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Abstract

The concept of linguistic style denotes that many aspects of text can vary while maintaining

a same source core semantic meaning. For example, a message may be written in a formal

or informal style. The textual style transfer problem aims at generating a paraphrase of a

given text by modifying its style while preserving its content. To the best of our knowledge,

within the literature on textual style transfer, there is no standard widely accepted definition

of the concept of style. Moreover, very few works have investigated the characteristics

of language styles. Therefore, previous research, as far as our knowledge extends, have

not taken the variations of different textual style domains into account while dealing with

the style transfer task. This research investigates domain-specific style characteristics by

examining the separation of the style and content, as well as the variations in style across

domains and how these variations are encoded. Furthermore, it looks into the factors which

are relevant to do a comprehensive evaluation of textual style transfer models. The research

uses the domains of sentiment and formality.

A variety of frameworks have been employed as textual style transfer models throughout

the experiments of the current work where networks such as RNNs, and transformers are used

as the encoders, decoders and discriminators. These models are trained in an unsupervised

manner, i.e. the data is or is considered as non-parallel. The experimental methodology

frames style transfer as a multi-objective problem, evaluating each approach through three

aspects of the generated style-shifted outputs: presence of the target style (style-shift power of

the approach), presence of the input content (content preservation power of the approach) and



fluency and grammatical correctness of the output sequences. To evaluate these dimensions,

various automatic methods are applied which are further confirmed by conducting human

evaluation tests. The performance of the style transfer systems reveals a trade-off between

the evaluation aspects. This confirms the need of applying this comprehensive evaluation

methodology and questions the approach taken in some previous researches where the focus

is on one or two evaluation dimensions which can lead to neglecting the disregarded aspect(s).

Our research firstly looks into the separation of style and content in chapters 4 and 5. To

do so, different experiments are conducted to probe the latent space of a variety of adversarial

RNN-based style-shift frameworks while considering sentiment and formality as the style

domains. The main focus of these experiments is to investigate the presence of the source

stylistic features, i.e. to analyse how these models encode style-related features in their latent

spaces. The results which hold for the two style domains indicate that style cannot be totally

separated from content.

A series of experiments are then designed in chapter 5 to examine if the concept of style is

consistent across different style domains. This includes experiments which focus on studying

the correlation of style and content across the domains, as well as, studying the effect of

modifying the latent space across different style domains. The findings indicate that in the

case of sentiment there is a closer entanglement between style and content, as compared with

formality domain where these elements are less entangled. Observing that the concept of

style can vary across different domains shifts the attention of this study towards analysing

how this variation is encoded.

To explore the variations across the style domains, a number of experiments are conducted

in chapter 6. This includes a series of probing classification tasks are performed to examine

how different layers of encoders of adversarial transformer-based style transfer models

encode the style of the input. Furthermore, some unigram-based experiments are conducted

which further confirm the variations observed. The results indicate that formality is more

vi



globally encoded compared to the sentiment which is more locally encoded. Finally, a

series of experiments look into the effect of emphasizing more on encoding the input on the

style-shift power of the models across different style domains which is in line with previous

results and implies that formality is a more complex style domain to be dealt with in style

transfer scope as compared with sentiment. The findings of these experiments contribute to

a better understanding of the style and highlight the question of how the characteristics of

various style domains can affect framing the textual style transfer task.

This open question is investigated as a final step by conducting some experiments in

chapter 6 to illustrate how style characteristics of different styles should be considered when

selecting evaluation methods. In particular, it focuses on the content preservation dimension

and shows how it can be computed more effectively by considering the variation of the

characteristics and encoding of style across the formality and sentiment domains.

vii
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Chapter 1

Introduction

Textual style transfer (TST) is a field of natural language processing (NLP) which focuses

on reshaping a text so that it shifts to a different style while preserving its content. Similar

to many other Natural Language Generation (NLG) problems, TST is expected to generate

grammatically correct sequences. In other words, the main objective of this multi-dimensional

scope is the creation of style-shifted text comparable to the text generated by humans.

However, this has not yet been achieved. The description of the TST draws the attention to

the textual style as one of the key elements of this task which, to the extent of our knowledge,

has not yet been rigorously defined in the field of TST (Tikhonov et al., 2020; Tikhonov and

Yamshchikov, 2018; Jin et al., 2022). Moreover, there are open questions with regards to this

concept such as whether style definition varies across different style domains and if so what

are the implications of these variations for TST.

This chapter overviews my PhD thesis by firstly discussing the key concepts of TST as

well as some of the applications of this filed. Then, it proceeds by explaining the direction,

objectives and contributions of my research . Finally, it provides the outline of the thesis.
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1.1 Textual style transfer

1.1 Textual style transfer

Style is an important component of language which allows the same semantic information

to be expressed in different forms. Each of these forms conveys some extra pieces of

information, referred to as stylistic features. For instance, the same topic and content shaped

in two styles can show different opinions about the topic, different levels of expertise of the

author or speaker, different social relations between the participants of the interaction (the

author or speaker on one end and the reader or interlocutor on the other side), etc. In fact, the

linguistic concept of style can be summarized as the manner of expressing content which is

highly dependent to the creators of the text and their choices (McDonald and Pustejovsky,

1985).

The task of TST is typically framed as assuming a domain of style S containing two or

more styles (s1 ∈ S and s2 ∈ S) and involves rewriting given a text in style s1 in a desired

style s2 while maintaining the content of the text. For example, a domain of style might be

S = {s1 = f ormal,s2 = in f ormal} and the TST system is tasked with translating text from

formal to informal (and vice versa) while maintaining the content. However, in spite of the

growing interest in TST, what style entails is still an open question.

Key concepts in TST Previous TST research has provided some definitions for the concept

of textual style. Some approaches considered style as a holistic concept which is an implicit

and integral component of a language. Taking this view, style cannot be explicitly described

and each style can be considered as one separate language. This understanding of style

is very different from the concept of style underpinning some previous TST work where

stylistic features are detected and removed as a preliminary step (Li et al., 2018a; Madaan

et al., 2020; Leeftink and Spanakis, 2019; Xu et al., 2018; Zhang et al., 2018a; Sudhakar

et al., 2019). The assumption of the latter TST approaches is that style is encoded as a set of

discrete explicit linguistic elements like specific words, or markers. These explicit elements

2



1.1 Textual style transfer

Table 1.1 Some examples of sequences from the styles of formal versus informal

Content/ Same Different
Style
Same I am very grateful to you. It has been a wonderful evening.
Different Thanks very much! what’s up buddy!

can be identified by measuring relative frequencies in contrast with texts of other styles, or

even directly thanks to hand-crafted knowledge (Tikhonov and Yamshchikov, 2018; Jin et al.,

2022). This contradiction highlights the importance of clarifying the concept of style since

its understanding can inform the adoption of the methodologies while dealing with the TST

problem.

Textual style has also been defined based on discrimination, i.e. considering at least

two different texts, style can be taken as the consistent variation between the textual data

under study. This data-driven definition of style, as opposed to its linguistic understanding

enables the broadening of style to include aspects related to the content or topic as acceptable

style domains (Jin et al., 2022), for instance, opinion polarity or sentiment. This approach,

however, provides a general concept of style which does not discuss the style characteristics

in a detailed manner. Each of these available approaches have limitations, for instance, to the

extent of our knowledge, neither of them considered the variations between different style

domains while providing a definition for style.

Adopting a discrimination/data-driven definition of style presupposes that style is a

concept that can be learnt from data, and it is this perspective that informs the approach to

style taken in this thesis. Machine learning is the sub-field of artificial intelligence focused

on the development and evaluation of algorithms to learn from data (examples), and two

of the most popular forms of machine learning are supervised and unsupervised learning

(Kelleher, 2019). The distinction between these two types of learning is mainly based on

the kind of data that is used for training. In supervised learning, the training of the model

is done using a labelled dataset (i.e., each example in the dataset is labelled with the target
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output the model is learning to predict) and the model learn by making predictions and

doing weight updates based on the error between the prediction and the gold-stand labels

in an iterative manner until convergence, i.e., when the model learns to make appropriately

good predictions. In unsupervised strategies, on the other hand, training relies on analysing

unlabelled data, i.e. discovering the similarities and differences between the samples in

the data in order to extract useful features and structures from which the models can learn.

Unlabelled data refers to a collection of samples which do not have a desired label, correct

answer or ground truth sample. Supervised learning approaches often result in more accurate

models as compared with unsupervised techniques. However, a major difficulty with using

supervised learning is that it requires that all the examples are labelled and this typically

requires human (expert) annotators, which makes the creation of a labelled dataset time-

consuming and expensive. This problem is particularly difficult when the human annotators

are asked to perform relatively complex tasks such as paraphrasing a text in a specific style.

In order to avoid the difficulties posed in preparing parallel training data for textual-style

transfer the work in this thesis is focused on unsupervised learning.

Table 1.1 represents some sentence pairs with the style domain formality (formal or

informal styles). Sequences in row 1 are formal in style but they differ in content and

meaning. In column 1, on the other hand, sequences are similar in content but have different

styles, formal, versus informal. These sequence pairs illustrate that text is composed of two

components, style and content, which are the main focus of the textual style transfer task.

Some previous works on TST have assumed that these two elements are separable. They

mostly applied adversarial end-to-end approaches and focused on disentangling style and

content as the key step to enable shifting the textual style (Xu et al., 2018; Jin et al., 2022;

Yamshchikov et al., 2019; Rabinovich et al., 2017; Dai et al., 2019a; Hu et al., 2017b; Shen

et al., 2017; Fu et al., 2018a; John et al., 2019; Romanov et al., 2019; Tian et al., 2018).

This raises this question whether style and content are two independent textual components
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or entangled elements. To the best of our knowledge, very little work has investigated the

style-content separation in the context of TST. The current work, as a step forward towards

understanding the characteristics of style, examines the disentanglement of style and content

and compares it across the different style domains of sentiment and f ormality. Even though

there has been controversies in previous researches such as (Zhang et al., 2018a; Tikhonov

and Yamshchikov, 2018; Yamshchikov et al., 2019) to consider sentiment as a style, we

mainly focused on these two domains to base our analysis on since they are so central to

current work on TST1.

TST is a multi-objective problem which considers shifting the style, preserving the

content and generating fluent text. However, in practice, many state-of-the-art papers on TST

such as (Fu et al., 2018a; Gröndahl and Asokan, 2020; Hu et al., 2017b; Li et al., 2018b,

2020; Madaan et al., 2020; Xu et al., 2018) do not consider all three of these evaluation

dimensions. Consequently, papers do not fully validate their approach and hence, they cannot

easily be compared. Moreover, a trade-off between the three aspects of evaluation has been

reported in some previous research (John et al., 2019; Li et al., 2020; Tikhonov et al., 2020).

This highlights the importance of considering all the three aspects, since considering one or

some aspects while disregarding the other(s) can lead to sacrificing the disregarded aspect.

Throughout this study, we employ a comprehensive evaluation methodology considering

these three evaluation dimensions.

Investigating TST and improving the task of shifting different textual styles is significant

since the advancement in this field can make several contributions to the domain of NLP.

In fact, NLP researchers have studied this field for a long time in the form of tasks such as

summarization and simplification where the textual styles which have been modified are

1We observed that in recent years 31 out of 39 TST papers that we reviewed studied the sentiment-shift task
(Xu et al., 2018; Zhang et al., 2018a; Sudhakar et al., 2019; Romanov et al., 2019; Singh and Palod, 2018; Shen
et al., 2017; John et al., 2019; Hu et al., 2017a; Fu et al., 2018b; Cao et al., 2020; Xu et al., 2019; Jafaritazehjani
et al., 2020, 2021; Dai et al., 2019b; Leeftink and Spanakis, 2019; Jin et al., 2019; John et al., 2019; Leeftink
and Spanakis, 2019; Li et al., 2018b, 2020; Prabhumoye et al., 2018; Tikhonov et al., 2020; Zhang et al., 2018b)
and 5 focused on the formality-shift problem (Cao et al., 2020; Xu et al., 2019; Jafaritazehjani et al., 2021; Rao
and Tetreault, 2018; Jin et al., 2019; Niu et al., 2018; Zhang et al., 2020).
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"simplicity" and "verbosity", respectively. We describe some of the applications in the next

section.

Some applications of TST One of the main target applications of rephrasing messages to

have a specific style is to facilitate interaction so as to avoid misunderstanding between the

participants of a communication. The modification of the texts are done with regards to the

recipient(s) of the communication. The interactions can be human-human as well as human-

machine. In the other words, rephrasing messages can improve language understanding

between humans or with a machine.

Contributing to the field of NLG by improving the ability of the systems to generate text

in a desired style can help improve other NLG tasks. Firstly, the strategies used in TST can be

applied in other NLG problems such as paraphrase generation and machine translation (MT).

Also, using multi-task strategies to frame TST together with other tasks has proved effective

(Niu et al., 2018; Zhang et al., 2020) in different scenarios. For instance, combining MT

with formality-shift has led to improvements in terms of BLEU score which represents the

similarity between the generated outputs and gold reference(s) for these outputs (Niu et al.,

2018). Style-specific MT can also be preferable to MT when the translated text is targeting a

specific group such as children where MT can be framed together with simplicity-transfer

task.

The improvement on the TST task highlights the importance of considering possible

risks of applying this technology and raising concern against abusing it. For instance, in

some style domains such as sentiment, TST systems can be employed to manipulate online

customer reviews such as restaurant, hotel or product reviews towards benefiting the business

owners and service providers. Also, stylistic similarities of texts created by different authors

(author-specific styles and writing patterns) can be used maliciously to do author profiling.

Risks similar to these examples highlights the need for a global reflection on applying and

improving techniques to address these issues. For instance, anonymization which is a TST
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application focusing on neutralizing the texts from the author-specific styles (Reddy and

Knight, 2016; Gröndahl and Asokan, 2020) can help protect the identity of users and alleviate

issues relating to the increasing privacy concerns.

Style transfer techniques have been employed to augment data for images processing

tasks (Zheng et al., 2019; Jackson et al., 2019). In a simple way, TST can be used as a data

augmentation method. To clarify more, given some text, TST frameworks generate similar

texts having the same content but different style. This makes the TST techniques suitable

to be applied to create data similar to some existing training data for different NLG tasks,

namely, paraphrase generation, MT, question answering or summarization.

1.2 Research questions and proposed research

Our research aims at answering different questions listed in this section. The primary focus

of our work is exploring style characteristics while dealing with TST (questions 1, 2 and

3). It then proceeds by investigating the interaction between these characteristics and TST

(question 4). Finally, it looks into the aspects of a comprehensive evaluation for TST models

(question 5).

Question 1: Are style and content separable?

So far, one of the main objectives of the previous unsupervised TST systems was to disen-

tangle style from the content and create a style-free latent space for inputs. This is mainly

based on the presumption that this disentanglement is doable (Xu et al., 2018; Jin et al.,

2022; Yamshchikov et al., 2019; Rabinovich et al., 2017; Dai et al., 2019a; Hu et al., 2017b;

Shen et al., 2017; Fu et al., 2018a; John et al., 2019; Romanov et al., 2019; Tian et al., 2018).

However, to the extent of our knowledge, the possibility of this disentanglement has not

been thoroughly investigated the previous research. The preliminary direction of the current
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work is style-content separation, since it can lead to a deeper understanding of style and its

characteristics. This research question is addressed in chapters 4 and 5.

Question 2: Is style consistent across domains?

A necessary direction to further explore the characteristics of style is to investigate the

consistency of this concept across various style domains. This research question is addressed

in chapter 5.

Question 3: How does the encoding of style vary across different style domains?

This research question which is addressed in chapter 6 studies how stylistic features across

different style domains are encoded by TST frameworks.

Question 4: How do the characteristics of style and the task of TST interact?

This research question, addressed in chapter 6, examines whether extending the knowledge

of the concept of style (findings from the research questions 1, 2 and 3) can contribute to

TST. In particular, it investigates the implications of the variations of the encoding of style

across different domains on the choice of evaluation methods for TST in a given domain.

Question 5: What factors are relevant for the evaluation of a TST system?

This research question looks at different evaluation aspects while framing TST which is a

multi-dimensional task to introduce a comprehensive evaluation methodology. The current

question is addressed in chapters 4, 5 and 6.

1.3 Contributions

A variety of contributions have been made on different aspects of the TST task during the

course of this research. This section lists a number of these contributions which address the
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main research questions listed in section 1.2. These contributions will be discussed in more

details throughout this thesis.

1. We find that style and content cannot be totally disentangled. This observation holds

for both domains of sentiment and formality.

This finding arises from the research question 1 by studying the latent space of several

TST systems in chapters 4 and 5. To explore the latent space of the frameworks, we

performed experiments to investigate the presence of the style of the input sequences

in their corresponding latent representations.

2. We find that style is not consistent across different domains, i.e. the concept of style as

sentiment is different from the concept of style as formality.

To investigate the consistency of the style concept across the style domains (research

question 2), we use formality and sentiment as a case study. In chapter 5, we applied

several TST systems and for each style domain and each TST model, conducted

some experiments on the latent space of the systems. Then, we computed the relation

between the content preservation power of the model and the presence of the source

style in the latent vectors corresponding to the input texts. Doing this enabled us

to compare the level of entanglement of the style and content across different style

domains. We also did experiments to modify the latent space of the TST frameworks

and compare the changes across the style domains.

3. Our findings suggest that there are variations in how style is encoded across different

style domains. In particular, in the sentiment domain, style is encoded relatively locally

as compared to the formality domain where the style is more globally encoded.

The related experiments conducted in chapter 6 investigates different layers of encoders

of adversarial transformer-based TST models to examine how each layer encodes

style across different style domains. The variations observed in the results of this
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experiment was further validated by doing a number of unigram-based analysis tasks.

Finally, we examined how putting more emphasis on encoding the input can affect

the performance of the models. This resulted in TST systems with weaker ability

in shifting the formality as compared to shifting sentiment. This observation which

addresses research question 3 suggests that formality-shift is a more complex task

which is inline with the observation that indicates that formality is more globally

encoded compared to sentiment.

4. We find that the selection of the metrics used for content preservation in TST is

sensitive to the type of style being transferred. Specifically, we find that the SBERT-

based content preservation metrics work better than the Glove-based metrics for

formality, and Glove-based metrics do a better job in sentiment domain. We attribute

this difference to the domain-specific characteristics of each style and characteristics

of each pre-trained embedding model.

To explore this interaction between style characteristics and TST, we conducted ex-

periments in chapter 6 which indicate that domain-specific characteristics of style can

inform the choice of TST evaluation methodologies (research question 4).

5. We propose a multi-factor evaluation framework covering style-shift power, content

preservation and fluency which addresses research question 5.

We find support for this multi-factor methodology through the trade-offs that we

consistently observe throughout our experiments in the chapters 4, 5 and 6. The

metrics applied in the proposed comprehensive evaluation methodology are further

confirmed by using some strategies such as human evaluation.

1.4 Notations

Table 1.2 lists all the notations used throughout this report.
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Table 1.2 Notations used throughout the thesis report.

Notations Description

x A sequence of length T with tokens of [w1, ...,wT ] and unknown style

xs A sequence of length T with tokens of [w1, ...,wT ] and style s

z The latent representation of x generated by the encoder of a TST model

zs The latent representation of xs generated by the encoder of a TST model

x̃(rec)
s1 Reconstruction sequence with the source style s1

x̃(tr f )
s1 Style-shifted sequence having a desired style s2, and the original source

style s1, where s1 ̸= s2.

Xs Textual dataset having style s and N sequences (xs,...,xN)

E Encoder of a TST model

Es Style-specific Encoder of a TST model

D Decoder of a TST model

Ds Style-specific Decoder of a TST model

Disc Discriminator block of an adversarial TST model

Discs Style-specific classifier for style s used in the discriminator block of an

adversarial TST model

Gen Generator block of a TST model consisting of an encoder-decoder

network

1.5 Report outline

The outline of the current report can be described as follows.
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Chapter 1 (the current chapter) of this report introduces the scope of the research and main

question of this study.

Chapter 2 firstly provides the necessary background knowledge about neural networks,

then, it reviews the previous work on textual style transfer and focuses on the unsupervised

adversarial techniques, as this is the main modelling approach we use in this work.

Chapter 3 firstly presents the datasets used in our experiments. Then it focuses on the

modelling approach implemented in the style transfer systems used in this report. It proceeds

by explaining the structure of baseline models while specifications of proposed alternative

models are left for later chapters. Finally, it discusses the linguistic dimensions under

consideration when evaluating TST models and introduces the related metrics.

Chapters 4 mainly investigates the separation of the style and content in the latent space

of RNN-based TST models in the sentiment domain. The work in this chapter addresses

research questions 1 and 5 (section 1.2) and the findings of the reported experiments support

research contributions 1 and 5 (section 1.3).

Chapters 5 extends the experiments of chapter 4 and looks into formality and content

versus sentiment and content disentanglement in TST and explores the variations across these

two style domains. The work in this chapter addresses research questions 1, 2 and 5 (section

1.2). Moreover, the findings of the reported experiments support the contributions 1, 2 and 5

(section 1.3).

Chapter 6 further investigates the variations across different style domains by conducting

a series of experiments to look into how these variations are encoded. Finally, it studies

how these variations can affect the TST task. The work in this chapter addresses research
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questions 3, 4 and 5 (section 1.2). Moreover, the findings of the reported experiments support

the contributions 3, 4 and 5 (section 1.3).

Chapter 7 discusses the findings, and limitations of the current work and TST scope, and

presents the possible future directions of this research.
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Chapter 2

Background

This thesis focuses on the scope of TST and looks at a range of TST architectures. The

current chapter provides the necessary background knowledge for this research by firstly

discussing the related necessary neural network concepts and architectures in section 2.1 and

then reviewing the related work in section 2.2.

2.1 Background neural network knowledge

The discussions in this section mainly revolve around sequence-to-sequence generation

strategies applied by various TST architectures. However, these strategies are not only

applicable to TST frameworks, but also to other sequence generation tasks such as neural

machine translation, language modelling and image caption generation.

The original neural network architectures are Feed-Forward neural networks (section

2.1.1) that learn non-linear mappings from input to output inspired by neuroscience. The

challenge with these networks is that they have fixed width and therefore can only handle

fixed length data which led to the development of Recurrent Neural Networks. These

Networks, in spite of being capable of handling different length input, have limitations with

handling long distance dependencies. Therefore, GRU and LSTM variants of Recurrent
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Neural Networks were introduced which performed better in dealing with long sequences as

compared to standard Recurrent Neural Networks (section 2.1.2). More recently, transformer

architectures have been introduced which apply self-attention strategy to learn the relation

ship between the tokens within a given input (section 2.1.4.3). Even though, unlike Recurrent

Neural Networks, transformers cannot handle different length data, they generally perform

better in capturing semantic and syntactic information from across sentences as a result of

using self-attention strategy (Vaswani et al., 2017; Devlin et al., 2018; Kelleher, 2019).

2.1.1 Feed-Forward neural network

Feed-Forward neural networks (FFNN) or multilayer perceptrons (MLPs) are considered

the basis of some neural networks including Convolutional Neural Networks (CNN) and

are applied in many other neural networks such as Recurrent Neural Networks (RNN) or

transformers. Taking an input x, they aim to approximate a function y = fθ (x). For instance,

an FFNN-based classifier learns to map an input x to the the correct class y by approximating

the parameter θ . The depth and width of an FFNN is the number of the layers and the units

in hidden layers respectively (Goodfellow et al., 2016).

FFNNs are acyclic graphs where information flows in a forward direction. The network

consists of 3 types of layers: input-layer, hidden layer and output-layer. Figure 2.1 shows an

FFNN with an input-layer of size N, one hidden layer of size 3 and output layer of size 2.

The units of each hidden layer and output layer can be computed by doing the following two

steps.

First, computing preactivated values of a given layer by doing the matrix multiplication

of the weights corresponding to this layer and the outputs of the previous layer and adding

a bias score to them (while computing the first hidden layer, the outputs of the previous

layer are the input tokens). For instance, neuron h1 in the hidden layer of the figure 2.1 is
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Figure 2.1 The schema of FFNN network

calculated as the following equation shows.

preactivated(h1) =
N

∑
i=1

w(h)
1i xi +b(h) (2.1)

The second step involves applying an activation function to the preactivated values.

Equation 2.2 shows how h1 of figure 2.1 is computed where g is the activation function.

h1 = g(preactivated(h1)) (2.2)

The output layer is computed similarly by using equations 2.1 and 2.2 where W (o) and

b(o) are the weight matrix and bias value corresponding to this layer and h1, h2, and h3 are

the outputs of the previous layer.

2.1.2 Recurrent neural network

One of the limitations of the FFNNs is that they get fixed-sized vectors as input. This can

affect the performance of text generation models, such as language models. Recurrent neural
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networks (RNNs) have removed this constraint by recursively processing sequences one

element at a time.

RNNs process different inputs at different points in time, but the parameters are shared

through the processing of the sequence. Sharing parameters is one of the characteristics of

RNNs which enables them to handle long sequences. Due to this characteristics, they have

played a dominant role in text processing and text generation (Goodfellow et al., 2016). At

each time step, for instance t, an RNN cell takes the input xt , and the previous hidden state

ht−1 and outputs ht which is the updated hidden state at the time step t. This is formulated as

ht = RNN(xt ,ht−1).

In practice, using simple RNNs, introduced by Elman (1990), in neural architectures can

lead to issues such as exploding and vanishing gradients (Bengio et al., 1994). Different

strategies have been proposed to tackle these problems such as the gradient norm clipping

technique or using variants of the vanilla RNN.

RNN variants We describe Long Short-term Memory Networks (LSTM) and Gated

Recurrent Unit (GRU) variants of RNN in this section. In the equations used throughout

this section xt denotes the current input, ht denotes the current hidden state, ht−1 denotes the

previous hidden state, ct denotes the current state of an LSTM memory cell, ct−1 denotes

the state of the memory cell at the previous time step, a capital W denotes a weight matrix,

the ⊙ symbol denotes an element-wise vector product operation, and a + symbol denotes

an element-wise addition between vectors. Also the multiplication between matrices and

vectors implicitly includes the addition of bias terms, where the weights and the bias terms

are all parameters that are learnt during training.

