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Titre: Description théorique des processus de collisions électroniques dans les plasmas astrophysiques et
technologiques: applications pour le développement de matériaux, les processus de traitement des déchets
et la dépollution atmosphérique
Mots clés: Théorie du défaut quantique, méthode R-matrice, collisions électron-molécules, transforma-
tions de repère, excitation rovibronique, recombinaison dissociative, applications plasmas
Résumé: Les collisions électron-molécule jouent
un rôle important dans différents domaines de
recherche allant de l’ingénierie au plasma. Ce mé-
moire s’efforce de retracer mes activités de recherche
axées sur l’étude (i) des mécanismes de destruction
des ions moléculaires en astrophysique et pour le
traitement des déchets, (ii) le rôle des collisions
impliquant électron-molécules neutres et électron-
radicaux pour les procédés de dépollution atmo-
sphérique et (iii) la formation de molécules fluo-
rées pour la conception de matériaux. Avec mes
doctorants, nous avons développé des méthodes
théoriques basées sur les premiers principes pour
calculer les sections efficaces et les constantes de
vitesse pour les processus d’excitations rotation-
nelles, vibrationnelles et électroniques ainsi que la
recombinaison dissociative de diverses molécules.

Ces résultats pourraient être utilisés ultérieurement
dans la modélisation des plasmas afin d’améliorer
les performances des procédés utilisant ces mêmes
plasmas.

Dans le cadre de mes activités d’enseignement,
nous avons développé avec mes collègues un cours
complet de mécanique quantique de premier cy-
cle basé sur des expériences numériques, dont
la version beta est disponible sur http://prd-
mecaqu.centralesupelec.fr/index.html. Cet outil
pédagogique est actuellement testé à Centrale-
supélec et à l’Université of Central Florida. Enfin,
je présenterai mon programme de recherche pour les
4 années à venir. Ce programme s’inscrit dans la
continuité des travaux précédemment entrepris.

Title: Theoretical description of electron-driven processes in astrophysical and technological plasmas:
Applications for development of materials, waste treatment processes, and atmospheric depollution
Keywords: Quantum defect theory, R-matrix method, electron-molecules scattering, rovibronic frame
transformation, rovibronic excitation, dissociative recombination, plasma applications
Abstract: Electron-molecule collisions are of
fundamental importance in a plethora of research
fields ranging from engineering to plasma. The
present habilitation compiles my achievements and
contributions within each of the following research
axis: (i) mechanisms of destruction of molecular
ions in astrophysics and waste treatment, (ii) role of
collisions involving electron-neutral molecules and
electron-radicals for atmospheric depollution pro-
cess and (iii) formation of fluorine based-molecules
in the development of materials. We developed
theoretical approaches based on first principles to
compute cross sections and related rate coefficients
for electron-impact rotational, vibrational and elec-
tronic excitations as well as dissociative recombina-

tion of various molecules. These outcomes could be
used later in plasma kinetics modeling in order to
improve the performance of a process.

Another contribution within the physics education
axis will be also outlined in this habilitation. We
developed a complete course of undergraduate quan-
tum mechanics based on numerical experiments,
whose the beta version is available on http://prd-
mecaqu.centralesupelec.fr/index.html. This peda-
gogical tool is currently tested at Centralesupélec
and at the University of Central Florida. Finally, I
sketch the planned research work for the next 4-year
period. This work is a continuation of the above
research items.
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Overview of research works

After a MsC degree in Applied Physics from the Université Pierre et Marie Curie (2007)
and a Ph.D. in fundamental physics from the Université Paris-sud (2010), I worked as a
post-doctoral associate at the Marquette University (US) studying dynamics of destruction
of the ozone molecule (2011) and, after one year, also as a post-doc at LSPM-CNRS (2012)
modelling electron-molecule collisions for plasma applications. I joined Laboratory LGPM of
CentraleSupélec as an assistant professor in 2012 and started modeling fundamental elemen-
tary processes and performing numerical simulations for various applications ranging from
engineering to plasma.

My research activities are mainly focused on describing elementary fundamental processes
involving electron, atoms and molecules. In many fields of research and applications, it
is essential to have accurate cross sections for different processes taking place in collisions
between molecules and electrons. Among such processes are electron-impact rotational (RE),
vibrational (VE), or electronic (EE) excitation of molecules, dissociative recombination (DR),
dissociative electron attachment (DEA). Over the last years, I focused on (1) studying simplest
diatomic systems to benchmark our developed theoretical models, afterwards (2) extending
these models to large molecular ions and (3) to the neutral species.

- Starting with the HeH+ molecular ion, one of the simplest molecular ion formed in the
early universe, we developed a theoretical approach that combines the multi-channel
quantum defect theory (MQDT), vibrational-frame-transformation (VFT) and the UK
R-matrix code to compute electron-impact VE of HeH+. In ISM, the temperature is
not high, such that only the ground state vibrational state of HeH+ is significantly
populated. Hence, knowledge of rate coefficients of rotational transitions may be also of
great importance for the analysis of experimental and astronomical spectra. Thus, we
generalized our model to include RE process for its isotopologues.

- Another important species relevant in ISM is CH+. Theoretical description of low-
energy e−−CH+ collisions is complicated due to the presence of a low-energy electronic
resonance and several low-energy excited electronic states of CH+. In this situation, the
standard VFT approach, used in many theoretical studies on electron-molecule collisions,
is not well adapted due to the energy-dependence of the scattering matrix. We improved
our model on HeH+ by adapting the VFT to CH+ with the help of "closed-channel
elimination" procedure (CCE-MQDT). Cross sections for vibronic excitations (VE+EE)
and DR of CH+ were computed.

v
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- Equipped with the theoretical method developed on diatomic molecules, we have applied
it to more complicated systems and computed DR and VE cross sections of polyatomic
ions of astrophysical (CH2NH+

2 , NH2CHOH+) and material development (BF+
2 ) inter-

ests. Additional approximation of the theoretical method was introduced: the use of
the normal mode approximation (NMA) for vibrational states of the target molecules.
Our theoretical studies have allowed us, on one hand, to provide an upper limit for the
total rate coefficient of DR, where data are not available, on the other hand, to confirm
previous calculations.

- More recent studies include neutral molecules, especially, NOx molecules that have a
number of applications in engineering and science. Similarly, cross sections for electron-
impact vibrational excitation of NO2 and N2O were calculated for the first time.

My research activities also encompass other applications such as (a) describing the forma-
tion of MnO oxides on a Fe-Mn alloy surface and (b) thermal and mass characterizations of
bio-materials using the Lattice Boltzmann methods (based on the kinetic theory of gases).
Both applications either requires ab initio calculations or are based on methods similar to
those developed in quantum physics. It should be stressed that the above research were car-
ried out in close collaboration with experimentalists and modelers in plasma and material fields.

Last but not least, my experience in numerical simulation and programming allowed me to
develop a complete course of undergraduate quantum mechanics (QM) based on numerical ex-
periments, whose the beta version is available on http://prd-mecaqu.centralesupelec.fr/index.html.
This tool was tested this semester on the 1st-year students of Centralesupélec and is currently
used at the University of Central Florida from August 2020 in QM course, given by Prof. V.
Kokoouline.

http://prd-mecaqu.centralesupelec.fr/index.html


Introduction

Over the last decades, low-temperature plasma science and technology has attracted the
attention of many research groups due to a plethora of applications ranging from material
development (semi-conductor and photovoltaic industries [Duchaine et al., 2012, Gonzatti
et al., 2010, Bartschat and Kushner, 2016] for instance), to waste treatment ([Bundaleska et al.,
2013]), to air pollution control (atmospheric depollution [M and E, 1993, Baeva et al., 2002])
and to astrophysical environments (interstellar medium [Lepp et al., 2002, Millar et al., 2017]),
nay to nuclei fusions reactors ([Hagelaar et al., 2011, Boeuf et al., 2011]) and to the biomedical
([Boudaïffa et al., 2000, Shomali et al., 2015b]) or recently to food processing [Misra et al., 2016].

The above applications and advances were supported by significant efforts in understanding
the mechanisms governing the plasma sources, especially those involving collisions between
electron, atoms and molecules. Numerical plasma simulations require two main ingredients:
(i) a physical model for describing the discharge plasma and (ii) a numerical algorithm for
solving the set of equations for different species. In modeling plasma, there are two approaches:
kinetic (atomistic) and fluid (hydrodynamic). In the former approach, one tracks the position
and velocity of each particle of plasma, or more exactly a macroparticle representing a large
number of particles of a given specie, by solving either the equations of motion (Newton’s
Law) or kinetic equation, viz. the Boltzmann or Vlasov– if collisions are ignored– equation, for
a space-time distributions of the charged species energy or velocity distribution probabilities.
As an example of kinetic models, we can cite the Particle In Cell with Monte-Carlo Collisions
(PIC-MCC) which is commonly adopted to simulate the plasmas immersion ion implantation
(PIII) for material development (see paper .7 dealing with the study of BF+

2 ).

On the other hand, in the fluid description, the plasma is considered as a continuous medium
(macroscopic picture) where average quantities such density, temperature and mean velocity
are of great interests. A set of equations for conservation of species mass, momentum and
energy, derived form the Boltzmann equation, is then solved. Each approach has its own
advantages and drawbacks. When some species are described with the kinetic approach and
the others with the fluid one, we have the hybrid model. To describe the plasma chemistry,
a ’reactive flow’ model that describes the coupled phenomena of chemistry and diffusion-
convection transport of chemical species is combined with the kinetic or continuum discharge
model. For a self-consistent plasma simulation, it is ought to determine the self consistent
electromagnetic field taking into account the plasma sheath space charges and/or the high
frequency plasma oscillation using either Poisson’s (electrostatic approximation) or Maxwell
equations. As it is beyond the scope of this habilitation (Habilitation à Diriger des Recherches)
to discuss details on plasma models and numerical algorithms, find here an interesting reviews

vii
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[van Dijk et al., 2009], [Samukawa et al., 2012] and [Adamovich et al., 2017], that give a
detailed snapshot of the state of the art in this field.

As hinted above, characterizing the plasma chemistry, in order to improve the performance
of a process, requires tremendous amount of data from atomic and molecular processes.
Typically, atomic and molecular processes can be classified into surface reactions and gas-
phase reactions. The former are characterized by the adsorption process of a reactant, a
chemical process between two adsorbed species or an adsorbed species and a gas phase species,
and desorption of a product from the surfaces of small grains. It is generally acknowledged
that surface reactions are responsible for formation of complex organic molecules in space
[Garrod et al., 2008]. As for gas-phase reactions, we can categorize them into one-, two-
or three-body reactions. For example, an excitation/dissociation of molecules by electrons
impact, e+M →M∗, is a two-body reaction. The rate equations of speciesM that experience
such reactions may be written

∂nM∗

∂t
+∇ · (nM∗vM∗) = ΓM∗ (.1)

where vM∗ is the velocity of specie M∗ and nM∗ its density. Above, ΓM∗ designates the rate
production of M∗ per unit of time and volume. Note that solving the above equation, with
the transport flux term (involving diffusion and convection) in the left-hand side (the second
term), could be accomplished if the velocity vM∗ is well known. The latter can be obtained
from solving the specie momentum equation.

The most striking feature of Eq.(.1) is the presence of ΓM∗ , which can take the following
simplified form

ΓM∗ = αnenM (.2)

with α or k (in cm3·s−1 ) being the rate coefficient of the two-body reaction. As we will see
in the next chapters, this coefficient is a macroscopic quantity depending on the cross section
collision and the energy distribution probabilities of the colliding particles (see Equation I.31
in Chapter I). The challenge here lies in the determination of this rate coefficient which serves
as input parameters in computer simulations of plasmas. Moreover, accuracy in the rate coef-
ficients is very important since the uncertainty could affect the prediction of simulations. This
HDR attempts to address these issues, at least, partially for certain fundamental elementary
processes that are relevant at low-energy collision.

In this context, my main research interests are largely motivated by the lack of reliable
data for atomic and molecular reactions especially those involving electron-molecule collisions
at low-energy. In low-temperature and pressure plasmas, characterized by electron energies
of the order of ionization potential of atoms/molecules (∼ 10 eV) and pressure of few Pa,
electron-molecule collisions are dominant because electrons interact with electromagnetic
fields and collide with the gas to produce radicals and excited neutral species in chemical
reactions [Kolobov, 2009]. Availability of accurate cross sections and related rate coefficients
for processes such as (i) rotational, vibrational and electronic excitations (RE,VE,EE), (ii)
dissociative recombination (DR) and (iii) dissociative electron attachment (DEA) is crucial
for plasmas modeling, as discussed above. Studies in this field can be conducted only in close
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collaboration with plasma experimentalists and modellers (see list of collaborations in CV).
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Figure .1: Schematic diagram summarizing the research activities performed over the previous
years. Note that the molecules drawn in bold have already been studied while the others are
in progress to date. It should be stressed that certain molecules could play different role in
various applications.

This report presents an overview of my research works as assistant professor at LGPM
(from 2012 to 2020). Figure .1 resumes my achievements as well as the motivations regarding
to applications in low-temperature plasma science. Over the last years, LGPM acquired a
large expertise in chemical-based processes for environmental applications and in situ analysis
of molecules of astrophysical interest (through the MSL-Curiosity mission in collaboration
with NASA). My research fits into this context and is mainly focused on the development of
theoretical approaches to study processes relevant for material science, waste treatment, and
atmospheric depollution. This field of research is part of the LGPM project, proposed to the
HCERES committee, in which the modelling of materials at different scales is one of the two
target areas of excellence for the next five-year period.

The recent key achievements were motivated by the following:

- need of understanding basic mechanisms in plasma kinetics in laboratory, in the interstellar
medium (ISM), or in technological applications;

- identify key elementary processes needed in plasma modeling;
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- develop theoretical approaches for the identified processes, especially, those involving
polyatomic molecules for which experimental and theoretical data are sparse;

- in theoretical modelling of the processes, the need of taking into account that the presence
of low-energy electronic resonances in electron-molecule collisions;

- an importance of uncertainty estimations of the theoretical models when experiential data
are not available, especially, for processes involving excited-state ions or such ions as
radicals. These excited-state ions and radicals are unstable in collisions with other
species present nearby;

- the use of theoretical approaches as complement of experimental data;

- improvement and validation of theoretical models by building collaborations with plasma
experimentalists and modelers;

- enrich KIDA, IAEA and LxCat databases for atomic and molecular reactions needed in
various applications.

Within this wide context, the main goal is to develop and improve theoretical methods
dictated not only by the lack of the fundamental understanding, but very practical interests
in applications in plasma engineering, plasma-depollution technologies, space sciences and
technologies (see Figure.1). Considering the cross-discipline importance of these applications
(in physics, chemistry, astrophysics, plasma physics, materials), it is necessary to build an
approach combining (i) the identification of the role of atomic and molecular species and key
processes leading to their formation and destruction, (ii) development and improvement of
theoretical models describing these processes, and (iii) experimental and theoretical validations
with the help of collaborations.

The above lead to the following main research axes:

I Mechanisms of destruction of molecular ions (in astrophysics and waste treatment).

II Role of collisions involving electron-neutral molecules and electron-radicals (in atmo-
spheric depollution).

III Formation of fluorine based-molecules and oxide particles (in the development of mate-
rials).

Besides the above research items, I would like to report in this manuscript my contribution
in the field of physics education. I will further describe our initiative of transforming the
traditional undergraduate and graduate quantum mechanics (QM) courses of Centralesupélec
(CS) and the University of Central Florida (UCF) into actively engaging studio-mode styles.
This pedagogical initiative led to the following achievement :

IV Toolkit for teaching quantum mechanics.

Over my experience of teaching QM and computational physics at CS, I have noticed the
difficulties that students encounter in understanding the QM concepts. Typically, QM is
taught as a pure math course or a descriptive phenomenological discipline, in which different
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core concepts of quantum physics appear to students to be disconnected from each other and
from their real-life experience. Initially, the students are curious and participate in a course
but very quickly, the more the course progresses, the more they lose their motivation and
interest in studying QM. Nowadays, there is a broad consensus that the use of multimedia in
QM classes helps to make teaching QM more efficient. This conclusion highlights the link
between teaching and numerical tools as well as theoretical methods, developed in the above
three main research axes for describing and understanding different fundamental elementary
processes.

The present document compiles my achievements and contributions within each above
items. Since details on the employed theoretical approaches and the obtained results have
been published (see list of publication in Appendix V.2.C), I will restrict myself to underlining
the major ideas, sometimes with the inclusion of a few illustrations or tests. This manuscript
is organized as follows.

In Chapter I, I will present briefly my works on a variety of molecular ions, namely, HeH+,
CH+, CH2NH+

2 and NH2CHOH+. My main contribution to this topic is the development of
theoretical methods to compute DR and VE cross sections of molecular ions relevant in astro-
physics and waste treatment. The presented works were carried out in the context of two thesis:
Dr. Xianwu Jiang at CS and Dr. Chi Hong Yuen through a long term collaboration with UCF.

Chapter II is devoted to neutral molecules and radicals. Equipped with the theoretical
methods developed on molecular ions, I extended them to neutral systems and computed
VE cross sections of NO2 and N2O that play an essential role in the atmospheric depollution
processes. The outcomes were obtained in the context of Dr. Hainan Liu thesis at CS.

It is important to note that my past research also encompasses other applications such
as metallic material and bio-material characterizations. For the sake of clarity, I will expose
in Chapter III only the works on BF+

2 , playing a role in development of materials, since
the study of metallic materials lies rather on describing experimentally/theoretically the
formation of MnO oxides on a Fe-Mn alloy surface whereas the second one focuses on thermal
and mass characterizations of bio-materials using the Lattice Boltzmann methods (based on
the kinetic theory of gases). Both studies either require ab initio calculations (Li Gong’s
PhD on the determination of surface energy) or are based on methods similar to those
developed in quantum physics (Mathilde Louërat and Huan Du PhDs on the calculation
of thermal and mass diffusion coefficients). It should be stressed that the above research
were carried out in close collaboration with experimentalists and modelers in plasma and
material fields. Moreover, the BF+

2 study has enabled to develop and formulate ideas for
further applications in particular for the HCO+ and N2H+ molecular ions in the context of Dr.
Abdillah Abdoulanziz’s thesis, co-supervised with Prof. Ioan Schneider at Université du Havre.

On the strength of my experience in numerical simulation and programming, I attempted
to contribute to physics education by developing a set of PYTHON numerical codes (published
in textbooks. See Appendix V.2.C) and designing a graphical interface allowing students to
prepare and run numerically-simulated experiments demonstrating all basic concepts taught
in QM course. An overview of the performed work, conducted in the context of the post-doc
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of Dr. Alexander Korovin and in collaboration with Prof. Viatcheslav Kokoouline at UCF, is
given in Chapter IV.

Finally, Chapter V concludes this report and sketches the planned research work for the
next 4-year period. Contributions within each of the above items and communications are also
given. Most relevant published papers related to each above items are provided in Appendix.



I – Mechanisms of destruction of
molecular ions

I.1 Context and Motivations

A number of process can occur when an electron collides with molecular ions. In low-
temperature ionized environments such as interstellar medium (ISM), planetary atmospheres
and technological plasmas (see Figure .1) (where the pressure is low and the electron density
is high), the main route for the ions destruction is the dissociative recombination (DR). This
results in stable and metastable small species and/or radicals that are in turn the basis of chain
of reactions leading to more complex species. Furthermore, DR competes with transitions
between the rotational, vibrational and electronic states of the target ions. Hence, detailed
knowledge of DR and competitive processes is necessary for modeling very cold and rarefied
environments, often in non-equilibrium.

In this chapter, I will present my works on two types of ions: (i) those with low-energy
electronic resonances appearing for geometries near the equilibrium of the target ion (in a
fixed-nuclei picture) and (ii) the ions without such low-energy electronic resonances. Two
theoretical treatments were developed in Section I.3 to be applied in Section I.5 to systems
relevant in ISM as HeH+, example of ions of the first type, and in technological plasmas
(as well as ISM) such as CH+, that have the two first excited electronic state at a relatively
low energy, below 5 eV. With some additions, the theoretical method developed for ions of
the first type was extended to more complicated systems with several vibrational degrees
of freedom, such as NH2CHOH+ or CH2NH+

2 (illustrated below) of planetary atmospheres
interest. The theoretical method was initially introduced for BF+

2 with few vibrational degrees
of freedom, viz. four-folded. This theory will be described in details in Chapter IV. The
basics of theoretical approaches developed for both diatomics and polyatomics are similar and
exposed in the next Section I.2.

Cross-sections and related rate coefficients of the electron-induced dissociation and/or
excitation of molecular cations presented in this chapter were obtained in the context of
collaboration with Prof. V. Kokoouline at the University of Central Florida (UCF) and two
dissertations: Dr. Xianwu Jiang at Centralesupélec (CS) and Dr. Yuen Chi Hong at UCF.
The following works have been published in different papers. Only relevant studies and related
articles are included in Appendix V.2.C, with the inclusion of some illustrations or tests. The
obtained results could serve in kinetic modeling of ionized media such as cold plasmas and

1
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interstellar clouds.

I.2 The basics of the theoretical approaches

Generally, electron-molecule scattering calculations are performed either in the laboratory-
frame (with respect to which the molecule rotates) in the framework of the Close-Coupling
(CC) theory [Arthurs et al., 1960] or in the body-fixed frame making use of the Fixed-Nuclei
(FN) theory [Chase, 1956].

In CC theory, a set of coupled second-order ordinary differential equations is solved for
one-electron wave function where the total wave function is expanded on the unperturbed
states of the isolated molecule, typically, via the products of functions of the internal states of
the molecule (called a channel) with angular functions (often spherical harmonics) describing
the rotation of electron around the molecule. The scattering (or reaction) matrix can be
deduced when matching the propagated one-electron wave function, from the internal region
to a distance where the potential is negligible, to a well know asymptotic form [Lane, 1980].
This method was applied for studying electron-atom/molecule and atom/molecule-molecule
collisions [mot, 1966, McGuire and Kouri, 1974, Green, 1975, Bohr et al., 2014, Mukherjee and
Mukherjee, 2015, Zammit et al., 2017]. However, including the rovibrational states into CC
equations introduces complications into the calculation, which is especially the case for polar
molecules where the long-range nature of the dipole potential requires a large number of partial
waves to be considered [Sanz et al., 2012]. This leads to a strong rotational coupling in the
equations and, consequently, slow numerical convergence because the laboratory-frame, where
the scattered electron is referred, is not appropriate at small electron-molecule separation,
where the electron is close to the molecule. This discussion will be completed in Section II.4
on the NO2 study. More details can be found in Ref.[Lane, 1980].

On the other hand, FN theory adopts the philosophy of the Born-Oppenheimer approxi-
mation (BO) [Born and Oppenheimer, 1927] in which the motion of nuclei can be separated
from that of electrons because they are munch lighter (about 2000 times) and, hence, move
faster than nuclei in a molecule. Performing bound states (electronic structure) calculations
is thus possible and one can find the energy spacing of electronic, vibrational, and rotational
levels of the order of 1000, 100, and 1 meV, respectively. The energy-time uncertainty prin-
ciple enables to obtain the respective time scales 10−17, 10−16, and 10−14 s. This result
reveals that time scale for electronic processes is usually much shorter (about 10 or 100
times) than the nuclei motion, in agreement with the BO consideration. In a similar spirit,
the motion of electrons in the continuum, in the framework of FN approximation, is fast
in such a way that the nuclei can be viewed as fixed during the scattering process. This
assumption, however, break downs when the scattering electron energies are close to excita-
tion thresholds or to a narrow and long-lived resonance, where the collision time becomes
long. As for CC, collision with a polar molecule, characterized by a strong long-range inter-
action potential, is also a circumstance for which FN approximation can not be readily applied.

In this context, the Frame Transformation (FT) approach of [Fano, 1970] takes the
advantage of both representations by exploiting the features of electron-molecule interaction
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in accordance with the electron scattering distance. Indeed, close to the nuclei, the electron
undergoes a strong Coulomb acceleration and acquires a high velocity such that nuclei can be
viewed as being stationary, justifying the use of FN approach in the framework of BO approx-
imation. The electron nearby the nuclei form together a new complex that should be treated
as many-electron system. The rising exchange and electron-electron correlation interactions
lead to a strong coupling between the angular momentum of the scattered electron and the
internuclear axis (the angular momentum component is constant of motion in case of diatomic
molecules). In such situation, the body-frame representation is more appropriate than the
laboratory-frame. On the contrary, when the electron is far from nuclei, its collision energy
becomes comparable to the energy of nuclei motion and their respective angular momenta
remain uncoupled. Consequently, nuclear Hamiltonian has now to be introduced to take into
account the effects of the rotational/vibrational molecule making thus the laboratory-frame
more appropriate. In this representation, vibrational and rotational quantum numbers of the
target molecule, in addition to the angular momentum of the scattered electron are utilized.
The total angular momentum is here a collision constant.

The theoretical methods developed on diatomic (described in next section) and polyatomic
molecules (described in next chapters) employs the above approach where once the scattering
matrices are obtained in the framework of FN approximation, FT is performed for describing
interactions between rovibronic channels of the target molecules induced by the incident
electron. Nowadays, there are two types of computational approaches in the FN approximation
that are the most employed; variational approaches and bound states approaches. The Kohn
Complex Kohn Variational method [Schneider and Rescigno, 1988] is based on the variational
principle, where the T−matrix is chosen as the variational quantities instead of the K−matrix
[Takatsuka and McKoy, 1981]. Some recent applications making use of this method could be
found in [Douguet et al., 2015a, Douguet et al., 2015c]. A second approach is the Schwinger
Multichannel Method which is based on the Schwinger variational principle for obtaining the
scattering amplitude [Schwinger, 1947]. This method utilizes the Green’s function matrix
element and the electron-molecule interaction method. Details on this approach can be found
in Ref.[da Costa et al., 2015] and references therein.

The ab initio R-matrix methods, to which we further direct our main attention, are other
methods based on variational or on bound states approach [Burke, 2011]. They adopt the
philosophy of the FT procedure by considering two regions of space in agreement with the
interaction nature between an electron and a molecule. Compared to the above variational
approaches, R-matrix method has a great advantage that the inner region problem is solved
independently of the scattering electron energy. The dependence on that energy has only to be
considered in the outer region where obtaining solutions is somewhat fast and straightforward.
In practice, the employed inner region in FT approach is extended to a large distance and the
whole problem can be thus solved in the framework of the body-fixed frame representation.
This assumption called Adiabatic Nuclei Approximation is the central idea of R-matrix method.
It is valid under certain circumstances, as stated above for the FN approximation, where
electron energies are away from excitation thresholds or long-lived resonance and there are
no significant long range interactions. The validity of these assumptions and, hence, of the
theoretical models employed in the performed studies will be justified in the following section.
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Figure I.1: The flow chart of different ingredients employed in the theoretical model developed
for the description of rotational, vibrational and electronic (de-)excitation (RE,VE,EE) as
well as dissociative recombination (DR) of diatomic molecular ions such as HeH+ and CH+.
The following abbreviations are used. FT: frame transformation. PECs: potential energy
curves. DVR: discrete variable representation. CAP: complex absorbing potential. Tasks or
methods in non-bold text are not performed in this HDR yet.
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I.3 Theoretical methods for collisions between electron and di-
atomic molecular ions

Theoretical models employed in the studies of Section I.5 are based on first-principles. They
require three main ingredients summarized in Figure I.1. A brief description follows.

I.3.A The ab initio R-matrix method

Initially introduced by Wigner [Wigner, 1946, Wigner and Eisenbud, 1947] to treat nuclear
reactions, R-matrix methods were early extended to study the scattering of electron-atom
[Burke et al., 1971, Burke and Robb, 1976] and electron-molecule [Burke et al., 1977], based on
the developments of Schneider [Schneider, 1975, Schneider and Hay, 1976]. A comprehensive
reviews on the methodology and applications in atomic, molecular and optical processes can
be found in [Burke and Tennyson, 2005, Burke et al., 2007].

In the following studies, the open-access UKRmol suite [Carr et al., 2012] with Quantemol-
N interface [Tennyson et al., 2007] will be used. Recent applications can be found in [Loupas
et al., 2018, Gupta et al., 2019, Loupas and Gorfinkiel, 2019]. The implemented R-matrix
approach is drawn in Figure I.2. This method aims in calculating, as its name suggests, the
R-matrix (in its simplest form):

R(r, ε) =
F(r)

rF′(r)
, (I.1)

that relates the radial wave function F(r) to its derivative F′(r) at a radius r and for a specific
scattering electron energy ε.

The above equation dictates the central idea of the R-matrix method: partition of con-
figuration space into an inner and outer regions. The boundary is a sphere, with a radius
noted r = a, centered at the center of mass of the molecule. This radius is chosen such as
the electronic charge cloud of the target is negligible at the boundary. Usually in the inner
part of configuration space, exchange and polarization interactions are dominant between
N -electrons target and the scattering one. As a result, the collision problem within finite
volume can be treated as a molecular bound state problem by constructing and diagonalizing
an Hamiltonian matrix augmented with the Bloch operator (holding the Hermicity of the
Hamiltonian) leading to solve a N + 1 eigenvalue problem (see Eq.(8) of Ref [Tennyson, 2010]).
The scattering wave function is constructed using close-coupling expansion where the scatterer
spin is taken into account and the target wave function is represented through a Configuration
Interaction (CI) expansion. A standard quantum chemistry methods are employed to obtain
the variational parameters in the CC expansion.

In the outer region, asymptotic expansion such as a long range multipolar interactions
between the scattering electron and the target is employed. For target ions, the dominant
term is Coulomb potential of the separate charges, viz. α = 0 in Eq.(II.12). Once the wave
functions are generated in the inner region, the R-matrix is constructed at the boundary
r = a for a given incident energy ε and it is propagated to the outer region (see Eq.(23) of
Ref [Tennyson, 2010]) where the radial scattering electron wave function can be matched at
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the boundary r = aasy ' 70 bohr (such that coupling potentials to be negligible) to Coulomb
functions

FΓ
ij(r) ∼

{
1√
ki

(
sin θi(r)δij + cos θi(r)K

Γ
ij(R)

)
if εi ≥ 0

0 otherwise
(I.2)

where

θi(r) = kir −
liπ

2
+

ln(2kir)

ki
+ σi, σi = arg Γ

(
li + 1− i

π

)
, (I.3)

and index i refers to the entrance channel before a collision and j refers to the outgoing
channel after the collision. In the above equation, KΓ

ij(R) are the elements of the reactance
matrix [Aymar et al., 1996, Tennyson, 2010] depending on the nuclei geometry, here the
internuclear distance R, parametrically and obtained for each scattering electron energy ε.
Above, Γ designates the constants of motion corresponding to the irreducible representation
of the molecular point group, in particular the total angular momentum projections Λ of the
electron-molecule system.

In the cross section calculation, the scattering matrix SΓ(R) is needed, which is obtained
from KΓ(R) as

SΓ(R) = (1 + ıKΓ(R))(1− ıKΓ(R))−1 . (I.4)

The above matrices relate the amplitudes of the incoming and outgoing waves functions.
Another observable defined from these scattering quantities is the eigenphase sums (analogous
to the phase shift of potential scattering)

δΓ(ε, R) =
∑

i

arctan
(
KΓ
ii

)
or δΓ(ε, R) =

∑

i

log
(
SΓ
ii

)

2ı
, (I.5)

where KΓ
ii (resp. S

Γ
ii) are the eigenvalues of the K-matrix (resp. S-matrix). We will see further

that eigenphases are very helpful for testing the validity of the scattering models, identifying
potential problems with calculations and studying the calculations convergence.

Table I.1: Correlation tables for D∞v → D2h and C∞v → C2v point groups for diatomic
molecules. In the same rows, irreducible representations Γ of the same symmetry are provided.

