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CHAPTER 1

Introduction

Million-to-one chances... crop up nine times out of ten.

Terry Pratchett, Equal Rites, 1987

This document is the manuscript of my habilitation a diriger des recherches (HDR), de-
scribed in the official texts! as wvalidating the high scientific level of the candidate, the orig-
wnality of his scientific programme, his ability to master a research strategy in a sufficiently
vast scientific or technological domain, and his ability to supervise young researchers. The
typical form of the manuscript is a high-level summary of one’s work after the PhD,
emphasizing the research programme and directions, and I will follow that template.

My thesis at the departments of computer science (LRI) and particle physics (LAL)
of Univ. Paris-Sud? dates from December 2012. After that, I spent two years as a
postdoc at the department of statistics of the University of Oxford, working on Monte
Carlo methodology for big data (Bardenet, Doucet, and Holmes, 2014, 2017a), as well
as Bayesian inference for cardiac electrophysiology (Johnstone et al., 2016a,b; Beattic
et al., 2018; Ridder et al., 2020). In early 2015, I crossed back the Channel, and started
as a CNRS junior permanent researcher (CR) at CRIStAL (short for research centre on
computer science, signal processing, and automatic control of Lille). The major part of
my work since 2015 has dealt with using repulsive point processes as computational tools,
on which I now focus.

Many tasks in statistics, machine learning, or signal processing, can be cast as sam-
pling, i.e., summarizing a large (possibly infinite) collection of items by a finite subset of
these items. Variable selection in regression, for instance, aims at selecting a few represen-
tative features to reduce the dimensionality of a dataset. Monte Carlo integration aims at
approximating integrals over a measure space by weighted sums of evaluations of the in-
tegrand at a handful of points in the support of the target measure. Finally, digital signal
processing requires first to encode a square-integrable function by its orthogonal projec-
tions onto a finite number of reference functions. In all these examples, random sampling,
i.e., drawing at random either features, quadrature nodes, or the reference functions on
which to project, has a role to play. Loosely said, one motivation for random instead of
deterministic sampling is to obtain simpler guarantees on the performance of the algo-
rithm of interest under weaker assumptions. The output of standard Markov chain Monte

"https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000298904/
2Now Paris-Saclay.
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Carlo algorithms, for instance, often satisfies a central limit theorem, with the classical
Monte Carlo rate, as soon as the integrand is square-integrable. In contrast, deterministic
quadrature guarantees in large dimension typically involve very smooth integrands and
dimension-dependent rates; see e.g. quasi-Monte Carlo methods (Dick and Pillichsham-
mer, 2010). It is also common that, for performance guarantees of the same order, the
best known randomized algorithms are computationally cheaper than their deterministic
counterparts. For instance, we shall see in Chapter 4 that for feature selection with both
Frobenius and spectral guarantees, we do not know of a better deterministic algorithm yet
than enumerating all subsets of columns of a (fat) matrix, when randomized feature selec-
tion algorithms can simultaneously provide both types of guarantees in polynomial time.
That is not to say that randomized algorithms are necessarily the final answer to every,
and actually any, problem. Whether randomness actually helps is actually a deep and
open question in theoretical computer science (Impagliazzo, 2002). Moreover, it is some-
times possible to de-randomize a randomized algorithm, while transferring the bounds
obtained with probabilistic tools to the obtained deterministic algorithm; see (Deshpande
and Rademacher, 2010) for an example in column subset selection. To put it briefly, ran-
domized sampling algorithms are a useful object of study, whether you accept them as a
solution to your problem or only as an intermediate step.

If you agree with me that random sampling is an interesting research area,® then my
objective in this manuscript is to convince you that negatively dependent random sampling
is also a promising one. In essence, drawing items from a large set independently leaves
holes, and the corresponding sample looks far from anything regular. One illustrative ex-
ample is shown in Figure 1.1. The left panel shows four draws from a homogenous Poisson
process on the real line, intersected with [0, 1]. Equivalently, each row is independently
obtained by first drawing a Poisson random variable N with some large enough mean, and
conditionally on N, drawing N locations independently from the uniform distribution on
[0,1]. In each row, it is striking how independent locations fail to fill the unit interval
evenly. If we evaluated a function f : [0,1] — R at the samples shown in any of the rows
of this left panel, the set of evaluations would poorly represent f, in that any oscillation
of f in the observed holes would go unnoticed. We argue that by introducing dependence
between the sampled items, and actually negative dependence or repulsiveness, we can
obtain random samples that represent the initial set of items much more accurately. For
instance, the right panel of Figure 1.1 shows samples of a translation-invariant determi-
nantal point process. We have been able to make more precise points on how negative
dependence can solve sampling tasks at polynomial expense.

In Monte Carlo integration, we have shown that a specific class of negatively depen-
dent yet computationally tractable distributions, called determinantal point processes, can
provide central limit theorems with faster-than-square-root rates (Bardenet and Hardy,
2020). We have even shown arbitrarily fast rates of decay for the mean square error of
a related estimator under additional assumptions on the integrand (Belhadji et al.; 2019,
2020a). Moreover, determinantal point processes, while providing tunable repulsiveness,

3And if you don’t, I hope the Pratchett quote opening this chapter tips the balance in my favour.
4Actually approximate samples of the sine process; see Example 2
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Figure 1.1: The intersection with [0, 1] of independent samples of (a) a homogenous Poisson
point process, and (b) a determinantal point process, more precisely a scaled version of
the circular unitary ensemble to approximate the sine process; see Chapter 2 for details.

can be sampled in polynomial time, which has made them a workhorse in my research
programme. In feature selection for linear regression, we have shown that, again with
a carefully designed determinantal point process, one could obtain a tight bound on the
reconstruction error of a data matrix, as well as guarantees for linear regression based on
the obtained column sample (Belhadji, Bardenet, and Chainais, 2020b). Finally, in sig-
nal processing, we have studied the repulsive point processes that appear as the zeros of
specific random analytic functions, which result from applying time-frequency transforms
to white noise (Bardenet, Flamant, and Chainais, 2018; Bardenet and Hardy, 2020). One
of my objectives in this manuscript, is to present these selected works under a common
umbrella, namely random sampling with negative dependence.

In Chapter 2, I present some background material on repulsive point processes, i.e.,
random configurations of items in which similar or close-by items have little chance of
simultaneously appearing. My flagship examples will be determinantal point processes
and zeros of Gaussian analytic functions. My first own contributions appear in Chapter 3,
where I discuss our results on Monte Carlo integration with determinantal point processes.
In Chapter 4, I develop our results on column-subset selection and variable selection
in linear regression. In Chapter 5, I explain our results on the zeros of time-frequency
transforms of white noise, and discuss how they fit in my narrative of negatively dependent
sampling. Each of Chapters 3 to 5 ends with chapter-specific open questions. I conclude
in Chapter 6 by taking a step back and presenting higher-level open questions, as well as
shortly discussing the part of my work since 2013 that I chose to omit in the manuscript
for conciseness. Finally, Appendix A contains a history of my teaching, supervision, and
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grant management since 2013.°

1.1 Notation

This section is here for reference.

We shall constantly work with a complete metric space X, equipped with p a Borel
measure on the Borel sets of X. Our point processes will be random subsets of that space
X. For our purpose, it is enough to think of either X € R? equipped with the Lebesgue
measure, or X = [n] := {1,...,n} a finite set, equipped with its counting measure.

We shall also often consider submatrices. We write matrices in bold font (K, L, etc.).
For a matrix K, a subset A of |A| = a indices of rows of K, and a subset B of |B| = b
indices of columns of K, we write K4 g for the a x b submatrix of K formed by the rows
indexed by A and the columns indexed by B. We also write K, instead of K4 4, and
K. 4 when we keep all rows but only the columns indexed by A.

Chapter-specific notation will be introduced on-the-fly. Note that because Chapters 3,
4, and 5 correspond to work published in different communities, some conventional nota-
tions are bound to conflict. For instance, k is the kernel of an RKHS in Chapter 3, while
in Chapter 4, k € N is the dimension of the reference principal subspace. These notations
are so classical in the respective literatures that I refrained from changing, hoping that
the context will keep it clear what k is in which chapter.

For a hierarchical list of publications, a more detailed track record, etc. please refer to my CV at
http://rbardenet.github.io/pdf/cvFull_bardenet.pdf.
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CHAPTER 2

Repulsive point processes

“Y’know,” he said, ‘it’s very hard to talk quantum wusing a language

originally designed to tell other monkeys where the ripe fruit is.’

Terry Pratchett, Night Watch, 2002

Contents

2.1 Correlation functions . . .. ... ... ... 00 00000

2.2 Determinantal point processes (DPPs) . . ... .. ... ... ..
2.2.1 Projection DPPs . . . . . . .. ...
2.2.2 A geometric chain rule for projection DPPs . . . . . ... ... ... 11
2.2.3 DPPs with Hermitian kernels . . . . . . ... ... ... ... .... 12
224 Sampling DPPs . . . . . ... .. 15
2.2.5 DPPs are (usually) repulsive . . . . . ... ... ... L. 15

2.3 Zeros of Gaussian analytic functions . . . ... ... ... ... .. 16
2.3.1 A constructive definition of GAFs . . . . ... ... ... ... 16
2.3.2 Three canonical GAFs . . . . . . .. ... ... ... ... ... 17

Let us fix a complete metric space X, with 1 a Borel measure on the Borel sets of X.
For this manuscript, it is enough to bear in mind the two cases of X C R? equipped with
the Lebesgue measure, and a finite set X equipped with its counting measure. Define the

space of configurations as

Conf(X) := {5’ CX: |[SNA| < oo for all compact A C X},

where |B| stands for the cardinality of set B. In other words, configurations are locally

finite subsets of X.

Definition 1 A point process S on X is a random configuration’ of points in X.

LStricto sensu, we are defining here simple point processes, i.e., such that with probability 1, S does
not contain a given point of X more than once. Since all point processes in this work are simple, we take
this shortcut and identify a (simple) point process with a random configuration.
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2.1 Correlation functions

Correlation functions are a common way of defining and studying point processes. For
any k > 1, the k-point correlation function py, : X¥ — [0, 0o] satisfies, when it exists,

k
E E f(l’l,...,mk) = f(mlr"?xk) pk(xlv"'axk) Hdﬂ(%) (21)
Xk .
m1,...,xk€S i=1
a7z if i#j

for any bounded (or positive) and measurable test function f. Here

k
kE _ % >
XfF=Xx---xX

and the symbol E in (2.1) stands for the expectation under the law P of the random
variable S. Thus, the k-point correlation function p; encodes the distribution of k-tuples
of points from S. Indeed, an informal rewriting of (2.1) reads

There are at least k points in Su) . (2.2)

one around each of z1,..., .

pules dpan). . (o) = B

It is common to actually define a point process S by a sequence (py) of compatible correla-
tion functions; see (Daley and Vere-Jones, 2003). By compatible, we mean that not every
sequence (py) actually defines a point process, and that usually a mathematical argument
for existence is necessary.

Of particular practical significance in the description of point processes are the one- and
two-point correlation functions. The one-point correlation function p; describes marginal
information about the particles, and is called the intensity of the point process. In par-
ticular, (2.2) applied to f = 14 implies that the average number of points falling in A is
1) 4 p1dp. The second correlation function py describes pairwise interactions, and is often
discussed in its normalized form

p2($,y)

p1(x)p1(y) 23)

g(:v,y) =

Finally, when X = R and the distribution of S is translation- and rotation-invariant, ¢
only depends on r = ||z — y||, so that we write g(z,y) = go(r). The function g¢ is called
the pair correlation function of S.

Example 1 Let A : X — Ry be locally integrable, that is, [z A(x)du(z) < co for every
bounded B C X. Further assume for simplicity that the measure Ady has no atom.” The
point process with correlation functions

pk(azl,...,xk) :)\(:Ul).../\(xk), k>1, (2.4)

always exists and is called the Poisson point process with parameter function X.

2Without this assumption, a Poisson point process would not necessarily be a simple point process.
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For a Poisson process with parameter function A, the one-point correlation function is
by definition p; = A. The pair correlation function (2.3) is constant, g(z,y) = 1, which
indicates that the relative positions of z and y do not alter the marginal probability of
seeing them co-occur. In a sense, the factorized form of (2.4) indicates the lowest level of
correlation among points.

When g(z,y) > 1, Equation (2.2) indicates that pairs are more likely to occur around
(z,y) than under a Poisson process with the same intensity. Similarly g(x,y) < 1 indicates
that pairs are less likely to occur. Consequently, one way to define a repulsive point
process® is to require that g(z,y) < 1 for all z,y.

Figure 2.1 shows samples of three translation-invariant point processes in R, along
with their pair correlation functions. The three point processes share the same (constant)
one-point correlation function, and the left panel corresponds to a Poisson point process.
Note how the pair correlation function in Figure 2.1(f) keep below 1, and even close to
zero around zero, indicating fewer small pairwise distances than the reference Poisson
point process in Figure 2.1(d). This is a sign of a very regular, more grid-like distribution
of the points, as seen in Figure 2.1(c). On the contrary, the pair correlation function
of Figure 2.1(e) shows more small pairwise distances than the reference Poisson process:
points are lumped together, as confirmed by Figure 2.1(b). The latter process is actually
a permanental point process, and was introduced by Macchi (2017) is her 1972 thesis.*
It is a Poisson process with a random (smooth) parameter function, which is why we see
lumps. We refer the reader interested in permanental point processes to our recent survey
on point processes in quantum optics (Bardenet et al., 2022).

We now define a flexible class of repulsive point process, of which the right-hand panel
of Figure 2.1 shows an instance: determinantal point processes.

2.2 Determinantal point processes (DPPs)

DPPs were also introduced by Macchi (2017) in her 1972 thesis, and first featured in
(Bénard and Macchi, 1973; Macchi, 1975), this time to model detection times in quantum
beams of fermions.

Definition 2 A point process is determinantal if there exists K : X x X — R or C such
that the n-point correlation function (2.2) exists for every n and reads

n
pn(T1,. .., xy) = det [K(mk,xg)]ké_l, T1,...,%, € X. (2.5)

)

We say that K is the kernel of the DPP, u its reference measure, and we denote the point
process by DPP (K, ).

Just like a covariance kernel is enough to describe a zero-mean Gaussian process, the
kernel K of a DPP thus encodes how the points in the random configurations interact.

3While we simply use g < 1 as a token of repulsiveness in this manuscript, much more can be said on
quantifying repulsiveness in point processes (Biscio and Lavancier, 2016; Mgller and O’Reilly, 2021).

“The date mismatch with the reference (Macchi, 2017) comes from the fact that the latter is a translated
reprint.
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Figure 2.1: (a, b, ¢) The intersection with W = [0, 1] of four independent samples of each
of the following types of point processes: Poisson, permanental, and determinantal. All
three point processes are translation-invariant and are scaled to have the same expected
number of points falling in W. (d, e, f) The pair correlation function (2.3) of the three
point processes, and histograms of pairwise distances from 100 independent samples.
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However, the existence of a point process with (2.5) as its correlation functions is, in
general, a difficult question. It is easy to see that the kernel has to be positive definite,
so that the right-hand side of (2.5) is always non-negative. Henceforth, all DPP kernels
are thus assumed to be positive definite. But non-negativity is not sufficient for (2.5) to
consistently define a point process.

2.2.1 Projection DPPs

A canonical way to ensure existence of a DPP is to restrict oneself to so-called projec-
tion DPPs, which generate configurations of a constant number N < oo of points P-
almost surely, i.e. S = {z1,...,2x}. More precisely, consider N orthonormal functions
©0s -+ pN—1 in L2(u), that is, [ o(2)ee(z)pu(dz) = dke, and take for kernel

N-1
K(z,y) = ) eu(@)er(y) (2.6)
k=0
In this setting, it turns out that the (permutation invariant) random variables x1,...,xx

with joint probability distribution

1 N N
N det [K(xz, 1‘3)} - X };[1 dp(z;) (2.7)

generate a DPP with kernel K (x,y). (Hough et al., 2006, Section 2) gives an elementary
proof that (2.7) satisfies (2.5). The resulting DPP is called a projection DPP, in reference
to the fact that its kernel defines a projection operator.

Example 2 (CUE) Take X =[0,1], p to be the uniform distribution, and the orthonor-
mal functions g to be the Fourier basis pe(x) = e?mT ¢ > 0. The projection DPP with

kernel o
2y Y AT = (VD) sinmN(z — y)
/—0 sinm(z — y)

given by (2.6) is called the circular unitary ensemble (CUE).

