
HAL Id: tel-04455977
https://hal.science/tel-04455977

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved artificial bee colony algorithms for robot path
planning
Yibing Cui

To cite this version:
Yibing Cui. Improved artificial bee colony algorithms for robot path planning. Engineering Sciences
[physics]. Centrale Lille, 2022. English. �NNT : 2022CLIL0023�. �tel-04455977�

https://hal.science/tel-04455977
https://hal.archives-ouvertes.fr

CENTRALE LILLE

THESE

Présentée en vue
d’obtenir le grade de

DOCTEUR

En

Spécialité : Automatique, Génie informatique, Traitement du Signal et des
Images

Par

Yibing CUI

DOCTORAT DELIVRE PAR CENTRALE LILLE

Titre de la thèse :

Algorithmes améliorés de colonies d’abeilles artificielles pour la

planification de la trajectoire des robots

Improved artificial bee colony algorithms for robot path planning

Soutenue le 05 Décembre 2022 devant le jury d’examen :

Rapporteur M. Yangquan CHEN Professeur, University of California, USA

Rapporteur M. Andreas RAUH Professeur, Carl von Ossietzky University of

Oldenburg, Germany

Membre Mme. Nathalie MITTON Directrice de Recherche, INRIA Lille-Nord Europe

Membre M. Philippe MATHIEU Professeur, University of Lille, France

Membre M. Yongguang YU Professeur, Beijing Jiaotong University, China

Invité Mme. Sara IFQIR Professeur Associée, Centrale Lille, France

Invité M. Wei HU Professeur Associé, Beijing Jiaotong University,

China

Directeur de thèse M. Ahmed RAHMANI Professeur, Centrale Lille, France

Thèse préparée au Centre de Recherche en Informatique Signal et Automatique de Lille
CRIStAL, UMR CNRS 9189 - Centrale Lille

Ecole Doctorale MADIS

À mes parents,

à toute ma famille,

à mes professeurs,

et à mes chèr(e)s ami(e)s.

Acknowledgements

This research work has been realized in Ecole Centrale de Lille, in laboratory

“Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL)”,

with the research team “System of Systems Engineering (SoftE)”.

First and foremost, I would like to express my deepest gratitude to my super-

visor Prof. Ahmed RAHMANI. Over the past three years, his patient guidance,

understanding, and constant support have enabled me to gain a lot, including aca-

demic research experience as well as life insights. These lessons learned from him

will benefit me significantly in both my professional and personal lives. Moreover,

he offered his continuous advice and insight while this thesis has been written.

Words cannot express my appreciation to my thesis reviewers, Prof. Yangquan

CHEN and Prof. Andreas RAUH, for their invaluable patience and feedback.

My sincere thanks also go to all the jury members for their kind acceptance to

participate in my defense. Their insightful comments and expertise shone a light

on my drawbacks and the research road in the future.

I would also like to thank Mr. Rochdi MERZOUKI, the leader of the group

SoftE in laboratory CRIStAL, for providing us great opportunities to exchange

with other scholars. In addition, many thanks to Ms. Sara IFQIR, a very kind

teacher in our group. Her patience and knowledge helped me a lot and gave me

much encouragement.

At the same time, I would like to extend my sincere thanks to Prof. Yongguang

YU for his guidance and precious suggestions. I am also very grateful to Dr. Wei

HU for the great help he has given me. He has continued to assist me in many

aspects throughout my Ph.D., while his research work has inspired me on the

path of research.

During the past three years, I had the pleasure of working with my colleagues

Yunlong ZHANG, Xinyong WANG, Yiwen CHEN, and Xiaoqin ZHAI, to name

i

ACKNOWLEDGEMENTS

a few. And special thanks to the staff at Centrale Lille and CRIStAL, Vanessa

FLEURY, Bénédicte FIEVET, Dominique DEREMETZ, etc. for their kind help.

I also could not have undertaken this journey without the support from the

CSC (China Scholarship Council), who financed my research work.

Finally, and most importantly, I want to thank my dear family and friends

for their encouragement, support and love, especially my parents. The trust from

all these lovely people has kept my spirits and motivation high throughout this

process.

Lille, France Yibing CUI

September, 2022

ii

Contents

Acknowledgements i

Table of Contents iii

List of Figures vii

List of Tables x

Abbreviations and notations xiii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Overview of meta-heuristic algorithms 5

1.3 Overview of Artificial bee colony (ABC) algorithm 8

1.3.1 The standard ABC algorithm 8

1.3.1.1 Initialization phase 9

1.3.1.2 Employed bee phase 9

1.3.1.3 Onlooker bee phase 10

1.3.1.4 Scout bee phase 10

1.3.2 Related work on ABC algorithm improvement 13

1.3.2.1 Modification of solution search equations 13

1.3.2.2 Novel selection mechanisms 16

1.3.2.3 Hybridization with other algorithms or techniques 16

1.3.3 Application prospects . 17

1.4 Overview of robot path planning (RPP) problem 18

1.5 Preliminaries . 22

1.5.1 Differential evolution (DE) algorithm 22

1.5.1.1 Mutation operation 23

iii

CONTENTS

1.5.1.2 Crossover operation 23

1.5.1.3 Selection operation 24

1.5.2 Particle swarm optimization (PSO) algorithm 24

1.5.3 Cuckoo search (CS) algorithm 26

1.6 Contributions and outline of dissertation 29

2 Improved ABC algorithm with dynamic population composition

(ABCDC) 33

2.1 Introduction . 34

2.2 Proposed ABCDC algorithm . 35

2.2.1 Improved initialization method 36

2.2.2 Method of dynamic population composition 36

2.2.3 Two enhanced solution search equations 41

2.2.4 The framework of ABCDC algorithm 42

2.3 Experiments on function optimization problems 45

2.3.1 Benchmark functions . 45

2.3.2 Sensitive analysis of the parameters a and T_fail 45

2.3.3 Comparison with ABC variants 48

2.3.4 Comparison with non-ABC algorithms 54

2.3.5 Convergence behavior analysis 59

2.4 Conclusion . 61

3 Reinforcement Learning based ABC algorithm (ABC_RL) 63

3.1 Introduction . 64

3.2 Preliminaries . 66

3.2.1 Reinforcement learning (RL) 66

3.3 Proposed ABC_RL algorithm . 68

3.3.1 Scale factors based on heavy-tailed distribution 68

3.3.2 Employed bee phase with RL 70

3.3.2.1 Differential search strategy 70

3.3.2.2 Adjusting parameter nbup with Q-learning 71

3.3.3 Improved onlooker bee phase 74

3.3.4 The framework of ABC_RL algorithm 74

3.4 Experiments on function optimization problems 77

3.4.1 CEC 2017 benchmark problems 77

iv

CONTENTS

3.4.2 Effects of the initial value of parameter dratio 77

3.4.3 Comparison with ABC variants 80

3.4.4 Effectiveness of the proposed strategies 85

3.4.5 Convergence behavior analysis 87

3.5 Conclusion . 91

4 Learning based ABC algorithm (ABCL) 93

4.1 Introduction . 94

4.2 Preliminaries . 96

4.2.1 Teaching-learning based optimization (TLBO) algorithm . 96

4.2.1.1 Initialization . 96

4.2.1.2 Teaching phase 96

4.2.1.3 Learning phase 97

4.3 Proposed ABCL algorithm . 97

4.3.1 Enhanced employed bee phase 98

4.3.2 Learning-based onlooker bee phase 99

4.3.3 Enhanced scout bee phase 100

4.3.4 The framework of ABCL algorithm 101

4.4 Experiments on function optimization problems 101

4.4.1 Benchmark functions . 104

4.4.2 Comparison with ABC variants 104

4.4.3 Convergence behavior analysis 108

4.5 Conclusion . 110

5 Fractional-order ABC algorithm (FOABC) 111

5.1 Introduction . 112

5.2 Proposed FOABC algorithm . 113

5.2.1 Scale factors based on Lévy distribution 113

5.2.2 Differential search strategy for employed bee phase 116

5.2.3 Fractional-order search strategy for onlooker bee phase . . 117

5.2.3.1 Fractional-order calculus definition 117

5.2.3.2 Proposed fractional-order solution search equation 118

5.2.3.3 Implementation steps of modified onlooker bee

phase . 121

5.2.4 The framework of FOABC algorithm 122

v

CONTENTS

5.3 Experiments on function optimization problems 122

5.3.1 Sensitive analysis of r and q 125

5.3.2 Comparison with ABC variants 129

5.3.3 Comparison with non-ABC algorithms 135

5.3.4 Effectiveness of the proposed strategies 141

5.3.5 Convergence behavior analysis 143

5.4 Conclusion . 145

6 Robot path planning via improved ABC algorithms 147

6.1 Introduction . 148

6.2 Single robot path planning (SRPP) 150

6.2.1 Problem formulation of SRPP 150

6.2.2 Simulation results of SRPP 155

6.2.2.1 Comparison with ABC variants 155

6.2.2.2 Comparison with well-known path planners . . . 161

6.3 Multi-robot path planning (MRPP) 165

6.3.1 Problem formulation of MRPP 166

6.3.1.1 Robot kinematic model 167

6.3.1.2 Implementation method of MRPP 168

6.3.1.3 Objective function of MRPP 171

6.3.2 Simulation results of MRPP 173

6.3.2.1 Comparative study of six-robot path planning . . 173

6.3.2.2 MRPP process of six robots 178

6.3.2.3 Comparative study of twelve-robot path planning 178

6.3.2.4 MRPP process of twelve robots 183

6.4 Conclusion . 185

Conclusions and Perspectives 186

References 191

Résumé Etendu 212

vi

List of Figures

1.1 Classification of optimization methods 4

1.2 The flowchart of the standard ABC algorithm 11

1.3 Comparison of global and local path planning 20

1.4 Classification of robot path planning approaches 21

2.1 Comparison between uniform random sampling and SLHD sam-

pling in 2D. 37

2.2 The flowchart of ABCDC algorithm 44

2.3 Average rankings of ABC algorithms by Friedman test with D =

30, 50, and 100 . 54

2.4 Average rankings of non-ABC algorithms and ABCDC by Fried-

man test with D = 30, 50, and 100 59

2.5 The convergence performance of ABCDC and compared ABC al-

gorithms with D=30 . 60

3.1 The framework of reinforcement learning 67

3.2 The flowchart of ABC_RL algorithm 76

3.3 Average rankings of ABC algorithms by Friedman tests with D =

10, 30 and 50 . 85

3.4 Friedman test results for effectiveness demonstration of modifications 87

3.5 The convergence performance of ABC_RL and compared ABC

algorithms . 88

3.6 The influence of RL method on convergence rate of ABC algorithm 90

4.1 The flowchart of ABCL algorithm 103

4.2 Average rankings of ABC algorithms by Friedman test with D =

10, 30, and 50 . 107

vii

LIST OF FIGURES

4.3 The convergence performance of ABCL and compared ABC algo-

rithms . 109

5.1 Demonstration of Lévy flights and traditional random walk in 2D 115

5.2 Process of updating a food source’s memory cell 121

5.3 The flowchart of FOABC algorithm 124

5.4 Average rankings of ABC algorithms by Friedman test with D =

10, 30, and 50 . 135

5.5 Average rankings of non-ABC algorithms and FOABC by Fried-

man test with D = 10, 30, and 50 139

5.6 The convergence performance of FOABC and compared ABC al-

gorithms . 144

6.1 Example of RPP environment . 151

6.2 Implementation method of robot path planning 151

6.3 Flowchart of SRPP by the proposed ABC_RL algorithm 154

6.4 The initial configurations of six SRPP workspaces 156

6.5 Rankings of compared ABC algorithms based on average path

length over 30 independent executions 160

6.6 Rankings of compared ABC algorithms based on average running

time over 30 independent executions 160

6.7 The best paths of FOABC algorithm and four well-known path

planners in six workspaces . 164

6.8 Environment of multi-robot path planning 166

6.9 Kinematic illustration of a mobile robot from present to its new

position . 167

6.10 Illustrations of determining subsequent positions for multiple robots

at the same time . 169

6.11 Illustration of measuring distances from obstacles in 5 directions . 172

6.12 The initial configurations of MRPP workspaces for six robots . . . 174

6.13 The examples of detours in Map 5 planned by ABC algorithm . . 177

6.14 Comparison of running time in six robots path planning problems 178

6.15 MRPP process for six robots via ABCL algorithm in Map 2 . . . 179

6.16 MRPP process for six robots via ABCL algorithm in Map 4 . . . 180

6.17 The initial configurations of MRPP workspaces for twelve robots . 181

viii

LIST OF FIGURES

6.18 MRPP process for twelve robots via ABCL algorithm in Map 1 . 184

ix

LIST OF FIGURES

x

List of Tables

2.1 22 benchmark optimization functions 46

2.2 Comparison of ABCDC variants with different values of a and

T_fail . 47

2.3 Parameter settings of ABCDC and compared ABC algorithms . . 48

2.4 Comparison between ABCDC and other ABC variants with D = 30 49

2.5 Comparison between ABCDC and other ABC variants with D = 50 51

2.6 Comparison between ABCDC and other ABC variants with D = 100 53

2.7 Comparison between ABCDC and other meta-heuristic algorithms

with D = 30 . 55

2.8 Comparison between ABCDC and other meta-heuristic algorithms

with D = 50 . 57

2.9 Comparison between ABCDC and other meta-heuristic algorithms

with D = 100 . 58

3.1 Form of Q table in Q-learning method 67

3.2 Comparison of initialization methods for parameter dratio 79

3.3 Parameter settings of ABC_RL and compared ABC algorithms . 80

3.4 Comparison between ABC_RL and other ABC variants with D = 10 81

3.5 Comparison between ABC_RL and other ABC variants with D = 30 83

3.6 Comparison between ABC_RL and other ABC variants with D = 50 84

3.7 Effectiveness of each modification of ABC_RL on benchmarks

with D= 10, 30 and 50 . 86

4.1 Benchmark functions . 104

4.2 Comparison between ABCL and other ABC variants with D = 10 105

4.3 Comparison between ABCL and other ABC variants with D = 30 106

4.4 Comparison between ABCL and other ABC variants with D = 50 107

xi

LIST OF TABLES

5.1 Comparison of FOABC variants with number of terms r = 4 and

q taked values from 0.1 to 0.9 with ABC 126

5.2 Comparison of FOABC variants with number of terms r = 8 and

q taked values from 0.1 to 0.9 with ABC 127

5.3 Comparison of FOABC variants with number of terms r = 12 and

q taked values from 0.1 to 0.9 with ABC 128

5.4 Friedman test results of three competitive FOABC variants 129

5.5 Parameter settings of FOABC and compared ABC algorithms . . 130

5.6 Comparison between FOABC and other ABC variants with D = 10 131

5.7 Comparison between FOABC and other ABC variants with D = 30 132

5.8 Comparison between FOABC and other ABC variants with D = 50 134

5.9 Parameter settings of FOABC and compared non-ABC algorithms 136

5.10 Comparison between FOABC and other improved meta-heuristic

algorithms with D = 10 . 137

5.11 Comparison between FOABC and other improved meta-heuristic

algorithms with D = 30 . 138

5.12 Comparison between FOABC and other improved meta-heuristic

algorithms with D = 50 . 140

5.13 Effectiveness of each modification of FOABC on benchmarks with

D = 50 . 142

6.1 Comparison of 15 ABC algorithms for solving SRPP problems . . 157

6.2 (continued) Comparison of 15 ABC algorithms for solving SRPP

problems . 158

6.3 Comparison of proposed ABC algorithms and four path planners

for solving SRPP problems . 163

6.4 Comparison of average required steps and average path lengths for

six robots . 175

6.5 Comparison of average required steps, average path lengths and

running time for twelve robots . 182

xii

Abbreviations and notations

List of abbreviations

EAs Evolutionary algorithms
SIAs Swarm intelligence algorithms
ABC Artificial bee colony
DE Differential evolution
GA Genetic algorithm
PSO Particle swarm optimization
CS Cuckoo search
ACO Ant colony algorithm
TLBO Teaching-learning based optimization algorithm
RL Reinforcement learning
OBL Opposition-based learning
RPP Robot path planning
SRPP Single robot path planning
MRPP Multi-robot path planning
FES Number of function evaluations
max_FES Maximal number of function evaluations
SN Number of swarm

ABCDC ABC algorithm with dynamic population composition
ABC_RL RL-based ABC algorithm
ABCL Learning-based ABC algorithm
FOABC Fractional-order ABC algorithm

xiii

Abbreviations and notations

List of notations

Rn the n-dimensional Euclidean real vector space
min getting the minimum value in a given list of values
max getting the maximum value in a given list of values
rand random numbers
|p| absolute value of a scalar p

⌈q⌉ ceiling function (the least integer greater than or equal to q)
∅ empty set
⊕ entry-wise multiplications

xiv

Chapter 1

Introduction

Contents

1.1 Background and motivation 1

1.2 Overview of meta-heuristic algorithms 5

1.3 Overview of Artificial bee colony (ABC) algorithm . 8

1.3.1 The standard ABC algorithm 8

1.3.2 Related work on ABC algorithm improvement 13

1.3.3 Application prospects 17

1.4 Overview of robot path planning (RPP) problem . . 18

1.5 Preliminaries . 22

1.5.1 Differential evolution (DE) algorithm 22

1.5.2 Particle swarm optimization (PSO) algorithm 24

1.5.3 Cuckoo search (CS) algorithm 26

1.6 Contributions and outline of dissertation 29

1.1 Background and motivation

With the accelerated development of technology, optimization problems can be

found in a wide range of fields, including engineering, finance, biology, medicine,

transportation, robotics, and artificial intelligence, to mention a few. At the same

time, people often strive to optimize their profit while minimizing various costs in

reality. For instance, the path planning in robotics or intelligent transportation

1

1. INTRODUCTION

requires creating an ideal path while taking into account various environmental

conditions in order to decrease travel consumption and boost transportation ef-

ficiency; the feature selection in image analysis demands for extracting the most

relevant features from a large amount of data to reduce the subsequent compu-

tational dimensions. In this context, effectively addressing these problems has

significant implications for raising productivity and lowering expenses in the re-

lated tasks. Nevertheless, resources like time and money are constantly limited in

practical applications. Therefore, it is crucial to optimize the utilization of these

resources while complying with certain constraints.

Hence, constructing mathematical models becomes a crucial approach for han-

dling various optimization problems effectively. At the same time, numerous

optimization methods have been proposed to improve the final results. And re-

searchers have continued to further enhance the approaches up to today due to

the increasing requirements in all aspects. In addition, various simulation tools

have emerged as crucial research techniques.

To resolve optimization problems, the manner of designing optimization mod-

els is also essential. Meanwhile, it is normal that a task can alternatively be

accomplished through different ways of problem formulation. After properly

defining the objective function, the desired solution can be found via various

optimization methods. It is worth pointing out that the solution might be the

exact optimal solution or a high-quality one that was produced rapidly. In this

case, selecting or designing appropriate optimization algorithms for different sit-

uations is indeed a meaningful research direction.

Thus, in this context, lots of optimization methods have been recommended

which can be classified in a number of ways. According to the nature of the algo-

rithms, they can be generally categorized into two groups, namely deterministic

and stochastic algorithms (Yang, 2020). The former follows a rigorous searching

process, which starts from an initial point, then generates the search directions

and iteration steps based on specific rules. Afterwards, the algorithm iterates

and updates the search coordinate until the termination condition is satisfied.

In other words, the deterministic optimization methods obtain the same result

over multiple runs. This category includes many traditional approaches which

have been proposed since the last century, such as Newton-like methods (e.g.,

Newton’s and Quasi-Newton methods) (Dennis & Moré, 1977; Fletcher, 2013; Li

2

1.1 Background and motivation

et al., 2019). In fact, these methods usually reach the optimum through differ-

entiation (Chopra & Ansari, 2022). More precisely, Hessians or gradients need

to be evaluated during the searching process. In this case, the deterministic ap-

proaches may have difficulties in determining the optimal solution quickly enough

when tackling non-continuous, non-convex, or large-scale optimization problems

(Flor-Sánchez et al., 2022; Lin et al., 2012). However, it is important to recognize

that many real-world optimization problems are complex or have discontinuous

objective functions.

The second category of approaches, in contrast, can be distinguished by the

fact that randomness is a crucial component of stochastic optimization methods

(Yang, 2020). Due to the involvement of randomness, uncertainty exists in their

search process as well as the final results. Hence, the solutions obtained by this

kind of method are different for each run. Heuristic and meta-heuristic are the

two main types of stochastic optimization algorithms, although there is little

distinction between them.

The heuristic is a way by trial and error to generate solutions, which comes

from a Greek verb (ευρισκω) with the meaning “to find/discover”. As mentioned

above, the complexity of optimization problems keeps increasing. And solving

complex problems requires extensive evaluation to determine an exact solution.

Nevertheless, the time taken to find this exact solution is often unacceptable

(Pearl, 1984). Moreover, many of the practical applications have been considered

as NP-hard problems. And their deterministic polynomial time methods hardly

exist (Li & Jiang, 2000). In this context, the heuristic techniques demonstrate

their advantages for the aforementioned issues by presenting a way to minimize

the number of evaluations and find a solution within a reasonable time. In fact,

feasible solutions can be found to a challenging optimization problem in a reason-

able time frame, but there is no guarantee that the solutions are optimal. Note

that machine learning methods can also be classified into this category as they

aim to improve their performance in iterative trial and error.

The so-called meta-heuristic algorithm is a further extension of the heuris-

tics. The prefix “meta-” denotes “beyond” or “higher-level”, and they usually

outperform the heuristic methods (Yang, 2020). Meta-heuristics are not problem-

specific, and they can find sufficiently good approximate solutions by exploring

3

1. INTRODUCTION

the search space. Moreover, they also allow parallel implementation (Abdel-

Basset et al., 2018). Such algorithms has become increasingly popular in recent

decades because they are simple to understand, gradient-free, flexible, and effec-

tive in targeting various practical problems (Chopra & Ansari, 2022). Many of

the meta-heuristic algorithms are designed by modeling the intelligent behavior of

biological species. More descriptions of meta-heuristic algorithms are presented

in the next subsection.

Figure 1.1 is drawn to clearly illustrate the hierarchy of the aforementioned

optimization algorithms. As previously mentioned, there are numerous classifica-

tion schemes for countless optimization algorithms, and here we simply provide

one of the most popular ones.

Fig. 1.1. Classification of optimization methods

In addition, another class of optimization methods has emerged in recent

years, combining stochastic and deterministic algorithms. The hybrid methods

aim to take advantages of both algorithms by utilizing the gradient information

as well as the solution search strategies of meta-heuristic algorithms (Dillen et al.,

2021; Flor-Sánchez et al., 2022; Gholizadeh et al., 2020).

Based on the background above, it can be observed that meta-heuristic al-

gorithms are very promising optimization methods with a broad variety of ap-

plications. Meanwhile, it is important to keep in mind that due to the growing

need for effectiveness, every well-known meta-heuristic algorithm can be further

4

Introduction/chapter1_figs/EPS//classiOpt2.eps

1.2 Overview of meta-heuristic algorithms

enhanced. For instance, the convergence speed and the capability to avoid local

optima are always expected to be better. And precisely handling the trade-off be-

tween exploration and exploitation for all optimization tasks is also challenging.

Therefore, this thesis focused on a class of meta-heuristic algorithms represented

by the Artificial Bee Colony (ABC) algorithm and proposed a series of improved

variants by analyzing the characteristics and weaknesses of the ABC algorithm.

Furthermore, problems with a higher application value are also taken into ac-

count. The proposed enhanced ABC versions have successfully solved different

types of optimization problems, including a series of robot path planning prob-

lems.

1.2 Overview of meta-heuristic algorithms

The meta-heuristic algorithm has continuously attracted attention because of its

outstanding performance in solving tough optimization problems. This kind of

algorithm has the advantages of clear structure, high flexibility, and the ability

to avoid local optima. They are usually inspired by some intelligent natural phe-

nomena and use mathematical representations to resolve real-world problems. It

is worth pointing out that problems are considered black boxes when using meta-

heuristic algorithms. In other words, these methods are not problem-specific,

which means that they can handle a variety of problems without requiring any

changes.

Such algorithms are always examined from the perspectives of exploration

and exploitation (diversification and intensification). Exploration is the process

of developing the entire search space by producing diverse solutions. The diver-

sity of solutions enables the algorithms to gather more information effectively.

Actually, randomness plays a crucial role in keeping the algorithm with good

exploration ability. And randomness might provide the algorithm more opportu-

nities to escape when a local optimum is reached. On the other hand, exploitation

implies concentrating on the search in promising areas by taking advantage of the

current search results. The algorithms are then expected to gradually converge

to the optimal solution. Nonetheless, it should be emphasized that attempting

to achieve the best in both exploration and exploitation simultaneously is a big

challenge. More precisely, if we concentrate on boosting the exploration ability,

5

1. INTRODUCTION

the solutions will be more dispersed. As a result, the convergence speed of the

algorithm will be slowed down. And if we focus on enhancing the exploitation

ability, the algorithm may converge too soon to some seemingly good solutions,

which could eventually cause it to miss the actual global optimum. Therefore, for

all the meta-heuristic algorithms, it is difficult but essential to find a nice balance

between these two components.

Scholars have proposed various ways to classify meta-heuristics, the most com-

mon of which are the following two: “trajectory-based & population-based” and

“nature-inspired & non-nature-inspired” (Abdel-Basset et al., 2018). Gendreau &

Potvin (2005) classified meta-heuristics as trajectory-based and population-based.

The trajectory-based methods reach the optimal solution with one initial solution,

while the population-based algorithms have a group of randomly generated ini-

tial solutions. In general, population-based meta-heuristics are more focused on

exploration, whereas trajectory-based solutions pay more attention to exploita-

tion. Meta-heuristics can also be classified into two groups: non-nature-inspired

and nature-inspired methods (Doering et al., 2019). And the distinction between

these categories can be deduced from their names. The first category includes the

simulated annealing (SA) algorithm, tabu search (TS), and so on. The second

group can be further divided into two types: evolutionary algorithms (EAs) and

swarm intelligence algorithms (SIAs). The former such as the genetic algorithm

(GA) (Holland, 1975) and the differential evolution (DE) algorithm (Storn &

Price, 1997), obtains the best individual through a series of evolutionary oper-

ators. Meanwhile, SIAs achieve the optima by starting the search process from

different positions simultaneously (Song et al., 2019). Karaboga (2005) believed

that self-organization and division of labor are two necessary and sufficient con-

ditions for swarm intelligence. For examples, particle swarm optimization (PSO)

(Kennedy & Eberhart, 1995), artificial bee colony (ABC) (Karaboga, 2005), and

firefly algorithm (FA) (Yang, 2009) are widespread SIAs.

Looking back at history, it is difficult to pinpoint the exact time that meta-

heuristics initially appeared. In the 1960s, the genetic algorithm (GA) was created

by John Holland and his colleagues (Holland, 1975, 1992), which was very suc-

cessful and meaningful. GA was inspired by the Darwinian evolution and natural

selection of biological systems. It represented the process via mathematical op-

erators: mutation, crossover, and selection. Moreover, GA is still popular today

6

1.2 Overview of meta-heuristic algorithms

due to its effectiveness in solving a wide range of optimization problems. Kirk-

patrick et al. (1983) proposed a local search meta-heuristic based on a physical

annealing process for solids, named the simulated annealing (SA) algorithm. It

established a link between the thermodynamic behavior and the search for the

global minimum of the discrete optimization problems (Nikolaev & Jacobson,

2010). Then, another well-known meta-heuristic algorithm, namely ant colony

optimization (ACO), was proposed by Dorigo (1992). The ACO drew inspira-

tion from the foraging behavior of the ant colony. The ants are found to deposit

pheromones in the places they pass by, which allows the ant colony to determine

the quality of paths. And this mechanism was represented in ACO for solving

optimization problems (Dorigo et al., 2006).

Kennedy & Eberhart (1995) proposed the particle swarm optimization (PSO)

algorithm inspired by the swarming intelligence of bird flocks and shoals. In PSO,

individuals (or particles) start with some initial random positions in the search

space. Hence, by communicating the current best solution and sharing the global

best solution, the optimal solution can be effectively approached. It can be said

that PSO is a very essential SIA, which is beneficial for many subsequent algo-

rithms and their improved versions. Furthermore, Storn & Price (1997) proposed

the differential evolution (DE) algorithm, which differs from GA in the repro-

duction mechanism and the solution forms. DE also contains the three major

operators, namely mutation, crossover, and selection. It can effectively obtain

information from the population and its parents. This algorithm has also played

a crucial role in improving other algorithms. As a result, it can be observed

that the two decades of the 1980s and 1990s were the most active periods for

meta-heuristic algorithms.

Afterward, Karaboga (2005) proposed the ABC algorithm by simulating the

foraging behavior of bee colonies. Correspondingly, three phases were constructed,

including employed bees, onlooker bees, and scout bees. Later, Yang & Deb

(2009) proposed the cuckoo search (CS) algorithm via Lévy flights (Lévy, 1938;

Shlesinger, 1989) inspired by the breeding behavior of cuckoo species. More

recently, novel meta-heuristic methods have been constantly developed. For in-

stance, stochastic fractal search (SFS) (Salimi, 2015), monarch butterfly opti-

mization (MBO) (Wang et al., 2019), slime mould algorithm (SMA) (Li et al.,

2020b), and colony predation algorithm (CPA) (Tu et al., 2021), etc.

7

1. INTRODUCTION

It has been demonstrated that most of these approaches are easy to acquire,

simple to implement, and powerful to find out optimum as well. All of these

algorithms do, however, have some flaws. Therefore, it is crucial to investigate

how to improve their performances and discover more practical applications (Chen

et al., 2019c; Das & Jena, 2020; Das et al., 2016b; Gao et al., 2020; Hu et al.,

2019; Li & Yin, 2014; Liu, 2016; Zhou et al., 2021b).

1.3 Overview of Artificial bee colony (ABC) algo-

rithm

Among various meta-heuristic methods, the ABC algorithm (Karaboga, 2005)

is one of the most popular algorithms. Being inspired by the intelligent forag-

ing behaviors of bee colonies, Karaboga proposed the ABC algorithm. ABC has

demonstrated its superiority like fewer parameters and excellent exploration abil-

ity compared to the other meta-heuristic algorithms. Meanwhile, its structure is

clear and easy to understand. Therefore, it has been widely studied and imple-

mented in various applications. In the followings, the search process of the basic

ABC is presented in detail. Then, related literature is reviewed and summarized

in subsection 1.3.2.

Remark 1.1 For simplicity of the descriptions, we assume that the concerned

optimization problems can be transformed into minimization problems. Therefore,

in the presentation of the algorithms, the objective function value of a candidate

solution can directly reveal its quality.

1.3.1 The standard ABC algorithm

There are three types of bees in ABC to model the foraging behavior of honeybees:

employed bees, onlooker bees, and scout bees. The object is to search for the

food source with the best quality, where the food source represents the feasible

solution to the optimization problem. All the candidate solutions are vectors of

D dimensions for solving a D-dimensional problem.

After the initialization phase, the ABC algorithm starts to repeat the three

phases until the determination condition is achieved. Firstly, the employed bees

are supposed to seek nectars in the search space and share the information with

8

1.3 Overview of Artificial bee colony (ABC) algorithm

onlooker bees by dancing. In the next step, onlooker bees are supposed to select

the food sources found by employed bees according to the nectar qualities and

further exploit better food sources around the areas. The scout bees are respon-

sible for keeping the diversity of population by replacing the food sources that

haven’t been updated during certain cycles. The principle phases are described

as follows.

1.3.1.1 Initialization phase

Firstly, SN candidate solutions are randomly generated via Eq.(1.1) in the search

space. And xi = (xi,1, xi,2, · · · , xi,D) denotes the ith food source (candidate solu-

tion) where D is the dimension of optimization problem.

xi,j = xl,j + rand(0, 1)× (xu,j − xl,j), (1.1)

where xi,j is the value of the jth variable of ith food source, i = 1, · · · , SN

and j = 1, · · · , D. xl,j and xu,j denote the lower and upper bounds of the jth

dimension, respectively. Notice that in the original ABC algorithm, the number

of employed bees and onlooker bees are both SN , namely the number of food

sources.

1.3.1.2 Employed bee phase

Each employed bee is associated to a candidate solution and is responsible to

search for new food source positions. The search strategy is expressed as below:

vi,j = xi,j + θi,j × (xi,j − xk,j), (1.2)

where j is a randomly chosen variable to be updated, and k 6= i is randomly

selected among {1, · · · , SN}. θi,j is the scale factor which is a random real number

in [−1, 1]. And vi,j is obtained considering the information of xi,j and food source

xk,j who is chosen from the swarm.

Then vi is compared to the xi via the objective function f(·). The greedy

selection method is shown in Eq.(1.3). If the objective function value of vi is

better, vi will replace xi and the counter triali will be reset as 0. Otherwise, xi

9

1. INTRODUCTION

remains the same and its traili plus one.

xnew
i =

{

vi if f(vi) < f(xi),

xi otherwise.
(1.3)

1.3.1.3 Onlooker bee phase

In this step, the onlooker bees are expected to further exploit around the promis-

ing food sources. So each onlooker bee selects one candidate solution according

to the selecting probabilities via the roulette wheel selection method. The fitness

values of all the food sources (fiti, i = 1, · · · , SN) are evaluated with Eq.(1.4)

before calculating the selecting probabilities.

fiti =







1

1 + fi
if fi > 0,

1 + |fi| otherwise,

(1.4)

where fi is the objective function value associated with xi.

Then the corresponding probabilities of all the candidate solutions can be

calculated with Eq.(1.5) in terms of their fitness values.

pi =
fiti

SN
∑

m=1

fitm

. (1.5)

It can be found that, when the fitness value of a food source is large, it is

considered more qualified. Hence, it is more likely to be selected and further ex-

ploited by the onlookers. Then the chosen food sources are updated via Eq.(1.2),

and the greedy selection (i.e., Eq.(1.3)) is conducted. If vi wins the previous food

source successfully, then the triali will be reset to 0. Otherwise, the traili will be

added by one.

1.3.1.4 Scout bee phase

In this phase, the counter traili, (i = 1, · · · , SN) associated with each candidate

solution is compared with the limit. If a food source hasn’t been improved within

predetermined period then it will be abandoned by its employed bee. And a novel

food source will be generated with Eq.(1.1). The corresponding counters are reset

to zero at the same time.

10

1.3 Overview of Artificial bee colony (ABC) algorithm

To represent the framework of ABC more clearly, its flowchart and pseudo-

code can be found in Figure 1.2 and Algorithm 1, respectively.

Fig. 1.2. The flowchart of the standard ABC algorithm

11

Introduction/chapter1_figs/EPS//flowchart_ABC2.eps

1. INTRODUCTION

Algorithm 1 Pseudo-code of the standard ABC algorithm

1: Initialize the candidate solutions with Eq.(1.1)
2: Evaluate the objective function values of the initial population
3: repeat

% The employed bee phase %
4: for i = 1→ SN do
5: Generate vi with Eq.(1.2) and evaluate vi
6: if f(vi) < f(xi) then
7: Replace xi with vi
8: triali = 0
9: else

10: triali = triali + 1
11: end if
12: end for
13: Calculate the fitness values of all the food sources by Eq.(1.4)
14: Calculate the probability pi all the food sources by Eq.(1.5)

% The onlooker bee phase %
15: for t = 1→ SN do
16: Select a food source xi based on the probability values
17: Generate vi with Eq.(1.2) and evaluate vi
18: if f(vi) < f(xi) then
19: Replace xi with vi
20: triali = 0
21: else
22: triali = triali + 1
23: end if
24: end for

% The scout bee phase %
25: for i = 1→ SN do
26: if triali > limit then
27: Generate a new xi with Eq.(1.1) and evaluate xi

28: triali = 0
29: end if
30: end for
31: Store the best solution so far
32: until the termination condition is reached.

12

1.3 Overview of Artificial bee colony (ABC) algorithm

1.3.2 Related work on ABC algorithm improvement

It is widely recognized that ABC does well in diversification but is relatively poor

in intensification. In this case, numerous studies have been done attempting to

further enhance its performance. The existing improvement strategies can be

summarized into three collections: modifying solution search equations, improv-

ing the selection mechanism, and hybridizing with other effective algorithms or

auxiliary techniques. Of course, there are many improved ABC versions that used

more than one category of strategies at the same time.

1.3.2.1 Modification of solution search equations

For meta-heuristic methods, their performance is highly dependent on the way

of producing new feasible solutions. And the solution search equation is one

of the most essential components of ABC that can considerably affect the final

results. Nonetheless, the one-dimensional search equation of ABC was deemed not

efficient enough. In this case, basically all the improved ABC versions modified

the solution search equation. It has been observed that the search strategies based

on PSO and DE algorithms are very popular, which have been incorporated into

ABC in many ways.

Being inspired by the PSO algorithm, Zhu & Kwong (2010) proposed gbest-

guided ABC (GABC) algorithm that has been widely studied and compared until

now. In GABC, information of the global best solution was added to the search

equation for enhancing the search efficiency. Actually, this kind of strategy has

been used repeatedly in many other related works as the global best solution can

provide a useful search direction. Banharnsakun et al. (2011) proposed a best-so-

far ABC with an enhanced solution update method. More precisely, the informa-

tion of the current best solution is shared in the onlooker bee phase. Moreover,

the areas of searching for new candidates were adjusted during the process. Gao

et al. (2012) employed the improved search equations which adopted informa-

tion of the best individual. Meanwhile, being inspired by the mutation operator

of DE, the proposed search strategies (i.e., “ABC/best/1” and “ABC/best/2”)

considered more information about the neighbors. The chaotic maps and the

opposition-based learning (OBL) method were also incorporated into the pro-

posed algorithm to help with the convergence rate. Akay & Karaboga (2012)

introduced a modification rate (MR) into ABC in order to control the number

13

1. INTRODUCTION

of variables that can be inherited from the previous solution, which has a similar

role as the crossover rate (CR) in DE. Later Xiang & An (2013) used the best-

so-far solution search equation along with another modified equation to update

the solutions, and the better one was chosen greedily. Gao et al. (2014) pro-

posed an enhanced ABC with two new search equations for the employed bees

and onlookers, respectively. The best solution was adopted differently in these

two equations. Meanwhile, a new way was utilized to determine and compare

the candidate solutions with more robustness. Besides, Imanian et al. (2014)

introduced more concepts from the PSO algorithm to improve ABC. In other

words, the velocities of candidate solutions were updated by using the global best

solution and local best position. Gao et al. (2015a) proposed a Gaussian-based

search equation to produce new candidate solutions in the onlooker bee phase. As

a result, the valuable information hidden in the best individual can be exploited.

In addition, the introduction of the concept of the elite is another effective

improvement method that aims to better guide the swarm. Xiang et al. (2014)

proposed a particle swarm inspired multi-elitist ABC algorithm. The food sources

were modified using the global best solution and an elitist randomly chosen from

an elitist archive. Xiang et al. (2015) utilized a multi-objective ABC with an

elitism strategy and fixed-size archive. An enhanced search equation was used in

employed and onlooker bee phases based on the elites selected from the archive.

Cui et al. (2016) designed a depth-first search framework. The information of

the current best solution and elite solutions were involved in two novel search

equations. A novel ABC algorithm was devised by Kong et al. (2018) after be-

ing impressed by the natural phenomena of following an elite group. Besides, a

breadth-first search strategy was adopted in employed bee phase while a stochas-

tic depth-first search strategy was used in onlooker bee phase. A high-efficient

ABC variant was proposed (Song et al., 2019). Two novel search strategies con-

sidering the best individual were utilized and an elite group was built to generate

new solutions via an adaptive selection mechanism.

Babaoglu (2015) introduced a distribution-based solution update rule where

the mean and standard deviation of two selected candidate solutions were cal-

culated to generate a new solution. Kıran & Fındık (2015) regarded the single

parameter as the reason for the slow convergence rate. To overcome this weak-

ness, authors added the directional information to the algorithm. Zhang et al.

14

1.3 Overview of Artificial bee colony (ABC) algorithm

(2018) built a cellular structure and adopted a Gaussian-based search equation.

The new search equation was combined with a local attractor together to allow

the algorithm to converge to the optimum. And a cellular automata model was

introduced because it could maintain the population diversity and interaction

inside neighborhoods at the same time. Moreover, in (Wang et al., 2020), the

best solution within a predefined neighborhood was selected for generating new

solutions. Xiao et al. (2021) proposed an ABC with adaptive neighborhood size.

In the improved ABC algorithm, a global-best-based search equation and a new

Gaussian perturbation were adopted. Xiang et al. (2021) utilized a pure crossover

operation in order to benefit information sharing. And a novel frequency of per-

turbation was proposed to enlarge the number of dimensions to be updated each

time.

It is worth mentioning that, in many improved ABC algorithms, the search

behaviors of employed bees and onlookers are designed differently, such as (Gao

et al., 2014; Karaboga & Gorkemli, 2014; Kong et al., 2018; Song et al., 2017). In

addition, researchers began to investigate the way to use multiple search equa-

tions with different strengths. Kiran et al. (2015) employed five solution search

equations as well as a selection mechanism. Lin et al. (2018) allowed the on-

lookers to select one between two improved solution search equations by using

an adaptive selection mechanism. They also included the best solution in the

employed bee phase, which made the search behaviors directional. Chen et al.

(2019b) embedded multiple differential search equations into ABC. And a self-

adaptive mechanism was proposed to adjust the selection probabilities of those

search strategies. Yavuz & Aydın (2019) employed a novel method to decide the

expression of solution search equation. A pool of possible terms of the search

equations was established. Moreover, a local search method and an increasing

population size strategy were incorporated into the algorithm.

Furthermore, some scholars were no longer satisfied with a single search proce-

dure, hence they tried to divide the population into subgroups. The population of

the proposed ILABC algorithm was divided into several clusters then the search

processes were supposed to conduct simultaneously (Gao et al., 2015b). Two

new search mechanisms were utilized to facilitate information exchange inside

each group as well as between different subpopulations. Harfouchi et al. (2018)

15

1. INTRODUCTION

proposed a cooperative learning ABC via dividing the population into three sub-

groups. Each of them could evolve independently with multiple search equations.

1.3.2.2 Novel selection mechanisms

Gao et al. (2015a) proposed a fitness-based neighborhood mechanism in order to

better exploit the hidden information of promising solutions. Cui et al. (2017a)

adopted the rankings to select the food sources. In other words, candidate solu-

tions with better rankings have more chances of being selected. Moreover, Cui

et al. (2017b) improved the probability model which paid attention to the success

rate as well as the objective function value. Wang et al. (2020) believed that the

probability selection method of basic ABC was not effective enough, especially

when the number of iterations increased. Then the proposed algorithm produced

new solutions by selecting the best solution inside neighborhood radius.

1.3.2.3 Hybridization with other algorithms or techniques

There are different ways of hybridization that can combine the strengths of dif-

ferent methods with the ABC algorithm. Li & Yin (2014) incorporated the DE

algorithm into the structure of ABC algorithm. More precisely, the mutation,

crossover, and selection operators were adopted in ABC for generating new food

sources. Jadon et al. (2017) proposed another hybrid algorithm based on DE

and ABC in order to better balance the exploration and exploitation abilities.

The best individual was involved in the employed bee phase. And DE-inspired

search strategy was used in the onlooker bee phase. Furthermore, Cui et al.

(2020) implemented a hybrid differential ABC algorithm to solve the multi-item

replenishment-distribution problem.

Kıran & Gündüz (2013) proposed a recombination-based hybridization of PSO

and ABC. The global best solutions and the information of neighboring food

sources were used to generate novel solutions. A hybrid PS-ABC was proposed

by Li et al. (2015) which combined the global search process of ABC with the

local search phase in PSO. Gao et al. (2016) proposed a different structure in their

hybrid algorithm. More precisely, the GABC (Zhu & Kwong, 2010) was combined

with the evolutionary operators of DE to learn from the previous experiences

accurately. For each individual, the probability of selecting GABC to update the

position was determined based on the performances of both approaches during

16

1.3 Overview of Artificial bee colony (ABC) algorithm

the last generation. Chen et al. (2018) combined the teaching-learning-based

optimization (TLBO) algorithm with ABC for the solar PV parameter estimation

problems. The teaching phase and learning phase were incorporated into the

employed bee phase and onlooker bee phase, respectively.

In addition, Sharma et al. (2016) employed the Lévy flights in the solution

search equation to improve the local search capability of ABC. Badem et al.

(2018) proposed a hybrid algorithm based on ABC and limited-memory Broyden-

Fletcher-Goldfarb-Shanno algorithm to solve functions with a large number of

local minima. The Boltzmann selection method was introduced to the onlooker

bees in the novel ABC variants (Chen et al., 2019a). And the extremal optimiza-

tion algorithm was incorporated into the search strategies.

Furthermore, plenty of techniques have been applied to ABC with the aim

of enhancing the optimization performance. It can be found that the chaotic-

based method and OBL were widely used in the initialization phase to enhance

the population diversity and convergence rate (Gao et al., 2012, 2016; Hu et al.,

2015; Kuang et al., 2014). Xiang & An (2013) utilized chaotic initialization based

on logistic equation as well as chaotic search in the scout bee phase. Gao et al.

(2013) not only modified the solution search equation but also introduced orthog-

onal experimental design (OED) in an attempt to create a learning strategy for

discovering more useful information. Moreover, Rosenbrock’s rotational direction

method was combined with ABC to improve the exploitation ability (Kang et al.,

2011). Ji et al. (2019) incorporated a scale-free network into the ABC algorithm

to enhance the search competence. Furthermore, Feng et al. (2022) combined

the random forest method with ABC so that crucial hyper-parameters could be

optimized. As a result, the computational efficiency was augmented.

1.3.3 Application prospects

Like the other meta-heuristics, ABC and its improved versions can be used to

solve almost any numerical global optimization problem. In this context, solving

a group of benchmark functions using the proposed algorithm and comparing the

statistical results with other well-known algorithms is a common way of validating

the performance of proposed algorithm. For solving the constrained optimization

problems, certain additional constraint-handling techniques are required.

17

1. INTRODUCTION

Moreover, numerous well-known optimization problems can be resolved effec-

tively by the improved ABC algorithms, such as shop scheduling problem (Li &

Pan, 2015), traveling salesman problem (Rekaby et al., 2013), hybrid flowshop

problem (Tao et al., 2022), and so on.

The enhanced ABC algorithms have been applied in numerous fields until

now, applications have been proposed such as image processing (Banharnsakun

et al., 2011; Gao et al., 2019; Öztürk et al., 2020; Su et al., 2022), feature selection

(Zhang et al., 2019; Zorarpacı & Özel, 2016), robot path planning (Contreras-Cruz

et al., 2015; Liang & Lee, 2015; Lu et al., 2019; Xu et al., 2020), vehicle routing

(Lei et al., 2022), parameter identification (Chen et al., 2019a; Hu et al., 2015,

2018), data clustering (Zabihi & Nasiri, 2018), etc. This indicates that there will

certainly be increasing practical problems that these effective ABC algorithms

are able to handle in the future.

1.4 Overview of robot path planning (RPP) prob-

lem

Robotics has undergone a huge revolution over the past few decades, and nowa-

days, related technologies are still being innovated. Numerous robotic systems

have been developed and produced, and they have demonstrated their abilities

to handle various missions in different situations like industrial manufacturing

(Meike & Ribickis, 2011; Park et al., 2012; Xing, 2021; Yin et al., 2019), smart

home environments (Khan et al., 2021; Wang et al., 2013; Wilson et al., 2019),

warehouses (Jiang et al., 2020; Li et al., 2022; Plaksina et al., 2018), etc. It

is obvious that intelligence is necessary for effectively accomplishing the tasks.

Nevertheless, in order to possess high intelligence in robotic systems, a number of

research issues need to be resolved. One of the major challenges for robotic sys-

tems is navigation. It could be stated that navigation and guidance are required

for applying robots in any situation. Therefore, it is crucial to ensure efficient

and successful navigation, especially considering the fact that robots are facing

increasingly complex scenarios now.

In this context, the robots need to be aware of their positions in relation to

their goals with the purpose of completing the navigation task. Moreover, in

order to increase the chances of success, robots must also consider the dangers in

18

1.4 Overview of robot path planning (RPP) problem

their surroundings and adjust the following actions (Koubâa et al., 2018). With

the purpose of achieving navigation and guidance, the process can be divided

into three parts: localization, path or motion planning, and mapping. Firstly,

localization indicates that a robot should continuously determine its positions.

Many types of tools like sensors and cameras have been adopted to help achieve

this task. Hence, the robot should find a path according to its current location,

target point, and its view of surrounding environment. In other words, path

planning refers to the process of determining the pathway across the environ-

ment that allows the robot to reach its desired destination without collisions.

Subsequently, the robot is expected to act along the path planned. Under this

purpose, control theory and automation techniques are necessary. Last but not

the least, the robot needs a map of the environment. This map is crucial for

helping the robot to realize its current location and direction. It is worth men-

tioning that the map can be initially stored or be constructed progressively as

the robot explored the workspace. Correspondingly, the path planning can be

divided into global path planning and local path planning depending on whether

the environment is known or not. Figure 1.3 below summarizes the differences

between them (Koubâa et al., 2018).

The objective of RPP problem is to find out an optimal collision-free path

from start point to target point in an environment with obstacles (Nazarahari

et al., 2019). Moreover, path planning for multiple robots has gained increasing

attention since these robots can work together to do certain tasks that can not be

completed by an individual robot. The multi-robot path planning (MRPP) aims

at searching for obstacle-free paths for a group of robots in the same environment.

It is also necessary to make sure that there is no collision between any two robots.

With the purpose of accomplishing RPP, a series of optimization problems

can be formulated by considering different goals and constraints. There are three

main concerns that should be taken into account: efficiency, accuracy, and safety

(Châari et al., 2012). In other words, it is essential to determine a feasible path

with the least amount of energy and in the shortest amount of time. At the same

time, the robot should also be able to safely avoid obstacles nearby.

Path planning approaches can be generally classified into three categories:

classical, graph-based, and (meta-)heuristic approaches. Note that because the

difference between the heuristics and meta-heuristics is indeed small, there is no

19

1. INTRODUCTION

Fig. 1.3. Comparison of global and local path planning

clear distinction in the field of robotics. So we organize them into one category

in the following discussions related to RPP. First of all, classical approaches

like the artificial potential field (APF), roadmap method, and cell decomposition

(Chen et al., 2016; Khatib, 1986; Šeda, 2007) were widely used in the period

when the path planning problem was just emerging. They were found to be

effective in finding feasible paths, however, certain weaknesses were gradually

discovered. One obvious drawback is that they are time-consuming, especially

in large complex workspaces, since the generated solutions are computationally

expensive. Besides, these kinds of methods might fall into local optima (Das &

Jena, 2020; Koubâa et al., 2018).

The graph-based search methods, such as the Dijkstra (Dijkstra, 1959) and

A* (Hart et al., 1968; Hawa, 2013) algorithms, are also well-known. The feasi-

ble paths can be computed in a graph-based environment, such as a grid map.

However, the computational complexity may increase greatly in challenging en-

vironments. As a result, these traditional methods cannot remain effective when

dealing with complex or dynamic environments. Hence, the demand for intelli-

20

Introduction/chapter1_figs/EPS//global_local.eps

1.4 Overview of robot path planning (RPP) problem

gence has increased when it comes to solving diverse path planning challenges.

In this context, heuristics and meta-heuristics have attracted increasing atten-

tion for overcoming the aforementioned limitations. Among numerous heuristic

methods, meta-heuristic algorithms are outstanding in solving various optimiza-

tion problems and are not problem-specific. Hence, the RPP problems can be

resolved by transforming them into functional optimization problems. Then, an

optimal solution to the problem can be found by adopting meta-heuristic algo-

rithms that are effective and powerful even in complex environments.

Fig. 1.4. Classification of robot path planning approaches

In recent years, the PSO algorithm (Das et al., 2016a; Das & Jena, 2020;

Thabit & Mohades, 2019; Tian et al., 2021), GA Nazarahari et al. (2019); Tuncer

& Yildirim (2012), ACO (Hasan & Mosa, 2018; Lyridis, 2021; Miao et al., 2021),

ABC (Abbas & Ali, 2014; Bhattacharjee et al., 2011; Contreras-Cruz et al., 2015;

Liang & Lee, 2015; Wang et al., 2015; Xu et al., 2020), and immune plasma

algorithm (IPA) (Aslan, 2022) have all been popular meta-heuristic algorithms

in RPP problems.

As mentioned previously, a multi-robot system possesses advantages because

of the cooperation and interaction inside the team. And multi-robot collaboration

has a stronger ability to resolve complex problems and has higher robustness

and reliability (Das & Jena, 2020). In this context, multi-robot systems exist

in various fields, for instance, intelligent warehouse (Han & Yu, 2019), oilfield

inspection (Li et al., 2020a), etc. As a result of the aforementioned advantages

21

Introduction/chapter1_figs/EPS//classifRPP3.eps

1. INTRODUCTION

and broad applications, MRPP problems have been investigated by researchers

for decades. The objective of MRPP is to compute collision-free and qualifying

paths for a group of robots from an initial configuration to a target configuration

via path planners (Han & Yu, 2020).

To name a few, Xu et al. (2011) proposed a hierarchical fuzzy control algorithm

for achieving MRPP. Moreover, the robots are autonomous and can communicate

with each other. Jose & Pratihar (2016) proposed heuristic methods for the task

allocation and collision-free path planning for multi-robot system. The GA algo-

rithm was used for minimizing task completion time and the A* algorithm was

adopted for path planning. A novel approach for planning paths for centralized

and competitive multi-robot was presented (Hasan & Mosa, 2018). The hybrid

method combined the pheromone trail updating of the MAX–MIN ACO algo-

rithm with D* algorithm strategies. By locating and displaying the best path for

each robot, the robots use tour construction probabilities to select the best way in

the dynamic environments. Thabit & Mohades (2019) applied a multi-objective

PSO to the MRPP problem considering the path shortness, safety, and smooth-

ness. In addition, a probabilistic window was introduced in order to search for

better paths. Nazarahari et al. (2019) proposed an enhanced GA for resolving

multi-objective MRPP problems. A deterministic algorithm, the APF algorithm,

was used to produce feasible initial paths. Then the proposed GA was supposed

to optimize those paths. Sahu et al. (2022) planned paths for the twin robot

via a hybrid algorithm that combined the improved Q-learning and democratic

robotics PSO.

1.5 Preliminaries

From the literature above, it can be observed that some famous meta-heuristic

algorithms have effective search strategies that can help to further improve other

algorithms. So in the following parts, several other well-known meta-heuristics

are introduced.

1.5.1 Differential evolution (DE) algorithm

The DE algorithm (Storn & Price, 1997) is a simple yet effective EAs, which

attempts to evolve a population of NP individuals to the global optimum. For

22

1.5 Preliminaries

solving an optimization of D dimensions, the candidate solutions at gth generation

can be represented as xg
i = (xg

i,1, x
g
i,2, · · · , x

g
i,D), where i = 1, · · · , NP . The initial

population is supposed to better cover the whole search space as much as possible

via uniform randomization (Qin et al., 2009). The same equation (i.e., Eq.(1.1))

is used for generating the initial solutions. Then, DE enters a loop containing

three major steps until the termination condition is reached.

1.5.1.1 Mutation operation

In each generation, the individuals first generate their corresponding mutant vec-

tors vgi via a mutation operator. Many mutation strategies have been proposed

for the DE algorithm. And the most frequently used ones are presented as follows.

1) “DE/rand/1”

vgi = xg
r1 + F × (xg

r2 − xg
r3). (1.6)

2) “DE/best/1”

vgi = xg
best + F × (xg

r1 − xg
r2). (1.7)

3) “DE/rand/2”

vgi = xg
r1
+ F × (xg

r2
− xg

r3
) + F × (xg

r4
− xg

r5
). (1.8)

4) “DE/rand-to-best/1”

vgi = xg
i + F × (xg

best − xg
i) + F × (xg

r1
− xg

r2
). (1.9)

In the above mutation operators, the neighbors r1 6= r2 6= r3 6= r4 6= r5 6= i

are randomly selected among {1, · · · , NP} while xbest is the best individual. F

is the scale factor which is defined by the users.

1.5.1.2 Crossover operation

Each individual has a pair of vectors, namely the target vector xi and its mutant

vector vi. Hence, for producing the next generation, individuals need to decide

how much information to inherit from their parents. For each dimension, the

crossover operation is used to define its value. As a result, a trial vector ug
i is

generated.

23

1. INTRODUCTION

ug
i,j =

{

vgi,j, if rand 6 CR or j = jrand,

xg
i,j , otherwise,

(1.10)

where jrand is randomly selected from {1, · · · , D} while CR is the crossover rate.

For each dimension, if the condition of (rand 6 CR or j = jrand) is satisfied, the

new solution will get information from the mutating vector. Otherwise, it will

keep the same as the original xi.

1.5.1.3 Selection operation

In the next step, the objective function value of the newly generated trial vector

ug
i is compared to that of xg

i . And the better one will become the offspring. Then

the selection operation is performed.

xg+1
i =

{

ug
i if f(ug

i) 6 f(xg
i),

xg
i otherwise.

(1.11)

In addition, the pseudo-code of basic DE algorithm can be found in Algorithm

2.

Algorithm 2 Pseudo-code of the standard DE algorithm
1: Initialize a population of NP individuals
2: repeat
3: for i = 1→ NP do

% The mutation operation %
4: Generate mutant vector vgi with one mutation strategy

% The crossover operation %
5: Randomly select jrand ∈ {1, · · · , D}
6: for j = 1→ D do
7: Define the value of ug

i,j with Eq.(1.10)
8: end for

% The selection operation %
9: Generate xg+1

i with Eq.(1.11)
10: end for
11: Update the generation number g = g + 1
12: until the termination condition is reached.

1.5.2 Particle swarm optimization (PSO) algorithm

24

1.5 Preliminaries

Kennedy & Eberhart (1995) proposed the PSO algorithm by deriving inspiration

from the social behaviors of bird flocks and insect swarms. Each bird in a flock

is abstracted as a particle in the algorithm. The flock’s flight area corresponds

to the search space of concerned optimization problem. And the candidate so-

lutions stand for the food source positions. Similar to the other meta-heuristic

algorithms, a parameter of the problem that needs to be optimized is represented

by each dimension of this space (Genovesi et al., 2006). The PSO algorithm is

able to approach the global optimum by continuously updating the velocity and

position information of the swarms.

Each particle flies in the D−dimensional search space, and the position of ith

particle can be identified by a xi = (xi,1, xi,2, · · · , xi,D), i = 1, · · · , NP , where

NP is the number of particles. Meanwhile, its velocity is represented as vi =

(vi,1, vi,2, · · · , vi,D).

At the beginning, each particle starts the process at an arbitrary location and

moves with a random velocity that varies in amplitude as well as direction. In

the next step, the PSO starts iterating until the termination condition is satisfied

within the set bounds. The strategy for updating the velocity and position of

each particle in the (t+ 1)th iteration is as follows.

vt+1
i,j = w × vti,j + c1 × r1 × (pbestti,j − xt

i,j) + c2 × r2 × (gbesttj − xt
i,j), (1.12)

xt+1
i,j = xt

i,j + vt+1
i,j , (1.13)

where vi,j is the velocity along the jth dimension of the ith particle. w is the

inertia while c1 and c2 indicate the cognitive and the social rate, respectively. r1

and r2 are random numbers uniformly distributed in the range of [0, 1]. pbestti,j

is the value of the jth dimension of the best position that the ith particle has

ever visited so far. And gbest represents the global best position discovered by

the entire population. Hence, the location can be updated by the Eq.(1.13).

Obviously, if the newly produced position is better than the pbesti, then the

current best associated to the ith particle will be replaced.

It can be found that the update equation of velocity includes three terms: the

actual velocity, the cognitive part based on pbesti, and the social part based on

25

1. INTRODUCTION

gbest. The first term provides energy for the particles to fly in the search space.

The second term guides a particle towards its own best position, which is related

to its independent memory. Moreover, the third term reflects the collaborative

behavior among the swarm, so that each particle can move closer to the global

historical optimal position. Besides, the pseudo-code of the PSO algorithm can

be found in Algorithm 3.

Algorithm 3 Pseudo-code of the standard PSO algorithm
1: Initialize the positions and velocities for the swarm
2: Evaluate the objective function values of the initial population
3: Initialize the pbesti with the particles’ current positions
4: Set gbest as the particle position with the best objective function value
5: repeat
6: for i = 1→ NP do
7: for j = 1→ D do
8: Update the velocity vti and position xt

i with Eq.(1.12) and Eq.(1.13)
9: end for

10: Evaluate the updated xt
i

11: if f(xt
i) < f(pbestt−1

i) then
12: Update pbestti with xt

i

13: end if
14: if f(pbestti) < f(gbestt−1) then
15: Update gbestt with pbestti
16: end if
17: end for
18: Update the iteration number t = t+ 1
19: until the termination condition is reached.

1.5.3 Cuckoo search (CS) algorithm

Later in the year 2009, being inspired by some cuckoo species’ brood parasitism,

the CS algorithm was proposed by Yang & Deb (2009). Additionally, the so-

called Lévy fight (Lévy, 1938; Shlesinger, 1989) was adopted instead of using the

traditional randomization. It is worth mentioning that numerous investigations

have revealed that many animal and insect flight patterns exhibit the typical

characteristics of Lévy flights. This kind of search manner contains a series of

straight flight pathways punctuated by a sudden change in direction.

26

1.5 Preliminaries

In nature, the cuckoos search for nests to lay and brood their eggs in a random

or random-like manner. In order to clearly characterize the principle of the CS,

the following three idealized rules are set (Yang, 2020):

• Each cuckoo lays one egg each time and lays its egg in a randomly chosen

nest;

• The best nests with high-quality eggs will be carried over to the next gen-

erations;

• The number of available host nests is fixed, and the host bird has a chance

of finding a cuckoo egg when it is placed. The probability is defined as

pa ∈ [0, 1]. In this situation, the host bird has two options, either get rid of

the egg or just leave and build a new nest.