D∞v D2h C∞v C2v

Σ+
g Ag Σ+ A1

Σ+
u B1u Σ− A2

Σ−g B1g Π B1 ⊕B2

Σ−u Au ∆ A1 ⊕A2

Πg B2g ⊕B3g

Πu B2u ⊕B3u

∆g Ag ⊕B1g

∆u Au ⊕B1u

In practice, our calculations are performed in the abelian subgroups D2h, C2v, Cs or C1

of the natural point groups of the molecules. Descent correlation tables for the most popular
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point groups encountered in our studies are given in Table I.1. We choose a large R-matrix
sphere of radius ranging from a = 10 to 14 bohrs, according to the size of the studied systems,
and continuum Gaussian-type orbitals (real spherical harmonics for the angular part) with
partial waves l ≤ 4, viz. a total of 25 partial waves mapped to the irreducible representations
of the abelian point groups in Table I.2. Thus, an element of the scattering matrix in Eq.(I.4)
writes SΓ

l′λ′i′,lλi(R) where l, λ (noted sometimes m or Λ, in case of Σ electronic states of the
target) and i enumerate, respectively, the electron angular momentum and its projections on
the molecular axis Z, and the electronic state of the target molecule. This element represents
the scattering amplitude when the electron scatters from one channel (lλi) to another (l′λ′i′),
while the nuclei do not have time to move.

Table I.2: Mapping of spherical harmonics of partial waves (lλ) in each irreducible representa-
tions Γ of the abelian point groups that are encountered in our studies.

C1 A

00,1-1,10,11
2-2,2-1,20,21,22
3-3,3-2,3-1,30,31,32,33
4-4,4-3,4-2,4-1,40,41,42,43,44

Cs A A′

00,1-1,11,2-2,20,22 10,2-1,21
3-3,3-1,31,33,4-4,4-2,40,42,44 3-2,30,32,4-3,4-1,41,43

C2v A1 B1 B2 A2

00,10,20,22 11,21 1-1,2-1 2-2
30,32,40,42,44 31,33,41,43 3-3,3-1,4-3,4-1 3-2,4-4,4-2

D2h Ag B1g B2g B3g Au B1u B2u B3u

00,20,22 2-2 21 2-1 10 1-1 11
40,42,44 4-4,4-2 41,43 4-3,4-1 3-2 30,32 3-3,3-1 31,33

I.3.B Frame transformation

As stated in Section I.2, the theory of frame transformation connects the laboratory frame
and the body-frame representations that are each suited for different ranges. This is based
on the fact that the couplings between the scattering electron and the target are different
according to the r regions.

Lower panel of Figure I.2 depicts these regions, namely, the R−region, v−region and the
j−region. In the first region, the strength of couplings, induced by the scattering electron,
between different vibrational and rotational states (v,j) of the target and the scatterer are
small in comparison with the interaction potential V (r), suffered by the incident electron.
Therefore, the FN approximation is justified in this R−region (recall that R refers collectively
to all nuclei coordinates) and the R-matrix calculations can then be performed where the
scattering quantities (see above) depend on the nuclei geometry R parametrically. We will
come back to this point in Section I.4 with more details.
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Figure I.2: Schematic diagrams for the R-matrix method (upper panel) as well as the R-
/q−region, v−region and the j−region (lower panel) according to the local kinetic energy
of the electron given in Eqs.(I.6) and (I.7). The frame transformation procedures (FT)
connecting the molecular-frame to the laboratory-frame are also represented. Note that these
transformations constitute the l-uncoupling transition from the Hund-coupling case b to case
d [Chang and Fano, 1972].

Now, where the interaction potential V (r) becomes comparable to the strength of couplings
between different v and/or j, these later can not be neglected and hence vibrational frame
transformation and rotational frame transformation need to be accomplished in v−region and
j−region, respectively. Transitions between each regions can be estimated by defining the
local kinetic energy

εvj = ε− V (r)− Evj , (I.6)

where ε is the scattering energy and V (r) is the attractive potential. Evj is the rovibrational
energy of the target that can be expressed as

Evj = ~ω
(
v +

1

2

)
+Bj(j + 1), (I.7)

white ω and B being respectively the vibrational frequency and the rotational constant of the
target in the harmonic and rigid rotator approximations.
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Making use of the above expressions, the values rv and rj in Figure I.2 can be estimated for
ε− V (rv) ' ~ω and ε− V (rj) ' B. It follows that, when r < rv, one can apply a vibrational
frame transformation (nay full frame transformation) assuming then εvj ≈ εv′j′ ; while for
r < rj , only rotational frame transformation can be applied with the assumption εvj ≈ εvj′ .
In the region r > rj , FN approximation is no longer valid because the nuclei and electrons
have to be treated on a more equal footing, justifying the laboratory-frame description. These
considerations are the basis of the theoretical models described below.

Vibrational Frame Transformation

Once the matrix element SΓ
l′λ′,lλ(R) is obtained from the R-matrix calculations for a given

geometry R and each symmetry (one of the irreducible representation Γ of the point group
corresponding to a given projection Λ of the total angular momentum of the electron-molecule
complex), one can employ the procedure of frame transformation

SΛ
λ′v′l′,λvl =

〈
ψv′(R)

∣∣SΛ
λ′l′,λl(R)

∣∣ψv(R)
〉
, SΛ

λ′l′,λl(R)δ(R′−R) =
〈
R′;λ′l′

∣∣ Ŝ |R;λl〉 , (I.8)

where the brackets above imply an integration over the vibrational coordinates which requires
the vibrational wave functions.

Bound vibrational wave functions: We calculated vibrational wave functions ψv(R)
above and related energies Ev by solving the Schrödinger equation for vibrational
motion along R, [

− ~2

2µ

∂2

∂R2
+ V (R)

]
ψv(R) = Evψv(R) , (I.9)

where µ the reduced mass and V (R) is the internal potential of the considered
molecule. The above equation is solved using a DVR-type method, described in
details in Section IV.2.B. In the numerical calculation, the distance R is discretized on
a grid, on which the potential energy V (R) is calculated with the ab initio methods
(plus a basis set) with the help of Molpro package [Werner et al., 2008].

Dissociative vibrational wave functions: To compute dissociative recombination (DR)
cross section of CH+, for instance, the vibrational continua states need to be consid-
ered. They could be discretized by the outgoing-wave basis functions defined by a
complex absorbing potential (CAP). Similar to the technique of Siegert pseudostates
calculations [Tolstikhin et al., 1998], a purely imaginary potential (CAP) is added to
the above Schrödinger equation (I.9) in order to simulate an infinite grid. Different
shapes of CAPs are described in the literature [Vibok and Balint-Kurti, 1992], we
choose an exponential form

W (R) =

{
A5 exp

(
− 2L
R−RCAP

)
R ≥ RCAP

0 R < RCAP
, (I.10)

where A5 is the CAP strength and RCAP its starting point. L specifies the entire
grid length of the internal potential V (R) of CH+. These parameters will be adjusted
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in the studies to reduce the uncertainty on the obtained DR cross sections.

Applying CAP, the Hamiltonian becomes non-Hermitian and eigenenergies turn to be
complex (as eigenfunctions. See Figure I.14 for instance)

Ev = Ev − ı
γ

2
, (I.11)

where Ev and γ are the position and width (inversely proportional to half-time τ = ~
γ )

of the dissociative state.

When plugging the dissociative vibrational wave functions into Eq.(I.8), the obtained
scattering matrix appears to be subunitary in the bound and dissociative states ba-
sis. This defect of unitarity, i.e. loss of flux, can be identified with the dissociative flux.

Finally, summations over the partial waves (lλ) and (l′λ′) yield the transition amplitude
Sv′v from one vibrational level v to another v′. This latter is used to compute the vibrational
(de-)excitation (VE,VdE) cross sections.

Rovibrational Frame Transformation

As a second step, the rotational frame transformation is accomplished using the matrix
elements of the above S-matrix, leading to the laboratory-frame scattering matrix

SJj′µ′l′v′,jµlv =
∑

λλ′

(−1)l
′+λ′+l+λCj

′µ′

l′−λ′JΛ′C
jµ
l−λJΛSΛ

l′λ′v′,lλv , (I.12)

where J is the total angular momentum of the e−-ion system, j, µ and j′, µ′ are the angular
momenta with their projections on the molecular axis of the target before and after the rota-
tional excitation of the projectile, and Cj

′µ′

l′−λ′JΛ′ and C
jµ
l−λJΛ are Clebsch-Gordan coefficients.

Note that J is specified in the above S-matrix because j is defined from the Clebsch-Gordan
coefficients. Summing over l, l′ and J leads to the rovibrational (de-)excitation (RVE,RVdE)
cross sections. A detailed derivation of Equation (I.12) and ensued cross section are given in
Appendix of paper .4.

Note that when several electronic states of the target are involved in the calculations,
rovibronic frame transformation has to be accomplished, with some careful attention for target
states of µ 6= 0, where an extra indices (i′, i) in Eq.(I.12) standing for the electronic state
should be added. This development would a part of further works (see Section V).

The most striking features of Eqs.(I.8) and (I.12) is the presence of vibrational and rota-
tional levels, initially absent in the nuclei-fixed S-matrix. The transition amplitude SΛ

λ′l′,λl(R)
is obtained for a scattering electron energy ε computed with respect to the ground electronic
state energy of the target, i.e. the entering channel, provided that the electron energy is not
large enough to excite the target electronically. Consequently, performing frame transformation
procedures give rise to uncertainty in the choice of the energy origin in the S-matrix which can
resolved if SΛ

λ′l′,λl(R) is independent on the scattering energy within the spacing of rotational
and vibrational levels. This is in fact consistent with the above approximation εvj ≈ εv′j′ on
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which the R-matrix calculations are carried out. Further discussion is postponed to Section I.4.

As a result, one can apply frame transformations as long as S(R, εvj) ≈ S(R, εv′j′), where
εvj is given by Eq.(I.6). This assumption could be verified by a detailed analysis of eigenpahse
sums of Eqs.(I.5), as we will see in the applications.

I.3.C Elements of the Multi-channel quantum defect theory

Brief introduction

The quantum defect (QDT) theory was initially introduced by Ham [Ham, 1955] in solid
physics and then reformulated by Seaton [Seaton, 1966, Seaton, 1983] for atomic physics.
This theory is somewhat equivalent to the R-matrix or FT theories, described above, since
the r−region space is divided in accordance with the interaction between an electron and a
nuclei in an alkali atom. More specially, QDT deals with the properties of an excited electron
of Rydberg surrounding an ionic core (nuclei+core electrons). The basic idea is to assume
that beyond some distance from nuclei r > r0, the electron undergoes a purely Coulombic
field created by a positive point charge. Eigenenergies of that excited (Rydberg) electron can
be described by a phenomenological extension of the hydrogen expression, as formulated by
Rydberg [Rydberg, 1890].

Exploiting the spherical symmetry of the atom, one needs only to solve the radial the
Schrödinger equation whose the solution can be written as a linear combination of regular,
fl(r) , and irregular, gl(r), Coulomb functions

Fl(r) = fl(r) cosπµl − gl(r) sinπµl r > r0, (I.13)

where µl denotes the quantum defect depending only on the angular momentum quantum
number l and accounting for the corrections to the pure attractive Coulomb potential by
the core electrons. Notice that for the diatomic molecules, one should add to the angular
momentum l its projection along the Z axis of the molecule λ (sometimes noted m).

Making use of the asymptotic solutions of the above Coulomb functions, one can write
Eq.(I.13), at any negative energy E = − 1

2ν2 , as follows (see Eq.(2.12) of Ref.[Aymar et al.,
1996]):

Fl(r) ∼
r→∞

1√
k

[
sin (π(ν − l + µl))D

−1r−νekr − cos (π(ν − l + µl))Dr
νe−kr

]
(I.14)

where ν is the effective quantum and D is a constant depending on the gamma function. As
one is interested here by bound states, the exponential growth at infinity in Eq.(I.14) needs
thus to be killed which leads to sin (π(ν − l + µl)) = 0 or ν − l+ µl = nr, an integer. Putting
the principal quantum number n ≡ nr + l and using the energy definition of the hydrogen
atom, we fall back into the famous Rydberg formula of the allowed energy values (in atomic
units)

Enl = I − 1

2(n− µl)2
(I.15)
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with I being the ionization energy (often set to zero). Equation (I.15) indicates that a series
of resonant states can be formed with an excited ionic core. This series of resonances is called
Rydberg series whose the energies are provided from the above formula. Therefore, the excited
states of atoms with a large principle quantum number, leading to a very large electric dipole
moments, are known as Rydberg atoms. In such atoms, the Rydberg electron is weakly bound
to the ionic core which makes it sensitive to external perturbations resulting in a wide range
of applications as in plasmas.

From Eq.(I.2) (by omitting here K-matrix), the radial wave function of the Rydberg
electron can be expressed as follows

Fl(r) ∼
r→∞

1√
kl

sin [θl(r) + πµl] , (I.16)

where θl(r) is given by Eq.(I.3). πµl appears as an additional phase shift with respect to
Coulomb functions. Quantum defect µl contains the information about short-range interaction
between the outermost electron and the ionic core.

A key result above is the smooth manner in which the quantum defect can be extrapolated
from below-threshold in Eq.(I.14) to above-threshold in Eq.(I.16) throughout a phase shifts

δl = πµl. (I.17)

This is usually expressed as the Seaton’s theorem [Seaton, 1966]. Reshaping Eq.(I.15) yields
µnl = n−

√
− 1

2Enl
and hence µnl depicts a weak dependence on n, in particular, on energy

Enl. We fall back here on the circumstance mentioned in the preceding section: the use of
smooth S-matrix in the frame transformation procedure since

Sl = e2ıδl =
Eq.(I.17)

e2ıπµl . (I.18)

When several channels of electron excitation, distinguished by different core levels, or different
orbital momenta are taken into account in the calculations, one has the multichannel QDT,
noted MQDT. Generalizing QDT to include not specially Coulomb potentials, like molecular
ones, arises with a more complicated relation between energies and quantum defects that can
be described by the generalized quantum-defect theory GMQDT. More details can be found
in [Greene et al., 1979].

The quantum defect approach briefly discussed above has been widely used in the litera-
ture for studying different systems, from diatomic to polyatomic molecules, and processes
(VE,RE,DR) [Mezei et al., 2015, Moulane, Y. et al., 2018, Chakrabarti et al., 2018b, Douguet
et al., 2012b, Mikhailov et al., 2006a, Douguet et al., 2008a, Douguet et al., 2009a, Kokoouline
and Greene, 2001, Novotný et al., 2009, J. B. A. Mitchell and A. I. Florescu-Mitchell, 2005].
As an example, DR cross sections of NH+

2 and HCO+ were computed by [Fonseca dos Santos
et al., 2014b] using a theoretical approach based on the computation of the scattering matrix,
via the complex Kohn variational technique, just above the ionization threshold and enables
the explicit determination of all diabatic electronic couplings responsible for DR. In addition,
authors used MQDT to demonstrate the precision of the scattering matrix by reproducing
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accurately ab initio Rydberg state energies of the neutral molecules, obtained from the
Rydberg formula of Eq.(I.15). As a result, complex Kohn variational technique reproduced
quantum defects calculated from bound state calculations, verifying Eq.(I.17). A very good
agreement with the experiments was found.

Closed-channel-elimination procedure

Going back to S-matrices, obtained previously after the frame transformation procedures,
with the above considerations, one can notice that the scattering matrices S of Eqs.(I.8) or
(I.12) can be used for cross sections calculations only if the total energy of the system is high
enough for all collision channels to be open for ionization. When some channels are closed,
the scattering matrix should be modified applying the "closed-channel-elimination" procedure
and producing matrix Sphys(E) according to

Sphys(E) = Soo − Soc
[
Scc − e−2iβ(E)

]−1
Sco . (I.19)

Mathematically speaking, the above partition consists of eliminating exponential growth in
closed channels to impose the correct physical behavior in solutions of Eq.(2.42) of Ref.[Aymar
et al., 1996].

The matrix Sphys(E) has No ×No dimension, No being the number of channels open for
ionization for a given total energy E of the system. The total energy could be written as a
sum of the energy of the entrance channel Ei (rovibrational channel, Evj) and the relative
kinetic energy εvj , see Eq.(I.6), of electron and the target ion: E = Ei + εvj . In the above
equation, the matrices Soo, Soc, Scc and Sco are submatrices of the original matrix S [Seaton,
1983, Aymar et al., 1996], partitioned as

S =

(
Soo Soc
Sco Scc

)
, (I.20)

where the partition of the matrix elements in the “o”- and “c”-parts is made on the basis
whether the corresponding channel, i or i′, is open or closed for ionization for a given total
energy E. The quantity β(E) is a diagonal Nc ×Nc matrix

βi′i(E) =
π√

2(Ei − E)
δi′i , (I.21)

where Ei refers to energy of the corresponding closed channel i (rotational, vibrational and/or
electronic channels) and Nc = N − No is the number of closed channels. It relies on the
effective quantum numbers, aside from π factor, of Eq.(I.15) with I being the closed ionization
channel Ei.

In summary, the first term in Eq.(I.19) is restricted to the open channels and the second
takes into account their mixing with the closed ones. The denominator is responsible for the
resonant patterns in the shape of the cross section when

det
∣∣∣Scc − e−2iβ(Er)

∣∣∣ has a local minimum. (I.22)
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This yields the position of Rydberg resonances (at first order if couplings between closed and
open channels are neglected). According to the partition (I.19), the eignephase can be written
as follows

δ(E) = δbg + δr, (I.23)

where δbg = logSoo/2ı is the background scattering phase shift contained in Soo and δr is the
resonant scattering phase shift given by the resonant S-matrix of the Breit-Wigner form

exp (2ıδr) =
E − Er −∆− ıγ2
E − Er −∆ + ıγ2

, (I.24)

with γ and ∆ being, respectively, the width and shift, due to the couplings between closed
and open channels.

I.4 Validity of the theoretical models

In most theoretical studies, there are two main identifiable sources of uncertainty [Chung
et al., 2016]. The first one is related to the uncertainties of the theoretical model in which
one often employs models with reduced dimensionality or neglecting competitive processes.
The second type of uncertainties arises from the choice of parameters of the model such as
the use of limited basis set or ab initio/fitted data. Both uncertainties will be assessed for
each studied system in Section I.5.

Besides the uncertainties stated above, the validity of the models is based on the frame trans-
formation approach underlying the R-matrix method employed throughout this manuscript.
In the case of ionic target where attractive potential V (r) decaying slower than the centrifugal
barrier l(l + 1)/(2r2), the local kinetic energy εvj of Eq.(I.6) depends on r at r > 100 bohr.
At this distance, corresponding to the edge of the outer region in the R-matrix calculation,
the kinetic energy of the scattering electron increases by about 0.27 eV which is larger than
the spacing between vibrational levels. Hence, r1 and r2 in Figure I.2 are larger than 100
bohr and thus the whole region of r can be considered as the R−region with εvj ≈ εv′j′ . This
conclusion is consistent with the main hypothesis: adiabatic nuclei approximation can be
used in the R-matrix calculations and frame transformation can afterwards be carried out, if
S(R, εvj) is smooth with respect to εvj , at the end of the calculation when K-matrix has been
computed.

The energy dependence of the scattering matrix at threshold for attractive Coulomb
potentials lies on the presence of a large range region, namely Coulomb zone, where the
Coulomb potential dominates over the kinetic energy ε. The reactance matrix is defined as
follows (from first-order perturbation theory)[Aymar et al., 1996]

Ki′i ≈ −π 〈ψi′ |Vsr |ψi〉 , (I.25)

where ψi′ and ψi are respectively the initial and final wave functions of the scattering electron.
One can see from the above equation that the matrix element of the short range potential Vsr
is proportional to a corresponding element of the reaction matrix. Therefore, the scattering
matrix, deduced from Eq.(I.4), depends on the amplitude of the electron wave function
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which changes little (for a given normalization1, i.e. usually a normalization per unit energy)
with respect to the scattering energy ε at threshold since the local kinetic energy of (Eq.I.6)
(thus the local wavelength) is governed by the Coulomb potential and not by the value of
ε = ~2k2/2m. For rc > Z/ε (obtained from ε = V (rc) = Z/rc, in atomic units), the wave
function oscillations are governed by the wavelength 1/k. When ε→ 0, one has rc →∞ and
the Coulomb zone covers now the entire asymptotic range resulting to an energy independence
of the electron wave function, thus the reactance matrix of Eq.(I.25) and the related scattering
matrix.

To conclude, frame transformation procedures can be applied to ionic targets even at low
scattering energy. This will be the subject of applications in the next section.

I.5 Applications

This section concentrates on a few studies using the theoretical approaches described above.
Mechanisms of molecular ion destruction relevant to astrophysics are briefly presented and
discussed. More details are provided in the published papers, the most relevant of which, are
included in this manuscript.

I.5.A Rovibrational excitation of HeH+ molecule by electron impact

To benchmark our theoretical approach, we started applying it to the simplest molecular ion
formed in the early universe, namely, HeH+ [Lepp et al., 2002]. This cation is an important
specie in the interstellar medium (ISM) [Roberge and Dalgarno, 1982] and in the chemistry of
the planetary nebulae such as NGC7027 [Dabrowski and Herzberg, 1977, Black, 1978, Flower
and Roueff, 1979]. In the ISM, it is mainly formed in the radiative association process of He
and H+ or of He+ and H [Zygelman and Dalgarno, 1990, Kraemer et al., 1995]. Collisions of
HeH+ with electrons play a significant role, in particular, leading to dissociation (dissociative
recombination) and rovibrational (de-)excitation of HeH+[Jimenez-Serra et al., 2006], due to
the relative abundance of electrons and HeH+ in the ISM.

In this section, we focus on the rovibrational excitation and (de)-excitation (RVE,RVdE)
process

e− + HeH+(v, j)→ e− + HeH+(v′, j′) , (I.26)

where v, j and v′, j′ stand for the vibrational quantum number and angular momenta of the
target before and after the rovibrational excitation of HeH+.

Since the first electronically excited state A1Σ+, correlated with H(1s) + He+(1s) is
approximately 11 eV above the H+ + He(1s2) dissociation limit for the X1Σ+ground state,
the ground state of electronic configuration 1σ2 is isolated and non-adiabatic effects are
expected to be small. Therefore, for low electron energy collisions (below 10 eV) only the
lowest electronic state is open for ionization in e− − HeH+ collisions and the dimension of
the geometry-fixed scattering matrix does not change with energy. Consequently, HeH+ is

1The normalization should eliminate any energy dependence of the electron wave function amplitude arising
from the normalization factor in Eq.(I.16).
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an ion of the second type –having the first excited electronic state at a high energy– and
we can thus directly apply our theoretical approach that combines the R-matrix code (the
obtained S-matrix from Eq.(I.4)), the rovibrational frame transformation (Eq.(I.12)) and the
elimination procedure in the sprite of MQDT (Eq.(I.19)).
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Figure I.3: Eigenphase sum as a function of the electron scattering energy Eel (in eV) for
several internuclear distances R (in units of bohr) for the 2Σ+ (left panel), 2Π (right upper
panel), and 2∆ (right bottom panel) symmetries. The color scheme used to label different
values of R is the same for all three panels. The dashed line represents the equilibrium
internuclear distance Re = 1.445 bohrs [Rabadán et al., 1998] of HeH+.

In the R-matrix calculations (carried out in C2v which is subgroup of C∞v, natural point
group of HeH+), several basis sets, including 3-21G, DZP and 6-311G∗ as well as R-matrix
sphere radii were tested to assess the uncertainties arising from the scattering model. Stability
of the target properties such as dipole moment and ground state energy or positions of
resonances have been investigated in order to select the adequate set of parameters for the
final calculations. Moreover, in the calculations of the cross sections for reaction of Eq.(I.26),
energies for vibrational and rotational transitions as well as vibrational wave functions of the
target (in addition to its potential energy curve) are needed to perform the frame transfor-
mations of Eqs.(I.8) and (I.12). The obtained results are provided in papers .3 and .4 and
compared with available data.

As widely discussed in the preceding sections, the application of frame transformations
requires that K(R) and S(R) depend weakly on energy. A sharper energy-dependence is
observed only at certain higher energies, corresponding to positions of Rydberg states at-
tached to excited electronic states of the ion. A convenient way to represent a weak or a
strong energy dependence of the matrices is the eigenphase sum of Eqs.I.5. Figure I.3 of
paper .3 shows eigenphase sums for three symmetries (2Σ+, 2Π, and 2∆) of the e− + HeH+

system and for several internuclear distances in HeH+. The chosen interval of internuclear
distances corresponds to the Franck-Condon region of the lowest vibrational level of HeH+.
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The variation of the eigenphase sums for 2Π and 2∆ is smooth for energies below 10 eV and
does not change significantly with R. The 2Σ+ eigenphase sums demonstrate a sharp energy
dependence at certain energies, which corresponds to a resonant state of HeH with energy
changing with the internuclear distance R.

Using the scattering matrix Sphys of Eq.(I.8), the cross section for purely vibrational
transition v → v′ is [Ayouz and Kokoouline, 2016]

σv′←v(ε) =
π~2

2meε

∑

λ′l′λl

∣∣∣Sphysλ′l′v′,λlv − δλlv,λ′l′v′
∣∣∣
2
, (I.27)

where me is the reduced mass of the electron-ion system. Figure I.4 demonstrates, as examples,
the cross sections of Equation (I.27) for the v = 3→ v′ = 0, 1, 2, 4 transitions. At very low
scattering energies, below 0.02 eV, the de-excitation cross sections are smooth functions
inversely proportional to the incident energy of the electron as predicted by the Wigner
threshold law. But at higher energies, especially, just below the energy of the each excited
threshold, v′ = 4, 5, · · · , the (de-)excitation cross sections and probabilities demonstrate series
of Rydberg resonances, where they vary significantly.

The inelastic cross section for the rotational excitation or de-excitation process j′µ′v′ ← jµv
of a linear molecule by electron impact is obtained from the scattering matrix of Equation (I.12)

σj′µ′v′←jµv(ε) =
1

2j + 1

π~2

2meε

∑

J,l,l′

(2J + 1)
∣∣∣ei(lπ/2+σl)SJ,physj′µ′l′v′;jµlve

−i(l′π/2+σl′ )
∣∣∣
2
, (I.28)

where σl is the Coulomb phase shift given in Eq.(I.3). In the above formula, the cross section
is averaged over degeneracy of the initial rotational state j. Its derivation is given in paper .4.
Note that in the ground electronic state of HeH+, the projection µ of the electronic angular
momentum on the molecular axis of the target is zero. Therefore, for scattering energies below
the first excited electronic state A1Σ+ of HeH+, µ = µ′ = 0 in Eq.(I.28).

Cross sections for electron impact transitions between the lowest five j, j′ = 0−4 rotational
states of HeH+ (without vibrational structure, i.e. a situation where the scattering electron
is not energetic enough to excite the target vibrationally) are given in Figure I.5. Solid
lines in the figure represent the results obtained using the complete theoretical approach,
viz. the rotational frame transformation of Eq.(I.12) in combination with the closed-channels
elimination procedure from Eq.(I.19). The cross sections exhibit a strong resonant character.
The resonances are produced by closed rotational states of the target. These resonances
are washed out when thermally-averaged rate coefficients are computed. Therefore, in the
calculation of the rate coefficients, one can use cross sections averaged over the resonances.
Such averaged cross sections can be computed directly from the energy-independent scattering
matrix SJ , replacing in Equation (I.28) the matrix elements SJ,physj′µ′l′;jµl of the physical scattering
matrix with the corresponding elements SJj′µ′l′;jµl of the energy-independent matrix. The
cross sections calculated using the energy-independent scattering matrix are shown by dotted
lines in Figure I.5.

Furthermore, data relevant to the other isotopologues 4HeD+, 3HeH+ , and 3HeD+ could
also be useful for plasma modeling. In this respect, cross sections as well as rate coefficients
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for collisions of the HeH+ isotopologues with electrons were computed. Figure I.6 and I.7
are a result of a thermal Boltzmann convolution (see Eqs.(I.31) or (13) of paper .3) of the
cross sections of 4HeH+ molecule and its isotopologue 4HeD+, for instance. The obtained
results are in good agreement with the data available in literature. Due to the general
1/Eel-dependence of cross sections of Eqs.(I.27) and (I.28), the calculated rate coefficients
αv′j′←vj(T ) behave as 1/

√
T for de-excitation and exp

(
−∆v′j′ vj/T

)
/
√
T for excitation tran-

sitions, where ∆v′j′ v′ = Ev′j′ − Ev′ is the excitation energy. Therefore, similar to papers .3
and .4, for convenience of use, the rate coefficients were fitted to an analytical interpolation for-
mulas with up to four parameters. See Eqs.(4), (5) and (8) in Ref.[Ayouz and Kokoouline, 2019].

To summarize, we reported in Refs.[Ayouz and Kokoouline, 2016, Khamesian et al.,
2018, Ayouz and Kokoouline, 2019] and briefly in this section the cross sections and rate
coefficients for rovibrational excitation of HeH+ and its isotopologues by electron impact.
These results were obtained in context of my collaboration with Prof. Viatcheslav Kokoouline
and, at least, partially during the dissertation of Marjan Khamesian (first author of paper
.3) at University of Central Florida (UCF), in which I was involved. Our data were included
in the IAEA database https://www-amdis.iaea.org/DATASETS/e_HeH/. They could be
used in modeling the hydrogen/helium plasma experiments as well as for modeling interstellar
clouds and planetary atmospheres, where the HeH+ ion is present.

https://www-amdis.iaea.org/DATASETS/e_HeH/
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I.5.B Vibronic excitation of CH+ molecule by electron impact

Another important specie relevant in ISM is CH+, first detected in cold ionized environments
by Douglas and Herzberg [Douglas and Herzberg, 1941] in 1941 and later observed in many
background stars. It is believed that its formation mechanism is governed by the collisions
between C+ and H2. The main route for its destruction is the dissociative recombination
(DR), in competition with the rovibronic (de-)excitations processes.

This section aims to study the vibronic excitation and (de-)excitation process

e− + CH+(i, v)→ e− + CH+(i′, v′) , (I.29)

where v or v′ corresponds to the number of vibrational quanta in initial i or final i′ electronic
state of the target ion. Rotational structure is neglected within this study. It will be considered
in future work (see Chapter V).

Theoretical description of low-energy e−−CH+ collisions is complicated due to the presence
of a low-energy electronic resonance and several low-energy excited electronic states of CH+

which makes it an ion of the first type (see discussion in paper .5 and Ref.[Jiang et al., 2019]).
The a3Π and A1Π curves above the ground state X 1Σ+ of electronic configuration 1σ22σ23σ2,
correlate with the C+

(
2P
)

+H
(

2S
)
dissociation limit at large internuclear distances (see

Figure I.12). In this situation, the standard frame transformation approaches, used above for
HeH+ and in many theoretical studies on electron-molecule collisions, is not well adapted due
to the energy-dependence of the scattering matrix. For this purpose, we improved our model
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on HeH+ by adapting the frame transformation procedures, described in Section I.3, to CH+.
The central idea of the developed theoretical approach is that the e−−CH+ scattering physics
below the A 1Π state can be represented using an energy independent multichannel scattering
matrix evaluated at a higher energy, above the A 1Π ionization limit in a combination with
the closed-channel elimination.
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Figure I.8: Potential energy for the ground electronic state (upper panel) of CH+ and its
dipole moment(bottom panel) obtained with different CAS and basis sets at the equilibrium
geometry Re = 2.137 bohrs.

Again, our approach employs the fixed-nuclear R-matrix (S-matrix in Eq.(I.4) is obtained
from calculations performed in C2v which is subgroup of C∞v, natural point group of CH+)
with the vibronic frame transformation (in addition to electronic states) and the closed-channel
elimination procedure in a spirit of MQDT (Eq.(I.19)). To perform frame transformation
of Eq.(I.8), with the inclusion of the electronic states i and i′, we take the (almost) energy-
independent 3×3 electronic scattering matrix, obtained at an energy above the A1Π ionization
limit, to produce N ×N matrix with N vibronic (or rovibronic) channels. Such a vibronic
scattering matrix is essentially energy-independent and a closed-channel elimination procedure
should be performed to obtain the physical energy-dependent matrix, which can be used to
compute cross sections and related rate coefficients.

Several parameters of the scattering model were first tested to investigate the stability
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of the target properties. Figure I.8 depicts variation of the ground state energy and dipole
moment of CH+ regarding different basis sets and complete active spaces CAS(ne,nao), viz.
number of electrons ne distributed in nao active orbitals. Considering the dipole moment
1.617 D obtained with cc-pVQZ is closer to the experimental value of 1.683 D, this basis
with CAS(4, 12) and a R-matrix sphere of radius 13 bohrs were thus selected for the final
calculations.

