Keywords: Input sequence, 2: T-based Baseline model, 3: 1: Input sequence, 2: T-based Baseline model, 3:

 Comparing the results of the single-decoder and multi-decoder RNN-based models in the sentiment and formality domains. 6.8 Style-shifted outputs of the transformer-based TST models using Yelp-small.

given text by modifying its style while preserving its content. To the best of our knowledge, within the literature on textual style transfer, there is no standard widely accepted definition of the concept of style. Moreover, very few works have investigated the characteristics of language styles. Therefore, previous research, as far as our knowledge extends, have not taken the variations of different textual style domains into account while dealing with the style transfer task. This research investigates domain-specific style characteristics by examining the separation of the style and content, as well as the variations in style across domains and how these variations are encoded. Furthermore, it looks into the factors which are relevant to do a comprehensive evaluation of textual style transfer models. The research uses the domains of sentiment and formality.

A variety of frameworks have been employed as textual style transfer models throughout the experiments of the current work where networks such as RNNs, and transformers are used as the encoders, decoders and discriminators. These models are trained in an unsupervised manner, i.e. the data is or is considered as non-parallel. The experimental methodology frames style transfer as a multi-objective problem, evaluating each approach through three aspects of the generated style-shifted outputs: presence of the target style (style-shift power of the approach), presence of the input content (content preservation power of the approach) and fluency and grammatical correctness of the output sequences. To evaluate these dimensions, various automatic methods are applied which are further confirmed by conducting human evaluation tests. The performance of the style transfer systems reveals a trade-off between the evaluation aspects. This confirms the need of applying this comprehensive evaluation methodology and questions the approach taken in some previous researches where the focus is on one or two evaluation dimensions which can lead to neglecting the disregarded aspect(s).

Our research firstly looks into the separation of style and content in chapters 4 and 5. To do so, different experiments are conducted to probe the latent space of a variety of adversarial RNN-based style-shift frameworks while considering sentiment and formality as the style domains. The main focus of these experiments is to investigate the presence of the source stylistic features, i.e. to analyse how these models encode style-related features in their latent spaces. The results which hold for the two style domains indicate that style cannot be totally separated from content.

A series of experiments are then designed in chapter 5 to examine if the concept of style is consistent across different style domains. This includes experiments which focus on studying the correlation of style and content across the domains, as well as, studying the effect of modifying the latent space across different style domains. The findings indicate that in the case of sentiment there is a closer entanglement between style and content, as compared with formality domain where these elements are less entangled. Observing that the concept of style can vary across different domains shifts the attention of this study towards analysing how this variation is encoded.

To explore the variations across the style domains, a number of experiments are conducted in chapter 6. This includes a series of probing classification tasks are performed to examine how different layers of encoders of adversarial transformer-based style transfer models encode the style of the input. Furthermore, some unigram-based experiments are conducted which further confirm the variations observed. The results indicate that formality is more vi globally encoded compared to the sentiment which is more locally encoded. Finally, a series of experiments look into the effect of emphasizing more on encoding the input on the style-shift power of the models across different style domains which is in line with previous results and implies that formality is a more complex style domain to be dealt with in style transfer scope as compared with sentiment. The findings of these experiments contribute to a better understanding of the style and highlight the question of how the characteristics of various style domains can affect framing the textual style transfer task. This open question is investigated as a final step by conducting some experiments in chapter 6 to illustrate how style characteristics of different styles should be considered when selecting evaluation methods. In particular, it focuses on the content preservation dimension and shows how it can be computed more effectively by considering the variation of the characteristics and encoding of style across the formality and sentiment domains. vii List of Figures

2.2

The schema of an RNN-based Language Model including 2 hidden layers.

2.3

The schema of a sequence-to-sequence encoder-decoder network

2.4

Computing c t at the generation step t by considering the decoder state s t-1 and encoder states h 1 , ..., h T corresponding to the input x = [w 1 , ..., w T], a t = [a 1 , ..., a T] denotes the attention weight vector computed for the encoder states.

2.6

The n th encoding-stack and decoding stack of the transformer encoderdecoder (when n = 1, the outputs of the embedding layer is fed to the self-attention module). The schema is adapted from the schema proposed by [START_REF] Vaswani | Attention is all you need[END_REF]

Introduction

Textual style transfer (TST) is a field of natural language processing (NLP) which focuses on reshaping a text so that it shifts to a different style while preserving its content. Similar to many other Natural Language Generation (NLG) problems, TST is expected to generate grammatically correct sequences. In other words, the main objective of this multi-dimensional scope is the creation of style-shifted text comparable to the text generated by humans.

However, this has not yet been achieved. The description of the TST draws the attention to the textual style as one of the key elements of this task which, to the extent of our knowledge,

has not yet been rigorously defined in the field of TST [START_REF] Tikhonov | Style transfer for texts: Retrain, report errors, compare with rewrites[END_REF][START_REF] Tikhonov | What is wrong with style transfer for texts?[END_REF][START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF]. Moreover, there are open questions with regards to this concept such as whether style definition varies across different style domains and if so what are the implications of these variations for TST. This chapter overviews my PhD thesis by firstly discussing the key concepts of TST as well as some of the applications of this filed. Then, it proceeds by explaining the direction, objectives and contributions of my research . Finally, it provides the outline of the thesis. Style is an important component of language which allows the same semantic information to be expressed in different forms. Each of these forms conveys some extra pieces of information, referred to as stylistic features. For instance, the same topic and content shaped in two styles can show different opinions about the topic, different levels of expertise of the author or speaker, different social relations between the participants of the interaction (the author or speaker on one end and the reader or interlocutor on the other side), etc. In fact, the linguistic concept of style can be summarized as the manner of expressing content which is highly dependent to the creators of the text and their choices [START_REF] David | A computational theory of prose style for natural language generation[END_REF].

The task of TST is typically framed as assuming a domain of style S containing two or more styles (s 1 ∈ S and s 2 ∈ S) and involves rewriting given a text in style s 1 in a desired style s 2 while maintaining the content of the text. For example, a domain of style might be S = {s 1 = f ormal, s 2 = in f ormal} and the TST system is tasked with translating text from formal to informal (and vice versa) while maintaining the content. However, in spite of the growing interest in TST, what style entails is still an open question.

Key concepts in TST Previous TST research has provided some definitions for the concept of textual style. Some approaches considered style as a holistic concept which is an implicit and integral component of a language. Taking this view, style cannot be explicitly described and each style can be considered as one separate language. This understanding of style is very different from the concept of style underpinning some previous TST work where stylistic features are detected and removed as a preliminary step (Li et al., 2018a;[START_REF] Madaan | Politeness transfer: A tag and generate approach[END_REF][START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF][START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF]Zhang et al., 2018a;[START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF]. The assumption of the latter TST approaches is that style is encoded as a set of discrete explicit linguistic elements like specific words, or markers. These explicit elements even directly thanks to hand-crafted knowledge [START_REF] Tikhonov | What is wrong with style transfer for texts?[END_REF][START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF]. This contradiction highlights the importance of clarifying the concept of style since its understanding can inform the adoption of the methodologies while dealing with the TST problem.

Textual style has also been defined based on discrimination, i.e. considering at least two different texts, style can be taken as the consistent variation between the textual data under study. This data-driven definition of style, as opposed to its linguistic understanding enables the broadening of style to include aspects related to the content or topic as acceptable style domains [START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF], for instance, opinion polarity or sentiment. This approach, however, provides a general concept of style which does not discuss the style characteristics in a detailed manner. Each of these available approaches have limitations, for instance, to the extent of our knowledge, neither of them considered the variations between different style domains while providing a definition for style.

Adopting a discrimination/data-driven definition of style presupposes that style is a concept that can be learnt from data, and it is this perspective that informs the approach to style taken in this thesis. Machine learning is the sub-field of artificial intelligence focused on the development and evaluation of algorithms to learn from data (examples), and two of the most popular forms of machine learning are supervised and unsupervised learning [START_REF] Kelleher | Deep Learning[END_REF]. The distinction between these two types of learning is mainly based on the kind of data that is used for training. In supervised learning, the training of the model is done using a labelled dataset (i.e., each example in the dataset is labelled with the target 1.1 Textual style transfer output the model is learning to predict) and the model learn by making predictions and doing weight updates based on the error between the prediction and the gold-stand labels in an iterative manner until convergence, i.e., when the model learns to make appropriately good predictions. In unsupervised strategies, on the other hand, training relies on analysing unlabelled data, i.e. discovering the similarities and differences between the samples in the data in order to extract useful features and structures from which the models can learn.

Unlabelled data refers to a collection of samples which do not have a desired label, correct answer or ground truth sample. Supervised learning approaches often result in more accurate models as compared with unsupervised techniques. However, a major difficulty with using supervised learning is that it requires that all the examples are labelled and this typically requires human (expert) annotators, which makes the creation of a labelled dataset timeconsuming and expensive. This problem is particularly difficult when the human annotators are asked to perform relatively complex tasks such as paraphrasing a text in a specific style.

In order to avoid the difficulties posed in preparing parallel training data for textual-style transfer the work in this thesis is focused on unsupervised learning. Some previous works on TST have assumed that these two elements are separable. They mostly applied adversarial end-to-end approaches and focused on disentangling style and content as the key step to enable shifting the textual style [START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF][START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF][START_REF] Ivan P Yamshchikov | Decomposing textual information for style transfer[END_REF][START_REF] Rabinovich | Personalized machine translation: Preserving original author traits[END_REF]Dai et al., 2019a;Hu et al., 2017b;[START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF]Fu et al., 2018a;[START_REF] Kelleher | Deep Learning[END_REF][START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Tian | Structured content preservation for unsupervised text style transfer[END_REF].

This raises this question whether style and content are two independent textual components and compares it across the different style domains of sentiment and f ormality. Even though there has been controversies in previous researches such as (Zhang et al., 2018a;[START_REF] Tikhonov | What is wrong with style transfer for texts?[END_REF][START_REF] Ivan P Yamshchikov | Decomposing textual information for style transfer[END_REF] to consider sentiment as a style, we mainly focused on these two domains to base our analysis on since they are so central to current work on TST 1 .

TST is a multi-objective problem which considers shifting the style, preserving the content and generating fluent text. However, in practice, many state-of-the-art papers on TST such as (Fu et al., 2018a;[START_REF] Gröndahl | Effective writing style transfer via combinatorial paraphrasing[END_REF]Hu et al., 2017b;Li et al., 2018b[START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Madaan | Politeness transfer: A tag and generate approach[END_REF][START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF] do not consider all three of these evaluation dimensions. Consequently, papers do not fully validate their approach and hence, they cannot easily be compared. Moreover, a trade-off between the three aspects of evaluation has been reported in some previous research [START_REF] Kelleher | Deep Learning[END_REF][START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Tikhonov | Style transfer for texts: Retrain, report errors, compare with rewrites[END_REF].

This highlights the importance of considering all the three aspects, since considering one or some aspects while disregarding the other(s) can lead to sacrificing the disregarded aspect.

Throughout this study, we employ a comprehensive evaluation methodology considering these three evaluation dimensions.

Investigating TST and improving the task of shifting different textual styles is significant since the advancement in this field can make several contributions to the domain of NLP.

In fact, NLP researchers have studied this field for a long time in the form of tasks such as summarization and simplification where the textual styles which have been modified are

Textual style transfer

"simplicity" and "verbosity", respectively. We describe some of the applications in the next section.

Some applications of TST One of the main target applications of rephrasing messages to have a specific style is to facilitate interaction so as to avoid misunderstanding between the participants of a communication. The modification of the texts are done with regards to the recipient(s) of the communication. The interactions can be human-human as well as humanmachine. In the other words, rephrasing messages can improve language understanding between humans or with a machine.

Contributing to the field of NLG by improving the ability of the systems to generate text in a desired style can help improve other NLG tasks. Firstly, the strategies used in TST can be applied in other NLG problems such as paraphrase generation and machine translation (MT).

Also, using multi-task strategies to frame TST together with other tasks has proved effective [START_REF] Niu | Multi-task neural models for translating between styles within and across languages[END_REF][START_REF] Zhang | Parallel data augmentation for formality style transfer[END_REF] in different scenarios. For instance, combining MT with formality-shift has led to improvements in terms of BLEU score which represents the similarity between the generated outputs and gold reference(s) for these outputs [START_REF] Niu | Multi-task neural models for translating between styles within and across languages[END_REF]. Style-specific MT can also be preferable to MT when the translated text is targeting a specific group such as children where MT can be framed together with simplicity-transfer task.

The improvement on the TST task highlights the importance of considering possible risks of applying this technology and raising concern against abusing it. For instance, in some style domains such as sentiment, TST systems can be employed to manipulate online customer reviews such as restaurant, hotel or product reviews towards benefiting the business owners and service providers. Also, stylistic similarities of texts created by different authors (author-specific styles and writing patterns) can be used maliciously to do author profiling.

Risks similar to these examples highlights the need for a global reflection on applying and improving techniques to address these issues. For instance, anonymization which is a TST

Research questions and proposed research

application focusing on neutralizing the texts from the author-specific styles [START_REF] Reddy | Obfuscating gender in social media writing[END_REF][START_REF] Gröndahl | Effective writing style transfer via combinatorial paraphrasing[END_REF] can help protect the identity of users and alleviate issues relating to the increasing privacy concerns.

Style transfer techniques have been employed to augment data for images processing tasks [START_REF] Xu Zheng | Stada: Style transfer as data augmentation[END_REF][START_REF] Philip Tg Jackson | Style augmentation: data augmentation via style randomization[END_REF]. In a simple way, TST can be used as a data augmentation method. To clarify more, given some text, TST frameworks generate similar texts having the same content but different style. This makes the TST techniques suitable to be applied to create data similar to some existing training data for different NLG tasks, namely, paraphrase generation, MT, question answering or summarization.

Research questions and proposed research

Our research aims at answering different questions listed in this section. The primary focus of our work is exploring style characteristics while dealing with TST (questions 1, 2 and 3). It then proceeds by investigating the interaction between these characteristics and TST (question 4). Finally, it looks into the aspects of a comprehensive evaluation for TST models (question 5).

Question 1: Are style and content separable?

So far, one of the main objectives of the previous unsupervised TST systems was to disentangle style from the content and create a style-free latent space for inputs. This is mainly based on the presumption that this disentanglement is doable [START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF][START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF][START_REF] Ivan P Yamshchikov | Decomposing textual information for style transfer[END_REF][START_REF] Rabinovich | Personalized machine translation: Preserving original author traits[END_REF]Dai et al., 2019a;Hu et al., 2017b;[START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF]Fu et al., 2018a;[START_REF] Kelleher | Deep Learning[END_REF][START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Tian | Structured content preservation for unsupervised text style transfer[END_REF].

However, to the extent of our knowledge, the possibility of this disentanglement has not been thoroughly investigated the previous research. The preliminary direction of the current

Contributions

work is style-content separation, since it can lead to a deeper understanding of style and its characteristics. This research question is addressed in chapters 4 and 5.

Question 2: Is style consistent across domains?

A necessary direction to further explore the characteristics of style is to investigate the consistency of this concept across various style domains. This research question is addressed in chapter 5. This research question looks at different evaluation aspects while framing TST which is a multi-dimensional task to introduce a comprehensive evaluation methodology. The current question is addressed in chapters 4, 5 and 6.

Contributions

A variety of contributions have been made on different aspects of the TST task during the course of this research. This section lists a number of these contributions which address the

Contributions

main research questions listed in section 1.2. These contributions will be discussed in more details throughout this thesis.

1. We find that style and content cannot be totally disentangled. This observation holds for both domains of sentiment and formality.

This finding arises from the research question 1 by studying the latent space of several TST systems in chapters 4 and 5. To explore the latent space of the frameworks, we performed experiments to investigate the presence of the style of the input sequences in their corresponding latent representations.

2. We find that style is not consistent across different domains, i.e. the concept of style as sentiment is different from the concept of style as formality.

To investigate the consistency of the style concept across the style domains (research question 2), we use formality and sentiment as a case study. In chapter 5, we applied several TST systems and for each style domain and each TST model, conducted some experiments on the latent space of the systems. Then, we computed the relation between the content preservation power of the model and the presence of the source style in the latent vectors corresponding to the input texts. Doing this enabled us to compare the level of entanglement of the style and content across different style domains. We also did experiments to modify the latent space of the TST frameworks and compare the changes across the style domains. Finally, we examined how putting more emphasis on encoding the input can affect the performance of the models. This resulted in TST systems with weaker ability in shifting the formality as compared to shifting sentiment. This observation which addresses research question 3 suggests that formality-shift is a more complex task which is inline with the observation that indicates that formality is more globally encoded compared to sentiment.

4. We find that the selection of the metrics used for content preservation in TST is sensitive to the type of style being transferred. Specifically, we find that the SBERTbased content preservation metrics work better than the Glove-based metrics for formality, and Glove-based metrics do a better job in sentiment domain. We attribute this difference to the domain-specific characteristics of each style and characteristics of each pre-trained embedding model.

To explore this interaction between style characteristics and TST, we conducted experiments in chapter 6 which indicate that domain-specific characteristics of style can inform the choice of TST evaluation methodologies (research question 4).

5. We propose a multi-factor evaluation framework covering style-shift power, content preservation and fluency which addresses research question 5.

We find support for this multi-factor methodology through the trade-offs that we consistently observe throughout our experiments in the chapters 4, 5 and 6. The metrics applied in the proposed comprehensive evaluation methodology are further confirmed by using some strategies such as human evaluation.

Notations

Table 1.2 lists all the notations used throughout this report.

Report outline

Report outline

The outline of the current report can be described as follows.

Report outline

Chapter 1 (the current chapter) of this report introduces the scope of the research and main question of this study.

Chapter 2 firstly provides the necessary background knowledge about neural networks, then, it reviews the previous work on textual style transfer and focuses on the unsupervised adversarial techniques, as this is the main modelling approach we use in this work.

Chapter 3 firstly presents the datasets used in our experiments. Then it focuses on the modelling approach implemented in the style transfer systems used in this report. It proceeds by explaining the structure of baseline models while specifications of proposed alternative models are left for later chapters. Finally, it discusses the linguistic dimensions under consideration when evaluating TST models and introduces the related metrics. Chapter 2

Background

This thesis focuses on the scope of TST and looks at a range of TST architectures. The current chapter provides the necessary background knowledge for this research by firstly discussing the related necessary neural network concepts and architectures in section 2.1 and then reviewing the related work in section 2.2.

Background neural network knowledge

The discussions in this section mainly revolve around sequence-to-sequence generation strategies applied by various TST architectures. However, these strategies are not only applicable to TST frameworks, but also to other sequence generation tasks such as neural machine translation, language modelling and image caption generation.

The original neural network architectures are Feed-Forward neural networks (section Neural Networks, transformers cannot handle different length data, they generally perform better in capturing semantic and syntactic information from across sentences as a result of using self-attention strategy [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Kelleher | Deep Learning[END_REF].

Feed-Forward neural network

Feed-Forward neural networks (FFNN) or multilayer perceptrons (MLPs) are considered the basis of some neural networks including Convolutional Neural Networks (CNN) and are applied in many other neural networks such as Recurrent Neural Networks (RNN) or transformers. Taking an input x, they aim to approximate a function y = f θ (x). For instance, an FFNN-based classifier learns to map an input x to the the correct class y by approximating the parameter θ . The depth and width of an FFNN is the number of the layers and the units in hidden layers respectively [START_REF] Goodfellow | Deep Learning[END_REF].

FFNNs are acyclic graphs where information flows in a forward direction. The network consists of 3 types of layers: input-layer, hidden layer and output-layer. Figure 2.1 shows an FFNN with an input-layer of size N, one hidden layer of size 3 and output layer of size 2.

The units of each hidden layer and output layer can be computed by doing the following two steps.

First, computing preactivated values of a given layer by doing the matrix multiplication of the weights corresponding to this layer and the outputs of the previous layer and adding a bias score to them (while computing the first hidden layer, the outputs of the previous layer are the input tokens). For instance, neuron h 1 in the hidden layer of the figure 2.1 is

Background neural network knowledge

preactivated(h 1) = N ∑ i=1 w (h) 1i x i + b (h) (2.1)
The second step involves applying an activation function to the preactivated values. Equation 2.2 shows how h 1 of figure 2.1 is computed where g is the activation function.

h 1 = g(preactivated(h 1)) (2.2)
The output layer is computed similarly by using equations 2.1 and 2.2 where W (o) and b (o) are the weight matrix and bias value corresponding to this layer and h 1 , h 2 , and h 3 are the outputs of the previous layer.

Recurrent neural network

One of the limitations of the FFNNs is that they get fixed-sized vectors as input. This can affect the performance of text generation models, such as language models. Recurrent neural [START_REF] Goodfellow | Deep Learning[END_REF]. At each time step, for instance t, an RNN cell takes the input x t , and the previous hidden state h t-1 and outputs h t which is the updated hidden state at the time step t. This is formulated as

h t = RNN(x t , h t-1).
In practice, using simple RNNs, introduced by Elman (1990), in neural architectures can lead to issues such as exploding and vanishing gradients [START_REF] Bengio | style transformer[END_REF]. Different

strategies have been proposed to tackle these problems such as the gradient norm clipping technique or using variants of the vanilla RNN.

RNN variants

We describe Long Short-term Memory Networks (LSTM) and Gated

Recurrent Unit (GRU) variants of RNN in this section. In the equations used throughout this section x t denotes the current input, h t denotes the current hidden state, h t-1 denotes the previous hidden state, c t denotes the current state of an LSTM memory cell, c t-1 denotes the state of the memory cell at the previous time step, a capital W denotes a weight matrix, the ⊙ symbol denotes an element-wise vector product operation, and a + symbol denotes an element-wise addition between vectors. Also the multiplication between matrices and vectors implicitly includes the addition of bias terms, where the weights and the bias terms are all parameters that are learnt during training.

• LSTM is an RNN variant which was introduced by [START_REF] Hochreiter | Lstm can solve hard long time lag problems[END_REF] to address the vanishing gradient issue of simple RNN cells. The main difference between the simple RNN and LSTM is the computation of the hidden state h t at time step t. Specifically, the RNN cell is replaced with an LSTM unit. An LSTM unit

f t = sigmoid(x t .W f x + h t-1 .W f h) (2.3) c ′ t = f t ⊙ c t-1 (2.4)
The

c t = tanh(x t .W cx + h t-1 .W ch) (2.6)
The next step is updating the cell state created by the update from the forget gate c ′ t by adding the vector created by the elementwise product of the sigmoid and tanh activations in the input gate, this is shown in equation 2.7.

c t = c ′ t + (i t ⊙ c t) (2.7)
Finally, the output gate decides what we are going to output, shown in the Equation 2.8.

o t = sigmoid(x t .W ox + h t-1 .W oh) (2.8)
The new hidden state h t is calculated as shown in equation 2.9.

h t = o t ⊙ tanh(C t) (2.9)
Importantly, the design of the LSTM unit is such that, during training, the error gradients with respect to the memory cell state are not repeatedly multiplied by a weight that is shared across time steps. So, these gradients are stable and the model is 2.1 Background neural network knowledge consequently better able to learn long-distance dependencies through time [START_REF] Kelleher | Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies[END_REF].

• Gated Recurrent Unit (GRU) [START_REF] Chung | Gated feedback recurrent neural networks[END_REF]

z t = sigmoid(x t .W rx + h t-1 .W rh) (2.
12)

The update gate mask is then used to control both how much of h t should be retained information from h t-1 and how much of h t should be information from the new candidate hidden state ĥt . Equation 2.13 shows how z t is used to achieve this. When z t is near 1 relatively little information from h t-1 is retained in h t and a lot of information from ĥt is added to h t . Conversely, when z t is close to zero a lot of information is retained from h t-1 and relatively little information from ĥt is used in the hidden state update.

h t = (1 -z t).h t-1 + z t . ĥt (2.13)

RNN-based language model

Language models are trained to predict the next likely word in a sequence based on the preceding context. RNN-based language models employ vanilla RNN or its gated variants LSTM and GRU as cell units and they include: 1. an embedding layer, 2. hidden layer(s) of RNN, and 3. a projection and a softmax layer which together form the output layer. Then, it calculates the hidden states of the RNN hidden layers. text simplification task, etc). In the text style-shift problem, the target sequence is a rewritten form of x with the desired target style which is supposed to be different from the source style.

h k t = a(h k t-1 U k + h k-1 t W k) (2.
As figure 2.3 shows a sequence-to-sequence model relies on an encoder-decoder architecture where the encoder aims at creating a vector representation z of the input and the decoder takes z and generates an output sequence in a manner similar to a language model by conditioning the generation of the target tokens on z and the previously generated tokens.

