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Chapitre 1

Introduction

CE mémoire est une synthése des travaux de recherche que j’ai entrepris depuis ma no-
mination comme Maftre de Conférences a 1’Université de Picardie Jules Verne en 1998. Ces
différents travaux ont été effectués au LaRIA (Laboratoire de Recherche en Informatique d’Amiens),
qui est devenu ensuite le MIS (Modélisation, Informatique et Systémes), apres la fusion avec
le laboratoire d’automatique de 1’Université, au LIP (Laboratoire de 1'Informatique du pa-
rallélisme a I’ENS Lyon) lors de mon détachement dans le projet ReMaP de I'INRIA Rhoéne-
Alpes de 2001 a 2003, et dans les entreprises que j’ai fondées (UbiStorage, Ugloo), a partir de
2006.

Mon activité peut se découper sur deux périodes. La premiére est dans le domaine du
HPC, et plus particuliérement sur le traitement de données de grande taille. La seconde, qui
concerne le probléme de stockage et d’archivage distribué de données a grande échelle.

La prochaine partie présente un résumé de mes activités jusqu’a ce jour, avec la liste des
doctorants que j’ai encadrés, et la liste de mes publications. Les deux parties qui suivent cor-
respondent aux deux périodes que je distingue. Chacune est composée d’une série d’articles
sélectionnés, précédée d’un chapitre qui les replace dans le contexte scientifique. Enfin, le
dernier chapitre présente mes perspectives de travaux futurs.
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Chapitre 2

Résumé des activités de recherche

COMME la plupart d’entre nous, mes premieres armes dans la recherche se sont déroulées en
1990, pendant mon stage de DEA, ainsi que mon service en tant que scientifique a 'ETCA et
sur le Site Expérimental en Hyper-Parallélisme, ou j’étudiais la programmation de la Connec-
tion Machine (CM2), et j'effectuais des développements systéemes pour un prototype de ma-
chine parallele embarquée basée sur le processeur i860 et des FPGA Xilink.

J'ai effectué ma these de 1992 a 1995 au LIP (ENS Lyon) sous la direction de Luc BouGt en
tant qu’allocataire de recherche DGA/DRET. Mon sujet de these était I’étude de la sémantique
des langages a parallélisme de données (e.g. HPF) en vue de la validation des programmes et
des schémas de compilation. En particulier, j’ai défini un systéme de preuve axiomatique (lo-
gique de Hoare) pour un squelette de langage parallele et j'ai démontré sa complétude. D’autre
part, j’ai validé formellement une optimisation de compilation visant a réduire le nombre de
synchronisations dans le code généré a partir de programmes C* (une extension data-parallele
du C, utilisée sur la Connection Machine) et j’ai proposé une généralisation.

J’ai aussi étudié I'exécution de programmes data-paralléles sur réseaux de stations de tra-
vail. J’ai réalisé un prototype de compilateur intégrant 1’équilibrage dynamique de la charge.
Ce travail était basé sur le compilateur C* de I’Université du New Hampshire (UNH). Ce tra-
vail a été un point de départ d’une collaboration entre le projet ReMAP et 'UNH (travaux de
Chritian Perez).

Suite a ma these, j’ai été ATER dans le méme organisme en 1995, puis ATER au LSV (Labo-
ratoire de Spécification et Validation) a 'ENS Cachan en 1996. En 1997, j’ai été recruté comme
MCf au LaRIA (Laboratoire de Recherche en Informatique d’Amiens) de I'UPJV (Université de
Picardie Jules Verne), qui est devenu ensuite le MIS (Modélisation, Informatique et Systemes)
apres la fusion avec le laboratoire d’automatique de I’Université.

Au cours des premiéres années a ce poste, jai réorienté mon activité de recherche par
I’étude des méthodes et outils pour le traitement de grandes masses de données, en particulier
sur les grappes de machines, appelées cluster. Ces travaux recouvrent des aspects de 1’algo-
rithmique numérique, de l'architecture matérielle et réseau, ainsi que des aspects systeme. Ce
travail a bénéficié d’un financement de la région (these, investissement et fonctionnement), et
a été a l'origine de deux theses. En septembre 2000, j’ai été promu a la premiere classe par le
CNU, et titulaire par deux fois de la PEDR (1999 et 2003).

En 2002, j’ai été détaché pendant deux ans en tant que CR1 a I'INRIA Rhoéne-Alpes, dans le
projet ReMAP situé au LIP, ENS Lyon. J’ai collaboré avec Jean Yve I’Excellent, alors CR INRIA,
sur ’étude de I'impact des accés mémoire des méthodes multifrontales de calcul numérique,
qui a donné lieu a un co-encadrement de thése. Dans le méme temps, j’ai initié de nouveaux
travaux de recherche sur les systemes de stockage distribué a grande échelle dans le cadre de
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I’ACI CGP2P, qui sera la ligne directrice de mon activité pour la suite.

Lors de mon retour a I'UPJV, j’ai continué les travaux entrepris dans les systémes de sto-
ckage distribué pair a pair avec un objectif de valorisation économique. Ces travaux ont donné
lieu a deux encadrements de theése, quelques publications ainsi que la conception d’un brevet
(USA et Europe). En ce qui concerne la valorisation, j’ai défini un projet de création d’entre-
prise qui a été soutenue par I'Incubateur de Picardie, et qui a été lauréat du concours national
d’aide de création d’entreprises de technologie innovante (émergence ee 2004, et création en
2005). J'ai de plus été accompagné dans le cadre de la formation Challenge+ de HEC Paris.

L'entreprise (UbiStorage SA) a été créée en 2006, ou j’ai été détaché en tant que PDG jus-
qu’en 2014. Par la suite, l’activité a été reprise par la société Ugloo SAS avec laquelle un contrat
de collaboration de recherche a été conclu, et qui continue a ce jour. Pendant cette période, j’ai
maintenu une activité de recherche, notamment dans le cadre d’un projet précompétitif de
I’ANR (SPREAD), qui été porté par mon entreprise, ou participe le LIP6 (projet Regal), Eure-
com, le LACL et 'INRIA Sophia Antipolis (projet MASCOTTE), et dans lequel j’ai co-encadré
une these CIFRE. Mes travaux de recherche actuelle sont dans la continuité ce cette derniere
activité.

2.1 Résumé des travaux effectués et des projets de recherche

Lors de mon arrivé au LaRIA a Amiens en 1997, j’ai ré orienté mon activité de recherche
sur le calcul parallele out-of-core, les entrées/sorties paralleles et les grappes de PCs. Je me
suis ensuite intéressé a la gestion de données a trés grande échelle.

Mes premiers projets de recherche concernent la gestion de grandes masses de données et
s’articulent autour de deux axes qui sont :

— le calcul intensif sur des données de grande taille (calcul out-of-core, entrées-sorties a

haute performance);

— le stockage distribué a grande échelle de type pair a pair.

Le premier axe s’inscrit dans la continuité des travaux que j’ai débutés lors de ma nomination
comme Maitre de Conférences en 1998. Le second axe a débuté en 2001 dans le cadre d’une
ACI GRID sur le pair-a-pair (CGP2P).

Dans ce qui suit, je présente les différents travaux effectués ainsi que des perspectives de

recherche pour chacun de ceux-ci.

2.1.1 Calcul intensif sur des données de grande taille

La recherche en parallélisme s’est concentrée avec succes sur les aspects calcul et com-
munication : les nouvelles architectures paralléles sont aujourd’hui capables d’atteindre des
puissances de calcul de 'ordre de plusieurs Téraflops (milliard d’opérations par seconde). Un
point crucial pour exploiter pleinement ces machines est de pouvoir traiter des masses de
données qui se mesurent en Gigaoctets, voir en Téraoctets. Ces quantités, que 'on rencontre
souvent dans les applications scientifiques (simulation par exemple), financieéres ou commer-
ciales (data-mining par exemple) sont largement supérieures a la mémoire centrale disponible
sur ces machines paralleles et obligent a utiliser les disques pour les accueillir. Les problémes
induits concernent alors l'organisation et 'accés aux données. On remarque en effet que le
temps d’acces aux disques est largement prédominant sur le temps de calcul ou de communi-
cation.

En 1998, j’ai commencé a étudier les méthodes et outils pour le traitement de grandes
masses de données (en particulier sur les grappes de PCs). Cette problématique est aussi ap-
pelée le calcul out-of-core. Je propose donc de continuer ces travaux de recherche. Ce travail
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comporte plusieurs facettes : les aspects systéeme (pagination, systemes de fichiers), les algo-
rithmes, les outils numériques.

Gestion “ intelligente ” de 1a mémoire virtuelle : pagination adaptative

Puisque l'objectif est de pouvoir traiter de grandes données (e.g. des matrices de treés grande
taille), une idée simple est d’utiliser les gestionnaires de mémoire virtuelle présents sur tous
les systéemes. Bien entendu une telle solution est totalement inefficace, les mécanismes stan-
dards de pagination sont totalement inadaptés : les politiques de remplacement des pages
mémoires de type FIFO ou LRU font I'hypothése d’une forte localité temporelle dans I'acces
aux données par les différentes applications. Cette propriété n’apparait pas toujours dans le
cadre du calcul intensif.

Dans [28, 33], nous avons introduit un nouveau mécanisme systéme qui permet de repor-
ter la gestion de la mémoire virtuelle au niveau de l'application méme : avec la connaissance
des acces en mémoire de l'application, les temps d’exécution peuvent étre réduits significati-
vement grdce a une pagination adaptée.

Nous avons réalisé un prototype pour Linux se composant d’'un module et d’une librairie
(MMUM-MMUSSEL). Ils permettent de définir des régions de mémoire dont la pagination est
gérée au niveau utilisateur : les défauts de page sont retournés par le systeme a ’application.
Celle-ci peut par exemple évincer une page pour libérer de la mémoire physique, ou alors
pré-charger d’autres pages, ceci grace a un jeu réduit de primitives.

Nous avons validé notre approche par I'intégration de ces mécanismes dans une applica-
tion réelle irréguliere : le solveur multifrontal MUMPS qui a été développé au CERFACS. Les
premiers résultats montrent que 'on peut réduire significativement les Entrées/Sorties par
une politique de pagination adaptée [18]. L'avantage de cette approche est qu’elle consiste a
annoter le code de 'application, ce qui évite une restructuration de celui-ci, souvent difficile a
mettre en ceuvre par le cotut de développement et de mise au point.

Une suite possible de ce travail serait d’étudier ’emploi de ce type de technique dans les
couches de virtualisation et de globalisation des ressources a grande échelle afin d’intégrer, en
plus de la gestion des processus et des communications, la gestion des mémoires. Par exemple,
proposer un espace d’adressage unique aux applications distribuées dans lequel on combine
l'ordonnancement des processus et celui de la mémoire.

Restructuration de code

Dans le cas ou le nombre de calculs a effectuer est largement supérieur a la taille des
données, on peut espérer un certain taux de réutilisation des données et par conséquent une
réduction du volume d’entrées/sorties. Une autre approche, qui peut étre complémentaire a la
précédente, consiste a restructurer les codes afin d’exhiber suffisamment de localités tempo-
relles et spatiales des accés aux données et donc minimiser les acces aux disques.

Je me suis intéressé en particulier aux algorithmes et bibliothéques de calcul numérique.
En particulier, j’ai étudié les algorithmes paralléles out-of-cores de ScaLAPACK. Un modele
de prédiction des performances pour les algorithmes paralleles out-of-cores de factorisation
matricielle a été défini [25]. Grdce a ce modele, nous avons démontré un résultat assez re-
marquable : en choisissant une distribution de la matrice adéquate, et en modifiant l’algo-
rithme initial (introduction d’un schéma de recouvrement du temps d’entrées/sorties par du
calcul), le temps d’exécution de l’algorithme out-of-core sur une machine disposant d’une
mémoire proportionnelle a I’ordre de la matrice (O(n)) est identique au temps d’exécution
de l'algorithme in-core disposant d’'une mémoire proportionnelle a la taille de la matrice
(O(n?)) [3]. Par exemple, nous pouvons calculer la factorisation LU d’une matrice d’ordre
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100 000 (en double) de 80 Gigaoctets en moins d’une journée avec 16 stations possédant seule-
ment 16 x 256Mo= 4 Gigaoctets de mémoire au total. L'algorithme parallele classique (right-
looking) nécessiterait une mémoire totale de 80 Gigaoctets pour un méme temps d’exécution.

Nous avons étendu ce résultat au probleme du calcul de I'inverse d’une matrice. Ce calcul
est obtenu a partir de la décomposition LU de la matrice. Ici aussi les performances de notre
nouvel algorithme out-of-core sont identiques a celles de I’algorithme in-core [20].

Je me suis intéressé a 1’extension de ces techniques out-of-core dans le cas creux. La prin-
cipale difficulté par rapport au cas dense est I'irrégularité des calculs. En collaboration avec
d’Abdou GuerMouUCHE et Jean-Yves I’ExceLLENT (LIP/ENS-Lyon) nous avons étudier comment
intégrer les techniques out-of-core dans le solveur creux MUMPS décrit dans la section précé-
dente . C’est un travail qui a aussi fait l'objet d’un contrat avec le CETMEF (Centre d’Etude Ma-
ritime et Fluviale, Compiegne). Nous nous sommes intéressés a I'impact de l'irrégularité sur le
comportement mémoire, ainsi que I'impact des différentes techniques de renumérotation [2].
Une extension out-of-core basée sur les mécanismes de pagination précédemment décrits a été
réalisée. La prochaine étape serait d’étudier la parallélisation de cette méthode en concevant
de nouvelles politiques d’'ordonnancement qui intégreront la gestion de la pagination.

Entrées/sorties Paralléles

Le systéme d’entrées/sorties est le goulot d’étranglement de toutes architectures, surtout
pour les applications qui ne sont pas bornées par les calculs. D’un point de vue physique,
I’évolution des performances des disques, bien que réelle, n’a rien de comparable avec I’évolution
des performances des processeurs et des réseaux. La seule solution efficace consiste a pa-
ralléliser les entrées/sorties en répartissant les données sur plusieurs disques. C’est ce qui
est proposé par les RAIDs (Redundant Array of Independant Disks).

Pour améliorer les performances dans le cas d’applications paralleles, il faut organiser
au mieux les différents acceés concurrents au systéme de fichiers. C’est dans cette optique
que la communauté a défini une interface d’entrées-sorties paralléles comme extension de
la bibliotheque de communication MPI : MPI-1O. Celle-ci permet de définir différents modes
d’accés aux données, a charge pour la bibliothéque d’optimiser les entrées/sorties en fonction
du systeme de fichiers.

Je me suis donc intéressé aux systémes de fichiers paralléles [30]. En particulier j’ai effectué
une adaptation préliminaire de la librairie standard MPI-IO (ROMIO) sur PVES [27] et étudié
d’autres politiques de distribution [24] afin d’améliorer les performances d’entrées/sorties.

Je me suis aussi intéressé a la conception de mécanismes de base dans lesquels la gestion de
l'acces aux données dans les grappes est reportée au niveau du réseau. Les cartes réseau mo-
dernes sont programmables et possedent aujourd’hui des processeurs élaborés et une mémoire
conséquente. Cette caractéristique peut étre utilisée pour gérer les entrées/sorties paralleles,
sans passer par le processeur hdte, et ainsi libérer des ressources. Dans le cadre de la these
d’Olivier CozeTTE, nous avons ainsi congu et développé la bibliotheque READ? qui projette les
disques d’une grappe sur le réseau rapide (en l'occurrence Myrinet) [21, 19]. La suite logique
de ce travail serait d’étudier et de définir un systéme de fichiers paralléles a haute performance
pour grappe qui intégre en plus des mécanismes de tolérance aux pannes.

2.1.2 Stockage distribué a grande échelle

En 2001, je me suis intéressé aux nouveaux protocoles de type pair a pair pour la gestion
de fichiers sur Internet qui sont apparus. Parmi les plus connus, on peut citer Napster, Freenet,
Gnutella ou les fichiers sont distribués sur ’ensemble des PCs. Ces systémes sont des alterna-
tives a I'approche client-serveur du WEB. Alors que Napster est centralisé en ce qui concerne
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I'indexation des données, Gnuttella et Freenet sont entierement distribués. Une conséquence
est que la recherche de données particuliéres est tres cotiteuse (parcours du réseau) et surtout
non exhaustive. En fait ces systémes sont orientés essentiellement dans la mise en commun
et dans la diffusion des données et des informations (surtout les fichiers mp3). Les objectifs
avoués étant essentiellement ceux de 'anonymat des sources d’informations (celui-ci est par-
ticulierement poussé sur Freenet ou il est impossible de connaitre la machine d’origine de I'in-
formation), ce qui impose un surcott non négligeable dans I’accés aux données. Parallélement
des mécanismes de gestion distribuée de fichier pour des approches de type grille ou la gra-
nularité est plus forte se sont développés (IBP, Oceanstore)

En général, il n’y a aucune garantie en ce qui concerne la fiabilité et la disponibilité des
données. L'objectif d’alors était de pouvoir manipuler de grandes masses de données. Les
problémes posés concernent plusieurs points.

— La fiabilité et la disponibilité des données : on doit faire face a la volatilité des res-
sources de stockage. Les données ne doivent pas disparaitre a tous jamais, ou tout au
moins avec une probabilité tres faible. Cela implique la duplication des données. De
méme, on ne peut garantir l’acceés a certaines données a tout instant, par contre on doit
pouvoir la garantir dans une certaine période de temps. Cette période étant donnée par
la fréquence de connexions des ressources détenant les données.

— Le controle des données : on doit pouvoir controler la durée de vie des données, on doit
pouvoir les modifier. De par la duplication de celles-ci, plusieurs problémes fondamen-
taux surgissent tels que les probléemes de cohérence, de ramasse-miettes.

— La confidentialité et la sécurité des données : les données ne doivent pas étre consultées
par de tierces personnes, elles ne doivent pas étre corrompues. Il faudra employer des
mécanismes de cryptage et de certification.

— Le suivi des données. Des mécanismes de migration liés aux différents traitements se-
ront certainement mis en ceuvre. Il faudra étre capable de localiser les données a tout
instant.

Je me suis donc intéressé a la problématique du stockage distribué a grande échelle, ceci
dans le cadre de I’ACI Grid CGP2P qui regroupe plusieurs laboratoires (LRI, IMAG, LIFL, LIP,
LaRIA). Ce travail s’inscrivait aussi dans I’ACI Masses de Données Grid Explorer. L'un des
objectifs étant de proposer une virtualisation de la fonction mémoire jusqu’a aujourd’hui as-
sociée a des dispositifs physiques, ou plus précisément de reporter cette fonctionnalité sur le
réseau lui-méme. C’est un projet qui recouvre plusieurs aspects théoriques comme les systemes
distribués, la distribution et le partitionnement des données, qui doit tenir compte de la dy-
namicité des systemes.

En particulier je me suis penché sur la question cruciale de la pérennité des données dans
un tel type d’architecture. J’ai donc défini un modéle stochastique qui classifie les différents
systemes de type pair a pair en fonction de la disponibilité et de la volatilité de ses pairs et qui
permet de déterminer l'efficacité des différents schémas de redondance (replication simple,
Reed Solomon, Shamir, Tornado, ...). Un résultat intéressant de cette étude est que les schémas
sophistiqués de redondance, a priori meilleurs (tel que Reed Solomon), s’averent moins effi-
caces que la réplication classique pour les systemes qui disposent d’un taux de disponibilité
moyen [17].

D’autre part j’ai étudié le probleme de la distribution des données a grande échelle dans
un systeme de stockage P2P : quand un pair tombe en panne, un processus de reconstruction
régénere les données perdues avec ’aide des autres pairs. Dans nos résultats précédents, nous
avons observé que pour assurer la pérennité des données, un systeme de stockage pair a pair
doit faire face a un grand nombre de reconstructions.

Pour minimiser le trafic réseau au niveau des pairs lors de la reconstruction, des stratégies
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de distribution doivent prendre en compte un nouveau parametre : le cotit de perturbation
maximal d’un pair pendant le processus de régénération des données. Le cotit de dérangement
d’un pair est défini par le nombre de données envoyées par un pair lors de la reconstruction.

Nous avons défini de nouvelles distributions capables de “diluer” au mieux le cott de
reconstruction pour chaque pair, afin de minimiser le “dérangement” de ce processus pour
chaque utilisateur. Nous avons montré que le cotit minimal était obtenu pour des distri-
butions dites ”idéales”. Cependant nous avons montré que ces distributions idéales corres-
pondent aux solutions du probleme des plans projectifs qui reste un probleme ouvert des
mathématiques : une conséquence est que ces distributions idéales peuvent difficilement étre
construites. Nous avons donc défini un nouveau type de distribution basée sur les propriétés
des nombres premiers et nous avons montré que les distributions obtenues étaient asymptoti-
quement optimales. Le cott final induit par les reconstructions est alors proportionnel au ratio
de la racine carrée du nombre de blocs de données et des pairs. Dans la pratique, les résultats
expérimentaux montrent que notre distribution est trés proche de 1’idéale [16].

C’est ce travail qui a donné lieu par la suite au projet de valorisation et qui continue au-
jourd’ hui.

2.2 Directions de thése

Eddy Caron (2000) — Calcul numérique sur les données de grande taille.
— Co-encadrement a 80% avec le Pr. J.-F. Myoupo de 'UPJV.
— Actuellement, McF a I’ENS Lyon.

Olivier Cozette (2003) — Contributions systéeme pour le traitement de grandes masses
de données sur grappes.
— Co-encadrement a 99% avec le Pr. J.-F. Myoupo de I'UPJV.
— Actuellement Senior Software Enginneer chez Google, Mountain View, CA, USA.

Abdou Guermouche (2004) — Etude et optimisation du comportement mémoire dans
les méthodes paralléles de factorisation de matrices creuses.
— Co-encadrement a 50% avec J.-Y. Excellent, CR INRIA Rhone-Alpes.
— Actuellement Maitre de Conférences a L’Université de Bordeaux.

Ghislain Secret (2009) — La maintenance des données dans les systemes de stockage
pair a pair.
— Co-encadrement a 99% avec le Pr. Vincent Villain de I'UPJV.
— Actuellement gestionnaire de projet chez Orange SA.

Samira Chaou (2013) — Modélisation et analyse de la sécurité dans un systéme de sto-
ckage pair a pair.
— Co-encadrement a 25% avec le Pr. Franck Delaplace de I’Université d’Evry.
— Actuellement Ingénieur Sécurité a la RATP.
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Deuxieme partie

Cluster Computing et traitement de
donnée de grande taille






Chapitre 3

Présentation

Mon premier axe de recherche a été ’étude de I'usage du cluster computing pour le trai-
tement de grande masse de données. J’ai eu une approche verticale de la problématique, de
l'architecture a l'applicatif, dans laquelle j’ai eu des résultats dans plusieurs thématiques qui
vont étre présentés dans cette partie.

J’ai obtenu des subventions internes et régionales pour le financement des theses et I'acqui-
sition d’un cluster d’Alpha basé sur un réseau Myrinet pour les expérimentations. Ce cluster
a par la suite été étendu par un financement de I'Université pour qu’il puisse étre utilisé par
d’autre départements, tels que la chimie biomoléculaire pour le calcul des structures 3D de
protéine. Un des outils que nous avions étudiés pendant ces travaux a aussi été utilisé dans le
cadre d’un contrat avec le CETMEF (simulation de la houle dans les constructions portuaires,
modélisation par éléments finis).

Je présente mes travaux selon trois axes, qui feront chacun l'objet d’un chapitre.

— La gestion des E/S parallele, dans laquelle nous avons étudié le partage des disques a

travers les réseaux a haut débit.

— Loptimisation des algorithmes de calcul numérique direct dans le cadre du calcul out-

of-core, dans le cas des systémes dense et creux.

— Une proposition de mécanisme de gestion de la mémoire virtuel en mode utilisateur, et

son application dans le cas du calcul numérique creux.

3.1 READ?, optimisations accés disques

Ce premier axe de travail est issu d’une lecture du papier “The architectural costs of strea-
ming IO : A comparison of workstations, cluster and SMD” de Patterson et al. | ]. Dans cet
article les auteurs mettaient en évidence que les principales limitations des performances des
applications bornées par les entrées/sorties étaient dues aux bus I/O et aux contentions d’acces
sur le bus mémoire. La direction préconisée par les auteurs étant d’augmenter la capacité de
ces derniers.

Dans le méme temps, j’avais suivi aussi les développements middleware autour des cartes
réseau a haut débit tel que myrinet, dans lesquelles on exploitait les possibilités de reprogram-
mation de celles-ci pour mettre en place des méthodes de communication avec zéro copie,
permettant de réduire drastiquement les temps de la latence. Notamment, les travaux de Loic
Prylli.

C’est donc tout naturellement que m’est venue 'idée d’étudier comment améliorer les per-
formances d’applications d’entrées/sorties intensives en ayant une approche centrée sur les
bus, ceci grace aux nouvelles capacités proposées par les cartes de réseaux programmables.
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Ce travail était en partie l'objet de la these d’Olivier Cozette, que j’ai dirigée de 1999 a
2002, actuellement senior developper chez Google aprés un passage cher ARM et Apple.

Les deux articles qui suivent (4,[21];5,[19]) présentent donc les résultats de ces travaux,
qui sont passés notamment par le développement de prototype logiciel pour une validation
expérimentale sur cluster.

Le premier article présente une premiere analyse des gains qui pourraient étre obtenus par
cette méthode, ainsi qu’une premiere validation expérimentale utilisant des cartes graphiques
pour simuler les disques.

Le deuxiéme article a été réalisé quand nous avons pu acquérir des disques a haut débit
(pour I’époque), et pour lesquels le prototype complet a pu étre réalisé, notamment par I'intégra-
tion des drivers SCSI dans les cartes myrinet. Ce papier présente I'implémentation et les pre-
miers résultats expérimentaux.

3.2 Algorithme Out-of-Core paralléle pour le calcul numérique.

D’un point de vue algorithmique, je me suis dans un premier temps intéressé a la résolution
de grands systémes denses, que I'on trouve dans les modélisations d’électromagnétisme, dont
la taille dépasse la mémoire disponible des machines, et qui doit donc faire appel a la tech-
nique du calcul out-of-core. Ce travail a fait I'objet de la these d’Eddy Caron.

Nous sommes parties de 1’étude de ScaLaPACK, une bibliotheque de calcul numérique
parallele. Les performances de ScaLaPACK sont obtenues en grande partie par l'optimisation
de la hiérarchie mémoire par le découpage en blocs des problemes a traiter. Cette bibliotheque
était donc un bon point de départ pour atteindre de bonnes performances dans le cadre out-
of-core.

Nous avons donc étudié le schéma de calcul out-of-core de ScaLaPACK, qui est une ex-
tension de l'algorithme right-looking appelé left-right looking. Nous avons fait une analyse
formelle des performances attendues, et nous avons montré quand mettant un schéma de re-
couvrement du calcul par les entrées/sortie, les temps d’exécution n’étaient pas impactés par
ces dernieres. Résultat que nous avons implémenté et validé expérimentalement.

Ce travail fait l'objet de l'article qui suit (6,[3]). Il a été étendu au probleme de I'inversion
de systemes denses.

Apres le cas dense, je me suis intéressé a la problématique de la factorisation dans le cas
creux. C’est le travail qui a fait 'objet de la these d’Abdou Guermouche en collaboration avec
Jean Yves I’Excellent lors de mon détachement INRIA a I’ENS Lyon en 2001-2003.

La plupart des systemes physiques modélisés passent par la résolution de systéme creux,
les systemes denses étant en général utilisés pour les problémes d’électromagnétismes. Bien
qu’elles peuvent étre de densités faibles, les systémes étudiés peuvent étre limités par la mémoire
de par leur taille. Par exemple, j’ai collaboré avec le CETMEF ! pour la résolution de grands
systemes dans le cadre de la simulation de la houle dans les ports maritimes.

Nous nous sommes donc intéressés a la consommation mémoire dans 'une des méthodes
de résolution directe de systémes creux séquentiels et paralleles, a savoir la méthode multi-
frontale, et en particulier la solution MUMPS.

Dans un premier temps, nous nous sommes intéressés a I’étude du comportement mémoire
de la méthode multifrontale. Jusqu’alors, la premiere technique pour réduire les calculs, et la
consommation mémoire est d’employer des heuristiques de renumérotation, dites aussi de per-
mutation, des matrices afin de limiter le remplissage. Nous avons donc étudié la dynamique
de l'utilisation mémoire en fonction des heuristiques. Nous avons proposé une stratégie d’or-

1. Centre d’Etude Technique Maritime et Fluvial
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donnancement des calculs qui minimise les pics de consommation mémoire. Le résultat est
présenté dans l’article suivant (7,[2]).

3.3 Pagination adaptative

Fort ce cette étude, dans un second temps nous nous intéressé comment optimiser les per-
formances quand la mémoire physique est insuffisante pour contenir I’ensemble des données
pendant les calculs et que I'on doit faire appel a la pagination. Cependant, nous avons constaté
que la stratégie de pagination de type LRU n’était pas adaptée dans ce cas.

L'idée était de combiner le travail d’Abdou Guermouche avec un autre travail systeme
d’Olivier Cozette. Nous avions développé un mécanisme de gestion de la pagination en mode
user, appelé MUMM/MMUSSEL. Nous avons donc con¢u un moniteur de pagination spécifique
qui grdce aux directives transmises par le solveur, permet de définir différentes stratégies de
gestion de la pagination pour chaque type de zone mémoire identifié dans I’analyse de I’accés
mémoire du solveur, et ainsi de réduire de maniere significative les défauts de pages et les IO,
et ainsi accélérer les temps de traitement. Ce travail est présenté dans le dernier article de cette
partie (8,[18]).
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Abstract

Several Grand Challenge application softwares in bi-
ology or physic process large datasets which are stored
on disks. These applications require high performance
10 systems. Cluster computing is a good approach to
build IO intensive platform for low cost: several clus-
ters won many sorting benchmarks (MinuteSort, Data-
mation)! Much progress has been made in IO compo-
nents like disk, controller and network: today incredible
10 performance can be achieve by cluster. The coun-
terpart of this technological advancement is that much
stress is put on the different buses (memory, I0) of
each cluster’s node. The bandwidth of these buses are
fized. So the cluster IO performance is bounded and
cannot be scaled by addition of IO components. In this
paper we investigate a technic we called READ? which
stand for Remote Efficient Access to Distant Device.
The aim of this technique is to reduce the stress which is
put on busses of cluster’s node during the ezecution of
I0 streaming applications using parallel I0. In READ?
any cluster’s node directly access to a remote disk of
a distant node: the distant processor and the distant
memory are removed from the control and data path.
With this technique, a cluster can be considered as a
shared disk architecture instead of a shared nothing
one, and may inherit works from the SAN community.
This paper presents what are the architectural benefit
of READ?, i.e. a better use of IO and memory buses
which eventually improve the IO scalability of a cluster
and the performance of streaming application.

1 Introduction

Grand challenge applications often process large
datasets which require high performance IO systems.
For example, the amount of data processed at the Eu-
ropean particle accelerator (LHC/CERN), reaches sev-
eral Petabytes per year [7]. To deal with such datasets,
cluster architecture based on commodity components
can be designed: disk drives are aggregated to pro-
vide a large parallel file system. Hence, San Francisco
museum uses 20 PCs with 368 disks to manage a 3,2
Terabytes digitalized picture collection [15]. Thanks to
parallel accesses, high performance IO can be achieve:
several clusters won many sorting benchmarks (Min-
uteSort, Datamation) [1]!