Note that from the definition (2.5) of the correlation functions of a DPP, for any valid
kernel and any non-vanishing function f, the kernel x,y — f(z)K(z,y)/f(y) defines the
same DPP as K. The kernel of the CUE in Example 2 can thus be simplified to

sintN(x —y) (2.8)

Ty .
sinm(z — y)

A CUE sample is shown in the right panel of Figure 2.2. Note how regularly spread the
points of each realization of the CUE are on the circle. In comparison, i.i.d. draws from
1 = dz in the left panel seem less well organized, creating clusters and holes. Historically,
the CUE was introduced as the law of the eigenvalues of a Haar-distributed random unitary
matrix, as we shall recall in Section 3.1. Since the Haar distribution on unitary matrices
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Figure 2.2: (a) An i.i.d. sample of the uniform distribution on the circle, compared to
(b) a sample of the eigenvalues of a Haar-distributed unitary matrix. The arguments of
the complex variables in (b) form a draw of the CUE.

is actually easy to sample, this connection with random matrices can actually be seen as
a O(N?) exact sampling algorithm. Thanks to a scaling argument, this also provides an
approximate sampling algorithm for another well-known DPP, the sine process. Indeed,
if (0;)), ~ CUE, then the average spacing between the points of (6;) is of order 1/N.
Scaling the point process to increase this mean distance to 1, the random measure ) dyg,
converges in distribution (a.k.a. weakly) to the DPP on R with kernel

Ksine(xvy) = wv (2'9)

T—yY

a DPP called the sine process. Approximate samples obtained by scaling CUE samples
are shown in Figure 2.1(c). The sine process is known for its universality: it appears as
the scaling limit not only of the CUE, but of many DPPs. Another reason for its fame
is its link with the zeros of the Riemann zeta function; see e.g. (Rudnick and Sarnak,
1996) and references therein. We refer to (Lambert, 2016, Section 3.4) for a survey of the
properties of the sine process and precise statements on scaling limits of DPPs. We now
switch to another reference DPP from random matrix theory.

Example 3 (Ginibre ensemble) Tuke X = C, the reference measure yu to be the Gaus-
sian measure e ** | and the orthonormal functions to be py(z) = (k!)"Y/22%. The
projection DPP with kernel (2.6) is called the Ginibre ensemble of size N.

Like the CUE, the Ginibre ensemble actually rose to attention in random matrix theory,
this time as the distribution of the eigenvalues of an N x N random matrix filled with i.i.d.
unit complex Gaussians; see e.g. (Anderson et al., 2010). One can actually let N — oo
and define a limiting DPP, called the Ginibre ensemble, see (Hough et al., 2006, Example
15).
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2.2.2 A geometric chain rule for projection DPPs

Besides their constant cardinality, one key property for computational applications of
projection DPPs is that (2.7) can easily be rewritten as a chain rule, and this chain rule
brings insight on the link between DPPs and geometry in Hilbert spaces.

We first illustrate our point by doing explicit computations when the rank of the kernel
(2.6) is N = 2, and then discuss the chain rule for arbitrary N. Let thus g, @1 € L?(u)
be two orthonormal functions. Consider the projection kernel (2.6), which simply reads

K(z,y) = po(z)po(y) + ¢1(z)p1(y).

Samples from the corresponding DPP will thus have N = 2 points almost surely, drawn
from (2.14), which becomes

1ot (E(z2) K(z,y)
th(K(y,x) K(y,y)

K(z,y)
K(z.2) du(y)
(2.10)
Now, it is routine to check that both terms in the product in the RHS of (2.10) integrate to
1. This implies that (2.10) is a chain rule. In other words, to obtain {z,y} ~ DPP(K, ),

it is enough to first draw @ ~ K (z, 2)du(z), and then

T 2
ylo ~ [K(y,y) - [M] dp(y)-

) dp(z)dp(y) = %K(w,;z:)d,u(w) X [K(y,y) -

As long as the two sampling steps can be implemented, e.g. using rejection sampling,
this is already an interesting remark. But an important remark is that this chain rule is
actually a simple area computation using the base times height formula. Indeed, consider
the parallelotope formed in Span(pg, 1) by the so-called feature functions K(z,-) and
K(y,-). The squared length of K(x,-) (the base) is

/ Ko, V@ )du(z) = |pola)? / polPdi + o ()2 / eifde (211)

= K(z,x), (2.12)

while the squared length of the projection of K(y,-) onto the orthogonal of Span(K (z,-))
(the height) is

xZ,:- 2 X 2
K(y,y) - [/ K(y, ~)I§(((9;L)du(x)] = [K(y, y) — M} (2.13)

From (2.12) and (2.13), it should now be clear that the chain rule (2.10) computes the
squared volume of a parallelotope.

For a projection kernel K of rank N > 1, similar computations lead to an IN-
dimensional volume computation through a generalized "base times height” formula,
namely

N 1 N
27 =]] mHPHHK(xi, -)HL2 dp(z). (2.14)
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In (2.14), Py is the orthogonal projection onto a subspace H of L?(1),
Hy = Span(eg, ..., N-1),
and for every ¢ > 1, H;_ is the orthocomplement in Hg of
Span (K (x¢,-), 1<l<i—1).

Like (2.10), (2.14) is a chain rule since each term in the product is a probability measure
(Hough et al., 2006, Proposition 19).

Beyond sampling algorithms, we believe that the geometric interpretation of the chain
rule (2.14) is paramount to understanding DPPs: the favoured point configurations in a
projection DPP are those that correspond to feature vectors that span a large volume.
Several contributions described in this manuscript come from understanding what feature
vectors to choose in a particular problem involving linear structures, so that large volumes
correspond to a small value of the problem’s objective.

2.2.3 DPPs with Hermitian kernels

The projection kernels of Section 2.2.1 are a special case of Hermitian kernels, that is
K(x,y) = K(y,x). For Hermitian kernels, the Macchi-Soshnikov theorem gives a necessary
and sufficient condition for the existence of the associated DPP. The Hermiticity of the
kernel guarantees that the integration operator ¥ : L?(du) — L?(du) defined by

5. fes / K(y)f()du(y)

is self-adjoint.

Theorem 1 (Macchi-Soshnikov; Macchi, 1975; Soshnikov, 2000) If ¥ is self-
adjoint and trace-class, then existence of the associated DPP is equivalent to all the eigen-
values of ¥ lying is [0, 1].

Being trace-class is a technical, but unrestrictive assumption, which guarantees in par-
ticular that 3 is compact, so that we can talk about its eigenvalues. Actually, a slight
modification of Theorem 1 allows treating locally trace-class operators, i.e., such that
PcY Pe is trace-class for any compact C C X, with Po the multiplication operator by the
indicator function 1¢. Checking that a given operator is locally trace-class can be hard
work, but there are useful criteria in the literature; see e.g. (Gohberg et al., 1990). For
instance, since our kernels in this section are positive definite and Hermitian, a sufficient
condition for being locally trace-class is that K is continuous and [ K(z,z)du(z) < oo
for any compact C' C X. In particular, the sine kernel defined in (2.9) is locally trace-class.
This is also the criterion used in spatial statistics by Lavancier et al. (2014), who show
how covariance functions for Gaussian processes give rise to DPPs in X = R using the
Macchi-Soshnikov theorem. The constraint in Theorem 1 on the spectrum of the integra-
tion operator then further constrains the parameters of the covariance function. A simple
such example is the Gaussian DPP.
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Example 4 (Gaussian kernel; Lavancier et al., 2014) Take p to be the Lebesque
measure on X = R? and
K(z,y) = aexp(—|lz/¢|?).

Provided the parameters are restricted to o < (/7€) ™%, DPP(K, ) exists (Lavancier et al.,
2014, Theorem 2.5).

It is interesting to note that the locally trace-class condition guarantees that the average
number of points that fall in a bounded A C X is finite, since the definition of the one-point
correlation function of a DPP leads to

E

Z 1A(x)] = / K(z,z)du(z) < co. (2.15)
TE€S A

In particular, for the Gaussian DPP of Example 4, the expected number of points in a
given compact C is « times the Lebesgue measure of C'. The parameter o thus controls
the intensity of the point process. Meanwhile, the pair correlation function reads

g(z,y) =1 —exp [-2||lz — y||*/£*],

and thus only depends on ¢, which controls repulsiveness. The fact that parameters of K
can be easily interpreted is part of the appeal of DPPs in statistical modeling.

For the rest of this section, we turn to examining Hermitian DPPs in the special case
when the cardinality |X| = n is finite. The kernel is now automatically trace-class, and the
Macchi-Soshnikov theorem thus only requires Spec(K) € [0, 1], where the kernel matriz is
defined as

K = ((K(i,) )i<ij<n-

Example 5 (L-ensemble) Take X = {1,...,n} and p to be the uniform distribution
over X. Let L € R™™ be symmetric and positive definite, then

K=(I+L)"'L (2.16)
1s the kernel matriz of a DPP.

The construction in Example 5 satisfies the Macchi-Soshnikov conditions by design, and
it is convenient to define finite DPPs through any positive definite matrix L. Indeed, by
construction, (2.16) ensures that K is symmetric, with eigenvalues in [0, 1]. Furthermore,
in that case, L plays the role of a likelihood kernel, in the sense that if S is drawn from
the corresponding L-ensemble,

det L4

P(S=A) = ——
( ) detI+ L’

VA C{1,....n}, (2.17)

where Ly is the |A] x |A| submatrix of L indexed by the rows and columns in A; see e.g.
(Kulesza and Taskar, 2012). This is to be compared to K being the kernel that encodes
the correlation functions, since in the finite setting of Example 5, (2.5) is equivalent to

P(AcC S)=detKa, VAC{L,...,n}.
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L-ensembles are popular DPPs in machine learning, where a typical construction is as
follows (Kulesza and Taskar, 2012, Section 4.2.1). Consider a large ground set of n objects,
indexed by X = {1,...,n}. Say, n is the number of sentences in a large text, and you want
to extract a few (random) sentences from the text that are representative of the whole
text.

Example 6 (Summary extraction; Kulesza and Taskar, 2012) In the finite set-
ting of Example 5, let L;; = qi®?®jqj, 1 <4, < n, where

e ¢; € R measures the marginal relevance of sentence i. For instance, it can be chosen
as an increasing function of the number of nouns and a decreasing function of the
number of pronouns in the sentence. A sentence with many pronouns is unlikely to
be useful in a summary.

o &, € RP is a normed vector of features of sentence i, such that two sentences can be
judged dissimilar if and only if <I>ZT<I>]- 1s close to zero. For instance, take ®; to have
one entry per word w in the whole text, and ®;(w) to be an increasing function of
how frequent word w is in sentence i and how rare it is in the text. Pairs of features
with a large inner product will likely indicate sentences with similar content.

A draw from the corresponding DPP will be a set of indices of sentences that are marginally
relevant, but jointly dissimilar; in other words, a potentially good summary.

To help with choosing the model, it is natural to actually parametrize (¢;) and (®;) and
learn them from a set of human-made summaries; see (Kulesza and Taskar, 2012, Section
4.2.1). Learning can be achieved by likelihood-based methods, since L gives the likelihood
(2.17), although one has to care for the cost of evaluating the normalization constant in
(2.17). However, in my opinion, a more severe downside of modeling L directly is that
the parameters of L are usually hard to interpret. In particular, the number of items in a
realization of S is hard to control. In that respect, working with K is more natural, as we
noticed when interpreting the parameters of the Gaussian DPP in Example 4. One way to
recover interpretability and a control over the number of points in a realization is to work
with projection DPPs as in Gautier, Bardenet, and Valko (2017), taking the number p of
features in Example 6 to be the number of desired items in a summary. If the features
are linearly independent, the resulting projection kernel has rank p. This construction
using projection DPPs has however not been favoured in machine learning so far. MLers
typically prefer using k-DPPs (Kulesza and Taskar, 2012).

For a given k£ € N, a k-DPP is a DPP conditioned to have cardinality k. While
in general a k-DPP is not a DPP, a projection DPP is a k-DPP, since it has constant
cardinality almost surely. Usually, k-DPPs are built by conditioning an L-ensemble, i.e.,
replacing (2.17) by

]P)(S = A) x det LA 1\S\zk' (218)

In summary extraction applications such as (Kulesza and Taskar, 2012, Section 4.2.1),
which inspired Example 6, the L-ensemble is usually replaced by a k-DPP with the same
L matrix. Interestingly, k-DPPs are statistical mixtures of projection DPPs; see e.g.
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(Kulesza and Taskar, 2012). Combined to the chain rule for projection DPPs in (2.14),
this observation yields gives a generic sampling algorithm for k-DPPs. We end this section
with a fundamental example of k-DPP.

Example 7 (Volume sampling; Deshpande and Rademacher, 2010) Let X be an
n x d data matriz, with d > n, take L = XTX, and let k > n. The k-DPP (2.18) on
{1,...,d} is called volume sampling.

Volume sampling was introduced by Deshpande and Vempala (2006) as a distribution
for randomized column subset selection. Indeed L;; is the inner produce of columns 7 and
j of X, and intuitively, sampling S proportionally to size-k subdeterminants of L should
choose a diverse set of columns; see Chapter 4 for more details.

2.2.4 Sampling DPPs

To conclude on Hermitian kernels, still assuming that K is Hermitian and that ¥ is trace-
class, one can write DPP (K, i) as a statistical mixture of projection DPPs (Hough et al.,
2006, Theorem 7), with the mixture weights being simple functions of the eigenvalues
of the kernel. Together with the chain rule for projection DPPs (2.14), this provides a
generic abstract algorithm to sample DPPs with Hermitian kernels. It is generic because
it applies widely. Is it abstract because sampling from the conditionals in the chain rule
is not straightforward in general, and rejection sampling routines have to be carefully
designed for each kernel; see e.g. (Gautier, Bardenet, and Valko, 2019Db).

2.2.5 DPPs are (usually) repulsive

As statistical models, DPPs are often thought of as repulsive point processes. By definition
(2.7), the pair correlation function (2.3) of a DPP reads

K(z,y)K(y, x)

9@y == e Ky

If K is Hermitian and does not vanish, this indeed implies that g < 1, so that the DPP
is repulsive in the sense of Section 2.1. Note however that many DPP kernels in random
matrix theory are not Hermitian (Anderson et al., 2010, Section 4.2.9), and thus should
not be thought of as repulsive. Moreover, non-Hermitian DPPs are starting to be used
as statistical models that capture attractiveness as well as repulsive behaviour, e.g. in
recommendation tasks such as basket completion in online retail (Gartrell et al., 2019).
To explain the idea, if you just put a coffee machine in your basket, then you should
be recommended items such as coffee grains (attractiveness), but the seller should avoid
offering a second coffee machine (repulsiveness).

On a historical note, DPPs were first formalized in the 1972 thesis of Macchi (2017).
Her initial objective was a point process description of a beam of fermions (Bénard and
Macchi, 1973), using correlation functions (2.2) and the by-then recent quantum coherence
formalism of Glauber (1970). Importantly, the repulsive behaviour of the resulting (Her-
mitian) DPPs corresponds to a physical phenomenon for fermions known as anti-bunching.
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We refer to our survey (Bardenet et al., 2022) for more on the physical roots of DPPs.
The connections between DPPs and quantum (electronic) optics have been more or less
dormant since the 70s, and DPPs had to wait for the 2000s to be developed and popu-
larized by random matrix theory (Anderson et al., 2010). After that, they have been in
particular investigated as repulsive statistical models in spatial statistics (Lavancier et al.,
2015; Bardenet et al., 2017b) and machine learning (Kulesza and Taskar, 2012). For more
information on determinantal point processes, we refer the reader to (Macchi, 1975; Hough
et al., 2006; Johansson, 2006; Soshnikov, 2000; Lyons, 2002; Kulesza and Taskar, 2012;
Lavancier et al., 2015), as well as to the theses of our students Gautier (2020), Belhadji
(2020), and the HDR manuscript of Hardy (2020). In the rest of this section, we introduce
some examples of DPPs that will play a role in this manuscript.

2.3 Zeros of Gaussian analytic functions

Besides DPPs, a natural way to define a repulsive point process on X = C ~ R? equipped
with the Lebesgue measure is by looking at the zeros of a random analytic function.
Intuitively, an analytic function is very smooth, so that its zeros should be far from each
other. Restricting oneself to analytic-valued Gaussian processes further allows to describe
the correlation functions (2.2) of the zeros using the covariance kernel of the Gaussian
process.

In the following, N¢(0,0?) refers to the law of a centered Gaussian variable on C with
variance o2, namely the law of Z = o(X +iY)/v/2 with X,Y identically distributed
and independent (i.i.d.) real standard N(0,1) variables; note that the v/2 is here to have
Var(Z) := E|Z|? — |[E(Z)|? = 0. More generally, given m > 1, a complex Gaussian
vector of mean p € C™ and covariance matrix ¥ := AA*, with A € M,,(C), is a random
variable with the same distribution as AX + p, where Z := (Zy,..., Z4) with (Z;)7, ii.d.
Nc(0,1) random variables. Given an open subset A C C, we let A(A) be the space of
analytic functions on A.

