, x ≥ 0} is non-empty compact. Then, the optimal value of (QO) is equal

to the optimal value of the following problem:

max
τ∈R

τ

s.t. ∀x ∈ X , ∃(ux,wx) ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺
xQ
+ux + b⊺wx ≥ τ,

A⊺wx −Q+ux ≤ Q−x + 1
2c.

(ARO-QO)

Proof. Based on the assumption, we have that (QO) is equivalent to

min
x∈X

x⊺(Q+ +Q−)x + c⊺x,

which is, using Theorem 8, equivalent to

min
x,y∈Rnx

{1
2x
⊺Q+x + 1

2y
⊺Q+y + x⊺Q−y + 1

2c
⊺x + 1

2c
⊺y ∶ x, y ∈ X} . (4.8)

We can write (4.8) as

min
x∈X
{12x

⊺Q+x + 1
2c
⊺x+min

y∈X
1
2y
⊺Q+y + x⊺Q−y + 1

2c
⊺y}. (4.9)

We consider the inner minimization problem over y for a given x ∈ X . Since X non-empty
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compac, we can apply Dorn duality [55], and rewrite (4.9) as follows:

min
x∈X

1
2x
⊺Q+x + 1

2c
⊺x+ max

ux,wx

−1
2u
⊺
xQ
+ux + b⊺wx (4.10)

s.t. A⊺wx −Q+ux ≤ Q−x + 1
2c.

Let x ∈ X . If the inner maximization is infeasible, its optimal value is −∞, implying that

(4.10) is unbounded. So, in this case, (QO) is unbounded, which contradicts the compactness

of X . So, for any x ∈ X , there is a feasible (ux,wx) for the inner maximization. Thus, using

the epigraph reformulation of the objective function, we can rewrite (4.10) as

max
τ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ

RRRRRRRRRRRRRRRR

∀x ∈ X , ∃(ux,wx) ∶
1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺
xQ
+ux + b⊺wx ≥ τ,

A⊺wx −Q+ux ≤ Q−x + 1
2c.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (4.11)

which completes the proof.

Problem (ARO-QO) is a quadratic ARO problem with fixed recourse and right-hand-side

uncertainty. In this problem, τ is the static variable, x ∈ X is the uncertain parameter, and

(ux,wx) is the adjustable variable. The adjustable variables can be seen as functions of x,

and are known as decision policies [76, 123].

It is important to note that concave QO, i.e., when dealing with a negative semi-definite

matrix Q, is characterized by its NP-hard nature. This complexity primarily arises from the

crucial relationship between achieving optimality and enumerating the extreme points within

the feasible region [93]. Predominant strategies for addressing concave QO problems typically

involve cutting plane methods, branch and bound approaches, or iterative computational

techniques [6, 2, 49, 96]. Furthermore, recent studies in this area have focused on establishing

bounds from a robust optimization perspective [105], and some have adopted approaches

based on gradient descent principles [17]; the application of these techniques has been

instrumental in deriving high-quality bounds for the optimal solution.

In the subsequent corollary, we present the ARO reformulation for concave QO.

Corollary 4.2.2. Let Q be a negative semi-definite matrix. Assume that
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X = {x ∈ Rnx ∣ Ax = b, x ≥ 0} is non-empty compac. Then, the optimal value of (QO) is

equal to the optimal value of the following problem:

max
τ∈R

τ

s.t. ∀x ∈ X , ∃wx ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2c
⊺x + b⊺wx ≥ τ,

A⊺wx ≤ Q−x + 1
2c.

(4.12)

Proof. Immediate result from Theorem 9 by setting Q+ ∶= 0 and Q− ∶= Q.

Note that (4.12) is a linear adjustable robust optimization problem and all techniques in the

literature can be used to solve or approximate it.

Remark 4.2.2. Tables 4.8 and 4.9 present the equivalent ARO formulations if the polytope

X is formulated in another form than canonical.

To approximate (ARO-QO) problem, we can use customary techniques to deal with adjustable

variables, such as eliminating the adjustable variables via Fourier-Motzkin Elimination or

using decision rules to approximate the adjustable variables. In the next section, we focus

on such approximation methods.

4.3 ARO Based Approximations

In this section, we show how the available techniques to approximate an ARO problem can

be employed and what their interpretations are concerning (QO).

4.3.1 Decision Rules

In (ARO-QO) problem, the adjustable variables ux and wx are, in essence, functions of the

uncertain parameter x. One of the popular methods to approximate an ARO problem is by

restricting the adjustable variables to belong to a specific class of functions. For example,

we can restrict them to be constants, resulting in a static formulation, or to be affine, known

as affine decision rule (ADR), which is a good approximation for linear ARO problems (see,

e.g., [25] and [26, 28]).
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Since (ARO-QO) contains a non-linear convex term u⊺xQ
+ux, using ADR to approximate ux

results in an intractable approximation. Therefore, to have a tractable approximation, we

apply a hybrid decision rule. More specifically, we restrict ux to be constant and wx to be

affine:

ux ∶= u and wx ∶= z +Zx,

where u ∈ Rnx , z ∈ Rmx , and Z ∈ Rmx×nx are static variables. Using this decision rule in

(ARO-QO) leads to the following static robust counterpart, which gives a lower bound on

the optimal value of (QO):

max
u,z,Z,τ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ

RRRRRRRRRRRRRRRRRRRR

1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺Q+u + b⊺(z +Zx) ≥ τ, ∀x ∈ X

A⊺(z +Zx) −Q+u ≤ Q−x + 1
2c, ∀x ∈ X

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (4.13)

where u, z, and Z are simultaneously optimized together with the static decision variable τ .

In the previous section, we demonstrated that the (QO) problem is equivalent to both the

(Bi-QO) and (ARO-QO) problems. In Problem (4.13) we approximate (ARO-QO). In the

rest of this section, we show that this approximation, in fact, is equivalent to applying a

reformulation-linearization (RL) technique to (Bi-QO).

RL techniques have also been considered in the literature to approximate an ARO problem.

More specifically, it is shown in [4] that using duality techniques, a linear ARO problem

can be reformulated as a bi-linear optimization problem. The authors then show that using

an RL technique to approximate the bi-linear optimization reformulation is equivalent to

applying ADR to the original problem. In [130], the same results are shown for disjoint

bi-linear problems with convex feasible regions.

Considering (Bi-QO), using the RL technique proposed in [109] and [110] results in the
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following linear optimization problem:

min
γ,x,y

1
2
(x⊺Q+x + y⊺Q+y + c⊺x + c⊺y) +

nx

∑
i,j=1

Q−ijγij

s.t. Ax = b,

Ay = b,

Aγ = by⊺,

Aγ⊺ = bx⊺,

x ≥ 0, y ≥ 0, γ ≥ 0.

(4.14)

In the next theorem, we show that (4.14) is the dual of the deterministic reformulation of

the robust counterpart (4.13).

Theorem 10. Assume that X is a non-empty compact set. Then, the optimal value of

(4.13) is equal to the optimal value of (4.14).

Proof. We can rewrite (4.13) as

max
u,z,Z,τ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ

RRRRRRRRRRRRRRRRRRR

min
x∈X
{1
2x
⊺Q+x + (12c

⊺ + b⊺Z)x} + b⊺z − 1
2u
⊺Q+u ≥ τ,

min
x∈X
{(−A⊺Z +Q−)ix} + (12c +Q

+u −A⊺z)i ≥ 0, i = 1, . . . , nx

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (4.15)

Since X is a polytope, the inner minimizations are convex optimization problems. Since X

is a non-empty compact set, strong duality holds [39, 55]. Therefore, (4.15) is equivalent to

max
u,z,Z,τ

τ

s.t. max
α,β
{b⊺β − 1

2α
⊺Q+α ∣ A⊺β −Q+α ≤ (b⊺Z)⊺ + 1

2c} + b
⊺z − 1

2u
⊺Q+u ≥ τ,

max
θi
{b⊺θi ∣A⊺θi ≤ ((−A⊺Z +Q−)i)

⊺} + (12c = Q
+u −A⊺z)i ≥ 0, i = 1, . . . , nx.

(4.16)
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We can omit the inner maximization operator in the above constraints. Thus, we have

max
u,z,Z,α,β,θ

b⊺β − 1
2α
⊺Q+α + b⊺z − 1

2u
⊺Q+u

s.t. A⊺β −Q+α ≤ (b⊺Z)⊺ + 1
2c,

b⊺θi + (12c +Q
+u −A⊺z)i ≥ 0, i = 1, . . . , nx,

A⊺θi ≤ ((−A⊺Z +Q−)i)
⊺
, i = 1, . . . , nx.

(4.17)

Now, we show that (4.17) is the dual problem of (4.14). To do this, we first write (4.14) in

the matrix form:

min
vec(γ),x,y

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

vec(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊺
⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q+ 0 0

0 Q+ 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

vec(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c
2

c
2

vec(Q−)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊺
⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

vec(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A 0 0

0 A 0

0 B C

B 0 D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

vec(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b

b

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

vec(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≥ 0,

(4.18)
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where B ∶= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1Inx

b2Inx

⋮

bmxInx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, C ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A11Inx A12Inx . . . A1nnInx

⋮ ⋮ ⋱ ⋮

Amx1Inx Amx2Inx . . . AmxnxInx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, and D ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 . . . 0

⋮ ⋱ ⋮

0 . . . A1

⋮ ⋮

Amx . . . 0

⋮ ⋱ ⋮

0 . . . Amx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The dual of (4.18) is

max
Y,W

− 1
2Y
⊺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q+ 0 0

0 Q+ 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Y +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b

b

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊺

W

s.t. −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q+ 0 0

0 Q+ 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Y +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A 0 0

0 A 0

0 B C

B 0 D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊺

W ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c
2

c
2

vec(Q−)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(4.19)

Setting

Y ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α

u

Y 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, W ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β

z

vec(θ)

vec(Z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(4.19) is the matrix form of (4.17). Hence, (4.14) is the dual of the deterministic reformulation

of (4.13).

We have shown that applying the RL technique to the disjoint bi-convex reformulation
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(Bi-QO) is equivalent to using a hybrid static-affine decision rule to approximate the adjustable

robust reformulation (ARO-QO). As mentioned, the ADR approximation is shown to be

an efficient approximation for a class of linear ARO problems. For example, for a linear

ARO problem with a right-hand-side uncertainty, the ADR approximation is tight when the

uncertainty set is simplex [19]. The translation of this setting for the original problem (QO)

is to have a concave quadratic objective function with X being a simplex. Even though

this class seems not to be interesting (we know that enumerating the nx number of vertices

provides us with the optimal value), it generates insights into the quality of (4.14).