Usually, a commodity cluster is considered to be
a shared nothing architecture. In particular, to share
data each cluster’s node must behave like a server for
other nodes. For example, for distributed parallel file
systems like PVFS (Parallel Virtual File System [10])
or PPFS (Portable Parallel File System [8]), each clus-
ter’s node is burden to serve local data requested by
distant node. Whereas good performance may be ob-
tained for homogeneous collective parallel I0 by using
adequate placement and redistribution schemes [9], the
overhead is non negligible for general access. It can
be decomposed in two parts: the first overhead is in
the operating system running on each node, the sec-
ond overhead is in the hardware architecture. In this
paper we focus on the hardware overhead.

Thanks to some technological advancement, disk
drives are able to achieve up to 90MByte/s of sus-
tained bandwidth, disk controllers can achieve several
hundred MByte/s of bandwidth, and network cards
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can achieve several Gigabit/s bandwidth! By adding
several I0 components to each node, it is possible to
get plenty of 10 bandwidth for data intensive applica-
tions. However, an increase of the I0 bandwidth put
more pressure on the IO and memory buses of each
node. Unfortunatly, these buses cannot be scaled, so
the maximun bandwith is bounded. An alternative is
to use NAD (Network Attached Devices) where the
disk are directly plug in the network. Several works,
like GFS (Global File System [13]) or NASD (Network
Attached Secure Disk [6]) proven the effectiveness of
such technology. Unfortunately, this approach implies
deployment of expensive network infrastructure like Fi-
bre Channel.p

We investigate an alternative to NAD which is based
on usual network technology we called READ? (Remote
Efficient Access to Distant Device). In READ?, we ex-
ploit the capability of modern network interface cards
to directly drive and access IO device plugged in the
same IO bus (usually a PCI bus). For instance, in [16]
authors combine two cooperative Myrinet cards on the
same IO bus for efficient IP forwarding: data throws
directly from one Myrinet card to the second one, the
processor is not involved in the data-path. In READ?,
we extend this technique for remote disk access.

In this paper we study what are the benefit of READ?
access for streaming applications involving parallel I0.
In a first part we present our architectural cluster
model and we describe how READ? accesses are work-
ing. In a second part we propose a model for parallel
streaming applications where a continuous stream of
data are processed. This model is illustrated on two ex-
amples Then, we predict what is the benefit of READ?
accesses in general and for the two examples. Finally
we experimentally validate our model.

2 Architecture Model and read?

In this section we present a cluster architectural
model and describe READ? accesses.

2.1 Architectural model

A cluster may be considered to be an interconnec-
tion of different buses. A node is made up with:

An IO bus: (Input/Output bus) to connect network
card, disk controller and IO bridge; it is usually
the PCI bus.

A Memory bus: to connect memory to IO bridge.

A Processor bus: to connect processor to IO bridge.

Figure 1. Architecture and variable descrip-
tion

Interconnection is sum up on Figure 1. These buses
are characterized by the following constants:

My maximum disk throughput
M;, maximum IO bus throughput
M, | maximum memory bus throughput
M, maximum instruction processing

Usually, disks are attached to the disk controller by an-
other bus like SCSI bus: The global disk I0 bandwith
is the aggregated bandwith of disks. For the sake of
simplicity, we don’t consider this class of bus in this
paper.

In a cluster nodes are interconnected by network in-
terface card plugged in the IO bus: the network glues
IO busses to build a parallel machine. From a logical
point of view, the network may be considered to be
another bus level. The network is characterized by the
constant M, which is the maximum network through-
put.

2.2 ReaD?: Remote Efficient Access to Distant De-
vice

A Clusters is usually considered to be a shared noth-
ing architecture: all nodes are independent and col-
laborate by message exchanges. The processor, mem-
ory and disk of each node are exclusively accessed by
the local system. In fact it is a high level point of
view of the network (session level). If we consider a
lower level point of view (transport level) some com-
ponents of each node (memory, disk) may be shared
by all nodes. For instance the SCI network technology
(14] or some Virtual Shared Memory implementation
based on remote DMA, allow nodes to share memory.

Usually in parallel file system (e.g. PVFS), to share
disk data each node behave like a data server for other
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Figure 2. Remote read data path without
READ?

Figure 3. Remote read data path with READ?

nodes: it is a peer-to-peer server approach (P2PS). A
consequence is that when a node access data on a re-
mote node, the remote memory bus and the distant IO
bus are involved two times in the data path. Patter-
son et al in [2] demonstrated that cluster architectures
are penalized by this overuse of the different buses.
In particular for streaming applications, the IO bus is
usually the bottleneck. Moreover, more stress is put on
the memory bus by the file system wich may involve
buffer copying policy. Some works like DAFS [4] try to
remove this copying penalty by use of remote memory
access. But DAFS always involves two traversals of the
IO bus for the data path.

In this paper we consider another technique we
called READ? (Remote Efficient Access to Distant De-
vice). In READ? each nodes is able to directly access
and control any remote disk: nodes share disks! A first
consequence is the memory is not involved in the data
path; a second consequence is the IO bus is involved
only one time in the data path (Fig. 3, 2). We investi-
gate what is the benefit of such an approach for stream-
ing applications. A work close to our work is OPIOM
([5],[3]). It was designed for the implementation of a
distributed Video on Demand server on Myrinet clus-
ter. In OPIOM data transfers go from disk to network
through the Myrinet card,

3 Streaming application model

We are considering parallel applications processing
contiguous stream of disk data. Moreover the different
part of the process (read, compute, communicate and
write) are pipelined to achieve maximum overlapping.
The local disk stream throughput is represented by the
parameter D = D, + D,,, where D, is the throughput
of the read data and D,, is the throughput of the write
data.

The application is characterized by the following pa-
rameter (see Figure 1):

a: This parameter corresponds to the average cpu
memory accesses for each datum of the local disk
stream.

B: This parameter corresponds to the average data
communicated to/from other nodes for each da-
tum of the local disk stream. We assume that this
communication is equidistributed between nodes.
This measure is divided in two parts:

Ba: This parameter represents the average com-
municated data of the local disk stream which
is not involved or produced by the local com-
putation.

Bi: This parameter represents the average commu-
nicated data which are involved or produced
by the local computation.

We have 8 = 84 + ;.

v: This parameter corresponds to the average cpu in-
struction for each datum of the local stream.

This parameters are illustrated for two applications:
scan and transpose.

3.1 Scan

In this application, each node independently read its
local disk and select some records which are wrote back
to disk in another file. We assume that each record is
composed of a key plus some data. The ratio between
the key size and the record size is denoted by r. The
fraction of records selected is denoted by f. So, D,, =
fxDpand D=(1+ f) x D,.

Because, there is no communication in this applica-
tion, we have:

B=0

For each record, the key is accessed by cpu to verify
if the record is selected or not. So the average cpu
memory accesses is denoted by:

r

=157
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We assume that the scan select record where key isin
a fixed range. So there are two comparison instructions
for each record, the average cpu usage is:
2r

1+f

3.2 Transposition

Let n be the number of nodes in a cluster. A M x M
matrix is distributed all over the nodes and stored by
block of size B x B, such as nB = M (the memory of
one node holds one block). Each block line is assigned
to one node and stored on its local disks (cf Fig. 4).
When a matrix is transposed, the i*# block of the j*
processor becomes the jt* block of the i*® processor.
Each node must read n— 1 blocks from the other nodes

Source matrix(nB*nB)

Transposed matriix

node 1 9_ L

node 2 33— |

node 3 ——F
S—RRNRNR \ 2ede 4

)

Figure 4. Parallel block transposition

D One blocks (B*B)

3 Node's local disks

and send them n — 1 of its own blocks. One block per
node remains local.

Let estimate parameters. We have D, = D,,, the
same amount of data is read and wrote, then D =
2D, = 2D,,. For communication, each node send l‘nll-
of the local input disk stream (D, = D/2) and receive
the same amount from other nodes for transposition.
The transposed data are wrote on the local disk (D,, =
D/2).

n—1

n = n /2 ﬂ=

Each row must be transposed. So there is two cpu
memory accesses for each datum (one load for the read
stream and one store for the write stream), so we have

a=vy=1
4 Prediction of the bus usage

From the previous model, we now derive the bus us-
ages of a streaming parallel application. Let B;, be

the IO bus usage, B,, the memory bus usage, B, the
cpu usage and B, the network usage. Let n the num-
ber of nodes. For a given streaming application char-
acterized by the triplet (a, 8,7), we determine what
is the used throughput of each bus for a streaming
throughput D = D, + D,,. We determine the different
bus usage when the application use a classical peer-
to-peer server (P2PS) approach for remote data access
and when READ? is used. The Table 1 summarize the
different bus usage

bus P2PS
B;, (1 + B + Ba)D (1+8)D

Bnm | A+a+B+Ba)D | Q+a+ B —B4)D
B, yD 7D

B, nx BD n x D

READ?

Table 1. The different bus usage of a stream-
ing application ( a, 3,7)

This table clearly shows where is the benefit of
READ?,

e The IO bus usage is reduced: the data of local
disk stream not involved or produced by the local

computation cross the IO bus one time only, the
benefit is equal to 8y D.

e There are less contention on the memory bus: the
data of local disk stream not involved or produced
by the local computation don’t cross the memory
bus, the benefit is equal to 284D.

So, this two main gains allow us to increase the max-
imum bandwidth of disk stream when the IO bus is
the bottleneck. At the same time we get more memory
traffic for local computation. Note that for applications
where 84 = 0 (e.g. scan) there is no gain.

Bus usage prediction for transposition

We estimate the benefit of READ? for the transpo-
sition. There are two benefits: The first one is an in-
crease of the peak bandwidth achievable (D), the sec-
ond one is a freeing of the memory bandwidth.

Peak bandwidth of the transposition

Peak bandwidth is reached when one resource (cpu,
bus, network) reaches its limit, that is M,, = B,, or
M,'o = B,'o or Mc = Bc:

H'F,F.
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e Without READ? ,

(reshrm o )
1+a+B+Ba"1+B+Ba" v

e With READ? ,

( Mm Mio M_c)
1+a+B-Ba"1+8" v

Hence, transpose maximum disk throughput is:

e Without READ?,

D—-_min( m : )
—1° —1 2 iHc
2+ 8171421

e With READ?,

M Mia
r..E ; ft M
21487

in

The majority of architectures assume M;, < 2M,,
and M, >> M,,:

e Without READ?

M.
D= 1 :to;l
n
e With READ?
D= M;,
= —1
1+ TN

Consider common bus bandwidth, ie M;, =
133Mo/s, My, = 800Mo/s and M, = 2000 Mips, peak
bandwidths achievable are:

o Without READ? , D = 66 M B/s (achievable with
two 40 MB/s disks), B,, = 190MB/s and net-
work rate is 66M B/s per link (current Myrinet
bandwidth is 200MB/s per link).

e With READ? D = 86 M B/s (achievable with three
40MB/s disk), B;, = 172M B/s and network rate
is 86Mb/s per link.

So direct remote IO improves by 25% the transpo-
sition rate.

Memory bus contention

The memory bus freeing by READ? is determined by 3.
As in the previous section, we assume the IO bus is sat-
urated. With READ?, although the peak bandwidth of
the transposition is increased, and the memory band-
width is less used than without READ?:

e Without READ?, D = 66Mo/s and By,
190M B/s.

o With READ?, D = 82Mo/s and B,, = 172MB/s.

The gain of memory bandwidth is about 10%. This
gain may be use by another application. This will be
illustrated in the next section.

5 Experimental validation

To validate the previous model, the transposition
application was implemented with and without READ?
on a four-node Alpha cluster. Because at the time of
this experiment, we didn’t have high performance disk
subsystem, it was emulated by the DMA of graphic
cards. System characteristics are:

e A 340MB/s (M,,) bandwidth memory bus.
e A 130MB/s (M;,) bandwidth PCI bus.

e A Myrinet network card with a bandwidth greater
than 100MB/s on each node, using the standard
GM communication library [12].

e A high speed disks subsystem with a bandwidth
greater than 80MB/s (M), emulated by a Matrox
G200 graphics card.

5.1 reaDp? implementation

Without READ?, the local graphic card (also called
framebuffer) first writes data in the local main memory.
Then data are stored in the local Myrinet card mem-
ory sent to the remote Myrinet card memory. Then
data are stored in the remote main memory. They
are finally written in the remote framebuffer after the
transposition.

With READ?, we modified the Myrinet GM standard
communication library to let the framebuffer access to
the Myrinet memory by DMA. The control flow is per-
formed by the processors using pooling: the DMA was
fired when Myrinet buffers was ready. The emulated
disk bandwidth is controlled by waiting loops.
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so With READ* Max 53 MB/s o,
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Disk rate
(MB/s) | 3 .
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Without READ?  Max 33 MB/s
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Used disk rate (MB/s)

Figure 5. Maximum disk rate achievable with
and without READ?

5.2 Experimental Results

We measured the transposition data exchange rate
for different disk bandwidths, with and without READ?
on four nodes. Figure 5 shows the meazured bandwidth
on one node. Raw performance of the architecture is
not achieve mainly because of the synchronisation over-
head of our implementation. However, we get signifi-
cant improvement:

e Without READ?, the maximum disk rate used is
33 MB/s: it is not possible to improve the perfor-
mance by the use of a speeder disk.

e With READ?, the maximum disk rate used is 53
MB/s by an add of disk.

So, READ? improve the IO scalability, i.e. it is possible
to get better bandwidth. rate.

To exhibit memory contention, a second experience
introduces the execution of a concurrent application
which requires only main memory access and cpu with-
out IO accesses (e.g. filter application on a picture in
main memory). Experience results are displayed in Fig-
ure 6. Plots show what are the used memory bandwith
(so the speed) of the concurrent filter application ac-
cording to the transposition rate. In both situations,
with and without RAID?, the concurrent filter process
does not modify the transposition peak bandwidth be-
cause we gave priority to the transposition application.

e Without READ?: Memory contentions appear
when disk rate increase, so memory bandwidth
available for filter and transposition decrease.

e With READ?: They are less memory contentions
because READ? needs less main memory band-
width for remote disk accesses.

360

340

o With READ?

Max 52 MB/s

Total 300
Memory bandwith

(MBJs) wor

260 -
240 Without READ?

20 F Max 32MB/s
200 L ) h L L
~ 10 20 30 40 50 &«
Used disk rate (MB/s)

Figure 6. Memory contentions gains with and
without READ?

Thanks to READ?, memory bandwith is not wasted and
can be use to improve performance of another concur-
rent application. This means than we can run concur-
rently a memory intensive and an IO intensive appli-
cation with a better overall throughput of the system.

6 Conclusion

In this paper we investigated what are the benefits
of direct remote access to distant device, called READ?,
for streaming applications on cluster. We proposed a
model for streaming applications to derive bus usages:
there are two main gains. The first is an increase of
the peak performance for streaming applications. The
second is a reduction of bus memory usage and then
memory contention. These benefits were experimen-
tally validated on a cluster where high performance
disks was emulated by graphic cards.

The next step of our work is a validation of our
model with real disks. Currently we have embedded
a READ? SCSI driver in the GM firmware of Myrinet
cards. We are now able to directly access to any disk
from any node in the cluster: a remote disk is mounted
as a local disk device and accessed as usual by stan-
dard IO primitives. The main difference with previous
works like OPIOM [5] or Maierhofer thesis [11], is the
control path is also embedded in the myrinet firmware.
This implies new control flow mechanism to deal both
with the communication and disk IO traffic. This im-
plementation will be describe in a next paper.

With READ?, a cluster may be considered to be a
shared disks architecture, where all disks may be ac-
cessed by any node like Network Attached Storage De-
vice, without using a specific network. Another work
in progress is to use READ? for an implementation of
the Global File System [13] on cluster. GFS was im-
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plemented on Fibre Channel technology where disks
are directly accessed on network. GFS was ported on
cluster architectures with one data server on each node
(P2PS approach). We plan to analyse what will be the
benefit of our new READ? implementation. At the ap-
plication level, we plan to study the benefit of such an
architecture for an external two-pass parallel sorting
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Abstract

Grand challenge applications have to process large
amounts of data, and then require high performance 10
systems. Cluster computing is a good alternative to pro-
prietary system for building cost effective 10 intensive plat-
form: some cluster architectures won sorting benchmark
(MinuteSort, Datamation)! Recent advances in 10 compo-
nent technologies (disk, controller and network) let us ex-
pect higher 10 performance for data intensive applications
on cluster. The counterpart of this evolution is that much
stress is put on the different buses (memory, 10) of each
node which cannot be scaled. In this paper we investigate a
strategy we called READ? (Remote Efficient Access to Dis-
tant Device) to reduce this stress. With READ? any cluster
node accesses directly to remote disk: the remote processor
and the remote memory are removed from the control and
data path: Inputs/Outputs don’t interfere with the host pro-
cessor and the host memory activity. With READ? strategy,
a cluster can be considered as a shared disk architecture
instead of a shared nothing one. This papers describes an
implementation of READ? on Myrinet Networks. First ex-
perimental results show 10 performance improvement.

1. Introduction

Grand challenge applications often process large
amounts of data which require high performance IO sys-

tems. For example, at the European particle accelerator
(LHC at CERN [8]), the amount of data to process reaches
several Petabytes per year. To deal with such applications,
cluster architecture based on commodity components can
be designed, where disk drives are aggregated to provide a
large parallel file system. For instance, the San Francisco
Museum uses 20 PCs with 368 disks to handle a 3.2 Ter-
abytes digital picture collection [15]. At the performance
point of view, some cluster architectures won sorting bench-
mark (MinuteSort, Datamation) [1]!

Usually a commodity cluster is qualified to be a shared
nothing architecture. A consequence is that to share data,
each node must act as a server to other nodes. For in-
stance in distributed parallel file systems like PVFS (Par-
allel Virtual File System [13]) or PPES (Portable Parallel
File System [9]), each node is burden to serve local data
requested by another node. Good performance may be ob-
tained for homogeneous collective parallel IO by using ad-
equate placement and redistribution schemes [11].

Thanks to technological advancement for 10 compo-
nents, some disk drives are able to achieve up to 90MByte/s
of sustained bandwidth, disk controllers deliver several hun-
dred MByte/s of bandwidth, and network cards provide
several Gigabit/s bandwidth! By adding several IO com-
ponents in each node, it is possible to get plenty of 10
bandwidth for data intensive applications. However, this
large 10 bandwidth puts pressure on the IO and memory
buses of each node, which cannot be scaled. An alterna-
tive is to use NAD (Network Attached Devices). Several
works, like GFS (Global File System [14]) or NASD (Net-
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work Attached Secure Disk [7]) proven the effectiveness of
such technology. Unfortunately, this approach implies the
deployment of a specific network infrastructure like Fibre
Channel.

We investigate an alternative to NAD which is based on
usual network technology and a new method to access re-
mote data called READ? (Remote Efficient Access to Dis-
tant Device). In READ?, we exploit the capability of mod-
ern network interface cards to directly drive and access 10
device plugged on the same IO bus (usually PCI). For in-
stance, in [16] authors combine two cooperative Myrinet
cards on the same IO bus for efficient IP forwarding: the
data throw directly from one Myrinet card to the second
one and the processor is not involved in the data-path, in-
creasing the peak bandwidth of the forwarding scheme. In
READ?, we propose to extend this strategy for remote disk
access.

In previous work [4], we studied the bus usage benefits
of READ? for streaming applications. This papers describes
an implementation of READ? on Myrinet Networks. After a
description of the target architecture, we present the READ?
model. Then we describe different strategies to implement
READ?2. Finally, we show the performance of READ? and
compare it to PVFS and NBD.

2. READ? model

Cluster is usually considered as a shared nothing archi-
tecture: each node is independent and collaborates with
other nodes by message exchanges. The processor, mem-
ory and disk of each node are only accessed by the local
system. In fact this is a high network level point of view
(session level). If we consider a lower level network point
of view, i.e. transport level, some components of each node
(memory, disk) can be shared by all nodes. For instance the
SCI network technology [3] or some Virtual Shared Mem-
ory implementations based on remote DMA, allows nodes
to share memory.

In fact, a cluster may be considered as an interconnection
of different buses. A node is composed of (Figure 1):

An IO bus: (Input/Output bus) to connect network card,
disk controller and IO bridge; it is usually a PCI bus.

A Memory bus: to connect memory to IO bridge.
A Processor bus: to connect processor to 10 bridge.

Disks are attached to the disk controller by another bus
like SCSI bus. We don’t consider this bus in this paper, we
consider only their aggregated bandwidth. Cluster nodes are
interconnected by network interface card plugged on the IO
bus: the network glues IO busses to build a parallel ma-
chine. From a logical point of view, the network may be
considered as another bus level.

10 Bus

Memory Bus

CPU Bus

Figure 1. Cluster Architecture

Usually to share disk data in a parallel file system like
PVES, each node must act as a data server for other node:
it is a peer-to-peer server approach (P2PS). A consequence
is when a node accesses data on a remote node; memory
bus and IO bus of the remote node are involved two times
in the data path. Patterson et al in [2] demonstrate that for
streaming applications, cluster architectures are penalized
by this overuse of the different buses, specially the IO bus
which is the bottleneck of current architectures. Moreover,
more stress is put on the memory bus by the local file sys-
tem which may involve buffer copying policy. Some works
like DAFS [5] try to remove this copying penalty by direct
remote memory access, but always involves two traversals
of buses in the data path.

In this paper we investigate another scheme to share
disks in a cluster: each node is able to directly access and
control any remote disk. A consequence is that for each re-
mote disk access, the memory is not involved in the data
path, and the IO bus is involved only one time.

3. Implementation strategies

The common feature of the different implementation
schemes we consider in this section is on the data path:
when a client node read from a remote disk of the server
node, then data go from the disk to the server NIC (Net-
work Interface Card) and then to the client. For a write,
data go from the client to the remote NIC and then to the
remote disk.

In this section we describe different strategies to imple-
ment the control path, which can be characterized by the
location of the driver of the remote disk for the request.
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3.1. Server driver (driver in kernel server node)

Usually, the server reads data from its disk to kernel
buffers in main memory. Nevertheless, direct access im-
plies to write data directly to the network interface. Hence,
a straightforward implementation is to put the kernel buffers
in the network interface memory. So, the control of disks
stay in the server kernel.

For each client remote read request, the kernel part of
the server is noticed of which data must be read. Then the
kernel fire its local disk to read the requested data. Because
the kernel buffers is put on the memory of the NIC, the disk
controller put the read data on it. Once the data is read,
the server kernel can fire the send of the data to the client.
This is the strategy used by OPIOM [6], a work close to
ours which was designed for distributed Video on Demand
server on Myrinet cluster.

This strategy is easy to implement, but it main drawback
is to requiring a lot of kernel processing time.

3.2. Driver with remote IO port access (driver in
kernel client node)

A second strategy is to reuse the standard disk drivers
and modify it in such a way it is able to drive the remote
controller. This strategy can be achieve by providing remote
IO port access.

Usually, a disk driver works in the following way: the
drivers builds read or write requests structures in memory,
then fire the controller by IO port. The controller reads re-
quests from memory and executes it. Once the requests are
completed, the controller put status information in memory.
A solution to control the remote disk by the client is:

e put the request structure on the distant node (in NIC
main memory) in such a way that the distant controller
can accesses it,

o fire the remote controller thanks the remote NIC,

e once the request is completed, states information is
send back to the client.

The second point requires for the client an access to distant
IO port, which is not always accessible by the NIC. Fortu-
nately the 10 ports are usually mapped on memory, so the
distant controller may be fired by a remote memory access.

This strategy reuses the Linux driver, so it is easy to
adapt it for another disk (controller). But, it must use lot
of small messages for the remote access to 10 ports. An-
other main drawback of this strategy is that mutual exclu-
sion mechanism must be introduced to deals with multiples
clients. On the one hand,

3.3. NIC Driver (driver in Network Interface server
node)

An alternative to the previous strategy is to put the driver
in the NIC. Only two messages are sent across the network:
the request message and the disk data.

It combines the advantage of the two precedent strate-
gies: distant node is not burden by the client node, con-
current accesses are handle. But this strategy is harder to
implement because it relies on specific disk controllers. We
choose this last strategy and implemented it with one of the
two most common SCSI controllers: the LSI 53c8xx com-
patible controller (the other is an Adaptec one).

4. READ? driver

We implemented this last strategy on the GM Myrinet
communication Package: the READ? driver glues the GM
message firmware and SCSI controller.

4.1. Short description of GM

GM is an efficient message-passing communication
package to use Myrinet card designed to provide low la-
tency and high throughput. GM runs in user mode (it does
not use system call) and reduce the need of memory copies.
GM is used with locked buffers in the main memory. To
send and receive messages, the application writes the com-
mand in the Myrinet card. Hence, the Myrinet card uses
locked uffers without any operating system help.

GM is made up of a Myrinet card firmware, a device
driver, a user library. GM provides several ports on each
node (like TCP) to enable several applications to share GM
on the same machine. GM provides reliable in-order data
delivery per port.

4.2. READ? and GM firmware

The GM Myrinet card firmware is called MCP (Myrinet
Control Program). MCP is made up of four processes as
presented in Figure 2: a sending process, a sending DMA
process, a receiving process, a receiving DMA process.

Messages received by the Myrinet card are treated by
the receiving process to ensure reliability (Fig. 2, @), then
written to main memory by the receive DMA process (@,®)
using its target port information.

We reserved a port for READ?. In-going message for
READ? are intercepted at the receiving DMA process level
(®, ®). Then block identifiers to read are sent to the SCSI
controller (®). When data are ready, the SCSI controller
writes it in Myrinet memory (@) and so READ? sends mes-
sage with standard GM communication functions (®, @).
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Notice that we reuse the standard GM sending and re-
ceiving processes; these processes handle the control flow
and ensure the reliability of GM messages. So, the READ?
control flow uses the GM control flow for write operation:
when a data is accepted by the receiving node, the data will Network
be written. For read operation, the control is more complex: ﬁ
when the command is received, the remote node stores the Myrinet Card
command in a queue command. If the READ? queue is full, J— @ w
READ? tells it to GM. Then after some retries from GM, the [ ) j [ & }

Sending process |  [Receiving proces:

command is cancelled and the client can retry later. When
a READ? successfully completes a reads, it gives a message
to GM to be sent to the client. Nevertheless if the client Memory
could not receive the message, GM will drop it after several
retries. But the client not know that the read was dropped,
so after a timeout, the client sends a message to READ? to
know all its pending reads in READ? queue.

Sending DMA
process

~[ Receiving DMA
process

E PCI Bus
L -

Figure 2. Send command with GM

4.3. SCSI controller and Myrinet Interface

Let describe relationship between the SCSI controller
and the Myrinet card (Figure 3). Myrinet card can access
main memory (or other memory mapped device) with its
DMA engine. Also, it possesses local memory and an in-
board processor called Lanai. READ? uses a part of the
Myrinet memory to store the disk buffers, and another part
to store the SCSI script. The SCSI script is insructions exe-
cuted by the SCSI controller processor.

In first implementation, Myrinet card starts a request to
SCSI controller by accessing the SCSI controller IO port
(Figure 3, ®). This IO port starts the SCSI processor (@).
The SCSI processor reads the request from the Myrinet
memory and sends it to the disk (®). The SCSI processor re-

ceives the result from disk and write it to the Myrinet mem- > 10 Ports
ory (®,®). Finally, the Lanai checks the IO port register to
wait the end of the controller write in the Myrinet memory 1
(®). (O %) Myrinet
Using the DMA engine for IO port access has two incon- =N\
venient: first there is high latency because DMA engine was SCSI \m
designed for large message. Second, to use DMA, regular Script
GM send and receive process must be stopped. To avoid - &
IO port access by DMA engine, we modified the script of Sector
the controller which now checks variable in the memory Buffer
of Myrinet card to wait request (®).The Myrinet processor
modify this variable to start a new request (@), and reads it Code e
to wait the request completion. Data. CPU (ane)

5. READ? usage
Figure 3. SCSI controller and READ?

We defined a set of new GM functions to access remote
device in user mode. Moreover, we develop a new block
device for file system. These two interfaces are not inter-
operable, because the block device uses the Linux block
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Application '

Figure 4. READ? driver in Linux kernel

= m Myri

cache whereas the user mode does not take care of cache,
there is no coherency.

5.1. User mode functions

The remote disk is accessed as a raw disk: there is no
file system. Two functions are provided to access READ?
driver:

void read2_read(node, sector, nb, buf fer): read nb sec-
tors of the remote disk node starting at sector node.
This function is asynchronous, read2 wait mustbe
used to wait the completion of the request.

int read2_wait(node, sector,nb, bu f fer): wait for a suc-
cessful read, and give the last finished request.

These functions are based on the GM send and GM re-
ceives functions, they create a request message for the re-
mote READ? driver and send it to the READ? port.

5.2. Block device

The previous interface was designed for fast raw IO, we
designed also a block device to be able to deal with file-
system: we can mount the standard extended 2 file-system
on top of READ?. When an application read data, the file-
system driver request some blocks to the cache driver, if the
blocks are not in the cache, then there is request to READ?
driver, and the driver use the READ? user mode function to
get the remote data.

6. Experimentation

READ? is designed to be the basic component of a high
performance parallel file system for clusters. PVFS and

GFS are the main available parallel file systems for clus-
ters. A parallel file system is a complex architecture [10]:
it must smartly distribute data over disks, it must provide
fault tolerance mechanism, it must provide meta-data man-
agement, it must ensure coherency for concurrent accesses.
However, all of them are based on a primitive mechanism to
access remote data. For instance, PVFES uses a specific IO
daemon (IOD) on each node, and GFS uses a specialized
version of NBD (Network Block Device). NBD is a stan-
dard Linux mechanism to access to a remote disk through a
local block device, as we do with READ?.

A trivial way to make a primitive parallel file system is
to use a remote disk access mechanism combined with the
standard RAID mechanism provided by Linux. The remote
disk access mechanism can be NBD or READ?.

The first experimentation was to compare the perfor-
mances of those two primitive parallel file systems. There
are two measurements: single access performances (a single
node accesses to all disks) and concurrent accesses perfor-
mances (all nodes concurrently access to all disks).

Unfortunately, NBD does not provide concurrent access
functionality. Hence, for concurrent accesses, we compared
the primitive parallel file system built on READ? with PVFS.

NBD and PVFS communications are built over the
socket interface. Sockets are built over the TCP/IP stack.
The TCP/IP stack calls the GM driver. GM provides an ef-
ficient socket interface to bypass the TCP/IP stack: Socket-
GM API. Nevertheless, that API is not available in kernel
mode, so that it cannot be called by NBD or PVFS.

The following sections present the tests made on a clus-
ter with 8 nodes (bi-Athlon). Nodes are interconnected by
Myrinet cards (2 Gb/s). Each node has an Atlas 10KII
Quantum SCSI-LVD disk with 40MB/s of measured peak
read bandwidth.

6.1. Single access performances

Tests consist in reading by one node a 1GB file stored on
PVES, and on the two primitive parallel file systems based
on NBD and READ?. The file size is chosen big enough
to avoid cache effects. We measured the read bandwidth
according the number of remote disks.

The Figure 5 shows the results. The disk bandwidth in-
creases with the addition of disks until 3 disks. With more
than 3 disks we did not observe gain because of network
limitation. Indeed, the message size used by those file sys-
tems is less than 10KB. We measured that such a size limits
the maximum bandwidth Myrinet network to 110MB.

