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Résumé

Chaque jour, d’innombrables quantités de documents sont receptionnés et traités
dans les entreprises du monde entier. Afin de réduire les coûts de traitement associés
à chaque document, les plus grandes entreprises se sont résolues à automatiser leur
traitement. Dans le meilleur des mondes, le traitement d’un document s’effectue
sans aucune intervention humaine : le document est lu par la machine qui en extrait
les informations importantes et les transmets au service adéquat. L’état de l’art
a rapidement évolué ces dernières décennies, les premiers algorithmes à base de
règles écrites manuellement étant devenus des modèles statistiques. Cette thèse se
concentre sur les modèles d’apprentissage machine pour l’extraction d’information
dans les documents.

De récents progès en architecture de modèle pour la compréhension du langage
naturel ont montré l’importance des mécanismes d’attention. Les transformeurs ont
révolutionné le domaine en démocratisant l’utilisation d’attention et en améliorant
les pré-entrainements auto-supervisés. Dans une première partie, nous confirmons
qu’avec un pré-entrainement sur des documents, les transformeurs sont capables de
réaliser des tâches de compréhension de documents avec grande précision. Nous
montrons également que, lorsqu’ils sont utilisés pour de l’extraction d’information
par classification de mots, les transformeurs apprenent plus efficacement que les
modèles utilisant des réseaux récurrents. Les transformeurs n’ont besoin que d’une
petite portion du dataset d’entrainement pour atteindre des performances proche
du maximum. Ces résultats soulignent l’importance du pré-entrainement auto-
supervisé pour l’apprentissage de la tâche finale.

Dans la partie suivante, nous présentons des tâches de pré-entrainement spé-
cifiquement conçues pour mieux préparer le modèle à une distribution de données
ciblée tels que les documents d’entreprise. En remarquant certaines de leur spéci-
ficités telles que leur structure tabulaire et la présence d’un grand nombre de valeurs
numériques, il est possible de cibler certains savoir-faires utiles pour la compréhen-
sion des documents par le modèle. Nous montrons que ces nouvelles tâches de
pré-entrainement améliorent les performances, même avec de petits modèles. Ces
derniers atteignent des niveaux de performance similaires à ceux de modèles signi-
ficativement plus gros. Ce type de pré-entrainement spécifique est donc une piste
sérieuse pour réduire la taille des modèles utilisés, sans coût supplémentaire lors de
l’entrainement supervisé ou de l’inférence.

Enfin, dans la dernière partie, nous portons notre attention sur un des prin-
cipaux défaut de l’architecture transformeur qui est le coût d’évaluation quand le
modèle est utilisé sur de longues séquences. Nous montrons que des architectures
efficientes dérivées des transformeurs nécessitent moins de ressources et obtiennent
de meilleurs résultats sur de longues séquences. Cependant, à cause de la manière
dont le calcul d’attention est modifié, ces modèles plus efficients souffrent d’une
légère perte de performance sur de courtes séquences comparé au transformeur clas-
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sique. Ces résultats montrent les avantages d’un système utilisant plusieurs modèles
en discriminant sur la taille des séquences à traiter. De plus, ces architectures ef-
ficientes ouvrent la possibilité de concaténer des séquences provenant de modalités
différentes.



Abstract

Every day, an uncountable amount of documents are received and processed by com-
panies worldwide. In an effort to reduce the cost of processing each document, the
largest companies have resorted to document automation technologies. In an ideal
world, a document can be automatically processed without any human intervention:
its content is read, and information is extracted and forwarded to the relevant ser-
vice. The state-of-the-art techniques have quickly evolved in the last decades, from
rule-based algorithms to statistical models. This thesis focuses on machine learning
models for document information extraction.

Recent advances in model architecture for natural language processing have
shown the importance of the attention mechanism. Transformers have revolution-
ized the field by generalizing the use of attention and by pushing self-supervised
pre-training to the next level. In the first part, we confirm that transformers with
appropriate pre-training were able to perform document understanding tasks with
high performance. We show that, when used as a token classifier for information
extraction, transformers are able to exceptionally efficiently learn the task compared
to recurrent networks. Transformers only need a small proportion of the training
data to reach close to maximum performance. This highlights the importance of
self-supervised pre-training for future fine-tuning.

In the following part, we design specialized pre-training tasks, to better prepare
the model for specific data distributions such as business documents. By acknowl-
edging the specificities of business documents such as their table structure and their
over-representation of numeric figures, we can target specific skills useful for the
model in its future tasks. We show that those new tasks improve the model’s down-
stream performances, even with small models. Using this pre-training approach,
we are able to reach the performances of significantly bigger models without any
additional cost during finetuning or inference.

Finally, in the last part, we address one drawback of the transformer architecture
which is its computational cost when used on long sequences. We show that effi-
cient architectures derived from the classic transformer require fewer resources and
perform better on long sequences. However, due to how they approximate the atten-
tion computation, efficient models suffer from a small but significant performance
drop on short sequences compared to classical architectures. This incentivizes the
use of different models depending on the input length and enables concatenating
multimodal inputs into a single sequence.
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1.1 Context

A document is a medium to carry any kind of information meant to be read by a
human. From simple text messages to complex financial reports, without forgetting
newspapers, literature and ciphers. It can be exchanged to share its content with
someone else, or stored in order to be able to retrieve it in the future. It took many
formats over time. Without being exhaustive, we can cite paper sheets, books,
paintings, and nowadays a variety of digital formats: raw text, Portable Document
Format (PDF), LATEX, and many others. Technology advancements made digital
documents easier to store thanks to digital storage prices decreasing at an expo-
nential rate for 40 years [Roser et al., 2013]. The development and adoption of the
Internet since 1983 simplified file exchanges around the world, with close to instan-
taneous communication at almost no cost. Finally, contrary to physical ones, digital
documents can be directly processed on computers, with all the benefits that come
with it.



2 Chapter 1. Introduction

1.1.1 Business Documents

Companies send and receive large amounts of documents related to their busi-
nesses daily. Documents produced by companies in a professional context are called
Business Documents (BDs). There are various BD types, the most common are in-
voices, purchase orders, contracts, expenses, curriculum vitae, . . . For historical rea-
sons, those documents almost always take the form of printed text on letter-sized
paper such that it is always possible to physically print the document if needed.
Those documents need to be processed by multiple employees in order to acknowl-
edge their content and make sure the issuer’s demands will be fulfilled.

When a supplier sends an invoice to a buyer, multiple steps are involved. An
invoice typically contains information about the supplier, which items were bought,
in which quantities and the total amount due by the buyer to the supplier. At
the reception of the invoice, an accountant fetches related orders if they exist and
identifies the service at the origin of the purchase in order to share the content of
the invoice. This service acknowledges reception of the purchased goods or notices
back discrepancies. Errors or missing items are detected and corrected before val-
idating the invoice. Once everything is sorted out, an accounts payable manager
can be involved to validate the payment. The invoice is then properly archived with
all previous invoices. This process is complex and involves multiple persons from
various services. A recent study by ArdentPartners [Cohen and Bartolini, 2023]
evaluates the overall price of processing an invoice to $ 8.93 on average. This cost
includes accounts payable staff wages, printing, mailing and information technology
expenditures.

Moreover, the use of BDs is subject to each country’s legislation. For example,
a standard of electronic invoice called eInvoicing has been adopted by the European
Parliament in 20141. Its main objective is to provide a common structured format
containing all necessary information for invoice processing automation. Because it
is made with the intent of being processed by a computer system, eInvoice is not an
image or PDF document but rather a structured file format with no direct visual
representation. Accounts payable systems implementing eInvoicing can automati-
cally receive and process incoming invoices, without any external intervention by a
human operator. This format was adopted in Italy between 2014 and 2019 and is
becoming mandatory for French companies between 2024 and 2026 depending on
their size2. Independently of the document format, physical and digital BDs must
be archived for years after their use. This induces another cost for companies that
must comply with local legislation and its changes through time.

1.1.2 Enterprise Resource Planning

In order to reduce costs related to document processing, enterprises have increas-
ingly adopted Enterprise Resource Planning (ERP) [Shehab et al., 2004] systems

1https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014L0055
2https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000046383394

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014L0055
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000046383394
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since the 1990s. An ERP is a software running management tools and business
functions for a company. It integrates information from multiple departments, from
human resources to manufacturing, not to mention order management and accounts
payable. By centralizing information from all incoming and outgoing events, the
ERP accurately knows the state of the company.

An ERP effectively reduces friction when processing incoming invoices by pro-
viding in a single place all the needed information. Because the ERP is aware of
past orders, received items and the content of the invoice, it can automatically de-
termine whether the invoice should be validated or not, report any error and notify
the relevant manager. However, in order to rely on the ERP for this task, it must
accurately know the exhaustive state of the company and the new incoming invoice.
Most of the remaining burden is to provide to the ERP all the relevant information
about incoming invoices and received goods to keep it up to date.

Esker3, the funding company for this work, provides a software as a service
(SaaS) platform that extends the existing ERP with new features and tools by
wrapping over it. Their commercial solutions interact with most ERP systems and
are customizable to the needs of the customer. They provide high-level supervision
tools and workflow for the company in addition to document automation capabilities
which help reduce processing costs. To further drive down the cost of processing
BDs, one must better understand incoming documents to automatically feed the
ERP system without any human intervention.

1.2 Understanding Business Documents

BDs are often described as Visually-Rich Documents (VRDs) [Liu et al., 2019a;
Garncarek et al., 2021; Cheng et al., 2022] because they contain both textual and
visual information. As said in the previous subsection, BDs are processed using
computers to speed up workflow. Incoming mail is scanned into image or PDF files
which contain all visual details in the document including the text. Figure 1.1 is an
example of synthetic Purchase Order (PO) provided by Esker.

In the context of documents, printed or written text is the preferred media to
transmit information to a reader. Computers represent text as an array of charac-
ters, individually encoded into bytes using one of many encoding standards. The
most basic encoding for languages using the Latin alphabet, called ASCII, was in-
troduced in the 1960s. It can represent 128 different characters and includes letters
(upper and lowercases), numbers and some symbols. Nowadays, the most widely
used encoding is UTF-8, which is based on the Unicode4 standard. It can appropri-
ately represent all written languages and domain-specific characters such as math
symbols, emojis and basic shapes. Because this representation of text is not directly
compatible with the way images are stored, an additional processing step is needed
to extract text from images.

3https://esker.com
4https://home.unicode.org/

https://esker.com
https://home.unicode.org/
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Figure 1.1: Example of a PO drawn
from Esker sample documents. It con-
tains all the necessary information to
identify completely the buyer and the
list of purchased goods. The bottom-
left corner asks for the vendor to ac-
knowledge the reception of this doc-
ument by sending an order acknowl-
edgment, another type of BD.

1.2.1 Textual information

Extracting text from an image is a task (or a group of tasks) usually referred to as
Optical Character Recognition (OCR) [Mori et al., 1999]. One possible process is
to detect individual lines, and then segment each of them into individual words and
characters. Finally, each character is recognized with various Computer Vision (CV)
techniques. Although it is been actively developed and researched since the 20th
century, it can still be challenging depending on the conditions.

For example, handwritten character recognition is well-known for being vastly
more difficult than classical printed-on paper OCR. This is due to an accumulation
of factors like lack of consistency of characters, missing separations between letters,
low contrast between ink and paper, . . . Current OCR systems perform with high
accuracy on BDs for black-on-white printed characters. They are usually evaluated
by computing the character (resp. word) error rate which measures the ratio between
the number of correctly read characters (resp. words) and the total number of
characters (resp. words). Stamps, brand logos, and handwritten annotations often
give imperfect results. As shown in Figure 1.2, those systems also include line and
paragraph segmentation and sometimes provide some hierarchical analysis of the
text structure.

Esker heavily relies on OCR software to process BDs in production. For this
reason, this work is mostly constrained to models using textual information provided
by OCR and other options were excluded early in the thesis. Their ability to leverage



1.2. Understanding Business Documents 5

Figure 1.2: Extracted OCR with Google
Cloud Vision API5 from Figure 1.1 with
light preprocessing to improve readabil-
ity and select valuable information. Each
word is a string attached to some location
specified by its bounding box. Words are
grouped into paragraphs and blocks in a
hierarchical manner.

other information modalities was however studied at length.

1.2.2 Other information modalities

Although the text contains most of the needed information to interpret correctly any
document with high confidence, one cannot simply replace a VRD with its extracted
text and expect a reader to perform identically. Word positions and alignments
alongside visual elements help the reader disambiguate the document interpretation
and reading order.

First, most documents use specific word positions and sizes to emphasize some
part of the content and drive the reader towards relevant information. A layout
defines the structure of the document and implicitly delimitates semantic units like
address blocks, tables or important notes. In Figure 1.2, horizontal alignments inside
the table help separate neighboring columns and reading figures.

Second, even though BDs rarely include graphical elements because of the busi-
ness context, they can occasionally use brand logos or accent colors to ease document
quick identification. It provides the human reader with instantaneous information
about the document type and origin.

5https://cloud.google.com/vision/docs/ocr?hl=en

https://cloud.google.com/vision/docs/ocr?hl=en
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1.2.3 Structure

As discussed previously, information is organized toward better readability and ef-
ficiency. Text layout defines a clear structure of each document type which derives
from a historic use. Because they serve similar purposes, invoices and purchase or-
ders might look identical to the untrained eye. Both are structured in three sections:
a header, a table and a footer.

The header contains information relative to the issuer and the vendor such as
their name, address and contact details. It also contains global information about
the document. There is usually some sort of document number or reference code
to uniquely identify this exact document alongside the date of creation. Multiple
dates can cohabit and should not be confused with each other. To differentiate each
of them, each piece of information or value is usually associated with a key that
disambiguates its meaning.
For example in Figure 1.1, the string “9/3/2018” is preceded by “Date:” which
implicitly designs the document creation date. This pattern repeats for other keys:
document number (“No:”), currency, delivery date and terms of payment. To further
emphasize the pattern repeating, this document also aligns each key-value pair on
the colon, which visually guides the reader.

The table is the main body of the document. Depending on the type of BD,
it can contain various information. It is most of the time organized in a grid-like
manner with columns representing a type of information and each line representing a
unique item. The first line of a table is the table header which specifies each column
name. From one document layout to another (even within the same document type),
column names might differ in quantity and order. Depending on the number of lines
inside the table, it can span multiple pages. In those cases, the header row is usually
repeated at the beginning of each page such that each page can be understood on
its own.
In the case of purchase orders, the table lists all purchased goods for this transaction.
For a purchase order to be processed, some information is mandatory like item
reference ID and quantities purchased. Other fields are usually also included like
descriptions, unit prices, tax percentages or amounts and total prices for each item.
Other types of BD might include different fields because the context in which to
document is involved is different.
For instance, at first glance, purchase orders and invoices might look similar. In
practice, orders focus on which items are purchased and in which quantity for the
vendor to prepare the command and send it. An invoice also includes those fields for
the buyer to acknowledge the reception of goods and the prices to pay the vendor.
Although the price usually appears in a purchase order, it is not the most important
element.

Finally, the footer follows the table at the bottom of the page. It contains
overview information such as gross and net total amounts and taxes. It might also
contain some free text remarks, instructions or words left by the issuer. In Figure 1.1,
the delivery address block is specified in the footer, probably to optimize space. In
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Metal Picardie - S.A. au capital de 2 500 000 EUR - N° TVA : FR 63 498 756 436 

 

 
 
   
 

BON DE 
COMMANDE 

Commande :  

 Date : 

Pour le : 

000608070 

19/05/2015 

03/06/2015 

 

 

 

  Adresse de livraison :     Adresse de facturation : 

 

 

 

 

 

 

Veuillez traiter cette commande dès réception en respectant les conditions ci-dessous 

 

Le numéro de commande devra figurer sur les 
factures, documents de livraison et colis. Un bon 
de livraison devra accompagner le colis. Veuillez 

facturer chaque commande séparément. 

Fournisseur IDES France SA 
  31 rue des Erables 
  75015 PARIS 

 

 

 

001 -  

 

 

 

 

 

 

 

002 -  

 

 

 

 

 

003 -  

THX-63972D         x  5 

Toner Noir 6397 

Urgent 

Livraison le 03/06/2015 

Prix unitaire : 56.99 

Total : 284.95 

 

 

HT-1040D           x  10 

Ramette 500 feuilles 

500 feuilles 

Prix unitaire : 6.52 

Total : 65.20 

 

CONT-E2D           x  3 

Dossiers suspendus kraft 

8 1/2" x 14" 

Prix unitaire : 15.75 

Total : 47.25 

 

 

 

 

 

Metal Picardie SA 

33 rue de La Tannerie 

60270 Gouvieux 

Net à payer:  397.40 EUR 
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Metal Picardie SA 

33 rue de La Tannerie 

60270 Gouvieux 

(a)

Important 
The purchase order number must appear on all invoices, shipping papers and packages.

Packing slip must accompany shipment. Invoice each purchase order separately. 
Vendors please note any changes in price or terms need approval before shipment 

Computer Club Market 
1 1 345 Congress Street 
BOSTON, MA 02210 
Phone: 617-427-4300 
Fax: 617-555-8475 

PURCHASE ORDER 

Item 

10 

20 

30 

40 

50 

60 

70

Part Number

THX-63972D 

THX-63971D 

THX-63973D 

THX-63974D 

CP-102D 

CONT-E1 

CONT-E2 

Description 

Black bulk toner for model 6397 

YELLOW bulk toner for model 6397 

CYAN bulk toner for model 6397 

MAGENTA bulk toner for model 6397 

8 1/2" x 14" laser paper, 500 sheets 

Box 120 X 80 X 80 

Box 60 X 80 X 80 

Quantity 

3 

1 

1 

1 

15 

5 

5 

Unit Price

56.99 

71.70 

71.70 

71.70 

6.52 

29.90 

19.90

Total 

170.97 

71.70 

71.70 

71.70 

97.80 

149.50 

99.50 

Bill to 
Computer Club Market 
1 1 345 Congress Street 
BOSTON, MA 02210 

Total amount: 732.87 
(USD) 

Page 1/1 

PO Number: CCM507620 

PO Date: 2/1/2012

Delivery Date: 2/16/2012 

Ship to 
Computer Club Market 
1 1 345 Congress Street 
BOSTON, MA 02210 

#0648328

25/03/2014

26/03/2014

(b)

【発注書】

テスト㈱本社 テスト船会社

大阪市中央区徳井町 千住曙町４２

〒 571-0007 〒 100-1103
Tel :078—323—2444 Tel :072—113—2224

当社発注番号 2748771 2017 年 10 月 03 日

下記の商品、御注文申し上げます . 尚、納品時には当社発注番号 (2748771) と行番号及び部署発注番号を必ず御記入下さい .

行 商品名 / 規格 発注数量
1 イ識布ガーゼ 2108 メデイコム12.5X12mm
品番 3905502

10包

2 メデイコムアイソレーションガウンソリーサイス 7 ノレ
品番 3905616

20包

(c)

供方联系人： 潘芹 联系方式： 订单日期：

需方联系人： 张程 联系方式： 交货地址：

序号 产品名称 物料编码 订购数量 到货数量 单位 需求日期 包装规范 订单流水号 备注

6 典雅白面漆 660100735 40 桶 5月16日

8 雅致棕面漆 660100825 5 桶 5月16日

13 钢琴黑面漆 660100916 10 桶 5月20日

15 导电底漆 660100755 20 桶 5月16日

16 罩光清漆 660100749 40 桶 5月16日

17 固化剂 660300099 85 桶 5月21日

18 稀释剂 660200110 5 桶 5月16日

19 稀释剂 660200111 20 桶 5月16日

25 水晶银面漆 660101081 5 桶 5月23日

26 雅致棕面漆 660101082 10 桶 5月16日

29 稀释剂 660200176 9 桶 5月16日

PC AUTO雅致棕JAC(静电)S2

PC AUTO水晶银JAC(静电)S2

● 所有产品必须符合RoHS 标准要求，具体参考共同签署之《RoHS质量保证协议》执行.

● 其余相关操作事项参考共同签署之《基本供货合同》条例执行.

T-522稀释剂

拟制：张程

FLEX 800导电底漆L-50

FLEX 100罩光清漆(星通)

订单
说明

● 供应商在收到此订单后请在8小时内确认交期，如有任何异常请及时反馈，以便提前协调处理.

● 如果实际交期发生改变时，依我司对应采购窗口通知信息为准。另请严格按交期,数量及规格准确送货.

● 请严格按照毅昌要求的送货单、外箱标签格式进行填写相关内容，否则将导致不良退货.

● 所有订单交货后对帐必须带齐《委外订货单》、《送货单》、《检验合格单》、《收料单》.

PC 2000固化剂

T-701稀释剂(AP)

T-801稀释剂(AP)

PC AUTO典雅白JAC(静电)

PC AUTO雅致棕JAC(静电)

合肥市丹霞路与青龙潭路交叉口向
东100米（江淮汽车乘用车总厂）王
珊珊：15256576790

PIN 200经典黑JAC

供货方：涂料（中国）有限公司 

材质规格

版本：A1 
采购订货单

编号：JE-QR-CG-008

13816569416 2017年5月13日

订货方：合肥昌汽车饰件有限公司 15155901628

(d)

SUNBURST, INC.
3565 Sunny Blvd.
San Diego, CA 92115
P 619-870-9876
F 619-870-9865

TO: 
IDES US INC.
1230 Lincoln Avenue
New York, NY 10019
USA

SHIP TO:
SUNBURST, INC.
3565 Sunny Blvd.
San Diego, CA 92115
USA

SALES ORDER    : 33975

1/12/13

SALES REP. JOB SHIP DATE SHIP VIA PAYMENT TERMS

Jeanne S. 33975 1/20/13 FED EX Due on receipt

QUANTITY DESCRIPTION UNIT PRICE TOTAL

2

2

2

1

R-1141 PAQ Monitor, 20", Color

R-1002 Maxitec R 3133 Personal computer

R-5002 Processor Pentium

M-11 Flatscreen MS 1785P

300.00

1392.40

530.00

1491.22

600.00

2784.80

1060.00

1491.22

5936.02

SO-283890

DATE : 08/19/2017

09/01/2017589398

(e)

Paxton & Company
1918 Airport Road
Midland, MI 48642

Paxton & Company

Req By Ship When Ship Via FOB Buyer Terms

Partial OK Jim B COD

Unit Price Total

QTY: 50
Vendor Number: DPC1011
Our Item Number: MY1432
Due Date: 11/15/2010
Description: Keyboard

QTY: 5
Vendor Number: M-13
Our Item Number: M-13Y
Due Date: 11/15/2010
Description: MAG 17F

QTY: 15
Vendor Number: HT-1021
Our Item Number: 376690
Due Date: 11/15/2010
Description: Easy Hand

QTY: 5

65.00

223.30

149.00

318.90

3250.00

1116.50

2235.00

1594.50

Subtotal

Tax

Shipping

Miscellaneous

Balance Due

Purchase Order

P.O. Number: s655
P.O. Date: 10/15/2010

Bill To:

Paxton & Company
1918 Airport Road
Midland, MI 48642

517-832-6347

Ship To:

Paxton & Company
1918 Airport Road
Midland, MI 48642

Due Date:P.O. Due Date:

PXT003234
12/10/2015

12/11/2015

(f)

Figure 1.3: A collection of synthetic purchase orders exemplifying the extensive
range of template variations and lexical fields for goods. Despite the theoretical
absence of correlation between templates and lexical fields, in practice, they tend to
be interdependent due to companies reusing identical templates for their documents.

another layout, it could have been in the header.

1.2.4 Complexity

Although BDs are structured, they come in a variety of templates, cultures and
conditions. Before considering the content itself, because some documents still take
their origin in a physical format like paper, they can be damaged or altered before
being digitalized. Bad prints, stains, or folded paper negatively impact OCR sys-
tems. The most affected documents are those old enough to suffer from time or not
important enough to be taken care of like expense receipts. When applying OCR
to extract textual features, many parameters need to be taken into consideration.
Paper size and shape or rotations are now fully supported by OCR. However, het-
erogeneous lighting, text written in multiple directions, folded paper [Jian Liang
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et al., 2005] or simply handwritten text [Memon et al., 2020] can still be challenging
and one should not always expect perfect results.

Even once the document is fully digitalized with text available, many factors
can negatively impact BD understanding. Figure 1.3 shows 6 examples of hand-
made purchase orders that try to mimic a variety of real-life documents. When
working with textual information, it is important to identify the language used. For
a document to be understood by both the issuer and the receiver, BDs are always
written in a common language. English is often privileged for international trade,
but documents that stay inside a country are mostly written in that country’s lan-
guage. In addition to language, each country has its own culture that influences how
BDs are represented. Units, dates and number formats, addresses, phone numbers
and currencies are heavily influenced by the document’s culture and vary between
countries. For example, dates can be written under multiple similar but different
formats. In Europe, the format “dd/mm/yyyy” is used where “dd” is day of the month
in 2 digits (with leading 0 if needed), “mm” is month number in 2 digits and “yyyy” is
the year in 4 digits. A forward slash “/” is used as a separator, but the hyphen “-”
is also common. However, in the USA the format “mm/dd/yyyy” is preferred. The
confusion between day and month numbers sometimes can only be avoided thanks to
the knowledge of the issuer culture. It is also important to notice BDs are technical
documents, with many liberties taken with grammar. In order to keep documents
concise, a minimum number of words is used to convey the semantic message. BDs
use extensively abbreviations (eg. “QTY” for quantity as seen in Figure 1.3f) and
acronyms (eg. “PO” for purchase order seen in Figure 1.3b).

Finally, within a single country, not all documents are structured identically.
Whether it be for developing a brand identity or simply to be recognized among
others, most issuers personalize their BDs by using colors, logos and fonts, and by
emphasizing the table structure with borders. In the end, not 2 documents look the
same in Figure 1.3. It helps separate quickly different documents but sometimes
makes reading more difficult due to the template differences. The variety of column
orders and names makes table parsing a not-so-obvious task for a human reader and
a difficult task to automate with an algorithm.

1.3 Related tasks

Document understanding is a large research topic with many intermediate tasks
involved. Its automation leverages all sources of information discussed so far and
organizes them cleverly in order to better understand a document. OCR was for
a long time considered a research topic in itself, resulting in the state-of-the-art
tools we have today. Only more complex scenes and images OCR are researched
today [Mouchere et al., 2016; Reddy et al., 2020]. Some of the following tasks can
also be performed using visual information only. It has the benefit of not relying
on a costly OCR system which often drives the cost down and enables real-time
processing.
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(a) (b)

Figure 1.4: Two sample pages from DocBank dataset with annotation inserted as a
colored overlay. The dataset provides both pixel-level and word-level annotations.
Figures were handpicked from [Pfitzmann et al., 2022].