As mentioned in Remark 4.2.1, we can have multiple representations of Q based on Q+

and Q−. Considering Representation 1, we see that Q− is a diagonal matrix, but Q+ has

a similar density as Q. Therefore, in (ARO-QO), all entries of ux are linked together via

Q+ux. However, in Representation 2, Q+ is a diagonal matrix, implying that the entries of

ux are only linked together via u⊺xQ
+ux and not in the constraints. In the numerical result

section, we will use this representation.

4.3.2 Fourier–Motzkin Elimination

In linear ARO problems with fixed recourse, an adjustable variable may be eliminated

by employing Fourier-Motzkin elimination (EME). This approach allows for the effective

handling of problems involving a limited number of adjustable variables [128].

Note that for a given x ∈ X , in (ARO-QO), we have the ability to eliminate the adjustable

variable wx ∈ Rmx . We assume without loss of generality that b ≥ 0. Let k ∈ {1, . . . ,mx}. To

eliminate wxk
, the k-th component of the vector wx, we first isolate it in the constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bkwxk
≥ τ − 1

2x
⊺Q+x − 1

2c
⊺x + 1

2u
⊺
xQ
+ux −

mx

∑
j=1
j≠k

bjwxj ,

Akiwxk
≤ (Q−x + 1

2c +Q
+ux)i −

mx

∑
j=1
j≠k

Ajiwxj . i = 1, . . . ,mx.

(4.20)

Since X = {x∣ Ax = b, x ≥ 0} is non-empty, so we cannot have bk > 0 and Aki ≤ 0 for any

i = 1, . . . ,mx.

If Aki ≠ 0 and bk > 0, then both sides of their respective constraints can be divided by Aki
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and bk. This yields an equivalent representation of the feasible region, involving the following

constraints:

wxk
≥ 1

bk
(τ − 1

2x
⊺Q+x − 1

2c
⊺x + 1

2u
⊺
xQ
+ux −

mx

∑
j=1
j≠k

bjwxj) if bk > 0,

0 ≥ τ − 1
2x
⊺Q+x − 1

2c
⊺x + 1

2u
⊺
xQ
+ux −

mx

∑
j=1
j≠k

bjwxj if bk = 0,

wxk
≥ 1

Aki
((Q−x + 1

2c +Q
+ux)i −

mx

∑
j=1
j≠k

Ajiwxj) for i = 1, . . . ,mx, where Aki < 0,

1
Akr
((Q−x + 1

2c +Q
+ux)i −

mx

∑
j=1
j≠k

Ajrwxj) ≥ wxk
for r = 1, . . . ,mx, where Akr > 0,

(Q−x + 1
2c +Q

+ux)i −
mx

∑
j=1
j≠k

Ajswxj ≥ 0 for s = 1, . . . ,mx, where Aks = 0.

After the adjustable variable wxk
is eliminated, the feasible set becomes:

1
Akr
((Q−x + 1

2
c +Q+ux)i −

mx

∑
j=1
j≠k

Ajiwxj ) ≥ 1
bk
(τ − 1

2
x⊺Q+x − 1

2
c⊺x + 1

2
u⊺xQ

+ux −
mx

∑
j=1
j≠k

bjwxj ) where bk > 0 and Akr > 0,

0 ≥ τ − 1
2
x⊺Q+x − 1

2
c⊺x + 1

2
u⊺xQ+ux −

mx

∑
j=1
j≠k

bjwxj where bk = 0,

1
Akr
((Q−x + 1

2
c +Q+ux)r −

mx

∑
j=1
j≠k

Ajrwxj ) ≥ 1
Aki
((Q−x + 1

2
c +Q+ux)i −

mx

∑
j=1
j≠k

Ajiwxj ) where Aki < 0 and Akr > 0,

(Q−x + 1
2
c +Q+ux)s −

mx

∑
j=1
j≠k

Ajswxj ≥ 0 where A⊺
sk
= 0.

By continuing the process of FME, the adjustable variable wx (or some part of it) is

eliminated, resulting in a problem with fewer adjustable variables but potentially many

more constraints. If the number of constraints in (QO) is limited, then it is computationally

efficient to eliminate wx.

4.3.3 Finite Scenario Approach

One of the approximation approaches for the ARO problem is the Finite Scenario Approach

(FSA). In this approach, we restrict ourselves to only finite scenarios of uncertainty set.
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Instead of making decision rules, one can introduce a new single optimization variable to each

scenario. This approach only assures feasibility for a subset of scenarios from the uncertainty

set, so the objective value found with this approach only provides an upper bound to the

optimal objective value of the ARO model. The (FSA) is computationally efficient because

it only considers a finite number of scenarios, rather than trying to optimize over all possible

scenarios. This reduces the number of variables and constraints in the optimization problem,

making it easier to solve. By identifying a set of potential scenarios, we are able to utilize

this technique that results in a deterministic convex optimization problem as below:

max
{uk}k,{wk}k,τ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ

RRRRRRRRRRRRRRRRRRR

1
2(x

k)⊺Q+xk + 1
2c
⊺xk + b⊺wk − 1

2(u
k)⊺Q+uk ≥ τ, k = 1, . . . , ∣W ∣

−Q+uk +A⊺wk ≤ Q−xk + 1
2c, k = 1, . . . , ∣W ∣

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

(FSA-QO)

where W = {x1, . . . , xr} is a finite sub-set of X .

The following proposition states that if the optimal value of (FSA-QO) for a finite subset of

scenarios is identical to the optimal value of (QO), then the optimal solution for (QO) must

be included within that subset.

Proposition 4.3.1. Let Q = Q+ +Q− where Q ∈ Rnx×nx, and Q+,−Q− ≻ 0. If the optimal

value of (FSA-QO) for a given finite subset of scenarios is equal to the optimal value of

(QO), then the finite subset of scenarios contains the optimal solution for (QO).

Proof. Let (τ̄ ,{ūk}k,{w̄k}k) be an optimal solution of problem (FSA-QO), and suppose

that in this solution, the following constraint of problem (FSA-QO) is binding for some

xs ∈W ⊊ X :

1
2(x

s)⊺Q+xs + 1
2c
⊺xs + b⊺w̄s − 1

2(ū
s)⊺Q+ūs = τ̄ .

We claim that xs is an optimal solution of (QO). To show this, we have

τ̄ = 1
2(x

s)⊺Q+xs + 1
2c
⊺xs +max

w,u
{b⊺w − 1

2u
⊺Q+u ∶ −Q+u +A⊺w ≤ Q−xs + 1

2c}

= 1
2(x

s)⊺Q+xs + 1
2c
⊺xs +min

z
{1
2z
⊺Q+z + 1

2c
⊺z + z⊺Q−xs∣ z ∈ X} ,

(4.21)

The validity of the last equality follows from the fact that strong duality holds. If we denote
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the optimal solution of the above minimization problem by zs, then we can conclude that

(xs, zs) is optimal for (Bi-QO). Furthermore, according to Corollary 4.2.1, we have xs = zs,

and therefore xs is optimal for the original (QO) problem.

4.4 Solution Method

In the previous section, we explained how to obtain a lower bound using the techniques from

ARO literature. In this section, we provide an algorithm to obtain a feasible solution of

construct an upper bound.

After solving the approximated problem (4.13), we use the obtained solution to extract

worst-case scenarios from each constraint of the robust counterpart problem (4.13). Among

these scenarios, we select the one that yields the best objective value for the original QO

problem. After identifying the most favorable scenario, our attention is redirected to the

bi-convex reformulation of the QO problem. Given the selected scenario, we employ the

mounting claiming algorithm for (Bi-QO) to improve the quality of the solution. This process

ultimately leads us to an upper bound for (QO) problem.

Mountain Climbing Procedure

Input: Matrix Q, vector c, and starting point x0.

Initialization: Decompose Q = Q+ +Q− such that Q+,−Q− ⪰ 0.

Repeat: Execute the following steps:

x(k+1) ← argmin
x∈Rnx

{12x
⊺Q+x + x⊺Q−x(k) + 1

2c
⊺x ∶ x ∈ X} .

Until: No further improvement is possible.

Output: Solution candidate x(end).

By employing the ARO reformulation, bi-convex reformulation, and the mounting claiming

method, we can efficiently explore and improve the solution space, thereby obtaining an

upper bound that closely approaches the optimal value. This approach allows us to make

significant progress in refining the solution quality while mitigating computational challenges
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often associated with large-scale optimization problems.

We present an ARO-based approach designed to find a good candidate solution for the QO

problem. The “ARO-QO Algorithm” provides the pseudo-code for executing this procedure.

ARO-Based Algorithm to Solve QO (ARO-QO Algorithm)

Input: Matrix Q, vector c, matrix A, and vector b.

Initialization: Decompose Q = Q+ +Q− such that Q+,−Q− ⪰ 0.

(Step 1) Lower Bound: Compute the lower bound for the approximated

problem based on the ARO formulation of the QO and hybrid decision rule (see

section 4.3).

(Step 2) Generation of Worst-Case Scenarios: Generate a finite set of

worst-case scenarios by substituting the optimal decision rule into (4.13).

(Step 3) Set Initial Point: Select from these scenarios the one that yields

the best objective value for the original QO problem. Denote this point by x(0).

(Step 4) Improve the Initial Solution: Execute the mountain climbing

algorithm starting with the initial solution x(0):

x(k+1) ←Ð argmin{12x
⊺Q+x + x⊺Q−x(k) + 1

2c
⊺x ∶ x ∈ X} .

(Step 5) Termination: Continue (Step 4) until no further improvement is

observed.

Output: Final solution candidate x∗ ∶= x(end), and the corresponding upper-bound

value UB ∶= (x∗)⊺Qx∗ + c⊺x∗.

4.5 Numerical Experiments

In this section, we conduct a comprehensive numerical experiment to evaluate the efficacy

of ARO-QO Algorithm. The efficiency of a particular bound on the optimal value of a

mathematical optimization problem is influenced by two key aspects: the precision of the

generated bound and the required computational time.
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We implement the numerical experiments using MATLAB 2022a. The computations are

executed on a laptop equipped with an Intel(R) Core(TM) i5-3210M CPU at 2.50 GHz and

8 GB of RAM. We use YALMIP to pass optimization problems to suitable solvers [84].

We emphasize that the computational times reported in our experiments exclude the time

required by YALMIP to build the model and pass it to solvers, and we merely consider

the time consumed by the solvers themselves. In what follows, we present the numerical

experiments, specifically focusing on concave quadratic minimization and standard quadratic

optimization. All the instances and the code are available at: [Link].

We use state-of-the-art global solvers to solve the QO problems, namely Gurobi [65, version

10.0] and CPLEX [72, version 12.9]. Given that our bounds requires solving multiple linear

optimization problems, we specifically employ Gurobi for this purpose. Moreover, MOSEK

[91, version 10.1.15] is used to solve second-order cone optimization problems.