Another source of uncertainty is related to the model itself. The choice of the 3 × 3
scattering matrix used in the channel-elimination procedure is not unique, because the matrix
depends on energy, even above the A 1Π electronic state. To assess the result of uncertainty
in the choice of the energy at which the 3× 3 scattering matrix is taken, we plot in Figure
I.9 eigenphase-sum derivatives obtained for 3× 3 scattering matrices taken at three different
energies above the A 1Π state: at 3.413, 3.563, and 3.713 eV. Positions and the widths of the
resonances are nearly the same in all three calculations.

To validate the developed model, we compare the fixed-nuclei electronic scattering matrices
obtained (1) using the elimination procedure of the closed electronic states and by (2) a
direct scattering R-matrix calculation at the same internuclear distance, viz. Re = 2.137
bohrs. To do this, the physical scattering matrix Sphys (ε, Re) of Eq.(I.19) describing electronic
transitions at Re of CH+, was used to compute the fixed-nuclei cross section of the electronic
excitations from the X 1Σ+ state to the a 3Π state as

σi′←i (ε, Re) =
π~2

2meε

∑

l′m′,lm

∣∣∣Sphysl′m′i′,lmi (ε, Re)− δl′m′i′,lmi
∣∣∣
2
, (I.30)
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Figure I.9: Comparison of eigenphase-sum derivatives computed for a fixed CH+ geometry
using three different energy-independent 3 × 3 scattering matrices and the procedure of
elimination of closed electronic channels. The three matrices are taken at energies 3.413 eV
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view for 1.2–2.4 eV energies.
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Figure I.10: Cross sections for the X1Σ+ → a3Π electronic excitation of CH+ at a fixed
geometry Re obtained in the direct R-matrix calculations (red curve) and using the QDT
channel elimination procedure (black curve).

Figure I.10 compares the cross sections for the X1Σ+ → a3Π transition obtained in the
two approaches. The general agreement between the two curves is good, even for the widths
of the resonances. One noticeable difference is in the position of the minimum near 1.5 eV: In
the MQDT calculations it is shifted slightly to the left. The agreement is better at energies
approaching the a3Π ionization limit.

Once the model is validated, a vibronic frame transformation of Eq.(I.8) can be performed
in order to compute the cross sections for vibronic excitation or (de-)excitation of CH+ using
Eq.(I.27, where Sphysl′m′i′,lmi (ε, Re) is replaced with Sphysl′m′v′i′,lmvi (ε). We noted here m as the
project of the angular momentum quantum number on the molecular axis instead of λ. Figure
I.11 illustrates cross sections obtained for different combinations of initial and final vibronic
states. Panel (a) shows results for pure vibrational excitations between levels of the ground
electronic state X1Σ+. As expected, the cross section for the transition with ∆v = 1 is the
largest one between inelastic processes. Panel (b) gives cross sections from the ground vibronic
state X1Σ+, v = 0 to several vibrational levels of the a3Π state. Since the potential curves
of the X1Σ+ and a3Π states have similar shapes near equilibrium, the largest X1Σ+ → a3Π
cross section is expected to be for ∆v = 0, as the present calculation indeed demonstrated.
Panel (c) gives cross sections for the de-excitation process a3Π, v = 0→ X1Σ+, v′ = 0− 3.

The obtained cross sections differ significantly from those of Ref.[Chakrabarti et al.,
2018b]. These disagreements can be attributed to approximations employed in their study:
(1) neglected differences in vibrational excitation threshold energies, (2) neglected dependence
of e−−CH+ scattering parameters with the internuclear distance, and (3) the neglected
resonances in closed vibronic channels. Thermally-averaged rate coefficients of the above
vibronic (de-)excitations
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Figure I.11: Cross sections for vibronic excitations of CH+ from the ground vibrational level
v = 0 of the X1Σ+ state to v = 1, 2, 3 of the X1Σ+ state (left panel) , to v = 0, 1, 2, 3 of the
a3Π state (middle panel), and for vibronic de-excitations from the ground vibrational level
v = 0 of a3Π to v = 0, 1, 2, 3 of the X1Σ+ state (right panel).

αi′v′←iv (T ) =
8π

(2πkbT )3/2

∫ ∞

0
σi′v′←iv (ε) e

− ε
kbT ε dε, (I.31)

are then computed and fitted to an analytical formula, analogously to HeH+. More details
and discussions can be found in paper .5.

Finally, we report in Ref[Jiang et al., 2019] and briefly in this section the cross sections
for vibronic excitation and de-excitation of CH+ by electron impact using only first principles.
These outcomes were obtained in the context of Xianwu Jiang’s dissertation at Centralesupélec
and in collaboration with UCF. The developed theoretical approach can be applied to ions
with low-energy excited states, known to be difficult to treat theoretically using previous
theoretical methods. Our approach is quite general and can be applied also for a number of
different processes such as dissociative recombination, which is the subject of the next section.
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I.5.C Dissociative recombination of CH+

In the continuation of the preceding study, we consider in this section the following dissociative
recombination (DR) processes

e− + CH+(i, v)→
{

CH∗∗(2 2Π)→ C
(

1D
)

+ H
(

1S
)

direct DR
CH∗(Rydberg)→ CH∗∗(2 2Π)→ C

(
1D
)

+ H
(

1S
)

indirect DR
(I.32)

where CH∗∗(2 2Π) and CH∗ are respectively the doubly-excited dissociative and singly excited
bound Rydberg states.

The state CH∗∗(2 2Π) is formed when the electron collision energy ε is not transferred
directly into kinetic motion of the nuclei, but rather to the electronic ionic clouds resulting in
the excitation of the target bound electrons. The striking feature of CH∗∗(2 2Π) is that it
is situated in the ionization-continuum of CH+. The potential energy curve of the doubly-
excited CH∗∗(2 2Π) is repulsive and intersects the curve of CH+

(
X 1Σ+

)
near the equilibrium

geometry (see Figure I.12). The resonant state CH∗∗(2 2Π) is unstable against autoionization,
i.e. the re-emission of electron leading to vibronic excitations, because the excited electron has
sufficient energy to escape from CH. Generally speaking, if the dissociative process happens
fast enough so that the products of dissociation are already at a large distance from each
other after a time equivalent to the order of the autoionizing lifetime, most of the collisional
energy is already converted into nuclei kinetic energy and autionization becomes impossible.
In such a case, the system irreversibly breakdowns in one of the dissociative channels. This is
the direct dissociative recombination (DDR) process.

In contrast to the above situation, the indirect dissociative recombination (IDR) mechanism
can be considered as the result of two non-radiation transitions. When the kinetic energy
of the electron is transferred to the motion of nuclei, the electron then moves around a
vibrationally (or rovibrationally in general) excited core in a hydrogenic-like orbital of CH
with high principle quantum number (see Eq.(I.15)). The excited Rydberg state CH∗ is
in turn predissociated by the doubly-excited state CH∗∗(2 2Π) leading to dissociation into
C
(

1D
)

+ H
(

1S
)
through non-adiabatic couplings, i.e. breaking the BO approximation. The

IDR process occurs very often in a closed shell ions, such as HeH+ or CH2NH+
2 for example.

Both DDR and IDR in the reaction of Eq.(I.32) compete with the vibrionic excitation and
(de-)excitation processes, investigated previously. Consequently, for a comprehensive study of
mechanisms of destruction of CH+ in ISM, for instance, one has to take into account the role
of all these effects on the magnitude of the cross section at very low energy. As for the role of
rotational effects, it has been postponed to a further study.

The theoretical approach employed in this section is similar to the one above for describing
the VE and VdE processes. It combines the R-matrix code to compute electron-ion scattering
matrices (Eq.(I.4)), the vibronic frame transformation (Eq.(I.8) with the inclusion of electron
state indexes) and the closed-channel elimination procedure in a spirit of molecular quantum
defect theory to construct an energy-dependent scattering matrix (Eq.(I.19)). The main differ-
ence here is the inclusion of vibrational continua states in addition to vibrational bound states
(see Figure I.12). This can be accomplished throughout the outgoing-wave basis functions
defined by a complex absorbing potential as described in Section I.3. Since the present work
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Figure I.12: Potential energy curves (PECs) of the three lowest X1Σ (black), a3Π (red) and
A1Π (blue) electronic states taken from Ref.[Jiang et al., 2019]. The PEC of the 22Π resonance
state (violet dotted curve) is obtained from the R-matrix calculations. For more clarity, an
extrapolation was done below the ionic ground state (violet solid curve). 35 vibrational levels
for each PEC are shown by horizontal thin lines where colors corresponding to each respective
state. For illustration, the CAP is drawn in orange dashed curve while the vibrational wave
function of level v = 30 in X1Σ+ (black solid curve) state is displayed in black solid curve.
RCAP = 20 bohr represents the starting point of the CAP of Eq.(I.10) and the inset shows
the enlarged view of CAP region.

is still in development, I will only provide the first results below.

In figure I.12 displaying the potential energy curves of CH+, the doubly-excited dissociative
state CH∗∗(2 2Π) crosses the ground electronic state X 1Σ+ of CH+ near the left turning
point of the first excited vibrational state. This gives rise to a DR process according to
Eq.(I.32). In the figure, 35 vibrational levels for each electronic states are drawn and the CAP
of Eq.(I.10) is also represented. The insight depicts, as an example, the long-range behavior
of a vibrational wave function of the discretized continuum.

Accurate description of DR in CH+ of Eq.(I.32) requires including the 2 2Π resonant state
in the MQDT treatment. So, performing the R-matrix calculations and selecting the 3× 3
energy-independent scattering matrix (above the A 1Π threshold) according to the procedure
described in the preceding section, we can see in Figure I.13 the positions of the 2 2Π state at
different geometries R = 1.337, 1.437, and 1.537 bohrs. The figure compares the positions,
i.e. the derivative of eigenphase sum of e−−CH+ system, given directly from R-matrix to
those obtained from the closed-channel elimination procedure of Eq.(I.19). Overall positions
of the resonance are a little left shifted and the widths are slightly wider compared to that
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of the R-matrix calculation. However, we expect that these discrepancies do not affect the
final thermally-averaged rates coefficients as seen in calculations of vibrionic (de-)excitation
of CH+ in paper .5.
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Figure I.13: Low-energy resonances corresponding to the doubly-excited CH∗∗(2 2Π) obtained
from the derivative of eigenphase sum of the 2Π symmetry in R-matrix calculation (solid
curves) and MQDT channel elimination procedure (dashed curves). Each color refer to different
resonances obtained at R=1.337 (black), 1.437 (red), and 1.537 bohrs (green). Details of the
R-matrix calculations could be found in paper .5.

In the present treatment, the dissociation proceeds through a number of excited Rydberg
states, which are bound with respect to dissociation. MQDT treats such a system as a set
of coupled vibrational states. As hinted in section I.3, the introduction of the CAP leads to
simulate an infinite grid in which the vibrational continuum becomes discretized. To test
parameters of the CAP in Eq.(I.10), we used the Fourier transformation (FT) technique and
analyzed the vibrational wave functions in the momentum space.

In left panels of Figure I.14, we display wave functions of dissociative vibrational states
(vibrational continua states), for instance, v = 30, X 1Σ+ (black curve), v = 26, a 3Π (red
curve), and v = 20, A 1Π (green curve) as functions of internuclear distance R. Right panels
show the respective Fourier transform of that wave functions. The wave functions obtained
with CAP calculations are given in solid lines whereas those without CAP are in dashed curves.
The most striking feature in these figures is the absence of the second peak, corresponding to
the incoming/reflected wave function, in the Fourier spectrum of the wave functions when the
CAP is involved in the calculations. This indicates that the set of the CAP parameters, i.e.
length and strength in Eq.(I.10 are appropriately chosen.
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Figure I.14: Left panels show the vibrational wave function as function of R for v=30, X1Σ+

(in black), v=26, a3Π (in red), and v=20, A1Π (in green) obtained with (solid curve) and
without CAP (dashed curve). Right panels display the Fourier transform of the corresponding
vibrational wave functions. The starting point of the CAP, RCAP , is drawn in the left lower
panel.

After benchmarking the CAP parameters, the DR cross section can be computed from
the following expression

σvi (ε) =
π~2

2meε

∑

i′v′

∑

l′m′,lm

(
1− Sphysl′m′i′v′,lmiv (E)S†physl′m′i′v′,lmiv (E)

)
(I.33)

where me is the reduced mass of e−−CH+ and εvi = E−Evi ≈ εv′i′ ≈ ε is the incident energy
of the electron. Sphysl′m′i′v′,lmiv and S†physl′m′i′v′,lmiv are calculated using the frame transformation of
Eq.(I.8) with no complex conjugation for the vibrational states. In addition, performing the
channel elimination procedure for S† : S† → S†phys(E), one has to use the complex conjugate
of β(E) in Eq.(I.21). Recall that β(E) is the effective quantum number for energy E in closed
channel multiplied by π (see Eq.(I.17)). It is complex valued because the energy of the closed
channel has a non-zero imaginary part, resulting from the boundary condition imposed by
the CAP, related to the dissociation lifetime of the ionic channel. More details of this method
can be found in Ref.[Kokoouline et al., 2011].

Figure I.15 shows the first result of the computed DR (including direct dn indirect routes)
cross section of the ground vibronic state of CH+, compared with different ab initio studies
and experimental measurements available in the literature. To compare these results with
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Figure I.15: Comparison of the DR cross section of the ground vibronic state of CH+. The
computed total DR cross section in the present work (black thin dashed curve) and the
convoluted results (black solid curve) are compared with the experimental measurements
of Ref.[Amitay et al., 1996] (red solid curve), theoretical results Ref.[Takagi et al., 1991]
(green solid curve), Carata Ref.[Carata et al., 2000] (blue solid curve) and Ref.[Chakrabarti
et al., 2018a] (magenta solid curve), and rotationally resolved DR cross section obtained by
Ref.[Mezei et al., 2019] (violet solid curve). Partial waves of the incident electron are assigned
to the prominent resonances by arrows. Energies of ground vibrational threshold in each
electronic state are labeled with arrows and the corresponding vibrionic quantum numbers vi.

experimental data, the DR cross section, shown as a dashed curve, was averaged over the
non-isotropic distribution throughout the formula of Eq.(2) of Ref.[Kokoouline and Greene,
2005], shown as a solid line. The parameter of the experimental energy distribution were
picked from Ref.[Amitay et al., 1996]. This first result demonstrates a good agreement at
high energy in contrast to the low-energy range. We attribute this discrepancy to the fact
that the rotational structure in each vibrational level of CH+ was neglected in the present
study. Tests and improvements are ongoing to date.

I.5.D Dissociative recombination of polyatomic molecular ions: CH2NH+
2

This section presents an application of the simplified approach, described in Chapter III,
on a population of some prebiotic molecules such as CH2NH+

2 and NH2CHOH+ that is
largely influenced by the rate of dissociative recombination. Indeed, it has been shown that
such molecules have a significant impact on chemical evolution in different astrophysical
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environments. In the following, I will briefly report our work on CH2NH+
2 carried out in the

context of the dissertation of Chi Hong Yuen at UCF. Details on NH2CHOH+ can be found
in Ref.[Ayouz et al., 2019].

𝜔1 𝜔2 𝜔3 

𝜔4 𝜔5 
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𝜔7 
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𝜔9 
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Figure I.16: Normal modes of CH2NH+
2 . The arrows indicate the direction and magnitude of

displacements for each mode. Note that arrowheads are not shown for the displacements of
relatively large magnitudes. Vibrational frequencies and symmetries are listed in Table 2 of
Ref.[Yuen et al., 2019].

Protonated methanimine CH2NH+
2 acts as a precursor of simple amino acids. It is formed

in ISM after proton transfer reaction with methanimine CH2NH2 and HCO+, H+
3 or H3O+.

Other CH2NH+
2 formation routes exist, such as the rapid reaction CH2 with NH+

3 giving
[Anicich, 1993]. Methanimine and protonated methanimine are also important in the upper
atmosphere of Titan, the massive moon of Saturn. It was detected by the Ion and Neutral Mass
Spectrometer (INMS) on-board Cassini orbiter [Vuitton et al., 2006]. Once formed, CH2NH+

2

can undergo DR and, indeed, this is the only destruction pathway of CH2NH+
2 considered in

the two most popular databases of astrochemical networks: KIDA [Wakelam et al., 2012] and
UMIST [McElroy et al., 2013]. We are yet to obtain experimental or theoretical data about
the DR of CH2NH+

2 . The rate coefficient of this process was generally estimated using data
on complex hydrocarbon ions. Consequently, a reliable value for the rate coefficient of the
CH2NH+

2 DR is needed for chemical modeling.

Analogous to BF+
2 , CH2NH+

2 requires a highly-energetic incoming electron to form a
doubly-excited resonant dissociative state of the neutral CH2NH2 throughout the process
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e− + CH2NH+
2 → CH2NH∗2 → CH2NH∗∗2 →





CH2NH + H
CH2 + NH2

HCN + H2 + H
CN + H2 + H2

H2CN + H + H
HNC + H + H2

, (I.34)

where a summary of the recommended rate coefficients and branching ratios for the above
reactions is provided in Table 1 of Ref.[Yuen et al., 2019]. At low-energy, however, the
electron is likely to be captured in a Rydberg level CH2NH∗, strongly predissociated by
CH2NH∗∗, associated with a vibrationally excited state of CH2NH+. Again, in environments
of low temperatures, such as ISM, the indirect process becomes dominant with the direct DR
retaining negligible contributions to the total DR process. We will thus shift the focus on the
IDR which is in competition with vibrational transitions

e− + CH2NH+
2 (vi)→ e− + CH2NH+

2 (v′i). (I.35)

CH2NH+
2 is a closed-shell ion belonging to the C2v point group at its equilibrium, with the

ground state electronic configuration

X 1A : 1a2
12a2

13a2
14a2

11b225a2
12b221b21. (I.36)

Although there are 12 degrees of freedom for CH2NH+
2 internal motion (see Figure I.16), the

formalism for indirect DR developed for BF+
2 in Chapter III can be applied in a straightforward

manner. Recall that the theoretical approach combines the normal modes approximation for
the vibrational states of the target ion (described in Section II.2.A) and use of the R-matrix
code to evaluate e−−CH2NH+

2 scattering matrices, from Eq.(I.4), for fixed geometries of
CH2NH+

2 .

First, we computed the frequencies of the normal modes using a large active space
CAS(12,10), i.e. 12 electrons distributed in 10 orbitals, and cc-pVQZ basis set. The obtained
data such as frequencies and symmetries of the 12 vibrational modes are provided in [Yuen
et al., 2019]. Secondly, we performed R-matrix calculations using identical parameters to the
above and obtained the fixed-nuclei energy-independent scattering matrices, evaluated for
two values of qi keeping the other normal coordinates qi′ fixed at qi′ = 0. Figure I.17 shows
the eigenphases sums of the system e−−CH2NH+

2 for different irreducible representations at
the equilibrium position of the target ion. Eigenphases are smooth below 2.5 eV, where the
first electronic resonance appears for the 2A1 state. The absence of electronic resonances at
low collision energies justifies the indirect DR approach.
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Figure I.17: Energy-dependence of eigenphases of different irreducible representations for the
CH2NH+

2 + e− collisions.

With the formula of Eq.(III.12) and the summation extended to 12 normal modes, we
calculated the DR cross section for CH2NH+

2 in its vibrationally ground state as a function of
collision energy ε. Figure I.18 shows at low energies that the obtained DR cross section is
featureless and behaves simply as 1/ε. This can be viewed as a DR cross-section averaged over
the vibrational autoionizing resonances. Such a result could be justified by the fact that the
experimental/observation resolutions (storage-ring or merged-beam experiments) are too low
to resolve individual Rydberg resonances in the DR spectra. For energies above 0.1 eV, the
cross section drops in stepwise manner because the scattering electron excites the vibrational
level of the ionic target by one quanta and leaves with a smaller kinetic energy.

Fitting the probabilities of Figure 2 in Ref.[Yuen et al., 2019], rate coefficients can be
computed analytically, assuming the collision energy follows Maxwell-Boltzmann distribution,
as

αV Evi (T ) =
√

2π(vi + 1)
~2

m
3/2
e

[
(
ai + ~ωibi + (~ωi)2ci

)
/
√
kbT

+ (bi + 2~ωici)
√
kbT + 2ci(kbT )3/2

]
exp

(
− ~ωi
kbT

)
, (I.37)

αV dEvi (T ) =
√

2πvi
~2

m
3/2
e

[
ai√
kbT

+ bi
√
kbT + 2ci(kbT )3/2

]
, (I.38)

and
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αDRvi (T ) =
√

2π
~2

m
3/2
e

12∑

i

(vi + 1)

{
2ci

[
1− exp

(
− ~ωi
kbT

)]
(kbT )3/2

+

[
bi − (bi + 2~ωici) exp

(
− ~ωi
kbT

)]√
kbT

+

[
ai − (ai + ~ωibi + (~ωi)2ci) exp

(
− ~ωi
kbT

)]
/
√
kbT

}
, (I.39)

where ai, bi and ci are the fitted parameters from Table 3 in the same reference.
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Figure I.18: The DR cross section as a function of the collision energy. For energies above 0.1
eV one or several vibrationally-excited channels are open. As a result, the DR cross section
decreases in a stepwise manner.

Figure I.19 displays the thermally averaged VE and DR rate coefficients as functions of
temperature for the initial ground vibrational state, vi = 0. For low temperatures, T < 400
K, the rate coefficients behave as 1/

√
T . Since the exponent factor exp (−~ωi/kbT ) is much

smaller than 1, the DR rate coefficient can be approximated as 4.65× 10−7(300/T )0.5 cm3/s.

As discussed previously, there are two main identifiable sources of uncertainty in the DR
and VE rate coefficients obtained above. The most important source lies in the autoion-
ization competitive process. Indeed, in our simplified model, once the electron is captured
into a vibrational Rydberg resonance associated with a closed vibrationally-excited channel,
the e−−CH2NH+

2 system will dissociate rather than autoionize. In a previous studies deal-
ing with smaller molecular ions such as H+

3 , HCO
+, NH+

4 , H3O+, CH+ [Mikhailov et al.,
2006b, Douguet et al., 2012b, Douguet et al., 2012a, Fonseca dos Santos et al., 2014], it was
estimated that the probability of autoionization of vibrational Rydberg resonances in these
closed-shell ions is of the order of 10-20% compared to the probability of dissociation. For
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larger ions, the probability should be smaller and hence it is reasonable to assume that the
corresponding uncertainty in the present DR calculations is below 20%.

To assess the second type of uncertainties related to the scattering model, we varied
several parameters such as basis sets and complete active spaces. Table I.3 lists the three
sets of parameters. The differences between results obtained in the three models are 1-2%.
Therefore, the uncertainty due to the scattering model is negligible, with respect to the
capture approximation and the overall uncertainty of the present theoretical rate coefficients,
and is estimated to be below 20%.

1 10 100 1000
Electron temperature (K)

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

R
at

e 
co

ef
fi

ci
en

ts
 (

cm
3
/s

)

DR

VE

ν
1

ν
12

ν
8

Figure I.19: The DR (dashed line) and VE (solid lines) rate coefficients for target ion CH2NH+
2

in the ground vibrational. To avoid overcrowded labeling in the figure, labels for three VE
curves only are given. The lines for all VE rates cross the abscissa in the order of increasing
number labeling the modes (and increasing energy) as in Table 2 of Ref.[Yuen et al., 2019].
For T < 400 K, the DR and VE rate coefficients behave as T−1/2 and T−1/2 exp (−~ωi/kbT )
respectively. At higher temperatures, as vibrational excitation becomes more probable, the
DR rate coefficient decreases faster than T−1/2.

To summarize, the first value for the total DR cross section and thermally averaged rate
coefficient of CH2NH+

2 were briefly reported. The implications of the present calculations
in the chemistry of extraterrestrial environments are important since the obtained value is
consistent with the two most popular astrochemical data basis, KIDA, and UMIST but much
smaller for T < 400 K than the value used in photochemical models of the upper atmosphere
of Titan. This has in fact an impact on Titan ammonia abundance in the model. These
results, however, provide an upper limit for the total rate coefficient of the CH2NH+

2 DR. See
discussion in Ref.[Yuen et al., 2019].
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Model C1(ω3) Cs(x = 0)(ω2, ω5, ω10, ω12) Cs(y = 0)(ω1, ω4)

1 cc-pVTZ cc-pVQZ cc-pVQZ
(5a|6a) (2a′, 0a′′|8a′, 2a′′) (2a′, 0a′′|7a′, 3a′′)

2 cc-pVTZ cc-pVTZ cc-pVTZ
(5a|6a) (2a′, 0a′′|8a′, 2a′′) (2a′, 0a′′|7a′, 3a′′)

3 cc-pVTZ cc-pVQZ cc-pVQZ
(5a|6a) (2a′, 0a′′|8a′, 2a′′) (2a′, 0a′′|7a′, 3a′′)

Model C2v(ω6, ω7, ω8, ω9, ω11)

1 cc-pVQZ
(4a1, 0b1, 1b2, 0a2|2a1, 2b1, 2b2, 0a1)

2 cc-pVTZ
(4a1, 0b1, 1b2, 0a2|2a1, 2b1, 2b2, 0a1)

3 cc-pVQZ
(2a1, 0b1, 0b2, 0a2|5a1, 2b1, 3b2, 0a1)

Table I.3: Parameters of three different scattering models. Different basis and electronic
configurations are used for normal modes with different point group symmetries. The symbols
in the parenthesis indicates the number of frozen orbitals and number of active orbitals.

I.6 Concluding remarks

This chapter outlines my contribution to the study of the molecular ions destruction mech-
anisms in astrophysical environments. Two main developments were achieved within this
research axis. First, a theoretical approach for electron-impact rovibrational excitation of
molecular ions was developed and applied to the HeH+ benchmark system. Second, this
approach was adapted to molecular ions with low-lying excited electronic states like CH+.
With some additions whose details were deferred to Chapter III, these approaches were
extended to more complicated systems such as prebiotic molecules NH2CHOH+ and CH2NH+

2

that play an important role in the chemistry of ISM and the upper planetary atmospheres.

Our theoretical studies have allowed us to investigate the main mechanisms of destruction
and/or formation of these ions in low collisional energy, namely, direct and indirect DR
that are in competition with autoionization, viz. rovibronic excitation and (de-)excitation
processes. These studies have also enabled, on the one hand, to provide an upper limit for
the total rate coefficient of DR, where data are not available (CH2NH+

2 case), on the other
hand, to confirm previous calculations as for HeH+ and CH+. The obtained cross sections
and related rate coefficients could be used in kinetic modeling of cold ionized media such as ISM.

The above works have been supported by different programs and funding listed in CV
(see Appendix V.2.C). They have also been performed in the context of three thesis: Dr.
Marjan Khamesian, Dr. Chi Hong Yuen and Dr. Xianwu Jiang. They result in at least
height peer-reviewed articles. The following chapter pursues these studies to include neutral
molecules.



36 Chapter I. Mechanisms of destruction of molecular ions



II – Role of collisions involving
electron-neutral molecules and

electron-radicals

II.1 Context and Motivations

Neutral molecules and radicals play an important role in plasma discharges. They are mostly
formed by surface processes on the walls and then involved in a volumetric chemical chain reac-
tions with other species. Typically, neutral molecules are formed in excited states and radicals
are well-known to be unstable in collisions with other species present nearby. Consequently,
for both systems an experimental approach is difficult or impossible and data are needed for
reactions taking place on the surfaces but also in the phase-gas [Pelicon and Razpet, 2003].

This chapter focuses on two type of neutral molecules NO2 and N2O. These species are
involved in a number of different chemical pathways in the atmosphere leading to a large
variety of species. They also play a role in a non-equilibrium kinetics of plasmas containing
N2 and O2 that are used for plasma based technologies and depollution purposes. Understand-
ing/validation of the fundamental kinetic mechanisms for these molecules remains limited.
This relies partially on the availability of the cross-section data of elementary processes, in
particular to the rovibrational-dependent electron impact excitation/(de-)excitation data,
which is very sparse.

Our following studies aim to fill, at least partially, this gap and provide reliable cross
sections for electron-induced vibrational excitation of NO2 and NO2. Cross sections and rate
coefficients for transitions between different vibrational states of the targets are reported and
compared to available experimental data. The rotational structure of each vibrational level of
the targets was neglected which corresponds to the situation where rotational structure is not
resolved in the initial and final states of the target molecule. A more comprehensive study
will be considered in a near future (see Chapter V).

The main results of this chapter were obtained in the context of Dr. Hainan Liu’s
dissertation at Centralesupélec in collaboration with Prof. Viatcheslav Kokoouline at UCF
and Dr. Samantha Fonseca Dos Santos at Rollins College. They have been published in two
papers whose the one on N2O is included in this manuscript.

37
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Figure II.1: The flow chart of different ingredients employed in the theoretical model developed
for the description of vibrational (de-)excitation (VE) as well as dissociative recombination
(DR) of polyatomic molecular ions such as NO2, N2O, CH2NH+

2 (described in Chapter
I) and BF+

2 (described in Chapter III). The following abbreviations are used. FT: frame
transformation. DVR: discrete variable representation. Tasks or methods in non-bold text
are not performed in this HDR yet.
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II.2 Theoretical method developed on neutral molecules

Similar to molecular ions discussed in the preceding chapter, theoretical models employed in
the studies of Section II.4 are based on first-principles. They require three main ingredients
summarized in Figure II.1. A brief description is given below.

II.2.A Normal modes approximation

In calculations of the cross section for vibration (de-)excitation of Section II.4, one needs
the vibrational wave functions of the target in order to construct elements of the scattering
matrix for transition from one vibrational level v to another v′.

For polyatomic molecules, one can expand the potential energy V in a multi-dimensional
Taylor expansion truncated at second order around equilibrium. The nuclear Schrödinger
equation for an N atom system writes as

[
−

3N∑

i

~2

2mi

∂2

∂x2
i

+
1

2
t(x− xeq)

d2V

dx2
(x− xeq)

]
ψ(x) = Eψ(x), (II.1)

where N is the atoms number, mi is the atomic mass and x = {x1x2x3 · · ·x3N} is a vector
containing the 3N components of coordinates of all nuclei. xeq defines the equilibrium struc-
ture and ψ(x) is the nuclear wave function. Above, E stands for the total energy of the
molecule, i.e. including translational, vibrational and rotational energies.

Defining the mass-weighted coordinates

x̃i =
√
mi (xi − xeqi)⇒

∂2

∂x̃2
i

=
1

mi

∂2

∂x2
i

, (II.2)

Equation (II.1) can be solved merely under the following form

−

3N∑

i

~2

2

∂2

∂x̃2
i

+
3N∑

i,j

1

2
Hjix̃ix̃j


ψ(x̃) = Eψ(x̃). (II.3)

where Hij defines the mass-weighted Hessian, also called matrix of force constants:

Hij =
1√

mi
√
mj

∂2V

∂xi∂xj
. (II.4)

This matrix of the second derivatives of the potential energy plays a central role in energy
minimization techniques.

Looking for a matrix D that diagonalizes the mass-weighted Hessian, the second term in
the left-hand side of Equation (II.3) can be reshaped as

3N∑

i,j

1

2
Hjix̃ix̃j =

1

2
tQ
(
D−1HD

)
Q, (II.5)
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where Q designates the set of 3N eigenvectors associated to 3N eigenvalues ω2
i [Janežič et al.,

1995]. D above is a transformation matrix from mass-weighted Cartesian coordinates to a set
of 3N coordinates including the translation, rotation and vibration degrees of freedom.

In quantum chemistry softwares such as Molpro or Gaussian, the eigenvectors Q, i.e. the
normal modes, are calculated after separating out the rotational and translational normal
modes leaving 3N − 6 or 3N − 5 modes for vibrational analysis. The eigenvalues ω2

i are the
fundamental frequencies of the molecule. For rotation and translation modes they should be
close to zero. More details can be found in Ref.[Frisch, 2004].