As expected, we got better performances with READ?
than with NBD or PVFES, because READ? saves system re-
sources. Because PVFS requires more resources, its perfor-
mances are the worst.
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Figure 5. Single access performances

6.2. Concurrent access performances

The test is a concurrent reading by the 8 nodes of a
shared 1GB file stored on PVES, or on the primitive parallel
file systems based on READ?. We measured the aggregated
read bandwidth according the number of remote disks.

The Figure 6 shows the results. For similar reasons to the
previous experiment, PVES performances are lesser than
READ? one. Nevertheless, READ? bandwidth is limited by
network contentions and SCSI contentions. Using queuing
techniques at disk level can reduce SCSI contentions: the
disk can reorder several requests to improve throughput.

7. Conclusion

We described the implementation of READ? on Myrinet
network. We compared its performance with the block de-
vice NBD and the file system PVFS. For large accesses
to parallel files, we got better performances than PVFS or
NBD. We expect more gain with small accesses to parallel
files, because READ? does not involve the kernel resource
at the remote host.

READ? provides accesses to remote disks in a similar
way to Fibre Channel, iSCSI or Infiniband ([12]) technolo-
gies. A next step of our work is to integrate READ? in the
GFS file system which was devoted to such network disk
technology.
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Abstract

In this paper, we present an analytical performance model of the parallel left-right looking
out-of-core LU factorization algorithm for cluster-like architectures. We show the accuracy of
the performance prediction model for the ScaLAPACK library. We analyze the overhead
introduced by the out-of-core part of the algorithm and we outline a limitation which was
never seen before: for large problems the algorithm has a poor efficiency. This overhead is di-
vided into an IO part and a communication part. We derive an overlapping scheme and min-
imum memory requirement to avoid the IO overhead. The new scheme is validated by a
prototype implementation in ScaLAPACK. We show the impact of the communication over-
head on two-dimensional distributions. Then we show that with similar memory requirements
a second overlapping scheme may be implemented to avoid the communication overhead. If
the size of the physical main memory is proportional to the matrix order (O(N) bytes), then
performance of the out-of-core algorithm is similar to that of the in-core algorithm which
requires O(N?) bytes. This paper demonstrates that there is no memory limitation for the
factorization of huge matrices.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many important computational applications involve solving problems with very
large data sets [11]. For example astronomical simulation, crash test simulation,
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global climate modeling, and many other scientific and engineering problems can in-
volve data sets that are too large to fit in main memory. Using parallelism can reduce
the computation time and increase the amount of memory available, but for chal-
lenging applications memory size is always insufficient. Those applications are re-
ferred to as ‘““parallel out-of-core’ applications.

Dense matrix factorization may be used as a direct method to solve linear systems
arising from boundary element and electro magnetic scattering problem. Because of
the increasing demand of applications dealing with large matrices, it is very impor-
tant to optimize this routine. To increase the memory size available, a trivial solution
is to use the virtual memory mechanism of modern operating systems. Unfortunately,
in [2] we shown that this solution is inefficient if standard paging policies are em-
ployed. To get the best performance, the algorithm must generally be restructured
with explicit 1O calls. In this paper, we present a study of such a restructuring for
the dense LU factorization problem. More precisely we present an analytical perfor-
mance model of the parallel left-right looking out-of-core algorithm which is used in
ScaLAPACK [1]. The aim of this performance prediction model is to optimize the
algorithm.

In Sections 2 and 3, we describe the LU factorization and the ScaLAPACK par-
allel version. In Section 4 we present the out-of-core LU factorization and in Section
5 the analytical performance model. In Section 6 we analyze the overhead of the
algorithm and we describe a first overlapping scheme for 10 overhead. Section 7
analyses the impact of distribution on performance. Section 8 introduces another
overlapping scheme to avoid communication overhead and shows that out-of-core
performance are similar to in-core ones.

2. LU factorization

The LU factorization of a matrix 4 = (ay),, ;< is the decomposition of 4 as a
product of two matrices L = (I;j);,;<y and U = (w;),, <y, such that 4 =LU
where L is lower triangular (i.e. l; = 0 for 1 <j <i<N) and U is upper triangular
(ie. u; =0 for I <i < j<N).

A well known method for the parallelization of the LU factorization is based on
the blocked right-looking algorithm. This algorithm is based on a block decomposition
of matrices 4, L and U:

Ao Ao\ _ (Lo O U Un
A An Ly Ln 0 Un
This block decomposition gives the following equations:
Aoo = LooUno (1)
Aot = LooUp (2)

Ao = LioUno (3)
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Ay = LUy +L1nUpy (4)

These equations lead to the following recursive algorithm:

(1) Compute the factorization Ay = LoyUy in Eq. (1) (possibly using another
method).

(2) Compute Ly, (respectively Ujg) from Eq. (2) (respectively (3)). This computation
can be done by a triangular solve (Lo and Uy, are triangular).

(3) Compute L;; and Uj, from Eq. (4):
(a) Compute the new matrix 4 = Ay — L1oUp.
(b) Recursively factorize 4’ = L, Uy;.

This algorithm is called right-looking because once the new matrix 4’ is computed,
the left part (Lgo and Ly;) of the matrix is not used in the recursive computation. It is
also true for the upper part (Uy and Ujy). Moreover, it is easy to show that this com-
putation can be done data in place: only one array is necessary to hold the initial
matrix 4 and the resulting matrices L and U.

For numerical stability, partial pivoting (generally row pivoting) is introduced in
the computation. Then, the result of the factorization consists of matrices L and U
plus the permutation matrix P such that PA = LU.

In right-looking algorithm with partial pivoting, the factorization of 4y, and the
computation of Ly are merged in the first step. For the sake of presentation, we pres-
ent an algorithm with partial pivoting (data in place) where row interchanges are ap-
plied in two stages.

.. A L . . .
la. Compute factorization P< AOO> = < LOO > Uy where P is a permutation matrix
10 10

which represents partial pivoting: the left part of matrix 4 (i.e. is (joo)) is
10

factorized.
Ib. Apply permutation P to the right part of matrix 4 <i.e. <j01 ))
2. Compute Uy from Eq. (2). 1
3a. Compute the new matrix 4’ = Ay, — L1oUpy.
3b. Compute L;;, U;; and P’ by a recursive call to factorization P’A’ = L, U;; (P is
the permutation matrix.)
4. Apply permutation P’ to the lower left part of matrix 4 (i.e. the Lo computed in
the first step). Finally, return the composition of P and P’.

(12) (Ib) @ (3a) (3b) @)

Fig. 1. A recursive call to the right-looking algorithm. Horizontal lines represent pivoting. Dashed lines
represent part of rows which are not yet pivoted.
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Fig. 1 shows the different steps for the second recursive call of the right-looking
factorization.

3. Parallelization

In ScaLAPACK, the parallelization of the previous algorithm is based on a data-
parallel approach: the matrix is distributed onto the processors and the computation
is distributed according to the owner compute rule.

The matrix is decomposed in £ x k blocks. As noticed above, at each recursive
application of the right looking algorithm, the left and upper part of the matrix is
factorized (modulo a permutation in the lower left part of the matrix). So, for load
balancing, a cyclic distribution of the data is used.

The matrix uses block cyclic distribution on a (virtual) grid of p rows and ¢
columns of processors. The block decomposition of the algorithm (shown in
Fig. 1) corresponds to the block distribution of the matrix. So step la of the algo-
rithm is computed by one column of p processors; step 2 is computed by one
row of the g processors; step 3a is computed by the whole grid. Pivoting step
1b (respectively 4) is executed concurrently with computation step la (respectively
3b).

We now describe more precisely the different steps of the algorithm. Step la is
implemented by the ScaLAPACK function pdgetf2, which factorizes a block of
columns. For each diagonal element of the upper block (i.e. 4yy) the following oper-
ations are applied:

(1) determine the pivot by a reduce communication primitive and exchange the pivot
row with the current row;

(2) broadcast the pivot row on columns of processors;

(3) scale, i.e. divide, the column under the pivot by the pivot and update the matrix
elements on the right of that column.

Step 2 of the algorithm is implemented by the ScaLAPACK function pdtrsm: the
left-upper block (i.e. Ayo) is broadcast to the processors row and this is followed by a
(BLAS) triangular solve.

Step 3a is implemented by the ScaLAPACK function pdgemm: the blocks corre-
sponding to Uy are broadcast on columns (of processors); the blocks corresponding
to Ly are broadcast on rows (of processors); then the blocks are multiplied to update
A

The performance of the parallel algorithm depends on the size of the block and
the grid topology. The size of the block determines the degree and granularity of par-
allelism and also the performance of the BLAS-3 routines used by ScaLAPACK.
The topology of the grid determines the cost of communications. In [4], it is shown
that best performance are obtained with a grid with few rows: step la of the algo-
rithm is fine grained and involves small communications (so a lot of communication
latencies) for pivoting and for Ly computation.
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4. Parallel out-of-core LU factorization

Now, we consider the situation where the matrix 4 is too large to fit in main mem-
ory.

We present the parallel out-of-core left-right looking LU factorization algorithm
used by the ScaLAPACK routine pfdgetrf for the parallel out-of-core LU factor-
ization [9]. Similar algorithms are also described in [10,13]. In the algorithm the ma-
trix is divided in blocks of columns called superblocks. The width of each superblock
is determined by the amount of physical memory available.

Similar to the previous parallel algorithm, the matrix is logically distributed on a
block cyclic p x g grid of processors. But only blocks of the current superblock are in
main memory, the others are on disk.

The parallel out-of-core algorithm is an extension of the parallel in-core algo-
rithm. It factorizes the matrix from left to right, superblock by superblock. Each
time a new superblock of the matrix is fetched into memory (called the active super-
block), all previous pivoting and updates of a history of the right-looking algorithm
are applied to the active superblock. To do this update, superblocks lying on the left
of the active superblock are read again. Once the update is finished, the right-looking
algorithm resumes on the updated superblock, and the factorized active superblock
is written on disk. Once the last superblock has been factorized, the matrix is read
again in order to apply the remaining row pivoting of the recursive phases (step 4).

The update of each active superblock is summarized in Fig. 2. When a superblock
on the left is considered (called the current superblock), the update consists in apply-
ing row pivoting to the active superblock and:

1. read the under-diagonal part of the current superblock;

2. compute the Uy part of the active superblock by a triangular solve (function
pdtrsm);

3. update 4y, i.e. subtract the product of Uy, part of the active superblock by Ly of
the current superblock (function pdgemm).

Factorized

Fig. 2. Superblocks.
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5. Performance prediction

In this section we present an architectural model and a prediction for the execu-
tion time of the parallel out-of-core left-right looking algorithm.

5.1. Architectural model

The architectural model consists of a distributed memory machine with an inter-
connection network and one disk on each node. Each node stores its blocks on its
own disk. Let us characterize this kind of architecture by some constants represent-
ing the computation time, the communication time and the IO time.

Computation time. It is usually based on the time required for the computation of
one floating-point operation on one processor and is represented by a constant «. In
fact, this time is not constant and depends on the memory hierarchy and on the kind
of computation. For instance a matrix multiplication algorithm exhibits good cache
reuse whereas the product of a vector by a scalar has poor temporal locality. So we
distinguish three time constants for floating point operations: «, for matrix multiply,
o, for triangular solve, and o, for scaling of vectors.

Communication time. As usual, the communication time is represented by the
B+ V1 model, where f is the startup time and 7 is the time to transmit one unit
of data and V is the volume of data to communicate. We only consider broadcast
communication in our model. The constants f and 7 are dependent on the topology
of the virtual grid: /3‘7 is the startup time for a column of p processors to broadcast
data ! on their rows, and 1 / 19 represents the throughput. Similarly [3" and 7/ denote
the time for one row of ¢ processors to broadcast data on their columns These func-
tions depend on the communication network. For instance, on a cluster of worksta-
tions with a switch, the broadcast can be implemented by a tree diffusion. Then
B =log,q x B and 1! =log, g x 5 Where f§ is the startup communication time for
one node and 1/7 the throughput of the medium. With a hub (i.e. a bus), the model
is: fl=plg—1)xpandt=1ifg>1,t=0ifg=1.

IO time. The 10 time is based on the throughput of a disk. Let 7" be the time to
read or write one word for one disk, then r}f == L is the time to read or write p words
in parallel for p independent disks.

5.2. Modeling

To model the algorithm, we estimate the time used by each function. For each
function, we distinguish between computation time and communication time, and
we distinguish between the intrinsic cost time of the parallel right-looking algorithm
and cost introduced by the out-of-core extension.

Let N be the matrix order, K be the column width of superblock, and assume the
block size is k x k. The grid of processors is composed of p rows of ¢ columns. We

! Data are equi-distributed on processors.
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have the following constraints on these constants: N is a multiple of K and K is mul-
tiple of & and ¢. Let L =% be the block width of the matrix, § = & the number of
superblocks, and B = K be the block width of a superblock.

Fig. 3 collects costs of the different steps of the algorithm. For the sake of simplic-
ity, we do not consider cost of pivoting cost in our analysis. This cost is mainly the
cost of reduction operations for each element of the diagonal and the cost of row
interchanges, plus the cost of re-reading/writing the matrix. This time can easily
be integrated in the analysis if necessary.

5.2.1. pdget£2 cost

Step 1 of the algorithm (ScaLAPACK function pdgetf2) is applied on block
columns (of width k) under the diagonal (Fig. 4). There are L such blocks. This com-
putation is independent of the superblock size. For the computation cost, we distin-
guish the computation of blocks on the diagonal (5) and the computation on the
blocks under the diagonal (6). The total computation time for pdgetf2 function
for the whole N x N matrix is (7).

For communications in pdgetf2, for each block on the diagonal and for each
element on the diagonal, the right part is broadcast to the processor column (8).

pdgetf2:

. S'((BAI)/3P+~——B<5_”kzrp)

k i 1 q 2 q

y g J: (2 ]7] (24~ 2)+§ (25-1) )(5) ., ]
J 1 i= ;+1 n Z:ff((f?*l)ﬁg‘*' B*fé*”kz-r;’

Y (kx]ﬂz )(6) (i1 B(B—1)k?70) (13)

i=S—1 . (B—=1) ;.9
Zz ]) zx(BLiZ+—-—B‘132 1)1\"27;5

2.2
Lx (k/jp+k (k+1) ,) N (P4 EEL vy (8) +(i—1)B%k27])
i 1 27 N(N=K)68]+(Kk+4Nk=3k%)7]) 14
12Kk ( )
pdtrsm:
Ly ank®xi = SEX(N?K—NK?) 9) SV (pgP 4 K2rP) (15)
10:
(S(B=D)+357 (ix B))x (B3 +k27) "
, 2SN K720 6
=S(Bfl)([3§’+k2-rf)+ (10) NRTpq ( )
SE_LB (594 k210) (11)
pdgemm: Y (PR (- 1) B R
) N(N-FK}(Kk4+4Nk—3k2)r80)
L 2Kk e (17)
1 i Z 3
ﬁZzzl i* X209k
- 29

=

q

(Mﬁ Wk) (12)

Fig. 3. Costs of the different steps of the left-right looking algorithm for out-of-core LU factorization.
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Active Current Current

..........................

,,,,,,

pdgetf2 pdtrsm pdgemm

Fig. 4. Blocks involved in the three main functions of the factorization. Blocks from the active superblock
and from a current one (there are 4 superblocks) are shown.

5.2.2. pdtrsm cost

Step 2 of the algorithm (computation of Uy, ) is applied on each block of row lying
on the right of the diagonal: each of them involves a triangular solve (Fig. 4). The
computational cost of a triangular solve between two blocks of size k x k is ak>.
The total computation cost for every pdtrsm performed by the algorithm is (9).

The communication cost for pdtrsm is the cost of broadcasting diagonal blocks
onto the processor row. One broadcast is done during the factorization of the active
superblock (10), and another is needed for the future updates (11).

5.2.3. pdgemm cost

Step 3 of the algorithm updates the trailing sub-matrix 4" (Fig. 4). The computa-
tion is mainly matrix multiplication plus a broadcast. For a trailing sub-matrix of
order H, there are (%)2 block multiplications of size k x k. The cost of such a multi-
plication is 20,k°. The total computation cost is (12).

For the communication cost, we distinguish the cost of factorization of the active
superblock and the cost of the update of the active superblock. For the factorization
of the superblock, the cost corresponds to the broadcast of one row of blocks and the
broadcast of one columns of blocks (13). Fig. 2 illustrates the successive updates for
an active superblock. Each block of columns under the diagonal in left superblock
read are broadcast (14). At the same time symmetric rows of blocks of the current
superblock are broadcast (15).

5.2.4. 10 cost
The IO cost corresponds to reading/writing the active superblock (16) and reading
the superblock on the left (17).

5.3. Experimental validation of the analytical model

To validate our prediction model, we ran the ScaLAPACK out-of-core factoriza-
tion program on a cluster. We instrumented the ScaLAPACK program for profiling
the different parts of the algorithm. Then we compared the measured execution time
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with the time predicted by our model. The cluster was made up of 8§ PC-Celeron run-
ning Linux and interconnected by a Fast-Ethernet switch. Each node had 96 MB of
physical memory. The model described in the previous subsections is instanced with
the following constants (experimental measurements): 1/o, =237 Mflops,
1/oy =123 Mflops, 1/os =16 Mflops, f=1.7 ms, 1/t =11 MBI/s, 1/110 =1.8
MB/s.

Table 1 shows the comparison between the execution time and the predicted time
(in italic) of the factorization algorithm. M is the matrix order, K the superblock
width, p the number of row of the processor grid, ¢ the number of columns, S is
the number of superblocks. The size of the matrix in Gigabytes is given in the first
column. We measured time for Input/Output, for Computation and we distinguished
the Communication time during the factorization of active superblocks and the
Communication time during the update of active superblocks. Times are given in
hours (h), minutes (m) and seconds (s). The last column shows the real and predicted
performance in Mflops (Mflp). For computation and communication, running time
was close to the predicted time. There were some differences for 10 times. It is
mainly due to our rough model of 10: 10 performance are more difficult to predict
because access file performance depends on the layout of the file on the disk (frag-
mentation).

6. Out-of-core overhead analysis

In comparison with the standard in-core algorithm, the overhead of the out-of-
core algorithm is the extra IO costs and broadcast (of columns) cost for the update
of the active superblock: for each active superblock, left superblocks must be read
and broadcast once again!

This overhead cost is represented by Egs. (11) and (14) for communications and
(17) for 10. It is easy to show that if K = N (i.e. S = 1) then this cost is equal to zero:
it is the in-core algorithm execution time.

The first plot in Fig. 6 shows theoretical efficiency for a Fast-Ethernet based clus-
ter. Efficiency is given according to the number of processors (from 8 to 64) and the
ratio r of the problem size on the aggregate primary memory size (64 MB/node), thus
for different distributions (1, 2, 4 and 8 columns). From this plot, we observe than
the overhead has big impact on the performance: the efficiency is very bad for large
problems. The overhead cost is O(N?), and is nonnegligible. In the following, we will
show how to reduce this overhead cost. Let Oc = (11) + (14) be the overhead com-
munication cost and O;p = (17) be the overhead IO cost.

6.1. Reducing overhead communication cost

As shown by the model and the experimental results, the topology of the grid of
processors has a large influence on the overhead communication cost:

Fact 1. If the number of columns q is equal to 1, then Oc = 0.
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If there is only one column of processors, there is no broadcast of column during
the update. If we consider a communication model where the cost of the broadcast
operation is increasing with the number of processors, then the larger the number of
columns is, the larger is Oc. Fig. 5 shows the influence of the topology on the per-
formance. In the same figure, there are plots for the predicted performance of the
in-core right looking algorithm. We used constants of our small PC-Celeron cluster.
With a topology of one column of 16 processors (a ring) there is no extra commu-
nication cost. The difference with the in-core performance is due to the extra 10.

6.2. Overlapping 10 and computations

A trivial way to avoid the 10 overhead is to overlap this IO by computation. In
the left-right looking algorithm, during updates of the active superblock, the left su-
perblocks are read from left to right. An overlapping scheme consists in reading the
next left superblock during the update of the active superblock with the current one:
if the time for this update is larger than the time for reading the next superblock,
then the overhead due to IO is avoided.

Now, let us consider the resource needed to achieve such a total overlapping. Let
M be the amount of memory devoted to superblock in one processor. For a matrix
order N the width of a superblock is then K = 247, Let O, the overhead IO cost not
overlapped in this new scheme.

Theorem 2. If pgM = N 2"7‘; then Of, = 0.

Proof. Consider the update part of the algorithm (Fig. 2). For the sake of simplicity,
we underestimate the update computation time, and we only consider the main cost
of this update: computation time of the pdgemm part. Let H be the height of the

Thearetical performances of LU factorization

Mflops
.

CoC 4x4

0ol 1xle

10000 20000 30000 4000C 50000 60000 70000 80000 90000 100000

N

Fig. 5. Theoretical performance of the LU factorization on a cluster of 16 PC-Celeron/Linux (64 MB)
interconnected by a Fast-Ethernet switch: comparison of the parallel in core (IC) right-looking algorithm
and the parallel out-of-core (OoC) left-right looking algorithm, with three kinds of topologies (1x 16,
4x4, and 16x1). N is the matrix order.
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current left superblock in the update of the active superblock (in number of k x k
blocks). The computation time for the update of the active superblock with the
current one is:

((H—B) ><B+M> x (2%1(33) (18)
2 Pq
The time to read the next left superblock is:

B(B

<(H—2B) x B+2_1)) x (K1) (19)

Now consider the situation where 10 is overlapped by computation (i.e. O, = 0),
that is % > 1. We restrict the problem to the following: determinate for which

superblock width B

(tr-m+s2) (2z08)
(21 - 28) 1551 e
2

The first part of this expression is always greater than 1. We determinate for which
superblock width the second part of the expression is greater than 1. By definition
K =k * B (K is the width of a superblock in number of columns), and Ty = ;—q We
have

(2z#5) » .
A L >« 28Kkl K> >
k2o tio 2OCg
rq
Since K = pgM /N, if pgM > Nz% then 8—3 >11ie. 0, =0.
If we consider a one column distribution and this 10 overlapping scheme, we
have:

Fact 3. If the number of columns q is equal to 1, then Oc = Of, = 0.

In this situation, there is no out-of-core overhead and the execution of the out-of-
core algorithm is equal to the execution time of the in-core algorithm, assuming there
is enough memory to hold the matrix.

6.3. Reducing primary memory size

The previous theorem gives a lower bound of the physical memory size to achieve
total overlapping of 10 by computation. For instance, for a 16 nodes cluster like the
previous one, the primary memory size needed to factorize a 80 GB matrix (100 000
order matrix), we need 26 Megabytes (MB) of memory per superblock (active, cur-
rent and prefetched) per node, i.e. 78 MB/node. The predicted execution time to fac-
torize the matrix is 4.5 days without overlapping, and 2.5 days otherwise. If we
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substitute the Intel Celeron processors of 237 Mflops by Digital Alpha AXP proces-
sors of 757 Mflops, then the needed memory size per processor is 252 MB! The pre-
dicted computation time is about 36 h without overlapping and about 21 h otherwise
(1.7 faster), which is the estimated time for the in-core algorithm with enough mem-
ory, i.e. 5 GB/node!

For larger problem, it is possible to reduce the required primary memory. Indeed,
in the original algorithm, the width of the active and current superblocks are equal.
An idea to reduce the need for physical memory is to specify different width for the
active and the current superblock during the update: increase the width of the active
superblock (i.e. computation time) and reduce the width of current superblock (i.e.
read time).

7. Distribution analysis

In the previous section, we shown that only one dimensional distributions (one
column of processor) allow us to avoid the communication overhead of the update
part. With 10 overlapping, the performance of the out-of-core algorithm is then
equal to the performance of the in-core algorithm with the same distribution. Unfor-
tunately, one column distribution is the worst distribution. For instance, reconsider
the cluster of AXP processor, the estimated execution time for the in-core algorithm
is 18 h instead of 21 h. In a one column distribution we get lower performances be-
cause:

o the parallelism is reduced: computation of Uy in the LU part (see Section 3) is
done by one processor;

e due to partial pivoting the step 1a of LU decomposition (see Section 3) has a small
grain with small communications (thus a lot of communication latencies).

In [4], it is shown that best performance for the in-core algorithm are obtained
with few rows grid. Considering two dimensional distribution in the out-of-core
algorithm reintroduces communication overhead for update: left superblocks read
are communicated along processor rows. Fig. 5 suggests that for a fixed number
of processor and primary memory size, the update communication is prominent
on the gain of two dimensional distribution. In this case, a one-column distribution
gives better performance. The second plot in Fig. 6 shows theoretical efficiency
according to the number of processor (from 8 to 64) and the ratio r of the problem
size on the aggregate primary memory size (64 MB/node), thus for different distribu-
tions (1, 2, 4 and 8 columns). For large problems, there is a threshold on N where
one-dimensional distribution gives better performance than two-dimensional ones.

We now estimate what the threshold is. For a fixed two dimensional distribution
r x g = p (r rows of ¢ columns of processors, ¢ > 2), we determine the matrix order
N where one-column distribution is better than an r x g distribution. As stated
before, one-column distribution is weaker in the computation of the U (trsm)
because this computation is done by only one processor. The weakness of
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Theoretical efficiency of the uriginal out-of-core algorithm
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Fig. 6. Theoretical efficiencies of the out-of-core algorithm without overlapping and with overlapping of
the 10 overhead and with overlapping of the IO and communication overhead. Efficiencies are plotted
according the number of processors p (from 8 to 64), the ratio r of the problem size on the aggregate me-
mory size (64 MB/node), thus for four kinds of distribution (grid with 1, 2, 4 and 8 columns).
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two-dimensional distribution is the cost for communication update, which is null for
one-column distribution. For the sake of simplicity, we consider only this two main
cost for the estimation of the threshold.

Let 77 (respectively T ;)the computation time for the trsm part of the factoriza-
tion in one-column distribution (respectively two-dimensional distribution). From
(9) we get:

N?k — Nk
T (20)
s o
Q:jxﬂ (22)

Similarly, let U} (respectively U,) estimations for the communication time for the
gemm update in one-column distribution (respectively two-dimensional distribution).
For the sake of simplicity we do not consider communication latency:

N' N? KxN

h=3p—5+— (23)
Ul =0x 7V, (24)
Ul =1 %V, (25)

Notice again that the update communication time is O(N?) whereas trsm compu-
tation is O(N?). This suggest that depending on a fixed constant we can find a N
where the communication update becomes greater than computation times. So, one-
column distribution is better than » x g distribution when N is such that
T+ ULT) + U]

octhtgﬁth—i—r;xV; (26)
q
TV
Ve "q—1 oy

Roughly speaking, a one-column distribution is better when the ratio of the volume
of computation (O(N?)) on the volume of communication (O(N?)) is less than the
number of computation which can be done when one word is communicated.

If we consider an architecture of p processors where 7, increases as g increases
(less communication are done in parallel), then increasing the number of columns
(and reducing the number of rows) decrease the threshold for which it is preferable
to switch to one-column distribution. In fact, in the out-of-core algorithm, a good
distribution is a distribution with few columns: it is the opposite of a good distribu-
tion for in-core right-looking algorithm.
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8. Theoretical benefits of overlapping communication

To achieve better performance, an overlapping scheme for communication update
must be introduced. Such an overlapping scheme will allows us to reconsider two
dimensional grid distributions.

A possible implementation scheme is to read ahead the second next superblock
and communicate the next left superblock during the update of the active superblock
with the current one.

To see what gains can be obtained by this new overlapping scheme, let consider
the efficiency for different distributions. Fig. 6 shows the theoretical efficiency
according to the number of processors (from 8 to 64) and the ratio » of the problem
size on the aggregate primary memory size, thus for different distributions (1, 2, 4
and 8 columns). The behaviours of the out-of-core algorithm is similar to the behav-
iour of the in-core one: a good distribution is a distribution with few rows.

Similarly to the IO overlapping scheme, we consider the resource needed to
achieve such a total overlapping. Let M be the amount of memory devoted to one
superblock on one processor. For a matrix of order N the width of a superblock
is then K = quM. Let O2 be the communication overhead cost not overlapped in this
new scheme.

Theorem 4. Let r be such that rkzrz = ﬁ{;. If pgM > N% then O} = 0.

Proof. The proof is similar to the previous one. Consider the update part of the
algorithm (Fig. 2). For the sake of simplicity, we underestimate the update com-
putation time, and we consider only the main cost of this update: computation time
of the pdgemm part. Let H be the height of the current left superblock in the update
of the active superblock (in number of & x k blocks). The computation time for the
update of the active superblock with the current one is:

<(H—B) x B+B(BT_1>> X <2z—f]k3B> (28)

The communication time of the next left superblock is:

<(H —2B) x B+ @) x (Kt + B7) (29)

Since r is such that rk*t’ = B2

<(H —2B) x B +@) x (r+ l)kzr{; (30)

Now consider the situation where the communication is overlapped by computation
(i.e. O = 0), that is % > 1. We restrict the problem to the following: determinate
for which superblock width B satisfies:
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(@1 -BB+252)  (22KB)
<(H—2B)B+@) “rred =

The first part of this expression is always greater than 1. We determine for which
superblock width the second part of the expression is greater than 1. By definition
K =k x B (K is the width of superblock in number of columns). We have

22[3B 1z?
(r+ 1)k? (r+ 1)t 20,

Since K = pgM /N, if pgM > N(FZ)T{; then % >1,1e O =0.

Similarly to the IO overhead ovegrlapping scheme, the memory requirement can be
reduced by varying the different superblock size, at the price of a more sophisticated
implementation.

With the combination of the 10 overhead overlapping scheme, this overlapping
scheme avoids the overhead of the out-of-core algorithm. The running time is then

identical to the in-core algorithm for all distribution.

9. Conclusion

In this paper we presented a performance prediction model of the parallel out-
of-core left-right looking LU factorization algorithm which can be found in
ScaLAPACK. This algorithm is mainly an extension of the parallel right-looking
LU factorization algorithm.

This algorithm was first introduced by [5,10,13], but the performance study was
based on some experiments and no limitation was found for it. Thanks to our mod-
eling, we revisited the performance of the algorithm and isolated the overhead intro-
duced by the out-of-core version and outline its limitation: the overhead is O(N?) for
a matrix order N, the order of the computation! The overhead is divided into an IO
part and a communication part. We showed that a straightforward scheme to over-
lap the 10O by the computations allows us to reduce the IO overhead of the algorithm.
We determined the memory size which is necessary to avoid the IO overhead. The
memory size needed is proportional to the square root of the matrix size. We ana-
lyzed the impact of communication overhead on two-dimensional distribution of
computation: a good distribution strategy is a distribution on few columns of proces-
sors and for large problem the best distribution is one-column of processors. It is the
opposite strategy for the in-core algorithm. We showed that with a similar memory
requirement as for the 1O overlapping, it is possible to introduce overlapping for the
communication overhead and get freedom on the distribution of computation to
achieve better performance.

This paper demonstrates that there is no memory limitation to the factorization of
huge matrices. With these two overlapping schemes, the performance of the out-of-
core algorithm is similar to the performance of the in-core one (assuming there is
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enough memory to hold the matrix). The physical memory requirement if O(N)
where N is the matrix order. This memory requirement is determined by the different
constants of the architecture and can be reduced by varying the different superblock
sizes. The only limitation is in fact the running time (it is a compute bound problem).
As running time is similar to the in-core algorithm, the out-of-core algorithm scale as
well. We extended this algorithm to the matrix inversion problem in [3].