4.5.1 Concave Quadratic Minimization

Let us consider a concave quadratic minimization over a polyhedron

min
x≥0

x⊺Qx + c⊺x

s.t. Ax ≥ b,
(4.22)

where Q ∈ Rnx×nx , and −Q ⪰ 0, c ∈ Rnx , A ∈ Rmx×nx , and b ∈ Rmx are given. From Corollary

4.2.2 and Table 4.8, we have the following linear ARO reformulation of (4.22):

max
τ∈R

τ

s.t. ∀x ∈ X , ∃wx ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2c
⊺x + b⊺wx ≥ τ,

A⊺wx ≤ Qx + 1
2c,

wx ≥ 0,

(4.23)

https://github.com/abbaskhademi/QO-via-ARO
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where X ∶= {x ∈ Rnx ∣Ax ≥ b, x ≥ 0}. To obtain a lower bound, we consider the following

decision rule:

wx ∶=
⎛
⎜⎜⎜
⎝

z +Zx

w

⎞
⎟⎟⎟
⎠
,

where for given r ∈ {1,2, . . . ,mx}, z ∈ Rr, Z ∈ Rr×nx , and w ∈ R(mx−r) are static variables. It

is important to note that for r =mx, we obtain a full affine decision rule, while for r = 0, we

have a static decision rule. For other values, we have a partial affine decision rule. Each of

these decision rule types has its own set of advantages and disadvantages, which we address

later in this section.

In [105], the authors propose an approximation solution approach for solving a concave

minimization problem via ARO by providing upper and lower bounds, where the lower bound

is formulated as a second-order cone optimization problem. To solve this, we employed the

MOSEK solver.

In this section, we compare the quality of the solution obtained by ARO-QO Algorithm

with Gurobi and CPLEX, and [105] method. In all of our numerical experiments, we set a

maximum time limit of 3,000 seconds.

We analyze the performance of the upper and lower bound in terms of the optimality gap,

which is measured as follows:

Gap(%) = ( UB − LB
∣UB∣ + 10−4) × 100,

where ‘LB’ is the lower bound and ‘UB’ is the upper bound for a given instance. The addition

of the small constant 10−4 in the denominator is to ensure the prevention of division by zero.

Problem Instances

First, we consider the seven test instances from Section 4.3 of [105]. We undertake a detailed

comparison of three versions of ARO-QO Algorithm (static, partial, and fully affine), [105]

method, and global solvers Gurobi and CPLEX. In the lower bound approximation of the

ARO-QO Algorithm, applying full static, partial affine (restricting the first r = [mx

7 ] + 1 of
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wx to be affine and the remaining mx − r to be constant), and full affine decision rules has

distinct effects on the optimality gaps. Table 4.1 illustrates that increasing the number of

affine decision rules correlates with tighter optimality gaps within the ARO-QO Algorithm.

Particularly, the Affine ARO-QO Algorithm consistently achieves the smallest optimality

gaps among its variants. However, this precision incurs longer solver time, notably in larger

problems, such as Problem 5, which required 900.48 seconds, and Problems 6 and 7, where

it exceeded the time limit. However, the Static and Partial ARO-QO Algorithms have the

lowest optimality gap in Problem 7 and do so within a reasonable time.

In addition, it is noteworthy that the [105] method typically leads to larger optimality gaps

compared to the ARO-QO algorithms, while the solver times for this method are longer

than static ARO-QO Algorithms. Gurobi and CPLEX achieve optimality for Problems 1-6.

However, CPLEX often requires more time, especially in larger problems. Both Gurobi

and CPLEX reached their time limits on Problem 7, highlighting the difficulty in solving

large-size problems.

Table 4.1: Optimality gaps and solver times of concave minimization instances from [105].

Static ARO-QO Algorithm Partial ARO-QO Algorithm Affine ARO-QO Algorithm Selvi et al. method [105] Gurobi CPLEX
Problem Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

#1 (mx = 10, nx = 20) 30.38 0.08 27.97 0.15 0.02 1.05 77.85 0.17 0.00 0.11 0.00 0.12
#2 (mx = 10, nx = 20) 9.13 0.08 8.94 0.15 0.01 1.06 34.77 0.15 0.00 0.12 0.00 0.11
#3 (mx = 15, nx = 10) 0.42 0.04 0.29 0.06 0.00 0.12 1.68 0.15 0.00 0.03 0.00 0.06
#4 (mx = 62, nx = 50) 0.12 0.27 0.09 0.48 0.00 11.46 1.10 1.32 0.00 0.56 0.00 1.56
#5 (mx = 130, nx = 100) 0.08 1.28 0.07 4.81 0.00 900.48 2.15 8.27 0.00 12.03 0.00 43.64
#6 (mx = 240, nx = 200) 0.02 8.98 0.02 44.83 - 3000* 1.52 59.60 0.00 528.99 0.00 1165.38
#7 (mx = 280, nx = 240) 0.04 30.47 0.04 104.90 - 3000* 5.71 80.90 15.22 3000* 14.17 3000*

Notes. In this table, the first column presents the problem numbers along with their corresponding dimensions.
The symbol “-” indicates that it was not possible to determine bound within 3,000 seconds.

Even though the static policy yields the highest optimality gap among the three decision

rules, it stands out for its minimal computation time required to derive both lower and

upper bounds. This becomes the problem after applying a static decision rule that has no

extra variables and constraints, and the upper bound is calculated independently of the

solution of the lower bound. Notably, the computation of the upper bound in the static policy

is independent of the lower bound solution. This independence is based on the structure

of problem (4.23). In Step 2 of the ARO-QO Algorithm, where worst-case scenarios are

generated from problem (4.23), an optimal decision rule is not required. Remarkably, in the

seven instances, the calculated upper bound aligns with the global optimal value, and is

obtained quickly, as reported in Table 4.7. When compared with alternative approaches, such
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as applying partial or full affine decision rules or using the [105] method (which also achieves

optimal upper bounds), the full static decision rule demonstrates a faster computation

process to reach a candidate solution. This increased speed is attributed to the fact that

mentioned methods, necessitate optimal solutions for the lower bound to determine the

upper bound, which inherently increases their computational demand as opposed to the

more streamlined process observed in the static policy.

After considering the seven test instances of [105], we randomly generate large-size instances.

For a meaningful comparison of the mentioned approaches, we evaluate the quality of the

bounds on the objective value of problem (4.22) using 15 groups of random instances, with

the dimension nx taking value in {50,100, . . . ,600,700} and the number of constraints mx

spanning a range in {100,150, . . . ,750,800}. Each group contains five instances of the same

size, and these instances are generated in a similar manner to those created in [105].

For each group, ranging from #1 to #15, Table 4.2 lists the mean optimality gap and solver

time, with standard deviations included in brackets (details can be found in Table 4.10).

Based on the above discussions we use a static decision rule for the lower bound approximation

in ARO-QO Algorithm. We observe that our ARO-QO Algorithm maintains a consistent

performance level across different problem complexities. CPLEX demonstrates reasonable

performance up to Group 6. Furthermore, the method by [105] displays more consistent

optimality gaps across all problem groups, despite them being significantly higher compared

to those of Gurobi and CPLEX in the initial groups. Gurobi achieved very low optimality

gaps in Groups 1-3, in particular, showing an increasing trend in solver times with higher

problem groups, often reaching the 3,000-second limit. Gurobi for the instances in groups 14

and 15, and CPLEX for the instances in groups 8-15, it was not possible to determine the

presence of a feasible solution within the time limit.

From a computation time perspective, in each group, the ARO-QO Algorithm demonstrates

the lowest time to reach the bounds compared to other methods. Overall, the ARO-QO

Algorithm showcases efficiency in computation time and maintains acceptable gaps in all

groups. This underscores the ARO-QO Algorithm’s proficiency in balancing time efficiency

and gap management across these problems.
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Table 4.2: Statistic of optimality gaps and solver times for randomly generated concave
minimization instances.

ARO-QO Algorithm Selvi et al. method [105] Gurobi CPLEX
Group Gap Time Gap Time Gap Time Gap Time

#1 1.54 [0.35] 0.54 [0.01] 13.32 [0.94] 2.20 [0.28] 0.01 [0.00] 66.53 [44.43] 0.01 [0.00] 16.93 [2.14]
#2 1.49 [0.35] 2.77 [0.17] 13.81 [0.88] 9.00 [0.40] 0.01 [0.00] 776.08 [407.71] 0.02 [0.01] 382.64 [181.74]
#3 1.71 [0.36] 4.50 [0.13] 16.37 [0.97] 17.83 [1.46] 0.02 [0.02] 1602.76 [1035.26] 0.12 [0.15] 1285.16 [1256.08]
#4 1.40 [0.37] 15.31 [1.21] 14.71 [2.03] 51.25 [4.76] 10.69 [10.33] 3000* 0.22 [0.35] 2927.72 [161.62]
#5 1.33 [0.13] 24.66 [0.92] 17.02 [1.03] 101.50 [22.87] 25.93 [3.34] 3000* 0.43 [6.26] 3000*
#6 1.62 [0.19] 50.28 [9.55] 16.38 [1.18] 154.01 [10.49] 23.85 [3.49] 3000* 1365.22 [1636.18] 3000*
#7 1.53 [0.28] 76.88 [6.19] 18.83 [2.21] 256.42 [30.29] 37.02 [2.57] 3000* 4104.90 [236.04] 3000*
#8 1.70 [0.25] 95.42 [21.84] 16.21 [1.83] 295.57 [12.37] 118.90 [88.99] 3000* - 3000*
#9 1.89 [0.20] 164.98 [7.30] 19.38 [0.77] 556.61 [19.42] 171.95 [103.12] 3000* - 3000*
#10 1.79 [0.08] 143.81 [11.21] 16.92 [0.56] 256.74 [15.37] 2521.58 [5213.52] 3000* - 3000*
#11 1.64 [0.19] 362.73 [23.07] 19.24 [0.66] 504.47 [15.83] 5420.98 [4697.11] 3000* - 3000*
#12 1.57 [0.12] 263.61 [35.30] 17.17 [0.89] 424.63 [43.45] 8616.82 [5403.16] 3000* - 3000*
#13 1.48 [0.29] 617.78 [48.84] 18.89 [1.50] 821.51 [75.41] 10233.75 [1598.93] 3000* - 3000*
#14 1.79 [0.39] 343.31 [12.94] 17.33 [1.08] 503.12 [36.98] - 3000* - 3000*
#15 1.48 [0.21] 906.65 [80.47] 19.21 [1.47] 1164.43 [515.86] - 3000* - 3000*

Notes: This table categorizes problems into groups in the first column. The subsequent columns display
“mean [standard deviation]” values of the optimality gaps and solver time for each sub-group. The symbol “-”
indicates that it was not possible to determine upper bounds for all instances of the corresponding group
within the maximum the time limit.

4.5.2 Standard Quadratic Optimization

Let us consider a standard quadratic optimization problem

min
x∈∆

x⊺Q̃x + c⊺x.