2.3.1 A constructive definition of GAFs

A Gaussian analytic function (GAF) on an open subset A C C is a random variable GAF
taking its values in the space A(A) of analytic functions such that, for any m > 1 and
21y .-y 2m € A, the vector (GAF(z1),...,GAF(z,)) is a complex Gaussian vector. In this
work, we actually slightly restrict the definition.

Definition 3 All GAF's in this work are defined by
GAF(2) = > & Ti(2), (2.19)
k=0

where (§)ken 15 a sequence of i.i.d. N¢(0,1) random variables and (V)ren is a sequence
in A(A) satisfying

sup Z [T (2)]% < o0 (2.20)
zeK ;)
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for any compact K C A.

Condition (2.20) ensures that GAF converges almost surely on every compact subset of
A, and thus that GAF is a well-defined analytic function, see (Hough et al., 2009, Lemma
2.2.3). As a side note, the proof of the latter lemma, while elementary, is a good example
of the beautiful interplay of analytic and probabilistic notions that is behind GAFs.

As a centered Gaussian process on the space of analytic functions A(A), GAF is com-
pletely characterized by its covariance structure, namely

C(z,w) = E[GAF(Z)GAF(M)} = Z Uy (2) Uk (w), z,w € A. (2.21)
k=0

Our particular interest lies in the random set GAF~1(0) of zeros of GAF. More precisely,
our interest lies in the random zeros of GAF, that is, zeros that are not present with
probability one. Indeed, z — (z — 1)GAF(z2) is still a GAF, but the (deterministic) zero in
1 is not of interest to us. (Hough et al., 2009, Lemma 2.4.1) states that the random zeros
of any nonzero GAF are pairwise distinct with probability one. Thus, the random zeros
form a (simple) point process in the sense of Definition 1. Like the DPPs of Section 2.2,
the correlation functions (2.2) of the zeros of a GAF are known in closed form (Hough
et al., 2009, Corollary 3.4.2).

GAFs are very constrained models. For instance, it is known that the law of the point
process GAF™1(0) is characterized by its first intensity p; solely and moreover that, if

two GAFs, say GAF and GAF, share the same zero set distribution, namely GAF1(0) faw
— 1
GAF (0), then there exists a non-vanishing, deterministic ¢ € A(A) such that GAF =

© x GAF, see (Hough et al., 2009, Theorem 2.5.2).

2.3.2 Three canonical GAFs

There are three prototypical spaces in complex geometry: the complex plane C, the hy-
perbolic plane H, and the sphere S. For instance, the so-called uniformization theorem
says that any simply connected Riemann surface is conformally equivalent to C, H or S.
The complex plane is a Riemannian manifold with null curvature when equipped with
the Euclidean metric gg.;. The hyperbolic plane H can be modeled as the unit disc
D:= {z € C: |z| < 1} with the hyperbolic metric (1 — |2|?) 2ggas, giving a Riemannian
manifold of constant negative curvature. It can alternatively be modeled as the upper-half
plane C4 := {2z € C: Jm(z) > 0} with the metric Jm(z)~gga¢. The sphere S can be mod-
eled as the extended complex plane C U {oo} with the spherical metric (1 + |2|?)2ggat,
yielding a Riemannian manifold of constant positive curvature. This metric is the image
by the stereographic projection of the natural metric on the unit sphere of R? induced by
the Euclidean structure of R3. The group of isometries for each of these three spaces is
well-known, and it is natural to ask which GAFs have their zeros invariant under these
isometries. It turns out that, up to multiplication by a non-vanishing and deterministic
analytic function, there is only a one-parameter family of GAFs satisfying this condition
for each space; see (Hough et al., 2009).
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(a) Zeros of the planar GAF (b) Zeros of the spherical GAF

(c) Zeros of the hyperbolic GAF

Figure 2.3: White dots are sample zero sets of (a) the planar GAF, (b) the spherical GAF,
and (c) the hyperbolic GAF.

We shall meet these so-called planar, hyperbolic, and spherical GAFs in Chapter 5.
Meanwhile, a realization of the zero sets of each of the three invariant GAFs is shown in
Figure 2.3 as white dots. For readers unfamiliar with complex geometry, Figure 2.3 can
also serve as an illustration of the previous paragraph. Roughly speaking, on all three
subfigures, the white dots are uniformly spread, with roughly equal distance between each
pair of nearest neighbors. Figure 5.2 represents a portion of the complex plane, and the flat
metric corresponds to the intuitive idea of a uniform distribution of zeros on this portion.
Figure 5.3 represents a portion of C, with the hyperbolic metric Jm(z)!gga;. Again, the
white dots are uniformly spread for this metric, with distances between nearest neighbors
roughly equal. Figure 5.4 similarly represents the sphere with the spherical metric.



CHAPTER 3
Monte Carlo integration with
determinantal point processes

God does not play dice with the universe; He plays an ineffable game
of His own devising, which might be compared, from the perspective of
any of the other players [i.e. everybody], to being involved in an obscure
and complex variant of poker in a pitch-dark room, with blank cards,
for infinite stakes, with a Dealer who won’t tell you the rules, and who
smiles all the time.

Terry Pratchett and Neil Gaiman, Good Omens, 1990
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My initial motivation to look into DPPs came from discussions around a swimming
pool with my long-time friend Adrien Hardy in the Summer holidays of 2013, while we
were both postdocs, respectively in Oxford and Stockholm. Adrien was trying to give me
an overview of the big problems of random matrix theory, while I was trying to do the
same with Monte Carlo methodology. What caught our attention is that fundamental
theorems about the asymptotic behaviour of the spectrum of certain random matrices
could be interpreted as yielding fast Monte Carlo estimators in R and C. By fast, 1
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mean estimators with mean square error decreasing faster than the inverse of the number
of evaluations of the integrand, that is, faster than the usual Monte Carlo error. One
natural question was then to understand what variance cancellation mechanisms made
this fast decay possible, and try to construct quadrature nodes in arbitrary dimension
that featured the same limiting behaviour. This turned out to be possible, though quite
technically involved, using specific DPPs. It gave (Bardenet and Hardy, 2020), which is
the starting point of my work on repulsive point processes, although the publication date
does not reflect it. Section 3.1 describes a classical theorem by Johansson (1997) that
provided motivation for our work, and our main results are given in Section 3.2.

After I presented the results of Bardenet and Hardy (2020) at a seminar in Bristol,
UK, Mathieu Gerber, who was in the audience, thought that he had seen something
similar somewhere. In the afternoon following the seminar, we engaged in serious scientific
archaeology to find out the source of the remark he remembered. Following a chain of
progressively more obscure references, we ended up with an English translation of a paper
by Ermakov and Zolotukhin (1960), two Soviet mathematicians that actually had proposed
using a projection DPP for Monte Carlo, almost 60 years before us, and some 15 years
before DPPs where even formally defined by Macchi (1975). Of course, Ermakov and
Zolotukhin (1960) did not have the mathematical toolbox back then that we had at our
disposal in (Bardenet and Hardy, 2020), and did not prove a CLT, for instance, but they
already had the intuition to sample quadrature nodes proportionally to the square of
some determinant, motivated by the fact that it gave good interpolation nodes. For a
discussion of their results in modern parlance, see (Gautier, Bardenet, and Valko, 2019c¢)
or Section 3.3 below. Revisiting this connection with interpolation with Pierre Chainais
and our PhD student Ayoub Belhadji, we came up with a dual approach to (Bardenet
and Hardy, 2020). Instead of trying to find a DPP yielding a good estimator for as wide
a function class as possible, we asked the following question: if I give you a DPP with
kernel K, is that a good interpolating set of nodes for some function space, and what
functions is this DPP supposed to integrate well? The approach naturally connects with
recent work on quadrature in reproducing kernel Hilbert spaces (Bach, 2017), and gave
(Belhadji et al., 2019, 2020a); see Section 3.4.

To sum up, this chapter is based on our works (Bardenet and Hardy, 2020; Belhadji
et al., 2019; Gautier et al., 2019b; Belhadji et al., 2020a).

3.1 A central limit theorem from random matrix theory

Much of random matrix theory deals with the behaviour of the eigenvalues of certain
random matrices, as can be gathered from the reference book (Anderson, Guionnet, and
Zeitouni, 2010). These eigenvalues are highly correlated random variables, and they can
have surprising properties to the scientist more used to independence. The following
example is due to Johansson (1997).

Let Uy € My (C) be the group of N x N unitary matrices, that is, A € Uy < AAT =
AT A = Iy. There is a unique probability measure g on Uy such that

pr(A) = pa({ga;a € A}) (3.1)
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for any g € Uy and any Borel set A C Up. This measure is called the Haar measure
on Uy, see for instance (Anderson et al., 2010, Theorem F.13). In other words, the
Haar measure pp plays on Uy the role of the Lebesgue measure on the additive group
R, so that ug is often thought of as the natural equivalent of the uniform probability
distribution. Now, let U ~ pp, and since the eigenvalues of a unitary matrix are complex
numbers of unit modulus, let us further denote the N eigenvalues of U by their arguments
(6;) € [0,2m] V.

Johansson (1997) used a result called the strong Szegd theorem to prove that if g :
[0,27] — R is in L!, and its Fourier coefficients satisfy

o £23 " k|grl* < oo, (3.2)
k=1
then
N 2w de
o) =N [ g0)5 - N0.0%, (3.3)
i=1 0 2m

where the convergence is in distribution when N — co. The central limit theorem (CLT)
in Equation (3.3) is surprising by its lack of normalization: the standard CLT for i.i.d.
variables would have a factor v/N in the left-hand side. In other words, if you think of
Iy 2 N1 vazl g(0;) as a Monte Carlo estimator of (27r)~! [ g(6)dé, then (3.3) implies
that the mean square error of Iy is asymptotically equivalent to 1/N2. This contrasts
with traditional Monte Carlo variance of order 1/N.

Efficient cancellation happens in the variance of the left-hand side of (3.3). Actually,
the arguments (6;) of U form a DPP on [0,27], namely the circular unitary ensemble
defined in Example 2. One way to get some intuition for the fast convergence is as
follows. The eigenvalues of U tend to be very regularly spaced on the unit circle compared
to uniform samples, as if they "repelled" each other; see Figure 2.2 If we think of the
eigenvalues as a random grid on which the signal ¢ is measured, repulsiveness is akin to
the grid being rigid. Rigidity has two positive features. First, the number of points that
fall in any fixed Borel subset of [0, 27] does not vary much from one realization of U to the
other, hence the small variance of )" g(6;). Second, g essentially contains low frequencies
by assumption (3.2), so that repulsiveness ensures both that > ¢g(6;) has small bias and
that we make the most of the smoothness of g by spreading out samples (6;).

So how do we take a result like Johansson’s in (3.3) and make it a general numerical
integration result? In other words, we want to reverse-engineer (3.3) and assess whether
repulsive random variables as seen in random matrix theory can be a general device for
variance reduction in Monte Carlo computation. There are two issues to consider. First,
eigenvalues of random matrices are bound to be in R or C, while we would like to integrate
over R for arbitrary d > 1. Second, we would like to integrate against an arbitrary
measure, whereas random matrix results such as (3.3) implicitly choose one measure (here,
uniform over [0,27]). We add to these requirements that we need to preserve both the
fast convergence compared to traditional Monte Carlo methods, and the interpretability
of the asymptotic variance (3.2) as a measure of the decay of the Fourier coefficients of
the integrand.
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3.2 From random matrices to numerical integration

Let p be a positive Borel measure supported in [—1, l]d. We want a quadrature

N
/ fdum Y wif (x;) (3.4)
=1

for a wide class of functions f. Johansson’s result (3.3) does this for d = 1 and u the
uniform measure on [0, 27], using nodes (x;) drawn from a DPP with kernel the projection
kernel onto the first N Fourier exponentials, which are orthonormal w.r.t. the uniform
measure on S'. Betting that this structure is what yields (3.3), and focussing now on a
generic measure j(dz) = w(z)dz supported in the cube [—1,1]¢, we look for a projection
kernel onto N functions that are orthonormal w.r.t. the target measure p in (3.4).

3.2.1 Multivariate orthogonal polynomial ensembles

When d = 1, letting ¢ in (2.6) be the orthonormal polynomials w.r.t. p results in a DPP
called an orthogonal polynomial ensemble (OPE, Konig (2004)). When d > 1, orthonormal
polynomials can still be uniquely defined by applying the Gram-Schmidt procedure to a set
of monomials, provided the base measure is not pathological. However, unlike for d = 1,
there is no natural order on multivariate monomials, so we pick an order b : N — N¢
before we apply Gram-Schmidt to the first N monomials in that order. In (Bardenet
and Hardy, 2020) we use the graded lexicographic order, defined by ordering multi-indices
(a1,...,aq) by their maximum degree max «;, and for constant maximum degree, by the
usual lexicographic order. There is some limited freedom to change the order in our proofs.

Denoting by ®; the corresponding multivariate orthonormal polynomials, then by
multivariate OPE we mean the DPP with base measure u(dz) = w(z)dzx and kernel
Kopg(z,y) = . Px(x)Pk(y), where the sum runs over multi-indices k such that 0 <
b(k) < N — 1. This is a projection kernel, and thus a valid DPP kernel; see Section 2.2.1.
Note that for a separable base measure, i.e. if

w(z) = wl(z) .. wi(z), (3.5)
where x = (z!,.. ., xd) € R?, multivariate orthonormal polynomials are products of uni-
variate ones. In that case,

KOPE($7y) = HSO?CJ (xj)wggj (yj)v (36>
b(k)=0 j=1

where (Lpi);@g are the orthonormal polynomials w.r.t. w’.

3.2.2 A stochastic Gaussian quadrature

Let p be separable as in (3.5), and {x1,...,2nx} be drawn from the multivariate OPE
given by (3.6). If we integrate (2.7) N — 1 times, we obtain that any point in our DPP



3.2. From random matrices to numerical integration 23

-1.0 =05 0.0 0.5 1.0 —-1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 05 1.0

a) ii.d. b) Gaussian quadrature c) DPP
(a)

Figure 3.1: (a) L.i.d. sample of a product of beta marginals, (b) Product Gaussian quadra-
ture, (c) bivariate OPE sample.

has marginal pdf Kopg(r,z)w(z). For f € L'(du), we deduce that

N
Iv 2 3.7
N ; KOPE xzvxz) ( )

is an unbiased estimator of [ f(x)w(xz)dx. Note that (3.3) does not contain node-
dependent weights, since the kernel of the CUE has constant diagonal, Kcyg(z,z) o« 1.
Note also that the estimator (3.7) should be familiar to users of Gaussian quadrature.
Gauss (1815) indeed showed that if you restrict to d = 1, and replace the DPP samples in
(3.7) by the zeros of pp, then Iy is deterministic and has zero error when f is a polyno-
mial of degree less than 2N — 1. This is remarkable as ¢ has degree N and thus only N
zeros, while integrating polynomials of degree twice that. In a sense, our estimator (3.7)
is a stochastic relaxation of Gaussian quadrature.

To further visualize the similarity with Gaussian quadrature, we plot in Figure 3.1
three samples. The left plot depicts an i.i.d. sample from a product measure with Jacobi
marginals. The marginals are plotted in green on each axis. The middle plot contains the
Cartesian product of two Gaussian quadratures, one on each axis with the corresponding
green marginal as target measure. Each node x; is depicted with a circle, the area of which
is proportional to the node’s weight 1/Kopg(x;, x;) in (3.7) and in Gaussian quadrature.
The right plot shows a sample from the corresponding multivariate OPE, with the same
weights. Well-spread points and large weights accumulate in the bulk of w in both the
middle and right plots.

3.2.3 Our generalization of Johansson’s CLT

Theorem 2 (Bardenet and Hardy, 2020) Let yu(dz) = w(z)dx with w separable, C1,
positive on the open set (—1,1)%, and satisfying a technical regularity assumption. If
x1,...,xN stands for the associated multivariate OPE, then for every g that is C' and
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vanishing outside [—1 +¢,1 — €]? for some ¢ > 0,

VNI (- [ goutan ) 1 N (0.95,).