Thanks to our modeling, we can give hint for dimensioning cluster for large dense
matrix factorization. Using overlapping scheme, a good architecture to perform
large matrix factorization must be based on fast processors. The memory size is ad-
justed by the 10 and communication performance to achieve total overlapping. As
efficiency is the efficiency of the in-core (right-looking) algorithm, optimizations de-
signed for the right looking algorithm may be integrated to improve it. For example
another overlapping scheme for intrinsic communication of the in-core algorithm
proposed in [8].

At this time, we implemented overlapping of 10 overhead but only for Linux
Cluster platform. Implementing overlapping of communication overhead needs fur-
ther development. Unfortunately, there is no standard for asynchronous IO and
communication widely implemented today. MPI and MPI-IO are good candidates
for asynchronous 10 and communication, but BLACS and ScaLAPACK do not
integrate these features.

An issue which has not be considered in this paper is fault tolerance. Checkpoint-
ing is implicit in this out-of-core algorithm: If the computation failed during the
computation (update or factorization) of an active superblock, since data are on
disk, we can restart the computation by re-reading the active superblock. To prevent
failure during the write phase of the active superblock, a copy can be store in on
other file and read again to restart the computation.

Because we consider large matrices, numerical stability of the algorithm is an
important concern. Even using partial pivoting, it is known that this kind of blocked
algorithm is not stable in general [6]. It was proved this method are conditionally sta-
ble for symmetric positive definite or diagonally dominant matrices, and it is uncon-
ditionally stable for matrices which are block diagonally dominant by columns.
When using such a factorization algorithm to solve linear system, it must be careful
about the residual, and try iterative refinement when the residual is too big [7]. Fi-
nally for symmetric indefinite matrices, another algorithm may be considered such
that diagonal pivoting methods [12].
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Abstract

This paper is concerned with the memory usage of sparse direct solvers, which depends on
the ordering of the unknowns and the scheduling of the computational tasks. We study the
influence of state-of-the-art sparse matrix reordering techniques on the memory usage of a
multifrontal solver. Concerning the scheduling, the memory usage depends on the tree tra-
versal and how the tasks are assigned to the processors. We analyze the memory scalability
when a dynamic scheduling strategy mainly based on the balance of the workload is used.
Finally we give hints to improve the parallel memory behaviour.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Sparse direct methods and in particular multifrontal methods are robust and effi-
cient techniques to solve large sparse systems of linear equations. However, they are
known for their relatively large memory requirements compared to iterative methods
so that an in-core execution is not always possible: sometimes, large problems fail to
be solved because of a lack of memory on the processors.

In multifrontal solvers two types of memory areas can be distinguished in the pro-
cess of solving sparse linear systems: a static memory needed to store the final factors
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of the sparse matrix; and an additional dynamic memory, also called active memory,
needed to store temporary values used by the computation. In the case of multifron-
tal methods, the latter is handled by a stack mechanism. The size of the active
memory can be large, and is sometimes larger than the factors.

The contribution of this paper is an extensive study of the memory usage of par-
allel multifrontal solvers. We show that the memory depends on both the reordering
technique applied and the scheduling of the computational tasks and give hints on
how to optimize the memory usage for sequential and parallel cases.

Reordering (i.e., renumbering the unknowns of a sparse linear system) is a well-
known technique to reduce the fill in the final factors, and this has a significant im-
pact on the static memory size. In this paper we show that reordering techniques also
have a big impact on the active memory size. In the multifrontal method, the active
memory size depends on the shape of assembly trees resulting from the reordered
matrix. Thus, we present an extensive study of the assembly tree shapes resulting
from various combinations of sparse matrices and reorderings.

The active memory size also depends on the way the assembly tree is traversed
during the factorization process and how the computation is distributed on the pro-
cessors. We experimentally study the memory usage of the parallel multifrontal
MUMPS.

This paper is organized as follows. In Section 2, we recall some general mecha-
nisms of the multifrontal method. Then we give in Section 3 a description of the re-
ordering techniques and test problems used for our study. In Sections 4 and 5, we
study the impact of these reordering techniques on both the shape of the assembly
tree and on the evolution of the dynamic memory, respectively. Section 5.2 presents
a variant of the algorithm by Liu [17] to modify the traversal of the multifrontal as-
sembly tree in our context. We show how a reduction of the active memory size can
be obtained depending on the reordering technique used. After that, we analyze in
Section 6 the influence of reordering on the memory balance and consumption for
parallel executions and study the main factors that limit the memory scalability.
Finally, we draw conclusions.

2. The multifrontal method

Like other direct methods, the multifrontal method [9,10] is based on the elimina-
tion tree [18], which is a transitive reduction of the matrix graph and is the smallest
data structure representing dependencies between operations. In practice, we use a
structure called assembly tree, obtained by merging nodes of the elimination tree
whose corresponding columns belong to the same supernode [5]. We recall that a
supernode is a contiguous range of columns (in the factor matrix) having the same
lower diagonal nonzero structure.

Fig. 1 gives an example of a matrix and its associated assembly tree. From the ini-
tial matrix, an assembly tree with three nodes (each corresponding to one supernode)
is derived. The two first independent leaf nodes contribute to the computation of the
third.
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Fig. 1. A matrix with three supernodes ({1,2}, {3,4}, {5,6}) and the associated assembly tree.

In the multifrontal approach, the factorization of a matrix is done by performing
a succession of partial factorizations of small dense matrices called frontal matrices,
which are associated to the nodes of the tree. The order of a frontal matrix is given
by the number of nonzeros below the diagonal in the first column of the supernode
associated with the tree node. Each frontal matrix is divided into two parts: the fac-
tor block, also called fully summed block, which corresponds to the variables factor-
ized when the elimination algorithm processes the frontal matrix; and the
contribution block which corresponds to the variables updated when processing the
frontal matrix. Once the partial factorization is complete, the contribution block is
passed to the parent node. When contributions from all children are available on
the parent, they can be assembled (i.e. summed with the values contained in the fron-
tal matrix of the parent). The elimination algorithm is a postorder traversal (we do
not process parent nodes before their children) of the assembly tree [22]. It uses three
areas of storage in a contiguous memory space, one for the factors, one to stack the
contribution blocks, and another one for the current frontal matrix [2]. During the
tree traversal, the memory space required by the factors always grows while the stack
memory (containing the contribution blocks) varies depending on the operations
made: when the partial factorization of a frontal matrix is processed, a contribution
block is stacked which increases the size of the stack; on the other hand, when the
frontal matrix is formed and assembled, the contribution blocks of the children
nodes are popped out of the stack and its size decreases. The stack memory is thus
very dependent on the assembly tree topology.

To illustrate our observations, we give in Fig. 2 two examples of assembly trees.
The corresponding memory evolution for the factors, the stack and the current fron-
tal matrix is given in Fig. 3. First storage for the current frontal matrix is reserved
(see “Allocation of 3 in Fig. 3(a)); then the frontal matrix is assembled using values
from the original matrix and contribution blocks from the children nodes, and those
can be freed (““Assembly step for 3” in 3(a)); the frontal matrix is factorized (‘“Fac-
torization step for 3” in 3(a)). Factors are stored in the factor area on the left in our
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figure and the contribution block is stacked (“‘Stack step for 3”’). The process contin-
ues until the complete factorization of the root node(s). We can observe the different
memory behaviours between the wide tree (Fig. 3(b)) and the deep tree (3(a)): the
peak of active memory (see Fig. 3(b)) is larger for the wide tree.

Note that in our description all the contribution blocks for children nodes are as-
sembled at once (in the sequential case). Another approach could be to preallocate
the frontal matrix of the parent node and perform an assembly step each time a con-
tribution block is computed. This is generally not done in multifrontal solvers be-
cause this strategy implies the use of more complex memory management
algorithms and the structure of the frontal matrix of the parent is unpredictable
when there is pivoting. Also, except for very wide trees, this is not necessarily a more
efficient memory scheme because it implies storing several frontal matrices (each con-
taining all the future contribution blocks of the subtree).

In the rest of the paper we only distinguish between two areas of storage: the
factors, and the stack, where the stack includes the storage for the current frontal
matrix.

3. Reordering techniques

Reordering the variables of a sparse linear system, i.e. permuting columns and
rows (while keeping numerical stability under control), aims at reducing the amount
of fill-in. Here we only consider symmetric reordering techniques which can also be
applied to an unsymmetric matrix A by considering the structure of A + A" (after
some column permutation for very unsymmetric matrices [8]).

Two popular schemes for symmetric reordering are bottom-up heuristics such as
the minimum degree (AMD [1], MMD [16]) or minimum fill (MMF [19,23]) and glo-
bal or top-down heuristics based on partitioning the graph of the matrix, such as
nested dissection [12]. A class of algorithms has also been developed that hybridize
top-down nested dissection with bottom-up minimum degree.

Note that although these heuristics mainly focus on the reduction of fill-in, (and
thus size of the factors and number of operations), they also have a significant im-
pact on the parallelism (see, e.g. [3]). Here, we are interested in the influence of such
techniques on the memory usage and consider the following bottom-up, top-down
and hybrid heuristics:

e AMD: the Approximate Minimum Degree [1];

e AMEF: the Approximate Minimum Fill, as implemented in MUMPS; '

e PORD: a tight coupling of bottom-up and top-down sparse reordering methods
[24];

! Available from http://www.enseeiht.fr/apo/MUMPS.
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Fig. 4. Size of the factors (millions of reals).

e METIS: we use here the routine METIS_NODEND from the METIS package [15]
which is an hybrid approach based on multilevel nested dissection and multiple
minimum degree;

e SCOTCH: we use a modified version of SCOTCH [20] provided by the author that
couples nested dissection and (halo) Approximate Minimum Fill (HAMF), in a
way very similar to [21]. The switch to HAMF is done when the size of the sub-
graph obtained is 120.

In the following, we simply use the terms AMD, AMF, METIS, SCOTCH and
PORD to refer to these heuristics. We must note that for AMD, AMF, SCOTCH
and PORD, the assembly tree is returned directly from the reordering algorithm,
while for METIS, only the permutation is returned and MUMPS is used to build an
assembly tree based on this permutation.

Finally, note that we had initially considered a pure nested dissection algorithm
[12], but this one was competitive only in a few cases, and only for extremely regular
problems, so that we decided to discard it.

Fig. 5 gives the ratio between the peak of the stack and the final size of the factors
in the sequential case. (Note that the final size of factors for every test problem and
every reordering technique is given in Fig. 4.) The matrices are from Table 1 and
are extracted from either the Rutherford—Boeing collection [7], the collection from
University of Florida 2 or the PARASOL collection. > We can see that the peak of
the stack can be significant compared to the size of factors (the ratio is near to 1).

% Available from http://www.cise.ufl.edu/~davis/sparse/.
3 Available from http://parallab.uib.no/parasol.
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Furthermore, for certain problems like the matrix GUPTAS3, the peak of the stack is
larger than the size of the factors. This illustrates the fact that the stack memory
must be well managed for both sequential and parallel executions.

4. Impact of reordering techniques on the assembly tree

In this section, we study the impact of the reordering technique used on the shape
of the corresponding assembly tree. We consider the test problems from Table 1 and
the reordering techniques METIS, SCOTCH, PORD, AMF and AMD introduced
in Section 3.
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Table 1
Description of the test problems
Matrix Order NZ Type Description
BMWCRA_1 148770 5396386 SYM Automotive crankshaft model

with nearly 150000 TETRA ele-
ments (MSC-CRANKSHAFT-

150K)

GRID 109744 1174048 SYM 11-point discretization of the
Laplacian on a 3D grid
(152*38*19)

GUPTA3 16783 4670105 SYM Linear programming matrix
(A*A’), Anshul Gupta

MSDOOR 415863 10328399 SYM Medium size door

SHIP_003 121728 4103881 SYM Ship structure from production
run

PRE2 659033 5959282 UNS AT&T,harmonic balance meth-
od, large example

RMA10 46835 2374001 UNS 3D CFD model, Charleston
harbor. Steve Bova, US Army
Eng., WES

TWOTONE 120750 1224224 UNS AT&T ,harmonic balance meth-
od, two-tone

XENON2 157464 3866688 UNS Complex zeolite, sodalite crys-

tals. D Ronis

“SYM” stands for symmetric, “UNS” for unsymmetric.

We use the software package MUMPS (MUItifrontal Massively Parallel Solver)
[3.4], which implements parallel multifrontal solvers with threshold partial pivoting
for both LU and LDL factorizations. For our purpose, we first experiment with the
sequential version, and the tree is processed using a depth-first search traversal. We
have instrumented the code to obtain statistics on both the assembly tree and the
memory and be able to understand in better detail the evolution of the memory
usage with time. Tests of MUMPS have been made on the IBM SP system of the
CINES * which is composed of 29 nodes of 16 processors. Each node is equipped
with 16 GB of memory shared among its 16 Power3+ (375 MHz) processors. The
general shape of the assembly tree (width and depth) was estimated by the number
of nodes (Table 2), and the percentage of leaves in the tree (Table 3). Regularity of
the shape was estimated by the standard deviation of the depth of the leaves (Table
5), the maximum depth of a leaf (Table 4) and the average number of children (Table
6). Because the stack size is influenced by the size of frontal matrices, we report for
each tree the maximum and average sizes of a frontal matrix (Tables 7 and 8). In
these tables, the largest value of a row is in bold, while the smallest value in italics.

As previously noticed AMD, AMF, PORD and SCOTCH directly return an as-
sembly tree and METIS only provides a permutation that is used by MUMPS to build

4 Centre Informatique National de I'Enseignement Supérieur.
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Table 2
Number of nodes in the tree
METIS SCOTCH PORD AMF AMD
BMWCRA_1 8767 2833 9268 9902 8320
GRID 24953 10218 24081 29680 28224
GUPTA3 413 26 1790 1300 1898
MSDOOR 31611 28511 32843 33401 31335
SHIP_003 7474 4294 7798 8253 7634
PRE2 204359 169920 215403 205297 195812
RMAI0 4608 3465 5109 5325 4524
TWOTONE 35718 27904 41309 41794 39460
XENON2 18990 13130 20455 20386 19043
Table 3
Percentage of leaves in the tree
METIS SCOTCH PORD AMF AMD
BMWCRA_1 39.6 47.7 38.1 33.7 38.0
GRID 58.8 67.9 49.0 49.1 51.2
GUPTA3 95.9 26.9 23.4 33.8 21.3
MSDOOR 55.0 66.8 53.9 51.3 54.2
SHIP_003 43.8 59.4 43.5 38.7 43.0
PRE2 69.1 68.9 74.0 65.5 61.0
RMAI0 43.2 429 42.7 41.8 39.6
TWOTONE 68.2 68.8 72.8 71.8 67.5
XENON2 48.3 70.4 49.2 453 42.2
Table 4
Maximum depth for a node
METIS SCOTCH PORD AMF AMD
BMWCRA_1 21 14 54 100 34
GRID 26 14 49 188 53
GUPTA3 7 8 9 41 13
MSDOOR 26 17 53 80 35
SHIP_003 29 14 75 122 32
PRE2 56 18 115 99 42
RMAI0 26 40 43 208 165
TWOTONE 55 15 77 193 47
XENON?2 24 16 54 65 26

an assembly tree. Therefore in the following, remarks concerning to METIS actually
apply to the tree obtained by METIS followed by MUMPS symbolic factorization.
General shape: We observe in Table 2 that for most test problems, SCOTCH gene-
rates the tree with the smallest number of nodes. Then AMD and METIS provide
approximately the same number of nodes, and finally, AMF and PORD give trees
with a much larger number of nodes compared to SCOTCH. In addition, we observe
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Table 5
Variance of the depth of leaves
METIS SCOTCH PORD AMF AMD
BMWCRA_1 4.37 1.14 95.79 375.00 20.90
GRID 9.30 0.95 98.90 2852.83 149.81
GUPTA3 3.15 3.84 1.02 114.48 5.73
MSDOOR 3.99 1.49 70.44 53.63 10.90
SHIP_003 19.08 3.24 321.38 508.80 25.37
PRE2 110.95 9.16 815.96 265.05 21.52
RMAI10 11.13 7.41 67.73 2084.39 1331.67
TWOTONE 54.31 5.17 294.80 458.47 80.65
XENON2 7.06 1.67 101.60 144.73 10.29
Table 6
Average number of children
METIS SCOTCH PORD AMF AMD
BMWCRA_1 1.66 1.91 1.62 1.51 1.61
GRID 2.43 3.11 1.96 1.96 2.05
GUPTA3 24.24 1.32 1.31 1.51 1.27
MSDOOR 2.22 3.01 2.17 2.05 2.18
SHIP_003 1.78 2.46 1.77 1.63 1.75
PRE2 3.23 3.21 3.85 2.90 2.56
RMA10 1.76 1.75 1.75 1.72 1.65
TWOTONE 3.14 3.21 3.68 3.54 3.08
XENON2 1.93 3.37 1.96 1.82 1.73
Table 7
Maximal frontal matrix order
METIS SCOTCH PORD AMF AMD
BMWCRA_1 2343 2040 2076 2496 2835
GRID 2754 2343 1721 1536 1328
GUPTA3 827 5058 1643 3028 1030
MSDOOR 1372 1624 1358 1491 1610
SHIP_003 3456 3156 3426 3408 4038
PRE2 4290 4334 5794 6476 7502
RMAI10 466 422 378 439 399
TWOTONE 2382 2316 2561 2588 2684
XENON2 2554 2623 2743 3663 4501

from Table 3 that usually, SCOTCH and METIS generate trees with a large percent-
age of leaves when compared to the trees generated by AMF, AMD or PORD.
Effectively, the trees generated by METIS and SCOTCH are rather wide (because
of the global partitioning performed at the top), while the trees generated by
AMD, AMF and PORD tend to be deeper (see also Table 4).

Regularity: According to Tables 4 and 5, we can see that PORD and AMF gene-
rate more unbalanced trees (where depth of leaves varies a lot depending on the
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Table 8
Average front order
METIS SCOTCH PORD AMF AMD

BMWCRA_1 177 287 172 187 183
GRID 41 68 42 36 38
GUPTA3 624 1248 365 338 336
MSDOOR 74 67 73 72 71
SHIP_003 170 153 165 163 151
PRE2 15 13 14 14 14
RMAI10 60 59 54 53 56
TWOTONE 23 18 20 21 19
XENON?2 70 69 70 71 76

branches) while SCOTCH and METIS generate much better balanced trees. Finally,
we can see in Table 6 that PORD, AMD and AMF have trees where the average
number of children for a node is smaller than for the METIS and SCOTCH cases;
this also illustrates that the tree is not very wide (but deep). These remarks make
sense when we know that AMF, AMD and PORD are based on local methods only
aiming at minimizing either the degree or the fill.

Front size analysis: According to Tables 7 and 8, we can say that in most cases,
SCOTCH and METIS generate trees with frontal matrices that are bigger than those
generated by the other reorderings. This observation will help us to explain some re-
sults in the next sections. Note that AMD generates trees with big variations of the
front size.

Summary: To summarize this section, we have seen that reordering techniques
have a strong impact on the shape of the assembly tree. Fig. 6 summarizes the gene-
ral observations made for the different reorderings on the assembly tree. Concerning
the shape of the tree, we have observed that hybrid heuristics like METIS and
SCOTCH generate wide well-balanced trees (with a smaller number of nodes for
SCOTCH). On the other hand, PORD, AMD and AMF give deep trees; it is inter-
esting to notice that AMD provides better balanced trees than AMF and PORD. In
addition, METIS and SCOTCH give trees with bigger frontal matrices than the ones
generated by other reorderings.

5. Sequential memory usage of the multifrontal method

Given an assembly tree, an important factor impacting the memory usage is the
order in which the nodes of the tree are visited. The only constraint in the traversal
of the tree is that parent nodes are processed after their children and in general, for
sparse multifrontal solvers the traversal is the depth-first search. In other terms, it’s a
traversal where we try to process the parent node as soon as it is possible to do so, as
this allows to limit the amount of temporary contribution blocks. If we consider the
trees of Fig. 7, and assuming that the depth-first search is used with nodes on the left
processed first, the best case in terms of memory usage is the tree on the left where we
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(than SCOTCH)

Fig. 6. Shape of the trees resulting from various reordering techniques.

need to store the contribution blocks of at most two nodes simultaneously. On the
other hand, the tree on the right-hand-side corresponds to the worst case because

the contribution blocks of all leaves must be stored simultaneously.

Having as purpose to factorize large problems, we are interested in an out-of-core
scheme either implicit (relying on system paging) or explicit. In both cases, since fac-
tors are not reaccessed once computed, they can be saved to disk. Therefore we focus
in the following on the stack memory usage. We begin by studying the impact of re-
ordering techniques on the stack memory. Then, we study how the memory con-

sumption can be improved by using an optimal tree traversal.
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Fig. 7. Importance of the tree traversal.

5.1. Impact of reordering techniques on the memory

After studying the shape of the assembly tree, we now focus on the impact of the
reordering techniques on the memory consumption in MUMPS.

Tables 9-11 present the stack memory traffic, the average stack size, and the peak
of stack, respectively. For all these quantities, we neglected integer storage, so that
the unit used is always the number of real entries. We observed that the storage
needed by the integers is small compared to the one needed by the reals. For exam-
ple, if we consider the matrix SHIP_003 with METIS, the total integer storage (fac-
tors + stack) for a sequential execution represents 2.3% of the storage needed by the
reals. This ratio can slightly increase for small problems with limited fill-in like
RMA10 where it reaches 4.4%.

Memory traffic: Table 9 gives the the sum of the sizes of contribution blocks for all
the nodes of the tree. We can observe that the stack memory traffic for SCOTCH is
the smallest (in most cases). This is due to the fact that SCOTCH has a smaller num-
ber of nodes compared to other reorderings. We also see that PORD and AMF lead
to the biggest global stack memory traffic.

Average stack size: Table 10 gives the average size of the stack during execution,
defined as the average stack sizes for all variations observed. We see that for PORD
the average size of stack memory is smaller than for the other reorderings. This is

Table 9
Total amount of stack memory (millions of reals)
METIS SCOTCH PORD AMF AMD
BMWCRA_1 432.23 286.21 425.46 709.76 541.35
GRID 252.53 147.23 204.81 233.06 201.20
GUPTA3 144.83 10.36 287.47 231.41 236.74
MSDOOR 230.75 175.43 247.32 244.51 213.60
SHIP_003 509.66 249.64 590.01 656.21 496.76
PRE2 1186.45 280.02 1557.68 1267.98 623.01
RMA10 20.74 13.15 18.20 19.03 16.63
TWOTONE 305.18 71.85 272.93 437.84 214.58

XENON2 274.28 203.04 348.95 507.88 446.99
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Table 10
Average size of the stack (millions of reals)
METIS SCOTCH PORD AMF AMD

BMWCRA_1 3.03 3.38 2.16 341 6.10
GRID 3.18 2.56 2.03 1.65 1.21
GUPTA3 15.20 1.44 38.72 7.31 8.41
MSDOOR 1.62 2.42 1.14 1.64 2.12
SHIP_003 5.76 6.74 4.32 7.01 10.67
PRE2 16.54 6.07 25.04 12.69 47.31
RMAI10 0.16 0.13 0.09 0.17 0.14
TWOTONE 4.08 3.79 2.62 2.71 5.62
XENON2 4.69 4.89 3.90 6.11 11.27

Table 11

Peak of the stack (millions of reals)

METIS SCOTCH PORD AMF AMD

BMWCRA_1 10.69 9.53 8.16 11.26 19.32
GRID 17.08 11.91 5.83 4.17 3.79
GUPTA3 44.44 27.37 93.96 25.21 31.72
MSDOOR 4.12 5.22 3.49 4.18 5.82
SHIP_003 23.42 23.06 20.86 20.77 32.02
PRE2 34.95 36.16 65.60 84.29 153.57
RMAI10 0.43 0.39 0.28 0.34 0.33
TWOTONE 13.23 13.54 11.80 11.63 17.59
XENON2 14.39 15.21 13.14 23.82 37.82

because PORD has deep trees (as shown in the previous sections) where we do not
have to store a lot of contribution blocks at the same time. Compared with the other
reorderings that also give deep trees like AMD, its tree often has fewer nodes and
smaller frontal matrices which explains the difference in terms of the average size be-
tween AMD and PORD. Concerning AMF, we can see that its average is generally
greater than the one of PORD. This is because the tree of AMF has larger branches
(where there are a lot of memory operations) than the one of PORD. We can also
observe that SCOTCH has a good average size because the number of nodes of its
tree is smaller than for the other reordering techniques.

Peak stack size: Finally, Table 11 gives the peak of the stack memory observed
during the factorization. We can see that the reorderings giving deep trees provide
better (i.e., smaller) peaks of stack memory. Indeed, for our test problems, PORD
and AMF have the smallest peak. This result is natural since deep trees do not need
to store as many contribution blocks simultaneously as the wide trees given by
SCOTCH or METIS. We can also observe that the peak of stack memory for
AMD (which has a deep tree) tends to be greater than for other reorderings and par-
ticularly PORD and AMF (which also have deep trees). The first property that can
help us to explain this phenomenon is that we have observed that the nodes on the
top of the tree for AMD are larger than the ones for other reorderings. When these
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large nodes start to be processed, the stack memory will contain large contribution
blocks which will increase the size of the stack when processing the remaining sub-
trees.

The second property is that we saw that the tree of AMD is usually better bal-
anced than those of AMF and PORD (see Table 5). We also observed that MUMPS
chooses to process the largest node first, and the largest node normally tends to have
the deepest subtree.

Fig. 8 illustrates the structural difference between AMD’s and PORD-AMF’s
trees. For AMF and PORD, once the deepest subtree is treated, only smaller sub-
trees still need to be processed, requiring less memory. On the other hand, for
AMD, after treating the first node, subtrees that are not far from the first one in
terms of size still need to be processed. This will cause an increase of the stack mem-
ory because of the storage due to the additional contribution blocks involved. This
explains why PORD and AMF behave better in terms of stack size than AMD,
although all three have deep trees.

Summary: To summarize this section, we have seen that since reordering tech-
niques have a strong impact on the shape of the assembly tree, they also have a
strong impact on the memory usage in the factorization. Table 12 summaries the
memory usage according to the reordering techniques. We have seen that PORD
and AMF are the reorderings that use the smallest stack size (peak and average).
For in-core executions, this should of course be related to the amount of work
and the size of the factors, for which the following has been observed (see, for exam-
ple, [13] as well as Figs. 4 and 5): for small matrices, factors with PORD and AMF
are smaller than with SCOTCH and METIS, while for large matrices, METIS,
SCOTCH and PORD give the smallest factors.

5.2. Optimal tree traversal order for memory usage

In the previous section, we measured the influence of reordering techniques on the
dynamic memory usage. But as noticed the dynamic memory usage also depends on
the tree traversal. The simple strategy of MUMPS for tree traversal may not be opti-
mal in terms of dynamic memory usage. In this section we derive an algorithm which

AMEF-PORD AMD

Fig. 8. Structural difference between AMF’s tree and AMD’s tree.
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Table 12
Characteristics of the stack memory for different reordering techniques
Peak of the stack Average size of the stack
METIS + +
SCOTCH + +
PORD - -
AMF - -
AMD ++ ++

o

The symbol “++” means a very big value, “+”” means a big value,
small value.

a small value, and “—="" a very

determines for a given assembly tree what is the optimal tree traversal for minimizing
the dynamic memory usage.

We first define some notation which will be used for the description of the algo-
rithm. Let i be a node in the tree and nb_children(i) the number of children of i. Chil-
dren of i are denoted as ¢;; where j varies between 1 and nb_children(i). Finally, let
ch; and factor; be the memory requirement to store the contribution block and the
factors (respectively) of the frontal matrix i (as shown in Fig. 9).

In [17], Liu proposes an algorithm that finds the best traversal of the tree in terms
of peak stack size for a sequential multifrontal approach such as the code MA27
(available in the Harwell Subroutine Library). Based on his work, we present here
a variant which is more appropriate to a distributed memory multifrontal solver such
as MUMPS. One specificity of Liu’s algorithm is that it assumes that the space for the
frontal matrix of a node reuses the space of the contribution block coming from its
last child, resulting in a memory gain of the size of this contribution block. In the
case of MUMPS this optimization is not available because it cannot be implemented
simply in a distributed memory parallel context. Thus, the application of Liu’s algo-
rithm on a distributed memory code does not always give the best traversal. Indeed,
if we consider the tree given in Fig. 10 (with no overlap between factors and contri-
bution blocks), the order given by Liu’s algorithm is (a—c—d-b) which gives a peak of
the stack of 13 (=2+1+5+ (3 +2)), obtained when b is assembled and before the

factor,
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Fig. 9. Structure of a frontal matrix.
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factor=3
cb=0

a
factor=8 factor=3
cb=2 cb=2
c d
factor=1 factor=3
cb=1 cb=5

Fig. 10. Example of the application of LIU’s algorithm.

contribution blocks of ¢ and d are released. However, using the order (d—c-b-a), a
peak of 11 is obtained (also when b is assembled). This explains why we cannot just
apply Liu’s algorithm in our case. Note also that Liu’s initial algorithm is restricted
to elimination trees where only one pivot is eliminated at each node. In our case we
work on assembly trees (with amalgamated nodes).

Let M; be the maximum amount of stack memory necessary to process the com-
plete subtree rooted at node i. If i is a leaf then M; is equal to store; = factor; + cb;
real locations. For a parent node i, we must store in memory all contribution blocks
of the children ¢;; (if any) and the current frontal matrix; thus the assembly step re-
quires a storage:

nb_children(i)

store; + Z cb,,,
J=1

When processing a child node ¢;; the stack will contain the first j — 1 contribution
blocks of the brothers of ¢;; that have already been processed. The result is that the
storage requirement at the time of factorizing the frontal matrix associated with c;;
is:

Jj—1

MCi./‘ + Z Cbci,k

k=1

Thus, the storage requirement to process node i is recursively defined as:

Jj—1 nb_children(i)
M; = max max M, ch,. |, store; ch,. . 1
<j—1,nb_children([) ( W + ; M) ) + ]_Zl u) ( )

Since we want to minimize the peak of the stack, we should reduce the value of M for
the root node(s). Adopting a theorem from [17] which says that the minimum of
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Tree_Reorder (T):
Begin
for all 7 in the set of root nodes do
Process_Child(4);
end for
End
Process_Child(i):
Begin
if i is a leal then
M;=store;
else
for j =1 to nb_children(i) do
Process_Child(c; ;);
end for
Reorder the children ¢; 5 of i in decreasing order of (M, ;—cbe, ,);
Compute M; using the formula (1);
end if
End

Fig. 11. Optimal tree reordering for minimizing stack memory peak.

max,(x; + S| ;) is obtained when the sequence (x;, ;) is sorted in decreasing order

of x; — y;, we deduce that an optimal child sequence is obtained by rearranging the
children nodes in decreasing order of M,,, — cb,,,.

Considering a tree T, based on this result, the algorithm given in Fig. 11 gives an
optimal traversal of the tree in terms of the peak of the stack. This algorithm consists
in sorting the children nodes of a node i in descending order of M,,, — cb.,, and com-
pute the new value M; for the parent node i, using (1). ' ‘

Finally note that we have implemented variants of this algorithm: one for mini-
mizing the global memory (stack + factors) and one for minimizing the average stack
size during execution (when the peak is not changed). A complete analysis of all vari-
ants is available in [14].