In general, a standard QO problem is NP-hard [34]. We remark that the quadratic function

x⊺Q̃x + c⊺x over the unit-simplex can be described as a homogeneous quadratic function:

x⊺Qx, where Q ∶= Q̃ + 1
2ec
⊺ + 1

2ce
⊺. Hence, without loss of generality, the standard QO

problem can be represented as follows:

min
x∈∆

x⊺Qx. (StQO)

Let Q ∈ Rnx×nx be an indefinite symmetric matrix. The (StQO) problem is equivalent to the
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following problem

max
τ∈R

τ

s.t. ∀x ∈∆, ∃(ux ∈ Rnx ,wx ∈ R) ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2x
⊺Q+x − 1

2u
⊺
xQ
+ux +wx ≥ τ,

−Q+ux + ewx ≤ Q−x,

(ARO-StQO)

where τ is the static variable, x ∈ ∆ is the uncertain parameter, and (ux,wx) ∈ Rnx ×R is

the adjustable variable.

As mentioned in previous sections, we address two types of approximations of (ARO-StQO).

First, the following problem is an approximation of (ARO-StQO) by applying the hybrid

static and affine decision rule

max
z,u,z0,τ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ

RRRRRRRRRRRRRRRRRRR

1
2x
⊺Q+x + (z0 + z⊺x) − 1

2u
⊺Q+u ≥ τ, ∀x ∈∆

−Q+u + e(z0 + z⊺x) ≤ Q−x, ∀x ∈∆

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (L1-StQO)

which is equivalent to the following deterministic convex quadratic optimization problem

max
z,u,z0,τ,α,β,θ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

−1
2α
⊺Q+α + β + z0 − 1

2u
⊺Q+u ≥ τ,

eβ −Q+α ≤ z,

Q+u + θ − ez0 ≥ 0,

eθ⊺ ≤ (−ez⊺ +Q−)⊺ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.24)

Second, using Fourier–Motzkin elimination on (ARO-StQO) to eliminate wx ∈ R, we have

max
τ∈R

τ

s.t. ∀x ∈∆, ∃ux ∶ 1
2x
⊺Q+x − 1

2u
⊺
xQ
+ux + (Q−)ix + (Q+)iux ≥ τ, i = 1, . . . , nx.

(FME-StQO)
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In (FME-StQO), applying a constant decision rule on ux (i.e., ux = u) result in

max
τ∈R,u∈Rnx

τ

s.t. 1
2x
⊺Q+x − 1

2u
⊺Q+u + (Q−)ix + (Q+)iu ≥ τ. ∀x ∈∆ i = 1, . . . , nx

(L2-StQO)

The lower bound obtained from problem (L2-StQO) is better than the one via (L1-StQO).

It is imperative to note, however, that the computational effort associated with this superior

bound may be elevated due to an augmented set of constraints.

We now offer a more detailed examination of the ARO-QO Algorithm employed for solving

StQOs. Utilizing decision rules, we have successfully approximated the original problem.

The optimal values extracted from each of these approximated problems serve as lower

bounds. Subsequently, we discuss selected worst-case scenarios, which are derived based on

the optimal solutions of these lower-bound problems.

Scenario Based on L1-StQO. Let (z∗, v∗, z∗0 , τ∗, α∗, β∗, θ∗) be an optimal solution for

(4.24) which is the deterministic reformulation of (L1-StQO). We select scenarios using the

following optimization problems

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̄0 ∈ argmin
x∈∆

{1
2x
⊺Q+x + z∗⊺x} ,

x̄i ∈ argmin
x∈∆

{(−ez∗⊺ +Q−)ix} , i = 1, . . . , nx.

(4.25)

Note that, we do not need to solve linear optimization problems in (4.25) to find {x̄i}nx
i=1 and

just need to consider the extreme points of the unit-simplex set, i.e., {ei}nx
i=1. These points

provide the natural upper bound (i.e., ei⊺Qei = Qii), which exists in the literature, see [62,

Lemma 2.1 part (iv)]. We choose the best scenario, denote it by x∗1, as the one with the

lowest objective value, i.e.,

x∗1 ∈ argmin
x
{x⊺Qx∣ x ∈ {x̄i}nx

i=0} .

Scenario Based on L2-StQO. We can find scenarios from the uncertainty set ∆ according
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to (L2-StQO) as follows

x̂i ∈ argmin
x∈∆

{1
2x
⊺Q+x +Q−i x} , i = 1, . . . , nx. (4.26)

We denote by x∗2 the scenario with the lowest objective value, i.e.,

x∗2 ∈ argmin
x
{x⊺Qx∣ x ∈ {x̂i}nx

i=1} .

In this subsection, our method will be compared with the global solvers Gurobi and CPLEX,

as well as with the local solver IPOPT. It is worth noting that IPOPT, a local primal-

dual-based interior point solver [115] is renowned for its time computational efficiency but

functions exclusively as a local solver. To solve convex quadratic sub-problems in ARO-QO

Algorithm, we employed MOSEK.

To implement our ARO-based method on StQOs, we need to compute lower bounds on the

optimal objective value of StQO as discussed above. We consider two best scenarios, x∗1 and

x∗2, obtained from the lower bound approximations (L1-StQO) and (L2-StQO). By using

these two initial points, we can improve the initial solutions, and the best solution obtained

becomes the candidate solution, with its corresponding objective value serving as an upper

bound.

Problem Instances

It is of paramount importance to note that with a high probability, global solutions of a

randomly generated StQO instances are located either at vertices or edges of the standard

simplex [36]. In order to make a fair comparison based on this information, we do not

generate naive random instances in our study, as our upper-bound methodology would be

optimal in these cases. Instead, we concentrate on using instances from well-known datasets

or employing their patterns to generate new instances, as outlined by [37, 83], and [104].

We analyze the performance of the upper bound in terms of the solution gap, which is
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measured as follows:

SGap(%) = (UB −UB(best)

∣UB∣ + 10−4 ) × 100,

where UB(best) represents the best upper bound obtained from all approaches, and UB is

the upper bound for a given instance.

Detailed Results

As mentioned in Remark 4.2.1, multiple representations of Q can be obtained based on Q+

and Q−. Here we utilize Representation 2 and apply the ARO-QO Algorithm to find upper

bounds. Furthermore, we consider the upper bounds obtained from global solvers, when

setting their time limit to the time taken by ARO-QO Algorithm. We use SGap1 and Time1

to refer this upper bound. We also set the time limit at the solvers to 3,000 seconds to which

we refer by SGap 2 and Time2.

A statistical analysis of solution gaps for two classes of test problems is presented in Table

4.3 and 4.4. Both classes consist of 150 instances, with a dimension of nx = 30 for Class One

and nx = 50 for Class Two.

Table 4.3: Statistic of solution gaps and solution times of (StQO) instances in Class One.

ARO-QO Algorithm Gurobi CPLEX IPOPT
Class One SGap Time SGap1 Time1 SGap2 Time2 SGap1 Time1 SGap2 Time2 SGap Time

Mean 3.11 0.70 3.89 0.65 0.00 22.28 0.90 0.73 0.00 226.46 11.09 0.04
Standard deviation 6.12 0.60 10.22 0.45 0.00 111.73 1.94 0.61 0.04 714.40 20.78 0.02

Notes. Test instances from [37].

Table 4.4: Statistic of solution gaps and solution times of (StQO) instances in Class Two.

ARO-QO Algorithm Gurobi CPLEX IPOPT
Class Two SGap Time SGap1 Time1 SGap2 Time2 SGap1 Time1 SGap2 Time2 SGap Time

Mean 3.33 1.08 8.56 1.07 0.05 233.36 1.88 1.11 0.02 721.48 14.03 0.09
Standard deviation 6.36 0.96 15.34 0.97 0.32 743.15 4.14 0.98 0.10 1258.62 21.98 0.05

Notes. Test instances from [37].

In Tables 4.3 and 4.4, we observe that within the time taken by ARO-QO Algorithm,

CPLEX exhibits the best performance, and our approach better than Gurobi. As the time

limit extends to a maximum of 3,000 seconds for global solvers Gurobi and CPLEX, they

demonstrate superior performance, particularly in these two casses of small-sized instances,
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achieving the best solutions. While IPOPT shows the fastest solution times, it presents

significantly higher mean solution gap values in both classes. This situation reflects a trade-off

between speed and accuracy. Currently, it is apparent that global solvers are generally

effective in handling small-sized problems.

The next step involves comparing instances of larger sizes. We consider 12 groups of instances

with the dimension nx taking values in {100, 300, 500, 700}. Since the density of the matrices

may also affect the performance of the considered solution methods, we examine three density

values for each dimension - 50%, 75%, and 90% - for the matrix Q in the objective function.

For these test problems, some are sourced from [83], while others are generated using the

pattern described in [83] and [104].

In Table 4.5, the average solution gaps for each instance group are provided (the details can

be found in Table 4.11).

Table 4.5: Statistic of solution gaps and solution times of generated large-sized (StQO)
instances.

ARO-QO Algorithm Gurobi CPLEX IPOPT
Group SGap(%) Time SGap1 SGap2 SGap1 SGap2 SGap Time

#1 2.84 [4.36] 2.53 [0.94] 4.50 [5.17] 0.49 [0.60] 584.40 [92.30] 1.80 [2.13] 3.09 [2.73] 0.17 [0.02]
#2 3.46 [1.31] 3.24 [1.27] 4.27 [2.35] 4.04 [2.70] 582.33 [99.73] 0.00 [0.00] 3.46 [2.77] 0.21 [0.04]
#3 0.64 [1.43] 3.11 [0.98] 2.41 [3.34] 1.43 [1.96] 589.80 [119.47] 1.08 [2.40] 1.74 [2.49] 0.30 [0.09]
#4 3.33 [3.71] 12.83 [5.73] - 5.37 [3.62] 644.54 [81.70] 1.81 [3.50] 7.57 [4.71] 2.91 [0.64]
#5 1.56 [2.56] 11.37 [3.59] - 3.53 [2.60] 666.54 [80.77] 2.75 [2.52] 1.95 [1.99] 3.90 [1.58]
#6 0.48 [0.61] 8.22 [1.73] - 2.34 [2.97] 676.43 [82.21] 1.27 [2.50] 0.35 [0.55] 12.28 [3.92]
#7 0.06 [0.14] 34.01 [19.16] - 2.06 [1.61] 612.43 [65.44] 612.43 [65.44] 4.47 [3.78] 31.79 [16.97]
#8 1.08 [2.11] 17.78 [1.95] - 0.86 [1.91] 652.02 [71.03] 652.02 [71.03] 3.22 [2.79] 49.59 [17.47]
#9 1.06 [0.68] 18.14 [3.42] - 1.92 [2.21] 661.66 [74.03] 661.66 [74.03] 1.44 [1.38] 277.53 [165.23]
#10 2.43 [2.28] 47.26 [10.11] - 1.40 [2.08] 624.72 [152.55] 624.72 [152.55] 4.88 [1.89] 127.84 [17.81]
#11 2.35 [2.85] 29.85 [1.43] - 1.21 [1.69] 657.54 [157.00] 657.54 [157.00] 3.87 [2.21] 412.14 [149.47]
#12 0.38 [0.59] 31.76 [2.75] - 4.14 [1.82] 657.22 [162.33] 657.22 [162.33] 0.48 [0.98] 113.62 [19.52]

All Problems 1.64 [2.36] 18.34 [15.19] - 2.40 [2.52] 631.16 [105.36] 322.86 [333.58] 3.04 [3.07] 86.02 [140.14]

Notes. This table categorizes problems into groups in the first column. The subsequent columns display
‘mean [standard deviation]’ values of the solution gaps for each sub-group. SGap1 represents the solution gap
with the time limit equals to that needed by the ARO-QO Algorithm, while SGap2 denotes the solution gap
within a 3,000-second time frame. Instances, where Gurobi failed to find solutions within its allotted time,
are marked with a “-”, indicating its inability to establish feasible solutions (upper bounds) for all instances in
the respective group.