Different neural architectures can be employed for the encoder and decoder, including RNN networks (section 2.1.4.1), convolutional neural network (CNN) [START_REF] Kaiser | Depthwise separable convolutions for neural machine translation[END_REF] or self-attention networks such as transformer architectures [START_REF] Vaswani | Attention is all you need[END_REF].

Since this type of architecture is at the heart of our work, the remainder of this section focuses on describing various sequence-to-sequence encoder-decoder frameworks.

RNN-based sequence-to-sequence architectures

RNN-based sequence-to-sequence architecture proposed by [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] to frame the NMT task can be used in any similar generation task. RNN-based sequence-to-sequence models employ RNNs as encoder and decoder components. The encoder is responsible for encoding the input sequence into a fixed-size vector z and the decoder aims at decoding this vector.

Creating fixed-length representations for variously sized inputs can, however, in practice lead to issues such as losing the input information during the generation process especially in the case of long input sequences. This is mainly due to the fact that the contextual information gets diluted as the encoder processes the tokens along a given input sequence. Sequence-to-sequence architectures which employ attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] have managed to overcome this issue to a great extent.

Background neural network knowledge

2.1.4.2 Applying input-output attention mechanism in sequence-to-sequence models

The major problem while using RNNs as an encoder network for text processing is that as the time steps proceed the information of earlier steps fades away. Employing different strategies can help the network encode the contextual features better. For instance, reversing the input sequences or employing bidirectional RNNs where one RNN encodes the input information in the forward direction and one reads the input in the backward direction. Using the attention mechanism proposed by [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF], especially in the case of long sequences, has also proved to be an efficient technique to encode the contextual information.

This attention mechanism revolves around the idea of computing the input representation vector dynamically at each generation step instead of providing the decoder with a static representation of the input. We refer to this mechanism as input-output attention throughout this thesis. Applying this mechanism, given an input x=[w 1 , ..., w T], its encoded representation (context vector) is calculated as the weighted summation of the encoder states h=[h 1 , ..., h T] where the weights are computed dynamically at each generation step. These weights represent the attention. They are computed through a score function which studies the relevance of a given vector h j with the current state of the decoder s t-1 (at time step t). The followings are three of the most widely applied methods of how the score function has been defined where V , W 1 and W 2 are trainable weight matrices:

Background neural network knowledge

• Dot-Product: score(h j , s t-1) = h j T s t-1

• Bilinear: score(h j , s t-1) = h j T W 1 s t-1

• Additive: score(h j , s t-1) = V T tanh(W 1 h j +W 2 s t-1)

Each weight is then normalized using a softmax layer such that all attention weights sum to 1 leading to the equation 2.16. Transformer refer to a new type of layer for sequential data. By extension, the term also refers to models that include such a layer. Originally, transformer layers have been proposed in an encoder-decoder sequence-to-sequence architecture where the encoder and decoder both rely on transformers [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Lewis | Bart: Denoising sequence-tosequence pre-training for natural language generation, translation, and comprehension[END_REF][START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF]. Alternatively, transformer models have been proposed to act only as encoders [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Reimers | Sentence-bert: Sentence embeddings using siamese bert-networks[END_REF] or as decoders (Radford et al., 2018a[START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF].

a jt = exp(score j,t) ∑ T k=1 exp(score k,t) (2
The encoder and decoder of a transformer-based encoder-decoder architecture as figure 2.5 shows consist of an embedding layer followed by k stacks of encoding and decoding networks where k is a hyperparameter. The k encoding stacks are identical networks and the same holds for the k decoding subnetworks. Decoder subnetwork also includes a projection layer as the final building block which uses the output of the last stack of the decoder to generate the outputs. The n th encoding-stack and decoding stack of the transformer encoder-decoder (when n = 1, the outputs of the embedding layer is fed to the self-attention module). The schema is adapted from the schema proposed by [START_REF] Vaswani | Attention is all you need[END_REF].

Each stack of the transformer-encoder as figure 2.6 shows consists of a Multi-Head self-attention module, a Feed-Forward module and two Add and Norm layers which are applied around each of these modules. In addition to these modules, each of the identical stacks of the decoder contains a Multi-Head encoder-decoder attention module and another Add and Norm around this layer. In this section we describe these sublayers as the major building blocks of a transformer network.

Embedding layer To create the vector representation of the source input tokens, and target gold tokens, an embedding layer is used in encoder and decoder of the transformer which projects the tokens to their embedding representations similar to any other NLP task. Target gold text exist in case of using parallel data for training. This embedding layer learns both 2.1 Background neural network knowledge positional and contextual embeddings for the tokens. This is mainly due to the architecture of transformers which unlike RNN networks cannot encode positional information of the tokens [START_REF] Vaswani | Attention is all you need[END_REF].

Given an input x = [w 1 , ..., w T], the embedding of the token w i is computed as summation of contextual and positional embeddings. The positional embeddings can be either fixed or learnable [START_REF] Gehring | Convolutional sequence to sequence learning[END_REF][START_REF] Vaswani | Attention is all you need[END_REF].

Attention(Q, K,V) = so f tmax(α)V (2.19)
α is the correlation between each query and key α = score(Q,V) and as equation 2.20 shows it is computed using the scaled dot-product attention scoring function.

score(Q,V) = QK ⊺ √ d k (2.20)
In this equation d k is the dimension of the key vector. The dimension of the query vector is also set to d k to allow for the dot-product between these two vectors. The division by √ d k is done to stabilize the results by scaling the result [START_REF] Vaswani | Attention is all you need[END_REF].

Building on this single attention mechanism, [START_REF] Vaswani | Attention is all you need[END_REF] proposed a Multi-Head attention technique for the transformer architecture. This mechanism involves linear projection of the vectors of K, Q and V for N h times where N h is the hyperparameter which determines the number of heads. For each of these projected triples of the vectors K, Q and V , i.e. for head i (1 < i < N h), the single attention mechanism is applied andW V i are learnable parameters). The Multi-Head attention function is formulated as follows where W o is a weight matrix.

head i = Attention(QW Q i , KW K i ,VW V i) using the equation 2.19 (W Q i ,W K i ,
multihead(Q, K,V) = concat(head 1 , ..., head N h)W o (2.21)
In each stack, both encoding and decoding subnetworks include a Multi-Head selfattention module (figure 2.6) which computes the attention weights of the tokens within one sequence. To show the formal representation, we consider the n-th stack of the transformerencoder as well as the output of the previous stack of the transformer-encoder, e si n-1 , and represent the output of the Multi-Head self-attention module as MHA after applying the Add 29

Background neural network knowledge

& Norm layer to it using the equation 2.22, where in the case of n = 1, the outputs of the embedding layer is considered as the inputs of the Multi-Head self-attention module.

e so n = Add&Norm(e si n-1 + MHA(e si n-1 , e si n-1 , e si n-1))

(2.22)

The output of the n th encoding stack can be formulated as equation 2.23 where e so n , computed by equation 2.22, is the input of the Feed-Forward module.

e si n = Add&Norm(e so n + FFN(e so n))

(2.23)

The Multi-Head self-attention module in decoding stacks work similarly to that of the encoding stacks. However, to prevent the attention mechanism from cheating while accessing the gold generated data, a masking strategy is used in the Multi-Head self-attention module of the decoding stacks. Considering the generation step i, this strategy sets the positions where step > i to -in f before applying the softmax step in the self-attention calculation.

Transformer architecture also computes the encoder-decoder attention weights, i.e. the attention of the input and generated tokens with regards to each other (Multi-Head encoderdecoder attention module in figure 2.6). This module is used only in the decoding stacks and considering the n th stack, it is computed using equation 2.24 where d so n is the output of the Multi-Head self-attention module of the decoding stacks after applying the Add & Norm layer to it and e si n is the output of the n th encoding stack.

d ed n = Add&Norm(d so n + MHA(d so n , e si n , e si n)) (2.24)
The last building block of the transformer-decoder is a projection layer with a softmax activation function (figure 2.5) which is employed to convert the output of the last decoding stack into output probability distributions over the target vocabulary which is the target-style vocabulary in the TST experiments of the current research.

L (θ E , θ D) = -log Pr(y|x) (2.25)
This equation shows the cross-entropy between the input sequence x and the output sequence y whereθ E and θ D are the trainable parameters of the encoder and decoder subnetworks which are estimated during the training.

In the case of training the sequence-to-sequence models in an unsupervised manner, the training objective involves optimizing some additional losses. For instance, while applying approaches similar to GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF] which broadly speaking include a classifier to guide the training process, the training objective consists of an additional adversarial loss

Inference algorithms

While doing a sequence-to-sequence text generation task, the model is trained to maximize the probability Pr(y|x), i.e. the probability of the generated text y given the input sequence x.

During generation, the decoder computes the probability distribution of each generated token conditioned on the previous outputs which at time step t it is denoted as

Pr(w t | w 1 , ..., w t-1 , z)
where z is the input latent space. The probability distribution of the generated token w t over the vocabulary V is computed by equation 2.26 which applies a projection layer to the hidden state of the decoder and then applies a softmax layer to the result.

TST related work

Pr(w t | w 1 , ..., w t-1 , z) = so f tmax(W o s t + b o) (2.26)
At each generation step, there are |V | (size of the vocabulary) options as the generated token. Considering all these tokens at each generation step becomes computationally expensive. Therefore, different search algorithms can be applied while doing the generation steps.

Search algorithms Greedy search and Beam search have been widely applied as search algorithms during generation. Greedy search which is a special case of the beam search considers only the tokens with the highest probabilities from the probability distribution of the vocabulary list at each step of decoding (equation 2.27).

w t = argmax w∈V Pr(w| w 1 , ..., w t-1 , z) (2.27)
Beam search algorithm keeps track of k tokens with the highest probability at each time step where k, the beam size, is a parameter. This leads to a lattice of tokens based on which the best path is returned. Beam search functions the same as greedy search in case k is set to 1.

TST related work

Developing a better understanding of the concept of style is necessary while dealing with the TST task. One of the reasons of this significance is that how the concept of style is viewed can inform the TST modelling approaches. A group of approaches consider style as an independent element from the content which can be defined explicitly, whereas the second approach considers style as a holistic concept and an integral component of a text (Tikhonov 2.2 TST related work and Yamshchikov, 2018). Based on this distinction, we categorize and review the previous research in the sections of 2.2.1 and 2.2.2.

Approaches informed by an explicit concept of style

TST approaches which are informed by an explicit concept of style follow two general steps:

first, removing the style from the input text, then, generating the style-shifted output text.

Filtering out style markers of inputs As a preprocessing step, the style markers of the input sequences are detected and filtered out. To detect the style markers, different computational approaches and frequency-based techniques, such as TF-IDF, have been applied (Li et al., 2018a;[START_REF] Madaan | Politeness transfer: A tag and generate approach[END_REF]. Alternatively, some previous work have introduced style marker detectors by employing neural network classifiers [START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF][START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF]Zhang et al., 2018a;[START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF] and attentionbased techniques [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] where these style marker detectors adopt different neural network architectures such as LSTM or transformers [START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF]Zhang et al., 2018a;[START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF].

Generating style-shifted sequences To generate style-shifted sequences, previous work has employed retrieval strategies, neural approaches or a combination of these two techniques.

Retrieval approaches directly extract the corresponding style-shifted text for a given input from a corpus of the target style as the text which resembles the most to the style-free representation of the input (Li et al., 2018a). Alternatively, these approaches create a style-shifted text by first retrieving the style markers from a corpus of the target style and then directly concatenating them with the style-free representations of the given input.

However, style-shifted texts created by following the the latter strategy do not have very high fluency [START_REF] Ramos | Using tf-idf to determine word relevance in document queries[END_REF]Li et al., 2018a;[START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF]. To address this issue, neural encoder-decoder architectures can be employed together with retrieval strategies to

TST related work

generate style-shifted outputs. Doing this, the generation of the style-shifted text for a given input, is conditioned on the style-free representations of the input and the retrieved target style segments (Li et al., 2018a;[START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF]Zhang et al., 2018a;[START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF].

The generation process can also be guided by conditioning the generation on the style-free input representations and target style [START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF].

While taking retrieval approaches, to extract sequences and segments from a corpus of a desired style, vector representations of the text are created employing TF-IDF-based or embedding-based techniques. Embedding-based techniques rely on using pre-trained embedding models which create sequence embedding including Universal Sentence Encoder [START_REF] Cer | Universal sentence encoder[END_REF] or pre-trained models which create token embeddings such as GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] where a pooling technique is needed to create the sequence vectors [START_REF] Ramos | Using tf-idf to determine word relevance in document queries[END_REF]Li et al., 2018a;[START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF][START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF].

Approaches informed by an implicit concept of style

Some previous research considers style as an implicit concept where it can be defined as the consistent variation between the texts under study. This view makes the definition reliant on the discrimination, i.e. considering two corpora, style is the information which consistently differentiates them, while being invariant within each corpus. In other words, in this approach style is fundamentally connected to the concept of content and each style can be taken as a separate language [START_REF] Tikhonov | What is wrong with style transfer for texts?[END_REF][START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF].

Taking this view, previous research used supervised techniques to train the TST systems (section 2.2.2.1) or in the case of the absence of the parallel data or limited access to it, they have used unsupervised (section 2.2.2.3) or semi-supervised strategies (section 2.2.2.2).

TST related work 2.2.2.1 Training using parallel data

In recent TST research a popular approach is to adopt end-to-end learning techniques to deal with this task, following strategies similar to a supervised NMT task. Models are end-to-end encoder-decoders which directly translate a text x s1 having the style s 1 (source language) to a text x s2 having the style s 2 (target language) where the output text should be grammatically fluent and resemble the inputs in terms of content.

These NMT like TST systems have been developed to transfer style using parallel data from various domains, for instance, simplification [START_REF] Ma | A semantic relevance based neural network for text summarization and text simplification[END_REF], summarization [START_REF] Ma | A semantic relevance based neural network for text summarization and text simplification[END_REF][START_REF] Alexander M Rush | A neural attention model for abstractive sentence summarization[END_REF] and formality [START_REF] Xu Zheng | Stada: Style transfer as data augmentation[END_REF][START_REF] Rao | Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer[END_REF].

These sequence-to-sequence encoder-decoder models have been mostly based on either RNNs [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] or transformers architecture [START_REF] Vaswani | Attention is all you need[END_REF]. For example, [START_REF] Ma | A semantic relevance based neural network for text summarization and text simplification[END_REF] where they focused on improving the content preservation power of the TST systems using additional losses.

Moreover, different techniques have been proposed to create pseudo-parallel data to get around the issue of the deficit of labelled data. This thesis proceeds by describing some of these methods in more detail (section 2.2.2.2).

Addressing the deficit of parallel data

Limited access to parallel data is a major issue in the TST field and different techniques has been previously proposed to alleviate this problem. For instance, [START_REF] Johnson | Google's multilingual neural machine translation system: Enabling zero-shot translation[END_REF] applied zero-shot translation method which uses intermediate resources to facilitate parallel training, i.e. it uses different languages as the pivot language in NMT task to enable the translation in between the two languages for which little or even no parallel data is available.

TST related work

This strategy can be similarly applied for TST by using different styled data as intermediate resources [START_REF] Carlson | Zero-shot style transfer in text using recurrent neural networks[END_REF].

Moreover, different techniques have been proposed to create pseudo-parallel data to get around the issue of the deficit of labelled data. Here, we briefly describe some approaches that can be used to create TST pseudo-parallel data which can be applied to train models in parallel mode. Some of these methods use back translation technique to construct pseudoparallel data in different NLG problems such as NMT [START_REF] Sennrich | Improving neural machine translation models with monolingual data[END_REF][START_REF] Shrimai Prabhumoye | Style transfer through back-translation[END_REF] or TST [START_REF] Zhang | Parallel data augmentation for formality style transfer[END_REF]. The idea is to use monolingual text and create its pseudo parallel counterpart. To clarify more, Zhang et al. (2020) created pseudo-parallel formal text by following these steps. For a given informal data x in f , they did a cycle of translation to a pivot language and back to English using a NMT system trained on the formal data. The resulted text x f is the pseudo parallel text of x in f having the same content but formal style.

Interestingly, TST can also help other tasks, for instance, some previous research implemented TST techniques to augment the parallel data, i.e. given a monolingual data, X s1 , with a style s 1 , they use a TST system trained in this style domain and generate pseudo-parallel data X s2 with style s 2 (Zhang et al., 2018b).

Retrieval-based strategies can also be applied to augment the parallel data where the idea is that the text retrieved from the two different-styled corpora can be parallel if they are semantically very similar. Therefore, in this approach, given a text, x s1 , with a style s 1 , different techniques are applied to compute its semantic similarity to the sequences of a monolingual corpus X s2 with style s 2 . Sequence x s2 having the highest similarity with x s1 is labelled as its pseudo-parallel counterpart [START_REF] Jin | Imat: Unsupervised text attribute transfer via iterative matching and translation[END_REF].

In spite of these approaches, composing enough data to enable the parallel training is still challenging. This is why it has been proposed to remove the need for parallel data, through so-called unsupervised approaches. Section 2.2.2.3 mainly focuses on these approaches.

TST related work 2.2.2.3 Unsupervised training using adversarial techniques

In the absence of the parallel data, various unsupervised techniques have been employed for TST. They have mostly focused on adopting end-to-end learning strategies and proposed frameworks which contain a generator block and a style-shifting block.

Generator block

The generator block is similar to TST systems trained by supervised techniques (section 2.2.2.1). It consists of a sequence-to-sequence encoder-decoder network which creates latent representations of inputs and generates output texts meeting the requirements of the task. In TST research, the encoder and decoder subnetworks are frequently implemented as either RNN-based architectures [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF], such as the TST systems proposed by Shen et al. (2017 subnetworks share an encoder (Fu et al., 2018a), other systems use variational encoder TST models which condition the generation of the output on a vector sampled from the posterior distribution of the latent space whose parameters are predicted by the encoder (Hu et al., 2017a;[START_REF] Kelleher | Deep Learning[END_REF]) and yet other systems use style-specific encoders which include one encoder for each different-styled monolingual corpus [START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF]. The generator block can also be based on the variants of transformer network [START_REF] Vaswani | Attention is all you need[END_REF]) such as the model proposed by (Dai et al., 2019b).

The encoder subnework of the generator block is responsible for creating the vector representation of the input text and the decoder subnetwork generates output text, typically conditioned on the input latent representation concatenated with an embedding of the target output style. For a given input, if the input style and target style are the same, the generator block becomes an auto-encoder and the decoder subnework reconstructs the input, otherwise, the decoder creates a style-shifted paraphrase of the input text.

TST related work

Style-shifting module To reach this goal different strategies have been previously proposed.

Adversarial techniques have been widely implemented in the recent years to enable training the TST systems in an unsupervised manner [START_REF] Ma | A semantic relevance based neural network for text summarization and text simplification[END_REF][START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF][START_REF] Singh | Sentiment transfer using seq2seq adversarial autoencoders[END_REF]Fu et al., 2018a;[START_REF] Romanov | Adversarial decomposition of text representation[END_REF]Hu et al., 2017a;[START_REF] Kelleher | Deep Learning[END_REF]. Similar to Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF], adversarial TST models include a discriminator and a generator block where the discriminator plays the role of the style-shifting block. The discriminator block contains classifiers specific to each style and these classifiers can either be trained together in parallel with the generator block [START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF]Dai et al., 2019b;[START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Kelleher | Deep Learning[END_REF]Fu et al., 2018a;[START_REF] Tikhonov | Style transfer for texts: Retrain, report errors, compare with rewrites[END_REF][START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Zhao | Adversarially regularized autoencoders[END_REF] or can be pre-trained networks [START_REF] Shrimai Prabhumoye | Style transfer through back-translation[END_REF]Hu et al., 2017b;[START_REF] Ivan P Yamshchikov | Decomposing textual information for style transfer[END_REF][START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Kelleher | Deep Learning[END_REF].

The classifier(s) can be fed by the output generated by the decoder(s) of the TST system where the goal of discriminator block is to distinguish between the style-shifted text and reconstructed text or human-generated text. During training, if the discriminator block detects that an input is style-shifted, the generation process is penalized to push the generator block to construct outputs that appear more similar to the human-created text or reconstructed sequences [START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF]Dai et al., 2019b;[START_REF] Shrimai Prabhumoye | Style transfer through back-translation[END_REF]. In some systems a discriminator block can also be applied to the latent representations of the input created by the encoder subnetwork. Typically, this is done to encourage the encoder to create style free latent representations of the input and this is achieved by penalizing the system if the discriminator block can correctly label a latent representation with the source style of the input [START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Kelleher | Deep Learning[END_REF]Fu et al., 2018a;[START_REF] Tikhonov | Style transfer for texts: Retrain, report errors, compare with rewrites[END_REF][START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Zhao | Adversarially regularized autoencoders[END_REF].

Style-shifting block can rely on back-translation technique for removing or loosening the stylistic features of inputs by doing a cycle of translations (Prabhumoye et al., 2018; et al., 2017;[START_REF] Zhang | Parallel data augmentation for formality style transfer[END_REF]. Employing this strategy includes using a translation network that for a given input x in language L 1 , it firstly creates an output in language L 2 (where L 1 and L 2 are different languages). Then, it translates this output back to L 1 as x where the stylistic features in x has faded away compared to x.

TST related work

Rabinovich

As discussed in this section, adversarial classifiers can be applied in TST systems to guide the generation towards creating text having a target style. However, the application of these classifiers can be extended to ensure the encoding of the content-related information of inputs in their corresponding latent vectors created by the encoder. This leads to higher fidelity of the style-shifted outputs to the content of their corresponding inputs, i.e. applying this strategy can improve the content preservation power of the frameworks [START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Kelleher | Deep Learning[END_REF].

Studying different aspects of the TST task

Applying end-to-end approaches while framing the TST task enables learning of latent representations of inputs [START_REF] Kelleher | Deep Learning[END_REF]. Unsupervised TST models have focused on separating style and content in their latent space based on the assumption that style-content disentanglement is possible [START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF][START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF]. However, little previous work has studied the latent space of these models. In this research we would like to analyse the latent space of TST systems and extend this analysis across the domains of style.

NLP researches have studied various architectures such as transformers to explore how linguistic information is encoded in different layers of these networks. This has led to adopting more informed strategies and resulted in improved performance on NLP tasks [START_REF] Nedumpozhimana | Finding BERT's idiomatic key[END_REF][START_REF] Nedumpozhimana | Shapley idioms: Analysing bert sentence embeddings for general idiom token identification[END_REF]

Summary

The current chapter firstly provided an overview of the basics of the neural networks which Chapter 3

Methodology: data, modelling approach and baseline models, evaluation

This chapter firstly describes the data used in the experiments reported in this thesis (section 3.1). Section 3.2 then provides an overview of the modelling approach which is taken throughout the thesis and describes the models which are applied as the baseline systems in this report. The details of the parameters of these baseline frameworks are provided in section 3.2.4. Section 3.3 focuses on the evaluation methodology (both automatic and manual)

and explains the evaluation aspects as well as the evaluation metrics which are applied to investigate the performance of the TST models .

Data

Throughout this research, we study the style domains of sentiment, formality and simplicity.

Sentiment which is the binary opinion polarity is studied using the Yelp Restaurant Reviews corpus (section 3.1.1) where positive and negative restaurant reviews form the data. The style domain of formality is studied using the GYAFC corpus (section 3.1.2) where formal and informal text form the dataset. Finally, the Newsla corpus (section 3.1.3) is used to

3.1 Data Style Formal Informal Parallel text
dear Sam, a brief note to thank you for your help. hi Sam, thanks! Non-parallel text dear Sam, a brief note to thank you for your help. I've had a blast! Table 3.1 Samples of parallel and non-parallel text from the formality domain.

study the style domain of simplicity where simple and complex text form the data. These corpora are used to perform various experiments throughout this research. The sentiment and formality corpora are used to train TST models as well as studying the latent space of various frameworks. The simplification corpus, however, has been mostly applied to conduct experiments to deepen the result analysis.