5.3. Experimental results

We performed the experiments of Section 5.1 again, after algorithm given in Fig.
11 has been applied to the tree. In Table 13, we report on the gain in stack memory
usage after applying algorithm given in Fig. 11. The gain is computed between the
value of peak of stack memory of standard MUMPS and MUMPS where we postprocess
the tree using the algorithm of Fig. 11. We can observe that the algorithm gives good
results with METIS and SCOTCH. This can be explained by the fact that these re-
orderings generate wide trees where the traversal is very important in terms of mem-
ory usage. For AMD, we can see that the algorithm does not provide much gain.
This is due to the shape of the tree of AMD. Indeed, it is deep and well-balanced.
In addition, the brother nodes are not very different in terms of frontal matrix size.
This implies that the order of the nodes does not have a strong impact for AMD (rel-
atively well-balanced tree with balanced frontal matrices for brother nodes). Finally,
for AMF and PORD we can see that the algorithm does not always give large gains.
However, it gives very good results for some matrices like BMWCRA_1. The reason
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Table 13
Percentage of reduction of the peak of stack memory observed using Algorithm 11
METIS SCOTCH PORD AMF AMD

BMWCRA_1 31.3 22.2 37.3 374 22.8
GRID 314 28.8 1.4 0 0
GUPTA3 373 0 1.8 26 8.6
MSDOOR 20.9 0 0 34 0
SHIP_003 24.8 26 8.8 0 0
PRE2 0.1 0 0 0 0
RMAI0 31.9 16.4 24.4 0 17.6
TWOTONE 21.8 23.9 0 6 0
XENON2 21.1 24.7 0 0 0

for these different results is in the shape of the tree and the order of the brothers
already implemented in MUMPS. We recall that MUMPS provides a basic sorting algo-
rithm for the tree that processes the biggest child first. Generally, the biggest child
roots the biggest subtree so this should be good for memory. Thus, for cases where
the algorithm does not work well like matrix PRE2, or more generally with AMD
and PORD, the order of MUMPS is in fact already optimal (thanks to the biggest node
being processed before its brothers). To better illustrate the potential of Algorithm of
the Fig. 11, we switched off the sorting mechanism of MUMPS; we observed that the
gains are in that case much larger. For example, gains for SHIP_003 were 47.2%,
24.7% and 39.7% (instead of 8.8%, 0% and 0%), with PORD, AMF and AMD, re-
spectively. Finally, for matrices like BMWCRA_1, and when the tree is better bal-
anced, the order from MUMPS is not that good, and it is worth using the optimal
tree traversal.

6. Memory usage for parallel executions

In this section we mainly focus on the size of the stack memory as a function of
the number of processors and of the reordering technique used, when algorithm
given in Fig. 11 is first applied to the tree. Because memory evolution depends on
the distribution of nodes of the assembly tree onto the processors, we first describe
the current scheduling strategy used in MUMPS. Then, we study the memory behav-
iour for parallel executions for different combinations of matrices and reorderings
and analyze the factors that limit memory scalability.

6.1. Scheduling strategy used in MUMPS

MUMPS use a combination of static and dynamic mapping with distributed dy-
namic scheduling of the computational tasks. This is described in detail in [3.,4].
The computation is driven by the assembly tree and a certain type of parallelism
is assigned to each node. Fig. 12 summarizes the different types of parallelism avail-
able in MUMPS:
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PO: P1: PO

p2 p3 p2| Typed

SUBTREES

Fig. 12. Example of distribution of a multifrontal assembly tree over four processors.

e The first type uses the intrinsic parallelism induced by the assembly tree: each
branch of the tree can be treated in parallel. A type 1 node is statically assigned
to one processor which treats it when processors assigned to children nodes have
communicated the contribution blocks. Leave subtrees are a set of type 1 nodes all
assigned to the same processor. Those are determined using a top-down algorithm
[11] and a subtree-to-process mapping is used to balance the computational work
of the subtrees onto the processors.

e The second type corresponds to a 1D parallelism of the frontal matrices. For
some nodes in the assembly tree, the front is so big that it must be treated in par-
allel for an adequate granularity. The front is then distributed by blocks of rows.
A master processor is chosen statically during the symbolic preprocessing step, all
the others (slaves) are chosen dynamically based on load balance considerations.
The master processor is responsible for the eliminations of the fully summed pivot
block. The master processor dynamically chooses its slave processors according to
their workload (rather than memory usage) and assigns them new tasks. The load
metric is the number of floating-point operations still to be done, where only the
operations corresponding to the elimination process are taken into account (those
are an order of magnitude larger than the operations for assembly). Note that the
slave selection strategy is different between the symmetric and the unsymmetric
cases. Indeed, the granularity is smaller for the symmetric case with more slaves
chosen in the symmetric case [4].

e The third type of parallelism, which is a 2D parallelism, concerns the root node,
which is processed by all processors using ScaLAPACK [6]: we use a 2D block
cyclic distribution.
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The choice of the type of parallelism depends on the position in the tree, and on
the size of the frontal matrices. For the top of the tree the mapping of type 1 nodes
and masters of type 2 nodes is static and only aims at balancing the memory of the
corresponding factors. Usually, type 2 nodes are high in the assembly tree (fronts are
bigger), and on large numbers of processors, about 80% of the floating-point oper-
ations are done in type 2 nodes.

6.2. Parallel results

Tables 14 and 15 (respectively 16 and 17) show the maximum and average stack
peak on 16 (respectively 32) processors for different matrices and reorderings.

Balance of the peak across processors: If we consider the difference between the
maximum peak and the average peak, we observe that the balance is not perfect
and that a better balance is obtained for METIS and SCOTCH. This can be ex-
plained by the fact that these reordering techniques generate well-balanced trees
where all the subtrees are approximatively of the same size. Concerning AMF, the
stack memory is very unbalanced. This is due to the shape of AMF’s trees which
are also very irregular and unbalanced. For such trees, the subtrees described in
the previous section are also irregular. Some processors may for example begin to
treat type 2 nodes when other ones are still processing subtrees and this can perturb
the memory behaviour. This is also related to the mapping of the nodes of the tree
and will be further discussed in Section 6.3.

Note that in the MUMPS scheduling strategy, only floating-point operations for the
factorizations of frontal matrices are taken into account, the memory of the proces-
sors is not considered. Although this leads to a good balance of the workload, the
memory load balancing is not perfect with a difference between the maximum peak
and the average peak that can be significant.

Scalability of the stack peak: For matrices where the stack size is significant, if we
compare the peak of stack memory measured in the sequential execution (Table 11)
to the maximum peak of stack on 16 (Table 14) and 32 processors (Table 16), we do
not observe a linear improvement of the memory usage: in parallel doubling the

Table 14
Max peak of the stack on 16 processors (millions of reals)
METIS SCOTCH PORD AMF AMD
BMWCRA_1 6.75 7.71 5.90 7.78 12.63
GRID 4.12 3.97 3.38 1.93 3.52
GUPTA3 9.27 4.99 8.84 16.34 4.88
MSDOOR 3.03 2.78 1.62 1.80 2.62
SHIP_003 10.02 7.91 5.72 5.01 11.01
PRE2 9.72 9.96 12.83 8.67 20.46
RMA10 0.41 0.36 0.42 0.35 0.36
TWOTONE 3.80 3.64 2.80 3.58 3.65

XENON2 6.32 5.00 4.63 6.29 9.75
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Table 15
Average peak of the stack on 16 processors (millions of reals)
METIS SCOTCH PORD AMF AMD
BMWCRA_1 530 5.54 3.90 5.32 8.39
GRID 3.52 3.42 2.61 1.44 2.85
GUPTA3 6.12 3.37 3.05 5.63 2.92
MSDOOR 1.55 1.72 1.13 1.13 1.61
SHIP_003 6.67 6.42 4.29 3.47 8.24
PRE2 6.90 6.13 9.27 6.71 16.14
RMAI10 0.25 0.24 0.21 0.20 0.25
TWOTONE 2.36 1.75 2.14 243 2.84
XENON2 3.94 4.11 3.26 4.39 7.66
Table 16
Max peak of stack on 32 processors (millions of reals)
METIS SCOTCH PORD AMF AMD
BMWCRA_1 3.71 3.77 3.44 4.26 6.69
GRID 2.48 1.79 2.05 125 2.29
GUPTA3 7.73 3.40 8.85 16.07 3.57
MSDOOR 1.41 1.44 1.56 1.18 1.74
SHIP_003 5.48 4.29 3.15 2.63 6.15
PRE2 7.08 5.92 10.71 6.95 10.93
RMAI10 0.40 0.36 0.36 0.35 0.31
TWOTONE 2.78 1.93 2.77 2.47 2.67
XENON2 3.92 3.52 3.45 4.64 7.97
Table 17
Average peak of the stack on 32 processors (millions of reals)
METIS SCOTCH PORD AMF AMD
BMWCRA_1 2.84 2.70 2.39 2.92 5.08
GRID 1.46 1.34 1.55 0.84 1.86
GUPTA3 3.43 1.76 1.93 3.10 2.17
MSDOOR 0.85 0.93 0.72 0.70 1.01
SHIP_003 3.01 2.87 2.26 1.92 3.58
PRE2 3.80 3.25 5.483 3.88 8.36
RMAI10 0.22 0.20 0.16 0.16 0.20
TWOTONE 1.55 1.17 1.68 1.79 1.62
XENON2 2.10 2.46 2.00 2.94 4.21

number of nodes, i.e., the memory size, does not mean we are able to treat a problem
twice larger.

Figs. 13 and 14 illustrate this point better. The first one gives the ratio between
stack memory peak on 1 and 16 processors. We can see that we never reach the bold
line that represents a perfect scalability; the best scalability observed is 11 but is in
many cases between 2 and 6. This illustrates that the stack memory does not scale
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Fig. 14. Ratio between stack memory peak on 16 and 32 processors.

well (except for some cases like GUPTA3 with PORD). Fig. 14 gives a comparison
between the peak of the stack on 16 and 32 processors. This time, the stack starts to
scale better, although not linearly with the number of processors. The scalability is
generally better for the symmetric case because more processors are used for each
type 2 node than in the unsymmetric case (see Section 6.1, and [4] for more details).

Scalability of the total memory: Decreasing the stack memory is especially interest-
ing in the case of an out-of-core approach. For an in-core solver like MUMPS, one is
limited by the total memory (stack and factors). The ratio between the maximum
peak of total memory on 16 and 32 processors is given in Fig. 15.
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Fig. 15. Comparison of total memory peak for 16 and 32 processors.

We can observe that the scalability of the total memory is significantly better than
for the stack memory and is even rather good for symmetric matrices. This is because
the slave selection strategy aiming at balancing the flops will tend to provide a good
balance of the factors on the processors. Furthermore contrarily to the stack size, the
factors have a fixed size, independent of the number of processors. One consequence
is that the size of the factors per processor decreases faster than the peak of the stack,
and thus, the ratio stack/factors increases with the number of processors. So for
problems where the stack is significant compared to the factors and/or for very large
numbers of processors, the stack will play an important role even for an in-core par-
allel solver like MUMPS.

6.3. Factors impacting the memory scalability

In this section we give some remarks about the parallel memory behaviour of
MUMPS and aim at finding factors that limit the scalability reported in the previous
section. We illustrate this by analyzing some examples of typical situations where the
peak of memory is reached and propose approaches that could improve both balance
and scalability by avoiding such situations. We will particularly focus on the defini-
tion and assignment of subtrees and on dynamic scheduling. Note that in this sec-
tion, when we say peak of memory, we mean the largest peak of memory across
the processors.

e Small matrices: We observed in Section 6.2 that for a very small matrix like
RMA10 the stack memory scalability is not good. In fact such small problems hardly
exhibit any parallelism (no type 2 or type 3 parallelism) and this explains that the
memory will not scale; independently of the mapping and of the number of proces-
sors, the peak observed is the same and is obtained during the sequential assembly of
a node with the contribution blocks of its children.
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e Peak of memory inside a subtree: We illustrate here the impact of the size of the
subtrees on the memory behaviour of the solver. For example, considering the exe-
cution on 16 processors of matrix SHIP_003 with METIS, we have observed that the
peak of stack memory is reached inside the first subtree treated sequentially by pro-
cessor 12. In addition, processor 12 has not received any additional task from other
processors. This shows that in that case the peak of stack memory is due to the static
definition of the subtrees. A possible improvement would consist in splitting critical
subtrees and distribute the resulting subtrees among several processors. Since the
peak of the stack for a subtree can be determined statically, a strategy to avoid
the lack of scalability due to that situation could be to split large subtrees until
conditions such as peak(subtree) <% e“ki‘:f’n‘;fr ’;‘;.e[f:’oc‘:i‘{‘}if’[“l) and peak(subtree) < o x
memory on the processor, o < 1, are satisfied for all subtrees.

Fig. 16 illustrates the subtree splitting. We can see that the subtrees are smaller
which is better for memory (but can be worst for performance). This simple example
shows that the stack memory must be taken into account in the analysis (static)
phase.

e Slave selection: An example that shows the importance of taking stack memory
into account in the dynamic slave selection strategies of MUMPS is the execution on 32
processors of matrix SHIP_003 with PORD. For this execution the peak of stack
memory is reached when processor 4, that has not finished one of its subtrees, is cho-
sen as slave by processor 0. Since priority is given to the work received from other
processors (slave work), the amount of memory needed by such tasks add up to
the memory of the subtree being treated and increase the peak. We performed the
following experiment: we put a synchronization barrier such that all processors wait
for all subtrees to be processed. Even if processors store all contribution blocks of
subtree roots, we observed a diminution of the maximum stack peak. This shows
that this situation can be avoided by changing the slave selection strategy by giving
preference to processors not involved in a subtree. This example illustrates that the
memory should be taken into account in the selection strategy and a solution (not
limited to the subtrees) is to design a general memory-aware dynamic scheduling
strategy.

e Order of subtrees: A crucial point to obtain good performance and memory be-
haviour is the order in which the tasks are processed (particularly subtrees). Fig. 17
gives an example that illustrates the impact of the order of the initial pool of subtrees
on both the performance and memory behaviour. In MUMPS children are recursively

Fig. 16. Static improvement of the memory behaviour.
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Fig. 17. Impact of the order on which subtrees are treated (processors are labeled PO, P1, P2 and subtrees
are labeled A, B, C, D, E).

processed from left to right so that in the tree T1 (on the left), each processor will
begin by its deepest (farthest to the root node) subtree. The bottom-up process will
be time effective since the processors begin by the deepest parts of the tree. On the
contrary, in the tree T2, each processor will begin by the subtree closest to the root.
The bottom-up process will not exploit well the parallelism of the tree and be less
time effective than T1. Concerning the memory, for tree T1, the first contribution
blocks computed by PO and P1 (corresponding to subtrees A and B) will be con-
sumed quickly. On the other hand, for tree T2, processor PO (respectively P1) will
have to store the contribution blocks of the root node of subtree E (respectively
D) until the root node of T2 can be activated. This leads to a larger memory usage
for T2 compared to T1.

This simple example shows the great impact of the subtree sequence on each pro-
cessor. It is important to note that Algorithm of Fig. 11 described in Section 5.2 will
help to avoid the situation shown in the example because it tends to begin by the
deepest parts of the tree. However, the application of the algorithm is not sufficient
to ensure a good memory tree traversal for parallel cases since it does not take the
mapping of the upper layers of the tree into account. A more sophisticated strategy
to define the order of the subtrees on each processor should be based on both the tree
topology and the mapping of the upper layers.

7. Conclusions

Whereas there are a lot of studies on the impact of reordering on fill-in, this paper
provides an original study of the memory aspects of parallel multifrontal solvers, and
in particular links between the reordering technique and the stack memory usage.
We began our study with the impact of reordering techniques on the assembly tree
and have observed that reordering techniques like METIS and SCOTCH give wide
well-balanced trees while reordering techniques like AMF and PORD (respectively
AMD) give very deep unbalanced (respectively balanced) trees with a large number
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of nodes. From these results, we showed that deep unbalanced trees are better in
terms of memory occupation than wide well-balanced ones. We have also seen
how the stack memory evolution not only depends on the shape of the tree but also
on the tree traversal during the factorization and have experimented with a variant
of the algorithm by Liu to find the best tree traversal (in terms of memory occupa-
tion) in a distributed memory multifrontal solver such as MUMPS.

In the parallel case, the stack memory not only depends on the shape of the tree
but also on the distribution of the computational tasks onto the processors. Our ex-
periments show that the stack does not scale perfectly with the MUMPS default sched-
uling strategy based on workload. We analyzed some limitations and presented some
ideas that can help improving this behaviour. We believe that optimizing and balanc-
ing the stack memory usage for parallel executions requires new scheduling strategies
that are memory-aware. Furthermore, the static mapping of the subtrees and the
order in which subtrees assigned to the same processor are treated is of great impor-
tance for the stack memory. This will be the object of future work.
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ABSTRACT

In this paper, we present a new way to improve perfor-
mance of the factorization of large sparse linear systems
which cannot fit in memory. Instead of rewriting a large
part of the code to implement an out-of-core algorithm with
explicit I/O, we modify the paging mechanisms in such a
way that I/O are transparent. This approach will be helpful
to study the key points for getting performance with large
problems on under sized memory machines with an explicit
out-of-core scheme. The modification is done thanks to the
MMUM&MMUSSEL software tool which allows the man-
agement of the paging activity at the application level. We
designed a first paging policy that is well adapted for the
parallel multifrontal solver MUMPS. We present here a study
and we give our preliminary results.

Categories and Subject Descriptors: D.4.2 [Storage
Management]: Virtual Memory. G.1.3 [Numerical Linear
Algebra]: Sparse, structured, and very large systems (direct
and iterative methods).

General Terms: Algorithms, Perfomance.

Keywords: Sparse Numerical Algorithm, Multifrontal Me-
thod, Out-of-Core Computation, Virtual Memory Paging.

1. INTRODUCTION

Sparse direct methods and in particular multifrontal meth-
ods are robust and efficient techniques to solve large sparse
systems of linear equations. However, they are known for
their relatively large memory requirements compared to it-
erative methods so that an in-core execution is not always
possible: sometimes, large problems mail fail to be solved
because of a lack of memory on the processors [12].

A solution to deal with such large problems is to design
a out of core solver where the computation is rescheduled
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with explicit I/O, which is a formidable task [6]. To avoid
the reorganization of the existing code, a trivial solution is
to use the virtual memory mechanism of operating systems
where the I/O schedule is transparent. Unfortunately, it is
know this solution is generally inefficient if standard paging
policies are employed (demand driven and LRU like page
replacement strategy).

In [16], Liu shown Multifrontal method theoretically reduces
paging activity comparing to other direct methods, mainly
due to a better locality of memory references. However, he
shown that for large problems locality gains are avoided by
the extra working temporary storage needed by the multi-
frontal method, which consumes more than the available
memory and re-introduces paging activities. So he pro-
posed an hybrid computation method where computation
is switched to a conventional column Cholesky algorithm
when the the working storage required becomes to big.

In this paper we propose another approach where all the
computation is done with the multifrontal method, to con-
serve locality benefits, and where the extra paging intro-
duced by the working storage is avoided by a better paging
policy which is aware of the computation scheme.

In previous work we introduced a new tool, called MMUM&-
MMUSSEL [5], which allows the management of the paging
activity at the application level. Thanks to this tool, we are
able to substitute new paging policies to the standard one
(e.g. introduce prefetching, use other page eviction strat-
egy, ...). Thus, with the knowledge of the memory access
pattern of the application, we can design better paging poli-
cies which improve the execution time by a better schedule
of I/O. Generally, there are very few modifications of the
original code of the application. The modification usually
consists in instrumenting source code to give memory access
information to the new paging scheduler.

In this paper, we present a first instrumentation of MUMPS,
a parallel multifrontal solver, with MMUM&MMUSSEL in
order to optimize the paging activity during the computa-
tion. This paper is concerned with the factorization pro-
cess. First, we give a description of the multifrontal method
to solve sparse system, and we focus on the memory ac-
cess pattern for the sequential case. Then we study the
behaviour of the standard paging policy (LRU) with the
multifrontal method, and exhibit a better pagination strat-
egy. We present the MMUM&MMUSSEL tool and describe
how we implemented our new paging scheduler. Finally, We
present first result and conclude.



2. THE MULTIFRONTAL METHOD

Like other direct methods, the multifrontal method [8, 9]
is based on the elimination tree [17], which is a transi-
tive reduction of the graph of the symmetrized filled matrix
(A+AT). The elimination tree is the smallest data structure
representing dependencies between operations. In practice,
we use a structure called assembly tree, obtained by merging
nodes of the elimination tree whose corresponding columns
belong to the same supernode [3]. We recall that a supern-
ode is a contiguous range of columns (in the factor matrix)
having the same nonzero structure.

Figure 1 gives an example of a matrix and its associated
assembly tree. From the initial matrix, an assembly tree
with three nodes (each corresponding to one supernode) is
derived. The two first independent leaf nodes contribute to
the computation of the third.
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Figure 1: A matrix and the associated assembly
tree.

In the multifrontal approach, the factorization of the matrix
is done by performing a succession of partial factorizations
of small dense matrices called frontal matrices, and associ-
ated to each node of the tree. The frontal matrix is divided
into two parts: the factor block, also called fully summed
block, which corresponds to the variables which are factor-
ized when the elimination algorithm processes the frontal
matrix; and the contribution block which corresponds to the
variables which are updated when processing the frontal ma-
trix. Once the partial factorization is complete, the contri-
bution block is passed to the father node. When contribu-
tions from all children are available on the father, they can
be assembled (i.e. summed with the values contained in the
frontal matrix of the father). The elimination algorithm is
a postorder traversal (we do not process father nodes before
their children) [18] of the assembly tree. In addition, only
one node (task) is treated at a time.

2.1 Memory behaviour of the multifrontal
method for the sequential case

The algorithm uses three areas of storage in a contiguous
memory space, one for the factors, one to stack the contri-
bution blocks (managed with a stack mechanism), and an-
other one for the current frontal matrix [2]. During the tree
traversal, the memory space required by the factors always
grows while the stack memory (containing the contribution
blocks) varies depending on the operations made: when the
partial factorization of a frontal matrix is processed, a con-
tribution block is stacked which increases the size of the
stack (see “Factorization” in Figure 2); in opposition, when
the frontal matrix is formed and assembled, the contribu-
tion blocks of the children nodes are then removed from the
stack and its size decreases (“Assembly steps” in Figure 2).

Factorization
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Figure 2:
method.

Memory behaviour of the multifrontal

3. PAGING SCHEME FOR THE MULTI-
FRONTAL METHOD

In this section we study the memory access pattern of the
multifrontal method. We give the general behaviour of the
accesses to the different parts of the memory of the solver.
Then we present some optimizations to the accesses that
will improve the performances of large applications on under
sized memory machines.

As described in Section 2.1, the multifrontal method uses
a memory space divided into three parts: Factors memory,
stack memory and current frontal matrix memory. We have
seen also that the factors are not reaccessed since their com-
putation. Thus they don’t have to be present in memory
and can be stored on disk as soon as they are computed.
Concerning the stack memory behaviour of the multifrontal
method, we have seen that a contribution block is used only
once during the assembly step. Thus, the data it contains
can be destroyed after its treatment. A consequence is that
we can imagine to tell to the operating system that this area
doesn’t have to be stored on disk if it is selected as the vic-
tim page for a swapping operation. As a result, the cost of
writing this area on disk is suppressed which can be signif-
icant with very limited memory machines. We will define
this operation as a memory release.

3.1 Limitations of the LRU policy for the
multifrontal method

MUMPS virtual memory
gof anew
/ frontal matrix easWepped ot
Page faults (in the stack area) g ey
Physical memory

Older emin
physical memory.

] unused memory space [ stack memory space [] factor memory space [0 active frontal matrix space

Figure 3: Illustration of system paging strategy.

Paging is a limiting factor to performance when the problem
memory size is greather than the available memory. Thus,
when system memory swapping occurs, the usual operating
system paging policy (LRU : Least Recently Used) can take
very bad decisions relative to the selection of the memory
areas that will be stored on disk. Indeed if we consider the
example given in Figure 3 where we have to process a new
frontal matrix, and to assemble the contribution blocks by
accessing all the stack memory (we do this assumption to
illustrate the behaviour of the LRU policy), we can see that



this frontal matrix cannot be stored in physical memory and
thus requires some system paging. Thus system paging will
occur and selects, using the LRU policy, the deeper parts
of the stack to be swapped out from memory. Furthermore,
since the assembly operations have to access to this area
(the deeper parts of the stack), some page-faults will oc-
cur. This example illustrates that the LRU standard policy
of the operating system is not always well-adapted to the
memory access pattern of the multifrontal method. The
page faults could be avoided if we select the areas corre-
sponding to factors for the swap-out operation. This can
be done by “telling” to the operating system that this area
does not have to be present in memory.

4. ADAPTIVE PAGING FOR MUMPS

In the previous section we showed that the standard LRU
paging policy is not always well suited to deal with the mem-
ory access scheme of a multifrontal solver. We presented a
better strategy of paging which is based on the knowledge
of the computation process. The main idea is to instrument
the factorization code with some hints which are used to
drive the paging activity. In this section we describe how
we implemented the mechanism which allow us to control
paging. It is based on a separate process, called the mem-
ory monitor, which is running concurrently with the factor-
ization process and manages the virtual space of the solver.
We first present how the monitor is implemented, then we
will show what are the interactions between the solver and
the memory monitor.

41 MMUM and MMUSSEL

In this part, we present the memory management tool we
used to control paging. There are two main techniques to
manage the virtual memory at the application level.

The first category is based on the use of mlock, mmap and
mprotect to map and unmap pages to virtual memory. It
uses a SIGSEGV handler to intercept page faults. This
handler uses some shadow system data in the stack to get
the page fault address. Thus, it is system dependent. The
libsigsegv library® is the most common example of such a
tool and is implemented on lot of systems. The main draw-
back of this technique is that the memory must be locked
and there are no interactions with the system especially if
memory is needed for other applications.

The second category of virtual memory tools are based on
special kernel like Grasshopper [1], micro-kernel L3/L4 [13].
These kernels allow user mode to control all paging man-
agement: page fault and swapout. Therefore, if the sys-
tem needs more memory, it asks to swapout some pages to
the user mode memory manager which chooses the pages to
swapout. This category of tools is safer with the system,
but are base on uncommon operating system.

Our tool gives the advantage of the second category, but it is
working on a more common operating system (Linux). This
tool is made up of a dynamically loadable kernel library,
called MMUM (Memory Management in User Mode), and a
Linux kernel module, called MMUSSEL (Memory Manage-
ment at USer SpacE Level). The module interacts with the
kernel for the management of memory pages.

The memory monitor is a standard process with its own
virtual space running concurrently to the monitored process.

"http:///1libsigsegv.sourceforge.net.

It then attaches itself to the application by a call to the
MMUM function

mmum_attach(pid,begin,end,pf,swo)

where pid is the PID of the monitored process, pf and swo
are two handler functions. All page faults of an attached
process in the area beginning at address begin and ending
at address end are then processed by the monitor with the
function pf which receives the address of the faulting page.
Similarly, when the kernel decides to swap out some memory
pages of an attached process (because of a lack of memory for
example). The monitor is also invoked with the function swo
which receives the set of memory pages to be swapped out.
We have to recall that a swapout is not a direct consequence
of a page fault. The goal of swapouts is to maintain a pool
of free physical memory pages to satisfy future page faults.
Swappers are triggered according a complex heuristic based
on time and memory activity.

We present here a subset of functions available for the mon-
itor to manage virtual spaces.

e mmum_get (pid,a,b): remove the physical memory page
associated to the virtual address a of the attached pro-
cess PID pid and attach it to the virtual address b in
the memory space of the monitor. When the attached
process try to access to the page, a page fault is raised.

e mmum_put (b,pid,a): move the physical memory page
associated to the virtual address b of the memory space
of the monitor to the virtual address a of the attached
process PID pid.

e mmum_cont (pid): restart the monitored process pid
halted on a page fault.

e mmum release(pid,a): remove the physical memory
page associated to the virtual address a of the attached
process PID pid (data are lost). The virtual page re-
leased is considered as a never acceded page: a new
physical page will be associated at the next access to
this virtual page (no extra I/0).

Thanks to these functions, the monitor is able to manage all
the memory space of the attached process. For instance, it
can decide to prefetch some parts of data which are needed
by the attached process in the future.

To illustrate the function of a memory monitor, we present
the source code of a monitor (Figure 4) which maps a file to
a memory area of the program presented in Figure 5. This
last program creates a virtual memory area and launches
the memory monitor which maps the file to it. Each time
the monitored process accesses to a new memory page in
this area, the function pf of the monitor is called to read
the corresponding page from the file. The function swo is
called when the operating system swaps out a page from
the area. The page is then put in the memory space of the
monitor which write it on the file and release it from physical
memory.

Notice than the memory monitor is running concurrently
with the monitored process. Moreover the attached pro-
cess is not aware of the memory monitor: it accesses to
its memory as usual. For the monitor, the only knowledge
of the memory accesses of the application is given by the
succession of page faults and swap-outs. One can imagine



#include <stdio.h>
#include <mmussel.h>

int fd ; /* File descriptor of the mapped file */
void * start,end; /* Start and end addresses of the */
/* monitored memory area */
char * buf; /* Buffer for reading one page */
void pf(int pid,void * a) /* There is a page fault at address a */
/* in the monitored process pid */
{
llseek(fd,a-start,SEEK_SET) ; /* Read of the page in file */
read(fd,buf ,PAGE_SIZE);
mmum_put (buf ,pid,a); /* Put the readed page in the virtual */
/* space of the monitored process */
mmum_cont (pid) ; /* The monitored process can continue */
}

void swo(int pid, void * la, void *a) /* There is a system swapout request x*/
/* a is the address of the swapout */
/* page in the monitored process la  */
/* is the address of the swapout page */
/* in the monitor */
{ /* Write the page in the file */
llseek(fd,address-start,SEEK_SET) ;
write(fd,local_address,PAGE_SIZE) ; /* Free the page in physical memory */
mmum_release(getpid(),local_address);

}

int main(int argc, char ** argv)

{
int pid;
fd=fopen("MappedFile.dat",0_RDWR) ; /* The memory mapped file */
pid=atoi(argc[1]); /* PID of the monitored process */
start=atoll(argv[2]); /* Monitored area start address */
end=atoll(argv([3]); /* Monitored area end address */
buf=memalign(PAGE_SIZE,PAGE_SIZE) ; /* Allocation of a buffer page */
mmum_attach(pid,start,end,pf,swo) ; /* Attach monitored area */
kill(getppid() ,SIGCONT) ; /* Raise the monitored process */
while (1) sleep(100); /* Infinite loop */
}

Figure 4: The memory monitor code for the memory file mapping.