Table 4.5 presents a detailed evaluation of the solution gap (SGap) percentages obtained

by various algorithms in multiple large-sized instances. The table outlines the mean and

standard deviation of the SGap for each algorithm, providing a clear perspective on their

average effectiveness.
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The ARO-QO Algorithm demonstrates consistently low solution gap percentages in various

large-sized groups, especially notable in groups 3, 5, 7, and 12. Within a 3,000-second span,

Gurobi shows commendable performance in groups 1, 8, 10, and 11, while CPLEX excels

in groups 2 and 4. The local solver IPOPT in class 6 has good performance. However,

CPLEX exhibits less satisfactory performance in groups 7 to 12. Moreover, across all groups,

the ARO-QO Algorithm significantly surpasses the global solvers in terms of efficiency,

considering its shorter time requirement. A minimal SGap is indicative of the algorithm’s

proficiency in approximating solutions that are closer to the optimal or best-known solutions,

an essential objective in optimization problems. Conclusively, the ARO-QO Algorithm stands

out for having the lowest mean gap percentage across all evaluated problems, highlighting

its superior performance.

Even though our lower bound were loose for small instances based on Table 4.11, it is evident

that these bounds surpass the lower bounds in groups 10, 11, and 12, thereby outperforming

the global solvers CPLEX and Gurobi overall.

4.6 Conclusions

We introduce a novel reformulation technique that enables the Quadratic Optimization

problem (QO) to be recast as an Adjustable Robust Optimization problem (ARO). This

process begins by demonstrating that any QO problem can be transformed into a disjoint

bi-convex QO problem. Following this, we propose an equivalent ARO reformulation.

Specifically, we illustrate that employing a so-called decision rule technique to approximate

the ARO reformulation equates to using a linearization-relaxation technique on its bi-convex

form. The ARO reformulation offers a new approach to solving non-convex QO problems by

transferring the complexity from the original problem to its equivalent ARO counterpart.

Specifically, in the concave QO problem, our ARO model transforms into a linear ARO,

whereas in the indefinite QO problem, it becomes a non-linear ARO. Moreover, we develop

an algorithm capable of identifying near-optimal solutions using our novel reformulations.

We demonstrate the effectiveness of our ARO-based method in solving a class of quadratic

optimization problems through numerical experiments, showing that it can yield high-quality
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solutions with reasonable computational costs. This established connection between QO and

ARO provides a new perspective on addressing the challenges of non-convex QO problems

and opens up new possibilities for further research in the field of mathematical optimization.

Table 4.6: Comparison result on concave quadratic minimization test instances from [105].

Static ARO-QO Algorithm Partial affine ARO-QO Algorithm Full affine ARO-QO Algorithm Selvi et al. method [105] Gurobi CPLEX
Problem LB UB Gap LB UB Gap LB UB Gap LB UB Gap LB UB Gap LB UB Gap

#1 (mx = 10, nx = 20) -514.68 -394.75 30.38 -505.16 -394.75 27.97 -394.83 -394.75 0.02 -702.05 -394.75 77.85 -394.75 -394.75 0.00 -394.75 -394.75 0.00
#2 (mx = 10, nx = 20) -965.52 -884.75 9.13 -963.87 -884.75 8.94 -884.83 -884.75 0.01 -1192.05 -884.75 34.73 -884.75 -884.75 0.00 -884.75 -884.75 0.00
#3 (mx = 15, nx = 10) -4694.10 -4674.68 0.42 -4688.44 -4674.68 0.29 -4674.68 -4674.68 0.00 -4753.10 -4674.68 1.68 -4674.83 -4674.68 0.00 -4674.92 -4674.68 0.00
#4 (mx = 62, nx = 50) -175920.41 -175705.59 0.12 -175869.24 -175705.59 0.09 -175705.59 -175705.59 0.00 -177638.35 -175705.59 1.10 -175707.22 -175705.59 0.00 -175707.22 -175705.59 0.00
#5 (mx = 130, nx = 100) -693146.47 -692613.05 0.08 -693068.49 -692613.05 0.07 -692613.05 -692613.05 0.00 -707519.84 -692613.05 2.15 -692633.48 -692613.05 0.00 -692633.48 -692613.05 0.00
#6 (mx = 240, nx = 200) -6022194.41 -6020787.42 0.02 -6021978.92 -6020787.42 0.02 NA - - -6112433.52 -6020787.42 1.52 -6020887.35 -6020787.42 0.00 -6020887.35 -6020787.42 0.00
#7 (mx = 280, nx = 240) -1856557.05 -1855739.98 0.04 -1856443.10 -1855733.06 0.04 NA - - -1961723.39 -1855733.06 5.71 -1900962.70 -1649853.80 15.22 -2162137.04 -1855739.98 14.17

Notes. In this table, the first column presents the problem numbers along with their corresponding dimensions.
For each problem, we applied the ARO-QO Algorithm: one with a full static decision rule, another with a
partial affine decision rule, and the last one with a full affine decision rule on adjustable variables. In each
approach, the ‘LB’ column represents the lower bound values, the ‘UB’ column displays the upper bounds.

Table 4.7: Time Results for concave quadratic minimization test instances from [105].

Static ARO-QO Partial affine ARO-QO Full affine ARO-QO Selvi et al. method [105] Global Solver
Problem LB UB Time LB UB Time LB UB Time LB UB Time Gurobi CPLEX

#1 (mx = 10, nx = 20) 0.02 0.06 0.08 0.07 0.08 0.15 0.94 0.11 1.05 0.07 0.10 0.17 0.11 0.12
#2 (mx = 10, nx = 20) 0.02 0.06 0.08 0.07 0.08 0.15 0.95 0.11 1.06 0.05 0.10 0.15 0.12 0.11
#3 (mx = 15, nx = 10) 0.01 0.03 0.04 0.01 0.05 0.06 0.04 0.08 0.12 0.06 0.09 0.15 0.03 0.06
#4 (mx = 62, nx = 50) 0.11 0.16 0.27 0.26 0.22 0.48 11.06 0.40 11.46 0.89 0.43 1.32 0.56 1.56
#5 (mx = 130, nx = 100) 0.88 0.40 1.28 4.25 0.56 4.81 899.42 1.06 900.48 7.07 1.20 8.27 12.03 43.64
#6 (mx = 240, nx = 200) 7.49 1.49 8.98 43.15 1.68 44.83 3000* - 3000* 56.08 3.82 59.60 528.99 1165.38
#7 (mx = 280, nx = 240) 28.44 2.04 30.47 102.52 2.38 104.90 3000* - 3000* 76.44 4.46 80.90 3000* 3000*

Notes. In this table, the ‘LB’ column represents the lower bound time, the ‘UB’ column displays the upper
bound time, and the ‘Time’ column indicates the total corresponding solver times. Additionally, the columns
for global solvers also report the time taken by Gurobi and CPLEX solvers to reach bounds.
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Table 4.8: Other classes of ARO reformulations of indefinite QO problem.

Feasible Region Type ARO Problem

I

X = {x ∈ Rnx ∣ Ax = b, x ≥ 0}
max
τ∈R

τ

s.t. ∀x ∈ X , ∃(ux,wx) ∶
⎧⎪⎪⎨⎪⎪⎩

1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺
xQ
+ux + b⊺wx ≥ τ,

A⊺wx −Q+ux ≤ Q−x + 1
2c.

II

X = {x ∈ Rnx ∣ Ax = b}
max
τ∈R

τ

s.t. ∀x ∈ X , ∃(ux,wx) ∶
⎧⎪⎪⎨⎪⎪⎩

1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺
xQ
+ux + b⊺wx ≥ τ,

A⊺wx −Q+ux = Q−x + 1
2c.

III

X = {x ∈ Rnx ∣ Ax ≥ b, x ≥ 0}

max
τ∈R

τ

s.t. ∀x ∈ X , ∃(ux,wx) ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺
xQ
+ux + b⊺wx ≥ τ,

A⊺wx −Q+ux ≤ Q−x + 1
2c,

wx ≥ 0.

IV

X = {x ∈ Rnx ∣ Ax ≥ b}

max
τ∈R

τ

s.t. ∀x ∈ X , ∃(ux,wx) ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2x
⊺Q+x + 1

2c
⊺x − 1

2u
⊺
xQ
+ux + b⊺wx ≥ τ,

A⊺wx −Q+ux = Q−x + 1
2c,

wx ≥ 0.
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Table 4.9: Other classes of ARO reformulations of concave QO minimization.

Feasible Region Type ARO Problem

I

X = {x ∈ Rnx ∣ Ax = b, x ≥ 0}
max
τ∈R

τ

s.t. ∀x ∈ X , ∃wx ∶
⎧⎪⎪⎨⎪⎪⎩

1
2c
⊺x + b⊺wx ≥ τ,

A⊺wx ≤ Q−x + 1
2c.

II

X = {x ∈ Rnx ∣ Ax = b}
max
τ∈R

τ

s.t. ∀x ∈ X , ∃wx ∶
⎧⎪⎪⎨⎪⎪⎩

1
2c
⊺x + b⊺wx ≥ τ,

A⊺wx = Q−x + 1
2c.

III

X = {x ∈ Rnx ∣ Ax ≥ b, x ≥ 0}

max
τ∈R

τ

s.t. ∀x ∈ X , ∃wx ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2c
⊺x + b⊺wx ≥ τ,

A⊺wx ≤ Q−x + 1
2c,

wx ≥ 0.

IV

X = {x ∈ Rnx ∣ Ax ≥ b}

max
τ∈R

τ

s.t. ∀x ∈ X , ∃wx ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2c
⊺x + b⊺wx ≥ τ,

A⊺wx = Q−x + 1
2c,

wx ≥ 0.