Note that the last assumption has been approximated by the fraction pa of the

NP nests being replaced by new nests (i.e., new random solutions) for simplicity.

Moreover, in the basic CS algorithm, each nest has only one egg. In this case,

each nest corresponds to one egg which also indicates one cuckoo.

The initialization method Eq.(1.1), is also used in the CS algorithm to gen-

erate the initial positions of NP nests. And for an optimization problem of D

dimensions, the positions are also in the form of xi = (xi,1, xi,2, · · · , xi,D).

In the main loop, each cuckoo performs a Lévy fight with the Eq.(1.14) for

producing a new candidate solutions.

xt+1
i = xt

i + α⊕ Lévy(s), (1.14)

where α > 0 is the step size. The product ⊕ indicates the entry-wise multipli-

cations. Note that the value of α is defined considering the problem scale. It is

usually set as α = O(L/10), where L is the characteristic scale of the problem of

interest.

In fact, the Lévy flight is a special case of random walk whose steps obey the

Lévy distribution which can be defined as below

Lévy(λ) ∼ u = t−λ, (1.15)

where the stability index 1 < λ ≤ 3, while t is a random variable. And the above

distribution has an infinite mean with infinite variance. The Lévy distribution

27

1. INTRODUCTION

is a kind of heavy-tailed distribution with a quite high probability of generating

large steps. Therefore, Lévy flights enable the algorithm to explore the search

space efficiently.

Moreover, the CS algorithm generates new solutions via Lévy flights around

the best solution obtained so far, which can accelerate the local search. At the

same time, to prevent the algorithm from becoming stuck in a local optimum, part

of the new solutions should be produced by randomization at locations distant

from the current best solution. Correspondingly, the principle steps of the basic

CS algorithm are presented in Algorithm 4.

Algorithm 4 Pseudo-code of the CS via Lévy flights
1: Initialize the positions of host nests xi, i = 1, · · · , NP
2: Evaluate the objective function values of xi

3: repeat
4: for i = 1→ NP do
5: Generate new solution via Eq.(1.14)
6: Evaluate its objective function value f(xt+1

i)
7: Randomly select another nest xk

8: if f(xt+1
i) 6 f(xt

k) then
9: Replace the kth nest with xt+1

i

10: end if
11: end for
12: Abandon a fraction pa of worst solutions
13: Generate pa ×NP new solutions
14: Keep the best solutions
15: Rank the solutions and update the current best solution
16: Update the iteration number t = t+ 1
17: until the termination condition is reached.

28

1.6 Contributions and outline of dissertation

1.6 Contributions and outline of dissertation

Briefly, meta-heuristic algorithms are a type of stochastic algorithm through a

trade-off between randomization and local search. Such algorithms have been

found to be effective and simple to understand. Thus, they have been utilized

to solve numerous optimization problems in a variety of fields. Nevertheless,

there is still room for improvement, such as easy to be trapped in local optimums

or slow convergence speed. And precisely handling the trade-off between explo-

ration and exploitation for all optimization tasks is always challenging. In this

context, this thesis focused on a class of meta-heuristic algorithms represented

by the Artificial Bee Colony (ABC) algorithm and proposed a series of improved

variants by analyzing the characteristics and weaknesses of the ABC algorithm.

Furthermore, problems with a higher application value are also taken into ac-

count. The proposed enhanced ABC versions have successfully solved different

types of optimization problems, including robot path planning tasks for single and

multiple robots in various environments. The main contributions and outline of

dissertation are summarized as follows.

Chapter 2: In ABC, it can be found that the mission of exploration is mainly

accomplished by employed bees whereas the onlookers are responsible for exploit-

ing within certain regions. In addition to those widely mentioned improvement

strategies, the impact of population composition is studied in this chapter. Ac-

tually, the invariable population composition of a bee colony cannot satisfy the

needs of different search stages. In this context, improving the effectiveness of

ABC by adjusting the population composition is developed. So, an ABC algo-

rithm with dynamic population composition, namely ABCDC is proposed.

Therefore, the main contributions are as follows: firstly, the Symmetric Latin

Hypercube Design (SLHD) is adopted in initialization to improve the popula-

tion diversity. Secondly, a novel mechanism is proposed to adjust the colony

population’s composition according to the searching experiences. The number of

employed bees decreases periodically while the size of onlooker bees increases to

bring more energy for exploiting the global optimum in the mid-late stage of the

whole process. In ABCDC, the division of labor between bees with different func-

tions is clearer, so that global optimum can be obtained more efficiently under

their cooperation. Moreover, ABCDC keeps a nice balance between diversifica-

tion and intensification. And experimental studies on functional optimization

29

1. INTRODUCTION

problems are done to verify the performance of ABCDC. The comparisons show

that ABCDC has better solution precision and a faster convergence rate.

Chapter 3: In fact, it is difficult to define control parameter values appro-

priately for all types of problems. Thus, these control parameters are usually

held constant or updated with predetermined adaptation methods, such as that

adopted in ABCDC. However, adaptation approaches still rely heavily on the

experience of the designer. In this context, different from the existing literature,

a new way of defining parameter values is proposed in this part. An ABC algo-

rithm based on reinforcement learning (RL) is proposed, named ABC_RL. The

RL method is used to vary the number of dimensions to be updated in the so-

lution search equation. The reward value of RL is defined based on the update

results. In this case, more information can be learned appropriately from the

previous update experience.

The main contributions can be summarized as follows: firstly, RL is adopted

to enlarge and adjust the frequency of perturbation of employed bee phase intelli-

gently considering the immediate reward from solution update results. Secondly,

two enhanced solution search equations are utilized in order to achieve a nice

balance between exploration and exploitation. Thirdly, a type of heavy-tailed

distribution, the Mittag-Leffler distribution, is used to generate the scale factors

of search equations. Finally, the proposed ABC_RL is compared with other

improved ABC algorithms on a group of benchmark functions.

Chapter 4: Since one of the most essential goals of improving such algorithms

is to solve more practical problems, then its practicality and complexity must

be considered. Although many modification strategies are effective in solving

functional optimization problems, they do not always assist us in obtaining the

optimal solution rapidly in practical applications. Therefore, it is also meaningful

to improve the algorithm’s performance without overcomplicating it. Therefore,

in Chapter 4, enhancing the performance of ABC while avoiding it becoming too

complex is investigated. In this context, a learning-based ABC (ABCL) algorithm

is proposed. Hence, more energy and time can be saved when solving problems

like local path planning.

The main contributions are as follows: firstly, the global best solution is

adopted in the employed bee phase and scout bee phase to guide the swarm

in a promising search direction. Secondly, learning phase of the TLBO algorithm

30

1.6 Contributions and outline of dissertation

is embedded in the onlooker bee phase to improve the exploitation ability and

simplify the computational complexity.

Chapter 5: In the proposed ABC variants in Chapters 2-4, the solution

search equations are enhanced by enlarging the number of dimensions to be up-

dated and increasing the amount of information that can be gained from the

colony. However, this kind of improvement actually ignores some useful infor-

mation about the individuals’ previous search experience. It is worth pointing

out that compared to the integer-order derivative, the fractional-order derivative

contains entire memory of its previous events. As a result, different from ex-

isting results, the fractional-order calculus (FOC) is incorporated into the ABC

algorithm considering the memory properties of FOC. In the proposed FOABC

algorithm, each time generating a new candidate solution, the previous foraging

behaviors stored in memory are considered.

The main contributions of this chapter are as following. The FOC is incorpo-

rated into the onlooker bee phase to make full use of the historical experiences.

Meanwhile, a differential search strategy is utilized in the employed bee phase to

reinforce the exploration ability. And the scale factors of these search equations

are generated via Lévy distribution to increase the randomness. In order to val-

idate the performance of FOABC, several groups of comparisons are carried out

on a set of benchmark problems.

Chapter 6: After investigating different improvement strategies to improve

the effectiveness of the ABC algorithm, we wanted to apply them to some more

meaningful problems. Therefore, we attempted to apply these improved ABC

algorithms to solve different types of path planning problems. The proposed

algorithms are adopted to find better solutions in a limited time after transforming

these practical tasks into optimization problems.

First, we used these methods to complete the global path planning for a single

robot. Different environments with arbitrary obstacles are considered. Secondly,

since multi-robot systems are demonstrating their advantages in more and more

fields, we considered this meaningful problem of multi-robot path planning. For

all the path planning challenges, the proposed ABC algorithms are compared to

other well-known path planners in terms of path length and execution time.

Conclusions and perspectives: The results and findings are summarized

and several potential directions for our future research are discussed.

31

1. INTRODUCTION

Papers accepted and submitted:

• Cui, Y., Hu, W., & Rahmani, A. (2022). Improved artificial bee colony

algorithm with dynamic population composition for optimization problems.

Nonlinear Dynamics, 107(1), 743-760.

• Cui, Y., Hu, W., & Rahmani, A. (2022). A reinforcement learning based

artificial bee colony algorithm with application in robot path planning. Ex-

pert Systems with Applications, 117389.

• Cui, Y., Hu, W., & Rahmani, A. (2022). Fractional-order artificial bee

colony algorithm with application in robot path planning. European Journal

of Operational Research, https://doi.org/10.1016/j.ejor.2022.11.007.

• Cui, Y., Hu, W., & Rahmani, A.. Multi-robot path planning using learning-

based Artificial Bee Colony algorithm. Engineering Applications of Artifi-

cial Intelligence (Under 1st Review)

32

Chapter 2

Improved ABC algorithm with

dynamic population composition

(ABCDC)

Contents

2.1 Introduction . 34

2.2 Proposed ABCDC algorithm 35

2.2.1 Improved initialization method 36

2.2.2 Method of dynamic population composition 36

2.2.3 Two enhanced solution search equations 41

2.2.4 The framework of ABCDC algorithm 42

2.3 Experiments on function optimization problems . . . 45

2.3.1 Benchmark functions 45

2.3.2 Sensitive analysis of the parameters a and T_fail . . 45

2.3.3 Comparison with ABC variants 48

2.3.4 Comparison with non-ABC algorithms 54

2.3.5 Convergence behavior analysis 59

2.4 Conclusion . 61

33

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

2.1 Introduction

As mentioned in the previous chapter, ABC has been found to be less effective

in searching locally when it is evaluated in terms of exploration and exploitation.

In this context, numerous possible reasons have been investigated, and many

improvement strategies have been proposed.

First of all, one frequently recognized reason for ABC’s weakness is the in-

efficiency of its solution search equations. It can be found that there are two

equations to generate and update candidate solutions. The initialization and

scout bee phases use the same equation to randomly produce new food source

positions in the search space. The employed bee and onlooker bee phases are

responsible for updating the candidate solutions based on information about the

colony and randomness. In fact, effective solution search equations are supposed

to gather useful data. However, the updating equation in ABC only updates one

dimension at a time, and there is only one reference neighbor being selected. As

a result, one typical enhancement strategy for ABC is to improve its update solu-

tion search equation. Notice that the control parameters used in meta-heuristic

variants are usually pre-defined by users. To reduce reliance on prior experiences,

self-adaptive methods have been proposed which allow the algorithms to set and

adjust parameter values during the searching process (Awad et al., 2015; Qin &

Suganthan, 2005; Xue et al., 2018; Zhang & Sanderson, 2009). Thus, two en-

hanced solution search equations with self-adaptive parameters are implemented

in the employed bee phase and onlooker bee phase of our proposed ABC variant.

There is another reason which has not been mentioned a lot but is worth inves-

tigating, the invariable population composition of the bee colony cannot satisfy

the needs of different search stages. Being inspired by the honeybees, the em-

ployed bees search over the whole space and then unload the obtained information

inside the hive. After that, each onlooker bee chooses one of those food sources

and tries to discover better food sources around the chosen one. It can be found

that, the mission of exploration is mainly accomplished by employed bees whereas

the onlooker bees are responsible for exploiting within certain regions. And in

the basic ABC algorithm, the employed bees and onlooker bees have identical

sizes. Alizadegan et al. (2013) demonstrated that when the number of onlookers

is larger than that of employed bees, the algorithm’s performance becomes better

34

2.2 Proposed ABCDC algorithm

in some situations. Hence, it can be concluded that a lack of onlookers is one of

the reasons ABC seems unable to effectively reach the global optimum.

To the best of our knowledge, those enhanced ABCs that modified the ra-

tio between employed and onlooker bees use a consistent ratio throughout the

searching process (Alizadegan et al., 2013; Hu et al., 2015). And the ratio’s set-

ting is heavily influenced by the experiences of users. Therefore, a strategy is

provided for dynamically adjusting the sizes of employed and onlooker bees dur-

ing the search phase. The balance between diversification and intensification can

be maintained at the same time.

For the purepose of enhancing the performance of ABC, in this chapter, an

improved ABC algorithm with dynamic population composition (ABCDC) is pro-

posed. The division of labor between bees with different roles is more obvious in

ABCDC, so that global optimum can be obtained more efficiently under their co-

operation. Furthermore, two enhanced solutions search equations are adopted in

employed bee and onlooker bee phases according to their responsibilities. Hence,

experiments are carried out to assess the performance of the proposed algorithm.

ABCDC is first compared to different ABC variations using 22 commonly used

benchmark functions (Cui et al., 2017b, 2018; Formica & Milicchio, 2020; Wang

et al., 2020; Zhu & Kwong, 2010) with different dimensions. Moreover, compar-

isons with other non-ABC algorithms are also carried out.

The rest part of this chapter is organized as follows. The proposed algorithm is

introduced in section 2.2. Then, section 2.3 presents experiments and the results.

The conclusion is given in the last section 2.4.

2.2 Proposed ABCDC algorithm

The proposed algorithm is introduced in details in this part. More precisely, an

initialization method named Symmetric Latin Hypercube Design (SLHD) and two

enhanced differential search equations are adopted. Moreover, a novel method for

tuning the population composition is proposed to reinforce the intensification as

well as diversification.

35

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

2.2.1 Improved initialization method

In most meta-heuristic algorithms, the initial candidate solutions are always gen-

erated randomly. It is obvious that, the higher the diversity of initial population

is, the more efficient the algorithm is in searching the space. Therefore, the ini-

tialization is an essential task that can affect the quality of solutions and the

convergence rate. In this context, different initialization methods have been pro-

posed in order to enhance the diversity of population. Hence, instead of using

the uniform random initialization, approaches like chaotic maps and opposition-

based learning (OBL) were utilized in some ABC variants (Gao et al., 2016; Hu

et al., 2015).

A random SLHD was employed for generating the initial population in other

meta-heuristic algorithms (Regis & Shoemaker, 2004; Zhao et al., 2016). Accord-

ing to the literature, sample points dispersed via SLHD are more uniformly than

uniform distributed sample points and the Latin Hypercube Design (LHD) sam-

ple points. Moreover, Kenny et al. (2000) illuminated how SLHD outperformed

LHD considering minimum intersite distance and the entropy.

A comparison of the uniform random method and the SLHD in 2D space was

also performed to demonstrate the advantage of SLHD. These two methods were

used to produce sets of solutions, which are presented in Figure 2.1. The number

of sample points are set as 200 and 400 in the two group of tests.

It can be observed that the points generated by the original method (i.e.,

the uniform random sampling) have some points clustered together while other

places have relatively large gaps. Compared with the original method, the SLHD

is able to generate more uniformly distributed points so that the space can be

explored better. This is critical for the algorithms, particularly at the beginning

stage when there is no prior experience.

Therefore, the SLHD is incorporated into the initialization phase of ABC

algorithm. The pseudo-code of initialization phase via SLHD is presented in

Algorithm 5.

2.2.2 Method of dynamic population composition

ABC algorithm manages to find the best solution thanks to the cooperation of

the three groups of honey bees. The employed bees accomplish the mission of ex-

36

2.2 Proposed ABCDC algorithm

(a) 200 uniform random sample points (b) 200 SLHD sample points

(c) 400 uniform random sample points (d) 400 SLHD sample points

Fig. 2.1. Comparison between uniform random sampling and SLHD sampling
in 2D.

37

Chap2/chapter2_figs/EPS//rand200.eps
Chap2/chapter2_figs/EPS//SLHD200.eps
Chap2/chapter2_figs/EPS//rand400.eps
Chap2/chapter2_figs/EPS//SLHD400.eps

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

Algorithm 5 Initialization via SLHD
1: Initialize an array M of size SN ×D
2: if SN is odd then M((SN+1)

2
, j) = SN+1

2
for j = 1, · · · , D

3: end if
4: k = ⌈(SN − 1)/2⌉ ⊲ ⌈·⌉ is the ceiling function.
5: for j = 1→ D do

Randomly select a permutation of 1, · · · , k and denote it by ϕj

6: end for
7: for i = 1→ l do
8: for j = 1→ D do
9: if rand(0, 1) ≤ 0.5 then

10: M(i, j) = ϕj(i)
11: M(SN + 1− i, j) = SN + 1− ϕj(i)
12: else
13: M(i, j) = SN + 1− ϕj(i)
14: M(SN + 1− i, j) = ϕj(i)
15: end if
16: end for
17: end for
18: πj = M(:, j)

19: Divide [lowerj, upperj] into SN equal subintervals and c
(i)
j denotes the mid-

point of the ith subinterval of the jth dimension.
20: for i = 1→ SN do

xSLHD(i) = (c
(π1(i))
1 , c

(π2(i))
2 , · · · , c

(πD(i))
D)

21: end for

ploration while the onlooker bees focus on seeking in the promising regions. And

scout bees work for preventing the stagnation of search procedure (Babaoglu,

2015). It is noted that their sizes greatly influence the performance and conver-

gence speed.

Based on the responsibilities of employed and onlooker bees, in the early

stage of search process, we hope the size of employed bees is larger than before

to search over the whole sample space as much as possible. Hence, when certain

promising areas are circled, the principle mission can be shifted to exploitation

which is shouldered by onlooker bees. In this way, both of the exploration and

exploitation can be accomplished effectively if the composition of population is

adjusted timely.

Accordingly, a dynamic population composition mechanism is proposed. With

this method, the number of employed bees and onlooker bees can be adjusted so

38

2.2 Proposed ABCDC algorithm

that they can better perform their respective roles in different search periods.

The pseudo-code of the mechanism is given in Algorithm 6.

Algorithm 6 Method of dynamic population composition
1: Initialize ratioE = 0.9
2: if nb_fail > T_fail then ⊲ the situation needs to be adjusted
3: Update the ratioE with Equation 2.1
4: Nemployed = ⌈2× SN × ratioE⌉
5: Nonlooker = 2SN −Nemployed ⊲ update the population composition
6: Sort the candidate solutions according to their objective function values
7: Take the first Nemployed candidate solutions
8: for k = 1→ Nemployed do
9: Generate the opposition-based position of xk via Equation 2.2

10: if f(xk) <= f(x_oppok) then
11: xk → x_new
12: else
13: x_oppok → x_new
14: end if
15: end for
16: Reset the nb_fail = 0
17: FES = FES +Nemployed

18: end if

The parameter ratioE is introduced to define and adjust the proportion of

employed bees in total population. According to definition in Equation 2.1, ratioE
is initialized to 0.9 in the beginning. Then its value decreases gradually along

with the augmentation of function evaluations FES. Note that the max_FES

represents the maximal number of function evaluations. The coefficient a ∈ (0, 1)

is important because it decides the change rate of the population composition.

ratioE = 0.9− a×
FES

max_FES
. (2.1)

Remark 2.1 If a is too large, the number of employed bees quickly reduces, and

eventually only few employed bees remain. Whereas, if a is set to a small value,

the number of onlooker bees increases too slowly. So, in order to select an appro-

priate value for a, different values are tested and analyzed in subsection 2.3.2.

Moreover, a counter nb_fail is introduced to determine when the algorithm

needs to adjust the population composition. Firstly, at the end of each iteration,

39

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

the best solution in current population is compared to the best solution so far. If

the current best solution has smaller objective function value, then the current

iteration is considered as one successful experience, otherwise, the counter of fails

nb_fail will plus one (lines 26-28 in Algorithm 7). Secondly, this cumulative

failed iteration number is compared to a predefined threshold T_fail. In this

way, the value of ratioE can be updated periodically based on the comparison

result (line 2 in Algorithm 6). Moreover, if the historical best solution hasn’t been

updated more than T_fail times, the situation is considered to be improved by

switching to another population composition (lines 3-5 in Algorithm 6).

Once the composition is altered, a portion of the employed bees will become

onlooker bees, resulting in the abandonment of several food source positions.

In order to select the most hopeful candidate solutions, all the solutions are

sorted according to their associated objective function values. The top Nemployed

positions will be remained (lines 6-7 in Algorithm 6). Moreover, to avoid losing

the population diversity too rapidly, the opposition-based learning (OBL) method

is employed on all these remaining solutions. The opposite position of solution

can be found by Equation 2.2.

x_oppoi,j = xl,j + xu,j − xi,j , (2.2)

where the xl,j and xu,j denote the lower bound and upper bound of the jth variable

respectively.

Then, for each left employed bee, it will go to the fitter position by challenging

its previous position with the opposite one (lines 10-14 in Algorithm 6). While the

more qualified food sources are preserved, some employed bees become onlooker

bees and help to exploit around those subsistent nectars. In contrast, if the

counter of fails doesn’t reach the sill, the bee colony will remain the same to

continue searching. Furthermore, the impact of varying the value of parameter

T_fail is discussed in subsection 2.3.2.

In addition, the method for dynamic population composition above is able

to ensure that the food source positions with disappointing fitness values are

removed. And new solutions can still be found by employing OBL. Therefore,

ABCDC do not keep the scout bee phase because its work is accomplished by the

proposed mechanism.

40

2.2 Proposed ABCDC algorithm

2.2.3 Two enhanced solution search equations

As mentioned previously, the original ABC algorithm works well in exploration

but poorly in the exploitation. One major reason is that the solution search equa-

tion Equation 1.2 can only get information from one neighbor at a time, and this

information may also be useless. Meanwhile, only one variable of the candidate

solution can be updated via this equation. On the other hand, the search strat-

egy of DE is able to learn more information from the population and can vary

the number of dimensions to be updated each time. Actually, Equation 1.2 has

similar role as the mutation operator in DE. Nonetheless, DE is able to vary the

number of updating dimensions through the crossover and selection operators.

Thus, being inspired by several enhanced DEs (Brest et al., 2006; Qin & Sugan-

than, 2005; Zhang & Sanderson, 2009), certain effective differential strategies are

incorporated into the proposed ABCDC algorithm.

Qin & Suganthan (2005) proposed an algorithm named SaDE which employs

two different mutation operators “DE/rand/1 ” and “DE/current-to-best/1 ” si-

multaneously. The authors made the choice because “DE/rand/1 ” has shown

good diversity while “DE/current-to-best/1 ” has proved outstanding convergence

property. Hence, given the responsibilities of employed bees and onlooker bees,

applying two different search equations in these phases is naturally regarded as

an effective enhancement strategy. Therefore, two search equations based on

“DE/rand/1 ” and “DE/current-to-best/1 ” are proposed as follows.

Employed bee phase :

vi = xk1 + Femployed_i × (xk2 − xk3), (2.3)

Onlooker bee phase :

vi,j =xi,j + Fonlooker_i × (xbest,j − xi,j)

+ Fonlooker_i × (xk1,j − xk2,j),
(2.4)

where k1 6= k2 6= k3 6= i are randomly selected from {1, · · · , Nemployed} and

j ∈ {1, · · · , D} is randomly chosen. xbest,j is the jth dimension of the current

best individual. The parameters Femployed_i and Fonlooker_i are associated with

each employed bee and each onlooker bee, respectively. Different from other

41

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

solution search equations, the control parameters Femployed_i and Fonlooker_i are

adaptively adjusted based on the successful experiences.

The parameter adaptation method proposed by Zhang & Sanderson (2009) in

algorithm JADE is adopted in ABCDC. The parameters Femployed_i and Fonlooker_i

are independently created by Cauchy distribution of mean (µF_employed or µF_onlooker)

and standard deviation 0.1. Each time, if the new position vi is better than the

previous position xi (i.e., f(vi) < f(xi)), then the production of new solution will

be regarded as a successful search. And the utilized value of F will be recorded

into a list SF_employed or SF_onlooker. The values in lists will be used when re-

calculating the parameters µF_employed and µF_onlooker via Equation 2.5 at the

end of each iteration. Thus, those Femployed_i and Fonlooker_i who have helped

to achieve successful searches will be used to lead the algorithm searching in a

promising direction.

µF = (1− c)× µF + c×meanL(SF), (2.5)

where c ∈ (0, 1) is a constant. According the suggestions of JADE, c = 0.1 while

µF_employed and µF_onlooker are initialized to be 0.5. meanL(·) is the Lehmer mean

which is expressed as

meanL(SF) =

∑

F∈SF
F 2

∑

F∈SF
F

. (2.6)

Remark 2.2 Although the parameters Femployed_i and Fonlooker_i are generated

and updated in the same manner, they are independent from each other.

2.2.4 The framework of ABCDC algorithm

In this part, the complete proposed algorithm is presented. To explain the algo-

rithm clearly, the pseudo-code is represented in Algorithm 7 and the correspond-

ing flowchart is given in Figure 2.2.

Remark 2.3 Note that when a generated position is outside the space, it will be

replaced by a new candidate solution which is randomly generated by Equation 1.1.

42

2.2 Proposed ABCDC algorithm

Algorithm 7 Pseudo-code of ABCDC algorithm
1: Initialize µF_employed = 0.5;µF_onlooker = 0.5; Nemployed = 2SN × 0.9;

nb_fail = 0
2: Create Nemployed initial food sources with Algorithm 5.
3: Evaluate objective function values of the population, FES = Nemployed

4: while FES ≤ max_FES do
5: SF_employed = ∅; SF_onlooker = ∅

% Enhanced employed bee phase %
6: for i = 1→ Nemployed do
7: Femployed_i = randCauchy(µF_employed, 0.1)
8: Randomly select k1 6= k2 6= k3 6= i from the colony
9: Generate vi with Eq.(2.3)

10: if f(vi) ≤ f(xi) then
11: Replace xi with vi
12: Add Femployed_i into SF_employed

13: end if
14: end for
15: Evaluate the probability values probi with Eq.(1.5)

% Enhanced onlooker bee phase %
16: while t < Nonlooker do
17: Select xs by roulette wheel method according prob
18: Fonlooker_s = randCauchy(µF_onlooker, 0.1)
19: Randomly select j ∈ {1, · · · , D} and k1 6= k2 6= i from the colony
20: Generate vs with Eq.(2.4)
21: if f(vs) ≤ f(xs) then
22: Replace xs with vs
23: Add Fonlooker_s into SF_onlooker

24: end if
25: end while
26: FES = FES + 2SN
27: if bestcurrent ≥ besthistory then
28: nb_fail = nb_fail + 1
29: end if
30: Update the µF_employed and µF_onlooker with Eq.(2.5)
31: Update the number of employed bees and onlooker bees with Algorithm 6.
32: end while

43

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

Fig. 2.2. The flowchart of ABCDC algorithm

44

Chap2/chapter2_figs/EPS//flowchartABCDC.eps

2.3 Experiments on function optimization problems

2.3 Experiments on function optimization prob-

lems

In this section, experiments have been done to validate and demonstrate the per-

formance of ABCDC. Firstly, the sensitive tests and analysis of control parameters

are presented in subsection 2.3.2. Then two series of experiments are applied on

22 benchmark functions in different dimensions. The results of ABCDC are com-

pared with several ABC variants and other effective meta-heuristic algorithms,

respectively.

In order to do the comparisons fairly, for all the involved algorithms, the deter-

mination conditions are respect to the maximum number of function evaluations

max_FES = 5000×D. Furthermore, all the experimental studies are based on

statical results of 25 independent runs. The mean and standard deviation (Std)

of errors f(Xbest)− f(X∗) are calculated and presented in the comparison tables.

The f(Xbest) is the best solution found by an algorithm and f(X∗) is the global

optimum.

2.3.1 Benchmark functions

22 well-known functions which are widely utilized in the comparisons of optimiza-

tion methods are chosen as benchmark problems (Cui et al., 2017b, 2018; Farah

& Belazi, 2018; Wang et al., 2020; Zhu & Kwong, 2010). The function definitions,

corresponding global minimum and the search range are presented in Table 2.1.

Among these optimization problems, f1 − f6 and f8 − f9 are uni-modal func-

tions while f7 is the discontinuous step function and f10 is the noisy quartic

function. Notice that f11 is the Rosenbrock function which is uni-modal problem

when D=2 and 3, however, it probably has multiple optima in the higher dimen-

sional cases (Kang et al., 2011). As for the rest part, f12 − f22 are multi-modal

functions and their local minima augments exponentially when the problem di-

mension increases.

2.3.2 Sensitive analysis of the parameters a and T_fail

In the proposed algorithm, parameter a is the change rate of the Equation 2.1

which is able to adjust the population’s composition. The ratioE is the proportion

45

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

Table 2.1: 22 benchmark optimization functions

Function Range Min

f1(x) =
∑D

i=1 x
2
i [−100, 100]D 0

f2(x) =
∑D

i=1(10
6)

i−1

D−1x2
i [−100, 100]D 0

f3(x) =
∑D

i=1 ix
2
i [−10, 10]D 0

f4(x) =
∑D

i=1 |xi|
(i+1) [−1, 1]D 0

f5(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D 0

f6(x) = maxi=1,...,n |xi| [−100, 100]D 0

f7(x) =
∑D

i=1(⌊xi + 0.5⌋)2 [−100, 100]D 0

f8(x) = exp(0.5
∑D

i=1 xi) [−10, 10]D 0

f9(x) =
∑D

i=1 ix
4
i [−1.28, 1.28]D 0

f10(x) =
∑D

i=1 ix
4
i + random[0, 1) [−1.28, 1.28]D 0

f11(x) =
∑D

i=1[100(xi+1 − x2
i)

2 + (xi − 1)2] [−5, 10]D 0

f12(x) =
∑D

i=1[x
2
i − 10cos(2πxi) + 10] [−5.12, 5.12]D 0

f13(x) =
∑D

i=1[y
2
i − 10cos(2πyi) + 10]

yi =

{

xi |xi| <
1
2

round(2xi)
2

|xi| ≥
1
2

}

[−5.12, 5.12]D 0

f14(x) = 1 + 1
4000

∑D
i=1 x

2
i −

∏D
i=1 cos(

xi√
i
) [−600, 600]D 0

f15(x) = 418.98288727243380×D −
∑D

i=1 xi sin(
√

|xi|) [−500, 500]D 0

f16(x) = −20 exp(−0.2
√

1
D

∑D
i=1 x

2
i)− exp(1

D

∑D
i=1 cos(2πxi)) + 20 + e [−50, 50]D 0

f17(x) =
π
D
{10 sin2(πy1) +

∑D−1
i=1 (y1 − 1)2[1 + 10 sin2(πyi+1)]

+(yD − 1)2}+
∑D

i=1 u(xi, 10, 100, 4)

yi = 1 + 1
4
(xi + 1), uxi,a,k,m =







k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a







[−100, 100]D 0

f18(x) =
1
10
{sin2(πx1) +

∑D−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)]+

(xD − 1)2[1 + sin2(sπxi+1)]}+
∑D

i=1 u(xi, 5, 100, 4)
[−100, 100]D 0

f19(x) =
∑

i = 1D|xisin(xi) + 0.1xi| [−10, 10]D 0

f20(x) =
∑D−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)] + sin2(3πx1) + |xD − 1|[1 + sin2(3πxD)] [−10, 10]D 0

f21(x) =
∑D

i=1

(

∑kmax

k=0 [ak cos(2πbk(xi + 0.5))]
)

−D
∑kmax

k=0 [ak cos(2πbk0.5)]

a = 0.5, b = 3, kmax = 20
[−0.5, 0.5]D 0

f22(x) =
1
D

∑D
i=1(x

4
i − 16x2

i + 5xi) [−5, 5]D -78.33236

46

2.3 Experiments on function optimization problems

of employed bees in the total colony and its value reduces linearly along with

the increase of iteration. And coefficient a decides the decline rate of employed

bees’ size. Meanwhile, in ABCDC the number of failures to update the global

best solution are counted cumulatively. And T_fail stands for the threshold of

adjusting the population’s composition, in other words, the frequency of tuning

the number of employed bee and onlooker bee depends on this parameter. In this

context, it is essential to determine proper values for these two crucial control

parameters.

In the following, experiments are developed to investigate the performances of

ABCDC with different combinations of a and T_fail. The tests are conducted

on 30-dimensional benchmark problems. And the Friedman test is employed to

evaluate the mean rankings of concerned ABCDC versions. The results are listed

in Table 2.2 and the best ranking is marked in boldface. For each function, the

average of the errors between the exact minima and the best solutions which are

searched in 25 independent runs is calculated.

Table 2.2: Comparison of ABCDC variants with different values of a and T_fail

T_fail
5 10 15 20

a

0.2 16.17 18.74 17.88 17.40
0.3 15.22 15.43 16.38 16.71
0.4 13.81 14.43 13.43 14.67
0.5 28.24 18.84 13.00 13.76
0.6 11.90 13.05 11.90 19.48
0.7 10.76 11.95 10.76 13.10
0.8 10.00 11.57 12.19 13.81

According to the mean ranking of different ABCDC versions, it can be found

that the best version is the one with T_fail = 5 and a = 0.8. If we observe the

table in columns (i.e., value of T_fail is fixed), better results are obtained when

a is set to be relatively large. Moreover, when we analyze the results in rows, the

ABCDC variants who have smaller T_fail can usually possess better outcomes.

In other words, on the chosen optimization problems, tuning the population’s

composition more frequently and using a larger change rate can help to obtain

better performance. As a result, the setting a = 0.8 and T_fail = 5 will be used

in the following studies.

47

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

2.3.3 Comparison with ABC variants

In this part, the proposed algorithm is compared to five improved ABC variants

and the standard ABC algorithm in order to evaluate its performance. The tests

are conducted on the 22 benchmark problems with D=30, 50, and 100.

The reason of choosing DEABC (Li & Yin, 2014) is that DE’s mutation and

crossover operators are combined in this DE-inspired hybrid algorithm. APABC

(Cui et al., 2017b) is an improved ABC with adaptive population size, however,

different from our proposed algorithm, the total size is adjusted according to the

success rate of honey bees. The ILTD_ABC (Gao et al., 2019) and NSABC

(Wang et al., 2020) are proposed recently which can represent the latest direction

of improving ABC. Notice that the ILTD_ABC utilizes novel solution search

equations which is powerful in converging to the optimum and the its code is

open to public. To start the comparison fairly, their control parameters are set

the same as those of their original papers. The utilized parameter settings are

listed in Table 2.3.

Table 2.3: Parameter settings of ABCDC and compared ABC algorithms

Algorithm Parameter setting
ABC (Karaboga, 2005) SN = 50, limit = SN ×D
DEABC (Li & Yin, 2014) SN = 50, limit = SN ×D
APABC (Cui et al., 2017b) SN = 35, SNmin = 20,

SNmax = 35, T = 20
ILTD_ABC (Gao et al., 2019) SN = 50, limit = 100
NSABC (Wang et al., 2020) SN = 50, limit = 100, k = 10, C = 1.5
ABCDC SN = 50, µF_employed = 0.5,

µF_onlooker = 0.5, a = 0.8, T_fail = 5

Table 2.4 - Table 2.6 present the comparison results in terms of the mean

and standard deviation (Std) of the errors f(Xbest) − f(X∗). And for each test

function, the results of involved ABC algorithms are compared to that of ABCDC

via the Wilcoxon rank sum test at 0.05 significant level. The symbols "+",

"=", and "-" denote that ABCDC is better than, similar to, and worse than

the compared algorithm, respectively. In addition, the Friedman test is also

applied on the results and Figure 2.3 summarizes the average rankings of involved

algorithms.

48

2.3 Experiments on function optimization problems

Table 2.4: Comparison between ABCDC and other ABC variants with D = 30

Function ABC DEABC APABC ILTD_ABC NSABC ABCDC
f1 Mean 0.00E+00 - 1.37E-15 + 6.63E-70 + 0.00E+00 - 1.67E-25 + 1.84E-197

Std 0.00E+00 2.27E-15 1.79E-69 0.00E+00 1.15E-25 0.00E+00
f2 Mean 5.75E-09 + 1.70E-12 + 1.35E-64 + 0.00E+00 - 2.70E-22 + 4.22E-145

Std 8.70E-09 1.97E-12 6.51E-64 0.00E+00 2.98E-22 2.11E-144
f3 Mean 0.00E+00 - 9.77E-17 + 4.35E-69 + 0.00E+00 - 2.02E-26 + 2.91E-188

Std 0.00E+00 1.38E-16 2.10E-68 0.00E+00 1.52E-26 0.00E+00
f4 Mean 0.00E+00 = 6.39E-35 + 1.21E-78 + 0.00E+00 = 3.16E-79 + 0.00E+00

Std 0.00E+00 3.19E-34 3.22E-78 0.00E+00 9.96E-79 0.00E+00
f5 Mean 0.00E+00 - 1.14E-05 + 2.61E-35 + 0.00E+00 - 3.23E-14 + 1.40E-103

Std 0.00E+00 2.99E-05 9.99E-35 0.00E+00 1.08E-14 5.89E-103
f6 Mean 1.17E+01 + 2.11E+00 + 6.11E-01 + 0.00E+00 - 8.64E+00 + 1.12E-299

Std 2.63E+00 2.39E+00 1.16E-01 0.00E+00 1.75E+00 0.00E+00
f7 Mean 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f8 Mean 0.00E+00 - 7.18E-66 = 7.18E-66 = 7.18E-66 = 0.00E+00 - 7.18E-66

Std 0.00E+00 3.23E-81 3.23E-81 3.23E-81 0.00E+00 3.23E-81
f9 Mean 0.00E+00 = 7.35E-31 + 8.75E-140 + 0.00E+00 = 1.51E-55 + 0.00E+00

Std 0.00E+00 2.08E-30 3.33E-139 0.00E+00 4.18E-55 0.00E+00
f10 Mean 5.78E-02 + 6.26E-02 + 1.92E-02 + 5.68E-06 - 3.24E-02 + 1.99E-05

Std 1.24E-02 9.65E-03 3.88E-03 5.42E-06 9.96E-03 1.36E-05
f11 Mean 1.34E-01 + 1.14E+01 + 3.52E-01 + 2.64E+01 + 1.19E+01 + 0.00E+00

Std 9.68E-02 1.71E+00 5.12E-01 1.60E-01 2.06E+01 0.00E+00
f12 Mean 0.00E+00 = 2.29E+02 + 0.00E+00 = 0.00E+00 = 7.96E-02 + 0.00E+00

Std 0.00E+00 1.08E+01 0.00E+00 0.00E+00 2.75E-01 0.00E+00
f13 Mean 3.17E-09 + 2.08E+02 + 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 1.36E-08 1.55E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f14 Mean 7.36E-10 + 3.18E-02 + 9.06E-13 + 0.00E+00 = 3.33E-13 + 0.00E+00

Std 3.68E-09 1.30E-01 3.36E-12 0.00E+00 1.66E-12 0.00E+00
f15 Mean 2.67E+01 + 5.70E+01 + 9.48E+00 + 2.13E+02 + 1.41E+47 + 0.00E+00

Std 4.91E+01 6.03E+01 3.28E+01 1.51E+02 6.89E+47 0.00E+00
f16 Mean 8.67E-04 + 2.69E-08 + 9.76E-02 + 8.88E-16 = 6.41E-12 + 8.88E-16

Std 1.52E-03 1.99E-08 3.61E-01 0.00E+00 9.28E-12 0.00E+00
f17 Mean 0.00E+00 - 4.15E-03 + 1.57E-32 = 1.57E-32 = 2.41E-27 + 1.57E-32

Std 0.00E+00 2.07E-02 5.59E-48 5.59E-48 1.61E-27 5.59E-48
f18 Mean 0.00E+00 - 4.15E-03 + 1.57E-32 = 1.57E-32 = 3.86E-27 + 1.57E-32

Std 0.00E+00 2.07E-02 5.59E-48 5.59E-48 3.23E-27 5.59E-48
f19 Mean 2.09E-05 + 1.97E-02 + 4.39E-29 + 0.00E+00 - 2.58E-14 + 2.38E-92

Std 1.17E-05 8.31E-03 2.18E-28 0.00E+00 1.38E-14 1.19E-91
f20 Mean 0.00E+00 - 1.10E+01 + 3.91E-30 - 2.45E+01 + 1.10E-23 - 4.96E-11

Std 0.00E+00 6.79E-01 2.15E-45 1.52E+01 1.24E-23 2.13E-10
f21 Mean 5.33E-07 + 9.29E-04 + 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 4.22E-07 4.68E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f22 Mean 0.00E+00 - 3.39E-01 + 2.86E-05 + 9.00E-05 + 2.86E-05 + 2.86E-05

Std 0.00E+00 5.36E-01 1.23E-14 1.92E-05 1.15E-14 0.00E+00
Total +/=/- 10/4/8 20/2/0 14/7/1 4/11/7 17/3/2

49

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

The statical results for 30-dimensional problems can be found in Table 2.4. In

fact, the results of solving uni-modal functions (f1−f9) can reveal the exploitation

ability of concerned algorithms because each problem has only one global opti-

mum. In this case, the proposed ABCDC algorithm has competitive exploitation

capability considering its values of mean and standard deviation. For f1− f3 and

f5 − f6, ABCDC surpass most of the other ABC variants.

Unlike the uni-modal functions, multi-modal functions have more than one

local optima. So it is worth to point out that multi-modal functions are adequate

for evaluating the exploration ability of an algorithm. It can be found that, the

diversification of ABCDC is excellent in this comparison. For functions f11 − f16

and f21, ABCDC achieves the corresponding global optimum. For f17, f18, f20 and

f22, the basic ABC obtains the optimal solutions, however, the results of ABCDC

are competitive.

In addition, according to the results of the Wilcoxon tests, the advantage

of ABCDC is remarkable compared to DEABC. Meanwhile, ABCDC performs

better than the original ABC on 10 functions, especially on f2, f6, f13 − f15 and

f21. Compared with the NSABC algorithm, ABCDC performs better than it

on 17 out of 22 problems. As for APABC, there are 7 functions where their

corresponding errors are similar and 15 functions where ABCDC has significant

advantages. Moreover, the proposed algorithm performs as good as ILTD_ABC

algorithm on 11 functions.

Besides, it is essential to consider the overall performances of 22 benchmark

functions together. In this context, it is worth pointing out that ABCDC is

outstanding in term of solution precision for various kinds of problems. Compared

to basic ABC and ILTD_ABC, ABCDC has very small errors when the other two

algorithms get better solutions. Nevertheless, when the solutions of ABCDC are

better, their errors are relatively large. So in Figure 2.3, ABCDC is in the first

place under Friedman test. We can conclude that the proposed algorithm achieves

excellent results considering solution quality in the case of low-dimension.

The comparison results for middle dimensional problems are shown in Ta-

ble 2.5 and similar phenomena can be observed. For uni-modal functions f4 and

f9, ABCDC, ILTD_ABC and original ABC manage to find out the optimal solu-

tions. For f6, ABCDC and ILTD_ABC attain the global optimum whereas other

competitors are far from the optimal solution. And for f1 − f3 and f5, ABCDC

50

2.3 Experiments on function optimization problems

Table 2.5: Comparison between ABCDC and other ABC variants with D = 50

Function ABC DEABC APABC ILTD_ABC NSABC ABCDC
f1 Mean 0.00E+00 - 1.85E-15 + 3.22E-68 + 0.00E+00 - 1.23E-23 + 4.10E-241

Std 0.00E+00 2.09E-15 5.97E-68 0.00E+00 7.88E-24 0.00E+00
f2 Mean 2.90E-08 + 2.63E-12 + 2.32E-63 + 0.00E+00 - 2.77E-20 + 4.43E-211

Std 1.95E-08 2.86E-12 6.70E-63 0.00E+00 2.12E-20 0.00E+00
f3 Mean 0.00E+00 - 3.07E-16 + 1.35E-67 + 0.00E+00 - 2.84E-24 + 1.95E-246

Std 0.00E+00 3.34E-16 4.44E-67 0.00E+00 1.99E-24 0.00E+00
f4 Mean 0.00E+00 = 1.20E-21 + 6.45E-74 + 0.00E+00 = 2.79E-77 + 0.00E+00

Std 0.00E+00 5.97E-21 2.40E-73 0.00E+00 1.39E-76 0.00E+00
f5 Mean 0.00E+00 - 7.76E+00 + 6.56E-36 + 0.00E+00 - 5.06E-13 + 4.53E-135

Std 0.00E+00 2.29E+01 1.21E-35 0.00E+00 2.07E-13 2.04E-134
f6 Mean 2.95E+01 + 1.02E+01 + 3.89E+00 + 0.00E+00 = 2.44E+01 + 0.00E+00

Std 2.83E+00 5.92E+00 3.90E-01 0.00E+00 2.56E+00 0.00E+00
f7 Mean 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f8 Mean 0.00E+00 - 2.67E-109 + 2.67E-109 = 2.67E-109 = 0.00E+00 - 2.67E-109

Std 0.00E+00 5.15E-123 9.65E-125 9.65E-125 0.00E+00 9.65E-125
f9 Mean 0.00E+00 = 1.69E-26 + 4.74E-135 + 0.00E+00 = 4.71E-52 + 0.00E+00

Std 0.00E+00 4.79E-26 1.24E-134 0.00E+00 7.71E-52 0.00E+00
f10 Mean 1.12E-01 + 1.25E-01 + 3.52E-02 + 3.60E-06 - 7.52E-02 + 1.31E-05

Std 1.99E-02 2.28E-02 6.53E-03 2.90E-06 1.52E-02 9.41E-06
f11 Mean 1.66E-01 + 4.75E+01 + 4.77E-01 + 4.62E+01 + 1.28E+01 + 0.00E+00

Std 1.28E-01 1.88E+01 3.82E-01 1.36E-01 2.63E+01 0.00E+00
f12 Mean 3.24E-04 + 4.38E+02 + 0.00E+00 = 0.00E+00 = 3.98E-02 + 0.00E+00

Std 1.62E-03 1.49E+01 0.00E+00 0.00E+00 1.99E-01 0.00E+00
f13 Mean 8.00E-02 + 4.17E+02 + 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 2.77E-01 1.77E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f14 Mean 0.00E+00 = 6.90E-04 + 1.06E-11 + 0.00E+00 = 0.00E+00 = 0.00E+00

Std 0.00E+00 2.41E-03 5.30E-11 0.00E+00 0.00E+00 0.00E+00
f15 Mean 2.33E+02 + 5.56E+02 + 9.48E+00 + 4.26E+02 + 3.53E+47 + 1.82E-11

Std 9.35E+01 1.55E+03 3.28E+01 2.42E+02 1.45E+48 0.00E+00
f16 Mean 1.35E-03 + 2.73E-08 + 1.46E-01 + 8.88E-16 = 9.14E-11 + 8.88E-16

Std 1.80E-03 2.51E-08 3.56E-01 0.00E+00 2.26E-10 0.00E+00
f17 Mean 0.00E+00 - 5.65E+00 + 9.42E-33 = 1.15E-32 + 1.49E-25 + 9.42E-33

Std 0.00E+00 1.54E+00 1.40E-48 1.05E-32 7.53E-26 1.40E-48
f18 Mean 0.00E+00 - 5.80E+00 + 9.42E-33 = 1.17E-32 + 1.50E-25 + 9.42E-33

Std 0.00E+00 1.89E+00 1.40E-48 1.05E-32 1.39E-25 1.40E-48
f19 Mean 1.20E-04 + 7.69E-04 + 8.33E-32 + 0.00E+00 - 5.41E-13 + 2.60E-117

Std 9.04E-05 2.08E-03 3.68E-31 0.00E+00 3.12E-13 1.29E-116
f20 Mean 0.00E+00 - 2.03E+01 + 6.61E-30 - 6.18E+01 + 1.08E-21 - 8.06E-11

Std 0.00E+00 1.18E+00 1.43E-45 2.50E+01 1.18E-21 4.02E-10
f21 Mean 1.98E-06 + 8.42E-04 + 5.68E-15 + 0.00E+00 = 5.97E-14 + 0.00E+00

Std 1.30E-06 8.32E-04 8.20E-15 0.00E+00 2.36E-14 0.00E+00
f22 Mean 0.00E+00 - 7.46E-01 + 2.86E-05 + 1.89E-04 + 2.86E-05 + 2.86E-05

Std 0.00E+00 5.34E-01 2.58E-14 4.67E-05 1.57E-14 0.00E+00
Total +/=/- 10/4/8 21/1/0 15/6/1 6/10/6 17/3/2

51

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

is competitive with ILTD_ABC and basic ABC. Meanwhile, the advantage of

ABCDC is significant on most muti-modal problems.

According to the results of the Wilcoxon tests, there are 10 out of 22 functions

that ABCDC performs better than the original ABC. And they have similar

results on 4 functions. At the same time, ABCDC obtains better solutions in

21 problems compared to DEABC. Meanwhile, ABCDC performs better than

the APABC on 15 functions. Compared with the ILTD_ABC algorithm, the

numbers that ABCDC performs better than it and worse than it are both 6.

There are 10 out of 22 functions that they have similar results. As for NSABC,

there are 17 functions where ABCDC has significant advantages.

In Table 2.6, the proposed ABCDC, basic ABC and ILTD_ABC are compet-

itive with each other in solving uni-modal functions. For f1−f3, the ILTD_ABC

algorithm attains the global optima. For f4 ABCDC and the basic ABC achieve

the optimum while ABCDC and ILTD_ABC find the optimum of f6. Notice

that, on the functions where ABCDC doesn’t attain the global optimum, the cor-

responding errors are much smaller than those of other competitors. At the same

time, the advantages of ABCDC, basic ABC and ILTD_ABC algorithms are also

remarkable on multi-modal functions. For f12 − f14, ABCDC and ILTD_ABC

attain the global optima. For f15 and f16, all competitors fail to reach the opti-

mum, and the ABCDC algorithm generates the best solutions. The original ABC

perform the best on f17, f18 and f22 whereas ABCDC attain the best results for

f20 and f21.

Considering the Wilcoxon test results, ABCDC performs better than the orig-

inal ABC on 11 functions. DEABC fails to surpass the proposed algorithm on all

the benchmarks. ABCDC obtains smaller errors than APABC does on 15 out of

22 functions. Meanwhile, ABCDC is competitive to ILTD_ABC as their results

do not have significant differences on 10 functions. And these two methods each

achieves better results on 6 functions.

In addition, Friedman tests are conducted on all the three comparisons as it

is widely used to evaluate the overall performance of more than two algorithms.

Figure 2.3 illustrates the average rankings of involved ABC algorithms based on

the mean values for each dimensions case.

It can be seen that ABCDC obtains the best rankings in all the three cases.

52

2.3 Experiments on function optimization problems

Table 2.6: Comparison between ABCDC and other ABC variants with D = 100

Function ABC DEABC APABC ILTD_ABC NSABC ABCDC
f1 Mean 0.00E+00 - 2.04E-13 + 2.45E-63 + 0.00E+00 - 1.04E-21 + 5.46E-67

Std 0.00E+00 5.67E-13 4.78E-63 0.00E+00 4.43E-22 2.73E-66
f2 Mean 1.47E-07 + 1.19E-10 + 4.00E-59 + 0.00E+00 - 2.72E-18 + 2.56E-251

Std 8.09E-08 1.69E-10 1.22E-58 0.00E+00 1.80E-18 0.00E+00
f3 Mean 0.00E+00 - 1.65E-14 + 3.35E-63 + 0.00E+00 - 4.99E-22 + 9.31E-170

Std 0.00E+00 2.19E-14 9.17E-63 0.00E+00 3.70E-22 0.00E+00
f4 Mean 0.00E+00 = 3.16E-15 + 1.26E-74 + 0.00E+00 = 3.92E-77 + 0.00E+00

Std 0.00E+00 1.54E-14 6.27E-74 0.00E+00 1.93E-76 0.00E+00
f5 Mean 5.55E-09 + 1.54E+02 + 1.62E-33 + 0.00E+00 - 7.52E-12 + 1.33E-106

Std 5.94E-09 6.58E+01 2.01E-33 0.00E+00 1.77E-12 6.67E-106
f6 Mean 5.28E+01 + 7.53E+01 + 1.84E+01 + 0.00E+00 = 5.00E+01 + 0.00E+00

Std 2.85E+00 3.97E+00 1.22E+00 0.00E+00 2.22E+00 0.00E+00
f7 Mean 0.00E+00 = 2.00E-01 + 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 0.00E+00 4.08E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f8 Mean 0.00E+00 - 7.12E-218 + 7.12E-218 = 7.12E-218 = 0.00E+00 - 7.12E-218

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f9 Mean 0.00E+00 = 7.43E-20 + 3.46E-122 + 0.00E+00 = 3.85E-48 + 0.00E+00

Std 0.00E+00 1.83E-19 7.46E-122 0.00E+00 9.00E-48 0.00E+00
f10 Mean 2.70E-01 + 2.71E-01 + 7.57E-02 + 2.84E-06 - 2.19E-01 + 6.61E-06

Std 3.35E-02 3.47E-02 1.01E-02 2.25E-06 2.29E-02 4.17E-06
f11 Mean 2.81E-01 - 1.61E+02 + 1.17E+00 - 9.56E+01 + 1.84E+01 + 3.92E+00

Std 1.59E-01 4.47E+01 1.28E+00 1.53E-01 2.57E+01 1.96E+01
f12 Mean 4.88E-02 + 9.76E+02 + 0.00E+00 = 0.00E+00 = 2.39E-01 + 0.00E+00

Std 2.02E-01 2.35E+01 0.00E+00 0.00E+00 4.34E-01 0.00E+00
f13 Mean 8.05E-01 + 9.67E+02 + 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00

Std 6.82E-01 3.22E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f14 Mean 0.00E+00 = 7.88E-04 + 2.12E-13 + 0.00E+00 = 0.00E+00 = 0.00E+00

Std 0.00E+00 2.82E-03 6.60E-13 0.00E+00 0.00E+00 0.00E+00
f15 Mean 7.15E+02 + 1.16E+04 + 4.26E+01 + 1.14E+03 + 5.18E+51 + 1.09E-10

Std 1.85E+02 1.03E+04 6.73E+01 3.33E+02 2.59E+52 0.00E+00
f16 Mean 1.54E-03 + 1.99E-01 + 3.51E-01 + 8.88E-16 = 7.19E-10 + 8.88E-16

Std 1.01E-03 4.08E-01 3.98E-01 0.00E+00 6.31E-10 0.00E+00
f17 Mean 0.00E+00 - 2.83E+03 + 4.71E-33 = 1.06E-31 + 5.61E-24 + 4.71E-33

Std 0.00E+00 2.94E+03 6.98E-49 4.97E-31 2.24E-24 6.98E-49
f18 Mean 0.00E+00 - 2.29E+03 + 4.71E-33 = 1.14E-31 + 5.82E-24 + 4.71E-33

Std 0.00E+00 2.75E+03 6.98E-49 4.97E-31 2.66E-24 6.98E-49
f19 Mean 3.85E-03 + 1.24E-07 + 1.52E-21 + 0.00E+00 - 3.21E-06 + 2.95E-125

Std 4.96E-03 1.67E-07 7.60E-21 0.00E+00 1.60E-05 1.35E-124
f20 Mean 5.87E-10 + 3.29E+01 + 8.79E-03 + 1.56E+02 + 4.39E-03 + 1.04E-15

Std 2.94E-09 5.18E+00 3.04E-02 4.52E+01 2.20E-02 3.54E-15
f21 Mean 1.07E-05 + 7.54E-01 + 6.59E-14 + 0.00E+00 = 2.25E-05 + 0.00E+00

Std 3.54E-06 7.80E-01 2.28E-14 0.00E+00 1.13E-04 0.00E+00
f22 Mean 0.00E+00 - 2.26E+00 + 2.86E-05 + 4.58E-04 + 2.86E-05 + 2.86E-05

Std 0.00E+00 6.78E-01 2.29E-14 1.02E-04 1.72E-14 0.00E+00
Total +/=/= 11/4/7 22/0/0 15/6/1 6/10/6 18/3/1

53

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

Fig. 2.3. Average rankings of ABC algorithms by Friedman test with D = 30,
50, and 100

And ILTD_ABC is the second-best algorithm followed by the original ABC algo-

rithm. Therefore, the proposed algorithm outperforms the other ABC algorithms.

In addition to comparing with other ABC variants, we also observe and com-

pare the results of ABCDC itself in different dimensions. It can be found that

the results of D = 30, 50, and 100 calculated by ABCDC are similar. That

is to say, the proposed algorithm is not sensitive to the increase of dimensions

which means that it possesses superior robustness at least in solving the chosen

benchmark functions.

2.3.4 Comparison with non-ABC algorithms

In this subsection, ABCDC is compared to four effective non-ABC meta-heuristic

algorithms. The DE with mutation “DE/rand/1” is first concerned in the com-

parison. PSO and CS are also involved as they are also effective and famous.

Last, the firefly algorithm (FA) (Yang, 2009) is also an effective method inspired

by the behavior of the firefly.

The tests are carried out on those benchmarks in low, middle and high di-

mensions as well. The statical results of are presented in Table 2.7 - Table 2.9. In

addition, results of Wilcoxon rank sum test are shown. And Figure 2.4 presents

the average rankings given by Friedman tests.

In Table 2.7, the results of uni-modal functions f1 − f9 show that ABCDC

contains significant advantages compared to other methods. Moreover, ABCDC

is able to find the global optimum of f2, f4 f5, f7 and f9. Meanwhile, DE and

54

Chap2/chapter2_figs/EPS//Friedman.eps

2.3 Experiments on function optimization problems

Table 2.7: Comparison between ABCDC and other meta-heuristic algorithms
with D = 30

Function PSO DE CS FA ABCDC
f1 Mean 1.33E-18 + 7.77E-39 + 6.65E-05 + 1.72E-09 + 1.84E-197

Std 3.75E-18 9.06E-39 3.62E-05 3.46E-10 0.00E+00
f2 Mean 5.02E-16 + 4.85E-36 + 2.74E-01 + 9.83E-05 + 4.22E-145

Std 1.01E-15 7.98E-36 1.18E-01 2.51E-05 2.11E-144
f3 Mean 8.93E-20 + 5.16E-40 + 7.84E-06 + 2.22E-10 + 2.91E-188

Std 1.60E-19 5.32E-40 2.81E-06 3.94E-11 0.00E+00
f4 Mean 6.27E-40 + 6.10E-82 + 4.53E-24 + 2.48E-17 + 0.00E+00

Std 2.47E-39 3.05E-81 1.15E-23 2.65E-17 0.00E+00
f5 Mean 2.80E-13 + 2.76E-21 + 1.09E-01 + 1.44E-05 + 1.40E-103

Std 4.60E-13 1.98E-21 4.39E-02 1.07E-06 5.89E-103
f6 Mean 2.81E+00 + 2.32E-01 + 6.84E-01 + 1.05E+01 + 1.12E-299

Std 1.23E+00 7.18E-01 3.09E-01 4.39E+00 0.00E+00
f7 Mean 4.00E-02 + 0.00E+00 = 0.00E+00 = 8.00E-02 + 0.00E+00

Std 2.00E-01 0.00E+00 0.00E+00 2.77E-01 0.00E+00
f8 Mean 7.86E-59 + 7.18E-66 = 7.18E-66 + 7.18E-66 + 7.18E-66

Std 2.13E-58 3.23E-81 3.45E-70 1.23E-72 3.23E-81
f9 Mean 4.41E-28 + 1.38E-62 + 2.70E-14 + 3.21E-20 + 0.00E+00

Std 1.13E-27 3.13E-62 2.23E-14 4.26E-20 0.00E+00
f10 Mean 1.99E-02 + 6.24E-03 + 2.32E-02 + 6.50E-03 + 1.99E-05

Std 7.71E-03 1.92E-03 6.74E-03 1.85E-03 1.36E-05
f11 Mean 3.50E+01 + 1.91E+01 + 2.31E+01 + 4.63E+01 + 0.00E+00

Std 2.43E+01 1.02E+00 4.09E+00 2.83E+01 0.00E+00
f12 Mean 3.50E+01 + 1.41E+02 + 7.10E+01 + 4.99E+01 + 0.00E+00

Std 1.22E+01 1.49E+01 1.14E+01 1.74E+01 0.00E+00
f13 Mean 3.72E+01 + 1.17E+02 + 6.24E+01 + 6.21E+01 + 0.00E+00

Std 1.31E+01 1.01E+01 1.27E+01 2.38E+01 0.00E+00
f14 Mean 1.89E-02 + 7.89E-04 + 4.14E-03 + 6.01E-03 + 0.00E+00

Std 1.85E-02 2.82E-03 3.79E-03 8.16E-03 0.00E+00
f15 Mean 1.21E+03 + 5.41E+03 + 3.58E+03 + 3.36E+03 + 0.00E+00

Std 3.48E+02 4.15E+02 2.64E+02 5.86E+02 0.00E+00
f16 Mean 1.12E+01 + 2.00E+01 + 1.86E+01 + 1.54E-05 + 8.88E-16

Std 1.01E+01 7.87E-03 3.42E+00 2.11E-06 0.00E+00
f17 Mean 4.15E-03 + 4.15E-03 + 3.56E-03 + 5.81E-02 + 1.57E-32

Std 2.07E-02 2.07E-02 5.89E-03 1.16E-01 5.59E-48
f18 Mean 4.15E-03 + 1.57E-32 = 1.66E-03 + 4.56E-02 + 1.57E-32

Std 2.07E-02 5.59E-48 2.11E-03 9.02E-02 5.59E-48
f19 Mean 2.73E-12 + 1.67E-02 + 5.45E+00 + 7.31E-06 + 2.38E-92

Std 3.60E-12 4.42E-03 1.85E+00 4.88E-06 1.19E-91
f20 Mean 1.78E+00 + 5.32E+00 + 6.51E+00 + 2.56E+00 + 4.96E-11

Std 5.16E-01 6.51E-01 8.29E-01 7.63E-01 2.13E-10
f21 Mean 6.52E-02 + 0.00E+00 = 2.99E+00 + 2.73E-03 + 0.00E+00

Std 3.06E-01 0.00E+00 7.47E-01 1.51E-04 0.00E+00
f22 Mean 5.24E+00 + 7.54E-02 + 5.77E+00 + 6.97E+00 + 2.86E-05

Std 1.87E+00 2.61E-01 1.17E+00 3.02E+00 0.00E+00
Total +/=/- 22/0/0 18/4/0 21/1/0 22/0/0

55

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

CS also find the global optimal solution of f7. As mentioned above, the uni-

modal problem can detect the exploitation ability, so the exploitation capability

of proposed ABCDC algorithm is outstanding among the concerned algorithms.