In the current study, TST is framed in an unsupervised manner using non-parallel corpora which have binary style. This means that each corpus that is used must contain two datasets where sequences of the first dataset have style s 1 and sequences of the second dataset have style s 2 (s 1 ̸ = s 2). Moreover, the binary styled data of each corpus do not need to be parallel 3.1 Data

Yelp restaurant reviews

Yelp Restaurant Reviews is a large-scale corpus consisting of 4.7 million user reviews and is released by Yelp!2 , a network where users review businesses such as restaurants, bars, etc.

The Yelp dataset has been used for personal, educational, and academic purposes in NLP.

The reviews of the Yelp corpus are rated using a five star ranking system and are labelled with regards to these ratings as positive and negative if their corresponding stars are above or below three respectively and three-starred reviews are discarded. In both Yelp-small and Yelp-large, sentence level is taken as the level of data analysis and each sentence is labelled with the label from its corresponding review, i.e. a positive review including five sentences makes five data entries in the positive dataset. This can lead to neutral sentences being labelled as positive or negative especially in the case of long sequences and long reviews. To get around this issue, [START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF] filtered out reviews exceeding 10 sentences as well as sequences exceeding 15 tokens. This preprocessing step which is also applied in data we use is based on the assumption that longer reviews are more likely to contain neutral sentences and longer sentences are more likely to be neutral.

Both of these datasets are normalized, taking preprocessing steps such as lower casing, replacing numbers with a special token <num> and inserting space between tokens and punctuation as well as between punctuation and punctuation. We combine E&M and F&R and label the resulting dataset as GYAFC-v 1 . For our experiments, we, then, modify GYAFC-v 1 and create a corpus which is referred to as GYAFCv 2 throughout this manuscript. The statistics of these datasets are summarized in table 3.3.

We employ GYAFC-v 2 in our experiments in the later chapters as non-parallel corpora by considering the style of each set as the only label available. We only use the gold parallel text of the test set to perform some unigram-based analysis experiments in section 6.3.2. We describe GYAFC-v 2 in more details in the following paragraphs.

GYAFC-v 2 :

To compose this dataset, we first took some preprocessing steps on GYAFC-v 1 to make the text more consistent by for instance replacing different forms of the same token with one form (steps 1, 3 and 4) and replacing similar tokens and phrases with one special token (steps 2 and 5). The preprocessing steps are listed as follows.

1. Lower casing the tokens of the sequences.

2. Replacing the numbers, website addresses, email addresses and emojis with special tokens: <num>, <website-tok>, <email-tok>, and <emoji-tok>.

3. Inserting space between tokens-punctuation and punctuation-punctuation. hoott. Therefore, there is a standard and a non-standard form available for this token in informal data.

To select the non-standard forms, the informal training data was tokenized and the tokens which had a frequency lower than the threshold 5 were checked manually to distinguish between the low-occurring tokens and tokens which were written in a non-standard form.

5. Replacing the sequence of the long sequences of the punctuation into shorter ones;

for instance, converting to ... and !!!!!! to !!! (samples 1 and 4 of table 3.4). To detect these tokens, 500 sequences were randomly selected from the informal data and were reviewed manually and tokens with different writing formats were listed. This is to avoid having very long sequences which can be removed while doing the length normalization.

6. Detecting and filtering non-English sequences: To do so, non-English sequences were first detected using python language detector library. Then, these non-English texts were double checked manually to save English sequences which were falsely labelled as non-English. Doing this manual step was important due to the presence of <unk> tokens, mainly in informal text, which raises the probability of English texts being labelled as non-English.

7. Removing length outliers: To do so, the box plot of the length distribution of formal and informal data were considered separately, and sequences whose length are beyond the whiskers of these plots are labelled as outliers and removed from data.

Data

Mathematically speaking, outliers were detected following these steps: First, the dataset is divided into half considering the median of the data. Second, the lower quartile Q 1 and upper quartile Q 4 are computed as the median of the lower half and upper half of the data. Then, the interquartile range is calculated as

IQR = Q 3 -Q 1 .
Finally, outliers are the data points out of the range of

[Q 1 -(1.5 * IQR), Q 3 + (1.5 * IQR)].
Around 2% of the data of the GYAFC-v 1 was removed by doing these preprocessing steps.

The preprocessed data was then shuffled in order to have a mixed order of the sequences from the two domains of Entertainment & Music (E&M) and Family & Relationships (F&R)

in the resulting corpus GYAFC-v 2 .

Newsela simplification dataset

Newsela7 corpus contains the data of 1130 news articles. Each article contains 5 versions:

1 original news text labelled as L 0 throughout this manuscript and 4 human-generated simplified versions labelled as L 1 , L 2 , L 3 and L 4 . They are produced by Newsela, a company that creates reading materials for classroom use of pre-college students. This dataset includes parallel textual data where L 1 , L 2 , L 3 and L 4 are simpler versions of a given text L 0 which is considered to have the complex (non-simple) style (table 3.7, samples 1 and 2). Humangenerated paraphrases are designed to be readable by children from different age groups.

Therefore, they have different levels of simplicity where given an L 0 text, L 1 is its least and L 4 is its most simplified paraphrase. It is worth noting that not all L 0 sequences have 4

paraphrases, but all have at least 1 simplified paraphrase [START_REF] Xu | Problems in current text simplification research: New data can help[END_REF].

We create a simplification corpus where the binary styles are complex and simple using the Newsela dataset and refer to it as Newsela-v 1 throughout this manuscript. The statistics of this corpus is summarized in table 3.5. We describe this corpus in more details in the following section. Newsela-v 1 We created a simplification corpus out of the Newsela dataset by using L 0 texts as the complex data and L 3 and L 4 texts as the simplified data. To do this, we first created two complex sets and one simple set using the following five steps and then did the train, test and development splits.

1. If at least one of the L 3 or L 4 simplified paraphrases are available for a given original L 0 text, L 0 text will be added to the first complex set. Then, its corresponding L 4 paraphrase will be added to the simple set and in case L 4 text is not available, its L 3 paraphrase will be considered as the simplified paraphrase of the L 0 text in the simple set.

The reason for composing the simple data out of L 4 texts (or L 3 if L 4 paraphrase is not available) is to maximize the distinction between the texts of the 2 styles of complex and simple. As table 3.6 illustrates L 0 texts have a high word overlap with L 1 texts, 0.6212, and L 2 , 0.4909 as compared to the L 3 and L 4 texts where the word overlap drops to 0.3807 and 0.3028. The samples shown in table 3.7 show how sequences L 1 and L 2 paraphrases can be similar to the L 0 texts in terms of style, i.e. they are slightly simpler (if any) compared to the L 0 sequences.

2. Otherwise (if neither L 3 nor L 4 texts are available), the L 0 text is included in the second complex set.

Data

Files L 1 L 2 L 3 L 4 L 0
0.6212 0.4909 0.3807 0.3028 Table 3.6 The word overlap between the file L 0 of the Newsla dataset and files L 1 , L 2 , L 3 , and L 4 3. The first complex set and the simple set form a parallel corpus from which we randomly select text pairs to form the parallel test sets. The reason for creating a parallel set as the test split is that in section 6.3.2, we need this parallel data to do a unigram-based analysis experiment in the domain of simplicity.

4. The second complex set is then merged with the remainder of the first complex set and gets shuffled. The resulting complex set together with the remainder of the simple set form the non-parallel train and development sets where splitting the data is done randomly.

5. The following preprocessing steps are then taken on the train, test and development splits to form the final corpus8 :

• Lower casing the tokens of the sequences.

• Replacing the numbers, website addresses, and email addresses with special tokens: <num>, <websitead>, <emailad>.

• Inserting space between tokens-punctuation and punctuation-punctuation.

• Making informal data more consistent, by transforming tokens which have more than one written forms to one form, such as converting ca n't to can't.

• Removing length outliers. Considering the box plot of length of the simple and complex data separately, sequences whose length are beyond the whiskers of these plots are labelled as outliers and removed from data.

Modelling approach

From complex to simple Sample 1: L 0 . Servicewomen complained that the ban prevents them from advancing their careers . L 1 . Servicewomen complained that the ban was limiting their career opportunities . L 2 . Servicewomen complained that the ban hurts their careers . L 3 Servicewomen say that the ban hurts their careers . L 4 . Military women say that the ban hurt their careers . Sample 2: L 0 . Soldiers who drive fuel trucks , provide medical support or even sort mail can come under fire in modern warfare . L 1 . Soldiers who drive fuel trucks , provide medical support or even sort mail can come under fire in this kind of modern warfare . L 2 . In this kind of modern warfare , soldiers doing any kind of job can come under fire . L 3 . In this kind of warfare , soldiers doing any job must be ready to fight . L 4 . Soldiers doing any job must be ready to fight at all times . Table 3.7 Examples of the sequences in Newsela Simplification Dataset where L 0 is the original sequence (complex style) and L 1 , L 2 , L 3 and L 4 are the simplified paraphrases. L 1 is the least and L4 is the most simple versions of L 0

Modelling approach

Although each of the experiments we report in the later chapters test multiple architectures, all of these architectures implement a similar unsupervised modelling approach. Consequently, in this section we provide an overview of this modelling approach. To frame the unsupervised textual style transfer, we use adversarial training by following the idea of GANs and employing classifiers as discriminators in our systems which enables the training by just relying on unaligned corpora (differently styled corpora). The main idea behind using this approach is that the discriminators guide the training in the direction of generating the style-shifted sequences in a desired style s, so that these sequences cannot be distinguished from the human-generated sequences in the corpus with the style s.

We introduce RNN-based and transformer-based adversarial TST baseline models in the following sections. These models are used throughout the experiments of the next chapters of this manuscript.

RNN-based TST baseline model

We use the adversarial TST framework proposed by [START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF] as our baseline model9 .

This architecture is composed of a generator block and a discriminator block which are described in this section. This section proceeds by explaining the adversarial training regime of this framework.

Generator block

The generator block Gen is based on a sequence-to-sequence model which consists of (i)

an encoder E and (ii) a decoder D [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF], where E and D are single-layer RNNs with GRU cells [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. E is initialized with the dense vector of the source style s (s ∈ {s 1 , s 2 }) and takes an input sequence x s and outputs the latent representation of the input as z s = E(x s , s). D is initialized with the dense vector of the target style s′

Discriminator block

For each style, the discriminator block Disc contains a style-specific classifier Disc s (s ∈ {s 1 , s 2 }) which is a single layer Feed-Forward network with a sigmoid output layer. Disc s1 takes as the input the decoder RNN hidden states corresponding to the reconstructed text with the style s 1 and the style-shifted sequence with the desired style s 1 . Similarly, Disc s2

is fed with the decoder RNN hidden states corresponding to the reconstructed text with the style s 2 and the style-shifted sequence with the desired style s 2 . Disc s1 and Disc s1 compute Pr("preserved") for each input, i.e. the probability that the input preserved its source style.

Therefore, they are trained to assign reconstructed inputs with label 1 ("preserved") and style-shifted inputs with label 0 ("trans f erred"). They are trained jointly with Gen by minimizing the respective equations 3.2 and 3.3, binary cross-entropy loss, where θ Disc s is 52

Modelling approach

the parameters of the classifier for the style s (s ∈ {s 1 , s 2 }).

L Disc s1 (θ Disc s 1) = -log(Disc s 1 (x rec s 1))-log(1 -Disc s 1 (x tr f s 2)) (3.2) L Disc s2 (θ Disc s 2) = -log(Disc s 2 (x rec s 2))-log(1 -Disc s 2 (x tr f s 1)) (3.3)

Adversarial training

The training of the TST model is done in an adversarial manner where Disc aims at detecting the style-shifted segments and labelling them as 0 ("trans f erred") and the training objective for Gen is to create style-shifted sequences in the desired style such that it fools the discriminator into labelling them as 1 ("preserved"). This leads to maximizing the adversarial loss which is computed in equation 3.4 (equation 3.5 is the symmetrical equation for Disc s 2).

L adv,s 1 = log(1 -Disc s 1 (x (tr f) s 2)) (3.4) L adv,s 2 = log(1 -Disc s 2 (x (tr f) s 1)) (3.5)
The total loss (equation 3. (θ Disc s2) and any two corpora X s 1 and X s 2 which have the same content distribution but different styles s 1 and s 2 (s 1 ̸ = s 2). This means that for instance, the two datasets should be both restaurant reviews but they should have different sentiments.

1. Sampling two mini-batches with the size k from the sets X s 1 and X s 2 (setting k = 1 for the sake of simplicity).

2. Processing the two mini-batches in parallel, i.e. for each of the sequences x s 1 ∈ X s 1 , and x s 2 ∈ X s 2 , Gen generates a reconstructed and a style-shifted sequence for each input:

-For x 1 :

x (rec) s 1 = Gen(x s 1 , s 1) x (tr f) s 1 = Gen(x s 1 , s 2) -For x 2 :
x -Computing L adv by equations 3.4 and 3.5, then, carrying out the gradient decent to update θ Gen by using the equation 3.6.

(rec) s 2 = Gen(x s 2 , s 2) x (tr f) s 2 = Gen(x s 2 ,
-Otherwise: performing the backpropagation for the Gen by only using the L rec (equation 3.1). 6. Repeating the steps 1, 2 , 3, 4 and 5 for the number of epochs (a hyperparameter set to 20 here). 7. Selecting the model with lowest total loss (equation 3.6) as the best model.

Training

Modelling approach

In the remaining chapters, all RNN-based models (i.e. the presented baseline system as well as all its variants that we well introduce in chapters 4.1 and 5) follow this training procedure. When small differences exist, they will be detailed. We explain the TST encoder-decoder network and the discriminator block, as well as the training steps in the following sections.

Generator block

The generator block (Gen) of the baseline T-based model is a sequence-to-sequence encoderdecoder framework where both encoder (E) and decoder (D) are transformer architectures similar to the model introduced by [START_REF] Vaswani | Attention is all you need[END_REF].

Encoder E E contains an embedding layer and 4 stacks of transformers (figure 3.2). Each stack of transformer is identical and consists of a fully connected self-attention, a fully connected point-wise Feed-Forward layer, and 2 residual normalization layers (see section 2.1.4.3).

E takes a sequence x s1 of the length T and a desired style s 2 as the input where the desired style is taken an extra token of the input sentence. It first projects the input tokens to one

Modelling approach

embedding matrix and desired styles to another embedding matrix where token embedding vectors and style embedding vectors are both initialized randomly and the model learns not only the context but also their positional information11 of the tokens as well as dense representations of different styles (the positional encoding is not used for the style tokens).

Then, the sequence of the vector representation of the desired style and the embedded tokens are fed to the first stack of the E where the output of each layer is first normalized by a residual layer, and then is fed as the input to the next layer. This means that the residual mechanism of a layer normalizes the addition of the inputs and outputs of that layer and feeds the result to the next layer. The final layer of E generates a sequence of latent token representations: z = (z 0 , z 1 , ..., z T) where z 0 is the dense representation of the desired style.

The source style of inputs s 1 and the given desired styles s 2 can be the same or different depending on whether the goal is to generate a style-shifted text (s 1 ̸ = s 2) or a reconstructed sequence (s 1 = s 2).

Decoder D D, similar to E, starts its processing by projecting the input tokens (if gold output tokens are available which is the case when reconstructing the text) through contextual and positional embedding layers. The embedding layer is followed by 4 stacks of transformer where each stack includes an attention layer, a fully connected point-wise Feed-Forward layer, and a normalization layer. Fully connected point-wise Feed-Forward, as well as the 3 residual normalization layers in each stack of D perform similarly to those of the residual layers of the stacks of E.

The attention mechanism of the stacks of D consists of not only a fully connected selfattention layer which implements a self-attention mechanism similar to that of the E, but also a fully connected encoder-decoder attention layer. This layer, as figure 3.2 illustrates, takes the sequence of vector representations of the input tokens z (created by E) together with the

Discriminator block

The discriminator block (Disc) is a binary classifier which is trained together with the Gen. Disc, similar to some previous work such as Radford et al. (2018b) and [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF], consists of a sequence of a transformer and a classifier (figure 3.3). The classifier is a Feed-Forward network with a single hidden layer and a softmax output layer. The transformer architecture of Disc is identical to that of E (section 3.2.3.1) containing an embedding layer followed by 4 stacks of transformers where each stack has a fully connected selfattention followed by a residual normalization layer, as well as a fully connected point-wise Feed-Forward layer followed by another normalization layer. As an input, Disc takes a text and a style, and aims at detecting whether or not the original style of the text matches the given style, i.e. given a pair of (x, s), it computes the probability of whether the original style of x is s. Disc learns to return true for an original text and its original style and a reconstructed text and its original style and false for a style-shifted text and its desired style (figure 3.3). Specifically, it is trained to label input pairs of either a source or reconstructed sequence and the source style as true, 1: (x s 1 , s 1) and (x (rec) s 1 , s 1), and style-shifted sequences and their desired style as well as source sequences and their reverse styles as false, 0: (x

Modelling approach

(tr f) s 1 , s 2) and (x s1 , s 2).
To do this, Disc reads a textual input, projects the tokens to their positional and contextual embedding vectors. Then, it feeds the first transformer stack with the embedding representation of the input tokens which is augmented by the dense vector of the style (either source or reverse) and a special token <cls>. Following some previous work (Radford et al., 2018b;[START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF], only the vector in the position corresponding to the <cls> token of the output of the transformer network of the Disc is fed to its linear classification layer. The softmax probabilities of this linear layer are considered as the outputs of the Disc.

During training, Disc uses these outputs to minimize L Disc which is defined in equation 58 3.2 Modelling approach 3.712 as the binary cross-entropy over the two classes where s 1 ̸ = s 2 .

L Disc = -log(Disc(x s (rec) 1 , s 1)) -log(1 -Disc(x (tr f) s 1 , s 2)) (3.7)

Adversarial training

In each step of training, two sequences of x s1 and x s2 are processed in parallel where x s1 ∈ X 1 and x s2 ∈ X 2 13 . X 1 and X 2 are two sets with the same content distribution and different styles.

Taking x s1 and x s2 as the input, and the desired output style, Gen generates the following 4 sequences, i.e. a reconstructed and a style-shifted sequence for each input text:

• x (rec) s 1 = Gen(x s 1 , s 1) • x (tr f) s 1 = Gen(x s 1 , s 2) • x (rec) s 2 = Gen(x s 2 , s 2) • x (tr f) s 2 = Gen(x s 2 , s 1)
To motivate the TST model to preserve the information of the input text we define the reconstruction loss as follows.

Reconstruction loss When the input style and the output desired style are the same, the model simply aims at reconstructing the given text and, in practice, it acts similarly to an auto-encoder. To enable the model to rewrite the output, we define a self-reconstruction loss L sel f rec . To calculate the (L sel f rec), the reconstructed and input text are used as the generated and gold tokens and the negative log probability of each input sequence x and its corresponding reconstructed sequence x is minimized using equation 3.8 during the training. ′ . To be more precise, as figure 3.4 shows, the model follows these two steps (s 1 ̸ = s 2):

Modelling approach

1. Feeding Gen with the desired style s 2 and x s1 to generate x (tr f)

s 1 .
x

(tr f) s 1 = Gen(x s 1 , s 2)
2. Feeding Gen with the desired target style s 1 and x

(tr f) s 1
which has the source style s 2 to generate the style-shifted form of x

(tr f) s 1
which is the reconstructed form of x s1 .

x

(rec) s 1 ′ =(x (tr f) s 1) (tr f) s 2 = Gen(x (tr f) s 1 , s 1)
Doing this cycle of generation, L cycle rec can be computed similar to L sel f rec (equation 3.8) by minimizing the negative log probability of each input sequence x and its corresponding reconstructed sequence x (rec) s ′ .

L cycle rec =log Pr(x s (rec)′ = x s | x s (trf) , s) (3.9) with Gen in distinguishing the style-shifted text from the reconstructed text, while Gen attempts to improve the generation so that style-shifted outputs cannot be categorized. To enable this competition, an adversarial loss is defined, equation 3.11 where s 1 ̸ = s 2 .

L adv = -log(Disc(x

(tr f) s 1 , s 2)) (3.11)
If Disc detects that the style of the input x

(tr f) s 1 is shifted to s 2 , it labels (x (tr f) s 1 , s 2) as 0.
This leads to the increase of adversarial loss and, as a result, the increase of the total loss which is the summation of adversarial loss and reconstruction loss (equation 3.12). Therefore,

Disc

Experimental setup

This section reports the parameters of the baseline frameworks used throughout the experiments of the later chapters. The parameters used in RNN-based baseline model are described in table 3.8 and the parameters used in T-based baseline model are described in table 3.9. 1. Sampling two batches with the size k from the sets X s 1 and X s 2 (setting k = 1 for the sake of simplicity).

2. Processing the two mini-batches in parallel, i.e. for each of the sequences x s 1 ∈ X s 1 , and x s 2 ∈ X s 2 , Gen generates a reconstructed and a style-shifted sequence for each input:

-For x 1 :

x (rec) s 1 = G(x s 1 , s 1) x (tr f) s 1 = G(x s 1 , s 2) -For x 2 : x (rec) s 2 = G(x s 2 , s 2) x (tr f) s 2 = G(x s 2 , s 1) 3.
Computing the self-reconstruction loss using the equation 3.8. 4. Computing the discriminator loss using the equation 3.7. 5. Computing the cycle-reconstruction loss using the equation 3.9 and adversarial loss using the equation 3.11. 6. Pre-training the model by repeating step 1 and 2 and 3, and performing gradient decent to update θ E , θ D for n p times. -First do step 3, and perform gradient decent to update θ E , θ D .

-Second do step 5, and perform gradient decent to update θ E , θ D . 9. For all the epochs (20 here), repeating steps 7, and 8 for all the batches in the training set and selecting the model with lowest total loss (equation 3.12) as the best model in each evaluation step (n eval).

* n p , n d , n g and n eval are hyperparameters that their values are specified in table 3.9. ** Neither training stop-condition nor model selection strategy was stated in the training steps of the T-based model (Dai et al., 2019b); therefore, to train this model, we set the conditions described in step 9. *** Each evaluation step is after doing steps 8 and 9 for n eval times, i.e. after iterating over (n eval * (n d + n g)) number of batches during training.

Evaluation methodology

Evaluation methodology

The evaluation methodology we use for our experiments considers three dimensions: content preservation, style transfer strength and fluency. We believe that, taken together, these evaluation aspects and methods provide a comprehensive evaluation methodology for textual style transfer. We further confirm this methodology through a human evaluation.

Automatic evaluation

This section describes the automatic metrics used to compute the performance of the TST models in the three aspects of style transfer power (section 3.3.1.1), content preservation power (section 3.3.1.3) and fluency (section 3.3.1.2).

Style-shift power (SSP)

SSP investigates how well a TST model performs in shifting the style of the inputs. To compute SSP, we followed previous work (Fu et al., 2018a;Li et al., 2018a;[START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF][START_REF] Singh | Sentiment transfer using seq2seq adversarial autoencoders[END_REF][START_REF] Shrimai Prabhumoye | Style transfer through back-translation[END_REF][START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF][START_REF] Kelleher | Deep Learning[END_REF]Hu et al., 2017a) and trained style classifiers which predict the probability of the style-shifted text to have the desired style. If these classifiers label a generated style-shifted sequence with the desired style, it shows that the TST model has shifted the style of the sequence successfully. Therefore, the percentage of the style-shifted text which are labelled with the desired style by this classifier signifies the power of the TST model in shifting the textual style (SSP).

Throughout our experiments, similar to the approach taken by some previous research, such as [START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF], we use the TextCNN model proposed by [START_REF] Kim | Convolutional neural networks for sentence classification[END_REF] as style classifier. To measure the SSP of TST models, for each dataset, we train a separate style classifier for on the same training data.

Evaluation methodology

Fluency (PPL)

Following previous research [START_REF] Zhao | Adversarially regularized autoencoders[END_REF][START_REF] Kelleher | Deep Learning[END_REF], we examine the fluency of style-shifted sequences in terms of their grammatical correctness by considering perplexity (PPL) and compute it using pre-trained language models.