101 Quadratic Optimization Through the Lens of Adjustable Robust Optimization

Table 4.10: Detailed result on concave quadratic minimization.

Problem (size) ARO-QO Algorithm Selvi et al. method [105] Gurobi CPLEX
LB UB Time LB UB Time LB UB Time LB UB Time

# 1 (mx = 100, nx = 50) -21226.05 -20906.11 0.55 -23918.61 -20906.11 2.19 -20907.98 -20906.11 46.51 -20908.66 -20906.11 20.31
# 2 (mx = 100, nx = 50) -19999.47 -19801.12 0.54 -22281.13 -19801.12 2.21 -19801.12 -19801.12 142.38 -10803.73 -19801.12 16.31
# 3 (mx = 100, nx = 50) -21924.71 -21516.59 0.53 -24468.84 -21514.54 1.93 -21518.39 -21516.59 36.52 -21520.18 -21516.59 16.50
# 4 (mx = 100, nx = 50) -19796.92 -19504.56 0.55 -22192.55 -19504.56 2.01 -19505.00 -19504.46 37.70 -19508.39 -19504.56 14.43
# 5 (mx = 100, nx = 50) -19938.54 -19588.64 0.55 -22004.72 -19617.58 2.65 -19619.28 -19617.58 69.52 -19620.01 -19617.58 17.07
# 6 (mx = 150, nx = 100) -43503.68 -42817.73 2.90 -48917.86 -42817.73 8.97 -42821.91 -42817.73 398.47 -42824.07 -42817.73 421.30
# 7 (mx = 150, nx = 100) -44023.17 -43288.39 2.67 -49478.74 -43295.39 9.09 -43298.91 -43295.39 1138.38 -43304.86 -43295.39 523.09
# 8 (mx = 150, nx = 100) -44509.83 -43708.24 2.94 -50215.65 -43746.44 9.61 -43753.45 -43749.45 832.73 -43756.27 -43749.36 578.56
# 9 (mx = 150, nx = 100) -40043.22 -39464.10 2.53 -44570.54 -39479.17 8.72 -39479.86 -39477.46 1195.30 -39489.34 -39479.17 228.30
# 10 (mx = 150, nx = 100) -50419.80 -49987.08 2.79 -56409.90 -49987.08 8.59 -49991.33 -49987.08 315.52 -49992.08 -49987.08 161.97
# 11 (mx = 200, nx = 100) -36365.81 -35824.95 4.47 -41378.67 -35824.95 18.51 -35828.39 -35824.95 484.97 -35829.88 -35824.95 366.40
# 12 (mx = 200, nx = 100) -36273.69 -35835.66 4.32 -41252.42 -35828.10 18.44 -35839.10 -35835.66 726.90 -35841.34 -35835.67 501.42
# 13 (mx = 200, nx = 100) -34758.56 -34055.57 4.45 -39847.86 -34055.40 19.59 -34057.88 -34055.76 1636.05 -34135.30 -34055.76 301.26
# 14 (mx = 200, nx = 100) -35864.55 -35262.45 4.58 -41288.01 -35289.22 16.38 -35310.24 -35289.70 3,000* -35410.68 -35289.49 3,000*
# 15 (mx = 200, nx = 100) -39351.10 -38553.98 4.67 -45260.71 -38619.98 16.24 -38628.29 -38624.93 2165.88 -38631.30 -38624.93 2256.70
# 16 (mx = 250, nx = 200) -114818.87 -113258.29 14.88 -129138.55 -113258.34 48.23 -113269.93 -113258.34 3,000* -113282.68 -113258.34 3,000*
# 17 (mx = 250, nx = 200) -92364.54 -90802.03 13.38 -103508.71 -90833.68 47.94 -109407.37 -90185.44 3,000* -91059.89 -90848.24 3,000*
# 18 (mx = 250, nx = 200) -102592.36 -101763.08 16.13 -115061.49 -101763.08 48.82 -102331.34 -101763.08 3,000* -101797.00 -101763.08 2638.61
# 19 (mx = 250, nx = 200) -110848.56 -109342.56 16.27 -124919.22 -109342.56 52.02 -121382.85 -109342.56 3,000* -109354.94 -109342.56 3,000*
# 20 (mx = 250, nx = 200) -124939.05 -122854.09 15.89 -145278.15 -122854.09 59.25 -148108.59 -122854.09 3,000* -123861.93 -122854.09 3,000*
# 21 (mx = 300, nx = 200) -90379.80 -89076.48 24.68 -104968.70 -89054.41 83.60 -115882.61 -89076.79 3,000* -89728.32 -89076.86 3,000*
# 22 (mx = 300, nx = 200) -83366.49 -82259.34 26.20 -95965.30 -82256.29 97.87 -102793.52 -82259.34 3,000* -82661.52 -82259.34 3,000*
# 23 (mx = 300, nx = 200) -82027.18 -81016.91 24.37 -93726.28 -81008.71 138.95 -97987.79 -81016.91 3,000* -81178.61 -81016.91 3,000*
# 24 (mx = 300, nx = 200) -84667.10 -83459.67 24.30 -98686.53 -83457.97 102.20 -105898.98 -83459.67 3,000* -83953.38 -83459.67 3,000*
# 25 (mx = 300, nx = 200) -81894.50 -80966.99 23.75 -94430.77 -80966.99 82.63 -102639.56 -80966.99 3,000* -81059.07 -80966.99 3,000*
# 26 (mx = 350, nx = 300) -171137.64 -168437.60 50.91 -194844.52 -168438.92 170.15 -210038.17 -168194.52 3,000* -5605813.93 -168194.52 3,000*
# 27 (mx = 350, nx = 300) -164141.28 -161444.77 44.66 -186697.76 -161462.55 158.70 -205946.65 -161142.30 3,000* -5128394.30 -161463.49 3,000*
# 28 (mx = 350, nx = 300) -158477.21 -156089.67 59.39 -184476.06 -156064.84 146.55 -196949.54 -156089.67 3,000* -372519.82 -156089.67 3,000*
# 29 (mx = 350, nx = 300) -163020.17 -159968.26 37.23 -186943.98 -159857.19 149.84 -192162.18 -159559.82 3,000* -295635.77 -159985.69 3,000*
# 30 (mx = 350, nx = 300) -179027.10 -176570.47 59.21 -203873.39 -176564.79 144.81 -211848.25 -176570.47 3,000* -694837.69 -176570.47 3,000*
# 31 (mx = 400, nx = 300) -130525.34 -128324.26 80.92 -151936.50 -1238322.77 262.92 -171188.37 -128323.25 3,000* -5164971.42 -128310.81 3,000*
# 32 (mx = 400, nx = 300) -122185.75 -120302.84 71.80 -142516.23 -120310.31 230.07 -165499.48 -120287.00 3,000* -5232838.82 -120308.58 3,000*
# 33 (mx = 400, nx = 300) -120417.62 -118873.22 76.78 -139741.15 -118868.50 220.00 -163195.52 -118573.02 3,000* -5201602.88 -118873.22 3,000*
# 34 (mx = 400, nx = 300) -121135.65 -118904.01 70.01 -140455.45 -118869.00 281.14 -166977.00 -118898.47 3,000* -5223379.15 -118898.58 3,000*
# 35 (mx = 400, nx = 300) -135783.77 -134180.30 84.87 -157376.81 -134180.24 287.99 -182483.43 -134135.73 3,000* -5207186.87 -134180.24 3,000*
# 36 (mx = 450, nx = 400) -239708.24 -236691.08 69.61 -267620.18 -236691.08 292.47 -308141.60 -236632.22 3,000* -1.02268×109 NA 3,000*
# 37 (mx = 450, nx = 400) -219201.30 -215007.32 97.31 -252589.43 -215005.17 308.21 -401192.82 -213758.53 3,000* -1.02521×109 NA 3,000*
# 38 (mx = 450, nx = 400) -231523.46 -227609.94 94.57 -265032.88 -227619.86 307.32 -322874.67 -169857.26 3,000* -1.02639×109 NA 3,000*
# 39 (mx = 450, nx = 400) -225364.42 -221535.08 86.43 -258200.84 -221537.39 291.19 -623239.89 -169708.85 3,000* -1.02626×109 NA 3,000*
# 40 (mx = 450, nx = 400) -248061.41 -243641.36 129.44 -286303.36 -243639.15 278.68 -353455.02 -161208.64 3,000* -1.02815×109 NA 3,000*
# 41 (mx = 500, nx = 400) -162882.47 -160300.05 176.57 -191340.70 -160278.14 559.34 -604066.17 -159909.39 3,000* -1.02268×109 NA 3,000*
# 42 (mx = 500, nx = 400) -172886.97 -169806.25 164.70 -202411.67 -169805.29 586.96 -267361.99 -169267.40 3,000* -1.02521×109 NA 3,000*
# 43 (mx = 500, nx = 400) -161267.75 -158235.56 165.39 -187056.39 -158223.56 555.60 -425931.05 -110899.09 3,000* -1.02626×109 NA 3,000*
# 44 (mx = 500, nx = 400) -173508.69 -170210.36 156.92 -203828.67 -170199.68 534.90 -350152.46 -169666.30 3,000* -1.02626×109 NA 3,000*
# 45 (mx = 500, nx = 400) -177296.71 -173532.58 161.32 -208668.91 -173433.65 546.23 -404418.89 -173127.83 3,000* -1.02815×109 NA 3,000*
# 46 (mx = 550, nx = 500) -254620.02 -250228.59 140.01 -292466.45 -250227.15 269.22 -386062.82 -165730.74 3,000* -2.00381×109 NA 3,000*
# 47 (mx = 550, nx = 500) -283033.14 -278009.50 143.87 -326626.69 -277934.32 263.27 -13261942.44 -111018.29 3,000* -1.99773×109 NA 3,000*
# 48 (mx = 550, nx = 500) -267476.07 -262965.87 144.32 -305398.64 -262965.87 270.19 -738574.46 -153507.88 3,000* -2.00129×109 NA 3,000*
# 49 (mx = 550, nx = 500) -268766.57 -264084.34 160.95 -309881.77 -264016.01 244.89 -449419.26 -197858.04 3,000* -2.00369×109 NA 3,000*
# 50 (mx = 550, nx = 500) -293060.47 -287527.81 129.89 -335443.85 -287498.36 236.11 -423238.78 -191541.98 3,000* -2.00595×109 NA 3,000*
# 51 (mx = 600, nx = 500) -217416.92 -213705.89 366.84 -256282.73 -213683.16 515.61 -1127074.64 -166459.89 3,000* -2.00381×109 NA 3,000*
# 52 (mx = 600, nx = 500) -230918.43 -227145.96 336.32 -270398.12 -227144.69 514.71 -525624.12 -151916.19 3,000* -1.99773×109 NA 3,000*
# 53 (mx = 600, nx = 500) -211637.44 -207961.86 389.37 -247423.31 -207918.89 484.56 -11832043.00 -111613.71 3,000* -2.00129×109 NA 3,000*
# 54 (mx = 600, nx = 500) -240876.42 -236788.53 379.21 -283777.93 -236783.30 517.46 -8878852.73 -111854.65 3,000* -2.00369×109 NA 3,000*
# 55 (mx = 600, nx = 500) -220691.08 -217845.10 341.90 -257822.62 -217845.30 490.03 -8732517.01 -108571.64 3,000* -2.00595×109 NA 3,000*
# 56 (mx = 650, nx = 600) -391433.86 -384919.90 326.00 -455449.56 -384880.07 483.69 -4971784.16 -134292.50 3,000* -3.45702×109 NA 3,000*
# 57 (mx = 650, nx = 600) -403904.96 -398018.32 239.91 -463747.58 -398018.32 445.72 -14155023.89 -146383.96 3,000* -3.45533×109 NA 3,000*
# 58 (mx = 650, nx = 600) -329953.17 -324832.60 254.45 -381469.39 -324788.61 416.11 -3241488.76 -127909.30 3,000* -3.45744×109 NA 3,000*
# 59 (mx = 650, nx = 600) -344749.19 -339970.74 251.05 -394538.13 -339907.86 406.65 -18755129.41 -134434.84 3,000* -3.46041×109 NA 3,000*
# 60 (mx = 650, nx = 600) -344458.62 -338774.49 246.62 -397930.12 -338767.55 370.98 -20611553.36 -150155.61 3,000* -3.46327×109 NA 3,000*
# 61 (mx = 700, nx = 600) -282346.92 -278274.80 636.29 -332396.86 -278196.53 910.18 -12550163.40 -146157.71 3,000* -3.45702×109 NA 3,000*
# 62 (mx = 700, nx = 600) -255125.93 -252049.75 588.72 -297435.47 -252019.04 734.42 -13717479.02 -135118.87 3,000* -3.45533×109 NA 3,000*
# 63 (mx = 700, nx = 600) -268578.12 -265180.15 551.67 -310071.57 -265179.26 751.89 -17742893.76 -136924.49 3,000* -3.45744×109 NA 3,000*
# 64 (mx = 700, nx = 600) -271077.81 -265854.53 678.98 -321255.53 -265784.91 847.24 -13671678.23 -137967.52 3,000* -3.46041×109 NA 3,000*
# 65 (mx = 700, nx = 600) -265786.65 -261964.40 633.24 -312133.44 -261960.96 863.81 -13511151.74 -134274.22 3,000* -3.46327×109 NA 3,000*
# 66 (mx = 750, nx = 700) -453938.25 -445745.52 334.48 -522337.64 -445739.49 500.72 -30556778.77 NA 3,000* -5.49163×109 NA 3,000*
# 67 (mx = 750, nx = 700) -392258.28 -383657.82 362.86 -449380.91 -385644.74 455.94 -29261626.30 -161772.44 3,000* -548510×109 NA 3,000*
# 68 (mx = 750, nx = 700) -446958.57 -441833.49 350.21 -512918.35 -441818.13 559.76 -29099763.10 NA 3,000* -5.48474×109 NA 3,000*
# 69 (mx = 750, nx = 700) -437897.81 -430075.17 332.64 -507811.80 -429904.39 501.20 -28450230.87 NA 3,000* -5.48958×109 NA 3,000*
# 70 (mx = 750, nx = 700) -396137.17 -388867.26 336.34 -461346.54 -388657.60 497.99 -28394163.71 NA 3,000* -5.50234×109 NA 3,000*
# 71 (mx = 800, nx = 700) -311760.73 -306985.03 987.30 -366078.98 -306837.21 938.07 -28336162.67 NA 3,000* -5.49163×109 NA 3,000*
# 72 (mx = 800, nx = 700) -331384.65 -326264.31 972.63 -392327.23 -326243.53 950.99 -29520962.09 NA 3,000* -548510×109 NA 3,000*
# 73 (mx = 800, nx = 700) -302347.42 -297341.90 925.81 -358956.95 -297338.12 939.47 -28577654.37 NA 3,000* -5.48474×109 NA 3,000*
# 74 (mx = 800, nx = 700) -317298.48 -312825.99 802.18 -371677.77 -312807.92 2086.76 -29767062.12 NA 3,000* -5.48958×109 NA 3,000*
# 75 (mx = 800, nx = 700) -325810.25 -322123.47 845.32 -376710.09 -322132.66 906.84 -28979308.79 NA 3,000* -5.50234×109 NA 3,000*