Generally, it is convenient to introduce a new set of coordinates called dimensionless
normal coordinates that are related to the length-unit normal coordinates Qi as follows

qi = Qi

√
µiωi
~
. (II.6)

where ωi and µi are the frequency and reduced mass of the ith mode, respectively. Hence,
Equation (II.3) can be written for vibrational normal modes as

[T (q) + V (q)]ψ(q) = Eψ(q)
∑3N−6(5)

i
~ωi
2

[
− ∂2

∂q2
i

+ q2
i

]
ψ(q) = Eψ(q),

(II.7)

where E denotes here the vibrational energy of the molecule in the uncoupled harmonic-
oscillator approximation

E =

3N−6(5)∑

i

(
vi +

1

2

)
~ωi, (II.8)

associated to the following normalized wave function

ψ(q) =

3N−6(5)∏

i

ηvi(qi), (II.9)

with ηvi(qi) representing the harmonic vibrational function with vi quanta and corresponding
vibrational frequency ωi, reduced mass µi and dimensionless normal coordinate qi.

With the above expressions in hand, we can perform the vibrational transformation in
Eq.(II.17) according to the well-known formula

ηvi(qi) =

(
1

π

) 1
4 1√

2vivi!
e−

qi
2

2 Hvi(qi). (II.10)

where Hvi is the Hermite polynomials. For example, the normalized wave function of the
ground vibrational state is

ηvi=0(qi) =

(
1

π

) 1
4

e−
qi

2

2 , (II.11)

associated to the zero-point energy ~ωi
2 .
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In our studies, we employed Molpro [Werner et al., 2008] to obtain the frequencies ωi
and the equilibrium geometry of the molecules throughout the Hessian matrix elements of
Eq.(II.4). The matrix D enables to generate Cartesian displacements, X = Dq, along each
normal coordinate that are used to perform scattering matrix calculations in the following
section and then to compute the integral in Equation.(II.17). Permanent dipole moments of
the molecules are also intermediate quantities useful to check the convergence of the final
results, viz. cross sections and rate coefficients.

The normal mode approximation employed in this chapter is accurate for the lower
vibrational levels. From the classical point of view, as vi increases, the nuclei spend more time
in regions far from their equilibrium separation. For such regions the potential energy deviates
substantially from that of a harmonic oscillator and the harmonic-oscillator approximation
tends to become poor. Therefore, the developed theoretical approach can be applied for
vibrational transitions involving few quanta in each mode.

II.2.B The ab initio R-matrix method

Since a more detailed discussion on the R-matrix method is provided in Section I.3.A, I sketch
below only the main difference.

Again, the R-matrix method (see upper panel of Figure I.2) involves the division of the
configuration space into an inner region where a molecular (N−electrons targets+the scatterer)
bound state is solved, and an outer region with an long range multipolar expansion of the
form

Vij =
∑

α=0

C(α)
ij

rα+1
, (II.12)

where C(α)
ij is the asymptotic potential coefficient of order α between i and j channels. This

coefficient is given by [Burke et al., 1977]:

C(α)
ij =

√
2li + 1

2lj + 1
C(li, α, lj ;λi, λα, λj)C(li, α, lj ; 000)Q

(α)
ij , (II.13)

with lj being the orbital angular momentum of the scattering electron for the ith channel
and C(li, α, lj ;λi, λα, λj) the Clebsch-Gordon coefficient. Q(α)

ij is the target moment between
the channels i and j such as if i = j, it corresponds to a permanent moment, and for i 6= j it
is a transition moment. In general, only the first few terms in the expansion over α play a
significant role in the collision in the outer region. For neutral molecules such as NO2 and
N2O, α is 1 which corresponds to the interaction between the charge of electron and the
dipole moment of the target molecules.

Once the wave functions are generated in the inner region, the R-matrix is constructed at
the boundary r = a for a given scattering electron energy ε and it is propagated toward the
outer region (see Eq.(23) of Ref [Tennyson, 2010]) where the radial scattering electron wave



42 Chapter II. Role of neutral and radicals molecules

function can be matched at the boundary r = aasy ' 70 bohr (such that coupling potentials
to be negligible) to Bessel functions

FΓ
ij(r) ∼

{
1√
ki

(
sin θi(r)δij + cos θi(r)K

Γ
ij(q)

)
if εi ≥ 0

0 otherwise
(II.14)

where

θi(r) = kir −
liπ

2
, (II.15)

and index i refers to the entrance channel before a collision and j refers to the outgoing channel
after the collision. KΓ

ij(q) above are the elements of the reactance matrix [Aymar et al.,
1996, Tennyson, 2010] depending on the dimensionless normal coordinates q = {q1, q2, · · · }
parametrically and obtained for each scattering electron energy ε. Recall, Γ denotes the
constants of motion corresponding to the irreducible representation of the molecular point
group, in particular the total angular momentum projections Λ of the anion system (electron-
molecule).

Finally, in the cross section calculation, the scattering matrix SΓ(q) is needed and can be
obtained from

SΓ(q) = (1 + ıKΓ(q))(1− ıKΓ(q))−1 , (II.16)

at a given geometry q, similar to Eq.(I.4). The eigenphase sums is another observable, defined
from these matrices through Eqs.(I.5), which is very useful for testing the validity of our
theoretical approach. These key points will be discussed in Section II.3.

II.2.C Vibrational frame transformation

The application of the frame transformation procedures was discussed in Sections I.2 and I.3.
It relies on the assumption that the strength of couplings between the scattering electron
and vibrational states v of the target are small compared to the interaction potential V (r)
experienced by the incident electron. As we have seen, this assumption remains valid for
ions even at low collisional energy because of Coulomb asymptotic behavior in V (r). In case
of neutral molecules, the situation is less obvious. More remarks are differed to the next section.

Assuming εv ≈ εv′ and a smooth scattering matrices along each dimensionless normal
coordinates, one can employ the procedure of frame transformation

Sv′v =
∑

λ′l′,lλ

〈
ψv′(q)

∣∣SΛ
λ′l′,λl(q)

∣∣ψv(q)
〉
, (II.17)

where the matrix element SΛ
l′λ′,lλ(q) is obtained from the R-matrix calculations above, and v

and v′ denote the collection of initial and final vibrational quantum numbers of all the normal
modes. The brackets in Eq.(II.17) imply an integration over the vibrational coordinates where
the vibrational wave functions are given in the harmonic approximation picture by Eq.(II.9).

In the studied cases of Section II.4, the integral above is computed numerically using a
Gaussian-Legendre quadrature with 10 points.
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II.3 Validity of the theoretical model

As hinted in Section I.4, there are two main identifiable sources of uncertainty [Chung et al.,
2016]. One is related to the uncertainties of the theoretical model often employing reduced
dimensionality or neglecting competitive processes. A second type of uncertainties relies on
the choice of parameters of the model such as the use of limited basis set or ab initio/fitted
data. Both uncertainties will be assessed in NO2 and N2O studies of Section II.4.

In addition to the above uncertainties, the validity of the model developed for neutral
molecules is mainly based on the circumstance of applying the frame transformation proce-
dure in Eq.(II.17). Indeed, the attractive potential V (r) decays faster than the centrifugal
barrier, l(l+1)

2r2 (in bohrs), in case of neutral targets, according to Eq.(II.15). In a such
situation, the local kinetic energy of electron in Eq.(I.6) is independent on r at the edge
of the R-matrix simulation box, i.e. εvj ∼ 0.003 eV at r = 100 bohrs for V (r) behaving
as 1/r2 for instance. Thus, εvj ≈ εv′j′ can be fulfilled outside r = 100 bohrs only if the
scattering energy is large enough, compared to the spacing between vibrational levels, such
that the entire region of r can be considered here as the q−region (see lower panel of Figure I.2).

The above condition on εvj is consistent with an energy-independent scattering matrix. In
general, S(q) depends on the scattering energy especially for neutral targets. To overcome
this difficulty, (1) one can use a smooth S(q), if possible, as done in the preceding studies
for target ions (HeH+ or CH2NH+

2 ) or (2) choose a different normalization factor for the
scattering wave function to remove the energy-dependence of S(q) [Greene et al., 1979, Greene
et al., 1982, Greene and Jungen, 1985]. This later suggestion is reserved for future study (see
Chapter V).

In our following studies, the scattering electron energy is (i) chosen so as to not be so
large to excite the target electronically and (ii) also below of electronic resonances appearing
when the potential energy surface (PES) of the anionic molecule (electron-molecule system)
crosses the neutral PES near the equilibrium geometry. Moreover, as we will see, a detailed
analysis of enigenphase sums of e−NO2 and e−−N2O collisions reveals that S(q, εv) ≈ S(q, εv′).
Hence, the vibrational frame transformation can be accomplished here directly without further
development (refereed above as point (2)).

II.4 Applications

As a demonstration, we applied the theoretical approach described above to neutral species
such as NO2 and N2O of atmospheric interest. Details on these studies, performed by Hainan
Liu in her thesis at Centralesupélec, can be found in Refs.[Liu et al., 2019, Liu et al., 2020].
Below, I will underline only the major ideas and results in particular for the N2O study whose
the article is included to this manuscript as paper .6.

II.4.A Electron-induced vibrational excitation of NO2

The nitrogen dioxide (NO2) molecule has a number of applications in engineering and science.
For instance, it is used in the sterilization of medical instruments [Shomali et al., 2015a]. It
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plays a major role in the middle and upper atmosphere by the chemiluminescent emission
process [Clough and Thrush, 1967]. NO2 is also well-known to be an undesirable pollutant in
the troposphere such as recent plasma technologies are used for its removal. Knowledge of
physical and chemical processes taking place in NO2 plasma especially collisions electrons
and NO2 molecules are of great importance in improving process efficiency in these technologies.

Electron collisions with the NO2 molecule have been extensively investigated in the
past, with initial studies focusing on the NO2 ionization [Collin, 1959, Kiser and Hisatsune,
1961, Stephan et al., 1980]. In more recent studies, other processes in the e−–NO2 collisions
were reported. We can cite, for example, the measurements of absolute total cross sections for
electron-NO2 collisions by Ref.[Szmytkowski and Krzysztofowicz, 1992] or those of dissociative
electron attachment (DEA) to NO2 as a mechanism on negative-ion formation from the
groups [Fox, 1960] and [Rangwala et al., 2003]. Munjal et al. [Munjal et al., 2009] reported
theoretical data on elastic integral, differential, momentum transfer cross sections, as well
as electronic-excitation cross sections from the ground electronic state to the five lowest
electronically excited states of NO2.

As for electron-impact vibrational excitation (VE) of NO2, only little information is avail-
able while this process plays an important role in plasma depollution because vibrationally
excited NO2 react differently, compared to the ground-state NO2, with other species present
in the plasma. To the best of our knowledge, there exist only one measurement on VE cross
sections for energies 0.3 ∼ 2.5 eV by Benoit and Abouaf [Benoit and Abouaf, 1991]. No
theoretical VE study of NO2 has been reported until now. As excitation of different modes
having almost the same fundamental frequencies cannot be separated experimentally, at least
by the conventional technique, the theoretical treatment for the VE of NO2 is indeed necessary.

Combining the normal mode approximation for vibrational states of the target molecule
(Eq.(II.7)), fixed-nuclei electron-NO2 scattering matrices (Eq.(II.16)) and the vibrational
frame transformation (Eq.(II.17)) employed to evaluate the scattering matrix for vibrational
transitions, we provided cross sections for VE,

e− + NO2(υi)→ e− + NO2(υi
′), (II.18)

and corresponding thermally-averaged rate coefficients. Above, the quantum number υi and
υi
′ stand for the initial and final vibrational state of the target for normal mode i. The

reaction channel for which υi = υi
′ corresponds to elastic scattering. Systematic calculations

were performed for the excitation of the 3 lowest excited vibrational levels in the ground
electronic state of NO2. For higher vibrational states, processes such as DEA become more
predominant than vibrational excitation.

The ab initio calculations

NO2 is an open-shell molecule belonging to the C2v point group at its equilibrium, with the
ground state electronic configuration

X2A1 : 1a2
12a2

11b223a2
12b224a2

15a2
13b221b214b221a2

26a1
1.
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It is characterized by three normal modes of vibration: bending, symmetric stretching,
and asymmetric stretching, displayed in Figure II.2. Displacements along the bending and
symmetric stretching modes do not break the C2v symmetry of the molecule, while the
asymmetric stretching mode reduces the symmetry to the Cs group.

𝜔1, bending mode  𝜔2, symmetric stretching  mode  

𝜔3, asymmetric stretching  mode  

Figure II.2: Normal modes of NO2. The arrows indicate the direction and magnitude of
displacements for each mode. Note that arrowheads are not shown for the displacements of
relatively large magnitudes. Vibrational frequencies and symmetries are listed in Table II.1.

The frequencies of the normal modes were computed with a complete active space self-
consistent field method (CASSCF) of CAS(17,15), i.e. 17 electrons are distributed over 17
orbitals, and cc-pVTZ basis set using the ab initio quantum chemistry package Molpro [Molek
et al., 2007]. Table II.1 lists the optimized geometry and vibrational frequencies obtained in
the present calculation and compares the results with the available experimental data.

Table II.1: Structure and vibrational frequencies of NO2 obtained in this study and compared
with experimental data from Ref.[Johnson III, 2010]. ω1, ω2 and ω3 are the frequencies of
bending mode, symmetric stretching mode and asymmetric stretching mode, respectively.

Bond (Å) Angle(Degrees) ω1 (cm−1) ω2 (cm−1) ω3 (cm−1)
This work 1.204 133.95 756.66 1319.21 1625.86

Exp. 1.193 134.10 750.00 1318.00 1618.00

As the table demonstrates, the present results match excellently with the experiment.
From the results of the frequencies calculation, we also obtained the transformation matrix, D
of Eq.(II.5), between the normal and Cartesian coordinates. The matrix is needed to generate
geometries input data from X = Dq for electron-NO2 scattering calculations.
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Scattering calculations

In the scattering calculation, we used for several values of normal coordinates qi an R-matrix
sphere radius of 14 bohrs, the cc-pVTZ basis set and the complete active space configuration
interaction (CAS-CI) method built on orbitals obtained from the same CASSCF calculation
in Molpro. An accurate description of the target molecule is crucial in this model. Figure II.3
displays the potential energy surface of the ground state of NO2 computed with the R-matrix
code, where the surface is plotted along the three normal modes and compared with the
harmonic potential energy. Almost no anharmonic contribution is observed for the bending
(panel (a) in the figure) and asymmetric stretching (panel (c)) modes. The potential energy
of the symmetric stretching mode is, however, slightly anharmonic as evident from panel
(b) in the figure. The dipole moment of NO2 obtained in this model is 0.317 D, which is in
remarkably good agreement with the experimental value of 0.316 D [Leonardi et al., 1996].
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Figure II.3: Potential energy curves for the ground electronic state of NO2 as a function of the
(a) bending; (b) symmetric stretching; (c) asymmetric stretching modes. The abscissa axes
in the figure represent dimensionless normal coordinates. In each panel, only one mode qi is
varied, while the other modes are kept fixed at their equilibrium positions qi′ = 0. Red solid
curves are the actual potential energies obtained from the UKRmol suite, while black dashed
curves represent energies calculated in the harmonic approximation. Horizontal dashed lines
denote energies of vibrational states.

Cross sections and rate coefficients

Taking an average over initial rotational states and a sum over final rotational states in the
process, i.e. neglecting the rotational structure of the molecule, the cross section for VE of
the mode i is expressed as

συi′←υi (ε) =
π~2

2mε
|Sυi′υi − δυi′υi |2 , (II.19)

where again ε is the energy of the incident electron and m is the mass of electron. The com-
putation of the scattering matrix Svi′vi for VE relies on the vibrational frame transformation
of Eq.(II.17).
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line with circles), the couplings between the s and f, s and g partial waves are very small.
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scattering is forbidden by symmetry, only couplings between p, d, f and g partial waves is
shown. For 1A2 (solid pink line with stars), s and p partial waves scattering is not allowed.
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As discussed in the preceding section, vibrational frame transformation treatment becomes
feasible, at least in principle, only if the elements of the fixed-nuclei S-matrix for the e−−NO2

system are smooth with respect to the incident energy. Therefore, the treatment is not
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appropriate if there are low-energy resonances in the e− −NO2 spectrum at low energies. In
an attempt to analyze the behavior of S-matrix elements, we computed the absolute value
squared

∣∣Sl′λ′,lλ
∣∣2 (Λ is omitted hereafter for the sake of simplicity) of the matrix elements as

a function of the electron scattering energy at the equilibrium geometry. Figure II.4 gives an
idea about couplings between different partial waves in the scattering process. Here, singlet
states are chosen as an example. Although five partial waves is included in the computation,
only couplings between channels with ∆l < 2 are not negligible for inelastic scattering. The
contribution from the ∆l ≥ 2 couplings is modest.

Notably, the
∣∣Sl′λ′,lλ

∣∣2 coupling producing the dominant contribution to the inelastic
process for each symmetry depends only weakly on the scattering energy, as shown in Figure
II.5. Therefore, it is reasonable to employ the vibrational frame transformation for the VE
calculations.
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Figure II.6: Calculated cross sections as functions of the electron scattering energy for the
vibrational excitation of NO2 being initially in the lowest vibrational state v = 0 for the three
normal modes (see the text for detailed discussion): (a) cross sections for v′ = 1, 2← v = 0
transitions for bending mode; (b) for symmetric stretching mode; (c) for asymmetric stretching
mode.

Figure II.6 displays the VE cross sections for the singlet and triplet states of the e−–NO2

complex with the target molecule being initially in the ground vibrational level. Not sur-
prisingly, the 1← 0 cross sections of the e−–NO2 singlet complex (solid red curves) are the
largest compared to the triplet and 2← 0 transitions. The 1← 0 VE cross section for triplet
(dashed red curve) bending mode has the same shape as that of the singlet. Its magnitude
is smaller than that of the singlet by more than a factor of 4. For the symmetric stretching
mode (see Figure 4 (b)), the 1 ← 0 VE cross sections for both singlet and triplet depend
very weakly on the scattering energy up to 0.6 eV. Note that the 1← 0 VE cross sections for
the asymmetric stretching mode are zero due to the symmetry of the scattering matrix with
respect to positive and negative values of displacements along the mode. Furthermore, there
is no significant difference in the magnitude of the cross sections for the symmetric stretch-
ing and asymmetric stretching modes due to the close fundamental frequencies (see Table II.1).

It should be stressed that the ∆v = 1 transitions for asymmetric stretching mode are
forbidden by symmetry. Indeed, Figure II.8 shows the dominant elements of S-matrix as
function of asymmetric stretching mode at a given energy. As we can see,

∣∣Sl′λ′,lλ
∣∣2 is

symmetric with respect to q3 yielding a zero integral in Eq.(II.17) for one quanta transition.
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The thermally averaged rate coefficient αυi′←υi (T ) is obtained from the energy-dependent
cross sections of Equation (I.28) according to Eq.(I.31). The rate coefficient is first calculated
separately for singlet and triplet transitions and then the final rate coefficient is obtained by
taking into account the corresponding statistical weights: 1/4 for singlet and 3/4 for triplet.
Figure II.7 displays the spin- and thermally-averaged rate coefficients for (de-)excitation
transitions between the three lowest vibrational states of the bending mode as an example.
Similar to the previous studies for conveniently using the computed rate constants, we fitted
the numerical spin- and thermally-averaged rate coefficients to an analytical formula. The
fitted coefficients for each individual transitions are listed in Table 2 of Ref.[Liu et al., 2019].

Cross section obtained with a simplified approach

Making use of the simplified approach described in Chapter III, we computed the VE cross
section for the change only one quanta form the analytical formula (III.9) and compared the
result to the one obtained using the complete numerical treatment of Eq.(II.19).

Figure II.9 displays, as an example, the compared VE cross sections for the bending
mode where the derivative of the scattering matrix in Eq.(III.6), employed in Eq.(III.9), was
evaluated with two points q1 = 0.2 and q1 = 1. In the case of singlet, the VE cross section
calculated with the simplified model (green solid curve) is larger than the presently calculated
one (red solid curve) by about 30% while this deviation is less than 10% for triplet. To get an
idea about these discrepancies, we plotted in Figures II.10 and II.11 the dominant fixed-nuclei
S-matrix element Sl′λ′,lλ and the derivatives (for singlet only) as function of q1.
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Figure II.10: Dominant elements Sl′λ′,lλ of the scattering matrix as a function of normal
coordinate q1 (bending mode) at 0.3 eV scattering energy. Upper figure: S-matrix elements
for triplet . Bottom figure: S-matrix elements for singlet. The real (resp. imaginary) parts
of the scattering matrix are given in solid curves in left panels (resp. dashed curves in right
panels). The numbers indicate different partial waves l′λ′ ← lλ.
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Figure II.11: Derivatives of dominant elements Sl′λ′,lλ as function of normal coordinate q1 at
0.3 eV scattering energy, displayed in the lower Figure II.10. Recall that the real parts of the
scattering matrix are given in left panels (solid curves) while the imaginary ones are in the
right panels (dashed curves).

In the upper subfigure of Figure II.10, we can see small oscillations in the S-matrix elements
of triplet state with a maximum amplitude of about 2%, for the middle panels (S00,00 versus
q1). This implies that the S-matrix elements are in fact linear and hence the first derivative
approximation for triplet is reasonable. As for singlet in the bottom subfigure of Figure
II.10, the S-matrix elements seems smooth with respect to q1 but a detailed analysis of the
derivatives, displayed in Figure II.11, reveals that they depend on q1. Consequently, the
slop in Eq.(III.6) should be different according to the chosen points to evaluate it which can
explain the overestimation observed in the obtained VE cross section. However, the simplified
approach (III.9) apparently can provide an estimation of the VE probabilities used to compute
the VE cross section for one quanta transition. In a better treatment higher orders in the
Taylor expansion of the scattering matrix elements of Eq.(III.1) should be left.

Uncertainty estimations

In a similar manner to previous studies, there are sources of uncertainties in our calculations
that need to be assessed. To our best knowledge, there exists no experimental or theoretical
VE cross sections or rate coefficients data available in the literature. Hence, the uncertainties
of the theoretical model can not be estimated since there is not other more accurate model to
benchmark the present results. Nevertheless, for an ab initio study like this one, uncertainties
could and should be provided by intermediate quantities as well as for final calculated
observables, such as excitation and ionization energies, potential energy surfaces, dipole
moments, polarizabilities, etc, that need to be stable regarding to parameters of the model.
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Figure II.12: Variation of the computed permanent dipole moment of NO2 versus different
basis sets (panel (a)) and CAS (panel (b)). CAS1: 7 electrons are kept free in the active
space including 7 orbitals; CAS2: 9 electrons are kept free in the active space including 8
orbitals; CAS3: 11 electrons are kept free in the active space including 9 orbitals; CAS4 (CAS
used in this paper): 13 electrons are kept free in the active space including 10 orbitals; CAS5:
15 electrons are kept free in the active space including 11 orbitals. The blue dashed line
indicates the experimental value of the dipole moment of Ref [Leonardi et al., 1996]. (c) The
eigenphase sums of scattering of the 3B1 symmetry of the e−–NO2 complex as a function
of the electron scattering energy for different CAS’s. The inset enlarges the region where a
sharper energy-dependence is observed around 1.6 eV corresponding to a resonance.

From a point of view of an electrostatic model potential for the electron-NO2 collisions,
the major contribution to the scattering amplitude for vibration excitation is expected to
be caused by variations of the permanent dipole moment and the polarizabilities of NO2

along the normal mode coordinates. We don’t use the model potential method in the study:
The accuracy of the final cross sections depends on the accuracy of wave functions of the
target and the scattering electron. The accuracy of computed wave functions cannot be
directly compared with previous results. However, comparing the dipole moment, evaluated
from the wave functions of the target molecule, with the available accurate data can give an
idea about the accuracy of computed wave functions used in the R-matrix calculations and,
correspondingly, on the accuracy of the final cross sections.

Here, we investigate the stability of the dipole moment of target molecule as an example
by performing a complete R-matrix calculation with different active spaces and basis sets,
comparing the results with experimental data. We carried out two set of computations: (1)
using the CAS (referred here as CAS4) mentioned above and increasing the size of basis sets;
(2) increasing the complete active space (CAS) with the cc-pVTZ basis set. The obtained
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results at the equilibrium geometry using the various parameters are illustrated in Figure II.12.

As one can see in Figure II.12(a), the dipole moment approaches the experimental value
0.316 D when we increase the basis set. Evidently, the dipole moment obtained by cc-pVTZ
basis set used in this study agrees with the experimental data very well. Augmented (aug-)
basis sets are not used as they would significantly extend outside the R-matrix sphere.
Figure II.12(b) displays the variation of the dipole moment as a function of different CASs
for the cc-pVTZ basis set. Obviously, the current CAS, i.e. CAS4 corresponds to the dipole
moment closest to the experimental data. Therefore, we concluded that the target properties
obtained by Quantemol-N are well converged and accurately represented. One might also
provide uncertainties for other intermediate quantities computed in collisional studies, such
as eigenphase sums. These are also shown in Figure II.12, panel (c). As shown in the figure,
the small shift observed in calculations with different CASs indicates the convergence of the
scattering data.
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Figure II.13: The figure compares selected values of the 1A1 scattering matrix elements
(absolute value squared) before (solid color lines) and after (dashed lines of the same color) the
unitary transformation that eliminates the long-range dipolar coupling between asymptotic
channels in the e−–NO2 scattering matrix in the body frame. See the detailed discussion in
the text. Each curve is labeled at the left of the figure with the pair of indexes (l′λ′ ← lλ),
corresponding to the final channels and initial channel. The results for other irreps are not
displayed but the situation is very similar to the 1A1 symmetry.

Another source of uncertainty is the accuracy of the S-matrix derived from the R-matrix
code, when the dipole term is included in the interaction. For the electron scattering by a
nonpolar molecule, the electronic angular momenta l are decoupled at large distances from the
target, such that l is a good quantum number for large separations between the electron and
the molecule. However, for a dipolar molecule the electronic angular momenta l are coupled at
long, as at short distances. The dipolar interaction exhibits the same long-range behavior as
the centrifugal potential, thus, it is possible to combine the centrifugal and dipole interactions
and obtain effective angular momentum. The Schrödinger equation for an electron in a dipole
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field is given by (in atomic units)
(
−1

2

d2

dr2
+

(
L̂2

2r2
− D cos θ

r2

)
− E

)
ψ = 0 (II.20)

where L̂2 is the square of the orbital angular momentum, D is the dipole moment of NO2, r
and θ (polar angle) are the relevant spherical coordinates of the incident electron with respect
to the center of mass of the target, E is the total (electronic) energy of the system. Note
that the term D cos θ

r2 in the above equation arises form Eq.(II.12) whereD is given by Eq.(II.13).

In practice, expanding the angular part of the electron wave function ψ (the radial part is
F (r) whose the asymptotic form is given by Eqs.(II.14) and (II.15)) in the spherical harmonics

basis and noting that D cos θ = D
√

4π
3 Y0

1 , Eq.(II.20) becomes an eigenvalue problem in which
the elements

〈
l′λ′
∣∣Y0

1 |lλ〉 =

√
(2l′ + 1)(2l + 1)

4π

(
l′ 1 l
0 0 0

)(
l′ 1 l
λ′ 0 λ

)
, (II.21)

should be evaluated acknowledging that 〈l′λ′| L̂2 |lλ〉 = ~2l(l + 1)δll′δλλ′ . This can be accom-
plished using the Clebsch-Gordan coefficients or alliteratively the Wigner 3j-symbol calculator.

Once all elements in Eq.(II.21) are obtained for l ≤ 4 (recall that in the R-matrix cal-
culations, continuum Gaussian-type orbitals was included up to g−wave), we find eigenvalues
of the operator L̂2

2 − D cos θ corresponding to effective values of l. The eigenvectors of
this operator are used to build the unitary matrix U to transform the scattering matrix in
Eq.(II.16) into the effective angular momentum representation according to S̃ = U†SU, where
S̃ designates a scattering matrix without long-range dipolar coupling. Therefore, the unitary
transformation U allows eliminating the long-range dipolar coupling between asymptotic
channels in the e−−NO2 scattering matrix in the body frame. The values of the effective
angular momentum l could be noninteger and even complex. In our case, l are real such that
U† = U−1 and U−1 is orthogonal resulting in U−1 = tU).

In the next step, we fitted the obtained S-matrix elements (absolute values squared) before
∣∣Sl′λ′,lλ

∣∣2 and after
∣∣∣S̃l′λ′,lλ

∣∣∣
2
the unitary transformation with power law:

∣∣Sl′λ′,lλ
∣∣2 = βEα

and
∣∣∣S̃l′λ′,lλ

∣∣∣
2

= β′Eα
′ , respectively, where α, β and α′, β′are the fitted parameters. The

obtained parameters are given in Table 3 of Ref [Liu et al., 2019]. Figure II.13 shows a few
examples of scattering matrix elements of dominant channels (∆l ≤ 2 and λ is zero) of the
1A1 symmetry. The largest matrix element for the 00 ← 00 transition remains unchanged
after the unitary transformation. It is the variation of this matrix element with respect to the
normal coordinates that yields the largest contribution to the cross sections. Therefore, the
uncoupling of the partial-wave channels at large distances would not produce a significant
change in the final cross sections. This also means that the coupling between partial waves
induced by the permanent dipole moment of the target has a minor effect on the final cross
sections.
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Assuming that the order of magnitude of the vibrational excitation cross sections is
determined by the square of the derivatives of the permanent dipole moment and polarizabilities
of the target with respect to the normal coordinates, and also assuming that the relative
uncertainties of the derivatives are of the same order as the relative uncertainties of the dipole
moment, we can estimate the uncertainty of the obtained cross sections with respect to the
accuracy of the wave functions of the target. From panels (a) and (b) in Fig. II.12, we estimate
that the uncertainty in the dipole moment of NO2 is less than 2%, producing the uncertainty
in cross sections less than 4%. Another source of uncertainty in the final cross sections is
due to the variation of the geometry-fixed scattering matrix with energy. The choice of the
energy at which the scattering matrix Sl′λ′,lλ (q) in Eq. (II.17) is computed produces the
corresponding uncertainty. Figure II.5 gives an idea about the energy variation of Sl′λ′,lλ (q).
The largest components with ∆l = 0 vary for about 3% over the energy interval of 0.4 eV. It
gives an uncertainty in the cross sections of the order of 6%. No other significant uncertainty
sources were identified. Therefore, the overall uncertainty of the present calculations seems to
be below 10%.

Summary

We reported in this section the first theoretical results on vibrational excitation and de-
excitation of the NO2

(
X 2A1

)
molecule in collisions with a low-energy electron using first

principles. Extensive uncertainty estimations were performed by changing parameters of
the scattering model. Converged results for the target properties and eigenphase sums
demonstrated the validity of the obtained results. We expect that the data reported in the
present study could be valuable in kinetic studies of low-temperature NO2-containing plasma.

II.4.B Vibrational excitation of N2O by electron impact

As is the case with NO2, nitrous oxide (N2O) play an important role in a plethora of research
fields ranging from astrochemistry [Ziurys et al., 1994, Jamieson et al., 2005, Wang and Sze,
1980] to low temperature plasma technology [Gherardi et al., 2000] and medicine [o20, ]. To
the best of our knowledge, no theoretical vibrational cross sections has been reported so far,
while there are several experimental cross sections for electron-induced vibrational excitations
complied in a recent review [Song et al., 2019].

In this section, we present the first theoretical vibrational (de-)excitation (VE) study of
N2O by electron impact. The studied process can be depicted by

e− + N2O(vi)→ e− + N2O(vi
′), (II.22)

in which vi and and v′i denoted the initial and final vibrational states of N2O, respectively.

In a similar manner to the NO2 study described above, we computed cross sections and
rate coefficients for transitions between ground and first vibrational states of N2O using
an approach that employs the normal mode approximation for vibrational states of the
target molecule (Eq.(II.7)), fixed-nuclei electron-NO2 scattering matrices (Eq.(II.16)) and the
vibrational frame transformation (Eq.(II.17)).
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At its equilibrium geometry, N2O (with 22 electrons) has a linear asymmetric “N–N–
O” molecular structure, described by the C∞v symmetry point group where a closed-shell
electronic ground state configuration is given by

1Σ+ : 1σ22σ23σ24σ25σ26σ21π47σ22π4. (II.23)

N2O has three normal modes of vibration, namely: NO stretching, the doubly degenerate
bending mode, and NN stretching represented by v1, v2, and v3, respectively. Figure I displays
the normal modes of N2O computed with Molpro using the complete active space self-consistent
field (CASSCF) method with CAS(12,7), i.e. 12 electrons are distributed in 7 orbitals, and
the cc-pVTZ basis set. Computational details and the obtained data on frequencies and
equilibrium geometry are provided in paper .6 (see Table 1).