The PPL of an unseen textual sequence x = [w 1 , ..., w T]) is its inverse probability, Pr(w 1 w 2 ...w N), normalized by the number of tokens (equation 3.13) [START_REF] Curran Associates | A study on neural network language modeling[END_REF].

PPL(X) = Pr(w 1 w 2 ...w N) 1 N = N 1 Pr(w 1 w 2 ...w N) (3.13)
Language models calculate the probability of the given text using the chain rule.

Pr(w 1 w 2 ...w N) = N ∏ t=1 Pr(w t |w t-1 1) (3.14)
The inversion while computing PPL means that minimizing PPL results in maximizing probability, i.e. lower PPL scores represent higher fluency in the generated texts of the models. In other words, the fluency score of a sequence is negatively related to its PPL.

To compute PPL of the generated text of the TST models, for each dataset, we train a separate RNN-based language model consisting of a single-layer RNN with the unidirectional GRU cell [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. The tokens are initialized by embedding vectors using 100-dimensional pre-trained embedding GloVe model [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]. The PPL reported for each model is computed as the average score of the PPL of each style-shifted output over the test data of a corpus.

Content preservation power (CPP)

This aspect of evaluation focuses on how well a style-shifted sequence maintains the content of the input sequence. Different approaches have been suggested in the literature to compare two sequences and measure their semantic similarity. These methods can be categorized as Embedding-based metrics We follow the approach proposed by Fu et al. (2018a) in computing the content maintenance of a given style-transferred sequence as the cosine similarity between its embedding representation and embedding vector of its corresponding source input. To generate embedding vectors of the sequences, a pre-trained embedding model is used to map each token to its embedding. Then, a pooling layer is applied over these token embeddings (figure 3.6). Here, two types of pooling layers, average and minmax-average techniques, are used which we explain more about in the following sections.

The CPP score of a model is the average of scores computed for all style-shifted outputs created by that model. In this research, as pre-trained embedding models, we use both GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] and SBERT models [START_REF] Reimers | Sentence-bert: Sentence embeddings using siamese bert-networks[END_REF]. We refer to these cosine similarity based metrics as GloVe-based and SBERT-based.

• GloVe-based We use a 100-dimensional GloVe model and map the tokens of sequences to their embeddings, represented as e i ∈ R 100 (1 ≤ i ≤ N). The embedding vector of a given sequence with the size N is then created as the concatenation of the following pooling vectors of its token embeddings: min = min 1≤i≤N e i, j 1≤ j≤100 , mean = ∑ 1≤i≤N e i, j N 1≤ j≤100

, and max = max 1≤ j≤100 e i, j 1≤i≤N . 68

Evaluation methodology

• SBERT-based metric We use a pre-trained SBERT model14 which creates embedding representation for sequences by firstly mapping the tokens to their embedding vectors (with the size 768), i.e. given a sequence with the size N, tokens are created as

e i ∈ R 768 (1 ≤ i ≤ N).
Then, it takes the average of these embeddings mean =

∑ 1≤i≤N e i, j N 1≤ j≤768

as the sequence vector. i.e. the tokens that are closer are matched with each other. Then, it calculates the distance score of the two sequences as the average of the distances of their matched tokens [START_REF] Kusner | From word embeddings to document distances[END_REF]. Lower distance scores in W MD demonstrate higher semantic resemblance.

Word

To compute W MD, we first mapped the tokens of the style-shifted and input sequences to their embedding representation using a pre-trained 300-dimensional Word2Vec model (Shivakumar and Georgiou, 2019).

Word overlap (WO) is a unigram-based method proposed by [START_REF] Kelleher | Deep Learning[END_REF] which computes the unigram overlap of two sequences. For instance, it calculates the ratio of the unigram overlap of the tokens of a given input sequence x and the tokens of its corresponding generated output text x and the total number of the tokens of the two sequences (equation 3.15).

WO = count(x ∩ x) count(x ∪ x) (3.15)

Evaluation methodology

There are other unigram-based metrics which are used in NLG evaluation. One of the widely applied unigram-based metric is BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF]. BLEU score (considering unigrams) for a given pair of input and style-shifted text is computed as the ratio of the unigram overlap of style-shifted tokens and input tokens and total number of tokens of the style-shifted text. Following some previous TST research such as [START_REF] Kelleher | Deep Learning[END_REF], we use this metric throughout the experiments of this thesis and report the WO value for a set of style-shifted text is the average of WO scores computed between the sequence pairs of that set and their corresponding reference set where the stop words are removed from the sequences as a preprocessing step15 .

Upper Bounds and Lower Bounds of the automatic evaluation metrics

Given an evaluation dimension, the lower bound score of a metric can be assumed as the scores computed using some of the worst possible outputs. Similarly, the upper bound score of a related metric reflects how ideally models should perform. These scores can be computed using gold data as the model outputs.

To better interpret how well TST models perform in maintaining the content of the inputs, shifting their style and generating fluent text, we compute the lower bound and upper bound scores of evaluation metrics which were introduced in section 3.3.

SSP:

To measure the lower bound of SSP for a given corpus, we consider the test set of that corpus and take the set having the style s 1 as the style-shifted set with desired style s 2 and the test set of style s 2 as the style-shifted set with desired style s 1 (s 2 ̸ = s 1). The idea being that the worst style-shifted sequence for a desired style can be the gold text of the opposite style. Similarly, the best style-shifted sequences for a desired style can be the gold

Evaluation methodology

text of the same style. Therefore, to compute upper bounds, we also use the test data where the test set of style s is considered as the style-shifted data with the desired style s.

To calculate the scores, for each corpus, we use the related classifier trained for computing the SSP (explained in section 3.3.1.1) and report the percentage of the style-shifted text which are labelled with the desired style.

PPL: To compute the lower bound of fluency (PPL) of each dataset, first, we shuffle the tokens of the sequences of test data. Then, we compute PPL of the shuffled test data as the average of PPL scores of sequences using the language model which is trained over the given dataset.

The upper bound PPL scores are computed as the perplexity that the language model trained over a dataset measures for the test set of that dataset.

CPP:

To compute the lower bound of CPP, for each metric and data set, we calculate CPP score taking the sequences of test data and randomly selected sequences from train set of the given dataset. Then we take the average of CPP scores of all the random sequence pairs as the lower bound of that CPP metric.

The upper bound of CPP is computed as for all metrics of W MD, WO, SBERT -based and GloVe-based. It is computed by comparing each set with itself which results in the upper bound score 1 for all the metrics.

Human evaluation

Human evaluation tests are advantageous to be used in various NLP tasks. Firstly, due to the limitations of some of the automatic techniques, they can be applied to verify the automatic evaluation methodology. Some of these limitations in the scope of TST can be listed as follows. First, the SSP scores reported for the models using pre-trained classifiers (section 3. the CPP of the TST models, the source and style-shifted sequences have different styles.

This can affect the CPP scores assigned to these pairs due to the probable overlap between these two textual elements. Finally, the fluency of the TST models using the pre-trained language models (section 3.3.1.2) is firstly biased towards the data, i.e. if the gold data is not well structured grammatically, the model cannot be trained well. Secondly, the pretrained language models are biased towards shorter text [START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF]. Furthermore, manual evaluation techniques can be applied in the case of the lack of automatic evaluation techniques. For instance, in the scope of TST, which is a multi-dimensional task, there is lack of a comprehensive evaluation metric to do an overall ranking of the TST systems. Human tests can be conducted here so that annotators judge the style-shifted outputs of the TST frameworks taking the three aspects of the task into consideration.

However, the main drawback of evaluating the models manually is that this task is resource-consuming in terms of both time and finance. Moreover, the results of manual tests cannot be easily compared across different studies, since they are highly affected by the evaluators. Finally, the test can be difficult and ambiguous which can lead to low agreement between the judges reducing the validity of the test results.

Different strategies can be implemented while designing human evaluation tests. Broadly, the techniques can be categorized into groups of comparison-based tests as well as scoring-

Summary

based tests [START_REF] Jin | Deep Learning for Text Style Transfer: A Survey[END_REF]. In the former technique, the outputs of the models (at least two models) should be compared and ranked by testers. In the latter strategy, judges are asked to provide labels or scores directly to one output at a time. In this thesis, we use both of the strategies based on the requirements of the tests. For instance, based on whether there is a need for doing system comparison or assessing the intrinsic quality of the system outputs, comparison-based or scoring-based strategies were applied, respectively.

In this thesis, we strike a balance between the advantages of human evaluations and the difficulties in terms of time and financial limitations for the work by using human evaluation tests to verify the automatic evaluation framework we use in our experiments, rather than to test the specific performance of the systems. Consequently, in chapter 4 (section 4.2.1), we conduct human evaluations to verify the proposed automatic evaluation methodology by showing that human evaluators and automatic metrics rank the models similarly across the three evaluation dimensions covered by the automatic metrics. Then, in the experiments reported in the later chapters (5 & 6) we use the verified automatic evaluation methodology to study the performance of the TST models.

Summary

The current chapter firstly described the data used to perform the experiments during my thesis. Then, it focused on the modelling approach which is taken by all the TST frameworks in this research and it proceeded by introducing the RNN-based and T-based baseline frameworks as well as the experimental setup of these models. Finally, section 3.3 explained the proposed comprehensive evaluation methodology, including the evaluation dimensions, automatic evaluation metrics which are used to evaluate the outputs of the TST systems and a brief description of the human evaluation methodologies.

In the next chapter, we firstly introduce different extensions of the RNN-based baseline model and then conduct some experiments to examine the latent space of the TST frameworks.

Chapter 4

The entanglement of sentiment and content This chapter focuses on the latent space of the adversarial RNN-based TST frameworks in order to explore the separation of style and content within the sentiment domain. The latent space of these sequence-to-sequence encoder-decoder networks can be affected by both encoder and decoder components. Therefore, we propose an encoder variant and a decoder variant of the RNN-based baseline TST architecture (described in section 3.2.1) and compare the baseline model with these two variants throughout the experiments of this chapter. We first look into how these models perform in dealing with the TST task doing a comprehensive evaluation considering content preservation, style-shift and fluency dimensions. Then, we design a probing experiment to investigate the information encoded in their latent space.

Finally, we look into how each of these TST frameworks is affected by reinforcing the input during the generation process, which can help us further explore the input latent space. We focus on the sentiment style domain and use the Yelp-large corpus introduced in section 3.1.1 throughout these experiments. 2). Then, we evaluate the performance of these two frameworks in section 4.2. Some style-shifted samples created by these TST models are provided in table 4.5. We employed ELMo embeddings to replace the style task-specific encoder in creating the input vectors, since they have previously been employed in many NLP tasks in the recent years and have achieved promising results.

ELMo-based encoder TST model

To create the latent vector for a given input, first, all the tokens of the sequence are mapped to their ELMo representations. Then, the min-mean-max pooling method which

L rec s 1 = -log Pr D s 1 (x (rec) s 1 |x s 1) (4.1)
The joint training of the discriminator and generator block is done in a similar fashion to that of the base model by using the equations 4.2 which computes the total loss as the summation of the adversarial losses (equations 3.4 and 3.5) and reconstruction losses to update the parameters of the (θ E , θ D s1 , θ D s2). Equation 3.2 and its symmetrical equation are used to estimate (θ Discs 1 , θ Discs 2) of the style-specific discriminators.

Evaluating the proposed frameworks

L total (θ E , θ D s1 , θ D s2) = L rec s 1 + L rec s 2 + L adv,s 1 + L adv,s 2 (4.2)
Experimental setup of the proposed models The hidden state size of the uni-directional GRU cells of the encoder and decoders of the multi-decoder model (section 4.1.2) is 700. In the ELMo-based model (section 4.1.1), the hidden state size of the uni-directional GRU cells is set to 3072. The other parameter settings of these two models are similar to those of the RNN-based baseline model which are reported in the table 3.8.

Evaluating the proposed frameworks

This section first reports the results of the baseline, ELMo-based encoder and multi-decoder systems. Then it investigates the validity of the evaluation methodology by conducting human evaluation tests. To do the evaluation, the restaurant review dataset Yelp-large was used (described in section 3.1.1).

Automatic evaluation

To investigate the performance of the TST models automatically, we considered the three evaluation aspects of fluency, style-shift strength SSP, and content preservation power CPP.

We computed how well the style-shifted sequences preserve the content of the input sequences by using the GloVe-based CPP metric. We also measured how each model shifts the style of the inputs to a given desired style by computing the accuracy of the pre-trained classifier in labelling the style-shifted sequences with this desired style. Finally, the fluency of the styleshifted sequences are measured by calculating the perplexities that a pre-trained language model assigns to them where lower values represent more fluent sequences (more details in section 3.3). The multi-decoder framework outperforms the base model in terms of shifting the style and fluency but works slightly worse considering CPP. This is mainly because each stylespecific decoder learns the distribution of a specific-style data and generates in that style.

To better interpret the scores of CPP, we can compare the lower bound (LB) of the GloVebased CPP score of the Yelp-large dataset (0.84) with the GloVe-based CPP scores of the baseline model and its extensions. This shows that all the models have a better performance in preserving the content than random.

Human evaluation

We conducted three human evaluation tests corresponding to the three evaluation dimensions.

These tests were done in a totally blind manner, i.e. samples and models were shuffled for each test. This was to ensure that the evaluators would not be biased while doing the test. Due to ELMo's bad performance and the time constraints of the human evaluation, we did not include the results of the ELMo model in this test. The total number of samples considered was 450: 150 samples (75 samples from each style) randomly selected from the

Evaluating the proposed frameworks

Yelp test set, as well as, their corresponding 300 style-shifted sequences generated by the base and multi-decoder models. The scores reported in each test are computed by taking the average over the labels of the judges over all the samples. For each of the three human tests, the Krippendorff's inter-rater agreement [START_REF] Krippendorff | Content analysis: An introduction to its methodology[END_REF] is computed which gives an insight on the level of ambiguity of the test and therefore the level of its validity.

Style-shift power (SSP)

In this test the 29 participants were provided with one style-shifted sample at a time and were asked the following question:

• Question: What is the sentiment of this sequence?

• The possible labels: "positive", "negative", or "neutral".

The judges labelled the sequences generated by the base model as having the desired style in 58.3% of the cases. This number raised to 67.6% for the multi-decoder model. The inter-rater agreement of this test was 0.752.

Fluency

The 25 evaluators in this test were provided with one style-shifted sample at a time and were asked the following question:

• Question: How grammatically correct is the given sequence?

• The possible labels: "incorrect", "partly correct" and "correct".

The results of this test with the inter-rater agreement of 0.568 shows that the multi-decoder model outperforms the base model in terms of fluency and grammatical correctness. Multidecoder outputs were labelled by the annotators 67.6% of the times as "correct" as compared to the outputs of the baseline model which were labelled as "correct" 64.2% of the times.

The performance of the models is computed after disregarding the "partly correct" label due to its ambiguity for the judges. 4.3 Comparing the performance of the base and multi-decoder models to their reinforced versions where the input vector z is injected to the decoder(s) at each step of generation.

e to rows a and c of the table 4.4 show how emphasizing the input vector during generation modifies the presence of the source style in the latent space of these two TST systems.

Probing the disentanglement of style and content

We follow the same strategy employed by [START_REF] Conneau | What you can cram into a single vector: Probing sentence embeddings for linguistic properties[END_REF] to conduct a probing classification experiment in order to analyse what the baseline model, ELMo-based encoder system and multi-decoder model encode in their latent space. We train a separate classifier for each of the three TST networks. Each classifier is a Feed-Forward network with a single hidden layer and a sigmoid output layer and is trained to infer the source style s from a latent vector z s generated by the encoder of its corresponding TST model for the input text

Discussion

The main focus of this chapter is exploring the latent space of adversarial end-to-end encoderdecoder RNN-based TST systems and investigating the separation of content and sentiment in their input latent vectors. Modifying encoder and decoder components can affect the input latent space of these TST models and studying these effects can shed more light on the

Discussion

latent space and what is encoded in it. Therefore, the ELMo-based encoder model, and the multi-decoder framework were introduced. To explore the latent space of the TST systems, we conducted two main experiments while taking sentiment as the case study. The first experiment was a probing classification task which investigates the presence of the source style in the input latent space and the second experiment focused on reinforcing the input representation z throughout the generation process while creating each style-shifted token.

The results from these experiments led to the following conclusions.

• The drop of the SSP across the baseline system and multi-decoder model when the input representation z is reinforced during generation (rows d and e of table 4.3) indicates that latent representations of the inputs are not free of the source style. Therefore, due to the presence of both style and content features in the latent space, z-reinforcement negatively affects the SSP and may improve the CPP as in the case of the baseline model (row d of table 4.1).

• Rows d and e of table 4.3 show the fluency drops across both of the models when reinforcing is applied. This indicates that z-reinforcement inhibits the fluency of the decoder(s). This implies that z contains features from a language distribution which differs from the language distribution to which the style-shifted sequences belong, i.e. source as opposed to the target style language distributions and the presence of the source style features in the z vectors confuses the decoder language models.

• Table 4.4 reports high accuracy for the probing classifiers corresponding to all the TST models. This indicates the presence of the source style in their latent space implying that style and content are entangled.

• Rows d and e of table 4.4 illustrates that the accuracy of the classifiers corresponding to the reinforced-based and reinforced multi-decoder models in labelling source style lowers compared to the base and multi-decoder systems (rows a and c of table 4.4).

Discussion

This firstly indicate that the reinforced models encode less source stylistic features in their latent vectors. We hypothesize that this happens since the repetitive reinforcement of the source style encoded in z vectors throughout the generation process interferes with the ability of the model to shift the style due to the presence of the source style in the z space. Therefore, the model learns to strip out the source style from the z space during training in order to reduce the confusion these source style features cause when z is reinforced during generation. Also, we notice that encoding appreciably less source style in the z of reinforced multi-decoder model leads to a drop in the CPP of this model (table 4.3 row e) which provides another proof that style and content are not totally separable.

These observations imply the presence of an entanglement between the style and content, i.e. source style is not totally separable from the content. These results provide us with a good insight about the main research focus of this chapter which also addresses the first research question of this thesis (section 1.2). The other findings of this chapter are discussed in the following.

• The results in table 4.4 showed how the z vectors generated by the task-specific encoders differ from the ELMo-based z vectors. Higher accuracy scores of the classifiers trained with the z vectors generated by the baseline model (with and without reinforcing) and multi-decoder model (with and without reinforcing) show that task-specific encoders encode more source stylistic features within the input embedding representations compared to the ELMo-based encoder model. This suggests that the role of the encoders in the TST problem is not only to encode the content-related information, but also, to mark the source style features which guides the TST system while generating in the desired style.

• Table 4.4 illustrates lower accuracy for the classifiers which correspond to the multidecoder models compared to their corresponding single-decoder model (rows c and e

Discussion

compared to the rows a and d, respectively). This indicates that style-specific decoder frameworks need less of the source style indicators in their z space compared to the single-decoder frameworks, since their decoder learn to generate in a specific style.

• The results in table 4.4 indicate that the reinforcing of z results in both the base and multi-decoder frameworks learning to reduce the amount of information about the input style encoded in the z representation (a reduction of approximately 1.6% probing accuracy for the base model and a reduction of approximately 5.7% probing accuracy for the multi-decoder framework). Focusing now on table 4.1, these reductions in the encoding of the input style in z correspond with a decrease in SSP (reinforcing in the base model results in a drop of 12.8% in SSP and in the multi-decoder model reinforcing z during generation results in a drop of 3.7% in SSP). We hypothesize that the relatively small reduction in the probing accuracy accompanied by the relatively large reduction in SSP observed for the base model is due to the fact that, as noted above, single-decoder models are more reliant on the source stylistic features while doing the task compared to the models with multiple decoders (i.e. because the base model only have a single decoder that generates in both styles, the presence of input style in z can be beneficial as a signal to the decoder to generate in the other style).

• Rows a and c of the tables 4.1 and 4.4 show that the higher the accuracy of a probing classifier the better its corresponding model performs on preserving content. This indicates a direct relation between the amount of the source style encoded in the z vectors of the base and multi-decoder system and their CPP which again implies an entanglement between source style and input content. This is further validated by the results of the z-reinforcement experiment. We investigate this observation more in chapter 5 by studying the relation across other TST frameworks and style domains.

Conclusion

• The findings of this chapter (table 4.3) also imply a trade-off between evaluation dimensions where an increase in CPP can lead to a drop in SSP and also worse fluency.

This highlights the importance of using a comprehensive evaluation methodology for TST problem similar and further validates the methodology proposed in this chapter. This also motivates the use of this evaluation methodology throughout the experiments of the later chapters.

• We conducted a human evaluation test considering the three evaluation aspects. The results were inline with the results of the automatic evaluation which confirmed the validity of our automatic evaluation methodology. We use this validated automatic evaluation methodology to investigate the performance of TST frameworks throughout the experiments of this chapter and later chapters.

• The results of human evaluation are inline with the intuition that style and content are entangled. To be more precise, on one hand, rows 1 and 2 of table 4.2 show that according to the human judges the base model performs better in preserving the content as compared to the multi-encoder system. The results of the probing experiments, on the other hand, report a higher probing accuracy score for the baseline model (rows a of table 4.4) as compared to the multi-encoder system (rows c of table 4.4). This suggests that the presence of more source style in the latent space of the baseline model leads to better CPP which further confirms the style-content entanglement.

Conclusion

Studying the latent space of the generation block of RNN-based frameworks, as the main focus of this chapter, indicated that for the TST task, style and content are entangled elements and their total separation is not possible while considering sentiment as the style domain.

This observation shifted our attention towards examining whether these findings hold across Chapter 5

Investigating the style transfer task in sentiment domain versus formality domain This chapter focuses on exploring whether the findings of chapter 4 can be extended to other style domains, i.e. it investigates whether style is a consistent concept across various domains.

To do this, we do a series of experiments which mainly focus on exploring the latent space of sentiment-transfer and formality-transfer models. As the first step, we modify the encoder of RNN-based baseline model (described in section 3.2.1) and propose a multi-encoder system and an attention-based framework. The reason being that the input latent representations which are the focus of our experiments throughout this chapter can be highly affected by the encoder architecture and studying these two systems enables us to examine the effect of these modifications.

The experiments of this chapetr aim at exploring the style domain of sentiment as well as the style domain of formality, specifically in terms of how sentiment and content are entangled compared to formality and content. They involve investigating whether the previously observed sentiment-content entanglement holds across the multi-encoder and attention-based 5.1 Implementing more powerful encoders TST frameworks. They also examine the presence of the source stylistic features in the latent space of the TST models and their relation with the content across sentiment and formality domains. This chapter also explores sentiment-shift versus formality-shift tasks and further validate the comprehensive evaluation methodology (described in section 3.3) by employing different techniques to confirm the validity of CPP metrics. Throughout the experiments of this chapter, we use the Yelp-large corpus (described in section 3.1.1) and GYAFC-v 1 and GYAFC-v 2 corpora (described in section 3.1.2).

Implementing more powerful encoders

Encoders of encoder-decoder sequence-to-sequence frameworks create input latent representations. So, the architecture of these networks can affect these latent vectors. In this section, we extend the baseline model (described in section 3.2.1) and implement two encoder variants: a multi-encoder framework (section 5.1.1), and an attention-based model (section 5.1.2). Employing these TST models throughout the experiments of this chapter enables us to study the effect of this modification on the latent space, which is the main focus of this chapter.

Multi-encoder framework

We extend the baseline model by employing one RNN as the encoder for each style in the system. Hence, the generator block Gen of the proposed model contains two style-specific encoders E s1 and E s2 , as well as a decoder D which is an RNN shared between the two encoders. The discriminator block Disc of the proposed framework is the same as that of the baseline model and functions similarly. It consists of style-specific discriminators Disc s (s ∈ {s 1 , s 2 }).

L rec1 (θ E s1 , θ D) = -log Pr(x s 1 (rec) |x s 1) (5.1)
Adversarial training of this system is done in a similar fashion to the baseline model. Also, similar to the baseline model, Disc and Gen are jointly trained by updating the parameters of θ Disc s1 and θ Disc s2 using the equation 3.2 (s ∈ {s 1 , s 2 }) and estimating the parameters θ E s1 , θ E s2 and θ D using the following equation 5.2 where the adversarial loss similar to the baseline model is computed by equations 3.4 and 3.5 and is applied to guide the training process into creating the style-shifted sequences.