• LSTM is an RNN variant which was introduced by Hochreiter and Schmidhuber (1996)

to address the vanishing gradient issue of simple RNN cells. The main difference

between the simple RNN and LSTM is the computation of the hidden state ht at time

step t. Specifically, the RNN cell is replaced with an LSTM unit. An LSTM unit
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maintains a hidden state (ht) and a memory cell (ct) and uses three gating units (the

forget gate ft , the input gate it and the output gate ot) to control the flow of information

in the memory cell through time and to calculate the new hidden state at each time

step (Kelleher et al., 2020). The forget gate uses the current input xt and hidden state

from the previous time step ht−1 to decide what information should be removed from

the memory cell. It is implemented as a sigmoid layer (the same width of the memory

cell) to generate a masking vector that is fed into an element-wise product with the

memory cell to generate a new memory cell state. The fact that the forget gate has

a sigmoid activation function means that all the components of the masking vector

have values between 0 and 1, and the element-wise product results in memory cell

values that have a corresponding sigmoid activation near 0 being pushed to 0 (being

forgotten) and memory cell values that have a corresponding sigmoid activation near

1 being maintained. Equation 2.3 lists the calculation of the masking vector ft used

by the forget gate and Equation 2.4 lists the updating of the memory cell state by the

forget gate.

ft = sigmoid(xt .Wf x +ht−1.Wf h) (2.3)

c′t = ft⊙ ct−1 (2.4)

The input gate decides which values are to be stored in ct and consists of a sigmoid

layer and a tanh layer. Both of these layers take the current input and the hidden state

from the previous time step as input. As in the forget gate, a sigmoid layer is used to

generate a masking vector, in this case the masking vector indicates which components

in the memory cell should be updated with new information (sigmoid activations near

0 indicate that the corresponding memory cell component should not be updated and

activations near 1 indicate that they should). Then a tanh layer decides what values

can be added to the memory cell. An element-wise product of the outputs of the tanh

layer and the sigmoid layer mean that the update values generated by the tanh layer
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are filtered by the sigmoid activations before being added to the memory cell state.

Equation 2.5 defines the input gates sigmoid layer which defines which values in the

memory cell are updated.

it = sigmoid(xt .Wix +ht−1.Wih) (2.5)

Equation 2.6 defines the input gates tanh layer, which defines the values that can be

added to cell state.

ĉt = tanh(xt .Wcx +ht−1.Wch) (2.6)

The next step is updating the cell state created by the update from the forget gate

c′t by adding the vector created by the elementwise product of the sigmoid and tanh

activations in the input gate, this is shown in equation 2.7.

ct = c′t +(it⊙ ĉt) (2.7)

Finally, the output gate decides what we are going to output, shown in the Equation 2.8.

ot = sigmoid(xt .Wox +ht−1.Woh) (2.8)

The new hidden state ht is calculated as shown in equation 2.9.

ht = ot⊙ tanh(Ct) (2.9)

Importantly, the design of the LSTM unit is such that, during training, the error

gradients with respect to the memory cell state are not repeatedly multiplied by a

weight that is shared across time steps. So, these gradients are stable and the model is
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consequently better able to learn long-distance dependencies through time (Kelleher

et al., 2020).

• Gated Recurrent Unit (GRU) Chung et al. (2015) cells are a simplified version of

LSTM cells. In contrast to LSTMs which maintains both a hidden state (ht) and a

memory cell (ct) and uses three gating units (the forget gate ft , the input gate it and

the output gate ot), the GRU only maintains a hidden state (ht) and uses only two gates

to control the flow of information in hidden state through time and to calculate the new

hidden state at each time step. These two gates are known as the reset gate r and the

update gate z. At each time step t each of these gates use the current input xt and the

previous hidden state ht−1 to generate a vector mask the same width as the hidden state:

rt and zt . These vector masks are then used to transform the previous hidden state

ht−1 to the current hidden state ht . The integration of the vector masks generated by

these two gates with the previous hidden state is designed so that when a component of

the reset gate mask rt is close to 0 the hidden state is forced to ignore the information

in the corresponding component of the previous hidden hidden state and to reset that

component of the hidden state with the current input (thereby allowing the hidden state

to drop information that is no longer relevant), and the update gate controls whether

the hidden state is to be updated with a new hidden state ĥt .

The reset gate vector mask at time t, rt , is calculated as shown in equation 2.10.

rt = sigmoid(xt .Wrx +ht−1.Wrh) (2.10)

Once the reset gate vector mask is calculated it is then integrated with the previous

hidden state ht−1 to create a candidate new hidden state ĥt , see equation 2.11. In this

equation notice that the element-wise product of the reset gate mask (rt) with the output

of the result of the linear layer operation on ht−1 results in the rt mask filtering the
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information carried forward from ht−1 to ĥt . This carried forward information is then

added to the result of the linear layer applied to the current input xt .

ĥt = tanh(xt .Wx + rt⊙ (ht−1.Wh)) (2.11)

The update gate vector mask at time step t, zt , is calculated in a similar manner to the

calculation of the reset gate mask, see equation 2.12.

zt = sigmoid(xt .Wrx +ht−1.Wrh) (2.12)

The update gate mask is then used to control both how much of ht should be retained

information from ht−1 and how much of ht should be information from the new

candidate hidden state ĥt . Equation 2.13 shows how zt is used to achieve this. When zt

is near 1 relatively little information from ht−1 is retained in ht and a lot of information

from ĥt is added to ht . Conversely, when zt is close to zero a lot of information is

retained from ht−1 and relatively little information from ĥt is used in the hidden state

update.

ht = (1− zt).ht−1 + zt .ĥt (2.13)

2.1.3 RNN-based language model

Language models are trained to predict the next likely word in a sequence based on the

preceding context. RNN-based language models employ vanilla RNN or its gated variants

LSTM and GRU as cell units and they include: 1. an embedding layer, 2. hidden layer(s) of

RNN, and 3. a projection and a softmax layer which together form the output layer.
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Figure 2.2 The schema of an RNN-based Language Model including 2 hidden layers.

Given an input sequence x=[w1,...,wN], as figure 2.2 illustrates an RNN-based language

model first projects the tokens wi to their embedding vector through the embedding layer.

Then, it calculates the hidden states of the RNN hidden layers. The output of the k-th hidden

layer (k ∈ {1,2} in the model of figure 2.2) at time step t (t ∈ {1,2, ...,N}) is computed by

equation 2.14 where hk
t is the hidden state of the hidden layer k at time step t. In this equation,

h0 refers to the embedding layer and the corresponding value for h0
t is the embedding vector

of token xt . W k and Uk are the learnable weights for the hidden layer k. Function a(.) is a

non-linear activation function.

hk
t = a(hk

t−1Uk +hk−1
t W k) (2.14)

The output layer, as defined by equation 2.15, predicts tokens at each time step t by

applying a linear projection and a softmax layer over outputs of the final hidden layer. In this

equation W o is the weights of the projection layer.

Pr(xt [x1,x2, ...,xt−1) = so f tmax(hk
t W

o) (2.15)
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2.1.4 Sequence-to-sequence architectures

A sequence-to-sequence network takes a source sequence x=[w1,...,wN] as the input and

generates an output sequence y=[y1,...,yM] (depending on the task, a translated form of x in

the desired language in the Neural Machine Translation (NMT), a simplified form of x in a

text simplification task, etc). In the text style-shift problem, the target sequence is a rewritten

form of x with the desired target style which is supposed to be different from the source style.

As figure 2.3 shows a sequence-to-sequence model relies on an encoder-decoder archi-

tecture where the encoder aims at creating a vector representation z of the input and the

decoder takes z and generates an output sequence in a manner similar to a language model

by conditioning the generation of the target tokens on z and the previously generated tokens.

Different neural architectures can be employed for the encoder and decoder, including RNN

networks (section 2.1.4.1), convolutional neural network (CNN) (Kaiser et al., 2018) or

self-attention networks such as transformer architectures (Vaswani et al., 2017).

Since this type of architecture is at the heart of our work, the remainder of this section

focuses on describing various sequence-to-sequence encoder-decoder frameworks.

2.1.4.1 RNN-based sequence-to-sequence architectures

RNN-based sequence-to-sequence architecture proposed by Sutskever et al. (2014) to frame

the NMT task can be used in any similar generation task. RNN-based sequence-to-sequence

models employ RNNs as encoder and decoder components. The encoder is responsible for

encoding the input sequence into a fixed-size vector z and the decoder aims at decoding this

vector.

Creating fixed-length representations for variously sized inputs can, however, in practice

lead to issues such as losing the input information during the generation process especially

in the case of long input sequences. This is mainly due to the fact that the contextual

information gets diluted as the encoder processes the tokens along a given input sequence.
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Figure 2.3 The schema of a sequence-to-sequence encoder-decoder network

Sequence-to-sequence architectures which employ attention mechanism (Bahdanau et al.,

2015) have managed to overcome this issue to a great extent.

2.1.4.2 Applying input-output attention mechanism in sequence-to-sequence models

The major problem while using RNNs as an encoder network for text processing is that

as the time steps proceed the information of earlier steps fades away. Employing different

strategies can help the network encode the contextual features better. For instance, reversing

the input sequences or employing bidirectional RNNs where one RNN encodes the input

information in the forward direction and one reads the input in the backward direction. Using

the attention mechanism proposed by Bahdanau et al. (2015), especially in the case of long

sequences, has also proved to be an efficient technique to encode the contextual information.

This attention mechanism revolves around the idea of computing the input represen-

tation vector dynamically at each generation step instead of providing the decoder with

a static representation of the input. We refer to this mechanism as input-output attention

throughout this thesis. Applying this mechanism, given an input x=[w1, ...,wT ], its encoded

representation (context vector) is calculated as the weighted summation of the encoder states

h=[h1, ...,hT ] where the weights are computed dynamically at each generation step. These

weights represent the attention. They are computed through a score function which studies

the relevance of a given vector h j with the current state of the decoder st−1 (at time step t).
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Figure 2.4 Computing ct at the generation step t by considering the decoder state st−1 and
encoder states h1, ...,hT corresponding to the input x = [w1, ...,wT ], at = [a1, ...,aT ] denotes
the attention weight vector computed for the encoder states.

The followings are three of the most widely applied methods of how the score function has

been defined where V , W1 and W2 are trainable weight matrices:

• Dot-Product: score(h j,st−1) = h j
T st−1

• Bilinear: score(h j,st−1) = h j
TW1st−1

• Additive: score(h j,st−1) =V T tanh(W1h j +W2st−1)

Each weight is then normalized using a softmax layer such that all attention weights sum

to 1 leading to the equation 2.16.

a jt =
exp(score j,t)

∑
T
k=1 exp(scorek,t)

(2.16)

For the input x, equation 2.17 shows how to compute the context vector ct at each

generation step t as the weighted summation of the encoder states (figure 2.4).

ct = ∑
T
k=1 akthk (2.17)

While applying input-output attention mechanism, for a generation step t, the decoder

conditions the generation of the output yt , on ct , the previous hidden state of the decoder st−1

and the token generated at previous time step yt−1, i.e. yt = f (yt−1,st−1,ct)
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Figure 2.5 The schema of transformer-based sequence-to-sequence encoder-decoder network

2.1.4.3 Transformer-based sequence-to-sequence architecture

Transformer refer to a new type of layer for sequential data. By extension, the term also refers

to models that include such a layer. Originally, transformer layers have been proposed in an

encoder-decoder sequence-to-sequence architecture where the encoder and decoder both rely

on transformers (Vaswani et al., 2017; Lewis et al., 2020; Raffel et al., 2020). Alternatively,

transformer models have been proposed to act only as encoders (Devlin et al., 2018; Reimers

and Gurevych, 2019) or as decoders (Radford et al., 2018a, 2019; Brown et al., 2020).

The encoder and decoder of a transformer-based encoder-decoder architecture as figure

2.5 shows consist of an embedding layer followed by k stacks of encoding and decoding

networks where k is a hyperparameter. The k encoding stacks are identical networks and the

same holds for the k decoding subnetworks. Decoder subnetwork also includes a projection

layer as the final building block which uses the output of the last stack of the decoder to

generate the outputs.
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Figure 2.6 The nth encoding-stack and decoding stack of the transformer encoder-decoder
(when n = 1, the outputs of the embedding layer is fed to the self-attention module). The
schema is adapted from the schema proposed by Vaswani et al. (2017).

Each stack of the transformer-encoder as figure 2.6 shows consists of a Multi-Head

self-attention module, a Feed-Forward module and two Add and Norm layers which are

applied around each of these modules. In addition to these modules, each of the identical

stacks of the decoder contains a Multi-Head encoder-decoder attention module and another

Add and Norm around this layer. In this section we describe these sublayers as the major

building blocks of a transformer network.

Embedding layer To create the vector representation of the source input tokens, and target

gold tokens, an embedding layer is used in encoder and decoder of the transformer which

projects the tokens to their embedding representations similar to any other NLP task. Target

gold text exist in case of using parallel data for training. This embedding layer learns both
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positional and contextual embeddings for the tokens. This is mainly due to the architecture

of transformers which unlike RNN networks cannot encode positional information of the

tokens (Vaswani et al., 2017).

Given an input x = [w1, ...,wT ], the embedding of the token wi is computed as summation

of contextual and positional embeddings. The positional embeddings can be either fixed or

learnable (Gehring et al., 2017; Vaswani et al., 2017).

Fully connected Feed-Forward module As figure 2.6 shows both encoding and decoding

stacks of the transformer encoder-decoder architecture contain a Feed-Forward module (FF)

which is applied after their attention-based modules. Given an input u, this layer projects

it through two dense layers where the first layer uses a ReLu activation function. This is

formulated as shown in equation 2.18 where Wu, bu, Wo and bo are the learnable parameters

of this module.

FF(u) = (ReLu(uWu +bu))Wo +bo (2.18)

Residual and normalization module Residual and normalization module, Add & Norm

layers in figure 2.6, are used around each sub-component of the encoding and decoding

stacks of the transformer encoder-decoder network, i.e. each encoding and decoding stack

includes two and three Add & Norm layers, respectively. This module is applied to help the

training process and convergence of the model where using it improves the results.

Multi-Head attention module The Multi-Head attention module of the transformer, a

self-attention network (SAN), takes the three vectors of query Q, value V and key K as input

and creates the weighted sum of the values V as the output shown by equation 2.19 where

α shows the attention weights corresponding to each of these values and the softmax layer
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produces the attention weight distribution for the context generation.

Attention(Q,K,V ) = so f tmax(α)V (2.19)

α is the correlation between each query and key α = score(Q,V ) and as equation 2.20 shows

it is computed using the scaled dot-product attention scoring function.

score(Q,V ) = QK⊺
√

dk
(2.20)

In this equation dk is the dimension of the key vector. The dimension of the query vector is

also set to dk to allow for the dot-product between these two vectors. The division by
√

dk is

done to stabilize the results by scaling the result(Vaswani et al., 2017).

Building on this single attention mechanism, Vaswani et al. (2017) proposed a Multi-

Head attention technique for the transformer architecture. This mechanism involves linear

projection of the vectors of K, Q and V for Nh times where Nh is the hyperparameter

which determines the number of heads. For each of these projected triples of the vectors

K, Q and V , i.e. for headi (1 < i < Nh), the single attention mechanism is applied headi

= Attention(QW Q
i ,KW K

i ,VWV
i ) using the equation 2.19 (W Q

i ,W K
i , and WV

i are learnable

parameters). The Multi-Head attention function is formulated as follows where W o is a

weight matrix.

multihead(Q,K,V ) = concat(head1, ...,headNh)W o (2.21)

In each stack, both encoding and decoding subnetworks include a Multi-Head self-

attention module (figure 2.6) which computes the attention weights of the tokens within one

sequence. To show the formal representation, we consider the n-th stack of the transformer-

encoder as well as the output of the previous stack of the transformer-encoder, esin−1 , and

represent the output of the Multi-Head self-attention module as MHA after applying the Add
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& Norm layer to it using the equation 2.22, where in the case of n = 1, the outputs of the

embedding layer is considered as the inputs of the Multi-Head self-attention module.

eson = Add&Norm(esin−1 +MHA(esin−1 ,esin−1,esin−1)) (2.22)

The output of the nth encoding stack can be formulated as equation 2.23 where eson ,

computed by equation 2.22, is the input of the Feed-Forward module.

esin = Add&Norm(eson +FFN(eson)) (2.23)

The Multi-Head self-attention module in decoding stacks work similarly to that of the

encoding stacks. However, to prevent the attention mechanism from cheating while accessing

the gold generated data, a masking strategy is used in the Multi-Head self-attention module

of the decoding stacks. Considering the generation step i, this strategy sets the positions

where step > i to −in f before applying the softmax step in the self-attention calculation.

Transformer architecture also computes the encoder-decoder attention weights, i.e. the

attention of the input and generated tokens with regards to each other (Multi-Head encoder-

decoder attention module in figure 2.6). This module is used only in the decoding stacks and

considering the nth stack, it is computed using equation 2.24 where dson is the output of the

Multi-Head self-attention module of the decoding stacks after applying the Add & Norm

layer to it and esin is the output of the nth encoding stack.

dedn = Add&Norm(dson +MHA(dson,esin ,esin)) (2.24)

The last building block of the transformer-decoder is a projection layer with a softmax

activation function (figure 2.5) which is employed to convert the output of the last decoding

stack into output probability distributions over the target vocabulary which is the target-style

vocabulary in the TST experiments of the current research.
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2.1.4.4 Training objectives

Sequence-to-sequence text generation systems can be considered as conditional language

models which are trained to model the probability Pr(y|x), i.e. the probability of creating the

generated sequence y based on the given input sequence x. In the case of supervised training,

the training objective of the model is to minimize the negative log-likelihood of equation

2.25 (across the training corpus).

L (θE ,θD) = − logPr(y|x) (2.25)

This equation shows the cross-entropy between the input sequence x and the output sequence

y whereθE and θD are the trainable parameters of the encoder and decoder subnetworks

which are estimated during the training.

In the case of training the sequence-to-sequence models in an unsupervised manner, the

training objective involves optimizing some additional losses. For instance, while applying

approaches similar to GANs (Goodfellow et al., 2014) which broadly speaking include

a classifier to guide the training process, the training objective consists of an additional

adversarial loss

2.1.4.5 Inference algorithms

While doing a sequence-to-sequence text generation task, the model is trained to maximize

the probability Pr(y|x), i.e. the probability of the generated text y given the input sequence x.

During generation, the decoder computes the probability distribution of each generated token

conditioned on the previous outputs which at time step t it is denoted as Pr(w̃t |w̃1, ..., w̃t−1,z)

where z is the input latent space. The probability distribution of the generated token w̃t over

the vocabulary V is computed by equation 2.26 which applies a projection layer to the hidden

state of the decoder and then applies a softmax layer to the result.
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Pr(w̃t |w̃1, ..., w̃t−1,z) = so f tmax(Wost +bo) (2.26)

At each generation step, there are |V | (size of the vocabulary) options as the generated

token. Considering all these tokens at each generation step becomes computationally ex-

pensive. Therefore, different search algorithms can be applied while doing the generation

steps.

Search algorithms Greedy search and Beam search have been widely applied as search

algorithms during generation. Greedy search which is a special case of the beam search

considers only the tokens with the highest probabilities from the probability distribution of

the vocabulary list at each step of decoding (equation 2.27).

wt = argmaxw∈V Pr(w|w̃1, ..., w̃t−1,z) (2.27)

Beam search algorithm keeps track of k tokens with the highest probability at each time

step where k, the beam size, is a parameter. This leads to a lattice of tokens based on which

the best path is returned. Beam search functions the same as greedy search in case k is set

to 1.

2.2 TST related work

Developing a better understanding of the concept of style is necessary while dealing with

the TST task. One of the reasons of this significance is that how the concept of style is

viewed can inform the TST modelling approaches. A group of approaches consider style as

an independent element from the content which can be defined explicitly, whereas the second

approach considers style as a holistic concept and an integral component of a text (Tikhonov
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and Yamshchikov, 2018). Based on this distinction, we categorize and review the previous

research in the sections of 2.2.1 and 2.2.2.

2.2.1 Approaches informed by an explicit concept of style

TST approaches which are informed by an explicit concept of style follow two general steps:

first, removing the style from the input text, then, generating the style-shifted output text.

Filtering out style markers of inputs As a preprocessing step, the style markers of

the input sequences are detected and filtered out. To detect the style markers, different

computational approaches and frequency-based techniques, such as TF-IDF, have been

applied (Li et al., 2018a; Madaan et al., 2020). Alternatively, some previous work have

introduced style marker detectors by employing neural network classifiers (Leeftink and

Spanakis, 2019; Xu et al., 2018; Zhang et al., 2018a; Sudhakar et al., 2019) and attention-

based techniques (Bahdanau et al., 2015) where these style marker detectors adopt different

neural network architectures such as LSTM or transformers (Xu et al., 2018; Zhang et al.,

2018a; Sudhakar et al., 2019).

Generating style-shifted sequences To generate style-shifted sequences, previous work

has employed retrieval strategies, neural approaches or a combination of these two techniques.

Retrieval approaches directly extract the corresponding style-shifted text for a given input

from a corpus of the target style as the text which resembles the most to the style-free

representation of the input (Li et al., 2018a). Alternatively, these approaches create a

style-shifted text by first retrieving the style markers from a corpus of the target style

and then directly concatenating them with the style-free representations of the given input.

However, style-shifted texts created by following the the latter strategy do not have very high

fluency (Ramos, 1999; Li et al., 2018a; Leeftink and Spanakis, 2019). To address this issue,

neural encoder-decoder architectures can be employed together with retrieval strategies to
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generate style-shifted outputs. Doing this, the generation of the style-shifted text for a given

input, is conditioned on the style-free representations of the input and the retrieved target

style segments (Li et al., 2018a; Sudhakar et al., 2019; Zhang et al., 2018a; Xu et al., 2018).

The generation process can also be guided by conditioning the generation on the style-free

input representations and target style (Sudhakar et al., 2019).

While taking retrieval approaches, to extract sequences and segments from a corpus of

a desired style, vector representations of the text are created employing TF-IDF-based or

embedding-based techniques. Embedding-based techniques rely on using pre-trained embed-

ding models which create sequence embedding including Universal Sentence Encoder (Cer

et al., 2018) or pre-trained models which create token embeddings such as GloVe (Pennington

et al., 2014) where a pooling technique is needed to create the sequence vectors (Ramos,

1999; Li et al., 2018a; Leeftink and Spanakis, 2019; Sudhakar et al., 2019).

2.2.2 Approaches informed by an implicit concept of style

Some previous research considers style as an implicit concept where it can be defined as the

consistent variation between the texts under study. This view makes the definition reliant on

the discrimination, i.e. considering two corpora, style is the information which consistently

differentiates them, while being invariant within each corpus. In other words, in this approach

style is fundamentally connected to the concept of content and each style can be taken as a

separate language (Tikhonov and Yamshchikov, 2018; Jin et al., 2022).

Taking this view, previous research used supervised techniques to train the TST systems

(section 2.2.2.1) or in the case of the absence of the parallel data or limited access to it, they

have used unsupervised (section 2.2.2.3) or semi-supervised strategies (section 2.2.2.2).
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2.2.2.1 Training using parallel data

In recent TST research a popular approach is to adopt end-to-end learning techniques to deal

with this task, following strategies similar to a supervised NMT task. Models are end-to-end

encoder-decoders which directly translate a text xs1 having the style s1 (source language) to

a text xs2 having the style s2 (target language) where the output text should be grammatically

fluent and resemble the inputs in terms of content.

These NMT like TST systems have been developed to transfer style using parallel data

from various domains, for instance, simplification (Ma and Sun, 2017), summarization (Ma

and Sun, 2017; Rush et al., 2015) and formality (Xu et al., 2019; Rao and Tetreault, 2018).

These sequence-to-sequence encoder-decoder models have been mostly based on either

RNNs (Sutskever et al., 2014; Bahdanau et al., 2015) or transformers architecture (Vaswani

et al., 2017). For example, Ma and Sun (2017) apply a LSTM-based encoder-decoder

architecture, Rush et al. (2015) use an attention-based RNN network, and Xu et al. (2019);

Rao and Tetreault (2018) use transformer-based models to deal with the formality-shift task

where they focused on improving the content preservation power of the TST systems using

additional losses.

Moreover, different techniques have been proposed to create pseudo-parallel data to get

around the issue of the deficit of labelled data. This thesis proceeds by describing some of

these methods in more detail (section 2.2.2.2).

2.2.2.2 Addressing the deficit of parallel data

Limited access to parallel data is a major issue in the TST field and different techniques

has been previously proposed to alleviate this problem. For instance, Johnson et al. (2017)

applied zero-shot translation method which uses intermediate resources to facilitate parallel

training, i.e. it uses different languages as the pivot language in NMT task to enable the

translation in between the two languages for which little or even no parallel data is available.
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This strategy can be similarly applied for TST by using different styled data as intermediate

resources (Carlson et al., 2017).

Moreover, different techniques have been proposed to create pseudo-parallel data to get

around the issue of the deficit of labelled data. Here, we briefly describe some approaches

that can be used to create TST pseudo-parallel data which can be applied to train models in

parallel mode. Some of these methods use back translation technique to construct pseudo-

parallel data in different NLG problems such as NMT (Sennrich et al., 2016; Prabhumoye

et al., 2018) or TST (Zhang et al., 2020). The idea is to use monolingual text and create its

pseudo parallel counterpart. To clarify more, Zhang et al. (2020) created pseudo-parallel

formal text by following these steps. For a given informal data xin f , they did a cycle of

translation to a pivot language and back to English using a NMT system trained on the formal

data. The resulted text x f is the pseudo parallel text of xin f having the same content but

formal style.

Interestingly, TST can also help other tasks, for instance, some previous research imple-

mented TST techniques to augment the parallel data, i.e. given a monolingual data, Xs1, with

a style s1, they use a TST system trained in this style domain and generate pseudo-parallel

data Xs2 with style s2 (Zhang et al., 2018b).