𝜔1,   NO stretching mode  𝜔2, bending mode  

𝜔3,  NN stretching mode  𝜔2, bending mode  

Figure II.14: Normal modes of N2O. The arrows indicate the direction and magnitude of
displacements for each mode. Note that arrowheads are not shown for the displacements of
relatively large magnitudes. Vibrational frequencies and symmetries are listed in Table 1 of
paper .6.

As a second step, we performed the scattering calculations in C2v (a subgroup of C∞v
according to Table I.1) with the same basis set and CAS employed for the structure calcula-
tions. However, Quantemol-N does not have CASSCF built into it, a series of convergence
tests using the available complete active space configuration interaction (CAS-CI) model with
the Hartree-Fock orbitals built with Molpro were performed to investigate the stability of
the target properties. We obtained with a R-matrix sphere radius of 11 bohrs a permanent
electric dipole moment of the target molecule of 0.1 D, which is considered to be in satisfactory
agreement with the experimental value, 0.16 D [Johnson III, 2010].
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Figure II.15: Potential energy curves for the ground electronic state of N2O as a function of
the (a) NO stretching, (b) bending and (c) NN stretching normal-mode coordinates. The
abscissa axes in the figures represent dimensionless normal mode coordinates. In each panel,
only one mode is varied, while the other modes are kept fixed at their equilibrium positions.
Red solid curves are the actual potential energies obtained from the R-matrix code, while
black dashed curves represent energies calculated in the harmonic approximation, i.e. simply
∼ ~ωi

2 q2
i . Horizontal dashed lines denote the energies of vibrational states.

Figure II.15 depicts the ground-state electronic potential energy curves of N2O for each
normal mode obtained with the R-matrix method and compared to the potential energy
curves of harmonic oscillators generated with the frequencies provided by Molpro. As we can
see the curves match reasonably well with each other but with small discrepancies that can
be attributed to the anharmonicity of the actual N2O potential.
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mode. Due to the symmetry of bending mode, the eigenphase sums of q2 = +0.8668 and
q2 = −0.8668 are the same. The curves are color coded according the different symmetries of
the e− + N2O system.
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Again, the applicability of the theoretical approach described throughout this chapter is
based on the fact that the scattering matrix should be smooth with respect to the collision
energy. For this purpose, we plotted in Figure II.16 the eigenphase sums (from Eq.(I.5))
of different irreducible representations at equilibrium and at displacements away from the
equilibrium along each normal mode coordinate. As we can see, the variation of the eigenphase
sums is smooth for energies below 2.3 eV. Above this value, a sharp energy dependence at
certain energies is observed due to the presence of electronic resonances 2Π of the complex
e−−N2O.
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Figure II.17: The integrands of Equation (II.17) for the NO stretching mode for three among
the largest matrix elements 00← 00, 11← 11 and 2− 2← 2− 2 as an example. Each panel
shows the integrand for one matrix element for three energies 0.3eV, 0.4eV and 1.6eV.

A second demonstration of the energy dependence is the analysis of the integrand in
Eq.(II.17). Figure II.17 shows the integrands for the NO stretching mode for three among
the largest matrix elements 00 ← 00, 11 ← 11 and 2 − 2 ← 2 − 2. Each panel depicts the
integrand for one matrix element for three energies 0.3eV, 0.4eV (which are just above the
vibrational excitation threshold), and 1.6eV (the energy is well above the threshold). As one
can see, the energy dependence is weak. For the 11← 11 and 2− 2← 2− 2 transitions drawn
in the two lower panels, the curves for different energies are indistinguishable.
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Figure II.18: Comparison of the present theoretical results with available experimental cross
sections for the vibrational v = 0→ v′ = 1 excitation of the (a) NO stretching, (b) bending,
and (c) NN stretching modes. The experimental results are taken from Hayashi [Hayashi
and Akashi, 1992, Song et al., 2019] (solid line with circles), Allan and Skalický [Allan and
Skalický, 2003] (solid line with triangles), and Nakamura[Nakamura, 2007] (dashed-dotted
line).

With the above considerations, we calculated vibrational (de-)excitation cross sections
for transitions between the ground and the first excited vibrational states for each of the
normal modes using the formula of Eq.(II.19). Figure II.18 displays a comparison of the
theoretical 1 ← 0 VE cross sections with the available experimental data [Hayashi and
Akashi, 1992, Allan and Skalický, 2003, Nakamura, 2007]. All three experimental data do
not resolve the v1 = 1/v2 = 2 and v3 = 1/v1 = 2 thresholds, i.e. the experimental cross
section for the excitation of the NO mode (v1 = 0→ 1) includes also a contribution for the
transition v2 = 0 → 2, and the cross section for the excitation of the NN mode includes a
contribution for the v1 = 0→ 2 transition. But these additional contributions are expected
to be significantly smaller due to the vibrational propensity rule: The transitions with a
change of only one vibrational quanta are the largest. There is a significant disagreement
between the experimental data, up to a factor of 20-50 for certain energies. On the other
hand, the theoretical results also don’t agree better with one experiment or another: For
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the NO stretching mode (panel a), the theory agrees better with the experiment by Hayashi
[Hayashi and Akashi, 1992]. For the bending mode (panel b), the theory agrees better with
the two other experiments, although the agreement is quite poor. Note that the presented
integral cross sections by Allan and Skalický [Allan and Skalický, 2003] were obtained from
the measured differential cross sections. Finally, for the NN stretching mode (panel c), the
theory agrees better again with the data by Hayashi [Hayashi and Akashi, 1992].

The present theoretical cross sections are expected to be valid only for energies below the
energy of the 2Π resonance mentioned above, i.e. below 2.3 eV.

Thermally averaged rate coefficients αv′i←vi for vibrational excitation are obtained from
the cross sections using the standard formula of Eq.(I.31). The computed rate coefficients
were also fitted using an analytical formula employed in the preceding studies. The obtained
coefficients are shown in Figure 6 and fitted parameters are listed in Table II of paper .6.

As in previous studies, we performed a number of calculations to assess the uncertainty of
the obtained theoretical results. Once again, two main sources of uncertainty in the present
theoretical approach can be identified. The first is the accuracy of the fixed-nuclei S-matrix
elements computed for the polar molecule (with a small dipole moment) in the limited basis
of spherical harmonics. This point has been discussed in the NO2 study where the uncertainty
associated with this approximation was estimated to be of the order of 6%. This uncertainty
should not be larger for N2O because it has a smaller dipole moment so that the couplings
between partial waves induced by the permanent dipole moment of this molecule have a
weaker effect on the final cross sections.

The second source of uncertainties is related to the particular scattering model used in
the calculation. Performing a complete calculation with different parameters such as basis
sets and CASs, uncertainty was assessed in paper .6. We found that the difference in the rate
coefficients produced in by three models is about 6%. Consequently, the overall uncertainty
of the present theoretical result is estimated below 12%.

One of the most striking features of this performed study is the role of Renner-Teller
coupling in N2O vibrational excitation by electron impact. The Renner-Teller coupling is a
particular type of the non-Born-Oppenheimer (non-adiabatic) coupling leading to a coupling
between the vibrational and the electronic motions. It has been discussed in several previous
studies [Mikhailov et al., 2006b, Douguet et al., 2008b, Douguet et al., 2009b, Douguet et al.,
2011, Douguet et al., 2015b, Fonseca dos Santos et al., 2014a]. For N2O with a ground
electronic state of 1Σ+ symmetry, the Renner-Teller effect couples σ and π partial waves of
the incident electron with degenerate bending mode of N2O. It manifests itself by a linear
dependence of the coupling between partial wave components for small displacements along
the bending coordinate as displayed in Figure 6 of paper .6. Renner-Teller effect results in a
bending configuration of the equilibrium geometry of the N2O− anion. More discussions can
be found in [Hopper et al., 1976, Tschumper and Schaefer III, 1997] and [Liu et al., 2020] for
N2O.

Summarizing this section, we briefly reported the cross sections for vibrational (de-
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)excitations of N2O by a low-energy electron using first principles. The computed results show
a reasonable agreement with experimental data for the NO and NN stretching modes while
for the bending mode the agreement is rather poor at energies above 0.4 eV. It was found that
Renner-Teller coupling is responsible for the excitation of the bending mode, as was expected
from general theoretical considerations. These outcomes suggest that more measurement of
vibrational excitation in N2O, at least for a few energies, are needed. Current data could,
however, be used in kinetic studies of low-temperature N2O-containing plasma.

II.5 Concluding remarks

This chapter gives an overview of my contribution within the research axis on the role of
collisions involving electron-neutral molecules in low-temperature plasma technology, used for
atmospheric depollution purpose. A theoretical approach for the electron-impact vibrational
excitation of neutral molecules was developed and applied to NO2 and N2O. Availability
of accurate data for such process is believed to be crucial for plasma modeling. The study
of electron-radicals collisions as well as taking into account for the rotational structure of
each vibrational level of the targets were postponed to future works (see outlooks in Chapter V).

The present theoretical studies have allowed, on the one hand, to provide the first theo-
retical results on vibrational (de-)excitation of NO2, on the other hand, to benchmark the
obtained results with experimental data in case of N2O. These studies have been carried out
in the context of Hainan Liu dissertation at Centralesupélec and in close collaboration with
UCF and Rollins College. These collaborations benefit from supports of NSF and the Thomas
Jefferson Foundation, in addition to other programs listed in Appendix V.2.C.

Finally, it has to be stressed that the theoretical approach employed throughout this section
handles a smooth scattering matrix with respect to the collision energy. This circumstance of
energy-independent S-matrix was fortunately fulfilled for the performed studied. In general,
S-matrix depends on the scattering energy for neutral molecules which requires a further
development as proposed in Chapter V.



III – Formation of fluorine
based-molecules

III.1 Context and Motivations

As stated in the introduction, this chapter investigates the formation/destruction mecha-
nisms of fluorine based-molecules that play a vital role in plasma technologies used for the
development of materials. For the sake of clarity, studies performed in the context of other
projects such as the formation of MnO oxides on a Fe-Mn alloy surface or thermal/mass
characterizations of bio-materials will not be reported here.

Currently, the non-equilibrium plasmas produced with electrical discharges in BF3-
containing feed gas have increasing been of interest for a large number of applications.
In particular, BF3 is frequently the boron carrier when plasmas are used for material pro-
cessing [Sennikov et al., 2017, Torigoe et al., 2016, Gonzatti et al., 2010]. Basically, BF3

plasmas are used either for (i) the synthesis of ultra-hard boron compounds, e.g. boron
carbides [Sennikov et al., 2017], (ii) the deposition of boron nitride, an advanced material with
a large number of functionalities [Torigoe et al., 2016], and (iii) p-type doping by boron in the
semi-conductor and photovoltaic industries [Gonzatti et al., 2010, Duchaine et al., 2012]. As
far as doping applications are concerned, plasma immersion ion implantation (PIII) processes
are probably among the most promising in terms of cost and technical performance [Duchaine
et al., 2012, Young et al., 2016]. These processes make use of very low pressure, very high
density magnetized plasmas generated in a BF3-containing feed gas.

Under such conditions, several ions as BF+
3 , BF

+, B+ or F− may be produced [M. Farber
and Srivastava, 1984, Yong-Ki and Irikura, 2000] where the major one is BF+

2 [Young et al.,
2016]. In a typical PIII reactor, the positive ions losses are dominated by their dissociative
recombination with electrons. Consequently, the investigation of DR of the major ion BF+

2

and the competitive processes such as the vibrational (de-)excitation are of great importance
for monitoring these plasmas.

The present study is motivated by the lack of data on e−−BF+
2 collisions. The theoretical

model described in next Section III.2 is a simplified approach of the model employed for
neutral molecules in Chapter II. With certain assumptions, we computed cross-sections for
DR and electron-impact vibrational excitation of the BF+

2 molecular ion in Section III.3. This
study, performed in close collaboration with Prof. Viatcheslav Kokoouline at the University of
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Central Florida (UCF), has also allowed for laying the theory for further applications in par-
ticular for the HCO+ and N2H+ molecular ions in the context of Dr. Abdillah Abdoulanziz’s
thesis, co-supervised with Prof. Ioan Schneider at Université du Havre.

In the following, only main results are provided. More details can be found in paper .7
included to this manuscript.

III.2 Simplified theoretical approach

Similar to previous models of Chapters I and II, our theoretical approach combines the normal
modes approximation for the vibrational states of the target ion and use of the UK R-matrix
code to evaluate electron-ion scattering matrices for fixed geometries of the ion (see Figure
II.1). The main difference here is that the vibrational frame transformation is evaluated
analytically. Indeed, at low-energy collisions, the scattering matrix frequently depends, in a
linear fashion, on the normal mode coordinate near the equilibrium geometry. Hence, from
the mathematical point of view, one can expand SΛ

λ′l′,λl(q) of Eq.(II.17) to first order in the
normal coordinates q = {q1, q2, · · · } yielding

SΛ
λ′l′,λl(q) ≈ SΛ

λ′l′,λl(q0) +
∑

i

∂SΛ
λ′l′,λl

∂qi
dqi, (III.1)

where i is the index of different normal modes and SΛ
l′λ′,lλ is the scattering amplitude when

the electron scatters from one channel (λl) to another (λ′l′), l being still the electron angular
momentum and λ its projections on the molecular axis. The partial derivative in Eq.(III.1) is
taken at the equilibrium configuration q0 = {0} of the ion, below BF+

2 for instance.

Plugging the above expansion in Eq.(II.17), we arrive at

Sv′ivi =
∑

λ′l′,lλ

SΛ
λ′l′,λl(q0)δv′ivi +

1√
2

∑

λ′l′,lλ

∂SΛ
λ′l′,λl

∂qi

(√
viδv′ivi−1 +

√
vi + 1δv′ivi+1

)
, (III.2)

for the mode i where we used the expressions of the vibrational wave functions in the harmonic
approximation picture from Eq.(II.10) as well as the following identities

dq̂i =
1√
2

(
âi + â†i

)
(III.3)

∫
dqiψv′i(qi)qiψvi(qi) =

√
vi
2
δv′ivi−1 +

√
vi + 1

2
δv′ivi+1 (III.4)

∫
dqiψv′i(qi)ψvi(qi) = δv′ivi . (III.5)

The second term on the right-hand side of Equation (III.2) implies that each normal mode is
most likely (de-)excited by one quanta. As a result, performing the integral in Eq.(II.17) be-
comes an evaluation of the derivatives in Eq.(III.2) that can obtained using the finite difference
method calculated from two values of qi. The computational effort is thus significantly reduced.
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For convenience, we introduce the quantities

Pi =
gi
2

∑

λ′l′,lλ

∣∣∣∣∣
∂SΛ

λ′l′,λl

∂qi

∣∣∣∣∣

2

, (III.6)

which could be interpreted as the probability of excitation of the vibrational mode i with gi
being its degeneracy.

Again, applying the vibrational frame transformation (FT) of Eq.(III.2) requires a smooth
scattering matrices with respect to the incident electron energy and εvi ≈ εv′i . Recall that
FT theory extends the fixed-nuclei (FN) approximation by including the vibrational motion
of the target adiabatically. As widely discussed in Chapter I (see Section I.4), this theory is
powerful for ions without low-energy electronic resonances (doubly-excited dissociative states)
appearing for geometries near their equilibrium and if the collision energy is not enough to
excite the target ion electronically. The theory could also be applied to neutral targets if
these assumptions are fulfilled (see Chapter II).

With the above considerations, if the doubly-excited dissociative states are not energetically
accessible, one can only consider the indirect dissociative recombination (IDR) process in
competition with rovibrational (de-)excitation. Based on the expansion of Eq.(III.2), the
present theoretical model employs the following assumptions.

• The rotation of the molecule is neglected leading to a cross section without rotational
structure. This is justified since these rotational resonances are washed out in the
experimental cross sections.

• The cross section is averaged over the autoionizing resonances leading to a featureless
curve. This procedure is justified because these resonances are not individually resolved
in the experiment.

• For the indirect DR route, the autoionization lifetime is assumed to be much longer
than the predissociation lifetime. The kinetic energy of the electron is quickly converted
to vibrational motion of the ion just after the electron capture in a Rydberg resonant
state.

This simplified approach allows to describe the vibrational (de-)excitation (VE,VdE) process
in which the electron energy is enough to excite the ion in each normal mode qi and then
leave it. In contrast, if that energy is not sufficient to excite the ion, the present model
suggests that the probability of excitation of the ion by the electron is described by the same
physics, but instead of leaving the vibrationally excited ion, the electron is captured in a
Rydberg resonance attached to that vibrational state, excited by the electron. If the electron
is captured by the ion, the system will most likely dissociate, rather then autoionize, leading
to the IDR process.

It should be finally stressed that the method implemented is based on ideas developed in
previous studies [Mikhailov et al., 2006b, Douguet et al., 2008b, Douguet et al., 2012b]. The
expansion of Eq.(III.2) was performed on the quantum defect matrix that is used afterwards
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in Eq.(I.15) with a set of ab initio potential surfaces of the neutral molecule and of the
corresponding molecular ion obtained numerically near the equilibrium position of the ion.
In a later study [Fonseca dos Santos et al., 2014a], a scattering matrix approach was used
through the complex Kohn variational method and has allowed reproducing accurately ab
initio Rydberg state energies of the neutral molecule.

In the next section, the scattering matrix approach for indirect DR using this time around
the R-matrix method will be employed to obtain the DR and VE/VdE rate coefficients for BF+

2 ,
as a benchmark system. This formalism was also applied in a straightforward manner to more
complex molecules such as CH2NH+

2 , described in Chapter I, or NH2CHOH+ investigated in
Ref.[Ayouz et al., 2019]. Below, a brief description of the BF+

2 study is given.

III.3 Application: DR cross section of BF+
2

The ion BF+
2 requires a highly-energetic incoming electron to form a doubly-excited resonant

dissociative state of the neutral BF2. Low energy electrons are more likely to be captured
in a Rydberg level BF∗2 associated with a vibrationally excited state of BF+

2 . This Rydberg
state BF∗2 is predissociated by BF∗∗2 . In this section, we aim to study the IDR and VE/VdE
depicted by

e− + BF+
2 (vi)→ BF∗2,BF

∗∗
2 →





BF + F
F2 + B

e− + BF+
2 (v′i)

(III.7)

BF+
2 is a linear molecule in its equilibrium geometry belonging to D∞h point group. Its main

electronic ground state configuration 1Σ+
g is (with 22 electrons)

(
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u
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)2 (
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g
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1σ−g
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.(III.8)

The structure calculations were performed using a coupled pair approximation CEPA(2)
method and the cc-pVTZ basis via the Molpro suite of codes [Werner et al., 2008]. Two
stretching modes v1 and v3 (asymmetric and symmetric) with respective frequencies ω1 and
ω3 and corresponding coordinates q1 and q3, and a doubly degenerate transverse mode v2 with
a lower frequency ω2 and coordinates (q2x, q2y) were found. Figure III.1 shows the vibrational
frequencies listed in Table 1 of Ref.[Kokoouline et al., 2018].

The electron-scattering calculations were carried out using the UK R-Matrix [Tennyson,
2010] code in the abelian subgroup D2h with a configuration of interaction (CI) model; a
basis cc-pVTZ and a complete active space CAS(12,10), i.e. 12 electron are distributed in 10
orbitals. We choose a R-matrix sphere of radius 10 bohrs. It should be noted that bending
and asymmetric stretching mode calculations were performed in the C2v abelian subgroup,
while for the symmetric mode the group D2h was used in the calculations.

As discussed above and widely in the preceding chapters, at low collision energies the
fixed-nuclei scattering matrix depends weakly on energy whereas a sharper energy-dependence
is observed at certain relatively high energies, corresponding to positions of Rydberg states
attached to the excited electronic states of the ion. To analyze the energy dependence of the
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scattering matrix, we provide in Figure III.2 the eigenphase sums, obtained from Eqs.(I.5), for
three different geometries corresponding to a small displacement from equilibrium along each
normal mode of the BF+

2 ion. As one can see, the variation of the eigenphase sums is smooth
for energies below 6 eV. Above this value, a sharp energy dependence at certain energies is
observed due to the presence of electronic Rydberg resonances attached to closed ionization
limits.

𝜔1, symmetric stretching mode  𝜔2, bending mode  

𝜔3, asymmetric stretching  mode  𝜔2, bending mode  

Figure III.1: Normal modes of BF+
2 . The arrows indicate the direction and magnitude of

displacements for each mode. Note that arrowheads are not shown for the displacements of
relatively large magnitudes. Vibrational frequencies and symmetries are listed in Table 1 of
Ref.[Kokoouline et al., 2018].

Plotting the excitation probabilities defined from Eq.(III.6) for each normal mode, we
found in Figure 2 of paper .7 that these quantities have a weak dependence on energy and,
therefore, they could be used as constants in calculations of the cross sections and thermally-
averaged rate coefficients.

Therefore, combining Eqs.(III.6) and (III.2), the cross sections1 for VE and VdE of one
quanta for normal mode i take the respective simplified forms

σvi+1←vi(ε) =
π~2

2mε
(vi + 1)Pi θ(ε− ~ωi) , (III.9)

σvi−1←vi(ε) =
π~2

2mε
viPi , (III.10)

where m is the reduced mass of the electron-ion system, ε is the incident energy of the electron,
~ωi and vi are respectively the energy and the vibrational quantum of mode i. θ(ε − ~ωi)
denotes the Heaviside step function that opens the vibrational excitation channel when the
collision energy is larger than one quanta of the vibrational energy for the ith normal mode.

1Definition of the cross section is συi′←υi (ε) =
π~2
2mε
|Sυi′υi − δυi′υi |2.
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The formulas of Eqs.(III.9) and III.10 describe the situation where the electron excites or
de-excites the ion and then leaves it.

With the assumptions stated in the preceding section, the DR cross section for capture of
the electron by an ion initially on its vibrational level vi via the temporary capture into a
Rydberg state associated to the vibrational ionic level v′i writes

〈
σDRvi (ε)

〉
=
π~2

2mε
(vi + 1)Pi θ(~ωi − ε), (III.11)

where the brackets 〈 〉 symbolically refer to a cross section averaged over the Rydberg series
of resonances associated with the same vibrational state v′i = vi + 1 (one quantum tran-
sitions) of the ion as well as over the rotational structure of the molecule [Douguet et al., 2012b].

Adding contributions from all normal modes qi, yields the total DR cross section (account-
ing for only indirect route)

〈
σDR{v} (ε)

〉
=
π~2

2mε

∑

i

(vi + 1)Pi θ(~ωi − ε), (III.12)

where {v} denotes the collection of initial vibrational quantum numbers of all the normal
modes. Above, the sum runs over the three modes of BF+

2 ; two stretching modes and
doubly degenerate transverse mode. The Heaviside step function in

〈
σDR{v} (ε)

〉
subtracts the

contribution from the normal modes which are energetically allowed to excite. It results in a
sharp drops in the cross section.
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(dimensionless) for the symmetric stretching (left panel), bending (right upper panel), and
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2 system.
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Figure III.3 illustrates the DR cross-section
〈
σDR{v} (ε)

〉
assuming that the initial state of

BF+
2 is the ground vibrational level and thus the electron can only be captured in a Rydberg

resonances attached to the first excited vibrational state of each normal mode, excited by
the electron. At very low scattering energies, i.e. below 0.02 eV, the DR cross-section is a
smooth function inversely proportional to the incident energy of the electron, as predicted by
the Wigner threshold law, whereas at higher energies, it exhibits a drop at each vibrational
threshold, as expected from Eq.(III.12). In the calculations, the derivatives of Pi in Eq.(III.12)
were obtained using the finite difference method calculated from two values, qi = 0.01 and
0.1, for the displacements in each mode.
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Due to the simple analytical form of the cross-sections, the corresponding rate coefficients
are readily evaluated from the general expression of Eq.(I.31) yielding

αvi(T ) =

√
2π

kbT

~2

m3/2

{
(vi + 1)Pi exp

(
− ~ωi
kbT

)
VE

viPi VdE
, (III.13)

αDRvi (T ) =

√
2π

kbT

~2

m3/2

∑

i

(vi + 1)Pi
[
1− exp

(
− ~ωi
kbT

)]
, (III.14)

where kb is the Boltzmann coefficient and T is the temperature. The thermally-averaged rate
coefficients for DR and VE are shown in figure 4 of paper .7.

To check convergence of the obtained DR and VE/VdE rate coefficients, we have performed
calculations for three sets of parameters (1) the CAS1(12,10) with the cc-pVTZ basis set; (2)
a calculation (referred here as cc-pVTZ CAS2) similar to (1) but with a smaller orbital space,



70 Chapter III. Formation of fluorine based-molecules

where 8 electrons are kept free in the active space; and (3) a calculation (referred here as
cc-pVQZ CAS1) similar to (1) but with the larger basis cc-pVQZ. The results are shown in
Figure III.4. The difference between the rate coefficients produced in the three calculations
for the DR process and the VE of the asymmetric stretching and bending modes is about 4%.
The uncertainty of the rate coefficient for the VE of the symmetric stretching mode is larger,
varying in the interval 10-40% for different temperatures.
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Eqs. (III.13) and (III.14). To give an idea about the uncertainty of the present results, we
also plotted results of two calculations with the cc-pVTZ CAS2 (dashed line) and the cc-pVQZ
CAS1 (dotted line) sets of parameters of the model. For the vibrational excitation of the
symmetric stretching mode, the cc-pVTZ CAS2 and cc-pVQZ CAS1 curves are indistinguishable
and slightly below the cc-pVTZ CAS1 curve. For the remaining three processes, the three
calculations produce the curves almost indistinguishable in the figure.

In addition to uncertainties related to the choice of the model parameters estimated above,
the second source of uncertainty deals with the approximation (the capture model) that
once the electron is captured into a vibrational Rydberg resonance associated with a closed
vibrationally-excited channel, the e−−BF+

2 system will dissociate rather than autoionize. For
small and medium-size polyatomic closed-shell ions such as HCO+, NH+

4 or H3O+ [Mikhailov
et al., 2006b, Douguet et al., 2012b, Douguet et al., 2012a, Fonseca dos Santos et al., 2014a],
it has been estimated that the probability of autoionization of vibrational Rydberg resonances
is of the order of 10-20% compared to the probability of dissociation. Extending this result to
BF+

2 , which is also a closed-shell ion, the overall uncertainty of the present theoretical rate
coefficients is below 20-40%.

To test our simplified approach, we compared the cross sections obtained for the bending
mode of BF+

2 to those computed by the complete treatment described in Chapter II, i.e.
cross section of Eq.(II.19) evaluated numerically with and/or without the inclusion of the
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closed-channel elimination procedure of Eq.(I.19). As an example, Figure III.5 shows this
comparison for transitions between the two lowest vibrational levels of bending mode of BF+

2 .
The cross sections (solid lines) obtained using the complete theoretical approach exhibit a
strong resonant character, absent in a treatment without elimination procedure (dashed lines).
The resonances are produced by closed vibrational states of the target. These resonances
are washed out when thermally-averaged rate coefficients are computed. Therefore, in the
calculation of the rate coefficients, one can use cross sections averaged over the resonances
obtained using the simplified approach (dotted lines). Figure III.6 displays the employed
probabilities in Fig.III.5. The averaged probabilities obtained from a complete treatment are
in good agreement with the one of the simplified approach given by Eq.(III.6).
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using the complete treatment of Equation (II.19) in addition to the closed-channel elimination
procedure of Equation (I.19) in dashed lines. Dotted lines show the results from the simplified
approach of Equations (III.9) or (III.10).

III.4 Concluding remarks

Contribution within the research axis on the formation of fluorine based-molecules, in particular
BF+

2 , was reported briefly in this chapter. A simplified theoretical approach using the normal
modes approximation, the vibrational frame transformation and the UK R-matrix code was
developed to compute cross-sections and rate coefficients for DR, VE and VdE of BF+

2 by
electron-impact. The thermally-averaged rate coefficients have a simple analytical form.
Uncertainty estimations were performed by changing parameters of the scattering model.
After benchmarking our model with the complete theoretical approach, we applied it to more
complex systems in Chapter I.
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The obtained thermally-averaged rate coefficients are relevant for the kinetic modeling
of molecule based cold non-equilibrium plasmas, in the context of a complete lack of other
theoretical or experimental data on these processes for this cation, and are ready to be used
in the modeling of fluorine/boron plasma for etching or implantation processes.

The rotational structure of the target ion and of the neutral molecule was neglected in the
present approach to be deferred in a further study (see outlooks in Chapter V). This implies
that the obtained cross-sections and rate coefficients should be viewed as averaged over initial
rotational states and summed over final rotational states of the corresponding initial and final
vibrational levels (for VE) or dissociative states (for DR). Purely rotational transitions, i.e.
without changing the vibrational state, might be useful to model very cold environments,
below 40 K, which is not the case for the presently investigated BF3 plasma. BF+

2 has no
permanent dipole, so the rotational transitions are likely to have very small cross-sections.

At low collision energies, if the doubly-excited states of the electron-ion system are not
energetically accessible, the indirect DR is usually dominant. Therefore, our simplified ap-
proach can provide an ab inito estimation of the total DR cross section when other more
accurate approaches are computationally expensive or not available for polyatomic ions. An
implementation of the developed model as module in Quantemol-N is currently performed
with Dr. Maria Tudorovskaya, scientific consultant form Quantemol team. The module could
be used to compute DR cross sections of molecular ions relevant in the interstellar medium
and planetary atmospheres or low-temperature plasma technologies.
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Finally, the above work was published in Ref.[Kokoouline et al., 2018]. It has received
supports from different programs listed in CV (see Appendix V.2.C). This study has also
allowed to develop and formulate ideas for further applications in particular for the HCO+

and N2H+ molecular ions in the context of Dr. Abdillah Abdoulanziz’s thesis, co-supervised
with Prof. Ioan Schneider at Université du Havre.
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IV – Toolkit for teaching quantum
mechanics

IV.1 Context and motivation

Since about 70 years, quantum physics is responsible for the technological advances that make
modern life possible. For example, without quantum mechanics there would be no transistors,
and hence no personal computers and smartphones; no lasers, and hence no Blu-ray players
or modern TV; no atomic clocks, and hence no GPS navigation. A new and promising area of
research in recent years, at the intersection of mathematics, computer science, and quantum
physics, is quantum computers and quantum information [Shor, 1995, Britt and Humble,
2017]. The developed processes in this area, based on a novel way of information coding using
the quantum-bit (qbit), are going to transform many sectors such as artificial intelligence [Cai
et al., 2015], online security [Lucamarini et al., 2009], or drug development [Zhou et al., 2010].
To support these advances and further new technologies, based also on principles governing
the microworld, knowledges of quantum mechanics are essential for future scientists, engineers,
medical doctors, and many other professions.

Typically, quantum physics/mechanics (QM) is taught either as a pure math course or as
a descriptive phenomenological discipline, in which different core concepts of quantum physics
appear to students to be disconnected from each other and from their real-life experience.
Moreover, designing laboratory experiments for a course of QM, as commonly made for the
course topics in Newtonian mechanics and classical electromagnetism, is expensive or/and
not available for the most of the core QM concepts [Singh and Marshman, 2015]. These
difficulties make quantum mechanics to new students counter-intuitive, in contrast to other
areas of physics that allow describing phenomena objectively observed in the real world, and
hence uneasy to apprehend. Over the last two decades, several excellent physics-education
studies reported this issue [Carr et al., 2009, McKagan et al., 2010, Deslauriers and Wieman,
2011, Zhu and Singh, 2012a, Zhu and Singh, 2012b, Sadaghiani and Pollock, 2015] and pro-
posed solutions on how to improve teaching QM [Müller and Wiesner, 2002, McKagan et al.,
2008, Kohnle et al., 2015, Krijtenburg-Lewerissa et al., 2017]. There is a general consensus
that the use of multimedia in QM classes helps to make teaching QM more efficient. This
conclusion consolidated me in the idea of integrating experiential learning in my QM classes
(since 2016) at Centralesupélec (CS), taking the form of computer-simulated experiments.