N—o0
where
1 > gw
Q; _5 Z (]ﬁ+...+kd)<uf®d>(k1,...,kd)2’ (3.8)
k1,....kq=0 cd

and weq(z) = 711 — 22)~1/2,

Looking back at our requirements in Section 3.1, we have extended (3.3) to an arbitrary
dimension d, and an arbitrary choice of target measure. We have preserved the fast
convergence of (3.3), although the gain w.r.t. the usual Monte Carlo rate decreases with
dimension, and we have preserved the interpretability of the asymptotic variance as a
measure of decay of the Fourier coefficients of the integrand, including the target pdf.
The additional weq term is related to the projection of the circle onto the z-axis: weq is
the "marginal" distribution of the uniform distribution on the circle. As a last comment,
we have a CLT that essentially only assumes that the integrand is C!, while typical faster-
than-Monte-Carlo algorithms like quasi-Monte Carlo (Dick and Pillichshammer, 2010)
require the smoothness of the integrand to grow with d. To sum up, the fact that the
repulsiveness in our DPP is tailored to the integration problem at hand allows for weaker
assumptions, and gives a fast CLT with interpretable asymptotic variance.

3.2.4 An importance sampling version

One downside of Theorem 2 is that in practice, one rarely can evaluate the orthogonal
polynomials w.r.t. p. Indeed, this would imply that we know all moments of p, which is
unrealistic in, say, Bayesian inference, where access to u is limited to pointwise evaluation
up to a multiplicative constant (Robert and Casella, 2004). In (Bardenet and Hardy, 2020,
Theorem 2.9), we show that if z1,..., 2y is the multivariate OPE associated to a pdf ¢
that satisfies the assumption of Theorem 2, then

N
ey £
— KOPE xi, ;) q(z;)

satisfies the same CLT as in Theorem 2, with the same asymptotic variance. In other
words, you do not incur any cost, asymptotically, for having replaced w by another ref-
erence distribution. This is highly unusual from a Monte Carlo perspective, where you
would expect the asymptotic variance to contain a term that measures the mismatch
between ¢ and w. From an orthogonal point of view, this is a consequence of the univer-
sality of Chebyshev polynomials: whenever the underlying measure satisfies some weak
assumptions (technically, is Nevai-class; see Bardenet and Hardy, 2020), the corresponding
orthogonal polynomials.
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3.3 Soviets already did it

In a classical twist, we later realized that Soviet mathematicians were actually the first
to consider drawing quadrature nodes from projection DPPs. Fifteen years before Mac-
chi (1975) even defined DPPs, Ermakov and Zolotukhin (1960) had already proven the
following result, which we restate in modern jargon.

Theorem 3 (Ermakov and Zolotukhin, 1960) Consider f € L*(u), and N functions
©0,- -, oN_1 € L?(u) orthonormal w.r.t. u. Let {x1,...,zN} be drawn from the DPP with
reference measure p and projection kernel (2.6). Consider the linear system

wo(r1) ... @n-1(r1) Y1 f(x1)

eo(rn) ... ¢n-1(zNn)/) \Yn flzn)
Then the solution of (3.9) is unique, p-almost surely, with coordinates

_ det @, f(z1:n)
Yk = det <I>(a:1;N)

where @, | ¢(r1.5) is the matriz obtained by replacing the k-th column of ®(x1.x) by
f(x1.n). Moreover, for all 1 < k # j < N, the solution vector satisfies

N-1

Elye) = (fron-1),  Varlye] = [£1> =D (f,00)®, and Covly;, ;] =0. (3.10)
=0

Of course, back then, Ermakov and Zolotukhin (1960) did not have the DPP ma-
chinery that we now have in our toolbox to study, e.g., the asymptotic fluctuations of
their estimator, but Theorem 3 is still good food for thought. We investigated some the
consequences of Theorem 3 in (Gautier, Bardenet, and Valko, 2019¢).

For starters, it provides unbiased estimators of the N Fourier-like coefficients (f, o),
k < N — 1, and these N estimators are uncorrelated, with the same variance. Moreover,
the faster the decay of the Fourier-like coefficients, the smaller the variance. In particular,
if f is in the span of the eigenfunctions of the kernel, the variance is zero. In the setting of
multivariate OPEs, the first (in the order prescribed by b) orthonormal polynomial ¢y is

constant, equal to p([—1, 1]d)_1/ ?. Hence, a direct application of Theorem (3) yields that

N X det B, f (1.
In(f) = p([-1, ”d)m edeté(i(ﬁf;v)

(3.11)

is an unbiased estimator of f[_l 17d fdu. Developing the numerator w.r.t. the column that

contains evaluations of f, I, ~(f) is seen to be a quadrature estimator

TN(f) = Zw?z(azl, cooyxn) fxg),
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which we term the EZ estimator after Ermakov and Zolotukhin (1960). Unlike the vari-
ance of our Gaussian quadrature estimator Iy (f) in (3.7), the variance of In(f) clearly
reflects the accuracy of the approximation of f by its projection onto Span(¢q,...,¢N).

In particular, it allows to interpolate and perfectly integrate polynomials up to degree
b-H(N —1).

Nonetheless, the limiting theoretical properties of I, ~(f), like a CLT, look hard to
establish. In particular, unlike our estimator I ~(f) in (3.7), the EZ estimator is not a
linear statistic of the underlying DPP, since each weight w;EZ (z1,...,2n) depends on all
nodes. Thus, it does not fit the assumptions of traditional CLTs for DPPs (Soshnikov,
2000). More general CLTs are available (Blaszczyszyn et al., 2019), but only for DPPs
with sufficiently short-range correlation.

Experiments in (Gautier et al., 2019¢) suggest that the EZ estimator is an excellent
replacement for 1) ~(f) when the residual of the projection of f onto Span(e1,...,pnN) is
small. In other words, if you can interpolate the integrand with a few basis functions,
then you should form a projection kernel using these basis functions, draw from the cor-
responding DPP, and use the EZ estimator. However, the performance of EZ rapidly
decreases once the integrand spreads even a small part of its norm on all functions ¢y,
k > N. In particular, the variance of the EZ estimator on a non-polynomial but still C'*°
function is seen in (Gautier et al., 2019¢) to quickly fall down to the classical O(1/N) as d
grows, while the variance of our estimator Iy (f) steadily decreases as the predicted rate
O(1/N'*1/4) from Theorem 2.

3.4 Interpolation and quadrature in RKHSs

To take the best of both our stochastic Gaussian quadrature estimator (Bardenet and
Hardy, 2020) and the interpolative quadrature of Ermakov and Zolotukhin (1960), it is
natural to ask what functions can be well interpolated using their evaluation on a DPP
sample. Intuitively, since repulsiveness in DPPs is measured by a kernel, one would like
to consider functions, the smoothness of which is measured by the same kernel. This is
naturally embodied by requiring the function to belong to a reproducing kernel Hilbert
space (RKHS), for which interpolation and integration are tightly linked.

Like the EZ estimator of Theorem 3, our quadrature scheme shall come from inter-
polating a certain function on a DPP sample. But the interpolated function will not
directly be the integrand, rather a representative of the target measure in the space of
functions. Finally, relating the RKHS kernel (governing the smoothness of the integrand)
and the DPP kernel (governing the repulsiveness of the points) will lead us to an algorithm
that realizes tight interpolation and quadrature rates in RKHSs (Belhadji, Bardenet, and
Chainais, 2019, 2020b).
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3.4.1 Reproducing kernel Hilbert spaces

Let £ : X x X — R4 be a positive definite kernel, and consider the set of real linear
combinations of the so-called feature functions

Fo = Span(k(z, ),z € X).

Now let F be the completion of Fy for the norm derived from (k(z,-), k(y,-)) := k(z,y).
The resulting F is a Hilbert space of functions such that

(f k(x,-)) = (=), (3.12)

for all f € F. F is called the reproducing kernel Hilbert space of kernel k£ (RKHS; Berlinet
and Thomas-Agnan, 2011). Two famous examples are the RKHS with Gaussian kernel,
and Sobolev spaces of sufficiently high smoothness; see again (Berlinet and Thomas-Agnan,
2011).

The RKHS kernel k itself might not be a valid DPP kernel. One natural, "PCA-
flavoured" strategy to build a valid DPP kernel from k is to write k in diagonal form (also
called a Mercer decomposition), and build a projection kernel onto the span of some of its
eigenfunctions, as in Section 2.2.1. To do that, we need a few assumptions. Still assuming

that X is equipped with a Borel measure p, we further assume that it is supported on all
of X, and that

/Xk‘(x,x)du(:v) < +00. (3.13)

As a consequence, we get that the embedding operator Ir : F + L?(p) is compact and
injective (Steinwart and Christmann, 2008), and that the operator

Sf() = /X kG f)duly), £ e L(p) (3.14)

is self-adjoint, positive semi-definite, and trace-class (Simon, 2005). Thus, there exists an
orthonormal family (e,,) of L?(p) formed by eigenfunctions of 3. The basis is ordered by
requiring that the corresponding eigenvalues (o,,) are non-decreasing. Our assumptions
imply a Mercer-type decomposition of k,

k(z,y) = > omem(@)em(y), (3.15)

meN*

where N* = N\ {0} and the convergence is pointwise (Steinwart and Scovel, 2012).

Moreover, for m € N*, we write e}, = \/Omem. Since Ir is injective, (€] )men+ is an
orthonormal basis of F (Steinwart and Scovel, 2012). Unless explicitly stated, we assume
that F is dense in L?(du), so that (e, )men+ is an orthonormal basis of L?(dyu). For more
intuition, under our assumptions,

FeF & D o {frem) iz < (3.16)

Again, this shows that the smoothness in an RKHS is governed by the kernel, in the sense
that the modulus |(f, ey,)| of the Fourier-like coefficients of f € F has to decrease fast
enough compared to the eigenvalues of the kernel to make (3.16) converge.
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3.4.2 Quadrature in a RKHS with a projection DPP

Now let
N

K(z,y) =Y em(z)em(y) (3.17)
m=1
be the projection kernel onto the first IV eigenfunctions of the RKHS kernel k. Unlike k,
the projection kernel K is a valid DPP kernel, so that we can consider quadrature nodes
x = {x1,...,zn} drawn from the projection DPP with reference measure p and kernel
(3.17). To get a quadrature scheme, it remains to define the weights in (3.4).
To this end, we note that, given f € F and g € L?(u), Cauchy-Schwarz in F yields

N
Vg — Z wik(z;, )

=1

: (3.18)
>

/X Fodu— 3" wif(w)| <17 x

1€[N]

where vy = [ g(x)k(z,.)du(x)= Xg is the so-called embedding of g in the RKHS F. From
now on, we fix an arbitrary g € L?(u).

By (3.18), an upper bound on the approximation error of v, in F implies an upper
bound on the integration error of fg that is uniform over any bounded subset of F. This
observation has sparked intense research on the kernel approximation of embeddings v,.
On our end, we note that thanks to the reproducing property (3.12), the approximation
error in the RHS of (3.18) rewrites

N N N
vg— Y wik(wi, )| =gl =2 wivgle) + Y wiw;k(zs, z). (3.19)
i=1 F i=1 ij=1
If the nodes z1,...,zn are fixed and in general position, i.e. det((k(x;,x;))) > 0, then
(3.19) entails that there is a unique set of weights that minimizes the upper bound (3.18),
namely
Qf}l I/g<{L‘1)
= (b)) | 1 |- (3.20)
wN vg(zN)

Note that these optimal weights also guarantee that Zf\il Wik (x4, -) interpolates v, at the
nodes x;.

Theorem 4 (Belhadji, Bardenet, and Chainais, 2019) Under the assumptions of
Section 3.4, let (z1,...xN) be drawn from the projection DPP with reference measure
w and kernel K in (3.17). Then det((k(x;,x;)) > 0 almost surely, so that we can consider
the optimal weights (3.20).

Letry = >, om, then
m2=2N+1

N

Vg — Z wik(z;, )

i=1

< 20841+ 2N?ry. (3.21)
f

E sup
llgll.<1
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This version of the theorem is actually a slight improvement over our the original result
in (Belhadji et al., 2019); see the PhD manuscript of Belhadji (2020). Note that I present
a uniform bound in g for simplicity, but we have more precise g-dependent bounds; see
(Belhadji, 2020, Chapter 4) for the sharpest version. The important thing to notice here
is that if o,, decreases fast enough, say geometrically as for the Gaussian kernel, then both
terms in the bound are of the same order. But if the spectrum decays polynomially, like
for Sobolev RKHSs, then N2ry dominates. In experiments, however, we have actually
observed that the expected approximation error decays as oy41 for any classical kernel,
so that it should be possible to prove a bound in O(ox+1). While we haven’t been able to
prove it under a DPP, we have obtained this faster rate for a mixture of projection DPPs
called volume sampling.

3.4.3 Quadrature in an RKHS with continuous volume sampling

In Section 3.4.2, we built a DPP kernel K from the RKHS kernel k. If we momentarily
forget about DPPs, it is also natural to define a (permutation invariant) distribution over
nodes that simply measures the squared volume in F of the parallelotope built onto the
feature functions k(x;, ), i.e.

Tlyeuo TN ~ %det (k(zi, z5)) du(zr) . .. dp(zy). (3.22)

Hadamard’s inequality and the finite trace condition (3.13) guarantee that the normal-
ization constant Z is finite, so that (3.22) is a bona fide probability distribution. By the
Cauchy-Binet identity, it turns out that (3.22) actually defines a statistical mixture of
projection DPPs.

Proposition 1 Recall the Mercer decomposition k(z,y) = >, -1 Omem(v)em(y). ForU C
N*, let us further define the projection kernel

Ky(x,y) =) eulx)eu(y). (3.23)

uelU

For N € N*, we have

det ((k(zi,27) < 3 [Hau] o det (Ko, ;). (3.24)

|U|=N LucU

Each component in the mixture (3.24) is a projection DPP onto a choice of N eigen-
functions of k, with weight proportional to the product of the corresponding eigenvalues.
The component with the largest weight is thus precisely the DPP that we use in Sec-
tion 3.4.2. We can thus expect similar performances for kernel quadrature, at least when
the spectrum of k has a sharp cutoff. Actually, we can even improve on the bound in
Theorem 4.

Theorem 5 (Belhadji, Bardenet, and Chainais, 2020b) Under the assumptions of
Section 3.4, let (z1,...xN) be drawn from the volume sampling distribution (3.22) with
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reference measure p and kernel k. Then det ((k(a:z, x])) > 0 almost surely, so that we can
consider the optimal weights (3.20). Moreover,

2

<on(1+8n), (3.25)
f

sup E
lgllu<1

N
Vg — Z wlk(xz, )
=1

where By = MIél[iQI:lN] (N — M +1)oy]* m% Om.-

We note that Sy is bounded as soon as the spectrum (o,) decays polynomially, so
that the bound in Theorem 5 is quite generic. It is actually the first such generic bound
on interpolation and quadrature in RKHSs: give it any kernel, the theorem gives you a
sharp bound. Indeed, a result by (Pinkus, 2012, Theorem 2.2, Chapter 4) shows that the
worst-case (in g) approximation error is lower-bounded by a constant times o 1; in that
sense, our bound is sharp. Note also that, unlike Theorem 4, the supremum is outside
of the expectation in (3.25); this comes from the fact that a direct computation of the
expected squared error is possible under volume sampling, so that bounds appear later in
the proof. We refer to the discussion in (Belhadji et al., 2020b) for details, and numerical
experiments that illustrate Theorem 5.

3.5 Closing remarks

I think that the bound in Theorem 5 is a solid milestone. It demonstrates what DPPs and
mixtures thereof can reach in terms of quadrature and interpolation error in a favourable
setting. By favourable, I mean that the integrands live in a Hilbert space, that their
smoothness is controlled by the spectral properties of a known kernel, and that the per-
formance measure is the residual of an orthogonal projection.

Indeed, in Theorems 4 and 5, the weighted sum 3, ;. w;k(xi, ) is the orthogonal
projection of v, onto the subspace Span(k(z;,-),1 < ¢ < N) formed by linear combi-
nations of feature functions anchored at our quadrature design. In words, the setting is
favourable to DPPs because sampling quadrature nodes proportionally to the determinant
of det (K (zi,;))) in Theorem 4 guarantees both that the functions k(z;,-) are almost
orthogonal in F, and that their span is close to that of the first N eigenfunctions of the
integration operator X, thus capturing a large part of the norm of any f € F. More
technically, the alignment between the two spans is controlled by the so-called principal
angles between the two subspaces. Taking expectations under our DPP yields tractable
upper bounds on symmetric quantities of these angles; see the detailed discussion in the
thesis of (Belhadji, 2020, Section 4.4). In particular, there is room for improvement in
controlling non-symmetric quantities of the principal angles, which would likely lead to a
similar sharp bound as for volume sampling.