Retrieval-based strategies can also be applied to augment the parallel data where the

idea is that the text retrieved from the two different-styled corpora can be parallel if they

are semantically very similar. Therefore, in this approach, given a text, xs1, with a style s1,

different techniques are applied to compute its semantic similarity to the sequences of a

monolingual corpus Xs2 with style s2. Sequence xs2 having the highest similarity with xs1 is

labelled as its pseudo-parallel counterpart (Jin et al., 2019).

In spite of these approaches, composing enough data to enable the parallel training is still

challenging. This is why it has been proposed to remove the need for parallel data, through

so-called unsupervised approaches. Section 2.2.2.3 mainly focuses on these approaches.
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2.2.2.3 Unsupervised training using adversarial techniques

In the absence of the parallel data, various unsupervised techniques have been employed for

TST. They have mostly focused on adopting end-to-end learning strategies and proposed

frameworks which contain a generator block and a style-shifting block.

Generator block The generator block is similar to TST systems trained by supervised

techniques (section 2.2.2.1). It consists of a sequence-to-sequence encoder-decoder network

which creates latent representations of inputs and generates output texts meeting the require-

ments of the task. In TST research, the encoder and decoder subnetworks are frequently

implemented as either RNN-based architectures (Sutskever et al., 2014; Bahdanau et al.,

2015), such as the TST systems proposed by Shen et al. (2017); Singh and Palod (2018); Fu

et al. (2018a); Romanov et al. (2019) or different variants of the standard RNN-based archi-

tectures. Some systems use style-specific decoder TST frameworks where multiple decoder

subnetworks share an encoder (Fu et al., 2018a), other systems use variational encoder TST

models which condition the generation of the output on a vector sampled from the posterior

distribution of the latent space whose parameters are predicted by the encoder (Hu et al.,

2017a; John et al., 2019) and yet other systems use style-specific encoders which include

one encoder for each different-styled monolingual corpus (Jafaritazehjani et al., 2021). The

generator block can also be based on the variants of transformer network (Vaswani et al.,

2017) such as the model proposed by (Dai et al., 2019b).

The encoder subnework of the generator block is responsible for creating the vector

representation of the input text and the decoder subnetwork generates output text, typically

conditioned on the input latent representation concatenated with an embedding of the target

output style. For a given input, if the input style and target style are the same, the generator

block becomes an auto-encoder and the decoder subnework reconstructs the input, otherwise,

the decoder creates a style-shifted paraphrase of the input text.
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Style-shifting module To reach this goal different strategies have been previously proposed.

Adversarial techniques have been widely implemented in the recent years to enable

training the TST systems in an unsupervised manner (Ma and Sun, 2017; Shen et al., 2017;

Singh and Palod, 2018; Fu et al., 2018a; Romanov et al., 2019; Hu et al., 2017a; John

et al., 2019). Similar to Generative Adversarial Networks (GAN) (Goodfellow et al., 2014),

adversarial TST models include a discriminator and a generator block where the discriminator

plays the role of the style-shifting block. The discriminator block contains classifiers specific

to each style and these classifiers can either be trained together in parallel with the generator

block (Shen et al., 2017; Dai et al., 2019b; Romanov et al., 2019; John et al., 2019; Fu

et al., 2018a; Tikhonov et al., 2020; Li et al., 2020; Zhao et al., 2018) or can be pre-trained

networks (Prabhumoye et al., 2018; Hu et al., 2017b; Yamshchikov et al., 2019; Romanov

et al., 2019; John et al., 2019).

The classifier(s) can be fed by the output generated by the decoder(s) of the TST system

where the goal of discriminator block is to distinguish between the style-shifted text and

reconstructed text or human-generated text. During training, if the discriminator block detects

that an input is style-shifted, the generation process is penalized to push the generator block

to construct outputs that appear more similar to the human-created text or reconstructed

sequences (Shen et al., 2017; Dai et al., 2019b; Prabhumoye et al., 2018). In some systems

a discriminator block can also be applied to the latent representations of the input created

by the encoder subnetwork. Typically, this is done to encourage the encoder to create style

free latent representations of the input and this is achieved by penalizing the system if the

discriminator block can correctly label a latent representation with the source style of the

input (Romanov et al., 2019; John et al., 2019; Fu et al., 2018a; Tikhonov et al., 2020; Li

et al., 2020; Zhao et al., 2018).

Style-shifting block can rely on back-translation technique for removing or loosening

the stylistic features of inputs by doing a cycle of translations (Prabhumoye et al., 2018;
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Rabinovich et al., 2017; Zhang et al., 2020). Employing this strategy includes using a

translation network that for a given input x in language L1, it firstly creates an output in

language L2 (where L1 and L2 are different languages). Then, it translates this output back to

L1 as x̃ where the stylistic features in x̃ has faded away compared to x.

As discussed in this section, adversarial classifiers can be applied in TST systems to

guide the generation towards creating text having a target style. However, the application of

these classifiers can be extended to ensure the encoding of the content-related information

of inputs in their corresponding latent vectors created by the encoder. This leads to higher

fidelity of the style-shifted outputs to the content of their corresponding inputs, i.e. applying

this strategy can improve the content preservation power of the frameworks (Romanov et al.,

2019; John et al., 2019).

2.2.3 Studying different aspects of the TST task

Applying end-to-end approaches while framing the TST task enables learning of latent

representations of inputs (Kelleher, 2019). Unsupervised TST models have focused on

separating style and content in their latent space based on the assumption that style-content

disentanglement is possible (Xu et al., 2018; Jin et al., 2022). However, little previous work

has studied the latent space of these models. In this research we would like to analyse the

latent space of TST systems and extend this analysis across the domains of style.

NLP researches have studied various architectures such as transformers to explore how

linguistic information is encoded in different layers of these networks. This has led to

adopting more informed strategies and resulted in improved performance on NLP tasks

(Nedumpozhimana and Kelleher, 2021; Nedumpozhimana et al., 2022). However, to the

best of our knowledge there has been little research focused on how style is encoded in

latent space of different neural TST systems. More importantly, whether variations in the

concept of textual style exist across domains and if so how are they encoded within the
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latent representations of neural TST systems. In the current work, we investigate these open

questions in the TST field.

2.3 Summary

The current chapter firstly provided an overview of the basics of the neural networks which

are related to the architectures and experiments in the later chapters. Then, it reviewed

previous TST work where many researchers have assumed style and content as separable

elements of the text. The vast majority of this previous work has mostly employed adversarial

end-to-end encoder-decoder architectures as the generator block and considered the latent

vectors created by the encoders as style-free representations of the input sequences. However,

to the best of our knowledge, this assumption has not previously been investigated. The

current research explores the style-content separation across the style domains following the

analysis of the extent to which style is encoded within the latent representations generated by

the encoders of the various RNN-based and transformer-based TST systems. The thesis then

reports on a series of experiments that explore the characteristics of style across a number of

style domains. The results of these later experiments point to the fact that the encoding of

style can vary across domains. Overall, the findings of this work contribute novel knowledge

to the field of TST in terms of foregrounding the importance of examining and understanding

the characteristics of style within a domain when designing a TST system and also the

selection of appropriate performance metrics for TST in a given domain.

The next chapter of this manuscript describes the data, and proceeds by introducing the

state-of-the-art RNN-based and transformer-based TST frameworks used as the baseline

systems in the experiments of the chapters 4, 5 and 6. It then describes the experimental and

evaluation methodology.
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Chapter 3

Methodology: data, modelling approach

and baseline models, evaluation

This chapter firstly describes the data used in the experiments reported in this thesis (section

3.1). Section 3.2 then provides an overview of the modelling approach which is taken

throughout the thesis and describes the models which are applied as the baseline systems in

this report. The details of the parameters of these baseline frameworks are provided in section

3.2.4. Section 3.3 focuses on the evaluation methodology (both automatic and manual)

and explains the evaluation aspects as well as the evaluation metrics which are applied to

investigate the performance of the TST models .

3.1 Data

Throughout this research, we study the style domains of sentiment, formality and simplicity.

Sentiment which is the binary opinion polarity is studied using the Yelp Restaurant Reviews

corpus (section 3.1.1) where positive and negative restaurant reviews form the data. The

style domain of formality is studied using the GYAFC corpus (section 3.1.2) where formal

and informal text form the dataset. Finally, the Newsla corpus (section 3.1.3) is used to
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Style
Formal Informal

Parallel text dear Sam, a brief note to thank you for your help. hi Sam, thanks!
Non-parallel text dear Sam, a brief note to thank you for your help. I’ve had a blast!

Table 3.1 Samples of parallel and non-parallel text from the formality domain.

study the style domain of simplicity where simple and complex text form the data. These

corpora are used to perform various experiments throughout this research. The sentiment

and formality corpora are used to train TST models as well as studying the latent space of

various frameworks. The simplification corpus, however, has been mostly applied to conduct

experiments to deepen the result analysis.

In the current study, TST is framed in an unsupervised manner using non-parallel corpora

which have binary style. This means that each corpus that is used must contain two datasets

where sequences of the first dataset have style s1 and sequences of the second dataset have

style s2 (s1 ̸= s2). Moreover, the binary styled data of each corpus do not need to be parallel1

due to applying unsupervised training techniques. In the scope of TST, parallel sequences, as

row 1 of table 3.1 shows, differ only in the aspect of style, whereas non-parallel sequences

(row 2) differ in terms of both style and content. It is noteworthy that even if the data we use

is parallel, we use it in non-parallel mode during the training, i.e. we implement unsupervised

strategies for training and treat the parallel texts as if they are non-parallel.

Tables 3.2, 3.3 and 3.5 show the data distributions of the datasets Yelp, GYAFC and

Newsla that we use in the later chapters, i.e. they include the size of training, development

and test data. They also report the average, maximum and minimum length of the sequences

in each binary styled dataset of a corpus. The vocabulary size of each corpus is reported after

replacing words occurring less than 5 times with the <unk> token considering the training

data of that corpus from the both styles s1 and s2.

1Terms parallel and non-parallel have been referred to as aligned and non-aligned in some previous research.
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3.1.1 Yelp restaurant reviews

Yelp Restaurant Reviews is a large-scale corpus consisting of 4.7 million user reviews and is

released by Yelp!2, a network where users review businesses such as restaurants, bars, etc.

The Yelp dataset has been used for personal, educational, and academic purposes in NLP.

The reviews of the Yelp corpus are rated using a five star ranking system and are labelled

with regards to these ratings as positive and negative if their corresponding stars are above or

below three respectively and three-starred reviews are discarded. This negative and positive

texts in this corpus are not parallel. In our experiments, we use two released versions of Yelp

dataset which we refer to them as Yelp-small3 (Li et al., 2018a) and Yelp-large (Shen et al.,

2017)4. For Yelp-small, Li et al. (2018a) created human-generated style-shifted sequences

for the test data. We use this gold parallel data to perform some unigram-based analysis

experiments in section 6.3.2.

In both Yelp-small and Yelp-large, sentence level is taken as the level of data analysis

and each sentence is labelled with the label from its corresponding review, i.e. a positive

review including five sentences makes five data entries in the positive dataset. This can

lead to neutral sentences being labelled as positive or negative especially in the case of long

sequences and long reviews. To get around this issue, Shen et al. (2017) filtered out reviews

exceeding 10 sentences as well as sequences exceeding 15 tokens. This preprocessing step

which is also applied in data we use is based on the assumption that longer reviews are more

likely to contain neutral sentences and longer sentences are more likely to be neutral.

Both of these datasets are normalized, taking preprocessing steps such as lower casing,

replacing numbers with a special token <num> and inserting space between tokens and

punctuation as well as between punctuation and punctuation.

2https://www.yelp.com/dataset
3Distributed under "CC BY-SA 4.0 license".
4Distributed under "Apache-2.0 license".
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Data Yelp-small Yelp-large
Style Positive Negative Positive Negative

Train 266041 177218 267314 176787
Dev 2000 2000 38205 25278
Test 500 500 76392 50278

Avg-len 8.43 9.55 8.45 9.66
Max-len 15 15
Min-len 1 1

Vocab-size 9352 9500

Table 3.2 The data distribution of Yelp-small and Yelp-large.

3.1.2 GYAFC dataset

Grammarly’s Yahoo Answers Formality Corpus (GYAFC) (Rao and Tetreault, 2018) contains

human-labelled informal and formal sentences which are crawled from two domains: Enter-

tainment & Music (E&M) and Family & Relationships (F&R) in Yahoo Answers5. GYAFC6

is a parallel corpus, i.e. parallel sequence pairs form the formal and informal train, test

and development splits of this corpus where each text pair differ only in the style formality

(similar to row 1 of the table 3.1). Each sentence of the test set and development set of the

GYAFC dataset has four human-generated paraphrases. For instance, for a given text x of

style s1, there are four gold paraphrases generated manually by human experts as the gold

parallel sequences of x of style s2.

We combine E&M and F&R and label the resulting dataset as GYAFC-v1. For our

experiments, we, then, modify GYAFC-v1 and create a corpus which is referred to as GYAFC-

v2 throughout this manuscript. The statistics of these datasets are summarized in table 3.3.

We employ GYAFC-v2 in our experiments in the later chapters as non-parallel corpora by

considering the style of each set as the only label available. We only use the gold parallel

5https://answers.yahoo.com
6This corpus can be accessed upon request for academic research from

https://github.com/raosudha89/GYAFC-corpus.
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Data GYAFC-v1 GYAFC-v2
Style Formal Informal Formal Informal

Train 104562 104562 102502 104044
Dev 5144 5124 5064 5111
Test 2101 2748 2076 2739

Avg-len 11 10.3 12.4 12
Max-len 41 19 24
Min-len 3 6 3

Vocab-size - 11409

Table 3.3 The data distribution of GYAFC-v1 and GYAFC-v2.

text of the test set to perform some unigram-based analysis experiments in section 6.3.2. We

describe GYAFC-v2 in more details in the following paragraphs.

GYAFC-v2: To compose this dataset, we first took some preprocessing steps on GYAFC-v1

to make the text more consistent by for instance replacing different forms of the same token

with one form (steps 1, 3 and 4) and replacing similar tokens and phrases with one special

token (steps 2 and 5). The preprocessing steps are listed as follows.

1. Lower casing the tokens of the sequences.

2. Replacing the numbers, website addresses, email addresses and emojis with special

tokens: <num>, <website-tok>, <email-tok>, and <emoji-tok>.

3. Inserting space between tokens-punctuation and punctuation-punctuation.

4. Making informal data more consistent. Compared to formal data, informal text does

not strictly follow language rules. This can lead to presence of different variants for one

token. For instance, in table 3.4, there are non-standard forms of hott and hoooooooot

for the token hot. To reduce the size of the vocabulary and also the number of <unk>

tokens, all non-standard forms of highly frequent tokens are converted to one form. In

the samples 3 and 4 of table 3.4, for instance, hott and hoooooooot are converted into
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1. ohhh noo! I nooo, that’s what I’m saying .....
2. i no bt i cnt rememba
3. i don‘t think it‘s so imporant,‘coz she‘s so hoooooooot
4. me ohohohohohoh boy woow hott omg heck yes!!!!!!

Table 3.4 Informal sample sequences.

hoott. Therefore, there is a standard and a non-standard form available for this token

in informal data.

To select the non-standard forms, the informal training data was tokenized and the

tokens which had a frequency lower than the threshold 5 were checked manually to

distinguish between the low-occurring tokens and tokens which were written in a

non-standard form.

5. Replacing the sequence of the long sequences of the punctuation into shorter ones;

for instance, converting ..... to ... and !!!!!! to !!! (samples 1 and 4 of table 3.4). To

detect these tokens, 500 sequences were randomly selected from the informal data and

were reviewed manually and tokens with different writing formats were listed. This

is to avoid having very long sequences which can be removed while doing the length

normalization.

6. Detecting and filtering non-English sequences: To do so, non-English sequences were

first detected using python language detector library. Then, these non-English texts

were double checked manually to save English sequences which were falsely labelled

as non-English. Doing this manual step was important due to the presence of <unk>

tokens, mainly in informal text, which raises the probability of English texts being

labelled as non-English.

7. Removing length outliers: To do so, the box plot of the length distribution of formal

and informal data were considered separately, and sequences whose length are beyond

the whiskers of these plots are labelled as outliers and removed from data.
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Mathematically speaking, outliers were detected following these steps: First, the dataset

is divided into half considering the median of the data. Second, the lower quartile Q1

and upper quartile Q4 are computed as the median of the lower half and upper half of

the data. Then, the interquartile range is calculated as IQR = Q3−Q1. Finally, outliers

are the data points out of the range of [Q1− (1.5∗ IQR), Q3 +(1.5∗ IQR)].

Around 2% of the data of the GYAFC-v1 was removed by doing these preprocessing steps.

The preprocessed data was then shuffled in order to have a mixed order of the sequences

from the two domains of Entertainment & Music (E&M) and Family & Relationships (F&R)

in the resulting corpus GYAFC-v2.

3.1.3 Newsela simplification dataset

Newsela7 corpus contains the data of 1130 news articles. Each article contains 5 versions:

1 original news text labelled as L0 throughout this manuscript and 4 human-generated

simplified versions labelled as L1, L2, L3 and L4. They are produced by Newsela, a company

that creates reading materials for classroom use of pre-college students. This dataset includes

parallel textual data where L1, L2, L3 and L4 are simpler versions of a given text L0 which

is considered to have the complex (non-simple) style (table 3.7, samples 1 and 2). Human-

generated paraphrases are designed to be readable by children from different age groups.

Therefore, they have different levels of simplicity where given an L0 text, L1 is its least

and L4 is its most simplified paraphrase. It is worth noting that not all L0 sequences have 4

paraphrases, but all have at least 1 simplified paraphrase (Xu et al., 2015).

We create a simplification corpus where the binary styles are complex and simple using

the Newsela dataset and refer to it as Newsela-v1 throughout this manuscript. The statistics

of this corpus is summarized in table 3.5. We describe this corpus in more details in the

following section.

7This corpus can be accessed for academic research upon request https://newsela.com
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Data Newsla-v1
Style Complex Simple

Train 26192 24440
Dev 1000 1000
Test 1000 1000

Avg-len 26 14
Max-len 56 25
Min-len 3 3

Vocab-size 12087

Table 3.5 The data distribution of Newsla-v1 dataset.

Newsela-v1 We created a simplification corpus out of the Newsela dataset by using L0 texts

as the complex data and L3 and L4 texts as the simplified data. To do this, we first created

two complex sets and one simple set using the following five steps and then did the train, test

and development splits.

1. If at least one of the L3 or L4 simplified paraphrases are available for a given original

L0 text, L0 text will be added to the first complex set. Then, its corresponding L4

paraphrase will be added to the simple set and in case L4 text is not available, its L3

paraphrase will be considered as the simplified paraphrase of the L0 text in the simple

set.

The reason for composing the simple data out of L4 texts (or L3 if L4 paraphrase is not

available) is to maximize the distinction between the texts of the 2 styles of complex

and simple. As table 3.6 illustrates L0 texts have a high word overlap with L1 texts,

0.6212, and L2, 0.4909 as compared to the L3 and L4 texts where the word overlap

drops to 0.3807 and 0.3028. The samples shown in table 3.7 show how sequences L1

and L2 paraphrases can be similar to the L0 texts in terms of style, i.e. they are slightly

simpler (if any) compared to the L0 sequences.

2. Otherwise (if neither L3 nor L4 texts are available), the L0 text is included in the second

complex set.
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Files L1 L2 L3 L4
L0 0.6212 0.4909 0.3807 0.3028

Table 3.6 The word overlap between the file L0 of the Newsla dataset and files L1, L2, L3,
and L4

3. The first complex set and the simple set form a parallel corpus from which we randomly

select text pairs to form the parallel test sets. The reason for creating a parallel set as

the test split is that in section 6.3.2, we need this parallel data to do a unigram-based

analysis experiment in the domain of simplicity.

4. The second complex set is then merged with the remainder of the first complex set

and gets shuffled. The resulting complex set together with the remainder of the simple

set form the non-parallel train and development sets where splitting the data is done

randomly.

5. The following preprocessing steps are then taken on the train, test and development

splits to form the final corpus8:

• Lower casing the tokens of the sequences.

• Replacing the numbers, website addresses, and email addresses with special tokens:

<num>, <websitead>, <emailad>.

• Inserting space between tokens-punctuation and punctuation-punctuation.

• Making informal data more consistent, by transforming tokens which have more than

one written forms to one form, such as converting ca n’t to can’t.

• Removing length outliers. Considering the box plot of length of the simple and complex

data separately, sequences whose length are beyond the whiskers of these plots are

labelled as outliers and removed from data.
8Around 1.41% of the complex data and 3.26% of the simple data were removed during the preprocessing

steps and the length analysis.
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From complex to simple
Sample 1:
L0. Servicewomen complained that the ban prevents them from advancing their
careers .
L1. Servicewomen complained that the ban was limiting their career opportunities .
L2. Servicewomen complained that the ban hurts their careers .
L3 Servicewomen say that the ban hurts their careers .
L4. Military women say that the ban hurt their careers .
Sample 2:
L0. Soldiers who drive fuel trucks , provide medical support or even sort mail can
come under fire in modern warfare .

L1. Soldiers who drive fuel trucks , provide medical support or even sort mail can come
under fire in this kind of modern warfare .
L2. In this kind of modern warfare , soldiers doing any kind of job can come under fire .
L3. In this kind of warfare , soldiers doing any job must be ready to fight .
L4. Soldiers doing any job must be ready to fight at all times .

Table 3.7 Examples of the sequences in Newsela Simplification Dataset where L0 is the
original sequence (complex style) and L1, L2, L3 and L4 are the simplified paraphrases. L1 is
the least and L4 is the most simple versions of L0

3.2 Modelling approach

Although each of the experiments we report in the later chapters test multiple architectures,

all of these architectures implement a similar unsupervised modelling approach. Conse-

quently, in this section we provide an overview of this modelling approach. To frame the

unsupervised textual style transfer, we use adversarial training by following the idea of GANs

and employing classifiers as discriminators in our systems which enables the training by

just relying on unaligned corpora (differently styled corpora). The main idea behind using

this approach is that the discriminators guide the training in the direction of generating the

style-shifted sequences in a desired style s, so that these sequences cannot be distinguished

from the human-generated sequences in the corpus with the style s.

We introduce RNN-based and transformer-based adversarial TST baseline models in the

following sections. These models are used throughout the experiments of the next chapters

of this manuscript.
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3.2.1 RNN-based TST baseline model

We use the adversarial TST framework proposed by Shen et al. (2017) as our baseline model9.

This architecture is composed of a generator block and a discriminator block which are

described in this section. This section proceeds by explaining the adversarial training regime

of this framework.

3.2.1.1 Generator block

The generator block Gen is based on a sequence-to-sequence model which consists of (i)

an encoder E and (ii) a decoder D (Sutskever et al., 2014), where E and D are single-layer

RNNs with GRU cells (Chung et al., 2014). E is initialized with the dense vector of the source

style s (s ∈ {s1,s2}) and takes an input sequence xs and outputs the latent representation

of the input as zs = E(xs,s). D is initialized with the dense vector of the target style s′

(s′ ∈ {s1,s2}) and z, it then generates a sequence in the desired style x̃s′. The style vector

and input tokens vectors are initialized randomly and their embedding layers are trained

throughout the training process.

If the source and the target styles are the same (s = s′), E and D form an auto-encoder

model which is trained to reconstruct the input sequences by minimizing the reconstruction

loss (equation 3.1) which is the cross-entropy between the input sequence xs and its recon-

structed output text x̃s
(rec). θE and θD are the parameters of the encoder and decoder that are

estimated during the training. If the source style and the target style are not the same (s ̸= s′),

D creates a style-shifted sequence x̃(tr f )
s for the input xs which cannot used for computing

the reconstruction loss since the training is done in an unsupervised manner10.

Lrec(θE ,θD) = − logPr(x̃(rec)
s1 |xs1)− logPr(x̃(rec)

s2 |xs2) (3.1)

9The code is released under "Apache-2.0 license"
10We do not use gold style-shifted texts corresponding to inputs while training even if they are available.
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Figure 3.1 Adversarial TST RNN-based baseline model, Gen: Generator block, and Disc:
Discriminator block.

During the training, at each training step, two inputs xs1 and xs2 (where s1 ̸= s2) are processed

in parallel. Firstly, the embedding representations of theses two sequences are created as the

last state of E: zs1 =E(xs1,s1) and zs2 =E(xs2,s2). Then, given xs1 , a reconstructed sequence

x̃(rec)
s1 = D(zs1,s1) is created where D is teacher-forced by the tokens of the xs1 and a style-

shifted sequence x̃(tr f )
s1 = D(zs1,s2) is generated where D is self-fed by the soft distribution

of the generated token in the previous step. Similarly, the corresponding reconstructed and

style-shifted sequences are created for xs2 .

3.2.1.2 Discriminator block

For each style, the discriminator block Disc contains a style-specific classifier Discs (s ∈

{s1,s2}) which is a single layer Feed-Forward network with a sigmoid output layer. Discs1

takes as the input the decoder RNN hidden states corresponding to the reconstructed text

with the style s1 and the style-shifted sequence with the desired style s1. Similarly, Discs2

is fed with the decoder RNN hidden states corresponding to the reconstructed text with the

style s2 and the style-shifted sequence with the desired style s2. Discs1 and Discs1 compute

Pr(“preserved”) for each input, i.e. the probability that the input preserved its source style.

Therefore, they are trained to assign reconstructed inputs with label 1 (“preserved”) and

style-shifted inputs with label 0 (“trans f erred”). They are trained jointly with Gen by

minimizing the respective equations 3.2 and 3.3, binary cross-entropy loss, where θDiscs is
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the parameters of the classifier for the style s (s ∈ {s1,s2}).

LDiscs1(θDiscs1
) = − log(Discs1(x̃rec

s1
))− log(1−Discs1(x̃

tr f
s2 )) (3.2)

LDiscs2(θDiscs2
) = − log(Discs2(x̃rec

s2
))− log(1−Discs2(x̃

tr f
s1 )) (3.3)

3.2.1.3 Adversarial training

The training of the TST model is done in an adversarial manner where Disc aims at detecting

the style-shifted segments and labelling them as 0 (“trans f erred”) and the training objective

for Gen is to create style-shifted sequences in the desired style such that it fools the discrimi-

nator into labelling them as 1 (“preserved"). This leads to maximizing the adversarial loss

which is computed in equation 3.4 (equation 3.5 is the symmetrical equation for Discs2).