Notes. In the table, we applied the ARO-QO Algorithm with a static decision rule in the lower bound
approximation step. The ‘NA’ indicates that the solver could not find any feasible solution within the time
limit, which was set at 3,000 seconds.
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Table 4.11: Detailed numerical results on standard quadratic optimization.

ARO-QO Algorithm Gurobi CPLEX IPOPT
Problem LB1 LB2 UB Time LB1 UB1 LB2 UB2 LB1 UB1 LB2 UB2 UB Time

#1 100(0.50) -141.3034 -70.4688 -6.1407 3.21 -8.3740 -6.0793 -6.8351 -6.1300 -19568.7553 1.4379 -9.4376 -5.8325 -6.0793 0.18
#2 100(0.50) -129.2121 -64.4946 -6.0452 1.41 -206.8990 -6.2006 -7.0153 -6.2006 -20689.9017 0.1291 -9.6186 -6.0611 -6.2006 0.17
#3 100(0.50) -128.5047 -64.1669 -5.9070 3.73 -93.9099 -5.9070 -7.1628 -5.9070 -20289.6140 1.9297 -9.2160 -5.9789 -5.7568 0.15
#4 100(0.50) -132.9374 -66.3307 -5.3757 2.34 -105.4804 -5.4065 -7.0147 -5.9348 -19603.0830 0.3966 -9.1551 -5.9122 -5.7282 0.19
#5 100(0.50) -132.0628 -65.9230 -6.1510 1.96 -208.1827 -5.5674 -7.1317 -6.0872 -20818.2732 1.4012 -9.4403 -6.0872 -5.7499 0.15
#6 100(0.75) -97.3824 -48.6858 -6.1247 4.13 -8.9226 -6.1421 -7.4236 -6.2123 -29864.6740 1.4379 -9.2783 -6.2409 -6.1421 0.22
#7 100(0.75) -97.9984 -49.0243 -6.2670 4.24 -150.9282 -6.2129 -8.0329 -6.2129 -30875.3437 0.1291 -9.4080 -6.4196 -6.2129 0.17
#8 100(0.75) -103.0299 -51.5410 -6.4087 4.13 -8.4681 -6.4087 -7.5404 -6.4087 -30985.4966 1.9297 -9.3935 -6.6311 -6.6184 0.27
#9 100(0.75) -97.5577 -48.7893 -6.2600 2.04 -151.9978 -6.2442 -7.4113 -6.2442 -29785.6185 0.3966 -9.5376 -6.5648 -6.2600 0.19
#10 100(0.75) -96.2869 -48.1865 -6.4669 1.68 -156.2187 -6.2761 -7.5161 -6.2761 -31184.9292 1.4012 -9.2898 -6.7674 -6.3080 0.20
#11 100(0.90) -79.3832 -39.8410 -6.9327 2.62 -180.1334 -6.9327 -7.6421 -6.9327 -36746.4932 0.1291 -9.2769 -6.9327 -6.9327 0.24
#12 100(0.90) -86.1553 -43.2040 -6.8661 1.97 -174.1012 -6.4303 -7.7573 -6.6220 -36937.4664 1.9297 -9.6367 -6.8661 -6.6465 0.42
#13 100(0.90) -82.2343 -41.2319 -6.7313 2.72 -9.3498 -6.3954 -7.6163 -6.5053 -35500.0261 0.3966 -9.5383 -6.7313 -6.7313 0.24
#14 100(0.90) -80.3149 -40.3119 -6.8193 4.33 -182.8205 -6.8193 -7.7276 -6.8193 -37305.5831 1.4012 -9.5492 -6.8193 -6.8193 0.22
#15 100(0.90) -83.1796 -41.7040 -6.5117 3.92 -8.6935 -6.7201 -7.6462 -6.7201 -36100.2716 1.7340 -9.3520 -6.3773 -6.3773 0.39
#16 300(0.50) -346.1800 -172.8466 -6.8268 20.93 -613.7949 -6.1414 -9.0272 -6.4021 -184138.4571 1.1983 -9.7702 -6.8268 -6.3178 2.07
#17 300(0.50) -363.1453 -181.2841 -6.4665 10.28 -602.3853 -6.2261 -9.0093 -6.2261 -180715.6028 0.4993 -9.7162 -6.8293 -6.2681 3.46
#18 300(0.50) -349.3163 -174.3961 -6.4054 8.44 -616.3506 -6.1621 -8.8538 -6.1621 -184905.1896 0.4407 -9.7923 -6.4981 -6.5653 2.43
#19 300(0.50) -341.5578 -170.5206 -6.6315 7.83 -607.0261 0.9849 -8.9102 -6.3765 -182107.8395 1.5055 -9.7605 -6.1386 -5.8708 3.07
#20 300(0.50) -345.3875 -172.4347 -6.1377 16.68 -184419.6908 NA -8.9316 -6.6613 -184419.6908 1.3906 -9.7736 -6.6613 -6.1736 3.53
#21 300(0.75) -176.3619 -88.1453 -6.8032 10.48 -921.1536 -6.9338 -9.0566 -6.9338 -276346.0771 1.1983 -9.7876 -6.8216 -6.8054 6.41
#22 300(0.75) -175.4038 -87.6363 -6.8759 8.76 -272391.0266 NA -8.9426 -6.4181 -272391.0266 0.4993 -9.8275 -6.7489 -6.8759 2.75
#23 300(0.75) -174.4136 -87.1647 -7.0573 7.89 -277034.1229 NA -9.1796 -6.7585 -277034.1229 0.4407 -9.8511 -7.0574 -6.7585 4.50
#24 300(0.75) -177.9974 -88.9396 -6.6903 16.78 -912.3190 -6.9003 -8.9031 -6.9003 -273695.7025 1.5055 -9.8216 -6.6438 -7.0843 2.63
#25 300(0.75) -175.5445 -87.7248 -6.9182 12.94 -921.0848 -6.6895 -8.9447 -6.6895 -276325.4527 1.3906 -9.8807 -6.6779 -6.6895 3.23
#26 300(0.90) -143.7195 -71.9071 -6.9269 8.22 -330123.7775 NA -9.0177 -6.9986 -330123.7775 1.1983 -1100.4094 -6.9986 -6.9986 8.11
#27 300(0.90) -144.6976 -72.3644 -7.0452 9.76 -327243.9761 NA -8.7635 -7.1325 -327243.9761 0.4993 -9.9144 -7.1256 -7.0452 12.17
#28 300(0.90) -145.0177 -72.5449 -7.0388 7.48 -330364.3039 NA -9.1546 -6.9562 -330364.3039 0.4407 -1101.2111 -7.0013 -7.0013 10.57
#29 300(0.90) -143.8378 -71.9478 -7.1740 5.74 -327262.3799 NA -9.0733 -6.9284 -327262.3799 1.5055 -1090.8714 -6.7852 -7.1740 11.89
#30 300(0.90) -143.0871 -71.5811 -7.0907 9.91 -329821.4820 NA -8.9564 -6.6353 -329821.4820 1.3906 -1099.4017 -7.0982 -7.0982 18.68
#31 500(0.50) -556.7245 -278.0625 -6.6145 67.67 -1020.2667 -6.3477 -191.4577 -6.3477 -510133.3318 1.2865 -510133.3318 1.2865 -6.5915 19.84
#32 500(0.50) -566.5476 -282.9713 -6.6280 31.42 -506289.0935 NA -9.0589 -6.6493 -506289.0935 0.3183 -506289.0935 0.3183 -6.5356 18.31
#33 500(0.50) -591.9429 -295.6179 -6.7359 23.70 -501373.7349 NA -8.8296 -6.6624 -510373.7349 1.2783 -510373.7349 1.2783 -6.2281 41.77
#34 500(0.50) -610.1031 -304.6871 -6.6229 25.60 -494369.5262 NA -275.1602 -6.4848 -494369.5259 1.6020 -494369.5259 1.6020 -6.0928 56.92
#35 500(0.50) -572.0808 -285.7164 -6.5621 21.67 -506389.7396 NA -180.8172 -6.3804 -506389.7396 1.2845 -506389.7396 1.2845 -6.3461 22.11
#36 500(0.75) -229.8191 -114.8414 -6.8795 18.03 -762239.6625 NA -8.9277 -7.2121 -762239.6625 1.2865 -762239.6625 1.2865 -6.7796 71.14
#37 500(0.75) -230.8269 -115.3499 -6.9959 20.02 -762805.0408 NA -9.0610 -7.0364 -762805.0408 0.3183 -762805.0408 0.3183 -6.9959 41.26
#38 500(0.75) -232.7850 -116.2777 -7.2736 17.02 -752040.9615 NA -8.8130 -7.2737 -752040.9615 1.2783 -752040.9615 1.2783 -7.2736 31.93
#39 500(0.75) -233.0709 -116.4148 -7.0284 18.91 -743920.3594 NA -9.0686 -7.0285 -743920.3594 1.6020 -743920.3594 1.6020 -6.7045 38.31
#40 500(0.75) -232.9520 -116.3886 -7.1457 14.91 -761558.1498 NA -9.0567 -6.8525 -761558.1498 1.2845 -761558.1498 1.2845 -6.8502 65.33
#41 500(0.90) -184.1009 -92.0577 -7.1770 16.11 -912849.6789 NA -8.9426 -7.2882 -912849.6789 1.2865 -912849.6789 1.2865 -7.0698 269.61
#42 500(0.90) -185.8445 -92.9335 -7.1591 20.84 -915735.5099 NA -8.9811 -7.2046 -915735.5099 0.3183 -915735.5099 0.3183 -7.2841 193.03
#43 500(0.90) -190.0275 -94.9696 -7.2765 22.76 -897979.1777 NA -9.0566 -7.0170 -897979.1777 1.2783 -897979.1777 1.2783 -7.1358 558.81
#44 500(0.90) -187.4554 -93.6838 -7.1644 15.61 -891704.7924 NA -8.8940 -7.2341 -891704.7924 1.6020 -891704.7924 1.6020 -7.0817 132.88
#45 500(0.90) -184.8534 -92.4199 -7.1304 15.40 -910365.1227 NA -9.0567 -6.8725 -910365.1227 1.2845 -910365.1227 1.2845 -7.2025 233.34
#46 700(0.50) -787.9514 -393.6440 -6.8559 49.49 -992790.3462 NA -581.7589 -7.0743 -992790.3462 1.9870 -992790.3462 1.9870 -6.6087 111.28
#47 700(0.50) -782.0549 -390.6996 -6.8288 59.65 -991913.5841 NA -687.3291 -6.5275 -991913.5841 0.8314 -991913.5841 0.8314 -6.6004 122.00