1.3.1 Layout Analysis

Sometimes done alongside OCR, document segmentation or layout analysis purpose
is to extract pre-defined semantic structure in VRDs. Detecting paragraphs, titles
and figures helps understanding documents with complex layouts. Multiple datasets
exist but most are limited in size because their labeling relies on human annotation.
PubLayNet [Zhong et al., 2019] was the first to provide accurate annotations for
over 1 million documents. Since then, other datasets have emerged for more diverse
and complex layouts [Li et al., 2020; Pfitzmann et al., 2022]. They often use the
document’s source code to extract layout semantic information about its content
and label areas in the document accordingly as shown in Figure 1.4. Those labels
can then be used to fit other algorithms’ parameters.
For example, from a document’s LATEX sources, it is possible to automatically label
titles, paragraphs, figures and captions. This is the method used by DocBank [Li
et al., 2020], which relies on arXiv6 to obtain a large amount of source code.

1.3.2 Classification

Classifying VRDs into their various types is a simple useful task. It can involve
any combination of visual and textual features. Because text can only be extracted

6https://arxiv.org

https://arxiv.org
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through an OCR, which introduces additional latency and computational cost, it
is sometimes chosen to only work on visual information. Algorithms classifying
documents into predefined classes can be used as part of a triage system, filtering
and separating documents by type before further specific processing.
The reference public dataset for document classification is called RVL-CDIP [Harley
et al., 2015]. It contains 400000 documents distributed in 16 classes, more details are
available in Figure 1.5. Documents originally come from a larger collection [Lewis
et al., 2006] (IIT-CDIP) that include documents that fall into the public domain after
legal proceedings against the tobacco industry. Unfortunately, those documents are
becoming outdated because of template distributions shifting over time with more
modern layouts.
In real life, it is sometimes useful to perform classification without knowing all classes

(a) Advertisement (b) Budget (c) Form

(d) Invoice (e) Resume (f) Scientific report

Figure 1.5: Sample images from RVL-CDIP dataset from 6 out of 16 classes. Both
images and OCR extracted text are provided. A wide variety of business document
types are represented in this dataset, which is why its documents are sometimes
reused for other tasks in other datasets. Figures were handpicked from [Harley
et al., 2015]
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from the beginning. Classes can be added or deleted at any time, fitting the actual
needs. This task is much more complex than its classical counterpart, with many
specific algorithms developed specifically for Online Learning [Hoi et al., 2021].

1.3.3 Information Extraction

Information Extraction (IE) is a wide task that can be expressed in many ways.
Its objective is to, given a document, identify key information and structure it.
It has many possible applications when considering how VRDs are processed. As
previously said, incoming documents are digitalized and parsed in order to fill ERP
forms with accurate information. High quality IE enables fully automated document
processing which reduces related costs drastically.

The list of key information varies with document type and context. Some fields
might be mandatory in a precise business context but optional in another. In the
case of purchase orders, for example, fields can be grouped into 2 categories: header
and table fields. Header fields usually only appear once in the whole document but
might be repeated identically for long multipage documents. They can appear either
in the header or footer of the document. The most common mandatory header fields
are document number, gross and net total amounts, date and company name. Table
fields on the other hand are structured into a table and are repeated as many times
as there are line items ordered. Purchase orders usually include quantity, unit and
total price, description, ID and tax for each item purchased.

One part of the IE task is the formatting applied to the extracted values. De-
pending on the chosen output structure, each field might be typed and formatted
precisely to simplify further processes. Figure 1.6 shows extracted information on
the example document previously seen in Figure 1.1. In this example, the date is
formatted to international standard ISO 86017 which specifies with no possible am-
biguity how dates should be written. Dates must follow the pattern “YYYY-mm-dd”
which conveniently allows to chronologically sort dates with a lexicographic sort
operating on the sequence of characters. To produce this format, it can either be
asked directly to produce the formatted date string, or identify individually each
sub-field (i.e. day, month and year) and then format with light postprocessing. The
same principle applies to figures that are stored as numbers (whole or floating point
values) in order to hide the complexity of number formats.
Depending on the method used to perform IE, a postprocessing step might be needed
to create the appropriate output format. For example, some field instances might be
composed of multiple words but should be considered a single instance. A date writ-
ten “january 1st, 2023” is technically composed of 3 words but describes a single
date instance. On another note, when working with line items, it is often useful for
the end user to group table fields by line. It can be complex depending on the layout
of the document, with line items spanning multiple physical lines, or irregular spac-
ing between lines. Some specific algorithms can perform most of the postprocessing
by themselves by learning to produce the desired output format [Palm et al., 2018].

7https://en.wikipedia.org/wiki/ISO_8601

https://en.wikipedia.org/wiki/ISO_8601
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Date Currency Order Number Delivery address

Vendor addressTotal incl. VATTotal excl. VATVAT

Item Quantity Item ID Item unit price Item total price

Figure 1.6: An example of an-
notation of Figure 1.1 for IE. 8
header fields and 4 table fields are
displayed. Depending on the end-
user application, the choice of an-
notated fields might differ. Be-
cause human annotation is costly,
annotated fields are often limited
to the strict minimum in practice.

There is a great variety of datasets related to IE. Scanned Receipt OCR and
Information Extraction (SROIE) is a document dataset including an IE task was
introduced for a competition at ICDAR 2019 [Huang et al., 2019]. It contains about
1000 scanned expense receipts, with both image and text modalities. The extraction
task focuses on 4 header fields: company name, address, date and total amount.
Model iterations quickly revealed the dataset’s limitations: OCR mismatches, a
small number of templates or fields, etc. It is now supplanted by newer datasets
including more complex fields to extract. CORD [Park et al., 2019] introduces a
hierarchical extraction task with more than 40 fields. Other document types have
been used for IE: FUNSD [Jaume et al., 2019] uses forms, Kleister [Stanisławek
et al., 2021] uses charity reports and DocILE [Šimsa et al., 2023] uses invoices and
orders.

Although there are multiple datasets available, most of them only contain a small
number of documents, only about a thousand. This is mostly due to documents con-
taining personal and private sensitive data which cannot be disclosed to the public.
Some public datasets however offer large amounts of public training documents with
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complex annotated tasks. Mathew et al. [2021] collected 13k heterogeneous docu-
ments and annotated them for IE as a Question Answering (QA) task [Gardner
et al., 2019]. DocVQA, their proposed dataset, contains 50k question-answer cou-
ples, each relative to a single document. Various question types help increase the
difficulty of the task without needing more documents to challenge current IE mod-
els. Recently in early 2023, dataset DocILE [Šimsa et al., 2023] was released under
some non-disclosure constraints. It contains 7k annotated BDs, 100k synthetic doc-
uments and 1M unlabeled data, enough to perform pre-trainings that need huge
collections of unlabeled data.

Prior to DocILE, many large private IE datasets already existed for business
documents. Companies providing services related to BD processing used large anno-
tated datasets to train models automating tasks like IE. In order to avoid labeling
each document individually, which would not scale to larger datasets, Esker uses
annotations provided by the end user. Indeed, any company employee feeding a
document’s information into an ERP solves an IE problem. By saving the output
given by the employee for each document, a company can accumulate a dataset
with no additional cost. By aggregating the work of multiple users across multiple
companies and over multiple years, Esker grew a large collection of BD containing
several millions of labeled purchase orders and invoices. However, because anno-
tation is done by multiple users with different needs and objectives, the resulting
dataset needs to be extensively cleaned and filtered before use. By this mean, large
private datasets for IE were built, at a fraction of the cost by many independent
companies [Palm et al., 2017; Katti et al., 2018; Sage et al., 2019].

1.4 Outline

The remaining of this thesis first establishes a detailed history and related works of
models able to perform document understanding tasks.

Chapter 2 tells the story of document automation: from the good old rule-based
model to the current, state-of-the-art, pre-trained, deep learning model. It details
how and why statistical models and machine learning overcame the increasingly
difficult tasks of the previous decades in both academia and industry. Their capacity
to adapt to a wide range of tasks makes Machine Learning (ML) models the perfect
match to tackle both generic and very niche problems. This work focuses on a
specific architecture of Artificial Neural Network (ANN) called transformer [Vaswani
et al., 2017] which has, since its release in late 2017, beaten every competitor in most
language-related tasks.

The raw performance of transformers had already been shown on document-
related tasks before our work. In Chapter 3, we assess the capacity of pre-trained
transformers in a data-constrained situation. This study was motivated by the
scarcity of large, publicly revealed, labeled documents on most document-understanding
tasks. A data-efficient model means it requires a smaller dataset to first train,
opening up opportunities for an industrial actor wanting to develop a new feature.
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Using a public receipt dataset, we quantified the efficiency difference between pre-
trained transformers and the previous state-of-the-art. Pre-trained models revealed
to require much fewer training examples than their competitors to reach close to
maximum performances.

Acknowledging the advantages of pre-trained models, we focused on ways to
improve the pre-training for BDs understanding in Chapter 4. The pre-training
relies on pretext tasks that help the model build useful representations of inputs.
Pretext tasks from the literature were fitted for Natural Language Processing (NLP)
involving sentences with rich context which is rarely the case in BDs. By introducing
specialized tasks for BDs, we significantly improved the performance on downstream
IE.

Although very capable and performant, transformers are limited in their ability
to process long sequences. Their memory requirements for large inputs limit their
application to smaller sequences and single-paged documents. In Chapter 5, we take
a look at alternative architectures more efficient with longer sequences. They prove
to be more effective on long documents but the required approximations also hurt
the performances on short documents.

Finally, Chapter 6 wraps up this thesis and provides some perspectives for future
work.
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In this Chapter, we draw a picture of the past and recent literature on the topic
of document understanding. A historical entry point to document understanding is
the document’s image classification [Chen and Blostein, 2007]. The research com-
munity explored classifiers working with visual [Byun and Lee, 2000], textual [Li and
Jain, 1998; Manevitz and Yousef] and layout-based [Eglin and Bres, 2003] features.
Depending on the features used to represent the document, a variety of Machine
Learning (ML) algorithms were tested from decision trees [Esposito et al., 2000] to
Markov models [Hu et al., 1999] and small neural networks [Cesarini et al., 2003].

On the other hand, document Information Extraction (IE) takes its roots in the
Natural Language Processing (NLP) research community and the Message Under-
standing Conference (MUC) competition [Chinchor, 1998]. State-of-the-art quickly
evolved from rule-based systems, either manually handcrafted [Appelt et al., 1993]
or automatically learned [Soderland, 1999], to statistical models. Those statistical
models such as Hidden Markov Models (HMMs) [Baum and Petrie, 1966; Seymore
and Rosenfeld, 1999], Maximum Entropy Markov Models (MEMMs) [McCallum
et al., 2000] and Conditional Random Fields (CRFs) [Lafferty et al., 2001] can cap-
ture complex patterns given enough data samples.

Despite the advantages of the more recent statistical ML-based models, compa-
nies kept relying on rule-based architectures [Dengel and Klein, 2002] until 2010s [Chiti-
cariu et al., 2013]. The recent development of Artificial Neural Networks (ANNs)
and deep learning completely superseded previous algorithms. After an introduction
on ML and ANN in section 2.1, we will focus on the recent growth of deep learning
in section 2.2
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Data 
Collection

Training

Deployment

Monitoring

Figure 2.1: A simplified machine learning application life cycle. Once data is col-
lected, cleaned and annotated, models can be trained. Multiple trainings can be
done to compare different models’ architectures and evaluate variance. Once sat-
isfied with the results, the chosen model is pushed to production, where it can be
monitored closely. With time, training data may become old and different from live
production data. This phenomenon is called data drift and necessitates new data
collection.

2.1 Introduction to Machine Learning

Mathematical notations used in this chapter and the following are available in
page xxiii.

Marvin Minsky once said Artificial Intelligence (AI) is “the science of making
machines do things that would require intelligence if done by men.” [Minsky, 1968].
Because it is defined relative to our current knowledge and abilities, what falls
under the definition of AI is subject to change with time. ML is a subset of AI
which develops systems able to learn patterns from raw data. Using provided data,
ML models can improve their predictions and perform tasks they were not explicitly
programmed to do. ML techniques allow us to tackle tasks too hard to solve with
classical programs. A ML model typically uses parameters (also known as weigths)
that can be tuned to produce the desired result. ML models usually follow a life
cycle as described in Figure 2.1. During the training, those parameters are modified
according to the learning algorithm using the training data. The model and its
parameters are then frozen before being used for inference in production.
ML has been successfully used in many domains with various applications in Computer
Vision (CV), NLP and time series forecasting. Document understanding was not
left out, capitalizing on both improvements in CV and NLP. ML applications can
be categorized into the following paradigms:

• Supervised learning refers to a learning process with labeled examples. The
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model is learning a parametrized function that produces the desired output
for each input in the dataset. In practice, such a function is rarely obtainable.
Instead, the trained model is the solution to an optimization problem that
involves every example in the dataset. Its objective is to minimize the error
in the sample data. Given enough labeled data, supervised learning can be
very effective at classification and regression tasks.

• Unsupervised learning can be applied to data without any labels involved. It
focuses on learning a latent structure of the data in order to better understand
it. Unsupervised learning can be used to perform clustering, dimensionality
reduction, anomaly detection or even synthetic data generation.

• Reinforcement learning enables training autonomous agents that interact with
an environment. Through a reward system, the agent learns which behavior is
desired and explores its environment through trial and error. Models trained
in a simulated environment can be transposed into our physical world. Rein-
forcement learning has also been proven effective in learning to play games at
a high level.

• Self-supervised learning sits in between supervised and unsupervised learning.
Like unsupervised methods, self-supervised algorithms work with unlabeled
data. They learn a representation of the data by creating labeled data using
dummy tasks and performing supervised learning on the newly labeled ex-
amples. Self-supervised methods allow leveraging large amounts of raw data
without the effort of labeling.

• A variety of other paradigms have so far seen less traction but are nonetheless
being actively researched. For example, semi-supervised learning uses labeled
and unlabeled examples to incrementally learn and label the unlabeled ex-
amples. Online learning disrupts the ML life cycle by continuously training
the model with new incoming data. Finally, federated learning studies how to
collaboratively learn between multiple actors without sharing all the data.

Supervised and self-supervised learning and their applications in document un-
derstanding will be further developed in this chapter.

2.1.1 Supervised Machine Learning

Supervised machine learning is a way to perform machine learning by teaching the
model its behavior. The desired task is represented by a mapping from an input
space X to an output space Y. Any input x ∈ X is uniquely associated to an
output y ∈ Y by the target function f∗ : X → Y. A tuple (x,y) ∈ Z forms a
training example. Those training examples are grouped together into a dataset
Sn = {(xi,yi)}1≤i≤n which contains n examples. Some task examples are available
for illustration in Figure 2.2.
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Dog

Cat

(a) (b)

Figure 2.2: On the left is represented a binary classification task. Each input xi is
an image, the model is a function that maps any image to its label. On the right
is a linear regression performed on a set of 10 sample data points. In this example,
each xi ∈ X ⊂ R is mapped to its target yi ∈ Y ⊂ R. This particular model has
2 parameters: the slope and the intercept of the line which are computed based on
the sample data.

The function f∗ is the target of the learning process, it exists but its expression
is not known and might not be easily expressible. Instead of looking for its exact
expression, supervised learning provides tools to approximate f∗. The model is in
charge of this approximation. A model can be seen as a function fθ : X → Y that
produces an output for any input given with free parameters θ ∈ W where W is the
space of all possible parameters for the model. A simple model that can perform
binary classification is described in Figure 2.3 as an example. A learning process
is necessary to adequately fit the parameters of the models to the desired task. In
other words, the objective of the learning process is to find θ∗ such that for any
(x,y) ∈ Z.

fθ∗(x) = f(x;θ∗) = ŷ ≈ y = f∗(x) (2.1)

Loss functions

To achieve this, a loss function ℓ : Y × Y → R+ measures the error made by the
approximation ŷ compared to y. Many such error functions have been proposed,
some better fitted for regression or classification, for discrete or continuous spaces.
Loss functions are chosen to respect some properties:

• ℓ should have 0 for its lower bound.

• ℓ should reach its lower bound iif. ŷ = y, which means ℓ(ŷ,y) = 0.

• Although often considered neat, it is not necessary for ℓ to be symmetric.

• And most importantly, ℓ must be differentiable with respect to its parameters.
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(a) (b)

Figure 2.3: A Perceptron [Rosenblatt, 1958] with 2 input neurons (Left) and a visual
representation of its decision boundary once trained on a small dataset (Right).
From current standards, it is comparable to a single neuron of an ANN. An input
point x is classified into the positive (resp. negative) class 1 (resp. 0) by looking
at its position relative to the hyperplane described by w and b: if x is over (resp.
under), it is classified positively (resp. negatively). The Heaviside function I : x 7→{
1 x ≥ 0

0 x < 0
is used to discretize the model’s output. As shown on the right, its

decision boundary can only be a straight line. This limitation led to the further
development of non-linear models.

Common loss functions include Mean Squared Error (MSE) which is often used
in regression problems. MSE ℓ(ŷ,y) = ||ŷ − y||22 penalizes greater error due to
its quadratic nature. Contrary to the MSE, the Mean Absolute Error (MAE) will
be less influenced by outliers. It uses L1 (ie. absolute value) norm instead of the
squared L2 norm which results in ℓ(ŷ,y) = ||ŷ−y||1. A model trained to minimize
the MSE will tend to predict the average of the true data distribution while the mean
absolute error will predict the median value [Bengio et al., 2017, p. 175]. Finally,
Cross-Entropy (CE) is widely used in classification problems. In a problem with

c classes, it is expressed ℓ(ŷ,y) = −
c∑

i=1
y[i] log

(
ŷ[i]
)
. Where ŷ[i] is the the output

logit of the model for the ith label. In particular, if y ∈ {0, 1}c, it coincides with
the Negative Log Likelihood (NLL).

On top of a loss ℓ, the overall error made by a model fθ can be computed by
aggregating all individual losses for every example in the dataset. The training loss
L : W → R+ can be defined multiple ways, the simplest being the mean of all losses
over the dataset:

L(θ) =
1

n

n∑
i=1

ℓ(f(xi;θ),yi) (2.2)
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Optimization

The training loss tracks the progression of the model towards the target function f∗.
The closer the training loss is to 0, the closer the model behaves to the target. The
supervised learning task can be summed up as solving the following optimization
problem:

θ∗ = argmin
θ∈W

L(θ) (2.3)

with fθ∗ being the resulting model which minimizes the loss. It is important to note
that fθ∗ and f∗ are not necessarily the same, fθ∗ is rather an approximation of f∗

over the training dataset.
For simple and constrained models, θ∗ can be exactly expressed. For example,

in the case of a linear regression model f(x;θ) = x · w, where w are the weights
of the model, the optimal parameters that minimize the MSE can be expressed in
term of the inputs and targets of the training data [Bengio et al., 2017, p. 105-106]
with a simple formula. More complex models have been proposed, from kernel-
based models (eg. Support Vector Machines (SVMs) [Vapnik et al., 1996]) to tree-
based architectures (eg. decision trees [Quinlan, 1986] and random forests [Breiman,
2001]). However, those types of optimization strategies constrain the type of model
used in order to make the optimization tractable. A more generic method that works
for any parametric function fθ is to perform gradient descent.

Gradient Descent

Gradient descent and all gradient-based optimizers are based upon the computation
of the gradient of the training loss with respect to each model’s parameter. Model’s
parameters are updated using equation (2.4) where η ∈ R+ is the learning rate: a
real number that is used as a scaling factor. ∇θL(θt−1) is the gradient with respect
to the parameter.

θt = θt−1 − η∇θL(θt−1) (2.4)

By updating the parameters with the aggregated gradient over the entire dataset,
the process is guaranteed to converge to a minimum. It must be a global minimum
if both the parameter space and the training loss are convex, otherwise, it could con-
verge to a local minimum. If the dataset contains lots of examples, the computation
of ∇θL(θt−1) is slowed down. Stochastic gradient descent updates the parameters
with every data example encountered. However, the process is no longer guaranteed
to converge and the resulting parameters are subject to randomly selected exam-
ples. To smooth out each update, it is common to perform mini-batched stochastic
gradient descent instead. In equation 2.5, ∇θL(θt−1) is replaced by aggregating

over a smaller sample of the dataset 1
m

m∑
i=1

∇θℓ(f(xπ(i);θt−1),yπ(i)) where π is some

random permutation function of [[1, n]] and m << n is the size of the minibatch
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(a) (b)

Figure 2.4: Confusion matrices of 2 models on the same binary classification task.
Both models have the same accuracy ( 99+1

99+1+1+9 = 92+8
92+8+8+2 = 100

110) but they greatly
differ on their error repartition. A quick inspection reveals that model (a) on the
left commits most of its errors on false negatives. Model (b) on the right is more
balanced at the cost of worse performances for the negative class. Computing the
F1-score of the positive class for both models reveals the difference in performance:
F1-scorea = 1

6 < F1-scoreb = 8
13 . This improvement is balanced by a relatively

smaller performance metric on the negative class. This toy example illustrates the
precision-recall tradeoff that takes place with unbalanced classification tasks.

being aggregated. It provides both stable convergence and speed of computation by
controlling the size m of the mini-batches.

θt = θt−1 − η
1

m

m∑
i=1

∇θℓ(f(xπ(i);θt−1),yπ(i)) (2.5)

Because complex models’ training losses are rarely convex, the surface of pa-
rameters over which the optimization is being done contains many pitfalls in which
simple gradient descent methods fall. Many upgrades of gradient descent exist,
some include an adaptive learning rate conditioned by previous steps [Hinton et al.,
2013; Duchi et al., 2011], others use momentum which builds up with past itera-
tions [Kingma and Ba, 2017]. In practice, those methods often converge quicker and
towards better local minima. Some of the improvements can be explained by the
ability of the iterative process to climb up some hills thanks to momentum instead
of directly converging to the closest local minimum [Sun et al., 2019]. Other meth-
ods using second order have been proposed, they can be advantageous because they
use a finer representation of the curvature of the surface. However, although each
step of parameter update is better, it is also more computationally expensive. The
most known algorithm is Newton’s method, but it isn’t used in practice for complex
models.
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Metrics

If the training loss is a good objective to obtain appropriate model parameters, it
is hardly a good measure of the model’s performance. For instance in classification
tasks, accuracy is way more interpretable than CE to judge the quality of a model.
Those functions used to evaluate the quality of a model are called metrics. The
optimization process does not directly try to optimize them, but they are used to
compare trained models and summarize their performance. They are usually chosen
for their interpretability, but some focus more on not being easily cheated on. In
classification tasks, the most natural metric is accuracy. It is simply the proportion
of correct predictions made by the model.

accuracy =
ncorrect

ntotal
(2.6)

For a given label, it is sometimes important to differentiate to types of errors
made by the model. The first type is a false positive, making a positive prediction
for a given example while it is not. The second type is a false negative which is
making a negative prediction for an example labeled positively. False positives (resp.
false negatives) can be measured with precision (resp. recall). For conciseness true
positive, false positive, false negative and true negative are abbreviated respectively
TP, FP, FN, TN in (2.7).

precision =
nTP

nTP + nFP
, recall =

nTP

nTP + nFN
(2.7)

Precision and recall are important to monitor as they separate first and second-
type errors. The F1-score [Murphy, 2022, p. 173] aggregates both precision and recall
into a single metric. Because it is computed with the harmonic mean between the
two instead of the arithmetic, it heavily penalizes unbalanced model performances.

F1-score =
2 · precision · recall
precision + recall

(2.8)

Figure 2.4 is an example of how a good accuracy does not always mean the
model is performant. For this reason, complex classification problems use the F1
score instead of accuracy whenever classes are unbalanced, which is often the case
in IE tasks. Other tools like the Receiver Operating Characteristic (ROC) curve
use a variable threshold to modify the behavior of the classifier. ROC curves can
be summarized to a single value by computing the Area Under the Curve (AUC),
which is a robust metric against class imbalance.

Generalization

A common pitfall when training a supervised algorithm against a dataset is the
overfitting of the model. An overfitted model performs great on the training data
but poorly generalizes its results to new data. Figure 2.5 illustrate this behaviour
on a regression task. Overfitting originates from the distribution of training samples
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Figure 2.5: Fitting 7th degree polynomials on a set of points. Training is achieved
by performing ridge regression which regularizes the model’s weights by penalizing
their magnitude. The amount of regularization is controlled by a parameter λ. No
regularization (Red dotted curve) results in an overfitted model that passes close
to every point in the training data. However, the learned function does not match
the actual structure of the data: it decreases sharply on the left side of the plot
while the data points towards a steep increase. Too much regularization (Orange
plain curve) constrains the model to a simple constant function. The best results
are achieved with an intermediate amount (Green dashed curve) which forces the
algorithm to learn a simple yet sufficient representation of the data.

Strain being different from the true (unknown) population distribution p∗. One can
define the theoretical loss of a model L(θ; p∗).

L(θ; p∗) = Ep∗(x,y) [ℓ(f(x;θ),y)] (2.9)

Then, the generalization of the model can be measured with the quantity
L(θ; p∗)− L(θ;Strain) which is sometimes called the generalization gap. Unfortu-
nately, the actual distribution of data is either unknown or untractable. The gen-
eralization gap can be approximated by randomly partitioning the dataset into a
train and a validation subset. Test data remain unseen from the model until train-
ing is complete, then the theoretical loss can be approached using the test data.
To minimize variance due to the choice made during the dataset split, it is possible
to split the dataset into k chunks of equal size. By training the model on k − 1

chunks and testing the remaining one for all possible chunks in a round-robin man-
ner, one can better tune its model for generalization. This popular process is called
cross-validation.
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L(θ;Stest) =
1

|Stest|
∑

(x,y)∈Stest

ℓ(f(x;θ),y) ≈ L(θ; p∗) (2.10)

Metrics can also be evaluated on the test set to picture the expected performance of
the model on previously unseen data once in production. This is the standard used
in most competitions and benchmarks when comparing different ML models. To
avoid any data leak which could result in unfair performance, the test set is often
kept secret by organizers and the number of submissions is limited.

Regularization

Overfitting can be controlled by introducing regularization to the model. Regular-
ization guides the learning process toward simpler representations. The idea of reg-
ularizing the model is connected to Occam’s razor which states that among multiple
hypotheses that explain the observed data, the simplest should always be preferred.
A common way to apply regularization is to penalize the magnitude of the weights.
Optimal parameters obtained after training are then given by Equation 2.11 where
||θ||22 is the squared L2 norm of the weights and λ ∈ R+ is a hyperparameter con-
trolling the amount of regularization imposed to the model. The effect of varying λ

is shown in Figure 2.5.