Ladv,s1 = log(1−Discs1(x̃
(tr f )
s2 )) (3.4)

Ladv,s2 = log(1−Discs2(x̃
(tr f )
s1 )) (3.5)

The total loss (equation 3.6) is the summation of the reconstruction and adversarial

losses. If Disc detects that the textual segment is style-shifted Ladv,s, and as a result Ltotal

increases which penalizes the whole training process. Therefore, Gen aims at minimizing the

Ladv,s which means increasing the chances of the style-shifted sequences being detected as

“preserved" by Discs. Disc and Gen are trained jointly from scratch. Backpropagation is done

for Gen by using equation 3.6 to update θE and θD and for Disc by using the equations 3.2

and 3.3 to estimate θDs (s ∈ {s1,s2}).

Ltotal(θE ,θD) = Lrec +Ladv,s1 +Ladv,s2
(3.6)
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Algorithm 1 : Adversarial training of RNN-based TST model
Input: Generator block Gen (θE ,θD), discriminators Discs1 (θDiscs1) and Discs2
(θDiscs2) and any two corpora Xs1 and Xs2 which have the same content distribution but
different styles s1 and s2 (s1 ̸= s2). This means that for instance, the two datasets
should be both restaurant reviews but they should have different sentiments.

1. Sampling two mini-batches with the size k from the sets Xs1 and Xs2 (setting
k = 1 for the sake of simplicity).
2. Processing the two mini-batches in parallel, i.e. for each of the sequences xs1 ∈ Xs1 ,
and xs2 ∈ Xs2 , Gen generates a reconstructed and a style-shifted sequence for each
input:

- For x1: x̃(rec)
s1 = Gen(xs1,s1)

x̃(tr f )
s1 = Gen(xs1,s2)

- For x2: x̃(rec)
s2 = Gen(xs2,s2)

x̃(tr f )
s2 = Gen(xs2 ,s1)

3. Computing Lrec by equation 3.1 using reconstructed sequences.
4. Computing LDiscs1 and LDiscs2 by equation 3.2 equation 3.3 and perform gradient
decent to update θDisc1 and θDisc2 using both reconstructed and style-shifted sequences.
5. Considering equations 3.2 and 3.3, if the condition LDisc < 1.2 (a pre-set threshold
which we set to 1.2 following Shen et al. (2017)) holds:

- Computing Ladv by equations 3.4 and 3.5, then, carrying out the gradient decent
to update θGen by using the equation 3.6.

- Otherwise: performing the backpropagation for the Gen by only using the Lrec
(equation 3.1).
6. Repeating the steps 1, 2 , 3, 4 and 5 for the number of epochs (a hyperparameter set
to 20 here).
7. Selecting the model with lowest total loss (equation 3.6) as the best model.

3.2.2 Training

Firstly, if the sizes of training sets of the styles s1 and s2 differ, while reading the data

upsampling without repetition would be done to equalize the size of the two sets. The same

holds for the development set, i.e. if the binary-styled development sets are different in size,

as a preprocessing step, upsampling without repetition would be done for the set with the

smaller size before the training starts. Then, the training process starts which follows the

steps summarized in the training algorithm: Algorithm 1: Adversarial training of RNN-based

TST model.
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In the remaining chapters, all RNN-based models (i.e. the presented baseline system

as well as all its variants that we well introduce in chapters 4.1 and 5) follow this training

procedure. When small differences exist, they will be detailed.

3.2.3 Transformer-based TST baseline model

The baseline transformer-based (T-based) adversarial T ST model that is used throughout

this research is similar to the model proposed by Dai et al. (2019b). This architecture is

composed of a generator block and a discriminator block. The generator block contains a

T-based encoder and a T-based decoder. The discriminator block is a binary classifier which

is trained together with the generator block. The training of the generator block which is

responsible for rewriting the input text in a desired style is done in an unsupervised manner

by applying adversarial techniques and receiving style signals from the discriminator block.

We explain the TST encoder-decoder network and the discriminator block, as well as the

training steps in the following sections.

3.2.3.1 Generator block

The generator block (Gen) of the baseline T-based model is a sequence-to-sequence encoder-

decoder framework where both encoder (E) and decoder (D) are transformer architectures

similar to the model introduced by Vaswani et al. (2017).

Encoder E E contains an embedding layer and 4 stacks of transformers (figure 3.2). Each

stack of transformer is identical and consists of a fully connected self-attention, a fully

connected point-wise Feed-Forward layer, and 2 residual normalization layers (see section

2.1.4.3).

E takes a sequence xs1 of the length T and a desired style s2 as the input where the desired

style is taken an extra token of the input sentence. It first projects the input tokens to one
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embedding matrix and desired styles to another embedding matrix where token embedding

vectors and style embedding vectors are both initialized randomly and the model learns

not only the context but also their positional information11 of the tokens as well as dense

representations of different styles (the positional encoding is not used for the style tokens).

Then, the sequence of the vector representation of the desired style and the embedded

tokens are fed to the first stack of the E where the output of each layer is first normalized by

a residual layer, and then is fed as the input to the next layer. This means that the residual

mechanism of a layer normalizes the addition of the inputs and outputs of that layer and

feeds the result to the next layer. The final layer of E generates a sequence of latent token

representations: z = (z0,z1, ...,zT ) where z0 is the dense representation of the desired style.

The source style of inputs s1 and the given desired styles s2 can be the same or different

depending on whether the goal is to generate a style-shifted text (s1 ̸= s2) or a reconstructed

sequence (s1 = s2).

Decoder D D, similar to E, starts its processing by projecting the input tokens (if gold

output tokens are available which is the case when reconstructing the text) through contextual

and positional embedding layers. The embedding layer is followed by 4 stacks of transformer

where each stack includes an attention layer, a fully connected point-wise Feed-Forward

layer, and a normalization layer. Fully connected point-wise Feed-Forward, as well as the 3

residual normalization layers in each stack of D perform similarly to those of the residual

layers of the stacks of E.

The attention mechanism of the stacks of D consists of not only a fully connected self-

attention layer which implements a self-attention mechanism similar to that of the E, but also

a fully connected encoder-decoder attention layer. This layer, as figure 3.2 illustrates, takes

the sequence of vector representations of the input tokens z (created by E) together with the

11Following Vaswani et al. (2017), fixed positional embeddings are applied here.
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Figure 3.2 Generator block Gen of the T-based model, E and D consists of 4 stacks of
transformer and the output of the last stack of E is fed to each stack of D.

output of the self-attention layer and computes the weights corresponding to the input tokens

at each time step.

The last component of the D subnetwork is the projection layer (figure 3.2) which

generates the output token given the outputs of the last layer of the D-stack.

3.2.3.2 Discriminator block

The discriminator block (Disc) is a binary classifier which is trained together with the Gen.

Disc, similar to some previous work such as Radford et al. (2018b) and Devlin et al. (2018),

consists of a sequence of a transformer and a classifier (figure 3.3). The classifier is a Feed-

Forward network with a single hidden layer and a softmax output layer. The transformer

architecture of Disc is identical to that of E (section 3.2.3.1) containing an embedding

layer followed by 4 stacks of transformers where each stack has a fully connected self-

attention followed by a residual normalization layer, as well as a fully connected point-wise

Feed-Forward layer followed by another normalization layer.
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Figure 3.3 Discriminator block Disc is trained to label the original and reconstructed text
having the source style as True (1), style-shifted sequences having the reverse style as False
(0) and original sequences having the reverse style as False (0).

As an input, Disc takes a text and a style, and aims at detecting whether or not the original

style of the text matches the given style, i.e. given a pair of (x, s), it computes the probability

of whether the original style of x is s. Disc learns to return true for an original text and its

original style and a reconstructed text and its original style and false for a style-shifted text

and its desired style (figure 3.3). Specifically, it is trained to label input pairs of either a

source or reconstructed sequence and the source style as true, 1: (xs1 , s1) and (x̃(rec)
s1 , s1), and

style-shifted sequences and their desired style as well as source sequences and their reverse

styles as false, 0: (x̃(tr f )
s1 , s2) and (xs1,s2).

To do this, Disc reads a textual input, projects the tokens to their positional and contextual

embedding vectors. Then, it feeds the first transformer stack with the embedding representa-

tion of the input tokens which is augmented by the dense vector of the style (either source or

reverse) and a special token <cls>. Following some previous work (Radford et al., 2018b;

Kenton and Toutanova, 2019), only the vector in the position corresponding to the <cls>

token of the output of the transformer network of the Disc is fed to its linear classification

layer. The softmax probabilities of this linear layer are considered as the outputs of the Disc.

During training, Disc uses these outputs to minimize LDisc which is defined in equation
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3.712 as the binary cross-entropy over the two classes where s1 ̸= s2.

LDisc = − log(Disc(x̃s
(rec)
1 ,s1))

− log(1−Disc(x̃(tr f )
s1 ,s2))

(3.7)

3.2.3.3 Adversarial training

In each step of training, two sequences of xs1 and xs2 are processed in parallel where xs1 ∈ X1

and xs2 ∈ X2
13. X1 and X2 are two sets with the same content distribution and different styles.

Taking xs1 and xs2 as the input, and the desired output style, Gen generates the following 4

sequences, i.e. a reconstructed and a style-shifted sequence for each input text:

• x̃(rec)
s1 = Gen(xs1,s1)

• x̃(tr f )
s1 = Gen(xs1,s2)

• x̃(rec)
s2 = Gen(xs2,s2)

• x̃(tr f )
s2 = Gen(xs2,s1)

To motivate the TST model to preserve the information of the input text we define the

reconstruction loss as follows.

Reconstruction loss When the input style and the output desired style are the same, the

model simply aims at reconstructing the given text and, in practice, it acts similarly to an

auto-encoder. To enable the model to rewrite the output, we define a self-reconstruction

loss Lsel frec . To calculate the (Lsel frec), the reconstructed and input text are used as the

generated and gold tokens and the negative log probability of each input sequence x and its

corresponding reconstructed sequence x̃ is minimized using equation 3.8 during the training.

12The equation is similarly computed for the input pairs of (xs1 , s1) and (xs1 , s2).
13For the sake of simplicity, we consider the batch-size = 1.
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Figure 3.4 Computing the cycle loss

Lsel frec = − logPr(x̃(rec)
s = xs|xs,s) (3.8)

On the other hand, when the input style and the output desired style differ, the TST model

aims at generating style-shifted outputs and due to using non-parallel data, there is no

access to gold sequences for style-shifted outputs. Therefore, equation 3.8 cannot be used

to compute the Lsel frec for style-shifted text. To better encourage the model to preserve the

non-stylistic information of the input, we define Lcyclerec . To do so, given the input xs1, the

model does a cycle of generating style-shifted text which leads to reconstructing the input

and creating x̃(rec)
s1

′. To be more precise, as figure 3.4 shows, the model follows these two

steps (s1 ̸= s2):

1. Feeding Gen with the desired style s2 and xs1 to generate x̃(tr f )
s1 .

x̃(tr f )
s1 = Gen(xs1,s2)

2. Feeding Gen with the desired target style s1 and x̃(tr f )
s1 which has the source style s2 to

generate the style-shifted form of x̃(tr f )
s1 which is the reconstructed form of xs1.

x̃(rec)
s1

′ =(x̃(tr f )
s1 )

(tr f )
s2 = Gen(x̃(tr f )

s1 ,s1)

Doing this cycle of generation, Lcyclerec can be computed similar to Lsel frec (equation 3.8)

by minimizing the negative log probability of each input sequence x and its corresponding

reconstructed sequence x̃(rec)
s

′.

Lcyclerec = − logPr(x̃s
(rec)′ = xs|x̃s

(trf),s) (3.9)
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Figure 3.5 The schema of the T-based TST baseline model.

The total reconstruction loss Ltotalrec of the model is the weighted summation of the

self-reconstruction loss Lsel frec and the cycle-reconstruction loss Lcyclerec and is computed

using the equation 3.10.

Ltotalrec = αLsel frec +βLcyclerec
(3.10)

Adversarial loss To compensate for the lack of parallel data while training the T-based

baseline TST model adversarial techniques are applied to control the generation of the text to

include the desired style. Disc as the key component of the adversarial training competes

with Gen in distinguishing the style-shifted text from the reconstructed text, while Gen

attempts to improve the generation so that style-shifted outputs cannot be categorized. To

enable this competition, an adversarial loss is defined, equation 3.11 where s1 ̸= s2.

Ladv = −log(Disc(x̃(tr f )
s1 ,s2)) (3.11)

If Disc detects that the style of the input x̃(tr f )
s1 is shifted to s2, it labels (x̃(tr f )

s1 , s2) as 0.

This leads to the increase of adversarial loss and, as a result, the increase of the total loss

which is the summation of adversarial loss and reconstruction loss (equation 3.12). Therefore,

Disc detecting the style-shifted text leads to penalizing the training process which encourages

Gen to improve the generation of the style-shifted text. During training, adversarial loss is
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minimized together with the total loss (equation 3.12).

Ltotal = Ltotalrec +Ladv (3.12)

To train the T-based baseline TST model, firstly, if the training sets of the styles s1

and s2 have different sizes, upsampling without repetition is done. Also, if the size of the

binary-styled development set differs, downsampling is done to the size of the development

set with the smaller size. After this preprocessing step the training process starts following

the steps summarized in the training algorithm: Algorithm 2: Adversarial training of T-based

TST baseline model.

3.2.4 Experimental setup

This section reports the parameters of the baseline frameworks used throughout the experi-

ments of the later chapters. The parameters used in RNN-based baseline model are described

in table 3.8 and the parameters used in T-based baseline model are described in table 3.9.

Table 3.8 Hyperparameters of the RNN-based TST baseline models

Parameter Name Description Value

E type Uni-directional GRU cells -

D type Uni-directional GRU cells -

E Depth Number of layers of E RNN 1

D Depth Number of layers for D RNN 1

E cell size GRU hidden unit size of E 700

D cell size GRU hidden unit size of D 700

Style size Dense style vector size 200

Continued on next page
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Table 3.8 – continued from previous page

Parameter Name Description Value

Embedding size Embedding size of tokens 100

Pre-trained model Pre-trained embedding to initialize tokens GloVe

Batch size - 64

Epoch number - 20

Disc type Binary style-specific Text CNN classifier -

Optimizer Optimizer for both Gen & Disc Adam

Gen Learning rate - 0.0005

Disc Learning rate - 0.0005

Min frequency Min frequency of tokens to appear in 5

vocabulary dictionary

Table 3.9 Hyperparameters of the T-based TST baseline model

Parameter Name Description Value

Gen type An E transformer & a D transformer -

E Depth Number of stacks of E transformer 4

D Depth Number of layers for D transformer 4

E attention head Number of attention heads of E 4

D attention head Number of attention heads of D 4

Style size Dense style vector size 256

Token Embedding Gen positional embedding size 256

Position Embedding Gen positional embedding size 256

Continued on next page
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Table 3.9 – continued from previous page

Parameter Name Description Value

Gen hidden size Dense style vector size 256

Disc type A sequence of a transformer and a classifier -

(a feed-forward network) -

Disc Depth Number of stacks of Disc transformer 4

Disc attention head Number of attention heads of Disc 4

Disc hidden size Dense style vector size 256

Token Embedding Disc token embedding size 256

Position Embedding Disc positional embedding size 256

<cls> size The size of <cls> token of the Disc 256

Optimizer type Optimizer type for both Disc & Gen Adam

Gen Learning rate - 0.0001

Disc Learning rate - 0.0001

Pre-training iteration (np) Number of updates of Gen in pre-training step 500

Gen iteration (ng) Number of Gen updates per training iteration 5

Disc iteration (nd) Number of Disc update per training iteration 10

Evaluation step (neval) Number of steps after which the model 25

performance is evaluated on development data

Batch size - 64

Epoch number - 20

Min frequency Min frequency of tokens to appear in vocabulary 5

dictionary
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Algorithm 2: Adversarial training of T-based TST baseline model
Input: Gen(θE ,θD), Disc (θDisc) and any two corpora Xs1 and Xs2 which have the same
content distribution but different styles of s1 and s2 (s1 ̸= s2).

1. Sampling two batches with the size k from the sets Xs1 and Xs2 (setting k = 1
for the sake of simplicity).
2. Processing the two mini-batches in parallel, i.e. for each of the sequences xs1 ∈ Xs1 ,
and xs2 ∈ Xs2 , Gen generates a reconstructed and a style-shifted sequence for each input:

- For x1: x̃(rec)
s1 = G(xs1,s1)

x̃(tr f )
s1 = G(xs1,s2)

- For x2: x̃(rec)
s2 = G(xs2,s2)

x̃(tr f )
s2 = G(xs2,s1)

3. Computing the self-reconstruction loss using the equation 3.8.
4. Computing the discriminator loss using the equation 3.7.
5. Computing the cycle-reconstruction loss using the equation 3.9 and adversarial loss
using the equation 3.11.
6. Pre-training the model by repeating step 1 and 2 and 3, and performing gradient decent
to update θE , θD for np times.
7. Training Disc by repeating step 1 and 2 and 4, and performing gradient decent to update
θDisc for nd times.
8. Training Gen by repeating steps 1 and 2, and then the following steps for ng times:

- First do step 3, and perform gradient decent to update θE , θD.
- Second do step 5, and perform gradient decent to update θE , θD.

9. For all the epochs (20 here), repeating steps 7, and 8 for all the batches in the training
set and selecting the model with lowest total loss (equation 3.12) as the best model in
each evaluation step (neval).

* np, nd , ng and neval are hyperparameters that their values are specified in table 3.9.
** Neither training stop-condition nor model selection strategy was stated in the
training steps of the T-based model (Dai et al., 2019b); therefore, to train this model,
we set the conditions described in step 9.
*** Each evaluation step is after doing steps 8 and 9 for neval times, i.e. after iterating over
(neval ∗ (nd +ng)) number of batches during training.

65



3.3 Evaluation methodology

3.3 Evaluation methodology

The evaluation methodology we use for our experiments considers three dimensions: content

preservation, style transfer strength and fluency. We believe that, taken together, these

evaluation aspects and methods provide a comprehensive evaluation methodology for textual

style transfer. We further confirm this methodology through a human evaluation.

3.3.1 Automatic evaluation

This section describes the automatic metrics used to compute the performance of the TST

models in the three aspects of style transfer power (section 3.3.1.1), content preservation

power (section 3.3.1.3) and fluency (section 3.3.1.2).

3.3.1.1 Style-shift power (SSP)

SSP investigates how well a TST model performs in shifting the style of the inputs. To

compute SSP, we followed previous work (Fu et al., 2018a; Li et al., 2018a; Leeftink and

Spanakis, 2019; Singh and Palod, 2018; Prabhumoye et al., 2018; Shen et al., 2017; John

et al., 2019; Hu et al., 2017a) and trained style classifiers which predict the probability of the

style-shifted text to have the desired style. If these classifiers label a generated style-shifted

sequence with the desired style, it shows that the TST model has shifted the style of the

sequence successfully. Therefore, the percentage of the style-shifted text which are labelled

with the desired style by this classifier signifies the power of the TST model in shifting the

textual style (SSP).

Throughout our experiments, similar to the approach taken by some previous research,

such as Shen et al. (2017), we use the TextCNN model proposed by Kim (2014) as style

classifier. To measure the SSP of TST models, for each dataset, we train a separate style

classifier for on the same training data.
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3.3.1.2 Fluency (PPL)

Following previous research (Zhao et al., 2018; John et al., 2019), we examine the fluency of

style-shifted sequences in terms of their grammatical correctness by considering perplexity

(PPL) and compute it using pre-trained language models.

The PPL of an unseen textual sequence x = [w1, ...,wT ]) is its inverse probability,

Pr(w1w2...wN), normalized by the number of tokens (equation 3.13) (Shi, 2017).

PPL(X) = Pr(w1w2...wN)
1
N = N

√
1

Pr(w1w2...wN)
(3.13)

Language models calculate the probability of the given text using the chain rule.

Pr(w1w2...wN) =
N

∏
t=1

Pr(wt |wt−1
1 ) (3.14)

The inversion while computing PPL means that minimizing PPL results in maximizing

probability, i.e. lower PPL scores represent higher fluency in the generated texts of the

models. In other words, the fluency score of a sequence is negatively related to its PPL.

To compute PPL of the generated text of the TST models, for each dataset, we train

a separate RNN-based language model consisting of a single-layer RNN with the uni-

directional GRU cell (Chung et al., 2014). The tokens are initialized by embedding vectors

using 100-dimensional pre-trained embedding GloVe model (Pennington et al., 2014). The

PPL reported for each model is computed as the average score of the PPL of each style-shifted

output over the test data of a corpus.

3.3.1.3 Content preservation power (CPP)

This aspect of evaluation focuses on how well a style-shifted sequence maintains the content

of the input sequence. Different approaches have been suggested in the literature to compare

two sequences and measure their semantic similarity. These methods can be categorized as

67



3.3 Evaluation methodology

Figure 3.6 Computing CPP scores using embedding-based metrics

embedding-based or unigram-based strategies. We use the following metrics to investigate

the performance of the models in terms of the content maintenance power.

Embedding-based metrics We follow the approach proposed by Fu et al. (2018a) in

computing the content maintenance of a given style-transferred sequence as the cosine

similarity between its embedding representation and embedding vector of its corresponding

source input. To generate embedding vectors of the sequences, a pre-trained embedding

model is used to map each token to its embedding. Then, a pooling layer is applied over

these token embeddings (figure 3.6). Here, two types of pooling layers, average and min-

max-average techniques, are used which we explain more about in the following sections.

The CPP score of a model is the average of scores computed for all style-shifted outputs

created by that model. In this research, as pre-trained embedding models, we use both

GloVe (Pennington et al., 2014) and SBERT models (Reimers and Gurevych, 2019). We

refer to these cosine similarity based metrics as GloVe-based and SBERT-based.

• GloVe-based We use a 100-dimensional GloVe model and map the tokens of se-

quences to their embeddings, represented as ei ∈ R100 (1≤ i≤ N). The embedding

vector of a given sequence with the size N is then created as the concatenation of

the following pooling vectors of its token embeddings: min =
(
min1≤i≤N ei, j

)
1≤ j≤100,

mean =
(

∑1≤i≤N ei, j
N

)
1≤ j≤100

, and max =
(
max1≤ j≤100 ei, j

)
1≤i≤N .
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• SBERT-based metric We use a pre-trained SBERT model14 which creates embedding

representation for sequences by firstly mapping the tokens to their embedding vectors

(with the size 768), i.e. given a sequence with the size N, tokens are created as

ei ∈ R768 (1 ≤ i ≤ N). Then, it takes the average of these embeddings mean =(
∑1≤i≤N ei, j

N

)
1≤ j≤768

as the sequence vector.

Word Mover’s Distance (WMD) is an embedding-based method which is a special case

of the Earth Mover’s Distance (Rubner et al., 2000) and has been used in some previous

style transfer research to compute the CPP, such as Yamshchikov et al. (2020). It calculates

the distance of the sequences in the embedding space. WMD uses a distance technique and

matches the tokens of the two sequences by measuring their distance in the semantic space,

i.e. the tokens that are closer are matched with each other. Then, it calculates the distance

score of the two sequences as the average of the distances of their matched tokens (Kusner

et al., 2015). Lower distance scores in WMD demonstrate higher semantic resemblance.

To compute WMD, we first mapped the tokens of the style-shifted and input sequences

to their embedding representation using a pre-trained 300-dimensional Word2Vec model

(Shivakumar and Georgiou, 2019).

Word overlap (WO) is a unigram-based method proposed by (John et al., 2019) which

computes the unigram overlap of two sequences. For instance, it calculates the ratio of

the unigram overlap of the tokens of a given input sequence x and the tokens of its corre-

sponding generated output text x̃ and the total number of the tokens of the two sequences

(equation 3.15).

WO =
count(x∩ x̃)
count(x∪ x̃)

(3.15)

14https://huggingface.co/cross-encoder/cross-encoder/stsb-TinyBERT-L-4
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There are other unigram-based metrics which are used in NLG evaluation. One of

the widely applied unigram-based metric is BLEU (Papineni et al., 2002). BLEU score

(considering unigrams) for a given pair of input and style-shifted text is computed as the ratio

of the unigram overlap of style-shifted tokens and input tokens and total number of tokens of

the style-shifted text. Following some previous TST research such as John et al. (2019), we

use this metric throughout the experiments of this thesis and report the WO value for a set

of style-shifted text is the average of WO scores computed between the sequence pairs of

that set and their corresponding reference set where the stop words are removed from the

sequences as a preprocessing step15.

3.3.1.4 Upper Bounds and Lower Bounds of the automatic evaluation metrics

Given an evaluation dimension, the lower bound score of a metric can be assumed as the

scores computed using some of the worst possible outputs. Similarly, the upper bound score

of a related metric reflects how ideally models should perform. These scores can be computed

using gold data as the model outputs.

To better interpret how well TST models perform in maintaining the content of the inputs,

shifting their style and generating fluent text, we compute the lower bound and upper bound

scores of evaluation metrics which were introduced in section 3.3.

SSP: To measure the lower bound of SSP for a given corpus, we consider the test set of

that corpus and take the set having the style s1 as the style-shifted set with desired style s2

and the test set of style s2 as the style-shifted set with desired style s1 (s2 ̸= s1). The idea

being that the worst style-shifted sequence for a desired style can be the gold text of the

opposite style. Similarly, the best style-shifted sequences for a desired style can be the gold

15We also computed WO score while keeping the stop words and the observed that the two sets of scores
ranked the models similarly.
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text of the same style. Therefore, to compute upper bounds, we also use the test data where

the test set of style s is considered as the style-shifted data with the desired style s.

To calculate the scores, for each corpus, we use the related classifier trained for computing

the SSP (explained in section 3.3.1.1) and report the percentage of the style-shifted text which

are labelled with the desired style.