Rather than controlling principal angles, volume sampling allows for a more direct
approach. The proof of Theorem 5 works by decomposing the interpolation error onto
the eigenfunctions of the integration operator 3, with the coefficients giving a prominent
role to the continuous equivalent of the leverage scores from regression analysis. Volume
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sampling controls these leverage scores in expectation, thus yielding our Theorem 5. I
don’t think there is much room for improvement here.

My current belief is that DPPs and volume sampling are the right way to perform
quadrature as long as the target functions are in an RKHS. The randomization helps in
two ways. Algorithmically, on the one hand, one can sample the nodes in polynomial
time as long as one knows the Mercer decomposition of the kernel, while maximizing the
kind of Gramian determinants appearing in the densities of our nodes is a hard non-convex
optimization problem. Mathematically, on the other hand, as often in Monte Carlo versus,
say, quasi-Monte Carlo (Dick and Pillichshammer, 2010), it is easier to derive and interpret
bounds on the mean square error of an estimator than on the error of a deterministic
quadrature. I believe that Theorem 5 is a solid translation of these beliefs, and that we
should now turn to methodology. In terms of Bayesian inference applications, for instance,
it is not clear what role the function g € L?(x) in Theorem 5 should play: should it be
part of the loss function, part of the posterior pdf? How can we use that degree of freedom
to further optimize the constants in the (g-dependent) version of our bound?

Similarly, in Bayesian practice, we rarely know the kernel of an RKHS to which our
integrands belong. Can we learn one as we sample nodes using some MCMC sampler, and
progressively turn on repulsiveness in sampling? What is a parametric class of kernels that
is large enough to capture the integrands in a particular Bayesian application? How robust
are our bounds to misspecifying the kernel? Reversing the viewpoint, can we force the
integrand to belong to a pre-specified RKHS by limiting the choices of the modeler when
designing her likelihood, so that she can trade off modeling and integration accuracy?

On the other hand, how do we actually sample from the point processes involved in
our theorems, if we don’t have access to the Mercer decomposition of the kernel? The
advantage of volume sampling over any projection DPP like (3.17) is that evaluating the
density (3.22) of volume sampling does not require a spectral decomposition, but only
pointwise evaluations of the kernel. MCMC approaches thus seem natural (Rezaei and
Gharan, 2019), but one would ideally need a sampler that reaches an error in total variation
of the order of o in a reasonable number of iterations, say quadratic in N. I believe that
this requires a dedicated sampler that uses the kernel in a smart way.
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wizardry, ‘-jommetry.’

Terry Pratchett, Equal Rites, 1987
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In Chapter 3, we saw how projection DPPs can select a finite number of feature
functions among {k(z,-),x € X}, so as to yield a small average reconstruction error of
some target function belonging to a Hilbert space. We shall see here the same general
principle in action. The role of the feature functions is played by the columns of a large
matrix X € RV*? d > N, of which we want to select s < d columns. This is the general
problem of feature selection, or variable selection, in statistics and learning.

One common motivation is to reduce dimensionality while preserving the interpretabil-
ity of the selected features, unlike principal component analysis (PCA), which defines new
mixed features. If the dimensionality reduction is meant as a preprocessing for, say, a
linear regression only on the p selected columns, then one potential performance metric
is the excess risk of regressing onto the p columns, compared to the original regression
vector. However, if one wants to have a performance metric for selecting a subset S of
column indices that is independent of the regression method, another natural choice is
some matrix norm

|X — 15X, (4.1)
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of the residual of the projection of X onto the span of the selected columns. The index
v in (4.1) denotes the matrix norm that is used in measuring the size of the residual and
in defining the projection II; see Section 4.1. If the residual is measured in terms of
Frobenius or spectral norm, i.e. v € {Fr, 2}, then the rank-k projection II that minimizes
the norm of the residual || X — I1X/||, is the projection Il onto the subspace spanned by
the first & principal components of X.

After quickly surveying the state-of-the-art in column subset selection in Sections 4.2
and 4.3, we shall first show in Section 4.4 that a suitably chosen projection DPP yields a
reconstruction error (4.1) in both Frobenius and spectral norm that is as close as possible
to the PCA gold standard. In that sense, DPPs yield a variable selection that is as efficient
as PCA, while preserving the semantics of the original features, since —unlike PCA— the
new features (columns) are a subset of the original ones. Then, we will show that the same
DPP allows to control the excess risk in linear regression; see Section 4.5. As in Chapter 3,
we shall finish by underlining the limitations of the approach and current work.

Finally, this chapter is based on part of Ayoub Belhadji’s PhD thesis, in particular the
paper (Belhadji, Bardenet, and Chainais, 2020a), to which I refer the reader for details.
On top of all proofs and illustrative experiments, the paper contains a detailed discussion
of past work on column-subset selection that is of independent interest.

4.1 Apples and oranges: column subsets and PCA

The result of column subset selection will usually be compared to the result of projecting
onto the first k principal components of X, and in this chapter, we reserve the notation
k € N for that reference size. We denote by 11z X the best rank-k approximation to X.
The sense of best can be understood in either Frobenius or spectral norm, as both give
the same result. But this coincidence is lost when projecting onto the span of a subset of
columns of X, and some care must be taken in defining the quantities to be compared in
a fair way.

For a given subset S C {1,...,d} of size |S| = s and v € {2,Fr}, let

1%, X = argmin|| X ~ A,

where the minimum is taken over all matrices A = X. B such that B € R*? and
rkB < k; in words, the minimum is taken over matrices of rank at most k that lie in the
column space of C' = X. 5. When |S| = k, we simply write II{X = Hgka. In practice,
the Frobenius projection can be computed as ngX = CCTX, yet there is no simple
expression for H%X . However, ngX can be used as a proxy for H%X since

1% —TEX 2 < | X — IF X |2 < V2| X — TIEX |2, (4.2)

see (Boutsidis et al., 2011, Lemma 2.3).
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4.2 Multinomial sampling with and without SVD

Note that because my overall narrative is about explaining when and where DPPs can
help, I take it for granted that we want to apply randomized algorithms. Randomized ap-
proaches to numerical linear algebra tend to be more scalable, and come with more inter-
pretable error bounds. For instance, naively optimizing a criterion like || X —ILg 4 |” X over
subsets of {1,...,d} requires exhaustive enumeration. This is prohibitive when d > 1,
while randomized approaches typically have polynomial costs. Less naive deterministic
column subset selection methods have been investigated, in particular rank-revealing QR
factorizations in the vein of (Golub, 1965), but even there, randomized approaches (Bout-
sidis et al., 2009) can match the performance and cost of state-of-the-art factorizations (Gu
and Eisenstat, 1996) in spectral norm, while also providing sharp guarantees in Frobenius
norm.

The first randomized algorithms to have been investigated are naturally independent
draws from the set of columns (Deshpande and Vempala, 2006; Drineas et al., 2007; Bout-
sidis et al., 2011). More specifically, a prototypical example corresponds to sampling s
columns of X i.i.d. from a multinomial distribution of parameter p € R?. This parameter
p can be the squared norms of each column (Drineas et al., 2004), for instance, or the
more subtle k-leverage scores (Drineas et al., 2007), defined as follows.

Definition 4 (k-leverage scores) Let X = UXVT be the singular value decomposition
of the original matriz X. The k-leverage scores, denoted by Klf, . ,ES, are the squared
Euclidean norms of the d columns of the first k rows of VT

This definition is further illustrated in Figure 4.2. Geometrically, Ef is the squared
cosine of the angle between the i-th vector of the canonical basis of R and the k-principal
subspace, i.e., the subspace spanned by the vectors with canonical coordinates the first &
columns of V. We refer the reader to (Belhadji et al., 2020a, Section 3.4) for a detailed
discussion of k-leverage scores and principal angles. It thus makes intuitive sense to select
columns marginally according to their k-leverage score if one wants to approximate the
k-principal subspace. Note however in passing that there may be redundancy here, and
that it would be even more natural to select k& columns jointly, according to how close
their span is to the k-principal subspace. This is precisely what the DPP in Section 4.4
shall do.

The k-leverage scores are expensive to evaluate, since they call for a truncated SVD of
order k, but they come with the best known bound for multinomial sampling on the ratio
of their expected approximation error over that of PCA.

Theorem 6 (Drineas et al., 2007, Theorem 3) Let ¢ € (0,1]. If the number s of
sampled columns satisfies

32002
g2
then, under i.i.d. sampling from the k-leverage scores distribution,

52 ; (4.3)

IP’(\X — X R < (1+e)|X — HkX\I%\f> > 0.7. (4.4)
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Length square k-leverage scores
distribution distribution
e || .||.||.|.|....|. II‘.| .||.I||.‘.|||.| ””2
= S _ |
I |
X U b A\l

Figure 4.1: Two multinomial distributions that have been investigated for column subset
selection: the squared norms of the columns of X, here denoted as length square distribu-
tion, and the k-leverage scores. Figure taken from the PhD thesis of Belhadji (2020).

Drineas et al. (2007) also considered replacing multinomial with Bernoulli sampling, still
using the k-leverage scores. The expected number of columns needed for (4.4) to hold is
then lowered to O(%). A natural question is then to understand how low the number
of columns can be, while still guaranteeing a multiplicative bound like (4.4). A partial
answer has been given by Deshpande and Vempala (2006).

Proposition 2 (Deshpande and Vempala, 2006, Proposition 4) Given ¢ > 0,
k,d € N such that de > 2k, there exists a matriz X¢ € RFIXFAD gueh that for any
Sc{l,...,d},

1X° = T, X5 (I = (1+ )| X7 — Xl (4.5)

This suggests that a lower bound for the number of columns is 2k /e, at least in the worst
case sense of Proposition 2. Interestingly, the k-leverage scores distribution of the matrix
X°¢ in the proof of Proposition 2 is uniform, so that k-leverage score sampling boils down
to simple uniform sampling.

4.3 Repulsive sampling needs fewer columns

A multiplicative bound on the expected approximation error using only k columns was
obtained by Deshpande, Rademacher, Vempala, and Wang (2006) using so-called volume
sampling, which we introduced in Example 7.

Theorem 7 (Deshpande et al., 2006) Let S be a random subset of {1,...,d}, chosen
with probability

P(S) oc det(X s X, §) 1qi5)=k}- (4.6)
Then
E[|X - OF X1 < (k+ 11X - T X3 (4.7)
and

E|X —TEX (3 < (d—k)(k + DX — T X|[f. (4.8)
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Sampling according to (4.6) can be done in polynomial time; see (Deshpande and
Rademacher, 2010) or the mixture argument for k-DPPs in Chapter 2. Using a worst
case example, Deshpande et al. (2006) proved that the k + 1 factor in (4.7) cannot be
improved.

Proposition 3 (Deshpande et al., 2006) Let ¢ > 0. There exists a (k+1) x (k+1)
matriz X°© such that for every subset S of k columns of X¢,

1X° — TG X f > (1 — ) (k+ 1] X7 — I X (4.9)

4.4 DPPs take the best of leverage scores and repulsiveness

In (Belhadji et al., 2020a), our contribution is to introduce the DPP on {1,...,d} with
kernel

K = V,l:k‘f:gckv (41())

and reference measure the counting measure on [d] := {1,...,d}. Note that this kernel
matrix is a projection (K? = K) and has rank k, so that the corresponding DPP is a
projection DPP, and samples S thus satisfy |S| = k almost surely; see Chapter 2. We
are thus on par with volume sampling in Theorem 7, in the sense that we sample only
k columns. We shall see that our DPP reaches the (k + 1) factor of volume sampling in
Theorem 7, and even improves over volume sampling under a certain sparsity assumption.

To see why such a DPP is natural, note that the diagonal of K is formed by the
k-leverage scores of Definition 4. Since, by definition (2.5) of the one-point correlation
function of a DPP, the diagonal of a DPP kernel is proportional to the marginal probability
of inclusion of each element, the DPP with kernel K is thus an extension of k-leverage
score sampling. Moreover, the DPP enforces diversity among the selected columns, in the
sense of favouring sets of k£ columns S C {1,...,d} such that the k feature vectors V; 1.,
i € S, span a large volume in R*. Note that the square of this volume is also the product
of the squared cosines of the principal angles between the span of the selected columns
and the k-principal subspace; see (Belhadji et al., 2020a, Appendix C). Methodologically,
this makes sure that we have a set of columns that jointly approximate the k-principal
subspace. Mathematically, this is all the more interesting that performance metrics that
compare residuals of projections to that of PCA involve the same set of principal angles.

This is precisely the same argument as for the DPP we used in Section 3.4.2 to perform
quadrature in an RKHS. For this reason, the proofs of our results follow the same abstract
layout. First, we decompose the error as the contribution of the principal subspace and
a mismatch term that measures the alignment between the selected columns and that
principal subspace. Second, we show that the mismatch term is bounded by a quantity
that is symmetric in the principal angles between the two subspaces; taking expectations,
we get a simple closed-form bound.

To present our results, we first denote the number of nonzero k-leverage scores by
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p < d, and we quantify the decay of the singular values of X by the flatness parameter
-1

1

Jj=k+1

In words, 8 € [1,d — k] measures the flatness of the spectrum of X above the cut-off at k.
Indeed, (4.11) is the ratio of the largest term in a mean to that mean. The closer 3 is to
1, the more similar the terms in the sum in the denominator of (4.11). At the extreme,
8 =d— k when O']%_H > 0 while UJQ.:O, Vizk+2.

Proposition 4 (Belhadji et al., 2020a) Under the DPP of kernel (4.10),

E[|X —TEX[3 < (1+k(p— k)| X — T X3 (4.12)
and L
E|X —TIEX |3 < (1 + ﬁz__kk> | X — I, X |3, (4.13)

The bound in (4.12) compares favorably with volume sampling (4.8) since the dimension
d has been replaced by the sparsity level p. For g close to 1, the bound in (4.13) is better
than the bound (4.7) of volume sampling since (p —k)/(d—k) < 1. Again, the sparser the
k-leverage scores, the smaller the bounds. Finally, if needed, bounds in high probability
easily follow from Proposition 4 using Markov’s inequality.
Now, one could argue that, in practice, sparsity is never exact: it can well be that
p = d while there still are a lot of small k-leverage scores. We introduce two ideas to
further tighten the bounds of Proposition 4. First, we define an effective sparsity level in
the vein of (Papailiopoulos et al., 2014) as follows. Let 7w be a permutation of {1,...,d}
such that leverage scores are reordered
ok > (4.14)

d

For 6 € {1,...,d}, let Ts = {ms,...,mq}. Let 6 > 1 and

1
= mi L... Fok—14- 5. 4.1
Peff(#) = min < ¢ € {1, ,d}/ Zﬁm kE—1+ 7 (4.15)

1<g

Note that by definition, the k-leverage scores sum to k, so that the partial sum defining
Pett(0) should be close to the total sum. Second, we condition the DPP on a favourable
event with controlled probability.

Theorem 8 (Belhadji et al., 2020a) Let Ay be the event {S N T, 9 = F}. Then,
under the DPP of kernel (4.10), on the one hand,

P(Ag) > (4.16)

1
9 )
and, on the other hand,

E[I|X — IEX 3| Ag] < (1+ (per(0) — k + 1)(k — 1+ 6))|| X — I, X |3 (4.17)
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and

(peff(g) +1- k)
d—k

E[||X —I§X |3 | Ag] < (1 +8 (k—1+ 0)) | X — T X3, (4.18)
In Theorem 8, the effective sparsity level peg(@) replaces the sparsity level p of Proposi-
tion 4. The key is to condition on S not containing any index of column with too small a
k-leverage score, that is, the event Ag. In practice, this is achieved by rejection sampling:
we repeatedly and independently sample S ~ DPP(K) until SNT, ., (0) = @. The caveat
of any rejection sampling procedure is a potentially large number of samples required be-
fore acceptance. But in the present case, Equation (4.16) guarantees that the expectation
of that number of samples is less than 6. The free parameter 6 thus interestingly controls
both the "energy" threshold in (4.15), and the complexity of rejection sampling. The
approximation bounds suggest picking 6 close to 1, which implies a compromise with the
value of peg () that should not be too large either. We have empirically observed that the
performance of the DPP is relatively insensitive to the choice of 6.

Finally, we have observed that the bound in Theorem 8 is representative of the actual
behaviour of the mean error, and that many real datasets from natural language processing
had sparse leverage scores, so that our DPP is a practical improvement over volume
sampling in that setting; see the numerical experiments in (Belhadji et al., 2020a, Section
6).

4.5 A guarantee on the excess risk in sketched linear regres-
sion

So far, we have focused on approximation bounds in spectral or Frobenius norm for the
residual X — IIg, X. This is a reasonable generic measure of error as long as it is not
known what the practitioner wants to do with the submatrix X.g. In this section, we
assume that the ultimate goal is to perform linear regression of some y € RY onto X.
Other measures of performance then become of interest, such as the excess risk incurred
by regressing onto X. g rather than X. We use here the framework of Slawski (2018),
further assuming well-specification for simplicity.