θ∗ = argminL(θ) + λ||θ||22 (2.11)

Weight decay is not the only way to perform regularization, another popular tech-
nique involves stopping the learning process earlier than scheduled, based on the
loss computed on the test set. Early stopping monitors test loss and stops the train-
ing process whenever it starts increasing. It works by mechanically limiting the
generalization gap described previously.

Linear Algorithms

The foundations of supervised machine learning were laid down as early as the
50s, at a time electronic computers just happened to be invented and connectionist
AI wasn’t the dominant approach. Often described as the first ML architecture,
the perceptron [Rosenblatt, 1958] can perform binary classification by splitting the
input space with a hyperplane (see Figure 2.3). Many subsequent models like the
logistic and ridge regressions are closely linked to the perceptron. Because of their
linear nature, they aren’t able to learn complex patterns between input and target.
This very limitation has been the source of fierce debate between symbolic and
connectionist AI researchers [Minsky and Papert, 1969].

Albeit linear models can only learn linear functions of the input, it is possible
to circumvent this limitation by augmenting the input space X with a function
ϕ : X → X ′. A linear model f operating on the augmented input X ′ is able to learn
non-linear patterns between the original input and the target iif. ϕ is non-linear as
described in Equation 2.12. This process is called feature engineering (or feature



2.1. Introduction to Machine Learning 25

preprocessing) and has many applications such as performing basic ridge regression
to fit polynomials like in Figure 2.5. In this case, ϕ(x) = [x, x2, . . . , xn] where n is
the desired degree of polynomials.

f(x′;w, b) = x′ ·w + b

= ϕ(x) ·w + b
(2.12)

Feature engineering is a powerful tool that enables tackling more complex tasks
with simple models. However, it comes at the price of a larger input space size and
increased computational runtime. An early approach was to constrain models to
the following form where K is a kernel function and ai are scalar parameters.

f(x) =
n∑

i=1

aiK(x,xi) (2.13)

If K is positive definite, Mercer’s theorem provides an alternative representation of
K, where ϕ : X → X ′ is some function which can be interpreted as feature engineer-
ing performed on the input. Positive-definite kernel functions are a generalization
of a scalar product over a possibly non-linear space.

K(x,xi) = ϕ(x) · ϕ(xi) (2.14)

For some kernel functions, the direct expression of K(x,xi) is much simpler
than its alternative using ϕ. It means that one can train a model described in
Equation 2.13 with complex feature engineering ϕ without paying the computational
cost associated. This method is called the kernel trick. With the appropriate kernel
function, training can even be performed on a feature space X ′ of infinite dimension.
The RBF kernel fits such a description and is widely used in SVM [Vapnik et al.,
1996] classifiers. Models such as SVM provide a simple but capable representation
of the data which is very efficient at inference time. But for reasons related to its
training algorithm (convex optimization), it gets expensive to fit such a model when
the size of the dataset increases. Moreover, the architecture of the model is fixed and
cannot be modified except for the kernel function. Around the same period, another
type of model, often called Multi Layer Perceptrons (MLPs) or more generally ANNs
were developed.

2.1.2 Artificial Neural Networks

As shown previously, to increase the flexibility of a model, it is possible to per-
form feature extraction on the input. This allowed linear models to learn nonlinear
relations between input and output. The expression of can be expanded as in Equa-
tion 2.12 where ϕ(x) is the new input with feature extraction applied. This structure
is however limited by the fact ϕ is fixed before training and cannot be learned by
the model itself. One approach to solve this is to provide learnable parameters θϕ
into ϕ to get
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f(x;θ) = ϕ(x;θϕ) ·w + b (2.15)

where θ = (w, b,θϕ) describes all parameters of f . And nothing prevents us from
applying the same trick multiple times recursively by performing multiple feature
extraction steps ϕ1, . . . , ϕn each respectively parametrized by θ1, . . . ,θn to obtain
an even more complex model where feature engineering functions are composed into
each other. Without loss of generality, the outermost linear operation involving w

and b can also be replaced with a function ϕ.

f(x;θ) = ϕn−1(. . . (ϕ1(x;θ1); . . .);θn−1) ·w + b

= ϕn(ϕn−1(. . . (ϕ1(x;θ1); . . .);θn−1);θn)

= (ϕn ◦ · · · ◦ ϕ1)(x;θ1, . . . ,θn)

(2.16)

If one restrict each ϕi to be a perceptron (see Figure 2.3), Equation 2.16 describes
what is called a MLP. Each layer except the last composing the model is commonly
referred to as a hidden layer, the last one being the output layer. The width Dl of
the lth layer ϕl : RDl−1 → RDl refers to the dimension of its output space, which is
also the size of the input space of the next layer. Although models with a single
hidden layer sufficiently wide can approximate any desired function [Hornik et al.,
1989], depth has proven theoretically and experimentally [Montufar et al., 2014;
Raghu et al., 2017] to produce better models. The key idea is that depth allows
for the composition of relevant features learned by the model in the previous layers.
The depth of ANNs used in the last decade is at the origin of the name of the field
of study: deep learning.

Backpropagation

To train such models, we rely on gradient descent algorithms 2.4 to update each
weight. However, it assumes the gradient of the loss with respect to each parameter
∇θiL = ∂L

∂θi
can be computed. On simple, single chain MLP, it can be obtained

using the chain rule for partial derivatives. For a n layers model f , we name xl

the intermediate input of layer l such that xl+1 = ϕl(xl;θl) is the activation of the
layer. To simplify notations, let the loss be the output of the model L = f(x;θ).

∇θnL =
∂L

∂θn

∇θn−1L =
∂L

∂xn

∂xn

∂θn−1
...

∇θiL =
∂L

∂xn

∂xn

∂xn−1
· · · ∂xi+2

∂xi+1

∂xi+1

∂θi

(2.17)

where ∂xl+1

∂xl
= ∂ϕl(xl)

∂xl
= Jϕl

(xl) is the Jacobian of the lth layer. The computation
for all weights can be performed efficiently by storing the activation of each layer
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during the inference and using them to compute relevant partial derivatives in a
backward manner. This specific procedure is called the backpropagation [Bryson
et al., 1979; Rumelhart et al., 1988]. Although we demonstrated how it works for
a simple MLP, it can be generalized to more complex architectures as long as the
graph of computation can be described as a directed acyclic graph.

Activation Functions

If every feature extraction function ϕi is a linear function, the whole model collapses
to a single function with very limited benefits. Using perceptrons as described
in Figure 2.3 avoid this caveat by using Heaviside function which is non-linear.
The architecture can be generalized by introducing a nonlinear activation function
σ : R → R such that

ϕ(x;θ) = σ(x ·w + b) (2.18)

For the resulting model to be trainable through gradient descent, it is important
for the activation function to be differentiable almost everywhere. Early archi-
tectures used the sigmoid function σ(x) = 1

1+e−x which is a softened version of
Heaviside. However, with models getting deeper and deeper, the sigmoid caused
vanishing gradients which prevent future weight updates during training. The root
cause of vanishing gradients is the behavior of the sigmoid for inputs of large positive
and negative values. The sigmoid saturates at +1 and 0 while the gradient with
respect to the input is 0. When applying backpropagation 2.17, the update signal is
nullified because Jϕl

(xl) = 0. When designing deep models, it is important for the
term

∏
l

Jϕl
(xl) to stay close to 1. Otherwise, the gradient could vanish (resulting in

the weights not updating) or explode (resulting in the weights updating erratically,
without converging).

To solve this issue, many other activation functions have been proposed. The
most common modern activation is the Rectified Linear Unit (ReLU) [Glorot et al.,
2010] defined as ReLU(x) = max(x, 0). Although negative inputs are muted, it
does not suffer from gradient vanishing for large positive inputs. It has proven to
be sufficient to train deeper models but many other activations have been proposed
that improve its behavior for negative inputs [Maas et al., 2013; Ramachandran
et al., 2017; Hendrycks and Gimpel, 2020]. But ReLU is still very popular to this
date because of its simplicity and efficiency and is widely used for hidden layers.

When performing classification tasks, instead of simply feeding the output logits
of the model into the NLL loss, we prefer to normalize the logits such that they can
be interpreted as a probability or a confidence score. We use the softmax [Bridle,
1990] function which helps the model focus on the label with maximum confidence
while still being differentiable. It also has the nice property to be computable in a
numerically stable manner when combined with a NLL without risking overflowing
the exponentials.
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Figure 2.6: Architecure of a MLP with 2 hidden layers and a binary classification
head. Bold links between nodes denote a trainable parameter of the model with a
total of 41 parameters. Typical implementations of MLPs use matrices of parameters
such that a layer is a single matrix multiplication followed by the activation function
σi.

softmax(x)[i] =
ex

[i]

c∑
j=1

ex
[j]

(2.19)

Packing it all together results in a complete MLP architecture as shown in Figure 2.6.

From Neural Networks to Deep Learning

Although most of the tools were discovered more than 20 years ago, ANNs only
became competitive against other models recently in the 2010s. The first successful
applications of deep learning methods were developed in the late 80s. Convolutional
Neural Networks (CNNs) [Lecun et al., 1989] were applied to handwritten digit
recognition which later resulted in the MNIST [Lecun et al., 1998] dataset, the “hello
world” of supervised learning. Recurrent Neural Networks (RNNs) [Bengio et al.,
1994], another architecture of ANN was later proposed to manipulate sequences
of data. They were successfully used in handwritten [Graves and Schmidhuber,
2008] and speech recognition [Graves et al., 2013]. Tackling more difficult tasks
requires bigger models with complex architectures, more data to train and thus
more computation power.

Multiple factors made the revolution of deep learning possible. First, the early
2000s saw the rise of the capabilities of computers and the democratization of
Graphics Processing Units (GPUs), speeding up the training by multiple orders
of magnitude. Because working with GPUs is non-trivial, it led to the development
of machine learning libraries and frameworks built for performance [Bergstra et al.,
2011; Abadi et al., 2015; Paszke et al., 2019]. Secondly, large datasets with com-
petitions attached were released. The most notable is ImageNet [Deng et al., 2009]



2.2. Deep Learning 29

which contains more than 3 million images and more than 5000 classes. Since then,
many fields [Redmon et al., 2016; Silver et al., 2017; Ramesh et al., 2021; Jumper
et al., 2021] have been impacted by the deep learning revolution. In the follow-
ing section, we will further develop deep learning architectures and applications in
Business Document (BD) understanding.

2.2 Deep Learning

Throughout the previous section, we’ve introduced all necessary building blocks to
train ANNs. A MLP can approximate any mapping from inputs to outputs given
enough examples and parameters. However, in practice, growing the size of a model
is rarely sufficient to solve a complex task due to overfitting and gradients vanishing.
Instead, multiple architectures have been invented to accommodate specific prop-
erties of the processed data. Those architectures often take the shape of a specific
layer acting as a building block of ANNs. In modern deep learning, the layers of
MLPs are referred to as dense or linear layers instead. We will further review layers
and techniques related to BD understanding and their applications.

2.2.1 Convolutional Neural Networks

Images are commonly manipulated by computers as they can be described by their
pixels. They can be represented as dense matrix x ∈ RW×H where W is the width
and H is the height of the image in pixels. Because this definition only works
for black and white images, a third dimension C is usually appended for the color
channels, it only contains 3 values for red, green and blue components (RGB). By
this definition, a color image is a 3-dimensional object x ∈ RW×H×C . Classical
MLPs are not well suited to manipulate such objects for several reasons. First, not
all images have the same dimensions, which is not compatible with how the layers
of a MLP work. Images would need to be resized to the same shape or padded to
the largest image in order to use the same model for every example. Second, and
this is the main issue, is the huge amount of parameters needed to map the input
to the first hidden representation of the model. Given a hidden layer of size D, it
would require (W ×H × C) ×D parameters. It represents 8D million parameters
for an image with a 4K UHD definition.

Convolution

CNNs [Lecun et al., 1989] have been proposed to overcome those issues by replac-
ing the matrix multiplication with a 2D convolution operation. As explained in
Figure 2.7, the idea behind convolution is to divide the input image into possibly
overlapping patches and perform a dot product with a fixed patch called a filter. A
CNN uses convolutions with multiple filters which are learned the same way MLPs’
weight matrices are learned: through gradient descent. It solves most problems of
MLPs when manipulating images as convolutions can be performed on any input
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Figure 2.7: Illustration of a convolution operation between a 3×3 filter (Left) and a
5× 8 image (Bottom right). Convolution can be represented as overlaying the filter
over the image and computing the dot product between the filter and the part of the
image underneath. By repeating this operation for every possible position where the
filter fits by following the black dotted line, an output image (Top right) is computed
where each output pixel is the result of one dot product. In this very example, the
filter detects vertical edges in the input image by producing large outputs around
those edges. Figure freely inspired of Géron [2017, Figures 14.3-14.4].

image size. In practice the change in size of the output can be managed through a
combination of tricks including pooling and padding we will detail later. Moreover,
the number of trainable parameters of a CNN does not depend on the input size like
a MLP does but on the number F of filters and their width Wf << W and height
HF << H for a total of F ×WF ×HF parameters. It results in a drastically smaller
amount of parameters. Finally, because filters are constant during the convolution,
CNNs are translationally invariant by design.
Convolution can also be applied to 1D vectors. Given a vector x ∈ RN and a filter
F ∈ RL, their convolution is defined as

(F ⃝⋆ x)[i] =

L∑
u=1

F [u]x[i+u−1] (2.20)

which can be useful when working with 1D sequences. This definition is slightly
different from the canonical mathematical definition where input is flipped along
the axis. It would rather be referred to as cross-correlation, but the difference does
not matter to our use case because the filter F is learned.

Because the convolution is a linear operator, it can also be expressed as a matrix-
vector multiplication. Equation 2.21 implies a convolutional layer is equivalent to a
dense layer with sparse weights and redundancy. In this toy example, the convolu-
tion uses 2 parameters instead of 16 for the dense network.
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y = F ⃝⋆ x
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(2.21)

Convolutions can generalize to any number of dimensions. In 2D, Equation 2.20
becomes

(F ⃝⋆ x)[i,j] =

HF∑
u=1

WF∑
v=1

F [u,v]x[i+u−1,j+v−1] (2.22)

As said before, images usually include a 3rd dimension for the color channels. A
convolutional layer takes an input image x of E channels and produces an output
image of different sizes with F channels. It uses E×F filters Fi,j of identical height
HF and width WF alongside F multiple biases bj . For the same reasons brought
earlier about dense layers needing an activation function, a convolutional layer also
includes an activation function σ. The jth channel of the output image is given by

yj = σ(bj +
E∑
i=1

Fi,j ⃝⋆ xi) (2.23)

The output of the convolutional layer is also called a feature map because the
convolution acts as a feature detection tool. The bigger the filter size, the bigger
the objects it can detect in a single convolution. It is common practice to use rather
small filter sizes up to a dozen wide and tall and stack multiple convolutional layers.
Subsequent layers can learn to detect large objects by combining small features in
the intermediate feature maps.

CNN architectures combine convolutional layers with other layers to further re-
duce parameter number and tendency to overfitting. Pooling layers reduce the size
of a feature map without introducing any trainable parameters by selecting some
values and throwing others. Max pooling uses a sliding window of size HF × WF

which outputs the maximum value within that window. Feature map size can be fur-
ther reduced by introducing vertical or horizontal stride which effectively skips some
positions of the sliding window. Convolutional and max-pooling layers are the main
building blocks of the LeNet [Lecun et al., 1998] which performs handwritten digit
recognition with unprecedented accuracy for the time. VGG architecture [Harley
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Figure 2.8: Different normalizations being performed on a tensor. Values in shades
of orange are standardized to the same mean and variance which is computed by
aggregating those same values. H and W stand for the height and width of the
feature map, while C is the channel dimension and N is the batch size. Figure
freely inspired of Wu and He [2018].

et al., 2015] later revolutionized ImageNet [Deng et al., 2009] by drastically improv-
ing performance over all other image classification methods. CNNs models were
also applied to document image classification on RVL-CDIP [Harley et al., 2015],
relation extraction [Davis et al., 2019] and table segmentation [Zhang et al., 2020].

Normalization and Regularization

Deeper models suffer from vanishing and exploding gradients which makes the train-
ing chaotic and unpredictable. Researchers have come up with multiple solutions to
help smooth the propagated gradient. Introducing normalization layers at several
steps in the model helps to standardize the mean and variance of the intermediate
hidden representations. Batch normalization [Ioffe and Szegedy, 2015] is popular
for CNNs, it ensures inputs across a sampled batch follow a standard distribution.
Most normalization layers [Ba et al., 2016; Wu and He, 2018; Zhang and Sennrich,
2019] use the relations described in Equation 2.24 to standardize the input x where
µ and σ2 are respectively the mean and the squared variance of the inputs over the
normalized dimension. Small weights w and biases b are introduced after normal-
ization and are learned with other parameters. It can be inappropriate when inputs
are processed in small batches or over multiple devices, that’s why normalization
can be performed over other dimensions. Figure 2.8 shows several possible choices
of dimension to normalize over.

y = w ⊙ x− µ

σ
+ b (2.24)

In addition to normalization, dropout layers [Srivastava et al., 2014] can be used
to further reduce the risk of overfitting. By randomly dropping neurons at train
time, dropout forces the model to be redundant and resilient to noise. Figure 2.9
shows how it might affect the output of a model by turning off some neurons as if
they did not exist. However, when testing or during inference, the dropout layer
becomes inactive and lets all neurons be active. Dropout has proven to be a very
effective tool to precisely control overfitting for large models.
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Figure 2.9: Same architecture as Figure 2.6 but with dropout [Srivastava et al.,
2014] applied to each hidden layer. Neurons crossed out have been dropped out and
are not used by the model during this training step. With a probability P = 1

3 of
dropping each neuron, the architecture of the model is completely different. And
because the dropped-out neurons change at each training step, the model must be
resilient to this perturbation.

To solve vanishing gradients occurring in deeper models, He et al. [2016] proposed
a simple trick to efficiently guide the gradient through many layers. Their solution is
to introduce shortcuts for the gradient around a block composed of possibly multiple
layers. Let fθ : X×W → X be the parametrized block mapping from an intermediate
hidden space to itself. A residual layer gθ around fθ is defined as

g(x;θ) = f(x;θ) + x (2.25)

ResNet [He et al., 2016] architecture was able to train models with more than 100
layers deep and is still a solid baseline for most image comprehension tasks. The
same strategy was used in U-Net models [Ronneberger et al., 2015] for image seg-
mentation tasks. It is able to produce pixel-level classification or regression. It later
led to novel approaches for document IE proposed by Katti et al. [2018] and Yang
et al. [2017] we discuss more thoroughly in subsubsection 2.2.3.

Data Efficiency

Because building a large dataset to solve a task is costly, many strategies exist
to increase the data efficiency of trained models. One approach is to artificially
increase the dataset size by applying random transformations to the input during
the training. By carefully choosing transformations that do not change the target
associated with the input, data augmentation teaches data invariants to the model.
Common transformations for image-like inputs rely on affine transformations of the
image: rotations, zooms, flips, distortion, etc. A variety of advanced transformations
have proven to significantly improve performances on most tasks and datasets [Yang
et al., 2022]. Most complex transformations involve generative models [Goodfellow
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Figure 2.10: The input of the network x is a sequence (xt)1≤t≤N . The network can
produce a sequence of outputs (ŷt)1≤t≤N aligned with the input. Some output of
the well ϕ at step t is fed to the next cell at step t+ 1. The compact version (Left)
showcases the recurrence in the model whereas the unrolled version (Right) better
represents the sequence length dimension and the multiple copies of the recurrent
cell. Figure freely inspired of Olah [2015].

et al., 2014; Choi et al., 2020] or mixing together multiple examples and interpolating
in between [Zhang et al., 2018].

Another method to improve data-efficiency of a model is to first train on a large,
somewhat related dataset. And then transfer the learned knowledge to a smaller
downstream dataset. Transfer learning became relevant for image tasks thanks to
ImageNet [Deng et al., 2009] which still provides a large high-quality dataset for
general-purpose images [Kolesnikov et al., 2020]. Generally, the closer upstream
and downstream tasks are the greater the improvement on the downstream dataset.
For Document Understanding (DU) related tasks, IIT-CDIP Lewis et al. [2006] and
RVL-CDIP [Harley et al., 2015] are good candidates for pre-training a model. The
idea to re-use large datasets as a pre-training step before fine-tuning on the desired
task enabled larger and more efficient models in NLP and DU.

2.2.2 Recurrent Neural Networks

Sequential data can be represented as an array of inputs x = (x1, . . . ,xt, . . . ,xN ).
Although 1D CNNs can be used to manipulate sequential data, they struggle to
propagate information across a long range. This is mainly due to the locality of
computation imposed by the size of the sliding window. Instead of CNNs, the stan-
dard approach was for a long time to use RNNs. RNNs use a recurrent architecture
composed of cells where the output of cell t is directly linked to the input of cell
t + 1. RNNs can be unrolled as in Figure 2.10 to better envision their hability to
manipulate sequential data.

Recurrent Cells

The main computation unit in a RNN is a recurrent cell ϕ : X × Y × W → Y.
Let ŷ = (ŷ1, . . . , ŷt, . . . , ŷN ) be the outputs corresponding to x, then the following
relation holds
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ŷt = ϕ(xt, ŷt−1;θ) (2.26)

where θ ∈ W are learned parameters of the recurrent cell. Because the cell is identi-
cal for each time step t, a RNN can manipulate long sequences without needing large
amounts of parameters. The recurrent connection between cells allows the model
to propagate information from the first input towards future time steps without
limitation in theory. Simple recurrent cells take the shape of a single dense layer
with an activation. Equation 2.26 becomes

ŷt = σ([xt, ŷt−1] ·w + b) (2.27)

where [xt, ŷt−1] is the concatenation of xt and ŷt−1 along their feature dimension.
Historically RNNs used the sigmoid or the hyperbolic tangent as their activation
function but were quickly replaced by more efficient cells.

To update the cell’s parameter, backpropagation must be performed through the
sequence dimension, often referred to as Backpropagtion Through Time [Werbos,
1990]. The effective depth of the model grows with the length of the sequence,
which makes RNNs extremely sensitive to vanishing and exploding gradients. If the
exploding gradient can be tempered by clipping the propagated gradient at each
time step, vanishing gradients remain an issue that slowly mutes the learning of
interactions between time steps. Hochreiter and Schmidhuber [1997] proposed an
alternative recurrent cell called Long Short Term Memory (LSTM). It introduces
several intermediate results called gates that carry information between time steps.
First, the input gate it controls which part of the input gets read into the memory
mt. The forget gate ft determines which part of the memory from the previous
time step should be kept. The output gate ft filters the current memory to create
the output yt. A LSTM cell is driven by the following equations

it = σ(xt ·wxi + yt−1 ·wyi + bi) (2.28)

ft = σ(xt ·wxf + yt−1 ·wyf + bf ) (2.29)

ot = σ(xt ·wxo + yt−1 ·wyo + bo) (2.30)

m̃t = tanh(xt ·wxm + yt−1 ·wym + bm) (2.31)

where m̃t is an intermediate canditate for the memory at step t. The outputs of
the cell are

mt = ft ⊙mt−1 + it ⊙ m̃t (2.32)

ŷt = ot ⊙mt (2.33)

If ft = 1 and it = 0, the network is able to propagate information over a long
range thanks to its memory. LSTMs can be very sensitive to initial parameters,
as some initializations block the signal coming from previous time steps mt−1. For
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Figure 2.11: A bidirectional RNN is composed of two independant RNNs: the
forward and backward networks. Like in Figure 2.10, the forward network ϕ→

treats the input sequence from the beginning to the end. In contrast, the backward
network ϕ← processes the sequence in reverse order. By combining both forward
and backward representations, a bidirectional RNN is able to capture both past and
future context into its prediction.

those reasons, it is recommanded [Jozefowicz et al., 2015] to initialize the bias of the
forget gate bf to a large value such that gradient can be effectively backpropagated
through time.
Since LSTM [Hochreiter and Schmidhuber, 1997] architecture was first released,
many modifications have been proposed. The most notable is probably the Gated
Recurrent Unit (GRU) cell [Cho et al., 2014] which is an equally performant sim-
plification of the LSTM cell. Gers and Schmidhuber [2000] showed that peephole
connections between the memory and the gates improve the abilities of the network
on some specific tasks.

RNNs are able to make predictions at step t based on all previous time steps.
This behavior might be relevant for some applications where causality is involved
but is a limitation in the case of textual information. To leverage both past and
future information, Schuster and Paliwal [1997] proposed to use two RNNs. The
first one goes in the forward direction while the second one starts from the end and
goes backward as pictured in Figure 2.11. That specific combination of two networks
is called a bidirectional RNN. When applied to a LSTM cell, the resulting layer is
commonly referred to as a Bidirectional Long Short Term Memory (BiLSTM).

Text Representation

On the one hand, ANNs are great at scrambling numbers and learning patterns and
correlations in samples. On the other hand, text might seem incompatible with a
numeric representation at first glance. To feed textual information to any model,
one must first use an appropriate representation. To do so, text strings are split
into atomic units called tokens and each token is then converted into its vector
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representation also called its embedding. The sequence of tokens can then be fed to
a RNN which can infer the meaning of the whole sequence and perform computation
on it.

The most natural way to tokenize a sequence is to split by words, each time
a space is encountered. This is great for natural text with a limited number of
different words. However, it fails at giving a representation to unknown words such
as proper nouns, brands or in the context of BDs: item IDs, phone numbers and
prices. Indeed, when using word-level tokenization, the model can only represent
words included in the vocabulary, which is built based on the training data. Words
that are Out Of Vocabulary (OOV) are then assigned to a unique representation for
all unknown words, often referred to as [UNK].

An alternative tokenization strategy is to use characters instead of words. By
carefully choosing the vocabulary, it is impossible to meet OOV tokens. Such vocab-
ulary could be based on the ASCII table for Latin-only text, or the whole Unicode
which includes all human characters and symbols. On the positive side, character
tokenization can represent any sequence with a bounded vocabulary. It is also more
resilient to Optical Character Recognition (OCR) errors than word tokenization
because a single character error does not completely change the overall word repre-
sentation. However, character tokenization produces longer sequences and must use
contextual information to derive any semantics in the sentence.