As for the multi-modal functions f11 − f22, ABCDC outperforms the other non-

ABC methods. DE algorithm obtains the competitive results as ABCDC does

on f18 and f21. Regarding to the Wilcoxon test, the PSO and FA algorithms fail

to surpass ABCDC on all the benchmark functions. Meanwhile, solutions found

by DE are comparable to ABCDC on 4 functions. And ABCDC performs better

than DE on 18 functions. As for CS, there is only one problem where it performs

as good as the proposed algorithm. Thus, the proposed algorithm has excellent

performance for low-dimensional problems considering the solution accuracy.

Similar conclusions can be derived from the comparison results of D = 50

and 100. Table 2.8 presents the results of 50-dimensional problems, for solving

the uni-modal problems, ABCDC achieves the exact optimal solutions of f3, f6

and f9 whereas PSO and CS only manage to reach the optimum of f7. Moreover,

the superiority of ABCDC is obvious on f1 to f6. As for multi-modal functions,

ABCDC manages to obtain the optima of five functions. Considering the results

of Wilcoxon test, the mean values of ABCDC surpass all the compared algorithms

on most problems. It can be concluded that ABCDC achieves the best results in

the comparison with D = 50.

In Table 2.9, ABCDC attains the best results on all the benchmark functions

whereas DE algorithm obtains similar solutions on f8 and f14. Note that, the

PSO, DE and CS algorithms have competitive results on uni-modal functions.

Nevertheless, their solution qualities are not comparable to that of ABCDC when

solving multi-modal functions. Therefore, the proposed algorithm has excellent

diversification and intensification abilities compared to non-ABC algorithms.

Furthermore, Figure 2.4 presents the results of Friedman tests. The advan-

tages of ABCDC is evident in this figure and it is followed by the DE algorithm.

It can be concluded that ABCDC is outstanding in all the comparisons with other

meta-heuristic algorithms.

56

2.3 Experiments on function optimization problems

Table 2.8: Comparison between ABCDC and other meta-heuristic algorithms
with D = 50

Function PSO DE CS FA ABCDC
f1 Mean 2.12E-14 + 3.07E-34 + 5.90E-05 + 4.55E-09 + 4.10E-241

Std 3.61E-14 2.59E-34 2.70E-05 2.55E-09 0.00E+00
f2 Mean 1.79E-11 + 2.12E-31 + 3.84E-01 + 6.06E-06 + 4.43E-211

Std 4.55E-11 2.49E-31 1.79E-01 1.00E-05 0.00E+00
f3 Mean 2.15E-15 + 6.01E-35 + 1.28E-05 + 9.18E-10 + 1.95E-246

Std 2.86E-15 8.96E-35 5.25E-06 7.49E-10 0.00E+00
f4 Mean 1.37E-30 + 3.50E-40 + 5.44E-24 + 3.36E-23 + 0.00E+00

Std 4.37E-30 1.75E-39 2.67E-23 1.96E-23 0.00E+00
f5 Mean 1.47E-10 + 1.67E-18 + 2.40E+09 + 1.19E-06 + 4.53E-135

Std 2.88E-10 1.65E-18 4.36E+09 3.91E-07 2.04E-134
f6 Mean 1.98E+01 + 6.42E+00 + 1.81E+00 + 3.94E+01 + 0.00E+00

Std 3.00E+00 5.71E+00 7.43E-01 6.94E+00 0.00E+00
f7 Mean 8.80E-01 + 0.00E+00 = 0.00E+00 = 2.72E+00 + 0.00E+00

Std 9.27E-01 0.00E+00 0.00E+00 3.41E+00 0.00E+00
f8 Mean 7.35E-94 + 2.67E-109 = 2.68E-109 + 2.67E-109 + 2.67E-109

Std 3.57E-93 9.65E-125 1.23E-111 2.87E-119 9.65E-125
f9 Mean 8.44E-20 + 4.51E-53 + 1.68E-12 + 2.66E-16 + 0.00E+00

Std 1.84E-19 1.19E-52 2.55E-12 5.50E-16 0.00E+00
f10 Mean 5.71E-02 + 1.18E-02 + 3.32E-02 + 1.77E-02 + 1.31E-05

Std 1.74E-02 2.46E-03 7.91E-03 5.23E-03 9.41E-06
f11 Mean 8.43E+01 + 3.98E+01 + 5.88E+01 + 1.01E+02 + 0.00E+00

Std 3.52E+01 1.05E+01 1.82E+01 3.15E+01 0.00E+00
f12 Mean 9.04E+01 + 3.05E+02 + 1.38E+02 + 1.19E+02 + 0.00E+00

Std 2.09E+01 1.94E+01 1.58E+01 3.09E+01 0.00E+00
f13 Mean 1.08E+02 + 2.72E+02 + 1.36E+02 + 1.53E+02 + 0.00E+00

Std 2.84E+01 1.86E+01 2.57E+01 2.98E+01 0.00E+00
f14 Mean 1.11E-02 + 0.00E+00 = 1.32E-03 + 5.61E-03 + 0.00E+00

Std 1.38E-02 0.00E+00 3.72E-03 8.17E-03 0.00E+00
f15 Mean 2.28E+03 + 1.11E+04 + 6.90E+03 + 6.35E+03 + 1.82E-11

Std 3.77E+02 6.57E+02 4.67E+02 6.73E+02 0.00E+00
f16 Mean 1.83E+01 + 2.00E+01 + 1.94E+01 + 3.20E+00 + 8.88E-16

Std 5.50E+00 1.68E-03 9.15E-01 7.48E+00 0.00E+00
f17 Mean 2.99E-02 + 3.17E-32 + 6.45E+08 + 8.21E-02 + 9.42E-33

Std 5.42E-02 1.09E-31 2.18E+09 8.93E-02 1.40E-48
f18 Mean 3.49E-02 + 4.98E-03 + 8.60E+08 + 1.25E-01 + 9.42E-33

Std 5.40E-02 1.72E-02 2.76E+09 1.66E-01 1.40E-48
f19 Mean 1.17E-09 + 3.15E-02 + 1.30E+01 + 4.56E-07 + 2.60E-117

Std 2.11E-09 7.68E-03 2.84E+00 1.58E-07 1.29E-116
f20 Mean 4.75E+00 + 1.19E+01 + 1.67E+01 + 7.85E+00 + 8.06E-11

Std 1.20E+00 1.95E+00 2.10E+00 2.44E+00 4.02E-10
f21 Mean 1.73E+00 + 0.00E+00 = 3.08E+00 + 1.18E-02 + 0.00E+00

Std 1.77E+00 0.00E+00 7.53E-01 2.46E-02 0.00E+00
f22 Mean 7.49E+00 + 2.04E-01 + 6.78E+00 + 8.89E+00 + 2.86E-05

Std 1.61E+00 3.22E-01 9.49E-01 1.74E+00 0.00E+00
Total +/=/- 22/0/0 18/4/0 21/1/0 22/0/0

57

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

Table 2.9: Comparison between ABCDC and other meta-heuristic algorithms
with D = 100

Function PSO DE CS FA ABCDC
f1 Mean 2.39E-08 + 2.84E-32 + 1.27E-04 + 2.05E-06 + 5.46E-67

Std 4.98E-08 3.45E-32 5.51E-05 1.23E-06 2.73E-66
f2 Mean 5.94E-06 + 3.68E-29 + 3.24E+00 + 1.90E+04 + 2.56E-251

Std 1.22E-05 4.55E-29 2.48E+00 4.35E+04 0.00E+00
f3 Mean 5.08E-09 + 1.94E-32 + 5.21E-05 + 1.87E-06 + 9.31E-170

Std 7.03E-09 2.01E-32 3.24E-05 4.89E-06 0.00E+00
f4 Mean 1.59E-20 + 1.03E-13 + 7.89E-26 + 2.84E-22 + 0.00E+00

Std 6.03E-20 5.15E-13 1.79E-25 8.14E-22 0.00E+00
f5 Mean 5.85E-05 + 3.05E-17 + 1.00E+10 + 7.90E-01 + 1.33E-106

Std 1.99E-04 2.84E-17 0.00E+00 2.73E+00 6.67E-106
f6 Mean 5.54E+01 + 9.22E+01 + 5.31E+00 + 8.45E+01 + 0.00E+00

Std 3.33E+00 1.36E+01 1.65E+00 5.19E+00 0.00E+00
f7 Mean 1.36E+01 + 1.20E-01 + 1.96E+00 + 3.91E+01 + 0.00E+00

Std 8.45E+00 3.32E-01 2.61E+00 2.34E+01 0.00E+00
f8 Mean 1.79E-182 + 7.12E-218 = 7.48E-218 + 7.12E-218 + 7.12E-218

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f9 Mean 1.01E-11 + 1.07E-45 + 5.43E-10 + 5.87E-11 + 0.00E+00

Std 1.46E-11 2.10E-45 4.95E-10 4.93E-11 0.00E+00
f10 Mean 2.45E-01 + 2.15E-02 + 9.51E-02 + 1.17E-01 + 6.61E-06

Std 5.34E-02 4.23E-03 2.28E-02 9.13E-02 4.17E-06
f11 Mean 1.88E+02 + 9.52E+01 + 9.94E+01 + 2.63E+02 + 3.92E+00

Std 4.38E+01 1.66E+01 5.76E+01 2.03E+02 1.96E+01
f12 Mean 2.96E+02 + 7.21E+02 + 3.41E+02 + 3.38E+02 + 0.00E+00

Std 3.68E+01 4.05E+01 3.42E+01 6.26E+01 0.00E+00
f13 Mean 3.92E+02 + 7.07E+02 + 3.51E+02 + 4.54E+02 + 0.00E+00

Std 5.26E+01 4.88E+01 5.68E+01 6.02E+01 0.00E+00
f14 Mean 1.47E-02 + 0.00E+00 = 1.87E-03 + 3.94E-03 + 0.00E+00

Std 2.66E-02 0.00E+00 4.84E-03 8.18E-03 0.00E+00
f15 Mean 5.47E+03 + 2.60E+04 + 1.64E+04 + 1.44E+04 + 1.09E-10

Std 7.26E+02 8.52E+02 6.41E+02 1.17E+03 0.00E+00
f16 Mean 1.99E+01 + 2.00E+01 + 1.85E+01 + 1.47E+01 + 8.88E-16

Std 5.82E-02 1.25E-02 3.77E+00 8.09E+00 0.00E+00
f17 Mean 4.24E-01 + 4.98E-03 + 1.00E+10 + 1.07E-01 + 4.71E-33

Std 8.03E-01 2.49E-02 0.00E+00 1.00E-01 6.98E-49
f18 Mean 2.40E-01 + 3.15E-02 + 1.00E+10 + 8.98E-02 + 4.71E-33

Std 2.96E-01 8.39E-02 0.00E+00 1.03E-01 6.98E-49
f19 Mean 4.51E-06 + 1.22E-05 + 2.49E+01 + 1.48E-05 + 2.95E-125

Std 1.34E-05 4.55E-05 4.43E+00 5.04E-05 1.35E-124
f20 Mean 1.41E+01 + 1.88E+01 + 5.52E+01 + 4.96E+01 + 1.04E-15

Std 2.96E+00 7.67E+00 6.27E+00 1.24E+01 3.54E-15
f21 Mean 1.15E+01 + 6.00E-02 + 6.46E+00 + 7.55E+00 + 0.00E+00

Std 4.25E+00 3.00E-01 1.35E+00 3.20E+00 0.00E+00
f22 Mean 9.84E+00 + 1.52E+00 + 8.04E+00 + 1.01E+01 + 2.86E-05

Std 1.30E+00 6.21E-01 9.65E-01 1.50E+00 0.00E+00
Total +/=/- 22/0/0 20/2/0 22/0/0 22/0/0

58

2.3 Experiments on function optimization problems

Fig. 2.4. Average rankings of non-ABC algorithms and ABCDC by Friedman
test with D = 30, 50, and 100

2.3.5 Convergence behavior analysis

The convergence performances of proposed algorithm are analyzed in this subsec-

tion. Convergence graphs of compared ABC algorithms as well as the execution

time of all the involved methods are presented in the follows.

In fact, convergence curves can vividly show how fast the objective function

value decreases along with the increase of function evaluations. And, the conver-

gence processes of compared ABC algorithms to solve six representative bench-

mark functions are plotted in Figure 2.5. f4, f9 and f10 are uni-modal while the

other three problems are multi-modal.

For uni-modal functions, it is obvious that ABCDC and ILTD_ABC converge

much faster than other ABC algorithms, including the original ABC. In addition,

the proposed algorithm achieves more accurate results than ILTD_ABC does.

For multi-modal functions, the advantages of proposed algorithm is significant

which indicates its outstanding exploration ability. Therefore, the convergence

curves demonstrate that proposed ABCDC enhances the convergence speed of

ABC algorithm effectively.

59

Chap2/chapter2_figs/EPS//Friedman-2.eps

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

(a) f4 (b) f9

(c) f10 (d) f11

(e) f17 (f) f20

Fig. 2.5. The convergence performance of ABCDC and compared ABC algo-
rithms with D=30

60

Chap2/chapter2_figs/EPS//f4-log.eps
Chap2/chapter2_figs/EPS//f9-log.eps
Chap2/chapter2_figs/EPS//f10-log.eps
Chap2/chapter2_figs/EPS//f11-log.eps
Chap2/chapter2_figs/EPS//f17-log.eps
Chap2/chapter2_figs/EPS//f20-log.eps

2.4 Conclusion

2.4 Conclusion

With the purpose of enhancing the performance of ABC algorithm, an improved

ABC with dynamic population composition (ABCDC) is proposed in this chapter.

Firstly, the SLHD is adopted in the initialization phase to ensure the diversity of

initial population which can help with the convergence rate. Secondly, we divide

the missions of exploration and exploitation more clearly, and distribute them

to employed bees and onlooker bees respectively. Accordingly, two DE-inspired

solution search strategies are utilized to reinforce the ability of employed bees

and onlooker bees. Then, the balance between exploration and exploitation can

be improved because the solution search equation used in employed bee phase is

good at exploring while the one used in onlooker bee phase shows the strength

of exploiting. In addition, a method for adjusting the population’s composition

is proposed. In order to help the employed bees to explore, its size is set to

be very large in the beginning. And as the iteration increases, some promising

regions appear, the size of onlooker bees augments gradually. According to the

experimental results, ABCDC outperforms the other competitors in terms of

solution accuracy.

61

2. IMPROVED ABC ALGORITHM WITH DYNAMIC
POPULATION COMPOSITION (ABCDC)

62

Chapter 3

Reinforcement Learning based ABC

algorithm (ABC_RL)

Contents

3.1 Introduction . 64

3.2 Preliminaries . 66

3.2.1 Reinforcement learning (RL) 66

3.3 Proposed ABC_RL algorithm 68

3.3.1 Scale factors based on heavy-tailed distribution 68

3.3.2 Employed bee phase with RL 70

3.3.3 Improved onlooker bee phase 74

3.3.4 The framework of ABC_RL algorithm 74

3.4 Experiments on function optimization problems . . . 77

3.4.1 CEC 2017 benchmark problems 77

3.4.2 Effects of the initial value of parameter dratio 77

3.4.3 Comparison with ABC variants 80

3.4.4 Effectiveness of the proposed strategies 85

3.4.5 Convergence behavior analysis 87

3.5 Conclusion . 91

63

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

3.1 Introduction

As mentioned in the previous chapters, among many possible reasons that limit

the performance of ABC, the ineffectiveness of its search equation has been men-

tioned the most frequently. Due to the fact that only one dimension can be

updated at a time, it has been discovered that the solution search equation lim-

its the search efficiency (Akay & Karaboga, 2012; Zhou et al., 2021a). In this

case, the evolutionary operators of the DE algorithm have been widely concerned

because they are able to update multiple dimensions at a time. Meanwhile,

the mutation operators can make individuals learn more information from their

neighbors (Chen et al., 2019b; Cui et al., 2020, 2022; Jadon et al., 2017). For in-

stance, Akay & Karaboga (2012) introduced a modification rate (MR) to control

the number of variables that can be inherited from the previous solution, which

has a similar role as the crossover rate (CR) in DE. Therefore, in this part of

work, a DE-based search strategy is utilized in the employed bee phase. Never-

theless, different from the existing literature, we provide a novel way of varying

the frequency of perturbation. The parameters CR and MR are pre-defined con-

trol parameters that play an essential role in corresponding algorithms. Yet, it

is difficult to define the parameter value appropriately for all kinds of problems.

These control parameters are usually constant or updated with predetermined

adaptation methods (Chen et al., 2019b; Qin et al., 2009; Wu et al., 2016; Zhang

& Sanderson, 2009), like the one adopted in the ABCDC algorithm. However,

the adaptation approaches still heavily rely on the designer’s experience.

With the purpose of setting and adjusting the control parameters more in-

telligently, reinforcement learning (RL) has attracted our attention. RL is one

of the most important machine learning approaches that can solve various prob-

lems by learning from the interaction between a decision-making agent and an

environment (Sutton & Barto, 2018). More details will be introduced in the

next section. Some RL methods have been embedded with meta-heuristic algo-

rithms to improve their performance. For instance, RL was utilized to select a

suitable search strategy for the proposed ABC algorithm (Zhao & Zhang, 2020).

Nonetheless, there exist few works on tuning the parameters of optimization al-

gorithms via RL. Emary et al. (2017) were incorporated RL and neural networks

into gray wolf optimization (GWO) to adjust the value of exploration rate intel-

ligently. In order to enhance the performance of the simulated annealing (SA)

64

3.1 Introduction

algorithm (Samma et al., 2020), two key control parameters were controlled by

using Q-learning. A self-learning GA was proposed by Chen et al. (2020) to solve

a flexible job-shop scheduling problem. SARSA and Q-learning were utilized to

adjust the values of mutation probability and crossover probability. Moreover,

Hu et al. (2021) used RL to adjust the scale factor of the solution search equation

in DE.

To the best of our knowledge, the study of adjusting the parameters of ABC

via RL has not been sufficient so far. Considering the excellent performance of

integrating RL with other meta-heuristic algorithms, one principle objective of

this work is to overcome the shortcomings of ABC by incorporating RL appropri-

ately. Therefore, RL is adopted to vary the number of dimensions to be updated

(nbup) in solution search equation of ABC. The reward value of RL is defined

based on the comparison result between the original solution and the newly gen-

erated one. In this case, more information can be learned appropriately from the

previous updating experience. And nbup can be adjusted at different stages of

the search process. Moreover, RL is adopted to set the nbup for each employed

bee independently rather than setting the same value for all the population.

As summarized in the first chapter, numerous ABC variations involved the

information about the global best solution to help the colony search in a promising

direction (Banharnsakun et al., 2011; Cui et al., 2022; Gao et al., 2012, 2015a;

Jadon et al., 2017; Li et al., 2015; Lin et al., 2018; Zhu & Kwong, 2010). Moreover,

surprising results have been obtained when phases employed bees and onlooker

bees utilize different search strategies (Cui et al., 2022; Gao et al., 2015a; Jadon

et al., 2017; Karaboga & Gorkemli, 2014; Song et al., 2017; Wang et al., 2020). It

is important to note that the success of these kinds of strategies was also confirmed

by the previous ABCDC algorithm’s solid performance. Hence, in this chapter,

the search behavior of onlooker bees in the ABC_RL algorithm is different from

that of the employed bees. More precisely, the local search in the onlooker bee

phase is boosted by using the global best solution.

In this chapter, in order to be able to adjust certain important parameters

more intelligently while improving the performance of the algorithm, the combina-

tion of RL and ABC algorithm is developed and the performance is investigated.

As a result, the improvement strategies can be summarized as follows: firstly,

RL is adopted to enlarge and adjust the frequency of perturbation of employed

65

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

bee phase intelligently considering the immediate reward from solution update

results. Secondly, two enhanced solution search equations are utilized to achieve

a nice balance between exploration and exploitation. Thirdly, a type of heavy-

tailed distribution, the Mittag-Leffler distribution, is used to generate the scale

factors of search equations. Finally, with the purpose of validating the perfor-

mance of ABC_RL, it is compared with five advanced ABC algorithms on the

Congress on Evolutionary Computation 2017 (CEC 2017) benchmark functions.

The rest of this chapter is organized as follows. The preliminaries of RL

method are explained in section 3.2. In section 3.3, the proposed ABC_RL algo-

rithm is introduced. Experimental studies are presented in section 3.4. Finally,

the conclusion is given in the section 3.5.

3.2 Preliminaries

3.2.1 Reinforcement learning (RL)

Machine learning (ML) is one of the most essential components of artificial intel-

ligence which has continued to revolutionize technologies since the last century.

Countless challenges have been tackled with increasing accuracy and astonishing

results in various fields like supply chain dynamics (Arora & Majumdar, 2022),

healthcare (Houssein et al., 2021; Maqsood et al., 2022), etc. ML algorithms

are often summarized into three categories: firstly, supervised learning trains a

classifier with labeled datasets in order to classify or predict data; secondly, unsu-

pervised learning can analyze hidden patterns in unlabeled data (Hussein et al.,

2019); last but not the least, RL allows a decision-making agent to take differ-

ent actions in an environment and learn good policies with an explicit goal of

maximizing the cumulative reward (Chen et al., 2020; Sutton & Barto, 2018).

In RL algorithms, except for the agent and environment, there are other main

components: actions, states, and rewards that make up a formal framework of

RL. The interaction between the agent and its environment is shown in Figure 3.1.

Each time, the agent selects an action a to perform regarding its current state.

Then, after taking action, its state is updated and a reward is given by the

environment. This reward value will be concerned when selecting the next action.

And the loop continues until the termination condition is reached.

66

3.2 Preliminaries

Fig. 3.1. The framework of reinforcement learning

Q-learning (Watkins & Dayan, 1992), one of the most famous model-free RL

algorithms, is able to approximate the optimal action-value function by using a

learned action-value function Q (Sutton & Barto, 2018). The function values of

all possible state-action pairs are recorded in a Q table. Suppose the agent has

p possible states and q actions can take, the form of the Q table can be found in

Table 3.1.

Table 3.1: Form of Q table in Q-learning method

Action

State

a1 a2 · · · aq

s1 Q(s1, a1) Q(s1, a2) · · · Q(s1, aq)
s2 Q(s2, a1) Q(s2, a2) · · · Q(s2, aq)
...

...
...

sp Q(sp, a1) Q(sp, a2) · · · Q(sp, aq)

The values in this table, Q values, indicate the quality of taking certain action

a at state s. After taking an action, the corresponding Q value is updated by

considering the immediate reward from the environment and the current Q table

via Eq.(3.1) (Hu et al., 2021; Watkins & Dayan, 1992). In addition, a policy π is

utilized to choose an action each time. The ǫ − greedy strategy is adopted and

is presented in subsection 3.3.2.2.

Qnew(st, at) = (1− α)×Q(st, at) + α×
[

rt+1 + γmax
a

Q(st+1, a)
]

, (3.1)

where Q(st, at) is the Q value of acting at at current state st, rt+1 indicates the

immediate reward after executing action at. α ∈ [0, 1] denotes the learning rate

67

Chap3/chapter3_figs/EPS//RL.eps

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

and γ is the discount-rate parameter within range [0, 1].

Remark 3.1 γ = 0 is responsible for trading off the importance of immediate

and future rewards. When γ = 0, only current rewards are taken into account.

And when γ = 1, Q-learning looks for long-term rewards.

The framework of Q-learning is described in Algorithm 8. In the initialization

part, the Q table is generated as a zero-value matrix, and a state st is arbitrarily

selected. Then the learning process starts by repeating several steps (lines 4-7)

until the stopping condition is reached.

Algorithm 8 Pseudo-code of Q-learning algorithm

1: Initialize Q(s, a)
2: Select an initial state st randomly
3: repeat
4: Choose an action at for current state st from Q table via policy π (e.g.,

ǫ− greedy)
5: Perform action at and get reward rt+1

6: Evaluate Qnew(st, at) with Eq.(3.1) and update Q table
7: Update current state st ← st+1

8: until the termination condition is met

3.3 Proposed ABC_RL algorithm

The proposed RL-based ABC algorithm (ABC_RL for short) is introduced in this

section. In ABC_RL, RL is incorporated in the employed bee phase to adjust

the number of dimensions to be updated (nbup) each time. Hence, the search

strategy of onlooker bees is improved by collecting information from the global

best and two neighbors. And random numbers based on heavy-tailed distribution

are used as scale factors in the search strategies.

3.3.1 Scale factors based on heavy-tailed distribution

Randomness has a comparatively large impact on both intensification and diver-

sification of a meta-heuristic algorithm. In basic ABC, a uniformly distributed

random number in the range of [−1, 1] is utilized. This restrictive range has been

found to be quite narrow, which may reduce the search efficiency. Additionally, if

68

3.3 Proposed ABC_RL algorithm

ABC gets caught in local optima, this definition may be useless. Compared with

ABC, the CS algorithm adopted a different way to produce its random parame-

ters. Lévy flights are employed in the search equation to enhance the randomness.

Lévy flight is a kind of random walk where the step lengths are drawn from a

type of heavy-tailed probability distribution, namely the Lévy distribution (Yang,

2020; Yang & Deb, 2009). To tackle the lack of exploitation in ABC, Aydoğdu

et al. (2016) replaced the production of new solutions in the scout bee phase

by Lévy flights. Besides, Lévy flight was utilized to enhance the effectiveness of

GWO, FA, and PSO algorithms (Heidari & Pahlavani, 2017; Jensi & Jiji, 2016;

Kalantzis et al., 2016).

For the purpose of investigating the optimal randomness in swarm-based algo-

rithms, Wei et al. (2019) incorporated different types of heavy-tailed distributions

into CS and compared them with the original CS (i.e., CS with Lévy flights). And

these randomness-enhanced CS variants have been found to outperform the basic

CS algorithm. In (Yousri et al., 2021), other types of heavy-tailed distributions

were adopted instead of the Lévy distribution aiming at improving the perfor-

mance of the proposed FOCS algorithm. As for the ABC algorithm, only Lévy

distribution has been utilized in some ABC variants. To the best of our knowl-

edge, other types of heavy-tailed distributions have not yet been employed in

ABC and related studies are inadequate. Moreover, the other kinds of heavy-

tailed distributions have demonstrated their advantages compared with the Lévy

distribution in experimental studies (Wei et al., 2019).

Based on the discussion above, in this work, the heavy-tailed distribution is

adopted to help with the randomness. The Mittag-Leffler distribution, one of the

most common heavy-tailed distributions, is utilized in the proposed algorithm to

generate the scale factors in solution search equations. The definition of Mittag-

Leffler distribution is described as follows.

A random variable is said to be subjected to Mittag-Leffler distribution if its

distribution function has the following form (Huillet, 2016; Wei et al., 2019):

Fβ(x) =

∞
∑

k=1

(−1)k−1xkβ

Γ(1 + kβ)
, (3.2)

where Γ(·) is the Gamma function. And x > 0, β ∈ [0, 1], Fβ = 0 for x ≤ 0.

The Mittag-Leffler distribution is heavy-tailed when 0 < β < 1 and it is an

69

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

exponential distribution if β = 1.

For the implementation, a convenient expression proposed by Kozubowski &

Rachev (1999) is adopted:

τβ = −γ × ln u

(

sin(βπ)

tan(βπv)
− cos(βπ)

)1/β

, (3.3)

where τβ is a Mittag-Leffler random number, γ is the scale parameter, and u, v are

two independent uniform random numbers. The parameters are set as γ = 4.5

and β = 0.8, based on the suggestions of Wei et al. (2019).

Remark 3.2 The random factor τ produced via Eq.(3.3) is adopted in both em-

ployed bee phase and onlooker bee phase. And to fit the problem scale, τ is multi-

plied with a coefficient. According to the different responsibility of the two phases,

the corresponding coefficients are set differently. 0.07 × τ is utilized in the em-

ployed bee phase whereas onlooker bee phase uses 0.05×τ . The onlooker bee phase

is supposed to exploit locally, so its coefficient value is relatively small to avoid

jumping over the optimum.

3.3.2 Employed bee phase with RL

3.3.2.1 Differential search strategy

In fact, the way a search equation gathers useful information can greatly affect

its search effectiveness. As mentioned earlier, the search equation of standard

ABC was found to collect limited information at a time. In Eq.(1.2), the value

in only one dimension of one neighbor is considered when producing a new fea-

sible solution. Note that the search abilities of ABC and DE are compared by

analyzing their variations of individuals in the equations (Xu et al., 2020). And

DE has demonstrated that it is able to search and converge more efficiently than

ABC because DE’s solution search equation has more possibility to collect useful

information from other members.

In addition, DE has more flexibility in terms of the nbup each time. Its muta-

tion operator updates individuals on total dimensions at first, then the crossover

and selection processes allow the individuals to collect messages from both the

previous generation and the latest mutation. Eq.(5.7) presents a basic version of

DE search strategy, “rand/1/bin”.

70

3.3 Proposed ABC_RL algorithm

ui,j =

{

xr1,j + F × (xr2,j − xr3,j), if rand 6 CR or j = jrand

xi,j, otherwise
(3.4)

where r1 6= r2 6= r3 6= i are randomly selected from {1, · · · , N}, jrand is randomly

chosen among all the dimensions. F ∈ [0, 1] is the scale factor while CR is

crossover rate. And ui is the newly produced solution based on xi. According to

the expression, each time the nbup is possible to be any integer between 1 and D.

Furthermore, a parameter M was adopted to determine the amount of vari-

ables to be updated in order to improve information sharing among the colony

(Xiang et al., 2017). And Xiang et al. (2021) defined a range to randomly gen-

erate the number of components to be modified. Nevertheless, most of these

enhancements depend on the parameter settings, and it is nearly impossible to

determine a fixed configuration that solves every issue (Hu et al., 2021).

In this work, the search strategy of employed bees phase will be enhanced

from two aspects, i.e., the amount of information learned from the swarm as well

as the nbup. DE-based search equation (3.5) is utilized while the RL is introduced

to tune the nbup.

vi,j = xk1,j + c1 × τ × (xk2,j − xk3,j), (3.5)

where k1 6= k2 6= k3 6= i are randomly selected from {1, · · · , SN} and j ∈

{1, · · · , D} is the chosen dimension to be updated. τ is the heavy-tailed random

scale factor produced by Eq.(3.3) and c1 = 0.07.

3.3.2.2 Adjusting parameter nbup with Q-learning

The method of utilizing Q-learning to define the nbup during the search process

is described in the following. The nbup is adjusted by altering the proportion to

the total dimension (dratio) rather than adding or subtracting a fixed number of

dimensions each time in order to tackle problems of various scales. And the range

of possible values for the parameter dratio is {0.1, 0.2, · · · , 0.9}.

Three actions are defined to adjust the value of dratio: stays the same, add 0.1

and subtract 0.1. As mentioned before, the reward of taking action a at state s is

recorded as the value of Q(s, a) in the Q table. In the proposed algorithm, each

71

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

employed bee selects an action according to its associated Q table. After taking

the action on its dratio, the nbup is calculated as below:

nbup = ceil(dratio ×D), (3.6)

where function ceil(·) is used to compute the smallest integer that is greater than

or equal to dratio ×D.

And then nbup variables are randomly selected among the D variables to

be modified. Thereafter, the new candidate solution is generated via Eq.(3.5).

According to the comparison results between the new solution and the previous

one, a reward is given and the state is updated. The last step of implanting Q-

learning is to update the corresponding Q value via Eq.(3.1). Notice that, each

bee has its corresponding Q table in order to avoid affecting each other.

State and reward set

Since the objective is to minimize the objective functions value, so two states

are defined considering the result of the updates.

s1: f(vi) < f(xi), the new generated solution is better than the previous

one. And the corresponding reward value is set as 1;

s2: f(vi) > f(xi), the new solution fails to outperform the original solu-

tion, in this case the reward value is 0.

Action set

There are three possible actions that can be selected and executed by the

agent:

a1 a2 a3

dratio stays same dratio + 0.1 dratio − 0.1

Action selection strategy

In fact, always selecting the action with the highest estimated Q value is

the simplest selection strategy. However, greedy selection may ignore certain

actions with better potential. To get over this weakness, ǫ − greedy is proposed

to occasionally select the actions with smaller values, while most of the time still

select the actions greedily (Sutton & Barto, 2018). And ǫ is named the greedy

rate. This mechanism allows the Q-learning method to balance exploration and

72

3.3 Proposed ABC_RL algorithm

exploitation well (Chen et al., 2020; Shahrabi et al., 2017). The expression of

ǫ− greedy is as below:

π(st, at) =

{

max
a

Q(st, a), if 1− ǫ > rand,

arand, otherwise,
(3.7)

where rand is a random number within [0, 1]. And arand is randomly selected

among the action set {a1, · · · , aq} with probability ǫ.

Then, the proposed algorithm is able to alter the nbup considering the his-

torical updating experiences. The pseudo-code of modified employed bee phase

is shown in Algorithm 9 in order to present it more clearly. For each candidate

solution, an action is firstly selected based on its Q−table (line 4). Hence, those

dimensions that will be updated can be determined through lines 5-6. After up-

dating the candidate solution, the state and reward value corresponding to the

action are given based on the result of greedy selection (lines 10-17). At the end,

the Q−table is updated as expressed in line 18. Note that, the initialization of

parameter dratio will be discussed in subsection 3.4.2.

Algorithm 9 Pseudo-code of RL-based employed bee phase
1: Initialize Q−tables for all the employed bees and initialize state st randomly
2: Initialize diratio = 0.2, i = 1, · · · , SN
3: for each employed bee do
4: Choose an action at for current state st from Q−table via ǫ − greedy

Eq.(3.7)
5: Perform action at on adjusting diratio
6: Calculate nbup and randomly select nbup dimensions to update
7: for j ∈ selected dimensions do
8: Update the j−th dimension of candidate solution via Eq.(3.5)
9: end for

10: if f(vi) < f(xi) then
11: Replace xi with vi; triali = 0
12: reward = 1
13: state = s1
14: else triali = triali + 1
15: reward = 0
16: state = s2
17: end if
18: Evaluate Qnew(st, at) with Eq.(3.1) and update corresponding Q−table
19: end for

73

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

Remark 3.3 By using RL, the proposed algorithm can not only enlarge the nbup,

but also adjust parameter’s value considering on-line learning rather than requir-

ing a predefinition by users.

3.3.3 Improved onlooker bee phase

Considering the weakness of the basic ABC algorithm, an enhanced solution

search equation is used in the onlooker bee phase of our algorithm. In the pro-

posed search strategy Eq.(3.8), the information of the global best solution as well

as two neighbors are taken into account. Moreover, the scale factor of the second

term is also generated with the Mittag-Leffler distribution in order to increase the

randomness. Meanwhile, the factor of the third term is set as a random number

in a range of [0, 1] to help the newly produced solution learn from the global best

solution stably.

vi,j = xi,j + c2 × τ × (xk1,j − xk2,j) + θ × (xbest,j − xi,j) (3.8)

where θ ∈ [0, 1] is random number drawn from uniform distribution whereas τ is

generated by Eq.(3.3) and c2 = 0.05. k1 6= k2 6= i are randomly chosen from the

colony and xbest is the global best solution found so far.

3.3.4 The framework of ABC_RL algorithm

In order to explain the entire process of the proposed algorithm, its framework and

flowchart of ABC_RL are shown in Algorithm 10 and Figure 3.2, respectively.

At the beginning, the SN candidate solutions and parameters of Q-learning are

initialized. Then in each iteration, the employed bee phase with RL is firstly

executed to update the candidate solutions. For each candidate solution, Q-

learning is adopted to define and adjust the number of dimensions being updated.

And similar to the standard ABC procedure, onlooker bee phase and scout bee

phase are executed afterwards.

74

3.3 Proposed ABC_RL algorithm

Algorithm 10 Pseudo-code of ABC_RL algorithm

1: Generate initial population xi, i = 1, · · · , SN with Eq.(1.1)
2: Evaluate objective function values f(xi), FES = SN
3: Initialize Q-tables, diratio = 0.2 for i = 1, · · · , SN
4: while FES ≤ max_FES do

% RL-based employed bee phase %
5: for i = 1→ SN do
6: Randomly select k1 6= k2 6= k3 6= i from {1, · · · , SN}
7: Choose an action via Q−tablei via Eq.(3.7)
8: Take action by adjusting diratio and calculate nbup
9: Randomly select nbup dimensions from {1, · · · , D}

10: for j ∈ selected dimensions do
11: Generate τ via Eq.(3.3)
12: Produce vi,j via Eq.(3.5)
13: end for
14: if f(vi) < f(xi) then
15: Replace xi with vi; triali = 0
16: reward = 1
17: state = s1
18: else triali = triali + 1
19: reward = 0
20: state = s2
21: end if
22: Update Q−tablei via Eq.(3.1)
23: end for
24: Evaluate the probability values Pi with Eq.(1.5)

% Improved onlooker bee phase %
25: for t = 1→ SN do
26: Select xi based on Pi by roulette wheel selection method
27: Generate τ via Eq.(3.3)
28: Randomly select k1 6= k2 6= i and jrand from {1, · · · , D}
29: Generate the vi,jrand

via Eq.(3.8)
30: if f(vi) < f(xi) then
31: Replace xi with vi; triali = 0
32: else triali = triali + 1
33: end if
34: end for

% Scout bee phase %
35: for i = 1→ SN do
36: if triali > limit then
37: Generate new position with Eq.(1.1), triali = 0
38: end if
39: end for
40: end while

75

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

Fig. 3.2. The flowchart of ABC_RL algorithm

76

Chap3/chapter3_figs/EPS//flowChartABC_RL2.eps

3.4 Experiments on function optimization problems

3.4 Experiments on function optimization prob-

lems

In this part, the initialization method of parameter dratio was studied at first.

Hence, the experimental verification was done by comparing the proposed algo-

rithm with five state-of-art ABC variants on CEC 2017 benchmark problems in

different dimension cases.

3.4.1 CEC 2017 benchmark problems

In the experiments, 29 CEC 2017 benchmark problems (Awad et al., 2017) were

chosen to be solved as various kinds of single-objective optimization problems

were contained. There are 2 unimodal functions (f1, f3), 7 simple multimodal

functions (f4− f10), 10 hybrid functions (f11− f20) and 10 composition functions

(f21−f30). In fact, it is hard to distinguish the algorithms’ performance on certain

classical benchmarks as most of the improved ABC variants can find the optima

effectively. In this case, the CEC 2017 benchmarks are selected to better test the

compared methods.

According to the evaluation criteria of CEC 2017, the search space for all the

benchmarks is defined as [−100, 100]D. The determination condition is set in

terms of the maximum number of function evaluations and problem dimension,

i.e., max_FES = 104×D. Moreover, the official code is accessible online∗. No-

tice that the function f2 is not included in the following experiments because it

has been deleted in the latest official code.

3.4.2 Effects of the initial value of parameter dratio

The parameter dratio is used to control the frequency of perturbation in ABC_RL.

For each employed bee, each time dratio × D dimensions of the previous can-

didate solution will be updated. Note that dratio can take value from the set

{0.1, 0.2, · · · , 0.9} and is defined by Q-learning algorithm. In this section, the

setting of the initial value of parameter dratio is studied since the initialization

method can impact the following search process.

∗https://github.com/P-N-Suganthan/CEC2017-BoundContrained

77

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

Hu et al. (2021) randomly initialized the parameter F that tuned by RL in

their algorithm. Nevertheless, besides setting different initial values for different

individuals, it is also possible to define a uniform initial value for the swarm. It

is worth investigating which initialization method can provide more help to the

algorithm.

In this context, different methods to define the initial values of dratio are imple-

mented and compared with standard ABC together. Firstly, variant ABC_RLrand

is constructed with the random initialization method. In other words, the dratio of

each employed bee is initialized randomly and independently. Secondly, variants

that use predefined dratio are built as well. In this uniform initialization manner,

all the employed bees have the same dratio value in the beginning stage. And

three values (0.2, 0.5, and 0.8) are selected as initial values in the comparison.

ABC_RL0.2, ABC_RL0.5, and ABC_RL0.8 stand for the cases of defining dratio

with low, middle, and high value.

Table 3.2 presents the comparison results of these ABC_RL variants on bench-

mark problems with D = 10. In the comparison, the mean of function error values

f(Xbest)− f(X∗) over 25 independent runs are calculated, where Xbest is the best

solution found by algorithm and X∗ is the exact global optimum. For each func-

tion, the best results are marked in boldface. In order to better analyze the

results, the Friedman test and Wilcoxon tests are conducted based on the aver-

age errors obtained by algorithms. The rankings in the last row are evaluated by

Friedman test. The best ranking is marked in boldface. The Wilcoxon test is

able to compare the difference between the two methods, so each ABC_RL vari-

ant is compared to the original ABC algorithm. The symbol "+/=/-" indicates

the number of functions that ABC_RL is better, similar, or worse than ABC.

According to the comparison, the ABC_RL0.2 perform the best and is followed

by the version with random initialization ABC_RLrand. It can be found that,

when the parameter dratio is defined relatively large in the beginning, the final

results are less satisfying. Likewise, the same conclusion can be drawn from

Wilcoxon test results. ABC_RL0.2 outperforms the original ABC on 19 functions

while ABC_RL0.8 surpasses ABC on 16 functions. Therefore, when the initial

value of parameter dratio is defined relatively small, the proposed algorithm is

able to show better performance. And the initial value of dratio is set as 0.2 in the

following part of experiments. Furthermore, all the concerned ABC_RL versions

78

3.4 Experiments on function optimization problems

Table 3.2: Comparison of initialization methods for parameter dratio

Function ABC ABC_RLrand ABC_RL0.2 ABC_RL0.5 ABC_RL0.8

f1 2.88E+02 1.60E+03 1.10E+03 9.29E+02 3.04E+03
f3 6.66E+02 2.99E+00 7.97E+00 4.24E+00 3.23E-01
f4 2.28E-01 3.26E+00 3.24E+00 3.17E+00 3.62E+00
f5 7.71E+00 4.08E+00 3.55E+00 3.56E+00 3.43E+00
f6 3.35E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 1.75E+01 1.35E+01 1.42E+01 1.39E+01 1.39E+01
f8 8.00E+00 3.77E+00 3.40E+00 3.87E+00 3.34E+00
f9 6.04E-03 0.00E+00 4.55E-15 0.00E+00 0.00E+00
f10 2.50E+02 1.20E+02 1.67E+02 1.23E+02 9.11E+01
f11 4.05E+00 2.08E+00 1.91E+00 2.04E+00 1.97E+00
f12 4.29E+04 1.10E+04 1.14E+04 1.66E+04 2.38E+04
f13 5.98E+02 2.76E+03 1.34E+03 1.74E+03 4.92E+03
f14 1.72E+02 5.93E+01 2.19E+01 2.79E+01 2.47E+01
f15 9.76E+01 6.25E+01 3.72E+01 4.13E+01 1.34E+02
f16 8.06E+00 2.70E+00 2.49E+00 1.20E+01 1.06E+01
f17 2.35E+00 1.22E+00 1.11E+00 1.84E+00 2.07E+00
f18 1.53E+03 2.07E+03 1.61E+03 1.20E+03 2.98E+03
f19 9.75E+01 1.96E+01 5.98E+01 2.77E+01 6.20E+01
f20 2.84E-01 4.99E-02 1.25E-02 1.25E-02 8.74E-02
f21 1.10E+02 1.40E+02 1.02E+02 1.53E+02 1.71E+02
f22 7.54E+01 8.27E+01 7.75E+01 8.02E+01 9.03E+01
f23 3.02E+02 3.08E+02 3.07E+02 3.07E+02 3.07E+02
f24 1.04E+02 2.23E+02 1.58E+02 2.82E+02 2.82E+02
f25 2.19E+02 4.06E+02 3.82E+02 4.06E+02 4.08E+02
f26 1.07E+02 2.64E+02 2.18E+02 2.84E+02 3.04E+02
f27 3.95E+02 3.90E+02 3.90E+02 3.90E+02 3.90E+02
f28 2.77E+02 3.35E+02 2.87E+02 3.62E+02 3.96E+02
f29 2.53E+02 2.48E+02 2.44E+02 2.43E+02 2.43E+02
f30 1.87E+04 3.88E+03 4.68E+03 5.70E+03 7.23E+03

Wilcoxon +/=/- 18/0/11 19/0/10 18/0/11 16/0/13

Mean ranking 3.45 2.88 2.36 2.95 3.36

79

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

attained better rankings than the standard ABC algorithm did, which can verify

the effectiveness of improvement strategies.

3.4.3 Comparison with ABC variants

To evaluate the performance of ABC_RL, four effective ABC variants and the

standard ABC are involved in the following experiments. In order to compare

fairly, the control parameters of the competitors are set the same as those of their

original papers which are presented in Table 3.3 in order to compare fairly. Con-

sidering that the swarm size may also affect the results, SN values are consistent

with the values defined in the corresponding papers. And for all the cases of

dimension, SN stays the same.

The six algorithms are executed to solve the 29 CEC 2017 benchmark func-

tions with D = 10, 30, and 50. Each method is run 51 independent times on all

the problems. And the comparisons are carried out by comparing the mean and

standard deviation (Std) of function error values.

Table 3.3: Parameter settings of ABC_RL and compared ABC algorithms

Algorithm Parameter setting
ABC (Karaboga, 2005) SN = 50, limit = SN ×D
sdABC (Chen et al., 2019b) SN = 50, limit = SN ×D, pamin = 0.2
ARABC (Cui et al., 2017a) SN = 50, limit = SN ×D, ∆ = 0.01, αmin = 0, αmax = 5
ILTD_ABC (Gao et al., 2019) SN = 40, limit = 100
MGABC (Zhou et al., 2021a) SN = 75, limit = 100, MR = 0.5, q = 0.1, p = 0.1
ABC_RL SN = 50, limit = SN ×D, α = 0.6, γ = 0.4, ǫ = 0.3

Tables 3.4 - 3.6 present the comparison results in terms of the mean and

Std of the errors calculated. For each problem, the Wilcoxon tests are used to

display the significance between ABC_RL and other competitors. The symbol

"+" means that ABC_RL outperforms the compared algorithm whereas symbol

"-" indicates that compared algorithm is better than ABC_RL. And "=" denotes

that the two algorithms have similar results. The total numbers of each symbol

are listed in the last row of each table. Furthermore, Friedman tests are conducted

to evaluate the overall performance of concerned methods. The average rankings

are presented in Figure 3.3.

Table 3.4 shows the performance of the compared algorithms on 10-dimensional

problems. The advantages of the proposed algorithm are significant, it obtains

the best results on 18 functions (f3, f5 − f12, f17 − f20, f22, f23, f27, f29, and f30).

80

3.4 Experiments on function optimization problems

Table 3.4: Comparison between ABC_RL and other ABC variants with D = 10

Function ABC sdABC ARABC ILTD_ABC MGABC ABC_RL

f1 Mean 2.88E+02 − 1.66E+09 + 1.88E+03 + 1.66E+04 + 2.41E+02 − 9.80E+02
Std 2.39E+02 2.89E+09 2.79E+03 4.06E+04 3.46E+02 1.41E+03

f3 Mean 6.66E+02 + 6.03E+03 + 1.59E+04 + 1.89E+03 + 1.49E+03 + 5.40E+00
Std 3.85E+02 5.63E+03 5.55E+03 6.74E+02 8.26E+02 1.31E+01

f4 Mean 2.28E-01 − 1.96E+01 + 3.70E+00 + 4.97E+00 + 6.09E+00 + 2.91E+00
Std 2.38E-01 5.11E+01 2.53E+00 1.41E+00 8.39E-01 1.70E+00

f5 Mean 7.71E+00 + 4.25E+01 + 5.02E+00 + 5.22E+00 + 4.76E+00 + 3.42E+00
Std 1.96E+00 1.76E+01 1.61E+00 1.80E+00 1.35E+00 1.10E+00

f6 Mean 3.35E-09 + 4.57E+01 + 2.22E-07 + 3.70E-04 + 0.00E+00 = 0.00E+00
Std 7.72E-09 9.48E+00 1.59E-06 2.01E-04 0.00E+00 0.00E+00

f7 Mean 1.75E+01 + 1.09E+02 + 1.53E+01 + 1.66E+01 + 1.58E+01 + 1.42E+01
Std 2.33E+00 1.72E+01 1.83E+00 2.32E+00 1.39E+00 1.40E+00

f8 Mean 8.00E+00 + 4.42E+01 + 5.74E+00 + 6.59E+00 + 4.26E+00 + 3.78E+00
Std 2.51E+00 1.17E+01 1.93E+00 3.35E+00 1.04E+00 1.37E+00

f9 Mean 6.04E-03 + 7.12E+01 + 6.15E-06 + 7.72E-05 + 1.17E-05 + 4.46E-15
Std 1.83E-02 1.36E+02 2.13E-05 1.06E-04 1.46E-05 2.23E-14

f10 Mean 2.50E+02 + 1.24E+03 + 2.05E+02 + 1.86E+02 + 2.00E+02 + 1.38E+02
Std 8.62E+01 4.14E+02 1.21E+02 1.26E+02 1.00E+02 9.46E+01

f11 Mean 4.05E+00 + 1.49E+01 + 6.03E+00 + 3.94E+00 + 2.13E+00 + 1.95E+00
Std 1.54E+00 2.80E+01 6.74E+00 2.38E+00 1.08E+00 1.21E+00

f12 Mean 4.29E+04 + 4.65E+07 + 1.51E+05 + 1.67E+04 + 2.27E+04 + 1.66E+04
Std 2.41E+04 9.75E+07 2.40E+05 2.02E+04 2.85E+04 1.45E+04

f13 Mean 5.98E+02 − 1.12E+03 − 2.89E+03 + 7.19E+03 + 6.38E+03 + 1.23E+03
Std 4.90E+02 4.23E+03 2.95E+03 5.57E+03 3.09E+03 2.19E+03

f14 Mean 1.72E+02 + 7.79E+00 − 1.80E+03 + 2.99E+03 + 2.04E+03 + 2.82E+01
Std 1.99E+02 1.16E+01 3.05E+03 1.92E+03 1.81E+03 4.50E+01

f15 Mean 9.76E+01 + 1.15E+01 − 1.05E+03 + 1.45E+03 + 3.65E+02 + 8.30E+01
Std 2.03E+02 3.10E+01 1.43E+03 1.11E+03 6.00E+02 1.62E+02

f16 Mean 8.06E+00 + 1.83E+02 + 1.24E+01 + 4.33E+01 + 2.59E+00 − 3.17E+00
Std 1.89E+01 1.25E+02 2.53E+01 5.93E+01 3.39E+00 9.08E+00

f17 Mean 2.35E+00 + 1.12E+02 + 1.64E+00 + 1.75E+01 + 2.80E+00 + 6.08E-01
Std 1.29E+00 3.77E+01 1.15E+00 1.93E+01 3.94E+00 4.83E-01

f18 Mean 1.53E+03 + 4.31E+03 + 4.84E+03 + 7.77E+03 + 1.34E+03 + 9.88E+02
Std 9.88E+02 1.55E+04 4.28E+03 6.61E+03 9.26E+02 1.11E+03

f19 Mean 9.75E+01 + 2.95E+02 + 8.41E+02 + 4.58E+03 + 6.59E+02 + 4.97E+01
Std 1.18E+02 1.93E+03 1.21E+03 4.29E+03 8.10E+02 1.13E+02

f20 Mean 2.84E-01 + 1.20E+02 + 4.76E+00 + 5.24E+00 + 3.58E-02 + 3.06E-02
Std 4.01E-01 1.05E+02 1.86E+01 2.33E+01 1.09E-01 9.38E-02

f21 Mean 1.10E+02 − 1.04E+02 − 1.55E+02 + 1.85E+02 + 1.08E+02 − 1.20E+02
Std 3.36E+00 1.02E+01 4.11E+01 4.37E+01 2.55E+01 3.86E+01

f22 Mean 7.54E+01 + 4.05E+02 + 8.08E+01 + 9.43E+01 + 9.24E+01 + 7.39E+01
Std 2.86E+01 2.63E+02 2.94E+01 2.38E+01 2.46E+01 3.41E+01

f23 Mean 3.02E+02 + 3.14E+02 + 3.10E+02 + 3.10E+02 + 3.03E+02 + 3.01E+02
Std 5.95E+01 5.45E+00 2.65E+00 2.82E+00 4.29E+01 4.31E+01

f24 Mean 1.04E+02 − 1.86E+02 + 2.56E+02 + 3.23E+02 + 1.60E+02 + 1.42E+02
Std 1.81E+01 1.17E+02 7.85E+01 6.57E+01 9.44E+01 8.29E+01

f25 Mean 2.19E+02 − 4.71E+02 + 3.91E+02 − 4.16E+02 + 4.16E+02 + 4.05E+02
Std 1.10E+02 1.21E+02 6.67E+01 2.23E+01 2.00E+01 1.68E+01

f26 Mean 1.07E+02 − 4.80E+02 + 2.34E+02 − 2.76E+02 + 2.42E+02 − 2.47E+02
Std 9.92E+01 3.70E+02 1.03E+02 5.51E+01 1.08E+02 1.06E+02

f27 Mean 3.95E+02 + 3.93E+02 + 3.95E+02 + 3.91E+02 + 3.92E+02 + 3.90E+02
Std 2.30E+00 9.45E+00 3.27E+00 2.02E+00 1.87E+00 1.16E+00

f28 Mean 2.77E+02 − 5.20E+02 + 4.46E+02 + 4.44E+02 + 2.99E+02 − 3.06E+02
Std 8.66E+01 1.36E+02 1.11E+02 1.54E+02 9.22E+01 7.97E+01

f29 Mean 2.53E+02 + 2.73E+02 + 2.58E+02 + 2.57E+02 + 2.61E+02 + 2.44E+02
Std 2.60E+01 5.37E+01 2.30E+01 9.39E+00 7.25E+00 5.56E+00

f30 Mean 1.87E+04 + 1.47E+06 + 2.09E+04 + 1.74E+04 + 2.04E+04 + 3.85E+03
Std 2.03E+04 3.33E+06 2.86E+04 1.88E+04 1.85E+04 3.13E+03

Wilcoxon +/=/- 21/0/8 25/0/4 27/0/2 29/0/0 23/1/5

81

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

In this comparison, the search effectiveness of ABC_RL can be proved by solv-

ing different types of problems rather than only being good at solving one kind

of problem. It is worth pointing out that, the ABC_RL algorithm’s exploita-

tion and exploration abilities have been well balanced during the search process

compared to other competitors.

Considering the results of Wilcoxon tests, ABC_RL surpasses the original

ABC on 21 out of 29 problems, and its advantages on f3, f6, f9, f12, f17, and f20

are remarkable. sdABC is slightly better than ABC_RL on 4 problems. And

ABC_RL outperforms sdABC on the rest 25 problems. Meanwhile, ABC_RL

has more accurate solutions than ARABC on 27 problems while ARABC out-

performs ABC_RL on 2 functions. ILTD_ABC fails to surpass ABC_RL on all

the benchmarks in the case of D = 10. In fact, only MGABC and ABC_RL

achieve the exact optimum on f6. MGABC gets smaller errors than ABC_RL

on 5 functions while ABC_RL performs better on the remaining 23 functions.

The comparison results with D = 30 are listed in Table 3.5. Notice that the

search difficulty will increase as the problem scale augments, but the population

size remains the same. In this context, the advantages of ABC_RL compared

to the other effective ABC algorithms haven’t been affected greatly. Moreover,

its superiorities are obvious on f6, f9, and f11. The Wilcoxon tests show that

ABC_RL outperforms ABC on 19 functions and ABC has better results on 10

functions. The number of functions where ABC_RL has more accurate solutions

than sdABC is 28 problems and sdABC achieves a smaller error on only 1 func-

tion, f14. And ABC_RL gains better results than ARABC on 21 problems and

fails on 8 problems. ILTD_ABC and MGABC become more competitive in the

case of D = 30. ILTD_ABC obtains smaller errors than ABC_RL on 9 func-

tions, while ABC_RL achieves more accurate solutions on the rest 20 problems.

MGABC performs better than ABC_RL on 10 functions and fails to outperform

the proposed algorithm on the rest 19 functions.

Table 3.6 presents the comparison with D = 50. According to the Wilcoxon

test results, similar conclusions can be derived from this comparison. The orig-

inal ABC surpasses ABC_RL on 9 functions while ABC_RL performs better

on the rest 20 functions. Compared with sdABC, ABC_RL obtains smaller

errors on 26 functions and larger errors on 3 functions. Although ARABC

has outstanding performance in this case, ABC_RL is still competitive to it.