PPL: To compute the lower bound of fluency (PPL) of each dataset, first, we shuffle the

tokens of the sequences of test data. Then, we compute PPL of the shuffled test data as the

average of PPL scores of sequences using the language model which is trained over the given

dataset.

The upper bound PPL scores are computed as the perplexity that the language model

trained over a dataset measures for the test set of that dataset.

CPP: To compute the lower bound of CPP, for each metric and data set, we calculate CPP

score taking the sequences of test data and randomly selected sequences from train set of the

given dataset. Then we take the average of CPP scores of all the random sequence pairs as

the lower bound of that CPP metric.

The upper bound of CPP is computed as for all metrics of WMD, WO, SBERT -based

and GloVe-based. It is computed by comparing each set with itself which results in the upper

bound score 1 for all the metrics.

3.3.2 Human evaluation

Human evaluation tests are advantageous to be used in various NLP tasks. Firstly, due

to the limitations of some of the automatic techniques, they can be applied to verify the

automatic evaluation methodology. Some of these limitations in the scope of TST can be

listed as follows. First, the SSP scores reported for the models using pre-trained classifiers

(section 3.3.1.1) are affected by how well these classifiers are trained. Moreover, to compute
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Evaluation metrics
CPP SSP PPLX

SBERT GloVe WMD WO
LB LB LB LB LB UB LB UB

Yelp-small 0.0939 0.86 1.16 0.0101 3.00 97.20 2052 43.77
Data Yelp-large 0.0692 0.84 1.161 0.0103 2.53 97.47 2081 44.81

GYAFC-v2 0.0672 0.87 1.122 0.0045 13.89 77.94 1226 74.21
Table 3.10 Lower Bound LB and Upper Bound UB scores of evaluation metrics across
different datasets. The UB for all CPP metrics is 1 by comparing each file with itself. The
higher values show better performance for all CPP metrics except for WMD and fluency
PPLX .

the CPP of the TST models, the source and style-shifted sequences have different styles.

This can affect the CPP scores assigned to these pairs due to the probable overlap between

these two textual elements. Finally, the fluency of the TST models using the pre-trained

language models (section 3.3.1.2) is firstly biased towards the data, i.e. if the gold data

is not well structured grammatically, the model cannot be trained well. Secondly, the pre-

trained language models are biased towards shorter text (Jin et al., 2022). Furthermore,

manual evaluation techniques can be applied in the case of the lack of automatic evaluation

techniques. For instance, in the scope of TST, which is a multi-dimensional task, there is lack

of a comprehensive evaluation metric to do an overall ranking of the TST systems. Human

tests can be conducted here so that annotators judge the style-shifted outputs of the TST

frameworks taking the three aspects of the task into consideration.

However, the main drawback of evaluating the models manually is that this task is

resource-consuming in terms of both time and finance. Moreover, the results of manual tests

cannot be easily compared across different studies, since they are highly affected by the

evaluators. Finally, the test can be difficult and ambiguous which can lead to low agreement

between the judges reducing the validity of the test results.

Different strategies can be implemented while designing human evaluation tests. Broadly,

the techniques can be categorized into groups of comparison-based tests as well as scoring-
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based tests (Jin et al., 2022). In the former technique, the outputs of the models (at least two

models) should be compared and ranked by testers. In the latter strategy, judges are asked to

provide labels or scores directly to one output at a time. In this thesis, we use both of the

strategies based on the requirements of the tests. For instance, based on whether there is a

need for doing system comparison or assessing the intrinsic quality of the system outputs,

comparison-based or scoring-based strategies were applied, respectively.

In this thesis, we strike a balance between the advantages of human evaluations and the

difficulties in terms of time and financial limitations for the work by using human evaluation

tests to verify the automatic evaluation framework we use in our experiments, rather than

to test the specific performance of the systems. Consequently, in chapter 4 (section 4.2.1),

we conduct human evaluations to verify the proposed automatic evaluation methodology

by showing that human evaluators and automatic metrics rank the models similarly across

the three evaluation dimensions covered by the automatic metrics. Then, in the experiments

reported in the later chapters (5 & 6) we use the verified automatic evaluation methodology

to study the performance of the TST models.

3.4 Summary

The current chapter firstly described the data used to perform the experiments during my

thesis. Then, it focused on the modelling approach which is taken by all the TST frameworks

in this research and it proceeded by introducing the RNN-based and T-based baseline

frameworks as well as the experimental setup of these models. Finally, section 3.3 explained

the proposed comprehensive evaluation methodology, including the evaluation dimensions,

automatic evaluation metrics which are used to evaluate the outputs of the TST systems and

a brief description of the human evaluation methodologies.

In the next chapter, we firstly introduce different extensions of the RNN-based baseline

model and then conduct some experiments to examine the latent space of the TST frameworks.
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These experiments aim at exploring whether or not encoders of TST models encode stylistic

information of the input text in their corresponding latent vector. They focus on style domain

of sentiment by applying the Yelp-large corpus.
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Chapter 4

The entanglement of sentiment and

content

This chapter focuses on the latent space of the adversarial RNN-based TST frameworks

in order to explore the separation of style and content within the sentiment domain. The

latent space of these sequence-to-sequence encoder-decoder networks can be affected by both

encoder and decoder components. Therefore, we propose an encoder variant and a decoder

variant of the RNN-based baseline TST architecture (described in section 3.2.1) and compare

the baseline model with these two variants throughout the experiments of this chapter. We

first look into how these models perform in dealing with the TST task doing a comprehensive

evaluation considering content preservation, style-shift and fluency dimensions. Then, we

design a probing experiment to investigate the information encoded in their latent space.

Finally, we look into how each of these TST frameworks is affected by reinforcing the input

during the generation process, which can help us further explore the input latent space. We

focus on the sentiment style domain and use the Yelp-large corpus introduced in section 3.1.1

throughout these experiments.
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4.1 Proposed models: an encoder and a decoder variant of

the RNN-based TST baseline model

We first introduce two extensions of the RNN-based baseline TST model (introduced in

section 3.2.1): a variant of the baseline encoder based on ELMo representations (section

4.1.1), and a style-specific decoder model which applies style-specific decoders instead of a

single decoder (section 4.1.2). Then, we evaluate the performance of these two frameworks

in section 4.2. Some style-shifted samples created by these TST models are provided in table

4.5.

4.1.1 ELMo-based encoder TST model

This research focuses on exploring the input information encoded in the latent space of

adversarial encoder-decoder RNN-based architectures when they are applied to the TST

problem. The encoder components of these networks create latent representations of given

inputs. Therefore, it can be interesting to modify the encoder component of the RNN-based

baseline TST model and study how this change affects the latent space of the model.

To do so, we propose an adversarial ELMo-based TST model by extending the baseline

model where the encoder is removed and the latent representations of the input sequences

are created using a pre-trained ELMo model (Peters et al., 2018). ELMo embeddings are

contextualized word representations where the word embeddings are created by combining

all the layers of a deep pre-trained bidirectional language model (biLM) (Peters et al., 2018).

We employed ELMo embeddings to replace the style task-specific encoder in creating the

input vectors, since they have previously been employed in many NLP tasks in the recent

years and have achieved promising results.

To create the latent vector for a given input, first, all the tokens of the sequence are

mapped to their ELMo representations. Then, the min-mean-max pooling method which
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Figure 4.1 ELMo-based embeddding for each input as the vector to initialize the decoder of
the ELMo-based encoder TST model

is described in section 3.3.1.3 is employed to combine these token embeddings into the

sequence latent vector zELMO (figure 4.1). The generator block of the ELMo-based model

contains an RNN which acts as the decoder component and is initialised by zELMO and the

desired style of the output text. The adversarial block of this framework is the same as that of

the baseline model. While training, the backpropagation is done by using equation 3.6 except

for the fact that only the parameters θD are estimated, since we do not train an encoder in this

model. The two style-specific discriminators are trained jointly with the generator block (the

same as in the baseline model). To update the parameters of θDiscs (s ∈ {s1,s2}), equation

3.2 for Discs1 and its symmetric equation for Discs2 are used.

4.1.2 Style-specific decoders TST model

Encoder and decoder can both affect the latent space of an encoder-decoder sequence-to-

sequence architecture. To further investigate their effect, we modify the decoder of the

RNN-based baseline TST model in this section and study how this change affects the latent

space of the model. To do so, we extend the baseline model to a multi-decoder framework

where a separate decoder is employed in the generator block for each style1. The generator

block of the proposed model, therefore, consists of (i) two style-specific decoders Ds1 and

Ds2 and (ii) the encoder which is shared between Ds1, and Ds2 as depicted in figure 4.2.

1The code and data are available at https://github.com/somayeJ/RNN-based-TST-experiments
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Figure 4.2 The schema of the Gen (generator block) of the multi-decoder RNN-based TST
model.

The discriminator block is the same as that of the base model and contains style-specific

classifiers Discs1, and Discs2.

While training, for each given input xs1 with the source style s1, Ds1, and Ds2 are

initialized with zs1 as the latent representation of the input created by the encoder subnetwork.

Ds1 generates an output sequence in the style s1, i.e. it reconstructs the input sequence and

Ds2 creates a style-shifted sequence in the style s2. Generation of the outputs for a given

sequence xs2 with the source style s2 is done in the same manner where each style-specific

decoder creates an output in its specific style.

The reconstruction loss is computed for this model as the summation of the two recon-

struction losses corresponding to each decoder, equation 4.1 shows the reconstruction loss

Lrecs1
computed for Ds1 (Lrecs2

is computed symmetrically).

Lrecs1
= − logPrDs1

(x̃(rec)
s1 |xs1) (4.1)

The joint training of the discriminator and generator block is done in a similar fashion

to that of the base model by using the equations 4.2 which computes the total loss as the

summation of the adversarial losses (equations 3.4 and 3.5) and reconstruction losses to

update the parameters of the (θE ,θDs1 ,θDs2). Equation 3.2 and its symmetrical equation are

used to estimate (θDiscs1,θDiscs2) of the style-specific discriminators.
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Ltotal(θE ,θDs1,θDs2) = Lrecs1
+Lrecs2

+Ladv,s1 +Ladv,s2
(4.2)

Experimental setup of the proposed models The hidden state size of the uni-directional

GRU cells of the encoder and decoders of the multi-decoder model (section 4.1.2) is 700. In

the ELMo-based model (section 4.1.1), the hidden state size of the uni-directional GRU cells

is set to 3072. The other parameter settings of these two models are similar to those of the

RNN-based baseline model which are reported in the table 3.8.

4.2 Evaluating the proposed frameworks

This section first reports the results of the baseline, ELMo-based encoder and multi-decoder

systems. Then it investigates the validity of the evaluation methodology by conducting

human evaluation tests. To do the evaluation, the restaurant review dataset Yelp-large was

used (described in section 3.1.1).

4.2.1 Automatic evaluation

To investigate the performance of the TST models automatically, we considered the three

evaluation aspects of fluency, style-shift strength SSP, and content preservation power CPP.

We computed how well the style-shifted sequences preserve the content of the input sequences

by using the GloVe-based CPP metric. We also measured how each model shifts the style of

the inputs to a given desired style by computing the accuracy of the pre-trained classifier in

labelling the style-shifted sequences with this desired style. Finally, the fluency of the style-

shifted sequences are measured by calculating the perplexities that a pre-trained language

model assigns to them where lower values represent more fluent sequences (more details in

section 3.3).
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Model SSP PPLX CPP (GloVe-based)
(a) Base model 78.8% 43.5 0.925
(b) ELMo-based encoder 39.3% 134.5 0.895
(c) Multi-decoder 94.4% 39.1 0.910

Table 4.1 The results of automatic evaluation considering three aspects of SSP, CPP and
fluency (PPLX). Higher values of SSP and CPP signify better performance of the models,
whereas, for fluency, lower scores are better.

Table 4.1 represents the results of the baseline, ELMo-based encoder, and Multi-decoder

TST models in rows a to c.These results show that the ELMo-based encoder model performs

worse than both the base model and multi-decoder framework across the three aspects of

evaluation. This indicates that, although ELMo embeddings have improved many NLP-

related tasks in recent years, TST is reliant on the task-specific encoder subnetworks to create

the embeddings of the input sequences.

The multi-decoder framework outperforms the base model in terms of shifting the style

and fluency but works slightly worse considering CPP. This is mainly because each style-

specific decoder learns the distribution of a specific-style data and generates in that style.

To better interpret the scores of CPP, we can compare the lower bound (LB) of the GloVe-

based CPP score of the Yelp-large dataset (0.84) with the GloVe-based CPP scores of the

baseline model and its extensions. This shows that all the models have a better performance

in preserving the content than random.

4.2.2 Human evaluation

We conducted three human evaluation tests corresponding to the three evaluation dimensions.

These tests were done in a totally blind manner, i.e. samples and models were shuffled

for each test. This was to ensure that the evaluators would not be biased while doing the

test. Due to ELMo’s bad performance and the time constraints of the human evaluation, we

did not include the results of the ELMo model in this test. The total number of samples

considered was 450: 150 samples (75 samples from each style) randomly selected from the
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Yelp test set, as well as, their corresponding 300 style-shifted sequences generated by the

base and multi-decoder models. The scores reported in each test are computed by taking the

average over the labels of the judges over all the samples. For each of the three human tests,

the Krippendorff’s inter-rater agreement (Krippendorff, 1980) is computed which gives an

insight on the level of ambiguity of the test and therefore the level of its validity.

Style-shift power (SSP) In this test the 29 participants were provided with one style-shifted

sample at a time and were asked the following question:

• Question: What is the sentiment of this sequence?

• The possible labels: “positive", “negative", or “neutral".

The judges labelled the sequences generated by the base model as having the desired style in

58.3% of the cases. This number raised to 67.6% for the multi-decoder model. The inter-rater

agreement of this test was 0.752.

Fluency The 25 evaluators in this test were provided with one style-shifted sample at a

time and were asked the following question:

• Question: How grammatically correct is the given sequence?

• The possible labels: “incorrect", “partly correct" and “correct".

The results of this test with the inter-rater agreement of 0.568 shows that the multi-decoder

model outperforms the base model in terms of fluency and grammatical correctness. Multi-

decoder outputs were labelled by the annotators 67.6% of the times as “correct" as compared

to the outputs of the baseline model which were labelled as “correct" 64.2% of the times.

The performance of the models is computed after disregarding the "partly correct" label due

to its ambiguity for the judges.
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Models SSP CPP Fluency
Baseline model 58.3% 52.2% 64.2%
Multi-decoder model 67.6% 41.6% 67.6%
Number of raters 29 22 25
inter-rater agreement 0.752 0.772 0.568

Table 4.2 SSP: Percentage of the times each system output was labelled with the correct
desired style by the judges. CPP : Percentage of the times each system output was labelled
as having the same content with the input by the judges. Fluency: Percentage of the times
each system output was labelled as having the correct grammatical structure by the judges.

Content preservation power (CPP) The participants of this test were provided with the

style-shifted outputs of the base and multi-decoder models and their corresponding input

sample from the test set of the Yelp-large and were asked the following question:

• Question: Which sequence most closely resembles the source sentence in terms of

content (disregarding the sentiment)?

• The possible labels: “equally good", “equally bad", “first sample is better", or “second

sample is better".

The 22 participants of this comparative test had an the inter-rater agreement of 0.772 and

labelled the outputs as being more similar to the source sequence in 52.2% of the cases for

the base model and 41.6% of cases for the multi-decoder model.

The results of the human test show that the annotators and automatic metrics rank the

models similarly. This validates our automatic evaluation methodology (section 3.3).

4.3 Investigating the relation between style and content

The main goal of this experiment is to investigate to what extent the latent representations of

the inputs generated by the baseline, ELMo and multi-decoder TST models encode stylistic

information. We conduct the following experiments in sections 4.3.1 and 4.3.2 to examine

the style-content separation within these models.
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4.3.1 Reinforcing z during generation

In this experiment, we study how reinforcing the latent vector representations of the input

at each generation step affects the performance of the base and multi-decoder models in

particular in terms of preserving the content and shifting the style of the inputs. Moreover,

we aim at shedding more light on the latent space of the TST frameworks, in terms of the

relationship between the features that are encoded in the z vectors and the performance of

the models.

In standard sequence-to-sequence models, the z vector is only used to initialise the

decoder. This means that, in the first generation step, as the input, the GRU cell of the

base model takes the <start> token, the z and the target style vectors, while the GRU cell

of the multi-decoder model only takes the <start> token and the z vector. Both models

output the first token of the style-shifted sequences and use this generated output as the input

for the next generation step. Consequently, the input information received by z tends to

fade from the evolving hidden state used by the decoder because at each generation step

the only input is the output of the previous step. Here, we introduce reinforced variants

of the baseline and multi-decoder models where the z vector, as illustrated in figure 4.3,

is re-inputted to the decoder while generating each output token. To do so, we follow the

merging strategy proposed by Tanti et al. (2018) and, at each generation step, we concatenate

the latent representation of the input sequences z to the logit vectors of the decoder GRU

cells before feeding them to the projection layer.

Extending the baseline model and multi-decoder framework to reinforce the input content

during each generation step makes the features of the z vectors more present in the reinforced

model which intensifies the presence of the input information while doing the generation.

Comparing rows d and e to rows a and c of the table 4.3 shows how this modification affects

the performance of the baseline and multi-decoder models. Moreover, comparing rows d and
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Figure 4.3 Reinforcing z while generating tokens in each step of generation, as an instance
step t

Model SSP PPLX CPP (GloVe-based)
(a) Base model 78.8% 43.5 0.925
(b) ELMo-based encoder 39.3% 134.5 0.895
(c) Multi-decoder 94.4% 39.1 0.910
(d) Base model (reinforced) 66.0% 49.6 0.930
(e) Multi-decoder (reinforced) 90.7% 83.0 0.860

Table 4.3 Comparing the performance of the base and multi-decoder models to their re-
inforced versions where the input vector z is injected to the decoder(s) at each step of
generation.

e to rows a and c of the table 4.4 show how emphasizing the input vector during generation

modifies the presence of the source style in the latent space of these two TST systems.

4.3.2 Probing the disentanglement of style and content

We follow the same strategy employed by Conneau et al. (2018) to conduct a probing

classification experiment in order to analyse what the baseline model, ELMo-based encoder

system and multi-decoder model encode in their latent space. We train a separate classifier

for each of the three TST networks. Each classifier is a Feed-Forward network with a single

hidden layer and a sigmoid output layer and is trained to infer the source style s from a

latent vector zs generated by the encoder of its corresponding TST model for the input text

xs (figure 4.4). The classifier corresponding to each model is trained using the training

and development sets of the Yelp-large corpus. The probing classification scores are then

computed as the accuracy of their classifiers on detecting the source labels on the test set of
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Figure 4.4 Probing classifier i which is trained to learn the source style of the latent vectors
of the input created by E of the TST model i.

Model Accuracy
(a) Base model 99.97%
(b) ELMo-based encoder 93.84%
(c) Multi-decoder 97.56%
(d) Base model (reinforce) 98.39%
(e) Multi-decoder (reinforce) 91.85%

Table 4.4 The accuracy of probing classifiers corresponding to each TST framework in
detecting the source style in the latent space of the TST models.

the Yelp-large corpus. If no stylistic information is present in the latent vectors of a given

model’s encoder, its probing classifier is expected to have a low accuracy.

Rows a, b, and c of table 4.4 show the accuracy of the classifiers trained for the baseline,

ELMo-based encoder and multi-decoder models. The higher accuracy of the probing classifier

corresponding to the baseline model as compared with the classifiers corresponding to the

multi-decoder and ELMo-based encoder systems indicates the presence of more source

stylistic features in the latent space of this model. Similarly, the accuracy of the ELMo-based

encoder classifier implies that the least input stylistics features are present in the input latent

representations of this model.

4.4 Discussion

The main focus of this chapter is exploring the latent space of adversarial end-to-end encoder-

decoder RNN-based TST systems and investigating the separation of content and sentiment

in their input latent vectors. Modifying encoder and decoder components can affect the

input latent space of these TST models and studying these effects can shed more light on the
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latent space and what is encoded in it. Therefore, the ELMo-based encoder model, and the

multi-decoder framework were introduced. To explore the latent space of the TST systems,

we conducted two main experiments while taking sentiment as the case study. The first

experiment was a probing classification task which investigates the presence of the source

style in the input latent space and the second experiment focused on reinforcing the input

representation z throughout the generation process while creating each style-shifted token.

The results from these experiments led to the following conclusions.

• The drop of the SSP across the baseline system and multi-decoder model when the input

representation z is reinforced during generation (rows d and e of table 4.3) indicates

that latent representations of the inputs are not free of the source style. Therefore, due

to the presence of both style and content features in the latent space, z-reinforcement

negatively affects the SSP and may improve the CPP as in the case of the baseline

model (row d of table 4.1).

• Rows d and e of table 4.3 show the fluency drops across both of the models when

reinforcing is applied. This indicates that z-reinforcement inhibits the fluency of the

decoder(s). This implies that z contains features from a language distribution which

differs from the language distribution to which the style-shifted sequences belong, i.e.

source as opposed to the target style language distributions and the presence of the

source style features in the z vectors confuses the decoder language models.

• Table 4.4 reports high accuracy for the probing classifiers corresponding to all the TST

models. This indicates the presence of the source style in their latent space implying

that style and content are entangled.

• Rows d and e of table 4.4 illustrates that the accuracy of the classifiers corresponding

to the reinforced-based and reinforced multi-decoder models in labelling source style

lowers compared to the base and multi-decoder systems (rows a and c of table 4.4).
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This firstly indicate that the reinforced models encode less source stylistic features in

their latent vectors. We hypothesize that this happens since the repetitive reinforcement

of the source style encoded in z vectors throughout the generation process interferes

with the ability of the model to shift the style due to the presence of the source style

in the z space. Therefore, the model learns to strip out the source style from the z

space during training in order to reduce the confusion these source style features cause

when z is reinforced during generation. Also, we notice that encoding appreciably less

source style in the z of reinforced multi-decoder model leads to a drop in the CPP of

this model (table 4.3 row e) which provides another proof that style and content are

not totally separable.

These observations imply the presence of an entanglement between the style and content,

i.e. source style is not totally separable from the content. These results provide us with a

good insight about the main research focus of this chapter which also addresses the first

research question of this thesis (section 1.2). The other findings of this chapter are discussed

in the following.

• The results in table 4.4 showed how the z vectors generated by the task-specific en-

coders differ from the ELMo-based z vectors. Higher accuracy scores of the classifiers

trained with the z vectors generated by the baseline model (with and without reinforc-

ing) and multi-decoder model (with and without reinforcing) show that task-specific

encoders encode more source stylistic features within the input embedding representa-

tions compared to the ELMo-based encoder model. This suggests that the role of the

encoders in the TST problem is not only to encode the content-related information, but

also, to mark the source style features which guides the TST system while generating

in the desired style.

• Table 4.4 illustrates lower accuracy for the classifiers which correspond to the multi-

decoder models compared to their corresponding single-decoder model (rows c and e
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compared to the rows a and d, respectively). This indicates that style-specific decoder

frameworks need less of the source style indicators in their z space compared to the

single-decoder frameworks, since their decoder learn to generate in a specific style.

• The results in table 4.4 indicate that the reinforcing of z results in both the base and

multi-decoder frameworks learning to reduce the amount of information about the

input style encoded in the z representation (a reduction of approximately 1.6% probing

accuracy for the base model and a reduction of approximately 5.7% probing accuracy

for the multi-decoder framework). Focusing now on table 4.1, these reductions in

the encoding of the input style in z correspond with a decrease in SSP (reinforcing

in the base model results in a drop of 12.8% in SSP and in the multi-decoder model

reinforcing z during generation results in a drop of 3.7% in SSP). We hypothesize that

the relatively small reduction in the probing accuracy accompanied by the relatively

large reduction in SSP observed for the base model is due to the fact that, as noted

above, single-decoder models are more reliant on the source stylistic features while

doing the task compared to the models with multiple decoders (i.e. because the base

model only have a single decoder that generates in both styles, the presence of input

style in z can be beneficial as a signal to the decoder to generate in the other style).

• Rows a and c of the tables 4.1 and 4.4 show that the higher the accuracy of a probing

classifier the better its corresponding model performs on preserving content. This

indicates a direct relation between the amount of the source style encoded in the z

vectors of the base and multi-decoder system and their CPP which again implies an

entanglement between source style and input content. This is further validated by the

results of the z-reinforcement experiment. We investigate this observation more in

chapter 5 by studying the relation across other TST frameworks and style domains.
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• The findings of this chapter (table 4.3) also imply a trade-off between evaluation

dimensions where an increase in CPP can lead to a drop in SSP and also worse fluency.

This highlights the importance of using a comprehensive evaluation methodology for

TST problem similar and further validates the methodology proposed in this chapter.

This also motivates the use of this evaluation methodology throughout the experiments

of the later chapters.

• We conducted a human evaluation test considering the three evaluation aspects. The

results were inline with the results of the automatic evaluation which confirmed the

validity of our automatic evaluation methodology. We use this validated automatic

evaluation methodology to investigate the performance of TST frameworks throughout

the experiments of this chapter and later chapters.

• The results of human evaluation are inline with the intuition that style and content

are entangled. To be more precise, on one hand, rows 1 and 2 of table 4.2 show that

according to the human judges the base model performs better in preserving the content

as compared to the multi-encoder system. The results of the probing experiments, on

the other hand, report a higher probing accuracy score for the baseline model (rows

a of table 4.4) as compared to the multi-encoder system (rows c of table 4.4). This

suggests that the presence of more source style in the latent space of the baseline model

leads to better CPP which further confirms the style-content entanglement.

4.5 Conclusion

Studying the latent space of the generation block of RNN-based frameworks, as the main

focus of this chapter, indicated that for the TST task, style and content are entangled elements

and their total separation is not possible while considering sentiment as the style domain.

This observation shifted our attention towards examining whether these findings hold across
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other style domains and architectures. In chapter 5, we extend our experiments to investigate

the entanglement of style and content in the style domain of formality while implementing

other variations of RNN-based TST frameworks.