L total (θ E 1 , θ E 2 , θ D) = L rec s1 + L rec s2 + L adv,s 1 + L adv,s 2 (5.2)
Figure 5.2 Generating the output token at time step t while creating c t considering s t-1

Attention-based model

We also extend the baseline model in another way by implementing the attention strategy 1 proposed by [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] and introduce the attention-based model which consists of an encoder E, a decoder D and style-specific discriminators Disc s (s ∈ {s 1 , s 2 }).

Encoder (E): E is a single-layered bi-directional subnetwork that contains two RNNs which read an input sequence x s (s ∈ {s 1 , s 2 }) in both forward and backward directions and are initialized by the dense vector of the source style s. If the length of x s is T , the encoder output states h 1 , . . . , h T are formed by the concatenation of the outputs from forward and backward cells,

h i = (- → h i ⊕ ← - h i).
The latent representation denoted as z s is created by the concatenation of the last state of the two RNNs of E, z s = (-→ z s ⊕ ←z s). Theses vectors are then augmented as h ′ 1 , h ′ 2 , . . . , h ′ T and z ′ s by concatenating the h 1 , . . . , h T and z s with the dense vector of the desired style. where at time step 0, z ′ s is considered as the previous state. The weights assigned to the augmented state h ′ j of E, at time step i is calculated by equation 5.3 where the score i, j is normalized with regards to the scores assigned to each augmented state h ′ 1 , h ′ 2 , . . . , h ′ T of the input using a softmax layer.

a i, j = exp(score i, j) ∑ T k=1 exp(score i,k) (5.3)
The score for h ′ j at time step i (score i, j) is computed relative to the content of the previous D state (s i-1) by passing the h ′ j and s i-1 through a two-layer feed forward network where the activation function of the first layer is a hyperbolic tangent.

score i, j = W f (tanh((W s s i-1 + b s) + (W h h ′ j + b h))) (5.4)
The discriminator block (Disc) of the attention-based model is similar to that of the base system in terms of the architecture, functionality and training regime. which is reported in table 3.8.

Evaluating the proposed frameworks

Evaluating the proposed frameworks

In this section, we compare the sentiment-shift and formality-shift tasks by studying the performance of the baseline model and its two proposed extensions. We use the Yelp-large (section 3.1.1) and GYAFC-v 2 (section 3.1.2) corpora to evaluate how these models perform across sentiment and formality domains by applying the evaluation methodology (described in section 3.3). In section 4.2.2, we showed that the comprehensive evaluation methodology is in line with human judgement. Here, we would like to further confirm this methodology by using different techniques to compute and validate CPP2 .

The GloVe-based CPP metric has been widely used in the previous TST researches including (Fu et al., 2018a;[START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF][START_REF] Kelleher | Deep Learning[END_REF][START_REF] Jafaritazehjani | Style versus content: A distinction without a (learnable) difference?[END_REF][START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF][START_REF] Jafaritazehjani | Local or global: Understanding the variation in the encoding of style across sentiment and formality[END_REF]. However, while using this metric, the variance of scores is small, interval of the (0.84, 1) (considering the lower and upper bounds of the metric). This leads to a lack of sensitivity which questions the efficiency and precision of this metric [START_REF] Kelleher | Deep Learning[END_REF]. To validate the GloVe-based CPP scores, we previously showed (section 4.2.2) that GloVe-based CPP scores rank the models similar to human annotators. Here, we employ two other CPP metrics, W MD and WO, which apply different techniques and investigate how these metrics rank the TST models compared to GloVe-based metric. We also use confidence intervals to assess whether differences in GloVe-based CPP scores between different architectures are statistically different.

As described in details in section 3.3.1.3, WO is a unigram based metric which is computed after filtering the stop words from the given input and its corresponding styleshifted text. To compute W MD which is a special case of Earth Mover's Distance [START_REF] Yossi Rubner | The earth mover's distance as a metric for image retrieval[END_REF], we follow the approach explained in section 3. representations of each pair of input and style-shifted output. Table 5.1 lists the results for the baseline, multi-decoder and attention-based models on the Yelp-large and GYAFC-v 2 datasets. In terms of CPP metrics, one observation that can be taken from these results is that the W MD, WO and GloVe-based metrics are in agreement in terms of rank order of the systems. On the Yelp-large dataset, all these CPP metrics rank the attention-based model best, followed by the multi-encoder and then the baseline model. On GYAFC-v 2 dataset, all theses metrics rank the multi-encoder model best, then the baseline model and finally the attention-based model. This consistency across these three different CPP metrics validates the use of GloVe-based CPP.

We take a further step and examine whether the differences reported for the GloVe-based CPP scores for the TST models across one style domain are statistically significant. To do so, for each style domain and TST framework, we compute the confidence intervals (CI) for the GloVe-based CPP scores. CIs provides a range of estimates for the true mean of a population, centred on the sample mean, and is defined as an interval with a lower bound and an upper bound. The interval is computed at a designated confidence level. The confidence level represents the long-run frequency of confidence intervals that contain the true value of the parameter. In other words, 99% of CIs computed at the 99% confidence level contain the

Evaluating the proposed frameworks

Overall, the CPP scores of all frameworks are higher than LB scores. However, the CPP scores computed for the attention-based model in the domain of formality is very close to the LB scores considering the three metrics of WO, W MD and GloVe-based, i.e. the CPP scores of attention-based model is closer to LB scores rather than the the CPP scores of the other two TST models in the domain of formality. This can mean that the model has not reached convergence, i.e. it needs either a longer training time or more data. To keep the training parameters constant; such as number of epochs, we reported the results of this model as is without trying different techniques to reach better performance.

Excluding the attention-based TST model, the results listed in table 5.1 indicate the following. First, we observe that an increase in CPP results in a drop in SSP, i.e. in both domains of formality and sentiment, CPP and SSP appear to be inversely related. Also, the results of table 5.1 indicate that in both style domains, fluency of the style-shifted text generated by each model gets worse as the CPP of the model improves, i.e. better values of CPP leads to higher perplexity scores. This is in line with the trade-off observed in the results of the previous chapter (section 4.5). The observation that the trade-off holds while applying other architectures as well as across other style domains and not only sentiment reinforces the necessity of applying a comprehensive evaluation methodology, i.e. taking the three evaluation dimensions into account for the TST problem.

Finally, the results in table 5.1 suggest that applying style-specific encoders leads to higher CPP scores in the sentiment and formality domains. Moreover, comparing the results of the baseline model and its two extensions highlights the performance variation of the attention-based architecture versus multi-encoder across these two style domains. This means that employing the attention-based technique affects the sentiment-shift and formality-shift tasks differently as compared with using the multi-encoder strategy. To be more precise, in the sentiment domain, employing the attention-based technique has a larger influence on the performance of the model versus employing multi-encoder architecture, i.e. we

Sentiment versus content as compared with formality versus content

observe a larger increase in CPP values and a bigger drop in SSP score while employing attention-based as compared to the multi-encoder system. This difference in performance between the attention-based and style-specific encoders in the sentiment-shift task may be explained by the fact that in the multi-encoder model for each input text, the encoder creates one static representation of input which is used only once to initialize the decoder. In the attention-based model, on the other hand, at each step of generation a latent representation of the input is created (which is aligned for that step of generation) and fed to the decoder. This reinforces the input content during generation and results in the presence of more input content in output (higher CPP scores).

In the domain of formality, on the other hand, we observe that the attention-based model, in spite of having high SSP score, does not converge to do TST effectively since it fails to meet the other requirements of the task such as preserving the content of inputs. The failure of the attention-based architecture to converge in the formality domain may be attributable to the smaller dataset in this domain as compared to the Yelp domain. We return to the challenge posed by small datasets for TST in chapter 7.

Sentiment versus content as compared with formality versus content

We conduct two experiments in this section to investigate the disentanglement of style and content and study how the relation between these two textual components vary across the domains of sentiment and formality while considering the baseline, multi-encoder and attention-based frameworks.

Probing the disentanglement of the style and content

Similar to the approach taken in section 4.3, we design a classification experiment to examine the latent representations of the input sequences created by the baseline, multi-encoder and attention-based models. To do so, we train a separate Feed-Forward networks with a single hidden layer and a sigmoid output layer as a probing classifier for each TST model and each style domain. These classifiers are trained to detect what the source style of a given input is.

Classifiers are trained using as input the latent vectors z and the input source style. z vectors fed to each classifier are created by the encoder of its corresponding TST model (figure 4.4). z vectors are considered as the last state of the encoder(s) for the baseline and multi-encoder systems. In the attention-based model a context vector is created for each generation step and we consider the latent representation of the input sequence as the average of these context vectors. To train these probes, within each domain of style, we merged the train and test sets and trained the probes using a cross validation technique (k-fold is set to 15).

The accuracy scores of the probing classifiers are reported in table 5.2 where higher scores indicate a higher presence of the source style in the latent space of its corresponding TST model. The high accuracy scores of the probes corresponding to the multi-encoder, 99.99%, and attention-based, 100%, TST architectures indicates that sentiment-content entanglement still holds while we modify latent space by employing different encoding strategies. Also, high accuracy scores of the probes corresponding to the multi-encoder, 99.6%, and attention-based, 100%, TST systems across the formality domain implies that that formality and content are also entangled elements. Finally, the average accuracy score in the sentiment domain is slightly higher (99.86%) than the average score reported for the formality domain (98.7%). This may indicate that sentiment is more entangled with content as compared with formality.

Sentiment versus content as compared with formality versus content

Datasets

Metrics Baseline Multi-encoder Attention-based Average Yelp-large Accuracy 99.58% 99.99% 100% 99.86% GYAFC-v 2 Accuracy 96.5% 99.6% 100% 98.7% Table 5.2 The accuracy of the probing classifiers (Accuracy) corresponding to each TST model across sentiment (Yelp-large) and formality domains (GYAFC-v 2).

To confirm that these scores are statistically different, we considered the accuracy scores of TST models across each domain of style and computed the confidence intervals of the scores. The results show that the scores of the three probes trained on GYAFC-v 2 dataset do not have overlap with the confidence level of 0.67. This confidence level drops to 0.65 for the classifiers trained using the Yelp-large data.

5.3.2

The effect of stripping out style from the latent space of a TST system The goal of this experiment is to examine the effects of removing the source stylistic features from the latent representation of a style-transfer framework on how well it preserves the content of the input sequences.

To do so, we consider a variational extension of the baseline model where the latent variable z s is sampled from the posterior distribution N (µ x , σ x) for each input text x s (figure 5.3). The latent vector z s is constrained to draw a smooth distribution by measuring its KL-divergence with respect to a prior distribution N (0, I). We use an extra KL-divergence loss in addition to the task-specific loss, and optimize a linear interpolation of these two as the reconstruction loss of the generator blocks.

L rec = -log Pr E (x (s) |x (s)) + D KL (Pr E (z|x, s)|| Pr(z)) (5.6)
Here, we hypothesize that forcing the z vectors for the differently-styled sequences within one style domain to resemble a prior distribution will result in losing the source stylistic features. Comparing the results of probing classifiers corresponding to the baseline model and its variational extension (table 5.3) confirms this hypothesis 4 . The results show that in both sentiment and formality domains, the probes of the variational models have lower accuracy in detecting the source style compared to the corresponding probes of the baseline models.

Considering the GloVe-based CPP scores and probing accuracy values corresponding to the baseline model and its variational extension (table 5.3), for each 1% drop of the accuracy of the probing classifiers, there is a CPP drop of 0.000259 in the formality domain as opposed to a CPP drop of 0.000454 in the sentiment domain. The higher drop of CPP in the sentiment as compared with formality domain suggests more entanglement between style and content in the domain of sentiment.

Datasets

Yelp-large GYAFC-v 2 Models

Baseline Variational Baseline Variational Probing accuracy 99.58% 44.46% 96.5% 51.41% CPP: GloVe-based 0.9239 0.8989 0.9239 0.8971 Table 5.3 Comparing the GloVe-based CPP and probing accuracy of the baseline model and its variational extension.

Discussion

Further analysis We compute the Pearson Correlation Coefficients (PCC) between the GloVe-based CPP scores of the baseline, multi-encoder and attention-based systems and the accuracy of the probing classification task using the corresponding system z representations (table 5.4) to further investigate the style-content entanglement across these two style domains.

As the results indicate the PCC scores corresponding to the sentiment and formality domains are 0.699 and -0.519. These PCC scores compute the relation between the ability of a model to preserve the content of the inputs and how much source style is encoded in the latent vectors corresponding to their inputs, i.e. higher PCC scores show a stronger relation between the CPP ability of a system and its encoding of the style of the input texts. Therefore, the findings of this experiment imply more entanglement between style and content in the sentiment domain as compared to the formality domain.

To further investigate the validity of this observation, we examine whether using another CPP metric leads to similar PCC relations across formality and sentiment domains. To do so, we use the SBERT-based CPP metric (introduced in section 3. 3.1.3) and recalculate the PCC scores considering probing classification scores and SBERT-based CPP scores corresponding to the baseline, multi-encoder and attention-based models (table 5.4). This leads to PCC scores of 0.701 and -0.5536 across the sentiment and formality domains, respectively. These PCC scores are aligned with the PCC scores computed using GloVe-based CPP metric which further confirm our proposition that sentiment and content are more entangled as compared with formality and content.

Discussion

In chapter 4, we observed that sentiment and content are overlapping components of the text.

The main focus of the current chapter is to further study the latent space of the adversarial encoder-decoder RNN-based TST models to explore whether the observation from chapter 4 can be extended to other architectures and style domains. To do this, we conducted a 5.4 Pearson correlation coefficients (PCC) scores between the accuracy scores of the probing classifiers corresponding to the TST models, and both their GloVe-based CPP scores and SBERT-based CPP scores across the two domains of formality and sentiment. classification experiment to probe the latent space of the TST models. The current chapter also examines the consistency of the concept of style considering the sentiment and formality domains. To do so, we designed some experiments to explore the sentiment-content versus formality-content levels of entanglement. Throughout these experiments, we used three models which have similar architecture but different encoding techniques which can affect the latent space. Modifying the latent space enables us to better explore the latent space. The main findings of this chapter are as follows.

Discussion

Datasets

• The entanglement of sentiment and content still holds while we modify the latent space by employing different encoding strategies. This is inferred from the high accuracy of the probes in sentiment domain (row 1 of table 5.2).

• The observation of style-content entanglement can be extended to other domains of style since the high accuracy scores of the probing classifiers indicated that formality and content are also overlapping elements (row 2 of table 5.2).

• The concept of style is not consistent across the sentiment and formality domains, i.e. sentiment and content are more entangled as compared with formality and content.

The following observations support this finding. Firstly, the average accuracy score of the sentiment probes is 99.86% which is slightly higher than 98.7%, the average accuracy score of the formality probes (table 5.2). Also, the results of table 5.3 indicate

Conclusion

that variational frameworks encode less source style in their latent space compared to baseline models across the both style domains. Taking these accuracy scores and CPP scores of the models together (table 5.3) indicates that for each 1% drop of the accuracy of the classifiers, there is more drop of CPP in the sentiment domain as compared with the formality domain which implies more entanglement between sentiment and content. Furthermore, the PCC scores between the GloVe-based CPP scores of the baseline, multi-encoder and attention-based systems and their accuracy of the probing classification task (table 5.4) indicate a higher level of entanglement between the sentiment and content (0.699) as compared to formality and content (-0.519).

• We explored the TST task across sentiment and formality domains by studying the performance of the baseline model, multi-encoder and attention-based systems. The results (table 5.1) shows a trade-off between the evaluation aspects of the TST task, an inverse relation between CPP scores and both SSP and fluency values of the models5 . This trade-off which is inline with the trade-off which was earlier observed in section 4.5 further implies the necessity of employing comprehensive evaluation methodologies while dealing with the TST problem.

The findings of this chapter which are listed here address the research questions (section 1.2) of this manuscript as follows. Findings 1 and 2 address research question 1. Findings 3 and 4 address the research questions 2 and 5.

Conclusion

We observed in chapter 4 that sentiment and content cannot be totally separated. The results of the current experiments not only indicate that sentiment and content are overlapping elements, but they showed that this observation also holds across other architectures as well

Conclusion

as the style domain of formality. Moreover, the results revealed that sentiment and content are more entangled as compared to formality and content. These findings imply that the concept of style can differ from one domain to another at least in terms of how it relates to content.

Observing that a single concept of style cannot be generalisable across the domains, firstly, highlights the question of what are the variations across the style domains and how these variations are encoded. Secondly, it raises the question of whether style-specific characteristics should be taken into consideration when designing a TST experiment, i.e.

for instance if some architectures work better in one style domain due to the characteristics of that domain. In the next chapter, we design a series of experiments to investigate these questions.

Chapter 6

Style: locally or globally encoded?

The findings of the previous experiments (chapters 4 and 5) indicated that the concept of style is not consistent across the sentiment and formality domains. In this chapter, we design a series of experiments to examine how these variations are encoded. Firstly, we look into an adversarial transformer-based encoder-decoder TST system and explore the input latent representations created by different layers of this architecture considering the sentiment and formality domains. Our motivation for employing transformer-based TST systems as opposed to single-layered RNNs is that different layers of transformers learn to encode different textual information according to the previous research [START_REF] Nedumpozhimana | Finding BERT's idiomatic key[END_REF][START_REF] Nedumpozhimana | Shapley idioms: Analysing bert sentence embeddings for general idiom token identification[END_REF]. It is interesting to examine how transformer layers encode stylistic features across different style domains while dealing with the TST problem.

Furthermore, we design an experiment to compare the effect of modifying the weight of the reconstruction loss of the transformer-based TST model on shifting the sentiment versus shifting the formality. The idea being that how these models perform considering specifically the style-shift dimension can further inform the variations between the style domains. We take a further step towards studying the variations between different style domains through a unigram analysis experiment where in addition to formality and sentiment, this experiment also uses the simplicity style domain.

The proposed transformer-based TST model

Finally, we investigate whether variations across the style domains should be considered while framing the TST task. We specifically look into how style characteristics can inform the strategy that we adopt to compute the CPP of a TST framework.

Throughout the experiments of this chapter, we use the Yelp-small corpus (described in section 3.1.1), GYAFC-v 2 corpus (described in section 3.1.2) and Newsla-v 2 corpus (described in section 3.1.3) to study the style domains of sentiment, formality and simplicity. To evaluate the performance of the transformer-based TST frameworks, we use the comprehensive evaluation methodology already applied in the previous chapters to examine the RNN-based TST systems.

The proposed transformer-based TST model

Due to the success in many NLP tasks in recent years, including machine translation [START_REF] Vaswani | Attention is all you need[END_REF], and language modelling (Dai et al., 2019c), transformers [START_REF] Vaswani | Attention is all you need[END_REF] have attracted the attention of many NLP researchers. TST researchers have also started to 1. Sampling two mini-batches with the size k from the sets X s 1 and X s 2 (setting k = 1 for the sake of simplicity). 2. Processing the two mini-batches in parallel, i.e. for each of the sequences x s 1 ∈ X s 1 , and x s 2 ∈ X s 2 , Gen generates a reconstructed and a style-shifted sequence for each input:

-For x 1 :

x (rec) s 1 = G(x s 1 , s 1) x (tr f) s 1 = G(x s 1 , s 2) -For x 2 :
x

(rec) s 2 = G(x s 2 , s 2) x (tr f) s 2 = G(x s 2 , s 1) 3.
Computing the self-reconstruction loss using the equation 3.8. 4. Computing the discriminator loss using the equation 3.7. 5. Computing the cycle-reconstruction loss using the equation 3.9 and adversarial loss using the equation 3.11. -If L Disc < 1.2: Doing steps 3 and 5 , reconstructed and style-shifted sequences. Performing gradient decent to update θ Gen .

-Otherwise: Doing only step 3 and performing the backpropagation and updating θ Gen . 8. For all the epochs (20 here), repeating steps 1, 2 , 6 and 7 for all batches and selecting the model with lowest total loss (equation 3.12) as the best model after each evaluation step, i.e. after each epoch.

Reconstruction loss versus adversarial loss

In the next experiment, we investigate the variations between sentiment and formality domains by modifying the weight of reconstruction loss while keeping the weight of the adversarial loss constant. The total loss of the proposed T-based model is the weighted The idea here is that the more a TST model is weighted towards acting as an auto-encoder, the less it is able to shift the style. This can be specifically reflected in the case of dealing with styles that are pervasive across a text and which the rewriting of a text into requires global modifications to the text.

In the previous experiments (results of table 6.1) models were trained with a relatively large emphasis on the adversarial loss during training, since the summation of the weights of the self-reconstruction α = 0.25, and cycle-reconstruction β = 0.5 equal to 0.75 which is less than 1 which is the weight of adversarial loss. In this experiment, we train the proposed T-based model with a greater emphasis on the reconstruction loss as opposed to adversarial loss by doubling the summation of α and β and train two models by having the weight of reconstruction loss equal to 1.5 as opposed to adversarial weight which is kept constant as 1. We train two new models: T rec ; α=1, β = 0.5, and T cyc ; α=0.5, β =1.

Comparing the results of T rec and T cyc in table 6.2 with the scores of the proposed T-based 6.2 Reconstruction loss versus adversarial loss model (row 2 of table 6.1) indicates that, in Yelp, T rec performs better than the proposed T-based model in every evaluation aspect and T cyc also has a better CPP and fluency. In GYAFC-v 2 , however, increasing the weighting towards reconstruction loss does not appear to be as beneficial overall. The performance of T cyc drops in every aspect of evaluation and although an improvement is observed in CPP and fluency for T rec , the SSP for T rec drops by a large amount.

Increasing the weight of the reconstruction loss relative to the adversarial loss is beneficial for both CPP and SSP in the sentiment domain but results in much lower SSP in the formality domain. This suggests that shifting style in the sentiment domain requires fewer text changes compared to the formality, i.e. sentiment is more locally encoded compared to formality.

During training, the re-weighted TST models tended to act more similarly to an autoencoder while using the GYAFC-v 2 corpus compared to when Yelp-small was used. For instance, we trained T rec a number of times from scratch so that it converged as a TST model and reached the reported performance in table 6.2. When it failed to converge, this model kept reaching very low SSP scores, an average of 15% 6 and very high CPP scores, an average GloVe-based CPP score of 0.991, almost the same as GloVe-based CPP scores of the reconstructed files. These results which are very similar to when the model is only trained to reconstruct inputs (auto-encoder) suggest that decreasing the relative emphasis on adversarial loss as compared to the reconstruction loss results in the models finding it more difficult to learn how to shift formality. Tables 6.8 and 6.9 list some samples of style-shifted outputs created by the TST models. These samples also show how T-based models act more like auto-encoders in formality domain as compared with the sentiment domain.

Encoding variations across sentiment and formality domains Encoding variations across sentiment and formality domains

We design some experiments here to investigate the variations of style domains by firstly looking into how different layers of the proposed T-based encoder of the proposed TST model encode different styles (section 6.3.1). Then, we compare the observations from this experiment with the variations that can be detected in human-generated data across the style domains (section 6.3.2).

Probing the layers of encoders of T-based models

An interesting aspect of transformer models is that they include multiple self-attention layers. Indeed, researchers interested in understanding how transformers encode linguistic information have probed how the encoding of this information varies across the layers of transformers trained for different NLP problems [START_REF] Nedumpozhimana | Finding BERT's idiomatic key[END_REF][START_REF] Nedumpozhimana | Shapley idioms: Analysing bert sentence embeddings for general idiom token identification[END_REF]. However, to the best of our knowledge, the encoding of style across the layers of a TST transformer has not yet been examined. This experiment focuses on examining different layers of the encoder of the proposed T-based TST model and comparing how these layers encode formality and sentiment. Specifically, this experiment investigates the presence of source style in the input latent representations created by each layer of the encoder of the proposed T-based TST system.

To do so, inspired by some previous work [START_REF] Conneau | What you can cram into a single vector: Probing sentence embeddings for linguistic properties[END_REF][START_REF] Jafaritazehjani | Style versus content: A distinction without a (learnable) difference?[END_REF][START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF], we design a probing classification experiment and train 6 probes (classifiers), i.e. a probe for embedding layer, 4 separate probes for the outputs of each layer of the encoder subnetwork, and a probe for the final output of the encoder (figure 6.1). Each probe is a Feed-Forward network with a single hidden layer and a sigmoid output layer and is trained to detect the source style of the embedding representation of the input text which is created by the layer corresponding to that probe. This means that the higher the accuracy score of a probe, the more source style is encoded in that layer. Given an input sequence, the embedding vector created by a layer is computed as the average of the token embeddings of this sequence generated by that layer.