82

3.4 Experiments on function optimization problems

Table 3.5: Comparison between ABC_RL and other ABC variants with D = 30

Function ABC sdABC ARABC ILTD_ABC MGABC ABC_RL

f1 Mean 2.15E+02 − 8.81E+09 + 2.77E+03 + 4.23E+03 + 1.70E+03 − 1.74E+03
Std 2.66E+02 7.91E+09 4.95E+03 4.05E+03 1.06E+03 3.06E+03

f3 Mean 7.29E+04 + 5.35E+04 + 1.44E+05 + 5.63E+04 + 4.20E+04 − 5.25E+04
Std 2.35E+04 2.25E+04 2.74E+04 5.27E+03 6.85E+03 1.33E+04

f4 Mean 3.54E+01 − 2.59E+03 + 7.62E+01 − 7.20E+01 − 1.07E+02 + 7.86E+01
Std 2.75E+01 3.80E+03 1.80E+01 1.70E+01 1.19E+01 2.13E+01

f5 Mean 8.21E+01 + 1.81E+02 + 4.22E+01 − 7.62E+01 + 6.21E+01 + 4.63E+01
Std 1.12E+01 5.13E+01 7.57E+00 1.98E+01 7.81E+00 7.32E+00

f6 Mean 7.22E-10 + 2.58E+01 + 1.43E-07 + 2.29E-03 + 1.14E-13 + 0.00E+00
Std 8.03E-10 1.87E+01 6.82E-07 8.03E-04 0.00E+00 0.00E+00

f7 Mean 9.97E+01 + 3.50E+02 + 6.73E+01 − 1.24E+02 + 8.72E+01 + 7.37E+01
Std 1.01E+01 1.11E+02 5.95E+00 4.70E+01 9.36E+00 7.60E+00

f8 Mean 9.17E+01 + 1.75E+02 + 4.47E+01 − 7.70E+01 + 5.58E+01 + 5.28E+01
Std 1.37E+01 5.46E+01 7.67E+00 1.63E+01 9.13E+00 9.06E+00

f9 Mean 7.16E+02 + 6.62E+03 + 4.61E+01 + 3.22E+02 + 3.16E+01 + 4.44E-01
Std 3.95E+02 2.93E+03 3.90E+01 4.46E+02 3.30E+01 6.48E-01

f10 Mean 2.22E+03 + 5.98E+03 + 1.98E+03 − 1.97E+03 − 2.35E+03 + 2.08E+03
Std 2.66E+02 8.29E+02 2.80E+02 4.36E+02 2.99E+02 3.22E+02

f11 Mean 2.09E+02 + 8.76E+02 + 1.58E+03 + 9.59E+01 + 8.48E+01 + 4.67E+01
Std 1.11E+02 1.87E+03 1.24E+03 2.01E+01 6.03E+01 2.98E+01

f12 Mean 5.46E+05 + 1.22E+08 + 1.29E+06 + 9.52E+05 + 9.98E+05 + 2.47E+05
Std 2.99E+05 3.56E+08 9.02E+05 5.25E+05 6.54E+05 2.24E+05

f13 Mean 9.18E+03 − 3.14E+05 + 2.64E+04 + 1.72E+04 + 1.43E+04 − 1.54E+04
Std 6.39E+03 2.07E+06 2.42E+04 1.37E+04 8.36E+03 1.68E+04

f14 Mean 4.92E+04 + 4.81E+03 − 2.60E+05 + 2.29E+05 + 2.50E+05 + 3.03E+04
Std 3.77E+04 3.38E+04 1.89E+05 1.92E+05 2.10E+05 2.74E+04

f15 Mean 1.84E+03 − 9.46E+06 + 1.11E+04 + 2.24E+03 − 1.10E+03 − 9.25E+03
Std 1.86E+03 6.28E+07 1.06E+04 1.62E+03 1.14E+03 1.13E+04

f16 Mean 6.14E+02 + 8.73E+02 + 6.84E+02 + 6.24E+02 + 6.49E+02 + 4.65E+02
Std 1.54E+02 4.03E+02 1.68E+02 2.40E+02 1.50E+02 1.87E+02

f17 Mean 2.02E+02 + 2.78E+02 + 1.62E+02 + 1.94E+02 + 1.34E+02 + 1.22E+02
Std 8.70E+01 2.63E+02 9.67E+01 1.37E+02 7.26E+01 9.67E+01

f18 Mean 1.77E+05 − 2.91E+06 + 3.90E+05 + 3.09E+05 + 1.23E+05 − 1.84E+05
Std 1.00E+05 5.20E+06 2.27E+05 1.92E+05 8.14E+04 1.22E+05

f19 Mean 1.58E+03 − 5.02E+07 + 1.29E+04 − 3.30E+03 − 3.60E+03 − 1.29E+04
Std 1.38E+03 2.12E+08 1.10E+04 2.33E+03 2.52E+03 1.66E+04

f20 Mean 2.70E+02 + 5.20E+02 + 2.23E+02 + 2.92E+02 + 1.57E+02 + 1.21E+02
Std 8.96E+01 2.11E+02 1.02E+02 1.50E+02 4.65E+01 7.26E+01

f21 Mean 2.65E+02 + 3.29E+02 + 2.47E+02 + 2.51E+02 + 2.47E+02 + 2.39E+02
Std 6.31E+01 3.63E+01 9.95E+00 1.03E+01 7.29E+00 4.28E+01

f22 Mean 6.07E+02 + 1.70E+03 + 6.67E+02 + 1.48E+02 − 1.00E+02 − 2.39E+02
Std 1.09E+03 1.35E+03 9.91E+02 3.40E+02 2.43E-13 5.65E+02

f23 Mean 4.21E+02 + 5.05E+02 + 4.03E+02 + 4.07E+02 + 3.96E+02 − 4.02E+02
Std 2.66E+01 3.38E+01 7.96E+00 1.07E+01 8.70E+00 1.06E+01

f24 Mean 4.80E+02 − 7.66E+02 + 5.29E+02 + 5.34E+02 + 5.00E+02 + 4.85E+02
Std 1.88E+02 2.87E+02 2.90E+01 1.94E+01 1.91E+01 7.05E+01

f25 Mean 3.85E+02 − 5.97E+02 + 3.86E+02 − 3.86E+02 − 3.97E+02 + 3.87E+02
Std 1.08E+00 1.13E+02 1.28E+00 3.03E+00 1.46E+01 7.52E-01

f26 Mean 4.31E+02 − 2.88E+03 + 1.56E+03 + 1.25E+03 − 5.84E+02 − 1.36E+03
Std 5.35E+02 2.01E+03 2.24E+02 5.84E+02 6.32E+02 5.47E+02

f27 Mean 5.13E+02 + 5.45E+02 + 5.11E+02 + 5.04E+02 + 5.11E+02 + 5.02E+02
Std 4.51E+00 1.99E+01 5.43E+00 5.32E+00 5.50E+00 6.76E+00

f28 Mean 4.02E+02 − 1.39E+03 + 4.09E+02 − 4.00E+02 − 4.29E+02 + 4.09E+02
Std 2.80E+00 9.33E+02 9.84E+00 4.73E+00 1.37E+01 6.08E+00

f29 Mean 6.14E+02 + 9.08E+02 + 6.00E+02 + 5.45E+02 + 5.12E+02 + 5.11E+02
Std 7.83E+01 3.31E+02 8.17E+01 6.93E+01 6.28E+01 6.51E+01

f30 Mean 7.17E+03 + 1.11E+05 + 1.14E+04 + 5.27E+03 − 5.65E+03 − 7.05E+03
Std 1.84E+03 4.36E+05 5.36E+03 2.21E+03 1.84E+03 4.17E+03

Wilcoxon +/=/- 19/0/10 28/0/1 21/0/8 20/0/9 19/0/10

83

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

Table 3.6: Comparison between ABC_RL and other ABC variants with D = 50

Function ABC sdABC ARABC ILTD_ABC MGABC ABC_RL

f1 Mean 1.76E+03 − 3.18E+10 + 5.11E+03 + 6.13E+03 + 4.55E+02 − 3.87E+03
Std 1.45E+03 1.75E+10 5.75E+03 9.25E+03 5.47E+02 6.14E+03

f3 Mean 2.14E+05 + 1.48E+05 − 2.94E+05 + 1.23E+05 − 1.16E+05 − 1.83E+05
Std 3.78E+04 3.33E+04 3.04E+04 1.20E+04 1.19E+04 2.62E+04

f4 Mean 3.87E+01 − 4.62E+03 + 7.03E+01 − 4.56E+01 − 9.41E+01 + 8.00E+01
Std 1.51E+01 3.72E+03 3.27E+01 2.47E+01 3.60E+01 3.98E+01

f5 Mean 1.94E+02 + 4.24E+02 + 9.20E+01 − 2.27E+02 + 1.52E+02 + 1.13E+02
Std 2.29E+01 9.59E+01 1.05E+01 3.94E+01 2.05E+01 1.57E+01

f6 Mean 6.72E-10 + 4.23E+01 + 7.02E-07 + 8.34E-03 + 2.07E-13 + 3.34E-14
Std 7.81E-10 1.81E+01 4.16E-06 2.51E-02 4.38E-14 5.23E-14

f7 Mean 2.12E+02 + 6.82E+02 + 1.30E+02 − 3.79E+02 + 2.02E+02 + 1.53E+02
Std 1.91E+01 1.40E+02 1.07E+01 1.60E+02 1.75E+01 1.41E+01

f8 Mean 2.06E+02 + 4.35E+02 + 9.19E+01 − 2.28E+02 + 1.47E+02 + 1.16E+02
Std 2.06E+01 8.31E+01 1.37E+01 5.03E+01 1.98E+01 1.61E+01

f9 Mean 5.41E+03 + 2.39E+04 + 2.88E+02 + 3.77E+03 + 5.28E+02 + 9.05E+01
Std 1.55E+03 9.37E+03 1.75E+02 2.34E+03 3.53E+02 9.58E+01

f10 Mean 4.21E+03 + 1.07E+04 + 3.77E+03 − 4.15E+03 + 4.36E+03 + 3.95E+03
Std 3.30E+02 2.79E+03 2.99E+02 6.14E+02 3.54E+02 4.42E+02

f11 Mean 7.13E+02 + 4.87E+03 + 4.39E+03 + 1.62E+03 + 8.84E+02 + 9.06E+01
Std 4.87E+02 4.58E+03 2.57E+03 5.44E+02 5.39E+02 2.70E+01

f12 Mean 3.33E+06 + 5.90E+09 + 6.35E+06 + 1.75E+06 − 3.14E+06 + 1.88E+06
Std 1.43E+06 1.21E+10 2.55E+06 7.12E+05 1.36E+06 1.17E+06

f13 Mean 5.06E+03 − 4.28E+08 + 1.97E+04 + 2.85E+03 − 1.41E+03 − 9.26E+03
Std 3.35E+03 2.20E+09 1.66E+04 3.59E+03 1.60E+03 1.16E+04

f14 Mean 7.10E+05 + 6.00E+04 − 1.51E+06 + 1.13E+06 + 3.06E+06 + 1.18E+05
Std 5.36E+05 2.86E+05 1.15E+06 7.38E+05 1.55E+06 9.11E+04

f15 Mean 9.19E+03 + 8.20E+08 + 1.14E+04 + 1.46E+04 + 1.59E+04 + 8.14E+03
Std 5.51E+03 1.68E+09 6.14E+03 6.50E+03 3.68E+03 7.87E+03

f16 Mean 1.27E+03 + 1.81E+03 + 1.26E+03 + 8.99E+02 − 9.32E+02 − 1.14E+03
Std 2.40E+02 4.13E+02 1.93E+02 2.85E+02 1.96E+02 2.78E+02

f17 Mean 9.36E+02 + 1.66E+03 + 8.09E+02 + 9.92E+02 + 8.20E+02 + 7.37E+02
Std 1.64E+02 1.14E+03 1.86E+02 2.71E+02 2.18E+02 1.81E+02

f18 Mean 9.38E+05 + 2.48E+05 − 2.88E+06 + 1.45E+06 + 2.21E+06 + 6.41E+05
Std 4.90E+05 2.36E+05 1.47E+06 5.63E+05 9.69E+05 5.11E+05

f19 Mean 7.47E+03 − 1.46E+05 + 1.62E+04 + 1.82E+04 + 1.61E+04 + 1.46E+04
Std 2.99E+03 4.90E+05 8.10E+03 1.13E+04 4.28E+03 1.31E+04

f20 Mean 7.12E+02 + 1.35E+03 + 6.89E+02 + 5.63E+02 + 4.44E+02 − 5.23E+02
Std 1.81E+02 4.14E+02 1.49E+02 2.14E+02 1.63E+02 1.71E+02

f21 Mean 4.12E+02 + 5.23E+02 + 3.05E+02 − 3.52E+02 + 3.23E+02 − 3.28E+02
Std 2.23E+01 6.04E+01 1.32E+01 2.09E+01 1.47E+01 1.39E+01

f22 Mean 4.65E+03 − 8.55E+03 + 4.09E+03 − 4.88E+03 + 2.65E+03 − 4.75E+03
Std 1.54E+03 4.26E+03 1.06E+03 1.77E+03 2.45E+03 7.99E+02

f23 Mean 6.48E+02 + 8.53E+02 + 5.51E+02 − 5.76E+02 + 5.46E+02 − 5.68E+02
Std 4.82E+01 7.45E+01 1.49E+01 2.43E+01 1.70E+01 1.97E+01

f24 Mean 1.01E+03 + 1.12E+03 + 7.97E+02 + 8.21E+02 + 7.48E+02 + 6.85E+02
Std 6.34E+01 3.64E+02 3.97E+01 4.57E+01 3.35E+01 3.11E+01

f25 Mean 5.08E+02 − 4.22E+03 + 5.12E+02 − 5.42E+02 + 5.97E+02 + 5.16E+02
Std 1.99E+01 2.66E+03 1.78E+01 3.18E+01 1.02E+01 2.24E+01

f26 Mean 1.92E+03 − 6.32E+03 + 2.38E+03 − 1.65E+03 − 6.20E+02 − 2.59E+03
Std 1.54E+03 2.32E+03 1.65E+02 1.54E+03 1.13E+03 1.76E+02

f27 Mean 6.49E+02 + 8.92E+02 + 6.41E+02 + 5.92E+02 + 6.20E+02 + 5.80E+02
Std 3.03E+01 1.34E+02 3.42E+01 1.69E+01 1.96E+01 3.75E+01

f28 Mean 4.85E+02 − 2.54E+03 + 4.84E+02 − 4.95E+02 + 5.44E+02 + 4.92E+02
Std 1.19E+01 1.64E+03 1.68E+01 1.99E+01 1.56E+01 1.90E+01

f29 Mean 1.03E+03 + 1.96E+03 + 8.59E+02 + 6.60E+02 − 8.18E+02 + 7.62E+02
Std 1.54E+02 3.19E+03 1.64E+02 1.62E+02 1.78E+02 1.34E+02

f30 Mean 7.23E+05 − 1.13E+08 + 7.97E+05 − 8.52E+05 − 8.76E+05 − 9.74E+05
Std 4.99E+04 4.22E+08 9.45E+04 1.05E+05 7.15E+04 2.70E+05

Wilcoxon +/=/- 20/0/9 26/0/3 17/0/12 21/0/8 19/0/10

84

3.4 Experiments on function optimization problems

ABC_RL gains better results than ARABC on 17 problems. And comparing to

ILTD_ABC, ABC_RL achieves smaller errors on 21 problems while ABC_RL

surpasses MGABC on 19 problems.

Furthermore, the Friedman tests are carried out, and the average rankings

of each method with D = 10, 30, and 50 are shown in Figure 3.3. It has been

demonstrated that the proposed ABC_RL algorithm achieves the best average

ranking in all the comparisons. For 10-dimensional problems, the original ABC

is the second-best followed by MGABC. As for D = 30 and 50, MGABC obtains

smaller rankings than other competitors except for ABC_RL. Therefore, it can

be concluded that ABC_RL has the best overall performance among the six ABC

algorithms.

Fig. 3.3. Average rankings of ABC algorithms by Friedman tests with D =
10, 30 and 50

3.4.4 Effectiveness of the proposed strategies

In order to further validate the proposed ABC_RL algorithm, the effectiveness

of each improvement is tested and analyzed in this part. Hence, two variants of

ABC_RL are constructed. ABC_RLeq adopted only the modified search equa-

tions, i.e., (3.5) and (3.8), with scale factors following heavy-tailed distribution.

Note that these equations are one-dimensional because RL was not introduced to

vary the nbup. Meanwhile, ABC_RLQL utilized the Q-learning-based strategy to

enlarge and adjust the nbup in employed bee phase. Its solution search equation

is the same as the original Eq.(1.2).

85

Chap3/chapter3_figs/EPS//Friedman.eps

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

These variants are compared with the standard ABC aiming at verifying the

effectiveness of the proposed strategies. Experimental results on 29 benchmarks

over 51 independent executions are shown in Table 3.7. The best results of each

function are highlighted in boldface. And the last row shows the Wilcoxon test

results of comparing these two variants with basic ABC algorithm. The average

rankings given by Friedman tests are drawn in Figure 3.4.

Table 3.7: Effectiveness of each modification of ABC_RL on benchmarks with
D= 10, 30 and 50

D=10 D=30 D=50
Function ABC ABC_RLeq ABC_RLQL ABC ABC_RLeq ABC_RLQL ABC ABC_RLeq ABC_RLQL

f1 2.88E+02 6.87E+02 3.21E+02 2.15E+02 5.10E+02 5.03E+02 1.76E+03 3.65E+03 1.45E+03
f3 6.66E+02 1.03E+02 2.16E+02 7.29E+04 6.04E+04 6.01E+04 2.14E+05 2.04E+05 1.86E+05
f4 2.28E-01 2.26E+00 4.91E-01 3.54E+01 5.66E+01 5.03E+01 3.87E+01 4.04E+01 6.05E+01
f5 7.71E+00 4.51E+00 7.34E+00 8.21E+01 4.58E+01 7.75E+01 1.94E+02 1.11E+02 1.89E+02
f6 3.35E-09 0.00E+00 5.32E-11 7.22E-10 0.00E+00 7.74E-07 6.72E-10 2.01E-14 1.30E-05
f7 1.75E+01 1.44E+01 1.74E+01 9.97E+01 7.22E+01 1.01E+02 2.12E+02 1.47E+02 2.10E+02
f8 8.00E+00 5.10E+00 8.06E+00 9.17E+01 5.20E+01 8.27E+01 2.06E+02 1.11E+02 1.81E+02
f9 6.04E-03 5.21E-08 9.10E-08 7.16E+02 5.16E+01 5.34E+02 5.41E+03 5.19E+02 4.42E+03
f10 2.50E+02 1.37E+02 2.83E+02 2.22E+03 1.90E+03 2.42E+03 4.21E+03 3.79E+03 4.39E+03
f11 4.05E+00 2.36E+00 3.26E+00 2.09E+02 8.16E+01 5.10E+01 7.13E+02 4.49E+02 1.33E+02
f12 4.29E+04 2.88E+04 4.45E+04 5.46E+05 4.90E+05 5.37E+05 3.33E+06 2.78E+06 3.82E+06
f13 5.98E+02 5.14E+02 4.13E+02 9.18E+03 1.63E+04 6.01E+03 5.06E+03 6.50E+03 1.36E+03
f14 1.72E+02 2.89E+02 8.39E+01 4.92E+04 5.74E+04 2.84E+04 7.10E+05 4.03E+05 3.60E+05
f15 9.76E+01 1.40E+02 4.12E+01 1.84E+03 7.51E+03 7.08E+02 9.19E+03 8.45E+03 5.57E+03
f16 8.06E+00 1.40E+00 2.91E+00 6.14E+02 5.64E+02 5.99E+02 1.27E+03 1.15E+03 1.24E+03
f17 2.35E+00 8.20E-01 2.91E+00 2.02E+02 1.53E+02 1.39E+02 9.36E+02 7.31E+02 8.49E+02
f18 1.53E+03 1.86E+03 1.60E+03 1.77E+05 1.89E+05 1.93E+05 9.38E+05 9.79E+05 8.97E+05
f19 9.75E+01 1.80E+02 3.77E+01 1.58E+03 6.20E+03 1.21E+03 7.47E+03 1.08E+04 7.85E+03
f20 2.84E-01 1.84E-02 2.12E-01 2.70E+02 2.00E+02 1.63E+02 7.12E+02 5.93E+02 6.28E+02
f21 1.10E+02 1.16E+02 1.09E+02 2.65E+02 2.29E+02 2.40E+02 4.12E+02 3.16E+02 3.92E+02
f22 7.54E+01 5.72E+01 6.26E+01 6.07E+02 2.31E+02 4.38E+02 4.65E+03 4.16E+03 4.86E+03
f23 3.02E+02 3.08E+02 2.97E+02 4.21E+02 4.03E+02 4.20E+02 6.48E+02 5.68E+02 6.27E+02
f24 1.04E+02 1.09E+02 1.19E+02 4.80E+02 4.91E+02 4.67E+02 1.01E+03 8.04E+02 7.40E+02
f25 2.19E+02 3.64E+02 2.91E+02 3.85E+02 3.87E+02 3.86E+02 5.08E+02 5.17E+02 5.16E+02
f26 1.07E+02 1.55E+02 9.72E+01 4.31E+02 8.52E+02 4.77E+02 1.92E+03 2.51E+03 2.30E+03
f27 3.95E+02 3.93E+02 3.91E+02 5.13E+02 5.10E+02 5.11E+02 6.49E+02 6.32E+02 6.40E+02
f28 2.77E+02 2.98E+02 2.91E+02 4.02E+02 4.09E+02 4.09E+02 4.85E+02 4.96E+02 4.96E+02
f29 2.53E+02 2.50E+02 2.64E+02 6.14E+02 5.49E+02 6.03E+02 1.03E+03 8.18E+02 8.67E+02
f30 1.87E+04 9.41E+03 1.22E+04 7.17E+03 7.86E+03 5.08E+03 7.23E+05 7.32E+05 7.31E+05

Wilcoxon (+/=/-)
v.s. ABC 17/0/12 18/0/11 17/0/12 20/0/9 20/0/9 19/0/10

Firstly, in Table 3.7, the comparison between variant ABC_RLeq and the

basic ABC is concerned. It is observed that ABC_RLeq achieves significant

improvement in functions f6 and f9. According to the Wilcoxon test results,

for D = 10 and 30, ABC_RLeq obtains smaller errors than ABC does on 17

benchmarks. As for D = 50, it outperforms the basic ABC algorithm on 20

functions. In this case, the effectiveness of utilizing improved search equations

with heavy-tailed based scale factors can be verified.

Secondly, in order to demonstrate the effect of RL strategy, ABC_RLQL is

compared with ABC algorithm. It can be found that, for all the dimension cases,

ABC_RLQL achieves better results on more than half of the 29 functions. So the

86

3.4 Experiments on function optimization problems

algorithm’s performance can be improved by using RL method to enlarge and

adjust the nbup. Moreover, similar conclusion can be derived from the number of

best results in boldface.

Fig. 3.4. Friedman test results for effectiveness demonstration of modifications

Furthermore, these two versions are compared with the final ABC_RL al-

gorithm as well. In Figure 3.4, the lower the bar is, the better the ranking is.

For all the dimension cases, ABC_RL always gets the best ranking. Meanwhile,

the rankings of ABC_RLeq and ABC_RLQL are both better than those of ABC.

Hence, the effectiveness of the proposed strategies can be proved. And it can be

concluded that these strategies work better together than they do individually.

3.4.5 Convergence behavior analysis

The convergence curves of compared algorithms were plotted to fully compare

their performance. The convergence speed of solving different types of problems

with D = 10 can be observed in Figure 3.5. Note that, the values of log(f(·)) are

presented because the objective function values are too large in the earlier stage

of searching process.

In Figure 3.5, (a) presents the convergence curves of ABC algorithms on uni-

modal function f3. Note that, the results of solving unimodal functions can

indicate the exploitation ability of executed algorithm as there is a unique opti-

mum. And it can be found that, ABC_RL is able to achieve the best accuracy

while its convergence rate is competitive to other competitors. Meanwhile, fig-

ures (b) and (c) (f8 and f12) show the cases of multimodal problems. A similar

87

Chap3/chapter3_figs/EPS//EffectFried.eps

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

(a) f3 (b) f8

(c) f10 (d) f12

(e) f18 (f) f22

Fig. 3.5. The convergence performance of ABC_RL and compared ABC algo-
rithms

88

Chap3/chapter3_figs/EPS//f3_log.eps
Chap3/chapter3_figs/EPS//f8_log.eps
Chap3/chapter3_figs/EPS//f10_log.eps
Chap3/chapter3_figs/EPS//f12_log.eps
Chap3/chapter3_figs/EPS//f18_log.eps
Chap3/chapter3_figs/EPS//f22_log.eps

3.4 Experiments on function optimization problems

conclusion can be obtained from (c), where ABC_RL converges rapidly to the

smallest value among the concerned methods. And in (b), the convergence curves

are close to each other except for the curve of sdABC. (d) and (e) indicate how

the algorithms converge in solving hybrid functions. In these two figures, the

advantages in solution accuracy of ABC_RL can be found. At the same time, its

convergence rate is competitive to the others. The curve of ILTD_ABC descends

the fastest in (d). Furthermore, as for composition function f22 displayed in (e),

the performance of the compared algorithms is similar except for sdABC. And

ABC_RL is able to achieve a better result in terms of solution precision.

In addition, as mentioned at the beginning of this work, it is worth study-

ing the parameter adjusting of ABC via the RL method. As the convergence

rate of ABC is acknowledged to be limited, the improvement strategies should

avoid decelerating the algorithm even if the main purpose is not to enhance the

convergence speed. In this context, the analysis of the influence of RL on the

convergence rate of ABC is meaningful. Therefore, the convergence process of

variant ABC_RLQL is compared to that of the original ABC algorithm and the

final ABC_RL algorithm as presented in Figure 3.6.

According to Figure 3.6, it can be observed that the trend of convergence

curves of the three involved algorithms is basically the same, especially in figures

(a), (b), and (f). In (a), the final solution obtained by variant ABC_RLQL is

better than that of the original ABC. And the final ABC_RL achieves the best

solution accuracy. When solving multimodal and hybrid functions, i.e., (b)-(e),

in the initial stage, the original ABC converges slightly faster than ABC_RLQL

because ABC_RLQL encounters some stagnation points. After that, their con-

vergence processes are nearly the same in the middle stage. It is worth pointing

out that ABC_RLQL can further find more accurate solutions in the later stage.

In this way, the impact of using the Q-learning method to adjust the parameter

nbup on the convergence rate can be analyzed. The above observations indicate

that in complex problems, the exploring efficiency of ABC may be slightly affected

by RL-based strategy only in the early stage, but better solutions can be found

later with the help of RL. One possible reason for this situation is that the learning

experience of RL is not enough in the early stage, so the instability of RL may

affect the convergence speed of external ABC algorithm. Nonetheless, from the

89

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

(a) f3 (b) f8

(c) f10 (d) f12

(e) f18 (f) f22

Fig. 3.6. The influence of RL method on convergence rate of ABC algorithm

90

Chap3/chapter3_figs/EPS//convRL_f3_all.eps
Chap3/chapter3_figs/EPS//convRL_f8_all.eps
Chap3/chapter3_figs/EPS//convRL_f10_all.eps
Chap3/chapter3_figs/EPS//convRL_f12_all.eps
Chap3/chapter3_figs/EPS//convRL_f18_all.eps
Chap3/chapter3_figs/EPS//convRL_f22_all.eps

3.5 Conclusion

middle and late stages, RL is able to gradually provide more useful help to the

algorithm.

Moreover, the convergence performance of the final ABC_RL provides strong

support for utilizing the other improving strategies simultaneously. The algo-

rithm is able to keep a nice balance between diversification and intensification

via adopting the enhanced solution search equations (i.e., Eq.(3.5) and (3.8))

with RL-based parameter tuning. Thus, when all these strategies are applied

together, the proposed ABC_RL can not only converge faster than basic ABC,

but also reach outstanding solutions.

3.5 Conclusion

In this chapter, to improve the search efficiency of ABC, a RL-based ABC algo-

rithm (named ABC_RL) is proposed. Different from the ABCDC in the previous

chapter and many other existing ABC versions, RL is used to intelligently adjust

a parameter of ABC_RL. More precisely, since the frequency of perturbations

has a significant impact on the performance of algorithm, the Q-learning method

is used to change the frequency by learning from the historical updating experi-

ence in employed bee phase. Moreover, the information of the global best and two

neighbors is considered in the onlooker bee phase to better lead the search direc-

tion. Furthermore, random scale factors drawn from a heavy-tailed distribution

are adopted in the two search strategies to enrich the algorithm’s randomness.

Experiments were carried out on 29 CEC 2017 benchmark problems. ABC_RL

was compared to five effective ABC algorithms in different dimension cases. The

comparison results demonstrated that the proposed algorithm outperformed the

other competitors in terms of solution accuracy and overall performance. This

part of work also provides a novel way of incorporating RL into SIAs.

91

3. REINFORCEMENT LEARNING BASED ABC ALGORITHM
(ABC_RL)

92

Chapter 4

Learning based ABC algorithm

(ABCL)

Contents

4.1 Introduction . 94

4.2 Preliminaries . 96

4.2.1 Teaching-learning based optimization (TLBO) algorithm 96

4.3 Proposed ABCL algorithm 97

4.3.1 Enhanced employed bee phase 98

4.3.2 Learning-based onlooker bee phase 99

4.3.3 Enhanced scout bee phase 100

4.3.4 The framework of ABCL algorithm 101

4.4 Experiments on function optimization problems . . . 101

4.4.1 Benchmark functions 104

4.4.2 Comparison with ABC variants 104

4.4.3 Convergence behavior analysis 108

4.5 Conclusion . 110

93

4. LEARNING BASED ABC ALGORITHM (ABCL)

4.1 Introduction

One of the primary purposes of improving the optimization algorithms is to ap-

ply them to solve problems of practical interest with the purpose of reducing cost

consumption and increasing efficiency. In this context, compared to the previ-

ous chapters, this part of work keeps in mind the situations of solving real-world

problems while carrying out the improvement of the ABC algorithm. These days,

there exist many on-line optimization problems, such as on-line robot path plan-

ning. And the time required for the algorithm to compute during the process

has become another essential factor to be considered. That is to say, we aim at

finding the improvement strategies that can ensure the solution accuracy while

taking computational complexity and operation efficiency into account. The mo-

tivation for this derives from the fact that many modification strategies that are

effective in resolving functional optimization problems do not always help us find

the ideal answer rapidly in practical applications. Therefore, it is also meaningful

to improve the algorithm’s performance without overcomplicating it.

As mentioned in the previous chapters, ABC has been discovered to be ex-

cellent at diversification but not so effective in terms of intensification. This also

leads to the convergence speed of ABC being relatively slow in certain problems.

In order to tackle this weakness, the solution search equation of ABC needs to be

enhanced since only one neighbor of uncertain quality is considered. Moreover,

the purpose of scout bee phase is to avoid stagnation. More precisely, the equa-

tion for producing new solutions is adopted to replace those food source positions

that have not been updated for a long time. However, the quality of the newly

generated solutions can not be guaranteed since the previous search experience

is ignored. This is also one of the reasons for the low convergence speed of ABC.

In addition, researchers found that the scout bee phase demonstrates is oc-

casionally redundant in the search process (Anuar et al., 2016). In this case,

the scout bee phase has also been improved in some ABC variants, and some

ABC algorithms have removed this component. For instance, Xiang & An (2013)

utilized chaotic search in the scout bee phase in order to further enhance the

algorithm’s performance. Cui et al. (2017b) removed the scout bee phase from

their proposed APABC because new solutions could be introduced via an adap-

tive method of population size. Moreover, our ABCDC algorithm proposed in

Chapter 2 does not contain the scout bee phase either. The proposed method

94

4.1 Introduction

for adjusting the population composition enables ABCDC to abandon the worst

solutions timely. In this part, we would like to maintain the scout bee phase and

try to strengthen it. More precisely, the successful search experience is concerned

when producing new solutions, so that more valuable solutions can be transmitted

to the subsequent iteration.

With the purpose of enhancing the exploitation ability and saving compu-

tation time efficiently, the search strategy of the teaching-learning based opti-

mization (TLBO) algorithm was chosen to be incorporated into the proposed

algorithm. It has been discovered that the TLBO algorithm converges quickly

and is effective at exploitation. At the same, the onlooker bee phase of ABC

is mainly responsible for exploiting locally. After the employed bees search the

whole space, the onlookers will search locally around the solutions with higher

quality. In this context, it is natural to attempt to embed the advantages of

TLBO into the onlooker bee phase. Moreover, the way of choosing the regions

to be further exploited can be made better. The basic ABC algorithm uses the

roulette wheel selection method in onlooker bee phase for selecting the solutions

to be updated. However, this process has the risk of time consumption. Con-

sequently, the onlooker bee phase of the proposed algorithm is enhanced by the

strategy of the learning phase of TLBO. And there is no longer a need to calculate

probabilities and use the roulette selection method, which can help streamline the

algorithm.

Therefore, in this chapter, enhancing the performance of ABC while avoiding

it becoming too complex is investigated. In this context, a learning-based ABC

(ABCL) algorithm is proposed for improving the exploitation ability as well as

the search efficiency. So that more energy and time can be saved when solving

problems like local path planning. The proposed improvement strategies include:

firstly, the global best solution is adopted in the employed bee phase and scout bee

phase to guide the swarm in a promising search direction. Secondly, the learning

phase of TLBO is embedded in the onlooker bee phase to improve the exploitation

ability and simplify the computational complexity. Then, the performance of the

proposed algorithm has been verified through numerical optimization problems.

The rest of this chapter is organized as follows. The standard TLBO algorithm

is introduced in section 4.2. In section 4.3, the proposed algorithm is explained

95

4. LEARNING BASED ABC ALGORITHM (ABCL)

in details. In section 4.4, the experimental studies are presented. Finally, the

conclusion is given in the section 4.5.

Remark 4.1 The ultimate objective is to solve on-line multi-robot path planning

(MRPP) problems more effectively. And the implementation method and simula-

tion tests are given in Chapter 6 along with other applications.

4.2 Preliminaries

4.2.1 Teaching-learning based optimization (TLBO) algo-

rithm

TLBO is also a swarm-based stochastic optimization algorithm that was pro-

posed in 2011. It was inspired by the process of teaching–learning inside class-

rooms (Rao et al., 2011). The search process is achieved through two phases

iteratively, namely the teaching phase and the learning phase. It has been found

that TLBO has advantages like fast convergence rate, simple concept, and out-

standing effectiveness (Zou et al., 2019). Learners of TLBO are the individuals of

the meta-heuristic algorithms, and each learner represents a candidate solution

to the concerned problem. For the purpose of improving the class’s knowledge

level, learners learn from the teacher in the teaching phase, while they enhance

their states by learning from others in the learning phase. The principle process

of TLBO is explained as follows.

4.2.1.1 Initialization

Same initialization method is utilized in TLBO as the Eq.(1.1) of ABC algorithm.

For solving a D−dimensional optimization problem, xi = (xi,1, xi,2, · · · , xi,D) is

the ith learner and i = 1, · · · , NP where NP is the population size.

4.2.1.2 Teaching phase

In the teaching phase, the learner with the best fitness value is appointed as the

Teacher. The learners are improved via the following equations.

tf = round(1 + rand(0, 1)), (4.1)

96

4.3 Proposed ABCL algorithm

xnew
i = xi + rand× (Teacher − tf ×Mean), (4.2)

where xnew
i is the new state of the ith learner. Teacher is the learner with the best

fitness value and Mean is the average state of the population. tf is a teaching

factor while rand is a vector with random values in the range of [0, 1]. The better

learner is then selected greedily and enters the learning phase.

4.2.1.3 Learning phase

Then in the learning phase, learners use the Eq.(4.3) to improve their knowledge

levels.

xnew
i =

{

xi + rand(0, 1)× (xk − xi) if f(xk) < f(xi),

xi + rand(0, 1)× (xi − xk) otherwise,
(4.3)

where xnew
i is the new updated learner of xi while xk is randomly selected from

the rest of the class. And a random vector in range of [0, 1] is generated as the

scale factor of Eq.(4.3).

Then, the fitness values of the two learners f(xi) and f(vi) are compared to-

gether, the same selection method is adopted. After this, the search process enters

into the teaching phase again and will repeat until the termination conditions are

reached. The pseudo-code of the TLBO algorithm is shown in Algorithm 11.

4.3 Proposed ABCL algorithm

With the purpose of achieving problems like on-line MRPP, it is essential to fur-

ther improve the efficiency of the path planner. In fact, in the case of planning

paths practically, the number of iterations in the algorithm may be very lim-

ited. Hence, it is necessary to keep a nice balance between intensification and

diversification during the search process. Moreover, avoiding augmentation of the

algorithm’s computational complexity is another critical target. Otherwise, even

if a better solution can be found, it is not suitable for the concerned problem.

For meta-heuristic algorithms, exploration is related to the discovery of the

whole search space while exploitation refers to search for better solutions in

promising regions based on the previous experience. As for ABC, its power in

exploration has been widely proved while it also exposes the shortcomings of

weak exploitation ability. Therefore, in order to generate safe paths effectively,

97

4. LEARNING BASED ABC ALGORITHM (ABCL)

Algorithm 11 Pseudo-code of TLBO algorithm

1: Initialize the learners with Eq.(1.1) and evaluate the initial population
2: repeat

% Teaching phase %
3: for i = 1→ NP do
4: Generate factor tf with Eq.(4.1)
5: Produce new learner xnew

i with Eq.(4.2)
6: if f(xnew

i) < f(xi) then
7: Replace xi with xnew

i

8: else
9: Learner xi remains the same

10: end if
11: end for

% Learning phase %
12: for i = 1→ NP do
13: Select a learner k 6= i randomly
14: Update xi with Eq.(4.3)
15: if f(xnew

i) < f(xi) then
16: Replace xi with xnew

i

17: else
18: Learner xi remains the same
19: end if
20: end for
21: Update the Teacher and the Mean
22: until the termination condition is reached.

this chapter introduces an enhanced ABC algorithm with three improvements,

named ABCL. Firstly, a modified solution search equation based on the global

best individual is adopted in employed bee phase of the proposed ABCL al-

gorithm. Meanwhile, considering the strong exploitation ability of TLBO, its

learning strategy is incorporated into the onlooker bee phase. And the global

best information is involved in scout bee phase as well.

4.3.1 Enhanced employed bee phase

In original ABC algorithm, the new candidate solutions are generated via Eq.(1.2)

with a randomly selected neighbor xk and a random number θi,j. Hence, this

search strategy is good at exploration thanks to the randomness (Zhu & Kwong,

2010). Based on the literature, being inspired by PSO, the global best information

98

4.3 Proposed ABCL algorithm

has been widely embedded into ABC variants (Gao et al., 2014; Wang et al., 2020;

Xiao et al., 2021; Zhu & Kwong, 2010). In this way, the colony can be guided in

a hopeful direction while the algorithm’s exploitation ability can be improved.

In addition, limited useful information is learned from the swarm since only

one individual is considered in Eq.(1.2). To this point, various modifications

have been investigated. One of the most effective modifications is inspired by

the evolutionary operators of the Differential Evolution (DE) algorithm. The

mutation and crossover strategies can not only allow the ABC to learn more

information from the population but also enlarge the dimensions being updated

each time (Banharnsakun et al., 2011; Chen et al., 2019b; Gao et al., 2012, 2016;

Liang et al., 2017).

Based on the discussions above, an improved search strategy adopting both

of the aforementioned ideas is proposed in Eq.(4.4) as

vi,j = xi,j + ρi,j × (gbestj − xi,j) + µi,j × (xk1,j − xk2,j), (4.4)

where vi,j is the updated jth element of the ith food source. And gbestj is the jth

element of the global best individual. k1 6= k2 6= i are selected randomly from

{1, · · · , SN} and j is chosen from {1, · · · , D}. The parameter ρi,j is a uniform

random number within the range [0, 1] while µi,j is another random number in

[-0.5, 0.5].

As seen from Eq.(4.4), the global best position is utilized to lead the colony in

a good direction as the scale factor ρi,j is a positive random number. Meanwhile,

different from the previous ABC variants with global best solution (eq. GABC

(Zhu & Kwong, 2010)), the last term µi,j×(xk1,j−xk2,j) selects two other solutions.

In this case, more colony information can be learned. However, considering the

information may not always be favorable, the coefficient µi,j is defined within a

smaller range [-0.5, 0.5].

4.3.2 Learning-based onlooker bee phase

In basic ABC, the onlooker bees are supposed to search around the qualified

food sources which correspond to exploitation. It has been observed that ABC

is weak in exploitation locally. At the same time, the TLBO algorithm has been

found to be good at exploitation but relatively poor at exploration. Based on

99

4. LEARNING BASED ABC ALGORITHM (ABCL)

the complementarity of ABC and TLBO, a hybrid algorithm was proposed by

Chen et al. (2018), which embedded the teaching phase of TLBO in employed

bee phase and combined the learning phase with onlooker bee phase.

Similarly, in this work, the learning strategy of TLBO is incorporated in the

onlooker bee phase so that individuals can learn interactively within the colony.

Different from the work of Chen et al. (2018), the proposed learning-based search

strategy (i.e., Eq.(4.5)) is adopted by all the individuals without the roulette

wheel selection method. In original ABC and its numerous variants, the roulette

wheel selection method is adopted to select the high-quality candidate solutions

in onlooker bee phase. As explained in section 1.3, the selection probability

of each candidate solution is proportional to its fitness value. The greater the

fitness, the more likely the individual is selected. Nonetheless, this process lessens

the population diversity and may prolong the computation time. Thus, in the

proposed ABCL algorithm, the calculations of fitness values, probabilities, and

roulette wheel selection are dropped to avoid wasting time in path planning.

The learning-based search equation is expressed as below.

vi,j =

{

xi,j + rand× (xk,j − xi,j) if f(xk) < f(xi),

xi,j + rand× (xi,j − xk,j) otherwise,
(4.5)

where k 6= i are randomly selected from {1, · · · , SN} and j ∈ {1, · · · , D} is the

randomly chosen dimension to be updated. If xk has a smaller objective value

than xi, then the individual xi is going to learn from xk. Otherwise, xi will learn

knowledge by itself (Ma et al., 2021). In fact, the neighbor is selected randomly

in Eq.(1.2) of the original ABC. As Zhu & Kwong (2010) mentioned, the good

solution and the bad solution have an equal probability of being chosen. So this

update equation cannot guarantee that individuals are moving in a valuable di-

rection. This drawback can be prevented by utilizing different equations after

comparing the objective function values of xi and the random neighbor. Further-

more, the population diversity can be maintained at the same time.

4.3.3 Enhanced scout bee phase

The scout bee phase is responsible for supervising the qualities of candidate so-

lutions. The food sources that haven’t been updated over predefined limit times

will be abandoned. However, the equation of generating new solutions only uses

100

4.4 Experiments on function optimization problems

the lower and upper bound values, which is a waste of known information. In

other words, if the search experience can be considered when producing a novel

solution, the newly generated one will have a higher possibility to be in a hope-

ful position. In this case, the enhanced scout bee phase is more likely to avoid

returning to the explored regions blindly. Hence, the global best information is

considered as well as the boundary values in the proposed Eq.(4.6).

xi,j = gbestj + φi,j × (xmax.j − xmin,j), j = 1, · · · , D, (4.6)

where gbest is the global best solution while xmin and xmax are the lower and

upper bounds respectively. To avoid losing randomness, the scale factor φ is a

uniform random number in range of [−1, 1].

4.3.4 The framework of ABCL algorithm

In order to explain the entire process of proposed algorithm, the pseudo-code

of ABCL is shown in Algorithm 12 while the flowchart is represented in Fig-

ure 4.1. Note that, the termination conditions is defined by the maximal number

of function evaluations max_FES. In other words, the iteration continues till

the number of function evaluations FES reaches the predefined max_FES.

4.4 Experiments on function optimization prob-

lems

In this section, experiments are carried out on a set of optimization problems to

test the performance of ABCL. The proposed algorithm is compared with three

ABC variants, namely the standard ABC, GABC (Zhu & Kwong, 2010), and

DABC (Abbas & Ali, 2014). GABC is involved in the comparison because the

global best solution was concerned in its effective search equation as well. The

control parameter is set as the same as its best value of the original paper, i.e.,

C = 1.5.

101

4. LEARNING BASED ABC ALGORITHM (ABCL)

Algorithm 12 Pseudo-code of ABCL algorithm

1: Generate initial population xi, i = 1, · · · , SN with Eq.(1.1)
2: Evaluate objective function values f(xi)
3: FES = SN
4: while FES ≤ max_FES do

% Enhanced employed bee phase %
5: for i = 1→ SN do
6: Randomly select k1 6= k2 6= i from {1, · · · , SN}
7: Randomly select dimension j from {1, · · · , D}
8: Produce vi via Eq.(4.4)
9: if f(vi) < f(xi) then

10: Replace xi with vi; triali = 0
11: else
12: triali = triali + 1
13: end if
14: end for

% Learning-based onlooker bee phase %
15: for i = 1→ SN do
16: Randomly select k 6= i from {1, · · · , SN}
17: Randomly select dimension j from {1, · · · , D}
18: Generate updated individual vi,j with Eq.(4.5)
19: if f(vi) < f(xi) then
20: Replace xi with vi; triali = 0
21: else
22: triali = triali + 1
23: end if
24: end for
25: FES = FES + 2SN

% Enhanced scout bee phase %
26: for i = 1→ SN do
27: if triali > limit then
28: Generate a new candidate solution with Eq.(4.6)
29: triali = 0
30: end if
31: end for
32: end while

102

4.4 Experiments on function optimization problems

Fig. 4.1. The flowchart of ABCL algorithm

103

Chap4/chapter4_figs/EPS//flowchartABCL2.eps

4. LEARNING BASED ABC ALGORITHM (ABCL)

4.4.1 Benchmark functions

The definitions of the benchmarks can be found in Table 4.1. Among these

optimization problems, f1 − f2 and f4 are uni-modal functions while f3 is the

discontinuous step function. f5 is the Rosenbrock function which is a uni-modal

problem when D = 2 and 3, but probably has multiple optima in higher dimen-

sions (Kang et al., 2011). As for the rest part, f6−f12 are multi-modal functions.

Table 4.1: Benchmark functions

Function Range Min

f1(x) =
∑D

i=1(10
6)

i−1

D−1x2
i [−100, 100]D 0

f2(x) =
∑D

i=1 |xi|
(i+1) [−1, 1]D 0

f3(x) =
∑D

i=1(⌊xi + 0.5⌋)2 [−100, 100]D 0

f4(x) = exp(0.5
∑D

i=1 xi) [−10, 10]D 0

f5(x) =
∑D

i=1[100(xi+1 − x2
i)

2 + (xi − 1)2] [−5, 10]D 0

f6(x) =
∑D

i=1[x
2
i − 10cos(2πxi) + 10] [−5.12, 5.12]D 0

f7(x) =
∑D

i=1[y
2
i − 10cos(2πyi) + 10]

yi =

{

xi |xi| <
1
2

round(2xi)
2

|xi| ≥
1
2

}

[−5.12, 5.12]D 0

f8(x) = 418.98288727243380×D −
∑D

i=1 xi sin(
√

|xi|) [−500, 500]D 0

f9(x) =
π
D
{10 sin2(πy1) +

∑D−1
i=1 (y1 − 1)2[1 + 10 sin2(πyi+1)]

+(yD − 1)2}+
∑D

i=1 u(xi, 10, 100, 4)

yi = 1 + 1
4
(xi + 1), uxi,a,k,m =







k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a







[−100, 100]D 0

f10(x) =
1
10
{sin2(πx1) +

∑D−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)]+

(xD − 1)2[1 + sin2(sπxi+1)]}+
∑D

i=1 u(xi, 5, 100, 4)
[−100, 100]D 0

f11(x) =
∑D−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)] + sin2(3πx1) + |xD − 1|[1 + sin2(3πxD)] [−10, 10]D 0

f12(x) =
∑D

i=1

(

∑kmax

k=0 [ak cos(2πbk(xi + 0.5))]
)

−D
∑kmax

k=0 [ak cos(2πbk0.5)]

a = 0.5, b = 3, kmax = 20
[−0.5, 0.5]D 0

Remark 4.2 Since this algorithm is expected to perform well in practical prob-

lems, the experimental study part does not use too complicated optimization prob-

lems. Its effectiveness in solving the MRPP problem will be given in the next

Chapter 6.

4.4.2 Comparison with ABC variants

In the experiments, the swarm size is set as SN = 30 for all the comparative

algorithms. The control parameter limit is defined as SN×D and max_FES =

104

4.4 Experiments on function optimization problems

5000 × D with D = 10, 30, and 50. Each algorithm is executed 25 independent

times on all the problems. Then the statistical results are calculated and com-

pared in Table 4.2 - Table 4.4. The mean and standard deviation (std) of errors

f(Xbest)− f(X∗) over the 25 runs are calculated, where Xbest is the best solution

calculated by algorithm and X∗ is the exact global optimum.

In order to analyze the comparison results more comprehensively, the Wilcoxon

tests are carried out to show the significance between ABCL and other concerned

algorithms while the Friedman test is adopted to evaluate the overall perfor-

mances of all the concerned algorithms. The test results can be found at the

bottom of the comparison tables. The symbol "+/=/-" indicates the number of

functions where ABCL is better than, similar to, or worse than the competitor,

respectively. At the end, the average rankings are presented in Figure 4.2.

Table 4.2: Comparison between ABCL and other ABC variants with D = 10

ABC DABC GABC ABCL
Function mean ± std mean ± std mean ± std mean ± std

f1 3.79E-25 8.29E-25 1.37E-39 5.41E-39 5.36E-50 1.46E-49 4.48E-50 6.03E-50
f2 4.14E-45 2.06E-44 3.43E-37 1.72E-36 4.85E-83 2.39E-82 1.27E-82 4.26E-82
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f4 1.93E-22 0.00E+00 1.93E-22 0.00E+00 1.93E-22 0.00E+00 1.93E-22 0.00E+00
f5 4.91E-02 4.50E-02 1.66E-01 1.80E-01 2.75E-01 6.16E-01 1.43E-02 1.72E-02
f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f8 3.13E-12 4.66E-12 6.18E-13 4.33E-13 1.09E-13 3.02E-13 7.28E-14 2.52E-13
f9 3.29E-31 9.66E-31 4.71E-32 1.12E-47 4.71E-32 1.12E-47 4.71E-32 1.12E-47
f10 7.68E-31 3.47E-30 4.71E-32 1.12E-47 4.71E-32 1.12E-47 4.71E-32 1.12E-47
f11 1.29E-27 2.27E-27 1.21E-30 1.79E-46 1.21E-30 1.79E-46 1.21E-30 1.79E-46
f12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

+/=/- 7/5/0 4/8/0 3/8/1 -

According to the comparison results with D = 10, the difference in perfor-

mance of the compared algorithms is small as the low-dimensional case is simple

to solve. Even so, the advantages of ABCL and GABC algorithms are noticeable,

especially in terms of their high accuracy on functions such as f1 and f2. Similar

conclusions can be derived from the Wilcoxon test results, the proposed algorithm

performs better than GABC does on 3 problems. Meanwhile, they obtain very

close results on 8 out of 12 problems. Compared with the standard ABC algo-

rithm, ABCL surpasses it on more than half of the benchmarks. Moreover, it can

be seen that the performance of DABC is also remarkable. It fails to outperform

ABCL on 4 out of 12 problems.

105

4. LEARNING BASED ABC ALGORITHM (ABCL)

Table 4.3: Comparison between ABCL and other ABC variants with D = 30

ABC GABC DABC ABCL
Function mean ± std mean ± std mean ± std mean ± std

f1 4.68E-23 6.32E-23 1.35E-44 1.48E-44 1.91E-37 5.05E-37 9.99E-45 1.80E-44
f2 1.14E-46 4.59E-46 9.79E-82 4.89E-81 3.31E-25 1.64E-24 9.60E-82 2.61E-81
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f4 7.18E-66 3.23E-81 7.18E-66 3.23E-81 7.18E-66 3.23E-81 7.18E-66 3.23E-81
f5 5.29E-02 6.36E-02 3.81E+00 7.43E+00 8.16E-02 1.38E-01 1.85E-02 2.21E-02
f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.11E-17 3.55E-16 0.00E+00 0.00E+00
f7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.82E-15 3.80E-14 0.00E+00 0.00E+00
f8 1.19E-09 5.64E-09 1.42E+01 3.93E+01 1.62E-11 7.09E-11 1.09E-12 9.09E-13
f9 2.43E-31 3.55E-31 1.57E-32 5.59E-48 1.57E-32 5.59E-48 1.57E-32 5.59E-48
f10 7.63E-31 2.05E-30 1.57E-32 5.59E-48 1.57E-32 5.59E-48 1.57E-32 5.59E-48
f11 3.31E-25 8.20E-25 3.91E-30 2.15E-45 5.74E-30 9.14E-30 3.91E-30 2.15E-45
f12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

+/=/- 7/5/0 4/8/0 7/5/0 -

According to Table 4.3, the ABCL is found effective and competitive on both

uni-modal and multi-modal problems with D = 30. The advantages are signifi-

cant, especially on f1, f5, and f8. Based on the Wilcoxon tests, there is no case

that ABCL performs worse than any other competitor on the considered bench-

marks. The proposed algorithm obtains better solutions than ABC does on 7

functions. And they have similar results on the rest 5 problems. At the same

time, the differences between results of GABC and ABCL are not very large since

they obtain similar errors on 8 functions. And ABCL has better performance on

the other 4 functions, which can help to prove the effectiveness of embedding the

learning strategy in the ABC algorithm. Compared with DABC, ABCL is able

to achieve smaller errors on 7 benchmarks.

In Table 4.4, when D = 50, ABCL is able to maintain its effectiveness in

this case. Based on the Wilcoxon tests, ABCL outperforms the standard ABC

algorithm on 7 functions and about the same on 4 problems. Moreover, there is 1

function where ABCL fails to surpass the ABC algorithm. Compared to DABC,

the proposed algorithm obtains better solutions on 5 functions. And they obtain

similar results on 4 problems. Meanwhile, the differences between the results of

GABC and ABCL are still not significant. And ABCL outperforms GABC on 4

problems.

Furthermore, based on the average rankings given by the Friedman test in

Figure 4.2, the proposed ABCL algorithm has the best rankings in all three cases.

Therefore, it can be concluded that ABCL has the best overall performance among

106

4.4 Experiments on function optimization problems

Table 4.4: Comparison between ABCL and other ABC variants with D = 50

ABC DABC GABC ABCL
Function mean ± std mean ± std mean ± std mean ± std

f1 2.70E-22 2.94E-22 1.51E-36 5.15E-36 5.18E-43 4.08E-43 3.71E-43 3.97E-43
f2 1.96E-46 9.61E-46 6.08E-21 2.71E-20 1.25E-83 4.33E-83 8.93E-82 2.52E-81
f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f4 2.67E-109 9.65E-125 2.67E-109 9.65E-125 2.67E-109 9.65E-125 2.67E-109 9.65E-125
f5 5.50E-02 6.10E-02 4.61E-02 4.59E-02 7.54E+00 1.95E+01 5.42E-02 7.11E-02
f6 0.00E+00 0.00E+00 5.68E-16 2.22E-15 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 0.00E+00 0.00E+00 1.49E-14 5.42E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f8 4.74E+00 2.37E+01 7.81E-10 3.79E-09 2.41E+01 6.00E+01 1.53E-04 7.64E-04
f9 3.65E-31 4.65E-31 9.42E-33 1.40E-48 9.42E-33 1.40E-48 9.42E-33 1.40E-48
f10 7.86E-31 1.62E-30 9.42E-33 1.40E-48 9.42E-33 1.40E-48 9.42E-33 1.40E-48
f11 4.90E-24 6.64E-24 1.39E-28 6.63E-28 6.61E-30 1.43E-45 6.61E-30 1.43E-45
f12 5.12E-15 8.08E-15 8.53E-15 1.00E-14 1.25E-14 1.18E-14 1.08E-14 1.18E-14

+/=/- 7/4/1 5/4/3 4/7/1 -

Fig. 4.2. Average rankings of ABC algorithms by Friedman test with D = 10, 30,
and 50

107

Chap4/chapter4_figs/EPS//Friedman_ABCL.eps

4. LEARNING BASED ABC ALGORITHM (ABCL)

the competitors. Since the proposed algorithm performs well in solving both uni-

modal and multi-modal functions, it keeps a nice balance between exploitation

and exploration during the search process. The second best algorithm is given

to GABC and followed by the DABC. Besides, it is normal that all the improved

ABC variants achieve better performances than the basic ABC does. Therefore,

the search effectiveness of ABCL can be proved by solving different types of

problems.

4.4.3 Convergence behavior analysis

The convergence curves of compared algorithms were plotted in order to further

compare their performance. The convergence process of solving different types

of problems with D = 30 can be observed in Figure 4.3. Note that the values of

log(f(·)) are presented because the objective function values are too large in the

earlier stages of the searching process.

In Figure 4.3, (a) and (b) present the convergence curves of ABC algorithms

on uni-modal functions f1 and f4, respectively. Since the results of solving uni-

modal functions can indicate the exploitation ability of an algorithm, it can be

found that ABCL’s exploitation ability has been remarkably enhanced. And the

proposed algorithm is able to achieve the best accuracy.

Moreover, subfigures (c) and (d) show the cases of solving multi-modal prob-

lems f6 and f9. A similar conclusion can be derived from these cases, where

ABCL converges rapidly to the smallest value among the concerned methods. In

this case, the diversification of ABCL is also outstanding compared to the other

three methods. At the same time, the convergence rate of the GABC algorithm

is competitive, which is the second best in the comparisons. Furthermore, the

advantages in solution accuracy of ABCL are significant as shown in the figures.

This indicates that it has the ability to find a better solution in a limited number

of iterations.

108

4.4 Experiments on function optimization problems

(a) f1 (b) f4

(c) f6 (d) f9

Fig. 4.3. The convergence performance of ABCL and compared ABC algorithms

109

Chap4/chapter4_figs/EPS//f1.eps
Chap4/chapter4_figs/EPS//f4.eps
Chap4/chapter4_figs/EPS//f6.eps
Chap4/chapter4_figs/EPS//f9.eps

4. LEARNING BASED ABC ALGORITHM (ABCL)

4.5 Conclusion

In this chapter, an improved ABC algorithm named ABCL is proposed with the

ultimate goal of solving the on-line MRPP problems (see Chapter 6). Hence,

several improvement strategies have been adopted in order to enhance the in-

tensification as well as the search efficiency. In the first place, the global best

information is used to reinforce the algorithm. A solution search equation based

on the global best and more neighbors is utilized in the employed bee phase. Sec-

ondly, the learning phase of the TLBO algorithm is introduced into the onlooker

bee phase to improve the exploitation ability and search efficiency. Moreover, the

scout bee phase is also enhanced with the global best solution. In this case, more

useful information can be considered when generating a new candidate solution.

Furthermore, the effectiveness of ABCL is proved through comparisons in solving

benchmark optimization problems.

110

Chapter 5

Fractional-order ABC algorithm

(FOABC)

Contents

5.1 Introduction . 112

5.2 Proposed FOABC algorithm 113

5.2.1 Scale factors based on Lévy distribution 113

5.2.2 Differential search strategy for employed bee phase . . 116

5.2.3 Fractional-order search strategy for onlooker bee phase 117

5.2.4 The framework of FOABC algorithm 122

5.3 Experiments on function optimization problems . . . 122

5.3.1 Sensitive analysis of r and q 125

5.3.2 Comparison with ABC variants 129

5.3.3 Comparison with non-ABC algorithms 135

5.3.4 Effectiveness of the proposed strategies 141

5.3.5 Convergence behavior analysis 143

5.4 Conclusion . 145

111

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

5.1 Introduction

It can be found that, in most ABC variants, the solution search equations are often

improved by enlarging the number of dimensions to be updated and expanding the

quantity of information that may be learned from the colony. The proposed ABC

algorithms in Chapters 2-4 also improve ABC by this idea. However, these kind

of improvements disregard individuals’ prior search history, which could result

in the loss of valuable information. In fact, from a mathematical perspective,

it can be found that the majority of improved ABC variants search the optima

via integer-order operations. In addition to the common improvement strategies

that were reviewed in the first chapter, new idea is produced and researched in

this chapter. More precisely, it is interesting to investigate whether combining

fractional order calculus will help enhance the ABC algorithm.

In this context, the fractional-order calculus (FOC), a novel mathematical

method is embedded into ABC algorithm to reinforce the exploitation ability

and improve the solution precision. In fact, compared to the integer-order deriva-

tive, the fractional-order derivative contains entire memory of its previous events

(Couceiro et al., 2012; Mousavi & Alfi, 2018; Yousri et al., 2020). In recent years,

the FOC has been introduced into certain optimization approaches as it can pro-

vide the historical information clearly. Solteiro Pires et al. (2010) incorporated

the FOC into the velocity of individuals in PSO algorithm to better control the

convergence speed. Then, the FOC was utilized to improve the convergence rate

of darwinian particle swarm optimization (DPSO) which was extended from PSO

(Couceiro et al., 2012). Furthermore, in fractional calculus-based firefly algorithm

(FOFA) (Mousavi & Alfi, 2018), a solution search equation based on the FOC

was proposed to give each firefly more historical information. The performance

of FOFA has been demonstrated by testing on benchmark functions and appli-

cation of image segmentation. Deshmukh & Usha Rani (2019) updated the wolf

positions in the grey wolf optimizer (GWO) using the memory property of the

FOC, which led to boost the convergence rate. More recently, Yousri & Mir-

jalili (2020) enhanced the random walk of CS algorithm by employing the FOC.

And the proposed FOCS has been effectively used to identify the parameters of

three different types of chaotic financial systems. Meanwhile, an improved flower

pollination algorithm has adopted the FOC as well. The local-search ability of

original algorithm has been enhanced by adding the memory features (Yousri

112

5.2 Proposed FOABC algorithm

et al., 2020). Based on the above literature, the incorporation of FOC brought

surprising results and was also found to make an improvement in the convergence

speed of the algorithm.

In this context, it has been observed that incorporating FOC into the ABC

algorithm is very worthy to be studied. More specifically, the integration of FOC

perspective into ABC enables the algorithm to access previous solutions from

memory to find qualified solutions more efficiently. Meanwhile, ABC can also

benefit from the acceleration in convergence as FOC has done for other meta-

heuristic algorithms.

Therefore, in this chapter, in order to make full use of the individuals’ mem-

ories, a FO-based search strategy is proposed in the onlooker bee phase of ABC.

At the same time, a differential search strategy is adopted in the employed bee

phase of the proposed FOABC algorithm to reinforce its diversification ability.

Moreover, the scale factors of these solution search equations are generated via

Lévy distribution to increase the randomness of algorithm. To validate the per-

formance of FOABC, it is compared with six effective ABC algorithms and four

improved non-ABC algorithms on the Congress on Evolutionary Computation

2017 (CEC 2017) benchmark functions.

The outline of this chapter is as follows. The proposed algorithm is intro-

duced in section 5.2. Experimental studies are presented in section 5.3 with the

discussions. The conclusion is given in the last section 5.4.

5.2 Proposed FOABC algorithm

In this section, the proposed FOABC will be explained in details. In the employed

bee phase, a DE-based search strategy is adopted to reinforce the diversification

of algorithm. Secondly, the FOC is adopted in the onlooker bee phase in order

to improve the local-search ability. Moreover, random numbers drawn from the

Lévy distribution are utilized in those two search equations.

5.2.1 Scale factors based on Lévy distribution

As one of the main components of the search equation, scale factor can affect the

step size of each move. More precisely, this factor is usually a random number,

depending on the range and distribution laws. In the standard ABC algorithm,

113

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

the scale factor φ ∈ [−1, 1] has been found to be insufficiently efficient. Addi-

tionally, when algorithm falls into a local optimum, the restricted range of φ may

limit the algorithm to jump out quickly. In addition to the popular distributions

like normal distribution and uniform distribution, the Lévy distribution (Lévy,

1938) is also very important in the field of meta-heuristics. Lee & Yao (2004)

mentioned that the Lévy probability distribution has an infinite second moment.

In this case, it is more probable to produce an offspring that is spatially far from

its parent in the concerned evolutionary programming (EP) algorithm. Yang &

Deb (2009) has proposed the CS algorithm with Lévy flights whose steps obey

the Lévy distribution. Such search manners contain a series of straight flight

pathways punctuated by a sudden change in direction. Hence, it enables the

algorithm to explore the space efficiently.

Lévy flight is a special case of random walk whose step lengths obey the Lévy

distribution which can be defined as below (Shlesinger, 1989; Yang, 2020):

Lévy(s) ∼ |s|−1−β, (5.1)

where s is the step length and β(0 < β ≤ 2) is an index.

In actuality, Lévy flights are effective since they are powerful at searching

uncharted and large areas. The path of Lévy flights of 50 steps with β = 1.5 is

plotted in Figure 5.1a. It is obvious that large steps are occasionally created.

Meanwhile, for visual comparison, the traditional random walk based on uniform

distribution is also displayed in Figure 5.1b. It can be seen that such kind

of random walk has a relatively average step size and does not have significant

variation in direction throughout the movement. In this case, the Lévy flights

have advantages in preventing the algorithm from being stuck in local optima

and increasing the variety of solutions (Wang et al., 2022).

Therefore, the idea of Lévy flights is utilized in the search equations. In order

to generate such random step length, the Mantegna algorithm(Mantegna, 1994)

has been widely used as shown in Eq.(5.2). It is one of the most accurate and

efficient methods to generate stochastic variables drawn from the Lévy stable

distribution (Liu et al., 2018; Sharma et al., 2016; Yang, 2020).

s =
u

|v|1/β
, (5.2)

114

5.2 Proposed FOABC algorithm

(a) Lévy flights in consecutive 50 steps (b) Random walk with a uniform step-size
distribution in consecutive 50 steps

Fig. 5.1. Demonstration of Lévy flights and traditional random walk in 2D

where u and v are drawn from normal distributions as:

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v), (5.3)

with

σu =

{

Γ(1 + β)sin(πβ/2)

βΓ[(1 + β)/2]2(β−1)/2

}1/β

, σv = 1, (5.4)

where Γ(·) is the Gamma function and is defined as follows.

Γ(z) =

∫ ∞

0

tz−1e−zdt, (5.5)

when z is an integer, Γ(z + 1) = zΓ(z) = z!.