#include <stdio.h>

#define N 400*%PAGE_SIZE

main()

{ char *A;
char Pid[10],Add[20],Size[20];
int i;
A=memalign(PAGE_SIZE,N); /* Allocate a memory area of size N  */
sprintf (Pid,"%d",getpid()); /* PID of the attached process */
sprintf (Add,"%1d", (long)a); /* Address of the memory area */
sprintf (Size, "%1d", (long)N); /* Size of the memory area */
if (fork()==0)

execlp("./monitor",Pid,Add,Size); /* Start the memory monitor */

wait(); /* Wait the monitor start */
for (i=0;i<N;i++) A[i]++; /* Accesses to the memory mapped file */

Figure 5: An example to memory file mapping using a memory monitor.

a smart memory monitor which is able to optimize pag-
ing activity based on this knowledge. For instance [10, 15]
present some memory monitor devoted to specific class of
application. However, for application with complex mem-
ory access pattern like multifrontal solvers, it seems difficult
to derive such smart memory monitor. Another approach is
to combine a static compiler analysis with a virtual memory
management tool like the Todd Mowry’s works [4] where the
memory access patern is extracted by the compiler and used
by the monitor. However, this technique fails if the mem-
ory access patern is only know at runtime like multifrontal
solver. For such application, a solution to improve paging is
to instrument the monitored process in such a way that it
communicates some hints to the monitor describing its mem-
ory access scheme evaluated at runtime. In the next Section,
we describe this interaction we done between MUMPS and
the monitor.

4.2 MUMPS-monitor interaction scheme

The communication scheme between the monitor and MUMPS
is based on a priority mechanism. MUMPS assigns different
priorities to memory areas. Thus the monitor decides which
area must be written to disk and which area must be read
from disk according to their priorities. If an area have a
priority equal to zero, it will be written to disk (it is the
only area that is systematically written to disk). In the
other hand, if the area have a priority equal to the maximal
one, it must be present in memory. Finally, the monitor tries
to keep in memory the areas having the biggest priorities.
The function call used to set the priority to memory area is
reg _mem.

Concerning the stack memory management, we designed the
mem_release function which was described in section 3. We
recall that this function tells to the monitor that a memory
area is free. Thus the monitor can free it without writing of
the data it contains to disk.

The communications between MUMPS and the monitor are
done at special moments of the factorization. Thus, de-
pending on the operation made, assembly or partial fac-
torization, MUMPS emits informations aiming at helping the
memory management at the monitor side. The communica-
tion scheme is given in Figure 6.

Factors Frontal matrix Stack
>
Allocation of a
new frontal matrix
Priority=0 Priority=max Priority=max Decreasing priorities
starting from 1
j
! Assemby steps
:
>
Priority=0 Priority=max mem_rel ease()
Factorization
Priority=0 Storage of the contribution bloc
j
! Storage of factors
. and stack of
— <+—><—> thecontribution block
Priority=0 Priority=0 mem_release() Priority=P+1 P 1
Time

Figure 6: MUMPS-monitor Communication scheme.



The interaction between MUMPS and the monitor is done at
each step of the life of the frontal matrix. A description of
the different steps of the processing of the frontal matrix is
given below:

Allocation of the frontal matrix. Before the allocation
of a new frontal matrix, the priority of the correspond-
ing memory area is set to the maximal priority with
a regmem. This corresponds to “Allocation of a new
frontal matrix” in Figure 6.

Assembly steps. Before each assembly step, MUMPS sets
the priority of the areas that will be accessed in this
step to the maximal priority by calling reg_mem : these
areas must be in (physical) memory before the starting
of the assembly steps. Furthermore, once the assembly
step of a contribution block is done, the corresponding
memory area is freed by a call to mem_release.

Factorization. Since the priority of the memory area cor-
responding to the matrix has already been set to the
maximal priority, its factorization is done without in-
teractions between MUMPS and the monitor. Once the
factorization is done, the contribution block of the
frontal matrix is pushed at the top of the stack mem-
ory. The priority of the contribution block is then set
to the priority of the element that was at the top of
the stack plus 1 (priority_cb=priority top_of stack+1).
Concerning the factors corresponding to the frontal
matrix, their priority is set to zero since they will not
be reaccessed.

Concerning the factorization of a frontal matrix, it is impor-
tant to note that once the computation starts, page faults
are managed by the standard paging policy (LRU like).
That is, if the frontal matrix does not fit in memory, then
there will be an increase of the paging activity due to the
lack of temporal locality, which can be critical.

In the following section we present some optimizations to
the memory access pattern of MUMPS using the monitor.

4.3 Memory access optimizations

We will begin by a description of the stack mechanism used
in MUMPS using the monitor. Then we present some improve-
ments to the assembly operation aiming at ensuring better
performance on large problems.

Optimizing the stack process

When the factorization of a frontal matrix have been done,
the corresponding contribution block must be stacked (pushed
at the top of the stack). The stacking process is described
in Figure 7. It moves the parts of the contribution block to
the top of the stack and it makes the factors contiguous in
the memory. Thus, we can see in Figure 7 that the process
generates some free space in the memory of MUMPS. These
areas (free space) can be written to disk in very limited-
memory machines where the memory cannot contain the
current frontal matrix and its corresponding contribution
block. This can be avoided by releasing these areas using
the mem_release function provided by the monitor. Thus,
the cost of writing the free areas to disk can be avoided
which can be significant.

Current frontal
matrix

— T

Factors Contribution bloc

->
Freearea

Figure 7: The stacking operation.

Optimizing the assembly operations

The assembly steps of a matrix consists in parsing the val-
ues contained in the area corresponding to the contribution
blocks of the children nodes and to sum them to some values
of the frontal matrix. Thus, we have to access to the mem-
ory area at the top of the stack memory (where are stored
the contribution blocks of the children nodes), and access at
some regions of the current matrix. This operation can be
expensive if the memory space needed by the current frontal
matrix and the corresponding contribution blocks is bigger
than the physical memory size. Indeed, in this configura-
tion, a lot of page faults may occur during the assembly
steps which can be very costly. To improve the performance
of the assembly steps in such a situation, we free the mem-
ory corresponding to the contribution blocks line per line
during the traversal of the area using the mem_release func-
tion like shown in Figure 8. Thus, if a page fault occurs, the
system will use the freed areas to load the needed memory
pages. This allows to avoid the cost of writing the pages
corresponding to the free areas to disk. Note that, libera-
tion operation can be done on blocks of lines to minimize
the cost of the calls to mem_release. The size of the blocks
is determined according to the size of the physical memory.

4.4 Monitor implementation

The Figure 9 describes the implementation of the monitor
and its interaction with MUMPS. The monitor is composed
of two processes: the first one processes the memory requests
from MUMPS (reg_mem, mem release) and its page faults,
the other one is devoted to the prefetch of large memory
areas. This allows the processing of memory requests during
big I/O operations.

Each time the monitor process receives a reg mem request,
it updates a memory map of the MUMPS memory area (a
list of memory areas with their corresponding priority). It
selects which area must be swapped in or swapped out in
such a way that areas with high priority are kept in the
available physical memory. Selected areas are then swapped
in or out and large memory areas (greater than 1MB) are
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Figure 8: Assembly steps optimization.

prefetched by the prefetch process.

Each time the process receives a mem_release request, it
frees the physical pages associated to the released mem-
ory area. Note that this function is a blocking function
at the MUMPS side. Indeed, since the monitor process and
MUMPS are executed concurrently, the release function may
be executed asynchronously. A consequence is that if MUMPS
reaccesses the released memory area before the treatment of
the corresponding request at the monitor side, a lost of the
new data will occur.

The page fault event and swap out event coming from the
operating system are processed as usual. For a page fault the
incriminated page is read from the swap device. Concerning
the swap out, the incriminated pages are written to the swap
device. Notice that the goal of the monitor is to keep in
memory all the needed pages for the computation and it
must also prefetch future acceded page. Thus, the monitor
will reduce the number of page faults or swap outs that occur
during the computation.
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manager

Pagefault
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swapin and swapout
request.
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swapout pag
messages

Swapin request

Background
Prefetching
Messages queuc with
prefetching request of zone
larger than IMB

Messag:
monitor_release().

1 1 User mode

Figure 9: Relationships between
MMUM/MMUSSEL and the MONITOR

MUMPS,

4.5 Implementation issues

The implementation of the mechanisms described in the pre-

vious sections has been done by introducing some function
calls to the source code of MUMPS. The pseudo-code that
corresponds to the different communication mechanisms be-
tween MUMPS and the monitor is given on Figure 10.

C mem_release of the area corresponding to the
C range of indices [BEGIN_INDICE,END_INDICE].
CALL MEM_RELEASE (A (BEGIN_INDICE) ,A(END_INDICE)
* ,REQUEST_NUMBER)
C sets the priority of the area corresponding
C to the range of indices
C [BEGIN_INDICE,END_INDICE] to PRIORITY.
CALL REG_MEM(A(BEGIN_INDICE),A(END_INDICE),
* PRIORITY,REQUEST_NUMBER)

Figure 10: MUMPS and MMUM&MMUSSEL in-

teractions.

The implementation of the communication between MUMPS
and the monitor has been done by adding a small number of
lines to the source code of MUMPS (less than 100 lines while
the source code of MUMPS is of about 120 000 lines).

5. EXPERIMENTAL RESULTS

To illustrate the gains obtained with the monitor, we ex-
periment our strategies on several problems (see Table 1)
extracted from either the Rutherford-Boeing collection [7],
the collection from University of Florida? or the PARASOL
collection®. The tests have been performed on a cluster of
six nodes equipped with one Alpha EV56 processors at 533
MhZ. Each node has a maximum of 128 MB of memory. We
for our tests used METIS [14] as reordering technique.

Matrix Order NZ Type | Description
GUPTA3 16783 | 4670105 [ SYM | Linear programming matrix
(A*AY)

SHIP_003 121728 | 4103881 | SYM | Ship structure

THREAD 29736 | 2249892 [ SYM | Threaded  connector/contact
problem

TWOTONE [ 120750 | 1224224 | UNS | AT&T,harmonic balance
method.

XENON2 157464 | 3866688 | UNS | Complex zeolite,sodalite crys-
tals.

Table 1: Test problems.“SYM?” stands for symmet-
ric, “UNS” for unsymmetric.

5.1 Sequential execution

We experimented our test problems on one node using 64 MB
and 128 MB with and without our memory monitor. This
choice is motivated by the fact that the same behaviour we
will obtain on such machines can be observed on machines
equipped with larger memory for lager problems.

Size GUPTA3 | SHIP_003 | TWOTONE | XENON2 | THREAD
64 MB 323 4472 1 496 3224 1445
128 MB 350 2 303 598 1907 742

Table 2: Execution Time of MUMPS without the mon-
itor (in seconds)

http://www.cise.ufl.edu/"davis/sparse/
Shttp://www.parallab.uib.no/parasol



Table 2 gives the execution time without monitor. We can
observe the execution time increases with the decrease of the
size of the physical memory used except for the GUPTA3
matrix. This can be explain by the swap-out mechanism:
with less memory, swap-outs are triggered more often and
we can observe a better overlap of these swap-outs by the
computation (swap-outs are asynchronous to the computa-
tion). With more memory, swap-outs are triggered usually
later, and the computation process is stopped by the lack of
memory pages.

Size GUPTA3 | SHIP_003 | TWOTONE | XENON2 | THREAD
64 MB 179 K 852 K 226 K 505 K 222 K
128 MB 132 K 3713 K 101 K 202 K 99K

Table 3: Number of page faults (K: Kilo, M: Mega)

Table 3 gives the number of page faults without monitor.
We can see that the number of pagefaults grows with the
reduction of the size of the physical memory.

Memory | Matrix Monitor| Monitor | Read Monitor| Total Monitor
User System async Total Time overhead
(%)
64 SHIP_003 | 48 6 262 317 4206 7,56
64 XENON2 | 38 5 30 74 2691 2,78
128 SHIP_003 | 25 4 67 97 1925 5,05
128 XENON2 | 25 4 0,4 30 1912 1,59

Table 4: Monitor overhead (in seconds)

Table 4 gives the overhead of the monitor and shows that the
overhead is low for monitor operations. However, the time
spent in the function calls corresponding to the reg_mem and
meme_release in the MUMPS process can be significant like for
the TWOTONE matrix for example. This overhead can be
decreased by reducing the number of function calls in MUMPS
side.

Figure 11 gives the percentage of gain (or loss) for page
faults, swap-out using the memory monitor for 64 and 128
MB.

First, we observe that we obtain a reduction of the number
of swapouts for all cases. This is first due to good decisions
relative to the choice of the pages to swapout using the prior-
ities set with the reg_mem function. In addition, the release
mechanism helps to decrease the number of swapouts since
the released pages have not to be swapout.

Concerning the number of page faults without release, we
observe gains for all case, because our priority information
allows the monitor to have a better swapout policy. Thus,
the needed pages are less often swapout. We can also observe
that the number of page faults increases when we activate
the release mechanism. This is due to the situation where a
page is released and reaccessed immediatly after the release
giving a page fault. It is important to note that this kind of
page faults are not costly in terms of time since the physical
page is available (it has been freed by the release). This kind
of page faults occur generaly when the monitor has not yet
processed the reg_mem request when the application (MUMPS)
accesses to the corresponding released memory area.
Figure 12 gives the execution (factorization) time decrease
with 64 MB and 128 MB using our monitor in comparison
with the times measured with the standard paging policy.
Usually, a reduction of the number of page faults leads to
a better execution time, with an exception for TWOTONE
with 128 MB. For this matrix the increase of the factoriza-

tion time is due to the overhead of the memory monitor. In-
deed, there is a large number of requests sent by the applica-
tion to the monitor concerning fine grain tasks (less than 10
KB). To better illustrate, we measured 95 000 requests with
the monitor for only 600 seconds of computation, whereas
with SHIP_003 with 128 MB, we obtain 35 000 requests for
1 200 seconds.

Finally, we observe that gains for execution time are better
for 64 MB than for 128 MB. This is due to the fact that
paging activity is more important with 64 MB. Thus, re-
ducing the number of page faults with 64 MB of memory
will have a bigger impact than with 128 MB (see Table 3).
To better illustrate this behaviour, we tested our memory
monitor with 32 MB of physical memory. We obtained, a
reduction of 37.4% for the GUPTAS3 matrix and 27.46% for
the XENON2 matrix in comparaison with standard paging
policy. It is important to note that for such physical mem-
ory size we must have an out-of-core factorization scheme for
the frontal matrices that does not fit in memory. This ex-
plains why we don’t have larger gains with a 32 MB physical
memory.

6. CONCLUSION

In this paper, we presented a new way to improve perfor-
mance of the factorization of large sparse linear systems
which cannot fit in memory. Instead of rewriting a large
part of the code to implement an out-of-core algorithm with
explicit I/O, we modified the paging mechanisms in such a
way that I/O are transparent. This is done by the use of
a tool, MMUM&MMUSSEL, which allows the management
of the paging activity at the application level. We studied
the memory access pattern of a parallel multifrontal solver,
MUMPS, and how to improve paging during the computation.
In such a solver, the global factorization is reduced to a set
of partial factorizations on smaller matrices (called frontal
matrices). The memory of the multifrontal method is made
of three parts: factors which are in a write-once area, con-
tribution blocs are in a write-once/read-once area, and a
working area containing the current frontal matrices. We
described the design and the implementation of a memory
monitor that provides a first paging policy. This policy tries
to keep only useful data in memory and avoids useless I/O
for read once data (contribution blocs).

Experiments showed that these first paging policies are able
to reduce the number of page faults (I/O) which can lead to
a decrease of the execution time. Furthermore, our strategy
assumes that there is enough memory for each frontal matrix
(the partial factorization is done in core): we focused only on
the paging introduced by the extra working storage memory
needed by multifrontal methods. So the gains are limited
(and can be negative) if this assumption does not hold. Thus
we have to improve paging during the partial factorization
of a frontal matrix, in a way similar to the one presented
in [5].

We focussed on the factorization step, the solve step can be
also critical in an out-of-core execution scheme. Indeed, the
solve step has to access to all the factor area. Furthermore,
the cost of the operations made during the solve phase is
not very high. Therefore, we must be able to prefetch factor
blocks as fast as possible and to do sequential read to ensure
a good speed of I/O operations.

It is also important to extend our monitor to the parallel
execution scheme. The extension can be done in a natu-



o Nopage monitor
= Nopage without release
o Swapout monitor

S\

o Swapout without release I I

o Nopage monitor

= Nopage without release
o Swapout monitor

O Swapout without release

(a) 64 MB (b) 128 MB

Figure 11: Page faults and swap-outs reduction with the monitor with several memory sizes.

(a) 64 MB

7
“46%

(b) 128 MB

Figure 12: Execution time gain with several memory sizes.




ral way except for the stack memory area where the man-
agement can be more complex. It would be interesting to
test the parallel implementation of MUMPS with the monitor
with memory-aware scheduling strategies since the default
scheduling strategies of MUMPS are workload based. Thus, a
first step could be to use memory based scheduling strate-
gies [11] which tries to balance memory among processors.
A second step is to combine the scheduling with the paging
policy by injecting the size of the physical memory of each
working processor to the memory-based scheduling strate-
gies.
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Chapitre 9

Présentation

M on deuxiéme axe de recherche a été le stockage distribué et en particulier sur les systémes
pair a pair. Ce travail a débuté en 2001 alors que j’étais en détachement INRIA au LIP/ENS
Lyon dans I’équipe Graal dirigé par Frédéric Desprez. Ce travail c’est inscrit tout d’abord dans
le cadre de I’ACI Grid CGP2P ! piloté par Franck Capello. Ce travail a ensuite donné lieu a
un projet de valorisation par la création de l’entreprise UbiStorage en 2006, dont j’ai été le
dirigeant, qui sera repris par l’entreprise Ugloo en 2014 jusqu’a ce jour.

Au début des années 2000, on a assisté a un fort engouement pour les systémes de fichiers
pair-a-pair. On peut citer Napster, Freenet, Gnutella ou les fichiers sont distribués sur ’en-
semble des PCs. Ces systémes sont des alternatives a I’approche client/serveur du WEB.

En fait ces systémes sont orientés essentiellement dans la mise en commun et dans la dif-
fusion des données et des informations. Les objectifs avoués étant essentiellement ceux de
I’'anonymat des sources d’informations, I'usage ayant été principalement le piratage de la mu-
sique et des films. Le business model des principales majors en a été profondément ébranlé,
et a donné lieu a I’émergence du streaming rendu possible par ’évolution des capacités des
réseaux. Ces systemes imposaient un surcotit non négligeable dans I’accés aux données. En
général, il n’y a aucune garantie en ce qui concerne la fiabilité et la disponibilité des données.

Dans le méme temps, d’autres travaux plus confidentiels, car non dédiés exclusivement a la
diffusion de fichiers musicaux ou vidéo, ont été développés. On peut citer InterMemory, PAST
ou Oceanstore. Ils se présentent comme des systémes de partage d’espaces de stockage. A la
différence des systéemes précédemment cités, ces nouveaux systemes integrent des mécanismes
qui assurent la confidentialité et la pérennité des données.

Le principe général de fonctionnement des systemes pair-a-pair repose sur des bases com-
munes. Dans les réseaux pair-a-pair, il n’y a pas de distinction claire et nette entre clients et
serveurs comme on le trouve dans de nombreuses architectures (Web, FTP, ...). Chaque pair
qui compose le réseau est a la fois client et serveur. Les systéemes sont congus de tels sortes
qu’aucun des nceuds ne soit réellement indispensable pour le fonctionnement général : si un
ou plusieurs nceuds sont défaillants, cela ne paralyse pas le systéme.

Ces systemes pair-a-pair se caractérisent par des sur-réseaux ad hoc basés sur des connexions
point a point formant un graphe faiblement connexe dont I'objectif est de fournir un mécanisme
tolérant aux pannes de routage entre les noeuds. Ce mécanisme peut avoir de plus une fonction
de localisation des données.

1. Calcul Global Pair a Pair
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9.1 Systeme P2P dédiés au stockage

L'un des précurseurs est InterMemory | , ]. Il se caractérise par un mécanisme
de protection des données extrémement poussées, basée sur leur redondance, leur fragmenta-
tion et leur dispersion.

PAST [ | est un dispositif de stockage de données développé conjointement par I'Uni-
versité de Rice et Microsoft. Dans PAST, les nceuds et les fichiers possedent des identifiants
uniques. Les fichiers sont stockés sur les nceuds dont l'identifiant est le plus proche de I'iden-
tifiant du fichier. Le mécanisme de routage tolérant aux pannes est PASTRY. La pérennité des
données est assurée par la réplication.

Enfin OceanStore | ] est un vaste projet de stockage pérenne de données. C’est pro-
bablement le projet le plus abouti concernant le stockage de données pair-a-pair. Les données
sont stockées sur des serveurs dédiés qui possedent une forte connectivité et une large bande
passante, situés, par exemple, chez les fournisseurs d’acces a Internet. Le systéme de routage
tolérant aux pannes d’OceanStore est Tapestry | , ]. Ces serveurs collaborent afin
de fournir un service de stockage ayant la propriété d’ubiquité, c’est-a-dire que l'accés aux
données se fait de fagon transparente pour l'utilisateur de n'importe quels points d’acces.

Les données sont organisées suivant deux niveaux de stockage. Le premier niveau est celui
qui va assurer la disponibilité des données méme lors de la défaillance d’un ou plusieurs ser-
veurs de stockage. Pour cela un mécanisme de redondance | | semblable a celui utilisé
dans InterMemory et d’autosurveillance des serveurs collaborant ensemble est mis en place.
Le deuxiéme niveau de stockage est une réplication qui n’a pas pour but d’assurer la pérennité
des données, mais la proximité de celle-ci. Il s’agit en fait de répliqua placés sur des serveurs
proches de l'utilisateur pour lui garantir les meilleurs temps d’acces a ses données.

Les techniques de routage des requétes et méthodes de redondance sont deux éléments qui
caractérisent les systemes de stockage pair-a-pair.

Pour ce qui est du routage des requétes, une forme générale se dégage : les requétes sont
dirigées suivant un identifiant unique, ou considéré comme tel, qui caractérise un fichier.
Chaque nceud est spécialisé pour un certain identifiant de fichier. Dans PAST et OceanStore,
on considere que les nceuds ont une connexion stable et ont un identifiant unique. Dans PAST,
le fichier est stocké sur le noeud d’identifiant le plus proche tandis que, dans OceanStore, ce
n’est qu'un lien vers le nceud de stockage. Ces deux systémes garantissent I’aboutissement de
la recherche.

Le systeme statique de PAST complique 1’équilibrage de charge, car les fichiers doivent
étre stockés sur le noeud dont l'identifiant est le plus proche de celui du fichier. Lorsqu’un
neoeud n’a plus de place, les auteurs de PAST proposent, dans [ |, plusieurs solutions
pour y remédier : dans la premiere, le nceud qui n’a plus de place demande a ses voisins (des
nceuds dont I'identifiant est proche du sien) de stocker les fichiers pour lui, le nceud d’origine
conservant un lien vers les nceuds qui stockent réellement le fichier, une seconde méthode,
plus radicale, consiste a changer I'identifiant du fichier.

Dans PAST, la pérennité est assurée par un systeme de réplication simple. Pour InterMe-
mory et OceanStore, les garanties sont basées sur des systemes de redondance plus sophis-
tiqués a base de fragmentation que nous présentons plus en détail dans la suite.

Pérennisation des données : Redondance

La redondance est la clé de la pérennité des données dans un systéme de stockage dis-
tribué. En effet, stocker une donnée sur un seul nceud est relativement risqué, puisque ce
noeud peut disparaitre a tout moment sans prévenir. Pour cela, il faut que les informations
soient redondantes pour que, méme si des nceuds sont défaillants, il soit toujours possible de
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récupérer 'information. Uexemple le plus simple de redondance est celui de la réplication des
données, c’est-a-dire que l'on se contente de copier les données telles quelles sur plusieurs ma-
chines comme dans PAST ou Freenet. On notera r le facteur de réplication. Pour r = 1, un seul
répliqua, la tolérance est la défaillance d’un nceud, pour r = 10, elle sera de 10 nceuds.

Dans un mécanisme de redondance avec fragmentation, les blocs de données de taille B
sont découpés en s fragments de taille % A partir de ces fragments, on détermine r fragments

de redondance, eux aussi de taille % Les s + r fragments sont tels qu’a partir de s fragments
quelconques il est possible de reconstituer les données initiales. L'ensemble des fragments sont
disséminés sur des noeuds distincts. Le systeme tolere donc r défaillances. La réplication n’est
qu’un cas particulier ou s =1 et r est le nombre de réplications.

Le ratio ;- détermine I'espace utile, c’est-a-dire le rapport entre la taille de la donnée et
I'espace de stockage. Par exemple, dans le cas d'une seule réplication (s = 1, r = 1), I'espace
utile est de 50% = ﬁ Pour 9 répliqua (s = 1, r = 9), il n’est plus que de 10%. Dans le cas ou
s = 9 avec le méme facteur de tolérance r = 9, I'espace utile est alors de 50%. La fragmenta-
tion des blocs permet, a tolérance équivalente avec la réplication, de gagner en espace utile et
donc de stocker plus d’informations dans le systéme. La méthode usuelle pour déterminer les
fragments redondants est basée sur le codage de Reed Solomon.

Bien qu’avec un facteur de redondance adapté, on peut résister a un grand nombre de
défaillances, un mécanisme statique ne permet pas d’assurer la pérennité des données. En
effet, si on considére que la durée de vie des nceuds suit une loi classique de probabilité telle
que la loi exponentielle, alors on a une forte probabilité d’avoir perdu plus de la moitié des
nceuds au bout du temps moyen de la durée de vie d’'un nceud. Pour assurer la pérennité,
il est donc nécessaire d’introduire un mécanisme de réparation qui détecte et reconstruit les
fragments de données perdus.

D’autre part, la plupart des études sur l'efficacité des mécanismes de redondance font
généralement I’hypothese que les pairs sont non corrélés en ce qui concerne les pannes. Des
études ont montré que cette hypothese n'est en général pas vérifiée. Des mécanismes pour
détecter des corrélations entre les pairs ont été développés. Ils se basent sur différentes hy-
pothéses sur la structure du réseau et des observations en temps réels. Il faut alors distribuer
les données de maniere a éviter les corrélations trop fortes de pannes [ ]

Structure générale des systemes P2P : les DHT

Les premiers systemes avaient une architecture monolithique, i.e. ou les différentes fonc-
tionnalités du systeme étaient interdépendantes. La tendance actuelle pour la conception de
nouveaux systéemes de fichiers pair-a-pair est de se baser sur une architecture type a trois
niveaux . Cette architecture a été introduite par CFS (Chord File System | ]). Le pre-
mier niveau propose un mécanisme de routage entre les pairs par un sur-réseau (overlay)
tolérant aux pannes (Chord | |, Pastry [ |, Tapestry | ], ...). Le deuxiéme ni-
veau implémente un dictionnaire distribué et redondant sur ce sur réseau (DHT, Distributed
Hash Table), chaque entrée de ce dictionnaire étant composée d’une clef et d’un objet associé
(e.g. le fichier). L'objet est inséré dans la DHT qui le réplique afin d’assurer un certain ni-
veau de tolérance aux pannes. Enfin le dernier niveau s’appuie sur les deux précédents et est
responsable de l'organisation logique des données.

En général un identificateur unique appartenant a un grand espace de noms est affecté a
chaque pair. Les identificateurs sont choisis de telle maniere que ceux-ci soient le plus dis-
persés dans 'espace de noms. Pour router les messages, chaque pair maintient une table de
routage avec les identificateurs d’autres pairs et leur adresse IP.

En ce qui concerne la DHT (le dictionnaire distribué), il existe une fonction qui projette
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I’espace des clefs du dictionnaire dans ’espace de noms des pairs, par exemple I'identité si les
deux espaces de noms sont identiques. Lors de I'insertion d’un nouvel objet dans le diction-
naire, le pair qui le stockera est celui qui sera atteint par l’algorithme de routage en fonction de
la clef projetée de I'objet. En général l’algorithme de routage désigne le pair qui a I’identifiant
le plus proche de la projection de la clef.

L'objet inséré est répliqué par la DHT pour faire face a la disparition de pairs. Typique-
ment, chaque pair maintient une liste des pairs qui ont un identifiant “voisin” (au sens de
I’algorithme de routage) dans ’espace de noms, l'objet est alors dupliqué sur ces pairs.

9.2 Description de mes travaux

Mes travaux dans ce domaine se sont focalisés sur deux axes. Le premier, plus académique,
sur 1’étude de la pérennité dans de tels systemes de stockage pair a pair. Le second, sur la
conception d’un tel systeme pour le stockage de données immutables (notamment pour les
backups et l’archivage), qui a donné lieu a un projet de valorisation et a la commercialisation
d’un tel systeme par la société Ugloo.

Quand on vise une grande pérennité, la redondance en soi ne suffit pas. Il faut lui adjoindre
un mécanisme de régénération qui permet de maintenir cette derniére a un niveau suffisant
pour la conservation des données dans le temps. Les travaux présentés dans la suite de ce
document concerne donc cette problématique.

L’article suivant (??,[17]) est une étude quantitative du comportement, par une modélisation
stochastique, des systémes de stockage P2P en ce qui concerne la pérennité. L'originitalité de
cette approche est qu’elle s’appuie, en plus de la durée de vie des pairs, sur le degré de dis-
ponibilité de ces derniers, ce qui permet de caractériser les systemes P2P. Il en ressort que
les mécanismes de redondances sophistiqués, par exemple de type Reed Solomon, sont moins
adaptés que des mécanismes classiques de réplications quand la disponibilité fait défaut.

Ce dernier travail avait aussi mis le doigt sur le cotit du maintien du niveau redondance,
appelé cout de reconstruction. En effet, lorsque I'on vise de longues périodes de stockage, les
données devront étre régénérées de nombreuses fois pour faire face aux défaillances des nceuds
de stockage. Cette problématique a donc été abordée dans le cadre de la thése de Ghislain
Secret. Dans ce travail un simulateur d’un systeme de stockage générique, tel que décrit dans
le précédent travail, avait été développé. A partir de ce simulateur, nous avions étudié I'impact
des différents parameétres (degré de dispersion, niveau de redondance, seuil de déclenchement)
sur le cotit généré par les reconstructions. Un autre résultat la définition d’une stratégie de
construction proactive qui permettez de lisser le colt de reconstruction dans le temps. Le
deuxiéme article (10,[14]) est une publication de ce travail.

Le troisiéme article (11,[1]) présenté par la suite est un complément au précédent. L'ob-
jectif est de déterminer une distribution des données qui minimise 1'impact des reconstruc-
tions pour tous les pairs. L'idée originale étant d’utiliser la géométrie affine ou les points
représentent les pairs et les droites les blocs de données. Les espaces mathématiques qui
peuvent étre définis dans cette géométrique permettant de construire des distributions qui
bornent le cotit de reconstruction pour chaque pair. En particulier par l'utilisation de plan et
de projection affine ol les droites on qu’'une seule intersection. La publication décrit justement
la construction d’une telle distribution.
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Abstract

In this paper we present a quantitative study of data
survival in peer to peer storage systems. We first recall
two main redundancy mechanisms: replication and erasure
codes, which are used by most peer to peer storage systems
like OceanStore, PAST or CFS, to guarantee data durabil-
ity. Second we characterize peer to peer systems according
to a volatility factor (a peer is free to leave the system at
anytime) and to an availability factor (a peer is not per-
manently connected to the system). Third we model the be-
havior of a system as a Markov Chain and analyse the av-
erage life time of data (MTTF) according to the volatility
and availability factors. We also present the cost of the re-
pair process based on these redundancy schemes to recover
failed peers. The conclusion of this study is that when there
is no high availability of peers, simple replication scheme
may be more efficient than sophisticated erasure codes.