90



4.5 Conclusion

From negative to positive
1. so nasty .
2. so awesome .
3. ugh delicious.
4. so delicious .
5. so fun .
6. so awesome !

1. my goodness it was so gross .
2. my husband was so delicious .
3. my experience was great .
4. my goodness it was amazing .
5. my goodness was amazing .
6. my , it was also

1. the cake portion was extremely light and a bit dry .
2. the prime rib was very smooth and very reasonable .
3. the pizza is fresh and a very nice .
4. the tuna was a bit dry and satisfying .
5. the portion was extremely tasty and reasonably priced .
6. the crust was very dry and dry a bit .
From positive to negative
1. i highly recommend this place !
2. i wo n’t be it .
3. i do n’t even go back .
4. i do not recommend this place !
5. i highly recommend this place place !
6. i loved not recommend this place .

1. my appetizer was also very good and unique .
2. my chicken was just a little hot and texture .
3. my pie is just thin and just like pie .
4. my boyfriend was n’t and had a very dry .
5. my entree was very unique and also very good .
6. my appetizer was also very good and lacked lacked lacked lacked .

1. the food is fresh and the environment is good .
2. the food was tasty and the quality is pretty expensive .
3.the food was rude and do n’t waste the time .
4. the food is fresh and the sandwich was too salty .
5. the food is good and the food is not good .
6. the food is the food and the food is the food comes .

Table 4.5 Style-shifted outputs of the TST models using Yelp-large. 1: input sequence, 2:
Multi-decoder model, 3: Reinforced multi-decoder model 4: Baseline model 5: Reinforced
baseline model and 6: ELMo-based encoder model.
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Chapter 5

Investigating the style transfer task in

sentiment domain versus formality

domain

This chapter focuses on exploring whether the findings of chapter 4 can be extended to other

style domains, i.e. it investigates whether style is a consistent concept across various domains.

To do this, we do a series of experiments which mainly focus on exploring the latent space of

sentiment-transfer and formality-transfer models. As the first step, we modify the encoder of

RNN-based baseline model (described in section 3.2.1) and propose a multi-encoder system

and an attention-based framework. The reason being that the input latent representations

which are the focus of our experiments throughout this chapter can be highly affected by

the encoder architecture and studying these two systems enables us to examine the effect of

these modifications.

The experiments of this chapetr aim at exploring the style domain of sentiment as well as

the style domain of formality, specifically in terms of how sentiment and content are entangled

compared to formality and content. They involve investigating whether the previously

observed sentiment-content entanglement holds across the multi-encoder and attention-based

92



5.1 Implementing more powerful encoders

TST frameworks. They also examine the presence of the source stylistic features in the latent

space of the TST models and their relation with the content across sentiment and formality

domains. This chapter also explores sentiment-shift versus formality-shift tasks and further

validate the comprehensive evaluation methodology (described in section 3.3) by employing

different techniques to confirm the validity of CPP metrics. Throughout the experiments of

this chapter, we use the Yelp-large corpus (described in section 3.1.1) and GYAFC-v1 and

GYAFC-v2 corpora (described in section 3.1.2).

5.1 Implementing more powerful encoders

Encoders of encoder-decoder sequence-to-sequence frameworks create input latent repre-

sentations. So, the architecture of these networks can affect these latent vectors. In this

section, we extend the baseline model (described in section 3.2.1) and implement two encoder

variants: a multi-encoder framework (section 5.1.1), and an attention-based model (section

5.1.2). Employing these TST models throughout the experiments of this chapter enables us

to study the effect of this modification on the latent space, which is the main focus of this

chapter.

5.1.1 Multi-encoder framework

We extend the baseline model by employing one RNN as the encoder for each style in the

system. Hence, the generator block Gen of the proposed model contains two style-specific

encoders Es1 and Es2, as well as a decoder D which is an RNN shared between the two

encoders. The discriminator block Disc of the proposed framework is the same as that of

the baseline model and functions similarly. It consists of style-specific discriminators Discs

(s ∈ {s1,s2}).
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Figure 5.1 The schema of the Gen (generator block) of the multi-encoder RNN-based TST
model.

As figure 5.1 depicts, while training, an input pair (xs1,xs2) is encoded by the style-

specific encoders (zs1,zs2) = (E(xs1),E(xs2)). Then, the reconstruction and style-shifted

sequences of each input are generated by conditioning the decoder on zs1 and s1 or zs1 and

s2, respectively (similarly for xs2). The reconstruction loss is the summation of the Lrec1

(equation 5.1) and Lrec2 (symmetrically computed).

Lrec1(θEs1,θD) = − logPr(x̃s1
(rec)|xs1) (5.1)

Adversarial training of this system is done in a similar fashion to the baseline model. Also,

similar to the baseline model, Disc and Gen are jointly trained by updating the parameters of

θDiscs1 and θDiscs2 using the equation 3.2 (s ∈ {s1,s2}) and estimating the parameters θEs1 ,

θEs2 and θD using the following equation 5.2 where the adversarial loss similar to the baseline

model is computed by equations 3.4 and 3.5 and is applied to guide the training process into

creating the style-shifted sequences.

Ltotal(θE1,θE2,θD) = Lrecs1 +Lrecs2 +Ladv,s1 +Ladv,s2
(5.2)
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Figure 5.2 Generating the output token at time step t while creating ct considering st−1

5.1.2 Attention-based model

We also extend the baseline model in another way by implementing the attention strategy1

proposed by Bahdanau et al. (2015) and introduce the attention-based model which consists

of an encoder E, a decoder D and style-specific discriminators Discs (s ∈ {s1,s2}).

Encoder (E): E is a single-layered bi-directional subnetwork that contains two RNNs

which read an input sequence xs (s ∈ {s1,s2}) in both forward and backward directions and

are initialized by the dense vector of the source style s. If the length of xs is T , the encoder

output states h1, . . . ,hT are formed by the concatenation of the outputs from forward and

backward cells, hi = (
−→
hi ⊕
←−
hi ). The latent representation denoted as zs is created by the

concatenation of the last state of the two RNNs of E, zs = (−→zs ⊕←−zs ). Theses vectors are

then augmented as h′1,h
′
2, . . . ,h

′
T and z′s by concatenating the h1, . . . ,hT and zs with the dense

vector of the desired style.

Decoder (D): D is a single-layered uni-directional RNN which takes the dense vector

of the desired style s as the initial state and at each time step, for instance the time step i

(figure 5.2), considering the previous state si−1, it creates the context vector ci as latent

representations of the input sequence by doing the weighted summation of h′1,h
′
2, . . . ,h

′
T

1The attention mechanism is described in details in section 2.1.4.2
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where at time step 0, z′s is considered as the previous state. The weights assigned to the

augmented state h′j of E, at time step i is calculated by equation 5.3 where the scorei, j is

normalized with regards to the scores assigned to each augmented state h′1,h
′
2, . . . ,h

′
T of the

input using a softmax layer.

ai, j =
exp(scorei, j)

∑
T
k=1 exp(scorei,k)

(5.3)

The score for h′j at time step i (scorei, j) is computed relative to the content of the previous D

state (si−1) by passing the h′j and si−1 through a two-layer feed forward network where the

activation function of the first layer is a hyperbolic tangent.

scorei, j =Wf (tanh((Wssi−1 +bs)+(Whh′j +bh))) (5.4)

The discriminator block (Disc) of the attention-based model is similar to that of the

base system in terms of the architecture, functionality and training regime. The training

process is similar to the training regime of the base model. During the training steps of this

model the parameters and weights of the attentions layer which consists of fully connected

Feed-Forward layers are jointly trained with other components of the Gen and updated using

the equation 5.4.

Experimental setup of the proposed models The hidden state size of the uni-directional

GRU cells of the encoder and decoders are set to 700 in the multi-encoder model (section

5.1.1). In the attention-based model (section 5.1.2) the size of both bi-directional GRU

cells of the encoder and uni-directional cells of the decoder are also set to 700. The other

parameter settings of these two models are similar to those of the RNN-based baseline model

which is reported in table 3.8.
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5.2 Evaluating the proposed frameworks

In this section, we compare the sentiment-shift and formality-shift tasks by studying the

performance of the baseline model and its two proposed extensions. We use the Yelp-large

(section 3.1.1) and GYAFC-v2 (section 3.1.2) corpora to evaluate how these models perform

across sentiment and formality domains by applying the evaluation methodology (described

in section 3.3). In section 4.2.2, we showed that the comprehensive evaluation methodology

is in line with human judgement. Here, we would like to further confirm this methodology

by using different techniques to compute and validate CPP2.

The GloVe-based CPP metric has been widely used in the previous TST researches

including (Fu et al., 2018a; Shen et al., 2017; John et al., 2019; Jafaritazehjani et al., 2020,

2021, 2022). However, while using this metric, the variance of scores is small, interval of

the (0.84,1) (considering the lower and upper bounds of the metric). This leads to a lack of

sensitivity which questions the efficiency and precision of this metric (John et al., 2019). To

validate the GloVe-based CPP scores, we previously showed (section 4.2.2) that GloVe-based

CPP scores rank the models similar to human annotators. Here, we employ two other CPP

metrics, WMD and WO, which apply different techniques and investigate how these metrics

rank the TST models compared to GloVe-based metric. We also use confidence intervals to

assess whether differences in GloVe-based CPP scores between different architectures are

statistically different.

As described in details in section 3.3.1.3, WO is a unigram based metric which is

computed after filtering the stop words from the given input and its corresponding style-

shifted text. To compute WMD which is a special case of Earth Mover’s Distance (Rubner

et al., 2000), we follow the approach explained in section 3.3.1.3, by considering inputs

and their corresponding style-shifted text. The GloVe-based CPP score is also computed as

explained in section 3.3.1.3 by computing a cosine similarity score between the embedding
2Some style-shifted samples created by the TST models discussed in this chapter are provided in tables 5.5

and 5.6.
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Datasets Yelp-large GYAFC-v2
Models Baseline Multi-E Att-based Baseline Multi-E Att-based

SSP 78.76% 76.26% 53.99% 65.11% 58.82% 59.58%
PPL 44.52 46.91 48.11 26.81 28.84 23.72

WMD 0.695 0.647 0.3827 0.7783 0.7733 0.9098
WMD-LB 1.161 1.1224

WO 0.199 0.254 0.475 0.0645 0.0675 0.0288
CPP WO-LB 0.01 0.0045

GloVe 0.9239 0.9311 0.9542 0.9088 0.911 0.8869
GloVe-LB 0.84 0.8792

Table 5.1 Evaluation results of the baseline model, Att-based (attention-based) and Multi-E
(multi-encoder) models. Higher values in the table show better performance except for the
metric WMD and PPL. LB indicates the Lower Bound of different CPP metrics.

representations of each pair of input and style-shifted output. Table 5.1 lists the results for

the baseline, multi-decoder and attention-based models on the Yelp-large and GYAFC-v2

datasets. In terms of CPP metrics, one observation that can be taken from these results is

that the WMD, WO and GloVe-based metrics are in agreement in terms of rank order of the

systems. On the Yelp-large dataset, all these CPP metrics rank the attention-based model

best, followed by the multi-encoder and then the baseline model. On GYAFC-v2 dataset, all

theses metrics rank the multi-encoder model best, then the baseline model and finally the

attention-based model. This consistency across these three different CPP metrics validates

the use of GloVe-based CPP.

We take a further step and examine whether the differences reported for the GloVe-based

CPP scores for the TST models across one style domain are statistically significant. To do

so, for each style domain and TST framework, we compute the confidence intervals (CI)

for the GloVe-based CPP scores. CIs provides a range of estimates for the true mean of a

population, centred on the sample mean, and is defined as an interval with a lower bound and

an upper bound. The interval is computed at a designated confidence level. The confidence

level represents the long-run frequency of confidence intervals that contain the true value of

the parameter. In other words, 99% of CIs computed at the 99% confidence level contain the
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true population mean. Given a sample mean value m, the sample standard deviation σ and

the sample size n, the confidence interval is defined by the following equation:

Cl = m±Z
σ√

n
(5.5)

In this equation Z is the critical value, which depends on the desired confidence level, for

instance, for a 99% confidence level it is 2.576, as provided by a Z table. Z tables differ

on usage, but essentially, the table tells us what the critical value is for many common

probabilities. Note that the factors affecting the width of the CI include the confidence

level, the sample size, and the variability in the sample. Larger samples produce narrower

confidence intervals when all other factors are equal. Greater variability in the sample

produces wider confidence intervals when all other factors are equal. A higher confidence

level produces wider confidence intervals when all other factors are equal. Thus, calculating

the CI for a single mean will provide a range within which the true mean can be found3.

To compute the CIs for the GloVe-based CPP scores, first, the GloVe-based CPP scores

of each of the pairs of input, and style-shifted output sequences are computed across the test

set of the considered domain of style. Then, the CIs around the average model performance

is measured. We observed that for the Yelp-large dataset, across the three frameworks the CIs

computed for GloVe-based CPP scores do not overlap with the confidence level of 0.99. This

confirms the validity of the variations between the CPP scores of the baseline, multi-encoder

and attention-based models while using the Yelp-large data. The confidence intervals do not

have an overlap for GYAFC-v2 with the confidence level of 0.8.

For each of the CPP metrics and for each dataset, we calculate a lower bound (LB) score

using the method explained in section 3.3.1.4. LB scores provide us with a better insight of

how TST models perform in preserving the content of the input text while shifting its style.

3An example in the context of confidence intervals can be found here: https://www.mathsisfun.
com/data/confidence-interval.html
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Overall, the CPP scores of all frameworks are higher than LB scores. However, the CPP

scores computed for the attention-based model in the domain of formality is very close to the

LB scores considering the three metrics of WO, WMD and GloVe-based, i.e. the CPP scores

of attention-based model is closer to LB scores rather than the the CPP scores of the other

two TST models in the domain of formality. This can mean that the model has not reached

convergence, i.e. it needs either a longer training time or more data. To keep the training

parameters constant; such as number of epochs, we reported the results of this model as is

without trying different techniques to reach better performance.

Excluding the attention-based TST model, the results listed in table 5.1 indicate the

following. First, we observe that an increase in CPP results in a drop in SSP, i.e. in both

domains of formality and sentiment, CPP and SSP appear to be inversely related. Also,

the results of table 5.1 indicate that in both style domains, fluency of the style-shifted text

generated by each model gets worse as the CPP of the model improves, i.e. better values

of CPP leads to higher perplexity scores. This is in line with the trade-off observed in the

results of the previous chapter (section 4.5). The observation that the trade-off holds while

applying other architectures as well as across other style domains and not only sentiment

reinforces the necessity of applying a comprehensive evaluation methodology, i.e. taking the

three evaluation dimensions into account for the TST problem.

Finally, the results in table 5.1 suggest that applying style-specific encoders leads to

higher CPP scores in the sentiment and formality domains. Moreover, comparing the results

of the baseline model and its two extensions highlights the performance variation of the

attention-based architecture versus multi-encoder across these two style domains. This means

that employing the attention-based technique affects the sentiment-shift and formality-shift

tasks differently as compared with using the multi-encoder strategy. To be more precise,

in the sentiment domain, employing the attention-based technique has a larger influence

on the performance of the model versus employing multi-encoder architecture, i.e. we
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observe a larger increase in CPP values and a bigger drop in SSP score while employing

attention-based as compared to the multi-encoder system. This difference in performance

between the attention-based and style-specific encoders in the sentiment-shift task may be

explained by the fact that in the multi-encoder model for each input text, the encoder creates

one static representation of input which is used only once to initialize the decoder. In the

attention-based model, on the other hand, at each step of generation a latent representation

of the input is created (which is aligned for that step of generation) and fed to the decoder.

This reinforces the input content during generation and results in the presence of more input

content in output (higher CPP scores).

In the domain of formality, on the other hand, we observe that the attention-based model,

in spite of having high SSP score, does not converge to do TST effectively since it fails to

meet the other requirements of the task such as preserving the content of inputs. The failure

of the attention-based architecture to converge in the formality domain may be attributable

to the smaller dataset in this domain as compared to the Yelp domain. We return to the

challenge posed by small datasets for TST in chapter 7.

5.3 Sentiment versus content as compared with formality

versus content

We conduct two experiments in this section to investigate the disentanglement of style

and content and study how the relation between these two textual components vary across

the domains of sentiment and formality while considering the baseline, multi-encoder and

attention-based frameworks.
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5.3.1 Probing the disentanglement of the style and content

Similar to the approach taken in section 4.3, we design a classification experiment to examine

the latent representations of the input sequences created by the baseline, multi-encoder and

attention-based models. To do so, we train a separate Feed-Forward networks with a single

hidden layer and a sigmoid output layer as a probing classifier for each TST model and each

style domain. These classifiers are trained to detect what the source style of a given input is.

Classifiers are trained using as input the latent vectors z and the input source style. z

vectors fed to each classifier are created by the encoder of its corresponding TST model

(figure 4.4). z vectors are considered as the last state of the encoder(s) for the baseline and

multi-encoder systems. In the attention-based model a context vector is created for each

generation step and we consider the latent representation of the input sequence as the average

of these context vectors. To train these probes, within each domain of style, we merged the

train and test sets and trained the probes using a cross validation technique (k-fold is set

to 15).

The accuracy scores of the probing classifiers are reported in table 5.2 where higher

scores indicate a higher presence of the source style in the latent space of its corresponding

TST model. The high accuracy scores of the probes corresponding to the multi-encoder,

99.99%, and attention-based, 100%, TST architectures indicates that sentiment-content

entanglement still holds while we modify latent space by employing different encoding

strategies. Also, high accuracy scores of the probes corresponding to the multi-encoder,

99.6%, and attention-based, 100%, TST systems across the formality domain implies that

that formality and content are also entangled elements. Finally, the average accuracy score

in the sentiment domain is slightly higher (99.86%) than the average score reported for the

formality domain (98.7%). This may indicate that sentiment is more entangled with content

as compared with formality.
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Datasets Metrics Baseline Multi-encoder Attention-based Average
Yelp-large Accuracy 99.58% 99.99% 100% 99.86%
GYAFC-v2 Accuracy 96.5% 99.6% 100% 98.7%

Table 5.2 The accuracy of the probing classifiers (Accuracy) corresponding to each TST
model across sentiment (Yelp-large) and formality domains (GYAFC-v2).

To confirm that these scores are statistically different, we considered the accuracy scores

of TST models across each domain of style and computed the confidence intervals of the

scores. The results show that the scores of the three probes trained on GYAFC-v2 dataset do

not have overlap with the confidence level of 0.67. This confidence level drops to 0.65 for

the classifiers trained using the Yelp-large data.

5.3.2 The effect of stripping out style from the latent space of a TST

system

The goal of this experiment is to examine the effects of removing the source stylistic features

from the latent representation of a style-transfer framework on how well it preserves the

content of the input sequences.

To do so, we consider a variational extension of the baseline model where the latent

variable zs is sampled from the posterior distribution N (µx,σx) for each input text xs (figure

5.3). The latent vector zs is constrained to draw a smooth distribution by measuring its

KL-divergence with respect to a prior distribution N (0, I). We use an extra KL-divergence

loss in addition to the task-specific loss, and optimize a linear interpolation of these two as

the reconstruction loss of the generator blocks.

Lrec = − logPrE(x̃(s)|x(s))+DKL(PrE(z|x,s)||Pr(z)) (5.6)

Here, we hypothesize that forcing the z vectors for the differently-styled sequences within

one style domain to resemble a prior distribution will result in losing the source stylistic
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Figure 5.3 Variational extension of the baseline model where for each input xs latent vector
zs is sampled from the posterior distribution N (µx,σx).

features. Comparing the results of probing classifiers corresponding to the baseline model

and its variational extension (table 5.3) confirms this hypothesis4. The results show that

in both sentiment and formality domains, the probes of the variational models have lower

accuracy in detecting the source style compared to the corresponding probes of the baseline

models.

Considering the GloVe-based CPP scores and probing accuracy values corresponding

to the baseline model and its variational extension (table 5.3), for each 1% drop of the

accuracy of the probing classifiers, there is a CPP drop of 0.000259 in the formality domain

as opposed to a CPP drop of 0.000454 in the sentiment domain. The higher drop of CPP in

the sentiment as compared with formality domain suggests more entanglement between style

and content in the domain of sentiment.

Datasets Yelp-large GYAFC-v2
Models Baseline Variational Baseline Variational

Probing accuracy 99.58% 44.46% 96.5% 51.41%
CPP: GloVe-based 0.9239 0.8989 0.9239 0.8971

Table 5.3 Comparing the GloVe-based CPP and probing accuracy of the baseline model and
its variational extension.

4To show that variational models are properly trained, we report SSP and fluency of the models. SSP across
sentiment and formality domains are 96.98% and 71.01%. Fluency across sentiment and formality domains are
20.74 and 18.36.
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Further analysis We compute the Pearson Correlation Coefficients (PCC) between the

GloVe-based CPP scores of the baseline, multi-encoder and attention-based systems and the

accuracy of the probing classification task using the corresponding system z representations

(table 5.4) to further investigate the style-content entanglement across these two style domains.

As the results indicate the PCC scores corresponding to the sentiment and formality domains

are 0.699 and −0.519. These PCC scores compute the relation between the ability of a

model to preserve the content of the inputs and how much source style is encoded in the

latent vectors corresponding to their inputs, i.e. higher PCC scores show a stronger relation

between the CPP ability of a system and its encoding of the style of the input texts. Therefore,

the findings of this experiment imply more entanglement between style and content in the

sentiment domain as compared to the formality domain.

To further investigate the validity of this observation, we examine whether using another

CPP metric leads to similar PCC relations across formality and sentiment domains. To do so,

we use the SBERT-based CPP metric (introduced in section 3.3.1.3) and recalculate the PCC

scores considering probing classification scores and SBERT-based CPP scores corresponding

to the baseline, multi-encoder and attention-based models (table 5.4). This leads to PCC

scores of 0.701 and−0.5536 across the sentiment and formality domains, respectively. These

PCC scores are aligned with the PCC scores computed using GloVe-based CPP metric which

further confirm our proposition that sentiment and content are more entangled as compared

with formality and content.

5.4 Discussion

In chapter 4, we observed that sentiment and content are overlapping components of the text.

The main focus of the current chapter is to further study the latent space of the adversarial

encoder-decoder RNN-based TST models to explore whether the observation from chapter 4

can be extended to other architectures and style domains. To do this, we conducted a
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Datasets Metrics Baseline Multi-encoder Attention-based PCC
Yelp-large Accuracy 99.58% 99.99% 100% -
(sentiment) S-BERT 0.3195 0.3613 0.4933 0.701

GloVe 0.9239 0.9311 0.9542 0.699
GYAFC-v2 Accuracy 96.5% 99.6% 100% -
(formality) S-BERT 0.2408 0.2459 0.1733 -0.536

GloVe 0.9088 0.911 0.8869 -0.519
Table 5.4 Pearson correlation coefficients (PCC) scores between the accuracy scores of the
probing classifiers corresponding to the TST models, and both their GloVe-based CPP scores
and SBERT-based CPP scores across the two domains of formality and sentiment.

classification experiment to probe the latent space of the TST models. The current chapter

also examines the consistency of the concept of style considering the sentiment and formality

domains. To do so, we designed some experiments to explore the sentiment-content versus

formality-content levels of entanglement. Throughout these experiments, we used three

models which have similar architecture but different encoding techniques which can affect

the latent space. Modifying the latent space enables us to better explore the latent space. The

main findings of this chapter are as follows.

• The entanglement of sentiment and content still holds while we modify the latent space

by employing different encoding strategies. This is inferred from the high accuracy of

the probes in sentiment domain (row 1 of table 5.2).

• The observation of style-content entanglement can be extended to other domains of

style since the high accuracy scores of the probing classifiers indicated that formality

and content are also overlapping elements (row 2 of table 5.2).

• The concept of style is not consistent across the sentiment and formality domains, i.e.

sentiment and content are more entangled as compared with formality and content.

The following observations support this finding. Firstly, the average accuracy score

of the sentiment probes is 99.86% which is slightly higher than 98.7%, the average

accuracy score of the formality probes (table 5.2). Also, the results of table 5.3 indicate

106



5.5 Conclusion

that variational frameworks encode less source style in their latent space compared to

baseline models across the both style domains. Taking these accuracy scores and CPP

scores of the models together (table 5.3) indicates that for each 1% drop of the accuracy

of the classifiers, there is more drop of CPP in the sentiment domain as compared

with the formality domain which implies more entanglement between sentiment and

content. Furthermore, the PCC scores between the GloVe-based CPP scores of the

baseline, multi-encoder and attention-based systems and their accuracy of the probing

classification task (table 5.4) indicate a higher level of entanglement between the

sentiment and content (0.699) as compared to formality and content (−0.519).

• We explored the TST task across sentiment and formality domains by studying the

performance of the baseline model, multi-encoder and attention-based systems. The

results (table 5.1) shows a trade-off between the evaluation aspects of the TST task, an

inverse relation between CPP scores and both SSP and fluency values of the models5.

This trade-off which is inline with the trade-off which was earlier observed in section

4.5 further implies the necessity of employing comprehensive evaluation methodologies

while dealing with the TST problem.

The findings of this chapter which are listed here address the research questions (section

1.2) of this manuscript as follows. Findings 1 and 2 address research question 1. Findings 3

and 4 address the research questions 2 and 5.

5.5 Conclusion

We observed in chapter 4 that sentiment and content cannot be totally separated. The results

of the current experiments not only indicate that sentiment and content are overlapping

elements, but they showed that this observation also holds across other architectures as well
5The results of the attention-based in the formality domain are excluded while doing the analysis in this

section, since this model has not converged to do the task effectively.
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as the style domain of formality. Moreover, the results revealed that sentiment and content

are more entangled as compared to formality and content. These findings imply that the

concept of style can differ from one domain to another at least in terms of how it relates to

content.

Observing that a single concept of style cannot be generalisable across the domains,

firstly, highlights the question of what are the variations across the style domains and how

these variations are encoded. Secondly, it raises the question of whether style-specific

characteristics should be taken into consideration when designing a TST experiment, i.e.

for instance if some architectures work better in one style domain due to the characteristics

of that domain. In the next chapter, we design a series of experiments to investigate these

questions.
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From negative to positive
1. so nasty .
2. so nice .
3. so delicious .
4. so delicious .