Note that the step length mentioned above plays the same role as the random

factor φ in search equation (1.2). In the proposed algorithm, the scale factors l

in search strategies are generated by the following Eq.(5.6).

l = α× s, (5.6)

where s is the step length generated via Eq.(5.2) and α > 0 is a factor. In the

basic CS, α is used to adjust the step size for Lévy flight considering the problem

scale. Sharma et al. (2016) fixed this factor to 0.001 in their search strategy. And

α = 0.01 in the codes of CS proposed by researchers who develop it. In fact,

this factor is also important since it can probably influence the effectiveness of

the search strategies. If α is defined with a large value, then the novel solution

115

Chap5/chapter5_figs/EPS//levyFlights.eps
Chap5/chapter5_figs/EPS//randWalk.eps

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

may jump over the optimal position or even go outside the design domain as the

step size is too large. On the other hand, if the value of α is too small, then

the convergence rate will be affected. In this case, instead of using a constant

throughout the search process, the logistic map is applied on the factor α in (Liu

et al., 2018). The value of factor α changes along with the iteration and the

logistic dynamic map can help the algorithm to prevent the situation of falling

into local optima.

In our proposed algorithm, the two search equations in employed bee phase

and onlooker bee phase both adopt the random numbers generated via Eq.(5.6).

And based on our experimental tests, α1 = 0.7 for the Lévy-based random num-

ber in employed bee phase. The factor α2 in onlooker bee phase should be set

relatively small to avoid missing the optimal solution so α2 = 0.5.

Remark 5.1 The possible interval for α is pretty large. And varying the values

of α may also help to improve the algorithm performance when solving different

kinds of problems.

5.2.2 Differential search strategy for employed bee phase

As mentioned previously, the search strategy of ABC is not efficient enough be-

cause it modifies only one variable of the food source positions each time. More-

over, limited information can be learned from the swarm as only one solution is

randomly selected from the swarm. In most of ABC variants, the nbup (number of

dimensions being updated) in the enhanced solution search equations is still one

dimension each time. In order to tackle this weakness, differential search strate-

gies were borrowed from the DE algorithm (Chen et al., 2019b; Li & Yin, 2014;

Zorarpacı & Özel, 2016) because the mutation and crossover operators enable the

individuals to explore better via a sudden change. By using a predefined control

parameter CR, the nbup could be greater than one at each time.

Thus, a differential search strategy is utilized in the employed bee phase.

To avoid getting over complicated, the classical but efficient DE search strategy

“rand/1/bin” is adopted. The search strategy in employed bee phase of FOABC

is shown as below:

vi,j =

{

xr1,j + l1i × (xr2,j − xr3,j), if rand 6 CR or j = jrand,

xi,j, otherwise,
(5.7)

116

5.2 Proposed FOABC algorithm

where vi is the updated solution of xi. r1 6= r2 6= r3 6= i are randomly chosen

from {1, · · · , SN}. And jrand is randomly selected from {1, · · · , D}. CR is the

crossover rate while l1i is scale factor generated via Eq.(5.6) with α1 = 0.7.

For each dimension, if the condition of is satisfied, the new solution will get

information from the mutating vector. Otherwise, it will keep the same as the

original food source xi. In this case, by embedding the DE-based operators into

FOABC, the new candidate solutions are able to learn more information from

other food sources and inherit from the previous ones at the same time. Moreover,

the conditions in selection process allow the individuals update more than one

dimension each time.

5.2.3 Fractional-order search strategy for onlooker bee phase

As mentioned in the beginning, compared to an integer-order derivative, fractional-

order derivative has a memory of previous incidents (Couceiro et al., 2012; Mousavi

& Alfi, 2018; Yousri et al., 2020). Considering its excellent competence of describ-

ing the historical information, the FOC is adopted in the onlooker bee phase in

order to enhance the local-search ability as well as the solution precision.

5.2.3.1 Fractional-order calculus definition

Nowadays, three common definitions of fractional-order derivatives have been

widely approved and used: Grunwald–Letnikov, Rieman–Liouville and Caputo

definitions (Gu et al., 2017). In this chapter, the definition of Grunwald-Letnikov

(GL) derivative will be used and it can be implemented as Eq.(5.8) (Podlubny,

1999).

Dq[x(t)] = lim
h→0

1

hq

∞
∑

n=0

(−1)n

(

q

n

)

x(t− nh), (5.8)

where
(

q

n

)

=
Γ(q + 1)

Γ(n+ 1)Γ(q − n + 1)

=
q(q − 1)(q − 2) · · · (q − n + 1)

n!
,

(5.9)

where Dq(·) denotes the GL fractional derivative of order q. Γ(·) is the Gamma

function defined in (5.5).

117

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

The definition of GL in Eq.(5.8) can be formulated as below in the discrete-

time implementation.

Dq[x(t)] =
1

T q

r
∑

n=0

(−1)nΓ(q + 1)x(t− nT)

Γ(n + 1)Γ(q − n+ 1)
, (5.10)

where T is the sampling period and r indicates the number of terms of the pre-

vious memory. Considering a special case that q = 1, then the definition can be

expressed as follows.

D1[x(t)] =
1

T
(x(t)− x(t− T)) = xt − xt−1. (5.11)

It can be found that D1[x(t)] represents the difference between two events at

adjacent moments, xt and xt−1.

5.2.3.2 Proposed fractional-order solution search equation

As mentioned before, the FO derivative keeps memory of previous events com-

pared to the integer-order derivative. And FOC has been verified that it is suitable

to be used to describe the dynamic phenomena such as the trajectory of fireflies

(Mousavi & Alfi, 2018). In the exploitation stage, FOC enables the algorithm to

use information from earlier solutions when looking for new ones, thus determin-

ing a more plausible solution and changing the convergence tendency (Couceiro

et al., 2012). Therefore, considering its excellent ability in describing historical

information, FOC is employed in the onlooker bee phase to enhance the local

search ability of ABC.

Firstly, in order to show the derivation process more clearly, we rewrite the

Eq.(1.2) as following:

xt+1
i,j = xt

i,j + l2i,j × (xt
i,j − xt

k,j), (5.12)

where xt+1
i,j is the newly produced solution which is the same as vi,j and k 6= i is

randomly selected among {1, · · · , SN}. Note that instead of generating a random

number under normal distribution, the coefficient l2i,j is produced via Eq.(5.6) in

subsection 5.2.1.

118

5.2 Proposed FOABC algorithm

According to the difference of two followed events in Eq.(5.11), the Eq.(5.12)

can be then reformulated as

xt+1
i,j − xt

i,j = l2i,j × (xt
i,j − xt

k,j), (5.13)

then it is easy to get the following formulas when q = 1:

D1[x(t+ 1)] = xt+1
i,j − xt

i,j = l2i,j × (xt
i,j − xt

k,j). (5.14)

The derivative definition above for q = 1 can be generalized as Eq.(5.15) with

any derivative order q,

Dq[xt+1
i,j] = l2i,j × (xt

i,j − xt
k,j). (5.15)

Next, we are able to formulate the Eq.(5.15) by employing the discrete-time GL

definition Eq.(5.10) with T = 1. The novel expression are shown below:

Dq[xt+1
i,j] = xt+1

i,j +
r
∑

n=1

(−1)nΓ(q + 1)xt+1−n
i,j

Γ(n+ 1)Γ(q − n + 1)

= l2i,j × (xt
i,j − xt

k,j),

(5.16)

where r is the number of steps to record.

Based on Eq.(5.16), the general expression of the proposed fractional-order

ABC solution search equation is obtained and expressed in the following:

xt+1
i,j = −

r
∑

n=1

(−1)nΓ(q + 1)xt+1−n
i,j

Γ(n+ 1)Γ(q − n+ 1)
+ l2i,j × (xt

i,j − xt
k,j), (5.17)

where r is the number of memory terms and q is derivative order. Γ(·) is Gamma

function. And j is randomly selected dimension from {1, · · · , D}, k 6= i is ran-

domly chosen from {1, · · · , SN}. The random factor l2i,j is generated by Eq.(5.6)

with α2 = 0.5.

For instance, r = 4, which means that the latest four terms will be stored in

the memory of each food source and will be utilized to produce a new candidate

solution via the Eq.(5.17). In this case, the food sources will be updated as

follows.

119

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

xt+1
i,j =

1

1!
qxt

i,j +
1

2!
q(1− q)xt−1

i,j +
1

3!
q(1− q)(2− q)xt−2

i,j

+
1

4!
q(1− q)(2− q)(3− q)xt−3

i,j + l2i,j × (xt
i,j − xt

k,j).
(5.18)

It is evident that the values of parameters q and r can influence the final

results. However, it is relatively difficult to understand their effects, especially the

fractional order q. This drove the existing FO-enhanced meta-heuristic algorithms

to set these parameters basically based on experimental validation. The following

analysis takes Eq.(5.18) as an example search equation, and for the sake of clarity,

the first four terms related to FOC are named as memory terms and the last term

is called differential term.

Observing Eq.(5.18), when q is taken smaller in the range of [0,1], the co-

efficients of memory terms are also smaller, so the historical memory has less

influence on the newly generated solution. In this way, the differential term may

dominate the updating results. That means the historical information cannot

play its role well. Put another way, the summation of the memory terms is equiv-

alent to the base term xt
i,j in the original solution search equation. That is, if q

is defined too small, the base term will be scaled to be smaller. Then, the local

search will be affected, because the algorithm cannot approximately locate the

position of base term. Hence, the local search may not be performed effectively.

On the other hand, the memory terms play a greater role when q takes a larger

value, especially around 0.5. As mentioned before, in the onlooker bee phase, the

selection probability of the solutions to be updated is higher, that is, their history

information is more useful. In this case, the memory terms can play an active

role in the proposed search equation. And in contrast to the previous case, when

q is larger, the algorithm can better perform a local search around the base term.

As for the parameter r, the memory length, is relatively easy to understand,

of course. Note that r taking a value too large may cause the algorithm to take

more time on computation. Based on the above analysis, since the FO-based

strategy is supposed to boost the local search, taking a relatively large value of q

in [0, 1] is more likely to yield the desired result. Furthermore, experiments are

done to fully evaluate the impact of these two parameters on the performance of

FOABC while completing the analysis of their influence.

120

5.2 Proposed FOABC algorithm

5.2.3.3 Implementation steps of modified onlooker bee phase

As the onlooker bee is responsible for exploiting the promising regions locally, the

proposed fractional-order search strategy is utilized in the onlooker bee phase to

reinforce the exploitation ability of algorithm. The principle steps of implement-

ing the FO-based onlooker bee phase is explained as follows.

Initializing memory cells

After having generate the initial food sources, for each food source, its initial

position is stored into the first term of corresponding memory cell. Suppose the

number of terms r = 4, then in the first three times of updating, onlooker bees

will generate new candidate solutions by using only the available memory terms.

In other words, the size of memory cells is 1 in the initialization phase, and more

terms will be filled in later.

Updating the memory cells

Fig. 5.2. Process of updating a food source’s memory cell

In the onlooker bee phase, same roulette wheel selection method is utilized for

choosing food sources to exploit. Once a food source is selected by an onlooker

bee, it will be updated with Eq.(5.17). And then the new food source position

will be stored into its associated memory cell. As we have introduced above, it

is possible that the number of terms stored in the associated memory is smaller

than r. Then in this case, the memory cell can be updated easily by adding the

new position. Otherwise, when the size of memory cell is already r, a method

called first in first out (FIFO) is utilized to update the memory (Yousri et al.,

2020). The oldest position will be abandoned and the new position will be stored

121

Chap5/chapter5_figs/EPS//UpdateM-1.eps

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

into the memory cell. To demonstrate this updating mechanism more clearly, the

process is shown in Figure 5.2.

5.2.4 The framework of FOABC algorithm

In order to explain the process of FOABC more clearly, the pseudo-code and

flowchart are presented in Algorithm 13 and Figure 5.3, respectively.

5.3 Experiments on function optimization prob-

lems

In this section, several series of experiments are conducted in order to verify the

performance of FOABC algorithm. Firstly, experimental studies are carried out

to investigate sensitivity of FOABC to parameters r (the number of terms to

memory) and q (fractional order) of FOC in subsection 5.3.1. Then in subsec-

tion 5.3.2, comparisons are made with five state-of-the-art ABC variants and the

original ABC on 29 CEC 2017 benchmark problems with dimension D = 10,

30 and 50. Thirdly, the FOABC algorithm is compared with other improved

meta-heuristic algorithms in subsection 5.3.3. And subsection 5.3.4 presents the

redundancy elimination experiments to verify the effectiveness of each proposed

strategy.

Same as Chapter 4, the CEC 2017 benchmark problems are utilized since it

contains different kinds of single-objective real-number optimization problems:

uni-modal functions (f1 − f3), simple multi-modal functions (f4 − f10), hybrid

functions (f11 − f20) and composition functions (f21 − f30). And the code is

provided officially∗. Notice that the function f2 has been deleted in the code, so

there is no results for f2 in all the comparisons in this chapter.

In all the following experiments, the evaluation criteria of CEC 2017 is re-

spected which means the maximum functions evaluations max_FES = 104 ·D,

the search ranges are [−100, 100]D. Each involved algorithm was run 30 times

independently on all the problems. Then the mean value and standard deviation

(Std) of function error values f(Xbest) − f(X∗) are calculated for comparison.

∗https://github.com/P-N-Suganthan/CEC2017-BoundContrained

122

5.3 Experiments on function optimization problems

Algorithm 13 Pseudo-code of FOABC algorithm
1: Set limit = SN ×D, CR = 0.8, β = 1.5, σv = 1
2: Generate initial population xi, i = 1, · · · , SN with Eq.(1.1)
3: Store the initial positions into corresponding memory cell Mi, i = 1, · · · , SN
4: Evaluate objective function values of the population, FES = SN
5: while FES ≤ max_FES do

% DE-based employed bee phase %
6: for i = 1→ SN do
7: Generate l1 via Eq.(5.6)
8: Randomly select jrand ∈ {1, · · · , D} and r1 6= r2 6= r3 6= i from
{1, · · · , SN}

9: Generate new food source position vi via Eq.(5.7)
10: if f(vi) < f(xi) then
11: Replace xi with vi, triali = 0
12: else triali = triali + 1
13: end if
14: end for
15: Evaluate the probability values with Eq.(1.5)

% FO-based onlooker bee phase %
16: for t = 1→ SN do
17: Select xi by roulette wheel method according prob
18: Generate l2 via Eq.(5.6)
19: Randomly select k 6= i and randomly select j from {1, · · · , D}
20: Produce the vi,j via Eq.(5.17)
21: Update Mi with vi based on FIFO method
22: if f(vi) < f(xi) then
23: Replace xi with vi, triali = 0
24: else triali = triali + 1
25: end if
26: end for
27: FES = FES + 2SN

% Scout bee phase %
28: for i = 1→ SN do
29: if triali > limit then
30: Generate new position with Eq.(1.1), triali = 0
31: end if
32: end for
33: end while

123

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Fig. 5.3. The flowchart of FOABC algorithm

124

Chap5/chapter5_figs/EPS//flowchart_FOABC1.eps

5.3 Experiments on function optimization problems

The best solution Xbest is found by the compared algorithm while X∗ is the exact

global optimum.

Moreover, the Wilcoxon rank sum test at 0.05 significant level is employed

as well. The symbol "+" indicates that FOABC is better than the compared

algorithm. The symbols "-" and "=" denote that the result of FOABC is worse

than and similar to the compared one, respectively. The total numbers of each

symbol are counted in each comparison table. And Friedman tests are conducted

to obtain the rankings of concerned methods.

5.3.1 Sensitive analysis of r and q

In the proposed FOABC algorithm, the control parameters of FOC can influ-

ence the final performance. So in this part, experiments are done to study the

sensitivity of FOABC to the fractional order q and terms of memory r.

The FOABC variants with different values of q and r are applied on CEC

2017 benchmark functions at dimension D = 30. The population size is fixed to

SN = 50. In addition, for each optimization function, each algorithm is run 30

times independently. Then the statistical results of the errors are calculated.

The terms of memory r is tested as 4, 8, and 12. And for each tested value of

r, the derivative order q varies from 0.1 to 0.9 with step of 0.1. The experimental

results are shown in Tables 5.1 - 5.3 for r = 4, 8 and 12, respectively. The basic

ABC algorithm is involved in order to observe and demonstrate the effectiveness

of the FOABC variants.

Moreover, the Friedman test and Wilcoxon rank-sum test with significant

difference 0.05 are conducted on the results. The algorithm with best ranking

given by Friedman test is marked in boldface. And each FOABC version is

compared against the standard ABC algorithm via Wilcoxon rank-sum tests.

Based on the comparison results in Tables 5.1 - 5.3, firstly, most of the FOABC

variants have better results than the original ABC algorithm on the considered

benchmark functions. Similar conclusion is suggested by the results of Friedman

tests in each case of r. The basic ABC ranked the ninth among 10 compared

methods when fractional order r = 4 and 12. Besides, the basic ABC stays in the

last position when r = 8. In this case, the effectiveness of the proposed improving

strategies can be demonstrated. Furthermore, for all the considered values of r,

125

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.1: Comparison of FOABC variants with number of terms r = 4 and q
taked values from 0.1 to 0.9 with ABC

r = 4

Functions ABC q = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f1 Mean 3.293E+02 1.920E+03 2.505E+03 1.156E+03 1.536E+03 1.114E+03 1.916E+03 2.179E+03 1.755E+03 2.027E+03
Std 3.536E+02 3.020E+03 3.518E+03 2.733E+03 2.888E+03 1.768E+03 4.410E+03 4.079E+03 2.956E+03 4.397E+03

f3 Mean 7.361E+04 3.914E+04 3.694E+04 3.861E+04 3.835E+04 3.354E+04 3.575E+04 4.124E+04 4.149E+04 4.408E+04
Std 2.424E+04 8.653E+03 9.621E+03 1.064E+04 1.066E+04 1.010E+04 9.689E+03 9.762E+03 1.104E+04 1.427E+04

f4 Mean 1.890E+01 9.031E+01 9.405E+01 9.418E+01 8.663E+01 9.033E+01 8.926E+01 9.055E+01 9.053E+01 8.847E+01
Std 2.274E+01 1.474E+01 1.719E+01 1.540E+01 1.799E+01 1.594E+01 2.137E+01 1.399E+01 1.186E+01 1.201E+01

f5 Mean 8.327E+01 8.037E+01 7.525E+01 6.580E+01 6.062E+01 5.588E+01 5.099E+01 4.761E+01 4.659E+01 4.515E+01
Std 1.315E+01 6.934E+00 6.169E+00 5.322E+00 8.241E+00 9.203E+00 6.637E+00 7.282E+00 6.493E+00 7.393E+00

f6 Mean 7.420E-10 2.815E-05 2.619E-04 7.723E-05 5.211E-06 4.332E-05 1.199E-04 4.349E-05 1.419E-05 3.437E-05
Std 8.144E-10 8.018E-05 1.325E-03 1.260E-04 1.233E-05 1.077E-04 4.643E-04 9.696E-05 3.843E-05 8.877E-05

f7 Mean 1.006E+02 1.265E+02 1.216E+02 1.189E+02 1.066E+02 9.838E+01 9.294E+01 8.721E+01 7.852E+01 7.644E+01
Std 8.186E+00 7.213E+00 8.907E+00 1.055E+01 7.975E+00 6.916E+00 6.657E+00 8.628E+00 8.695E+00 6.726E+00

f8 Mean 8.879E+01 6.858E+01 6.436E+01 6.142E+01 5.581E+01 5.176E+01 4.982E+01 4.908E+01 4.792E+01 4.790E+01
Std 1.432E+01 1.056E+01 8.143E+00 6.484E+00 6.178E+00 7.445E+00 6.899E+00 6.577E+00 8.717E+00 7.382E+00

f9 Mean 7.745E+02 8.719E-01 7.078E-01 7.349E-01 5.154E-01 5.990E-01 6.004E-01 4.837E-01 5.900E-01 2.901E-01
Std 4.200E+02 1.475E+00 1.232E+00 1.507E+00 9.960E-01 9.295E-01 1.021E+00 6.668E-01 7.108E-01 3.486E-01

f10 Mean 2.220E+03 2.995E+03 2.899E+03 2.755E+03 2.816E+03 2.692E+03 2.595E+03 2.563E+03 2.482E+03 2.453E+03
Std 2.321E+02 2.009E+02 2.450E+02 2.378E+02 1.951E+02 2.680E+02 3.162E+02 3.185E+02 3.437E+02 2.260E+02

f11 Mean 2.331E+02 4.257E+01 4.343E+01 3.687E+01 3.316E+01 2.705E+01 2.719E+01 2.276E+01 2.152E+01 2.502E+01
Std 1.787E+02 2.754E+01 2.624E+01 2.832E+01 2.001E+01 2.110E+01 1.621E+01 1.624E+01 1.552E+01 1.538E+01

f12 Mean 5.541E+05 3.775E+04 3.881E+04 3.671E+04 5.543E+04 3.965E+04 2.774E+04 5.410E+04 3.883E+04 3.536E+04
Std 2.568E+05 1.951E+04 2.784E+04 1.990E+04 1.187E+05 5.619E+04 2.000E+04 1.198E+05 2.786E+04 1.669E+04

f13 Mean 8.049E+03 1.658E+04 1.093E+04 1.927E+04 1.338E+04 8.706E+03 1.214E+04 1.736E+04 1.963E+04 1.199E+04
Std 7.078E+03 1.955E+04 9.798E+03 1.996E+04 1.644E+04 1.185E+04 1.323E+04 1.793E+04 1.899E+04 1.391E+04

f14 Mean 4.534E+04 7.202E+01 7.379E+01 7.798E+01 1.089E+02 6.551E+01 7.987E+01 9.660E+01 7.471E+01 7.489E+01
Std 3.859E+04 3.434E+01 3.064E+01 3.515E+01 1.140E+02 3.328E+01 7.165E+01 1.445E+02 5.655E+01 3.707E+01

f15 Mean 1.301E+03 7.076E+02 2.389E+02 4.226E+02 7.225E+02 5.627E+02 1.519E+02 1.106E+03 1.400E+03 1.009E+02
Std 9.227E+02 1.985E+03 3.904E+02 1.017E+03 2.562E+03 2.236E+03 1.865E+02 4.597E+03 5.460E+03 1.072E+02

f16 Mean 6.639E+02 4.854E+02 4.093E+02 4.422E+02 4.153E+02 4.056E+02 4.074E+02 3.774E+02 3.731E+02 4.208E+02
Std 1.315E+02 2.367E+02 2.183E+02 1.897E+02 2.025E+02 1.523E+02 1.590E+02 1.926E+02 1.657E+02 1.698E+02

f17 Mean 2.231E+02 7.504E+01 1.072E+02 1.404E+02 1.268E+02 9.959E+01 1.359E+02 1.184E+02 9.497E+01 1.264E+02
Std 7.667E+01 6.250E+01 8.164E+01 1.059E+02 1.022E+02 7.936E+01 1.073E+02 6.640E+01 8.056E+01 8.554E+01

f18 Mean 1.459E+05 2.568E+04 3.040E+04 2.595E+04 2.608E+04 3.232E+04 2.249E+04 2.253E+04 2.419E+04 2.575E+04
Std 6.886E+04 1.577E+04 3.044E+04 1.673E+04 1.675E+04 2.339E+04 1.979E+04 1.860E+04 1.750E+04 1.822E+04

f19 Mean 1.468E+03 6.826E+01 7.224E+01 8.271E+01 2.137E+02 6.552E+01 2.073E+02 1.144E+02 5.408E+01 1.153E+02
Std 1.176E+03 9.645E+01 1.204E+02 1.964E+02 9.425E+02 1.137E+02 6.932E+02 1.823E+02 4.995E+01 3.329E+02

f20 Mean 2.485E+02 1.291E+02 1.264E+02 1.219E+02 1.249E+02 1.199E+02 1.210E+02 1.611E+02 1.290E+02 1.328E+02
Std 9.764E+01 9.550E+01 1.169E+02 9.743E+01 1.052E+02 7.254E+01 1.099E+02 1.078E+02 9.483E+01 8.475E+01

f21 Mean 2.410E+02 2.716E+02 2.670E+02 2.647E+02 2.588E+02 2.553E+02 2.543E+02 2.524E+02 2.499E+02 2.494E+02
Std 7.941E+01 8.816E+00 6.413E+00 8.557E+00 6.459E+00 6.503E+00 6.672E+00 6.995E+00 8.102E+00 9.231E+00

f22 Mean 6.289E+02 8.513E+02 1.576E+03 5.057E+02 9.561E+02 1.435E+03 7.650E+02 7.503E+02 7.706E+02 6.337E+02
Std 1.063E+03 1.394E+03 1.612E+03 1.053E+03 1.343E+03 1.466E+03 1.228E+03 1.203E+03 1.239E+03 1.096E+03

f23 Mean 4.159E+02 4.454E+02 4.413E+02 4.341E+02 4.216E+02 4.148E+02 4.061E+02 4.025E+02 4.016E+02 3.994E+02
Std 2.521E+01 8.987E+00 8.036E+00 1.055E+01 1.033E+01 8.819E+00 1.137E+01 7.153E+00 6.379E+00 9.122E+00

f24 Mean 4.864E+02 5.203E+02 5.190E+02 5.109E+02 5.008E+02 4.910E+02 4.841E+02 4.769E+02 4.740E+02 4.704E+02
Std 2.022E+02 1.799E+01 1.018E+01 8.052E+00 8.127E+00 1.128E+01 7.683E+00 7.834E+00 8.109E+00 9.157E+00

f25 Mean 3.843E+02 3.873E+02 3.867E+02 3.872E+02 3.870E+02 3.870E+02 3.871E+02 3.868E+02 3.869E+02 3.873E+02
Std 7.261E-01 1.213E+00 1.833E+00 1.356E+00 1.806E+00 1.472E+00 9.534E-01 1.165E+00 1.216E+00 3.326E-01

f26 Mean 4.237E+02 1.755E+03 1.759E+03 1.704E+03 1.635E+03 1.600E+03 1.569E+03 1.532E+03 1.530E+03 1.558E+03
Std 4.844E+02 1.421E+02 1.139E+02 1.242E+02 1.151E+02 1.390E+02 1.075E+02 1.209E+02 1.056E+02 9.872E+01

f27 Mean 5.120E+02 5.026E+02 5.027E+02 5.032E+02 5.020E+02 5.025E+02 5.015E+02 5.048E+02 5.046E+02 5.037E+02
Std 4.572E+00 7.552E+00 6.264E+00 7.089E+00 5.569E+00 4.706E+00 5.470E+00 8.661E+00 5.965E+00 6.006E+00

f28 Mean 4.027E+02 3.815E+02 3.794E+02 3.750E+02 3.848E+02 3.637E+02 3.677E+02 3.882E+02 3.706E+02 3.729E+02
Std 3.061E+00 4.280E+01 4.567E+01 4.334E+01 3.501E+01 4.777E+01 5.353E+01 3.883E+01 5.022E+01 6.178E+01

f29 Mean 6.100E+02 5.318E+02 5.250E+02 5.296E+02 5.279E+02 4.981E+02 5.184E+02 5.605E+02 5.253E+02 5.423E+02
Std 9.597E+01 6.193E+01 5.840E+01 8.544E+01 7.582E+01 4.371E+01 5.772E+01 8.994E+01 7.893E+01 8.270E+01

f30 Mean 9.600E+03 4.694E+03 4.632E+03 4.627E+03 5.059E+03 4.528E+03 3.800E+03 3.978E+03 5.001E+03 4.581E+03
Std 2.420E+03 2.728E+03 2.279E+03 2.587E+03 2.809E+03 2.049E+03 2.144E+03 1.752E+03 2.698E+03 1.929E+03

Wilcoxon test +/=/- 17/0/12 17/0/12 18/0/11 17/0/12 19/0/10 20/0/9 20/0/9 19/0/10 20/0/9
Friedman ranking 6.76 6.90 6.59 6.41 6.14 4.24 4.24 5.28 4.21 4.24

Final ranking 9 10 8 7 6 2 3 5 1 4

126

5.3 Experiments on function optimization problems

Table 5.2: Comparison of FOABC variants with number of terms r = 8 and q
taked values from 0.1 to 0.9 with ABC

r = 8

Functions ABC q = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f1 Mean 3.293E+02 1.762E+03 2.085E+03 1.703E+03 1.434E+03 2.681E+03 9.833E+02 2.032E+03 2.348E+03 3.062E+03
Std 3.536E+02 3.489E+03 4.100E+03 2.662E+03 3.299E+03 4.487E+03 2.860E+03 4.230E+03 4.475E+03 4.601E+03

f3 Mean 7.361E+04 3.570E+04 3.864E+04 3.766E+04 3.630E+04 3.817E+04 4.171E+04 3.934E+04 4.191E+04 4.164E+04
Std 2.424E+04 9.242E+03 8.883E+03 9.476E+03 7.894E+03 1.026E+04 1.004E+04 1.202E+04 1.098E+04 1.126E+04

f4 Mean 1.890E+01 8.914E+01 9.365E+01 9.457E+01 8.716E+01 8.448E+01 9.131E+01 8.843E+01 8.564E+01 8.948E+01
Std 2.274E+01 2.249E+01 1.560E+01 1.626E+01 2.283E+01 2.015E+01 1.585E+01 1.238E+01 9.695E+00 1.123E+01

f5 Mean 8.327E+01 7.853E+01 7.042E+01 6.301E+01 5.708E+01 5.014E+01 4.877E+01 4.453E+01 4.499E+01 4.467E+01
Std 1.315E+01 8.257E+00 7.259E+00 6.155E+00 6.357E+00 7.139E+00 7.195E+00 8.045E+00 5.415E+00 7.346E+00

f6 Mean 7.420E-10 2.340E-04 2.522E-04 6.013E-05 4.319E-05 1.946E-05 6.792E-05 5.952E-05 5.398E-05 2.098E-05
Std 8.144E-10 1.237E-03 1.357E-03 1.519E-04 1.410E-04 5.004E-05 2.337E-04 2.946E-04 1.581E-04 5.646E-05

f7 Mean 1.006E+02 1.254E+02 1.219E+02 1.120E+02 1.011E+02 9.296E+01 8.625E+01 8.265E+01 7.656E+01 7.865E+01
Std 8.186E+00 7.194E+00 9.851E+00 8.389E+00 8.379E+00 7.991E+00 8.626E+00 8.044E+00 6.378E+00 6.751E+00

f8 Mean 8.879E+01 6.865E+01 6.188E+01 5.696E+01 5.019E+01 5.132E+01 4.934E+01 4.986E+01 4.581E+01 4.575E+01
Std 1.432E+01 7.789E+00 9.729E+00 6.374E+00 7.100E+00 7.289E+00 7.936E+00 7.887E+00 8.874E+00 8.239E+00

f9 Mean 7.745E+02 7.408E-01 6.820E-01 3.829E-01 5.225E-01 8.748E-01 7.031E-01 4.745E-01 5.019E-01 1.751E-01
Std 4.200E+02 1.215E+00 1.312E+00 4.681E-01 8.095E-01 1.259E+00 1.450E+00 5.751E-01 6.705E-01 2.260E-01

f10 Mean 2.220E+03 2.970E+03 2.855E+03 2.708E+03 2.646E+03 2.715E+03 2.535E+03 2.626E+03 2.498E+03 2.450E+03
Std 2.321E+02 3.525E+02 2.789E+02 2.845E+02 2.497E+02 3.512E+02 2.657E+02 2.218E+02 3.114E+02 3.196E+02

f11 Mean 2.331E+02 5.267E+01 4.019E+01 3.198E+01 2.778E+01 2.290E+01 2.332E+01 2.045E+01 2.165E+01 2.779E+01
Std 1.787E+02 2.922E+01 2.394E+01 2.223E+01 1.854E+01 1.250E+01 9.567E+00 1.318E+01 1.448E+01 1.882E+01

f12 Mean 5.541E+05 3.753E+04 3.711E+04 5.016E+04 3.173E+04 3.425E+04 3.858E+04 4.859E+04 3.203E+04 4.203E+04
Std 2.568E+05 2.242E+04 1.261E+04 7.932E+04 1.775E+04 4.257E+04 2.529E+04 7.659E+04 1.789E+04 3.116E+04

f13 Mean 8.049E+03 1.195E+04 1.837E+04 1.668E+04 9.991E+03 9.511E+03 8.718E+03 1.072E+04 1.236E+04 1.309E+04
Std 7.078E+03 1.580E+04 1.841E+04 1.686E+04 1.245E+04 1.075E+04 1.287E+04 1.416E+04 1.513E+04 1.791E+04

f14 Mean 4.534E+04 7.609E+01 8.620E+01 1.008E+02 9.161E+01 5.542E+01 7.599E+01 6.158E+01 7.414E+01 5.992E+01
Std 3.859E+04 2.924E+01 7.235E+01 1.136E+02 9.642E+01 1.379E+01 3.871E+01 2.224E+01 5.898E+01 2.547E+01

f15 Mean 1.301E+03 6.136E+02 4.348E+02 2.389E+02 2.681E+02 1.124E+02 1.764E+02 5.085E+02 2.377E+02 1.039E+03
Std 9.227E+02 1.858E+03 9.981E+02 3.544E+02 4.892E+02 6.725E+01 2.824E+02 1.077E+03 8.642E+02 4.985E+03

f16 Mean 6.639E+02 3.886E+02 4.435E+02 4.778E+02 3.672E+02 4.291E+02 3.346E+02 3.559E+02 4.153E+02 4.123E+02
Std 1.315E+02 1.836E+02 1.818E+02 1.884E+02 1.550E+02 1.861E+02 1.969E+02 1.831E+02 1.492E+02 1.501E+02

f17 Mean 2.231E+02 1.201E+02 8.914E+01 1.076E+02 1.249E+02 1.162E+02 1.072E+02 8.717E+01 1.231E+02 1.134E+02
Std 7.667E+01 8.095E+01 7.778E+01 8.463E+01 1.054E+02 9.110E+01 7.883E+01 6.976E+01 8.460E+01 7.463E+01

f18 Mean 1.459E+05 3.591E+04 2.854E+04 2.763E+04 2.169E+04 2.319E+04 3.569E+04 2.314E+04 1.967E+04 2.501E+04
Std 6.886E+04 2.727E+04 1.853E+04 1.964E+04 1.539E+04 1.718E+04 4.183E+04 1.790E+04 1.298E+04 1.981E+04

f19 Mean 1.468E+03 8.750E+01 2.544E+02 3.173E+02 3.345E+02 6.563E+01 6.196E+01 4.930E+01 4.344E+01 1.687E+02
Std 1.176E+03 1.930E+02 8.389E+02 1.214E+03 1.503E+03 8.788E+01 6.794E+01 4.462E+01 3.829E+01 6.790E+02

f20 Mean 2.485E+02 1.108E+02 1.198E+02 1.336E+02 1.015E+02 9.710E+01 1.426E+02 1.608E+02 1.082E+02 1.474E+02
Std 9.764E+01 1.063E+02 1.160E+02 8.675E+01 1.045E+02 8.013E+01 9.411E+01 1.107E+02 8.982E+01 1.056E+02

f21 Mean 2.410E+02 2.709E+02 2.668E+02 2.580E+02 2.541E+02 2.516E+02 2.531E+02 2.522E+02 2.508E+02 2.533E+02
Std 7.941E+01 8.204E+00 5.931E+00 7.267E+00 7.240E+00 9.024E+00 7.853E+00 7.721E+00 8.596E+00 8.412E+00

f22 Mean 6.289E+02 7.367E+02 6.016E+02 1.095E+03 1.102E+03 1.214E+03 8.303E+02 5.491E+02 9.851E+02 1.183E+03
Std 1.063E+03 1.304E+03 1.144E+03 1.449E+03 1.456E+03 1.401E+03 1.246E+03 1.024E+03 1.381E+03 1.355E+03

f23 Mean 4.159E+02 4.407E+02 4.342E+02 4.241E+02 4.141E+02 4.068E+02 4.016E+02 4.014E+02 3.974E+02 3.982E+02
Std 2.521E+01 9.130E+00 9.028E+00 7.187E+00 9.290E+00 8.596E+00 7.341E+00 9.267E+00 6.948E+00 8.449E+00

f24 Mean 4.864E+02 5.271E+02 5.136E+02 5.057E+02 4.901E+02 4.827E+02 4.803E+02 4.735E+02 4.711E+02 4.723E+02
Std 2.022E+02 1.015E+01 1.090E+01 9.581E+00 1.057E+01 8.373E+00 6.869E+00 9.566E+00 1.080E+01 9.258E+00

f25 Mean 3.843E+02 3.870E+02 3.864E+02 3.871E+02 3.873E+02 3.866E+02 3.870E+02 3.871E+02 3.871E+02 3.872E+02
Std 7.261E-01 1.656E+00 1.803E+00 1.492E+00 9.359E-01 1.635E+00 1.293E+00 1.292E+00 1.062E+00 2.254E-01

f26 Mean 4.237E+02 1.769E+03 1.674E+03 1.671E+03 1.643E+03 1.517E+03 1.506E+03 1.510E+03 1.538E+03 1.579E+03
Std 4.844E+02 1.400E+02 1.759E+02 9.360E+01 1.031E+02 1.130E+02 9.206E+01 1.231E+02 9.199E+01 8.702E+01

f27 Mean 5.120E+02 5.031E+02 5.035E+02 5.013E+02 5.035E+02 5.034E+02 5.045E+02 5.044E+02 5.053E+02 5.036E+02
Std 4.572E+00 5.949E+00 8.183E+00 8.930E+00 4.609E+00 6.350E+00 6.945E+00 8.319E+00 7.633E+00 6.000E+00

f28 Mean 4.027E+02 3.871E+02 3.715E+02 3.770E+02 3.753E+02 3.643E+02 3.836E+02 3.915E+02 3.519E+02 3.559E+02
Std 3.061E+00 4.510E+01 4.404E+01 3.891E+01 4.054E+01 4.450E+01 4.683E+01 4.699E+01 4.855E+01 6.768E+01

f29 Mean 6.100E+02 5.074E+02 5.255E+02 5.212E+02 5.355E+02 5.205E+02 5.317E+02 5.400E+02 5.181E+02 5.193E+02
Std 9.597E+01 8.707E+01 6.373E+01 6.803E+01 6.618E+01 6.251E+01 5.398E+01 7.230E+01 8.039E+01 7.437E+01

f30 Mean 9.600E+03 4.683E+03 4.036E+03 4.851E+03 4.360E+03 5.230E+03 5.102E+03 5.064E+03 4.732E+03 5.099E+03
Std 2.420E+03 2.444E+03 2.142E+03 2.453E+03 2.351E+03 2.746E+03 2.956E+03 2.651E+03 2.479E+03 2.893E+03

Wilcoxon test +/=/- 17/0/12 18/0/11 17/0/12 18/0/11 20/0/9 20/0/9 21/0/8 20/0/9 20/0/9
Friedman ranking 6.90 6.62 6.59 6.48 5.31 4.55 4.97 4.55 3.93 5.10

Final ranking 10 9 8 7 6 2 4 3 1 5

127

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.3: Comparison of FOABC variants with number of terms r = 12 and q
taked values from 0.1 to 0.9 with ABC

r = 12

Functions ABC q = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f1 Mean 3.293E+02 3.326E+03 8.278E+02 1.190E+03 2.849E+03 1.456E+03 1.471E+03 1.577E+03 7.784E+02 2.111E+03
Std 3.536E+02 4.517E+03 1.492E+03 2.578E+03 4.886E+03 2.765E+03 3.320E+03 3.274E+03 2.497E+03 3.998E+03

f3 Mean 7.361E+04 3.911E+04 4.165E+04 3.990E+04 3.918E+04 3.842E+04 4.250E+04 4.093E+04 4.304E+04 4.683E+04
Std 2.424E+04 1.061E+04 1.200E+04 1.033E+04 1.166E+04 1.010E+04 1.062E+04 9.949E+03 1.130E+04 1.456E+04

f4 Mean 1.890E+01 9.162E+01 9.128E+01 8.810E+01 9.620E+01 9.181E+01 8.853E+01 8.984E+01 9.091E+01 8.611E+01
Std 2.274E+01 1.571E+01 1.565E+01 1.235E+01 1.884E+01 1.562E+01 1.442E+01 1.270E+01 1.364E+01 5.832E+00

f5 Mean 8.327E+01 7.741E+01 6.837E+01 6.064E+01 5.353E+01 4.656E+01 4.557E+01 4.577E+01 4.600E+01 4.212E+01
Std 1.315E+01 7.978E+00 7.709E+00 6.970E+00 7.498E+00 7.219E+00 6.333E+00 5.077E+00 6.332E+00 8.087E+00

f6 Mean 7.420E-10 4.165E-05 5.479E-04 5.132E-04 1.907E-05 2.764E-04 2.961E-05 2.313E-05 7.209E-05 6.186E-05
Std 8.144E-10 1.381E-04 2.255E-03 2.450E-03 6.595E-05 1.263E-03 8.405E-05 5.918E-05 2.837E-04 1.864E-04

f7 Mean 1.006E+02 1.219E+02 1.194E+02 1.060E+02 9.703E+01 8.779E+01 8.349E+01 8.001E+01 7.877E+01 7.856E+01
Std 8.186E+00 7.473E+00 8.995E+00 8.916E+00 6.705E+00 6.190E+00 6.695E+00 6.739E+00 6.967E+00 7.700E+00

f8 Mean 8.879E+01 6.623E+01 6.057E+01 5.620E+01 5.131E+01 4.973E+01 4.771E+01 4.881E+01 4.718E+01 4.982E+01
Std 1.432E+01 6.782E+00 7.349E+00 7.027E+00 7.483E+00 6.435E+00 7.195E+00 8.756E+00 7.980E+00 8.467E+00

f9 Mean 7.745E+02 1.211E+00 6.017E-01 6.407E-01 4.384E-01 2.263E-01 4.466E-01 8.415E-01 3.323E-01 4.087E-01
Std 4.200E+02 2.734E+00 1.053E+00 9.649E-01 6.639E-01 4.482E-01 4.690E-01 1.641E+00 4.254E-01 1.320E+00

f10 Mean 2.220E+03 2.870E+03 2.795E+03 2.778E+03 2.682E+03 2.616E+03 2.612E+03 2.499E+03 2.418E+03 2.412E+03
Std 2.321E+02 2.187E+02 3.556E+02 2.321E+02 2.031E+02 2.754E+02 2.722E+02 3.002E+02 3.542E+02 2.996E+02

f11 Mean 2.331E+02 4.113E+01 2.656E+01 2.779E+01 2.309E+01 2.448E+01 2.219E+01 2.078E+01 1.819E+01 1.779E+01
Std 1.787E+02 2.803E+01 1.644E+01 2.177E+01 1.246E+01 1.469E+01 1.118E+01 1.021E+01 8.268E+00 9.121E+00

f12 Mean 5.541E+05 4.395E+04 5.679E+04 3.247E+04 3.326E+04 4.607E+04 6.371E+04 5.778E+04 9.548E+04 6.558E+04
Std 2.568E+05 3.642E+04 1.201E+05 4.190E+04 2.469E+04 6.344E+04 8.131E+04 1.020E+05 1.891E+05 6.382E+04

f13 Mean 8.049E+03 2.064E+04 1.123E+04 2.010E+04 1.534E+04 1.421E+04 1.675E+04 1.325E+04 1.173E+04 1.150E+04
Std 7.078E+03 2.206E+04 1.278E+04 2.057E+04 1.826E+04 1.464E+04 1.842E+04 1.755E+04 1.563E+04 1.365E+04

f14 Mean 4.534E+04 9.851E+01 9.693E+01 5.800E+01 7.787E+01 5.955E+01 5.525E+01 8.126E+01 6.055E+01 6.936E+01
Std 3.859E+04 9.987E+01 1.429E+02 1.633E+01 3.943E+01 2.892E+01 1.403E+01 4.476E+01 2.888E+01 5.820E+01

f15 Mean 1.301E+03 1.812E+03 3.408E+02 9.482E+02 1.833E+02 2.212E+02 1.206E+02 1.091E+02 7.544E+02 3.575E+02
Std 9.227E+02 7.453E+03 4.808E+02 4.163E+03 2.052E+02 5.543E+02 1.559E+02 1.453E+02 2.956E+03 1.097E+03

f16 Mean 6.639E+02 4.057E+02 3.981E+02 4.257E+02 4.308E+02 4.408E+02 3.659E+02 4.248E+02 4.113E+02 4.574E+02
Std 1.315E+02 1.672E+02 1.830E+02 1.521E+02 1.505E+02 1.496E+02 1.502E+02 1.570E+02 1.809E+02 1.873E+02

f17 Mean 2.231E+02 8.190E+01 9.895E+01 1.311E+02 1.128E+02 1.158E+02 1.081E+02 9.481E+01 1.100E+02 9.542E+01
Std 7.667E+01 7.632E+01 7.681E+01 9.327E+01 8.001E+01 9.235E+01 7.699E+01 6.712E+01 8.625E+01 6.856E+01

f18 Mean 1.459E+05 2.600E+04 3.462E+04 2.747E+04 2.643E+04 2.353E+04 2.843E+04 2.961E+04 3.073E+04 2.529E+04
Std 6.886E+04 2.174E+04 2.776E+04 2.207E+04 1.667E+04 1.275E+04 2.579E+04 2.508E+04 4.419E+04 2.094E+04

f19 Mean 1.468E+03 5.782E+01 1.104E+02 4.931E+01 4.579E+01 7.785E+01 1.942E+03 3.066E+02 3.258E+01 3.001E+01
Std 1.176E+03 5.007E+01 3.327E+02 3.042E+01 2.879E+01 1.617E+02 9.924E+03 1.128E+03 2.080E+01 1.969E+01

f20 Mean 2.485E+02 1.520E+02 1.418E+02 1.248E+02 1.393E+02 9.828E+01 1.205E+02 1.335E+02 1.426E+02 1.552E+02
Std 9.764E+01 9.114E+01 1.036E+02 1.046E+02 1.025E+02 9.465E+01 1.020E+02 9.342E+01 9.766E+01 1.088E+02

f21 Mean 2.410E+02 2.719E+02 2.643E+02 2.594E+02 2.555E+02 2.521E+02 2.513E+02 2.504E+02 2.463E+02 2.521E+02
Std 7.941E+01 8.325E+00 6.993E+00 7.418E+00 8.020E+00 8.111E+00 6.985E+00 7.642E+00 8.832E+00 7.287E+00

f22 Mean 6.289E+02 8.728E+02 8.936E+02 1.200E+03 7.728E+02 7.453E+02 9.668E+02 1.203E+03 7.726E+02 1.033E+03
Std 1.063E+03 1.427E+03 1.352E+03 1.474E+03 1.249E+03 1.203E+03 1.353E+03 1.379E+03 1.140E+03 1.345E+03

f23 Mean 4.159E+02 4.353E+02 4.347E+02 4.205E+02 4.137E+02 4.049E+02 4.031E+02 4.006E+02 3.979E+02 4.012E+02
Std 2.521E+01 1.522E+01 7.764E+00 8.142E+00 7.331E+00 7.797E+00 9.345E+00 7.307E+00 8.223E+00 6.694E+00

f24 Mean 4.864E+02 5.260E+02 5.113E+02 4.974E+02 4.888E+02 4.801E+02 4.762E+02 4.742E+02 4.695E+02 4.712E+02
Std 2.022E+02 1.084E+01 1.179E+01 1.028E+01 8.612E+00 8.373E+00 9.851E+00 1.019E+01 1.046E+01 8.257E+00

f25 Mean 3.843E+02 3.869E+02 3.870E+02 3.871E+02 3.873E+02 3.869E+02 3.874E+02 3.871E+02 3.873E+02 3.872E+02
Std 7.261E-01 1.780E+00 1.456E+00 1.252E+00 1.089E+00 1.487E+00 8.437E-01 1.097E+00 3.224E-01 2.716E-01

f26 Mean 4.237E+02 1.740E+03 1.650E+03 1.635E+03 1.578E+03 1.540E+03 1.551E+03 1.533E+03 1.524E+03 1.553E+03
Std 4.844E+02 1.215E+02 2.780E+02 1.256E+02 1.025E+02 1.001E+02 1.117E+02 8.082E+01 1.169E+02 1.134E+02

f27 Mean 5.120E+02 5.031E+02 5.032E+02 5.019E+02 5.016E+02 5.049E+02 5.050E+02 5.029E+02 5.043E+02 5.035E+02
Std 4.572E+00 5.667E+00 4.787E+00 5.718E+00 4.380E+00 7.105E+00 7.640E+00 7.377E+00 6.010E+00 7.532E+00

f28 Mean 4.027E+02 3.897E+02 3.924E+02 3.839E+02 3.652E+02 3.724E+02 3.665E+02 3.787E+02 3.667E+02 3.523E+02
Std 3.061E+00 3.279E+01 3.436E+01 4.221E+01 4.710E+01 4.260E+01 4.555E+01 5.471E+01 5.800E+01 6.663E+01

f29 Mean 6.100E+02 5.256E+02 5.032E+02 5.043E+02 5.265E+02 4.895E+02 5.125E+02 5.256E+02 5.161E+02 5.149E+02
Std 9.597E+01 6.241E+01 6.375E+01 5.959E+01 7.229E+01 7.306E+01 7.505E+01 7.751E+01 7.210E+01 8.883E+01

f30 Mean 9.600E+03 5.686E+03 5.356E+03 4.764E+03 4.394E+03 4.215E+03 4.614E+03 6.073E+03 4.741E+03 4.638E+03
Std 2.420E+03 2.804E+03 2.713E+03 2.482E+03 2.507E+03 2.321E+03 2.025E+03 2.852E+03 2.473E+03 2.000E+03

Wilcoxon test +/=/- 16/0/13 17/0/12 17/0/12 19/0/10 20/0/9 19/0/10 20/0/9 20/0/9 20/0/9
Friedman ranking 6.79 7.14 6.55 6.07 5.34 4.48 4.76 4.90 4.41 4.55

Final ranking 9 10 8 7 6 2 4 5 1 3

128

5.3 Experiments on function optimization problems

when the fractional order q is defined too small (i.e., [0.1, 0.4]), the corresponding

performance is not as satisfying as the other variants.

In Table 5.1, when r = 4, the variants with q ∈ [0.5, 0.9] have close in terms of

mean and Std values on most of the functions. Meanwhile, their average rankings

given by Friedman test are the top five. Moreover, according to the Wilcoxon

test, all the variants of FOABC perform better than the basic ABC on over half

of the benchmark functions. As for the case r = 8, FOABC variants with q in the

same range of [0.5, 0.9] have similar results and outstanding positions in Table 5.2.

And when fractional order q is larger than 0.5, the corresponding algorithms can

obtain superior solutions than ABC algorithm on more than 19 test functions,

which can be found in the line of Wilcoxon test. The results in Table 5.3 suggests

a similar conclusion.Moreover, the versions with q = 0.8 obtain the best rankings

in all the three comparison tables. Therefore, for the proposed algorithm, the

value of fractional order q cannot be set too small.

Another comparison is made to find out the optimal configuration for FOABC.

In Table 5.4, the FOABC variants who ranked the best in the three aforemen-

tioned tables are compared together. The result indicates that FOABCr=12,q=0.8

exceeds the other two variants. Therefore, this setting will be used to compare

with other competitive algorithms in the later sections.

Table 5.4: Friedman test results of three competitive FOABC variants

Number of terms r Derivative order q Average ranking

4 0.8 2.21
8 0.8 1.93
12 0.8 1.86

5.3.2 Comparison with ABC variants

In this section, FOABC is compared with the basic ABC and five latest ABC

variants on 29 CEC 2017 benchmarks with D = 10, 30, and 50. In order to make

fair comparisons, the control parameters of the competitors are set the same as

their original papers suggested which are presented in Table 5.5. In addition, the

swarm size is set the same SN = 50 for all the compared ABC variants. The

comparison results in terms of the mean and Std of the function errors are shown

129

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

in Tables 5.6-5.8. For each function, the best results are marked in boldface by

comparing the mean values.

Table 5.5: Parameter settings of FOABC and compared ABC algorithms

Algorithm Parameter setting
ABC (Karaboga, 2005) limit = SN ×D
NSABC (Wang et al., 2020) limit = 100, k = 10, C = 1.5
iff -ABC (Aslan et al., 2020) limit = SN ·D, pr = 80
MGABC (Zhou et al., 2021a) limit = 100, MR = 0.5, q = 0.1, p = 0.1
ILTD_ABC (Gao et al., 2019) limit = 100
sdABC (Chen et al., 2019b) limit = SN ·D, pamin = 0.2
FOABC limit = SN ·D, CR = 0.8, r = 12, q = 0.8

Table 5.6 presents the results with D = 10, where FOABC performs outstand-

ingly, especially in solving the uni-modal and hybrid problems. Specifically, the

number of the minimum errors achieved by FOABC is 10 while the second best is

7 by iff-ABC. In solving the uni-modal functions (i.e., f1 and f3), the superiority

of FOABC is significant compared to the other competitors. More precisely, the

errors of FOABC on these two functions are much closer to zero while all the other

algorithms have errors bigger than 102. The exploitation ability of algorithms can

be tested on the uni-modal problem as there is a unique optimum. In this con-

text, the comparison result verifies the exploitation capability of FOABC. Hence,

among the multi-modal functions (f4 − f10), NSABC obtains the best results on

4 of them whereas MGABC attains two. As for the hybrid functions (f11 − f20),

the advantage of FOABC is notable by comparing not only the values of errors

but also the number of functions in boldface. FOABC achieves the best on 7

among 10 hybrid functions. Meanwhile, FOABC doesn’t keep the same superi-

ority in solving the rest benchmarks which can be explained according to the No

Free Lunch Theorem. The iff-ABC algorithm performs the best on composition

functions (f21− f30). Nevertheless, it is worth mentioning that all the algorithms

involved in this type of problem obtain similar results.

The advantage of FOABC is also remarkable based on the results of the

Wilcoxon tests. Compared to the original ABC algorithm, FOABC attains better

solutions on 17 out of 29 functions. And it outperforms NSABC on 15 problems.

Comparing to iff-ABC and MGABC, FOABC surpasses them on 19 and 17 func-

tions, respectively. ILTD_ABC fails to achieve better results than FOABC does

130

5.3 Experiments on function optimization problems

Table 5.6: Comparison between FOABC and other ABC variants with D = 10

Functions ABC NSABC iff-ABC MGABC ILTD_ABC sdABC FOABCr=12,q=0.8

f1 Mean 3.07E+02 + 2.52E+03 + 2.64E+02 + 4.20E+02 + 9.65E+03 + 1.87E+09 + 4.33E-09
Std 2.46E+02 2.55E+03 3.12E+02 5.72E+02 2.40E+04 3.30E+09 1.50E-08

f3 Mean 6.26E+02 + 3.17E+03 + 4.19E+03 + 1.32E+03 + 2.16E+03 + 4.77E+03 + 1.71E-14
Std 2.97E+02 2.49E+03 3.07E+03 6.60E+02 9.26E+02 3.36E+03 3.04E-14

f4 Mean 2.42E-01 - 3.05E+00 + 1.58E-01 - 5.50E+00 + 5.32E+00 + 1.40E+01 + 8.01E-01
Std 1.89E-01 1.38E+00 2.26E-01 2.05E+00 1.22E+00 2.59E+01 4.66E-01

f5 Mean 7.37E+00 + 3.35E+00 - 7.30E+00 + 4.67E+00 - 5.00E+00 + 4.53E+01 + 4.68E+00
Std 1.79E+00 1.13E+00 2.08E+00 1.18E+00 1.96E+00 1.76E+01 1.50E+00

f6 Mean 3.17E-09 - 3.41E-14 - 5.95E-09 - 0.00E+00 - 2.91E-04 + 4.55E+01 + 3.78E-07
Std 5.40E-09 5.30E-14 7.33E-09 0.00E+00 1.53E-04 1.05E+01 2.07E-06

f7 Mean 1.78E+01 + 1.34E+01 - 1.74E+01 + 1.57E+01 + 1.57E+01 + 1.06E+02 + 1.40E+01
Std 2.32E+00 1.71E+00 3.47E+00 1.07E+00 2.14E+00 1.94E+01 1.51E+00

f8 Mean 8.09E+00 + 3.71E+00 - 9.14E+00 + 4.88E+00 - 5.05E+00 - 4.27E+01 + 5.21E+00
Std 2.53E+00 1.35E+00 2.12E+00 1.17E+00 2.81E+00 1.22E+01 1.88E+00

f9 Mean 5.26E-03 - 1.12E-05 - 5.73E-02 + 3.46E-06 - 9.36E-05 - 4.09E+01 + 1.51E-02
Std 1.71E-02 3.27E-05 1.07E-01 7.46E-06 1.47E-04 9.31E+01 8.29E-02

f10 Mean 2.72E+02 + 1.67E+02 - 2.11E+02 + 1.92E+02 + 1.67E+02 - 1.06E+03 + 1.87E+02
Std 8.96E+01 1.28E+02 9.08E+01 8.27E+01 1.38E+02 5.54E+02 9.31E+01

f11 Mean 3.86E+00 + 3.57E+00 + 4.97E+00 + 2.31E+00 + 3.10E+00 + 1.16E+01 + 1.13E+00
Std 1.93E+00 1.53E+00 1.91E+00 1.26E+00 1.18E+00 1.39E+01 7.72E-01

f12 Mean 3.89E+04 + 2.49E+04 + 2.33E+04 + 3.55E+04 + 9.75E+03 + 3.43E+07 + 6.74E+01
Std 2.32E+04 1.61E+04 1.45E+04 6.57E+04 5.75E+03 7.07E+07 1.33E+02

f13 Mean 6.83E+02 + 5.71E+03 + 4.07E+02 + 6.11E+03 + 7.36E+03 + 2.86E+02 + 4.78E+00
Std 6.10E+02 6.83E+03 3.65E+02 3.71E+03 5.30E+03 1.28E+03 1.99E+00

f14 Mean 1.81E+02 + 1.33E+03 + 1.57E+02 + 1.39E+03 + 2.41E+03 + 9.37E+01 + 1.65E+00
Std 1.75E+02 2.04E+03 2.28E+02 1.66E+03 1.38E+03 4.55E+02 1.13E+00

f15 Mean 1.69E+02 + 8.48E+02 + 1.61E+02 + 4.43E+02 + 1.38E+03 + 2.43E+01 + 5.95E-01
Std 2.10E+02 1.58E+03 3.19E+02 7.51E+02 9.98E+02 6.10E+01 8.15E-01

f16 Mean 8.88E+00 + 1.11E+01 + 1.31E+01 + 2.24E+00 - 2.74E+01 + 1.84E+02 + 3.12E+00
Std 1.22E+01 2.52E+01 3.00E+01 3.24E+00 5.19E+01 1.19E+02 4.70E+00

f17 Mean 2.89E+00 + 3.28E+00 + 2.03E+00 - 3.74E+00 + 1.46E+01 + 1.13E+02 + 2.72E+00
Std 1.74E+00 5.76E+00 8.07E-01 5.15E+00 1.42E+01 4.18E+01 5.13E+00

f18 Mean 1.26E+03 + 4.61E+03 + 1.16E+03 + 1.15E+03 + 6.64E+03 + 3.55E+03 + 3.74E-01
Std 9.39E+02 4.10E+03 9.51E+02 1.21E+03 6.19E+03 1.02E+04 4.50E-01

f19 Mean 8.69E+01 + 3.28E+03 + 1.09E+02 + 7.59E+02 + 4.71E+03 + 2.40E+02 + 5.49E-02
Std 1.16E+02 3.18E+03 1.87E+02 9.07E+02 3.91E+03 1.30E+03 1.82E-01

f20 Mean 3.14E-01 - 2.28E+00 + 9.21E-01 + 4.34E-02 - 7.20E-01 + 1.24E+02 + 4.44E-01
Std 4.11E-01 5.14E+00 5.75E-01 9.95E-02 2.20E+00 7.00E+01 5.51E-01

f21 Mean 1.13E+02 - 1.15E+02 - 1.01E+02 - 1.13E+02 - 1.76E+02 + 1.12E+02 - 1.58E+02
Std 1.99E+01 3.62E+01 2.72E+01 2.62E+01 4.85E+01 3.00E+01 5.46E+01

f22 Mean 6.18E+01 - 8.16E+01 - 6.36E+01 - 9.49E+01 - 1.00E+02 + 5.33E+02 + 9.61E+01
Std 3.38E+01 3.84E+01 3.34E+01 2.04E+01 3.34E-01 2.65E+02 1.76E+01

f23 Mean 2.87E+02 - 3.08E+02 - 3.04E+02 - 3.08E+02 - 3.09E+02 + 3.16E+02 + 3.09E+02
Std 8.25E+01 2.93E+00 5.75E+01 1.65E+00 2.47E+00 9.12E+00 3.17E+00

f24 Mean 1.01E+02 - 2.37E+02 - 9.00E+01 - 1.62E+02 - 3.02E+02 - 1.84E+02 - 3.39E+02
Std 2.50E+01 1.14E+02 2.53E+01 1.01E+02 9.19E+01 1.20E+02 2.54E+00

f25 Mean 1.86E+02 - 4.12E+02 - 1.53E+02 - 4.22E+02 + 4.18E+02 + 4.40E+02 + 4.12E+02
Std 1.05E+02 2.14E+01 6.78E+01 2.20E+01 2.27E+01 6.48E+01 2.19E+01

f26 Mean 1.20E+02 - 2.76E+02 - 1.17E+02 - 2.43E+02 - 2.73E+02 - 5.27E+02 + 3.09E+02
Std 1.00E+02 9.81E+01 9.94E+01 1.04E+02 7.85E+01 4.40E+02 2.56E+01

f27 Mean 3.84E+02 - 3.72E+02 - 3.94E+02 + 3.92E+02 + 3.91E+02 + 3.94E+02 + 3.90E+02
Std 5.12E+01 7.45E-01 2.03E+00 1.93E+00 1.48E+00 1.08E+01 1.34E+00

f28 Mean 2.57E+02 - 4.33E+02 + 2.52E+02 - 3.28E+02 - 4.11E+02 + 5.22E+02 + 3.45E+02
Std 1.08E+02 9.20E+01 1.05E+02 6.79E+01 1.68E+02 1.24E+02 1.01E+02

f29 Mean 2.49E+02 + 2.47E+02 + 2.47E+02 + 2.59E+02 + 2.56E+02 + 2.92E+02 + 2.35E+02
Std 3.05E+01 8.33E+00 2.72E+01 1.17E+01 1.57E+01 6.72E+01 3.56E+00

f30 Mean 1.76E+04 + 3.70E+02 - 1.24E+04 + 3.05E+04 + 1.68E+04 + 1.04E+06 + 7.41E+02
Std 1.56E+04 1.68E+02 2.12E+04 2.68E+04 2.76E+04 2.67E+06 2.79E+02

Total +/=/- 17/0/12 15/0/14 19/0/10 17/0/12 24/0/5 27/0/2

131

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

on 24 functions. Moreover, FOABC achieves better solutions than sdABC does

on 27 functions.