For every i € {1,..., N}, assume y; = X; . w* + §;, where w* is some ground truth
vector of regression coefficients, and the noise variables & are i.i.d. real variables with
mean 0 and variance v. For a given estimator w = w(X,y), its excess risk is defined as

(4.19)

S [uXw* —qu%} |

N

In particular, it is easy to show that the ordinary least squares (OLS) estimator w = Xty
has excess risk

rk(X)
E(w) = —_—. 4.20
(1) = x 2 (1.20)
For convenience, for S C {1,...,d} of cardinality k, we introduce the matrix S € {0,1}4**

such that AS = A. g for any A € RN*4_ Selecting k columns indexed by S in X prior to
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performing linear regression yields wg = (X 8)Ty € R¥. We are interested in the excess
risk of the corresponding sparse vector

wg = Swg = S(X8)Ty € RY,
which has all coordinates zero, except those indexed by S.

Proposition 5 (Theorem 9, Mor-Yosef and Avron, 2019) Let S C [d]|, such that

|S| = k. Let (0:(5))icqu,...ky be the principal angles between SpanS and SpanVj, see

(Belhadji et al., 2020a, Appendiz C). Then
1

E(ws) < — (1 + max tan’ Hi(S)> |w*||?or, 1 +

vk
N i€{l,...k} '

u (4.21)

Compared to the excess risk (4.20) of the OLS estimator, the second term of the right-
hand side of (4.21) replaces rankX by k. But the price is the first term of the right-hand
side of (4.21), which we loosely term bias. To interpret this bias term, we first look at the
excess risk of the principal component regressor

wj, € argmin E¢ [[ly — Xw|?*/N]. (4.22)
weSpanV, i

Proposition 6 (Corollary 11, Mor-Yosef and Avron, 2019)
w202, _ ok
N N’

The right-hand side of (4.23) is almost that of (4.21), except that the bias term in the
CSS risk (4.21) is larger by a factor that measures how well the subspace spanned by S is

S(w)) < (4.23)

aligned with the principal eigenspace Vj. This makes intuitive sense: the performance of
CSS will match PCR if selecting columns yields almost the same eigenspace.

Again, everything is prepared for DPPs to yield a small bound in expectation, since the
right-hand side of (4.21) is a symmetric function of the principal angles between the span
of the selected columns and the k-principal subspace. Jumping directly to the effective
sparsity setting of Theorem 8, we use the same rejection sampling trick, and arrive at the
following.

Theorem 9 (Belhadji et al., 2020a) Using the notation of Theorem 8 for leverage
scores and their indices, it holds

lw*Po?,, | vk

E[&(tbs) [ Ag] < [1+ (k= 1+40) (perr(0) — b+ 1) ] — e

(4.24)
The price of interpretable dimensionality reduction w.r.t. principal component regression
is thus the same O(1 + k(p — k)) prefactor as in (4.17) in front of the PCA bias term
from (4.23). The price goes down as the k-leverage scores get sparser. Finally, to the best
of our knowledge, bounding the excess risk in linear regression has not been investigated
under volume sampling.
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4.6 Closing remarks

Seeing a projection DPP as a random subspace with an alignment constraint is maybe the
most intuitive viewpoint to understand how to build a kernel for a given subsampling ap-
plication, in my opinion, as long as the target performance measure is somehow a function
of that alignment. By expressing alignment in terms of principal angles, it becomes obvi-
ous that the determinant of the Gram matrix somehow controls how close a data-aligned
subspace (the span of selected columns in this chapter, the span of the feature functions
k(z,-) anchored at = a quadrature node in Chapter 3) is to a predefined subspace (the
k-principal subspace in this chapter, the subspace of polynomials of bounded degree in
Chapter 3, the span of the first eigenfunctions of the RKHS kernel in Section 3.4). We
refer to (Kassel and Lévy, 2019) for a more abstract take on this geometric view of DPPs.

In particular, we have been using the same alignment technique to provide a super-
vised version of the DPP-based column selection presented in this chapter; see (Mai and
Bardenet, 2022) for preliminary results. The idea is to sample columns from a DPP which
aligns the span of the selected columns with a Krylov subspace, which can be interpreted
as a supervised counterpart to PCA.

At a lower level, sampling our PCA-based DPP requires computing cross-leverage
scores, i.e. our kernel, which requires running a PCA. If we could lower that cost, our
algorithms would become more than a replacement for PCA. There are workarounds to
computing leverage scores, like estimating them by random projections (Drineas et al.,
2012; Boutsidis et al., 2011). There are also double-phase techniques, where one first pre-
selects marginally relevant columns before finding a diverse subset of the selected ones.
The latter family of methods has given algorithms that are extremely efficient in practice
(Boutsidis et al., 2009), yet come with loose bounds. It would be interesting to find the
right way to pre-screen items that does not impact too much the theoretical performance
of a DPP; see e.g. (Derezinski et al., 2019) for results on DPP sampling that relate to this
idea.
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Silence fell like a hammer made of feathers. It left holes in the shape
of the sound of the sea.

Terry Pratchett, Nation, 2008

Contents
5.1 From the STFT to the planar GAF ... ... ........... 45
5.2 From a DPP to analytic wavelets . . . . . ... ........... 47
5.2.1 Thespaceofsignals . . . ... ... ... ... ... .. 48
5.2.2  The time-scale transform . . . . . ... ... L0 49
523 Thewhitenoise. . . . . . . .. ... L 49
5.3 Mapping signals to GAFs: a generic template . . ... ... ... 50
5.4 From the spherical GAF to the Kravchuk transform ... .. .. 52
5.5 Openingremarks. . . . ... ... ittt i 54
5.5.1 Removing the analyticity constraint . . . . .. ... ... ... ... 54
5.5.2 Making the Kravchuk transform a practical tool . . .. .. ... .. 54
5.5.3 The point process of maxima . . . . . . .. .. ... ... ... ... 55
5.5.4 Ridgesandlevelsets . . . . .. ... .. .. L. 95
5.6 Despite appearances, this chapter fits in my narrative . . . . . . 55

When I arrived in Lille at the beginning of 2015, I joined a signal processing team.
From coffee break to lunch time at the restaurant universitaire with my excellent col-
leagues, I traded long monologues on DPPs against a crash course in signal processing. In
particular, I developed an interest in time-frequency and time-scale analysis listening to
Pierre Chainais and Julien Flamant. When we all went to GRETSI’15 in Lyon, the main
French-speaking event in signal and image processing, I saw a plenary talk by Patrick
Flandrin, who presented his recent interest in the zeros of spectrograms (Flandrin, 2015),
as opposed to the traditional focus on spectrogram maxima.

As an aside, spectrograms are a cornerstone of time-frequency analysis (Flandrin,
1998). They are quadratic time-frequency representations of a signal f : R — C
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(Grochenig, 2001, Chapter 4), associating to each time and frequency a real number that
measures the energy content of a signal at that time and frequency, unlike global-in-time
tools such as the Fourier transform. Since it is natural to expect that there is more energy
where there is more information or signal, most methodologies have focused on detecting
and processing the local maxima of the spectrogram; see e.g. (Flandrin, 1998). Usual tech-
niques include ridge extraction, e.g., to identify chirps, reassignment and synchrosqueezing,
to better localize the maxima before further quantitative analysis. Using the zeros of a
spectrogram instead of higher-level sets thus may sound counter-intuitive.

Yet, at GRETSI’15, Patrick Flandrin explained that the locations of the zeros of a
spectrogram in the time-frequency plane almost completely characterize the spectrogram,
and he proposed to use the point pattern formed by the zeros in tasks such as filtering and
reconstruction of signals in noise. This proposition stems from the empirical observation
that the zeros of the spectrogram of white noise are uniformly spread over the time-
frequency plane, and tend not to cluster, as if they repelled each other. In the presence of
a signal, zeros are absent in the time-frequency support of the signal, thus creating large
holes that appear to be very rare when observing pure white noise. This leads to testing
the presence of signal by looking at statistics of the point pattern of zeros, and trying to
identify holes. Patrick’s talk connected to all my pet subjects of the time: time-frequency
analysis, repulsive point processes, and even reproducing kernel Hilbert spaces. This was
the trigger for what has become a large part of my research programme.

The similarity of the mathematical backbone of DPPs with the analytical tools behind
time-frequency analysis (Grochenig, 2001) made me conjecture during GRETSI'15 that
the point process formed by the zeros of the spectrogram of white Gaussian noise was a
DPP. As we shall see in Section 5.1 and detailed in (Bardenet, Flamant, and Chainais,
2018), this is not the case; the zeros rather follow the distribution of the zeros of the
planar Gaussian analytic function introduced in Section 2.3. By the time we finished
working on (Bardenet et al., 2018), I was invited to give a talk at GRETSI’19 on DPPs
and signal processing. How frustrating that my flagship time-frequency example was not
a DPP! However, once all the maths were laid out to characterize the zeros of random
spectrograms, I realized that I could have obtained a well-known DPP if I had replaced
the Hermite functions by the inverse Fourier transform of the Laguerre functions in the
proofs. A crucial discussion with Patrick Flandrin helped me realize that my modified
proof corresponded to characterizing the zeros not of the classical spectrogram of white
noise, but of the analytic wavelet transform (Daubechies and Paul, 1988) of a particular
white noise. This is sketched in Section 5.2. A few days later, Adrien Hardy, passing
though my office for some other reason (most likely for one of his usual pranks), listened
to my musings of the moment and immediately realized the key role implicitly played by
generating functions of orthogonal polynomials. This allowed us to further generalize our
results on the identification of zeros to more time-frequency transforms, and cleanly define
all sorts of white noises (Bardenet and Hardy, 2019). Section 5.3 gives this construction,
of which Sections 5.1 and 5.2 can be seen as special cases. In Section 5.4, I show how
this generic construction led us to define a new time-frequency transform, acting on finite-
dimensional vectors (Bardenet and Hardy, 2019; Pascal and Bardenet, 2022). The topic
of zeros of spectrograms has now gained momentum, and there are many open questions,
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some of which I list in Section 5.5.

Finally, while this chapter may seem out of my initial narrative for this manuscript (i.e.,
repulsive point processes provide small residuals of orthogonal projections in expectation),
I show in Section 5.6 that this is not the case, and that we are somehow pursuing the
same goal as in Chapters 3 and 4, only in a different form.

For reference, this chapter is based on our works (Bardenet, Flamant, and Chainais,
2018; Bardenet and Hardy, 2019), and (Pascal and Bardenet, 2022).

5.1 From the STFT to the planar GAF

Let f € L?(R) and g be the pdf of a centered Gaussian, with variance normalized so
that its L? norm is ||g]2 = 1. The short-time Fourier transform (STFT) V,f of f with
Gaussian window g, is defined by

Vo f(u,v) Z/f(t)g(t—U)e_m”t”dt: (f,MyTug), (u,v) € R%, (5.1)

with (-,-) denoting the inner product in L*(R), M, f = €™ f(-) and T\, f = f(- —u). The
spectrogram of f is simply the squared modulus of its STFT, i.e.

v (Vo (u,0)

From (5.1), it is intuitive that the spectrogram is large in (u,v) if frequency v is con-
tributing to the signal around time u. An example spectrogram is shown in Figure 5.1(a).
The signal is a so-called linear chirp, as can be seen guessed from the linear relation be-
tween time and frequency. The (numerical) zeros of the spectrogram look well-spread, with
a slight accumulation around the signal support, and a complete absence in the support,
which the spectrogram takes large values.

To investigate the zeros of the STFT of white noise, our first step was to rigorously
define the STFT of complex white Gaussian noise (WGN), in a manner that both satisfied
the intuition we may have of white noise, and allowed us to speak of the zeros of the
spectrogram. In (Bardenet et al., 2018, Section 3.1), we used a classical definition of
real WGN as a random tempered distribution with Gaussian characteristic function. A
complex WGN ¢ is then defined as having independent white Gaussian noises &1, &2 as its
real and imaginary parts.

This allowed us to pointwise compute (£, M, T, g) since M,T,g is smooth. By pointwise,
we mean for a given time u and frequency v. Then in (Bardenet et al., 2018, Proposition 3),
we stitched all these pointwise evaluations together and concluded that with probability
1 on the white noise, the zeros of the function

z=u+iv— (& M,T,9)
are those of so-called planar GAF,

k/2 k

Vi

GAFc(z) := Zak
k=0
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(a) Spectrogram of a linear chirp (b) Postprocessing a detection test

noisy signal

original

amplitude

reconstructed

time

(c) Identification of the signal support (d) Signal reconstruction

Figure 5.1: The different steps of a zero-based reconstruction algorithm, applied to a noisy
signal. The darker the blue, the larger the spectrogram value, while zeros are shown as
white dots.
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where a, = ({1, hg) + i(€2, hi))/V/2 are ii.d. unit complex Gaussians, and hy, are the
Hermite functions. To read this chapter, it is enough to know that Hermite functions are
a basis of L?(R) built using orthogonal polynomials with respect to the Gaussian g.

All the above was the formalisation of the following heuristic. A complex WGN should
have unit complex Gaussian coefficients in any basis of L?(R). Among such bases, we
pick the Hermite basis, because Hermite functions essentially map to complex monomials
through the STFT (Grochenig, 2001). We thus expect an analytic function of the form
(5.2) as the STFT of &.

Identifying the zeros of the STFT of white noise with the zeros of a random entire
function on the time-frequency plane is satisfactory, since entire functions have isolated
zeros. It thus makes sense to speak of the point process of the zeros. Furthermore, the
zeros of (5.2) are actually a well-studied stationary point process (Hough et al., 2009),
called the zeros of the planar Gaussian analytic function (GAF), and which we introduced
in Section 2.3. We show a sample of these zeros as white dots in Figure 5.2(a), with the
heatmap showing the corresponding spectrogram realization.! Combining known proba-
bilistic results on this point process and standard statistical methodology for spatial point
processes, we obtained in (Bardenet et al., 2018, Section 5) powerful signal detection proce-
dures that strengthen the seminal work of Flandrin (2015). Without entering into details,
spatial statistics provides a sophisticated toolbox for one-sample testing with stationary
point processes (Baddeley et al., 2015). In Figure 5.1(b), the beige pixels correspond to
the centers of unusually large Euclidean balls that do not contain any zero of the spec-
trogram. By unusual, I mean that under the hypothesis that we are observing the zeros
of the spectrogram of pure white noise, the corresponding empty balls appear with very
small probability. These empty balls have caused to reject the hypothesis of pure white
noise. One can then apply any heuristic to extract an envelope of these beige points; see
Figure 5.1(c), and invert the STFT after multiplication with a smooth indicator function
of the support. This yields a denoised, or "filtered", signal; see Figure 5.1(d).

To conclude, one can show (Hough et al., 2009, Section 5.1) that the zeros of the planar
GAF are not a DPP with Hermitian kernel. Indeed, the pair correlation function of the
zeros of the planar GAF is known in closed form, and it takes values above 1. For a DPP
with Hermitian kernel, this is forbidden; see Section 2.2.5. Strictly speaking, they could
still be a DPP with non-Hermitian kernel.

5.2 From a DPP to analytic wavelets

We were slightly frustrated of not finding a well-known DPP behind the STFT of white
noise in (Bardenet et al., 2018). In particular, for & > —1, consider the random analytic

a IT'(k 1
GAF ) Zak —|—a+ )z, |z| <1, (5.3)

keN

function

! Actually, this specific figure was obtained through a different time-frequency transform giving the
same distribution; see (Bardenet and Hardy, 2019).
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(a) White noise (b) White noise with a Hermite function

Figure 5.2: White dots are the zeros of the spectrogram of (a) a realization of white noise,
and (b) a realization of white noise plus an Hermite function.

where the a; are again ii.d. unit complex Gaussians. The series (5.3) defines the so-
called hyperbolic GAF (Hough et al., 2009). When « = 0, it simply reads >_ axz* and its
zeros are a DPP. A natural® question is then to know what signal processing problem we
should have tried to solve in order to end up with the zeros of the hyperbolic GAF instead
of the planar GAF. The gamma coefficients are a hint that the Hermite functions should
somehow be replaced by Laguerre functions. This backward reasoning is the starting point
of (Bardenet and Hardy, 2019).

The same heuristic as in Section 5.1 holds: we need a basis of some Hilbert space
of signals, a white noise that can be decomposed onto that basis, and a time-frequency
transform that sends elements of the basis onto the right monomials.