An early approach to avoid OOV while still having semantic tokens was to use
n-grams [Robertson and Willett, 1998]: sequences of consecutive n characters. It
effectively allows to control finely the vocabulary size but fails at giving an accu-
rate representation of rare sequences. More recently, Sennrich et al. [2016] pro-
posed an intermediate tokenization strategy between words and characters with
variable-length tokens. It relies on a compression algorithm called Byte Pair En-
coding (BPE) [Gage, 1994]. It constructs a vocabulary starting with individual
characters by iteratively merging the most frequent pair of tokens into a new one.
By applying the same merging operation until the vocabulary reaches the desired
size, common sequences of characters are directly in the vocabulary as a single to-
ken. If the noun trust might probably be a token, the adjective trustful might
not because of its rarer use. Instead, it would be tokenized into the radical trust
and the suffix #ful which are both common. However, because BPE tokenization
is driven by statistics, tokens might not reflect any actual morpheme with actual
semantics. Other tokenization schemes in between characters and words exist, such
as WordPiece [Wu et al., 2016], Unigram [Kudo, 2018] and SentencePiece [Kudo and
Richardson, 2018] with little variations over BPE. Figure 2.12 summarizes word,
character and sub-word level embeddings.

Once the vocabulary is fixed, each token is given a unique index ti ∈ [[1, V ]] where
V is the size of the vocabulary. A sentence is then represented as a sequence of N
indices {t1, . . . , tN}. One possibility is to use one-hot encoding token representation:
each token ti is associated with a vector of size V filled with zeros except for a 1 at
position ti. However, this is highly inefficient for large vocabularies, instead, it is
preferred to use embeddings of dimension D << V . An embedding layer then takes
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roses are red
violets are blue
embeddings are cool

Figure 2.12: Three short sentences (Left) being tokenized and embedded. The first
sentence (Top) is tokenized into words while the second (Middle) is tokenized into
characters and the third (Bottom) uses sub-word tokenization techniques. Colored
squares represent embeddings of each corresponding token. At the cost of a slightly
longer tokenized sequence, sub-word tokenization can tokenize unknown words like
embeddings into known pieces (embed and #dings). The hash symbol # at the
beginning of a token denotes the continuation of a word.

the shape of a function ϕemb : R → RD and can be implemented as a lookup table
into a matrix.

In a perfect world, embeddings capture the semantics of tokens and attribute
similar vector representations to similar tokens. This would allow the downstream
layer to reason about semantic relationships and generalize to unseen tokens. This
especially applies to word and subword tokens which bear a meaning by them-
selves. Various attempts have been made to compute useful token embeddings, by
dimensionality reduction [Deerwester et al., 1990] of an occurrence matrix, or as a
byproduct of a Language Modeling (LM) training [Bengio et al., 2003]. Collobert
and Weston [2008] first proposed to train embeddings as a separate task: word
embeddings were computed once and used for multiple downstream tasks.

Mikolov et al. [2013b] have drawn attention of the whole NLP community by
releasing Word2Vec [Mikolov et al., 2013b,a], a successful to train word embeddings
from unlabeled text. It assumes the semantics of a word is completely defined by
the context in which it occurs, and thus that two words that could be replaced one
by the other in every possible context have the same meaning. They proposed two
strategies called Continuous Bag Of Words (CBOW) and Skip-gram, both involving
a simple MLP. Given some context words in a sliding window around a target
token ti, CBOW trains the model to predict which token is ti. Skip-gram on the
contrary predicts which tokens are in the context window around ti given which
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token is ti. Both strategies are treated as classification tasks with as many classes
as tokens in the vocabulary. The desired embeddings are the weights of the first
dense layer of the model which act as a projection of the input space of size V onto
the embedding space of size D. By construction, Word2Vec [Mikolov et al., 2013a]
provides similar embeddings to tokens occurring in the same context. Pennington
et al. [2014] later proposed GloVe embeddings which combine techniques from global
occurrence matrix factorization and local context windows such as Word2Vec.

Although word embeddings like Word2Vec and GloVe capture the semantics of
a word by its context, a word can only have a single embedding associated. For
example the word “play” can be used in the context of a sports game or a theater
stage, its meaning is contextual. Hence, because static embeddings always provide
the same representation, they cannot appropriately adapt to the surrounding con-
text. To remedy this issue, Peters et al. [2018] learn a contextualized representation
of tokens. They introduce ELMo, a multilayer BiLSTM network pre-trained on a
large textual corpus to predict words based on the context. The pre-trained model
is then re-used as is, in the same fashion as transfer learning was performed on deep
CNNs. Contextual embeddings [Peters et al., 2018; McCann et al., 2017] showed
how self-supervised training could value a large corpus of unlabeled data. They also
greatly improved performances on downstream tasks and enabled tackling problems
with less labeled data.

Encoders

RNNs can process textual input as a sequence of tokens (ti)1≤i≤N and produce a
prediction for each token (ŷi)1≤i≤N . In order to use a similar network for sequence
classification, it is possible to use the last output of the model ŷN which has re-
ceived information from the whole sequence thanks to recurrent connections. In
bidirectional RNNs, the same trick could be performed by aggregating the last out-
put of both forward and backward networks. That architecture where the number
of outputs is either 1 or N is commonly referred to as an encoder. They allow to
tackle text classification, Named Entity Recognition (NER), part of speech tagging
but fail at text generation, summarization and translation.
For tasks involving token classification, multiple improvements over a barebone
BiLSTM have been proposed. Using CRF [McCallum, 2012] on top of BiLSTMs,
Lample et al. [2016] improve the model’s performance as the predictions are jointly
determined by the CRF layer. Sometimes, an occurrence of a label spans multiple
tokens. The model must correctly classify each token, which is noticeably harder at
the boundaries of the occurrence. To improve the quality of predictions for those
occurrences, several tagging schemes have been proposed. BIO [Ramshaw and Mar-
cus, 1999; Ratinov and Roth, 2009] is the simplest which stands for Begin, Inside,
Outside. According to this scheme, each label is derived into B-label and I-label.
The first token of an occurrence is labeled B-label while all following tokens of the
same occurrence are labeled I-label. This scheme also helps when dealing with
multiple occurrences touching each other. O is kept for all other tokens without
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any specific label associated. It can be extended with E-label and S-label which
respectively stand for the end of an occurrence and a single token occurrence. The
quality of this kind of tagging scheme resides in its expressivity and the ability to
parse them linearly in a single pass.

Palm et al. [2017] and Sage et al. [2019] proposed to use BiLSTM encoders to
perform IE in invoices, targetting both header and table fields. They represent a BD
as a sequence of words detected by an OCR and associate each relevant information
to a unique label. To cope with the limitation of RNNs to represent words laid on a
page, they introduce 2D positional embeddings, providing information to the model
where each word is located. The word order imposed by the RNN architecture is
usually chosen to be the closest possible to human read order. To improve perfor-
mance, they also propose specific feature extraction in addition to word embedding
to better detect dates, numbers and other static formats with regular expressions.
Sequence encoders surpassed previous models thanks to their ability to model the
whole sequence at once which enables the propagation of information over a long
range.

Decoders

Whenever the output necessitates a variable size or is not necessarily aligned with
the input, Sutskever et al. [2014] proposed to use decoder networks. Decoders are
autoregressive networks that predict the next token ẑm of a sequence based on
the previously predicted tokens (ẑj)1≤j<m. During inference, decoders iteratively
generate the following token which is then appended to the input sequence. By
repeating multiple times this procedure until an end-of-sequence token [EOS] is
generated, decoders are able to generate variable-length text. In association with
an encoder, they form an encoder-decoder architecture, as illustrated in Figure 2.13.

Originally used for sentence translation [Cho et al., 2014], encoder-decoder net-
works displayed their ability to generate long sequences. This architecture allows
the model NER and IE tasks as a Question Answering (QA) [Gardner et al., 2019]
instead of token classification. It alleviates the data labeling for two reasons: key
information does not need to be labeled at a token level and it does not need to
be exactly represented in the text. To put it another way, instead of searching for
where exactly the date “january 1st, 2023” is located in the document, one can
simply put the label “2023-01-01” in ISO format. The model can learn how to find
the date and how to parse it at the same time in an end-to-end way. Sage et al.
[2020] and Aggarwal et al. [2020] demonstrated the applications of encoder-decoders
in conjunction with an attention layer for IE in documents.

Attention

Attention was first proposed by Bahdanau et al. [2016] as a solution to improve
communication between encoder and decoder networks. An attention layer between
an encoder and its decoder provides the decoder direct short-circuiting access to the
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Figure 2.13: An encoder-decoder architecture with RNNs. The encoder (Left, in
green) processes a context sequence (ti)1≤i≤N and produces its representation. The
decoder (Right, in red) receives the representation of the context sequence in its
recurrent input and starts its prediction with a special begin-of-sequence [BOS]
token. At each inference step j, the previous decoder’s output ẑj−1 is appended
to its input for the next inference. Multiple strategies exist to select which output
token is selected, given the model’s probabilities distribution Graves [2012].

output sequence of the encoder (ŷi)1≤i≤N . They modify the decoder recurrent cell
ϕD by providing it an additional input aj as follows

ẑj+1, mj+1 = ϕD(ẑj ,mj ,aj) (2.34)

where mj is the recurrent memory from the previous cell. aj is the attention paid
by the decoder to the encoder at step j, which is a weighted mean of the encoder
outputs:

aj =
N∑
i=1

αijŷi (2.35)

αij =
exp(sim(ŷi, ẑj))∑N

k=1 exp(sim(ŷk, ẑj))
(2.36)

where sim is a similarity function between two vectors of dimension D. Attention
is further explained in Figure 2.14. First introduced for machine translation, atten-
tion greatly improved performance on long sequences over previous encoder-decoder
models. It can be explained intuitively because the encoder is not required anymore
to encode the whole context sequence into a fixed-size recurrent memory given to the
decoder. Only a light contextual description of each token is needed as the decoder
can fetch through attention precise representations of the context sequence. Bah-
danau et al. [2016] also showed that visual inspection of coefficients (αij)ij provides
useful information on how to interpret the model’s outputs as shown in Figure 2.15
Attention usage quickly developed outside neural machine translation. As previ-
ously said, Sage et al. [2020] demonstrated the relevance of attention in document
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Figure 2.14: An encoder-decoder with attention. The decoder (Right, in red) can
retrieve the encoder’s (Left, in green) outputs through an attention layer. For
readability reasons, only the cell at step j of the decoder is represented. The scalar
αij directly describes how much the decoder at step j pays attention to the encoder’s
ith output. It is normalized with a softmax operator so that

∑
i αij = 1 and (αij)i

can be interpreted as a probability distribution.

IE with an encoder-decoder architecture. Further work extends the attention mech-
anism with multiple modules [Palm et al., 2018] or between image and text modal-
ities [Cheng et al., 2022].

2.2.3 Transformers

Since their introduction by Vaswani et al. [2017], transformers have revolutionized
deep learning. Vaswani et al. [2017] did so by centralizing most advances in NLP
from the last decade into a single architecture. The primary objective of the trans-
former architecture is to enhance parallelization in contrast to recurrent networks.
This is achieved by replacing recurrent connections with self-attention.

Transformer Layer

Self-attention is a special usecase of Bahdanau et al. [2016] attention mechanism. In-
stead of two different sequences where one pays attention to the other, self-attention
allows a sequence to pay attention to itself. Vaswani et al. [2017] defines attention as
an operation mapping queries Q ∈ RM×D, keys K ∈ RN×D and values V ∈ RN×D

to an ouput. N and M are the lengths of the two sequences (N = M for self-
attention) and D is the dimension of the model. Assuming the chosen similarity is
the dot product, Equations 2.35 - 2.36 can be rewritten with matrix notations as

attention(Q,K,V ) = softmax(QK⊤)V (2.37)

with ŷ being associated to both K and V , and ẑ being associated to Q. The
similarity matrix visualized in Figure 2.15 is in fact the matrix softmax(QK⊤).



2.2. Deep Learning 43

(a) (b)

Figure 2.15: Visualization of two attention maps on a translation from English
to French task. Because English and French are grammatically close, words are
mostly aligned with their direct translation. This alignment results in a bright
diagonal almost everywhere. However, some nominal groups are formed backward in
French like “European Economic Area” in Subfigure 2.15a where the attention locally
takes the shape of an anti-diagonal matrix. Visualizing attention map reveals in
Subfigure 2.15b how the model understands the definite pronoun “l” and associates
it to the correct noun “environment”. Figures reproduced from Bahdanau et al.
[2016].

In practice, Vaswani et al. [2017] use QK⊤
√
D

instead of QK⊤ to limit the variance
in higher model dimension. They also use multi-head attention, where Q, K and
V are chunked into nhead independant attention heads. The final attention is the
concatenation of the nhead different results given by the heads. This allows the
model to focus on multiple locations at the same time, without increasing the cost
of computation.

Equation 2.37 allows each token in the sequence to attend to any past and future
token in a bidirectional way. While this is beneficial for an encoder, it is not suitable
for decoders. In the context of a decoder, a token can only attend to previous tokens
since future tokens have not yet been generated during inference. To address this,
the formula can be adjusted by applying a mask to the similarity matrix, thereby
forbidding attention outside of the mask. The resulting causal attention can be
written as

causalAttention(Q,K,V ) = softmax((QK⊤) +M)V (2.38)

where M ∈ RM×N is a upper triangular matrix which non-zero values are all −∞.
Once softmax is applied, all attention interactions inside the mask are nullified.

To help the training, transformers use residual connections [He et al., 2016]
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Figure 2.16: The original transformer architecture. Originally presented as an
encoder-decoder architecture, the encoder (Left, in green) and the decoder (Right, in
red) can be used independently. State-of-the-art models stack multiple transformer
layers. A decoder-only transformer does not use the multi-head attention that takes
the encoder’s output. Figure freely inspired of Vaswani et al. [2017]

around every operation, alongside layer normalization [Ba et al., 2016] and dropout [Sri-
vastava et al., 2014]. Since the first release of transformers, Xiong et al. [2020] made
the argument to move the layer normalization before self-attention, with a signif-
icant boost in performance. Zhang and Sennrich [2019] on their side proposed to
replace the layer normalization with root mean squared normalization which showed
speed improvements at no performance cost. But except for some minor changes,
the overall transformer architecture has stayed identical to what is illustrated in
Figure 2.16.

Scaling Transformers

Self-attention as described in Equation 2.37 involves a quadratic time and space
complexity relative to the sequence length. It involves the computation of the N ×
N similarity matrix QK⊤ which requires O(N2) operations, hence the quadratic
complexity. Most transformer models effectively limit the maximum sequence length
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Figure 2.17: Venn diagram of efficient transformers implementations adapted to
long sequences. Figure reproduced from Tay et al. [2022a].

to 512 or 1024 tokens due to excessive memory usage on the GPU. To reduce
the memory usage of transformers, Sanh et al. [2020] proposed to use knowledge
distillation from a large model to a smaller one, keeping most of the performance of
the bigger model in the process. More recently, Dettmers et al. [2022] demonstrated
how extreme quantization can reduce memory footprint using only 8-bit integer
representations of model weights. This quantization is an improvement from the now
standard 16-bit float representation used to train large models to cut the required
memory in half.

To further alleviate the issue and reduce memory consumption without impact-
ing the results of the attention operation, Dao et al. [2022] optimized it by taking
advantage of the high bandwidth memory of GPUs. Their algorithm, FlashAtten-
tion, enables processing longer sequences by reducing the space complexity to O(N)

and a significant speedup over classical implementations although the time complex-
ity is unchanged. They demonstrate the ability of a transformer with FlashAttention
to deal with sequence lengths up to 64k tokens.

Several alternatives to self-attention have been developed recently with the same
common objective: enabling the process of longer sequences at a minimal perfor-
mance cost. Those efficient transformers [Tay et al., 2022a] use a variety of tech-
niques to approximate full self-attention and bring down the time and space com-
plexity closer to O(N). Figure 2.17 features a proposed classification as of 2022.
A simple solution is to limit the attention span of a token to a local neighborhood
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around it. Longformer [Beltagy et al., 2020] explores multiple definitions of locality
and context sizes. This idea was developed simultaneously by Zaheer et al. [2021]
and Ainslie et al. [2020] which respectively released Big Bird and ETC. However,
not all efficient transformers use fixed attention patterns, Katharopoulos et al. [2020]
and Qin et al. [2022] use kernel approximation to replace the softmax term in self-
attention with a product ϕ(Q)ϕ(K⊤). This rewriting avoids explicitly computing
the N ×N similarity matrix which improves the complexity but removes the ability
to interpret the model as shown in Figure 2.15. Other techniques rely on leveraging
the low-rank properties of the similarity matrix like proposed in the Linformer [Wang
et al., 2020b] or learned attentional patterns as in the Reformer [Kitaev et al., 2020].
If most efficient transformers were initially developed with NLP tasks in mind, their
ability to tackle very long sequences opens up new research fields. Efficient trans-
former architectures applied to DU is the research topic of Chapter 5.

Input Encoding

Since transformers were initially developed for translation and other NLP related
tasks, they also use tokenizers and embeddings to convert text strings into vectors.
Except for rare use cases [Clark et al., 2022; Xue et al., 2022], transformers use
subword tokenizers like those described in Subsection 2.2.2.
However, because transformers don’t structurally represent the computation like
RNNs do with one-way recurrence, transformers are invariant to permutations of
their input. Vaswani et al. [2017] propose to provide additional information to the
model by using a positional encoding. A function ϕpe : N → RD is charged to map
each token position to a unique vector embedding with the same dimension D as
the token’s embedding. Multiple solutions are available, the simplest being a lookup
table into a matrix of trainable weights. However, this solution does not generalize
well if encountered sequences at inference are longer than those the model was
trained on. To remedy this, they introduce the following parameter-free function

ϕpe(i)
[2d] = sin

(
i

100002d/D

)
ϕpe(i)

[2d+1] = cos

(
i

100002d/D

) (2.39)

where i ∈ [[1, N ]] is the position in the sequence and d ∈ [[1, D/2]] spans over the
embedding dimension. This particular formula allows the model to compute em-
beddings of relative position shifted by k in a linear operation, which would help
generalization with unseen sequence length. For example, it has been shown recently
that a model trained with such fixed positional encoding on a small sequence length
can be easily adapted to longer sequence lengths by interpolating the positional en-
coding. Several researchers proposed to enrich the positional encoding with relative
bias [Shaw et al., 2018; Raffel et al., 2020; Press et al., 2022; Su et al., 2022] into
the attention mechanism, contrasting with Vaswani et al. [2017] absolute positional
encoding. In addition to helping the model generalize with longer sequences, it also
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incentivizes the model toward short-range attention. Recently, Kazemnejad et al.
[2023] even proposed to not use any positional encoding in a decoder-only archi-
tecture. They show that masked self-attention alone can learn both absolute and
relative positioning.
Previous positional encodings provide information to the model about the posi-
tion of tokens along the sequence dimension. In Visually-Rich Documents (VRDs),
words are not laid in a linear sequence, they are rather arranged in the 2D plane
described by the document’s page. Xu et al. [2020] incorporated 2D positional en-
coding to LayoutLM by resizing each page to a fixed size and adding a learned
positional embedding for both x and y axis. If LayoutLM used word-level 2D po-
sitional encoding, StructuralLM [Li et al., 2021a] and later LayoutMask [Tu et al.,
2023] proposed shared embeddings for all tokens belonging to the same line or se-
mantic box, resulting in a better comprehension of the structure of the document
by the model. Multiple models later featured 2D relative attention such as LAM-
BERT [Garncarek et al., 2021], TILT [Powalski et al., 2021] and FormNet [Lee et al.,
2022].
If most 2D positional encodings are aligned with the input sequence in the first
stages of the model, Wang et al. [2022] proposed to process text and layout tokens
in parallel. It forces the model to learn a language-independent representation of
the document’s layout and helps to build cross-language models.

Pre-Training

The revolutionary impact of transformers in the field of NLP cannot be overstated.
By pushing the attention operation to its limits and introducing crucial tools like
positional encoding, transformers paved the way for a transformative breakthrough.
However, it was the extensive pre-training process that truly unlocked the potential
of transformers in NLP. Inspired by the success of transfer learning in CV [Yosinski
et al., 2014], where learned features could be effectively applied to specific tasks,
researchers studied the potential of pre-training in NLP. While CV models benefited
from the rich dataset provided by ImageNet [Deng et al., 2009], NLP faced a different
challenge: the scarcity of large-scale supervised datasets. Nevertheless, NLP had a
vast amount of valuable text available from books, news articles, and the Internet.
The principle of self-supervised pre-training is to teach models how correct text
is structured. Similar to how transfer learning reused learned representations of
images, a pre-trained language model can leverage its representations of language
to learn complex tasks. One way to accomplish this is to ask the model to predict
the next token based on all previous tokens. This autoregressive task is commonly
referred to as LM. Another way, more suited to encoders, consists of masking part
of an input sequence and asking the model to recover the masked tokens. This is
sometimes referred to as a cloze task or Masked Language Modeling (MLM) in the
literature.

The first use of self-supervised pre-training in NLP could be attributed to learned
word embeddings like Word2Vec [Mikolov et al., 2013a] and GloVe [Pennington et al.,
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2014] which learned useful embeddings which could grasp the semantic of a word
but failed at providing contextual information. Peters et al. [2018] later proposed
ELMo that produces contextualized word embeddings. Howard and Ruder [2018]
advocated for a novel approach to pre-training. Instead of only pre-training the
embedding layer and then freezing it, they introduced a multi-step involving pre-
training the language model on a large corpus, then on the downstream corpus and
finally and the downstream task by adding a few additional weights on top of the
model. Thanks to several training strategies, including the now commonly used
triangular learning rate scheduler, they avoid catastrophic forgetting during fine-
tuning. Their work has led Radford et al. [2018a] and Devlin et al. [2019] to apply
similar pre-training strategies to transformers.

Generative Pre-trained Transformer (GPT) [Radford et al., 2018a] uses the stan-
dard LM task to pre-train a decoder-only transformer. It simply consists in mini-
mizing the NLL of token ti given all previous tokens (tj)j<i as follows

L(θ) = −
∑
i≤N

logP (ti = f(t1, . . . , ti−1;θ)) (2.40)

which can be interpreted as teaching the model fθ to predict the very next token
given all preceding tokens. Using large amounts of text for pre-training, they showed
GPT performed over the top on several NLP tasks, from sentiment analysis to
question answering and sentence similarity. For downstream tasks, the whole model
is reused, with the addition of a small classification head specific to the involved
task. Because of the relatively small amount of new parameters needing to be
fully trained, GPT is very data-efficient during fine-tuning. It also significantly
outperforms previous LSTM-based language models on zero-shot tasks where no
fine-tuning is involved [Brown et al., 2020].

Devlin et al. [2019] later proposed Bidirectional Encoder Representations from
Transformers (BERT), an encoder-only transformer able to perform a wide range
of text-understanding tasks. Its bidirectional self-attention enables deep contextual
representations of language. When ELMo [Peters et al., 2018] used 2 independent
autoregressive LM pre-training tasks (one forward, and the other backward), BERT
introduces a new task adapted to bidirectional networks called MLM. Given a
sequence of tokens with a small proportion of corrupted tokens, the model needs to
fix the corrupted tokens by predicting the correct original tokens. They introduce
a special [MASK] token that is used as a replacement for a corrupted token. The
model learns to replace every [MASK] token according to the surrounding context as
described

L(θ) = −
∑
i∈M

logP (ti = f(t̄1, . . . , t̄i, . . . , t̄N ;θ)) (2.41)

where t̄i is a possibly corrupted token and M is the set of corrupted indices. To fur-
ther force the model to learn useful representation, they advocate for a slightly more
complex corruption strategy where some corrupted tokens are replaced with another
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Figure 2.18: Common pre-training tasks for encoder and decoder architectures.
Links in the model’s box mean the model can attend to other inputs to produce its
output at a given position. Some links are grayed out as they are not used in this
example to solve the task but are nevertheless allowed attention links. Decoders
(Left) are trained with an autoregressive LM task in which the model learns to
predict the next token based on all previous tokens. Encoders (Right) cannot be
trained using the same task as they are aware of both past and future tokens.
Instead, given a sequence with corrupted tokens (in purple), they learn to predict
the original tokens.

random token or not replaced at all. Both LM and MLM tasks are represented in
Figure 2.18. It helps the model with generalization and improves fine-tuning perfor-
mance. MLM was later improved multiple times, with dynamic masking changing
every epoch [Liu et al., 2019b], span-based masking strategy [Joshi et al., 2020] or
by introducing a discriminative network [Clark et al., 2020].
Fully autoregressive or bidirectional models are specialized at either generating con-
tent or analyzing text based on context. By jointly training UniLM on multiple
pre-training tasks including LM and MLM, Dong et al. [2019] looked for better
generalization on both text understanding and generation. They were able to per-
form both tasks on an encoder-only transformer by modifying the attention mask
according to the task. They also proposed a mixed attention mask which acts as if
the encoder was an encoder-decoder model with shared weights. Bao et al. [2020]
further improved the model and showed both text understanding and generation
benefited the joint pre-training.
To train the encoder-decoder T5, Raffel et al. [2020] crawled a text corpus several
orders of magnitude larger than any dataset at the time. They also explored a
variety of sequence-to-sequence self-supervised tasks adapted to encoder-decoder
models, settling on a pre-training involving multiple tasks similar to MLM. Using
a larger corpus enabled the training of bigger models without any overfitting, with
state-of-the-art performances achieved by an 11 billion parameters model.
Recently, Tay et al. [2022b] showed using a mixture of corruption strategies during
pre-training performed better than previous pre-training tasks. Although Devlin
et al. [2019] and Raffel et al. [2020] already explored MLM with a very high token
corruption rate (> 40%) without success, they did not vary the corruption rate
during the pre-training. By using corruption strategies with variable corruption
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Figure 2.19: Evolution of LLMs sizes in the number of parameters, number train-
ing tokens and computational operations involved. Since late 2018 [Devlin et al.,
2019] (Left), models’ sizes grew exponentially up to hundreds of billions of parame-
ters [Chowdhery et al., 2022]. The cost of training a model (Right) has also increased
by several orders of magnitude in the same period, requiring clusters of GPUs for
multiple months and millions of dollars. Data is publicly available on Wikipedia1

rates and span length, UL2 [Tay et al., 2022b] further pushed the limits of decoder
and encoder-decoder models.

Since the outstanding results of Raffel et al. [2020] and Radford et al. [2018b]
with T5 and GPT-2, researchers started exploring extreme model sizes. Kaplan
et al. [2020], Hoffmann et al. [2022] and Scao et al. [2022] discovered an empirical
relation that, for a given compute budget, links the model size with the pre-training
dataset size. Today referred to as the Chinchilla scaling law, it is now guiding
the development of Large Language Models (LLMs). Large models [Brown et al.,
2020; Touvron et al., 2023; Workshop et al., 2023] are now associated with equally
large datasets [Gao et al., 2020; Kocetkov et al., 2022; Laurençon et al., 2023] with
extensive filtering and cleaning involved in order to optimize final performance and
minimize the training cost associated. Figure 2.19 shows the evolution of model
sizes in the last 5 years. LLMs trained on general-purpose text corpus exhibit an
outstanding ability to few-shot learning [Brown et al., 2020], enabling their use for
tasks with close to no supervision except for a small prompt describing the objective

1https://en.wikipedia.org/wiki/Large_language_model#List_of_large_language_models

https://en.wikipedia.org/wiki/Large_language_model#List_of_large_language_models
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and a short list of examples. Most recent works show their ability to use external
tools and fully interact with them [Schick et al., 2023], and build complex reasoning
through chain-of-thought prompting [Wei et al., 2023].