Table 5.7: Comparison between FOABC and other ABC variants with D = 30

Functions ABC NSABC iff−ABC MGABC ILTD_ABC sdABC FOABCr=12,q=0.8

f1 Mean 1.73E+02 - 2.38E+03 + 1.29E+02 - 1.71E+03 + 6.76E+03 + 7.90E+09 + 1.50E+03
Std 1.32E+02 4.02E+03 1.46E+02 1.37E+03 8.77E+03 4.91E+09 2.35E+03

f3 Mean 7.69E+04 + 5.47E+04 + 1.13E+05 + 4.13E+04 + 5.24E+04 + 5.37E+04 + 1.10E+04
Std 1.97E+04 1.20E+04 1.52E+04 6.83E+03 7.66E+03 2.24E+04 5.59E+03

f4 Mean 2.38E+01 - 4.57E+01 - 1.72E+01 - 9.69E+01 + 7.38E+01 - 1.93E+03 + 8.71E+01
Std 2.49E+01 2.82E+01 2.53E+01 2.16E+01 1.75E+01 2.64E+03 1.76E+01

f5 Mean 8.23E+01 + 4.13E+01 + 8.42E+01 + 5.95E+01 + 6.78E+01 + 1.90E+02 + 3.73E+01
Std 1.01E+01 7.09E+00 1.53E+01 1.03E+01 9.96E+00 5.23E+01 9.07E+00

f6 Mean 4.80E-10 - 2.65E-14 - 3.19E-09 - 1.14E-13 - 1.34E-03 - 3.24E+01 + 3.55E-03
Std 5.32E-10 8.28E-14 3.57E-09 0.00E+00 4.69E-04 2.26E+01 1.18E-02

f7 Mean 9.87E+01 + 6.94E+01 - 9.89E+01 + 8.88E+01 + 1.18E+02 + 3.46E+02 + 7.84E+01
Std 1.09E+01 9.02E+00 1.05E+01 9.94E+00 3.66E+01 1.18E+02 9.53E+00

f8 Mean 9.20E+01 + 3.88E+01 - 9.14E+01 + 5.72E+01 + 7.30E+01 + 1.75E+02 + 4.15E+01
Std 1.43E+01 6.79E+00 1.40E+01 9.65E+00 1.66E+01 5.20E+01 1.01E+01

f9 Mean 6.33E+02 + 7.93E+00 + 6.92E+02 + 5.73E+01 + 1.24E+02 + 6.92E+03 + 6.11E+00
Std 3.85E+02 8.46E+00 3.97E+02 5.79E+01 2.81E+02 1.96E+03 7.86E+00

f10 Mean 2.33E+03 + 2.40E+03 + 2.24E+03 - 2.14E+03 - 2.11E+03 - 5.82E+03 + 2.30E+03
Std 2.03E+02 4.85E+02 2.19E+02 2.17E+02 4.30E+02 7.76E+02 2.58E+02

f11 Mean 1.90E+02 + 1.97E+02 + 3.51E+02 + 6.42E+01 + 9.61E+01 + 1.14E+03 + 2.71E+01
Std 9.13E+01 1.26E+02 2.68E+02 3.79E+01 2.51E+01 1.66E+03 2.19E+01

f12 Mean 4.65E+05 + 5.92E+05 + 3.69E+05 + 9.61E+05 + 6.25E+05 + 2.12E+08 + 2.77E+04
Std 2.11E+05 4.21E+05 2.74E+05 5.72E+05 3.05E+05 7.62E+08 1.54E+04

f13 Mean 7.83E+03 - 1.73E+04 + 3.12E+03 - 1.08E+04 - 1.85E+04 + 1.20E+08 + 1.11E+04
Std 4.90E+03 1.76E+04 2.40E+03 7.88E+03 1.47E+04 6.56E+08 1.33E+04

f14 Mean 6.70E+04 + 4.46E+04 + 6.90E+04 + 4.26E+05 + 2.18E+05 + 1.74E+02 + 3.93E+01
Std 5.27E+04 6.03E+04 4.41E+04 3.80E+05 2.21E+05 5.32E+02 2.55E+01

f15 Mean 1.36E+03 - 7.24E+03 + 7.63E+02 - 1.02E+03 - 2.80E+03 + 3.07E+07 + 1.59E+03
Std 1.06E+03 7.53E+03 6.99E+02 1.30E+03 1.80E+03 1.17E+08 3.22E+03

f16 Mean 6.72E+02 + 5.31E+02 + 6.50E+02 + 6.18E+02 + 6.44E+02 + 8.62E+02 + 4.46E+02
Std 1.30E+02 1.74E+02 1.47E+02 1.23E+02 2.33E+02 4.30E+02 2.00E+02

f17 Mean 1.98E+02 + 1.34E+02 + 2.47E+02 + 1.17E+02 - 1.86E+02 + 3.20E+02 + 1.33E+02
Std 8.71E+01 8.02E+01 9.15E+01 6.12E+01 1.51E+02 3.00E+02 1.18E+02

f18 Mean 1.77E+05 + 2.26E+05 + 1.68E+05 + 2.22E+05 + 2.88E+05 + 2.55E+06 + 9.43E+03
Std 9.35E+04 1.44E+05 9.02E+04 1.99E+05 1.99E+05 5.49E+06 7.41E+03

f19 Mean 1.37E+03 + 1.38E+04 + 9.30E+02 + 3.21E+03 + 3.55E+03 + 7.33E+07 + 4.48E+02
Std 1.29E+03 1.64E+04 1.13E+03 2.56E+03 2.73E+03 1.74E+08 1.81E+03

f20 Mean 2.39E+02 + 1.59E+02 - 2.81E+02 + 1.56E+02 - 2.82E+02 + 5.78E+02 + 1.85E+02
Std 8.22E+01 9.80E+01 1.03E+02 4.55E+01 1.38E+02 2.06E+02 1.23E+02

f21 Mean 2.58E+02 + 2.39E+02 - 2.52E+02 + 2.49E+02 + 2.50E+02 + 3.27E+02 + 2.42E+02
Std 6.70E+01 2.32E+01 7.29E+01 9.45E+00 9.87E+00 4.11E+01 8.45E+00

f22 Mean 4.68E+02 - 1.00E+02 - 3.89E+02 - 1.00E+02 - 1.00E+02 - 1.58E+03 + 8.48E+02
Std 9.43E+02 7.25E-07 8.61E+02 0.00E+00 7.03E-03 8.58E+02 1.18E+03

f23 Mean 4.24E+02 + 3.97E+02 + 4.11E+02 + 3.87E+02 - 4.08E+02 + 5.10E+02 + 3.94E+02
Std 2.43E+01 8.64E+00 2.82E+01 5.50E+01 1.13E+01 3.65E+01 8.04E+00

f24 Mean 4.37E+02 - 5.18E+02 + 4.74E+02 + 4.99E+02 + 5.32E+02 + 8.32E+02 + 4.72E+02
Std 2.04E+02 2.25E+01 2.02E+02 7.65E+01 2.08E+01 3.32E+02 9.01E+00

f25 Mean 3.85E+02 - 3.78E+02 - 3.84E+02 - 3.94E+02 + 3.86E+02 - 6.17E+02 + 3.87E+02
Std 1.13E+00 1.06E+00 1.21E+00 1.44E+01 2.01E+00 1.94E+02 1.45E+00

f26 Mean 3.41E+02 - 1.36E+03 - 3.59E+02 - 5.57E+02 - 1.29E+03 - 2.69E+03 + 1.49E+03
Std 3.73E+02 2.71E+02 4.04E+02 6.53E+02 5.73E+02 1.74E+03 1.40E+02

f27 Mean 5.12E+02 + 4.97E+02 - 5.12E+02 + 5.10E+02 - 5.03E+02 - 5.40E+02 + 5.11E+02
Std 5.36E+00 1.06E+01 8.29E+00 5.23E+00 4.51E+00 2.10E+01 7.45E+00

f28 Mean 4.04E+02 + 4.95E+02 + 3.97E+02 + 4.06E+02 + 4.00E+02 + 1.42E+03 + 3.65E+02
Std 3.77E+00 1.63E+01 1.28E+01 4.59E+00 5.00E+00 8.94E+02 5.86E+01

f29 Mean 5.91E+02 + 4.27E+02 - 5.87E+02 + 5.11E+02 + 5.40E+02 + 8.42E+02 + 4.95E+02
Std 8.52E+01 8.21E+01 9.03E+01 6.60E+01 6.55E+01 3.24E+02 7.33E+01

f30 Mean 6.55E+03 + 3.13E+03 - 5.52E+03 + 5.37E+03 + 4.87E+03 + 1.23E+05 + 4.50E+03
Std 2.32E+03 3.14E+03 1.65E+03 1.21E+03 1.61E+03 4.58E+05 2.64E+03

Total +/=/- 20/0/9 17/0/12 20/0/9 19/0/10 22/0/7 29/0/0

Table 5.7 shows the comparison at D = 30, where FOABC obtains the best

results on 10 functions. And it is also followed by NSABC. Note that the difficulty

of searching will increase when the size of dimensions augments and the swarm

132

5.3 Experiments on function optimization problems

size keeps the same. Accordingly, FOABC loses a bit of superiority in solving

the uni-modal functions. Nevertheless, the performance of FOABC on multi-

modal functions becomes better as it achieves the best results on 2 functions.

As for solving the hybrid functions, FOABC still possesses significant advantages

compared to the other methods. There are 6 out of 10 problems where FOABC

obtains the smallest errors. The results of the basic ABC algorithm and NSABC

has slightly superiorities on composition functions.

Furthermore, the Wilcoxon test results also justify the outstanding perfor-

mance of the proposed algorithm. More precisely, FOABC outperforms the basic

ABC on 20 out of 29 problems. And compared to NSABC, there are 17 functions

that FOABC obtains better solutions. FOABC performs better than iff-ABC

on 20 problems. Meanwhile, it exceeds MGABC and ILTD_ABC on 19 and 22

problems, respectively. Moreover, the sdABC algorithm fails to overcome the

proposed algorithm in this comparison.

Table 5.8 presents the comparison with D = 50, where FOABC manages to

maintain its advantages as it achieves the minimum errors on 14 functions. It

is interesting to note that this number is better than the previous cases. For

solving uni-modal problems, each of FOABC and MGABC performs the best on

1 uni-modal function. And the performance of FOABC algorithm on multi-modal

functions is similar to the previous dimension cases. Meanwhile, NSABC suffers

from the effects of increasing dimensions in solving multi-modal problems. In

addition, there are still 6 hybrid functions in f11-f20 that FOABC achieves the

best results. MGABC outperforms the others on 2 of these problems. Moreover,

FOABC has become more competitive in the composition functions, while the

performance of ABC and NSABC has declined when D = 50.

Considering the Wilcoxon test results, compared to the basic ABC and iff-

ABC algorithms, FOABC surpasses both of them on 17. And the number of prob-

lems that FOABC exceeds the NSABC and MGABC are both 18. ILTD_ABC

fails to outperform FOABC on 19 out of 29 functions. Moreover, sdABC is not

comparable to the proposed algorithm in this situation.

Furthermore, the Friedman tests are employed to fully evaluate the perfor-

mance of involved algorithms. The average rankings for D = 10, 30, and 50 are

presented in Figure 5.4. It can be observed that FOABC always owns the best

average ranking in all three cases. For 10-dimensional problems, iff-ABC is the

133

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.8: Comparison between FOABC and other ABC variants with D = 50

Functions ABC NSABC iff−ABC MGABC ILTD_ABC sdABC FOABCr=12,q=0.8

f1 Mean 1.85E+03 - 5.87E+03 - 1.11E+03 - 5.30E+02 - 6.79E+03 + 3.13E+10 + 6.42E+03
Std 1.91E+03 7.17E+03 1.23E+03 7.17E+02 1.10E+04 1.98E+10 6.87E+03

f3 Mean 2.07E+05 + 2.67E+05 + 2.61E+05 + 1.16E+05 + 1.18E+05 + 1.47E+05 + 1.15E+05
Std 3.23E+04 2.97E+04 2.23E+04 1.28E+04 9.03E+03 2.86E+04 1.74E+04

f4 Mean 4.06E+01 - 5.67E+01 - 3.33E+01 - 9.12E+01 - 4.54E+01 - 5.84E+03 + 1.19E+02
Std 1.33E+01 2.48E+01 9.37E+00 4.83E+01 2.16E+01 5.65E+03 6.27E+01

f5 Mean 1.98E+02 + 1.19E+02 + 2.01E+02 + 1.59E+02 + 2.19E+02 + 4.08E+02 + 1.03E+02
Std 1.69E+01 1.68E+01 1.98E+01 2.29E+01 4.84E+01 9.31E+01 1.95E+01

f6 Mean 5.20E-10 - 9.40E-13 - 1.44E-09 - 1.10E-13 - 2.90E-03 - 3.75E+01 + 5.50E-02
Std 3.95E-10 1.81E-13 1.25E-09 2.08E-14 1.13E-03 8.72E+00 6.02E-02

f7 Mean 2.13E+02 + 1.52E+02 - 2.09E+02 + 2.01E+02 + 3.40E+02 + 7.59E+02 + 1.78E+02
Std 1.90E+01 1.68E+01 1.79E+01 2.35E+01 1.14E+02 1.14E+02 2.01E+01

f8 Mean 1.96E+02 + 1.16E+02 + 2.00E+02 + 1.55E+02 + 1.86E+02 + 4.40E+02 + 1.06E+02
Std 2.17E+01 1.44E+01 2.66E+01 1.65E+01 3.13E+01 8.54E+01 1.59E+01

f9 Mean 4.52E+03 + 5.38E+02 + 4.40E+03 + 6.33E+02 + 3.09E+03 + 2.51E+04 + 2.96E+02
Std 1.49E+03 2.07E+02 1.18E+03 5.64E+02 2.53E+03 1.06E+04 2.68E+02

f10 Mean 4.29E+03 - 4.23E+03 - 4.16E+03 - 3.98E+03 - 4.23E+03 - 1.08E+04 + 4.50E+03
Std 3.46E+02 5.60E+02 3.74E+02 3.87E+02 8.69E+02 2.69E+03 2.69E+02

f11 Mean 7.17E+02 + 4.40E+03 + 9.19E+02 + 8.24E+02 + 1.67E+03 + 3.75E+03 + 7.12E+01
Std 5.26E+02 2.87E+03 7.47E+02 4.70E+02 5.91E+02 3.53E+03 2.33E+01

f12 Mean 3.40E+06 + 6.73E+06 + 2.70E+06 + 2.26E+06 + 1.69E+06 + 2.86E+09 + 4.26E+05
Std 1.30E+06 3.05E+06 1.13E+06 8.71E+05 5.34E+05 3.04E+09 2.87E+05

f13 Mean 4.46E+03 - 6.11E+03 - 2.01E+03 - 1.50E+03 - 2.76E+03 - 1.21E+08 + 8.38E+03
Std 2.17E+03 8.22E+03 1.69E+03 1.69E+03 3.82E+03 1.89E+08 9.85E+03

f14 Mean 6.22E+05 + 1.29E+06 + 7.31E+05 + 2.44E+06 + 9.57E+05 + 8.02E+04 + 4.45E+03
Std 5.16E+05 7.46E+05 5.04E+05 1.21E+06 5.85E+05 3.94E+05 3.95E+03

f15 Mean 6.64E+03 + 2.18E+04 + 8.08E+03 + 1.42E+04 + 1.45E+04 + 5.89E+08 + 5.38E+03
Std 3.86E+03 4.68E+04 5.70E+03 4.95E+03 6.74E+03 1.56E+09 5.54E+03

f16 Mean 1.25E+03 + 1.29E+03 + 1.25E+03 + 9.59E+02 - 9.20E+02 - 1.89E+03 + 1.02E+03
Std 2.33E+02 2.19E+02 1.75E+02 2.41E+02 2.53E+02 4.64E+02 2.46E+02

f17 Mean 8.71E+02 + 9.21E+02 + 8.92E+02 + 8.72E+02 + 8.82E+02 + 2.15E+03 + 6.05E+02
Std 2.02E+02 2.12E+02 1.61E+02 1.97E+02 2.07E+02 3.34E+03 1.89E+02

f18 Mean 1.03E+06 + 2.17E+06 + 8.36E+05 + 2.40E+06 + 1.27E+06 + 2.92E+06 + 9.10E+04
Std 5.53E+05 1.69E+06 5.06E+05 9.96E+05 5.62E+05 1.06E+07 6.00E+04

f19 Mean 9.14E+03 - 1.59E+04 + 6.38E+03 - 1.70E+04 + 1.98E+04 + 1.17E+05 + 1.52E+04
Std 4.92E+03 1.16E+04 3.44E+03 5.00E+03 1.15E+04 4.52E+05 1.27E+04

f20 Mean 7.45E+02 + 7.26E+02 + 6.94E+02 + 4.67E+02 - 5.61E+02 - 1.27E+03 + 5.65E+02
Std 1.44E+02 2.02E+02 1.54E+02 1.74E+02 2.40E+02 4.55E+02 2.45E+02

f21 Mean 4.04E+02 + 3.29E+02 + 4.09E+02 + 3.28E+02 + 3.41E+02 + 5.37E+02 + 3.09E+02
Std 4.87E+01 2.14E+01 2.48E+01 1.59E+01 2.37E+01 4.97E+01 1.47E+01

f22 Mean 4.76E+03 - 4.74E+03 - 4.67E+03 - 3.89E+03 - 4.47E+03 - 8.33E+03 + 5.17E+03
Std 1.02E+03 4.54E+02 1.30E+03 1.96E+03 2.27E+03 4.88E+03 4.45E+02

f23 Mean 6.48E+02 + 5.55E+02 + 6.55E+02 + 5.53E+02 + 5.69E+02 + 8.52E+02 + 5.43E+02
Std 3.77E+01 3.13E+01 2.89E+01 1.96E+01 1.86E+01 6.84E+01 1.83E+01

f24 Mean 9.60E+02 + 8.87E+02 + 1.03E+03 + 7.61E+02 + 8.14E+02 + 1.06E+03 + 6.16E+02
Std 1.49E+02 5.22E+01 6.92E+01 3.71E+01 3.85E+01 1.17E+02 1.98E+01

f25 Mean 5.12E+02 - 4.39E+02 - 4.94E+02 - 5.91E+02 + 5.59E+02 + 3.58E+03 + 5.45E+02
Std 1.73E+01 1.51E+01 2.32E+01 1.29E+01 2.27E+01 2.01E+03 3.44E+01

f26 Mean 1.87E+03 - 2.55E+03 + 1.31E+03 - 8.62E+02 - 1.80E+03 - 6.88E+03 + 2.34E+03
Std 1.56E+03 4.93E+02 1.46E+03 1.47E+03 1.25E+03 2.64E+03 1.88E+02

f27 Mean 6.43E+02 - 5.00E+02 - 6.52E+02 - 6.26E+02 - 5.98E+02 - 8.83E+02 + 6.68E+02
Std 4.10E+01 2.61E-04 3.62E+01 2.88E+01 2.45E+01 1.34E+02 6.80E+01

f28 Mean 4.83E+02 - 4.83E+02 - 4.74E+02 - 5.32E+02 + 5.00E+02 - 2.60E+03 + 5.06E+02
Std 1.26E+01 2.34E+01 1.26E+01 1.97E+01 1.94E+01 1.39E+03 2.34E+01

f29 Mean 1.01E+03 + 8.11E+02 + 1.08E+03 + 8.58E+02 + 6.89E+02 + 1.85E+03 + 6.62E+02
Std 1.48E+02 1.33E+02 2.26E+02 1.53E+02 1.91E+02 1.59E+03 1.64E+02

f30 Mean 7.24E+05 - 7.02E+03 - 7.13E+05 - 8.45E+05 - 8.81E+05 + 9.89E+06 + 8.47E+05
Std 5.09E+04 8.54E+03 5.18E+04 6.47E+04 1.14E+05 9.46E+06 2.54E+05

Total +/=/- 17/0/12 18/0/11 17/0/12 18/0/11 19/0/10 29/0/0

134

5.3 Experiments on function optimization problems

Fig. 5.4. Average rankings of ABC algorithms by Friedman test with D = 10, 30,
and 50

second-best followed by the basic ABC algorithm. When D = 30, NSABC and

MGABC have better performance than the other methods. And when D = 50,

MGABC becomes the second-best followed by iff-ABC. Therefore, FOABC has

outstanding and stable performance throughout the three cases.

5.3.3 Comparison with non-ABC algorithms

It is crucial to further compare FOABC with other FO-based algorithms and

improved versions of other meta-heuristics in order to completely evaluate its

efficacy. As presented in Table 5.9, five effective enhanced algorithms are involved

in the following comparisons. It is worth pointing out that the FODPSO, FOCS,

and FOFA algorithms were chosen because they also incorporate FOC in their

basic algorithms. In this case, by comparing FOABC with them, it is possible

to check whether the proposed manner of incorporating FOC into ABC is more

effective. And the algorithms LIPS and CLPSO are two excellent algorithms that

have been widely compared in various experiments. The tests are also conducted

on the CEC 2017 benchmarks with D = 10, 30, and 50.

135

Chap5/chapter5_figs/EPS//FriedABC2.eps

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.9: Parameter settings of FOABC and compared non-ABC algorithms

Algorithm Parameter setting

CLPSO (Liang et al., 2006) N = 40, c1 = 1.49445, c2 = 1.49445

FODPSO (Couceiro et al., 2012) N = 20, nswarms = 5, α = 0.6

LIPS (Qu et al., 2013) N = 50, weight = 0.729843788

FOCS (Yousri & Mirjalili, 2020) N = 30, pa = 0.25, r = 4, α = 0.4

FOFA (Mousavi & Alfi, 2018) N = 30, γ = 0.9, β0 = 1.8, α = 0.25, r = 4, ν = 0.7

FOABC SN = 50, limit = SN ·D, CR = 0.8, r = 8, q = 0.8

The comparison when D = 10 is presented in Table 5.10 where the superiority

of FOABC is obvious. The proposed algorithm achieves the best performance on

17 out of 29 functions. The errors obtained by FOABC on uni-modal functions

are much smaller than that of other involved algorithms. As for the multi-modal

problems, FOABC performs the best on 4 problems among f4−f10. Compared to

the CLPSO, there are 2 multi-modal functions that FOABC fails to outperform

CLPSO while FOCS has the same comparing results. LIPS has a clear advantage

on f9 compared to the others. And FOABC performs better than FOFA on all

the multi-modal problems.

Moreover, the advantage of FOABC can also be found considering the follow-

ing hybrid functions f11 − f20. Except that CLPSO outperforms FOABC on f16

and f20, all the competitors fail to surpass the proposed algorithm. In solving the

rest composition problems, all the involved algorithms obtain relatively similar

results. More precisely, algorithms CLPSO, FODPSO, and FOABC all achieve

the best on 3 problems. Meanwhile, LIPS outperforms the others on 1 problem.

Considering the Wilcoxon test results, there are 18 of 29 functions that FOABC

performs better than CLPSO. And it surpasses the LIPS algorithm on 23 out of

29 problems. Moreover, although FOFA and FOABC get close results, FOABC

still outperforms it in terms of average values. Meanwhile, FODPSO achieves

smaller errors than FOABC on 7 problems and fails on the rest part. In compar-

ison with algorithms FOFA and FOCS, the proposed algorithm obtains better

solutions on 29 and 23 problems, respectively.

The comparison results of D = 30 and 50 are shown in Table 5.11 - Table 5.12,

respectively. In Table 5.11, the advantages of algorithms CLPSO and FOABC

are evident. CLPSO obtains the smallest errors on 9 functions while FOABC has

136

5.3 Experiments on function optimization problems

Table 5.10: Comparison between FOABC and other improved meta-heuristic
algorithms with D = 10

Functions CLPSO LIPS FODPSO FOFA FOCS FOABCr=12,q=0.8

f1 Mean 1.52E+02 + 4.90E+02 + 3.43E+01 + 2.95E+10 + 5.44E+01 + 4.33E-09
Std 1.16E+02 7.65E+02 5.59E+01 9.68E+07 1.12E+02 1.50E-08

f3 Mean 2.97E+00 + 6.10E-07 + 4.67E-10 + 3.13E+05 + 2.86E-02 + 1.71E-14
Std 3.02E+00 1.99E-06 7.45E-10 1.37E+05 3.62E-02 3.04E-14

f4 Mean 2.58E+00 + 3.18E+00 + 6.02E-01 - 5.38E+03 + 4.15E-01 - 8.01E-01
Std 1.33E+00 1.55E+00 8.01E-01 3.30E+01 2.03E-01 4.66E-01

f5 Mean 5.29E+00 + 6.60E+00 + 3.11E+01 + 2.15E+02 + 1.35E+01 + 4.68E+00
Std 1.41E+00 2.59E+00 7.73E+00 2.88E+00 3.46E+00 1.50E+00

f6 Mean 1.69E-10 - 8.14E-02 + 6.59E+00 + 1.21E+02 + 3.53E-02 + 3.78E-07
Std 1.22E-10 2.21E-01 4.56E+00 4.28E+00 2.18E-02 2.07E-06

f7 Mean 1.82E+01 + 1.42E+01 + 2.27E+01 + 1.95E+02 + 2.87E+01 + 1.40E+01
Std 2.10E+00 1.21E+00 3.97E+00 7.51E+00 5.16E+00 1.51E+00

f8 Mean 5.60E+00 + 6.53E+00 + 1.17E+01 + 1.35E+02 + 1.32E+01 + 5.21E+00
Std 1.12E+00 2.69E+00 3.98E+00 2.43E+00 3.60E+00 1.88E+00

f9 Mean 1.38E-08 - 6.33E-13 - 6.35E+00 + 1.78E+03 + 1.09E-02 - 1.51E-02
Std 1.72E-08 4.14E-13 1.96E+01 2.41E+02 2.87E-02 8.29E-02

f10 Mean 2.30E+02 + 4.66E+02 + 6.14E+02 + 4.94E+03 + 4.51E+02 + 1.87E+02
Std 9.12E+01 1.39E+02 1.81E+02 4.64E+01 1.45E+02 9.31E+01

f11 Mean 2.46E+00 + 1.56E+01 + 1.36E+01 + 5.89E+07 + 4.78E+00 + 1.13E+00
Std 9.22E-01 1.13E+01 5.37E+00 1.73E+06 1.23E+00 7.72E-01

f12 Mean 1.84E+04 + 4.08E+04 + 1.59E+03 + 5.57E+09 + 8.93E+02 + 6.74E+01
Std 1.11E+04 1.30E+05 7.31E+02 4.68E+07 2.77E+02 1.33E+02

f13 Mean 8.40E+01 + 9.16E+02 + 6.73E+02 + 2.74E+09 + 1.25E+01 + 4.78E+00
Std 1.11E+02 1.77E+03 5.32E+02 2.32E+07 3.10E+00 1.99E+00

f14 Mean 4.56E+01 + 4.27E+02 + 7.83E+01 + 2.12E+09 + 1.18E+01 + 1.65E+00
Std 4.04E+01 7.56E+02 4.59E+01 2.31E+07 4.65E+00 1.13E+00

f15 Mean 2.31E+01 + 4.30E+02 + 1.00E+02 + 6.73E+08 + 2.92E+00 + 5.95E-01
Std 2.15E+01 7.95E+02 8.28E+01 2.65E+07 9.28E-01 8.15E-01

f16 Mean 1.71E+00 - 6.73E+01 + 1.22E+02 + 1.77E+03 + 5.83E+00 + 3.12E+00
Std 5.85E-01 8.66E+01 8.41E+01 2.09E+01 7.94E+00 4.70E+00

f17 Mean 4.82E+00 + 3.68E+01 + 2.97E+01 + 1.46E+03 + 2.75E+01 + 2.72E+00
Std 3.06E+00 1.42E+01 8.34E+00 1.91E+01 2.89E+00 5.13E+00

f18 Mean 5.14E+02 + 1.99E+03 + 1.80E+03 + 1.41E+10 + 1.30E+01 + 3.74E-01
Std 4.52E+02 1.75E+03 1.82E+03 8.86E+07 4.97E+00 4.50E-01

f19 Mean 1.02E+01 + 1.32E+03 + 1.97E+02 + 1.19E+10 + 2.39E+00 + 5.49E-02
Std 9.33E+00 2.22E+03 2.66E+02 9.92E+07 5.50E-01 1.82E-01

f20 Mean 5.51E-02 - 3.10E+01 + 4.28E+01 + 1.04E+03 + 1.14E+01 + 4.44E-01
Std 1.41E-01 1.71E+01 1.75E+01 2.79E+01 5.97E+00 5.51E-01

f21 Mean 1.07E+02 - 1.89E+02 + 1.00E+02 - 7.12E+02 + 1.67E+02 + 1.58E+02
Std 4.84E+00 4.08E+01 1.26E+00 5.29E+00 5.71E+01 5.46E+01

f22 Mean 7.71E+01 - 9.55E+01 - 9.24E+01 - 2.98E+03 + 8.56E+01 - 9.61E+01
Std 2.31E+01 1.87E+01 1.95E+01 3.75E+01 3.17E+01 1.76E+01

f23 Mean 3.06E+02 - 3.03E+02 - 3.51E+02 + 1.94E+03 + 3.13E+02 + 3.09E+02
Std 5.09E+00 3.89E+01 1.24E+01 2.61E+01 3.51E+00 3.17E+00

f24 Mean 1.50E+02 - 2.54E+02 - 1.34E+02 - 9.83E+02 + 3.29E+02 - 3.39E+02
Std 6.09E+01 1.05E+02 1.00E+02 2.73E+00 6.11E+01 2.54E+00

f25 Mean 3.73E+02 - 3.91E+02 - 3.88E+02 - 2.28E+03 + 4.04E+02 - 4.12E+02
Std 5.94E+01 8.45E+01 5.44E+01 1.48E+01 1.59E+01 2.19E+01

f26 Mean 1.62E+02 - 2.65E+02 - 1.41E+02 - 3.09E+03 + 3.00E+02 - 3.09E+02
Std 1.08E+02 1.96E+02 1.09E+02 1.18E+01 2.81E-06 2.56E+01

f27 Mean 3.92E+02 + 4.04E+02 + 4.17E+02 + 2.26E+03 + 3.90E+02 + 3.90E+02
Std 1.70E+00 5.89E+00 1.67E+01 2.12E+01 2.75E+00 1.34E+00

f28 Mean 2.68E+02 - 4.35E+02 + 3.16E+02 - 1.69E+03 + 4.04E+02 + 3.45E+02
Std 1.02E+02 1.42E+02 4.33E+01 7.22E+00 1.53E+02 1.01E+02

f29 Mean 2.59E+02 + 2.88E+02 + 2.91E+02 + 4.06E+04 + 2.67E+02 + 2.35E+02
Std 8.73E+00 2.40E+01 1.45E+01 1.24E+03 2.75E+01 3.56E+00

f30 Mean 9.17E+03 + 1.44E+05 + 2.66E+03 + 4.88E+08 + 1.26E+05 + 7.41E+02
Std 7.47E+03 6.07E+05 8.45E+02 5.08E+06 2.81E+05 2.79E+02

Total +/=/- 18/0/11 23/0/6 22/0/7 29/0/0 23/0/6

137

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.11: Comparison between FOABC and other improved meta-heuristic
algorithms with D = 30

Functions CLPSO LIPS FODPSO FOFA FOCS FOABCr=12,q=0.8

f1 Mean 1.49E+01 - 3.78E+02 - 4.87E+06 + 8.43E+10 + 1.00E+10 + 1.50E+03
Std 2.89E+01 9.29E+02 6.56E+06 1.74E+08 0.00E+00 2.35E+03

f3 Mean 1.92E+04 + 2.06E+04 + 8.07E+03 - 4.15E+08 + 3.11E+04 + 1.10E+04
Std 5.35E+03 8.02E+03 2.09E+03 1.46E+08 9.26E+03 5.59E+03

f4 Mean 5.56E+01 - 1.37E+02 + 9.95E+01 + 3.46E+04 + 7.40E+01 - 8.71E+01
Std 2.28E+01 6.22E+01 2.42E+01 1.29E+02 1.43E+01 1.76E+01

f5 Mean 4.21E+01 + 5.50E+01 + 1.60E+02 + 6.16E+02 + 1.10E+02 + 3.73E+01
Std 7.89E+00 1.17E+01 2.10E+01 3.15E+00 1.74E+01 9.07E+00

f6 Mean 2.27E-13 - 7.57E+00 + 4.41E+01 + 1.41E+02 + 1.49E-01 + 3.55E-03
Std 4.22E-14 3.58E+00 3.59E+00 1.71E+00 1.41E-01 1.18E-02

f7 Mean 8.13E+01 + 9.33E+01 + 1.99E+02 + 9.18E+02 + 1.68E+02 + 7.84E+01
Std 7.91E+00 1.80E+01 3.69E+01 1.02E+01 1.91E+01 9.53E+00

f8 Mean 5.18E+01 + 6.59E+01 + 1.08E+02 + 5.11E+02 + 1.05E+02 + 4.15E+01
Std 7.18E+00 1.71E+01 1.60E+01 2.29E+00 1.55E+01 1.01E+01

f9 Mean 3.99E+01 + 3.79E+02 + 2.43E+03 + 2.72E+04 + 1.86E+02 + 6.11E+00
Std 2.06E+01 2.84E+02 3.89E+02 1.47E+03 1.57E+02 7.86E+00

f10 Mean 2.21E+03 - 2.70E+03 + 3.17E+03 + 1.01E+04 + 4.26E+03 + 2.30E+03
Std 2.55E+02 4.28E+02 3.96E+02 7.53E+01 6.91E+02 2.58E+02

f11 Mean 6.01E+01 + 1.85E+02 + 8.78E+01 + 5.76E+08 + 1.22E+02 + 2.71E+01
Std 2.08E+01 1.27E+02 1.77E+01 1.18E+07 2.96E+01 2.19E+01

f12 Mean 3.69E+05 + 1.46E+06 + 4.81E+04 + 2.93E+10 + 3.00E+09 + 2.77E+04
Std 1.78E+05 4.56E+06 2.66E+04 5.81E+07 4.66E+09 1.54E+04

f13 Mean 3.16E+02 - 2.77E+03 - 7.15E+03 - 4.38E+10 + 2.08E+03 - 1.11E+04
Std 2.99E+02 2.40E+03 2.31E+03 8.06E+07 9.61E+02 1.33E+04

f14 Mean 3.61E+04 + 1.02E+04 + 1.90E+03 + 1.21E+09 + 8.02E+01 + 3.93E+01
Std 2.95E+04 8.23E+03 2.16E+03 1.21E+07 1.05E+01 2.55E+01

f15 Mean 9.76E+01 - 1.52E+03 - 9.48E+02 - 6.34E+09 + 1.38E+02 - 1.59E+03
Std 4.87E+01 1.90E+03 4.68E+02 5.64E+07 3.36E+01 3.22E+03

f16 Mean 5.40E+02 + 6.85E+02 + 8.62E+02 + 2.54E+04 + 8.83E+02 + 4.46E+02
Std 1.56E+02 1.78E+02 1.79E+02 1.27E+02 1.97E+02 2.00E+02

f17 Mean 1.56E+02 + 2.55E+02 + 3.51E+02 + 2.72E+05 + 2.41E+02 + 1.33E+02
Std 6.94E+01 9.06E+01 1.46E+02 3.72E+03 6.79E+01 1.18E+02

f18 Mean 1.39E+05 + 1.67E+05 + 3.92E+04 + 4.63E+09 + 1.17E+04 + 9.43E+03
Std 7.49E+04 1.02E+05 1.71E+04 3.86E+07 6.55E+03 7.41E+03

f19 Mean 5.09E+01 - 1.11E+03 + 2.91E+02 - 6.51E+09 + 4.68E+01 - 4.48E+02
Std 3.69E+01 1.41E+03 2.23E+02 4.46E+07 1.17E+01 1.81E+03

f20 Mean 2.00E+02 + 3.01E+02 + 3.65E+02 + 3.41E+03 + 2.28E+02 + 1.85E+02
Std 5.97E+01 9.96E+01 8.26E+01 2.23E+01 1.03E+02 1.23E+02

f21 Mean 2.28E+02 - 2.63E+02 + 3.54E+02 + 1.12E+03 + 3.12E+02 + 2.42E+02
Std 4.64E+01 1.55E+01 2.47E+01 2.75E+00 2.06E+01 8.45E+00

f22 Mean 2.20E+02 - 1.00E+02 - 1.35E+02 - 1.09E+04 + 3.04E+03 + 8.48E+02
Std 4.82E+02 1.01E+00 1.79E+01 5.57E+01 2.20E+03 1.18E+03

f23 Mean 3.98E+02 + 4.41E+02 + 7.32E+02 + 5.64E+03 + 4.76E+02 + 3.94E+02
Std 1.07E+01 2.12E+01 8.18E+01 3.47E+01 1.68E+01 8.04E+00

f24 Mean 4.73E+02 + 4.96E+02 + 6.82E+02 + 2.79E+03 + 5.61E+02 + 4.72E+02
Std 9.81E+01 3.19E+01 1.40E+02 2.34E+00 3.35E+01 9.01E+00

f25 Mean 3.87E+02 - 4.26E+02 + 4.07E+02 + 6.65E+03 + 3.87E+02 - 3.87E+02
Std 1.04E+00 2.52E+01 1.01E+01 3.42E+01 9.97E-01 1.45E+00

f26 Mean 7.67E+02 - 1.28E+03 - 1.00E+03 - 1.35E+04 + 2.41E+03 + 1.49E+03
Std 5.18E+02 8.61E+02 1.09E+03 3.29E+01 4.96E+02 1.40E+02

f27 Mean 5.12E+02 + 6.07E+02 + 6.00E+02 + 7.79E+03 + 5.20E+02 + 5.11E+02
Std 4.60E+00 2.10E+01 2.82E+01 4.39E+01 1.81E+01 7.45E+00

f28 Mean 4.22E+02 + 4.73E+02 + 4.54E+02 + 7.39E+03 + 3.76E+02 + 3.65E+02
Std 8.60E+00 8.76E+01 2.24E+01 2.02E+01 5.46E+01 5.86E+01

f29 Mean 5.52E+02 + 9.44E+02 + 1.01E+03 + 2.23E+05 + 9.01E+02 + 4.95E+02
Std 6.01E+01 1.20E+02 1.34E+02 5.13E+03 1.46E+02 7.33E+01

f30 Mean 6.19E+03 + 8.33E+04 + 8.93E+03 + 1.02E+10 + 1.63E+04 + 4.50E+03
Std 1.84E+03 1.27E+05 4.31E+03 3.03E+07 6.97E+03 2.64E+03

Total +/=/- 18/0/11 24/0/5 23/0/6 29/0/0 24/0/5

138

5.3 Experiments on function optimization problems

17 out of 29. Moreover, the advantage of FOABC is significant in solving multi-

modal and composition problems. According to the Wilcoxon test results, there

are 18 functions that FOABC exceeds CLPSO. In addition, FOABC outperforms

both LIPS and FOCS on 24 problems, while it surpasses FODPSO on 22 out of

29 functions. And FOFA fails to exceed FOABC on the concerned benchmarks.

As shown in Table 5.12, there are 12 functions where FOABC obtains the best

results while CLPSO achieves the best on 10 functions. FOCS algorithm manages

to obtain the best on 5 problems. It can be found that the proposed algorithm

is able to find competitive solutions on multi-modal, hybrid and composition

functions. Considering the results of Wilcoxon tests, the CLPSO obtains better

results than FOABC does on 15 out of 29. LIPS fails to overcome FOABC on 23

functions. Compared with other FO-based algorithms, the proposed algorithm

still has a distinct superiority at D = 50. More precisely, FOABC outperforms

FODPSO on 25 functions while it surpasses FOCS on 23 problems. Additionally,

FOABC outperforms FOFA in terms of average values across the board.

Fig. 5.5. Average rankings of non-ABC algorithms and FOABC by Friedman
test with D = 10, 30, and 50

A more visual evaluation can be obtained from the results of the Friedman

tests. The average rankings are shown in Figure 5.5. It can be observed that

FOABC has achieved the best rankings in cases of D = 10 and 30, while its

ranking is very close to that of CLPSO when D = 50. In addition, the FOCS

stays in the third position in the first two cases but has been overtaken by LIPS

when D = 50. And the rankings of FOFA are always at the back of the compar-

isons. Therefore, similar conclusion can be derived from the Friedman tests, the

139

Chap5/chapter5_figs/EPS//Friednon2.eps

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.12: Comparison between FOABC and other improved meta-heuristic
algorithms with D = 50

Functions CLPSO LIPS FODPSO FOFA FOCS FOABCr=12,q=0.8

f1 Mean 2.89E+01 - 4.86E+02 - 1.01E+09 + 1.35E+11 + 1.00E+10 + 6.42E+03
Std 4.32E+01 1.03E+03 7.67E+08 1.36E+08 0.00E+00 6.87E+03

f3 Mean 7.05E+04 - 1.04E+05 - 4.60E+04 - 1.77E+14 + 1.06E+05 - 1.15E+05
Std 1.26E+04 2.08E+04 7.72E+03 3.78E+12 2.63E+04 1.74E+04

f4 Mean 8.21E+01 - 6.13E+02 + 4.55E+02 + 5.66E+04 + 7.92E+01 - 1.19E+02
Std 2.61E+01 2.39E+02 8.02E+01 9.49E+01 4.13E+01 6.27E+01

f5 Mean 1.14E+02 + 1.68E+02 + 2.69E+02 + 8.64E+02 + 2.50E+02 + 1.03E+02
Std 1.38E+01 2.75E+01 2.41E+01 3.07E+00 2.36E+01 1.95E+01

f6 Mean 3.07E-13 - 2.13E+01 + 5.24E+01 + 1.45E+02 + 6.43E-01 + 5.50E-02
Std 9.03E-14 5.83E+00 3.88E+00 8.94E-01 4.32E-01 6.02E-02

f7 Mean 1.65E+02 - 3.49E+02 + 4.86E+02 + 1.48E+03 + 3.91E+02 + 1.78E+02
Std 1.09E+01 7.47E+01 5.85E+01 1.42E+01 4.06E+01 2.01E+01

f8 Mean 1.13E+02 + 1.62E+02 + 2.84E+02 + 9.05E+02 + 2.62E+02 + 1.06E+02
Std 1.43E+01 3.15E+01 2.36E+01 2.99E+00 2.62E+01 1.59E+01

f9 Mean 1.01E+03 + 3.40E+03 + 8.75E+03 + 6.73E+04 + 2.02E+03 + 2.96E+02
Std 3.25E+02 1.18E+03 8.12E+02 3.25E+03 1.28E+03 2.68E+02

f10 Mean 3.92E+03 - 5.22E+03 + 5.62E+03 + 2.06E+04 + 9.24E+03 + 4.50E+03
Std 3.43E+02 4.38E+02 5.66E+02 8.72E+01 7.63E+02 2.69E+02

f11 Mean 1.30E+02 + 1.53E+03 + 2.34E+02 + 1.24E+06 + 2.89E+02 + 7.12E+01
Std 3.72E+01 1.45E+03 4.26E+01 1.88E+05 5.40E+01 2.33E+01

f12 Mean 3.79E+06 + 6.93E+06 + 2.07E+07 + 1.43E+11 + 1.00E+10 + 4.26E+05
Std 1.56E+06 2.52E+07 1.56E+07 1.93E+08 0.00E+00 2.87E+05

f13 Mean 4.16E+02 - 6.78E+03 - 1.98E+04 + 1.13E+11 + 1.00E+10 + 8.38E+03
Std 2.20E+02 4.79E+03 8.22E+03 1.46E+08 0.00E+00 9.85E+03

f14 Mean 3.93E+05 + 8.90E+04 + 9.92E+03 + 1.45E+09 + 2.86E+02 - 4.45E+03
Std 2.37E+05 5.12E+04 6.31E+03 4.99E+06 4.84E+01 3.95E+03

f15 Mean 1.82E+02 - 1.49E+03 - 4.29E+03 - 2.38E+10 + 3.33E+08 + 5.38E+03
Std 1.32E+02 1.17E+03 1.71E+03 6.80E+07 1.83E+09 5.54E+03

f16 Mean 1.18E+03 + 1.49E+03 + 1.45E+03 + 2.29E+04 + 1.99E+03 + 1.02E+03
Std 2.08E+02 3.08E+02 1.94E+02 5.29E+01 2.52E+02 2.46E+02

f17 Mean 7.95E+02 + 1.12E+03 + 1.15E+03 + 1.69E+05 + 1.28E+03 + 6.05E+02
Std 1.27E+02 2.55E+02 1.41E+02 2.67E+03 1.81E+02 1.89E+02

f18 Mean 8.29E+05 + 1.03E+06 + 7.73E+04 - 2.08E+09 + 2.07E+05 + 9.10E+04
Std 4.05E+05 1.19E+06 2.45E+04 1.67E+07 1.51E+05 6.00E+04

f19 Mean 3.14E+02 - 2.09E+03 - 5.08E+03 - 1.39E+10 + 1.46E+02 - 1.52E+04
Std 3.66E+02 2.97E+03 3.13E+03 5.10E+07 2.61E+01 1.27E+04

f20 Mean 6.12E+02 + 6.67E+02 + 8.83E+02 + 3.39E+03 + 1.06E+03 + 5.65E+02
Std 1.66E+02 1.67E+02 1.69E+02 2.95E+01 2.09E+02 2.45E+02

f21 Mean 3.23E+02 + 3.61E+02 + 5.38E+02 + 2.24E+03 + 4.57E+02 + 3.09E+02
Std 1.06E+01 2.66E+01 3.50E+01 5.01E+00 2.49E+01 1.47E+01

f22 Mean 4.13E+03 - 4.97E+03 - 6.79E+03 + 1.89E+04 + 9.29E+03 + 5.17E+03
Std 1.57E+03 2.05E+03 5.94E+02 5.49E+01 1.31E+03 4.45E+02

f23 Mean 5.66E+02 + 6.96E+02 + 1.28E+03 + 7.30E+03 + 7.48E+02 + 5.43E+02
Std 1.15E+01 6.43E+01 1.25E+02 2.04E+01 6.19E+01 1.83E+01

f24 Mean 7.64E+02 + 7.71E+02 + 1.14E+03 + 4.45E+03 + 8.44E+02 + 6.16E+02
Std 4.07E+01 8.53E+01 8.22E+01 2.62E+00 7.81E+01 1.98E+01

f25 Mean 5.42E+02 - 8.64E+02 + 7.61E+02 + 1.75E+04 + 5.28E+02 - 5.45E+02
Std 1.57E+01 1.93E+02 7.99E+01 3.34E+01 3.45E+01 3.44E+01

f26 Mean 2.11E+03 - 3.64E+03 + 2.41E+03 + 1.76E+04 + 4.62E+03 + 2.34E+03
Std 7.20E+02 4.53E+02 7.33E+02 3.71E+01 6.03E+02 1.88E+02

f27 Mean 6.38E+02 - 1.13E+03 + 1.16E+03 + 1.64E+04 + 8.15E+02 + 6.68E+02
Std 2.70E+01 8.40E+01 1.73E+02 5.25E+01 1.63E+02 6.80E+01

f28 Mean 5.28E+02 + 1.26E+03 + 9.42E+02 + 1.74E+04 + 4.79E+02 - 5.06E+02
Std 1.54E+01 2.71E+02 1.53E+02 2.54E+01 2.45E+01 2.34E+01

f29 Mean 7.90E+02 + 1.93E+03 + 1.96E+03 + 6.60E+06 + 1.80E+03 + 6.62E+02
Std 1.38E+02 3.21E+02 2.39E+02 6.91E+04 3.07E+02 1.64E+02

f30 Mean 7.03E+05 - 3.38E+07 + 1.21E+07 + 2.49E+10 + 2.19E+06 + 8.47E+05
Std 5.73E+04 1.46E+07 2.32E+06 5.65E+07 5.77E+05 2.54E+05

Total +/=/- 15/0/14 23/0/6 25/0/4 29/0/0 23/0/6

140

5.3 Experiments on function optimization problems

performance of FOABC is very competitive compared to the enhanced variants of

other meta-heuristic algorithms, particularly in low-dimensional problems. When

compared to other FO-based algorithms, it can also be seen that FOABC per-

forms better in terms of solution accuracy. In this case, the superior efficacy of

the proposed FO-based improvement strategy can be validated.

5.3.4 Effectiveness of the proposed strategies

In this part, the effectiveness of each proposed improvement is tested and ana-

lyzed. Hence, two variants of FOABC are constructed, namely FOABCDE and

FOABCFO. The employed bee phase of FOABCDE adopts the DE-based search

strategy, i.e., Eq.(5.7), with scale factors following Lévy distribution. And the rest

of FOABCDE remains the same as the standard ABC algorithm. Moreover, in or-

der to verify the efficacy of FOC in aiding the search process of ABC, FOABCFO

only uses the FO-based solution search equation. More precisely, the proposed

Eq.(5.17) is utilized in its onlooker bee phase while the rest of the variant is

consistent with the basic one.

These variants are compared with the standard ABC aiming at verifying the

effectiveness of the proposed strategies. Experimental results on the CEC 2017

benchmarks with D = 50 are presented in Table 5.13. The best results of each

function are highlighted in boldface. And the results of the Wilcoxon and Fried-

man tests are given at the bottom of the table. In the Wilcoxon tests, these two

variants are compared to the standard ABC and the final FOABC, respectively.

In Table 5.13, the variant FOABCDE and the basic ABC are first observed

and compared. It can be noticed that FOABCDE has significant improvements in

functions f11, f14, f18, and f29. Meanwhile, the advantage of FOABCDE is verified

by the Wilcoxon test results between it and the basic ABC. FOABCDE variant

obtains smaller errors than ABC does on 18 out of 29 problems. In this case, the

effectiveness of utilizing improved search equations with Lévy-based scale factors

can be validated.

141

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

Table 5.13: Effectiveness of each modification of FOABC on benchmarks with
D = 50

Functions ABC FOABCDE FOABCFO FOABCr=12,q=0.8

Mean Std Mean Std Mean Std Mean Std

f1 1.56E+03 1.10E+03 6.67E+03 7.10E+03 1.51E+04 4.35E+03 6.42E+03 6.87E+03
f3 2.14E+05 3.60E+04 1.12E+05 2.20E+04 2.12E+05 2.93E+04 1.15E+05 1.74E+04
f4 4.20E+01 1.51E+01 9.83E+01 5.59E+01 3.37E+01 1.22E+01 1.19E+02 6.27E+01
f5 1.98E+02 1.95E+01 1.10E+02 1.58E+01 1.80E+02 1.72E+01 1.03E+02 1.95E+01

f6 7.59E-10 5.36E-10 2.84E-01 3.44E-01 2.66E-04 4.96E-05 5.50E-02 6.02E-02
f7 2.11E+02 1.60E+01 1.96E+02 3.67E+01 1.98E+02 1.51E+01 1.78E+02 2.01E+01

f8 2.04E+02 2.13E+01 1.07E+02 1.92E+01 1.84E+02 2.19E+01 1.06E+02 1.59E+01

f9 5.26E+03 1.24E+03 4.35E+02 4.43E+02 4.52E+03 1.63E+03 2.96E+02 2.68E+02

f10 4.09E+03 3.99E+02 4.59E+03 3.63E+02 4.01E+03 2.99E+02 4.50E+03 2.69E+02
f11 7.92E+02 9.93E+02 7.78E+01 2.29E+01 5.63E+02 4.40E+02 7.12E+01 2.33E+01

f12 3.58E+06 1.23E+06 1.77E+05 1.30E+05 3.48E+06 1.34E+06 4.26E+05 2.87E+05
f13 5.21E+03 3.77E+03 6.45E+03 8.09E+03 1.14E+04 4.68E+03 8.38E+03 9.85E+03
f14 6.81E+05 4.74E+05 3.40E+03 3.75E+03 5.98E+05 3.71E+05 4.45E+03 3.95E+03
f15 7.03E+03 4.93E+03 8.10E+03 9.14E+03 9.59E+03 4.67E+03 5.38E+03 5.54E+03

f16 1.28E+03 1.77E+02 1.06E+03 2.89E+02 1.22E+03 2.77E+02 1.02E+03 2.46E+02

f17 8.82E+02 1.65E+02 6.92E+02 2.14E+02 8.01E+02 1.51E+02 6.05E+02 1.89E+02

f18 1.01E+06 5.77E+05 9.84E+04 7.13E+04 9.20E+05 4.85E+05 9.10E+04 6.00E+04

f19 8.90E+03 4.35E+03 9.54E+03 9.91E+03 9.53E+03 4.06E+03 1.52E+04 1.27E+04
f20 7.44E+02 1.27E+02 5.64E+02 2.15E+02 7.59E+02 1.45E+02 5.65E+02 2.45E+02
f21 4.05E+02 4.75E+01 3.08E+02 1.73E+01 3.98E+02 1.98E+01 3.09E+02 1.47E+01
f22 5.19E+03 3.68E+02 5.17E+03 1.03E+03 4.86E+03 9.54E+02 5.17E+03 4.45E+02
f23 6.53E+02 5.07E+01 5.46E+02 2.79E+01 6.46E+02 3.77E+01 5.43E+02 1.83E+01

f24 1.02E+03 5.98E+01 6.19E+02 2.85E+01 9.83E+02 5.72E+01 6.16E+02 1.98E+01

f25 5.12E+02 1.84E+01 5.43E+02 3.67E+01 5.07E+02 1.73E+01 5.45E+02 3.44E+01
f26 1.39E+03 1.47E+03 2.44E+03 2.12E+02 1.73E+03 1.50E+03 2.34E+03 1.88E+02
f27 6.56E+02 2.16E+01 6.82E+02 7.66E+01 6.45E+02 3.21E+01 6.68E+02 6.80E+01
f28 4.87E+02 1.29E+01 5.03E+02 1.25E+01 4.82E+02 1.33E+01 5.06E+02 2.34E+01
f29 1.08E+03 1.49E+02 7.53E+02 1.59E+02 9.91E+02 1.25E+02 6.62E+02 1.64E+02

f30 7.51E+05 6.66E+04 7.14E+05 1.13E+05 7.14E+05 4.57E+04 8.47E+05 2.54E+05

Wilcoxon (+/=/-)
v.s. ABC 18/0/11 22/0/7

v.s. FOABC 12/0/17 10/0/19

Friedman 3 2.31 2.55 2.14

Secondly, in order to test the effectiveness of the embedding of FOC, the vari-

ant FOABCFO is compared with ABC algorithm. It can be found that, FOABCFO

achieves better results on 22 benchmarks. Hence, the algorithm’s performance

can be improved by using FOC in the onlooker bee phase.

Furthermore, these two versions are compared with the final FOABC algo-

rithm as well. From the Wilcoxon test results, these two variants can be found to

be better than the basic ABC but less effective than the final version we proposed.

FOABCDE is unable to outperform FOABC on 17 functions, while FOABCFO

also fails on 19 benchmarks. And a similar conclusion can be drawn from the

142

5.3 Experiments on function optimization problems

number of best results marked in boldface.

According to the average rankings given by the Friedman test, the final

FOABC obtains the best ranking. Meanwhile, the rankings of FOABCDE and

FOABCDE are both better than those of ABC. In this case, the effectiveness of

each proposed strategy can be proved. Moreover, it can be concluded that these

modifications perform better when they are used cooperatively than when they

are used singly.

5.3.5 Convergence behavior analysis

In this part, the convergence rates of involved ABC algorithms are also compared

together by plotting their convergence processes of six representative benchmark

functions as shown in Figure 5.6. Note that, the values of log(f) is considered

since the objective function values are too large to plot in the earlier stage of

searching process.

In Figure 5.6, (a) and (b) present the convergence curves of ABC algorithms

on two uni-modal functions. It can be found that FOABC is able to reach the

best solution precision and its convergence rate is competitive to other methods.

Similar conclusion can be obtained from the figure (c) of the multi-modal function

f10. Although iff-ABC and ILTD_ABC converge faster in the early stage, they

fail to determine a more precise solution. As for the hybrid and composition

functions, the solutions found by most ABC algorithms are close to each other.

It is obvious that ILTD_ABC and FOABC converge more rapidly than other

competitors. Therefore, in terms of solution accuracy, the FOABC algorithm has

outstanding performance, especially in solving uni-modal and hybrid functions.

And its convergence rate is very competitive compared to other ABC variants.

143

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

(a) f1 (b) f3

(c) f10 (d) f13

(e) f16 (f) f29

Fig. 5.6. The convergence performance of FOABC and compared ABC algo-
rithms 144

Chap5/chapter5_figs/EPS//f1_FO.eps
Chap5/chapter5_figs/EPS//f3_FO.eps
Chap5/chapter5_figs/EPS//f10_FO.eps
Chap5/chapter5_figs/EPS//f13_FO.eps
Chap5/chapter5_figs/EPS//f16_FO.eps
Chap5/chapter5_figs/EPS//f29_FO.eps

5.4 Conclusion

5.4 Conclusion

With the purpose of enhancing the performance of ABC algorithm, a new fractional-

order ABC algorithm (FOABC for short) is proposed in this chapter. Firstly, a

DE-based search strategy is used in the employed bee phase to keep a nice bal-

ance between the exploration and exploitation. Secondly, in order to improve the

local search ability, the FOC is incorporated into the search strategy of onlooker

bees. In this way, the memory feature of FOC enriches the amount of available

information for onlookers. Precisely, the information of the last several steps is

considered when generating new solutions. Moreover, the random number used

in the search equations is drawn from Lévy distribution in order to increase the

randomness of the searching process.

Experiments are carried out to study the sensitivity of FOABC with respect

to the parameters of FOC. Groups of experiments are conducted on CEC 2017

benchmark functions to evaluate the performance of FOABC from different per-

spectives. In the first two groups, FOABC is compared with six ABC algorithms

and five other enhanced meta-heuristics, respectively. According to the results,

FOABC outperforms the other ABC algorithms in terms of solution accuracy

and robustness. Meanwhile, it also performs outstandingly in the second group

of comparisons. Thirdly, redundancy elimination experiments are done to verify

the effectiveness of each proposed strategy. As a result, FOABC has excellent

performance in handling numerical optimization problems.

145

5. FRACTIONAL-ORDER ABC ALGORITHM (FOABC)

146

Chapter 6

Robot path planning via improved

ABC algorithms

Contents

6.1 Introduction . 148

6.2 Single robot path planning (SRPP) 150

6.2.1 Problem formulation of SRPP 150

6.2.2 Simulation results of SRPP 155

6.3 Multi-robot path planning (MRPP) 165

6.3.1 Problem formulation of MRPP 166

6.3.2 Simulation results of MRPP 173

6.4 Conclusion . 185

147

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

6.1 Introduction

After investigating different improvement strategies to enhance the effectiveness

of the ABC algorithm in the previous chapters, applying them to some more

meaningful practical problems is to be expected. At the same time, observing the

importance and booming development of robotics-related fields, certain problems

in this area are selected to be investigated in this chapter.

One of the most popular problems in domains linked to robotics is robot path

planning (RPP). It has attracted considerable attention since path planning issues

have widely existed for different types of robots, including industrial, mobile, etc.

RPP problem aims at finding out an optimal collision-free path from the start

point to the target point in an environment with obstacles (Fragapane et al.,

2021; Nazarahari et al., 2019). And a series of optimization problems can be

formulated by considering different goals and constraints. For instance, energy

cost (or fuel cost) is one of the essential terms that needs to be minimized.

As mentioned in the first chapter, path planning algorithms can be generally

classified into three categories: classical, graph-based, and (meta-)heuristic ap-

proaches (Koubâa et al., 2018). The classical methods like the artificial potential

fields method were popular in the period when the path planning problem was

just appearing. They were found to be effective in finding feasible paths, yet the

shortcomings became increasingly evident. One of the widely known limitations

is that they are time-consuming, as the generated solutions are computationally

expensive. Besides, these kinds of methods might fall into local optima (Das

& Jena, 2020; Koubâa et al., 2018). As for the second category, graph-based

search methods are also popular, such as the A* algorithm (Hart et al., 1968;

Hawa, 2013). The feasible paths can be computed in a graph-based environment,

such as a grid map. Nonetheless, in challenging environments, the complexity of

the computation may increase significantly. Therefore, both types of approaches

cannot guarantee fast and efficient path finding when dealing with complex envi-

ronments. Thus, the demand for intelligence in solving different RPP challenges

is increasing today.

To overcome the above limitations, the third class of methods has gained

great attention. Like mentioned before, meta-heuristic algorithms are outstand-

ing in solving various optimization problems and are not problem-specific. These

features make it one of the ideal methods to accomplish different tasks. The

148

6.1 Introduction

RPP problems can be solved by transforming them into functional optimization

problems. Then, the optimal solution can be found by using meta-heuristic algo-

rithms, which is effective and powerful even in complex environments. In recent

decades, PSO (Das et al., 2016a; Das & Jena, 2020; Thabit & Mohades, 2019;

Tian et al., 2021), GA (Nazarahari et al., 2019; Tuncer & Yildirim, 2012), ACO

(Hasan & Mosa, 2018; Lyridis, 2021; Miao et al., 2021), and ABC (Abbas & Ali,

2014; Bhattacharjee et al., 2011; Contreras-Cruz et al., 2015; Liang & Lee, 2015;

Wang et al., 2015; Xu et al., 2020) have all been popular meta-heuristics for such

problems.