For this purpose, with my colleague Prof. Viatcheslav Kokoouline from the University of

75
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Central Florida (UCF), we have formulated and developed an initial version of a complete
course of undergraduate quantum mechanics based on numerical experiments. The framework
combines a set of PYTHON numerical codes and a graphical interface allowing students to
prepare and run numerically-simulated experiments demonstrating all topics of a standard
QM course, usually covered in a formal mathematical approach. The most of the codes are
simplified versions of previous codes developed in my research activities in the area of atomic,
molecular, and optical physics. These codes are published in two textbooks [Ayouz et al.,
2020, Ayouz et al., 2022]. As for the graphical interface, it was designed in the context of a
post-doc, Dr. Alexander Korovin, funded by IDEX Paris-Saclay.

In the following, I will provide the basic ingredients of the numerical experiments, i.e. pro-
gramming language, mathematical techniques and the theoretical topics covered by simulations,
as well as the two components of the developed digital learning environment.

IV.2 Basic ingredients

IV.2.A Programming language

For the purpose of the suggested transformation of our QM courses, PYTHON language
was found convenient because it offers a wide range of operations and functions allowing to
manipulate easily with vectors and matrices (product of matrices, diagonalization,...) as well
as special mathematical functions (Legendre, Laguerre, Chebyshev, Hermite, Bessel and other
functions). In addition, graphical representations can be produced almost directly-using the
plot () function, unlike some languages, which require additional graphical software (C or
FORTRAN for example). The plot can also be displayed at each iteration, which, for example,
makes it easy to visualize the time-evolution of wave functions. The simplicity of the syntax,
the great flexibility in the utilization and execution of the programs as well as the free access
are also among the advantages.

The codes were developed in PYTHON under Spyder (via ANACONDA), which is a
powerful interactive development environment for the Python language with advanced editing,
interactive testing, debugging and introspection features.

IV.2.B Mathematical techniques

For computer modeling several numerical techniques will be employed. As hinted above, they
are chosen with two objectives that (1) they provide an intuitive and visual picture of the
QM concepts and processes and (2) they could be used in an actual research work for simple
projects. The methods may not be extremely accurate for idealized situations (such as a
purely theoretical δ-potential or the infinite square wall) due to discontinuities in idealized
potential, but they are very accurate for realistic potentials, which usually don’t have any
discontinuities. Below, we will describe briefly the employed techniques.
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Discrete variable representation method for solving the stationary Schrödinger
equation

In the described numerical method, wave functions are mainly represented using the Fourier
grid Hamiltonian method (FGH), which is widely used in different research areas, in par-
ticular, to describe quantum molecular dynamics [Kosloff, 1988] and to solve the stationary
Schrödinger equation [Dulieu et al., 1997, Kokoouline et al., 1999, Ayouz and Kokoouline, 2016].

FGH is one of the variety of the Discrete Variable Representation (DVR) methods that
uses a basis of complex exponent functions. The DVR methods were initially introduced by
Harris et al. [Harris et al., 1965] for calculating matrix elements of complicated potential
functions in a truncated basis set. Later, Dickinson and Certain [Dickinson and Certain,
1968] derived the transformation matrix with Gaussian quadrature for standard orthogonal
polynomials. The DVR method is sometimes referred to as the Lagrange method [Baye,
2006], where the functions are usually represented on a coordinate grid or lattice. Analytical
expressions for the matrix elements of operators in the DVR basis is an important advantage
for the approach adopted here for numerical experiments: An explicit form of the kinetic
energy operator allows one to avoid computing derivatives numerically using finite-difference
approximations, as is the case for iterative methods such as Euler or Runge-Kutta. It therefore
simplifies the structure of the codes, making them simple to handle by an inexperienced
student. The main elements of the method used here are given below.

One of the core concepts of the non-relativistic QM is the equation of state: the stationary
Schrödinger equation. Typically (in research or in QM courses), one needs to find solutions of
the equation in one dimension

[T(x) + V(x)] Ψ(x) =

[
− ~2

2m

d2

dx2
+ V(x)

]
Ψ(x) = EΨ(x), (IV.1)

where m is the mass of the particle. In general, FGH starts by defining a grid of N points
over coordinate x such as

x0 = x0 + i∆x i = 0, 1, · · ·N − 1, (IV.2)

where

∆x =
xL − x0

N
, (IV.3)

is the constant grid step and x0 and xL are respectively the initial and final grid points of
the space interval where the equation is solved. It is assumed that outside of the interval the
wave functions of interest are negligible within the required numerical accuracy.

The grid step ∆x and the interval [x0, xL] are the key parameters determining the accuracy
of obtained numerical results, which are the energies E and wave functions Ψ(x). The grid
step ∆x determines the largest possible momentum pgrid, which could be represented by the
grid. If the largest and smallest values of the potential V (x) are Vmax and Vmin, respectively,
the step should satisfy [Kokoouline et al., 1999]

∆x =
π

pgrid
≤ π√

2m(Vmax − Vmin)
. (IV.4)
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The wave function Ψ(x) in this method is expanded in terms of the orthonormal DVR/FGH
basis set functions as

Ψ(x) =
∑

i

ciϕi(x), 〈ϕi|ϕi〉 = δii′ . (IV.5)

The functions ϕi(x) form an orthonormal set [Bulgac and Forbes, 2013]

ϕi(x) =
∑N/2−1

k=−N/2
1
L exp {ıpk(x− xi)}

= 1
L sin

[
π(x−xi)

∆x

]
cot
[
π(x−xi)

L

]
,

(IV.6)

with pk = 2πk
L and k ∈

(
−N

2 + 1,−N
2 + 1, · · · , N2 − 1

)
. Note that pN/2 = pgrid. Examples of

functions ϕi(x) with ∆x = 1 are shown in Figure IV.1 by solid lines.

−4 −2 0 2 4

x (a. u.)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fo
u
ri

e
r 

b
a
si

s 
se

t 
ϕ
i(
x
)

Figure IV.1: FGH basis functions ϕi(x) for N = 5. Solid and dashed lines represent the basis
functions of Eq.(IV.6) for ∆x = 1 and ∆x 6= 1, respectively.

In the basis of functions ϕi(x), both operators T and V are represented by N×N matrices.
The potential operator V is diagonal in this representation

Vii′ =

∫
dxϕ∗i (x)V (x)ϕi′(x) = V (xi)δii′ . (IV.7)

The kinetic energy operator T is diagonal in the momentum representation, which enables
one to evaluate the analytical form of matrix elements of T in the coordinate representation:

Tii′ =

∫
dxϕ∗i (x)T (x)ϕi′(x) =

{
π2(N2+2)
6m(N∆x)2 i = i′

(−1)i−i
′ π2

m(N∆x)2
1

sin2[(i−i′)π/N ]
i 6= i′

. (IV.8)
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A convenient property of the FGH representation is that the coefficients ci of the expansion
in Eq. (IV.5) give also the values of Ψ(x) at the grid points Ψ(xi) = ci/

√
∆x.

Once the matrix elements of the potential and kinetic energy operators are obtained, the
matrix of the Hamiltonian operator T+V is written in the explicit form as

Hii′ =

{
π2(N2+2)
6m(N∆x)2 i = i′

(−1)i−i
′ π2

m(N∆x)2
1

sin2[(i−i′)π/N ]
i 6= i′

}
+ V (xi)δii′ , (IV.9)

where N is assumed here to be an even integer.

Eigenvalues En and eigenfunctions Ψn(x) of the Hamiltonian, H = T + V, are obtained
using numerical PYTHON routines of N ×N matrix diagonalization. The diagonalization pro-
duces the eigenfunctions in terms of the coefficients cni of expansion (IV.5). The normalization
of the Ψn and cni is such that

∫ xL

x0

|Ψn(x)|2dx ≈
N−1∑

i=0

|Ψn(xi)|2∆x =

N−1∑

i=0

|cni |2 = 1 for all n. (IV.10)

It should be stressed that for a few case studies, we also use the DVR with basis functions
constructed from sin, Legendre, Laguerre, or Chebyshev polynomials. Details on the form that
should take the Hamiltonian (IV.9) in such basis can be found in Refs.[Szalay, 1993, Ayouz
et al., 2020] and therein.

The Chebyshev polynomial expansion method for solving the time-dependent
Schrödinger equation

When solving the one-dimensional time-dependent Schrödinger equation

ı~
∂Ψ(x, t)

∂t
= HΨ(x, t), (IV.11)

in most cases one employs the second-order differences, split operator propagation, Chebyshev
polynomial expansion or Lanczos method to represent the time variable. Among these meth-
ods, the propagation approach using the FGH method (introduced above) and the Chebyshev
expansion (FGH-C) is one of numerous pseudo-spectral techniques for the time evolution
problem. Details on this method and comparison with others have been reported in [Leforestier
et al., 1991, Monnerville and Robbe, 1994, Kosloff, 1994].

For the sake of consistency with the DVR/FGH method employed in the stationary
case, we choose FGH-C method in which the solution of Eq.(IV.11) is given by the operator
exp

(
−ıH∆t

~
)
:

Ψ(x, t+ ∆t) = e−ı
H∆t
~ Ψ(x, t) ≡ U(∆t)Ψ(x, t) (IV.12)

Thus, the problem of the time propagation can be separated in two essential parts.

1. A choice of a basis of the representation of the wave function Ψ(x, t); exponential
function in FGH.
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2. The procedure of evaluation of the propagation operator e−ı
H∆t
~ on the wave function

Ψ(x, t): U(∆t)Ψ(x, t).

The propagation (IV.12) is carried out using an expansion of the propagation operator
exp

(
−ıH∆t

~
)
as a function of t in a series of Chebyshev polynomials:

U(∆t) ≈
Nc∑

k=0

akgk

(
−ıH∆t

r

)
, ak = eı(r+q)Ckגk(r), (IV.13)

where k(r)ג designates the Bessel function of order k and Nc is the number of expansion
coefficients. The following abbreviations were also used

r

∆t
=
Emax − Emin

2
and q = Vmin∆t, (IV.14)

where r
∆t denotes the half of Hamiltonian energy spectrum with Emin = Vmin and Emax =

Vmax + p2
max
2m such as pmax = ~π/∆x. Coefficients ak are defined from the Bessel function k(r)ג

with Ck = 1 for k = 1 and Ck = 2 when k > 1. Finally, gk functions are obtained making use
of the recurrence relation

gk(ẑ) = 2ẑgk−1(ẑ) + gk−2(ẑ), (IV.15)

where

ẑ = − ı
~
H∆t, ∀ ẑ ∈ [−1, 1] and

{
g0(ẑ) = 1
g1(ẑ) = z

.

Note that the refinement of the scheme is based on increasing Nc and not the time step
∆t, as usual. It is well known that the expansion by complex Chebyshev polynomials gives
the best approximation among other possible expansions [Tal-Ezer and Kosloff, 1984]. Above,
H∆t is N ×N matrix operator where N being the number of grid points, defined above in
Eq.(IV.3). Elements of the matrix H = T + V are given by Eq.(IV.9).

IV.2.C Theoretical topics

The main topics of the developed course are the same as in a standard undergraduate course
of QM for physics and chemistry majors. The PYTHON codes solve elementary and more
complex problems covering topics such as the piecewise potentials, measurements in QM,
uncertainty and sperposition principles, WKB-approximation, α−decay, harmonic oscillator,
hydrogen atom, diatomic molecules, propagation of wave packets, methods of approximation,
Hartree-Fock method, Spin, etc.

Demonstrating all topics listed above requires some additions to methods introduced in
Section IV.2.B. The main elements are given below.

• To treat α−decay in polonium, resonant states of the atom have to be determined. This
can be accomplished making use of the complex absorbing potential (CAP) formalism,
combined to the DVR methods. Again, the CAP formalism was developed in research
work and employed, for instance, in computing the DR cross section of CH+. Details on
that method are given in Chapter I. Recall that by adding the CAP, the Hamiltonian
matrix becomes non-Hermitian, requiring a special library for diagonalization. This
latter, namely, LAPACK, is available in PYTHON without extra efforts.
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• Extending Eq.(IV.9) to two (or three) dimensions is straightforward and reads

Hi,j = Tii′δjj′ + Tjj′δii′ + V (xi, yj)δii′δjj′ , (IV.16)

where j−index stands for y−coordinate.

• The rotational structure of a molecule can be taken into account using the spherical
harmonics for representing the angular wave functions. It follows that a centrifugal
barrier should be added into the radial Schrödinger equation. The potential in Eq.(IV.9)
reshapes as

V (ri)δii′ →
(
V (ri) +

~2l(l + 1)

2mr2
i

)
δii′ , (IV.17)

with l being the eigenvalues of the angular momentum operator.

• To obtain reflection and transmission coefficients of barriers, a projection method is
employed in which the wave packet, obtained at the end of the propagation using
Eq.(IV.12), is projected onto reflected or transmitted wave functions. Similar method
will be used to compute branching ratios in DR of small polyatomic ions in Section
V.2.C (planned research work).

• When a non-orthonormal basis sets (in contrast to those employed in the DVR methods)
are used to represent the kinetic operator, such as atomic orbitals in Hartree-Fock
methods, a generalized eigenvalue problem has to be solved: HΨ = ESΨ where S is the
overlap matrix. This latter rises from the non-orthogonality of the basis. In practice, an
orthogonalization procedure (canonical, symmetric or Gram-Schmid) is performed to
save time spent on calculation.

• Take into account the spin, of an electron for instance, is also straightforward in the
DVR methods since the equation to be solved will be somewhat similar to Eq.(IV.16),
where j−index now stands for the two possible projections of the spin ±1/2.

With the above additions, all major concepts of QM are covered by the developed digital
learning environment and this is made possible due to the adopted DVR method. Indeed,
this latter is easy to implement in computer modeling (differential operators have analytical
expressions according to Eq.(IV.8)) and intuitive because it fully reconciles mathematical
tools of QM and digital programming. Thus, mathematics that are employed, in general,
heavily in explanations of postulates could be demonstrated with codes since students will
be able to manipulate with matrices representing QM operators; inverting them, finding and
analyzing their eigenvalues, analyzing eigenvectors and eigenfunctions, calculating expectation
values of observables using dot/matrix products.

IV.3 Achievements: the digital learning environment

IV.3.A Python numerical codes

A standard code starts its execution by the variable "__name__" having the value "__main__"
which represents the main program. In this program, we declare variables of the problem,
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tables, constants, and the required libraries to be used during the execution. The called
functions from the main program will return an operation or calculations such as the desired
wave functions. Figure IV.2 displays the general structure of the majority of the codes dealing
with the above topics. These codes are simplified versions of those developed in my research
activities. Hence, they are use-friendly allowing a quick handling for further utilization: as
tool, for instance, to teach the course of Computational Physics and test the approximation
methods commonly thought in QM course for solving the Schrödinger equation. Note that
atomic units for masses, energies, distances and times are adopted in the codes.

  

Figure IV.2: The general structure of the majority of the codes for modeling QM phenomena
and demonstration of main QM concepts.

IV.3.B Graphical interface

In order to make the codes accessible to a large public, we have designed, in the context of
post-doc of Dr. Alexander Korovin, a preliminary version of the graphical interface, that can
be accessed at this address http://prd-mecaqu.centralesupelec.fr/. Currently, the interface
works and contains draft versions of 10 chapters including most of the preceding discussed
topics.

Figures IV.3 and IV.4 display two snapshots of the draft version of the web-interface. The
snapshot (Fig.IV.3) of the front page of the preliminary version of the learning environment
looks like a table of content of a book (in the spirit of published textbooks). Links to different
chapters lead to web-pages of corresponding topics of the class. Figure IV.4 shows the logical
structure of the interface of the learning environment as well as an example of in-class activities
on the topic of the harmonic oscillator. In the figure, the following abbreviations are used.
CGI: Computer-generated imagery. It is a computer graphics application to create images.

http://prd-mecaqu.centralesupelec.fr/
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Figure IV.3: The front page of the draft version of the QM learning environment under
development.

NGINX: a web server used as a reverse mail proxy and HTTP cache. AJAX: Asynchronous
JavaScript + XML programming languages used to create web applications. JSON: is an
open-standard file and data interchange format that uses human-readable text to transmit
data objects consisting of attribute-value pairs and array data types. js - JavaScript: a
high-level programming language used for web applications.

Figure IV.5 demonstrates a draft version of the interface for material on the time-dependent
Schrödinger equation, for instance. Various functionalities are available in the web-interface
for the other topics:

• Upload potential energy data.

• Choose one of the "standard" potentials (step-like, square well, etc.).

• Enter an analytical formula for a potential energy or a physical disturbance, in studying
methods of approximation, especially, for the perturbation theory.

• Modify the input parameters,
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Figure IV.4: Logical structure of the interface of the learning environment in the upper panel.
Lower panel shows the preliminary graphical environment for in-class activities on the topic of
the harmonic oscillator (one of the topics listed non-exhaustively in Section IV.2.C). The figure
shows the potential and several boxes to modify parameters of the problem and observables
to watch ("measure") in the computer-modeled experiment. The lower part of the interface,
allowing to visualize wave functions and different expectation values of observables, is not
shown here to save space (see the online version

• Visualize wave functions, observables (energy, position, momentum,..) and test the
Ehrenfest theorem.

• Download PYTHON codes or data such as the wave functions.

• Save figures and videos (wave packet propagation) for further utilizations.

The current interface can be used by instructors from other schools and universities
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through our servers (CS or UCF) or in their own servers (online version). A stand-alone
distribution (as an installation file) that can be installed on their own computers, as offline
local use, was also developed for Linux and Windows operating systems. All these tools could
be employed as course support.

IV.4 Concluding remarks

Based on codes carried out in my research activities, we developed an original tool to make
teaching QM more efficient and accessible to undergraduate/graduate students (via online
and blended modes). The idea of this project came from our experience of teaching at CS and
UCF. The digital learning environment combines a set of PYTHON codes and a graphical
interface gathering up a numerically-simulated experiments that demonstrate all topics of
a standard QM course. The PYTHON codes are user-friendly, and the employed methods,
namely, DVRs, permit to reconcile mathematical concepts of QM and programming. As
for the web-interface, it allow users to manipulate with the codes, the wave functions, and
observables. This pedagogical tool will be made available to the community either using our
own servers (CS and UCF) or via a stand-alone distribution (as an installation file) that can
be installed on other instructor’s servers (online)/computers (offline) for their local use.

Further developments are planned in near future and would be a part of the NSF project
on Improving Undergraduate STEM Education. Such developments will include preparation
of (a) short lectures covering theoretical aspects of the QM concepts, (b) in-class activities
and (c) laboratory assignments with and without the learning environment, (d) homework
assignments. Some missing codes (in the list of QM topics above) should still be developed.
Some other features that could be also considered are to integrate the developed tool either
with (i) LMS (Learning Management System as Daskit that is available at CS) giving the
possibility for the students to submit directly results of their experiental work (lab reports) or
with (ii) a quantum chemistry packages (Molpro/Gaussian) for visualizing atomic/molecular
orbitals and understanding the nature of the bonds (covalent, ionic) in a molecule.

Finally, we started testing the proposed teaching approach at CS in my quantum and
statistical mechanics and research program classes. First feedback from students are positive
which encourage us to accomplish tasks mentioned above. More tests are planned for the
upcoming academic year. In parallel, this pedagogical tool will be tested in the Fall 2020
semester at the UCF Physics department in the class of undergraduate quantum mechanics
taught by Prof. Kokoouline. Studies about the efficiency of the teaching strategies will be
performed and published.
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Figure IV.5: The draft version of the interface for wave packet propagation and the time-
dependent Schrödinger equation. The students can choose one of the "standard" potentials
(step-like, square well, etc.) to monitor the time-dependent evolution, or to use their own
potential uploadable as a data file with values of the potential on a grid of points. Several
observables can be monitored during the wave-packet propagation. Laboratory and homework
assignments on the topic will be added later.
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V.1 Conclusions

The most relevant studies of my projects and supervisions (see CV in Appendix V.2.C)
were described in the preceding chapters. I have made a significant contribution into the
determination of reliable data for atomic and molecular reactions especially those involving
electron-molecule collisions at low energy (see Figure.1). My students and I first focused on
studying the simplest diatomic systems to benchmark our developed theoretical models, after
which we worked on extending these models to large molecular ions and to the neutral species.
Our theoretical models (depicted in Figures I.1 and II.1) are based on first principles. They
employ the following: (i) the R-matrix method to compute ab initio electronic bound and
continuum states, (ii) the vibrational frame transformation combined to, in case of ions, (iii)
the closed-channel elimination procedure, in a spirit of molecular quantum defect theory, in
order to construct an energy-dependent scattering matrix. This matrix describes interactions
between vibronic channels of the target induced by the incident electron. For polyatomic
molecules, an additional approximation of the theoretical methods was introduced: the use of
the normal mode approximation for vibrational states of the target.

The proposed methods have allowed for computing ro-vibronic excitation (RVE) and
dissociative recombination (DR) cross sections, as well as related rate coefficients, of various
polyatomic systems of astrophysical (HeH+, CH2NH+

2 , NH2CHOH+), material development
(BF+

2 ) and atmospheric depollution (NO2, N2O) interest. Applications to ions with low-energy
excited states were successful, as with CH+. Such ions were known to be difficult to treat
theoretically using previous theoretical methods. Certain precautions, nevertheless, were
taken to extend the models to neutral molecules, especially on the use of frame transformation
procedures. Our studies have afforded us, on one hand, to provide an upper limit for the
total rate coefficient of DR (where data are not available) and on the other hand, to confirm
previous calculations. These outcomes could be used for plasma models in planetary science,
interstellar medium, and for technologies.

It has to be stressed that the developed theoretical approaches are general since they require
only a method to determine the scattering or reaction matrices. This can be accomplished
from the electron-scattering codes such as the U.K. R-matrix, used over this manuscript
through the Quantemol-N suite, the complex Kohn method or the Schwinger variational
principles. We are currently implementing our models as a module in Quantemol-N, to
compute cross sections and related rate coefficients of VE and DR of polyatomic molecules

87
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by electron impact; conducted in collaboration with Prof. Kokoouline from UCF and Dr
Maria Tudorovskaya, scientific consultant form Quantemol team. We have also developed
a complete course of undergraduate quantum mechanics, whose framework combines a set
of PYTHON numerical codes and a graphical interface allowing students to prepare and
run numerically-simulated experiments, demonstrating all topics of a standard QM course,
usually covered in a formal mathematical approach. This project aims to address difficulties
for undergraduate students in learning QM concepts. Further developments planned for the
near future in both educational and research terms are stated thereafter.

V.2 Perspectives

My planned research program is a continuation of the previously-conducted studies. Figure V.1
resumes my plans for the next 4-year period, generally organized in three scientific work
packages as follows.
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New development  
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ANR/ NSF 

Difficulty 
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between resonant states of  
molecules. Use  MCTDH  

Figure V.1: Schematic diagram summarizing the planned research program for the next 4-year
period. Main tasks are listed with respect to their difficulties of realization.

V.2.A Rotational excitations of molecular ions in their electronically-excited
states

In many low-temperature ionized environments such as ISM, planetary atmospheres and
technological plasmas, cross sections for vibronic excitations are important for understanding
and modeling these environments, especially, when including the rotational structure of
molecules in collisions with electrons. Therefore, I plan to extend the study of HeH+, where
we developed models for RE+VE of linear molecules, to CH+ and include its rotational
structure, in addition to its vibronic structure.
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For this purpose, a complete rovibronic frame transformation (RVFT) is needed in combi-
nation with CCE-MQDT procedure to construct an energy-dependent scattering matrix in the
laboratory frame. This matrix describes the interactions between rovibronic channels of CH+

induced by the incident electron. Numerically, we obtain the body-frame scattering matrix
(using the UK R-matrix code) in the subgroup C2v, included in the natural C∞v symmetry
group of the ion. When various electronic states with different symmetries are included in the
calculations, one needs to transform ŜC2v into ŜC∞v . This can be accomplished through the
spherical harmonics transformation according to Tables I.1 and I.2.

The second step will generalize the developed model for linear molecules to asymmetric
top polyatomic targets. This step is straightforward and should be carried out in the context
of a Ph.D. research work funded by CSC or ministry (INTERFACES).

V.2.B Electronically-excited states of neutral molecules

As emphasized in the preceding chapters, the developed models are based on the approximation
that the S-matrix for electron-molecules collisions is energy-independent, so far. This holds
for ions when (i) the scattering electron energy is not large enough to excite the target ion
electronically but also (ii) in absence of electronic resonances appearing when the potential
energy surface (PES) of the doubly-excited neutral molecule (electron-ion system) crosses the
ionic PES near the equilibrium geometry (CH+ case for instance).

Fortunately, this assumption was fulfilled for e−NO2 and e−−N2O collisions as revealed
by a detailed analysis of eigenphase sums, so that the vibrational VFT could be accomplished.
The S-matrix, however, does depend on the scattering electron energy for neutral molecules,
in general.

Due to a variety of applications in plasma technology, the EE process including VE should
be investigated. I am thus planning to extend the previous study on NO2 making use of the
method developed for CH+. I identity three main tasks:

- Choosing a different normalization factor for the scattering electron wave function, the
energy dependence of Ŝ can be removed. Then, the renormalized ˆ̃S is energy-independent
so that VFT can be employed. After VFT, the renormalization factor is multiplied back,
and the energy dependence is recovered to compute the cross sections.

- Another approach would be needed were there to exist electronic resonances or a
sufficiently high total energy of the system for all collision channels to be open for
ionization. Similar to the "closed-channel-elimination" procedure used for ions, I am
planning to adapt this procedure in combination with the Breigt-Wigner formula so
that the e−−NO2 scattering physics below the first electronic state can be represented
using an energy-independent multichannel scattering matrix evaluated above.

- To accomplish VFT in Eq.(II.17) within the preceding procedure, one has to evaluate the
matrix elements 〈ψ1(q1)| Ŝ |ψ2(q2)〉, where ψ1(q1) and ψ2(q2) represent, respectively,
the harmonic vibrational functions depending on dimensionless normal coordinates of the
ground and first electronically excited states of the target. Here also, a new development
is required since the integration mentioned above runs over different coordinates.
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To achieve these tasks, support will be asked from CSC/Ministry for hiring a PhD student.

V.2.C Branching ratios

Besides the DR process mentioned in the preceding chapters, branching ratios (BR) in dis-
sociation of polyatomic molecules and negative ions after a collision of a molecular ion or a
neutral molecule with an electron are also important data. Experimental determination of BR
for certain systems is possible but expensive. From the theoretical point of view, a similar
situation is observed: There are studies in which the DR branching ratios were determined,
albeit with a highly unsatisfactory theoretical description. Hence, there is a clear need for
a reliable theoretical approach towards determining of BR with respect to electronic and
vibrational excitation of products. My long term project will address this issue.

In collaboration with Prof. Kokoouline (UCF), we plan to develop a simple theoretical
method to determine the BR in DR of small polyatomic ions. We benefit from the study of
DR in H+

3 (of astrophysical interest) in which e−−H+
3 wave functions are explicitly computed,

available, and could be analyzed in the asymptotic region, where the branching ratios should be
evaluated. Thus, all the information about the scattering is accessible, particularly how much
of the outgoing flux goes into dissociative channels within a finite region of space. Projecting
this wave function on each rovibrational level of the H2+H of H+H+H fragmentation yields
the current density associated to each channel leading to BR. The development of a detailed
theoretical approach for BR in a benchmark system as H+

3 will help us to understand the main
pathways that produce different products H2+H/H+H+H. We expect that this approach
could be further applied to other ions.

Analogously, the electron-neutral molecules collisions may lead to DEA process, in compe-
tition with VE, RE or EE. Also, the DEA branching ratios can be as important as the overall
DEA cross sections for plasma modeling. Treating the complete DEA of triatomic molecules,
which is the work being focused on this part, is theoretically and computationally challenging.
To do this, we will follow another strategy. After computing the PESs of the neutral and
ion molecules, NO2 and NO−2 for instance using MOLPRO, we will employ the MCTDH
(Multi-channel Configuration Time-Dependent Hartree) method in order to propagate the
wavepacket on these PESs. At the end of the propagation, the wavepacket is projected onto
vibrational and electronic states of the final products and DEA cross sections and BR can be
evaluated.

These proposed works will be carried out with the help of collaborations: Profs. Ioan
Schneider and Khalid Hassouni who have a large expertise on the plasma modelling. New
collaborations may be built with Dr. Asa Larson from Stockholm university for MCTDH
method through Dr. Samantha Douguet. This could be a part of projects such as ANRs, NSF
and NASA.
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élémentaire par la Technique LIBS Laser- Induced Breakdown Spec-
troscopy Picoseconde, 2014-2017
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terization and quantification of the mycelial growth of the brown-rot fungus postia
placenta for modeling purposes. PLoS ONE, 11(9)::e0162469
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Abstract: Cross sections and thermally-averaged rate coefficients for vibration (de-)excitation of HeH+

by an electron impact are computed using a theoretical approach that combines the multi-channel
quantum defect theory and the UK R-matrix code. Fitting formulas with a few numerical parameters
are derived for the obtained rate coefficients. The interval of applicability of the formulas is from
40 to 10,000 K.

Keywords: helium hydride ion; vibrational excitation; R-matrix; quantum-defect theory

1. Introduction

The hydrohelium (helium hydride) cation HeH+ is an important species in the interstellar medium
(ISM) [1] and in the chemistry of the planetary nebulae such as NGC 7027 [2–4]. It is one of the simplest
molecular ions and the first one formed in the early universe [5]. In the ISM it is formed mainly in
the process of radiative association of He and H+ or of He+ and H [6,7]. Due to the relatively large
abundance of electrons and HeH+ in the ISM, collisions of HeH+ with electrons play a significant role,
in particular, leading to dissociation (dissociative recombination) and rovibrational (de-)excitation of
HeH+. Other than in the ISM, the HeH+ ion is also present in fusion reactors. Because it is one of the
most abundant molecular ions near walls of the reactors, its contribution to the complete network of
processes taking place in the reactors should be accounted for in fusion plasma modeling. In particular,
cross sections for electron-HeH+ collisions are needed.

A number of processes can occur when an electron collides with HeH+. One of the most important
processes is the dissociative recombination. Cross sections for this process were measured and
calculated in several previous studies [8–13]. Another process, relevant for the ISM [14] and fusion
reactors, in the vibrational excitation and (de)-excitation,

e− + HeH+(v, j)→ e− + HeH+(v′, j′) , (1)

for which cross sections were calculated in a previous study [15] for the transitions between the three
lowest vibrational levels v = 0, 1, 2. In that study, an R-matrix approach was employed to determine
scattering matrices for fixed geometries. Rydberg series of vibrational and rotational resonances
present in the spectrum of the e− − HeH+ system were neglected. In this work we determine cross
sections and rate coefficients for the process using an improved treatment, in which the Rydberg
series of vibrational resonances in HeH are accounted for using the multichannel quantum defect
theory (MQDT). Electron-impact transitions between the five lowest vibrational levels, v = 0− 4,
are considered.

Atoms 2016, 4, 30; doi:10.3390/atoms4040030 www.mdpi.com/journal/atoms
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The rest of the article is organized in the following way. The next section of the article discusses
the theoretical approach used in the present calculation. In Section 3, the obtained rate coefficients for
vibrational (de-)excitation are discussed and compared with the data available in literature. Section 4
concludes the study.

2. Theoretical Approach

2.1. Scattering Matrix for Fixed Geometries Of HeH+

The theoretical model employed in the present study combines the UK R -matrix method [16,17]
and the multi-channel quantum defect theory (MQDT) [18–20]. The electron scattering calculations
were performed employing the Quantemol-N interface [21] to run the UK R-Matrix code [16,17].
The target HeH+ ion was assumed to be in the ground electronic state X1Σ+.

In the R-matrix calculations, the target and the scattering wave functions were represented within
a full CI treatment, i.e., by allowing all electrons to occupy all orbitals. The calculations were performed
using the Gaussian basis set 6-311G∗. The continuum orbitals of Faure et al. [22], representing the
scattering electron, was included up to the g-wave. The R-matrix radius was set to a0 = 10 bohrs.
All generated states up to 25 eV were retained in the final close-coupling calculation. As the first
electronically excited state, A1Σ+ correlated with H(1s) + He+(1s) is approximately 11 eV above the
H+ + He(1s2) dissociation limit for the X1Σ+ground state, the ground state is essentially isolated
and non-adiabatic effects are expected to be small. Therefore, for low electron energy collisions
(bellow 10 eV) only the lowest electronic state is open for ionization in e− − HeH+ collisions and the
dimension of the geometry-fixed scattering matrix does not change with energy.