Multimodality

When tackling VRD understanding, most model architectures involve some level of
aggregation of multiple modalities such as text, layout and image. We’ve already
discussed how Palm et al. [2017] and Sage et al. [2019] successfully incorporated
layout information into a BiLSTM network to perform IE on BDs. As shown in
Subsection 2.2.3, the same idea was applied to transformers by introducing 2D
positional encodings. In LayoutLM, Xu et al. [2020] adapted the linear positional
encoding from Vaswani et al. [2017] to accurately describe word position and size. To
guide the model toward using jointly both text and layout modality, they introduce
a layout-aware MLM task called Masked Visual Language Modeling (MVLM). They
adapt the MLM task by masking the text representation of a token while keeping
its 1D and 2D positional encoding intact. It incentivizes the model to manipulate
2D positions to infer the current token based on its neighborhood. Pre-training
was performed on the IIT-CDIP collection [Lewis et al., 2006] with an encoder-only
model based on BERT [Devlin et al., 2019]. LayoutLM has had a significant influence
on recent pre-trained models for DU due to its early open-sourcing and breakthrough
performance. Li et al. [2021a] use the same architecture as LayoutLM but introduce
a layout classification pre-training task called Cell Position Classification (CPC).
During CPC, tokens’ positional encodings are randomly masked similarly to MVLM
with a predefined unique 2D position. The model is tasked to classify each corrupted
position into a fixed set of document areas. This task helps the model retrieve a
token’s position on the page using textual information. Using both MVLM and CPC
further teaches the model how to reason jointly with both text and layout modalities.
Several works later iterated over MLM for text, layout and image modalities to teach
each model useful representations of documents.

More recently, Tu et al. [2023] has demonstrated the benefits of using pre-training
tasks with increased difficulty [Tay et al., 2022b] compared to the classical MVLM.
They adopted several strategies aimed at removing shortcuts used by the model
to solve the tasks such as masking whole words at once instead of single tokens or
biasing masks toward the first and last words of a segment, forcing the model to
look for context in neighboring segments. This last part is complex because Lay-
outMask [Tu et al., 2023] does not use global 1D positional encoding, but rather
one local to each segment. It keeps the model away from relying on an imperfect
reading order provided by the OCR and it enables the model to learn more complex
and adequate ordering of segments. LayoutMask comes with its own more difficult
version of CPC, which tightens the relations between text and layout. By masking
a word’s 2D position and isolating it from its segment, Tu et al. [2023] force the
model to only reason based on the text in order to deduce its most likely position
in the document. It is described in great detail in Figure 2.20. The design of pre-
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Figure 2.20: LayoutMask [Tu et al., 2023] architecture and pre-training tasks. The
task named Masked Language Modeling in this figure is considerably harder than
classical MLM as whole words are masked instead of tokens. Masked Position Mod-
eling is another MLM-derived task that focuses on layout information. Figure re-
produced from Tu et al. [2023].

training tasks is essential for the model’s downstream ability to jointly reason with
the modalities it has access to. The same encoder-only encoder-only architecture in
LayoutLM [Xu et al., 2020], StructuralLM [Li et al., 2021a] and LayoutMask [Tu
et al., 2023] provided drastically different performance depending on the way infor-
mation is encoded and the pre-training tasks performed.

Instead of using positional encoding attached to each token, some proposed to
lay tokens onto a regular 2D grid according to their position on the page Katti
et al. [2018]; Zhao et al. [2019]; Denk and Reisswig [2019]; Lin et al. [2021]. The
document is then associated with an image where the channel dimension is used
for token representation. This representation of a document paired with CNNs en-
forces the locality of the computation of features which is often desired in VRDs
understanding [Garncarek et al., 2021; Lee et al., 2022]. Katti et al. [2018] first in-
troduced Chargrid as an alternative to BiLSTM networks [Palm et al., 2017] setting
the baseline for multimodal models. It uses a U-Net architecture such that IE is
performed as an image segmentation task instead of the more classical token classi-
fication. It was quickly improved with the introduction of BERT contextual token
embeddings [Denk and Reisswig, 2019] and the combined use of text, layout and
image modality [Lin et al., 2021]. ViBERTgrid’s architecture is further described in
Figure 2.21 Such methods however received less attention in recent years but are
still relevant nonetheless and might surface again with pre-training tasks adapted
to the architecture.

Another popular alternative to encoding layout information for the model is to
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Figure 2.21: ViBERTgrid approach to multimodality. A rich multimodal feature
map Pfuse is computed through a U-shaped CNN, enriched with BERT text em-
beddings. Figure reproduced from Lin et al. [2021].

Figure 2.22: FormNet uses graph convolutions [Gilmer et al., 2017] to produce a
layout-based token representation. This representation is then fed into a transformer
alongside the text modality in a similar manner 2D positional encoding is inserted
in LayoutLM [Xu et al., 2020]. Figure reproduced from Lee et al. [2022].

use a graph representation of a document. Although they were first introduced 2
decades ago, Graph Neural Networks (GNNs) [Gori et al., 2005] were recently popu-
larized by the invention of more efficient layer architectures [Kipf and Welling, 2017;
Veličković et al., 2018; Brody et al., 2022] and successful applications [Wu et al.,
2021]. A document can be represented as a sparsely connected graph, where each
node is associated with a word and is connected to its close neighboring. Several
strategies have been used to create the graph based on the positions of words, by
limiting to one neighbor in each cardinal direction [Lohani et al., 2019; Gal et al.,
2020], by using established graph construction algorithm [Kirkpatrick and Radke,
1985; Lee et al., 2022] or by learning the graph in the process [Yu et al., 2020].
Recent architectures often use GNNs as a layout processing module in conjunc-
tion with BiLSTM [Qian et al., 2019] or transformers [Wei et al., 2020; Lee et al.,
2022, 2023]. Node representations computed by the graph module are used to pro-
vide complex layout information to subsequent layers, as illustrated in Figure 2.22.



54 Chapter 2. Related Work

When most of the work focused on using graph representation to better encode the
document, Hwang et al. [2021] introduced a graph-based alternative to sequence
tagging. Named SPADE, it uses a relation tagging task between nodes of the graph
to perform a variety of VRD understanding tasks expressive enough to reorder words
inside the document or represent tabular and hierarchical structures. It was later
used in BROS [Hong et al., 2021], which also incorporated pre-training tasks inspired
by LayoutLM [Xu et al., 2020] and StructuralLM [Li et al., 2021a].

In addition to the text and its positioning inside the page, VRDs may include
visual elements with semantic signification which can be helpful to interpret cor-
rectly its content. That’s why several multimodal models also use image modality
in addition to text and layout. One solution is to compute the document’s represen-
tation for each modality separately and perform the fusion of modalities later in the
model. This is the approach chosen in PICK [Yu et al., 2020] and DocStruct [Wang
et al., 2020c]. Xu et al. [2020] also proposed a version of LayoutLM with a CNN
that computes image embeddings. The main benefit of late fusion is the relative
independence of the modalities until the fusion, which allows the use of specialized
and established architectures for each modality. More recently, Lee et al. [2023]
upgraded FormNet by adding image modality to the model. FormNetV2, the re-
sulting model, performs the modality fusion inside a multimodal graph built based
on the layout. Image features are computed over small image patches that include
2 connected words in the graph. To pre-train the model with all modalities, they
introduce a new task based on contrastive learning over the graph [Li et al., 2019].
The model is trained to identify pairs of identical nodes from 2 corrupted versions of
the same initial graph. By controlling which modalities are corrupted, the model is
unable to rely on a single input source and must develop complex reasoning imply-
ing interactions between modalities. FormNetV2 significantly outperforms its little
brother while using a similar number of parameters in several VRD understanding
tasks, achieving close to SotA to this date.

Another approach to multimodality is to perform the fusion early in the model
and let the model learn how to process this rich representation. It enables potential
interactions and dependencies between modalities to be captured throughout the
network. As previously shown in Figure 2.21, ViBERTgrid [Lin et al., 2021] uses a
multimodal U-shaped CNN which processed text embeddings laid on a grid. Most
works however use a multimodal transformer as the main model instead of a CNN.
In TILT, Powalski et al. [2021] extract image embeddings from a U-Net [Ronneberger
et al., 2015] with ROI pooling [Dai et al., 2016] to align text and image modality
and sum their embeddings. Instead of manually aligning text and image modalities,
Docformer [Appalaraju et al., 2021] uses ResNet [He et al., 2016] to pre-compute an
image representation. The main transformer performs self-attention on both text
and image sequences at each layer. To enforce collaboration between textual and
visual features in the model, [Appalaraju et al., 2021] introduce new pre-training
tasks. In addition to the image counterpart of MVLM, they train the model to
detect when image and text features are not issued from the same document as
described in Figure 2.23.
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Figure 2.23: DocFormer model and pre-training tasks. Both text and image modal-
ities are trained with a task based on masking either input sequence and predicting
what was masked in the first place. However because image embedding does not rely
on discrete tokens, the classification is replaced with a global image reconstruction
task. Figure reproduced from Appalaraju et al. [2021].

Although transformers were first invented for NLP, they were also proven ef-
fective at CV. Dosovitskiy et al. [2021] showed a simple transformer encoder was
able to outperform CNN based models on many datasets including ImageNet. By
first splitting the input image into a grid of small patches and using those image
patches along 2D positional encoding as the input sequence of the model, ViT has
proven the effectiveness of transformers in image processing. Other transformer-
based architecture quickly followed, with more efficient design [Touvron et al., 2021]
or hierarchical representations adequate for small object detection and segmenta-
tion Liu et al. [2021]. Several works used the same principle for VRD understanding,
using separate transformer encoders for text and image modalities like SelfDoc [Li
et al., 2021b] or a single multimodal transformer encoder with an input composed
of textual and visual tokens [Li et al., 2021c; Xu et al., 2021; Peng et al., 2022]. The
differences between models reside in the image embedding procedure and the pre-
training tasks used to teach the model how to reason using every provided modality.
However, they all use continuous image embedding, unlike the discrete text tokens
with finite vocabulary.

Recent work in image generation on DALL-E [Radford et al., 2021] used image
tokenization in its process which converts continuous image space into a sequence of
discrete tokens. Bao et al. [2022] further proposed a joint procedure to learn a visual
vocabulary and pre-train a visual transformer encoder at the same time. Instead of
using a general image collection to pre-train their image tokenizer, Li et al. [2022]
used IIT-CDIP [Lewis et al., 2006] to obtain DiT, an image tokenizer and encoder
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Figure 2.24: LayoutLMv3 architecture. Text and image are tokenized and fed as
a single sequence to the model. Pre-training is done using 3 tasks concurrently:
MVLM on the text tokens (Masked Language Modeling in the figure), MVLM on
the image tokens (Masked Image Modeling in the figure) and Word Pair Alignment
on unmasked text tokens. Figure reproduced from Huang et al. [2022].

specialized for VRD. Finally, Huang et al. [2022] reused the DiT tokenizer and
LayoutLMv2 encoder in its latest iteration of LayoutLM as illustrated in Figure 2.24.
By leveraging the discrete nature of its image tokens, LayoutLMv3 [Huang et al.,
2022] is able to use the same pre-training task for text and image modalities, bridging
the gap of representation between them.

If most of the previous models are mainly using a transformer encoder, it might
not hold anymore in the near future. Recent works on LLMs [Chowdhery et al.,
2022; Workshop et al., 2023; Touvron et al., 2023] have proven the ability of decoders
to manipulate finely the language. Encoder-decoder multimodal architectures like
TILT [Powalski et al., 2021] and Donut [Kim et al., 2022] will probably play a major
role in the future of VRD understanding.



Chapter 3

Data-Efficient Information
Extraction from Documents with

Pre-Trained Language Models

Chapter abstract

Like for many text understanding and generation tasks, pre-trained language models
have emerged as a powerful approach for extracting information from business docu-
ments. However, their performance has not been properly studied in data-constrained
settings which are often encountered in industrial applications. In this paper, we
show that LayoutLM, a pre-trained model recently proposed for encoding 2D doc-
uments, reveals a high sample efficiency when fine-tuned on public and real-world
Information Extraction (IE) datasets. Indeed, LayoutLM reaches more than 80%
of its full performance with as few as 32 documents for fine-tuning. When com-
pared with a strong baseline learning IE from scratch, the pre-trained model needs
between 4 to 30 times fewer annotated documents in the toughest data conditions.
Finally, LayoutLM performs better on the real-world dataset when having been be-
forehand fine-tuned on the full public dataset, thus indicating valuable knowledge
transfer abilities. We therefore advocate the use of pre-trained language models for
tackling practical extraction problems.
This work was conducted with Clément Sage and has led to the following publication
in a national conference:

• Clément Sage, Thibault Douzon, Alexandre Aussem, Véronique Eglin, Haytham
Elghazel, Stefan Duffner, Christophe Garcia, and Jérémy Espinas. Data-efficient
information extraction from documents with pre-trained language models. In
Conférence Francophone sur l’Apprentissage Automatique (CAp), Saint-Étienne,
June 2021.

It was also published in an international workshop:

• Clément Sage, Thibault Douzon, Alexandre Aussem, Véronique Eglin, Haytham
Elghazel, Stefan Duffner, Christophe Garcia, and Jérémy Espinas. Data-efficient
information extraction from documents with pre-trained language models. In
Proceedings of the First Workshop on Document Images and Language (DIL),
ICDAR 2021, Lausanne, September 2021. Springer International Publishing.
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3.1 Introduction

As shown in Chapter 2, training Artificial Neural Networks (ANNs) on a supervised
task through gradient descent requires a labeled dataset. If larger models are usually
more computationally powerful than smaller ones, they also need more data samples
to avoid overfitting to the training examples.

Following the work of Mikolov et al. [2013a] and Heinzerling and Strube [2018]
on Language Modeling (LM), the parameters related to word embeddings could be
frozen during training [Lohani et al., 2019; Denk and Reisswig, 2019]. In addition
to relieving the model from learning word representations, those representations
usually better capture the semantics of words than what would have been learned
by the model alone. We previously described how pre-trained embeddings improved
models’ language understanding in Subsection 2.2.2.

In recent years, self-supervised learning strategies have gained a lot of traction in
the Natural Language Processing (NLP) community. Whole models like BERT [De-
vlin et al., 2019] and GPT [Radford et al., 2018b] are pre-trained on masked and
autoregressive language modeling tasks. Through self-supervised pre-training, those
models can leverage large amounts of unlabeled data and learn useful representa-
tions. Those representations can then be adapted to any related task by fine-tuning
the model on a downstream task, thus reusing the same pre-trained model for a
variety of language understanding and generation tasks.

Following the current trend in the NLP field, a number of works [Xu et al., 2020;
Pramanik et al., 2020; Xu et al., 2021; Hong et al., 2021] have adapted pre-trained
language models from plain text to documents by performing the self-supervised
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pre-training on large collections of documents. They have been fine-tuned and
evaluated on several document analysis tasks such as information extraction but
also document-level classification and visual question answering. Their pre-trained
models have considerably outperformed the previous state-of-the-art models that
were trained from scratch, whether they are evaluated on benchmarks with large-
scale [Harley et al., 2015] or relatively restrained [Jaume et al., 2019; Huang et al.,
2019; Park et al., 2019] annotated sets for training. However, this comparison has
not been conducted in even more data-constrained settings that are encountered in
practical applications of IE models. In this paper, we aim to quantify to what extent
the pre-trained models are sample-efficient for IE tasks by comparing LayoutLM [Xu
et al., 2020] with two models without pre-training.

We present three main findings that we experimentally validated using the public
Scanned Receipt OCR and Information Extraction (SROIE) benchmark [Huang
et al., 2019] as well as a private real-world dataset:

• The pre-trained LayoutLM exhibits remarkable few-shot learning capabilities
for IE, reaching more than 80% of its full performance with as few as 32
documents for fine-tuning.

• This model is significantly more data-efficient than a strong non-pre-trained
baseline in the lowest data regimes, hitting the same levels of extraction per-
formance with around 30 times fewer samples for the real-world dataset.

• Finally, the pre-trained model displays helpful knowledge transfer between
IE tasks since learning beforehand to extract information on the full SROIE
dataset improves the performance of up to 10 % when fine-tuning the model
on the private dataset.

Corroborating the data efficiency of such models already observed in other NLP
tasks [Howard and Ruder, 2018; Chen et al., 2020; Brown et al., 2020], our results
show that using pre-trained models dramatically reduces the number of annotations
required for achieving satisfying performance which is appreciable for industrial IE
systems.

3.2 Related works on Information Extraction

3.2.0.1 Fully supervised models

Historically tackled by rule-based approaches [Cesarini et al., 1998; Li et al., 2008],
the IE task has lately been dominated by solutions based on machine learning [Chiti-
cariu et al., 2013]. Most Machine Learning (ML) approaches first employ an encoder,
usually a few neural network layers, to obtain contextualized high-level representa-
tions of all the tokens of the document. Then, a classifier module composed of a
couple of dense layers is immediately applied to these representations to classify each
token according to the type of information that it carries. Most works adopting this
sequence labeling approach for extracting information have focused on constituting
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more powerful representations of the document tokens. The first encoders to appear
were recurrent neural networks [Palm et al., 2017; Sage et al., 2019] that operate on
a uni-dimensional arrangement of tokens. Later, encoders that explicitly consider
the 2D structure of business documents have been proposed, thus leveraging phys-
ical layout information. These methods either represent a document as a graph of
tokens [Liu et al., 2019a; Qian et al., 2019; Yu et al., 2020; Gal et al., 2020] or a
regularly shaped grid on which the tokens are embedded [Katti et al., 2018; Denk
and Reisswig, 2019; Zhao et al., 2019; Dang and Thanh, 2019]. Some convolutional
layers are then applied to these models of documents to obtain the token represen-
tations. In addition to better understanding the document layout, some authors
[Katti et al., 2018; Palm et al., 2018] also include the pixel values of the document
images in the input for capturing clues not conveyed by the text modality such as
table ruling lines, logos and stamps.

In all these extraction models, the whole set of their parameters, except perhaps
the token embeddings [Denk and Reisswig, 2019], are learned in a fully supervised
task-specific way. Specifically, they are attributed random values at the beginning of
the model training. The parameters’ values are then updated by directly minimizing
the cross-entropy loss on the target IE dataset. While being successful for most IE
tasks, this results in a costly process since a massive amount of weights need to be
learned from scratch.

3.2.0.2 Pre-trained models

Since the recent development of language modeling techniques [Devlin et al., 2019;
Brown et al., 2020], NLP models for understanding and generating text are not
learned from scratch anymore [Qiu et al., 2020b]. Rather, the mainstream approach
to reach state-of-the-art performance on many downstream tasks is to adapt the
parameters of models that have already learned powerful representations of the
language. Such pre-training is performed in a self-supervised way on a large quantity
of text data. Starting from LayoutLM [Xu et al., 2020], pre-trained models that were
originally operating on serialized text have been extended to process the spatially
distributed text contained in business documents, e.g. text blocks and tables.

To that end, positional embedding vectors relative to their absolute 2D coordi-
nates are included in the token representations that are given to the Transformer
encoder. Before fine-tuning the model on the downstream tasks like the fully super-
vised models, LayoutLM is first pre-trained on millions of document pages [Lewis
et al., 2006] using a self-supervised Masked Visual Language Modeling (MVLM)
task that naturally expands the main pre-training objective of Bidirectional En-
coder Representations from Transformers (BERT) [Devlin et al., 2019].

This work further inspires other language models dedicated to 2D documents.
While the visual modality was introduced only at the fine-tuning stage in LayoutLM,
later models [Pramanik et al., 2020; Hong et al., 2021; Xu et al., 2021] include visual
descriptors from convolutional layers directly into the token representations used for
pre-training. These recent works mainly focus on adding new pre-training objectives
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Figure 3.1: The different architectures used in our experiments for encoding doc-
uments. From left to right: Transformer-based LayoutLM Xu et al. [2020] with
pre-trained weights, LayoutLM with random initialization and a 2-layer bidirec-
tional LSTM also randomly initialized.

complementing MVLM to more effectively mix the text, layout and image modal-
ities when learning the document representations, for example, the topic-modeling
and document shuffling tasks of [Pramanik et al., 2020], the sequence positional
relationship classification objective [Wei et al., 2020], the text-image alignment and
matching tasks leveraged in [Xu et al., 2021] and the 2D area-masking strategy from
[Hong et al., 2021]. Moreover, [Xu et al., 2021; Hong et al., 2021] both modify the
computation of the self-attention scores to better encompass the relative positional
relationships among the tokens of the document. Finally, [Pramanik et al., 2020] has
resorted to page index embeddings and the Longformer’s [Beltagy et al., 2020] self-
attention that scales linearly with the sequence length in order to process multi-page
and longer documents.

All these pre-trained models largely surpass fully supervised models and have es-
tablished state-of-the-art performance on multiple document understanding bench-
marks, including common information extraction datasets [Jaume et al., 2019; Huang
et al., 2019; Park et al., 2019]. Yet, all the experiments have been performed with
the full training set of the downstream tasks for fine-tuning, thus not studying the
potential of pre-trained models to learn IE with few annotated data compared to
models without such pre-training. Our contribution consists here of showing how
pre-trained models can lead to a performance gain on low-resource downstream IE
tasks.
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3.3 Models

In our experiments, we follow the sequence labeling approach for performing IE. The
evaluated models are composed of an encoder delivering contextualized representa-
tions of the tokens and a linear classifier that decodes this sequence of representations
to extract information. All models only differ by their encoder.

3.3.1 Encoder

As shown in Figure 3.1, we use three different networks for encoding the business
documents. We compare a pre-trained encoder with two fully supervised encoders.

3.3.1.1 Pre-trained model

We use LayoutLM from [Xu et al., 2020] as the pre-trained model, since this is the
only IE work that publicly releases its pre-trained model parameters. We use its
base-uncased version1 which consists of a 12-layer transformer with a hidden size of
768 and 12 attention heads per layer, resulting in 113 million weights. It is built upon
the BERT base-uncased model with 4 additional embedding vectors to represent the
position of each token on the document page. This 2D positional encoding, coupled
with a pre-training task that strongly binds the token’s semantic representation
with its surroundings, allows LayoutLM to take advantage of the structure of the
documents. Although proposed in their paper for the fine-tuning stage, we do not
leverage the visual modality since it brings marginal improvements for IE. We thus
solely rely on the text and its layout for constructing token embeddings. We refer
the reader to their paper for more details about its architecture and pre-training
stage.

3.3.1.2 Fully supervised models

For fully supervised models, we use 2 encoders that are trained from scratch on
the IE tasks. First, we reuse the LayoutLM model but we discard pre-training
and randomly initialize all its parameters. However, as confirmed by our early
experiments, this encoder version performs poorly in low-resource settings due to its
massive amount of parameters to learn from scratch. Secondly, we propose a smaller
fully supervised baseline that has shown success in the past IE works [Palm et al.,
2017; Sage et al., 2019]. This is a 2-layer Bidirectional Long Short Term Memory
(BiLSTM) network with a 128 hidden size. We reuse the same sub-word tokenizer
as LayoutLM and employ only textual embeddings for tokens. The resulting model
contains 8.5 million parameters.

Following standard practices, transformer and embedding layers are respectively
initialized with a truncated normal and Gaussian distribution. BiLSTM layers resort
to Glorot initialization [Glorot and Bengio, 2010].

1https://github.com/microsoft/unilm/tree/master/layoutlm

https://github.com/microsoft/unilm/tree/master/layoutlm
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3.3.2 Classifier

On top of each of these 3 encoders, we add a dense softmax layer to predict the
information type carried by each document token. Since the fields to extract can be
spread over multiple tokens, the BIESO labeling scheme [Ramshaw and Marcus, 1999]
is utilized to denote the beginning (B), continuation (I) and end (E) of a field value
while S classes stand for single token values. This results in 4 output classes per
field, with the additional class O for tokens not conveying any relevant information.
At inference time, we determine the class of a token by getting its highest probability
and reduce the resulting list of BIESO classes to obtain the field-level predictions. If
a document has more than 512 tokens, its text is split into multiple sequences that
are independently processed by the extraction model.

3.4 Datasets

As illustrated in Figure 3.2, we consider two IE datasets that cover different docu-
ment types and extraction objectives.

(a) receipt from SROIE (b) purchase order from PO-51k

Figure 3.2: A document sample for each dataset alongside their expected field values
to extract. For PO-51k, we show a fictive purchase order due to privacy reasons.
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3.4.1 Scanned Receipts OCR and Information Extraction (SROIE)

We train and evaluate the models on the public SROIE dataset [Huang et al., 2019]
containing restaurant receipts. We only consider its information extraction task that
aims to retrieve the name and address of the company issuing the receipt, the total
amount and the date. The dataset gathers 626 receipts for training and 347 receipts
for testing. We further randomly split the training set to constitute a validation set
of 26 receipts. While not stated in [Huang et al., 2019], the document issuers are
shared between the training and test sets.

Each receipt is given the ground-truth value for the four targeted fields. The
comparison with the model predictions is made in terms of exact matching of strings,
leading to precision, recall and F1 score metrics2. For the sake of readability, we
only report the F1 scores averaged over all the targeted fields. To establish the
BIESO labels, we look for the receipt words matching the ground-truth field values.
For the total amount, a value may match different sets of words, e.g. the amounts
without taxes or after rounding. If so, we select the bottom-most occurrence having
the keyword total in its line.

We use the provided Optical Character Recognition (OCR) results containing a
list of text segments and their bounding boxes. As noticed by many submissions
in the leaderboard including LayoutLM’s authors, they contain a number of brittle
text recognition errors, e.g. a comma interpreted as a dot. This highly impacts the
evaluation results based on exact matching. Therefore, following previous works, we
manually fix them in the test set while we perform fuzzy matching for deriving the
token labels in the training set. Because the order of text segments is sometimes
faulty, we also re-arrange them from top-to-bottom.

3.4.2 Real-world purchase orders (PO-51k)

To prove the efficiency of the IE models, we also conduct experiments on a private
dataset composed of 51, 000 English Purchase Orders (POs) that were processed on
Esker’s document automation solution. We split the dataset into 40k, 1k and 10k
documents for training, validation and test sets. Unlike SROIE, these three subsets
contain different document issuers, respectively 6200, 870 and 1700 issuers. This
implies that for a large portion of the test set, the layout and content organization
of documents have not been seen at training time.