Moreover, we train two baseline probes, one for each style domain. To do so, we create embedding vectors of the data using a pre-trained GloVe model, i.e. given a sequence, first, its tokens are mapped to their 100-dimensional GloVe embeddings. The average of these embeddings is then computed as the sequence embedding. The binary baseline probes for the sentiment and formality domains are trained using GloVe-based representation of the Yelp and GYAFC data, respectively.

The accuracy of the baseline probes across sentiment and formality domains are 0.85% and 0.71% respectively. This indicates that sentiment information are better encoded using a bag-of-words based pre-trained embedding model compared to formality. GloVe embedding are trained considering word-word co-occurrence and disregarding word positions and their order in a sequence [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]. This makes GloVe-based embedding vectors created in this experiment for each sequence a bag-of-words representation focusing more on the local information of the tokens. On the contrary, it can be said that sequence vectors created using the outputs of different layers of the transformer encoder consider the contextual and positional information of the tokens . This is due to the attention-based architecture of this model which allows the token embeddings to be fine tuned with regards to its surrounding tokens which leads to encoding more contextual-based information. Adding more stacks to the encoder may result in better encoding of the information of the context of use of the tokens. Therefore, the higher the stack of the encoder is the more global information it encodes.

The probing experiment in this section studies how style-related information is encoded in different stacks of the encoder across the domains of sentiment and formality. Table 6.3 show the results of layer-wise probing of the encoder of T-based model. These results illustrate that the probes of sentiment domain reach 100% accuracy in lower layers compared to the probes of formality domain. This indicates that formality is more sensitive towards global structure of the sentence, i.e. there is a need to encode more information from across the sequence to create the token embedding representations in formality as compared with sentiment.

The results of this probing experiment suggest that sentiment is more locally encoded compared formality. This means that sentiment is more reliant on local information, for 6.3 Encoding variations across sentiment and formality domains instance tokens can be considered as style bearing segments of sequences. However, in the domain of formality, style is more globally encoded which makes it more reliant of structural information of sequences. In the next section, we examine whether this hypothesis holds by doing a unigram analysis across these two domains.

Unigram analysis

Results of the layer-wise probing of the transformer encoder (section 6.3.1) indicate variations in how sentiment and formality styles are encoded. These results suggest that sentiment is a more local entity of the text as opposed to formality which is more global. To further investigate this, we designed a unigram-based experiment. The idea being that it can enable us to compare how many word swaps must be done in a style domain so that style-shift to the extent of SSP of the style-shifted text happens considering the domains of sentiment, and formality. We then extended this experiment to the style domain of simplicity too. This experiment focuses on comparing the token overlaps of inputs and style-shifted gold outputs created by human across different style domains7 . Word overlap between two texts is calculated as the unigram overlap rate between them8 . In this experiment, for the dataset Yelp-small, we compute the word overlap between the sequences of the test set and their corresponding human-generated (gold) style-shifted texts and report the average score of these pairs as the word overlap score of these two sets. For the dataset GYAFC-v 2 , for a given test file of style 1 (either formal or informal) of each of the domains of Entertainment & Music (E&M) or Family & Relationships (F&R), there are 4 gold style-shifted files. The word overlap for each domain is calculated as

(∑ 2 s=1 ∑ 4 i=1 WO si) 8
where WO si is the word overlap between the test file of style s and gold style-shifted file i. The average of the word overlap of the two domains is reported as the word overlap score of the dataset GYAFC-v 2 (table 6.4).

Encoding variations across sentiment and formality domains Average scores of metrics Metrics

Word overlap Accuracy Datasets Yelp-small (sentiment) 0.4253 77.20% GYAFC-v 2 (formality) 0.4057 70.45% Newsla-v 1 (simplicity) 0.3615 79.2% Table 6. 4 The results of word overlap between sequences of test set and their gold styleshifted text and accuracy of detecting desired style of gold style-shifted text.

We also compute the percentage of the presence of the desired style in the gold styleshifted sets corresponding to the test sets of the datasets Yelp-small and GYAFC-v 2 as an indicator of how well the annotators have shifted the styles of the test sets. To do so, for each dataset, Yelp-small and GYAFC-v 2 , the accuracy of its corresponding pre-trained SSP classifier9 in detecting the desired style of the gold files is measured (column Accuracy of table 6.4). For the domain of formality where several gold style-shifted sets are available, for each domain, the reported score is the average of accuracy values that the pre-trained classifier assigns to each domain which is computed as

(∑ 2 s=1 ∑ 4 i=1 ACC si) 8
where ACC si is the accuracy of the classifier in detecting labels of the gold text in file i with the source style s.

The results of rows 1 and 2 of table 6.4 shows that, in the domain of sentiment, there is more word overlap between the test files and their corresponding gold style-shifted text 0.4253 as compared with the formality domain 0.4057. The difference between the word overlap values 0.02 is meaningful since the lower bound of word overlap is 0.004510 . This taken together with the higher accuracy of the pre-trained SSP classifiers in detecting the desired labels of the gold files of the sentiment domain (77.20% as opposed to 70.45% in formality domain) further validates our hypothesis of sentiment-shift being more reliant on local changes and a relatively small number of word swaps as compared with formality which seems to be a more global entity. Observing a higher word overlap as well as a higher SSP in sentiment domain versus the formality domain suggests that, to shift formality effectively, 6.4 The intersection between style characteristics and TST task there is a need to do more than word swaps. This can further indicate that formality-shift is a more complex task as opposed to sentiment-shift.

Investigating the simplicity style domain To better contextualise these results, we extend our analysis to the style domain of simplicity using dataset Newsela-v 1 (described in section 3.1.3) which contains sequences in styles complex and simple. The results of row 3 of table 6.4 show that the simplicity domain exhibits the lowest word overlap of the three domains 0.3615.

Interestingly, although the simplicity domains also has the highest style-shift accuracy score (SSP of 79.2%) across the three domains, this accuracy score is quite close to that accuracy score of the sentiment domain (SSP of 77.2%). This is somewhat surprising as one might expect that given the much lower word overlap in simplicity versus sentiment (0.3615 versus 0.4253) that this would result in a much larger difference in accuracy across the domains.

One way to interpret this is that the concept of style in the simplicity domain relies on more than differences in words but also on structural properties of the text (i.e., simplicity-transfer involves both token-based swaps and structure-based changes) and that modellings these structure based changes is challenging for the style classifiers, hence the lower than expected accuracy of these classifiers in the simplicity domain. Consequently, this may suggest a stronger style encoding similarity exists between simplicity and formality than simplicity and sentiment.

The intersection between style characteristics and TST task

Overall the results of the experiments of the current chapter indicate that sentiment is a more local phenomenon within a text as compared with formality. This section investigates whether these style domain specific characteristics should be considered while framing the 123 6.4 The intersection between style characteristics and TST task TST task. It first examines the evaluation metric of CPP by looking into the performance of GloVe-based versus SBERT-based CPP metrics across the sentiment and formality domains (section 6.4.1). Then, it discusses the performance of various architectures while dealing with sentiment-shift and formality-shift (section 6.4.2).

SBERT-based versus GloVe-based CPP metric

One of the common approaches to compute the CPP of TST models is to rely on cosine similarity technique (section 3.3.1) where different pre-trained embedding models can be applied to create token embeddings. However, many previous work such as (Fu et al., 2018a;[START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF][START_REF] Kelleher | Deep Learning[END_REF][START_REF] Jafaritazehjani | Style versus content: A distinction without a (learnable) difference?[END_REF][START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF][START_REF] Jafaritazehjani | Local or global: Understanding the variation in the encoding of style across sentiment and formality[END_REF]) used a GloVe pre-trained embedding model to map tokens to their pre-trained embedding vectors.

We observed in section 6.3 that encoding the information in some style domains such as formality is beyond the representational capacity of a bag-of-words and is more a global property of the text. This insight questions the suitability of applying pre-trained embedding models, such as GloVe, which focus more on local information in text to compute token embeddings. Here, we propose to compute CPP using contextual embeddings by applying the pre-trained model of SBERT 11 [START_REF] Reimers | Sentence-bert: Sentence embeddings using siamese bert-networks[END_REF]. SBERT is a T-based architecture which, given a text, applies a layered attention mechanism to create

CPP Metrics

GloVe-based SBERT-based Datasets Yelp-small (sentiment) 84% 75.5% GYAFC-v 2 (formality) 71% 95.5% Table 6.5 Comparing the performance of GloVe-based and SBERT-based CPP metrics in assigning the highest scores to the most similar pairs across the domains of sentiment and formality For each style domain, we randomly select 200 samples from the test set of that domain as the source sequences, i.e. 100 samples from the style 1 and 100 samples from style 2.

For instance, in the domain of formality, 100 formal samples and 100 informal sequences are randomly selected. For each of the selected source sequences, we then create a styleshifted set which contains its corresponding gold style-shifted sequence12 as well as 499 other sequences which are randomly selected from another domain of style. This means that, if we are performing the experiment in the domain of sentiment, we select the random sequences from another domain such as formality. This is to reduce the chances of the random sequences resembling the output which may occur in the data with the same content distribution.

After composing the source set and style-shifted set, we compute the CPP scores between each given source sequence and the sequences in its corresponding style-shifted set using both SBERT-based and GloVe-based metrics. We expect that, given a source text, a good CPP metric assigns a higher value to the pair of (source text, its corresponding style-shifted text) rather than to the pairs of (source text, random text 1), ..., (source text, random text 499). The results of table 6.5 show that SBERT-based metric performs better in the formality domain by assigning the highest values to the pair of (source text, its corresponding style-shifted text) in 95.5% of the times as compared to the 75.5% of times in sentiment domain. This implies that contextual embeddings of SBERT models are more efficient to compute CPP scores in the formality domain which is inline with our observation suggesting that formality 6.4 The intersection between style characteristics and TST task is encoded as a global property of a text, i.e. it is beyond the representational capacity of a bag-of-words.

On the other hand, the scores of table 6.5 indicate that the GloVe-based CPP metric does a more precise job in the sentiment domain by assigning the highest values to the pair of (source text, its corresponding style-shifted text) in 84% of the times as compared to 71% of the times in the formality domain. As mentioned earlier, it seems like while computing the similarity of the sequences, GloVe-based metric assigns high scores to the pairs of (source text, its corresponding style-shifted text) which resemble in content regardless of their different sentiment (table 6.6 sentence pairs 1 and 2). However, SBERT-based CPP Given the upper bound 1 of a cosine similarity based metric, the range for a given metric and a given domain is computed as the difference between the upper and lower bound scores of the metric in that domain. The range for the GloVe-based scores in sentiment and formality domains are 0.14 and 0.13 respectively. However, for the SBERT-based values, these ranges changes to 0.9061 and 0.9328 for sentiment and formality domains (lower bounds of these metrics are reported in table 6.2). The larger variation range of the SBERT-based metric 6.4 The intersection between style characteristics and TST task similarity score of vector representation of the source and target texts of pair 2 is 0.999 which means the two GloVe-based embedding vectors are very similar and the opposite sentiment is not well encoded. In sample pair 2 also SBERT model seems to distinguish between the tokens with different sentiment: "cool" and "cool" as opposed to "worse" and "worse", since it compute a low similarity score of 0.41 for this sequence pair. This does not seem to be the case for GloVe-based metric which assigns a very high score of 0.988 to this pair.

In the formality domain, on the other hand, SBERT-based and GloVe-based CPP metrics seem to agree more on the similarity of the source and style-transferred sequence pairs. For instance, pairs 3 and 4 of table 6.6 are sample pairs from formality domain where the reported cosine similarity scores between source and style-transferred embedding vectors created by both SBERT and GloVe models are low (relative to their score ranges).

How understanding the encoding of style can inform the design of a TST model

Previous results (section 6.3) suggested that stylistic features of some styles such as formality are more globally encoded. It can be said then that the characteristics of these styles are more implicit and therefore texts having more pervasive features across the text (as opposed to the texts with more locally encoded stylistic features) are more similar to separate languages. If this hypothesis holds, we expect that applying separate decoders for each style and thereby enabling each decoder to specialize in the language distribution of its style should result in a large positive impact on SSP for globally encoded styles (such as formality) as compared to more locally encoded styles (such as sentiment). Table 6.7 illustrates that applying stylespecific RNN-based decoders leads to an increase of SSP and a drop in CPP for both style domains compared to the baseline RNN-based model. However, the SSP increase is bigger in the formality domain, 17.09% compared to 11.1% in the sentiment domain. The worse Table 6.7 Comparing the results of the single-decoder and multi-decoder RNN-based models in the sentiment and formality domains. perplexity of the multi-decoder TST models may be due to the fact that less data is available to train each of the decoders. This observation suggests that applying style-specific decoders is more beneficial to more complicated TST tasks such as formality-shift as opposed to sentiment-shift, i.e. due to characteristics of style domains, some TST architectures can work better in one domain than another style domain. This implies that style characteristics can inform not only the choice of evaluation strategies, but also the selection of TST architectures.

Discussion

The results of the previous chapters revealed that the concept of style is not consistent across the style domains. In this chapter, the focus was firstly on discovering how variations across style domains are encoded. Then, to explore the intersection between domain-specific style characteristics and the TST task. The main findings of the current chapter which address the research questions 3, 4 and 5, respectively (section 1.2). are as follows.

• Sentiment is more locally encoded as compared to the formality which is a more global characteristic of the text. The results also imply that sentiment-shift can be performed by doing less complicated modifications (more token-based) as compared with formality-shift.

To reach these results, firstly, we examined the effect of putting more emphasis on encoding the input content on the sentiment-shift and formality-shift tasks resulting

Discussion

in T-based models acting more like an auto-encoder and observed that this resulted in a large drop in SSP in the formality domain (section 6.2). Secondly, we conducted a probing classification experiment on the different layers of the transformer encoder which revealed that sentiment characteristics are encoded in lower layers of the encoder as opposed to formality (section 6.3.1). Then, we performed a unigram analysis test comparing the test data and style-shifted sequences which further confirmed the global characteristics of formality compared to sentiment (section 6.3.2).

• Moreover, the results revealed that the variations across the style domains can inform adopting methodologies while dealing with the TST task by showing that GloVebased metrics are more appropriate in computing the CPP of sentiment-shift systems, whereas, SBERT-based CPP metrics do a better job in formality domain (section6.4.1).

We also observed that employing some architectures seems to be more effective in the sentiment domain versus the domain of formality which can be indicative that style characteristics can inform the design of TST architecture (section 6.4.2).

• Finally, the results of the T-based TST models of the current experiments revealed a trade-off between the CPP and SSP dimensions which mostly holds for the aspect of fluency too14 . This is inline with the trade-off between the evaluation aspects of the TST task observed in the results of the RNN-based TST systems in the previous chapters. This shows that this trade-off holds while using both RNN-based and transformerbased TST systems which further validates the comprehensive methodology which was proposed and employed throughout the experiments of this research.

Conclusion

Conclusion

The findings of this chapter implied that formality is more globally encoded as opposed to sentiment which seems to be a more local characteristic. Studying the variations across style domains is significant since they can contribute to the TST task in different aspects. Firstly, these findings can help provide a more precise definition of the concept of style. Secondly, as the experiments in this chapter showed, domain-specific style characteristics can inform the selection of the methodologies for TST, specifically the CPP metric and the selection of TST architectures. We attribute this observation to the specific characteristics of sentiment and formality domains and characteristics of each pre-trained embedding model.

The findings of this research leads us to the future research direction of exploring the interaction between style characteristic and evaluation aspects of SSP and fluency. Furthermore, investigating how style characteristics can be taken into account while designing the TST architectures is an interesting direction for future research which can lead us towards improving the TST task more systematically.

Investigating style characteristics while framing the TST problem

Throughout experiments of this thesis, several end-to-end adversarial TST systems have been proposed. To explore textual style, firstly, some experiments were designed to study the latent space of these systems. Specifically, a series of probing classifiers were trained to analyse the latent space of several RNN-based adversarial TST models. The results of these experiments (performed in chapters 4 and 5) which indicate the presence of the style of inputs in their corresponding latent representations lead to contribution 1 which directly addresses the research question 1: Are the two elements of style and content separable?.

Contribution 1 indicates that style and content cannot be totally separated and shows that this finding holds across different style domains of sentiment and formality. This observation questions the conceptual basis of the computationally-based strategies used in some previous work on textual style transfer where stylistic features are detected and removed as a preliminary step (Li et al., 2018a;[START_REF] Madaan | Politeness transfer: A tag and generate approach[END_REF][START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF][START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF]Zhang et al., 2018a;[START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF]. It reported some experiments which indicated that GloVe-based CPP metrics work better in computing the CPP in the sentiment domain. However, these experiments also revealed that SBERT-based CPP metrics do a more precise job in computing the CPP while doing formality-shift task. These findings which are inline with the domain-specific characteristics that we observed in these two style domains form contribution 4 of the current work. This contribution indicates that style characteristics can improve the TST task in different ways such as informing the adoption of evaluation methodology.

A comprehensive evaluation methodology for TST problem

TST is a multi-objective task which aims at generating a linguistically fluent text in a desired style while preserving the content of a given text. Which factors to consider while evaluating a TST model is an open question in the field of TST which has been investigated in this thesis as the research question 5: What factors are relevant for the evaluation of a TST system?

The results of the TST evaluation frameworks used throughout the experiments of the chapters 4, 5 and 6 showed a trade-off between the evaluation dimensions of SSP, CPP and fluency across different style domains and architectures. This implies that a comprehensive evaluation methodology is needed for the TST task which leads to another contribution of the current work.

Contribution 5 states that the three dimensions of the TST task should be considered during the evaluation process to form a comprehensive evaluation methodology: content preservation power, style-shift power and fluency. In practice, many state-of-the-art papers on TST including (Fu et al., 2018a;[START_REF] Gröndahl | Effective writing style transfer via combinatorial paraphrasing[END_REF]Hu et al., 2017b;Li et al., 2018b[START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Madaan | Politeness transfer: A tag and generate approach[END_REF][START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF] do not consider all these three evaluation dimensions. Consequently, papers do not fully validate their approach and hence, they cannot easily be compared. Moreover, the presence of a trade-off between the three aspects of evaluation that has been reported in some previous research [START_REF] Kelleher | Deep Learning[END_REF][START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Tikhonov | Style transfer for texts: Retrain, report errors, compare with rewrites[END_REF] highlights the importance of considering all the three aspects. This trade-off implies that considering one or some aspects and disregarding the other(s) can lead to sacrificing the aspects which were not considered.

Secondary contributions

A variety of other contributions have been made to the TST filed while doing the current research. These secondary contributions are discussed in this section. 1. Our findings clarified style characteristics in various style domains. Doing this from a theoretical perspective, can improve the knowledge of style and help to define this concept more precisely.

2. Clarifying style characteristics from a more practical perspective, can contribute to the TST research by reducing confusion during the manual compositions of parallel data (Dai et al., 2019b). It can also result in creating more clear guidelines for the human evaluation tests in the TST field. This can disambiguate the evaluations process for the human judges which can lead to more reliable human test results with higher inter-annotator agreements.

3. As the results of experiments in section 6.4.2 implied employing multi-decoder strategy improved the formality-shift task better than the sentiment-shift problem. This can be due to the variations between these style domains which can mean that clarifying style characteristics can also be applied to inform the design of TST architectures.

4. The TST task can be framed as a multi-task problem by focusing on the characteristics of the style domain it considers. The idea here is to use the knowledge from one domain to improve the performance of the TST task. Style characteristics can in fact help in applying the appropriate task to frame together with the style-shift problem using multi-task strategies. For instance, [START_REF] Zhang | Parallel data augmentation for formality style transfer[END_REF] improved formality-shift (informal to formal) by framing TST together with grammar error correction.

Limitations and future work

This section first describes some limitation and challenges that we faced throughout the course of the current research. It proceeds by discussing some of the possible future directions to extend the current findings and address some of these limitations. to RNN-based models. Therefore, due to the time and computational costs, we did not train the proposed T-based model using these corpora. We believe that the small size of these datasets contributed to the fact that the TST systems failed to converge and in future we would like to explore other style domains by using bigger-sized corpora.

Future directions This section discusses some of the possible future directions of this research.

• Throughout the experiments of this work, we mostly focused on the style domains of sentiment and formality. Extending this research to other style domains to explore their characteristics is the next step of this study. This focuses on extending the contributions 1 and 2 of this research.

• Contribution 4 of this work states that style characteristics can inform the choice of CPP metrics. One future research direction is to extend this finding by studying the interaction of style characteristics and other aspects of evaluation, i.e. SSP and fluency.

• Contribution 5 of this report highlights the necessity of considering all the dimensions of the task when evaluating TST systems. However, to the extent of our knowledge, there has not yet been introduced a single evaluation metric for TST representing the overall performance of TST systems. Some previous work such as [START_REF] Xu | Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach[END_REF][START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF] have used geometric mean of CPP and SSP as an single metric. However, 7.3 Limitations and future work firstly, they did not consider all the three evaluation aspects and, secondly, they did examine the weights and importance of each of the evaluation aspects. As a future direction we would like to proceed towards introducing this single evaluation metric since it can make an important contribution to the field by enabling the ranking and therefore comparing the performance of various TST frameworks.

• One of the future directions can be extending the secondary contribution 3 to further clarify how style characteristics can inform the selection of TST architectures. One potential direction is studying the performance of the multi-decoder transformer-based TST models across different style domains.

• Another potential direction of the future work is to focus on applying the insight of the secondary contribution 4 indicating that style characteristics can inform applying multi-tasking techniques to improve the TST task. For instance, the next step can focus on framing the sentiment-shift task together with POS tagging task.