Wave functions of e− − HeH+ continuum states obtained in the R-matrix calculations have the
following asymptotic behavior at large distances r between the electron and the target ion in channels
open for ionization [16]

Fij(r) ∼
1√
ki

(
sin θi(r)δij + cos θi(r)Kij(R)

)
, (2)

θi(r) = kir−
liπ
2

+
ln(2kir)

ki
+ arg Γ

(
l + 1− i

π

)
, (3)

where index i refers to the entrance channel before a collision and j refers to the outgoing channel
after the collision. In the above equation, Kij(R) are the elements of the reactance matrix [16,20],
which depend on the internuclear distance R. In the cross section calculation, the scattering matrix
S(R) is needed, which is obtained from K(R) as

S(R) = (1 + iK(R))(1− iK(R))−1 . (4)

Generally, for fixed geometries of the target and low collisional velocities, the matrices S(R) and
K(R) depend weakly on energy. A sharper energy-dependence is observed only at certain higher
energies, corresponding to positions of Rydberg states attached to excited electronic states of the ion.
A convenient way to represent a weak or a strong energy dependence of the matrices is the eigenphase
sum. Figure 1 shows eigenphase sums for three symmetries (2Σ+, 2Π, and 2∆) of the e− + HeH+

system and for several internuclear distances in HeH+. The chosen interval of internuclear distances
corresponds to the Franck-Condon region of the lowest vibrational level of HeH+. The variation of the
eigenphase sums for 2Π and 2∆ is smooth for energies below 10 eV and does not change significantly
with R. The 2Σ+ eigenphase sums demonstrate a sharp energy dependence at certain energies, which
corresponds to a resonant state of HeH with energy changing with the internuclear distance R.
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Figure 1. Eigenphase sum as a function of the electron scattering energy Eel (in eV) for several
internuclear distances R (in units of bohr) for the 2Σ+ (left panel), 2Π (right upper panel), and 2∆
(right bottom panel) symmetries. The color scheme used to label different values of R is the same for
all three panels. The dashed line represents the equilibrium internuclear distance Re = 1.445 bohrs [15]
of HeH+.

2.2. HeH+ Vibrational Dynamics

In calculations of the cross section for vibration (de-)excitations, vibrational wave functions of the
target ion are needed in order to construct elements of the scattering matrix for transitions from one
state v′ to another v. We calculated vibrational wave functions ψv(R) and energies εv by solving the
Schrödinger equation for vibrational motion along R,

[
− 1

2µ

∂2

∂R2 + V(R)
]

ψv(R) = εvψv(R) , (5)

where µ the reduced mass and V(R) is the internal potential of HeH+. The above equation was solved
using a DVR-type method [23]. In the numerical calculation, the distance R was varied from 0.5 to
20 bohrs. The potential energy curve V(R) was calculated with the ab initio CCSD(T) method and the
cc-pVQZ basis of Gaussian-type orbitals using the Molpro package [24]. Figure 2 shows the potential
energy curve V(R) and wave functions for four vibrational levels v = 0, 1, 2, 8. Energy differences for
transitions v→ v + 1 and rotational constants of the HeH+ vibrational levels are listed in Table 1 and
compared with previous benchmark calculations [25,26].
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Figure 2. Wave functions ψv(R) of the v = 0, 1, 2, and 8 vibrational states of the HeH+ ion. The inset
shows the potential energy curve V(R) of the X2Σ+ electronic state of HeH+ used in the calculation.
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Table 1. The vibrational frequencies ∆v = Ev+1 − Ev for transitions v→ v + 1 and rotational constants
Bv obtained in the present study and compared with previous calculations. All values are in cm−1.

Level v ∆v ∆v [26] Bv Bv [25]

0 2913 2911.0007 33.527 33.558
1 2607 2604.1676 30.816 30.839
2 2300 2295.5787 28.088 28.090
3 1988 1982.0562 25.305 25.301
4 1668 1660.3559 22.425 22.402
5 1339 1327.7860 19.394 19.344
6 1000 984.3599 16.151 16.058
7 660 639.1959 12.645 12.479
8 328 327.3615 8.813 8.621

2.3. The Scattering Matrix for an Electron Colliding with HeH+

Once vibrational energies, wave functions, and geometry-fixed S-matrix are calculated,
the scattering matrix describing the transition amplitude Si′ ,i from one vibrational level v to another
v′ is obtained using the method of vibrational frame transformation [19,27]. The indexes i′ and i
enumerate vibrational states v, states of different electron angular momentum l, and its projections Λ
on the molecular axis Z. Therefore, for the process

e−(l, Λ) + HeH+(v) −→ e−(l′, Λ′) + HeH+(v′) , (6)

the scattering matrix in the molecular frame coordinate system can be written as

SΛ′v′ l′ ,Λvl =
〈
ψv′(R)

∣∣SΛ′ l′ ,Λl(R)
∣∣ψv(R)

〉
, (7)

where the brackets imply an integration over the vibrational coordinates. Many elements among
SΛ′v′ l′ ,Λvl are zero. In particular, the symmetry (one of the irreducible representations Γ of the
C∞v group) of the total e− + HeH+ system stays the same before and after a collision. Also, for low
energies when there is only one electronic state X1Σ+ open for ionization, the SΛ′v′ l′ ,Λvl matrix is
diagonal over Λ. Note that the matrix element SΛ′ l′ ,Λl(R) in the above equation is obtained from
R-matrix calculations for a given value of R. It represents the scattering amplitude when the electron
scatters from one channel (Λl) to another (Λ′l′), while the nuclei do not have time to move. To evaluate
the integral in Equation (7) the R-matrix calculations were performed for thirty values of R in the
interval R = 1.0–3.9 bohrs with a step of 0.1 bohrs.

2.4. Elimination of Channels Closed for Ionization From the Scattering Matrix

The scattering matrix S of Equation (7) can be used for cross sections calculations only if the total
energy of the system is high enough for all collision channels to be open for ionization. When some
channels are closed, the scattering matrix should be modified applying the “closed-channel-elimination”
procedure [20] and producing matrix S phys(E) according to

S phys(E) = Soo − Soc
[
S cc − e−2iβ(E)

]−1
S co . (8)

The matrix S phys(E) has No ×No dimension, No being the number of channels open for ionization
for a given total energy E of the system. The total energy could be written as a sum of the energy of the
entrance channel Ei and the relative kinetic energy Eel of electron and the target ion: E = Ei + Eel . In the
above equation, the matrices Soo, Soc, S cc and S coare submatrices of the original matrix S [18,20],
partitioned as

S =

(
Soo Soc

S co S cc

)
, (9)
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where the partition of the matrix elements in the “o”- and “c”-parts is made on the basis whether the
corresponding channel, i or i′, is open or closed for ionization for a given total energy E. The quantity
β(E) is a diagonal Nc × Nc matrix

βi′i(E) =
π√

2(Ei − E)
δi′i , (10)

where Ei refers to energy of the corresponding closed channel i and Nc = N − No is the number of
closed channels. For a given vibrational quantum number v, channel energies are degenerate with
respect to l and Λ. In principle, the channel energy Ei depends also on the electronic excitation of the
target ion, but in this study the initial electronic state is X1Σ+ and collisional energies are too low to
excite other electronic states.

3. Rate Coefficients and Cross Sections for Vibrational (De-)Excitation

Using the scattering matrix S phys, the cross section for electron-impact vibrational transition
v→ v′ of the ion is [28]

σv′v(Eel) =
πh̄2

2meEel
∑

Λ′ l′Λl

∣∣∣S phys
Λ′ l′v′ ,Λlv − δΛlv,Λ′ l′v′

∣∣∣
2

, (11)

where me is the reduced mass of the electron and the HeH+ ion. It is also convenient to represent the
cross section in the form

σv′v(Eel) =
π

k2
el

Pv′v(Eel) , (12)

where kel is the wave vector of the incident electron and Pv′v(Eel) could be viewed as the probability
for vibrational (de-)excitation at collision energy Eel .

Figures 3 and 4 demonstrate, as examples, the cross sections of Equation (11) and the
corresponding probabilities from Equation (12) for the v = 3 → v′ = 0, 1, 2, 4 transitions.
At very low scattering energies, below 0.02 eV, the de-excitation cross sections are smooth
functions inversely proportional to the incident energy of the electron as predicted by the Wigner
threshold law. But at higher energies, especially, just below the energy of the each excited threshold,
v′ = 4, 5, · · · , the (de-)excitation cross sections and probabilities demonstrate series of Rydberg
resonances, where they vary significantly.
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Figure 3. Cross sections of vibrational (de-)excitation from the vibrational level v = 3 to several other
levels v′. The inset enlarges the region of Rydberg series of resonances close to the v′ = 4 and v′ = 5
ionization thresholds, situated at energy of 0.2465 and 0.4533 eV, respectively, above the v = 3 threshold.
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v′ = 0, 1, 2, 4 vibrational levels. Notice that the energy scale is linear in contrast to the logarithmic scale
in Figure 3.

The thermally averaged rate coefficient αv′←v(T) (in atomic units) is obtained from the
energy-dependent cross section of Equation (11),

αv′v(T) =
8π

(2πkbT)3/2

∫ ∞

0
σv′v(Eel)e

− Eel
kbT EeldEel , (13)

where kb is the Boltzmann coefficient and T is the temperature. Examples of obtained rate coefficients
αv′←v(T) are shown in Figure 5.
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integration using Equation (13). Vibrational transition v→ v′ labels are shown in each panel. Results of
a previous calculation [15] are shown by dashed lines.
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In order to simplify eventual applications of the calculated numerical coefficients αv′v(T),
the obtained numerical rate coefficients were fitted using the following analytical interpolation formula

α
f it
v′←v(T) =

1√
T

e−
∆v′v

T P f it
v′v(x), (14)

where
P f it

v′v(x) = a0 + a1x + a2x2 + a3x3 and x = ln(T). (15)

with P f it
v′v(x) ≈ P f it

vv′(x). In equation (14), ∆v′v is the threshold energy having the following expression:

∆v′v =

{
Ev′ − Ev > 0 for excitation ,
0 for (de-)excitation .

(16)

The coefficients ai (i = 0, 1, 2, 3) are obtained for each pair of transitions v′ ↔ v from a numerical fit.
The quantity P f it

v′v(x) in the above equation could be viewed as an averaged (de-)excitation probability
that varies weakly with energy.

Figure 6 illustrates the rates coefficients for the v = 3 → v′ = 0, 1, 2, 4 transitions obtained
numerically from Equation (13) and by the fit of Equation (14). Overall, the fitting curves agree well
with the curves obtained numerically. The numerical values of ai listed in the Table 2 are such that,
when plugged into Equation (14), they give rate coefficients in units of cm3·s−1. The temperature in
the fitting formulas of Equation (15) is in kelvin.
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Table 2. Parameters a0, a1, a2 and a3 of the polynomial P f it
v′v(x) = P f it

vv′ (x) of Equation (14) for several
pairs of initial and final vibrational level. The upper line in the header of the table specifies the pairs of
initial and final vibrational levels for which the parameters are fitted. For convenience, we also specify
(the second line of the header) the threshold energy ∆v′v for excitation process of the corresponding
pair. For all excitation and de-excitation processes, same parameters ai are used in Equations (14) and
(15) where the threshold for de-excitation is zero, ∆v′v = 0, as in Equation (16).

v′− v 0–1 0–2 0–3 0–4 1–2 1–3 1–4 2–3 2–4 3–4

∆v′v
(K)

4191 7942 11251 14112 3751 7060 9920 3309 6169 2860

a0 0.23e-5 0.20e-6 0.75e-7 0.11e-7 0.21e-5 0.47e-6 0.80e-7 0.24e-5 0.44e-6 0.28e-5
a1 −0.11e-6 −0.20e-8 0.88e-8 0.31e-9 0.95e-7 0.62e-7 −0.71e-9 0.34e-6 −0.53e-8 0.16e-8
a2 0.25e-8 0.10e-8 −0.28e-8 −0.24e-10 −0.18e-7 −0.16e-7 0.76e-9 −0.56e-7 0.40e-8 0.13e-7
a3 0.85e-10 −0.11e-9 0.15e-9 −0.56e-12 0.79e-9 0.85e-9 −0.76e-10 0.22e-8 −0.36e-9 −0.92e-9

4. Conclusions and Discussion

In this study, cross sections and rate coefficients for electron-impact vibrational transitions in
HeH+ were computed for different combinations of the five lowest vibrational levels of HeH+.
The calculations were performed using the UK R-matrix package combined to the quantum-defect
approach. The obtained thermally averaged rate coefficients were fitted with a simple analytical
formula with four parameters. The numerical values of the fitting parameters are provided in Table 2.
The obtained cross sections and rate coefficients could be used in modeling the hydrogen/helium
plasma experiments as well as for modeling interstellar clouds and planetary atmospheres, where the
HeH+ ion is present.

The rotational structure of each vibrational level was neglected in the present approach such that
the obtained cross sections and rate coefficients should be viewed as averaged over initial rotational
states and summed over final rotational states of corresponding vibrational levels. Neglecting the
rotational structure would correspond to an experiment for which the energy resolution is worse
than a typical energy splitting between rotational levels. The rotational constants for the lowest
vibrational levels of HeH+ are in the interval 20–33 cm−1 (see Table 1). The energy resolution of
existing experimental data on e− + HeH+ collisions is much worse [9]. Detailed rotational state-to-state
thermally-averaged rate coefficients for rotational transitions without changing the vibrational state
might be useful to model very cold environment, below 40 K. Due to this reason the rate coefficients
obtained in the present study should not be viewed as accurate below 40 K. Theoretical rate coefficients
for rotational excitation at low temperatures will be presented in a separate study.

It is worth stressing that narrow electronic resonances present in the e − HeH+ spectrum
(see Figure 1), around 1 eV and above, are taken into account only in a very crude manner.
Namely, they produce scattering matrix S(R) of Equation (4), which depends significantly on
energy. Because the resonances are situated at relatively high energies and their widths are small
(see, for example, the resonance at 4 eV for R = 1.455 bohrs in Figure 1), their effect is expected to be
small on the obtained cross sections at low energies. The reason why the effect of such resonances is
accounted for in a crude manner is because after the vibrational frame transformation of Equation (7),
the resonances will be smeared out and will no appear in the excitation cross section. In a better
treatment such resonances associated with HeH∗ potential curves should be represented by one
or several additional vibronic channels and would produce a few more additional resonances in
the cross section for vibrational excitation. In the present treatment, the energy-dependence of
S(R), increases the excitation cross section near the corresponding energies but only on average, in a
washed-out manner, without producing a few additional resonances. In any case, the effect of these
resonances on the thermally-averaged rate coefficient is averaged out. A wider resonance appearing
at large internuclear distances (for example, at 5 eV for R = 1.7 bohrs) could produce an important
contribution to the vibrational excitation cross section at energies above 5 eV. A better treatment of the
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vibrational excitation process accounting for electronic resonances is possible and will be developed in
a further publication.
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26. Stanke, M.; Kędziera, D.; Molski, M.; Bubin, S.; Barysz, M.; Adamowicz, L. Convergence of Experiment and
Theory on the Pure Vibrational Spectrum of HeH+. Phys. Rev. Lett. 2006, 96, 233002.

27. Jungen, C.; Atabek, O. Rovibronic interactions in the photoabsorption spectrum of molecular hydrogen and
deuterium: An application of multichannel quantum defect methods. J. Chem. Phys. 1977, 66, 5584–5609.

28. Kokoouline, V.; Greene, C.H. Theory of dissociative recombination of D3h triatomic ions applied to H+
3 .

Phys. Rev. Lett. 2003, 90, 133201.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).



atoms

Article

Cross Sections and Rate Coefficients for Rotational
Excitation of HeH+ Molecule by Electron Impact

Marjan Khamesian 1,†, Mehdi Ayouz 2,†, Jasmeet Singh 1,3,† and Viatcheslav Kokoouline 1,*,†

1 Department of Physics, University of Central Florida, Orlando, FL 32816, USA;
khamesian.marjan@knights.ucf.edu (M.K.); jasmeet.singh@keshav.du.ac.in (J.S.)

2 LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 rue Joliot-Curie, 91 190 Gif-sur-Yvette, France;
mehdi.ayouz@centralesupelec.fr

3 Department of Physics, Keshav Mahavidyalaya, University of Delhi, Delhi 110 034, India
* Correspondence: Viatcheslav.Kokoouline@ucf.edu
† All authors contributed equally to this work.

Received: 2 July 2018; Accepted: 10 August 2018; Published: 3 September 2018
����������
�������

Abstract: Cross sections for rotational excitation and de-excitation of the HeH+ ion by an electron
impact are computed using a theoretical approach that combines the UK R-matrix code and the
multi-channel quantum defect theory. The thermally-averaged rate coefficients derived from the
obtained cross sections are fitted to an analytical formula valid for a wide range of temperatures.

Keywords: helium hydride ion; rotational excitation; R-matrix; quantum-defect theory

1. Introduction

Cross sections for the electronic, rotational, and vibrational excitation of molecules in collisions
with electrons are important for understanding and modeling various plasma environments, such as
the interstellar medium (ISM), planetary ionospheres and exospheres, in plasma processing and
de-pollution technologies, and others. Measuring cross sections experimentally for such processes
is usually difficult and expensive. However, theoretical methods for electron–molecule scattering
together with abundant computational resources have made it possible to obtain reliable cross sections
numerically, at least for diatomic and small polyatomic molecules.

The excitation of rotational and vibrational states of molecular ions has been studied theoretically
for several decades. In particular, in one of the earliest studies of this kind, Boikova and
Ob’edkov [1] considered the process using the Coulomb–Born approximation for the low-energy region.
The first-order perturbation theory was applied, and a general analytical formula was derived in which
dipole and quadrupole moments of the target ion determine the cross section for rotational excitation,
while derivatives of the moments with respect to nuclear distances determine the cross section for
vibrational excitation. The direct non-resonant excitation mechanism of the molecules was assumed to
maintain the validity of the Born–Oppenheimer approximation for such processes. Later, Chu and
Dalgarno [2] applied the same Coulomb–Born approximation to compute rate coefficients for the
rotational excitation j = 0→ j′ = 1 of the CH+ ion.

Flower [3] applied the semi-classical approximation and the time-dependent perturbation theory
to the j = 0 → j′ = 1 transition for CH+ and HeH+. The rotation of the target molecule was
quantised, while the motion of the incident electron was treated classically. The applicability of method
is restricted to incident electron energies Eel & 2(Ej′ − Ej), where Ej and Ej′ are the energies of the
rotational states of the target ion.

In a series of publications, Rabadan et al. [4–6] modified the method developed by Chu and
Dalgarno [2] for diatomic molecules. In their approach, the scattering matrix is obtained from first

Atoms 2018, 6, 49; doi:10.3390/atoms6030049 www.mdpi.com/journal/atoms
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principles using the R-matrix approach [7], rather than from the Coulomb–Born approximation.
Similarly to Flower [3], cross sections for rotational excitation of CH+ and HeH+, as well as for
NO+ [4,5] are computed. However, as in the other studies mentioned above, the method does
not account for near-threshold effects and assumes that different rotational levels are degenerate.
In particular, it does not account for Rydberg resonances associated with closed rotational states of the
neutral molecule, such as rotational Rydberg resonances of the HeH molecule in the case of e−-HeH+

collisions. As it was shown later [8,9], this assumption is not appropriate if the incident electron couples
strongly different rotational states of the target ion. In such a situation, the near-threshold effects
should be accounted for to produce accurate rate coefficients at temperatures below 150 K. To address
this problem, in Reference [10] the authors extrapolated the numerically-obtained cross sections down
to the threshold using Wigner’s threshold law, producing more accurate results compared to those
obtained from a kinetic scaling of the previous -matrix study [6] on HeH+ and CH+. However,
closed-channel effects associated with rotational resonances were still neglected in this study [10].

The theoretical method accounts for near-threshold effects, including rovibrational Rydberg
resonances, and makes use of first-principle calculations (or experimental spectroscopic data if
necessary), and is based on (1) the electron–molecule scattering matrix computed for fixed positions
of nuclei (molecular-frame scattering matrix), (2) the idea of the rotational frame transformation [11],
and (3) the molecular quantum defect theory (QDT) [12,13], which makes it possible to evaluate the
scattering matrix in the laboratory frame (with respect to which the molecule rotates) and excitation
cross sections. This method will be referred to below as the QDT method. It has been used in slightly
different implementations in theoretical studies of rotational excitation for several molecular ions:
H+

2 [14,15], H+
3 [16], HeH+ [17], and CH+ [18].

The molecular-frame scattering matrix in the QDT method can be evaluated in different ways.
For example, in Reference [16], in calculations of the rotational excitation of H+

3 , the matrix was
obtained by extrapolating quantum defects extracted from ab initio calculations of excited electronic
states of H3 for several internuclear geometries of the molecule. A similar method for the evaluation of
the scattering matrix was used by Takagi et al. [19–22] in the study of the dissociative recombination of
HeH+. Another way to obtain the molecular-frame scattering matrix is to perform electron scattering
calculations directly, using first principles. In a recent study [10], Čurík and Greene employed the
molecular scattering matrix computed directly using the UK R-matrix method [7] in the calculation of
the rotational excitation cross sections in e−-HeH+ collisions.

In the present study, we discuss a general theoretical approach for the determination of
rotational excitation cross sections for collisions of electrons with molecular ions at low scattering
energies. A detailed derivation of the theory is presented for symmetric-top and linear target ions.
A generalization to asymmetric top polyatomic targets is straightforward. We apply the method
to the benchmark e−-HeH+ system and compute cross sections and rate coefficients for excitation
and de-excitation of the ion from the five lowest rotational states. The HeH+ ion is one of the
simplest molecular ions. It is present in helium-containing plasma, such as in fusion devices. It is
thought to be the first molecule formed in the early Universe. It has also been suggested [23–27]
that HeH+ could be detected in planetary atmospheres, white dwarfs, and the interstellar medium.
At low energies, e−-HeH+ collisions can lead to dissociative recombination, rotational excitation, or
dissociation recombination. The dissociative recombination of HeH+ has been extensively studied
both experimentally and theoretically [19–22,28]. There are no experimental measurements of cross
sections for the rotational excitation of HeH+, but there are a few previous theoretical studies [1,3,10,17].
Therefore, the present results can be compared with the previous calculations.

In the present study, essentially the same theoretical method as in Reference [17] is used to
represent the rotational excitation of HeH+, but the results for a larger number of rotational transitions
in HeH+ are obtained and an analytical fit of the thermally-averaged rate coefficients is performed,
allowing the use of the data in plasma modeling.
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The next section of the article presents the theoretical approach. In Section 3 we discuss the cross
sections and rate coefficients obtained for the e−-HeH+ collisions. Section 4 summarizes the obtained
results. Finally, in Appendix A, details of the theoretical derivation of the main formulas of Section 2
are provided.

2. Theoretical Approach

A detailed derivation of the present theory is given in Appendix A. Here, we discuss only the
main steps in the implementation of the approach.

As the first step in the calculation, the body-frame e−-HeH+ reactance matrix K̂Λ is determined.
For rotational-excitation transitions without changing the vibrational state of the target, the reactance
matrix can be evaluated using just one internuclear distance corresponding to the equilibrium position
of the target ion, Req = 1.445 bohr for HeH+. The ground electronic state of the HeH+ ion is X1Σ+

with the Hartree–Fock electronic configuration of 1σ2. The matrix is obtained numerically using the
UK R-matrix code [7,29]. Performing the scattering calculations, the R-matrix sphere of radius 10 bohr
is used. Initially, several basis sets, including 6-311G*, DZP, and cc-pVTZ, were tested to investigate
the stability of target properties such as dipole moment and ground state energy. Finally, the cc-pVTZ
basis set was selected to perform the final calculations. A multicentered configuration interaction wave
function expansion was used in the inner region, including two target states. The e−-HeH+ reactance
matrix is smooth at low electron energies, and the lowest electronic resonance appears at about 4 eV at
geometries near the equilibrium.

At electron energies below the first excited electronic state of the target ion, different channels of
the body-frame reactance matrix are labeled with partial wave labels, including the angular momentum
quantum number l and its projection λ of the molecular axis. The matrix is block-diagonal, where each
block corresponds to a given projection Λ of the total angular momentum (ion+electron) of the system.
Thus, in practice, the body-frame reactance matrix is calculated separately for each Λ. At low scattering
energies, below 10 eV, the target ion can only be in the ground electronic state 1Σ+. Therefore, in the
present calculations, the projection of the electronic angular momentum in a given channel is equal to Λ.

The reactance matrix is used to compute the body-frame scattering matrix

ŜΛ =
1̂ + iK̂Λ

1̂− iK̂Λ
, (1)

where 1̂ is the identity matrix. The laboratory-frame scattering matrix is then obtained by the
transformation [30]

S J
j′µ′ l′ ;jµl = ∑

λλ′
(−1)l′+λ′+l+λCj′µ′

l′−λ′ JΛ′C
jµ
l−λJΛSΛ

l′λ′ ;lλ , (2)

where J is the total angular momentum of the e−-HeH+ system, j, µ and j′, µ′ are the angular momenta
with their projections on the molecular axis of the target before and after the rotational excitation of

HeH+, and Cj′µ′

l′−λ′ JΛ′ and Cjµ
l−λJΛ are Clebsch–Gordan coefficients.

The total energy E of the system is the sum E = Eel + Ejµ of the relative kinetic energy Eel and
the energy Ejµ of the initial state of the target. At a given energy E, the size No of the scattering
matrix should be equal to the number of open channels with energies below E. Therefore, No varies
with the energy depending on how many rotational states are open for a given E. However, the
scattering matrix S J in Equation (2) does not contain information about which channels are open or
closed. The actual scattering matrix SJ with the correct energy dependence is obtained from S J using
the procedure of the closed-channel elimination [31,32] according to Equation (A15) of Appendix A.
The resulting “physical” scattering matrix SJ represents properly rotational resonances associated with
the closed rotational levels of the target.
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Having the “physical” scattering matrix SJ , the cross section for the rotational excitation or
de-excitation of the linear molecule by an electron impact is given as

σj′µ′←jµ(Eel) =
1

2j + 1
π

k2
j

∑
J,l,l′

(2J + 1)
∣∣∣ei(lπ/2+σl)SJ

j′µ′ l′ ;jµle
−i(l′π/2+σl′ )

∣∣∣
2

, (3)

assuming that the initial jµ and final j′µ′ rotational states are different (an inelastic process) and that
the vibrational state is not changed during the process. In the above formula, σl is the Coulomb phase
shift (see Equation (A5) in Appendix A).

3. Cross Sections and Rate Coefficients

Cross sections for electron impact transitions between the lowest five j, j′ = 0–4 rotational states
of HeH+ were computed. Note that the only allowed projection µ in Equation (3) for HeH+ in its
ground electronic state is zero. Therefore, for scattering energies below the first excited ionization
threshold of HeH+, µ = µ′ = 0 in Equation (3). Some examples are given in Figure 1. Solid lines
in the figure represent the results obtained using the complete theoretical approach described in the
previous section. The cross sections exhibit a strong resonant character. The resonances are produced
by closed rotational states of the target. These resonances are washed out when thermally-averaged
rate coefficients are computed. Therefore, in the calculation of the rate coefficients, one can use cross
sections averaged over the resonances. Such averaged cross sections can be computed directly from
the energy-independent scattering matrix S J , replacing in Equation (3) the matrix elements SJ

j′µ′ l′ ;jµl of

the physical scattering matrix with the corresponding elements S J
j′µ′ l′ ;jµl of the energy-independent

matrix. The cross sections calculated using the energy-independent scattering matrix are shown by
dotted lines in Figure 1. Due to the overall 1/Eel dependence of the cross sections as a function of the
collision energy, it is convenient to see the products k2

j σj′µ′←jµ, which could be viewed as excitation
probabilities. They are shown in Figure 2. It is evident that the excitation probabilities obtained in the
full treatment, including the closed-channel elimination, oscillate near the averaged value obtained in
the treatment without considering the closed channels (i.e., from the energy-independent scattering
matrix S J).

The obtained averaged rate coefficients are shown in Figure 3. They are compared with recently
published data for the j = 0↔ j′ transitions: dotted lines are the calculations by Hamilton et al. [10]
and the dashed lines are those of Čurík and Greene [17]. The agreement between the three sets of
calculations are perfect to the 0↔ 2 transitions, while for the 0↔ 1 transitions the rate coefficients of
Reference [10] are somewhat larger than the present result and the one from Reference [17]. For the
0↔ 3 transitions, the coefficients of Reference [17] are somewhat larger than the present result and
the one from Reference [10]. For the 0↔ 4 transitions, the coefficients from the two other calculations
agree with each other and are slightly larger than the present result.

The thermally averaged coefficients at low temperatures are sensitive to exact positions and widths
of the lowest resonances, because the averaging integral over thermal velocities at low temperatures
T is determined only by the small collision energies, Eel ∼ kBT. For example, the actual value of
the cross sections for the j = 1 → j′ = 0 and j = 2 → j′ = 1 transitions in Figure 1 depends
strongly on the position and the widths of the lowest resonances: at very low energies (below
2 meV), the cross sections are very different from the averaged ones shown with blue dotted lines.
Therefore, the closed-channel elimination procedure is essential at low temperatures. Computationally,
the procedure is not expensive if the number of channels is not very large (e.g., less than a thousand),
and therefore, one can use the cross sections with all resonances in calculation of the rate coefficients
for all temperatures.
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Figure 1. Rotational (de-)excitation cross sections for transitions between the four lowest rotational
states of HeH+. Solid lines represent the results obtained with the applied closed-channel elimination
procedure of Equation (A14), while the dotted lines show the results for which the procedure was
not applied.
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Figure 3. Rate coefficients (solid lines) for transitions from the four lowest rotational states of
HeH+, j = 0, · · · , 3 rotational states. Dotted lines in the upper left panel are the calculations by
Hamilton et al. [10], and the dashed lines are those of Čurík and Greene [17]. For the 0→ 1 transition,
the dashed and solid lines overlap. For the 0→ 2 transition, the curves for all three calculations overlap.
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Due to the general 1/Eel-dependence of cross sections σj′←j, the calculated rate coefficients behave

as 1/
√

T for de-excitation and exp
(
−∆j′ j/T

)
/
√

T for excitation transitions, where ∆j′ j = Ej′µ′ − Ejµ

(with µ = µ′ = 0 for the present case) is the excitation energy. Therefore, similarly to References [16,33],
for convenience of use, the rate coefficients are fitted to the formula

α
f it
j′←j(T) =

1√
T

e−
∆j′ j

T P f it
j′ j (x) , (4)

where Pj′ j(T) are smooth functions of temperature and represented by the quadratic polynomial

P f it
j′ j (x) = a0 + a1x + a2x2 and x = ln(T) , (5)

where ∆j′ j is the threshold energy defined as

∆j′ j =

{
Ej′ − Ej > 0 for excitation ,
0 for (de-)excitation .

(6)

The numerical parameters given in Table 1 are such that when used in Equations (4) and (5) along
with the temperature T expressed in kelvin, the obtained numerical value of the rate coefficient in
Equation (4) will be in units of cm3/s.
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Table 1. Parameters a0, a1, and a2 of the polynomial P f it
jj′ (x) of Equations (4) and (5) for several pairs

of initial and final rotational states for de-excitation j ← j′ of HeH+, with j < j′. The probabilities
P f it

j′ j (x) for the opposite (excitation) process, j→ j′, are obtained from P f it
jj′ (x) multiplying them with

the factor (2j′ + 1)/(2j + 1) (see Equation (7)). For convenience, we also specify (the second column)
the threshold energy ∆j′ j in units of temperature (K) for the excitation process of the corresponding
pair. For the de-excitation processes, ∆j′ j = 0.

j← j′ ∆j′ j (K) a0 a1 a2

0← 1 96 0.41 × 10−5 −0.18 × 10−6 −0.15 × 10−8

0← 2 289 0.37 × 10−5 −0.14 × 10−7 0.85 × 10−9

0← 3 578 0.57 × 10−7 0.33 × 10−9 −0.96 × 10−10

0← 4 964 0.44 × 10−9 −0.20 × 10−11 0.77 × 10−12

1← 2 192 0.73 × 10−5 −0.83 × 10−6 0.37 × 10−7

1← 3 482 0.48 × 10−5 −0.93 × 10−8 0.38 × 10−9

1← 4 868 0.75 × 10−7 0.35 × 10−9 −0.98 × 10−10

2← 3 289 0.57 × 10−5 −0.19 × 10−6 −0.10 × 10−7

2← 4 675 0.53 × 10−5 0.61 × 10−9 −0.39 × 10−9

3← 4 385 0.32 × 10−5 0.56 × 10−6 −0.61 × 10−7

Due to the detailed balance principle, the probabilities for the direct P f it
j′ j (x) (j′ ← j) and the

inverse P f it
jj′ (x) (j← j′) processes are related to each other by the relative degeneracy factor

P f it
j′ j (x) =

2j′ + 1
2j + 1

P f it
jj′ (x) . (7)

The coefficients ai (i = 0, 1, 2) are obtained numerically for each pair of transitions j′ ↔ j and are
given in Table 1.