We aim to extract 3 different fields among these purchase orders: the document
number, the date and the total amount. The ground truth for these fields is directly
provided by the end-users of the automation software, ensuring high-quality anno-
tations. We employ the same methodology as in SROIE for evaluating the models.
Text of documents is retrieved thanks to a commercial OCR engine.

Since LayoutLM is not designed for handling multi-page documents, we only
consider the first page of documents. Because of this limitation, there may be no
value to predict for a target field. In practice, roughly 25% of the documents miss

2The metric values are obtained at https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3

https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3
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a total amount on the first page while only 10% of the documents are affected for
the two other fields.

3.5 Experiments

3.5.1 Experiment settings

We use the following settings in all our experiments. To evaluate data efficiency,
we restrict the training set to 8, 16, 32, 64, 128, 256 and 600 randomly selected
documents for both datasets. For PO-51k, we additionally study the extraction
performance when training with 2k, 8k and 40k samples. We repeat each experiment
5 times, each time with different random seeds and thus different selected training
documents. We plot the average µ of the 5 F1 scores as well as the shaded region
[µ− σ, µ+ σ] for representing the standard deviation σ. We use a log scale over the
number of training documents to better visualize the lowest-resource regimes.

As in [Xu et al., 2020], we use the Adam optimizer with an initial learning rate
of 5e-5, linearly decreasing it to 0 as we reach the maximum number of training
steps. For the BiLSTM model, we employ a higher initial learning rate of 5e-3 since
the former value did not converge correctly. For each run, we set the maximum
number of training steps to 1k for the pre-trained LayoutLM and 2k for models
without pre-training. We proceed to early stopping on the validation set to choose
the model checkpoint to evaluate or use for a further training run. We employ a
batch size of 8 for all runs in SROIE. For PO-51k, we set the batch size to 16 for
all runs, except for 8 and 40k training docs where we fixed it to respectively 8 and
32 in order to see at least once each training document. Following the results of
language models fine-tuning in low-resource settings [Howard and Ruder, 2018], we
update the entire model in all runs.

All training runs are performed on a single 12 Go TITAN XP GPU. We have
released the code for reproducing the experiments on the SROIE dataset3.

3.5.2 Few-shot learning

For both datasets, we first study the performance when the models independently
learn the IE task from a few annotated samples. After initializing them from scratch
or from pre-trained weights, we fine-tune the models for variable numbers of training
documents. We report below their results on the whole test set.

3.5.2.1 SROIE

We show F1 scores for the SROIE dataset in the Figure 3.3. We first notice that we
get to an average F1 score of 0.9417 when the pre-trained LayoutLM is fine-tuned
on 600 receipts. This is in accordance with the 0.9438 F1 score reported in its paper
[Xu et al., 2020] when considering the 626 documents of the original training set.

3https://github.com/clemsage/unilm

https://github.com/clemsage/unilm
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Figure 3.3: Few-shot extraction performance on the SROIE [Huang et al., 2019] test
set for the pre-trained LayoutLM [Xu et al., 2020] against its randomly initialized
version and a BiLSTM network.

The model convergence is fast, hitting 90% of its full performance with only 32
documents, i.e. an 18 times smaller training set.

Unsurprisingly, we observe that the pre-trained LayoutLM achieves significantly
better performance than fully supervised models whatever the number of training
documents. Yet, the fewer training documents we make use of, the larger the dif-
ference in F1 score between these two classes of models. For instance, even if the
BiLSTM network reaches a near similar level of performance with 600 documents
(0.8874 against 0.9417), it performs significantly worse than LayoutLM in more
data-constrained regimes: the gap of F1 score attains 0.2612 for 8 training receipts.
This is even more noticeable for the randomly initialized LayoutLM which com-
pletely fails to extract the fields when trained with 8 documents. When offered the
full training set, the model does not even outperform its pre-trained counterpart
which makes use of only 8 documents.

As expected [Zhang et al., 2021], the performance variance is greater in the
lowest data regimes. Yet, the pre-training effectively reduces the variance, making
pre-trained models less dependent on the choice of fine-tuning documents.
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Figure 3.4: Few-shot extraction performance on the PO-51K test set for the pre-
trained LayoutLM [Xu et al., 2020] against its randomly initialized version and a
BiLSTM network.

3.5.2.2 PO-51k

We show F1 scores for the PO-51k dataset in the Figure 3.4. We observe simi-
lar learning curves for all models, including the pre-trained model that hits 92%
of its maximal performance with only 128 samples, i.e. 312 times fewer training
documents. In the lowest data regimes, the gap between LayoutLM and the fully
supervised baselines is even wider than for SROIE. Indeed, the difference with the
BiLSTM model is on average of 0.37 F1 score until 32 documents while it was on av-
erage of 0.23 points for SROIE. The BiLSTM trained with 600 documents performs
on par with LayoutLM fine-tuned on only 32 documents, i.e. an order of magni-
tude less annotations. We also note that this real-world dataset is notoriously more
complex than SROIE since a few hundred documents are not enough to achieve
full convergence of the F1 scores. We finally underline the sample inefficiency of
LayoutLM trained from scratch with a F1 score at 40k training documents that still
lags behind both its pre-trained counterpart and the BiLSTM.

On both datasets, we have confirmed that the pre-training stage extensively
reduces the number of annotations needed to reach specific performance for down-
stream IE tasks.
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Figure 3.5: Test F1 scores of pre-trained LayoutLM when transferring extraction
knowledge from SROIE to PO-51k tasks. The IE performance is always improved
by resorting to SROIE as an intermediate task, the boost being significant with few
available PO-51k documents for fine-tuning.

3.5.3 Intermediate learning

In these experiments, we analyze to what extent learning to extract information from
given documents decreases the annotation efforts for later performing IE on another
document distribution. Specifically, we first fine-tune the pre-trained LayoutLM on
the SROIE task using its full training set and then transfer the resulting model on
the PO-51k dataset and study its few-shot performance. This simulates an actual
use case where a practitioner leverages publicly available data to later tackle IE in
more challenging industrial environments.

Since the fields to extract are not identical between the SROIE and PO-51k
tasks, we remove the final classifier layer on top of LayoutLM after the fine-tuning
on SROIE. We replace it with a randomly initialized layer that matches the number
of fields in PO-51k. Even if this imposes learning the classifier parameters from
scratch between the two IE tasks, there are only a few thousand compared to the
million weights of the encoder. We therefore hope that LayoutLM can still transfer
some knowledge from SROIE to PO-51k tasks.

3.5.3.1 SROIE to PO-51k

We compare the few-shot performance on PO-51k when having first fine-tuned on
SROIE with the results obtained when directly employing the pre-trained LayoutLM
weights. We show the results of these intermediate learning experiences in Figure 3.5.
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We note that the fine-tuning on SROIE considerably improves the extraction for
a few PO-51k examples with a boost of 0.065 (+10%) F1 score for 8 documents.
For 600 examples or more, the effect of intermediate learning disappears with a
performance indistinguishable from directly fine-tuning on PO-51k. Fine-tuning
beforehand on the SROIE dataset also helps to reduce the variance when it is signif-
icant: between 8 to 32 PO-51k documents, the mean standard deviation decreases
from 0.031 to 0.017 (-45%) when resorting to intermediate learning.

Therefore, if the amount of annotated documents at their disposal is limited, we
encourage IE practitioners not to directly fine-tune the pre-trained models on their
task but first use publicly available IE datasets to enhance performance.

3.6 Conclusion

In this chapter, we showed that pre-trained language models like LayoutLM [Xu
et al., 2020] are highly beneficial for extracting information from a few annotated
documents. On a public dataset as well as on a more demanding industrial appli-
cation, such a pre-trained approach consistently outperformed two fully supervised
models that learned from scratch the IE task. We finally demonstrated that pre-
training brings additional improvements when transferring knowledge from an IE
task to another.

The valuable insight into pre-trained models from this work has led us to further
study pre-training tasks to optimize the resulting model. The next chapter describes
how specialized pre-training tasks for documents can improve a model’s performance
on downstream IE.
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Chapter abstract

Transformer-based Language Models are widely used in Natural Language Process-
ing (NLP) related tasks. Thanks to their pre-training, they have been successfully
adapted to Information Extraction (IE) in Business Documents (BDs). However,
most pre-training tasks proposed in the literature for business documents are too
generic and not sufficient to learn more complex structures. In this paper, we use
LayoutLM, a language model pre-trained on a collection of business documents, and
introduce two new pre-training tasks that further improve its capacity to extract rel-
evant information. The first is aimed at better understanding the complex layout
of documents, and the second focuses on numeric values and their order of magni-
tude. These tasks force the model to learn better-contextualized representations of
the scanned documents. We further introduce a new post-processing algorithm to
decode BIESO tags in IE that performs better with complex entities. Our method
significantly improves extraction performance on both public (from 93.88 to 95.50
F1 score) and private (from 84.35 to 84.84 F1 score) datasets composed of expense
receipts, invoices, and purchase orders.
This work has led to a presentation at an international symposium:

• Thibault Douzon, Stefan Duffner, Christophe Garcia, and Jérémy Espinas. Ex-
traction automatique d’informations dans les documents d’entreprise. In Sym-
posium International Francophone sur l’Ecrit et le Document (SIFED), Lyon,
December 2021.

It also led to the publication of a paper and an oral presentation at an international
workshop. It received the Nakano award, rewarding the best paper of the event.

• Thibault Douzon, Stefan Duffner, Christophe Garcia, and Jérémy Espinas. Im-
proving information extraction on business documents with specific pre-training
tasks. In Proceedings of the 15th International Workshop on Document Analysis
Systems (DAS), La Rochelle, May 2022. Springer International Publishing.
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4.1 Introduction

Chapter 3 showed how models historically used for natural language, could also
perform IE on Business Documents (BDs). Although text and documents differ in
many ways, they share sufficient similarities such that once the text is extracted
from the document, it can be processed in the same way as a text would be with
great results. The difference between text and documents are many, the first one
being the 2D structure of the document. The position of words forms a complex
structure that guides the reader toward a reading order. An incorrect reading order
inference might mislead the reader and alter the meaning of the content of the
document. Comparatively, a text is a simple linear sequence of words forming
sentences and paragraphs. The second critical difference between natural text and
BDs is the grammar ruling the construction of a document. BDs don’t use correctly
formed sentences, instead they heavily use noun phrases to designate fields: “invoice
number”, “date” and “total amount” for instance. The context around a word is
often poorly defined as those groups usually only form a key-value colon-separated
pair with the associated value. Besides the lack of context, BDs use a tremendous
amount of numerical figures with different semantics: gross amounts should not be
mistaken with taxes or quantities and are not expressed with the same unit. Their
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meaning can only be inferred by the correct association with its key in the case of
a header field or with the correct table header for table fields.

To help models process documents, many have proposed modified architectures
to incorporate layout information by providing the position of words to the model.
We already have extensively discussed text and layout multimodality in subsec-
tion 2.2.3. Most recent proposals often include a pre-training step, where the model
is trained on a pretext task. Those pretext tasks are self-supervised problems that
teach the model many useful skills for manipulating the data. When pre-training
an encoder network, Masked Language Modeling (MLM) is the most common task
to perform. It teaches the model to use the surrounding context of a position to
predict which word would best fit. The specificity of BDs needs specific pre-training
tasks to learn a finer representation of a document.

In this work, we focus on LayoutLM [Xu et al., 2020], a pre-trained trans-
former [Vaswani et al., 2017] that is specialized in documents. It reuses the same
transformer layer with multi-head attention with the addition of a 2D positional en-
coding. Its larger version achieved state-of-the-art performance in both document
classification and information extraction. However, the required hardware to train
it can be repelling. In this paper, we propose new pre-training tasks specific to
BDs that will provide additional skills to the model. We also propose a new decod-
ing post-processing algorithm that prevents many errors made by the model due to
ambiguities. Combined, our contributions1 allow for the base LayoutLM model to
perform on par with the larger version.

4.2 Related Work

4.2.1 Information Extraction

Rule-based approaches [Li et al., 2008] have been supplanted by deep learning mod-
els in the last decade. Document IE first capitalized on the state of the art in
Named Entity Recognition (NER) for NLP [Lample et al., 2016]. Recurrent Neural
Networks (RNNs) with Long Short Term Memory (LSTM) cells were first used to
encode documents at a word level [Palm et al., 2017; Sage et al., 2019], allowing a
simple classifier to predict each word’s associated label. With models performing
word-level predictions, IE can be represented as a sequence labeling task. Instead
of a softmax and cross-entropy loss, a Conditional Random Field (CRF) [Lafferty
et al., 2001] model has been used in addition to BIESO tags. Other architectures have
also been proposed to better adapt to the specificity of the document. For example,
graphs [Lohani et al., 2019; Liu et al., 2019a; Yu et al., 2020; Gal et al., 2020] and
convolutions over a grid [Katti et al., 2018; Denk and Reisswig, 2019; Lin et al.,
2021] constrained the model based on the words’ positional information. Because
most architectures relied on textual representations, they benefited from pre-trained
word embeddings like Word2Vec [Mikolov et al., 2013a] or GloVe [Pennington et al.,

1Code available here: https://github.com/thibaultdouzon/business-document-pre-training

https://github.com/thibaultdouzon/business-document-pre-training
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2014].

With the emergence of transformers [Vaswani et al., 2017] and text encoders like
BERT [Devlin et al., 2019], attention-based document analysis models [Xu et al.,
2020; Garncarek et al., 2021; Tu et al., 2023] evolved quickly, which resulted in a large
improvement of state-of-the-art performance. In line with [Katti et al., 2018] which
included both textual and visual representations, multimodal transformers [Xu et al.,
2021; Appalaraju et al., 2021; Lee et al., 2023] superseded conventional textual
models.

In parallel to the rise of transformers, end-to-end IE models tried to reduce
the labeling cost. First using Bidirectional Long Short Term Memorys (BiLSTMs)
with attention layers [Palm, 2019; Sage et al., 2020], then shifting to transform-
ers [Powalski et al., 2021]. Adopting at the same time the Question Answering (QA)
format [Gardner et al., 2019], instead of the usual sequence labeling, provided more
flexibility on the predicted labels. Combining end-to-end models with multimodality
enables removing the separate Optical Character Recognition (OCR) and including
it directly in the model as shown by Kim et al. [2022].

4.2.2 Pre-Training

Self-supervised training and pre-trained models were popularised in NLP with en-
riched word embeddings [Mikolov et al., 2013a; Pennington et al., 2014; Peters et al.,
2018]. Their capacity to leverage large amounts of unlabeled text has proven to be
extremely effective in initializing word representations. With the emergence of the
transformer architecture, large pre-trained models have been proposed [Wolf et al.,
2020]. Thanks to their pre-training, they can efficiently adapt to various tasks [Wang
et al., 2019, 2020a] and data types. In general, these models are pre-trained on large
unlabeled datasets in a self-supervised manner. This self-supervision removes parts
of the burden of data labeling as shown in Chapter 3 and leverages the huge quan-
tities of available data.

A wide variety of pre-training tasks have been proposed. General-purpose tasks
aiming at learning the language and grammar were used first. If auto-regressive
Language Modeling (LM) tasks [Radford et al., 2018a] are adequate for decoder
models, MLM tasks [Devlin et al., 2019] best fits encoders as they allow the model
to use the context coming from both directions. MLM tasks have gradually evolved
to adapt to multimodal inputs [Xu et al., 2020] and served as a proxy to teach the
model to combine modalities together early in its computational process [Huang
et al., 2022; Lee et al., 2023]. Most models use several pre-training tasks, either
varying the impacted modality [Appalaraju et al., 2021] or the difficulty [Tay et al.,
2022b].
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Figure 4.1: LayoutLM’s [Xu et al., 2020] MVLM on a document. A small proportion
of words are corrupted (shown in purple), and the model is trained to predict the
original words. The position of words is never corrupted to incentivize the model to
learn correlations between a word’s position and its surrounding 2D context.

4.3 Models

4.3.1 Architecture

We used the well-established LayoutLM architecture [Xu et al., 2020] which itself is
based on Bidirectional Encoder Representations from Transformers (BERT) trans-
former encoder architecture [Devlin et al., 2019]. More specifically, we chose the
base model2 with 12 layers and 512 dimensions for token embeddings. This model
is computationally much more efficient compared to the larger version while still
giving very good performance.

Transformer models work on tokens that are in between characters and words.
LayoutLM and BERT both use the WordPiece algorithm [Wu et al., 2016]. We
use the same tokenizer as LayoutLM to compare our performance with the base
LayoutLM model. It uses a vocabulary size of 30000, and we limit the sequence
length to 512 tokens, including the special tokens [CLS] and [SEP]. This limitation
due to GPU memory consumption of self-attention operations often forces us to cut
documents into multiple pieces of 512 tokens and process them separately.

Contrary to RNNs, all positions in the sequence are equivalent in a transformer
model. To provide information about position inside the sequence, a linear positional
encoding [Vaswani et al., 2017] is added for each token. Then LayoutLM adapted
this positional encoding to a 2D version that can represent the positions of words

2Pre-trained weights available here: https://huggingface.co/microsoft/layoutlm-base-uncased

https://huggingface.co/microsoft/layoutlm-base-uncased
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on a page.

For both pre-training tasks and fine-tuning, we use a simple dense layer to map
each token’s final internal representation to the dimension of the prediction space. A
softmax layer is applied to produce the final model confidence scores. For training,
the cross-entropy loss is used on the model confidence scores.

4.3.2 ConfOpt Post-Processing

We model the Information Extraction task as sequence tagging on tokens. Pre-
dictions are done at the token level and then aggregated by a lightweight post-
processing step to give the model’s final prediction. In all experiments, we use
BIESO tagging. That is, each field to extract is composed of a sequence of target
tags of the following types: B for the beginning of the entity, I for inside, E for its
end, or otherwise S for a single token entity. O is used for any token that is outside
any target label. BIESO is widely used in IE as it provides structure to the target
sequence that helps the model.

Instead of the trivial post-processing which consists of simply following the max-
imum confidence of the model, we decided to decode a model’s prediction by solving
a basic optimization problem. We will refer to this method as ConfOpt in the rest of
the paper. The predicted sequence for a target label is the sequence that maximizes
model confidence over the whole input sequence. There is a constraint to decode a
prediction: it must match the following regular pattern: (BI*E) | S where * denotes
zero or many occurrences and | denotes an alternative.

This optimization problem can be solved with a dynamic programming approach.
The model’s predictions for one target label can be represented as a 4×N dimen-
sional matrix where N is the sequence length and 4 comes from the 4 tags B,I,E,S.
By noting CT,0 the model’s confidence in T tag at position 0 and PT,i the best
prediction confidence ending at token i with tag T, the objective is to determine
S = max

0≤i<N

T∈{E,S}

PT,i where

PB,i = CB,i ; PI,i = CI,i +max

{
PB,i−1

PI,i−1

PS,i = CS,i ; PE,i = CE,i +max

{
PB,i−1

PI,i−1

(4.1)

One drawback of this post-processing is dealing with no predictions and non-
unique predictions. It can be solved with an empirically determined threshold below
which no predictions are made. Though in this paper this is not further studied
because fields are mandatory in a document and always unique.
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4.4 Pre-training

Transformer models provide great performance when first pre-trained on pretext
tasks on very large unlabelled datasets. This pre-training is most of the time done
in a self-supervised manner in order to avoid the labeling cost. LayoutLM uses
Masked Visual Language Modeling (MVLM) [Xu et al., 2020] which is adapted from
BERT’s MLM [Devlin et al., 2019]. It teaches the model how text and documents
are formed at a token level. In practice, at each training step, 15% of the tokens
are randomly chosen and replaced by either a [MASK] token, a random token, or not
replaced at all. The model tries to guess which token is the most probable right
replacement at those positions.

For all pre-training tasks when a document is too long to be processed at once,
we randomly select a continuous span of words of maximum size and provide it to
the model instead. We expect the model to learn useful features on various parts
of documents thanks to the long training. For very short documents, the input is
padded to the maximum size.

We introduce two new specific pre-training tasks in addition to MVLM. The
first one, Numeric Ordering (NO) teaches the model how to compare and order
numbers. The second one, Layout Inclusion (LI) focuses on words in the 2D plane
and their relative positioning. We chose to avoid regression tasks, even though their
implementation would have been simpler. For example, simply removing the 2D
positioning of some tokens, and asking the model to predict tokens’ position is an
alternative to what we propose. But this does not behave well for a token that could
appear either at the top or the bottom of the document: the model would learn its
mean position – the middle – where the token would never appear. In the following,
we will describe the two pre-training tasks in detail.

4.4.1 Numeric Ordering Task

NO focuses on numeric figures in the document and their relative values. Contrary
to MVLM which only relies on self-supervised data, NO relies on a handcrafted
number parser to find and parse all numbers that appear in a document. Because
business documents are mostly made of decimal numbers written with digits, we
ignore those written out in alphabetical characters. The numeric value of each
token is determined by parsing each word in the document, looking for numbers
and ignoring irrelevant characters.

As shown in Figure 4.2, the model must predict for every numeric figure in the
document if its parsed value is smaller, equal or greater than a randomly selected
number in the document. The loss is only computed on tokens starting a new word,
but tokens continuing a word are important to determine the value represented by
a word.

We want the model not only to reason on the textual features but also on the
spatial context surrounding each figure in the document. Therefore, we randomly
mask the textual representations of 15% of the numbers in the document and replace
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Figure 4.2: A pre-training example with NO task. A random token containing a
number is selected, then the target is to predict whether other numbers are smaller
or bigger. Some random noise can be added by masking tokens’ textual or spatial
representations. Only a small part of the document’s input is represented in this
illustration.

them with the [MASK] token as shown in Figure 4.2. For the same reason, we also
mask the spatial encoding of 15% of the numbers and make sure both text and
position are not masked at the same time. All masked positions are replaced with
(1000, 1000, 1000, 1000).

4.4.2 Layout Inclusion Task

We introduce another pre-training task focusing on the 2D positional encoding,
which we call LI. Its purpose is to provide a better understanding of document lay-
outs and complex structures. In fact, most business documents, including invoices,
purchase orders, and expense receipts, contain tables where the meaning of tokens
is mostly driven by their position relative to headers.

As shown in Figure 4.3, LI is formatted like a QA prompt: a question followed
by the content of the document. The question is simply a special token [LAYOUT]
positioned at random coordinates (x1, y1, x2, y2). The model must then classify every
token in the document into 2 groups: either inside or outside of the question token.
More precisely, the target answer is whether the middle point of a document token
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Figure 4.3: A pre-training example with LI task. The coordinates of the purple
rectangle are drawn uniformly. Random noise is added by masking the 2D position
of some tokens. Only a small part of the document is represented.

is inside or outside the rectangle described by the coordinates of the question.

Again, the objective is for the model to not only reason on the 2D positions of
tokens but also use their textual embedding. In order to force the model to use
both representations, we randomly replace 15% of the document’s token positions
with (1000, 1000, 1000, 1000). In case of a random position replacement, the target
value is still computed based on the real position of the token, and the model must
make its prediction based on the token’s text and the neighboring tokens using the
classical 1D positional encoding.

4.5 Datasets

We used 2 different collections of documents to build 3 datasets for training and
evaluation as described in the following. They all contain business documents:
invoices and purchase orders for the private collection and expense receipts for the
public one. The largest dataset used for pre-training isn’t labeled, document samples
with their target fields for the other datasets are shown in Figure 4.4.
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(a) Receipt from SROIE. (b) Purchase Order from BDC-PO.

Figure 4.4: A document sample for each training dataset annotated with the ex-
pected predictions. For BDC-PO, we replaced the document with a fictive one due
to privacy reasons.

4.5.1 Business Documents Collection

The Business Documents Collection (BDC) is a large private dataset composed of
100k invoices and 300k purchase orders. Those real documents were submitted and
processed on a commercial document automation solution in the last 3 years. It con-
tains English-only documents divided into 70000 different issuers. All documents
sharing the same issuer usually use the same information template. Therefore, we
limited the maximum number of documents of the same issuer to 50. It is impor-
tant to keep the number of similar layouts in the collection low and the variety of
examples high. We used this collection for pre-training language models on busi-
ness documents that are closer to our final objective than RVL-CDIP [Lewis et al.,
2006]. In practice, the collection is a superset of Purchase Order (PO)-51k used in
Chapter 3, with vastly more documents and diversity.

Textual and positional information has been extracted using a commercial OCR
system. It achieves excellent accuracy on properly scanned documents and provides
accurate word positions. We also use the provided read order to determine the
order of tokens when feeding the network. This order determines the 1D positional
encoding given to each token that complements the 2D positional encoding.

Because we only used this collection for pre-training models on self-supervised
tasks, most documents do not have extraction labeling. Only a subset composed of
purchase orders is labeled for the IE task.
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4.5.2 Business Documents Collection – Purchase Orders

We selected a subset of the Business Documents Collection (BDC) to build a labeled
dataset of English purchase orders called BDC-PO. It contains almost 9000 different
issuers split into training, validation, and test sets. In order to not introduce bias
for models pre-trained on the BDC, we removed from BDC all documents emitted
by a supplier contained in the test set. This means that document layouts contained
in the test set have never been seen before by the model at pre-training or training
time. This labeled dataset is a bigger and refreshed version of PO-51k, with both
datasets sharing a significant proportion of documents.

Long purchase orders are rare but can sometimes be longer than 20 pages. If we
wanted to train models and make predictions on such documents, we would have to
evaluate the model on dozens of inputs for one document. Instead, we chose to limit
documents to one page and crop the remaining. It only concerns roughly 25% of
the dataset and sometimes impacts the prediction because labels are missing from
the input.

The extraction task consists of 3 fields: document number, delivery date, and total
amount. Those fields were chosen because they are mandatory for most customers
and thus are well labeled at the word level by the end-user. We controlled the
labeling quality at the issuer level and rejected from the dataset some issuers with
undesirable labeling practices.

4.5.3 ICDAR 2019 – Scanned Receipts

We also trained and evaluated our model on the public Scanned Receipt OCR and
Information Extraction (SROIE) [Huang et al., 2019] dataset that was published for
ICDAR 2019. We focus on the third task which consists in extracting information
from the documents. SROIE contains Malaysian receipts split into 626 train and
347 test documents. Unfortunately, we do not have control over the composition of
the test set, and most of the test layouts also occur in the training set.

We used the OCR text provided with the dataset instead of using our own OCR
system. As others have pointed out [Xu et al., 2020], it contains numerous little
errors that negatively affect the final performance. For a fair comparison with the
leaderboard, we manually fixed them such that the expected string appears in the
input, at least. These fixes mostly concern addresses and company names. It almost
exclusively involves fixing errors related to white spaces and commas.