#48 700(0.50) -792.3280 -395.8237 -6.9251 53.28 -989990.5545 NA -688.0122 -7.2341 -989990.5545 0.0685 -989990.5545 0.0685 -6.7706 120.14
#49 700(0.50) -793.4050 -396.3786 -6.6120 37.83 -990734.2155 NA -582.0707 -6.4569 -990737.2155 0.4787 -990737.2155 0.4787 -6.3972 157.87
#50 700(0.50) -773.1635 -386.2475 -6.4638 36.06 -995054.2807 NA -699.3185 -6.7537 -995054.2807 1.8646 -995054.2807 1.8646 -6.5121 127.89
#51 700(0.75) -275.0992 -137.4745 -6.9744 29.52 -1485228.3068 NA -1449.6412 -7.4271 -1485228.3068 1.9870 -1485228.3068 1.9870 -7.0766 401.49
#52 700(0.75) -275.6102 -137.7144 -7.0034 27.70 -1491678.2390 NA -1270.8686 -7.2887 -1491678.2390 0.8314 -1491678.2390 0.8314 -7.0057 634.64
#53 700(0.75) -272.7944 -136.3043 -7.1935 30.72 -1484429.9024 NA -889.5585 -7.1530 -1484429.9024 0.0685 -1484429.9024 0.0685 -6.8480 263.00
#54 700(0.75) -276.2158 -138.0321 -7.1483 31.50 -1488303.0870 NA -1454.5193 -7.1306 -1488303.0870 0.4787 -1488303.0870 0.4787 -7.2318 468.92
#55 700(0.75) -273.1807 -136.5040 -7.5046 29.79 -1491721.6015 NA -703.8169 -7.2129 -1491721.6015 1.8546 -1491721.6015 1.8546 -7.1273 292.65
#56 700(0.90) -219.2574 -109.6259 -7.2968 29.91 -1780157.9382 NA -1199.5401 -6.8760 -1780157.9382 1.9870 -1780157.9382 1.9870 -7.3375 123.17
#57 700(0.90) -219.4832 -109.7182 -7.3353 32.24 -1792548.9534 NA -1208.4181 -7.0783 -1792548.9534 0.8314 -1792548.9534 0.8314 -7.3220 128.02
#58 700(0.90) -221.5076 -110.7260 -7.2549 34.67 -1778302.0147 NA -1044.4092 -7.1261 -1778302.0147 0.0685 -1778302.0147 0.0685 -7.0970 128.38
#59 700(0.90) -221.4515 -110.7163 -7.2375 33.91 -1784629.5061 NA -1068.3227 -6.8956 -1784629.0506 0.4787 -1784629.0506 0.4787 -7.2374 82.89
#60 700(0.90) -220.9667 -110.4617 -7.2504 28.08 -1785773.3406 NA -1053.8475 -7.0932 -1785773.3406 1.8546 -1785773.3406 1.8546 -7.3478 105.62

Notes. This table presents problem numbers, dimensions, and matrix densities in the first column. For the
ARO-QO Algorithm, ‘LB1’, ‘LB2’, ‘UB’, and ‘Time’ represent the lower bounds with partial decision rules on
the ARO version, the upper bound values, and the computation times of all solvers, respectively. The results
for Gurobi and CPLEX are divided into four subcolumns: the first two show bounds within the time limit
required by the ARO-QO Algorithm, while the last two display bounds within a fixed 3,000-second limit.
The IPOPT columns detail the upper bounds and the solver times achieved by IPOPT solvers. The ‘NA’
indicates the absence of a feasible solution within the given time.



Chapter 5
Conclusions and Future Research

Pliny the Elder:

“The only certainty is that nothing is certain.”

In this thesis, two noteworthy contributions are presented in the field of mathematical

programming.

The first contribution introduces an innovative dual-based cutting plane method as a solution

methodology for nonlinear Adjustable Robust Optimization (ARO) problems. This research

introduces novel tools and techniques for robust optimization to address sequential decision-

making under uncertainty, specifically in nonlinear cases. Indeed, we studied a general

nonlinear ARO model with uncertainty in the objective and constraints. We obtained an

equivalent dual formulation by applying Fenchel’s duality on the wait-and-see variable. We

investigated when the dual formulation is convex in the decision variables and explored

reaching upper and lower bounds for the original problem based on the dual formulation.

Thanks to the equivalent dual reformulation, we presented and analyzed two algorithms.

These algorithms aimed to find a lower bound on the optimal objective value of the general

nonlinear ARO model. We demonstrated by numerical results that our algorithm could

produce a locally robust solution with an acceptable optimality gap.

Secondly, we have introduced a novel reformulation technique that allows us to exactly refor-

mulate the indefinite Quadratic programming Problem (QP) as a maximization adjustable

robust optimization problem. This reformulation provides a new approach to approximately

solving indefinite QP problems by transferring the complexity of the original problem to

the nonlinearity of the equivalent ARO problem. We have demonstrated the effectiveness
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of our ARO-based method in solving indefinite quadratic programming problems through

numerical experiments and shown that it can provide high-quality solutions with reasonable

computational costs. The established connection between QP and ARO, provides a new

perspective on the challenges of indefinite QP problems and opens up new possibilities for

further research in the field of mathematical optimization.

5.1 Future Directions

The findings outlined in this thesis offer exciting possibilities for advancing the methodology

in nonlinear adjustable robust optimization and exploring problems in applied domains

that have had limited exposure to sophisticated robust modeling techniques. This research

prompts an immediate inquiry into integrating decision rules within nonlinear adjustable

robust optimization and approximating this complex problem. Although incorporating

decision rules presents both theoretical and computational challenges, it holds the promise

of capturing the underlying structure more effectively.

Another future research avenue might explore how ARO can be applied to deriving new

reformulations for disjoint biconvex programming problems. Disjoint biconvex problems are

known to be complex and challenging to solve. We hope to develop innovative reformulations

that can improve solvability and efficiency by leveraging the power of ARO techniques. This

future research has the potential to advance the field of disjoint biconvex programming and

contribute to the development of more robust optimization techniques.
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in sequential decision-making. The study involves a general nonlinear ARO

model with uncertain objectives and constraints. Fenchel’s duality is applied to
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are developed to find lower bounds on the optimal objective value, showcasing

the approach’s efficacy in producing locally robust solutions with acceptable
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Optimization (QO) problems into maximization adjustable robust optimization

formulations. This innovative approach shifts the complexity from the original
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