1. my goodness it was so gross .
2. my delicious it was delicious .
3. my goodness it was so delicious .
4. my goodness it was amazing .

1. fries are n’t worth coming back .
2. fries are worth coming back !
3. fries are n’t worth coming back .
4. wings are coming back .

1. the cake portion was extremely light and a bit dry .
2. the light and very light with a bit old .
3. the filet are extremely dry and a bit dry .
4. the tuna was a bit dry and satisfying .
From positive to negative
1. i highly recommend this place !
2. i would not recommend this place !
3. i would not recommend this place .
4. i do not recommend this place !

1. they had a salmon dinner on special and it was outstanding !
2. they had a few minutes with dinner dinner and it was horrible !
3. they had a dinner dinner on special and it was outstanding !
4. they had a reservation dinner and it was out on it was cold !

1. my appetizer was also very good and unique .
2. my appetizer was also very good and tasted weird .
3. my appetizer was also very good and unique .
4. my boyfriend was n’t and had a very dry .

1. the food is fresh and the environment is good .
2. the food is fresh and the sushi is very poor .
3. the food is fresh and the environment is good .
4. the food is fresh and the sandwich was too salty .

Table 5.5 Style-shifted outputs of the TST models using Yelp-large. Sequences are ranked
as: 1: Input sequence, 2: Multi-encoder model, and 3: Attention-based model 4: Base model.
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From informal to formal
1. be cool and ask her on a date !
2. be yourself , you get her own !
3. go to go for a own !
4. and just get out with a mind !

1. ask him to go see a doc .
2. ask him to get a lot .
3. you go to go out .
4. ask him to go to a doctor .

1. the show got a little freaky .
2. the movie has a lot .
3. the movie is a great .
4. the movie has a little friend .

1. do you mean seem more sexy ?
2. do you you have sex ?
3. do you have anything ?
4. do you mean more attractive ?
From formal to informal
1. what should i do to be successful with her ?
2. what can i want to be with her ?
3. why does n’t get to get with you ?
4. what i do n’t want to be with him ?

1. i am assuming that you are a republican .
2. i am sure you are a cheater .
3. i think it is not a problem .
4. i am sure that he is a jerk

1. you need to do this a few times to get comfortable .
2. you need to do a lot of them to be married .
3. you should do n’t get to get a chance .
4. you do a lot to go to be more time .

1. make it an honest compliment about her .
2. try it for her for her .
3. it depends on you .
4. get a <unk> and tell him this .

Table 5.6 Style-shifted outputs of the TST models using GYAFC-v2. Sequences are ranked
as: 1: Input sequence, 2: Multi-encoder model, and 3: Attention-based model 4: Base model.
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Chapter 6

Style: locally or globally encoded?

The findings of the previous experiments (chapters 4 and 5) indicated that the concept of

style is not consistent across the sentiment and formality domains. In this chapter, we design

a series of experiments to examine how these variations are encoded. Firstly, we look into

an adversarial transformer-based encoder-decoder TST system and explore the input latent

representations created by different layers of this architecture considering the sentiment and

formality domains. Our motivation for employing transformer-based TST systems as opposed

to single-layered RNNs is that different layers of transformers learn to encode different

textual information according to the previous research (Nedumpozhimana and Kelleher,

2021; Nedumpozhimana et al., 2022). It is interesting to examine how transformer layers

encode stylistic features across different style domains while dealing with the TST problem.

Furthermore, we design an experiment to compare the effect of modifying the weight of the

reconstruction loss of the transformer-based TST model on shifting the sentiment versus

shifting the formality. The idea being that how these models perform considering specifically

the style-shift dimension can further inform the variations between the style domains. We

take a further step towards studying the variations between different style domains through a

unigram analysis experiment where in addition to formality and sentiment, this experiment

also uses the simplicity style domain.

111
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Finally, we investigate whether variations across the style domains should be considered

while framing the TST task. We specifically look into how style characteristics can inform

the strategy that we adopt to compute the CPP of a TST framework.

Throughout the experiments of this chapter, we use the Yelp-small corpus (described in

section 3.1.1), GYAFC-v2 corpus (described in section 3.1.2) and Newsla-v2 corpus (described

in section 3.1.3) to study the style domains of sentiment, formality and simplicity. To evaluate

the performance of the transformer-based TST frameworks, we use the comprehensive

evaluation methodology already applied in the previous chapters to examine the RNN-based

TST systems.

6.1 The proposed transformer-based TST model

Due to the success in many NLP tasks in recent years, including machine translation (Vaswani

et al., 2017), and language modelling (Dai et al., 2019c), transformers (Vaswani et al., 2017)

have attracted the attention of many NLP researchers. TST researchers have also started to

develop transformer-based (T-based) TST models which have outperformed some state-of-

the-art RNN-based models (table 6.1, see rows 1 and 2 versus row 3). In this chapter, we

also employ T-based models and base our experiments on this architecture.

We begin by introducing our proposed T-based model1 which is similar to the T-based

baseline model. The T-based baseline model (introduced in section 3.2.3) is based on the

model proposed by Dai et al. (2019b). We will refer to our proposed T-based model as the

"proposed T-base model" and to the model introduced by Dai et al. (2019b) as the "T-based

baseline model". The proposed T-based model includes an encoder-decoder network as the

Generator block Gen as well as a separate classifier as a Discriminator block Disc (similar to

the T-based baseline model). However, it applies an adaptation to the training regime of the

1The code and data are available at https://github.com/somayeJ/Transformer-based-style-transfer.git
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6.1 The proposed transformer-based TST model

Algorithm 3: Adversarial training of our T-based model
Input: Gen(θE ,θD), Disc (θdisc) and any two corpora Xs1 and Xs2 which have the same
content distribution but different styles (s1 ̸= s2).

1. Sampling two mini-batches with the size k from the sets Xs1 and Xs2 (setting k = 1
for the sake of simplicity).
2. Processing the two mini-batches in parallel, i.e. for each of the sequences xs1 ∈ Xs1 ,
and xs2 ∈ Xs2 , Gen generates a reconstructed and a style-shifted sequence for each
input:

- For x1: x̃(rec)
s1 = G(xs1,s1)

x̃(tr f )
s1 = G(xs1,s2)

- For x2: x̃(rec)
s2 = G(xs2,s2)

x̃(tr f )
s2 = G(xs2,s1)

3. Computing the self-reconstruction loss using the equation 3.8.
4. Computing the discriminator loss using the equation 3.7.
5. Computing the cycle-reconstruction loss using the equation 3.9 and adversarial loss
using the equation 3.11.
6. Training Disc by doing step 4 and performing gradient decent to update θDisc using
gold, reconstructed and style-shifted sequences.
7. Checking the condition LDisc < 1.2 (a pre-set threshold set to 1.2 following
Shen et al. (2017)).

- If LDisc < 1.2: Doing steps 3 and 5 , reconstructed and style-shifted sequences.
Performing gradient decent to update θGen.

- Otherwise: Doing only step 3 and performing the backpropagation and updating
θGen.

8. For all the epochs (20 here), repeating steps 1, 2 , 6 and 7 for all batches and selecting
the model with lowest total loss (equation 3.12) as the best model after each evaluation
step, i.e. after each epoch.

T-based baseline model which is explained in the Algorithm 3: Adversarial training of the

proposed T-based model.

The training regime used in the T-based baseline model (Dai et al., 2019b) which is

described in details in section 3.2.3 differs from the training regime of the proposed T-based

model in a number of ways:

• T-based baseline model has a pre-training step to only train Gen for a number of

batches2 using just the self-reconstruction loss. However, the training of the proposed

2The number of batches used in this pre-training is a hyperparameter.
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T-based model does not involve any pre-training steps, i.e. the whole model is directly

trained from scratch.

• T-based baseline model starts the training by alternating between training Gen and

Disc where, for a number of batches, Gen and then, for a number of batches Disc is

trained3. However, in the proposed T-based model Gen and Disc are trained together in

parallel. The adversarial loss is not used in this training regime until Disc has sufficient

quality that the adversarial loss it returns is informative.

• In each step of training of the T-based baseline model, two processes of parameter

updates are involved. First, backpropagation of self-reconstruction loss and updating

the weights accordingly. Then, backpropagation of the summation of the adversarial

and cycle loss, followed by weight updates. In the proposed T-based model, on the other

hand, the backpropagation and the weight updates of the parameters are performed

once using the summation of adversarial loss, and the two reconstruction losses.

Experimental setup of the proposed T-based TST model Each stack of E and D of our

T-based model has 4 attention heads. The size of token embeddings, positional embeddings,

style vectors and the hidden size of the model are 256. The max-length for generated outputs

is 15 for Yelp and 24 GYAFC and the learning-rate is 0.0001 for both Gen and Disc. The

evaluation-step is 1 epoch, the optimizer is ADAM, the batch-size is 64 and the dropout-rate

is 04.

The performance of the proposed T-based model Table 6.1 reports the results of the

proposed T-based model, the baseline T-based model and the RNN-based baseline model.

The results show that the proposed T-based model outperforms our state-of-the-art RNN-

3The number of batches used in training Gen and Disc is another hyperparameter.
4Hyperparameters of the proposed T-based model are mostly adapted from (Dai et al., 2019b)

(http:/github.com/fastnlp/style-transformer) and are explained in in table 3.9.
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6.2 Reconstruction loss versus adversarial loss

Dataset Yelp-small (sentiment) GYAFC-v2 (formality)

Model/ Evaluation metrcis CPP PPL SSP CPP PPL SSP
T-based baseline model* 0.9717 106.07 78.50% 0.9516 289.20 28.99%
Proposed T-based model 0.9718 126.12 83.00 % 0.9741 141.44 47.19%

RNN-based baseline model 0.9261 37.98 81.8% 0.9088 26.81 65.11%

* The code released by Dai et al. (2019b) did not specify a training stopping criterion and so to reproduce these
results we specified our own stop-criterion and model selection strategy (see algorithm 2 in section 3.2.3.3).
Table 6.1 Higher CPP and SSP show better performance, but lower values of PPL reflect
better fluency. α and β of the reconstruction loss of the both T-based models are set to 0.25
& 0.5 (equation 3.10).

based baseline model (proposed by Shen et al. (2017)) especially in terms of CPP (see rows

2 and 3). Also, comparing rows 1 and 2 of table 6.1 shows that the proposed T-based model

slightly improves the performance of T-based baseline model, a slight improvement in CPP

and SSP on Yelp and a larger improvement in CPP for GYAFC with a drop in SSP. However,

these results are recorded from single runs of the model and so we do not claim a statistical

difference here.

More importantly, however, applying the adapted training regime reduces the computa-

tional cost, i.e. to reach these results, the training time needed for the the proposed T-based

model is lower than the training time needed for the baseline model. To be more precise, it

took around 36 hours to train the proposed T-based model as compared to 75 hours training

time applying the training regime from Dai et al. (2019b) while using the same hardware

(single Quadro RTX 8000s GPU) and corpus (Yelp-small)5.

6.2 Reconstruction loss versus adversarial loss

In the next experiment, we investigate the variations between sentiment and formality

domains by modifying the weight of reconstruction loss while keeping the weight of the

adversarial loss constant. The total loss of the proposed T-based model is the weighted

5The number of trainable parameters of the T-based model is 19859513.
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Datasets Yelp-small GYAFC-v2
Models Trec Tcyc Trec Tcyc

SSP 83.8% 70.9% 32.71% 41.52%
Evaluation PPL 107.07 99.88 101.57 154.35

Metrics GloVe 0.9732 0.9767 0.9743 0.9714
CPP GloVe-LB 0.86 0.87

SBERT 0.5869 0.6177 0.8595 0.8108
SBERT-LB 0.0939 0.0672

WO 0.5728 0.6305 0.8154 0.7357
WO-LB 0.0101 0.0045

Table 6.2 α and β of the proposed T-based models Ti are: (Trec; α=1, β= 0.5), (Tcyc; α=0.5,
β=1), LB indicate the Lower Bound score. (α and β shown in the equation3.10)

summation of the self-reconstruction, cycle-loss and adversarial loss (equation 3.12) and the

contribution of these three losses are not normalized. Therefore, increasing the weights of the

self-reconstruction (α in 3.10) and cycle-reconstruction (β in 3.10) can push the TST model

to behave more as an auto-encoder. Re-weighting of the reconstruction losses of the TST

model is an interesting experiment to reveal the characteristics of different style domains.

The idea here is that the more a TST model is weighted towards acting as an auto-encoder,

the less it is able to shift the style. This can be specifically reflected in the case of dealing

with styles that are pervasive across a text and which the rewriting of a text into requires

global modifications to the text.

In the previous experiments (results of table 6.1) models were trained with a relatively

large emphasis on the adversarial loss during training, since the summation of the weights

of the self-reconstruction α = 0.25, and cycle-reconstruction β = 0.5 equal to 0.75 which

is less than 1 which is the weight of adversarial loss. In this experiment, we train the

proposed T-based model with a greater emphasis on the reconstruction loss as opposed to

adversarial loss by doubling the summation of α and β and train two models by having

the weight of reconstruction loss equal to 1.5 as opposed to adversarial weight which is

kept constant as 1. We train two new models: Trec; α=1, β= 0.5, and Tcyc; α=0.5, β=1.

Comparing the results of Trec and Tcyc in table 6.2 with the scores of the proposed T-based
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model (row 2 of table 6.1) indicates that, in Yelp, Trec performs better than the proposed

T-based model in every evaluation aspect and Tcyc also has a better CPP and fluency. In

GYAFC-v2, however, increasing the weighting towards reconstruction loss does not appear

to be as beneficial overall. The performance of Tcyc drops in every aspect of evaluation and

although an improvement is observed in CPP and fluency for Trec, the SSP for Trec drops by

a large amount.

Increasing the weight of the reconstruction loss relative to the adversarial loss is beneficial

for both CPP and SSP in the sentiment domain but results in much lower SSP in the formality

domain. This suggests that shifting style in the sentiment domain requires fewer text changes

compared to the formality, i.e. sentiment is more locally encoded compared to formality.

During training, the re-weighted TST models tended to act more similarly to an auto-

encoder while using the GYAFC-v2 corpus compared to when Yelp-small was used. For

instance, we trained Trec a number of times from scratch so that it converged as a TST

model and reached the reported performance in table 6.2. When it failed to converge, this

model kept reaching very low SSP scores, an average of 15%6 and very high CPP scores,

an average GloVe-based CPP score of 0.991, almost the same as GloVe-based CPP scores

of the reconstructed files. These results which are very similar to when the model is only

trained to reconstruct inputs (auto-encoder) suggest that decreasing the relative emphasis on

adversarial loss as compared to the reconstruction loss results in the models finding it more

difficult to learn how to shift formality. Tables 6.8 and 6.9 list some samples of style-shifted

outputs created by the TST models. These samples also show how T-based models act more

like auto-encoders in formality domain as compared with the sentiment domain.

6As table 3.10 shows, the lower bound score of SSP in GYAFC-v2 dataset is 13.89%.
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6.3 Encoding variations across sentiment and formality

domains

We design some experiments here to investigate the variations of style domains by firstly

looking into how different layers of the proposed T-based encoder of the proposed TST

model encode different styles (section 6.3.1). Then, we compare the observations from this

experiment with the variations that can be detected in human-generated data across the style

domains (section 6.3.2).

6.3.1 Probing the layers of encoders of T-based models

An interesting aspect of transformer models is that they include multiple self-attention

layers. Indeed, researchers interested in understanding how transformers encode linguistic

information have probed how the encoding of this information varies across the layers of

transformers trained for different NLP problems (Nedumpozhimana and Kelleher, 2021;

Nedumpozhimana et al., 2022). However, to the best of our knowledge, the encoding of

style across the layers of a TST transformer has not yet been examined. This experiment

focuses on examining different layers of the encoder of the proposed T-based TST model and

comparing how these layers encode formality and sentiment. Specifically, this experiment

investigates the presence of source style in the input latent representations created by each

layer of the encoder of the proposed T-based TST system.

To do so, inspired by some previous work (Conneau et al., 2018; Jafaritazehjani et al.,

2020, 2021), we design a probing classification experiment and train 6 probes (classifiers), i.e.

a probe for embedding layer, 4 separate probes for the outputs of each layer of the encoder

subnetwork, and a probe for the final output of the encoder (figure 6.1). Each probe is a

Feed-Forward network with a single hidden layer and a sigmoid output layer and is trained

to detect the source style of the embedding representation of the input text which is created
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Figure 6.1 Probing classification experiment on different layers of transformer encoder

by the layer corresponding to that probe. This means that the higher the accuracy score

of a probe, the more source style is encoded in that layer. Given an input sequence, the

embedding vector created by a layer is computed as the average of the token embeddings of

this sequence generated by that layer.

Moreover, we train two baseline probes, one for each style domain. To do so, we create

embedding vectors of the data using a pre-trained GloVe model, i.e. given a sequence, first,

its tokens are mapped to their 100-dimensional GloVe embeddings. The average of these

embeddings is then computed as the sequence embedding. The binary baseline probes for

the sentiment and formality domains are trained using GloVe-based representation of the

Yelp and GYAFC data, respectively.

The accuracy of the baseline probes across sentiment and formality domains are 0.85%

and 0.71% respectively. This indicates that sentiment information are better encoded using a

bag-of-words based pre-trained embedding model compared to formality. GloVe embedding

are trained considering word-word co-occurrence and disregarding word positions and their

order in a sequence (Pennington et al., 2014). This makes GloVe-based embedding vectors

created in this experiment for each sequence a bag-of-words representation focusing more
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Datasets Yelp-small GYAFC-v2
Models Trec Tcyc Trec Tcyc

GloVe-baseline 85.80% 71.01%
Layer-wise Embedding layer 89.9% 87.4% 75.74% 78.69%

probing Stack1 100% 90.5% 74.18% 80.48%
of encoder Stack2 100% 100% 99.63% 88.2%

of the proposed Stack3 100% 100% 100% 100%
T-based model Stack4 100% 100% 100% 100%

Final output 100% 100% 100% 100%
Table 6.3 α and β (equation3.10) of the proposed T-based models Ti are: (Trec; α=1, β= 0.5),
(Tcyc; α=0.5, β=1), LB indicate the Lower Bound score.

on the local information of the tokens. On the contrary, it can be said that sequence vectors

created using the outputs of different layers of the transformer encoder consider the contextual

and positional information of the tokens . This is due to the attention-based architecture of

this model which allows the token embeddings to be fine tuned with regards to its surrounding

tokens which leads to encoding more contextual-based information. Adding more stacks

to the encoder may result in better encoding of the information of the context of use of the

tokens. Therefore, the higher the stack of the encoder is the more global information it

encodes.

The probing experiment in this section studies how style-related information is encoded

in different stacks of the encoder across the domains of sentiment and formality. Table

6.3 show the results of layer-wise probing of the encoder of T-based model. These results

illustrate that the probes of sentiment domain reach 100% accuracy in lower layers compared

to the probes of formality domain. This indicates that formality is more sensitive towards

global structure of the sentence, i.e. there is a need to encode more information from across

the sequence to create the token embedding representations in formality as compared with

sentiment.

The results of this probing experiment suggest that sentiment is more locally encoded

compared formality. This means that sentiment is more reliant on local information, for
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instance tokens can be considered as style bearing segments of sequences. However, in the

domain of formality, style is more globally encoded which makes it more reliant of structural

information of sequences. In the next section, we examine whether this hypothesis holds by

doing a unigram analysis across these two domains.

6.3.2 Unigram analysis

Results of the layer-wise probing of the transformer encoder (section 6.3.1) indicate variations

in how sentiment and formality styles are encoded. These results suggest that sentiment

is a more local entity of the text as opposed to formality which is more global. To further

investigate this, we designed a unigram-based experiment. The idea being that it can enable

us to compare how many word swaps must be done in a style domain so that style-shift to

the extent of SSP of the style-shifted text happens considering the domains of sentiment, and

formality. We then extended this experiment to the style domain of simplicity too.

This experiment focuses on comparing the token overlaps of inputs and style-shifted gold

outputs created by human across different style domains7. Word overlap between two texts

is calculated as the unigram overlap rate between them8. In this experiment, for the dataset

Yelp-small, we compute the word overlap between the sequences of the test set and their

corresponding human-generated (gold) style-shifted texts and report the average score of

these pairs as the word overlap score of these two sets. For the dataset GYAFC-v2, for a

given test file of style 1 (either formal or informal) of each of the domains of Entertainment

& Music (E&M) or Family & Relationships (F&R), there are 4 gold style-shifted files. The

word overlap for each domain is calculated as (∑2
s=1 ∑

4
i=1 WOsi)
8 where WOsi is the word overlap

between the test file of style s and gold style-shifted file i. The average of the word overlap of

the two domains is reported as the word overlap score of the dataset GYAFC-v2 (table 6.4).

7We took a further step and did this experiment while comparing test data with the style-shifted outputs of the
of the RNN-based TST models of baseline, attention-based and multi-encoder instead of gold human-generated
style-shifted sequences. The two experiments led to similar results and conclusions.

8This metric is explained in section 3.3.1.

121



6.3 Encoding variations across sentiment and formality domains

Average scores of metrics
Metrics Word overlap Accuracy

Datasets Yelp-small (sentiment) 0.4253 77.20%
GYAFC-v2 (formality) 0.4057 70.45%
Newsla-v1 (simplicity) 0.3615 79.2%

Table 6.4 The results of word overlap between sequences of test set and their gold style-
shifted text and accuracy of detecting desired style of gold style-shifted text.

We also compute the percentage of the presence of the desired style in the gold style-

shifted sets corresponding to the test sets of the datasets Yelp-small and GYAFC-v2 as an

indicator of how well the annotators have shifted the styles of the test sets. To do so, for

each dataset, Yelp-small and GYAFC-v2, the accuracy of its corresponding pre-trained SSP

classifier9 in detecting the desired style of the gold files is measured (column Accuracy of

table 6.4). For the domain of formality where several gold style-shifted sets are available,

for each domain, the reported score is the average of accuracy values that the pre-trained

classifier assigns to each domain which is computed as (∑2
s=1 ∑

4
i=1 ACCsi)
8 where ACCsi is the

accuracy of the classifier in detecting labels of the gold text in file i with the source style s.

The results of rows 1 and 2 of table 6.4 shows that, in the domain of sentiment, there

is more word overlap between the test files and their corresponding gold style-shifted text

0.4253 as compared with the formality domain 0.4057. The difference between the word

overlap values 0.02 is meaningful since the lower bound of word overlap is 0.004510. This

taken together with the higher accuracy of the pre-trained SSP classifiers in detecting the

desired labels of the gold files of the sentiment domain (77.20% as opposed to 70.45% in

formality domain) further validates our hypothesis of sentiment-shift being more reliant on

local changes and a relatively small number of word swaps as compared with formality which

seems to be a more global entity. Observing a higher word overlap as well as a higher SSP in

sentiment domain versus the formality domain suggests that, to shift formality effectively,

9Pre-trained SSP classifiers are introduced in section 3.3.1.
10How lower bounds are computed is explained in section 3.3.1.
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6.4 The intersection between style characteristics and TST task

there is a need to do more than word swaps. This can further indicate that formality-shift is a

more complex task as opposed to sentiment-shift.

Investigating the simplicity style domain To better contextualise these results, we extend

our analysis to the style domain of simplicity using dataset Newsela-v1 (described in section

3.1.3) which contains sequences in styles complex and simple. The results of row 3 of table 6.4

show that the simplicity domain exhibits the lowest word overlap of the three domains 0.3615.

Interestingly, although the simplicity domains also has the highest style-shift accuracy score

(SSP of 79.2%) across the three domains, this accuracy score is quite close to that accuracy

score of the sentiment domain (SSP of 77.2%). This is somewhat surprising as one might

expect that given the much lower word overlap in simplicity versus sentiment (0.3615 versus

0.4253) that this would result in a much larger difference in accuracy across the domains.

One way to interpret this is that the concept of style in the simplicity domain relies on more

than differences in words but also on structural properties of the text (i.e., simplicity-transfer

involves both token-based swaps and structure-based changes) and that modellings these

structure based changes is challenging for the style classifiers, hence the lower than expected

accuracy of these classifiers in the simplicity domain. Consequently, this may suggest a

stronger style encoding similarity exists between simplicity and formality than simplicity and

sentiment.

6.4 The intersection between style characteristics and TST

task

Overall the results of the experiments of the current chapter indicate that sentiment is a

more local phenomenon within a text as compared with formality. This section investigates

whether these style domain specific characteristics should be considered while framing the
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TST task. It first examines the evaluation metric of CPP by looking into the performance of

GloVe-based versus SBERT-based CPP metrics across the sentiment and formality domains

(section 6.4.1). Then, it discusses the performance of various architectures while dealing

with sentiment-shift and formality-shift (section 6.4.2).

6.4.1 SBERT-based versus GloVe-based CPP metric

One of the common approaches to compute the CPP of TST models is to rely on cosine

similarity technique (section 3.3.1) where different pre-trained embedding models can be

applied to create token embeddings. However, many previous work such as (Fu et al., 2018a;

Shen et al., 2017; John et al., 2019; Jafaritazehjani et al., 2020, 2021, 2022) used a GloVe

pre-trained embedding model to map tokens to their pre-trained embedding vectors.

We observed in section 6.3 that encoding the information in some style domains such

as formality is beyond the representational capacity of a bag-of-words and is more a global

property of the text. This insight questions the suitability of applying pre-trained embed-

ding models, such as GloVe, which focus more on local information in text to compute

token embeddings. Here, we propose to compute CPP using contextual embeddings by

applying the pre-trained model of SBERT11 (Reimers and Gurevych, 2019). SBERT is a

T-based architecture which, given a text, applies a layered attention mechanism to create

embeddings of tokens which leads to capturing more of the structural and global properties

of a text. Computing SBERT-based CPP scores enables us to compare the performance

of pre-trained contextual embedding models versus pre-trained bag-or-words embedding

models in capturing the information of the text across the sentiment and formality domains.