4.6 Experiments

All experiments were performed on a single machine equipped with two Nvidia RTX
A6000 with 48GB of video memory each. This allowed us to boost the batch size
up to 32 per device on a base transformer model. To further increase the batch
size, we also aggregated 6 batches together before propagating the gradient for a
total batch size of 192. We used the Adam optimizer with a learning rate of 1e− 5
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Dataset

Post Processing SROIE BDC-PO

Ad-Hoc 93.88± 0.59 84.35± 0.12

CRF 94.01± 0.55 84.40± 0.16

ConfOpt 94.94± 0.38 84.57± 0.10

Table 4.1: Performance comparison on SROIE [Huang et al., 2019] and BDC-PO
between multiple post-processing algorithms. The score is computed on the exact
match between the prediction and the target string.

and 200 linear warm-up steps as it improved our model’s convergence. We used
1500 training steps for SROIE and 3000 steps for BDC-PO. Finally, we ran each
fine-tuning 10 times in each setup to get a precise idea of the performance of the
models and the variability of the results. For the different pre-training scenarios, we
performed only two runs and the best model was kept.

4.6.1 Post-Processing

This first set of experiments aims at comparing the post-processing used to decode
the sequence produced by the model. We want to determine whether our proposed
ConfOpt algorithm is competitive with other decoding methods. We decided to use
the LayoutLM base model and compare the proposed ConfOpt against two other
decoding algorithms as shown in Table 4.1.

We named Ad-Hoc the basic decoding using the label with maximal confidence
for each token. When decoding with this method, a B tag starts a new entity, a I tag
continues the previous entity, a E closes the previous entity, and a S tag produces
a new entity and closes it right away. Ad-Hoc and ConfOpt use the same model
weights in this experiment as they do not introduce any trainable parameters.

The second decoding algorithm uses a CRF [Lafferty et al., 2001; Lample et al.,
2016] that processes LayoutLM’s predictions. In this particular case, we did not use
the classical cross-entropy loss but the score provided by the CRF layer. Because
the CRF required specific training and did not optimize the same loss, its weights
are different from the two other post-processing methods.

We evaluated these algorithms on both SROIE and BDC-PO. The results in Ta-
ble 4.1 show a tiny improvement using a CRF instead of the Ad-Hoc post-processing
(0.13 and 0.05 F1 points) but those differences are always within one standard de-
viation range. We would need more evidence for a definitive answer on the effect of
adding a CRF layer for the post-processing.

On both datasets, using ConfOpt significantly increases performance (1.06 and
0.22 F1 points) compared to the Ad-Hoc post-processing, even though the model is
strictly identical. In light of these results, we decided to use the ConfOpt for the
next experiment.
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Pre Training F1 Score Accuracy per Field

Task(s) Dataset
PO

Number
Total Date

MVLM RVL-CDIP 84.57± 0.10 89.98 89.10 93.59

MVLM BDC 84.77± 0.12 90.61 89.33 93.59

MVLM+NO+LI BDC 84.84± 0.08 90.71 89.36 93.83

Table 4.2: Model performance when fine-tuning on BDC-PO.

Pre Training F1 Score Accuracy per Field

Task(s) Dataset
Com-
pany

Address Total Date

MVLM RVL-CDIP 94.94± 0.38 92.91 90.81 89.25 99.48

MVLM BDC 95.18± 0.23 93.72 91.00 89.48 99.68

MVLM+NO+LI BDC 95.50± 0.22 93.60 91.41 90.89 99.57

Table 4.3: Model performance when fine-tuning on SROIE [Huang et al., 2019].

4.6.2 Business Document-Specific Pre-training

We conducted another set of experiments in order to study the effects of the new
business data-specific pre-training tasks on the model performance. At the same
time, we controlled the performance gap obtained by pre-training with the basic
MVLM task on the same new dataset. Both comparisons are insightful to de-
cide whether it is useful to pre-train on clients’ data and/or with data-specific pre-
training tasks.

For the pre-training part, we always initialize the model’s weights with the base
version [Xu et al., 2020]. We pre-train models for 20 epochs on 80% of BDC. When
using multiple pre-training tasks at the same time, we chose to provide batches of
single tasks to the model. Gradient aggregation over multiple batches helps with
smoothing the update between different tasks. We pre-trained 2 models on the
BDC, one with MVLM only and another with MVLM+NO+LI.

We evaluated each pre-trained model on both datasets, the results are available
in Table 4.2 for BDC-PO and Table 4.3 for SROIE. Each cell contains the means of
10 runs with different seeds and the standard deviation is provided for the F1 score.
There are a few interesting things to notice.

The first important remark is the importance of the pre-training dataset. Pre-
training on BDC significantly improves performance on both SROIE and BDC-PO,
even though the pretext training task is the same as what was used for LayoutLM.
BDC is more homogeneous and focuses on invoices and purchase orders. Contrary
to our expectations, we observe a greater improvement on SROIE than on BDC-
PO (0.24 vs 0.2 F1 points). But the overall improvement by using BDC can be
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with Specific Pre-Training Tasks

Model Name Size Modalities F1 Score

LayoutLMBASE (Ours) 113M T+L 95.50± 0.22

RoBERTaBASE [Liu et al., 2019b] 125M T 91.07

LayoutLMBASE [Xu et al., 2020] 113M T+L 94.38

LayoutLMv2BASE [Xu et al., 2021] 200M T+L+I 96.25

LayoutMaskBASE [Tu et al., 2023]‡ 182M T+L 96.87

RoBERTaLARGE [Liu et al., 2019b] 355M T 92.80

LayoutLMLARGE [Xu et al., 2020] 343M T+L 95.24

LayoutLMv2LARGE [Xu et al., 2021] 426M T+L+I 97.81

ERNIELayout [Peng et al., 2022]‡ 303M† T+L+I 97.55

LayoutMaskLARGE [Tu et al., 2023]‡ 404M T+L 97.27

Table 4.4: Model performance comparison with the literature on SROIE. Model
sizes are expressed in terms of their number of trainable parameters and modalities
are text (T), layout (L) and image (I). Although our contribution is overthrown by
larger and T+L+I models in terms of pure performance, it achieves better results
than the original LayoutLMLARGE [Xu et al., 2020] which is 3 times bigger.
(†) Because ERNIELayout [Peng et al., 2022] is not publicly available, we had to
estimate its number of parameters with open-source reproductions.
(‡) Those models were published after the first publication of this work.

explained because RVL-CDIP contains a broader panel of document types and is
not specialized like BDC. Even though BDC does not contain expense receipts, its
global structure is similar to invoices.

Next, we can compare the pre-training tasks. Introducing NO and LI tasks also
improves the performance over the previously pre-trained model. We observe a 0.32
F1 point improvement on SROIE but only 0.07 on BDC-PO. We suspect the small
improvement introduced by the new tasks can be explained because most useful
skills to process purchase orders were learned by pre-training on such documents.
The new pre-training tasks help more for generalizing on new types of documents.

We also can look at the results on a field-per-field basis. We observe that using
BDC over RVL-CDIP improved the recognition of all fields except for the dates in
BDC-PO. If introducing new training tasks did not improve all fields, we notice that
some fields were greatly enhanced like the total amount in SROIE (1.41 F1 points
difference). We expected to observe a greater improvement in the total field with
the new pre-training tasks. But it does not seem to improve performance much on
BDC-PO’s total.

Finally, it is interesting to compare on Table 4.4 our results with the literature
on the dataset. Our pre-trained model with NO and LI tasks performs better than
LayoutLM large which contains 3 times more parameters. However, multimodal
models including the visual modality such as LayoutLMv2 [Xu et al., 2021] and
ERNIELayout [Peng et al., 2022] achieve performance still unreachable for a textual-
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only model. The recent LayoutMask [Tu et al., 2023] reaches similar performance
levels as T+L+I models and performs them for smaller models. The difference in
the performance of LayoutMask with LayoutLM and our contribution seems to rely
on their challenging pre-training and their representation of the input sequence.
Further work would be necessary to determine if our proposed pre-training tasks
would benefit to LayoutMask as they benefited LayoutLM.

4.7 Conclusion

In this Chapter, we showed significant improvements are accessible without intro-
ducing more trainable parameters and computational complexity. Only using the
base transformer architecture, we achieved a performance that is comparable to the
large version which contains 3 times more parameters. Pre-trained models can be
further specialized through in-domain datasets and specific pretext training tasks.
We demonstrated that by introducing a new collection of business documents and
training tasks focusing on documents’ layout and number understanding. We showed
that performance improvements can be imputed to both pre-training tasks (NO and
LI) and a new pre-training dataset.

Thanks to their pre-training procedure and their capacity to learn complex
attention patterns, transformers have proven to be very efficient for document-
understanding tasks. Even in a data-constrained environment (see Chapter 3) or
with domain-specific languages, transformers achieve unmatched performance. They
however suffer a significant drawback as the computation cost quickly grows with
long sequences. It limits their application to short, single-page documents with a
small number of words, ruling out a large number of potential candidates for BDs
processing automation. In the following Chapter, we explore alternative architec-
tures and strategies to include those left-out documents in our applications.
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Chapter abstract

Since their release, transformers have revolutionized many fields from Natural Lan-
guage Processing (NLP) to Computer Vision (CV). Document Understanding (DU)
was not left behind with the first transformer-based models for DU dating from late
2019. However, the computational complexity of the self-attention operation limits
their capabilities to small sequences. In this paper, we explore multiple strategies to
apply transformer-based models to long multipage documents. We introduce 2 new
multimodal (text + layout) long-range models for DU. They are based on efficient
implementations of transformers for long sequences. Long-range models can process
whole documents at once effectively and are less impaired by the document’s length.
We compare them to LayoutLM, a classical transformer adapted for DU and pre-
trained on millions of documents. We further propose a 2D relative attention bias
to guide self-attention towards relevant tokens without harming model efficiency.
We observe improvements on multipage business documents on Information Extrac-
tion (IE) for a small performance cost on smaller sequences. Relative 2D attention
was revealed to be effective on dense text for both normal and long-range models.

This work has led to the publication of a paper and an oral presentation at an
international workshop:

• Thibault Douzon, Stefan Duffner, Christophe Garcia, and Jérémy Espinas. Long-
Range Transformer Architectures for Document Understanding. In Proceedings of
the First Workshop on Machine Vision and NLP for Document Analysis (VINALDO),
ICDAR 2023, San José, September 2023. Springer International Publishing.
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5.1 Introduction

In the previous chapters, we demonstrated how transformers significantly improved
both data efficiency and performance thanks to their extensive pre-training and
self-attention. However, the superior performance of transformers over other se-
quential models has a cost: contrary to Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs), transformers’ computational cost scales
quadratically instead of linearly (see Subsection 2.2.3). It limits our capacity to use
models based on this architecture for long input sequences such as long texts or
multipage documents.

Some Business Document (BD) types can greatly vary in size, for instance, a
customer order may include a single line item of several hundred. A model that pro-
cesses such documents should be able to tackle with maximum performance both
short and long examples. Classical approaches involve RNNs combined with several
text-reduction mechanisms [Wan et al., 2019]. However, because information prop-
agates through the sequence, RNNs struggle at modeling long-range dependencies,
even with Long Short Term Memory (LSTM) cells. The transformer’s self-attention
can straightforwardly learn dependencies spanning across the sequence without any
loss of information. It makes the transformer architecture a good candidate to learn
the appropriate interactions between line items and header information in a BD.
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In this Chapter, we explore several approaches and architectures in order to use
transformer models on long documents. For simplicity, we limited our study to text
and layout modalities, and chose to focus on document length to evaluate the model
efficiency. We compare various encoder-only models on sequence tagging tasks with
business and academic documents. We also study the impact of relative attention
based on document layout instead of a linear token position, and its implementation
for long-range transformers.

5.2 Related Work

5.2.1 From Natural Language Processing to Document Understand-
ing

This work derives from both long-range transformers proposed in NLP tasks, trying
to process longer sequences at once and Transformer architectures adapted to DU.
Before the proposal of transformers, the de facto architecture for NLP has been
RNNs. Multiple improvements have been proposed, for example, to tackle vanish-
ing gradients like LSTM cells Hochreiter and Schmidhuber [1997]. Coupled with
Conditional Random Fields (CRFs) [Lafferty et al., 2001; Lample et al., 2016], bidi-
rectional LSTM encoders were then capable at most text understanding task Lample
et al. [2016]. For more complex IE, where target information can span multiple to-
kens, BIESO tags allow better decoding by precisely locating the beginning and end
of the information. Although long sequences can be processed with RNNs, longer in-
put negatively affects the performance of encoder-decoder architectures Bahdanau
et al. [2016]. Hence, the attention mechanism was quickly adopted for those ar-
chitectures as an information highway between the encoder and the decoder. The
transformer’s [Vaswani et al., 2017] self-attention generalizes the encoder-decoder at-
tention introduced by Bahdanau et al. [2016] to an encoder or decoder-only model.

First developed for NLP, transformer encoders were quickly transposed to DU [Xu
et al., 2020; Garncarek et al., 2021; Tu et al., 2023] as pre-trained models were able
to leverage large document collections and outperformed all previous approaches.
LayoutLM [Xu et al., 2020], for example, only introduced 2D positional embeddings
over BERT [Devlin et al., 2019] and was pre-trained on the RVL-CDIP [Lewis et al.,
2006] collection. It opened the way to many other models applying transformers
to previous design [Katti et al., 2018; Denk and Reisswig, 2019], leveraging end-to-
end capacities of encoder-decoder models [Powalski et al., 2021; Kim et al., 2022],
or providing image and text to the models like a visual transformer [Dosovitskiy
et al., 2021; Li et al., 2022]. Because the transformer’s output is independent of
the sequence order, positional embeddings are classically added to the input. It is
also possible to introduce relative bias to the self-attention mechanism to promote
local interactions inside the self-attention. When processing Visually-Rich Docu-
ments (VRDs) with complex 2D layouts, the input is usually enriched with 2D
position and relative bias to self-attention can be replaced with a 2D relative bias
to take into account word positions in the document.
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Most recent models for DU propose to leverage as much information as possible
by using multiple modalities: text, layout and image. Either by combining CNNs
with transformers [Xu et al., 2021; Powalski et al., 2021] or by mixing textual and
visual sequences inside the transformer’s input Li et al. [2021b]; Huang et al. [2022].
Even though those approaches provide superior results, we chose to not include
image modality in our architectures.

5.2.2 Long-Range Transformers

Since the introduction of BERT Devlin et al. [2019] and GPT Radford et al. [2018a],
transformers have demonstrated their capacity to understand and model language Wang
et al. [2020a]. Their ability to manipulate words can be visualized through the
amount of attention each token allows to other tokens. However, as discussed in
Subsection 2.2.3, dot-product attention computation involves a O(N2) time and
memory complexity where N is the sequence length. It limits the capacity of
transformer-based models in dealing with long sequences as they need too much
Graphics Processing Unit (GPU) memory or take too long to process.

Instead of truncating the sequence to the maximum length, many modifications
have been proposed to replace the attention layer with some efficient approximation
that can be computed in O(N) or O(N log(N)). They have been developed and
tested with NLP tasks where long sequences are most likely to be found like long
text summarization and translation.

Fixed Attention Patterns

Some models use attention patterns to limit token attention to a fixed number of
other tokens. It strictly enforces the locality of attention by sparsifying the simi-
larity matrix, reducing the number of possible interactions between tokens and the
complexity of self-attention. For example, splitting the sequence into multiple inde-
pendent blocks like BlockBERT [Qiu et al., 2020a] is a simple and practical solution.
However, because tokens at the edge of a block cannot attend to other blocks, this
pattern produces blindspots for the model which hurts performance around those
edges. Transformer-XL [Dai et al., 2019] solves this issue by introducing a recurrent
connection between blocks. Instead of fixed blocks, sliding windows around each
token remove this blindspot and allow each token to attend to its neighborhood.
LongFormer [Beltagy et al., 2020] and BigBird [Zaheer et al., 2021] use a combina-
tion of sliding windows, global and random attention where the global and random
attention allows the model to attend outside of its neighborhood and propagate ef-
ficient information through long distances across the sequence. ETC [Ainslie et al.,
2020; Lee et al., 2022] splits the input into a small number of global tokens and
local tokens. Global tokens can attend (and be attended) to every other token while
local tokens are limited to their close neighborhood and global tokens. Overall, the
computational complexity of models using attention patterns can be controlled by
the proportion of accessible tokens. An architecture using sliding windows of size
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K results in a self-attention complexity of O(NK) which is linear in the sequence
length N .

Learned Attention Patterns

Fixed attention pattern architectures rely on a human-defined locality definition
which dictates beforehand which attention interactions are allowed independently
of the input sequence. Architectures relying on learned attention patterns shift the
locality definition inside the model which can use the content of the input sequence
to decide whether 2 tokens should attend to each other or not. Models learn to assign
tokens to different baskets, then tokens can only attend to other tokens inside the
same basket. Reformer [Kitaev et al., 2020] uses learnable locality-sensitive hash
functions to assign input tokens to their basket. Other proposed strategies involve
discovering clusters with K-means like the RoutingTransformer [Roy et al., 2020] or
meta-sorting networks like the SinkhornTransformer [Tay et al., 2020]. Because the
model learns the attention pattern, those architectures might better adapt to tasks
involving long-range dependencies.

Approximation of Attention

Previous architectures focused on restraining attention by limiting the number of
attention links between tokens. The dot-product attention however remains identical
to Equation 2.37, the similarity matrix is simply sparsified to reduce the cost of
computation. Wang et al. [2020b] noticed the low-rank nature of the similarity
matrix QK⊤ in all their experiments, indicating the contained information can be
compressed with little loss. In Linformer, they propose to compress along the input
length dimension by projecting both queries and keys into a smaller, fixed length.
It acts as a simplification of the sequence by learning to merge together tokens.
Performer [Choromanski et al., 2021] and Linear Transformer [Katharopoulos et al.,
2020] use kernel approximations to rewrite the similarity matrix as a product of
feature matrices ϕ(Q)ϕ(K⊤) where ϕ(Q) ∈ RN×D and ϕ(K) ∈ RN×D in which N

and D are respectively the sequence length and the feature dimension. It allows the
reordering of Equation 2.37 into ϕ(Q)(ϕ(K⊤)V ) which is more efficient for N >> D.
The recently proposed Cosformer [Qin et al., 2022] improves upon Katharopoulos
et al. [2020] model by introducing relative attention bias to the attention. Because
they never compute the similarity matrix, those models lack interpretability which
was provided by self-attention.

Other architectures for efficient transformers have been developed and compared
in several surveys [Tay et al., 2022a; Dong et al., 2023]. With the rise of Large
Language Models (LLMs), huge efforts have been put into optimizing classical self-
attention with close to no compromise on performance. FlashAttention [Dao et al.,
2022; Dao, 2023] and multi-query attention [Shazeer, 2019] (instead of multi-head)
reduce the memory requirements to improve long-range capabilities of classical trans-
formers. However, long-range transformer architectures have not yet been used on
DU tasks, mostly due to datasets not containing lengthy documents.
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5.3 Datasets

We used 2 document datasets, where our choice was mainly made based on docu-
ment length and the task itself. We wanted a NLP task that can be represented as
sequence tagging in order to test the whole encoder with long inputs. Both datasets
consist of English-only documents with close to perfect Optical Character Recogni-
tion (OCR) extraction. They provide word-level axis-aligned bounding boxes in the
form that can be fed to the model as layout information. We use the OCR-provided
order for the input sequence and do not further analyze documents to extract their
structure.

5.3.1 Business Document Collection - Purchase Orders

The first dataset consists of purchase orders submitted to Esker’s platform between
2018 and 2021. This is a modification of Business Documents Collection (BDC)-
Purchase Order (PO) from the previous chapter that includes multi-page documents
and more fields to extract. Due to privacy concerns, these documents cannot be
shared. It contains 80k documents that can be divided into 9000 different issuers
with no more than 50 documents from the same issuer. Usually, an issuer only emits
documents with the same template for convenience. About 55% of documents can be
tokenized into a sequence of 512 tokens which fit into a classical transformer default
maximum length. Only 5% of documents are longer than 2048 tokens, following a
long tail of distribution. In order to evaluate the models’ generalization abilities,
we split into train, validation and test sets such that templates in the test set have
not been seen by the model during training.

The task consists of Information Extraction on multiple known classes: document
number, date, total amount, item ID numbers and item quantities. Some information
only appears once in the document (e.g., document number, date and total amount)
while others are repeated for each line item in the business order. We call header
fields those that occur only once and table fields others as they are most of the time
structured in a table layout. There could be between 1 and 50 items present in any
document, their number is not known in advance. Figure 5.1 shows the labeling
of a multipage document. Even though header fields are sometimes repeated on
each page, it is only labeled once to stay consistent across templates. Labels are
provided at the word level based on manual customer document extraction. We also
controlled labeling quality and rejected from the dataset documents with missing
mandatory fields or with the wrong number of line items.

A superset of this dataset was used for pre-training models on business docu-
ments. It consists of 300k POs and 100k invoices from the same commercial plat-
form. All documents were submitted and processed by the platform but later re-
jected due to labeling errors or bad habits. Fortunately, this does not impact the
OCR quality and allows us to pre-train our models on a large collection of recent
documents. We chose to use it for pre-training instead of RVL-CDIP [Harley et al.,
2015] for the OCR quality difference.
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SALES ORDER

ORDER # 953487
DATE: JANUARY 13, 2013

JMART
1600 Boston Road
Springfield, MA 01129
(413) 543-0601

TO IDES US Inc.
1230 Lincoln Avenue
New York, NY 10019
Customer ID 300717

SHIP 
TO

JMART
1600 Boston Road
Springfield, MA 01129
Customer ID 300717

SALES PERSON JOB SHIPPING METHOD DELIVERY DATE PAYMENT TERMS DUE DATE

Terry Schmidt 953487 OVERNIGHT SHIPPING 1/15/13 Due on receipt

QTY ITEM # DESCRIPTION UNIT PRICE LINE TOTAL

3 L-40C Light Bulb 40 Watt clear 220/235V 438.00/carton 1314.00

4 L-40F Light Bulb 40 Watt frosted 220/235V 432.00/carton 1728.00

4 L-60C Light Bulb 60 Watt frosted 220/235V 430.15/carton 1720.60

3 L-60F Light Bulb 60 Watt frosted 220/235V 435.08/carton 1305.24

2 L-80C Light Bulb 80 Watt clear 220/235V 440.35/carton 880.70

4 L-80F Light Bulb 80 Watt frosted 220/235V 453.21/carton 1812.84

12 PK-100 PK-100 Special carton high tech 14.40/PC 172.80

12 PK-102 PK-102 Pallet 120 x 80 x 12,5 Type B 13.15/PC 157.80

4 R-1141 PAQ Monitor, 20”, Color 300.00/PC 1200.00

2 R-1002 Maxitec R 3133 Personal Computer 1392.40/PC 2784.80

4 R-5002 Processor Pentium 530.00/PC 2120.00

3 M-15 SEC Multisync XV15 1187.70/PC 3563.10

4 R-1141 PAQ Monitor, 20”, Color 300.00/PC 1200.00

2 M-12 MAG DX 12F/FE 855.14/PC 1710.28

2 M-13 MAG DX 13F/FE 855.14/PC 1710.28

This is an offer to purchase. Written acceptance of the order or shipment signifies acceptance of the Terms and Conditions of 
Purchases printed on the back or otherwise available at www.jmart.com. Any additional or different terms proposed by Seller 
are rejected unless expressly agreed to in writing by the Buyer.
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QTY ITEM # DESCRIPTION UNIT PRICE LINE TOTAL

3 L-40C Light Bulb 40 Watt clear 220/235V 438.00/carton 1314.00

4 L-40F Light Bulb 40 Watt frosted 220/235V 432.00/carton 1728.00

4 L-60C Light Bulb 60 Watt frosted 220/235V 430.15/carton 1720.60

3 L-60F Light Bulb 60 Watt frosted 220/235V 435.08/carton 1305.24

2 L-80C Light Bulb 80 Watt clear 220/235V 440.35/carton 880.70

4 L-80F Light Bulb 80 Watt frosted 220/235V 453.21/carton 1812.84

2 M-12 MAG DX 15F/FE 855.14/PC 1710.28

2 M-13 MAG DX 15F/FE 855.14/PC 1710.28

2 M-14 MAG DX 15F/FE 855.14/PC 1710.28

TOTAL DISCOUNT _ _

SUBTOTAL 37272.66

SALES TAX 1863.63

TOTAL 39136.29

This is an offer to purchase. Written acceptance of the order or shipment signifies acceptance of the Terms and Conditions of 
Purchases printed on the back or otherwise available at www.jmart.com. Any additional or different terms proposed by Seller 
are rejected unless expressly agreed to in writing by the Buyer.

Figure 5.1: Sample pages with colored labels similar to those in the BDC-PO
dataset. Both pages come from the same document, the first page is on the left
and the last page is on the right. Some information is repeated across pages of a
document.

5.3.2 DocBank

DocBank [Li et al., 2020] is a dataset containing 500k public research article pages.
It contains English documents spanning various research fields. Documents were
obtained on arXiv and were annotated with PDFPlumber1, a Portable Document
Format (PDF) parser that accurately extracts item bounding boxes. Li et al. [2020]
provide both pixel and word-level annotations for CV and NLP models. The order
of words is defined from top to bottom and left to right, except for multicolumn
documents where whole columns are ordered left to right. In this work, we will only
use textual information along the word 2D positions.

Docbank segmentation task contains 12 categories (e.g. title, paragraph, figure
etc.) representing semantic parts of a research article. Because articles contain dense
paragraphs, most pages are longer than 512 tokens once tokenized. In fact, only 11%
of the test documents contain less than 512 tokens and 84% contain between 512
and 2048 tokens.

5.4 Models

We compared LayoutLM [Xu et al., 2020], a transformer for DU which is our base-
line, with our long-range contributions LayoutLinformer and LayoutCosformer2.
They only differ by their implementation of self-attention: LayoutLM uses full

1https://github.com/jsvine/pdfplumber
2Models implementation and weights available at https://github.com/thibaultdouzon/

long-range-document-transformer

https://github.com/jsvine/pdfplumber
https://github.com/thibaultdouzon/long-range-document-transformer
https://github.com/thibaultdouzon/long-range-document-transformer
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Figure 5.2: DocBank sample image on the left and its corresponding segmentation on
the right. Each color represents one class (black for paragraph, purple for equation,
...).

self-attention like BERT [Devlin et al., 2019], LayoutLinformer uses a low-rank
approximation first proposed by [Wang et al., 2020b] and LayoutCosformer uses a
kernel-based method introduced in [Qin et al., 2022] as a replacement. We further
detail how they work in the subsequent subsections.