Particularly, ABC and its variants have been used to solve various RPP prob-

lems. Abbas & Ali (2014) proposed an improved ABC algorithm for the off-line

autonomous RPP problem. Path length and smoothness were considered in the

objective function. Contreras-Cruz et al. (2015) introduced a hybrid path planner

ABC-EP to solve the RPP problem. The connections between the line segments

were optimized via ABC locally. Then, the feasible path was optimized by the

evolutionary programming (EP) algorithm in terms of length and smoothness.

The performance of ABC-EP planner was proved by comparing it with a classical

approach, the probabilistic roadmap method (PRM). A coevolution framework

was incorporated in ABC while the global best individual was utilized in the

solution search equation (Xu et al., 2020). And the proposed ABC variant was

examined on RPP problems aiming at minimizing the path length.

Furthermore, ABC variants were also adopted to achieve multi-robot path

planning (MRPP) problems. Bhattacharjee et al. (2011) utilized ABC to plan

paths for multiple mobile robots. More precisely, the subsequent positions of all

the robots were determined via an ABC algorithm aimed at minimizing the path

length. Similarly, Liang & Lee (2015) used an effective ABC variant to solve

a challenge of on-line path planning for multiple mobile robots. The proposed

algorithm was enhanced by using an elite group and solution-sharing strategy.

A proper objective function was defined for target, obstacles, and robot collision

avoidance. Note that different from the SRPP (single robot path planning) prob-

lem, the collisions between teammates also need to be avoided. Wang et al. (2015)

solved a multi-objective MRPP problem by using an improved multi-objective

ABC algorithm. A multi-objective function was defined considering the path

length, safety, and smoothness. Then a solution set can be obtained by using the

149

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Pareto dominance relationship. Each path point was positioned by optimizing

the angle since the robot step length was constant. Multiple feasible paths were

generated through the proposed ABC.

Therefore, different types of RPP problems are concerned in this chapter.

Firstly, the proposed four ABC variants are applied to complete the global path

planning for a single robot. Different environments with arbitrary obstacles are

adopted. The proposed ABC algorithms are compared to ten improved ABC

and the standard ABC algorithm as well as four well-known RPP approaches.

Secondly, the MRPP task is considered as well. The proposed ABCL algorithm

is utilized to solve a local path planning problem for multiple robots. Simulations

and comparisons are done to verify the effectiveness of ABCL.

The outline of this chapter is as follows. The single robot path planning

(SRPP) problem is achieved in section 6.2. Then, the multi-robot path planning

(MRPP) problem is concerned in section 6.3. Both of these sections include the

problem formulations, simulations, and comparisons. The conclusion is given in

section 6.4.

6.2 Single robot path planning (SRPP)

6.2.1 Problem formulation of SRPP

The RPP environment includes arbitrary obstacles and free space. An example

is given in Figure 6.1. The S and T are the start and target points of the robot.

And O1, O2, O3 are static obstacles that need to avoid. The goal is to determine

the optimal path without any collisions with obstacles from the start point to

its desired target. With this purpose, the RPP problem can be converted to an

optimization problem and solved with the proposed improved ABC algorithms.

150

6.2 Single robot path planning (SRPP)

Fig. 6.1. Example of RPP environment

The implementation method is shown in Figure 6.2. Firstly, the start point S

and the target point T are connected as line ST. Then a new coordinate system

is designed by setting the line ST as the new x-axis (x′ in Figure 6.2). In other

words, S becomes the origin of the coordinate system x′Sy′. Hence, the new

coordination (xn, yn) of each point in the original coordinate system XOY can

be calculated via Eq.(6.1).

Fig. 6.2. Implementation method of robot path planning

[

xn

yn

]

=

[

cosα sinα
− sinα cosα

]

×

([

X
Y

]

−

[

xS

yS

])

, (6.1)

where

α = arcsin
yT − yS
|ST|

, (6.2)

151

Chap6/chapter6_figs/EPS//RPPex0_chap5.eps
Chap6/chapter6_figs/EPS//RPPex_chap5.eps

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

α denotes the rotate angle from original X-axis to line ST. (xn, yn) is the cor-

responding coordinate of (X, Y) in new coordinates system and (xS, yS) is the

coordinate of S in XOY original system.

After that, the line ST is divided into (D + 1) equal parts and the divided

points can be obtained via Eq.(6.3).

δ(d) = d×
|ST|

D + 1
, d = 1, 2, · · · , D. (6.3)

Vertical lines are drawn on each divided point as well as points S and T.

Then a feasible path can be obtained by selecting one node on each vertical

line and connecting the nodes together sequentially. Thus, the RPP problem

is transformed into a D-dimensional optimization problem. And a candidate

solution (i.e., a candidate path) is in form of pi = (S, pi,1, pi,2, · · · , pi,D,T), i ∈

{1, · · · , SN}.

With the purpose of planning collision-free paths via the meta-heuristic opti-

mization algorithms, two strategies are utilized: firstly, for each candidate path

pi, the feasibilities of all its nodes pi,1, pi,2, · · · , pi,D are checked; secondly, each

section of a candidate path is checked step by step to see if it has hit an obstacle.

To explain the strategies clearly, the corresponding pseudo-code is described

in Algorithm 14. Each time the candidate solutions are generated or updated, this

mechanism is adopted to avoid collisions. If certain nodes encounter obstacles or

leave the workspace, they will be directly replaced by a newly produced feasible

nodes (lines 1-7 in Algorithm 14). Hence, it is also necessary to verify if the

connections of every two adjacent nodes in a candidate path collide with the

obstacles. More specifically, for each line segment (i.e., Spi,1, pi,1pi,2, · · · , pi,DT),

the inner points are checked one by one with a step increment of 1. And if there

are z points encountering the obstacles, a penalty λ = z × 5000 will be imposed

on the objective function value as shown in Eq.(6.4). In this way, collision-free

paths can be obtained not only by ensuring the feasibility of all the nodes, but

also by determining whether the node connections come across the obstacles.

The objective function is defined as

F = length(pi) + λ, (6.4)

where length(·) is the function to calculate the total length of candidate path

152

6.2 Single robot path planning (SRPP)

pi. λ is a penalty term, which is equal to 0 when all the nodes and segments

lie in the free space. Otherwise, λ = z × 5000 when there exist z inner points

located at infeasible positions. Hence, the objective function is penalized when

the candidate path encounters obstacles.

Algorithm 14 Mechanism for generating collision-free path in SRPP
1: for each candidate path pi do
2: for j = 1 : D do
3: if node pi,j is outside the map or encounters an obstacle then
4: Reproduce a new feasible node pnewi,j

5: Replace the infeasible pi,j with pnewi,j

6: end if
7: end for
8: Set λ = 0
9: for all the line segments pi,jpi,j+1 do

10: Calculate the slope θj and segment length lj
11: for m = 0 : 1 : lj do ⊲ Step by increments of 1
12: Calculate the inner point ip = pi,j +m× [sin(θj), cos(θj)]

T

13: if point ip is infeasible then
14: λ = λ+ 5000
15: end if
16: end for
17: end for
18: Evaluate the objective function value with Eq.(6.4)
19: end for

Remark 6.1 Note that, like many other heuristic algorithms, the ABC algorithm

is initially designed for unconstrained optimization problems, and it can be used to

solve constrained optimization problems by adding penalties (Abbas & Ali, 2014).

Nonetheless, there also exist constrained optimization algorithms which are estab-

lished specifically for the constrained optimization problems (Szczepanski et al.,
2018).

Besides, to better describe the process of applying meta-heuristic algorithms

to resolve the SRPP problem, a flowchart with ABC_RL algorithm, as an exam-

ple, is given in Figure 6.3.

153

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Fig. 6.3. Flowchart of SRPP by the proposed ABC_RL algorithm

154

Chap6/chapter6_figs/EPS//flowChart_SRPP_ABCRL1.eps

6.2 Single robot path planning (SRPP)

6.2.2 Simulation results of SRPP

Simulations and comparisons have been done to investigate whether the pro-

posed algorithms could effectively solve the real-world problems. So in this part,

comparisons are done first among those ABC variants that were covered in the

previous chapters. Then, comparisons are also carried out with a few popular

path planners as presented in subsubsection 6.2.2.2. The simulations are run

with MATLAB on Intel Core(TM) i7 processor with 2.30GHz CPU and 16GB of

memory.

6.2.2.1 Comparison with ABC variants

All of the ABC variants that were mentioned in comparisons of previous chapters

are used to accomplish the same set of SRPP tasks in order to demonstrate that

our proposed ABC algorithms can not only achieve outstanding results on func-

tional optimization problems but also have advantages in actual problems. The

involved 15 ABC algorithms are listed as follows: the standard ABC (Karaboga,

2005), NSABC (Wang et al., 2020), iff -ABC (Aslan et al., 2020), MGABC (Zhou

et al., 2021a), ILTD_ABC (Gao et al., 2019), sdABC (Chen et al., 2019b), DE-

ABC (Li & Yin, 2014), APABC (Cui et al., 2017b), ARABC (Cui et al., 2017a),

GABC (Zhu & Kwong, 2010), DABC (Abbas & Ali, 2014) and four improved ABC

algorithms that we proposed, namely, ABCL, ABCDC, ABC_RL, and FOABC.

With the purpose of achieving SRPP, all the participating algorithms need

to solve the problem defined in Eq.(6.4), with SN set to 20, D = 15 and the

determination condition is set as max_FES = 1500 × D. The other parame-

ter settings remain the same as in previous chapters. And the efficiency of our

proposed algorithms is assessed through six different maps. The initial configu-

rations of six SRPP tasks are presented in Figure 6.4 with corresponding start

point S and target point T. And the complexity of maps varies since they contain

different numbers of obstacles of various shapes.

The 15 ABC algorithms have all been independently run 30 times for each

map. The mean and standard deviation of the path lengths are calculated and

presented in Table 6.1 and Table 6.2 (columns Avg. path length and Std., re-

spectively). The shortest path and the longest path are also listed in the tables.

Moreover, in order to make a meaningful comparison, the average running time

155

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

of each method is considered as well. The best values for each map are marked

in boldface.

Remark 6.2 The parameter settings can be adjusted depending on the map scale,

the complexity of SRPP tasks, etc.

(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 4 (e) Map 5 (f) Map 6

Fig. 6.4. The initial configurations of six SRPP workspaces

First of all, it can be observed from Table 6.1 and Table 6.2 that the SRPP

problems can be effectively solved utilizing the problem formulated previously.

And all the compared algorithms completed the tasks successfully in their 30

individual runs. As a result, the adopted mechanism for searching a collision-free

path for a single robot in static environments can be validated.

Among the total 15 ABC algorithms, our proposed algorithms have outstand-

ing performance, especially our proposed FOABC and ABCL algorithms. It is

obvious that FOABC achieves the minimum value on the average of the path

156

Chap6/chapter6_figs/EPS//SRPP_Map1.eps
Chap6/chapter6_figs/EPS//SRPP_Map2.eps
Chap6/chapter6_figs/EPS//SRPP_Map3.eps
Chap6/chapter6_figs/EPS//SRPP_Map4.eps
Chap6/chapter6_figs/EPS//SRPP_Map5.eps
Chap6/chapter6_figs/EPS//SRPP_Map6.eps

6.2 Single robot path planning (SRPP)

Table 6.1: Comparison of 15 ABC algorithms for solving SRPP problems

ABC algorithms Avg. path length Std. Best path Worst path Avg. time

Map 1

ABC 1280.285 434.217 642.888 2400.394 18.697
NSABC 676.598 64.238 610.543 918.288 15.806
iff -ABC 603.452 1.694 601.433 609.124 13.732
MGABC 616.263 53.335 601.228 835.533 15.352
ILTD_ABC 601.300 0.067 601.224 601.525 10.865
sdABC 696.852 35.290 635.149 763.268 17.281
DEABC 688.479 19.459 641.238 718.374 24.348
APABC 1221.639 223.856 777.256 1671.565 15.605
ARABC 603.819 1.680 601.633 608.253 15.830
GABC 603.440 1.695 601.634 608.875 15.922
DABC 607.034 2.829 602.783 611.509 15.653
ABCL 602.702 0.995 601.480 606.379 10.859
ABCDC 621.947 6.591 608.128 635.182 15.061
ABC_RL 603.408 1.346 601.794 605.932 10.239
FOABC 601.218 0.020 601.206 601.314 10.286

Map 2

ABC 1130.682 352.622 609.450 2110.220 13.892
NSABC 749.101 101.967 617.486 939.424 13.648
iff -ABC 599.799 3.139 596.055 612.592 14.933
MGABC 638.709 118.178 595.158 1151.773 15.991
ILTD_ABC 595.983 0.483 595.186 597.119 9.871
sdABC 621.204 15.326 603.582 678.450 12.277
DEABC 659.099 26.484 611.479 705.744 19.338
APABC 1415.849 220.580 916.688 1924.129 14.589
ARABC 604.381 5.379 595.791 616.853 14.057
GABC 600.522 3.398 595.683 607.277 14.058
DABC 603.945 4.649 596.472 614.497 15.939
ABCL 599.871 2.776 595.468 606.456 10.066
ABCDC 618.030 8.389 607.615 634.652 8.929
ABC_RL 603.119 4.381 597.063 614.470 10.772
FOABC 595.344 0.274 595.021 596.280 11.850

Map 3

ABC 1276.584 527.046 627.844 2640.232 16.501
NSABC 630.923 62.971 561.171 773.659 13.132
iff -ABC 550.471 0.831 549.268 552.079 12.198
MGABC 708.433 215.906 551.678 1187.997 14.546
ILTD_ABC 549.968 0.427 549.300 551.019 10.436
sdABC 601.282 23.755 565.389 673.608 15.844
DEABC 630.072 19.302 573.838 663.645 23.576
APABC 1048.846 150.078 816.072 1427.738 13.562
ARABC 551.765 1.963 549.581 557.055 14.501
GABC 550.581 0.856 549.348 553.035 14.752
DABC 550.953 1.137 549.230 554.250 10.780
ABCL 549.955 0.536 549.296 551.434 9.493
ABCDC 560.967 6.329 550.466 575.777 12.784
ABC_RL 550.917 1.945 549.060 558.013 12.112
FOABC 549.283 0.244 548.943 550.038 10.855

157

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Table 6.2: (continued) Comparison of 15 ABC algorithms for solving SRPP prob-
lems

ABC algorithms Avg. path length Std. Best path Worst path Avg. time

Map 4

ABC 1374.173 751.638 575.924 3825.581 17.695
NSABC 795.414 214.625 536.574 1339.219 16.123
iff -ABC 537.987 8.294 525.905 558.539 13.751
MGABC 562.355 94.386 527.268 1033.116 13.660
ILTD_ABC 526.093 1.150 524.806 530.745 11.228
sdABC 557.500 13.579 532.505 590.765 15.461
DEABC 819.613 32.598 749.023 877.275 21.789
APABC 1629.682 318.632 1160.452 2502.570 11.982
ARABC 544.193 9.119 528.528 570.100 13.914
GABC 540.554 6.945 527.041 554.018 14.092
DABC 537.939 3.625 534.510 551.403 15.203
ABCL 537.731 8.400 525.540 555.251 10.342
ABCDC 554.008 7.225 540.861 569.026 12.316
ABC_RL 538.458 9.590 525.358 557.892 12.909
FOABC 525.535 1.725 524.716 532.401 11.101

Map 5

ABC 1499.821 569.741 759.605 2983.055 16.025
NSABC 830.759 158.392 638.792 1311.277 15.863
iff -ABC 620.451 0.796 619.283 622.048 13.533
MGABC 633.949 53.919 619.095 873.485 15.294
ILTD_ABC 619.212 0.099 619.044 619.451 11.668
sdABC 687.238 41.668 633.728 788.478 19.736
DEABC 731.605 24.496 662.920 774.724 26.610
APABC 1419.491 190.415 1035.945 1704.878 16.099
ARABC 623.769 7.135 619.565 659.830 13.380
GABC 620.706 0.923 619.272 622.854 13.480
DABC 621.505 2.164 619.340 631.606 16.790
ABCL 620.701 1.551 619.175 626.336 11.186
ABCDC 648.908 6.538 632.713 666.528 15.344
ABC_RL 625.622 25.916 619.162 762.696 13.634
FOABC 619.142 0.137 619.013 619.710 12.364

Map 6

ABC 1563.006 781.150 651.615 3581.080 15.364
NSABC 727.292 152.099 561.464 1076.331 14.519
iff -ABC 539.038 0.283 538.668 539.683 11.914
MGABC 772.555 283.193 544.013 1509.287 17.931
ILTD_ABC 539.054 0.364 538.633 540.301 10.081
sdABC 668.048 64.326 570.736 836.237 18.051
DEABC 714.867 27.531 648.334 772.856 24.597
APABC 1300.744 198.569 1003.654 1738.505 14.852
ARABC 539.095 0.338 538.560 540.087 12.548
GABC 539.497 0.630 538.828 541.467 13.108
DABC 539.998 0.747 538.694 542.101 15.038
ABCL 539.069 0.268 538.572 539.707 9.230
ABCDC 594.741 11.874 575.052 630.126 12.512
ABC_RL 539.195 0.565 538.552 540.969 11.913
FOABC 538.723 0.315 538.459 539.672 10.954

158

6.2 Single robot path planning (SRPP)

length in all six cases. Moreover, its standard deviation is relatively small, which

indicates that FOABC performs more consistently and reliably than other ABC

variants. Additionally, the comparisons show that the ABCL and ILTD_ABC

algorithms also produce outstanding results. It is discovered that these three

methods have very comparable results in terms of average path length and aver-

age execution time. Besides, it is interesting to see that as the complexity rises,

the performance of the iff -ABC algorithm becomes more noticeable. Particularly

in Map 6, it outperforms the ABCL and ILTD_ABC in terms of average path

length. However, it should be noted that the average running time of the iff -

ABC algorithm is not as impressive as the aforementioned three ABC methods.

Meanwhile, the proposed ABCL algorithm has significant advantages in average

runtime thanks to its simple structure and the strategy we adopted to simplify

the computational complexity.

In fact, these compared algorithms can be generally classified into three tiers

based on the comparison results. Firstly, across every concerned situation, the

first four algorithms (i.e., FOABC, ABCL, ILTD_ABC, and iff -ABC) perform

well and remain stable. Following them, there are several algorithms whose out-

comes are rather close, namely ABC_RL, GABC, ARABC, DABC, MGABC,

and ABCDC algorithms. Among these algorithms, GABC, DABC, and our pro-

posed ABC_RL outperform the others in terms of overall performance, and the

difference from the top tier is also relatively small. Moreover, the standard de-

viation of MGABC is noticeably higher than that of the others, although their

mean values are quite similar. In this context, it can be inferred that MGABC

is less stable compared to competitors in the same tier. In addition, considering

the average runtime, ABC_RL is more dominant in this second group.

Then, the rest of the algorithms fail to stand out in the comparisons, indicating

that they are not effective at resolving this kind of SRPP problem. And the last

group of algorithms needs a relatively long time to accomplish the tasks.

Furthermore, to give a more visual picture of the compared algorithms’ per-

formance, their rankings across the six tasks are plotted based on average path

length and average run time in Figure 6.5 and Figure 6.6, respectively. Note that

lower bars in both bar graphs denote better outcomes.

Similar conclusions can be seen in Figure 6.5 and Figure 6.6, which demon-

strate that FOABC, ABCL, and ILTD_ABC algorithms surpass the other com-

159

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Fig. 6.5. Rankings of compared ABC algorithms based on average path length
over 30 independent executions

Fig. 6.6. Rankings of compared ABC algorithms based on average running time
over 30 independent executions

160

Chap6/chapter6_figs/EPS//ranking_SRPP.eps
Chap6/chapter6_figs/EPS//rankTime_SRPP.eps

6.2 Single robot path planning (SRPP)

petitors in terms of overall performance. More precisely, FOABC obtains the first

place in all tasks in terms of the average path length. And all of these three win-

ners can successfully find paths with short lengths and fast running times within

a limited number of iterations. Due to the average time consumption of iff -ABC

being higher than these three algorithms, it is not included as a winner.

In addition, more discussions regarding the simulation results can be found

below. Actually, the problem scenario concerned above is a uni-modal optimiza-

tion problem, which means that a unique optimal solution can be found given

enough time. Since the primary objective of the defined SRPP is to minimize

the path length without collision, the optimal solution in this case refers to a

collision-free path with the shortest path length. Therefore, it is evident from

the simulations that the three winners are efficient at resolving this type of uni-

modal optimization problem. Meanwhile, it is possible that some improvement

strategies intended for complete optimization issues do not properly assist the

algorithms in finding the optimal solution to this practical problem, and even

affect the convergence effect. Therefore, certain algorithms that performed well

in the previous chapters were unable to maintain their superiorities in this SRPP

problem. For instance, APABC, MGABC, NSABC, and the original ABC algo-

rithm have mediocre performance in the simulations above. Nevertheless, note

that these algorithms might be better suited to deal with other real-world issues.

6.2.2.2 Comparison with well-known path planners

In addition, it is also important to compare with other well-known path planning

methods. Hence, comparisons are carried out between our proposed ABC algo-

rithms and four well-known global path planners: A* algorithm, Probabilistic

Road Map (PRM), Rapidly-exploring Random Trees (RRT), and Bidirectional

Rapidly-exploring Random Trees (BRRT), which are widely used to find the

shortest path. Note that the code implementation made reference to the re-

sources (Kala, 2014a,b,c,d).

In the following simulations, according to the scale of environments, the num-

ber of random points to be selected in PRM is defined as 30. The step sizes of

RRT and BRRT are set as 10. The parameter settings of the proposed four ABC

algorithms are defined the same as above. Moreover, the comparison results of

each method are calculated based on 30 independent executions as presented in

161

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Table 6.3. The best values are marked in boldface. Furthermore, the shortest

paths planned by the FOABC algorithm and the four well-known path planning

approaches are drawn in Figure 6.7.

From Table 6.3, it is encouraging to find that our proposed approaches, espe-

cially the FOABC algorithm, are very comparable to those well-known methods.

In other words, the performance of proposed algorithms in searching for the op-

timal collision-free path has been well demonstrated. In terms of average path

length, all approaches outperform the other four path planners in Maps 2, 3, and

5. And the average path length obtained by FOABC is the shortest in 5 out of 6

workspaces. As for Maps 1 and 6, excluding ABCDC, the other three improved

ABC algorithms are also outstanding. Be aware that ABCDC performs slightly

worse than PRM in Map 1 and A* in Map 6, respectively.

A*, a kind of exact path planning method, is able to find a competitive path

among the approaches. It is worth pointing out that it achieves the shortest

average path length in Map 4. Nonetheless, A* is significantly time-consuming

as it generates computationally expensive solutions. PRM is also comparative in

terms of path length and running time. Its execution time is the least among

the concerned methods. Additionally, because the degrees of complexity of con-

cerned maps are different, the running times of RRT, BRRT, and A* have been

significantly impacted. Meanwhile, it can be found that the increase in difficulty

can hardly affect the running time of our proposed ABC algorithms as well as

PRM. Therefore, it can be concluded that the proposed algorithms are effective

methods for the SRPP problem considering their superiorities in the path length

and robustness.

162

6.2 Single robot path planning (SRPP)

Table 6.3: Comparison of proposed ABC algorithms and four path planners for
solving SRPP problems

Path planners Avg. path length Best path Worst path Avg. time

Map 1

A* 626.105 626.105 626.105 40.248
PRM 609.822 597.298 634.480 4.194
RRT 675.507 631.113 736.114 6.997
BRRT 731.488 667.771 784.292 6.927
ABCL 602.702 601.480 606.379 10.859
ABCDC 621.947 608.128 635.182 15.061
ABC_RL 603.408 601.794 605.932 10.239
FOABC 601.218 601.206 601.314 10.286

Map 2

A* 620.541 620.541 620.541 127.001
PRM 649.105 608.643 706.050 4.736
RRT 763.858 681.373 907.245 22.070
BRRT 776.651 712.855 864.513 8.487
ABCL 599.871 595.468 606.456 10.066
ABCDC 618.030 607.615 634.652 8.929
ABC_RL 603.119 597.063 614.470 10.772
FOABC 595.344 595.021 596.280 11.850

Map 3

A* 580.583 580.583 580.583 64.371
PRM 650.791 567.378 825.051 4.233
RRT 686.250 603.656 798.088 6.342
BRRT 714.202 631.658 821.873 7.188
ABCL 549.955 549.296 551.434 9.493
ABCDC 560.967 550.466 575.777 12.784
ABC_RL 550.917 549.060 558.013 12.112
FOABC 549.283 548.943 550.038 10.855

Map 4

A* 515.612 515.612 515.612 70.342
PRM 570.306 510.282 634.658 5.069
RRT 672.524 583.872 879.423 7.940
BRRT 737.793 605.132 1015.296 7.743
ABCL 537.731 525.540 555.251 10.342
ABCDC 554.008 540.861 569.026 12.316
ABC_RL 538.458 525.358 557.892 12.909
FOABC 525.535 524.716 532.401 11.101

Map 5

A* 648.950 648.950 648.950 67.680
PRM 689.412 612.760 814.643 5.743
RRT 736.144 660.395 920.081 8.241
BRRT 800.318 710.789 920.934 9.246
ABCL 620.701 619.175 626.336 11.186
ABCDC 648.908 632.713 666.528 15.344
ABC_RL 625.622 619.162 762.696 13.634
FOABC 619.142 619.013 619.710 12.364

Map 6

A* 563.279 563.279 563.279 66.804
PRM 639.337 568.421 752.795 5.151
RRT 766.370 612.092 1172.381 17.718
BRRT 770.834 613.458 1130.065 10.796
ABCL 539.069 538.572 539.707 9.230
ABCDC 594.741 575.052 630.126 12.512
ABC_RL 539.195 538.552 540.969 11.913
FOABC 538.723 538.459 539.672 10.954

163

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

(e) Map 5 (f) Map 6

Fig. 6.7. The best paths of FOABC algorithm and four well-known path planners
in six workspaces

164

Chap6/chapter6_figs/EPS//Map1_others.eps
Chap6/chapter6_figs/EPS//Map2_others.eps
Chap6/chapter6_figs/EPS//Map3_others.eps
Chap6/chapter6_figs/EPS//Map4_others.eps
Chap6/chapter6_figs/EPS//Map5_others.eps
Chap6/chapter6_figs/EPS//Map6_others.eps

6.3 Multi-robot path planning (MRPP)

6.3 Multi-robot path planning (MRPP)

Compared to a single robot, a multi-robot system possesses advantages because

of the cooperation and interaction inside the team. In this case, multi-robot

collaboration has a stronger ability to resolve complex problems and has higher

robustness and reliability (Das & Jena, 2020). In this context, multi-robot sys-

tems exist in various fields, for instance, intelligent warehouse (Han & Yu, 2019),

oilfield inspection (Li et al., 2020a), etc. Hence, it is worth pointing out that

multi-robot path planning (MRPP) is a critical technique.

As a result of the aforementioned advantages and broad applications, MRPP

problems have been investigated by researchers for decades. The objective of

MRPP is to compute collision-free and qualifying paths for a group of robots

from an initial configuration to a target configuration via path planners (Han

& Yu, 2020). As we have mentioned, the classical and graph-based methods

cannot remain effective when dealing with complex situations. These approaches

become more limited when targeting MRPP tasks. Correspondingly, the type of

algorithm we study is more flexible and unconstrained by the problem. Therefore,

as long as an optimization problem can be properly formulated, feasible paths

can be found using such meta-heuristic methods.

In this part, the objective is to solve on-line MRPP problems more effectively

via the intelligent meta-heuristic algorithm. The task is to generate optimal

paths without collisions for a group of robots from their starting positions to the

intended targets while taking environmental constraints into account. An objec-

tive function is properly defined considering the length and safety of the paths.

To solve this established problem, the ABCL algorithm is adopted considering

its simple structure and the fact that it consumes the least amount of time in

the previous simulations. In fact, ABCL is designed with the ultimate goal of

resolving the MRPP problem. Hence, as indicated in Chapter 4, the proposed

improvement strategies shouldn’t make computations more complex because we

need to consider the time spent for computing during on-line planning.

Moreover, a new implementation method is adopted to determine the next

positions for all the robots simultaneously. In other words, the candidate solutions

of ABCL are formed with the angles to rotate and speeds of all the moving robots.

Then the optimal subsequent coordinates are computed by ABCL considering the

165

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

path length, distances from the obstacles, and distances between teammates. In

this way, the optimal collision-free paths for multiple robots can be obtained.

6.3.1 Problem formulation of MRPP

Similar to the previous case, the environment where the robots move and act is

composed of obstacles and free space. The start points and target points of robots

are located in the free space. An example of MRPP’s environment is shown in

Figure 6.8, where O1, O2, O3 are the static obstacles. Sri and Tri are the start

and target points of the ith robot ri (i = 1, 2, 3). Note that, for clarity, the start

positions and goals of different robots are colored differently.

Fig. 6.8. Environment of multi-robot path planning

The objective of MRPP is to find collision-free paths for a group of mobile

robots from their start points to their desired goals. To this end, collisions be-

tween team members should also be prevented while avoiding the obstacles. Note

that, depending on the requirements of different missions, the robots can also

reach the same destination. In almost all the path planning problems, there are

three aspects that need to be mainly concerned with: efficiency, safety, and ac-

curacy. That is, each robot should save as much energy as possible while finding

a safe path in a short amount of time (Koubâa et al., 2018).

In the followings, we focus on the MRPP problem in 2-dimensional environ-

ments filled with static obstacles. And several assumptions are given before for-

mulating the problem. Firstly, each robot knows its initial and target positions.

Secondly, at each moment, each robot selects its own direction and speed for the

166

Chap6/chapter6_figs/EPS//MRPPenv.eps

6.3 Multi-robot path planning (MRPP)

next movement. This process continues until the robots achieve their targets or

a collision occurs. Moreover, to get closer to reality, the robots are considered as

squares rather than points.

With the purpose of formulating the MRPP problem, it is necessary to define a

proper objective function taking into account the three aspects mentioned above.

In this context, the function should be utilized to minimize each robot’s path

length and arrival time while avoiding obstacles (Das & Jena, 2020). In each step,

the proposed algorithm is used to compute the next positions from the current

positions of the robots. So, the paths can be found by constantly determining

the subsequent feasible positions until they reach their corresponding targets.

Notice that, when part of the robots arrive at their destinations, they will stay

there and wait for the others to move toward their goals. Besides, the proposed

implementation method will be explained after introducing the robot kinematic

model.

6.3.1.1 Robot kinematic model

The kinematic model of each robot is demonstrated in Figure 6.9. For the robot

ri, suppose its position at time t is (xpresent, ypresent) and θpresent is the angle

between its forward direction and the x−axis.

Fig. 6.9. Kinematic illustration of a mobile robot from present to its new position

The variables α and v indicate the rotation angle and robot velocity, respec-

tively, which need to be optimized for the next displacement. In this case, the

167

Chap6/chapter6_figs/EPS//CurrNext.eps

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

next position (xnew, ynew) that robot will be in at time (t+∆t) can be expressed

as follows.

{

xnew
ri = xpresent

ri + cos(αri + θpresentri) · vri ·∆t

ynewri = ypresentri + sin(αri + θpresentri) · vri ·∆t
. (6.5)

Set ∆t = 1 and θnewri = αri + θpresentri , then the equation can be rewritten as

{

xnew
ri = xpresent

ri + cos θnewri · vri

ynewri = ypresentri + sin θnewri · vri
. (6.6)

6.3.1.2 Implementation method of MRPP

There exist various manners of employing this kind of algorithm to achieve robot

navigation. One common implementation approach is to generate a group of

feasible paths as initial solutions, then optimize the paths with the optimization

algorithms (Agarwal & Bharti, 2021; Nazarahari et al., 2019; Oleiwi et al., 2014).

Besides, some classical path planning methods are used to generate the initial

paths before adopting the heuristic algorithms. In the case of global path plan-

ning, a complete path from the robot’s start point to its target is determined

before the robot starts to move. So the environment should be completely known

(Sedighi et al., 2004). On the other hand, local path planning methods are able to

navigate the robots in dynamic or incomplete workspaces. And the path is gen-

erated while the robot is moving towards the destination (Koubâa et al., 2018).

Accordingly, some improved meta-heuristic algorithms have been used for local

path planning. For instance, Das et al. (2016a) proposed a hybrid IPSO–IGSA

algorithm for MRPP. The algorithm was utilized to determine the next positions

from the current positions of every robot. And for each robot, the algorithm was

called after each move by taking its current position and velocity as parameters.

Different from the existing implementation methods, a novel way that can

determine the next positions of all the robots simultaneously is designed. In

other words, at each step, the algorithm is called only once to find where all the

robots are moving to. In this way, the running time can be saved.

The form of candidate solutions is made up of the rotation angles and veloc-

ities of all the robots that have not reached their targets yet. The kth solution

is formulated as xk = (αk
r1, v

k
r1, α

k
r2, v

k
r2, · · · , α

k
rN , v

k
rN), N is the number of robots

168

6.3 Multi-robot path planning (MRPP)

and k ∈ {1, · · · , SN}. Reminding that SN stands for the swarm population,

and here it also represents the number of candidate paths. The manner of deter-

mining the subsequent positions of all the robots simultaneously is illustrated in

Figure 6.10.

(a) All the robots are moving

(b) After part of robots arrived their targets

Fig. 6.10. Illustrations of determining subsequent positions for multiple robots
at the same time

169

Chap6/chapter6_figs/EPS//solVector.eps
Chap6/chapter6_figs/EPS//solVector1.eps

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

The dimension of the candidate solution is set as D = 2×N where N is the

number of robots. When part of the robots achieve their goals, the dimension

of candidate solutions will be decreased accordingly, as shown in Figure 6.10(b).

In each generation, all candidate solutions (all planning options for robots’ next

positions) will be evaluated by objective function F which will be described in

the following. A candidate planning with a smaller function value contains more

qualified subsequent positions.

By using this implementation method, the efficiency of path searching can

be ensured, especially when the number of robots is large. If the robot number

increases, only the dimension of candidate solutions will augment when using

the proposed implementation method. However, in the case that robots call the

algorithm to compute the next positions one by one, the number of times the

algorithm is called will increase correspondingly, which will significantly increase

the running time. Thus, the novel implementation approach can not only save

time but also maximize the benefits of meta-heuristic algorithms when dealing

with high-dimensional optimization problems. In addition, the outline of the

proposed MRPP implementation method is shown in Algorithm 15.

Algorithm 15 Pseudo-code of the proposed MRPP method
1: Input Map; Number of robots N ; Start points Sri and Target points Tri

(i = 1, · · · , N); Robot size; Search ranges of rotate angles α and velocities v
2: Initialize parameters and set list of current positions L_current =

[Sr1;Sr2; · · · ;SrN]
3: List of targets of moving robots L_target = [Tr1;Tr2; · · · ;TrN]
4: repeat
5: Get the L_target, L_current of robots haven’t arrive their targets
6: Calculate the optimal αri and velocities vri via the proposed ABCL algo-

rithm
7: Move to the next positions and update L_current
8: for each moving robot do
9: if robot ri arrives its target Tri then

10: Remove position of ri from L_current
11: Remove Tri from L_target
12: end if
13: end for
14: until all the robots reach the desired targets

170

6.3 Multi-robot path planning (MRPP)

6.3.1.3 Objective function of MRPP

The quality of paths is measured by the objective function. In order to find the

optimal and safe paths for multiple robots, the objective function is defined in

three parts. Function f1 is used to lead all the robots toward their destinations.

And f2 is designed to prevent collisions between teammates, while f3 is adopted

to avoid the surrounding obstacles.

First of all, the function f1 is defined to minimize the distances between the

N robots and their desired targets.

f1 =
N
∑

i=1

√

(xnew
ri − xT

ri)
2 + (ynewri − yTri)

2, (6.7)

where (xnew
ri , ynewri) with i = 1, · · · , N represent the next positions of all the robots

generated by the algorithm, and (xT
ri, y

T
ri) are the corresponding target points.

Then, the constraints imposed by the environment are tackled via the follow-

ing objective functions. The second objective function f2 is formulated in order

to avoid collisions between teammates as shown in Eq.(6.8).

f2 =

N
∑

i=1

gri2 , (6.8)

where

gri2 =







0, if Dis(ri, rk) > Q,

η × (
1

Dis(ri, rk)
−

1

Q
), otherwise,

(6.9)

where η is a positive constant and Dis(ri, rk) is the distance between the ith robot

and the kth robot, k = 1, · · · , N . For each robot, the distances to all the other

robots are calculated with Eq.(6.9), then the security information is concerned

together in Eq.(6.8). Q is the safe distance defined as Q = 2×L_diagonal, with

L_diagonal is robot’s diagonal length.

The f3 is defined to avoid obstacles in the environment, which is formulated in

Eq.(6.11). The nearest obstacle is searched step by step in five specific directions,

namely left, forward left diagonal, forward, forward right diagonal, and right as

expressed in Eq.(6.10). In order to explain clearer, the way of measuring distances

of obstacles is demonstrated in Figure 6.11.

171

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Fig. 6.11. Illustration of measuring distances from obstacles in 5 directions

minObsri = min(dleftri , dleft−front
ri , dfrontri , dright−front

ri , drightri), (6.10)

f3 =
N
∑

i=1

gri3 . (6.11)

gri3 =







0, if minObsri > Q,

ζ × (
1

minObsri
−

1

Q
), otherwise,

(6.12)

where ζ is a positive constant and Q is the safe distance defined above. minObsri

is the minimum distance from robot ri to the obstacles calculated with Eq.(6.10).

Note that the safety of all robots is considered simultaneously.

Hence, the MRPP problem can be represented as an optimization problem

with an objective function that minimizes the sum of f1, f2, and f3. The function

f1 is defined to attract the robots toward their targets. f2 and f3 are designed for

avoiding collisions with obstacles and other robots, respectively. Therefore, the

overall objective functions can be defined by the sum of these functions which

are equally weighted as shown in Eq.(6.13)

F = f1 + f2 + f3. (6.13)

Then, each time of planning the next positions, the objective function is min-

imized by the proposed algorithm.

172

Chap6/chapter6_figs/EPS//disObs.eps

6.3 Multi-robot path planning (MRPP)

6.3.2 Simulation results of MRPP

Six maps of size 500× 500 pixels with different complexity are designed to verify

the effectiveness of the ABCL algorithm in MRPP. In the simulations, mobile

robots are represented by squares with a side length of 10 pixels and are colored

differently. The start points and target points of all the robots are assigned

beforehand. In addition, the obstacles are black and in various shapes. The

complexity of a workspace is related to the size and number of obstacles.

The performance of ABCL is examined by comparing it with three other ABC

algorithms in cases of six and twelve robots. More precisely, the standard ABC,

GABC (Zhu & Kwong, 2010), and DABC (Abbas & Ali, 2014) are compared with

ABCL. Note that DABC was designed for mobile RPP as well. The parameter

settings are the same as those in the previous comparisons.

For all the algorithms, the swarm number is SN = 2 × nb_robot and the

determination condition is set as max_FES = 3000×D. And the range of rotate

angle α is defined as [−π/2, π/2] while the robot velocity v ∈ [10, 60]. Notice that

D is equal to 2× nb_robot according to the proposed implementation manner.

6.3.2.1 Comparative study of six-robot path planning

In this part, the simulations of six robot path planning are implemented. The

initial configuration of maps is shown in Figure 6.12. When the number of robots

is six, in each workspace, there are six squares color-coded differently, which

are the initial positions of the robots. The other six circles drawn with dotted

lines represent the target areas. The areas are centered on the predefined goal

positions and the path planning is achieved once the robots enter the associated

areas. Each robot has a specific color which is the color of its corresponding start

point and ending area.

For each map, each compared algorithm is executed 15 independent times

and the average values are calculated. In Table 6.4, the average number of steps

required to reach the target and the average path length traveled by each robot are

presented. The minimum values are marked in boldface. Moreover, the average

running time is concerned in order to make a more meaningful comparison. The

consumed time is presented in Figure 6.14.

In Table 6.4, all the algorithms manage to plan a set of collision-free paths for

the six robots. Nonetheless, the effectiveness of ABCL can be proved according

173

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

(e) Map 5 (f) Map 6

Fig. 6.12. The initial configurations of MRPP workspaces for six robots

174

Chap6/chapter6_figs/EPS//Map1text.eps
Chap6/chapter6_figs/EPS//Map2text.eps
Chap6/chapter6_figs/EPS//Map3text.eps
Chap6/chapter6_figs/EPS//Map4text.eps
Chap6/chapter6_figs/EPS//Map5text.eps
Chap6/chapter6_figs/EPS//Map6text.eps

6.3 Multi-robot path planning (MRPP)

Table 6.4: Comparison of average required steps and average path lengths for six
robots

Average required steps Average path length

Robot ABC GABC DABC ABCL ABC GABC DABC ABCL

Map 1 r1 6.73 6.93 6.87 6.67 464.57 468.06 467.51 461.90
r2 5.00 5.00 5.00 5.00 240.18 239.33 240.20 238.61
r3 4.00 4.00 4.00 4.00 203.40 205.08 201.68 202.66
r4 8.00 8.00 8.00 8.00 363.98 363.70 361.82 362.16
r5 6.20 5.53 6.20 6.07 292.98 286.49 288.53 287.93
r6 6.07 6.00 6.00 6.00 228.81 229.66 229.58 228.65

Total 36.00 35.47 36.07 35.73 1793.91 1792.32 1789.31 1781.92

Map 2 r1 3.00 3.00 3.00 3.00 185.32 187.31 186.51 185.57
r2 5.20 5.00 5.00 5.00 338.10 346.47 343.84 347.17
r3 8.33 12.87 7.60 8.00 286.56 365.90 283.34 285.07
r4 7.20 6.93 8.07 5.00 293.82 292.56 309.29 277.27
r5 4.00 4.00 4.00 4.00 199.07 201.46 199.90 199.72
r6 3.00 3.13 3.20 3.00 69.15 77.11 65.34 69.31

Total 30.73 34.93 30.87 28.00 1372.02 1470.82 1388.22 1364.11

Map 3 r1 4.53 5.00 4.20 4.53 243.48 254.73 242.15 242.77
r2 5.00 5.00 5.00 5.00 335.59 336.74 337.04 336.46
r3 12.40 10.67 12.53 9.93 416.57 413.74 449.06 396.29
r4 4.67 4.27 4.60 4.40 283.42 282.21 285.77 279.95
r5 6.53 6.60 6.67 6.67 319.28 318.54 318.96 318.85
r6 4.00 5.20 4.00 4.00 117.64 143.27 115.26 116.77

Total 37.13 36.73 37.00 34.53 1715.98 1749.23 1748.25 1691.08

Map 4 r1 5.00 5.00 5.07 5.00 306.84 307.88 305.76 305.80
r2 7.00 6.93 7.00 6.73 214.65 212.69 218.25 215.38
r3 4.00 4.00 4.00 4.00 287.76 287.27 286.36 286.94
r4 4.07 4.07 4.20 4.00 198.51 194.42 203.83 193.94
r5 11.20 10.67 9.87 9.73 325.53 327.65 316.88 300.90
r6 3.00 3.00 3.00 3.00 223.99 225.86 225.30 223.31

Total 34.27 33.67 33.13 32.47 1557.28 1555.75 1556.38 1526.27

Map 5 r1 8.67 6.60 8.87 9.40 308.948 263.986 308.93 307.224
r2 7.53 7.40 6.67 6.93 398.236 408.086 400.047 399.518
r3 6.27 6.60 6.00 6.40 223.052 215.56 211.214 209.014
r4 6.00 6.00 6.00 6.07 367.657 368.641 367.339 368.188
r5 5.07 5.13 5.13 5.20 208.825 202.747 217.093 209.991
r6 3.00 9.47 3.00 3.00 89.4593 215.795 87.761 84.1803

Total 36.53 41.20 35.67 37.00 1596.18 1674.81 1592.38 1578.11

Map 6 r1 6.67 7.20 6.33 7.27 468.25 478.65 460.41 471.77
r2 4.00 4.00 4.00 4.00 281.43 278.02 279.16 279.92
r3 12.87 16.93 13.67 13.13 340.01 386.93 358.04 320.07
r4 10.60 11.60 12.80 8.93 316.46 315.82 357.54 265.03
r5 6.13 7.93 5.33 5.93 281.86 302.74 271.76 272.44
r6 5.00 5.00 5.00 5.00 356.11 355.46 356.46 356.30

Total 45.27 52.67 47.13 44.27 2044.13 2117.62 2083.37 1965.52

175

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

to the comparison results. The proposed algorithm outperforms the other com-

petitors in terms of the average total path length in all the maps. Moreover, the

steps required to reach the destinations when utilizing ABCL are also competi-

tive. Actually, because the robot’s speed is variable, having more steps does not

necessarily result in a longer journey. So, in Map 1 and Map 5, certain robots

move very short in some places with ABCL. Hence, in these two cases, the path

length planned by ABCL is the shortest but more steps are used. And in Map 1,

the GABC algorithm needs the least number of steps to get to the target points

while DABC surpasses the others in Map 5. Nevertheless, ABCL can still keep a

nice balance between the number of steps the robots require and the total length

of paths.

Furthermore, another difficulty in MRPP is how to choose the direction when

there exist obstacles in a robot’s moving direction, especially in a narrow area.

A longer detour may occur if the path planner fails to determine an optimal

direction. Examples are given in Figure 6.13 to demonstrate clearly the detours

that may take place.

In Figure 6.13(a), the initial configuration of Map 5 is presented. It can be

found that in order to reach the desired target points, all the robots will move

very close to the obstacles. Particularly, for robots r1 and r3, the path lengths of

bypassing the two sides are significantly different when encountering obstacles. A

case where all the robots avoid obstacles successfully and do not take detours, as

shown in (b). The (c)-(e) in Figure 6.13 demonstrate different detour cases. For

robot r1, it is better to pass the obstacle from the left side of the map. But as

shown in Figure 6.13(c), it moves through the other side from the start so that it

has to travel much longer. It should be pointed out that in this case, the routes

of r1, r2, and r5 are close to each other, but there is no collision because the

robots take different steps to arrive there. In other words, the robots pass by at

separate moments.

176

6.3 Multi-robot path planning (MRPP)

(a) Map 5 Initial state (b) Case without obvious detour (c) Detour case 1

(d) Detour case 2 (e) Detour case 3

Fig. 6.13. The examples of detours in Map 5 planned by ABC algorithm

In Figure 6.13(d), r3 takes a detour when it encounters the circular obstacle in

the center of the workspace. Besides, both r2 and r3 travel a bit longer than they

do in (b). In fact, if an algorithm is able to distribute the candidate solutions more

comprehensively and extract the promising information throughout iterations, it

is more capable of choosing the right directions for the robots. In this context,

the proposed algorithm is more effective to plan reasonable paths for robots,

especially in complicated cases.

In addition, the running time is an essential metric in path planning prob-

lems. Hence, the average consumed time of each algorithm over 15 executions is

calculated and shown in Figure 6.14.

In Figure 6.14, it can be observed that the ABCL algorithm takes the shortest

time in all designed workspaces. As mentioned before, the complexities of Maps

5 and 6 are higher than the other maps. So, in simpler cases, the execution times

177

Chap6/chapter6_figs/EPS//Map5text.eps
Chap6/chapter6_figs/EPS//DetourEx1.eps
Chap6/chapter6_figs/EPS//DetourEx2-1.eps
Chap6/chapter6_figs/EPS//DetourEx3.eps
Chap6/chapter6_figs/EPS//DetourEx4.eps

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Fig. 6.14. Comparison of running time in six robots path planning problems

of all the algorithms are close. And the advantages of ABCL are more significant

in the last two cases in terms of time efficiency.

6.3.2.2 MRPP process of six robots

To display the process of MRPP clearly, examples of using ABCL in two maps

are shown in Figure 6.15 and Figure 6.16. Note that, each subfigure corresponds

to the path planning situation at each moment.

In Figure 6.15, the robots r1 and r6 reach their target points in three steps

since their planning tasks are easier than the others. The robots that have al-

ready arrived will stay there and wait for the other teammates. Then, r5 arrives

at its goal in the next step. r4 and r2 achieve their desired destinations and suc-

cessfully avoid obstacles after the next two movements. Finally, the whole MRPP

is accomplished in seven steps. As for Map 4, a similar process can be found in

Figure 6.16. All robots are able to avoid obstacles efficiently. Meanwhile, when

there are no teammates or obstacles nearby, the robots can move in almost the

shortest straight line toward the destinations, r1 and r3 as examples.

6.3.2.3 Comparative study of twelve-robot path planning

More challenging tasks are designed to further test the ABCL’s competence in

solving MRPP and the efficacy of the proposed implementation manner. Hence,

the number of robots is doubled (i.e., twelve robots), and the initial configurations

178

Chap6/chapter6_figs/EPS//time_6r.eps

6.3 Multi-robot path planning (MRPP)

(a) Initial state (b) Step 1 (c) Step 2

(d) Step 3: r1 & r6 arrived (e) Step 4: r5 arrived (f) Step 5: r4 arrived

(g) Step 6: r2 arrived (h) Step 7: MRPP accom-
plished

Fig. 6.15. MRPP process for six robots via ABCL algorithm in Map 2

179

Chap6/chapter6_figs/EPS//Map2text.eps
Chap6/chapter6_figs/EPS//Map2_S1.eps
Chap6/chapter6_figs/EPS//Map2_S2.eps
Chap6/chapter6_figs/EPS//Map2_S3.eps
Chap6/chapter6_figs/EPS//Map2_S4.eps
Chap6/chapter6_figs/EPS//Map2_S5.eps
Chap6/chapter6_figs/EPS//Map2_S6.eps
Chap6/chapter6_figs/EPS//Map2_S7.eps

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

(a) Initial state (b) Step 1 (c) Step 2

(d) Step 3: r6 arrived (e) Step 4: r3 & r4 arrived (f) Step 5: r1 arrived

(g) Step 6 (h) Step 7 (i) Step 8: r5 arrived

(j) Step 9: MRPP accomplished

Fig. 6.16. MRPP process for six robots via ABCL algorithm in Map 4180

Chap6/chapter6_figs/EPS//Map4text.eps
Chap6/chapter6_figs/EPS//Map4_S1.eps
Chap6/chapter6_figs/EPS//Map4_S2.eps
Chap6/chapter6_figs/EPS//Map4_S3.eps
Chap6/chapter6_figs/EPS//Map4_S4.eps
Chap6/chapter6_figs/EPS//Map4_S5.eps
Chap6/chapter6_figs/EPS//Map4_S6.eps
Chap6/chapter6_figs/EPS//Map4_S7.eps
Chap6/chapter6_figs/EPS//Map4_S8.eps
Chap6/chapter6_figs/EPS//Map4_S9.eps

6.3 Multi-robot path planning (MRPP)

of two tested maps are given in Figure 6.17. The settings of the termination

condition and variable search ranges are defined the same as before. Notice

that Map 1 and Map 2 are identical with the previous simulations, however, the

problem became harder as the workspace became more crowded.

(a) Map 1 (b) Map 2

Fig. 6.17. The initial configurations of MRPP workspaces for twelve robots

The average required steps, average path lengths, and running time are com-

pared with ABC, GABC, and DABC over 15 independent runs as shown in Ta-

ble 6.5.

Based on the comparison in Table 6.5, the MRPP missions of twelve robots

are accomplished by all the involved algorithms without collisions. And ABCL

evidently outperforms the other methods in terms of average path lengths as

well as execution time. Meanwhile, the steps required to reach the predefined

goals via GABC are a bit smaller than the other competitors. It can be found

that the proposed ABCL algorithm enables the robots to avoid long detours by

taking more small steps in some complex situations. In this way, the average

path lengths planned by ABCL are the shortest in comparison while it requires a

bit more steps to achieve the targets compared with GABC. Besides, the average

running time can be found in the last row of each case in the table. Although

the execution times of all the algorithms do not have a large difference, ABCL is

still the most efficient. Therefore, its effectiveness can be further proved through

these complex tasks MRPP.

181

Chap6/chapter6_figs/EPS//map1_12R.eps
Chap6/chapter6_figs/EPS//map2_12R.eps

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

Table 6.5: Comparison of average required steps, average path lengths and run-
ning time for twelve robots

Average required steps Average path length

Robot ABC GABC DABC ABCL ABC GABC DABC ABCL

Map 1 r1 6.73 5.40 6.07 6.33 367.20 368.08 364.37 368.60
r2 7.33 6.07 6.27 6.80 279.54 253.97 258.85 257.79
r3 5.40 5.20 5.60 5.73 244.82 249.06 249.16 248.31
r4 6.80 6.87 6.87 6.33 279.67 279.11 277.13 270.77
r5 4.67 4.07 4.40 5.13 261.44 265.09 261.88 270.40
r6 7.13 5.67 6.80 6.60 334.41 326.76 329.10 328.00
r7 4.87 4.07 4.67 4.60 154.24 142.09 152.68 139.62
r8 5.20 4.07 4.80 4.40 278.54 274.67 281.49 267.90
r9 4.47 3.87 4.27 4.40 157.61 152.90 152.63 155.05
r10 5.33 4.33 5.40 5.13 213.15 216.24 221.94 216.98
r11 6.27 4.93 5.80 5.73 278.62 274.98 275.79 276.54
r12 5.00 4.60 4.60 4.87 288.74 289.69 287.10 287.09

Total 69.20 59.13 65.53 66.07 3137.99 3092.66 3112.11 3087.05

Average running time 47.24 58.91 49.33 43.35

Map 2 r1 5.20 4.53 4.87 5.00 292.31 283.73 284.43 280.90
r2 8.47 6.53 8.00 7.93 363.06 353.66 369.01 354.01
r3 13.53 14.47 10.80 12.27 341.81 351.09 336.03 330.28
r4 9.33 6.67 9.00 5.27 334.70 298.18 334.43 260.97
r5 12.00 12.73 10.00 10.13 348.23 331.10 319.22 320.92
r6 6.27 4.73 6.00 6.07 227.25 207.85 222.06 216.36
r7 4.40 4.00 4.40 4.53 252.04 254.15 255.61 251.67
r8 5.87 4.00 5.47 5.47 228.89 209.06 233.64 227.60
r9 4.33 3.80 4.40 4.47 137.03 134.03 131.65 137.00
r10 4.93 4.20 4.87 5.47 234.02 234.55 233.24 240.54
r11 5.27 4.67 5.47 5.47 181.16 172.14 168.68 169.73
r12 5.20 3.73 5.07 4.53 210.81 197.01 216.47 205.58

Total 84.80 74.07 78.33 76.60 3151.31 3026.55 3104.46 2995.57

Average running time 41.84 58.03 45.81 39.20

182

6.3 Multi-robot path planning (MRPP)

6.3.2.4 MRPP process of twelve robots

The process of planning paths for twelve robots simultaneously is demonstrated

step by step in Figure 6.18. For robots r4, r5, r7, r8, r10, and r12, connecting

lines from their respective start points to the end points do not cross any static

obstacles, which means that the planned paths are preferred if they are closer

to straight lines. Correspondingly, it can be found that the proposed MRPP

method can plan almost straight paths step by step for the aforementioned robots.

Meanwhile, the other robots have more difficult tasks, but they are also capable

of avoiding obstacles and maintaining safe distances from them. The change in

directions of robots in their midway is because the planning algorithm needs to

consider the distance between all the robots and the distance from the obstacles

surrounding them while minimizing the total path length.

In fact, Figure 6.18 is found more complicated because of the increase in the

number of robots. Due to the starting and ending points we set, it is hard to avoid

that some robots’ paths cross together. Actually, certain intersections of robots’

connection lines between corresponding points S and T can be found from the

initial configuration in Figure 6.17. Nevertheless, as mentioned before, different

robots arrive at the same area at different moments. And it is worth mentioning

that no robot collisions were actually detected in the simulations.

183

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

(a) Initial state (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4: r5, r7, r8, r9, r10 &
r12 arrived

(f) Step 5: r3 arrived

(g) Step 6: r1 & r11 arrived (h) Step 7: MRPP accom-
plished

Fig. 6.18. MRPP process for twelve robots via ABCL algorithm in Map 1

184

Chap6/chapter6_figs/EPS//map1_12R.eps
Chap6/chapter6_figs/EPS//12r_Map1_S1.eps
Chap6/chapter6_figs/EPS//12r_Map1_S2.eps
Chap6/chapter6_figs/EPS//12r_Map1_S3.eps
Chap6/chapter6_figs/EPS//12r_Map1_S4.eps
Chap6/chapter6_figs/EPS//12r_Map1_S5.eps
Chap6/chapter6_figs/EPS//12r_Map1_S6.eps
Chap6/chapter6_figs/EPS//12r_Map1_S7.eps

6.4 Conclusion

6.4 Conclusion

In this chapter, problems with more practical implications are concerned, namely

the global path planning and local path planning (corresponding to the SRPP

and MRPP problems we constructed, respectively). The main objective is to

provide more effective solutions for these RPP problems by using our proposed

ABC algorithms.

In the first part, after formulating the SRPP problem, two groups of compar-

isons are carried out. For a more comprehensive comparison, all the ABC variants

involved in the previous chapters’ comparisons were included in the first group.

According to the comparisons, the proposed FOABC and ABCL algorithms have

been found outstanding among the 15 algorithms in terms of path length and

execution time. ABC_RL and ABCDC are also comparable. Then, the pro-

posed ABC algorithms are also compared to four well-known path planners. The

comparison results demonstrate the advantages of our proposed ABCs in average

path length while the A* and PRM are also competitive. In addition, when the

situation becomes complex, the running time of our proposed algorithms is not

affected much. So this difference in running time is acceptable.

Secondly, the proposed ABCL algorithm is adopted to solve on-line MRPP

problems in static environments considering its superiority in runtime. Mean-

while, a new implementation method is designed. In each step, ABCL is adopted

to determine the subsequent positions for all the robots. The effectiveness of

ABCL is proved by achieving MRPP tasks for six robots and twelve robots. The

simulation results demonstrate the efficiency of ABCL in accomplishing MRPP

in terms of path length, safety, and arrival time.

As a result, implementation methods for solving different RPP problems via

meta-heuristic algorithms have been proposed. And the effectiveness of our pro-

posed ABC algorithms in practical problems is also demonstrated through simu-

lations and comparisons.

185

6. ROBOT PATH PLANNING VIA IMPROVED ABC
ALGORITHMS

186

Conclusions and Perspectives

Summary of main results

This thesis focuses on a class of optimization algorithms represented by the ABC

algorithm. Several novel improved ABC variants are proposed through a system-

atic study of the basic theory and research status of meta-heuristic algorithms

with theoretical studies of RL, FOC, and heavy-tailed distributions. Different

types of improvement strategies are explored to make the algorithms more suc-

cessful at handling various functional optimization problems based on investiga-

tions of the structure and characteristics of ABC. In parallel, multi-robot systems,

as another research interest, are used to test and verify the effectiveness of the

proposed ABC algorithms in real-world applications.

Firstly, in Chapter 2, the impact of population composition of ABC is inves-

tigated in addition to certain widely mentioned improvement strategies. It has

been found that in basic ABC, the invariable population composition of the bee

colony cannot satisfy the needs of different search stages. In this case, improv-

ing the effectiveness of ABC by adjusting the population composition is devel-

oped. Therefore, ABC with dynamic population composition, namely ABCDC

is proposed. The main contributions are as follows: firstly, the Symmetric Latin

Hypercube Design (SLHD) is adopted in initialization to improve the popula-

tion diversity. Secondly, a novel mechanism is proposed to adjust the colony

population’s composition according to the searching experiences. More precisely,

the division of labor between bees with different functions is clearer, so that

global optimum can be obtained more efficiently under their cooperation. And

experimental studies on functional optimization problems are done to verify the

performance of ABCDC. The comparisons show that ABCDC has better solution

precision and a faster convergence rate.

187

CONCLUSIONS AND PERSPECTIVES

In Chapter 3, a particular improvement strategy is investigated considering

that it is difficult to define the parameter value appropriately for all kinds of

problems. In fact, the control parameters are usually constant or updated with

predetermined adaptation methods, which heavily rely on the designer’s experi-

ence. In this context, a RL-based ABC algorithm is proposed, named ABC_RL.

The RL method is utilized to vary a newly introduced control parameter, i.e.,

number of dimensions to be updated in the solution search equation. The reward

value of RL is defined based on the update results. In this case, more information

can be learned appropriately from the previous experience. To sum up, the main

contributions can be summarized as follows: firstly, RL is adopted to enlarge and

adjust the frequency of perturbation of employed bee phase intelligently. Sec-

ondly, two enhanced solution search equations are utilized being inspired by the

operators of DE. Thirdly, a type of heavy-tailed distribution is used to gener-

ate the scale factors for increasing the randomness. The proposed ABC_RL is

validated through comparisons with other improved ABC variants on CEC 2017

benchmark problems. The comparison results demonstrated that the proposed

algorithm outperformed the other competitors in terms of solution accuracy and

overall performance.

Thirdly, in Chapter 4, enhancing the performance of ABC while avoiding it

becoming too complex is studied. Hence, a learning-based ABC (ABCL) algo-

rithm is proposed. Since one of the most essential goals of improving such algo-

rithms is to solve more practical problems, then its practicality and complexity

must be considered. Therefore, to improve the performance of algorithm without

overcomplicating it, the following strategies are utilized: firstly, the global best

solution is adopted in the employed bee and scout bee phases to better guide

the colony. Secondly, the learning phase of the TLBO algorithm is embedded

in the onlooker bee phase to improve the exploitation ability and simplify the

computational complexity. Furthermore, comparisons with other ABC variants

are carried out on functional optimization problems in different dimensions cases.