2. 1

 1 The schema of FFNN network .

2. 5

 5 The schema of transformer-based sequence-to-sequence encoder-decoder network .

 . 3.1 Adversarial TST RNN-based baseline model, Gen: Generator block, and Disc: Discriminator block. 3.2 Generator block Gen of the T-based model, E and D consists of 4 stacks of transformer and the output of the last stack of E is fed to each stack of D. . xiii List of Figures 3.3 Discriminator block Disc is trained to label the original and reconstructed text having the source style as True (1), style-shifted sequences having the reverse style as False (0) and original sequences having the reverse style as False (0). 58 3.4 Computing the cycle loss . 60 3.5 The schema of the T-based TST baseline model. 61 3.6 Computing CPP scores using embedding-based metrics 68 4.1 ELMo-based embeddding for each input as the vector to initialize the decoder of the ELMo-based encoder TST model 77 4.2 The schema of the Gen (generator block) of the multi-decoder RNN-based TST model. 78 4.3 Reinforcing z while generating tokens in each step of generation, as an instance step t . 84 4.4 Probing classifier i which is trained to learn the source style of the latent vectors of the input created by E of the TST model i. 85 5.1 The schema of the Gen (generator block) of the multi-encoder RNN-based TST model. 94 5.2 Generating the output token at time step t while creating c t considering s t-1 95 5.3 Variational extension of the baseline model where for each input x s latent vector z s is sampled from the posterior distribution N (µ x , σ x). 104 6.1 Probing classification experiment on different layers of transformer encoder 119 xiv List of Tables 1.1 Some examples of sequences from the styles of formal versus informal . . 1.2 Feasible triples for a highly variable Grid 3.1 Samples of parallel and non-parallel text from the formality domain. 3.2 The data distribution of Yelp-small and Yelp-large. 3.3 The data distribution of GYAFC-v 1 and GYAFC-v 2 3.4 Informal sample sequences. 3.5 The data distribution of Newsla-v 1 dataset. 3.6 The word overlap between the file L 0 of the Newsla dataset and files L 1 , L 2 , L 3 , and L 4 . 3.7 Examples of the sequences in Newsela Simplification Dataset where L 0 is the original sequence (complex style) and L 1 , L 2 , L 3 and L 4 are the simplified paraphrases. L 1 is the least and L4 is the most simple versions of L 0 3.8 Feasible triples for a highly variable Grid 3.9 Feasible triples for a highly variable Grid 3.10 Lower Bound LB and Upper Bound UB scores of evaluation metrics across different datasets. The UB for all CPP metrics is 1 by comparing each file with itself. The higher values show better performance for all CPP metrics except for W MD and fluency PPLX. xv List of Tables 4.1 The results of automatic evaluation considering three aspects of SSP, CPP and fluency (PPLX). Higher values of SSP and CPP signify better performance of the models, whereas, for fluency, lower scores are better. 4.2 SSP: Percentage of the times each system output was labelled with the correct desired style by the judges. CPP : Percentage of the times each system output was labelled as having the same content with the input by the judges. Fluency: Percentage of the times each system output was labelled as having the correct grammatical structure by the judges. 4.3 Comparing the performance of the base and multi-decoder models to their reinforced versions where the input vector z is injected to the decoder(s) at each step of generation. 4.4 The accuracy of probing classifiers corresponding to each TST framework in detecting the source style in the latent space of the TST models. 4.5 Style-shifted outputs of the TST models using Yelp-large. 1: input sequence, 2: Multi-decoder model, 3: Reinforced multi-decoder model 4: Baseline model 5: Reinforced baseline model and 6: ELMo-based encoder model. . 5.1 Evaluation results of the baseline model, Att-based (attention-based) and Multi-E (multi-encoder) models. Higher values in the table show better performance except for the metric W MD and PPL. LB indicates the Lower Bound of different CPP metrics. 5.2 The accuracy of the probing classifiers (Accuracy) corresponding to each TST model across sentiment (Yelp-large) and formality domains (GYAFC-v 2). 5.3 Comparing the GloVe-based CPP and probing accuracy of the baseline model and its variational extension. xvi List of Tables 5.4 Pearson correlation coefficients (PCC) scores between the accuracy scores of the probing classifiers corresponding to the TST models, and both their GloVe-based CPP scores and SBERT-based CPP scores across the two domains of formality and sentiment. 106 5.5 Style-shifted outputs of the TST models using Yelp-large. Sequences are ranked as: 1: Input sequence, 2: Multi-encoder model, and 3: Attentionbased model 4: Base model. 109 5.6 Style-shifted outputs of the TST models using GYAFC-v 2 . Sequences are ranked as: 1: Input sequence, 2: Multi-encoder model, and 3: Attentionbased model 4: Base model. 110 6.1 Higher CPP and SSP show better performance, but lower values of PPL reflect better fluency. α and β of the reconstruction loss of the both T-based models are set to 0.25 & 0.5 (equation 3.10). 115 6.2 α and β of the proposed T-based models T i are: (T rec ; α=1, β = 0.5), (T cyc ; α=0.5, β =1), LB indicate the Lower Bound score. (α and β shown in the equation3.10) . 116 6.3 α and β (equation3.10) of the proposed T-based models T i are: (T rec ; α=1, β = 0.5), (T cyc ; α=0.5, β =1), LB indicate the Lower Bound score. 120 6.4 The results of word overlap between sequences of test set and their gold style-shifted text and accuracy of detecting desired style of gold style-shifted text. 122 6.5 Comparing the performance of GloVe-based and SBERT-based CPP metrics in assigning the highest scores to the most similar pairs across the domains of sentiment and formality . 125 6.6 Comparing SBERT-based and GloVe-based CPP scores computed between the given source (s) and style-transferred sequences (t). 127 xvii Chapter 1

1 1

 1

1. 1

 1 Textual style transfer or entangled elements. To the best of our knowledge, very little work has investigated the style-content separation in the context of TST. The current work, as a step forward towards understanding the characteristics of style, examines the disentanglement of style and content

Question 3 :Question 4 :

 34 How does the encoding of style vary across different style domains? This research question which is addressed in chapter 6 studies how stylistic features across different style domains are encoded by TST frameworks. How do the characteristics of style and the task of TST interact?This research question, addressed in chapter 6, examines whether extending the knowledge of the concept of style (findings from the research questions 1, 2 and 3) can contribute to TST. In particular, it investigates the implications of the variations of the encoding of style across different domains on the choice of evaluation methods for TST in a given domain.Question 5: What factors are relevant for the evaluation of a TST system?

3 .

 3 Our findings suggest that there are variations in how style is encoded across different style domains. In particular, in the sentiment domain, style is encoded relatively locally as compared to the formality domain where the style is more globally encoded. The related experiments conducted in chapter 6 investigates different layers of encoders of adversarial transformer-based TST models to examine how each layer encodes style across different style domains. The variations observed in the results of this 1.4 Notations experiment was further validated by doing a number of unigram-based analysis tasks.

Chapters 4 Chapter 6

 46 mainly investigates the separation of the style and content in the latent space of RNN-based TST models in the sentiment domain. The work in this chapter addresses research questions 1 and 5 (section 1.2) and the findings of the reported experiments support research contributions 1 and 5 (section 1.3). Chapters 5 extends the experiments of chapter 4 and looks into formality and content versus sentiment and content disentanglement in TST and explores the variations across these two style domains. The work in this chapter addresses research questions 1, 2 and 5 (section 1.2). Moreover, the findings of the reported experiments support the contributions 1further investigates the variations across different style domains by conducting a series of experiments to look into how these variations are encoded. Finally, it studies how these variations can affect the TST task. The work in this chapter addresses research 1.5 Report outline questions 3, 4 and 5 (section 1.2). Moreover, the findings of the reported experiments support the contributions 3, 4 and 5 (section 1.3). Chapter 7 discusses the findings, and limitations of the current work and TST scope, and presents the possible future directions of this research.

Figure 2 . 1

 21 Figure 2.1 The schema of FFNN network

21 2 . 1 Figure 2 . 2

 2122 Figure 2.2 The schema of an RNN-based Language Model including 2 hidden layers.

Figure 2 . 3

 23 Figure 2.3 The schema of a sequence-to-sequence encoder-decoder network

Figure 2 . 4

 24 Figure 2.4 Computing c t at the generation step t by considering the decoder state s t-1 and encoder states h 1 , ..., h T corresponding to the input x = [w 1 , ..., w T], a t = [a 1 , ..., a T] denotes the attention weight vector computed for the encoder states.

Figure 2 . 5

 25 Figure 2.5 The schema of transformer-based sequence-to-sequence encoder-decoder network

Figure 2 . 6

 26 Figure 2.6 The n th encoding-stack and decoding stack of the transformer encoder-decoder (when n = 1, the outputs of the embedding layer is fed to the self-attention module). The schema is adapted from the schema proposed by[START_REF] Vaswani | Attention is all you need[END_REF].

Fully 2 . 1

 21 connected Feed-Forward module As figure 2.6 shows both encoding and decoding stacks of the transformer encoder-decoder architecture contain a Feed-Forward module (FF) which is applied after their attention-based modules. Given an input u, this layer projects it through two dense layers where the first layer uses a ReLu activation function. This is formulated as shown in equation 2.18 where W u , b u , W o and b o are the learnable parameters of this module. FF(u) = (ReLu(uW u + b u))W o + b o (2.18) Residual and normalization module Residual and normalization module, Add & Norm layers in figure 2.6, are used around each sub-component of the encoding and decoding stacks of the transformer encoder-decoder network, i.e. each encoding and decoding stack includes two and three Add & Norm layers, respectively. This module is applied to help the training process and convergence of the model where using it improves the results. Multi-Head attention module The Multi-Head attention module of the transformer, a self-attention network (SAN), takes the three vectors of query Q, value V and key K as input and creates the weighted sum of the values V as the output shown by equation 2.19 where α shows the attention weights corresponding to each of these values and the softmax layer 28 Background neural network knowledge produces the attention weight distribution for the context generation.

2. 1

 1 Background neural network knowledge 2.1.4.4 Training objectives Sequence-to-sequence text generation systems can be considered as conditional language models which are trained to model the probability Pr(y|x), i.e. the probability of creating the generated sequence y based on the given input sequence x. In the case of supervised training, the training objective of the model is to minimize the negative log-likelihood of equation 2.25 (across the training corpus).

 apply a LSTM-based encoder-decoder architecture, Rush et al. (2015) use an attention-based RNN network, and Xu et al. (2019); Rao and Tetreault (2018) use transformer-based models to deal with the formality-shift task

); Singh and Palod (2018); Fu et al. (2018a); Romanov et al. (2019) or different variants of the standard RNN-based architectures. Some systems use style-specific decoder TST frameworks where multiple decoder

 are related to the architectures and experiments in the later chapters. Then, it reviewed previous TST work where many researchers have assumed style and content as separable elements of the text. The vast majority of this previous work has mostly employed adversarial end-to-end encoder-decoder architectures as the generator block and considered the latent vectors created by the encoders as style-free representations of the input sequences. However, to the best of our knowledge, this assumption has not previously been investigated. The current research explores the style-content separation across the style domains following the analysis of the extent to which style is encoded within the latent representations generated by the encoders of the various RNN-based and transformer-based TST systems. The thesis then reports on a series of experiments that explore the characteristics of style across a number of style domains. The results of these later experiments point to the fact that the encoding of style can vary across domains. Overall, the findings of this work contribute novel knowledge to the field of TST in terms of foregrounding the importance of examining and understanding the characteristics of style within a domain when designing a TST system and also the selection of appropriate performance metrics for TST in a given domain. The next chapter of this manuscript describes the data, and proceeds by introducing the state-of-the-art RNN-based and transformer-based TST frameworks used as the baseline systems in the experiments of the chapters 4, 5 and 6. It then describes the experimental and evaluation methodology.

(Figure 3 . 1 1 = 1 =

 3111 Figure 3.1 Adversarial TST RNN-based baseline model, Gen: Generator block, and Disc: Discriminator block.

1 :

 1 6) is the summation of the reconstruction and adversarial losses. If Disc detects that the textual segment is style-shifted L adv,s , and as a result L total increases which penalizes the whole training process. Therefore, Gen aims at minimizing the L adv,s which means increasing the chances of the style-shifted sequences being detected as "preserved" by Disc s . Disc and Gen are trained jointly from scratch. Backpropagation is done for Gen by using equation 3.6 to update θ E and θ D and for Disc by using the equations 3.2and 3.3 to estimate θ D s (s ∈ {s 1 , s 2 }). L total (θ E , θ D) = L rec + L adv,s 1 + L adv,s 2 Adversarial training of RNN-based TST model Input: Generator block Gen (θ E , θ D), discriminators Disc s1 (θ Disc s1) and Disc s2

s 1) 3 .

 13 Computing L rec by equation 3.1 using reconstructed sequences. 4. Computing L Disc s1 and L Disc s2 by equation 3.2 equation 3.3 and perform gradient decent to update θ Disc1 and θ Disc2 using both reconstructed and style-shifted sequences. 5. Considering equations 3.2 and 3.3, if the condition L Disc < 1.2 (a pre-set threshold which we set to 1.2 following Shen et al. (2017)) holds:

Firstly

 , if the sizes of training sets of the styles s 1 and s 2 differ, while reading the data upsampling without repetition would be done to equalize the size of the two sets. The same holds for the development set, i.e. if the binary-styled development sets are different in size, as a preprocessing step, upsampling without repetition would be done for the set with the smaller size before the training starts. Then, the training process starts which follows the steps summarized in the training algorithm: Algorithm 1: Adversarial training of RNN-based TST model.

3. 2 . 3

 23 Transformer-based TST baseline model The baseline transformer-based (T-based) adversarial T ST model that is used throughout this research is similar to the model proposed by Dai et al. (2019b). This architecture is composed of a generator block and a discriminator block. The generator block contains a T-based encoder and a T-based decoder. The discriminator block is a binary classifier which is trained together with the generator block. The training of the generator block which is responsible for rewriting the input text in a desired style is done in an unsupervised manner by applying adversarial techniques and receiving style signals from the discriminator block.

Figure 3 . 2

 32 Figure 3.2 Generator block Gen of the T-based model, E and D consists of 4 stacks of transformer and the output of the last stack of E is fed to each stack of D.

Figure 3 . 3

 33 Figure 3.3 Discriminator block Disc is trained to label the original and reconstructed text having the source style as True (1), style-shifted sequences having the reverse style as False (0) and original sequences having the reverse style as False (0).

Figure 3 . 4

 34 Figure 3.4 Computing the cycle loss

Figure 3 . 5

 35 Figure 3.5 The schema of the T-based TST baseline model.

 detecting the style-shifted text leads to penalizing the training process which encourages Gen to improve the generation of the style-shifted text. During training, adversarial loss is 3.2 Modelling approach minimized together with the total loss (equation 3.12). L total = L total rec + L adv (3.12) To train the T-based baseline TST model, firstly, if the training sets of the styles s 1 and s 2 have different sizes, upsampling without repetition is done. Also, if the size of the binary-styled development set differs, downsampling is done to the size of the development set with the smaller size. After this preprocessing step the training process starts following the steps summarized in the training algorithm: Algorithm 2: Adversarial training of T-based TST baseline model.

7 .

 7 Training Disc by repeating step 1 and 2 and 4, and performing gradient decent to update θ Disc for n d times. 8. Training Gen by repeating steps 1 and 2, and then the following steps for n g times:

Figure 3 . 6

 36 Figure 3.6 Computing CPP scores using embedding-based metrics

 Mover's Distance (WMD) is an embedding-based method which is a special case of the Earth Mover's Distance[START_REF] Yossi Rubner | The earth mover's distance as a metric for image retrieval[END_REF] and has been used in some previous style transfer research to compute the CPP, such as[START_REF] Yamshchikov | Style-transfer and paraphrase: Looking for a sensible semantic similarity metric[END_REF]. It calculates the distance of the sequences in the embedding space. W MD uses a distance technique and matches the tokens of the two sequences by measuring their distance in the semantic space,

4. 1

 1 Proposed models: an encoder and a decoder variant of the RNN-based TST baseline model 4.1 Proposed models: an encoder and a decoder variant of the RNN-based TST baseline model We first introduce two extensions of the RNN-based baseline TST model (introduced in section 3.2.1): a variant of the baseline encoder based on ELMo representations (section 4.1.1), and a style-specific decoder model which applies style-specific decoders instead of a single decoder (section 4.1.

 This research focuses on exploring the input information encoded in the latent space of adversarial encoder-decoder RNN-based architectures when they are applied to the TST problem. The encoder components of these networks create latent representations of given inputs. Therefore, it can be interesting to modify the encoder component of the RNN-based baseline TST model and study how this change affects the latent space of the model.To do so, we propose an adversarial ELMo-based TST model by extending the baseline model where the encoder is removed and the latent representations of the input sequences are created using a pre-trained ELMo model[START_REF] Matthew E Peters | Deep contextualized word representations[END_REF]. ELMo embeddings are contextualized word representations where the word embeddings are created by combining all the layers of a deep pre-trained bidirectional language model (biLM)[START_REF] Matthew E Peters | Deep contextualized word representations[END_REF].

4. 1 Figure 4 . 1

 141 Figure 4.1 ELMo-based embeddding for each input as the vector to initialize the decoder of the ELMo-based encoder TST model

Figure 4 . 2

 42 Figure 4.2 The schema of the Gen (generator block) of the multi-decoder RNN-based TST model.

1

 1 The results of automatic evaluation considering three aspects of SSP, CPP and fluency (PPLX). Higher values of SSP and CPP signify better performance of the models, whereas, for fluency, lower scores are better. Table4.1 represents the results of the baseline, ELMo-based encoder, and Multi-decoder TST models in rows a to c.These results show that the ELMo-based encoder model performs worse than both the base model and multi-decoder framework across the three aspects of evaluation. This indicates that, although ELMo embeddings have improved many NLPrelated tasks in recent years, TST is reliant on the task-specific encoder subnetworks to create the embeddings of the input sequences.

Figure 4 . 3

 43 Figure 4.3 Reinforcing z while generating tokens in each step of generation, as an instance step t

 x s (figure4.4). The classifier corresponding to each model is trained using the training and development sets of the Yelp-large corpus. The probing classification scores are then computed as the accuracy of their classifiers on detecting the source labels on the test set of4.4 Discussion

Figure 4 . 4

 44 Figure 4.4 Probing classifier i which is trained to learn the source style of the latent vectors of the input created by E of the TST model i.

Figure 5 . 1

 51 Figure 5.1 The schema of the Gen (generator block) of the multi-encoder RNN-based TST model.

2 95 5 . 1

 251 Decoder (D): D is a single-layered uni-directional RNN which takes the dense vector of the desired style s as the initial state and at each time step, for instance the time step i (figure5.2), considering the previous state s i-1 , it creates the context vector c i as latent representations of the input sequence by doing the weighted summation of h ′ 1 , h ′ 2 , . . . , h ′ T 1 The attention mechanism is described in details in section 2.1.4.Implementing more powerful encoders

 The training process is similar to the training regime of the base model. During the training steps of this model the parameters and weights of the attentions layer which consists of fully connected Feed-Forward layers are jointly trained with other components of the Gen and updated using the equation 5.4. Experimental setup of the proposed models The hidden state size of the uni-directional GRU cells of the encoder and decoders are set to 700 in the multi-encoder model (section 5.1.1). In the attention-based model (section 5.1.2) the size of both bi-directional GRU cells of the encoder and uni-directional cells of the decoder are also set to 700. The other parameter settings of these two models are similar to those of the RNN-based baseline model

Figure 5 . 3

 53 Figure 5.3 Variational extension of the baseline model where for each input x s latent vector z s is sampled from the posterior distribution N (µ x , σ x).

 develop transformer-based (T-based) TST models which have outperformed some state-ofthe-art RNN-based models (table 6.1, see rows 1 and 2 versus row 3). In this chapter, we also employ T-based models and base our experiments on this architecture. We begin by introducing our proposed T-based model 1 which is similar to the T-based baseline model. The T-based baseline model (introduced in section 3.2.3) is based on the model proposed by Dai et al. (2019b). We will refer to our proposed T-based model as the "proposed T-base model" and to the model introduced by Dai et al. (2019b) as the "T-based baseline model". The proposed T-based model includes an encoder-decoder network as the Generator block Gen as well as a separate classifier as a Discriminator block Disc (similar to the T-based baseline model). However, it applies an adaptation to the training regime of the 6.1 The proposed transformer-based TST model Algorithm 3: Adversarial training of our T-based model Input: Gen(θ E , θ D), Disc (θ disc) and any two corpora X s 1 and X s 2 which have the same content distribution but different styles (s 1 ̸ = s 2).

6 .

 6 Training Disc by doing step 4 and performing gradient decent to update θ Disc using gold, reconstructed and style-shifted sequences. 7. Checking the condition L Disc < 1.2 (a pre-set threshold set to 1.2 following[START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF]).

T

 -based baseline model which is explained in the Algorithm 3: Adversarial training of the proposed T-based model. The training regime used in the T-based baseline model (Dai et al., 2019b) which is described in details in section 3.2.3 differs from the training regime of the proposed T-based model in a number of ways: • T-based baseline model has a pre-training step to only train Gen for a number of batches 2 using just the self-reconstruction loss. However, the training of the proposed

 More importantly, however, applying the adapted training regime reduces the computational cost, i.e. to reach these results, the training time needed for the the proposed T-based model is lower than the training time needed for the baseline model. To be more precise, it took around 36 hours to train the proposed T-based model as compared to 75 hours training time applying the training regime from Dai et al. (2019b) while using the same hardware (single Quadro RTX 8000s GPU) and corpus (Yelp-small) 5 .

 2 α and β of the proposed T-based models T i are: (T rec ; α=1, β = 0.5), (T cyc ; α=0.5, β =1), LB indicate the Lower Bound score. (α and β shown in the equation3.10) summation of the self-reconstruction, cycle-loss and adversarial loss (equation 3.12) and the contribution of these three losses are not normalized. Therefore, increasing the weights of the self-reconstruction (α in 3.10) and cycle-reconstruction (β in 3.10) can push the TST model to behave more as an auto-encoder. Re-weighting of the reconstruction losses of the TST model is an interesting experiment to reveal the characteristics of different style domains.

6. 3

 3 Figure 6.1 Probing classification experiment on different layers of transformer encoder

 3 α and β (equation3.10) of the proposed T-based models T i are: (T rec ; α=1, β = 0.5), (T cyc ; α=0.5, β =1), LB indicate the Lower Bound score.

4 124 6 . 4

 464 embeddings of tokens which leads to capturing more of the structural and global properties of a text. Computing SBERT-based CPP scores enables us to compare the performance of pre-trained contextual embedding models versus pre-trained bag-or-words embedding models in capturing the information of the text across the sentiment and formality domains. SBERT-based versus GloVe-based CPP across different style domain using humangenerated text To examine the performance of the SBERT-based versus GloVe-based CPP metrics across sentiment and formality domains, we conduct an experiment as follows.11 https://huggingface.co/cross-encoder/stsb-TinyBERT-L-The intersection between style characteristics and TST task

 metric assigns low scores to these pairs which indicates that SBERT embedding model differentiates between tokens having different sentiment. This can shed more light on why GloVe-based CPP metric compute more precise scores in the sentiment domain compared to the SBERT-based metric 13 . Score variations of SBERT-based versus GloVe-based CPP Firstly, comparing the SBERT-based CPP scores of the table 6.2 and the GloVe-based scores of the tables 4.1, 5.1, 6.1, and 6.2 illustrates that SBERT-based values have a larger range compared to GloVe-based scores which are quite similar in values.

Chapter 5

 5 of this research presented our answer to the reserach question 2: Is the concept of style consistent across different domains? Different experiments were conducted to compare the level of entanglement of style and content across sentiment and formality domains. Namely, variational techniques were applied to modify the latent space of the TST frameworks by stripping out the source style features from it. Then the effect of this experiment across different style domains was studied. The experimental results of this chapter revealed that style and content are more entangled in the sentiment domain as opposed to the formality domain. The findings of these experiments led to the contribution 2 indicating that style is not consistent across different style domains. Many previous research framed the TST problem regardless of stylistic characteristics. This observation questions these approaches which implicitly assume that consistency of the the style concept across different domains. 135 7.1 Summary of the research and main contributions Considering this observation, chapter 6 proceeded by exploring the research question 3: How does the encoding of style vary across domains? Specifically, it applied transformerbased adversarial TST systems to frame the task and designed some probing experiments to study how style features are encoded in different layers of the transformer-encoder of the TST networks. This revealed that sentiment features are more local compared to formality features which are more global. Moreover, other tests including a series of unigram-based experiments further confirmed this observation. These results lead to contribution 3 stating that the encoding of style can vary.

7. 1 . 2

 12 Interaction between style characteristics and TST problemThe findings of this work have indicated that different domains of style are different in terms of how style is encoded. This raised the research question 4: How do the characteristics of style and the task of TST interact? Chapter 6 investigated this interaction by looking into how domain-specific style characteristics can inform the selection of experimental methodologies while dealing with TST problem. In particular, it focused on evaluation methodologies in the case of computing CPP.

7. 3

 3 Limitations and future work 26K complex sequences and 24K simple sequences (table 3.5) and while training it has the vocab-size of 12088. Table 7.1 reports the performances of the TST models trained on these datasets where the results show that RNN-based baseline model has very low CPP score on the three corpora. These scores are lower or almost the same as the LB score of the Glove-based CPP scores which is on average 0.85. Given these results, it is unlikely that the proposed T-based model work well if it is trained on these datasets since T-based models are bigger in size compared

Table 1 .

 1 1 Some examples of sequences from the styles of formal versus informal

	1.1 Textual style transfer

Table 1 .

 1

1 represents some sentence pairs with the style domain formality (formal or informal styles). Sequences in row 1 are formal in style but they differ in content and meaning. In column 1, on the other hand, sequences are similar in content but have different styles, formal, versus informal. These sequence pairs illustrate that text is composed of two components, style and content, which are the main focus of the textual style transfer task.

Table 1 .

 1 2 Notations used throughout the thesis report.

	Notations	Description
	x	A sequence of length T with tokens of [w 1 , ..., w T] and unknown style
	x s	A sequence of length T with tokens of [w 1 , ..., w T] and style s
	z	The latent representation of x generated by the encoder of a TST model
	z s	The latent representation of x s generated by the encoder of a TST model
	x (rec) s 1	Reconstruction sequence with the source style s 1
	(tr f) x s 1	

Style-shifted sequence having a desired style s 2 , and the original source style s 1 , where s 1 ̸ = s 2 .