1. Introduction

Today, Peer to Peer systems (P2P) are widely used mech-
anisms to share resources on Internet. \ery popular systems
was designed to share CPU (Set i @orme, XtremWeb, En-
tropia) or to publish files (Napster, Gnutella, Kazaa, ...). In
the same time, some systems was designed to share disk
space (OceanStore, Intermemory, PAST, Farsite). The pri-
mary goal of such systems is to provide a transparent dis-
tributed storage service. These systems share common is-
sues with CPU or files sharing systems: resource discovery,
localisation mechanisms, dynamic point to point network
infrastructure... But for sharing disk systems data lifetime
is the primary concern. P2P CPU or file publishing sys-
tems can deal with node failures: the computation can be
restarted anywhere or the published files resubmitted to the

*This Project (ht t p: / / www. ust or age. net ) is supported by the
CNRS-INRIA-MENRT ACI GRID CGP2P grant.

Antoine Vernois
Graal INRIA Project
LIP- Ecole Normale Supérieure de Lyon
69364 Lyon Cedex 07, France
aver noi s@ns-|yon. fr

system. For disk sharing systems, node failure is a critical
event: the stored data are definitively lost. So data redun-
dancy and data recovery mechanisms are crucial for such
systems.

In this paper we present a quantitative study of the usual
data redundancy and repair schemes found in existing sys-
tems: replication and erasure resilient codes. After a pre-
sentation of some P2P systems and redundancy mecha-
nisms, we introduce a characterisation of P2P storage sys-
tem according to the volatility and availability of peers. We
propose a stochastic model of such systems using Markov
Theory which allows the study the data lifetime. We also
consider the cost to recover lost data.

2. Peer to Peer system

Among peer to peer data systems, we distinguish two
categories: P2P systems devoted to document publishing,
and P2P systems devoted to storage and which integrate
data survival mechanisms.

P2P systems are mainly characterised by an “over-
network” or virtual backbone based on point to point con-
nections leading to a loosely coupled graph. The aim of the
over-network is mainly to furnish routing and localisation
mechanisms.

Since the precursor Napster, lot of P2P file publishing
systems have appeared. Gnutella [11] is one of them and
is defined as a protocol specification to share documents.
File localisation is done by a breath-search in the connec-
tion graph. Freenet [4, 3] is also a file publishing project
where one of the primary goals is to insure anonymity of
users (data producer or data consumer). It integrates cryp-
tography of documents, auto adaptable routing, and a prim-
itive replication mechanism to insure data survival of popu-
lar files.

Concerning peer to peer storage systems, one precur-
sor is InterMemory [2, 6]. It is characterised by a com-
plex redundancy scheme for data survival. PAST [5] is
a joint project of the Rice University and Microsoft. In
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PAST, nodes and files have a unique identifier in a com-
mon name space. Files are stored on node which have
the closest identifier to the file identifier. Tolerant routing
mechanism is PASTRY. Data survival is done by file repli-
cations. OceanStore [8, 1, 12] is a large project where data
are stored in a set of collaborative server (long time survival,
high speed connection) which are untrusted.

In this paper, we focus on this second class of peer to
peer systems where data are disseminated on peers, and we
study the efficiency of mechanisms used to insure data dura-
bility.

3. Redundancy mechanism

In distributed storage systems, redundancy is the base
mechanism to protect data from node vanishing. The first
redundancy scheme is replication: several copies of data are
disseminated on different nodes. Replication is the mecha-
nism used by PAST or Freenet. Let r be the replication
factor: for » = 1 there is only one replica and the system
tolerates only one node failure per data, if » = 10, the sys-
tem tolerates 10 node failures per data.

A more sophisticated redundancy scheme is erasure
code. In such a system a block of data of size B is frag-
mented into s smaller blocks of size % In addition, r frag-
ments of same size are generated and contain redundancy
information about the initial data. These fragments are dis-
seminated over the peer to peer network. Redundancy is
such that any fragment can be recover from any combina-
tion of s fragments from the s+ r fragments. So this coding
allows a tolerance factor equal to r. Replication is a partic-
ular case of erasure code where s is equal to 1. Erasure
codes are used by the OceanStore project to maintain data-
survival.

Let (s, ) be a redundancy scheme where block of data
are divided into s fragments and where there are r frag-
ments of redundancy. Ratio - represents the useful space,
i.e. ratio between size of the initial data and space used to
store the data. For a fixed useful space, erasure code with
a fragmentation factor s greater than 1 is a priori more ef-
ficient than simple replication because it allows a greater
tolerance factor r. For instance, compare the (1, 3) redun-
dancy scheme with the (4,12).

An usual method to build erasure codes is the Reed
Solomon encoding scheme [10]. Let B the initial data block
to be encoded, B is considered as a vector B = (b;)c[1..4]
of dimension s where each b; is a fragment of the initial
data. The erasure code is the vector E' = (e;)ic[1..(s+r)] OF
dimension s+r. The vector F is derived from B by the way
of a matrix A of dimension s x (s+7): E = AB. Let A be
decomposed by rows: A = (A;)ie[1..(s+r)- The matrix A
is such that for each subset of s rows (A;; ) c[1..5, the rows
are linearly independents. Thus, for any subset of s frag-
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Figure 1. Percentage of peer failures before
the loose of the first block for erasure code
according to the redundancy factor r. The
number s of initial fragments of the data block
is equal to 16. There are 250000 blocks stored
on 10000 peers.

ments E' = (e;; ) e..s the initial data B = (b;)e[1..4) S
reconstructed in this following way: let A" = (A;;)jen..q
be the matrix build with the rows corresponding to the sub-
set of fragments of F, the initial vector B is then equal to
AR,

Figure 1 shows the percentage of peers which can fail
without loose of data according to the redundancy factor r.
This result was obtained by the simulation of the distribu-
tion of 250000 blocks on 10000 peers where each block is
divided in s = 16 fragments. For instance, with » = 30, we
are able to tolerate up to 50% peer failures.

Whereas a big redundancy factor allows us to face to
a big number of peer failures, this static mechanism does
not provide good data survival. Consider for instance that
peer lifetime follows an exponential deviate of parameter
A, more than half nodes probably fail after the average life
time of one node.

To guarantee data survival, it is necessary to introduce a
self repair mechanism which detects and rebuilds lost data.
A repair mechanism is divided into two parts: The first part
is the detection of node failure and the second is the recon-
struction of the nodes’ data. The reconstruction uses the
redundancy mechanism previously described: dispersed re-
dundancy fragments are collected to recover lost fragments
on other peer(s).

4. A stochastic model for P2P storage systems

In this section, we present a stochastic model of the be-
haviour of peer to peer storage systems. The system is com-
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posed of independent nodes which share their disk space
where the fragments are stored. Nodes are free to leave the
system at anytime. We assume that population in the system
is stable: the rate of nodes leaving the system is equal to the
rate of nodes entering the system.

4.1. Stochastic model for a peer

We assume also a homogeneous behaviour of peers. This
behaviour is described by the stochastic automate depicted
on Figure 2. In this automate, there are three states for

a

¢ Y Y

1-a

Figure 2. Node behaviour.

a peer node: connected (state ¢), temporarily unavailable
or disconnected (state ), permanently unavailable or dead
(state d). A node is not permanently connected to the sys-
tem and may be disconnected for some time. The duration
of a connection (resp. a disconnection) is given by a contin-
uous random variable which follows an exponential deviate
with an average lifetime equal to A\. (resp. w). The aver-
age duration of a cycle connected/disconnected is given by
A + u. For the sake of presentation we set the unit of time
equal to the cycle duration, i.e. A + ¢ = 1. The parameter
A is the availability factor of a node during its lifetime in
the system. After a connection, a node can leave the system
with a probability equal to « or stay in the system with a
probability equal to 1 — «.. The parameter « is the volatility
factor of a node in the system.

The average lifetime denoted by = of a node in the sys-
tem, i.e. when it is in state ¢ or u, is the average time of
the first connection plus the product of average number of
cycles connection/disconnection by the average duration of
acycle. So

k=00
(1—a)fa\+pu) =1+
k=0

1—
T=A4+ @

(we fixed A + p = 1). Since duration of states ¢ and u
follows exponential deviates and number of cycles follows a
geometrical distribution, the lifetime of a node in the system
is memoryless and follows a exponential deviate with an
average duration equal to .

The parameters A (availability) and o (volatility) allow
us to characterize peer to peer systems (see Figure 3). For
instance when X is close to 1 and « is close to 0 we can
consider the system to be a peer to peer server network like

0 1

News Mail OceanStore

a PAST

Gnuttela

Figure 3. Characterisation of P2P systems ac-
cording to their availability and their volatility.

OceanStore. When X is smaller and « is close to 0 we can
consider to be in presence of a system like a message ser-
vice, i.e. peers are faithful but make short connection to the
system. The worst case is when « is close to 1 and A is
small.

4.2. Block automate

For a given block of data, we describe its availability by
the automate shows on Figure 4. The block is coded by s+
fragments which are stored on s + r distinct peers. We con-
sider only these peers. A block is available when more than
s peers are connected. A block of data is dead when more
than r peers failed. A state is the couple (number of con-
nected peer nodes, number of failed peer nodes). Arrows

# deads

1T _s
# connected

Figure 4. State transition for the availability
of a block of data with a redundancy scheme
(s,7) = (2,2).

correspond to the different transitions between states: con-
nection of a peer (right arrows), disconnection of a peer
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(left arrows) and failure of a peer (up arrows). States in the
right box correspond to states where the data block is avail-
able (there are enough connected peers to rebuild the initial
data), states in the upper box correspond to states where the
data block is lost (more than r fragments are definitively
lost and thus the initial data cannot be rebuild).

The repair process is represented by down arrows: the
repair is done by a new peer which grabs s fragments of the
block from connected peers and rebuild the lost fragment
using the erasure code. So a repair can be done only when
at least s fragments, i.e. peers, are connected. In our model,
we assume that if a node fail, then there is enough space in
the system to store the lost data, i.e. there is a peer not yet
involved in the storage of the considered block which stores
the recovered fragment.

4.3. Stochastic behavior of a block

If we considerer probabilities of state transitions, this au-
tomate describes a non recurrent Markov Chain with one
absorbing state [7]. Let describe more formally the auto-
mate previously introduced. Let a be the state where i
nodes are dead (0 < i < s + r) and j nodes are connected
(0 < j < s+ r —1). Probability for each state transition is
determined in the following way.

Connecting: One peer is reconnecting the system, it is
the transition from state a] to state o} "' (0 < j <
s+ r—1). Because all peers are independents the tran-
sition probability follows an exponential deviate with
an average lifetime equals to “TA_J)

Disconnecting: One peer is disconnecting the system, it is
the transition from state o/ to state o} ' (0 < j <
s + r — ). Similarly to the reconnection, the transi-
tion probability follows an exponential deviate with an
average lifetime equals to /ji

Failure: One peer is leaving the system, it is the transi-
tion from state o/ to state a ; (0 < i < s+,
0 < j < s+ r —1i). The transition probability fol-
lows an exponential deviate with an average lifetime
equals to (SJTZ)

4.4. Dynamic repair transition

We employ the Markov Embedded Chain technique in
order to estimate the transition probability of a repair tran-
sition. We consider that failed peers are repair in the order
of their failure. The repair transition probability from state
al tostate alt (0 < i < 5,5 < j < s+ —i)isthe
probability that when the oldest fail node is repaired, there
are less than 4 failed nodes in the system.

The main problem is to determinate time to repair a node.
We fix the effective time to rebuild a node (a.k.o. “cpu
time”) equal to t.. However, the repair process is only
possible when at least s nodes remain connected during
the reparation process. We consider that when less than s
nodes are connected, then the repair process is suspended.
It restarts when s nodes are connected. So we have to evalu-
ate what is the real time ¢,. to repair a node (a.k.o. “elapsed
time”).

We approximate ¢,- with the average fraction of time the
repair process can be run (i.e. there are at least s nodes
connected). Let f,. be this fraction, f, is estimated in the
following way: let d; be the average lifetime to be in states
al forall j suchthat 0 < j < s+ r — i (there are 7 failed
nodes) before one more node fails: d; = 7. Let¢;
be the probability than at least s nodes are connected when
there are ¢ nodes failed. Connecting/reconnecting is a pure
birth/death process, so ¢; can be obtained by a simple prod-
uct formulation. The fraction f;. is then estimated by:

I = > cidi
T Zz d;
The real time ¢, of the repair process is 4.

Let X (¢) be the random variable repﬁesenting the num-
ber of failed node remaining when the oldest failed node
is repair at time ¢ (pure death process). We estimate the
probability of a repair transition from state a? to state o’}
(s<j<s+r—i,i<s)by P(X(t) <i).

5. MTTEF of data blocks

In the following we present a quantitative study of the
modeled P2P storage system with automatic repair process.
This quantitative study allow us to estimate what is the
MTTF (mean time to failure) of data block in such a sys-
tem, i.e. the average lifetime of a data block in the system.

Thanks to our Markov model, the MTTF can be esti-
mated classically by a discretisation of time and consider-
ing the resulting transition probability matrix P where the
absorbing state is removed. Then we compute the vector
E = (I — P)~! x U where T is the identity matrix and U
the unit vector. The elements F; gives the average lifetime
starting from state i.

Figure 5 shows the estimated MTTF according to the
availability rate of peers (\), thus for three redundancy
schemes with the same useful space ((7,21), (4,12) and
(1,3)Y) and for two volatility parameters: o = 0.1 and
a = 0.3 (for high volatility factors, the MTTF is too low).
The time fixed for the repair process is t. = 1, i.e. the time
for one period of connection/disconnection (we observed a

1The redundancy scheme (1,3) corresponds to the replication scheme.
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Figure 5. MTTF according to the availability of peers (\).

similar behaviour for other repair process time). For a sys-
tem with high availability (A close to 1), MTTF is better
with s big as expected. But for a system with low availabil-
ity, we observe a better MTTF for the replication scheme.

This suggests that for a peer to peer system with lower
availability of peers, the replication scheme is better than
erasure code. Figure 6 shows the MTTF according to the
fragmentation parameter s for a fixed useful space ratio
(25%), and for different volatility and availability param-
eters.

This phenomena may be explain by considering the fre-
quency of each state. Figure 7 shows the relative frequency
of each state for a (4,12) erasure code which is obtain us-
ing Markov Theory. Darker state are the more frequent
state during the life of a block. These frequency was plot
for « = 0.3 and different availability parameters (0.4, 0.5
and 0.7). The vertical line is the limit number of connected
peers which are necessary to rebuild a failed peer. When the
availability is reduced, we see that more frequent states are
close to this limit. This means that the state of the block is
more often in a state where the repair process is suspended,
so the real time to repair is greater, probability of not recov-
ering the block of data (which determines MTTF) increases.

6. Data recover costs

In the previous part, we estimated the MTTF of a peer to
peer system characterized by (a,\) based on a redundancy

scheme (s, r) which integrates a failure repair mechanism.
In this part, we will discuss about costs generated by this
repair mechanism.

One of our hypothesis is that the repair mechanism is
able to rebuild data of a failed node in a fixed time ¢t.. To
rebuild one fragment in a (s, r) redundancy erasure code,
s fragments must be retrieved from alive nodes. Lets say
that each node hosts 10000 fragments of 4KB (i.e. 40MB
per peer), and let s be equal to 8, then 10000 % 4 x 8 =
320MB have to transit on the network to repair one failed
peer. The peer to peer system must deal with simultaneous
failed peers, so the repair process is limited by the capacity
of the peer to peer network.

Let T, = } be the average rate of node failure where =
is the average lifetime of a node. In our model

1

L= 7=

T, increases with «, and then the number of simultaneous
failed peers to repair increases in the same order.

Figure 8 is the average peer lifetime according to the
volatility «. We can see these plots as the average hum-
ber of time period (\ 4 1) a node stays in the system before
leaving it. This means that % peer must be repair per cy-
cle on average. The amount of data to communicate in the
network is proportional to % Using an erasure code with
a fragmentation factor equals to s implies that the amount
of data communicated in the network is multiplied by s ina
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MTTF according to fragmentation for volatility=0.1
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Figure 6. MTTF according to the fragmentation factor s for different A (I) and a.
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Average node lifetime according to volatility
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Figure 8. Average lifetime of node according
to « for different \.

cycle. For instance is Tx = 8 and s = 8, then the amount
of data communicated in the network in a cycle is equal to
the volume of data stored!

6.1. Conclusion

In this paper, we presented a quantitative study of data
survival in Peer to Peer Storage Systems. We characterized
Peer to Peer systems according to a volatility factor (peer
are free to leave the system at anytime) and to an availability
factor (peer are not permanently connected to the system).

We compared the two main redundancy schemes, repli-
cation where data are duplicated on different peers, and era-
sure codes where data are first divided into s fragments and
where r fragments of redundancy are added to tolerate fail-
ure. We estimated the data lifetime of these redundancy
scheme by a Markov Chain model. Whereas the erasure
coding scheme is a priori more efficient than simple replica-
tion, a result of this study is that simple replication is better
when there is no good availability of peers: erasure codes
require high availability of peers to be efficient.

For repair cost point of view, we also shown that era-
sure codes increase the amount of communication to re-
cover failed peer: s times the amount of data stored in the
failed peer must be accessed to rebuild the lost data. A large
part of the network capacity must be used to maintain data
integrity.

In fact, contrarily to conventional wisdom, erasure codes
like Reed Solomon are not the cure-all to insure long data
lifetime in peer to peer storage systems: it is efficient only
for peer to peer system with highly available peers like
OceanStore, where peers are servers hosted by some In-
ternet Providers. Our future work is to design and anal-

yse other redundancy scheme mechanisms which may be
better than simple replication for data survival and erasure
code for the cost of the repair mechanism. We can imag-
ine new redundancy scheme which mixes replication and
erasure code to combine the low cost of replication and to
increase the efficiency of erasure code because of a better
availability of fragments. We plan also to study the Tor-
nado [9] method which employs a sparse hierarchical re-
dundancy scheme which may reduce the needs for highly
available peers.
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Abstract. In this paper we present a study of the load generated by
the reconstruction process of P2P storage system. This reconstruction
process maintains redundancy of data for durability to face peer failures
found in P2P architectures. We will show that the cost induced is not
negligible and we will show which parameters of the underlying P2P
system can reduce it. To our best knowledge it is the first study of this
topic.

1 Introduction

Today, Peer to Peer systems (P2P) are widely used mechanisms to share
resources on Internet. Very popular systems were designed to share CPU
(Seti@home, XtremWeb, Entropia) or to publish files (Napster, Gnutella,
Kazaa). In the same time, some systems was designed to share disk space
(OceanStore [4,9], Intermemory [2], PAST [3]. The primary goal of such systems
is to provide a transparent distributed storage service. These systems share com-
mon issues with CPU or files sharing systems: resource discovery, localisation
mechanisms, dynamic point to point network infrastructure... But for sharing
disk systems data lifetime is the primary concern. P2P CPU or file publishing
systems can deal with node failures: the computation can be restarted anywhere
or the published files resubmitted to the system.

For disk sharing systems, node failure is a critical event: the stored data are
definitively lost. So introducing data redundancy, such as the well known Rabin
dispersal technique [5], and data recovery mechanisms is crucial for such systems.

Some previous works focused on the feasibility of such system, mainly for
the data durability question: is the data redundancy scheme and data recon-
struction mechanism sufficient to insure no data lost? Whereas the answer is
yes for some parameters([1,10]), in [8], the authors outline that reconstruction
processes introduce a new load in the P2P system, mainly the communication
cost to maintain redundancy.

In this paper we present a first study of this load and the impact of the
P2P system parameters on cost. This study is done by simulation. To our best
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© Springer-Verlag Berlin Heidelberg 2008



A Study of Reconstruction Process Load in P2P Storage Systems 13

knowledge it is the first work on this topic. After a presentation of usual redun-
dancy schemes and reconstruction mechanisms used in P2P storage systems, we
present our simulation process. We present the impact of system parameters on
load induced by the reconstruction mechanism. Then we conclude.

2 Redundancy Scheme and Reconstruction Process

A peer-to-peer storage system is characterised by peers volatility. Peers con-
nect and disconnect randomly. But in storage systems, the main issue is data
durability. To cope with peers volatility, data redundancy is introduced.

The most simple method is data replication on different peers. To deal with r
failures, data is replicated r times. However, replication requires a space r times
larger than original data size. This ratio between the size of the data and actual
space used to store the data is called usable space. Usable space is defined as
the ratio between the original data size and the storage space. e.g.for a given 3
times replicated data, fault tolerance is 3 and useful space is 1Jlrr, i.e. 31.

Storage systems that use replication as redundancy mechanism suffer from
a low usable space. Other redundancy techniques that maximise usable space
have been developed, like IDA schemes [5]. The mechanism is to fragment a
data block in s fragments. Then, from these fragments, r redundancy fragments
are computed. The s+ r fragments of the data block are distributed on different
peers. Any combination of s fragments allows to rebuilt the raw data. Therefore
the system tolerates r failures.

In the case of redundancy with fragmentation, usable space is expressed by
the ratio 7 . e.g. for a given original data cut into 5 pieces, plus 3 redundancy

s+
fragments, fault tolerance is 3. Usable space is Sj_r, in our exemple: g. Blocks
fragmentation allows usable space gain, for equivalent fault tolerance to replica-
tion. Therefore it allows to store more information in the system.

Note that replication is a special case of this redundancy scheme, where s = 1

and r is the number of replicates.

2.1 Reconstruction Process

In addition to redundancy scheme, a reconstruction mechanism of lost fragments
is introduced to ensure data durability. A reconstruction threshold k is defined
(k < r). For each data block, when r — k fragments are lost due to peer fail-
ures, a fragment regeneration process is triggered: r — k alive peers will receive
regenerated fragments. Note that it will be necessary to communicate the equiv-
alent of the original data size (s fragments) through the system to conduct a
reconstruction.

2.2 Reactivity Threshold

For a given block, k is the minimum redundancy fragments remaining in system
before block reconstruction process is triggered. When redundancy fragments of
a block is less than or equal than k, block rebuild process is launched to recover
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it. So, if K = r — 1, block reconstruction is initiated from the first fragment lost.
We call this strategy “anzious”. At the opposite, if £ = 1, block reconstruction
is delayed until » — 1 fragments are lost, i.e. only one redundancy fragment
remains in the network. This reconstruction strategy is called “zen”. Therefore
k determines reactivity of the reconstruction process in the system.

These mechanisms allow data durability in network by judiciously setting
system parameters. We refer to studies [6,8,7] to maintain data durability in
P2P storage systems.

However, impact of system parameters on network load is not neutral. For
each reconstruction, the block is communicated through the network. Hence,
too often regenerate the redundancy of the system leads to a heavy load on the
network. In this document, induced traffic (network load) in a P2P system is
studied. It is the traffic generated by the permanent reconstructions, necessary
to maintain data durability in system.

3 Peer to Peer Storage System Simulation

We consider a peer to peer storage system consisting of N independent peers who
share their storage space. Peers are free to leave the system at any time. Peers
who disappear are considered dead. It is assumed that the average population is
constant, thus the average rate number of peers leaving the system is equal to
the average rate number of peers who join it.

For the sake of simplicity, and without loss of generality, we consider that the
data are blocks of uniform size.

A peer to peer storage system is determined by the parameters s, r and
k, previously defined. We assume that the detection delay of a failed peer is
constant. The regenerated fragments are randomly redistributed on living peers
(which do not already have a fragment of the same block).

Peers lifetime is governed by a deviate law. Failure rate is determined by the
number of peers in the network and their lifetime. For instance, in a 1,000 peers
network, where the mean lifetime of each peer is 12 months, the average time
between failures is 8 hours and 45 minutes. In this example there is about 3
failed peer per day.

Our study focuses on the data recovery costs in a peer to peer storage system,
with the features set out above and without any data loss. We have developed
a simulator to study the behaviour of the peer to peer storage system. The
simulator evaluates the amount of data communicated between peers induced
by the reconstruction process. The network load at time ¢ is represented by the
number of data blocks in a reconstruction state at time t.

Figure 1 shows an example of over time traffic load, in a 100 peers network,
each storing 5 GB of data, and with a lifespan of 12 months. The block size is
10 MB. Each block is divided into 8 equally sized fragments, to which, using
erasure codes, 8 redundancy fragments are added: (s,r) = (8,8). We assume
that each peer is connected to the network through broadband connection (1
Mb download /256 Kb upload). The detection delay of peer failure is 1 day. The
reconstruction threshold £ is 5 remaining redundancy fragments.
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Reconstiuction-induced traffic
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Fig. 1. Traffic load example

Figure 1 shows that reconstructions-induced traffic is not negligible. The av-
erage number of blocks being rebuilt is measured at each peer failure. For the
parameters set in the simulation above, average blocks being rebuilt is 9216
blocks of a total of 500,000. The important standard deviation (5704) shows us
significant variations in traffic load.

In this example, each peer hosts an average of 8,000 fragments, from various
blocks. On average, 3 failed peers per day. This means that 24,000 fragments on
average are lost every day. Among them, about 9000 blocks are critical (compared
to k) and require a reconstruction.

The data volume exchanged between peers to rebuild the blocks is over than
100 GB a day, or more than 100 MB per peer and per day. Consequently, on
average, each peer spends more than one hour per day for the reconstruction of
the data. The volume of data exchanged to maintain the redundancy of data is
important. It may reduce the bandwidth used by peers for data storage.

In the following, we will explore the factors which can reduce this traffic.

4 Parameters Effects

In this part, we will study influence of various system parameters on the recon-
structions-induced load.

For all simulations, the following parameters are fixed. Each peer stores 5 GB
of data. Data is divided into equally sized blocks. Each peer bandwidth is 256
Kb/s up and 1 Mb/s down. The simulation covers 10 years. The peer average
lifetime is 12 months. The detection delay of a peer failure is one day.
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The varying parameters are the number of peers in the system; the block
size; the blocks fragmentation s; the number of redundancy fragments r; the
reconstruction threshold k.

4.1 Size of the System, Blocks Dilution

To illustrate influence of number of peers in the network on traffic load, two
configurations were compared. Only the number of peers (1,000 and 5,000 peers)
differs in the two simulations exposed. The total number of blocks in the system
is 50,000 in the first case and 250,000 in the second case.

In Figure 2, results show that network load is not proportional to number of
peers. For instance in Figure 2, there is a factor 3 on the network load for a
factor 5 on the number of peers.

Consider a block. If we increase the number of peers, the probability that a
fragment of this block is located on a faulty peer is lower if there is more peers
in network. This probability decreases faster than the increase of the number of
blocks. Since each block is always connected to the same number of peers (s +r
peers), the increase in the number of peers is tantamount to diluting the blocks
in the system.

Therefore, erosion data blocks will be slower when the number of peers in the
system is greater. The need to rebuild appear later and, as a result, the network
load on the reconstructions is reduced. Consequently large networks have a better
performance in terms of network load on the storage volume available to the
users.

Number of blocks being reconstructed according to the number of peers
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Fig. 2. Number of peers
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4.2 System Reactivity

According to threshold k, network load evolution for different simulations is
summarised in the Figure 3:

Number of blocks being reconstructed according to k
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Fig. 3. Reactivity

Figure 3 shows that the gain in network load drop when reactivity k£ decreases
by some units from the anxious strategy.

Therefore it is better to be not too anxious to reduce the network load of the
system. Indeed, the gain on network load is on the first units of the reduction in
the system reactivity. In fact, it is quite pointless to try to be as zen as possible.
The gain on network load will be negligible. In addition, a too zen strategy might
not allow the system to maintain data durability.

4.3 Data Dispersion

Data dispersion is defined by the ratio between number of blocks in network
and number of peers. Note, with data volume per peer maintained constant, to
increase the number of blocks in the system is to decrease the size of the blocks.
In this case, peers host fragments of a larger number of blocks.

Two configurations were analysed, both in a 1,000 peers network: 50,000
blocks of size 100 MB each and 500,000 blocks of size 10 MB.

Increasing the block size from 10 to 100 MB leads to reduce the network load
significantly (see Figure 4: an average of 8.5 times in this example), whatever
the strategy implemented (regardless of the system reactivity k).



18 G. Secret and G. Utard

Number of blocks being reconstructed according to the blocks size
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Fig. 4. Blocks size effects

In fact, in the second case (500,000 blocks of size 10 MB) each peer hosts an
average of 10 times more fragments than in the first case. Therefore, when a peer
disappears, 10 times as many blocks are affected. But, blocks fragmentation s
and number of redundancy fragments r are the same in both cases. Probability
that a given block is hit is greater, and as a result, it is necessary to rebuild
more often.

When data volume is constant, increasing block size reduces the number of
reconstructions. A larger block size allows to concentrate blocks on fewer peers.

However, when the block size increases, the fragments are also bigger. In our
case, data volume exchanged in the reconstruction of each block is 10 times
greater. During reconstruction, time required to transfer the fragments will be
more important. However, this increase in time of reconstruction is negligible
compared to time detection (of the order of one day).

4.4 Usable Space

Usable space is defined by the relationship between s and s + . We will ob-
serve behaviour of the network load when parameters s and r vary. Two sets of
simulations are conducted. In the first s is kept constant and the network load
is measured with a value of r, then the double of that value. In the second, r
is kept constant and the network load is measured with a value of s, then the
double of that value.

When r is doubled, we see in the Figure 5 that the number of blocks being
rebuilt is lower, regardless of the value of k.

For example, for k£ = 20, with s = 32 and r = 32, the average number of
blocks being rebuilt is close to 9000. For the same value of £ = 20 but with
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Fig. 5. Redundancy factor effects
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s = 32 and r = 64, the average number of blocks being rebuilt is close to 3000,
i.e. three time less.

A good strategy would be to choose r great. However, a high value of r leads
to a loss of usable space. For instance, usable space is 50% for k = 20, s = 32
and r = 32. For kK = 20, s = 32 and r = 64 it drops to 33%. We operate less
efficiently user storage space.

To offset the loss of usable space, blocks fragmentation can be increased, i.e.
s = 64, r = 64, where usable space is 50%.

Unfortunately, the Figure 6 shows that the network load increases when s
increases. Indeed, increasing blocks fragmentation in network is to expose more
the blocks. The likelihood of losing a fragment is greater. That increase, there-
fore, leads to an increase in the number of reconstruction necessary to maintain
data durability in the system.

Note that this increase in the network load is not proportional to the increase
of s. For instance, it varies from +53% for k = 5 to +27% for k = 31.

Note also that the value k we choose to compare the network load has a
different meaning depending on the number of redundancy fragments r. For
instance, if the value of k£ is 15 and the value of r is 16, then we are in anxious
strategy, whereas if the value of r is =32 we are much more zen.

Let 6 be anziety level, § = Tf - We can compare the number of blocks being
rebuilt at a constant level of anxiety and constant usable space by setting s = r.
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Figure 7 shows the variation in the number of blocks being rebuilt under these
conditions.

5 Conclusion

In this paper, we presented a study of the reconstruction process load in P2P
storage system. Study was done by simulation of a generic P2P storage system.
We shown this load is not negligible, so it is important to detect which parameters
can reduce it. We shown that this load is proportional to the system size. We
shown also that a too reactive system (say “anxious”) generates huge load which
can be significantly reduce by slightly diminishing reactivity of the reconstruction
process, thus without compromising data durability of the system. We observed
also that reducing spreading of data in the system reduce linearly the number
of reconstruction but not the volume of data exchanged.