5.2.1 The space of signals

Laguerre functions are a basis of L?(R,) built using the orthogonal polynomials with
respect to the pdf of a gamma random variable. Thus, we are looking for a space of
signals where the half-line R plays a role. A natural® example is the space of "analytic"
signals

H*(R) = {f € I2(R,C) : Supp(f) C R.}.

The inverse Fourier transforms (fx) of the Laguerre functions form a basis of H?(R).

2 At least to DPP aficionados
3This time, to signal processers!
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5.2.2 The time-scale transform
Now, we need a transform that maps the basis (f;) to monomials. Let 8 > —1/2 and set

1

Pp(t) = W, teR.

The Fourier transform of v is essentially a gamma pdf

1 (=)t

BT eite 1 — ,6’+1P(6 +1),

1
- I~ = '
\/27r/]RJr V2 (t+1)
so that 13 is intuitively a fine window if we want to use Laguerre calculus in the Fourier
domain. The Daubechies-Paul wavelet transform of f € H?(R) is defined as

Waf(u,s) := (f, TuDsvg), (5.4)

where v € R and s € R are thought of as time and scale, T, f(t) := f(t — u) and
Dy f(t) :=s"'/2f(t/s) are the usual translation and dilation operators.

We show in (Bardenet and Hardy, 2019, Theorem 2.3) that for f € H?(R) and up to
a non-vanishing term,

Wsf(—u,s) < L7 fp(u+is)), (5.5)

where u +1is € Cy is in the time-scale half-plane, p(w) := (2w —1)/(2w +1) is a conformal
(8)

mapping from C; to D, and £} is a transform that precisely sends the inverse Fourier
transforms of the Laguerre functions onto the right monomials

I'k+2 1
L0 () = /LB 2L +k|ﬁ Uk (5.6)
Everything is in place but the white noise. Heuristically, if we were able to somehow
decompose a white noise ¢ on H?(R,) as > k>0 Ak [k, where ay are iid. unit complex

Gaussians, then (5.5) and (5.6) should help us conclude that
N'(k+2 1
Wst(2) Zak\/—jL Pk — AR ()
k=0

up to non-vanishing terms. This would characterize the zeros of the analytic wavelet
transform of white noise.

5.2.3 The white noise

The series Zk>0 ay fr almost surely diverges in H?(R). To remedy this, we follow Gross
(1967) in his formalisation of abstract Wiener spaces. First, we define a slightly weaker
norm on H2(R) that ensures the series converges

1116 =2 1= W (oAl (5.7)

keN



50 Chapter 5. Time-frequency filtering with zeros of GAFs

Indeed, it follows that

i [€k[*
k
= E Ty <00 as. (5.8)
e keN

> ag fi

keN

since the right-hand side has finite expectation. Now define © as the completion of H?(R)
for the norm (5.7). Leonard Gross’ construction (Gross, 1967) then gives a unique proba-
bility measure on O, called white Gaussian noise, such that

/ X0 1 (d) = e~ IIP/2, A€ O, (5.9)
S]

where ©* is the topological dual of © and hy € H?(R) is associated to A € ©* C H?(R) by
Riesz’ representation theorem. Equation (5.9) is to be interpreted as specifying the Fourier
transform of the white noise on H?(R). In particular, it leads to 3" a5 converging almost
surely in © to p, which is our goal. We can even give rates of convergence (Bardenet and
Hardy, 2019, Section 5). We also note in passing that p is a rigorous definition of an
analytic white noise.

With the White noise now defined, we prove in (Bardenet and Hardy, 2019, Theorem

2.3) that .Z § can be unambiguously defined as a random analytic function in the unit

(26) 1 particular, the case

open disk . Furthermore, it is equal in distribution to GAFy
8 = 0 yields zeros that are a DPP! A sample of this DPP obtalned as the numerical zeros
of a Paul-Daubechies scalogram is shown in Figure 5.3.

Finally, we note that Abreu, Haimi, Koliander, and Romero (2018) have also indepen-
dently proved that the zeros of W3¢ are the zeros of the hyperbolic GAF, with a slightly

different definition of white noise.

5.3 Mapping signals to GAFs: a generic template

Having extended the STF'T case to the analytic wavelet transform, we then realized that
the mathematical construction in Section 5.2 was much more general than these two cases.
The whole idea is to first fix a Hilbert space H of signals, fix an orthonormal basis (fx) of
H, and complete H into © as in Section 5.2.3, so as to be able to define a white Gaussian
noise on ©. Then pick a sequence (Vj)ren of holomorphic functions on a domain A
satisfying

sup »  [Tp(2)[* < o0 (5.10)

zeK keN

for any compact K C A. Now define a "time-frequency" transform .Z acting on H by
o
= (fe. f) z€A. (5.11)
k=0

In signal processing terms, the signal f € H is analyzed by £ in the basis (fx), and
reconstructed as an analytic function on A using the dictionary ¥j. Note that dominated
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(a) White noise

(b) An inverse Fourier transform of Laguerre function in white noise

Figure 5.3: White dots are a sample zero set of the hyperbolic GAF, superimposed on an
analytic scalogram of an analytic white noise.
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convergence allows us to rewrite . in kernel form,
Lf(2) = (T(2),f), T(x,2) =Y fr(z)T(2). (5.12)
k=0

The construction of white noise in Section 5.2.3 guarantees that £ extends uniquely to ©
and that Z¢ has the same law as the GAF ) a;¥j. This is the main result of Bardenet
and Hardy (2019).

The STFT with Gaussian window and the analytic wavelet transform of Daubechies
and Paul (1988) are particular cases of ., where the representation (5.12) is provided
by identities for the generating functions 7' of classical orthogonal polynomials. This
prompted us to plug other generating functions for orthogonal polynomials as kernels,
and check whether the resulting transform had a time-frequency/scale interpretation.

5.4 From the spherical GAF to the Kravchuk transform

Armed with the general pattern in Section 5.3, it is easy to find, given a GAF, a space H
of signals, an analysis basis (f) and a reconstruction family (1;) to map white Gaussian
noise in H to any GAF. To the signal processer, the interesting question is whether the
resulting transform has any time-frequency interpretation.

Take for instance the spherical GAF

ol N
GAFYV(2) =Y & <k> . zeC. (5.13)
k=0

We plot in Figure 5.4 a sample of the spherical GAF and its zeros, mapped onto a sphere
through stereographic projection. This rendering highlights the invariance of the set of
zeros to isometries of the sphere, just like the zeros of the planar and hyperbolic GAFs
are invariant to isometries of the plane and the Poincaré half-plane, respectively.

Following Section 5.3, we propose to take H = CY the space of finite signals, along
with the basis of Kravchuk functions. In words, Kravchuk functions are to the binomial
distribution what Hermite functions are to the Gaussian distribution, and what Laguerre
functions are to the gamma distribution. Taking

Vr(z) = (J;f) 2

then leads to a transform . in (5.11) that maps the white noise on CV to the spherical
GAF. Moreover, the kernel T in (5.12) of this transform has a closed form, due again to a
generating identity for Kravchuk polynomials; see the discussion in (Bardenet and Hardy,
2019). Yet, it is not easy to find a time-frequency interpretation of such a transform. To
that end, in (Pascal and Bardenet, 2022), we further modified the Kravchuk transform &
to

Ty(z) = /(1 +]2]2)~N x Ly(z). (5.14)
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Note that T'y is not analytic anymore, but that it has the same zeros as Zy. Moreover,
T is an isometry in the sense that

Il = ()" [ Ty, 0) P dn(o. o), (515)

where (9, ) € [0,7] x [0,27] are the spherical coordinates parametrizing the sphere S?,
du(9, ) = sin(¥)dddy is the uniform measure on S?, and we write Ty(J, p) for Ty
evaluated at the stereographic projection z = cot(9/2)e'¥. More importantly, using the
formalism of coherent states, we show in (Pascal and Bardenet, 2022) that T is covariant
under the action of the group of rotations SO(3), meaning that

T[Ruy](ﬁa 90) - Ty(Ru(ﬁ> W))? (5'16)

where R,, (resp. R,,) denotes a particular action of a rotation parametrized by the unitary
vector u € R3 on vectors of size N + 1 (resp. on points of the unit sphere). We refer
the reader to the supplementary material to (Pascal and Bardenet, 2022) for a concise
introduction to the representation theory of SO(3).

(a) White noise (b) A Kravchuk function in white noise

Figure 5.4: White dots are a sample zero set of the spherical GAF, superimposed on a
Kravchuk spectrogram, see (Bardenet and Hardy, 2019; Pascal and Bardenet, 2022) for
definitions.

This covariance property (5.16) is meaningful to the signal processer. The classical
STFT is covariant with respect to translations in the time-frequency plane (Grochenig,
2001). In words, translating a signal in time and frequency before computing the STFT
yields the same result as evaluating the STF'T of the original signal at a translated time
and frequency. Even if the new variables (1, ¢) do not have as intuitive a meaning as time
and frequency, they are still variables in a phase space (the sphere, instead of the plane),
and there is a group of isometries (rotations, instead of time-frequency translations, a.k.a.
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the Weyl-Heisenberg group), with respect to which the Kravchuk transform is covariant.
That makes the Kravchuk transform close in spirit to the classical short-time Fourier
transform.

5.5 Opening remarks

We close this section with a few thoughts, and remarks on ongoing work.

5.5.1 Removing the analyticity constraint

There are some fundamental limitations to the correspondence between GAFs and time-
frequency transforms. The three GAFs we introduced — planar, hyperbolic, and spherical —
are canonical in the sense that they are the only GAFs that are invariant to isometries of
the complex plane, the Poincaré half-plane, and the sphere. From a statistical point of
view, such invariances are crucial, as they make the point process of the zeros stationary
and allow estimating functional statistics, a key step in designing detection /reconstruction
algorithms (Bardenet et al., 2018, Section 5). Extending the correspondence will require
either more exotic geometries, or dropping the Gaussian/analytic aspects on the GAF
side.

Another point in favour of removing analyticity is that the Gaussian window is the only
window that makes the STFT map L?(R) to analytic functions (Ascensi and Bruna, 2009).
When the window is not Gaussian but still Schwartz, the STFT maps to polyanalytic
functions, and Haimi et al. (2020) have studied the zeros of the STFT of white noise in
that case. Interestingly, the analytic wavelet transform of Section 5.2 is also the only
continuous wavelet transform that maps to analytic functions (Holighaus et al., 2019).
Besides working with polyanalytic functions, discrete transforms such as the Kravchuk
transform (Bardenet and Hardy, 2019; Pascal and Bardenet, 2022) do bypass constraints
on the window while still mapping to analytic functions.

5.5.2 Making the Kravchuk transform a practical tool

We believe that the Kravchuk transform of Section 5.4 has the potential of becoming a
standard item in the practitioner’s toolbox. When describing the classical STFT, we have
swept under the rug the fact that any practical computation is done by approximating the
involved integrals by Riemann sums, and then applying fast Fourier transforms. When
Riemann sums are a poor approximation to the corresponding integrals, say when the
sampling frequency is lower than typical frequencies in the signal, the numerical zeros
of the spectrograms we compute in practice are likely to be far from the zeros of the
underlying GAFs. In contrast, the Kravchuk transform takes as inputs finite signals, i.e.
(finite-length) vectors of complex numbers. If we accept to work with the sphere as a
phase space, the Kravchuk transform avoids any sophisticated approximation procedure
of functions by finite sequences of numbers. We refer to (Pascal and Bardenet, 2022) for
numerical experiments that demonstrate that signal detection tests for small signals are
more powerful when using the Kravchuk transform than the STFT.
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This situation is reminiscent of what the finite Fourier transform is to the continuous
Fourier transform, where replacing the latter by the former requires some intellectual
gymnastics (e.g., consider only band-limited functions, use Shannon’s sampling theorem,
and truncate the coefficients) and edge effects that are not easy to quantify. We are also
currently working with Barbara Pascal and Julien Flamant on fast algorithms to compute
and invert the Kravchuk transform, leveraging analogies with spin spherical harmonics.

5.5.3 The point process of maxima

Maxima of spectrograms are also the zeros of a Gaussian process, but with non-analytic
samples. Abreu (2022) shows that the maxima still form a point process, are stationary,
and that their intensity if 1/3 that of zeros, in line with a conjecture of Flandrin (2015). A
question of practical importance is if, when, and how there is an interest in using maxima,
zeros, or both for a given signal processing task. Preliminary experiments suggest that
maxima alone are more efficient than zeros alone at, say, estimating the instantaneous
frequency of a simple signal with large signal-to-noise ratio and little interference with
other signal components. On the contrary, the more rigid structure of zeros (due to being
the zeros of an analytic function) makes them more robust than maxima at low signal-to-
noise ratio, or when there is strong interference caused by multiple signals with overlapping
time-frequency supports. This is the topic of ongoing work with my former postdoc Arnaud
Poinas, and my current postdoc Juan Manuel Miramont, along with co-supervisors Pierre
Chainais and Frangois Auger; see (Miramont et al., 2022) for preliminary results on a
numerical benchmark where we compare maxima-based and zero-based detection and
reconstruction.

5.5.4 Ridges and level sets

For estimation of instantaneous frequencies, it is actually customary to work with the
maxima not of the spectrogram, but of each restriction of the spectrogram to a constant-
time line in the time-frequency plane; sort of synchrosqueezed maxima. This gives curves
of maxima, so-called ridges, and the random set of ridges of a (random) spectrogram would
be an interesting object to study. Similarly, many geometric properties of the spectrogram
could be used for filtering or instantaneous frequency estimation. Ghosh et al. (2022), for
instance, showed that level sets of spectrograms can be used to detect signals made of
single Hermite functions with a quantifiable testing power.

5.6 Despite appearances, this chapter fits in my narrative

My narrative is that functions can be efficiently reconstructed if sampled at carefully
chosen repulsive point processes. In particular, functions that belong to a reproducing
kernel Hilbert space (RKHS), sampled at a DPP or a mixture of DPPs, were shown to
yield small residuals in expectation under a suitable DPP and a mixture of DPPs in
Chapter 3. We are in a very similar setting here, and we could even make the settings
coincide.
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Let me consider the STFT V, from (5.1), with Gaussian window g for concreteness. The
range Vy(L?) of the STFT with Gaussian window is an RKHS — the so-called Bargmann-
Fock space of quantum physics. Second, time-frequency filtering is usually carried out by
projection onto a subset of time-frequency atoms, just like we approximated mean elements
by sums of feature functions in Chapter 3. Indeed, as we saw in Figure 5.1, filtering
works by localizing a signal, i.e. (i) isolating a subset Q C R? of the time-frequency
plane (the assumed "support" of the signal, delimited in green in Figure 5.1(c)), and (i4)
reconstructing a signal f through the restriction of the STFT of the (noisy) signal f to
that subset,

f =V, 1a(u,v)Vyf(u,v)] . (5.17)

In words, we select the (typically uncountable) subset of time-frequency atoms indexed
by €2, and approximate the original signal by a linear combination of these atoms. The
proposition of Flandrin (2015) can be paraphrased as defining the subset 2 as a function
of the pattern of zeros of Vy(f). Just like in Chapters 3 and 4, the span of the time-
frequency atoms indexed by €2 is indeed a random subset that is defined through a repulsive
point process. Three differences with Chapter 3 are that the selected random subset is
uncountable, that the localization operator in (5.17) is not an orthogonal projection, and
that the involved point processes are not DPPs.

There are a number of steps that we could take to prove a result like those in Chapter 3
and 4 here. First, we could use the zeros (u;, v;) of the spectrogram of white noise to design
a (countable) random dictionary (M,,T,,g) of time-frequency atoms, and prove that it
gives a (random) frame with good properties (Grochenig, 2001). Second, we could study
the frame given by a DPP in the time-frequency plane with kernel that of the Bargmann-
Fock space V:Q(LZ). It turns out that this DPP is precisely the Ginibre ensemble introduced
in Example 3. Note that Ghosh (2015) gave a clever indirect proof that the set of time-
frequency atoms indexed by the Ginibre ensemble is a complete set; a natural question is
thus to know whether it is a frame with tighter constants than the independent draws of
the seminal (Bass and Grochenig, 2013). Playing with the spectrum of the Ginibre kernel,
say using the truncated Ginibre ensemble of Example 3, we should also end up with a
finite set of time-frequency atoms with properties resembling that of the infinite Ginibre
frame. Such a result would be of practical importance, and is the subject of ongoing
collaboration with Pierre Chainais and our former PhD student Ayoub Belhadji.



CHAPTER 6

Other work and perspectives

Nanny’s philosophy of life was to do what seemed like a good idea at the
time, and do it as hard as possible. It had never let her down.