And the effectiveness of ABCL can be validated according to the results.

In Chapter 5, different from the proposed ABC variants in previous chapters,

the FOC is incorporated into the ABC algorithm considering the memory prop-

erties of FOC. In the proposed FOABC algorithm, each time generating a new

candidate solution, the previous foraging behaviors stored in memory are referred

188

CONCLUSIONS AND PERSPECTIVES

to. The main contributions of this chapter are as follows. The FOC is incorpo-

rated into the onlooker bee phase to make full use of the historical experiences.

Meanwhile, a differential search strategy is utilized in the employed bee phase

to reinforce the exploration ability. And the scale factors of these search equa-

tions are generated via Lévy distribution. Finally, according to the experimental

results, FOABC outperforms the other ABC algorithms in terms of solution ac-

curacy and robustness. Moreover, it is very competitive in comparison with the

other effective meta-heuristics.

Last but not the least, in Chapter 6, after investigating different improvement

strategies to improve the effectiveness of the ABC algorithm, we attempted to

apply them to more meaningful applications. Therefore, the proposed algorithms

are adopted to find better solutions for different types of RPP problems. Firstly,

the single robot path planning problem is established. Different environments

with arbitrary obstacles are considered. Secondly, since multi-robot systems are

demonstrating their advantages in more and more fields, the MRPP problems are

concerned. For all the path planning challenges, the proposed ABC algorithms

are compared to other well-known path planners in terms of path length and

execution time. As a result, implementation methods for solving different RPP

problems via meta-heuristic algorithms have been proposed. And the effectiveness

of our proposed algorithms in practical problems is also demonstrated through

simulations and comparisons.

Perspectives

The following directions will be explored in the future

• There is no doubt that the development of more efficient optimization al-

gorithms will continue to be a popular research direction in the future.

Improving the adaptive capabilities of meta-heuristic algorithms and com-

bining them with other powerful techniques (e.g. machine learning) are two

promising approaches. Adaptation methods or machine learning methods

can make meta-heuristic algorithms more intelligent and thus be capable

to deal with more complex problems. Moreover, as mentioned before, the

classical deterministic optimization algorithms perform well in local search.

Therefore, in future research, the principles of traditional methods can be

189

CONCLUSIONS AND PERSPECTIVES

integrated with ABC to better balance its global and local search abilities.

Nevertheless, it is a challenging task to effectively incorporate these meth-

ods into ABC while making sure that neither the original complexity nor

its capacity to solve problems will decrease.

• It can be found that the search efficiency and accuracy of the ABC algo-

rithm are relatively high. Therefore, applying the improved ABC algorithms

effectively and extensively to more problems in various fields is another es-

sential future task. As for the path planning problem, we can expand to

more types of environments in the future, as it is tough to cover all possi-

ble situations in this thesis. Moreover, it is very meaningful to apply the

proposed methods to real robots.

• Since its introduction, the ABC algorithm’s structure and search equations

have been modified in different ways, which have significantly increased

search accuracy and convergence speed. However, the effectiveness of most

meta-heuristics is verified through numerical experiments. And the theoret-

ical study of such algorithms is still in the exploratory stage. In this context,

it is one of the important tasks to theoretically prove the convergence, time

complexity, and convergence speed of the ABC algorithm.

190

References

Abbas, N.H. & Ali, F.M. (2014). Path planning of an autonomous mobile

robot using directed artificial bee colony algorithm. International Journal of

Computer Applications, 96. 21, 101, 149, 153, 155, 173

Abdel-Basset, M., Abdel-Fatah, L. & Sangaiah, A.K. (2018). Meta-

heuristic algorithms: A comprehensive review. In Computational Intelligence

for Multimedia Big Data on the Cloud with Engineering Applications, 185–231.

4, 6

Agarwal, D. & Bharti, P.S. (2021). Implementing modified swarm intelli-

gence algorithm based on Slime moulds for path planning and obstacle avoid-

ance problem in mobile robots. Applied Soft Computing , 107, 107372. 168

Akay, B. & Karaboga, D. (2012). A modified artificial bee colony algorithm

for real-parameter optimization. Information Sciences, 192, 120–142. 13, 64

Alizadegan, A., Asady, B. & Ahmadpour, M. (2013). Two modified ver-

sions of artificial bee colony algorithm. Applied Mathematics and Computation,

225, 601–609. 34, 35

Anuar, S., Selamat, A. & Sallehuddin, R. (2016). A modified scout bee for

artificial bee colony algorithm and its performance on optimization problems.

Journal of King Saud University - Computer and Information Sciences, 28,

395–406. 94

Arora, S. & Majumdar, A. (2022). Machine learning and soft computing

applications in textile and clothing supply chain: Bibliometric and network

analyses to delineate future research agenda. Expert Systems with Applications,

117000. 66

191

REFERENCES

Aslan, S. (2022). An immune plasma algorithm with a modified treatment

schema for UCAV path planning. Engineering Applications of Artificial In-

telligence, 112, 104789. 21

Aslan, S., Karaboga, D. & Badem, H. (2020). A new artificial bee colony al-

gorithm employing intelligent forager forwarding strategies. Applied Soft Com-

puting , 96, 106656. 130, 155

Awad, N., Ali, M.Z. & Reynolds, R.G. (2015). A differential evolution al-

gorithm with success-based parameter adaptation for CEC2015 learning-based

optimization. In 2015 IEEE Congress on Evolutionary Computation (CEC),

1098–1105, Sendai, Japan. 34

Awad, N.H., Ali, M.Z., Suganthan, P.N., Liang, J.J. & Qu, B.Y. (2017).

Problem definitions and evaluation criteria for the CEC 2017 special session

and competition on single objective real-parameter numerical optimization. 34.

77

Aydoğdu, İ., Akın, A. & Saka, M.P. (2016). Design optimization of real

world steel space frames using artificial bee colony algorithm with Levy flight

distribution. Advances in engineering software, 92, 1–14. 69

Babaoglu, I. (2015). Artificial bee colony algorithm with distribution-based

update rule. Applied Soft Computing , 34, 851 – 861. 14, 38

Badem, H., Basturk, A., Caliskan, A. & Yuksel, M.E. (2018). A new hy-

brid optimization method combining artificial bee colony and limited-memory

BFGS algorithms for efficient numerical optimization. Applied Soft Computing ,

70, 826–844. 17

Banharnsakun, A., Achalakul, T. & Sirinaovakul, B. (2011). The best-

so-far selection in artificial bee colony algorithm. Applied Soft Computing , 11,

2888–2901. 13, 18, 65, 99

Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A. & Nagar,

A.K. (2011). Multi-robot path-planning using artificial bee colony optimization

algorithm. In 2011 Third World Congress on Nature and Biologically Inspired

Computing , 219–224, Salamanca, Spain. 21, 149

192

REFERENCES

Brest, J., Greiner, S., Boskovic, B., Mernik, M. & Zumer, V. (2006).

Self-adapting control parameters in differential evolution: A comparative study

on numerical benchmark problems. IEEE Transactions on Evolutionary Com-

putation, 10, 646–657. 41

Chen, M., Chen, J., Zeng, G., Lu, K. & Jiang, X. (2019a). An improved

artificial bee colony algorithm combined with extremal optimization and Boltz-

mann selection probability. Swarm and Evolutionary Computation, 49, 158–

177. 17, 18

Chen, R., Yang, B., Li, S. & Wang, S. (2020). A self-learning genetic algo-

rithm based on reinforcement learning for flexible job-shop scheduling problem.

Computers & Industrial Engineering , 149, 106778. 65, 66, 73

Chen, X., Xu, B., Mei, C., Ding, Y. & Li, K. (2018). Teach-

ing–learning–based artificial bee colony for solar photovoltaic parameter es-

timation. Applied Energy , 212, 1578–1588. 17, 100

Chen, X., Tianfield, H. & Li, K. (2019b). Self-adaptive differential artificial

bee colony algorithm for global optimization problems. Swarm and Evolution-

ary Computation, 45, 70–91. 15, 64, 80, 99, 116, 130, 155

Chen, Y., Luo, G., Mei, Y., Yu, J. & Su, X. (2016). UAV path planning

using artificial potential field method updated by optimal control theory. In-

ternational Journal of Systems Science, 47, 1407–1420. 20

Chen, Y., Pi, D. & Wang, B. (2019c). Enhanced global flower pollination

algorithm for parameter identification of chaotic and hyper-chaotic system.

Nonlinear Dynamics, 97, 1343–1358. 8

Chopra, N. & Ansari, M.M. (2022). Golden jackal optimization: A novel

nature-inspired optimizer for engineering applications. Expert Systems with Ap-

plications, 198, 116924. 3, 4

Châari, I., Koubaa, A., Bennaceur, H., Trigui, S. & Al-Shalfan, K.

(2012). smartPATH: A hybrid ACO-GA algorithm for robot path planning. In

2012 IEEE congress on evolutionary computation, 1–8. 19

193

REFERENCES

Contreras-Cruz, M.A., Ayala-Ramirez, V. & Hernandez-Belmonte,

U.H. (2015). Mobile robot path planning using artificial bee colony and evolu-

tionary programming. Applied Soft Computing , 30, 319–328. 18, 21, 149

Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F. & Machado, J.A.T.

(2012). Introducing the fractional-order darwinian PSO. Signal, Image and

Video Processing , 6, 343–350. 112, 117, 118, 136

Cui, L., Li, G., Lin, Q., Du, Z., Gao, W., Chen, J. & Lu, N. (2016).

A novel artificial bee colony algorithm with depth-first search framework and

elite-guided search equation. Information Sciences, 367-368, 1012–1044. 14

Cui, L., Li, G., Wang, X., Lin, Q., Chen, J., Lu, N. & Lu, J. (2017a).

A ranking-based adaptive artificial bee colony algorithm for global numerical

optimization. Information Sciences, 417, 169–185. 16, 80, 155

Cui, L., Li, G., Zhu, Z., Lin, Q., Wen, Z., Lu, N., Wong, K.C. & Chen,

J. (2017b). A novel artificial bee colony algorithm with an adaptive population

size for numerical function optimization. Information Sciences, 414, 53–67. 16,

35, 45, 48, 94, 155

Cui, L., Zhang, K., Li, G., Wang, X., Yang, S., Ming, Z., Huang, J.Z.

& Lu, N. (2018). A smart artificial bee colony algorithm with distance-fitness-

based neighbor search and its application. Future Generation Computer Sys-

tems, 89, 478–493. 35, 45

Cui, L., Deng, J., Zhang, Y., Tang, G. & Xu, M. (2020). Hybrid differential

artificial bee colony algorithm for multi-item replenishment-distribution prob-

lem with stochastic lead-time and demands. Journal of Cleaner Production,

254, 119873. 16, 64

Cui, Y., Hu, W. & Rahmani, A. (2022). Improved artificial bee colony algo-

rithm with dynamic population composition for optimization problems. Non-

linear Dynamics, 107, 743–760. 64, 65

Das, P., Behera, H. & Panigrahi, B. (2016a). A hybridization of an improved

particle swarm optimization and gravitational search algorithm for multi-robot

path planning. Swarm and Evolutionary Computation, 28, 14–28. 21, 149, 168

194

REFERENCES

Das, P.K. & Jena, P.K. (2020). Multi-robot path planning using improved

particle swarm optimization algorithm through novel evolutionary operators.

Applied Soft Computing , 92, 106312. 8, 20, 21, 148, 149, 165, 167

Das, S., Mullick, S.S. & Suganthan, P.N. (2016b). Recent advances in dif-

ferential evolution – an updated survey. Swarm and Evolutionary Computation,

27, 1 – 30. 8

Dennis, J.E., Jr & Moré, J.J. (1977). Quasi-Newton methods, motivation

and theory. SIAM review , 19, 46–89. 2

Deshmukh, A.B. & Usha Rani, N. (2019). Fractional-Grey Wolf optimizer-

based kernel weighted regression model for multi-view face video super resolu-

tion. International Journal of Machine Learning and Cybernetics, 10, 859–877.

112

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs.

Numerische mathematik , 1, 269–271. 20

Dillen, W., Lombaert, G. & Schevenels, M. (2021). A hybrid gradient-

based/metaheuristic method for eurocode-compliant size, shape and topology

optimization of steel structures. Engineering Structures, 239, 112137. 4

Doering, J., Kizys, R., Juan, A.A., Fitó, A. & Polat, O. (2019). Meta-

heuristics for rich portfolio optimisation and risk management: Current state

and future trends. Operations Research Perspectives, 6, 100121. 6

Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. The-

sis, Politecnico di Milano. 7

Dorigo, M., Birattari, M. & Stutzle, T. (2006). Ant colony optimization.

IEEE Computational Intelligence Magazine, 1, 28–39. 7

Emary, E., Zawbaa, H.M. & Grosan, C. (2017). Experienced gray wolf

optimization through reinforcement learning and neural networks. IEEE trans-

actions on neural networks and learning systems, 29, 681–694. 64

Farah, A. & Belazi, A. (2018). A novel chaotic Jaya algorithm for uncon-

strained numerical optimization. Nonlinear Dynamics, 93, 1451–1480. 45

195

REFERENCES

Feng, T., Wang, C., Zhang, J., Wang, B. & Jin, Y.F. (2022). An improved

artificial bee colony-random forest (IABC-RF) model for predicting the tunnel

deformation due to an adjacent foundation pit excavation. Underground Space,

7, 514–527. 17

Fletcher, R. (2013). Practical methods of optimization. 2

Flor-Sánchez, C.O., Reséndiz-Flores, E.O. & Altamirano-Guerrero,

G. (2022). Kernel-based gradient evolution optimization method. Information

Sciences, 602, 313–327. 3, 4

Formica, G. & Milicchio, F. (2020). Kinship-based differential evolution al-

gorithm for unconstrained numerical optimization. Nonlinear Dynamics, 99,

1341–1361. 35

Fragapane, G., De Koster, R., Sgarbossa, F. & Strandhagen, J.O.

(2021). Planning and control of autonomous mobile robots for intralogistics:

Literature review and research agenda. European Journal of Operational Re-

search, 294, 405–426. 148

Gao, H., Shi, Y., Pun, C.M. & Kwong, S. (2019). An improved artificial

bee colony algorithm with its application. IEEE Transactions on Industrial

Informatics, 15, 1853–1865. 18, 48, 80, 130, 155

Gao, K., He, Z., Huang, Y., Duan, P. & Suganthan, P.N. (2020). A

survey on meta-heuristics for solving disassembly line balancing, planning and

scheduling problems in remanufacturing. Swarm and Evolutionary Computa-

tion, 57. 8

Gao, W., Liu, S. & Huang, L. (2012). A global best artificial bee colony al-

gorithm for global optimization. Journal of Computational and Applied Math-

ematics, 236, 2741–2753. 13, 17, 65, 99

Gao, W., Liu, S. & Huang, L. (2013). A novel artificial bee colony algorithm

based on modified search equation and orthogonal learning. IEEE Transactions

on Cybernetics, 43, 1011–1024. 17

196

REFERENCES

Gao, W., Liu, S. & Huang, L. (2014). Enhancing artificial bee colony algo-

rithm using more information-based search equations. Information Sciences,

270, 112–133. 14, 15, 99

Gao, W., Chan, F.T., Huang, L. & Liu, S. (2015a). Bare bones artificial bee

colony algorithm with parameter adaptation and fitness-based neighborhood.

Information Sciences, 316, 180–200. 14, 16, 65

Gao, W., Huang, L., Liu, S. & Dai, C. (2015b). Artificial bee colony algo-

rithm based on information learning. IEEE Transactions on Cybernetics, 45,

2827–2839. 15

Gao, W., Huang, L., Wang, J., Liu, S. & Qin, C. (2016). Enhanced artificial

bee colony algorithm through differential evolution. Applied Soft Computing ,

48, 137 – 150. 16, 17, 36, 99

Gendreau, M. & Potvin, J.Y. (2005). Metaheuristics in combinatorial opti-

mization. Annals of Operations Research, 140, 189–213. 6

Genovesi, S., Mittra, R., Monorchio, A. & Manara, G. (2006). Par-

ticle swarm optimization for the design of frequency selective surfaces. IEEE

Antennas and Wireless Propagation Letters, 5, 277–279. 25

Gholizadeh, S., Danesh, M. & Gheyratmand, C. (2020). A new Newton

metaheuristic algorithm for discrete performance-based design optimization of

steel moment frames. Computers & Structures, 234, 106250. 4

Gu, Y., Yu, Y. & Wang, H. (2017). Synchronization-based parameter estima-

tion of fractional-order neural networks. Physica A: Statistical Mechanics and

its Applications, 483, 351–361. 117

Han, S.D. & Yu, J. (2019). Effective heuristics for multi-robot path planning

in warehouse environments. In 2019 International Symposium on Multi-Robot

and Multi-Agent Systems (MRS), 10–12. 21, 165

Han, S.D. & Yu, J. (2020). DDM: Fast near-optimal multi-robot path planning

using diversified-path and optimal sub-problem solution database heuristics.

IEEE Robotics and Automation Letters, 5, 1350–1357. 22, 165

197

REFERENCES

Harfouchi, F., Habbi, H., Ozturk, C. & Karaboga, D. (2018). Modified

multiple search cooperative foraging strategy for improved artificial bee colony

optimization with robustness analysis. Soft Computing , 22, 6371–6394. 15

Hart, P., Nilsson, N. & Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4, 100–107. 20, 148

Hasan, A.H. & Mosa, A.M. (2018). Multi-robot path planning based on

max–min ant colony optimization and D* algorithms in a dynamic environ-

ment. In 2018 International Conference on Advanced Science and Engineering

(ICOASE), 110–115. 21, 22, 149

Hawa, M. (2013). Light-assisted A∗ path planning. Engineering Applications of

Artificial Intelligence, 26, 888–898. 20, 148

Heidari, A.A. & Pahlavani, P. (2017). An efficient modified grey wolf op-

timizer with Lévy flight for optimization tasks. Applied Soft Computing , 60,

115–134. 69

Holland, J. (1975). Adaptation in natural and artificial systems. 6

Holland, J.H. (1992). Adaptation in natural and artificial systems: an intro-

ductory analysis with applications to biology, control, and artificial intelligence.

MIT press. 6

Houssein, E.H., Emam, M.M., Ali, A.A. & Suganthan, P.N. (2021). Deep

and machine learning techniques for medical imaging-based breast cancer: A

comprehensive review. Expert Systems with Applications, 167, 114161. 66

Hu, W., Yu, Y. & Zhang, S. (2015). A hybrid artificial bee colony algorithm

for parameter identification of uncertain fractional-order chaotic systems. Non-

linear Dynamics, 82, 1441–1456. 17, 18, 35, 36

Hu, W., Yu, Y. & Gu, W. (2018). Parameter estimation of fractional-order

arbitrary dimensional hyperchaotic systems via a hybrid adaptive artificial bee

colony algorithm with simulated annealing algorithm. Engineering Applications

of Artificial Intelligence, 68, 172 – 191. 18

198

REFERENCES

Hu, W., Wen, G., Rahmani, A. & Yu, Y. (2019). Parameters estimation

using mABC algorithm applied to distributed tracking control of unknown

nonlinear fractional-order multi-agent systems. Communications in Nonlinear

Science and Numerical Simulation, 79, 104933. 8

Hu, Z., Gong, W. & Li, S. (2021). Reinforcement learning-based differential

evolution for parameters extraction of photovoltaic models. Energy Reports , 7,

916–928. 65, 67, 71, 77

Huillet, T.E. (2016). On Mittag-Leffler distributions and related stochastic

processes. Journal of Computational and Applied Mathematics, 296, 181–211.

69

Hussein, S., Kandel, P., Bolan, C.W., Wallace, M.B. & Bagci, U.

(2019). Lung and pancreatic tumor characterization in the deep learning era:

Novel supervised and unsupervised learning approaches. IEEE Transactions on

Medical Imaging , 38, 1777–1787. 66

Imanian, N., Shiri, M.E. & Moradi, P. (2014). Velocity based artificial bee

colony algorithm for high dimensional continuous optimization problems. En-

gineering Applications of Artificial Intelligence, 36, 148–163. 14

Jadon, S.S., Tiwari, R., Sharma, H. & Bansal, J.C. (2017). Hybrid artifi-

cial bee colony algorithm with differential evolution. Applied Soft Computing ,

58, 11–24. 16, 64, 65

Jensi, R. & Jiji, G.W. (2016). An enhanced particle swarm optimization with

levy flight for global optimization. Applied Soft Computing , 43, 248–261. 69

Ji, J., Song, S., Tang, C., Gao, S., Tang, Z. & Todo, Y. (2019). An

artificial bee colony algorithm search guided by scale-free networks. Information

Sciences, 473, 142–165. 17

Jiang, M., Leung, K., Lyu, Z. & Huang, G.Q. (2020). Picking-replenishment

synchronization for robotic forward-reserve warehouses. Transportation Re-

search Part E: Logistics and Transportation Review , 144, 102138. 18

199

REFERENCES

Jose, K. & Pratihar, D.K. (2016). Task allocation and collision-free path

planning of centralized multi-robots system for industrial plant inspection using

heuristic methods. Robotics and Autonomous Systems, 80, 34–42. 22

Kala, R. (2014a). Code for robot path planning using A* algorithm. Indian

Institute of Information Technology Allahabad. 161

Kala, R. (2014b). Code for robot path planning using bidirectional rapidly-

exploring random trees. Indian Institute of Information Technology Allahabad.

161

Kala, R. (2014c). Code for robot path planning using probabilistic roadmap.

Indian Institute of Information Technology Allahabad. 161

Kala, R. (2014d). Code for robot path planning using rapidly-exploring random

trees. Indian Institute of Information Technology Allahabad. 161

Kalantzis, G., Shang, C., Lei, Y. & Leventouri, T. (2016). Investigations

of a GPU-based levy-firefly algorithm for constrained optimization of radiation

therapy treatment planning. Swarm and Evolutionary Computation, 26, 191–

201. 69

Kang, F., Li, J. & Ma, Z. (2011). Rosenbrock artificial bee colony algorithm

for accurate global optimization of numerical functions. Information Sciences,

181, 3508 – 3531. 17, 45, 104

Karaboga, D. (2005). An idea based on honey bee swarm for numerical opti-

mization. 10. 6, 7, 8, 48, 80, 130, 155

Karaboga, D. & Gorkemli, B. (2014). A quick artificial bee colony (qABC)

algorithm and its performance on optimization problems. Applied Soft Com-

puting , 23, 227–238. 15, 65

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Pro-

ceedings of ICNN’95 - International Conference on Neural Networks , vol. 4,

1942 – 1948. 6, 7, 24

Kenny, Q.Y., Li, W. & Sudjianto, A. (2000). Algorithmic construction of

optimal symmetric latin hypercube designs. Journal of statistical planning and

inference, 90, 145 – 159. 36

200

REFERENCES

Khan, A.T., Li, S. & Cao, X. (2021). Control framework for cooperative robots

in smart home using bio-inspired neural network. Measurement , 167, 108253.

18

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile

robots. In I.J. Cox & G.T. Wilfong, eds., Autonomous Robot Vehicles, 396–404,

New York, NY. 20

Kiran, M.S., Hakli, H., Gunduz, M. & Uguz, H. (2015). Artificial bee

colony algorithm with variable search strategy for continuous optimization.

Information Sciences, 300, 140–157. 15

Kirkpatrick, S., Gelatt Jr, C.D. & Vecchi, M.P. (1983). Optimization

by simulated annealing. science, 220, 671–680. 7

Kong, D., Chang, T., Dai, W., Wang, Q. & Sun, H. (2018). An improved

artificial bee colony algorithm based on elite group guidance and combined

breadth-depth search strategy. Information Sciences, 442-443, 54–71. 14, 15

Koubâa, A., Bennaceur, H., Chaari, I., Trigui, S., Ammar, A., Sriti,

M.F., Alajlan, M., Cheikhrouhou, O. & Javed, Y. (2018). Robot path

planning and cooperation: foundations, algorithms and experimentations, vol.

772. 19, 20, 148, 166, 168

Kozubowski, T.J. & Rachev, S.T. (1999). Univariate geometric stable laws.

Journal of Computational Analysis and Applications, 1, 177–217. 70

Kuang, F., Jin, Z., Xu, W. & Zhang, S. (2014). A novel chaotic artificial

bee colony algorithm based on tent map. 2014 IEEE Congress on Evolutionary

Computation (CEC), 235 – 241. 17

Kıran, M.S. & Fındık, O. (2015). A directed artificial bee colony algorithm.

Applied Soft Computing , 26, 454 – 462. 14

Kıran, M.S. & Gündüz, M. (2013). A recombination-based hybridization of

particle swarm optimization and artificial bee colony algorithm for continuous

optimization problems. Applied Soft Computing , 13, 2188–2203. 16

201

REFERENCES

Lee, C.Y. & Yao, X. (2004). Evolutionary programming using mutations based

on the Lévy probability distribution. IEEE Transactions on Evolutionary Com-

putation, 8. 114

Lei, D., Cui, Z. & Li, M. (2022). A dynamical artificial bee colony for vehi-

cle routing problem with drones. Engineering Applications of Artificial Intelli-

gence, 107, 104510. 18

Lévy, P. (1938). Théorie de l’addition des variables aléatoires. Bulletin of the

American Mathematical Society , 44, 19–20. 7, 26, 114

Li, B. & Jiang, W. (2000). A novel stochastic optimization algorithm. IEEE

Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 30,

193–198. 3

Li, J. & Pan, Q. (2015). Solving the large-scale hybrid flow shop scheduling

problem with limited buffers by a hybrid artificial bee colony algorithm. Infor-

mation Sciences, 316, 487 – 502. 18

Li, K., Ge, F., Han, Y., Wang, Y. & Xu, W. (2020a). Path planning of mul-

tiple UAVs with online changing tasks by an ORPFOA algorithm. Engineering

Applications of Artificial Intelligence, 94, 103807. 21, 165

Li, P., Yang, H., Li, H. & Liang, S. (2022). Nonlinear ESO-based track-

ing control for warehouse mobile robots with detachable loads. Robotics and

Autonomous Systems, 149, 103965. 18

Li, S., Chen, H., Wang, M., Heidari, A.A. & Mirjalili, S. (2020b). Slime

mould algorithm: A new method for stochastic optimization. Future Generation

Computer Systems, 111, 300–323. 7

Li, X. & Yin, M. (2014). Parameter estimation for chaotic systems by hybrid

differential evolution algorithm and artificial bee colony algorithm. Nonlinear

Dynamics, 77, 61–71. 8, 16, 48, 116, 155

Li, X., Shi, J., Dong, X. & Yu, J. (2019). A new conjugate gradient method

based on Quasi-Newton equation for unconstrained optimization. Journal of

Computational and Applied Mathematics, 350, 372–379. 2

202

REFERENCES

Li, Z., Wang, W., Yan, Y. & Li, Z. (2015). PS–ABC: A hybrid algorithm based

on particle swarm and artificial bee colony for high-dimensional optimization

problems. Expert Systems with Applications, 42, 8881–8895. 16, 65

Liang, J.H. & Lee, C.H. (2015). Efficient collision-free path-planning of mul-

tiple mobile robots system using efficient artificial bee colony algorithm. Ad-

vances in Engineering Software, 79, 47–56. 18, 21, 149

Liang, J.J., Qin, A.K., Suganthan, P.N. & Baskar, S. (2006). Comprehen-

sive learning particle swarm optimizer for global optimization of multimodal

functions. IEEE Transactions on Evolutionary Computation, 10, 281–295. 136

Liang, Z., Hu, K., Zhu, Q. & Zhu, Z. (2017). An enhanced artificial bee

colony algorithm with adaptive differential operators. Applied Soft Computing ,

58, 480–494. 99

Lin, M.H., Tsai, J.F. & Yu, C.S. (2012). A review of deterministic opti-

mization methods in engineering and management. Mathematical Problems in

Engineering , 2012. 3

Lin, Q., Zhu, M., Li, G., Wang, W., Cui, L., Chen, J. & Lu, J. (2018). A

novel artificial bee colony algorithm with local and global information interac-

tion. Applied Soft Computing , 62, 702–735. 15, 65

Liu, F., Sun, Y., Wang, G. & Wu, T. (2018). An artificial bee colony algo-

rithm based on dynamic penalty and lévy flight for constrained optimization

problems. Arabian Journal for Science and Engineering , 43, 7189–7208. 114,

116

Liu, X. (2016). Optimization design on fractional order PID controller based

on adaptive particle swarm optimization algorithm. Nonlinear Dynamics, 84,

379–386. 8

Lu, R., Hu, H., Xi, M., Gao, H. & Pun, C.M. (2019). An improved artifi-

cial bee colony algorithm with fast strategy, and its application. Computers &

Electrical Engineering , 78, 79–88. 18

203

REFERENCES

Lyridis, D.V. (2021). An improved ant colony optimization algorithm for un-

manned surface vehicle local path planning with multi-modality constraints.

Ocean Engineering , 241, 109890. 21, 149

Ma, Y., Zhang, X., Song, J. & Chen, L. (2021). A modified

teaching–learning-based optimization algorithm for solving optimization prob-

lem. Knowledge-Based Systems, 212, 106599. 100

Mantegna, R.N. (1994). Fast, accurate algorithm for numerical simulation of

levy stable stochastic processes. Physical Review E , 49, 4677. 114

Maqsood, S., Xu, S., Tran, S., Garg, S., Springer, M., Karunanithi,

M. & Mohawesh, R. (2022). A survey: From shallow to deep machine learn-

ing approaches for blood pressure estimation using biosensors. Expert Systems

with Applications, 197, 116788. 66

Meike, D. & Ribickis, L. (2011). Energy efficient use of robotics in the auto-

mobile industry. In 2011 15th International Conference on Advanced Robotics

(ICAR), 507–511, Tallinn, Estonia. 18

Miao, C., Chen, G., Yan, C. & Wu, Y. (2021). Path planning optimization

of indoor mobile robot based on adaptive ant colony algorithm. Computers &

Industrial Engineering , 156, 107230. 21, 149

Mousavi, Y. & Alfi, A. (2018). Fractional calculus-based firefly algorithm

applied to parameter estimation of chaotic systems. Chaos, Solitons & Fractals,

114, 202–215. 112, 117, 118, 136

Nazarahari, M., Khanmirza, E. & Doostie, S. (2019). Multi-objective

multi-robot path planning in continuous environment using an enhanced ge-

netic algorithm. Expert Systems with Applications, 115, 106–120. 19, 21, 22,

148, 149, 168

Nikolaev, A.G. & Jacobson, S.H. (2010). Simulated annealing. In Handbook

of metaheuristics, 1–39. 7

Oleiwi, B.K., Al-Jarrah, R., Roth, H. & Kazem, B.I. (2014). Multi ob-

jective optimization of trajectory planning of non-holonomic mobile robot in

dynamic environment using enhanced GA by fuzzy motion control and A. In

204

REFERENCES

International Conference on Neural Networks and Artificial Intelligence, 34–49.

168

Öztürk, c., Ahmad, R. & Akhtar, N. (2020). Variants of artificial bee colony

algorithm and its applications in medical image processing. Applied Soft Com-

puting , 97, 106799. 18

Park, C., Kyung, J.H., Choi, T.Y., Do, H.M., Kim, B.I. & Lee, S.H.

(2012). Design of an industrial dual arm robot manipulator for a human-robot

hybrid manufacturing. In 2012 9th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI), 616–618, Daejeon, Korea (South).

18

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem

solving . Addison-Wesley Longman Publishing Co., Inc. 3

Plaksina, I., Chistokhina, G. & Topolskiy, D. (2018). Development of

a transport robot for automated warehouses. In 2018 International Multi-

Conference on Industrial Engineering and Modern Technologies), 1–4, Vladi-

vostok. 18

Podlubny, I. (1999). An introduction to fractional derivatives, fractional differ-

ential equations, to methods of their solution and some of their applications.

Mathematics in Science and Engineering , 198, 340. 117

Qin, A., Huang, V. & Suganthan, P. (2009). Differential evolution algorithm

with strategy adaptation for global numerical optimization. IEEE Transactions

on Evolutionary Computation, 13, 398–417. 23, 64

Qin, A.K. & Suganthan, P.N. (2005). Self-adaptive differential evolution al-

gorithm for numerical optimization. In 2005 IEEE Congress on Evolutionary

Computation, vol. 2, 1785–1791, Edinburgh, Scotland, UK. 34, 41

Qu, B.Y., Suganthan, P.N. & Das, S. (2013). A distance-based locally in-

formed particle swarm model for multimodal optimization. IEEE Transactions

on Evolutionary Computation, 17, 387–402. 136

205

REFERENCES

Rao, R.V., Savsani, V.J. & Vakharia, D. (2011). Teaching–learning-based

optimization: a novel method for constrained mechanical design optimization

problems. Computer-aided design, 43, 303–315. 96

Regis, R.G. & Shoemaker, C.A. (2004). Local function approximation in

evolutionary algorithms for the optimization of costly functions. IEEE Trans-

actions on Evolutionary Computation, 8, 490 – 505. 36

Rekaby, A., Youssif, A.A. & Eldin, A.S. (2013). Introducing adaptive arti-

ficial bee colony algorithm and using it in solving traveling salesman problem.

Science and Information Conference 2013 , 502 – 506. 18

Sahu, B., Kumar Das, P. & Kabat, M.r. (2022). Multi-robot cooperation

and path planning for stick transporting using improved Q-learning and demo-

cratic robotics PSO. Journal of Computational Science, 60, 101637. 22

Salimi, H. (2015). Stochastic fractal search: A powerful metaheuristic algorithm.

Knowledge-Based Systems, 75, 1–18. 7

Samma, H., Mohamad-Saleh, J., Suandi, S.A. & Lahasan, B. (2020).

Q-learning-based simulated annealing algorithm for constrained engineering

design problems. Neural Computing and Applications, 32, 5147–5161. 65

Sedighi, K.H., Ashenayi, K., Manikas, T.W., Wainwright, R.L. & Tai,

H.M. (2004). Autonomous local path planning for a mobile robot using a ge-

netic algorithm. In Proceedings of the 2004 congress on evolutionary computa-

tion (IEEE Cat. No. 04TH8753), vol. 2, 1338–1345. 168

Shahrabi, J., Adibi, M.A. & Mahootchi, M. (2017). A reinforcement learn-

ing approach to parameter estimation in dynamic job shop scheduling. Com-

puters & Industrial Engineering , 110, 75–82. 73

Sharma, H., Bansal, J.C., Arya, K.V. & Yang, X.S. (2016). Lévy flight

artificial bee colony algorithm. International Journal of Systems Science, 47,

2652–2670. 17, 114, 115

Shlesinger, M.F. (1989). Levy flights: Variations on a theme. Physica D: Non-

linear Phenomena, 38, 304–309. 7, 26, 114

206

REFERENCES

Solteiro Pires, E.J., Tenreiro Machado, J.A., de Moura Oliveira,

P.B., Boaventura Cunha, J. & Mendes, L. (2010). Particle swarm op-

timization with fractional-order velocity. Nonlinear Dynamics, 61, 295–301.

112

Song, X., Yan, Q. & Zhao, M. (2017). An adaptive artificial bee colony algo-

rithm based on objective function value information. Applied Soft Computing ,

55, 384–401. 15, 65

Song, X., Zhao, M., Yan, Q. & Xing, S. (2019). A high-efficiency adaptive

artificial bee colony algorithm using two strategies for continuous optimization.

Swarm and Evolutionary Computation, 50, 100549. 6, 14

Storn, R. & Price, K. (1997). Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global Op-

timization, 11, 341–359. 6, 7, 22

Su, H., Zhao, D., Yu, F., Heidari, A.A., Zhang, Y., Chen, H., Li, C.,

Pan, J. & Quan, S. (2022). Horizontal and vertical search artificial bee colony

for image segmentation of COVID-19 X-ray images. Computers in Biology and

Medicine, 142, 105181. 18

Sutton, R.S. & Barto, A.G. (2018). Reinforcement learning: An introduction.

MIT press. 64, 66, 67, 72

Szczepanski, R., Tarczewski, T., Erwinski, K. & Grzesiak, L.M. (2018).

Comparison of constraint-handling techniques used in artificial bee colony algo-

rithm for auto-tuning of state feedback speed controller for PMSM. In ICINCO

(1), 279–286. 153

Tao, X., Pan, Q. & Gao, L. (2022). An efficient self-adaptive artificial bee

colony algorithm for the distributed resource-constrained hybrid flowshop prob-

lem. Computers & Industrial Engineering , 169, 108200. 18

Thabit, S. & Mohades, A. (2019). Multi-robot path planning based on multi-

objective particle swarm optimization. IEEE Access, 7, 2138–2147. 21, 22,

149

207

REFERENCES

Tian, S., Li, Y., Kang, Y. & Xia, J. (2021). Multi-robot path planning in

wireless sensor networks based on jump mechanism PSO and safety gap obstacle

avoidance. Future Generation Computer Systems, 118, 37–47. 21, 149

Tu, J., Chen, H., Wang, M. & Gandomi, A.H. (2021). The colony predation

algorithm. Journal of Bionic Engineering , 18, 674–710. 7

Tuncer, A. & Yildirim, M. (2012). Dynamic path planning of mobile robots

with improved genetic algorithm. Computers & Electrical Engineering , 38,

1564–1572. 21, 149

Wang, G.G., Deb, S. & Cui, Z. (2019). Monarch butterfly optimization. Neural

Computing and Applications, 31, 1995–2014. 7

Wang, H., Wang, J. & Huang, M. (2013). Building a smart home system with

WSN and service robot. In 2013 Fifth International Conference on Measuring

Technology and Mechatronics Automation, 353–356, Hong Kong. 18

Wang, H., Wang, W., Xiao, S., Cui, Z., Xu, M. & Zhou, X. (2020).

Improving artificial bee colony algorithm using a new neighborhood selection

mechanism. Information Sciences, 527, 227–240. 15, 16, 35, 45, 48, 65, 99,

130, 155

Wang, S., Hu, W., Riego, I. & Yu, Y. (2022). Improved surrogate-assisted

whale optimization algorithm for fractional chaotic systems’ parameters iden-

tification. Engineering Applications of Artificial Intelligence, 110, 104685. 114

Wang, Z., Li, M., Dou, L., Li, Y., Zhao, Q. & Li, J. (2015). A novel

multi-objective artificial bee colony algorithm for multi-robot path planning.

In 2015 IEEE International Conference on Information and Automation, 481–

486, Lijiang, China. 21, 149

Watkins, C.J.C.H. & Dayan, P. (1992). Q-learning. Machine Learning , 8,

279–292. 67

Wei, J., Chen, Y., Yu, Y. & Chen, Y. (2019). Optimal randomness in swarm-

based search. Mathematics, 7, 828. 69, 70

208

REFERENCES

Wilson, G., Pereyda, C., Raghunath, N., de la Cruz, G., Goel, S.,

Nesaei, S., Minor, B., Schmitter-Edgecombe, M., Taylor, M.E. &

Cook, D.J. (2019). Robot-enabled support of daily activities in smart home

environments. Cognitive Systems Research, 54, 258–272. 18

Wu, G., Mallipeddi, R., Suganthan, P., Wang, R. & Chen, H. (2016).

Differential evolution with multi-population based ensemble of mutation strate-

gies. Information Sciences, 329, 329–345. 64

Xiang, W. & An, M. (2013). An efficient and robust artificial bee colony al-

gorithm for numerical optimization. Computers & Operations Research, 40,

1256–1265. 14, 17, 94

Xiang, W., Li, Y., Meng, X., Zhang, C. & An, M. (2017). A grey artificial

bee colony algorithm. Applied Soft Computing , 60, 1–17. 71

Xiang, W., Li, Y., He, R. & An, M. (2021). Artificial bee colony algorithm

with a pure crossover operation for binary optimization. Computers & Indus-

trial Engineering , 152, 107011. 15, 71

Xiang, Y., Peng, Y., Zhong, Y., Chen, Z., Lu, X. & Zhong, X. (2014). A

particle swarm inspired multi-elitist artificial bee colony algorithm for real-

parameter optimization. Computational Optimization and Applications, 57,

493–516. 14

Xiang, Y., Zhou, Y. & Liu, H. (2015). An elitism based multi-objective ar-

tificial bee colony algorithm. European Journal of Operational Research, 245,

168–193. 14

Xiao, S., Wang, H., Wang, W., Huang, Z., Zhou, X. & Xu, M. (2021).

Artificial bee colony algorithm based on adaptive neighborhood search and

Gaussian perturbation. Applied Soft Computing , 100, 106955. 15, 99

Xing, G. (2021). Motion control method of multi degree of freedom industrial

robot for intelligent manufacturing. In 2021 2nd International Conference on

Intelligent Design (ICID), 6–9, Xi’an, China. 18

209

REFERENCES

Xu, F., Li, H., Pun, C.M., Hu, H., Li, Y., Song, Y. & Gao, H. (2020). A

new global best guided artificial bee colony algorithm with application in robot

path planning. Applied Soft Computing , 88, 106037. 18, 21, 70, 149

Xu, R., Wang, Q., Shi, L. & Chen, L. (2011). Design of multi-robot path

planning system based on hierarchical fuzzy control. Procedia Engineering , 15,

235–239. 22

Xue, Y., Jiang, J., Zhao, B. & Ma, T. (2018). A self-adaptive artificial bee

colony algorithm based on global best for global optimization. Soft Computing ,

22, 2935–2952. 34

Yang, X.S. (2009). Firefly algorithms for multimodal optimization. In O. Watan-

abe & T. Zeugmann, eds., Stochastic Algorithms: Foundations and Applica-

tions, vol. 5792, 169–178, Berlin, Heidelberg. 6, 54

Yang, X.S. (2020). Nature-inspired optimization algorithms. 2, 3, 27, 69, 114

Yang, X.S. & Deb, S. (2009). Cuckoo search via Lévy flights. In 2009 World

congress on nature & biologically inspired computing (NaBIC), 210–214. 7, 26,

69, 114

Yavuz, G. & Aydın, D. (2019). Improved self-adaptive search equation-based

artificial bee colony algorithm with competitive local search strategy. Swarm

and Evolutionary Computation, 51, 100582. 15

Yin, S., Ji, W. & Wang, L. (2019). A machine learning based energy efficient

trajectory planning approach for industrial robots. Procedia CIRP , 81, 429–

434. 18

Yousri, D. & Mirjalili, S. (2020). Fractional-order cuckoo search algorithm

for parameter identification of the fractional-order chaotic, chaotic with noise

and hyper-chaotic financial systems. Engineering Applications of Artificial In-

telligence, 92, 103662. 112, 136

Yousri, D., Abd Elaziz, M. & Mirjalili, S. (2020). Fractional-order

calculus-based flower pollination algorithm with local search for global opti-

mization and image segmentation. Knowledge-Based Systems, 197, 105889.

112, 117, 121

210

REFERENCES

Yousri, D., Abd Elaziz, M., Abualigah, L., Oliva, D., Al-qaness, M.A.

& Ewees, A.A. (2021). COVID-19 X-ray images classification based on en-

hanced fractional-order cuckoo search optimizer using heavy-tailed distribu-

tions. Applied Soft Computing , 101, 107052. 69

Zabihi, F. & Nasiri, B. (2018). A novel history-driven artificial bee colony

algorithm for data clustering. Applied Soft Computing , 71, 226 – 241. 18

Zhang, J. & Sanderson, A.C. (2009). JADE: Adaptive differential evolution

with optional external archive. IEEE Transactions on Evolutionary Computa-

tion, 13, 945–958. 34, 41, 42, 64

Zhang, M., Tian, N., Palade, V., Ji, Z. & Wang, Y. (2018). Cellular arti-

ficial bee colony algorithm with Gaussian distribution. Information Sciences,

462, 374–401. 14

Zhang, Y., Cheng, S., Shi, Y., Gong, D.w. & Zhao, X. (2019). Cost-

sensitive feature selection using two-archive multi-objective artificial bee colony

algorithm. Expert Systems with Applications, 137, 46–58. 18

Zhao, H. & Zhang, C. (2020). A decomposition-based many-objective artificial

bee colony algorithm with reinforcement learning. Applied Soft Computing , 86,

105879. 64

Zhao, Z., Yang, J., Hu, Z. & Che, H. (2016). A differential evolution algo-

rithm with self-adaptive strategy and control parameters based on symmetric

Latin hypercube design for unconstrained optimization problems. European

Journal of Operational Research, 250, 30 – 45. 36

Zhou, X., Lu, J., Huang, J., Zhong, M. & Wang, M. (2021a). Enhancing

artificial bee colony algorithm with multi-elite guidance. Information Sciences,

543, 242–258. 64, 80, 130, 155

Zhou, Y., Zhang, W., Kang, J., Zhang, X. & Wang, X. (2021b). A

problem-specific non-dominated sorting genetic algorithm for supervised fea-

ture selection. Information Sciences, 547, 841 – 859. 8

211

REFERENCES

Zhu, G. & Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for

numerical function optimization. Applied Mathematics and Computation, 217,

3166 – 3173. 13, 16, 35, 45, 65, 98, 99, 100, 101, 155, 173

Zorarpacı, E. & Özel, S.A. (2016). A hybrid approach of differential evolution

and artificial bee colony for feature selection. Expert Systems with Applications,

62, 91–103. 18, 116

Zou, F., Chen, D. & Xu, Q. (2019). A survey of teaching–learning-based

optimization. Neurocomputing , 335, 366–383. 96

Šeda, M. (2007). Roadmap methods vs. cell decomposition in robot motion

planning. In Proceedings of the 6th WSEAS international conference on signal

processing, robotics and automation, 127–132, World Scientific and Engineering

Academy and Society (WSEAS) Athens, Greece. 20

212

Résumé Etendu

En tant que classe d’algorithmes stochastiques, les algorithmes méta-heuristiques

sont efficaces pour résoudre des problèmes d’optimisation grâce à un compromis

entre la randomisation et la recherche locale. De tels algorithmes sont générale-

ment conçus en modélisant le comportement intelligent de certaines espèces. Ils

se sont avérés efficaces et simples à comprendre. Ainsi, ils ont été utilisés pour

résoudre de nombreux problèmes d’optimisation dans une variété de domaines.

Néanmoins, il y a encore des pistes d’amélioration, comme la facilité d’être piégé

dans les optimums locaux ou l’accélération de la vitesse de convergence. Et la

gestion précise du compromis entre l’exploration et l’exploitation pour toutes les

tâches d’optimisation est toujours un défi. Dans ce contexte, cette thèse traite

une classe d’algorithmes méta-heuristiques représentée par l’algorithme ABC (Ar-

tificial Bee Colony). Une série de variantes améliorées en analysant les caractéris-

tiques et les faiblesses de l’algorithme ABC a été proposée. De plus, des prob-

lèmes ayant une valeur d’application plus élevée sont également pris en compte.

Les algorithmes ABC améliorés proposés ont résolu avec succès différents types

de problèmes d’optimisation pratiques, y compris des tâches de planification de

trajectoire pour un seul robot et multi-robots dans divers environnements.

Dans le premier chapitre, le contexte et les motivations de cette thèse sont

présentés, suivis d’un aperçu des algorithmes méta-heuristiques. Ensuite, un bref

résumé du problème de planification de trajectoire de robot est fourni. Enfin,

les préliminaires de l’algorithme ABC original et quelques notions de base sont

également donnés.

L’algorithme ABC est efficace pour explorer l’espace de recherche, en revanche,

sa capacité à rechercher des régions prometteuses est limitée, ce qui entraîne un

taux de convergence lent. Il contient trois phases fonctionnelles : la phase d’abeille

employée, la phase d’abeille spectatrice et la phase d’abeille éclaireuse. La mission

213

RESUME ETENDU

d’exploration est principalement accomplie par les abeilles employées tandis que

les abeilles spectatrices sont chargés d’exploiter dans certaines régions.

En plus de ces stratégies d’amélioration largement mentionnées, l’impact de

la composition de la population est étudié dans le chapitre 2. En effet, la com-

position invariable de la population de la colonie d’abeilles ne peut pas satisfaire

les besoins des différentes étapes de recherche. Dans ce contexte, l’amélioration

de l’efficacité de l’ABC en ajustant la composition de la population est dévelop-

pée. Ainsi, un algorithme ABC avec composition dynamique de la population,

à savoir ABCDC, est proposé. Les principales contributions de ce chapitre sont

les suivantes : premièrement, le Symmetric Latin Hypercube Design (SLHD) est

adoptée dans l’initialisation pour améliorer la diversité de la population. Ensuite,

un nouveau mécanisme est proposé pour ajuster la composition de la population

en fonction des expériences de recherche. Plus précisément, le nombre d’abeilles

employées diminue périodiquement tandis que la taille des abeilles spectatrices

augmente afin d’apporter plus d’énergie pour exploiter l’optimum global au stade

moyen-tardif du processus de recherche. Dans l’ABCDC, la division du travail

entre les différentes abeilles est plus claire, de sorte que l’optimum global peut

être obtenu plus efficacement grâce à leur coopération. De plus, l’ABCDC main-

tient un bon équilibre entre la diversification et l’intensification. Des études

expérimentales sur des problèmes d’optimisation fonctionnelle sont réalisées pour

vérifier la performance d’ABCDC. Les comparaisons montrent que l’ABCDC a

une meilleure précision de solution et un taux de convergence plus rapide.

En fait, il est difficile de définir les valeurs des paramètres de contrôle de

manière appropriée pour tous les types de problèmes. Ainsi, ces paramètres de

contrôle sont généralement constants ou mis à jour avec des méthodes d’adaptation

prédéterminées, comme celle adoptée dans l’ABCDC. Cependant, les démarches

d’adaptation reposent encore largement sur l’expérience du concepteur. Dans

ce contexte, différent de la littérature existante, une nouvelle façon de définir

les valeurs des paramètres est proposée dans le chapitre 3. Un algorithme ABC

basé sur l’apprentissage par renforcement (RL) est proposé, nommé ABC_RL.

La méthode RL est utilisée pour faire varier le nombre de dimensions à mettre à

jour dans l’équation de recherche de solution. La valeur de récompense de RL est

définie en fonction des résultats de la mise à jour. Dans ce cas, plus d’informations

214

RESUME ETENDU

peuvent être apprises de manière appropriée à partir de l’expérience de mise à

jour précédente.

Les principales contributions du chapitre 3 peuvent être résumées comme suit :

premièrement, RL est adopté pour élargir et ajuster intelligemment la fréquence

de perturbation de la phase d’abeille employée en tenant compte de la récom-

pense immédiate des résultats de mise à jour de la solution. Deuxièmement,

deux équations de recherche de solution améliorées sont utilisées. De plus, un

type de distribution à queue lourde, la distribution de Mittag-Leffler, est utilisé

pour générer des facteurs d’échelle des équations de recherche. Enfin, l’ABC_RL

proposé est comparé à d’autres algorithmes ABC améliorés sur un groupe de

fonctions de référence et montre ses performances exceptionnelles..

Dans le chapitre 4, la praticité et la complexité de l’algorithme sont consid-

érées comme plus importantes puisque l’un des objectifs les plus essentiels de

l’amélioration de ces algorithmes est de résoudre des problèmes pratiques. Bien

que de nombreuses stratégies de modification soient efficaces pour résoudre les

problèmes d’optimisation fonctionnelle, elles n’aident pas toujours à obtenir rapi-

dement la solution optimale dans les applications pratiques. Par conséquent, il est

également important d’améliorer les performances de l’algorithme sans le compli-

quer à l’excès. C’est pourquoi le chapitre 4 étudie l’amélioration des performances

de l’ABC tout en évitant qu’il ne devienne trop complexe. Dans ce contexte, un

algorithme ABC basé sur l’apprentissage (ABCL) est proposé. Ainsi, il est pos-

sible d’économiser de l’énergie et du temps lors de la résolution de problèmes tels

que la planification de chemins locaux.

Les principales contributions de ce chapitre sont les suivantes : premièrement,

la meilleure solution globale est adoptée dans les phases d’abeille employée et

d’abeille éclaireuse pour guider l’essaim dans une direction de recherche promet-

teuse. Deuxièmement, la phase d’apprentissage de l’algorithme TLBO est inté-

grée à la phase d’abeille spectatrice pour améliorer la capacité d’exploitation et

simplifier la complexité de calcul. Les résultats expérimentaux et les simulations

du dernier chapitre démontrent l’efficacité de l’ABCL tout en garantissant des

solutions de haute qualité.

Dans les variantes de l’ABC proposées aux chapitres 2 à 4, les équations de

recherche de solutions sont améliorées en élargissant le nombre de dimensions à

mettre à jour et en augmentant la quantité d’informations pouvant être obtenues

215

RESUME ETENDU

à partir de la colonie. Cependant, ce type d’amélioration ignore en fait cer-

taines informations utiles sur l’expérience de recherche historique. Il convient de

souligner que, par rapport à la dérivée d’ordre entier, la dérivée d’ordre fraction-

naire contient la mémoire entière de ses événements précédents. Par conséquent,

contrairement aux résultats existants, le calcul d’ordre fractionnaire (FOC) est

incorporé dans l’algorithme ABC en tenant compte des propriétés de mémoire

du FOC. Dans l’algorithme FOABC proposé, chaque fois qu’une nouvelle solu-

tion candidate est générée, les comportements de fourrage précédents stockés en

mémoire sont pris en compte.

Les principales contributions de ce chapitre incluent l’incorporation du con-

cept de FOC dans la phase d’abeille spectatrice pour améliorer la capacité de

recherche locale. Parallèlement, une stratégie de recherche différentielle est util-

isée dans la phase d’abeille employée pour renforcer la capacité d’exploration. Et

les facteurs d’échelle de ces équations de recherche sont générés via la distribu-

tion de Lévy pour augmenter le caractère aléatoire du FOABC. Des comparaisons

sont effectuées sur un ensemble de problèmes pour valider les performances de

FOABC.

Dans la dernière partie, après avoir étudié différentes stratégies d’amélioration

pour accroître l’efficacité de l’algorithme ABC, nous avons appliqué ces algo-

rithmes ABC améliorés pour résoudre différents types de problèmes de planifi-

cation de trajectoire. Les algorithmes proposés sont adoptés pour trouver de

meilleures solutions en un temps limité après avoir transformé ces tâches pra-

tiques en problèmes d’optimisation.

Dans le chapitre 6, premièrement, ces méthodes sont utilisées pour compléter

la planification globale de trajectoire pour un seul robot. Différents environ-

nements avec des obstacles arbitraires sont considérés. Ensuite, nous avons con-

sidéré le problème de planification de trajectoire multi-robots. La tâche consiste à

générer des trajectoires optimales sans collisions pour un groupe de robots depuis

leurs positions de départ jusqu’aux points cibles prévus, tout en tenant compte

des contraintes de l’environnement dans lequel ils évoluent. Pour tous les défis de

planification de chemin, les algorithmes ABC proposés sont comparés à d’autres

planificateurs de chemin bien connus en termes de longueur de chemin et de temps

d’exécution.

216

Titre: Algorithmes améliorés de colonies d’abeilles artificielles pour la planification de

la trajectoire des robots

Résumé: En tant que classe d’algorithmes stochastiques, les algorithmes méta-heuristiques

sont efficaces pour résoudre des problèmes d’optimisation grâce à un compromis entre la

randomisation et la recherche locale. De tels algorithmes sont avérés efficaces et simples

à comprendre. Néanmoins, il y a encore des pistes d’amélioration, comme la facilité

d’être piégé dans les optimums locaux ou l’accélération de la vitesse de convergence.

Et la gestion précise du compromis entre l’exploration et l’exploitation pour toutes les

tâches d’optimisation est toujours un défi. Dans ce contexte, cette thèse traite une

classe d’algorithmes méta-heuristiques représentée par l’algorithme ABC (Artificial Bee

Colony). Une série de variantes améliorées en analysant les caractéristiques et les faib-

lesses de l’algorithme ABC a été proposée. De plus, des problèmes ayant une valeur

d’application plus élevée sont également pris en compte. Les algorithmes ABC améliorés

proposés ont résolu avec succès différents types de problèmes d’optimisation pratiques,

y compris des tâches de planification de trajectoire pour un seul robot et multi-robots

dans divers environnements.

Mots-clés: Algorithme méta-heuristique, algorithme de colonies d’abeilles artificielles,

planification de la trajectoire des robots, apprentissage par renforcement, calcul frac-

tionnaire, optimisation globale.

Title: Improved artificial bee colony algorithms for robot path planning

Abstract: As a class of stochastic algorithms, meta-heuristic algorithms are effective

for solving optimization problems through a trade-off between randomization and local

search. Such algorithms have been found to be effective and simple to understand.

Nevertheless, there is still room for improvement, such as easy to be trapped in local

optimums or slow convergence speed. And precisely handling the trade-off between

exploration and exploitation for all optimization tasks is always challenging. In this

context, this thesis focused on a class of meta-heuristic algorithms represented by the

Artificial Bee Colony (ABC) algorithm and proposed a series of improved variants by

analyzing the characteristics and weaknesses of the ABC algorithm. Furthermore, prob-

lems with a higher application value are also taken into account. The proposed enhanced

ABC versions have successfully solved different types of optimization problems, includ-

ing robot path planning tasks for single and multiple robots in various environments.

Keywords: Meta-heuristic algorithm, artificial bee colony algorithm, robot path plan-

ning, reinforcement learning, fractional calculus, global optimization.

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations and notations
	1 Introduction
	1.1 Background and motivation
	1.2 Overview of meta-heuristic algorithms
	1.3 Overview of Artificial bee colony (ABC) algorithm
	1.3.1 The standard ABC algorithm
	1.3.1.1 Initialization phase
	1.3.1.2 Employed bee phase
	1.3.1.3 Onlooker bee phase
	1.3.1.4 Scout bee phase

	1.3.2 Related work on ABC algorithm improvement
	1.3.2.1 Modification of solution search equations
	1.3.2.2 Novel selection mechanisms
	1.3.2.3 Hybridization with other algorithms or techniques

	1.3.3 Application prospects

	1.4 Overview of robot path planning (RPP) problem
	1.5 Preliminaries
	1.5.1 Differential evolution (DE) algorithm
	1.5.1.1 Mutation operation
	1.5.1.2 Crossover operation
	1.5.1.3 Selection operation

	1.5.2 Particle swarm optimization (PSO) algorithm
	1.5.3 Cuckoo search (CS) algorithm

	1.6 Contributions and outline of dissertation

	2 Improved ABC algorithm with dynamic population composition (ABCDC)
	2.1 Introduction
	2.2 Proposed ABCDC algorithm
	2.2.1 Improved initialization method
	2.2.2 Method of dynamic population composition
	2.2.3 Two enhanced solution search equations
	2.2.4 The framework of ABCDC algorithm

	2.3 Experiments on function optimization problems
	2.3.1 Benchmark functions
	2.3.2 Sensitive analysis of the parameters a and T_fail
	2.3.3 Comparison with ABC variants
	2.3.4 Comparison with non-ABC algorithms
	2.3.5 Convergence behavior analysis

	2.4 Conclusion

	3 Reinforcement Learning based ABC algorithm (ABC_RL)
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Reinforcement learning (RL)

	3.3 Proposed ABC_RL algorithm
	3.3.1 Scale factors based on heavy-tailed distribution
	3.3.2 Employed bee phase with RL
	3.3.2.1 Differential search strategy
	3.3.2.2 Adjusting parameter nbup with Q-learning

	3.3.3 Improved onlooker bee phase
	3.3.4 The framework of ABC_RL algorithm

	3.4 Experiments on function optimization problems
	3.4.1 CEC 2017 benchmark problems
	3.4.2 Effects of the initial value of parameter dratio
	3.4.3 Comparison with ABC variants
	3.4.4 Effectiveness of the proposed strategies
	3.4.5 Convergence behavior analysis

	3.5 Conclusion

	4 Learning based ABC algorithm (ABCL)
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Teaching-learning based optimization (TLBO) algorithm
	4.2.1.1 Initialization
	4.2.1.2 Teaching phase
	4.2.1.3 Learning phase

	4.3 Proposed ABCL algorithm
	4.3.1 Enhanced employed bee phase
	4.3.2 Learning-based onlooker bee phase
	4.3.3 Enhanced scout bee phase
	4.3.4 The framework of ABCL algorithm

	4.4 Experiments on function optimization problems
	4.4.1 Benchmark functions
	4.4.2 Comparison with ABC variants
	4.4.3 Convergence behavior analysis

	4.5 Conclusion

	5 Fractional-order ABC algorithm (FOABC)
	5.1 Introduction
	5.2 Proposed FOABC algorithm
	5.2.1 Scale factors based on Lévy distribution
	5.2.2 Differential search strategy for employed bee phase
	5.2.3 Fractional-order search strategy for onlooker bee phase
	5.2.3.1 Fractional-order calculus definition
	5.2.3.2 Proposed fractional-order solution search equation
	5.2.3.3 Implementation steps of modified onlooker bee phase

	5.2.4 The framework of FOABC algorithm

	5.3 Experiments on function optimization problems
	5.3.1 Sensitive analysis of r and q
	5.3.2 Comparison with ABC variants
	5.3.3 Comparison with non-ABC algorithms
	5.3.4 Effectiveness of the proposed strategies
	5.3.5 Convergence behavior analysis

	5.4 Conclusion

	6 Robot path planning via improved ABC algorithms
	6.1 Introduction
	6.2 Single robot path planning (SRPP)
	6.2.1 Problem formulation of SRPP
	6.2.2 Simulation results of SRPP
	6.2.2.1 Comparison with ABC variants
	6.2.2.2 Comparison with well-known path planners

	6.3 Multi-robot path planning (MRPP)
	6.3.1 Problem formulation of MRPP
	6.3.1.1 Robot kinematic model
	6.3.1.2 Implementation method of MRPP
	6.3.1.3 Objective function of MRPP

	6.3.2 Simulation results of MRPP
	6.3.2.1 Comparative study of six-robot path planning
	6.3.2.2 MRPP process of six robots
	6.3.2.3 Comparative study of twelve-robot path planning
	6.3.2.4 MRPP process of twelve robots

	6.4 Conclusion

	Conclusions and Perspectives
	References
	Résumé Etendu