SBERT-based versus GloVe-based CPP across different style domain using human-

generated text To examine the performance of the SBERT-based versus GloVe-based CPP

metrics across sentiment and formality domains, we conduct an experiment as follows.
11https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4
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CPP Metrics GloVe-based SBERT-based
Datasets Yelp-small (sentiment) 84% 75.5%

GYAFC-v2 (formality) 71% 95.5%
Table 6.5 Comparing the performance of GloVe-based and SBERT-based CPP metrics in
assigning the highest scores to the most similar pairs across the domains of sentiment and
formality

For each style domain, we randomly select 200 samples from the test set of that domain

as the source sequences, i.e. 100 samples from the style 1 and 100 samples from style 2.

For instance, in the domain of formality, 100 formal samples and 100 informal sequences

are randomly selected. For each of the selected source sequences, we then create a style-

shifted set which contains its corresponding gold style-shifted sequence12 as well as 499

other sequences which are randomly selected from another domain of style. This means

that, if we are performing the experiment in the domain of sentiment, we select the random

sequences from another domain such as formality. This is to reduce the chances of the

random sequences resembling the output which may occur in the data with the same content

distribution.

After composing the source set and style-shifted set, we compute the CPP scores between

each given source sequence and the sequences in its corresponding style-shifted set using

both SBERT-based and GloVe-based metrics. We expect that, given a source text, a good CPP

metric assigns a higher value to the pair of (source text, its corresponding style-shifted text)

rather than to the pairs of (source text, random text 1), ..., (source text, random text 499). The

results of table 6.5 show that SBERT-based metric performs better in the formality domain

by assigning the highest values to the pair of (source text, its corresponding style-shifted

text) in 95.5% of the times as compared to the 75.5% of times in sentiment domain. This

implies that contextual embeddings of SBERT models are more efficient to compute CPP

scores in the formality domain which is inline with our observation suggesting that formality

12In the domain of formality, there are four gold sequences (four human annotators) available for each test
sequence. The gold samples are randomly selected from these four sets.
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is encoded as a global property of a text, i.e. it is beyond the representational capacity of a

bag-of-words.

On the other hand, the scores of table 6.5 indicate that the GloVe-based CPP metric does

a more precise job in the sentiment domain by assigning the highest values to the pair of

(source text, its corresponding style-shifted text) in 84% of the times as compared to 71%

of the times in the formality domain. As mentioned earlier, it seems like while computing

the similarity of the sequences, GloVe-based metric assigns high scores to the pairs of

(source text, its corresponding style-shifted text) which resemble in content regardless of

their different sentiment (table 6.6 sentence pairs 1 and 2). However, SBERT-based CPP

metric assigns low scores to these pairs which indicates that SBERT embedding model

differentiates between tokens having different sentiment. This can shed more light on why

GloVe-based CPP metric compute more precise scores in the sentiment domain compared to

the SBERT-based metric13.

Score variations of SBERT-based versus GloVe-based CPP Firstly, comparing the

SBERT-based CPP scores of the table 6.2 and the GloVe-based scores of the tables 4.1, 5.1,

6.1, and 6.2 illustrates that SBERT-based values have a larger range compared to GloVe-based

scores which are quite similar in values.

Given the upper bound 1 of a cosine similarity based metric, the range for a given metric

and a given domain is computed as the difference between the upper and lower bound scores

of the metric in that domain. The range for the GloVe-based scores in sentiment and formality

domains are 0.14 and 0.13 respectively. However, for the SBERT-based values, these ranges

changes to 0.9061 and 0.9328 for sentiment and formality domains (lower bounds of these

metrics are reported in table 6.2). The larger variation range of the SBERT-based metric

13We extended the experiment by investigating how SBERT-based and GloVe-based metrics compute the
CPP scores considering the style-shifted outputs of of the RNN-based TST models of baseline, variational,
attention-based and multi-encoder instead of the gold style-shifted sequences. The results showed that the
findings are valid while using automatically generated style-shifted text.
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Samples from sentiment domain SBERT GloVe
1 s: there is definitely not enough room in that part of the venue . 0.26 0.999

t: there is definitely enough room in that part of the venue .

2 s: ever since he has changed hands it’s just gotten worse and worse . 0.41 0.988
t: ever since he has changed hands it’s always gotten cool and cool .

Samples from formality domain SBERT GloVe
3 s: u mean the question to _num_ question right ? 0.56 0.894

t: it is the question to _num_ .

4 s: thats weird but maybe idk ill talk to my friend by his locker . 0.17 0.791
t: it is but maybe two .

Table 6.6 Comparing SBERT-based and GloVe-based CPP scores computed between the
given source (s) and style-transferred sequences (t).

suggests that SBERT is more sensitive to changes in a text and so applying these contextual-

based pre-trained embeddings addresses the issue of the insensitivity of the GloVe-based

cosine similarity based CPP metrics which has been discussed in some previous (John et al.,

2019; Jafaritazehjani et al., 2021, 2022).

Moreover, table 6.2 shows that GloVe-based CPP values are quite similar across the

domains of sentiment and formality: considering the TST models of Trec and Tcyc, the average

GloVe-based scores for the sentiment and formality domains are respectively 0.975 and

0.9728. However, the SBERT-based values in sentiment domain noticeably differ from those

of the formality domain. The average score of the SBERT-based metric for the models Trec

and Tcyc across the domains of sentiment and formality are 0.6023 and 0.8351, respectively.

This can be due to the fact that SBERT model unlike GloVe embedding system captures

the negation and opposite sentiment while creating embedding representations of the words.

For instance, in sample pair 1 of table 6.6 where source and target sequences have opposite

sentiment, i.e. they differ in having and lacking the token "not", SBERT captures the different

sentiment of the source and style-transferred texts. Therefore, the cosine similarity score

between their embedding vectors is low, 0.26. However, using a GloVe model, the cosine
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similarity score of vector representation of the source and target texts of pair 2 is 0.999 which

means the two GloVe-based embedding vectors are very similar and the opposite sentiment

is not well encoded. In sample pair 2 also SBERT model seems to distinguish between the

tokens with different sentiment: "cool" and "cool" as opposed to "worse" and "worse", since

it compute a low similarity score of 0.41 for this sequence pair. This does not seem to be the

case for GloVe-based metric which assigns a very high score of 0.988 to this pair.

In the formality domain, on the other hand, SBERT-based and GloVe-based CPP metrics

seem to agree more on the similarity of the source and style-transferred sequence pairs. For

instance, pairs 3 and 4 of table 6.6 are sample pairs from formality domain where the reported

cosine similarity scores between source and style-transferred embedding vectors created by

both SBERT and GloVe models are low (relative to their score ranges).

6.4.2 How understanding the encoding of style can inform the design of

a TST model

Previous results (section 6.3) suggested that stylistic features of some styles such as formality

are more globally encoded. It can be said then that the characteristics of these styles are more

implicit and therefore texts having more pervasive features across the text (as opposed to the

texts with more locally encoded stylistic features) are more similar to separate languages. If

this hypothesis holds, we expect that applying separate decoders for each style and thereby

enabling each decoder to specialize in the language distribution of its style should result in a

large positive impact on SSP for globally encoded styles (such as formality) as compared

to more locally encoded styles (such as sentiment). Table 6.7 illustrates that applying style-

specific RNN-based decoders leads to an increase of SSP and a drop in CPP for both style

domains compared to the baseline RNN-based model. However, the SSP increase is bigger

in the formality domain, 17.09% compared to 11.1% in the sentiment domain. The worse

128



6.5 Discussion

Dataset Yelp-small (sentiment) GYAFC-v2 (formality)

Model/ Evaluation metrcis CPP PPL SSP CPP PPL SSP
RNN-based baseline model 0.9261 37.98 81.8% 0.9088 26.81 65.11%

Multi-decoder RNN-based model 0.9206 41.37 92.9% 0.9086 31.11 82.20%

Table 6.7 Comparing the results of the single-decoder and multi-decoder RNN-based models
in the sentiment and formality domains.

perplexity of the multi-decoder TST models may be due to the fact that less data is available

to train each of the decoders.

This observation suggests that applying style-specific decoders is more beneficial to more

complicated TST tasks such as formality-shift as opposed to sentiment-shift, i.e. due to

characteristics of style domains, some TST architectures can work better in one domain than

another style domain. This implies that style characteristics can inform not only the choice

of evaluation strategies, but also the selection of TST architectures.

6.5 Discussion

The results of the previous chapters revealed that the concept of style is not consistent across

the style domains. In this chapter, the focus was firstly on discovering how variations across

style domains are encoded. Then, to explore the intersection between domain-specific style

characteristics and the TST task. The main findings of the current chapter which address the

research questions 3, 4 and 5, respectively (section 1.2). are as follows.

• Sentiment is more locally encoded as compared to the formality which is a more

global characteristic of the text. The results also imply that sentiment-shift can be

performed by doing less complicated modifications (more token-based) as compared

with formality-shift.

To reach these results, firstly, we examined the effect of putting more emphasis on

encoding the input content on the sentiment-shift and formality-shift tasks resulting
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in T-based models acting more like an auto-encoder and observed that this resulted in

a large drop in SSP in the formality domain (section 6.2). Secondly, we conducted a

probing classification experiment on the different layers of the transformer encoder

which revealed that sentiment characteristics are encoded in lower layers of the encoder

as opposed to formality (section 6.3.1). Then, we performed a unigram analysis test

comparing the test data and style-shifted sequences which further confirmed the global

characteristics of formality compared to sentiment (section 6.3.2).

• Moreover, the results revealed that the variations across the style domains can inform

adopting methodologies while dealing with the TST task by showing that GloVe-

based metrics are more appropriate in computing the CPP of sentiment-shift systems,

whereas, SBERT-based CPP metrics do a better job in formality domain (section6.4.1).

We also observed that employing some architectures seems to be more effective in the

sentiment domain versus the domain of formality which can be indicative that style

characteristics can inform the design of TST architecture (section 6.4.2).

• Finally, the results of the T-based TST models of the current experiments revealed a

trade-off between the CPP and SSP dimensions which mostly holds for the aspect of

fluency too14. This is inline with the trade-off between the evaluation aspects of the TST

task observed in the results of the RNN-based TST systems in the previous chapters.

This shows that this trade-off holds while using both RNN-based and transformer-

based TST systems which further validates the comprehensive methodology which

was proposed and employed throughout the experiments of this research.
14T-based baseline model in the domain of formality (table 6.1) has a very low SSP score which can mean

that it has not converged as a style-shift model and its results have not been considered here.
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6.6 Conclusion

The findings of this chapter implied that formality is more globally encoded as opposed to

sentiment which seems to be a more local characteristic. Studying the variations across style

domains is significant since they can contribute to the TST task in different aspects. Firstly,

these findings can help provide a more precise definition of the concept of style. Secondly,

as the experiments in this chapter showed, domain-specific style characteristics can inform

the selection of the methodologies for TST, specifically the CPP metric and the selection of

TST architectures. We attribute this observation to the specific characteristics of sentiment

and formality domains and characteristics of each pre-trained embedding model.

The findings of this research leads us to the future research direction of exploring the

interaction between style characteristic and evaluation aspects of SSP and fluency. Further-

more, investigating how style characteristics can be taken into account while designing the

TST architectures is an interesting direction for future research which can lead us towards

improving the TST task more systematically.
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From negative to positive
1. we sit down and we got some really slow and lazy service .
2. we sit down and we got some really quick and efficient service .
3. we sit down and we got some really amazing and sauces service .
4. we sit down and we got some really professional and smile service .
5. we sit guys and we got some really professional and this service .

1. there chips are ok , but their salsa is really bland .
2. there chips are ok , but their salsa is really fresh .
3. there chips are terrific , but their salsa is really flavorful .
4. there chips are perfect , but their salsa is really excellent .
5. there chips are enjoyed , but their salsa is really always .

1. so basically tasted watered down .
2. so basically tasted huge recliners .
3. so basically glad extensive best .
4. so basically tasted delight happy .
5. so basically tasted talented guys .
From positive to negative
1. the drinks were affordable and a good pour .
2. the drinks were late and a good pour .
3. the drinks were flavorless and a bad pour .
4. the drinks were affordable and a bad pour .
5. the drinks were disappointment and a good pour .

1. my husband got a ruben sandwich , he loved it .
2. my husband got a ruben sandwich , he hated it .
3. my husband got a ruben sandwich , he hated it .
4. my husband got a ruben sandwich , he crap it .
5. my husband got a ruben sandwich , he nothing it .

1. friendly folks , delicious authentic bagels , tasty cream cheese .
2. in nerve , nothing nerve bagels , hard cream cheese .
3. friendly folks , not authentic bagels , tasty cream cheese .
4. rude folks , disappointing authentic bagels , cheap cream cheese .
5. friendly folks , horrible wrong bagels , tasty cream cheese .

Table 6.8 Style-shifted outputs of the transformer-based TST models using Yelp-small.
Sequences are ranked as: 1: Input sequence, 2: T-based Baseline model, 3: The proposed
T-based model, 4: Trec model, 5: Tcyc model.
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From informal to formal
1. be cool and ask her on a date !
2. be cool and ask her on a date !
3. be cool and ask her on a date !
4. be cool and ask her on a date !
5. be cool and ask her on a date !

1. ask him to go see a doc .
2. ask him to go see a doc .
3. ask him to go see a doc .
4. ask him to go see a doc .
5. ask him to go see a doc .

1. the show got a little freaky .
2. the show got a little freaky .
3. the show got a little freaky .
4. the show got a little freaky .
5. the show got a little freaky .
From formal to informal
1. what should i do to be successful with her ?
2. what should i do to be successful with her ?
3. what should i do to be ’d with her ?
4. what should i do to be successful with her ?
5. what should i do to be striptease with her ?

1. i am assuming that you are a republican .
2. i am heave retail heave retail backing heave retail backing
3. i am assuming that you are a republican i am assuming that you are republican
4. i am assuming that you are a republican .
5. i am assuming that you are a republican .

1. you need to do this a few times to get comfortable .
2. you need to do this a few times to get comfortable .
3. you need to do this a few times to get comfortable .
4. you need to do this a few times to get comfortable .
5. you need to do this a few times to get comfortable .

Table 6.9 Style-shifted outputs of the transformer-based TST models using GYAFC-v2.
Sequences are ranked as: 1: Input sequence, 2: T-based Baseline model, 3: The proposed
T-based model, 4: Trec model, 5: Tcyc model.

133



Chapter 7

Summary and future directions

The current chapter summarizes the experimental results, the findings, and the contribution

of this research. It also discusses the possible directions for future work.

7.1 Summary of the research and main contributions

This thesis has had its main focus on exploring textual style within and across style domains

and how it can contribute to the TST task. Specifically, it has investigated the style concept

in aspects such as how it is related to content (chapters 4) and its consistency across different

style domains (chapter 5). Moreover, in chapter 6, it has examined the style variations across

various domains of style and how domain-specific style characteristics and TST problem can

interact. This section provides a summary of experimental work, findings and contributions

of this research, first, in terms of style characteristics (section 7.1.1) and then in terms of how

these characteristics can contribute to the TST task (section 7.1.2). Finally, it reviews the

factors that should be considered while evaluating the TST task (section 7.1.3). We discuss

the main contributions of the current research in more details here (sections 7.1.1, 7.1.2 and

7.1.3).
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7.1.1 Investigating style characteristics while framing the TST problem

Throughout experiments of this thesis, several end-to-end adversarial TST systems have

been proposed. To explore textual style, firstly, some experiments were designed to study

the latent space of these systems. Specifically, a series of probing classifiers were trained

to analyse the latent space of several RNN-based adversarial TST models. The results of

these experiments (performed in chapters 4 and 5) which indicate the presence of the style

of inputs in their corresponding latent representations lead to contribution 1 which directly

addresses the research question 1: Are the two elements of style and content separable?.

Contribution 1 indicates that style and content cannot be totally separated and shows

that this finding holds across different style domains of sentiment and formality. This

observation questions the conceptual basis of the computationally-based strategies used

in some previous work on textual style transfer where stylistic features are detected and

removed as a preliminary step (Li et al., 2018a; Madaan et al., 2020; Leeftink and Spanakis,

2019; Xu et al., 2018; Zhang et al., 2018a; Sudhakar et al., 2019).

Chapter 5 of this research presented our answer to the reserach question 2: Is the concept

of style consistent across different domains? Different experiments were conducted to

compare the level of entanglement of style and content across sentiment and formality

domains. Namely, variational techniques were applied to modify the latent space of the

TST frameworks by stripping out the source style features from it. Then the effect of

this experiment across different style domains was studied. The experimental results of

this chapter revealed that style and content are more entangled in the sentiment domain as

opposed to the formality domain. The findings of these experiments led to the contribution 2

indicating that style is not consistent across different style domains. Many previous research

framed the TST problem regardless of stylistic characteristics. This observation questions

these approaches which implicitly assume that consistency of the the style concept across

different domains.
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Considering this observation, chapter 6 proceeded by exploring the research question 3:

How does the encoding of style vary across domains? Specifically, it applied transformer-

based adversarial TST systems to frame the task and designed some probing experiments to

study how style features are encoded in different layers of the transformer-encoder of the

TST networks. This revealed that sentiment features are more local compared to formality

features which are more global. Moreover, other tests including a series of unigram-based

experiments further confirmed this observation. These results lead to contribution 3 stating

that the encoding of style can vary.

7.1.2 Interaction between style characteristics and TST problem

The findings of this work have indicated that different domains of style are different in terms

of how style is encoded. This raised the research question 4: How do the characteristics of

style and the task of TST interact?

Chapter 6 investigated this interaction by looking into how domain-specific style char-

acteristics can inform the selection of experimental methodologies while dealing with TST

problem. In particular, it focused on evaluation methodologies in the case of computing CPP.

It reported some experiments which indicated that GloVe-based CPP metrics work better

in computing the CPP in the sentiment domain. However, these experiments also revealed

that SBERT-based CPP metrics do a more precise job in computing the CPP while doing

formality-shift task. These findings which are inline with the domain-specific characteristics

that we observed in these two style domains form contribution 4 of the current work. This

contribution indicates that style characteristics can improve the TST task in different ways

such as informing the adoption of evaluation methodology.
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7.1.3 A comprehensive evaluation methodology for TST problem

TST is a multi-objective task which aims at generating a linguistically fluent text in a desired

style while preserving the content of a given text. Which factors to consider while evaluating

a TST model is an open question in the field of TST which has been investigated in this thesis

as the research question 5: What factors are relevant for the evaluation of a TST system?

The results of the TST evaluation frameworks used throughout the experiments of the chapters

4, 5 and 6 showed a trade-off between the evaluation dimensions of SSP, CPP and fluency

across different style domains and architectures. This implies that a comprehensive evaluation

methodology is needed for the TST task which leads to another contribution of the current

work.

Contribution 5 states that the three dimensions of the TST task should be considered

during the evaluation process to form a comprehensive evaluation methodology: content

preservation power, style-shift power and fluency. In practice, many state-of-the-art papers

on TST including (Fu et al., 2018a; Gröndahl and Asokan, 2020; Hu et al., 2017b; Li et al.,

2018b, 2020; Madaan et al., 2020; Xu et al., 2018) do not consider all these three evaluation

dimensions. Consequently, papers do not fully validate their approach and hence, they cannot

easily be compared. Moreover, the presence of a trade-off between the three aspects of

evaluation that has been reported in some previous research (John et al., 2019; Li et al., 2020;

Tikhonov et al., 2020) highlights the importance of considering all the three aspects. This

trade-off implies that considering one or some aspects and disregarding the other(s) can lead

to sacrificing the aspects which were not considered.

7.2 Secondary contributions

A variety of other contributions have been made to the TST filed while doing the current

research. These secondary contributions are discussed in this section.
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1. Our findings clarified style characteristics in various style domains. Doing this from

a theoretical perspective, can improve the knowledge of style and help to define this

concept more precisely.

2. Clarifying style characteristics from a more practical perspective, can contribute to

the TST research by reducing confusion during the manual compositions of parallel

data (Dai et al., 2019b). It can also result in creating more clear guidelines for the

human evaluation tests in the TST field. This can disambiguate the evaluations process

for the human judges which can lead to more reliable human test results with higher

inter-annotator agreements.

3. As the results of experiments in section 6.4.2 implied employing multi-decoder strategy

improved the formality-shift task better than the sentiment-shift problem. This can be

due to the variations between these style domains which can mean that clarifying style

characteristics can also be applied to inform the design of TST architectures.

4. The TST task can be framed as a multi-task problem by focusing on the characteristics

of the style domain it considers. The idea here is to use the knowledge from one

domain to improve the performance of the TST task. Style characteristics can in fact

help in applying the appropriate task to frame together with the style-shift problem

using multi-task strategies. For instance, Zhang et al. (2020) improved formality-shift

(informal to formal) by framing TST together with grammar error correction.

7.3 Limitations and future work

This section first describes some limitation and challenges that we faced throughout the

course of the current research. It proceeds by discussing some of the possible future directions

to extend the current findings and address some of these limitations.

138



7.3 Limitations and future work

TST Models CPP PPL SSP Datasets
(GloVe-based)

RNN-based baseline model 0.7986 7.98 78.60% Newsela-v1

RNN-based baseline model 0.8499 15.93 66.33% MSD
RNN-based baseline model 0.8015 67.36 98.38% Paper-News Title

Table 7.1 The performance of TST models using datasets of MSD, Paper-News Title and
Newsela-v1.

Limitations One of the limitations of the current work is that we mainly considered

the two styles of sentiment and formality. We tried to broaden the research by including

other style domains but the main challenge we faced in doing this was accessing data. We

conducted a number of experiments (not reported in the earlier chapters of the thesis) using a

few other datasets (other style domains) but our models failed to converge as TST systems.

They either had very low SSP which can mean that they acted more like auto-encoders or

had very low CPP and high SSP which means they were only able to shift the style without

preserving the content. In both cases, it is safe to say that the system is not shifting the textual

style successfully. In table 7.1 we report some of these results.

We trained the TST models using the Paper-News Title dataset and also we used the

two parallel datasets of MSD and Newsela-v1 in a non-parallel mode. MSD is a parallel

simplification corpus which contains 114K textual pairs discussing medical topics and while

training it has the vocab-size of 17688. Each sequence pair consist of one professional

sample and one simplified version of a medical text (Cao et al., 2020). The Paper-News

Title dataset contains 107,538 paper titles crawled from academic websites, and 108,503

news titles in the categories of science and technology category (Fu et al., 2018a) and while

training it has the vocab-size of 22180. The style domain of this dataset is topic changing

between news and scientific terms. Newsela-v1 (described in section 3.1.3 and which we used

for the unigram analysis presented in chapter 6) is a simplification corpus which contains
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26K complex sequences and 24K simple sequences (table 3.5) and while training it has the

vocab-size of 12088.

Table 7.1 reports the performances of the TST models trained on these datasets where the

results show that RNN-based baseline model has very low CPP score on the three corpora.

These scores are lower or almost the same as the LB score of the Glove-based CPP scores

which is on average 0.85. Given these results, it is unlikely that the proposed T-based model

work well if it is trained on these datasets since T-based models are bigger in size compared

to RNN-based models. Therefore, due to the time and computational costs, we did not train

the proposed T-based model using these corpora. We believe that the small size of these

datasets contributed to the fact that the TST systems failed to converge and in future we

would like to explore other style domains by using bigger-sized corpora.

Future directions This section discusses some of the possible future directions of this

research.

• Throughout the experiments of this work, we mostly focused on the style domains of

sentiment and formality. Extending this research to other style domains to explore their

characteristics is the next step of this study. This focuses on extending the contributions

1 and 2 of this research.

• Contribution 4 of this work states that style characteristics can inform the choice of

CPP metrics. One future research direction is to extend this finding by studying the

interaction of style characteristics and other aspects of evaluation, i.e. SSP and fluency.

• Contribution 5 of this report highlights the necessity of considering all the dimensions

of the task when evaluating TST systems. However, to the extent of our knowledge,

there has not yet been introduced a single evaluation metric for TST representing the

overall performance of TST systems. Some previous work such as (Xu et al., 2018; Li

et al., 2020) have used geometric mean of CPP and SSP as an single metric. However,
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firstly, they did not consider all the three evaluation aspects and, secondly, they did

examine the weights and importance of each of the evaluation aspects. As a future

direction we would like to proceed towards introducing this single evaluation metric

since it can make an important contribution to the field by enabling the ranking and

therefore comparing the performance of various TST frameworks.

• One of the future directions can be extending the secondary contribution 3 to further

clarify how style characteristics can inform the selection of TST architectures. One

potential direction is studying the performance of the multi-decoder transformer-based

TST models across different style domains.

• Another potential direction of the future work is to focus on applying the insight of

the secondary contribution 4 indicating that style characteristics can inform applying

multi-tasking techniques to improve the TST task. For instance, the next step can focus

on framing the sentiment-shift task together with POS tagging task.
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Appendix A

Papers

• Style versus Content: A distinction without a (learnable difference)? (Jafaritazehjani

et al. 2020). Proceedings of the 28 th International Conference on Computational

Linguistics (Coling 2020), pp.2169-2810, 2020

• Style as Sentiment versus Style as Formality: the same or different? (Jafaritazehjani

et al. 2021). Proceeding of the 30th International Conference on Artificial Neural

Networks (ICANN 2021).

• Local or Global: Understanding the Variation in the Encoding of StyleAcross Sentiment

and Formality (Jafaritazehjani et al. 2022). under review.
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Appendix B

List of Employability and Discipline

Specific Skills Training

B.1 Employability Skills

• RESM 1953 – Research Integrity (5 ECTS)

• SPEC 9160 – Problem Solving, Comm & Creativity (5 ECTS)

• Univ Rennes1 32546 – French Course Intermediate Level- Part 1 (5 ECTS)

• Univ Rennes1 32547 – French Course Intermediate Level- Part 2 (5 ECTS)

B.2 Discipline Specific Training Skills

• SPEC 9270 – Machine Learning (10 ECTS)

• Univ Bretagne 32582 – Data Analysis and Probabilistic Modelling (5 ECTS)

• DeepLearn 2019, 32584 – 3rd International Summer School on Deep Learning

(https://deeplearn2019.irdta.eu) (5 ECTS)
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