Terry Pratchett, Maskerade, 1995
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I start by reviewing work on point processes that I chose not to include in the main
body of this manuscript for conciseness, but that still relates to the overall investigation of
the computational and statistical properties of repulsive point processes. Then I discuss
current and future work, with a few perspectives that progressively go beyond my focus
on point processes.

6.1 Past work on repulsive point processes

I have voluntarily focused on ideas and mathematical results in the main body of this
manuscript, to sketch the common umbrella above my work. That being said, I have also
worked on methodological, algorithmic, statistical, and experimental aspects of repulsive
point processes.

On methodology, recent work that could easily have made it to the main body includes
(Bardenet, Ghosh, and Lin, 2021). We show there how to use the variance reduction that
we obtained for multivariate orthogonal polynomial ensembles in (Bardenet and Hardy,
2020), see also Chapter 3, but this time for subsampling a finite-but-large set. Our target
application is stochastic gradient learning, where random subsets of a large training set
(so-called minibatches) are used to estimate a gradient, at each iteration of a gradient
descent applied to an empirical loss function. Since the variance of the gradient estimator
controls the mean square error of interest (Moulines and Bach, 2011), variance reduction
for gradient estimators has been a rich topic of research. We propose in (Bardenet, Ghosh,
and Lin, 2021) a DPP-based estimator of the gradient of the empirical loss, with a mean
square error that decreases faster than the inverse of the square root of the cardinality of
the minibatch. This paper was selected as a spotlight at NeurIPS’21.
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On algorithmic aspects of repulsive point processes, we have focused on sampling al-
gorithms. Indeed, for a projection DPP of rank N, the cost of the standard algorithm is
at least cubic in N; see Chapter 2. Like for other kernel machines, this cubic cost typi-
cally becomes prohibitive as soon as the required N goes beyond 10%. There are several
avenues around this bottleneck. On our side, we have worked on approximate sampling
through Markov chain Monte Carlo for specific DPPs in the thesis of Guillaume Gautier
(Gautier, 2020). In particular, we have proposed an MCMC algorithm to sample from fi-
nite projection DPPs (Gautier, Bardenet, and Valko, 2017), which we have experimentally
demonstrated to mix remarkably fast. We have proposed a similar MCMC kernel for (-
ensembles (Gautier, Bardenet, and Valko, 2021). Finally, with my postdoc Michaél Fanuel,
we have studied a physics-inspired DPP on the edges of a graph (Fanuel and Bardenet,
2022), for which exact sampling is possible without relying on the "base times height"
formula of Chapter 2. This DPP is a natural generalization of the edges of a uniform
spanning tree, a well-studied DPP (Lyons and Peres; 2016). Our generalization replaces
the Laplacian of the graph by a so-called connection Laplacian, and has applications in,
e.g., ranking. The reader can also check our recent preprint (Jaquard, Fanuel, Amblard,
Bardenet, Barthelmé, and Tremblay, 2022) for an application of that connection-graph
DPP to graph signal processing.

On statistical aspects, we have worked first on inference for DPPs, where the latter
are used as models for repulsive behaviour. Repulsive point processes are natural models
for, e.g., the location of trees in a forest, which compete for nutrients, or sentences in a
summary, whose diversity guarantees coverage. Among repulsive point processes, DPPs
with Hermitian kernels stand out as exceptionally tractable: sampling is polynomial,
and all correlation functions are available in closed form, which allows using them in
inference procedures. In particular, we have proposed MCMC and variational algorithms
for Bayesian inference in parametric DPP models (Bardenet and Titsias, 2015). More
recently, building on a novel representation for non-negative functions in RKHSs (Marteau-
Ferey, Bach, and Rudi, 2020), we have proposed the first non-parametric algorithm to learn
a continuous kernel from DPP samples (Fanuel and Bardenet, 2021). Still within statistics,
but closer to our motto of using DPPs as subsampling tools, we have investigated DPPs
for continuous experimental design (Poinas and Bardenet, 2022). Finally, we have also
investigated statistical diagnostics of hyperuniformity (Hawat et al., 2022). Informally,
a hyperuniform point process is one for which the variance of Monte Carlo estimators
decreases faster than the classical Monte Carlo rate. Being able to infer that property can
help us focus our mathematical efforts on promising point processes.

On experimental and software aspects, we developed a software library! intended to
collect all known sampling algorithms for DPPs, exact and approximate (Gautier, Bar-
denet, Polito, and Valko, 2019a). We did the same for estimators of the structure factor
of a point process,? a key quantity to test hyperuniformity, which is especially useful to
material scientists. Finally, we are developing a benchmarking suite for signal detection
and reconstruction with time-frequency tools.> One of our objectives there is to numeri-

"https://github.com/guilgautier/DPPy
“https://github.com/For-a-few-DPPs-more/structure-factor
Shttps://github.com/jmiramont/benchmark-test
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cally assess in what regime algorithms based on the zeros of the spectrogram shine, and
how to combine zero- and maxima-based algorithms.

6.2 Other work and a few perspectives

The Monte Carlo algorithms implicitly described in Chapter 3 are, in a sense, importance
sampling algorithms with non-i.i.d. proposals. The resulting mean square errors, for vol-
ume sampling, or asymptotic variance, in the case of orthogonal polynomial ensembles,
decreases fast with the size of the sample, but actually scales exponentially in the dimen-
sion of the space over which we wish to integrate. It is thus highly desirable to investigate
whether a dynamic version of our results, involving e.g. the trajectory of a Markov process
leaving a repulsive point process invariant, could lead to better scaling with the dimension.
Indeed, having asymptotic variances that grow polynomially with the dimension is one of
the theoretical reasons for the success of MCMC algorithms (Chernozhukov and Hong,
2003). With that in mind, Myléne Maida (Laboratoire de mathématiques Paul Painlevé,
Univ. Lille) and I are investigating piecewise deterministic Markov processes that leave
repulsive point processes invariant. Relatedly, with our new jointly-supervised doctoral
student Martin Rouault (2022-), Myléne and I are investigating other types of Gibbs point
processes than DPPs for Monte Carlo integration. These other point processes are partly
chosen for their amenability to MCMC sampling.

With Subhro Ghosh (Dept. of mathematics and dept. of data science, NUS Singapore)
and aspiring PhD student Hugo Simon, we are investigating variance reduction for discrete
DPPs in machine learning, in the vein of our work on stochastic gradient (Bardenet, Ghosh,
and Lin, 2021). With Subhro again, we are also investigating methodological alternatives
to sampling DPPs (Bardenet and Ghosh, 2020), and topological data analysis applied to
the zeros of time-frequency transforms.

With PhD student Diala Hawat (2020-) and her co-supervisor Raphaél Lachiéze—
Rey (Laboratoire de mathématiques appliquées MAP5, Univ. Paris), we are currently
investigating how to obtain variance reduction with repulsiveness applied a posteriori.
Indeed, to bypass the cost of sampling a DPP with large cardinality, one option is to
sample points independently, and then push them apart. Diala is currently proving (and
is almost there) that a well-chosen gradient step applied to all particles, pushing them
away from each other, reduces the variance of Monte Carlo estimators based on these
particles.

After reading Odile Macchi’s thesis, where she introduced DPPs as models to explain
the anti-bunching properties of beams of fermionic particles, I grew very enthusiastic about
the connections between DPPs and quantum electronic optics. We organized a two-day
event? in 2019 in Lille, France, opened by Odile Macchi and featuring both theoretical
and experimental physicists exposing their view of fermionic coherence to an audience of
DPP users across mathematics, computer science, and signal processing. The workshop
having been met with cross-disciplinary enthusiasm, we made two decisions. The first

“https://dpp-fermions.sciencesconf .org/
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was to organize an ambitious, two-week follow-up to the workshop,® which took place in
2022 in Lyon, France. The second decision was to unite forces with physicists and write a
survey on the links between point processes and optics, to pin down a common ground for
discussions. With my postdoc Alexandre Feller, I led a team of dedicated speakers and
organizers of the aforementioned workshops in writing —actually, Part I of— a survey on
DPPs and fermions (Bardenet et al., 2022), fifty years after Macchi’s 1972 thesis. Part II
of the survey is work in progress, and will feature chosen topics, like fermionic techniques
in combinatorics, experimental measurements of (anti-)bunching particles, or quantum
electronic signal processing. This work has already generated many puzzling questions
that could easily become research lines at the intersection of physics, probability, and
time-frequency signal processing, see e.g. (Bardenet et al., 2022, Section 6). For instance,
physical fermions are described in quantum field theory by both a quantum state and a
measurement. From the same state, a lot of point processes can be obtained by varying
the measurement process: how do all these point processes relate to each other? How
is the amount of repulsiveness in a point process related to the corresponding quantum
measurement and state? What are the consequences of observables not commuting, and
of Heisenberg’s uncertainty bound, on the resulting point processes?

The last research line that I want to mention here has me take a step back. My
initial motivation to study repulsive point processes is Monte Carlo integration. In turn,
my motivation for Monte Carlo integration is Bayesian statistics, where every question
asked by a decision-maker, be they biologists, physicists, or government, is turned into
the computation of integrals. But after years of teaching Bayesian learning and reading
about the foundations of Bayesian statistics, I have finally grown suspicious of part of
the Bayesian thought process. For instance, there is no fully convincing case, in my
opinion, for conditioning (i.e., using conditional expectations) to represent the acquisition
of knowledge with new observations. In particular in machine learning, when the focus
is on prediction accuracy at least as much as on internal coherence, and when models
are necessarily misspecified (i.e., incomplete descriptions of the data generating process),
I believe that blindly conditioning a large model as one acquires more data is hardly
justified, and is not what practitioners do, in any case. I would like to spend time thinking
of an axiomatic derivation of how to simultaneously update knowledge and make decisions
online, which trades off internal coherence and prediction accuracy. No doubt that my
upcoming semester at Univ. Pompeu Fabra Barcelona, amid online learning experts, will
fuel my thoughts on this topic.

*https://indico.in2p3.fr/event/25182/
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Teaching, supervision, grant
management

‘If only we had laboratories to produce self-replicating scientists, to ex-
plore all the worlds. Ah, but we do! They’re called university campuses.’

Terry Pratchett and Stephen Baxter, The Long War, 2013

In the main body of the manuscript, I have focused on scientific content. For an HDR
manuscript, I believe that it is also relevant to mention some of my parallel activities
since my thesis, say teaching, supervision, and grant management. For more complete
information, a detailed CV with track record, hierarchical publication list, awards, editorial
duties, etc. can be found on my webpage.!

A.1 Teaching

CNRS positions come with no teaching duty. Out of personal inclination, I maintain
a small teaching activity at the master level. I find the live interaction with students
extremely stimulating, and a great complement to research. On top of this, having to
teach a topic is probably the best way to make sure you understand it deeply. More
prosaically, teaching at the master-level is also the best way to recruit PhD students.
Since the end of my PhD, I have been in charge of the following master-level courses.

2019— At ENS Paris-Saclay, France, I am teaching Bayesian machine learning, jointly
with Julyan Arbel (Inria Grenoble, France). The master programme is called MVA
(“Mathematics for vision and learning"), and it has been so far the most demanded
machine learning master nationwide.

2019~ At Univ. Lille and Ecole Centrale de Lille, France, I am also teaching Bayesian
machine learning in the joint master of data science.

20162019 I taught Bayesian nonparametrics at ENSAE ParisTech, to master students major-
ing in statistics and econometry. This was part of a joint course given over the years
with Anna Simoni, Arnak Dalalyan, and Nicolas Chopin (all ENSAE ParisTech,

France).

"http://rbardenet.github. com/pdf/cvFull_bardenet.pdf


http://rbardenet.github.com/pdf/cvFull_bardenet.pdf

64

Appendix A. Teaching, supervision, grant management

20152019

2013-2014

At Ecole centrale de Lille, France, I taught advanced machine learning topics, with
applications to bankruptcy prediction, to master-level engineering students special-
izing in data science (by then called the "DAD curriculum"). This was a joint course
with Eric Séverin, a professor in management at Univ. Lille. T organized this course
around a machine learning competition, see e.g. the 2019 edition.? The topics of
the lectures were partly decided together with students as they progressed through
the competition.

At Univ. Oxford, UK, I taught Advanced simulation on Monte Carlo methods to
4th year statistics students, jointly with Pierre Jacob (by then Univ. Oxford, now
ESSEC Paris, France).

A.2 Supervision

Since my PhD, I have been involved in the supervision of

5 theses (3 completed, 1 discontinued, 1 running). Two more PhD theses are starting
these days, as I am writing this document, and do not appear here.

6 postdocs (3 completed, 3 running). One more is also being signed these days, and
does not appear here.

1 research engineer.

This amount of supervision is maybe unusual in France before an HDR, but it is a

consequence of me having access to substantial funding, and the doctoral school in Lille

consequently giving me pre-HDR license to supervise PhD students.

A.2.1 Postdocs

2021~

2021~

2021~

2021-2022

I am supervising Michaél Fanuel’s postdoc on Repulsive point processes for inverse
problems.

I am supervising Alexandre Feller’s postdoc on Determinantal point processes and
fermions in quantum optics.

I am co-supervising Juan Manuel Miramont’s postdoc with Frangois Auger (Univ.
Nantes), Pierre Chainais (Univ. Lille), and Patrick Flandrin (ENS Lyon), on Zero-
based detection and reconstruction of signals.

I supervised Xiaoyi Mai’s postdoc on Repulsive point processes in supervised learn-
ing. Xiaoyi then got a permanent associate professorship at the department of
mathematics (IMT) of Univ. Toulouse, France.

Zhttps://www.kaggle.com/c/dad-bankruptcy-prediction-challenge-2019/
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2020-2022

2019-2021

I supervised Barbara Pascal’s postdoc on Repulsive point processes in time-frequency
analysis. Barbara then got a CNRS permanent junior researcher position at the
Laboratory of digital sciences of Nantes (LS2N), France.

I supervised Arnaud Poinas’s postdoc on Repulsive point processes in experimental
design. Arnaud was co-supervised by Adrien Hardy (by then at the department
of mathematics of Univ. Lille) during his first year of postdoc. Arnaud then got
a permanent associate professorship at the department of mathematics of Univ.
Poitiers, France.

A.2.2 PhD students

2020-

2020—disc.

2017-2020

20162020

2014-2018

I am co-supervising Diala Hawat’s PhD with Raphaél Lachiéze-Rey (department of
applied mathematics, Univ. Paris), on Variance reduction with point processes.

I have co-supervised the first half of Yoann Jayer’s Ph.D. with Myléne Maida (de-
partment of mathematics, Univ. Lille), on Monte Carlo integration with repulsive
stochastic processes. Yoann quit before completing his PhD, to pursue a career in
the finance industry at Qube research and technologies, London.

I co-supervised Ayoub Belhadji’s PhD with Pierre Chainais (Centrale Lille &
CRIStAL), on Determinantal point processes for dimension reduction in signal pro-
cessing. Ayoub went on to a postdoc with Rémi Gribonval at the department of
computer science (LIP) of ENS Lyon, France.

I co-supervised Guillaume Gautier’s Ph.D. with Michal Valko (by then Inria Lille,
now Google Deepmind Paris), on Fast sampling of determinantal point processes.
Guillaume went on to a postdoc with Pierre-Olivier Amblard, Simon Barthelmé,
and Nicolas Tremblay at GIPSA-Lab, Univ. Grenoble-Alpes, France. Guillaume
then decided to become a research software engineer, and joined my group again as
such for a year in 2021-2022.

I have had a minor role in the supervision of Ross Johnstone’s PhD at Univ. Ox-
ford, UK, whose main supervisors were Gary Mirams and David Gavaghan (Oxford
Computer Science), with industrial collaborators at Roche labs (Basel, Switzerland)
on Uncertainty characterisation in action potential modelling for cardiac drug safety.
Ross went on to an industry position in data science at Rakuten in Japan.

A.3 Grant management

Whatever one might think about this evolution, securing individual or project-based grants

has become an important part of research management, and is likely to remain so in the
near future. I have had the chance of progressively getting access to considerable funds,

including the grants below.

2020-2025

I am the PI of ERC starting Grant BLACKJACK (1.5M<€), on Fast Monte Carlo
integration with repulsive processes.
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2020-2024 I am the PI of National individual Artificial intelligence Chair BACCARAT (880 k€),
on Bayesian learning of expensive models, with applications to cell biology. These
chairs came from a one-time call for large individual grants, as part of the French
government’s national Al plan.

2016-2020 I was the PI of ANR starting grant ("JCJC") BoB (172 k€), on Bayesian inference
on a budget. JCJC grants are only for junior researchers, and awarded by the French
research funding agency (13% acceptance rate that year).
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