X s

Textual dataset having style s and N sequences (x s ,...,x N)

E

Encoder of a TST model E s Style-specific Encoder of a TST model D Decoder of a TST model D s Style-specific Decoder of a TST model Disc Discriminator block of an adversarial TST model Disc s Style-specific classifier for style s used in the discriminator block of an adversarial TST model Gen Generator block of a TST model consisting of an encoder-decoder network

 Neural Networks were introduced which performed better in dealing with long sequences as compared to standard Recurrent Neural Networks (section 2.1.2). More recently, transformer architectures have been introduced which apply self-attention strategy to learn the relation ship between the tokens within a given input (section 2.1.4.3). Even though, unlike Recurrent

2.1.1) that learn non-linear mappings from input to output inspired by neuroscience. The challenge with these networks is that they have fixed width and therefore can only handle fixed length data which led to the development of Recurrent Neural Networks. These Networks, in spite of being capable of handling different length input, have limitations with handling long distance dependencies. Therefore, GRU and LSTM variants of Recurrent 14 2.1 Background neural network knowledge

 input gate decides which values are to be stored in c t and consists of a sigmoid

	2.1 Background neural network knowledge
	are filtered by the sigmoid activations before being added to the memory cell state.
	Equation 2.5 defines the input gates sigmoid layer which defines which values in the
	memory cell are updated.	
	i t = sigmoid(x t .W ix + h t-1 .W ih)	(2.5)
	Equation 2.6 defines the input gates tanh layer, which defines the values that can be
	added to cell state.	
	layer and a tanh layer. Both of these layers take the current input and the hidden state
	from the previous time step as input. As in the forget gate, a sigmoid layer is used to
	generate a masking vector, in this case the masking vector indicates which components
	in the memory cell should be updated with new information (sigmoid activations near
	0 indicate that the corresponding memory cell component should not be updated and
	activations near 1 indicate that they should). Then a tanh layer decides what values
	can be added to the memory cell. An element-wise product of the outputs of the tanh
	layer and the sigmoid layer mean that the update values generated by the tanh layer
	18	

) and uses three gating units (the forget gate f t , the input gate i t and the output gate o t), the GRU only maintains a hidden state (h t) and uses only two gates to control the flow of information in hidden state through time and to calculate the new hidden state at each time step. These two gates are known as the reset gate r and the update gate z. At each time step t each of these gates use the current input x t and the previous hidden state h t-1 to generate a vector mask the same width as the hidden state: r t and z t . These vector masks are then used to transform the previous hidden state h t-1 to the current hidden state h t . The integration of the vector masks generated by

	2.1 Background neural network knowledge
	information carried forward from h t-1 to ĥt . This carried forward information is then
	added to the result of the linear layer applied to the current input x t .	
	cells are a simplified version of
	LSTM cells. In contrast to LSTMs which maintains both a hidden state (h t) and a ĥt = tanh(x t .W x + r t ⊙ (h t-1 .W h)) (2.11)
	The update gate vector mask at time step t, z t , is calculated in a similar manner to the memory cell (c t these two gates with the previous hidden state is designed so that when a component of calculation of the reset gate mask, see equation 2.12.
	the reset gate mask r t is close to 0 the hidden state is forced to ignore the information
	in the corresponding component of the previous hidden hidden state and to reset that
	component of the hidden state with the current input (thereby allowing the hidden state
	to drop information that is no longer relevant), and the update gate controls whether
	the hidden state is to be updated with a new hidden state ĥt .	
	The reset gate vector mask at time t, r t , is calculated as shown in equation 2.10.
	r t = sigmoid(x t .W rx + h t-1 .W rh)	(2.10)
	Once the reset gate vector mask is calculated it is then integrated with the previous
	hidden state h t-1 to create a candidate new hidden state ĥt , see equation 2.11. In this
	equation notice that the element-wise product of the reset gate mask (r t) with the output
	of the result of the linear layer operation on h t-1 results in the r t mask filtering the
	20	

 . However, to the best of our knowledge there has been little research focused on how style is encoded in latent space of different neural TST systems. More importantly, whether variations in the concept of textual style exist across domains and if so how are they encoded within the 2.3 Summary latent representations of neural TST systems. In the current work, we investigate these open questions in the TST field.

 They also report the average, maximum and minimum length of the sequences in each binary styled dataset of a corpus. The vocabulary size of each corpus is reported after replacing words occurring less than 5 times with the <unk> token considering the training data of that corpus from the both styles s 1 and s 2 .

1

due to applying unsupervised training techniques. In the scope of TST, parallel sequences, as row 1 of table

3

.1 shows, differ only in the aspect of style, whereas non-parallel sequences (row 2) differ in terms of both style and content. It is noteworthy that even if the data we use is parallel, we use it in non-parallel mode during the training, i.e. we implement unsupervised strategies for training and treat the parallel texts as if they are non-parallel. Tables

3.2, 3.3 and 3

.5 show the data distributions of the datasets Yelp, GYAFC and Newsla that we use in the later chapters, i.e. they include the size of training, development and test data.

Table 3 .

 3 2 The data distribution of Yelp-small and Yelp-large.

	3.1 Data

Grammarly's Yahoo Answers Formality Corpus (GYAFC)

[START_REF] Rao | Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer[END_REF]

contains human-labelled informal and formal sentences which are crawled from two domains: Entertainment & Music (E&M) and Family & Relationships (F&R) in Yahoo Answers 5 . GYAFC 6 is a parallel corpus, i.e. parallel sequence pairs form the formal and informal train, test and development splits of this corpus where each text pair differ only in the style formality (similar to row 1 of the table 3.1). Each sentence of the test set and development set of the GYAFC dataset has four human-generated paraphrases. For instance, for a given text x of style s 1 , there are four gold paraphrases generated manually by human experts as the gold parallel sequences of x of style s 2 .

Table 3 .

 3 3 The data distribution of GYAFC-v 1 and GYAFC-v 2 .

	3.1 Data

 4. Making informal data more consistent. Compared to formal data, informal text does not strictly follow language rules. This can lead to presence of different variants for one token. For instance, in table 3.4, there are non-standard forms of hott and hoooooooot for the token hot. To reduce the size of the vocabulary and also the number of <unk> tokens, all non-standard forms of highly frequent tokens are converted to one form. In

	3.1 Data
	1. ohhh noo! I nooo, that's what I'm saying
	2. i no bt i cnt rememba
	3. i don't think it's so imporant,'coz she's so hoooooooot
	4. me ohohohohohoh boy woow hott omg heck yes!!!!!!
	Table 3.4 Informal sample sequences.

the samples 3 and 4 of table 3.4, for instance, hott and hoooooooot are converted into

Table 3 .

 3 5 The data distribution of Newsla-v 1 dataset.

	3.1 Data

Table 3

 3 Gen(θ E , θ D), Disc (θ Disc) and any two corpora X s 1 and X s 2 which have the same content distribution but different styles of s 1 and s 2 (s 1 ̸ = s 2).

	.8 Hyperparameters of the RNN-based TST baseline models
	Parameter Name	Description	Value
	E type	Uni-directional GRU cells	-
	D type	Uni-directional GRU cells	-
	E Depth	Number of layers of E RNN	1
	D Depth	Number of layers for D RNN	1
	E cell size	GRU hidden unit size of E	700
	D cell size	GRU hidden unit size of D	700
	Style size	Dense style vector size	200
		Continued on next page

Table 3 .

 3 10 Lower Bound LB and Upper Bound UB scores of evaluation metrics across different datasets. The UB for all CPP metrics is 1 by comparing each file with itself. The higher values show better performance for all CPP metrics except for W MD and fluency PPLX.

					3.3 Evaluation methodology
			Evaluation metrics			
		CPP		SSP		PPLX
	SBERT GloVe WMD	WO				
	LB	LB	LB	LB	LB	UB	LB	UB
	Yelp-small 0.0939	0.86	1.16 0.0101 3.00 97.20 2052 43.77
	Data Yelp-large 0.0692	0.84	1.161 0.0103 2.53 97.47 2081 44.81
	GYAFC-v 2 0.0672	0.87	1.122 0.0045 13.89 77.94 1226 74.21

3.1.1)

are affected by how well these classifiers are trained. Moreover, to compute

Table 5 .

 5 1 Evaluation results of the baseline model, Att-based (attention-based) and Multi-E (multi-encoder) models. Higher values in the table show better performance except for the metric W MD and PPL. LB indicates the Lower Bound of different CPP metrics.

	3.1.3, by considering inputs

Table 6 .

 6 1 Higher CPP and SSP show better performance, but lower values of PPL reflect better fluency. α and β of the reconstruction loss of the both T-based models are set to 0.25 & 0.5 (equation 3.10). based baseline model (proposed by Shen et al. (2017)) especially in terms of CPP (see rows 2 and 3). Also, comparing rows 1 and 2 of table 6.1 shows that the proposed T-based model slightly improves the performance of T-based baseline model, a slight improvement in CPP and SSP on Yelp and a larger improvement in CPP for GYAFC with a drop in SSP. However, these results are recorded from single runs of the model and so we do not claim a statistical difference here.

Table 6 .

 6

			6.2 Reconstruction loss versus adversarial loss
		Datasets	Yelp-small	GYAFC-v 2
		Models	T rec	T cyc	T rec	T cyc
		SSP	83.8% 70.9% 32.71% 41.52%
	Evaluation	PPL	107.07	99.88	101.57 154.35
	Metrics	GloVe	0.9732 0.9767 0.9743 0.9714
		CPP GloVe-LB	0.86	0.87
		SBERT	0.5869 0.6177 0.8595 0.8108
		SBERT-LB	0.0939	0.0672
		WO	0.5728 0.6305 0.8154 0.7357
		WO-LB	0.0101	0.0045

Table 6 .

 6

		6.3 Encoding variations across sentiment and formality domains
		Datasets	Yelp-small	GYAFC-v 2
		Models	T rec	T cyc	T rec	T cyc
		GloVe-baseline	85.80%	71.01%
	Layer-wise	Embedding layer 89.9% 87.4% 75.74% 78.69%
	probing	Stack1	100% 90.5% 74.18% 80.48%
	of encoder	Stack2	100% 100% 99.63% 88.2%
	of the proposed	Stack3	100% 100%	100%	100%
	T-based model	Stack4	100% 100%	100%	100%
		Final output	100% 100%	100%	100%

We observed that in recent years 31 out of 39 TST papers that we reviewed studied the sentiment-shift task(Xu et al.,

2018;Zhang et al., 2018a;[START_REF] Sudhakar | transforming" delete, retrieve, generate approach for controlled text style transfer[END_REF][START_REF] Romanov | Adversarial decomposition of text representation[END_REF][START_REF] Singh | Sentiment transfer using seq2seq adversarial autoencoders[END_REF][START_REF] Shen | Style transfer from non-parallel text by cross-alignment[END_REF][START_REF] Kelleher | Deep Learning[END_REF] Hu et al., 2017a; Fu et al., 2018b;[START_REF] Cao | Expertise style transfer: A new task towards better communication between experts and laymen[END_REF][START_REF] Xu Zheng | Stada: Style transfer as data augmentation[END_REF][START_REF] Jafaritazehjani | Style versus content: A distinction without a (learnable) difference?[END_REF][START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF] Dai et al., 2019b;[START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF][START_REF] Jin | Imat: Unsupervised text attribute transfer via iterative matching and translation[END_REF][START_REF] Kelleher | Deep Learning[END_REF][START_REF] Leeftink | Towards controlled transformation of sentiment in sentences[END_REF] Li et al., 2018b[START_REF] Li | Complementary auxiliary classifiers for label-conditional text generation[END_REF][START_REF] Shrimai Prabhumoye | Style transfer through back-translation[END_REF][START_REF] Tikhonov | Style transfer for texts: Retrain, report errors, compare with rewrites[END_REF] Zhang et al., 2018b) and 5 focused on the formality-shift problem[START_REF] Cao | Expertise style transfer: A new task towards better communication between experts and laymen[END_REF][START_REF] Xu Zheng | Stada: Style transfer as data augmentation[END_REF][START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF][START_REF] Rao | Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer[END_REF][START_REF] Jin | Imat: Unsupervised text attribute transfer via iterative matching and translation[END_REF][START_REF] Niu | Multi-task neural models for translating between styles within and across languages[END_REF][START_REF] Zhang | Parallel data augmentation for formality style transfer[END_REF].

Terms parallel and non-parallel have been referred to as aligned and non-aligned in some previous research.

https://www.yelp.com/dataset

Distributed under "CC BY-SA

4.0 license".4 Distributed under "Apache-2.0 license".

https://answers.yahoo.com

This corpus can be accessed upon request for academic research from https://github.com/raosudha89/GYAFC-corpus.

This corpus can be accessed for academic research upon request https://newsela.com

Around 1.41% of the complex data and 3.26% of the simple data were removed during the preprocessing steps and the length analysis.

The code is released under "Apache-2.0 license"

We do not use gold style-shifted texts corresponding to inputs while training even if they are available.

Following Vaswani et al. (2017), fixed positional embeddings are applied here.

The equation is similarly computed for the input pairs of (x s 1 , s 1) and (x s 1 , s 2).

For the sake of simplicity, we consider the batch-size = 1.

https://huggingface.co/cross-encoder/cross-encoder/stsb-TinyBERT-L-4

We also computed WO score while keeping the stop words and the observed that the two sets of scores ranked the models similarly.

The code and data are available at https://github.com/somayeJ/RNN-based-TST-experiments

Some style-shifted samples created by the TST models discussed in this chapter are provided in tables 5.5 and 5.6.

An example in the context of confidence intervals can be found here: https://www.mathsisfun. com/data/confidence-interval.html

To show that variational models are properly trained, we report SSP and fluency of the models. SSP across sentiment and formality domains are 96.98% and 71.01%. Fluency across sentiment and formality domains are 20.74 and 18.36.

The results of the attention-based in the formality domain are excluded while doing the analysis in this section, since this model has not converged to do the task effectively.

The code and data are available at https://github.com/somayeJ/Transformer-based-style-transfer.git

The number of batches used in this pre-training is a hyperparameter.

The number of batches used in training Gen and Disc is another hyperparameter.

Hyperparameters of the proposed T-based model are mostly adapted from(Dai et al., 2019b) (http:/github.com/fastnlp/style-transformer) and are explained in in table 3.9.

The number of trainable parameters of the T-based model is 19859513.

As table3.10 shows, the lower bound score of SSP in GYAFC-v 2 dataset is 13.89%.

We took a further step and did this experiment while comparing test data with the style-shifted outputs of the of the RNN-based TST models of baseline, attention-based and multi-encoder instead of gold human-generated style-shifted sequences. The two experiments led to similar results and conclusions.

This metric is explained in section3.3.1.

Pre-trained SSP classifiers are introduced in section 3.3.1.

How lower bounds are computed is explained in section3.3.1.

In the domain of formality, there are four gold sequences (four human annotators) available for each test sequence. The gold samples are randomly selected from these four sets.

We extended the experiment by investigating how SBERT-based and GloVe-based metrics compute the CPP scores considering the style-shifted outputs of of the RNN-based TST models of baseline, variational, attention-based and multi-encoder instead of the gold style-shifted sequences. The results showed that the findings are valid while using automatically generated style-shifted text.

T-based baseline model in the domain of formality (table6.1) has a very low SSP score which can mean that it has not converged as a style-shift model and its results have not been considered here.

Acknowledgements

This research has been realized under the ANR (French National Research Agency) projects TREMoLo (ANR-16-CE23-0019) and TextToKids (AAPG 2019). This project has also been supported by the ADAPT Centre for Digital Content Technology which is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

These experiments aim at exploring whether or not encoders of TST models encode stylistic information of the input text in their corresponding latent vector. They focus on style domain of sentiment by applying the Yelp-large corpus.

Investigating the relation between style and content

Models

SSP CPP Fluency Baseline model 58.3% 52.2% 64.2% Multi-decoder model 67.6% 41.6% 67.6% Number of raters 29 22 25 inter-rater agreement 0.752 0.772 0.568 Table 4.2 SSP: Percentage of the times each system output was labelled with the correct desired style by the judges. CPP : Percentage of the times each system output was labelled as having the same content with the input by the judges. Fluency: Percentage of the times each system output was labelled as having the correct grammatical structure by the judges.

Content preservation power (CPP)

The participants of this test were provided with the style-shifted outputs of the base and multi-decoder models and their corresponding input sample from the test set of the Yelp-large and were asked the following question:

• Question: Which sequence most closely resembles the source sentence in terms of content (disregarding the sentiment)?

• The possible labels: "equally good", "equally bad", "first sample is better", or "second sample is better".

The 22 participants of this comparative test had an the inter-rater agreement of 0.772 and labelled the outputs as being more similar to the source sequence in 52.2% of the cases for the base model and 41.6% of cases for the multi-decoder model.

The results of the human test show that the annotators and automatic metrics rank the models similarly. This validates our automatic evaluation methodology (section 3.3).

Investigating the relation between style and content

The main goal of this experiment is to investigate to what extent the latent representations of the inputs generated by the baseline, ELMo and multi-decoder TST models encode stylistic information. We conduct the following experiments in sections 4.3.1 and 4.3.2 to examine the style-content separation within these models.

Investigating the relation between style and content

Reinforcing z during generation

In this experiment, we study how reinforcing the latent vector representations of the input at each generation step affects the performance of the base and multi-decoder models in particular in terms of preserving the content and shifting the style of the inputs. Moreover, we aim at shedding more light on the latent space of the TST frameworks, in terms of the relationship between the features that are encoded in the z vectors and the performance of the models.

In standard sequence-to-sequence models, the z vector is only used to initialise the decoder. This means that, in the first generation step, as the input, the GRU cell of the base model takes the <start> token, the z and the target style vectors, while the GRU cell of the multi-decoder model only takes the <start> token and the z vector. Both models output the first token of the style-shifted sequences and use this generated output as the input for the next generation step. Consequently, the input information received by z tends to fade from the evolving hidden state used by the decoder because at each generation step the only input is the output of the previous step. Here, we introduce reinforced variants of the baseline and multi-decoder models where the z vector, as illustrated in figure 4.3, is re-inputted to the decoder while generating each output token. To do so, we follow the merging strategy proposed by [START_REF] Tanti | Where to put the image in an image caption generator[END_REF] and, at each generation step, we concatenate the latent representation of the input sequences z to the logit vectors of the decoder GRU cells before feeding them to the projection layer.

Extending the baseline model and multi-decoder framework to reinforce the input content during each generation step makes the features of the z vectors more present in the reinforced model which intensifies the presence of the input information while doing the generation.

Comparing rows d and e to rows a and c of the table 4.3 shows how this modification affects the performance of the baseline and multi-decoder models. Moreover, comparing rows d and other style domains and architectures. In chapter 5, we extend our experiments to investigate the entanglement of style and content in the style domain of formality while implementing other variations of RNN-based TST frameworks.

Evaluating the proposed frameworks

true population mean. Given a sample mean value m, the sample standard deviation σ and the sample size n, the confidence interval is defined by the following equation:

In this equation Z is the critical value, which depends on the desired confidence level, for instance, for a 99% confidence level it is 2.576, as provided by a Z table. Z tables differ on usage, but essentially, the table tells us what the critical value is for many common probabilities. Note that the factors affecting the width of the CI include the confidence level, the sample size, and the variability in the sample. Larger samples produce narrower confidence intervals when all other factors are equal. Greater variability in the sample produces wider confidence intervals when all other factors are equal. A higher confidence level produces wider confidence intervals when all other factors are equal. Thus, calculating the CI for a single mean will provide a range within which the true mean can be found 3 .

To compute the CIs for the GloVe-based CPP scores, first, the GloVe-based CPP scores of each of the pairs of input, and style-shifted output sequences are computed across the test set of the considered domain of style. Then, the CIs around the average model performance is measured. We observed that for the Yelp-large dataset, across the three frameworks the CIs computed for GloVe-based CPP scores do not overlap with the confidence level of 0.99. This confirms the validity of the variations between the CPP scores of the baseline, multi-encoder and attention-based models while using the Yelp-large data. The confidence intervals do not have an overlap for GYAFC-v 2 with the confidence level of 0.8.

For each of the CPP metrics and for each dataset, we calculate a lower bound (LB) score using the method explained in section 3.3.1.4. LB scores provide us with a better insight of how TST models perform in preserving the content of the input text while shifting its style. The results show that the proposed T-based model outperforms our state-of-the-art RNN-

The intersection between style characteristics and TST task

Samples from sentiment domain SBERT GloVe 1 s: there is definitely not enough room in that part of the venue . 0.26 0.999 t: there is definitely enough room in that part of the venue .

2 s: ever since he has changed hands it's just gotten worse and worse . 0.41 0.988 t: ever since he has changed hands it's always gotten cool and cool .

Samples from formality domain SBERT GloVe 3 s: u mean the question to _num_ question right ? 0.56 0.894 t: it is the question to _num_ . s: thats weird but maybe idk ill talk to my friend by his locker . 0.17 0.791 t: it is but maybe two . Table 6.6 Comparing SBERT-based and GloVe-based CPP scores computed between the given source (s) and style-transferred sequences (t).

suggests that SBERT is more sensitive to changes in a text and so applying these contextualbased pre-trained embeddings addresses the issue of the insensitivity of the GloVe-based cosine similarity based CPP metrics which has been discussed in some previous [START_REF] Kelleher | Deep Learning[END_REF][START_REF] Jafaritazehjani | Style as sentiment versus style as formality: The same or different? In ICANN[END_REF][START_REF] Jafaritazehjani | Local or global: Understanding the variation in the encoding of style across sentiment and formality[END_REF].

Moreover, table 6.2 shows that GloVe-based CPP values are quite similar across the domains of sentiment and formality: considering the TST models of T rec and T cyc , the average GloVe-based scores for the sentiment and formality domains are respectively 0.975 and 0.9728. However, the SBERT-based values in sentiment domain noticeably differ from those of the formality domain. The average score of the SBERT-based metric for the models T rec and T cyc across the domains of sentiment and formality are 0.6023 and 0.8351, respectively. This can be due to the fact that SBERT model unlike GloVe embedding system captures the negation and opposite sentiment while creating embedding representations of the words.

For instance, in sample pair 1 of table 6.6 where source and target sequences have opposite sentiment, i.e. they differ in having and lacking the token "not", SBERT captures the different sentiment of the source and style-transferred texts. Therefore, the cosine similarity score between their embedding vectors is low, 0.26. However, using a GloVe model, the cosine Chapter 7

Summary and future directions

The current chapter summarizes the experimental results, the findings, and the contribution of this research. It also discusses the possible directions for future work.

Summary of the research and main contributions

This thesis has had its main focus on exploring textual style within and across style domains and how it can contribute to the TST task. Specifically, it has investigated the style concept in aspects such as how it is related to content (chapters 4) and its consistency across different style domains (chapter 5). Moreover, in chapter 6, it has examined the style variations across various domains of style and how domain-specific style characteristics and TST problem can interact. This section provides a summary of experimental work, findings and contributions of this research, first, in terms of style characteristics (section 7.1.1) and then in terms of how these characteristics can contribute to the TST task (section 7.1.2). Finally, it reviews the factors that should be considered while evaluating the TST task (section 7.1.3). We discuss the main contributions of the current research in more details here (sections 7. 1.1, 7.1.2 and 7.1.3). Limitations One of the limitations of the current work is that we mainly considered the two styles of sentiment and formality. We tried to broaden the research by including other style domains but the main challenge we faced in doing this was accessing data. We conducted a number of experiments (not reported in the earlier chapters of the thesis) using a few other datasets (other style domains) but our models failed to converge as TST systems.

Limitations and future work

They either had very low SSP which can mean that they acted more like auto-encoders or had very low CPP and high SSP which means they were only able to shift the style without preserving the content. In both cases, it is safe to say that the system is not shifting the textual style successfully. In table 7.1 we report some of these results.

We trained the TST models using the Paper-News Title dataset and also we used the

B.2 Discipline Specific Training Skills

• SPEC 9270 -Machine Learning (10 ECTS)

• Univ Bretagne 32582 -Data Analysis and Probabilistic Modelling (5 ECTS)

• DeepLearn 2019, 32584 -3rd International Summer School on Deep Learning (https://deeplearn2019.irdta.eu) (5 ECTS)