We chose those models over other efficient transformers based on the convenience
of adapting them from linear text to 2-dimensional documents. Efficient attention
based on sliding windows [Beltagy et al., 2020; Zaheer et al., 2021] does not transpose
nicely to 2D documents because the sliding window mechanism is deeply linked to
the linear order of words. Even though our approach tries to provide words in
a natural order, in some documents it does not reflect the human reading order.
For example, when parsing table content, the reader often reads top to bottom to
associate a column header with its values. To mitigate this issue, we preferred to
rely on global attention or 2D local attention.

Similarly to how LayoutLM was adapted from BERT, we adapt Linformer and
Cosformer models to process documents by adding a 2D positional embedding and
a page embedding to the input. We chose to use learned embeddings to simplify
weight transfer from LayoutLM to our long-range models.

5.4.1 LayoutLM

LayoutLM [Xu et al., 2020] has proven its capacities on most tasks related to docu-
ments since its release. It reuses BERT [Devlin et al., 2019] encoder and tokenizer
but modifies the positional encoding by introducing a 2D encoding for word box
boundaries and size. This modification allows the model to leverage layout infor-
mation provided by the OCR. LayoutLM’s computational bottleneck is the self-
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Figure 5.3: Illustration of the attention mechanism used in LayoutLM, normalization
and multiple heads aside. In this example, N = 5 and D = 2. Due to the softmax
operator, the product QK⊤ must be computed, resulting in O(N2) complexity.

attention layer. In transformers, self-attention is described by Equation 2.37. It
can also be visually represented as in Figure 5.3 up to a normalization factor. Xu
et al. [2020] pre-trained the model on RVL-CDIP [Harley et al., 2015] which contains
7 million scanned documents released in the 90s from the tobacco industry. Two
versions of LayoutLM have been released: base and large, and they outperformed
all preceding text-only language models on classification and IE tasks.

In our experiments, we only use the base model with maximum sequence length
N = 512 and hidden size d = 768. For longer documents, we split the tokenized
sequence into chunks of maximum length and process them separately.

5.4.2 LayoutLinformer

Our first contribution, LayoutLinformer, is based on the Linformer architecture [Wang
et al., 2020b] and adapted to document processing by adding 2D positional encod-
ings and using LayoutLM pre-trained weights. Although true self-attention can
only be computed in O(N2), it can be approximated very efficiently by leveraging
the low-rank property of the attention matrix QK⊤. In Figure 5.4, we illustrate
LayoutLinformer’s attention mechanism. Keys and values sequence length dimen-
sions are projected on a smaller space of size M through a linear transformation:
K ′ = PKK where PK ∈ RM×N is the learned projection matrix (respectively
V ′ = PV V where PV ∈ RM×N ). This means the size of the new attention matrix
Q(PKK)⊤ is N ×M , reducing the complexity of self-attention to O(NM).

An immediate drawback of this projection is the loss of ability to visualize the
attention matrix in order to explain the model. It is also no longer possible to
implement causal attention or any specific attention pattern. On the other hand,
Linformer provides a simple modification to the transformer to make it manage
longer sequences with global attention. Most model weights are identical between
the two architectures, allowing us to transfer LayoutLM pre-trained weights into
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Figure 5.4: LayoutLinformer attention mechanism. In this example, N = 5, D = 2

and M = 3. Efficient matrix multiplication ordering reduces the complexity to
O(NM).

DocumentLinformer before further pre-training.
Wang et al. [2020b] showed that it can obtain a performance comparable to

Roberta [Liu et al., 2019b] on multiple NLP benchmarks. They showed evidence
that its performance is mostly determined by the projection dimension M and that
increasing the sequence length N did not degrade results. Therefore, we chose to
apply LayoutLinformer with N = 2048 and M = 512 to compare its performances
with LayoutLM.

5.4.3 LayoutCosformer

Our second contribution, called LayoutCosformer, is based on the Cosformer [Qin
et al., 2022] model which is another efficient alternative to the original transformer.
Similarly to LayoutLinformer, we transferred pre-trained weights from LayoutLM
to DocumentCosformer thanks to the similarities between architectures. It achieves
linear complexity by replacing the non-linear similarity computation between Q and
K with a linear operation. More specifically, Qin et al. [2022] proposed to replace
exp
(
QK⊤

)
with ϕ(Q)ϕ(K)⊤ where ϕ is a nonlinear feature function. Figure 5.5

illustrates in more detail how LayoutCosformer attention works. In order to keep
values of the similarity matrix positive, a good choice is ϕ = ReLU. Computations
can then be reordered to decrease the complexity to O(N).

In addition to its linear self-attention complexity, Qin et al. [2022] include a
relative self-attention bias towards nearby tokens. They cannot simply add the bias
to the N×N similarity matrix before multiplying with values because it would mean
a quadratic complexity. Their solution is to use functions that can be decomposed
into a sum of products: f(x, y) =

∑
n gn(x) × hn(y). If we call B the bias matrix

where Bi,j = f(i, j), their biased similarity matrix can be written ϕ(Q)ϕ(K⊤)⊙B

where ⊙ is the element-wise product. Then when looking at the attention from
token i to token j we obtain:
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Figure 5.5: LayoutCosformer efficient attention mechanism with N = 5 and D = 2.
The linear similarity enables computing first ϕ(K⊤)V and factorize ϕ(Q) out of the
summation of the normalization factor.

si,j = ϕ(Qi)ϕ(K
⊤
j )Bi,j

= ϕ(Qi)ϕ(K
⊤
j )
∑
n

gn(i)× hn(j)

=
∑
n

ϕ(Qi)ϕ(K
⊤
j )gn(i)hn(j)

=
∑
n

(ϕ(Qi)gn(i))× (ϕ(K⊤j )hn(j))

(5.1)

Using this trick, they proposed to use a cosine bias Bi,j = cos
(

π
2M (i− j)

)
which

can be decomposed into Bi,j = cos
(

π
2M i

)
cos
(

π
2M j

)
+ sin

(
π

2M i
)
sin
(

π
2M j

)
. With

the normalization constant M set to the maximum sequence length, they ensure
0 < Bi,j < 1 with a maximum when i = j. In the next subsection, we demonstrate
how it can also be applied to 2D relative attention.

5.4.4 2D Relative attention

Global self-attention is a powerful tool for capturing long-range dependencies. How-
ever, although distant dependencies can be relevant, most attention should be on
close neighbors. Relative attention Shaw et al. [2018]; Powalski et al. [2021] selec-
tively focuses on specific parts of the input by biasing the base self-attention. This
was proven useful in text that can be represented as a linear sequence, but due to
complex layouts, the sequence order is suboptimal to determine locality. To better
capture the local context in documents, we introduced 2D relative attention based
on the token positions inside the document.

In LayoutLM, we pre-compute for each document an attention bias matrix B

and modify the self-attention formula to take it into account. More precisely, we
use a modified self-attention, similarly to Equation 2.37:
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RelativeAttention(Q,K,V ,B) =
(
softmax(QK⊤)⊙B

)
V (5.2)

Where ⊙ denotes element-wise multiplication. Directly multiplying the attention
matrix by some bias is very flexible and allows for any bias matrix to be chosen. It
also matches the way LayoutCosformer applies a relative bias to its self-attention,
thus allowing us to compare them.

On the other hand, it is nontrivial to implement relative attention for global long-
range transformers. Because LayoutLinformer compresses the sequence dimension
of K, it is not possible to apply custom 2D attention bias to LayoutLinformer. For
LayoutCosformer it is possible to reuse the same trick as in the 1D version with
another bias function.

Because the function must remain separable into a sum of products, a good
choice is to use exponentials and trigonometric functions. We first prove that the
product of two separable functions is also itself separable. Let f1 =

∑
n g

1
n(x)×h1n(y)

and f2 =
∑

m g2m(x) × h2m(y) be two functions separable into a sum of products,
then:

f1(x, y)× f2(x, y) =

(∑
n

g1n(x)× h1n(y)

)
×

(∑
m

g2m(x)× h2m(y)

)
=
∑
n

∑
m

(
g1n(x)× h1n(y)× g2m(x)× h2m(y)

)
=
∑
n,m

(g1n(x)g
2
m(x))× (h1n(y)h

2
m(y))

(5.3)

Which can also be separated into a sum of products.
We chose to compare 2 different attention biases. The first one is simply the

product cosine bias along both X and Y axis. It captures the local context in every
direction with variations close to the Euclidean distance. We define Bsquircle 3 the
following:

Bsquircle
i,j = cos

( π

2M
(xi − xj)

)
× cos

( π

2M
(yi − yj)

)
(5.4)

Where xi and yi (resp. xj and yj) are positions of token i (resp. j) along X and
Y axis. In practice, we used the coordinates of the center of each token bounding
box.

Although this bias correctly captures 2D locality, documents complex layout
sometimes implicitly calls for other definitions of proximity to understand it. For
instance, Figure 5.6 shows a table from a purchase order.

In this configuration, in order to grasp correctly the meaning of a cell in the ta-
ble, the model needs to make the connection with the table header positioned at the

3Squircle are intermediate shape between square and circle, see https://en.wikipedia.org/
wiki/Squircle. Contours of the surface described by Bsquircle is not a squircle but also range from
square to circle.

https://en.wikipedia.org/wiki/Squircle
https://en.wikipedia.org/wiki/Squircle
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(a) Squircle relative attention bias. (b) Cross relative attention bias.

Figure 5.6: Contour plots for squircle and cross relative attention bias applied to
token “210,80” (bottom-right corner). Because token positions are normalized be-
tween 0 and 1000, tokens along the same line cannot fully attend to each other on
the left while they are unaffected on the right.

beginning of the page. When multiple line items span the whole page, we hypothe-
size that this relative attention might hurt the performance due to the long-distance
separating tokens. To deal with this issue, we propose another bias pattern. Its ob-
jective is to allow attention to tokens that are aligned with each other along the X or
Y axis. To this end, we define Bcross

i,j = max{cos
(

π
2M (xi − xj)

)
, cos

(
π

2M (yi − yj)
)
}.

We illustrate the differences with an example shown in Figure 5.6. With cross-
shaped relative attention bias, the highlighted token (the price of an item) can
better attend to the column header “Unit Price” and its related line. In general, to-
kens inside a table can fully attend to their corresponding column header and line.
This should prove helpful for understanding tables by guiding the model’s attention
toward semantically related tokens.

5.5 Experiments

Our models are pre-trained on the BDC for 200k steps using Masked Visual Lan-
guage Modeling (MVLM) Xu et al. [2020]. They are then finetuned on each dataset.
For both tasks, we use BIESO tags to help the model decode predictions spanning
multiple tokens. We performed our experiments on two RTX A6000 for pre-trainings
and a single RTX A6000 for fine tunings. LayoutLM models run with a batch size
of 48 and a sequence length of 512 while long-range models (LayoutLinformer and
LayoutCosformer) can only get to a batch size of 16 with a sequence length of 2048
on a single device. We accumulate the gradient for 96 data samples before updat-
ing the model’s weights. We use Adam with learning rate lr = 2 · 10−5 and linear
warmup for 5% of the training steps followed by a linear decrease.

5.5.1 Long-Range

Theoretical results on model architectures hint towards LayoutLinformer and Lay-
outCosformer being much more efficient the longer the sequence. We use a dummy
inference task with increasing sequence lengths and compare our 2 models with
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Time (s) / Memory (GB)
Model Name Sequence Length

512 1024 2048 4096 8192 16384

LayoutLM [Xu et al., 2020] 1.41/1.25 2.83/2.50 7.39/5.01 23.43/13.69 - -
LayoutLinformer 1.18/1.35 1.92/2.26 3.54/3.28 6.90/5.19 13.08/8.96 25.65/16.78
LayoutCosformer 2.03/1.36 2.50/2.37 4.68/3.38 9.00/5.38 17.23/9.59 33.96/17.59

Table 5.1: Duration and memory consumption of the 3 models for various sequence
lengths on an inference task.

LayoutLM base architecture. The results are available in table 5.1. They reveal
how the computational complexity of full self-attention disables LayoutLM when
dealing with a sequence longer than 1024. Its memory consumption limits our tests
with LayoutLM up to a sequence length of 4096, longer sequences couldn’t fit into a
single GPU. On the other hand, LayoutLinformer and LayoutCosformer performed
as predicted, with LayoutCosformer being slightly slower and more memory-hungry
than LayoutLinformer.

It turns out the document’s length also greatly impacts model metrics perfor-
mance on BDC-PO. For better visualization, we group documents into 3 length
categories: short (document fits into 512 tokens), medium (between 513 and 2048)
and long (2049 or more tokens). LayoutLM models can process short documents
in a single sequence but need to split other documents into multiple independent
sequences. Short and medium documents fit into LayoutLinformer and LayoutCos-
former sequence lengths but not long documents. When a model cannot process a
document in a single sequence, we split the document into multiple sequences and
process them separately.

In Figure 5.7, we compare our pre-trained LayoutLM models with LayoutLin-
former and LayoutCosformer. First, we discovered LayoutLM is very sensitive to
the split position for medium and long documents. Introducing a sequence split
when a new page is started greatly improves performance, we call this model Lay-
outLM SplitPage. It performs better on total amount (from 53.7% to 70%), item
ID number (from 62.7% to 75.6%) and quantity (from 77.0% to 90.1%) recognition
for medium and long documents. The repetitive structure of multipage documents
combined with the fact that most pages fit in a 512 tokens sequence allow the model
to not get lost. Document number and date are mostly not affected because they
almost always occur at the beginning of the document, which is not affected by the
splitting strategy.

Although LayoutLinformer and LayoutCosformer perform slightly worse than
LayoutLM for short documents on all classes (around 74% F1 score on item ID num-
ber versus 81% for LayoutLMs), their performance decreases less than LayoutLM’s
on medium documents. On those medium documents, even LayoutLM SplitPage
drops from 88.2% to 70.1% F1 score on the total amount while both long-range
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Figure 5.7: F1-score stacked bar plot of multiple models on BDC-PO. In each
document length category, models are in the same order.

models only reduce performance from roughly 87% to 80%. We also noticed date
recognition performance degrades across all models with longer documents which is
not expected because dates are usually at the top of the first page. The same can be
noted for the order number at a smaller scale. It might be due to a correlation be-
tween the document’s length and layout: short and medium/long documents do not
share layouts. And because there are twice more short documents than longer ones,
it is harder to generalize to new layouts. Overall, the performance of long-range
models is more consistent across a wide variety of document lengths.

We performed the same experiments on the Docbank dataset, except for the
page-splitting part as all documents are single-paged. At first, we compared the
models’ performances for each document length category in Table 5.2. It contains
the average F1 score across all labels weighted by the support of each label. It turns
out length categories introduce bias in the composition of pages, with labels being
very sparsely represented in some categories. This bias implicitly selects the first
page of documents in shorter pages (with lower text density), while medium-sized
pages contain a lot of paragraphs.

We observe the same drop in performance for long-range models on short docu-
ments, with LayoutLinformer providing better results across the board than Layout-
Cosformer. But we notice LayoutLM performs slightly better on medium documents
than on short. Long-range models follow the same pattern with a greater difference
between short and medium pages, LayoutCosformer almost gaining 2 average F1
percentage points. There are almost 20 times fewer long documents than medium,
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F1 Score
Model Name Document Length

Short Medium Long

LayoutLM 95.36 95.84 91.42

LayoutLinformer 95.20 96.49 91.41
LayoutCosformer 94.03 95.91 91.40

Table 5.2: F1 weighted average for each model and document length categories. All
models were first pre-trained on BDC.

F1 Score

Model Name Categories
Macro

Average

Abst. Auth. Capt. Equa. Footer List Para. Sect. Table Title

LayoutLM ([Li et al., 2020]) 98.1 85.9 95.9 89.4 89.5 89.4 97.8 95.9 86.3 95.7 93.1
LayoutLM ([Xu et al., 2020]) 98.3 89.6 96.0 89.0 91.6 88.2 97.5 94.3 87.4 90.4 93.0

LayoutLM † 97.8 87.5 94.9 87.2 90.5 84.0 97.1 92.8 85.7 88.6 91.6
LayoutLMSQUIRCLE † 98.4 90.2 96.1 89.7 92.0 88.9 97.6 94.6 87.7 90.3 93.2
LayoutLMCROSS † 98.4 90.3 96.0 89.6 92.1 88.7 97.6 94.6 87.5 90.7 93.2

LayoutLinformer † 97.9 88.9 93.7 90.0 91.1 87.9 97.5 91.3 87.6 88.7 92.3

LayoutCosformer † 97.2 87.2 91.0 88.1 90.6 87.4 97.1 81.4 87.0 88.3 90.7
LayoutCosformerSQUIRCLE † 97.0 85.4 92.4 89.2 90.7 84.2 97.2 85.6 87.9 86.8 90.7
LayoutCosformerCROSS † 97.4 86.9 93.8 91.2 91.7 87.5 97.5 87.4 89.0 88.1 91.9

Table 5.3: Results on Docbank dataset for LayoutLMs and long-range models.
† Those models were pre-trained on BDC before finetuning on Docbank.

which could explain part of the global performance loss. Unfortunately, due to those
biases, it is difficult to conclude on the models’ performances.

Table 5.3 compiles results for LayoutLM and long-range models for all labels.
First, we can make sure our training pipeline performs on par with what Docbank
authors reported for the LayoutLM base model by comparing their results and the
ones we obtained by using public LayoutLM weights. Except for author and ti-
tle labels, both results are very close, and the macro average is almost identical.
Secondly, pre-training on business documents negatively impacts LayoutLM perfor-
mances on all labels, losing 1.4 F1 percentage points on average. This advocates for
pre-training data crucial role in later model finetuning results and its composition.
Finally, long-range models performed on the same level as LayoutLM. LayoutLin-
former even being more performant than our pre-trained LayoutLM. Overall, even
though LayoutCosformer seems less performant on this task, both long-range mod-
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Model Name Macro Average F1 Score

Short Medium Long

LayoutLM Split Page 90.0 82.2 77.2

LayoutLMSQUIRCLE Split Page 90.4 83.0 77.8

LayoutLMCROSS Split Page 90.0 82.0 77.6

LayoutCosformer 87.6 85.0 79.0

LayoutCosformerSQUIRCLE 85.8 82.2 73.4

LayoutCosformerCROSS 87.6 85.2 77.2

Table 5.4: Macro average F1 score on the Business Orders dataset with 2D relative
attention.

els performed better than our pre-trained LayoutLM on table and equation. Those
two labels might beneficiate from long-range references, giving the model hints of
their presence in the current sequence.

5.5.2 Relative Attention

We conduct the same experiments on models with 2D relative attention and compare
their performance with their flat attention counterparts. On the BDC-PO dataset,
Table 5.4 shows slight gains when using squircle attention with LayoutLM. For all
document lengths, IE is improved by a few percentage points of F1 score over our
previous LayoutLM Split Page implementation. However, we do not observe the
same improvement with the cross-shaped attention pattern. This might indicate
focusing on very local neighbors helps LayoutLM make the right decision. Overall,
relative attention improves results in some circumstances but not as much as split-
ting every page did. However, when combined with LayoutCosformer, we observe
a significant degradation in performance for all labels with the squircle attention
while the cross pattern provides similar results as the raw LayoutCosformer.

On Docbank task, relative attention provides noticeable performance gains for
both LayoutLM and LayoutCosformer. We provide all results in Table 5.3. Lay-
outLM with relative attention is standing out, going from 91.6% F1 score to 93.2%
for both squircle and cross patterns. Most improvements are made on author, equa-
tion and list, each gaining at least 2 F1 score points. Both resulting models even
beat Docbank’s authors’ version by a thin margin. This is impressive knowing those
models were pre-trained on the same BDC-PO dataset as our base LayoutLM which
suffered a 1.5 F1 score performance drop as a consequence. It turns out author,
equation and list were also the fields where our LayoutLM performance dropped
the most compared to stock LayoutLM. Applying cross-shaped relative attention
to LayoutCosformer also improves performance across most labels. It even outper-
forms all other models on equation and table fields which benefit most from very
long attention.
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5.6 Conclusion

In this Chapter, we showed the impact of document length on transformer-based
models applied to DU. Depending on the document’s type and the task, the model’s
performance on longer documents can be negatively impacted with the F1 score
dropping 20% for the most impacted. We explored several alternatives including
another sequence split strategy and long-range layout-aware models based on Lin-
former and Cosformer architectures. They all proved to successfully reduce the per-
formance gap between short and long documents (down to only a 10% performance
drop), sometimes at a small cost on short document metrics. We also introduce
relative attention based on 2D textual layout instead of the classical sequence order.
It produces better results on dense text, significantly improving both LayoutLM and
LayoutCosformer on the Docbank layout segmentation task.

In addition to other efficient transformer architectures, we plan to investigate
other ways to use longer sequences for DU. For example, in multimodal models,
this may allow the fitting of the whole text and visual patches of a document in a
single sequence without needing more computing capabilities.
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Throughout this thesis, we’ve shown the evolution of tools and algorithms avail-
able when performing any task related to document understanding. From hand-
crafted rules and regular expressions to models able to discover and learn complex
patterns when provided with labeled data examples. The last decade revealed the
potential of models based on Artificial Neural Networks (ANNs) at the origin of
the deep learning revolution. On several occasions, researchers working on doc-
ument understanding adapted architectures first proposed for Natural Language
Processing (NLP) tasks to the world of documents: first with Recurrent Neural
Networks (RNNs) and Bidirectional Long Short Term Memorys (BiLSTMs), and
more recently with models based on the transformer architecture in combination
with extensive pre-training.

From the point of view of a company like Esker with business applications in
mind, those technologies enable the progressive automation of the document pro-
cessing pipeline. The choice of technology is driven by multiple factors like the
performance at a given task which is directly correlated with the satisfaction of the
client. Other factors such as the development and running costs, the time to market
and the data requirements should not be overlooked as they also play a role in the
adoption of a new feature. If statistical models provide better performances than
rule-based algorithms, they require labeled datasets and skilled engineers to train
and push models to production. Our contributions focus on the recent transformer
architecture and its application to Visually-Rich Document (VRD) understanding.

6.1 Contributions

Data-efficiency of transformers

In Chapter 3, we studied how pre-training affects the amount of labeled data required
to train a model. By comparing a pre-trained model to freshly initialized models, we
demonstrated how pre-trained versions were significantly more data-efficient than
their newly initialized counterparts on a sequence labeling task. The model pre-
trained with Masked Language Modeling (MLM) was able to reach close to maximal
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performance with a fraction of the training dataset, outperforming other models
with 10 times fewer examples. We also showed public datasets could be leveraged
to further improve a model on a downstream task with a very limited amount of
labeled examples. This work strongly advocates the use of pre-trained models, both
for their performance and their efficiency. They drastically reduce the entry barrier
of deep learning models in terms of the required size of the training dataset, which
greatly reduces the cost of finetuning a model.

Specific pre-training for business documents

Chapter 4 shifts the focus toward pre-training tasks for Business Document (BD)
understanding. To pre-train a model specialized for BD, we first collected a large
collection of BDs. However the distribution of BDs is quite different from general
VRDs, BDs include several numeric values across pages and their content is struc-
tured by tables and blocks instead of long paragraphs of text. To guide the model
learning better representations of BDs, we introduced new pre-training tasks in-
spired by MLM directed toward better numeric values and layout understanding.
The resulting pre-trained model significantly outperformed comparable models in
the literature and challenged the performances of models 3 times bigger. This work
incentivizes to spend more time designing adequate pre-training tasks for the data
distribution as it significantly helps the model when finetuning. Besides, as long as
pre-training is performed with self-supervision, it also reduces the need for labeled
examples during finetuning for the same performance.

Processing long documents

In the last Chapter, we evaluated several modified transformer architectures aimed
at processing longer sequences. Because the original transformer uses self-attention
with quadratic complexity with respect to the sequence length, transformer-based
models are usually not able to process long sequences without driving costs high.
Our baseline strategy was to split the sequence when reaching the size limit or the
end of the page. We proposed to adapt to VRD understanding known long-range
alternatives to self-attention and comparing their performance. Those alternatives
compared favorably to the baseline when dealing with long documents but suffered
from the self-attention replacement for short documents.

6.2 Future Work and Perspectives

The following section is a short discussion on the future of document understanding.

Integrating the workflow into the model

Currently, models are deeply integrated into a workflow that first pre-processes the
image to extract words with an Optical Character Recognition (OCR) and post-
processes the results afterward. Post-processing BIESO tags can involve complex
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steps to take into account field occurrences spanning over multiple tokens as seen
in Chapter 4. One perspective would be to reduce the model’s dependence on such
systems by actually outputting structured, parsed results.

End-to-end models like TILT [Powalski et al., 2021] and Donut [Kim et al.,
2022] have demonstrated the importance of a decoder network to generate a textual
output. It allows the model to tackle a broader range of Document Understanding
(DU) tasks, including Question Answering (QA). Kim et al. [2022] even resorted to
integrating the OCR system into the model to improve overall speed.

Multimodality

The transformer architecture has proven its performance with multiple modalities
for VRD understanding. The addition of the visual modality significantly improves
metrics provided that the model learns how to combine information from several
modalities together. Those interactions are currently learned during the pre-training
of the model through the pre-training tasks. As shown by Tay et al. [2022b] with UL2
and LayoutMask [Tu et al., 2023], difficult pre-training tasks benefit the model as
it learns more complex patterns. This might inspire future multimodal pre-training
task designs that will hopefully better align the modalities provided to the model.

On the other hand, multimodal architectures such as StrucTexT [Li et al., 2021c],
LayoutLMv3 [Huang et al., 2022] and ERNIELayout [Peng et al., 2022] use multiple
sequences to encode separately the different modalities. It substantially lengthens
the input sequence which is already heavily constrained by the quadratic complexity
cost associated with self-attention. Efficient transformer architectures might be able
to fully unlock the potential of multimodal transformers by processing at the same
time a complete page of dense tokens with highly detailed visual patches.

Large language models

The recent breakthrough of Large Language Models (LLMs) in language genera-
tion [Touvron et al., 2023] demonstrated their ability to understand text, follow
instructions and produce an answer. They however rely on text only although some
have announced the release in the future of multimodal LLMs. Such a model with a
long enough context sequence length could drastically improve on current standards.
Most extreme models have already extended the context length to 128k tokens [Peng
et al., 2023] thanks to FlashAttention [Dao et al., 2022]. Their ability to use tools
and reason through a chain of thoughts [Wei et al., 2023] enables more complex
tasks like browsing a web portal to search for information and submit previously
extracted document details. LLMs have the potential to automate a significant
number of tasks by connecting systems that were not able to interact previously.

However, because of their size, LLMs are incredibly expensive to train and use
for inference. The challenge is to reduce the costs associated with them by reducing
their size through quantization [Dettmers et al., 2022], distillation [Sanh et al., 2020]
or a better training procedure.
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