In this paper, we studied load for reactive system, that is regeneration of
redundancy is done with a fixed threshold. As a future work, we plan to inves-
tigate the load in pro-active systems, when regeneration of redundancy is done
preventively (using for instance information on age of peer).
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Abstract

This article presents a dynamic data distribution method
for data storage in a P2P system. In our system (named
Us), peers are arranged in groups called Metapeers to deal
with account failure correlation. To minimize end user
traffic according to the reconstruction process, distribution
must take into account a new measure: the maximum dis-
turbance cost of a peer. In a previous vork, we defined a
static distribution scheme which minimizes this reconstruc-
tion cost derivated from affine plan theory. In this paper we
extend this distribution scheme to deal with the dynamic
behaviour of peer to peer systems.

1 Introduction

Today, Peer to Peer systems (P2P) are widely
used mechanisms to share resources on Internet.
Very popular systems was designed to share CPU
(Seti@home, XtremWeb, Entropia) or to publish
files (Napster, Gnutella, Kazaa). In the same time,
some systems was designed to share disk space
(OceanStore [1, 2], Intermemory [3], PAST [4], Far-
site [5]). The primary goal of such systems is to pro-
vide a transparent distributed storage service. These
systems share common issues with CPU or files shar-
ing systems: resource discovery, localisation mech-
anisms, dynamic point to point network infrastruc-
ture... But, for sharing disk systems, data lifetime is
the primary concern. P2P CPU or file publishing sys-
tems can deal with node failures: the computation can
be restarted anywhere or the published files resubmit-
ted to the system. For disk sharing systems, node fail-
ure is a critical event: the stored data are definitively
lost. So data redundancy and data recovery mecha-
nisms are crucial.

*This Project (http://www.ustorage.net) is supported by the
ACI GRID CGP2P and the ACI MD GDX.

1.1 Peer to Peer storage systems

Among peer to peer data systems, we distin-
guish two categories: P2P systems devoted to docu-
ment publishing, and P2P systems devoted to storage
which usually integrate data survival mechanisms.

P2P systems are mainly characterised by an over-
network or virtual backbone. Such systems are based
on point to point connections leading to a loosely cou-
pled graph. The aim of the over-network is mainly to
furnish routing and localisation mechanisms.

Since Napster, lot of P2P file publishing systems
have appeared. Gnutella [6] is one of them and is de-
fined as a protocol specification to share documents.
File localisation is done by a breath-search in the con-
nection graph. Freenet [7] is also a file publishing
project where one of the primary goals is to insure
anonymity of users (data producer or data consumer).
It integrates cryptography of documents, auto adapt-
able routing, and a primitive replication mechanism
to insure data survival of popular files.

Concerning peer to peer storage systems, one pre-
cursor is InterMemory [3]. It is characterised by
a complex redundancy scheme for data survival
PAST [4] is a joint project of the Rice University and
Microsoft. In PAST, nodes and files have a unique
identifier in a common name space. Tolerant routing
mechanism is PASTRY. Data survival is done by file
replications. OceanStore [1, 2] is a large project. Data
are stored in a set of collaborative untrusted servers
with long time survival and high speed connection.

1.2 Us system

In this paper, we focus on the second category of
peer to peer systems we have defined in 1.1. We
present dynamic data distribution strategies for a peer
to peer storage system we are designing called Us
(Ubiquitous storage) [8, 9]. For scalability, data are
distributed on thin peers using the well known Rabin
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dispersal technique [10]. Contrarily to other systems
like OceanStore, where data are distributed on server
peers, in Us, data are distributed on end user peers:
each Us peer is both storage space consumer and stor-
age space provider. The main goal of Us is to provide a
virtual storage device to each user which insures data
durability.

Us shares common features with the OceanStore
project: to insure durability, a data dissemination with
a data redundancy mechanism is used. The advantage
of such method is scalability. The inconvenient is that
we have to face a higher failure rate of peer because
the number of peers is a several order of magnitude
greater than the number of peers in OceanStore and
peers are less robust than OceanStore servers.

The main mechanism used to insure data durability
is redundancy based on erasure code. Such code is the
mechanism used by OceanStore and Us to maintain
data-survival.

In [11], we have studied the MTTF (Mean Time To
Failure) of peer to peer storage systems and we have
shown that we have to face a continuous stream of
data in the peer to peer network to insure data recon-
struction process. We have shown that peer volatility
generates a huge amount of data communication. So
we have to distribute fragments of data on peers to
guarantee a good load balance of the commmunica-
tion during the reconstruction process. It follows that
Us should not be intrusive for thin client during the
continuous repairing process: the fraction of the thin
client bandwidth used for reconstruction must be as
low as possible. Our objective is to minimise the max-
imum number of fragments that any alive peer must
send during reconstruction processes. Moreover, the
reconstruction must be diluted among peers by a good
data distribution and in addition the failure correla-
tion must be managed.

1.3 Redondancy mechanism

To insure data durability Us use usual redundancy
mechanism based on erasure code techniques: peers
(physical computers) send data blocks to be stored
on other peers. Each block is split into f fragments
including redundancy informations. For perennity
reasons, each fragment is stored on a different peer.
When a peer fails, all fragments it stored must be re-
build and redistributed to other peers. To rebuild each
fragment, f — 1 fragments must be grabbed from some
other peers.
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1.4 Failure correlation

Depending on geography, a peer failure may be
correlated with other peers failures, like electrical
damage, flooding. An another example due to peers
very close geographically, implys peers physically un-
der the same network, if this network is shutdown,
all peers under this networks is down. The notion of
failure correlation, introduced in [12], is an important
factor for fault tolerance technique. Peers selected for
dissemination of fragments of a data block must avoid
correlated failures, otherwise correlated failures may
catch the redundancy mechanism out.

1.5 Metapeers

In Us, peers are arranged in groups called Metapeer
according to their correlated failure. Each peer be-
longs to exactly one Metapeer. A couple of peers
which exhibits a high probability of correlated failure
belong to the same Metapeer. So, a couple of peers
coming from two different Metapeer must exhibit low
probability of correlation failure. When a block of data
is disseminated in Us, peers choosen to store frag-
ments are selected from different Metapeer. Two frag-
ments of the same block cannot be stored on peers of
the same Metapeer. Due to the data redondancy in-
formation, all of the peers of the same Metapeer can
be down without data losses. How the Metapeers are
constructed is not the topic of this paper, interested
reader can consult the Weatherspoon et al paper [12]
which present a framework for online discovery of
such Metapeers.

2 Definitions
2.1 Notations

Let P be the set of peers, and B be the set of stored
blocks. For a peer p, & is the number of fragments
stored by p, and B, is the set of blocks such that p
stores a fragment of, i.e. the set of the blocks to rebuild
for peer p failure. Finally, let N be the total number of
peers, f(< N) be the fragments number of a block, and
NB be the number of blocks.

2.2 Data distribution definition

A data distribution maps fragments from blocks
over the peers. A distribution is restricted by the con-
dition that the f fragments of one data block are stored
on f distinct peers. We consider f < N.
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Total number of blocks, NB=IB |
Total number of peers, N=|P |
Number of fragments stored by peer p

P | The peer set [1-N]
f Fragments number of a block, f < N
B | The blocks set [1-NB]
b | Ablock, a set of f peers
p | Apeer
B, | Block set of peer p
NB
N
Kp

Table 1. This table summarises notations
used in this paper.

Each block b can be represented by the list of those
f peers. The fragments of a peer p belong to distinct
blocks. A data distribution D can be defined by:

D:Bw Pf
Vb € B‘p1)p2)"'vpf € P)D] #pz 7é #pf’
bH{p]yva"')pf}

For any data distribution, and for any number of
blocks stored, we have :

NB = op 1)

1N
— %

f i=1

Now let introduce the notion of communication cost

for peers during the reconstruction process.
2.3 Local communication cost of a peer

The disturbance cost is indicated by the number of
data communications which are requested from a sin-
gle peer for rebuilding lost data. The local communi-
cation cost Cio¢(p,q) is the number of fragments that a
peer p sends to rebuild fragments of a peer q:

Vp‘q € P) Cloc[p,q] = ‘Bp ﬂBq‘

And the total number of fragments needed by the re-
construction is equal to the sum of all local cost peers,
except the dead peer gq. So we have :

N
VagePag*x(f-1)= 3  Cicpa)
p=1,p#q

In Figure 1 example, if peer 4 fails, local costs are :

Croc(1,4=Croc(2,41=Croc(3,4)=Croc(6,4)=Croc(7,4)=
Cioc(8,4)=1, Cioc(5,4)=2 and Cyoc(9,4)=0.
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Figure 1. Two blocks storage, f =5, N = 9.

2.4 Global communication cost of a peer

While two peers can send packets simultaneously,
the global communication cost is defined by the most
sending peer, i.e. the global communication cost
is the maximum of all local communication cost.
Let Cgiob(q) be the global cost to rebuild peer q
fragments:

Vq € P, Cgiob(q) = Max Cioc(1,q)» Cloc(2,q)» =+
Cloc[q71,q)yCLoc(q«H,q])---; Cloc[N,q)

Back to the storage example of Figure 1, peer 4
global communication cost is Cg1op(4) = 2.

2.5 Maximal communication cost

Considering a fragment distribution peers and that
any peer can fail, the maximal communication cost is
the maximum of the global communication costs:

C =max Cg
max acp glob(q)

Back to the storage example of Figure 1, maximal com-
munication cost is Cyax = 2

2.6 Problem formulation
Let us define the notion of optimal distribution.

Definition 2.1 Vf,VN,VNB, an optimal distribution
D is a data distribution that minimizes the maximal com-
munication cost Cmqx with the given number of stored
blocks NB, so let D' be an another data distribution:

Ciax(D) < Crmax(D’)

Let N and f be fixed parameters. Our goal is to pro-
vide an optimal distribution for a given value of NB.
By definition, this is equivalent to providing an opti-
mal distribution for a given value of Ciax.

3 Distributions

We want to extend the problem to find a dynamic
distribution taken into account the failure correlation.
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Soin a first time, we present three static data distribu-
tion. In 3.1.1 and 3.1.2, we present existing distribu-
tions coming from mathematical theory: finite affine
plane distribution for N = f2 and finite projective
plane distribution for N = f2—f+1. But these distribu-
tions are too restrictive for our problem. In 3.1.3, we
give a new method of distribution which respect all
conditions of our problem in a static way: a general
case distribution for all values of N. And in a second
time, we present dynamic data distribution. In 3.2.1,
we present the random distribution that will be com-
pared with our distributions in 3.3. In 3.2.2, we give a
method based on Metapeer which is more adapted to
dynamic problems: a Metapeers distribution.

3.1 Static data distributions

3.1.1 Finite affine plane distribution

Let take an optimal distribution based on the con-
struction of finite affine planes of order f, when this
construction is possible. The order of an affine plane
is the number n, n > 2, such that:

1. The total number of points is n? and the total
number of lines is n(n + 1).

2. All the lines share n points and all points share
n + 1 lines.

3. The intersection of two lines is no more that one.
So, the analogy with our problem is :

1. The order n corresponds to the number f of peers
in a blocks.

2. The points of the finite affine plane of order n are
peers, so N = {2,

3. The lines of the finite affine plane of order n are
blocks, so NB = 2 +f.

4. The intersection of two blocks is no more that one,
this imply a Crnax = 1.

We have proved in [13], that this distribution is an
optimal one. Figure 3 represents a finite affine plane
of order 3. It has 9 points and 12 lines.

This distribution requires N to be equal to 2, it is a
high restriction. In addition, for some values of f, find-
ing a construction of an affine plane of order f is still
an open problem. But this distribution gives a good
structuration of the network.

Figure 3 is an example of such distribution. Let
P={1,2,3,4,5,6,7,8,9} be the point set, then the lines set
is: 1={{1,2,3},{4,56}1{7,8,9]{14,7}{2,5,8}1{3,6,9}{1,5,9},
{2,6,7}43,4,8}13,5,7}12,4,9}11,6,8}}

Figure 2. The Fano plane or finite projective
plane of order 2

3.1.2 Finite projective plane distribution

In this case, a distribution can be defined by the con-
struction of finite projective planes of order (f — 1),
when this construction is possible. The order of the
projective plane is 1, such that the number of points is
n2 + n + 1 and the number of lines is n2 +n + 1, all
the lines share n + 1 points and all points share n + 1
lines. The intersection of two lines is one.

Figure 2 is an example of a finite projective plane
of order 2, called the Fano plane. It is composed of
7 points and 7 lines. Each line contains 3 points. If
P ={1,2,3,4,5,6,7} is the points set, then the lines set
is [={1,2,4}{2,3,5},{34,6}{45,71{1,56}{2,6,7}{1,3,7}}.
Line {2,6,7}in figure 2 is represented by a circle.

The analogy with our problem is that the order n
may correspond to the number f — 1 where f is the
number of peers in a block and the points of the finite
projective plane of order n may correspond to peers. It
follows that the total number of peersis N = f2 —f+1.
The lines of the finite projective plane of order n are
blocks. So, we get NB = f2—f+1 and the intersection
of two blocks is 1.

Like the distribution based on finite affine plane:
this distribution is optimal, but requires N to be equal
to f2 — f 4+ 1. For some values of f, finding a construc-
tion of a projective plane of order f — 1 is still an open
problem. But this distribution gives a good structura-
tion of the network.

3.1.3 General case distribution

This distribution is designed for f a prime number and
all N, such that f2 < N. First, we construct M; matri-
ces that are used to build the distribution.

Let 7,s be two integers such that 2 < 5. As-
sume there exists a greatest prime integer p such that
pxrt < sand r < p. For instance, such an inte-
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ger p trivially exists when r is prime and 2 =5
in this case p = r. We consider the p matrices M;,
My, ..., My with p lines and r columns defined by
My = (a{(j)1§igp;1§j§r where afy = k and af =
T+63-Nxp+(i—1+ (k-1 x (j—2)modp)
Vi<i<pandV2<ji<r.

For example, whenr =3 and s = 9, we getp = 3,

1 4 7 2 4 8
M]— 1 5 8 ,Mzz 25 9 andM3:
16 9 2 6 7
3 4 9
3 5 7
3 6 8

Let us first remark that, for any integer q such that
0 < g < r—1, the integers of the interval [1 + p x
g;p % (g + 1)] only appear in the (q + 1) column of
the matrices M7, ..., M. Moreover, two different lines
of the matrices My, ..., M, have at most one common
element.

Let us recall that f is the number of fragments and
N the cardinal of the peers set. Let NBp be the number
of blocks, we will obtain with our construction.

We assume that f2 < N and f is prime. We de-
fine two integers p; and p; in the following way.
The integer p, is the greatest prime integer such that
p1 x f < Nand f < py. The integer p; is the greatest
integer such that p; x f < p; and which verifies either
p2 < f or p3 is prime.

We can build a distribution such that NBp = p% +
f x p2 when p < f and NBp = p? + f x p3 when
p2 > f.

To manage failure correlation, this distribution is
quasi-optimal and gives a good structure that can be
used to implemented Metapeers over peers. The main
inconvenient is this distribution is not flexible about
the value N. When N moves, it is not reasonable to
redistribute always all data. At this moment, no algo-
rithm is able to take into account this condition.

So, we use a random distribution coupled with this
distribution to obtain a dynamic data distribution that
managed failure correlation.

Let us consider a structured optimal distribution ,
like in Figure 3, that optimizes the fragment sends.
When a peer fails, the rebuilt fragments must be
stored on other peers. On the one hand, several peers
can store the new fragments. Then the structure is
blown. On the other hand, new fragments can be
stored on the same new peer to guaranty that the dam-
aged structure is rebuilt. Then, the sending paral-
lelization is avoid by the reception.

Satisfying both conditions can be performed by the
use of a peer group instead of a single peer for each
structure node. Such groups are called Metapeers.

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Figure 3. Finite affine plane of order 3

Due to failure correlation, this is the distribution cho-
sen to organize Metapeers over the peers.

3.2 Dynamic data distribution

3.2.1 Random distribution

The random distribution stores the f fragments of each
data block on f distinct peers chosen randomly among
all the peers. Due to statistics, this distribution must
be efficient for a large number of peers. Indeed the
probability to obtain equal lists of f peers or with a big
number of common peers is weak. Nevertheless, this
distribution needs a global knowledge of the full net-
work, which is difficult to implement in a peer to peer
network. The storage system PAST [4] is an example
of such a distribution use: each peer and all resources
have an unique identifier, associated with a dynamic
routing system depending on these identifiers. A file
is stored on the peer the identifier is the closest to the
identifier file. The peer volatility implies that a new
peer with a closer identifier can appear after the stor-
age. Then, additional communications must be gen-
erated to find the file. Random data distribution is
usually a good non optimal data distribution to min-
imize the reconstruction cost such defined. But un-
fortunately this distribution does not permit to exploit
the physical network topology to avoid failure corella-
tion. To do so, structured distribution strategies must
be applied.

3.2.2 Metapeer distribution

The optimal distribution is not well adapted to the dy-
namic behavior of peer to peer systems. So, we pro-
pose a distribution which mixes optimal distribution
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Figure 4. From optimal distribution to optimal
dynamic distribution

with a random one. In this distribution, the set of
peers is partitioned in groups called Metapeers and
the set of Metapeers is structured by the optimal dis-
tribution . Figure 4 is an example of such distribution.
The number of Metapeers is selected in such a way
that we will be able to achieve an optimal distribution
over their.

Let us define a dynamic distribution, we use the Gen-
eral Case distribution and replace peers by Metapeer
: node i from the distribution is replaced by Metapeer
1. A fragment stored in node i will be stored in one of
the peers of Metapeer i. Consequently the number of
blocks is proportionnal to the number of nodes in the
resulting structure.

Our simulation showed that this distribution is able to
achieve better performance than the random distribu-
tion, but unfortunatly we can not retrieve the optimal
performance of an optimal distribution. In the next
part, we explain how the routing can be made into the
Metapeers and we explain the reconstrution process.

With this structured distribution, we are able to de-
fine a mecanism for the management of the dynamic
behavior of peer to peer storage systems. For instance,
when a new peer arrives, it first selects the Metapeer it
will integrate. To improve data lifetime, the Metapeer
is selected in such a way that the new peer is geo-
graphically far from peers of other Metapeers (w.r.t.
some balancing criterions). The new peer also selects
peers of other Metapeers which have good communi-
cation bandwidth with it. Then, when a reconstruc-
tion must be achieved, it sends fragments to those
peers.

In the same way that peers of the old distributions,
fragments of a block are distributed over Metapeers of
the structure. For each selected Metapeer, a random
function selects the storing peer. In order to balance
the storage, the random function is modified to tend

to select the peer that stores the less. Afterwards, the
function will take into account the network topology.

andom NB 10x ——
Random NB 1000x —*—
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Reconstruction Cost
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Figure 5. Recontruction cost depending on N.
Impact of NB on the random distribution with
f=5.
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Figure 6. Recontruction cost depending on
N. Impact of NB on the Metapeer distribution
with f = 5.

3.3 Analysis

The first two distributions are the finite affine plane
distribution seen in section 3.1.1 and finite projective
plane distribution seen in section 3.1.2. They are kinds
of the General Case distribution. These distributions
were analyzed in paper [13]. We showed that the
General Case distribution cost is close to or equal to
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the theoretical bound. To realize the efficiency of the
Metapeer distribution, we compare the General Case
distribution, that is an ideal distribution, with the ran-
dom distribution. The Metapeer distribution and ran-
dom distribution are dynamic distributions. Even if
we know that the General Case distribution is not dy-
namic, we know that no distribution can be better than
the lower bound given by the General Case distribu-
tion. So the General Case distribution will be our ref-
erence. Our goal is to evaluate how much it costs to
take into account the failure correlation and the struc-
ture.

For our experimentations, we use a simulator that
computes the reconstruction cost depending on the
value N, f, and a given distribution.

Figure 5, 6, show the impact of NB depending on N
on the reconstruction cost. The value NB is always
a factor of N, from 10 to 1000. Figure 5 shows for
the random distribution and Figure 5 represents the
Metapeer distribution.

Figure 7, 8, show the impact on the reconstruction
cost of f depending on N. Figure 7 is with f equals to
5. Figure 7 is with f equals to 29.

We always consider that the Metapeer size is
the same for all Metapeers. Consequently, Fig-
ure 7, 8, 6 show the reconstruction cost depending on
the Metapeer size, while the depend on N. For exem-
ple, the first point given by a Metapeer distribution is
obtained with a Metapeer size of one, i.e one peer per
Metapeer, and consequently with a value of N equals
to the total number of Metapeers.

Figure 5 and Figure 6 show that with random dis-
tribution and the Metapeer distribution, when you in-
crease the number of blocks stored by each peer, we
have the same behavior in both case. This is due to the
fact that in the Metapeer distribution, we use a ran-
dom selection inside Mmetapeers. This is the reason
why the behavior is similar.

Figure 7 shows that for small values of the
Metapeer size, the random distribution cost is worth
than the Metapeer one. It confirms the advantage
to compute an optimal distribution versus a random
distribution. Another observation, see Figure 8, is
about the Metapeer sizes: the Metapeer distribution
cost is close to the random distribution cost, when the
Metapeer size is bigger than two. So we do not need
to choose a great number of Metapeer. Hence we dont
need to have a big structure to manage the failure cor-
relation.

Figure 8 shows that even if the Metapeer sizes
grows, the Metapeer distribution cost is always very
close to the random distribution cost. We can con-
clude, that the cost to manage the failure correlation

and to have a dynamic distribution is not so high, but
we expect to reduce this cost.

160
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Figure 7. Recontruction cost depending on
N. Each peer stores around 100 blocks and
f =29.

120

andom

Metapeers with Metapeer 25
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100 H 4
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Figure 8. Recontruction cost depending on N.
Each peer stores around 100 blocks and f = 5.

4 Conclusion

In this paper, we analyzed the reconstruction cost
in a peer to peer storage system where data are
distributed using a dispersal redundant information
scheme. A good distribution of data is a distribution
which minimizes the data sent by a peer to rebuild
data lost by a peer failure. The random data distri-
bution is usually a good distribution to minimize the
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reconstruction cost for big value of N. But unfortu-
nately this distribution does not permit to exploit the
physical network topology to take into account of the
peer failure correlations. On the other hand, an opti-
mal distribution is too strict and it is not well adapted
to the dynamic behavior of peer to peer systems. We
proposed a distribution which mixes the static Gen-
eral Case distribution with a random one.

Simulations show that the number of Metapeers
are selected in such a way we are able to achieve
a good distribution taken into account peer failure
correlation. We can potentially improve the Metapeer
distribution to have better performance than others.
We think that this can be done by the modification
of the peer selecting fonction in Metapeer. This is a
future feature.

We want to thank to Loic Crampon for his participa-
tion in simulator development.
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Quatrieme partie

Perspectives






Chapitre 12

Travaux futurs

M Es dernieres activités de recherche se concentrent autour du stockage distribué a grande
échelle qui fait suite au travail de valorisation précédent. Ce travail c’est concrétisé par un
brevet sur un systéme pérenne de stockage distribué a grande échelle [38], et la réalisation
d’un logiciel, appelé DeepTorrent, basé sur une extension du protocole BitTorrent, qui est
aujourd’hui exploité par la société Ugloo !, avec qui j’ai un contrat de collaboration. Autour
de ce travail de développement logiciel, d’autres aspects ont été abordés, tels que le controéle
d’acceés anonyme aux données [11], ou l'intégration d’'un mécanisme de RPC dans les DHT
[12].

En manieére de perspective de recherche, toujours dans le cadre de cette collaboration avec
la société Ugloo, je compte continuer les travaux autour du stockage pérenne a tres grande
échelle, notamment sur les codes de redondance et les mécanismes de reconstruction.

A plus long terme, je voudrais aborder les méthodes et techniques qui permettraient d’établir
la confiance dans un réseau ouvert d’opérateur de stockage, qui s’appuient sur 'utilisation des
blockchains.

12.1 Maintien de l’'intégrité des données a grande échelle

Cette derniere décennie, I’étude de nouveaux codes correcteurs ainsi que des mécanismes
de régénération a connu un vif regain d’intérét, notamment par les plus gros opérateurs de sto-
ckage que sont Google, Amazon et Microsoft Azure qui soumettent actuellement de nombreux
brevets sur ce domaine (voire par exemple US9244761B2, US8386841B1) . Ces opérateurs ont
été aussi confrontés au cott de la réparation. Cependant la plupart de ces travaux s’adressent
essentiellement a des architectures de type data-center ou il y a une grande homogénéité du
matériel et des réseaux spécifiques, ainsi qu'un taux de volatilité (churn) contr6lé par 'envi-
ronnement (personnel dédié a la maintenance).

Cela ne correspond pas aux environnements que nous souhaitons adresser qui se caractérisent
par une tres grande hétérogénéité du matériel et du réseau sous-jacent, ainsi qu’une volatilité
beaucoup plus aléatoire. L'irrégularité du réseau implique que le placement des données et de
leur redondance a beaucoup d’impact sur les performances et la pérennité. De précédents tra-
vaux théoriques ont montré que certaines parties de ce probléeme étaient NP-difficile, notam-
ment quand un des objectifs est de minimiser I'impact des reconstructions sur chaque nceud.
Des travaux plus récents abordant cette problématique | ], ont proposé des simulations
dans un cas d’usage particulier (implémentation d’un tuple space) en utilisant le code clas-

1. Vous trouverez une description de la solution dans le livre blanc mis en annexe
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sique de Reed Solomon. Les auteurs ont évalué quelques stratégies de placement sans en iden-
tifier de particuliérement prometteuses. D’autre part, cette étude ne considere pas des taux de
churn élevés, tels que celles que I'on rencontrerait dans un environnement plus volatile. Il y a
donc tout un nouveau champ d’études et d’expérimentations a mener qui devront tenir compte
des nouveaux codes de redondance, des techniques de network coding, d’équilibrage de charge
dynamique. C’est en partie ce nouveau domaine qu’abordera mon projet de recherche.

Une approche complémentaire est d’étudier les nouveaux codes correcteurs. En effet, pour
réduire le cotit de la régénération des données, les nouveaux codes se divisent en deux grandes
catégories, les codes locaux (local code ou LC) | ], qui au prix d’un taux de redondances
plus élevé réduisent la taille des informations nécessaires a une reconstruction, notamment
avec des redondances hiérarchiques, et les codes régénérateurs (Regenerator code ou RG)
[ ], qui sont capable de régénérer les données avec moins de lecture graces aux tech-
niques de Network Coding. Enfin, une approche utilisant de tres larges codes, ou la fragmenta-
tion des données est poussée a I’extréme pour fournir un tres haut niveau de redondances sans
surcout a fait son apparition ces derniéres années et se base sur les codes fontaines, comme par
exemple Raptor [ ]. Cette étude nécessitera des travaux d’analyse quantitative pour esti-
mer la pertinence de ces derniers a notre systeme. Cela nécessitera la conception d’un modéle
stochastique de notre systeme.

De la méme manieére, une grande partie de ce travail préliminaire consistera au développe-
ment de simulateur de notre solution sur un Framework tel que Omnet++, qui permettra,
d’une part d’analyser les performances de notre systeme sur divers types de réseaux a grande
échelle, et d’autre part évaluer l'efficacité des nouveaux mécanismes de redondance. Cette
simulation nous permettra aussi d’étudier de quelle maniére nous pourrons implémenter ces
nouveaux codes.

Nous estimons que le choix de nouveaux schémas de redondance, ainsi que de nouveaux
mécanismes de reconstruction, auront un impact non négligeable sur la structure du code
actuel qui a s’appuie sur des schémas réguliers de reconstruction. L'architecture du code sera
probablement impactée par les nouveaux choix, notamment en ce qui concerne le placement
des données. Il faudra développer de nouveaux prototypes et les tester sur des plateformes de
test dédiées.

Enfin, le choix de nouveaux codes peut impliquer de nouvelles primitives d’encodage et
de décodage. Certaines primitives peuvent étre cotiteuses en calcul. Actuellement, j’ai fait I’ac-
quisition d’un nouveau type d’architecture, les PIM (Processeurs In Memory) de la société
UpMem. C’est une architecture massivement paralléle qui intégre des processeurs au niveau
de RAM. Un travail connexe sera donc d’étudier 'efficacité de ce type d’architecture pour de
nouveaux noyaux de calcul.

12.2 Construction d’un réseau ouvert fiable d’agents de stockage

Avec I'introduction de son offre S3 en 2007, Amazon a créé un nouveau marché du stockage
des données. Amazon propose de ’'hébergement de données dans ses centres de données, dans
lesquels les clients peuvent déposer et retirer leurs données, tout en bénéficiant de 1'ubiquité
intrinseque qu’offre Internet.

Aujourd’hui, Amazon segmente son marché en déclinant de nouvelles offres de stockage
avec différents niveaux de qualités de service pour adresser les différents cycles de vie des
données. Les autres majors, que ce soit Google, Apple ou Microsoft, se sont aussi engouffrés
sur ce nouveau marché et ont leurs propres offres, respectivement Google-Drive, Apple iCloud
ou Microsoft-Drive. D’autres acteurs de taille plus modeste, tels que OVH, proposent aussi leur
solution de stockage Cloud.
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Depuis plus de dix ans, les efforts de standardisation des interfaces de stockage, par exemple
S3 ou OpenStack, font que le marché est passé du B2C au B2B. Aujourd’hui, des acteurs tels
que DropBox, ou des éditeurs de logiciels de stockage, tels que EMC, Rubrick, Veam... utilisent
les offres de stockage Cloud existantes pour proposer leur service a leurs clients. Le secteur se
structure, avec d’un coté des opérateurs qui proposent du stockage pur, et de l'autre des ac-
teurs qui proposent des services ajoutés sur les données stockées.

Le succes est tel que prochainement l'offre sera insuffisante. Les tarifs commencent dés
aujourd’hui a augmenter (voir Amazon ces dernieres années), et les majors sont contraint de
déployés de nouveau data centers pour faire face a la demande. Il est tres difficile pour de
nouveau acteurs d’entrer dans ce marché de par les investissements nécessaires pour avoir la
masse critique minimale, et de par la position de domination qui a été prise par les majors.

La seule solution pour ouvrir le marché a de nouveaux acteurs est de définir un protocole
qui permette de s’intégrer dans un réseau global, ou chaque agent est rétribué en fonction de
sa contribution. C’est ce que proposent les projets SIA, Storj ou Filecoin en se basant sur le
pouvoir de libéralisation des marchés par I'utilisation de blockchains | -

Dans les solutions qui sont proposées, une des problématiques les plus importantes, et de
vérifier I'intégrité dans le temps des données stockées par des tiers, a savoir comment vérifier
que chaque opérateur respect le contrat de conservation des données dans la durée. C’est ce
travail que j'aimerai aborder par la suite.

Ce travail abordera principalement 1’étude des mécanismes de contréles de 1'intégrité des
données stockées chez les tiers, et en particulier un mécanisme de contréle collégial. Ce mécanisme
ce basera en premier lieu sur les techniques de preuve de possession (PDP et POR), qui génerent
des challenges que doivent valider les tiers pour prouver qu’ils possédent bien les données
stockées. Elle se basera en second lieu sur I’étude des mécanismes d’incitation, de punitions
et de réputations basés sur 1'utilisation de la blockchain, qui permettent d’asseoir la confiance
dans de tels systéemes.
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