4. Conclusions

In this study, cross sections and thermally-averaged rate coefficients for electron impact rotational
transitions in HeH+ are computed for the five lowest rotational levels of HeH+ using the UK R-matrix
method combined with the multichannel quantum defect theory (MQDT). Our improved channel
elimination procedure removes this ambiguity to evaluate accurate results at low energy (<0.01 eV).
This and our previous study [33] make us believe that once the collisional excitation cross section
data is available, the analysis of the intensities of infra-red and microwave regions can provide
information for the diagnostics of tokamak, as well as the study of planetary atmospheres and of the
interstellar medium.

With certain modifications accounting for a different threshold behavior of the cross section at low
collision energies, the present theoretical approach can be extended for collisions between an electron
and a neutral molecule. These developments will be published later.
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Appendix A

This section provides details on the formulas used for the cross section calculations.
First, rotational and electronic states of the target ion are introduced as:

φjµmj =

√
2j + 1
8π2

[
Dj

mjµ(Ω)
]∗

ω(r2), (A1)

where j, mj, and µ are the angular momentum of HeH+ and its projections in the laboratory frame
(LF) and the molecular frame (MF), respectively. The function ω(r2) specifies the two-electron wave
function of HeH+, which depends on µ. Dj

mjµ(Ω) is the Wigner function depending on three Euler
angles, which are called collectively by symbol Ω. The vibrational state of the target ion is not specified
(i.e., pure rotational transitions are considered). We assume that the incident electron plane wave
propagates along the z-axis in the LF with a wave vector of magnitude k j. The complete scattering
wave function Ψjµmj of the system in the asymptotic region is given by the sum of the contributions due
to the pure Coulomb field ψC and the short-range potential Vsr, representing the difference between
the actual e−+HeH+ interaction and the Coulomb potential, as follows [34]:

Ψjµmj → ψC(k j,~r)φjµmj+
1
r ∑j′µ′mj

′ exp
[
i(k j′r− η′ ln{2k j′r})

]
f j′µ′mj

′←jµmj
(~k j′)φj′µ′mj

′ ,
(A2)

where η′ = −1/(k j′ h̄
2) is the Sommerfeld parameter. In the above expression, energetically open

channels are labeled by the quantum numbers j′ and µ′; f j′µ′mj
′←jµmj

(~k j) denotes the differential
amplitude for scattering from state {j, µ, mj} to {j′, µ, m′j}. The amplitude includes only the
contributions due to Vsr . We assume that the incident wave in ψC is a plane wave for large r,
such that the incident current density is k j. Similar to Reference [30], channel functions with a definite
total angular momentum~J =~l +~j and its projection M = ml + mj in the LF are introduced:

ΦJM
jµl =

√
2j + 1
8π2 ω(rN−1)

l

∑
ml=−l

j

∑
mj=−j

C JM
lml jmj

[
Dj

mjµ(Ω)
]∗

Ylml
(r̂) , (A3)

where l and ml are the incident electron angular momentum and its projection in the LF. The scattering
state of Equation (A1) takes the form

Ψjµmj → 2πi
r
√

kj
∑JM ∑lml

Ylml
(k̂ j)ileiσl ∑j′ l′

C JM
lml jmj√

kj′
ΦJM

j′µ′ l′×
[
δj′ jδµ′µδl′ le

−iθj′ (r) − SJ
j′µ′ l′ ;jµle

iθj′ (r)
]

,
(A4)

with θj′(r) = k j′r− l′π
2 − η′ ln(2k j′r) + σl′ and σl′ = arg Γ (l′ + 1 + iη′) . (A5)

The pure Coulomb scattering wave function can be written in a similar form:

ψC(k j,~r)φjµmj → 2πi
r
√

kj
∑JM ∑lml

Ylml
(k̂ j)ileiσl ∑j′ l′

C JM
lml jmj√

kj′
ΦJM

j′µ′ l′×
[
δj′ jδµ′µδl′ le

−iθj′ (r) − δj′ jδµ′µδl′ le
iθj′ (r)

]
.

(A6)

The difference between Equations (A4) and (A6) gives the last term in Equation (A2):

∑mj
′ exp

[
i(k j′r− η′ ln{2k j′r})

]
f j′µ′mj

′←jµmj
(~k j′)φj′µ′mj

′ =

2πi√
kj

∑JM ∑lml
Ylml

(k̂ j)ileiσl ∑l′
C JM

lml jmj√
kj′

ΦJM
j′µ′ l′

(
δj′ jδµ′µδl′ l − SJ

j′µ′ l′ ;jµl

)
eiθj′ (r) .

(A7)
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Moving the exponent factor to the right-hand side, we obtain

∑mj
′ f j′µ′mj

′←jµmj
(~k j′)φj′µ′mj

′ =

2πi√
kj

∑JM ∑lml
Ylml

(k̂ j)∑l′
C JM

lml jmj√
kj′

ΦJM
j′µ′ l′ i

leiσl
(

δj′ jδµ′µδl′ l − SJ
j′µ′ l′ ;jµl

)
eiσl′ i−l′ .

(A8)

Multiplying both sides of the above equation with φj′µ′m̃′j
, integrating over electronic coordinates

r2 of the target and the angles Ω, we obtain the scattering amplitude for the transition jµmj → j′µ′m̃′j:

f j′µ′m̃′j←jµmj
(~k j′) =

2πi√
kj

∑JM ∑lml
Ylml

(k̂ j)∑l′m′l

C JM
lml jmj√

kj′
C JM

l′m′l j′m̃′j
Yl′m′l

(θϕ)ileiσl
(

δj′ jδµ′µδl′ l − SJ
j′µ′ l′ ;jµl

)
eiσl′ i−l′ .

(A9)

To make notations slightly more uniform, in the equations below, we use symbol m′j instead of
m̃′j. The cross section for rotational excitation σj′µ′←jµ(Eel) averaged over initial projections mj and
summed over final projections m′j = m̃′j is obtained as follows:

σj′µ′←jµ(Eel) =
∫

sin θdθdϕ
1

2j + 1
k j′

k j
∑

mj ,m′j

∣∣∣ f j′µ′m̃′j←jµmj
(~k j′)

∣∣∣
2

, (A10)

where Eel = (h̄k j)
2/(2m) is the energy of the incident electron, and θ and φ are spherical angles of the

wave vector~k j′ of the scattered electron in the LF.
Below, we assume that the incident plane wave propagates along the z-axis of the LF

(i.e., Ylml
(k̂ j) = δml ,0

√
(2l + 1)/(4π) in Equation (A9)). Therefore, the number of summation indexes

in Equation (A9) is reduced from six to five, over J, M, l, l′, and m′l . The square of the amplitude in
Equation (A10) doubles the number of summation indexes. We will refer to the additional indexes as
J̄, M̄, l̄, l̄′, and m̄l

′. With the sums over mj and m′j in Equation (A10), the number of summation indexes
becomes twelve. Due to the orthogonality of Yl′m′l

(θϕ) and Yl̄′m̄l
′(θϕ), the integral over θ and ϕ reduces

the number of summation indexes to ten with l′ = l̄′ and m′l = m̄l
′. In the remaining ten-fold sum,

the double sum over m′j and m′l is

∑
m′l ,m

′
j

C JM
l′m′l j′m′j

C J̄ M̄
l′m′l j′m′j

= δJ, J̄δM,M̄ , (A11)

which reduces the number of indexes to J, M, l, l′, l̄, and mj. Again, in the remaining sum (because
ml = m̄l = 0):

∑
mj ,M

C JM
l0jmj

C JM
l̄0jmj

=
2J + 1
2l + 1

δl,l̄ . (A12)

With the above simplifications, the cross section of Equation (A10) becomes:

σj′µ′←jµ(Eel) =
1

2j + 1
π

k2
j

∑
J,l,l′

(2J + 1)
∣∣∣ei(σl+lπ/2)SJ

j′µ′ l′ ;jµle
i(σl′−l′π/2)

∣∣∣
2

, (A13)

assuming that the initial jµ and final j′µ′ states are different (i.e., an inelastic process).
For a given total energy E = Eel + Ejµ of the e−-HeH+ system, the size No of the matrix SJ

in the formula above is equal to the number of open scattering channels with energies Ej′µ′ < E.
However, the closed channels with Ej′µ′ > E, which are not included explicitly in Equation (A13),
usually significantly influence the S-matrix and the cross section. Such closed channels are taken into
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account using the “closed channel elimination” procedure [31,32]. The S-matrix in Equation (A13) is
obtained from another matrix, having a larger number of channels, including the channels that are
closed at given E. Namely, SJ in Equation (A13) is given by:

SJ = eiη̂c

[
Soo − Soc

(
Scc − e−2iβ(E)

)−1
Sco
]

eiη̂c , (A14)

where η̂c is a No × No [32] diagonal matrix with diagonal elements equal to the Coulomb phase
shift in the corresponding channel, [η̂c]i,i = − lπ

2 − η ln(2k jr) + σl . The matrices Soo, Soc, Scc, and Sco

are submatrices of the larger N × N S-matrix, which includes open and closed channels (N ≥ No).
The larger S-matrix, partitioned as:

S J =

(
Soo Soc

Sco Scc

)
, (A15)

where the partition of the matrix elements in the “o”- and “c”-parts is made on the basis whether the
corresponding channel, jµ or j′µ′, is open or closed for ionization at the total energy E. The quantity
β(E) is a diagonal Nc × Nc matrix:

β j′µ′ ;jµ(E) =
π√

2(Ejµ − E)
δj′ jδµ′µ , (A16)

and Nc = N − No is the number of closed channels.
We assume that the initial and final vibrational states of the target ion are the same. In this

situation, it is a good approximation to consider that the averaged internuclear distance in the target
ion is unchanged during the rotational excitation process and is equal to the equilibrium distance Re.
The scattering matrix S J in Equation (A15) is therefore obtained for a fixed geometry Re in the basis of
channel functions of Equation (A3). In the R-matrix calculation, the reactance matrix K is obtained in a
different basis of functions X JM

lλ [30], in which the molecule is fixed in space (i.e., the body-fixed (BF)
basis). The channel functions X JM

lλ transform into ΦJM
jµl in the following way:

ΦJM
jµl = ∑

λ

X JM
lλ (−1)l+λCjµ

l−λJΛ , (A17)

where λ is the projection of the orbital momentum l of the incident electron on the molecular axis, and
Λ is the projection of the total orbital momentum of all electrons on the molecular axis. For the HeH+

ion in the ground electronic state, λ = Λ and µ = 0. The S-matrix obtained in the BF is diagonal over
quantum numbers J and Λ. Therefore, the transformation between the S-matrices obtained in the two
bases is given by:

S J
j′µ′ l′ ;jµl = ∑

λλ′
(−1)l′+λ′+l+λCj′µ′

l′−λ′ JΛ′C
jµ
l−λJΛSΛ

l′λ′ ;lλ , (A18)

where SΛ
l′λ′ ;lλ is an element of the the BF S-matrix obtained from the reactance matrix K as:

ŜΛ =
1̂ + iK̂Λ

1̂− iK̂Λ
, (A19)

with 1̂ being the identity matrix and K̂Λ is the reactance matrix obtained numerically using the UK
R-matrix code.
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Cross sections for vibronic excitation of CH+ by low-energy electron impact
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A theoretical approach for the electron-impact vibronic excitation of molecular ions with low-lying excited
electronic states is described. In this approach, the fixed-nuclear R-matrix method is employed to compute
electron-ion scattering matrices in the Born-Oppenheimer approximation. A vibronic frame transformation
and the closed-channel elimination procedure in a spirit of molecular quantum defect theory are employed
to construct an energy-dependent scattering matrix describing interactions between vibronic channels of the
target ion induced by the incident electron. The obtained scattering matrix accounts for Rydberg series of
vibronic resonances in the collisional spectrum. The approach is applied to the CH+ ion of an astrophysical
and technological interest. Cross sections for vibronic excitation for different combinations of initial and final
vibronic states are computed. A good agreement between electronic-excitation cross sections, obtained using the
quantum defect theory and in a direct R-matrix calculation, demonstrates that the present approach provides a
reliable tool for determination of vibronic (de-)excitation cross sections for targets with low-energy electronic
resonances. Such targets were difficult to treat theoretically using earlier methods.

DOI: 10.1103/PhysRevA.100.062711

I. INTRODUCTION

In many fields of research and applications, it is essential
to have accurate cross sections for different processes taking
place in collisions between molecular ions and electrons.
Among such processes are electron-impact rotational (RE),
vibrational (VE), and electronic (EE) excitation of the ions;
dissociative recombination (DR); and photoionization and its
inverse process, radiative recombination. Some cross sections
could be obtained in experiments. However, for many pro-
cesses, especially for the processes involving excited-state
ions (ions here and below are assumed to be molecular ions,
not atomic) or such ions as radicals, which are unstable in
collisions with other species present nearby, an experimental
approach is difficult or impossible. Even for stable ions in
their ground quantum state, an experimental approach is often
very expensive.

On the other hand, for theoretical approaches a significant
complication in computation of the cross sections is the pres-
ence of vibrational and rotational degrees of freedom that have
to be accounted for to obtain an accurate description of the
processes. Electronic excitation and ionization of molecules
can be treated theoretically, at least to some extent in the
Born-Oppenheimer approximation or by taking into account
the Franck-Condon factor. For other processes, such as rovi-
brational excitation or dissociative recombination, non-Born-
Oppenheimer effects should be accounted for explicitly.

With modern development of electron-scattering methods
and abundant computational resources, it became possible

*slavako@ucf.edu

to compute, with an acceptable uncertainty, cross sections
for many processes in electron-ion collisions. Significant
progress was made for processes in diatomic ions formed
by light elements: H2

+ [1], HeH+ [1], BeH+ [2], BF+ [3],
CH+ [4–7], SH+ [8], N2

+ [9–11], O2
+ [12] with a few

other diatomic ions, and the simplest triatomic ion H3
+

with its isotopologs [13–17], where non-Born-Oppenheimer
effects in electron-ion collisions were accurately accounted
for, typically by using a quantum-defect approach combined
with rotational and vibrational frame transformations. With
some additional simplifications, such processes as rovibra-
tional excitation and dissociative recombination were also
successfully described theoretically for larger molecular ions:
CH3

+ [18], H3O+ [18,19], NH4
+ [20], HCO+ [21–27],

BF2
+ [28], N2H+ [27], HCNH+ [29–32], CH2NH2

+ [33],
and NH2CHOH+ [34].

Theoretically, non-Born-Oppenheimer couplings in
electron-ion collisions are treated differently for the ions with
low-energy electronic resonances appearing for geometries
near the equilibrium of the target ion (in a fixed-nuclei
picture) and for the ions without such low-energy electronic
resonances. In the former case, usually the potential energy
surface (PES) of the doubly excited neutral molecule crosses
the ionic PES near the equilibrium geometry; in the latter
case, there is no such a resonance PES. The ions of the first
type usually (not always) have the first excited electronic state
at a relatively low energy, below 5 eV; the ions of the second
type have the first excited electronic state at a higher energy.

The presence of low-energy electronic resonances in the
first type of the ions increases significantly compared to the
ions of the second type, the DR, EE, VE, and RE cross
sections at low collision energies. Because of the significant

2469-9926/2019/100(6)/062711(9) 062711-1 ©2019 American Physical Society
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difference in the physics of couplings in electron-ion colli-
sions in the two types of the ions, one developed two types
of approaches. The first approach, developed for DR, VE, and
RE processes and originated from studies by O’Malley [35]
and Bardsley [36–38], takes into account explicitly the PES
crossing. The second approach, based mainly on studies by
Lee [39], Jungen et al. [40,41], and Giusti [42] and employed
when there is no PES crossing, accounts for the coupling
between the incident electron and the rovibronic Rydberg
resonances of the neutral molecule. In the absence of a PES
crossing, such resonances are responsible for the major con-
tribution to the DR cross section at low energies [13,42,43].
This is especially important for polyatomic ions, listed above.
All these ions have a closed electronic shell, the first excited
electronic state at a high energy, and no PES crossing near the
equilibrium geometry of the ions.

There are situations where there is a PES crossing near
the ion equilibrium geometry and, in addition, there are one
or several low-energy electronic resonances in the collisional
spectrum. Many open-shell ions are of this type, for exam-
ple. The two approaches mentioned above are not able to
describe satisfactory the DR and excitation processes. On
the basis of an earlier theory suggested by Giusti [42,44],
Jungen et al. have developed an efficient approach that can
deal with such a situation. The approach was applied to
several diatomic ions for which the dissociative electronic
PES of the neutral molecule crosses the ionic PES near the ion
equilibrium [6,45–47]. The approach is based on the quantum
defect theory (QDT), where, in addition to one or several
electronic states of the ion, the dissociative state is explic-
itly included into the coupling scheme [42,44]. Couplings
between different electronic states of the target ion are derived
from ab initio calculations of electronic (Rydberg) bound
states of the neutral molecule. Couplings between the ionic
and dissociative states are obtained from the autoionization
widths of dissociative states of the neutral molecule (where
autoionization is allowed). The widths are typically obtained
in electron-scattering calculations.

The above theoretical approach is the only one able to
describe non-Born-Oppenheimer effects on electron-ion col-
lisions in the presence of coupled electronic channels of
the target. One significant limitation of the approach is the
difficulty in obtaining couplings between the electronic states.
The procedure of diabatization of coupled Rydberg states
obtained in ab initio calculations, used in the approach, is
laborious, not unique, and sometimes not accurate. It becomes
even more ambiguous and very complicated for polyatomic
ions, such that an extension of the approach to polyatomic
ions becomes impractical.

In this study, we propose another approach, which com-
bines some of the original ideas from the molecular quantum
defect theory [40,42,48], more recent DR and VE studies
in polyatomic ions [14,21,25,27,43], and recent progress in
electron-scattering calculations. The approach can be applied
to determine EE, VE, RE, and DR cross sections for a wide
range of small polyatomic ions, including the ions with one or
several low-energy excited ionic and/or resonant states of the
system. In this article, we focus on the VE process and, for
the simplicity of discussion, on a particular case of a diatomic
ion CH+. However, the treatment can easily be applied to
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FIG. 1. Potential energy curves for the X 1�+ (black curve),
a 3� (red curve), A 1� (blue curve), b 3�− (green curve), and c 3�+

(purple curve) electronic states of CH+. Four lowest vibrational
levels for the four lowest electronic states are shown by horizontal
thin lines in potential wells of the states. The inset displays the
four vibrational states v = 0–3 of the X 1�+ state. The CH 2 2�

resonance state is plotted as thin dashed (violet) line. The CH 2 2�

resonance energies are obtained in fixed-nuclei R-matrix calculations
at R varying from 1.137 to 1.737 bohrs with an interval of 0.1 bohrs.

small polyatomic ions and, with some additions similar to
Refs. [42,44], for the DR process.

II. ELECTRON-CH+ COLLISIONS

Collisions of the CH+ ion with electrons have been studied
theoretically since, at least, 1951 [38,49–51]. The interest was
motivated by the detection of the ion in diffuse interstellar
clouds, made initially by Douglas and Herzberg [52] and by
Adams [53] in 1941. These and later detections confirmed that
CH+ is ubiquitous as a major constituent of interstellar clouds.
The ion is also an important intermediate in combustion and
in the formation of large hydrocarbons in the interstellar
medium (ISM). Reactive collisions of CH+ with a low-energy
electron determine the energy balance and evolution of low-
temperature hydrocarbon plasmas such as in the ISM. The
theoretical study of the e−-CH+ collision system is thus of
considerable astrophysical interest. Processes taking place
in e−-CH+ collisions are also of interest for technological
plasmas: For example, they play an important role in plasma
processing of diamond films [54] and at the edge plasma of
fusion reactors [55], where graphite is used as plasma-facing
material.

A theoretical description of low-energy e−-CH+ collisions
is complicated due to the presence of a low-energy electronic
22� resonance and several low-energy excited electronic
states of CH+ [4,51,56] (see Fig. 1). The excited ionic states
produce series of Rydberg resonances that influence all col-
lisional processes. In this situation, the standard vibrational-
frame-transformation approach by Chang and Fano [57],
used in many theoretical studies on electron-molecule colli-
sions [48,58], is not well adapted: The approach requires that
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the scattering matrix or, alternatively, the matrix of quantum
defects, obtained for fixed internuclear positions (in the Born-
Oppenheimer approximation), to be a smooth function of the
collision energy—ideally, to be energy independent. However,
the presence of the 2 2� resonance and the low-energy excited
electronic states makes the fixed-nuclei scattering matrix to be
strongly energy dependent.

The PES of the 22� resonance crosses the PES of the
ground electronic state X 1�+ of the CH+ ion slightly to
the left of the CH+ equilibrium geometry. As Giusti has
pointed out [51], the electronic configuration of the resonance
is mainly due to the coupling between the 3σ1π (1�)4σ and
3σ1π (3�)4σ orbitals of the CH+ + e− system. The reso-
nance at small internuclear distances has a Rydberg character
and is produced by the a 3� and A 1� parent states of the CH+

ion. These states are the first and second electronically excited
states of the ion. Near and to the left of the crossing of the res-
onance and ionic X 1�+ PES, the character of the resonance
is mainly 3σ1π (1�)4σ (see Fig. 1 of Ref. [51]). Therefore,
the resonance could be included in the QDT description of
the CH+ + e− scattering if the a 3� and A 1� excited ionic
states are accounted for in the complete scattering matrix.
Of course, at low scattering energies at fixed geometries to
the left of the crossing, these two electronic channels are
closed for ionization and should be accounted for using the
closed-channel elimination procedure [59], often employed in
the QDT studies. Below, we describe in detail the developed
theoretical approach.

III. QDT DESCRIPTION OF ELECTRONIC RESONANCES

In applications of the theoretical method presented below,
one needs scattering matrices obtained numerically for fixed
geometries of the target ion. The scattering matrices could
be obtained in different ways. We used the UK R-matrix
code [60]. The details of the numerical calculations using the
R-matrix code for e−-CH+ collisions are given in Sec. V.

As mentioned above, the geometry-fixed scattering matrix
is strongly energy dependent for e−-CH+ collisions. This is
demonstrated in Fig. 2, showing derivatives of the eigenphase
sums for the three symmetries 2�+, 2�, and 2�− of the
e−-CH+ system computed at the equilibrium with internu-
clear distance Re = 2.137 bohrs. Several series of Rydberg
resonances converge to the electronic states a 3� and A 1�

as marked by the blue vertical lines in Fig. 2.
To describe low-energy electronic resonances in different

e−-CH+ scattering processes, we use the QDT approach and
need an energy-independent scattering matrix, which includes
not only the ground electronic state of CH+ but a few more
states that can produce resonances at scattering energies of
the interest. In the e−-CH+ case, low-energy resonances are
well reproduced if one takes into account only three electronic
states of the ion. Figure 2 shows derivatives of eigenphase
sums in two calculations. In one calculation (black solid
curves), only the three lowest X 1�+, a 3�, and A 1� states
are included. In the second calculation (red dashed lines),
14 lowest states were included. As one can see, at low en-
ergies, below the A 1� ionization limit, the two calculations
agree quite well with each other. In the second calculation
with a larger number of ionic states, there are a few narrow
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FIG. 2. Derivatives of the eigenphase sum for three symmetries
2�+, 2�, and 2�− of e−-CH+ obtained for the equilibrium internu-
clear distance Re = 2.137 bohrs in two different calculations: Black
solid curves show the results obtained taking into account only three
lowest electronic states of CH+. Red dashed curves are obtained
with 14 states. The differences between the curves are subtle and
can hardly be seen in the figure.

resonances at low scattering energies that are not reproduced
in the first, smaller calculation. These resonances are attached
to very excited electronic states of the ion and do not influence
significantly the low-energy spectrum.

Therefore, the electronic scattering matrix at low energies
could well be represented by the three states X 1�+, a 3�, and
A 1� of the ion. With this set of electronic states, the above-
mentioned 22� resonance is included in the scattering model.

In order to account for vibrational and rotational excitation
of the target, the standard QDT approach is to use vibrational
and rotational frame transformations [40,57]. The approach is
applicable only if the electronic scattering matrix, obtained for
a number of different geometries of the ion, is energy indepen-
dent. As Fig. 2 shows, the e−-CH+ scattering matrix depends
strongly on energy below the A 1� ionization limit and cannot
be immediately used in the frame transformation. A possible
solution is to take the (almost) energy-independent scattering
matrix, obtained at an energy above the A 1� ionization
limit, and use it at energies below the limit. Therefore, the
vibrational (and rotational) frame transformation is performed
on a 3 × 3 electronic scattering matrix, which produces a
N × N matrix with N vibronic (rovibronic) channels. Such a
rovibronic scattering matrix is essentially energy independent
and a QDT closed-channel elimination procedure [59,61]
should be performed to obtain the physical energy-dependent
matrix, which can be used to compute cross sections for
various processes.

Before discussing the vibronic frame transformation ap-
plied to the e−-CH+ collisions, we compare the fixed-nuclei
electronic scattering matrices obtained (1) using the elimi-
nation procedure of the closed electronic states and by (2) a
direct scattering R-matrix calculation at the same internuclear
distance.
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FIG. 3. Comparison of eigenphase-sum derivatives below the
A 1� state obtained at a fixed CH+ geometry in (1) the direct R-
matrix calculations (red dashed curve) and using (2) the energy-
independent 3 × 3 scattering matrix and the procedure of elimination
of closed electronic channels (black solid curve). The inset shows an
enlarged view for the 2.6- to 3.0-eV interval of energies.

The elimination of closed electronic channels at a geome-
try R is given by [59,61]

Sphys(Eel ) = Soo − Soc[Scc − e−2iβ(Eel )]−1Sco , (1)

where Eel is the scattering energy and Soo, Soc, Scc, and
Sco are submatrices of the weakly dependent electronic scat-
tering matrix (3 × 3 in the present case of the e−-CH+

system),

S(Eel ) =
(

Soo Soc

Sco Scc

)
. (2)

Partition of matrix elements in the o and c parts is made on
the basis of whether the corresponding channels are open or
closed for excitation for the particular scattering energy Eel.
The quantity of β(Eel ) in Eq. (1) is a diagonal Nc × Nc matrix

β(Eel, R) = π√
2[Ei(R) − Eel]

δi′,i, (3)

where Ei(R) denotes the energy values of the ith electronic
states at internuclear distance R.

Figure 3 shows derivatives of eigenphase sums obtained
from the scattering matrices computed at the equilibrium dis-
tance Re. The red dashed curve is the result from the R-matrix
calculation; the black solid curve is the calculation using
the energy-independent 3 × 3 electronic scattering matrix and
the closed-channel elimination procedure. Overall, positions
of the resonances in the two calculations are the same but
widths in the R-matrix calculation are wider. This means
that diagonal elements of the scattering matrices in the two
calculations are very similar but the nondiagonal elements, re-
sponsible for channel couplings and widths of the resonances,
are slightly different, suggesting that highly excited electronic
states, neglected in the 3 × 3 channel elimination procedure,
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FIG. 4. Comparison of eigenphase-sum derivatives computed for
a fixed CH+ geometry using three different energy-independent 3 ×
3 scattering matrices and the procedure of elimination of closed elec-
tronic channels. The three matrices are taken at energies 3.413 eV
(black solid curve), 3.563 eV (red dashed curve), and 3.713 eV (green
dotted curve). The inset shows an enlarged view for 2.1- to 2.4-eV
energies.

have non-negligible contributions to the coupling between the
lowest channels.

The choice of the 3 × 3 scattering matrix used in the
channel-elimination procedure is not unique, because the
matrix depends on energy, even above the A 1� electronic
state. To assess the result of uncertainty in the choice of
the energy at which the 3 × 3 scattering matrix is taken, we
plot in Fig. 4 eigenphase-sum derivatives obtained for 3 × 3
scattering matrices taken at three different energies above the
A 1� state: at 3.413, 3.563, and 3.713 eV. Positions and the
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FIG. 5. Cross sections for the X 1�+ → a 3� electronic excita-
tion of CH+ at fixed geometry Re obtained in the direct R-matrix cal-
culations (red dashed curve) and using the QDT channel elimination
procedure (black solid curve).
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FIG. 6. The rate coefficients for the X 1�+ → a 3� electronic
excitation of CH+ at Re obtained in the direct R-matrix calculations
(red dashed curve) and the QDT channel elimination procedure
(black solid curve).

widths of the resonances are nearly the same in the three
calculations.

An important conclusion from the results discussed above
is that the e−-CH+ scattering physics below the A 1� state
can be represented using an energy-independent multichannel
scattering matrix evaluated at a higher energy, above the A 1�

ionization limit in a combination with the closed-channel
elimination.

A rough idea about the magnitude of cross sections for
electron-impact electronic excitation of a molecule is obtained
from a fixed-geometry calculation. Here, for a comparison
between the QDT and direct R-matrix approaches, we present
such excitation cross sections. The vibrational dynamics dur-
ing the process is discussed in the next section.

Using the physical scattering matrix Sphys(Eel, Re ) of
Eq. (1) describing electronic transitions at the equilibrium
geometry Re of CH+, the fixed-nuclei cross section of the
electronic excitations from the X 1�+ state to the a 3� state is

computed in the QDT approach as [14]

σi′,i(Eel, Re ) = π h̄2

2meEel

×
∑

l ′m′,lm

∣∣Sphys
l ′m′i′,lmi(Eel, Re ) − δl ′m′i′,lmi

∣∣2
, (4)

where me is the reduced mass of electron and i and i′ refer
to the initial (X 1�+ in this case) and final (a 3� here)
electronic states. Indexes lm and l ′m′ numerate initial and
final angular momenta and their projections in the molecular
reference frame (where ab initio calculations are performed).
The cross section in the R-matrix approach is obtained by the
same formula, except that the scattering matrix in the above
equation is replaced with the one obtained directly in the
R-matrix calculations at the corresponding energy Eel.

Figure 5 compares the cross sections for the X 1�+ →
a 3� transition obtained in the two approaches. The general
agreement between the two curves is good, even for the widths
of the resonances. One noticeable difference is in the position
of the minimum near 1.5 eV: In the QDT calculations, it is
shifted slightly to the left. The agreement is better at energies
approaching the a 3� ionization limit.

Differences observed in the cross sections obtained by the
two methods are smeared out in the thermally averaged rate
coefficient

ki′,i(T, Re ) = 8π

(2πkbT )3/2

∫ ∞

0
σi′,i(Eel, Re )e

−Eel
kbT EeldEel, (5)

computed from the cross sections. In the above equation, kb

is the Boltzmann coefficient and T is the temperature. The
obtained rate coefficients, shown in Fig. 6, are in very good
agreement with each other. This confirms that major couplings
between electronic channels are accurately represented in the
QDT approach and validates the approach.

IV. VIBRONIC EXCITATION

The energy-dependent physical scattering matrix for vi-
bronic transitions is obtained in two steps. First, one computes
the energy-independent vibronic scattering matrix assuming
that all vibronic channels are open. In the second step, an
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FIG. 7. Cross sections for vibronic excitations of CH+ from the ground vibrational level v = 0 of the X 1�+ state to v = 1, 2, 3 of the
X 1�+ state (left panel), to v = 0, 1, 2, 3 of the a 3� state (middle panel), and for vibronic de-excitations from the ground vibrational level
v = 0 of a 3� to v = 0, 1, 2, 3 of the X 1�+ state (right panel).
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FIG. 8. Rate coefficients for same vibronic transitions as shown in Fig. 7.

elimination of closed vibronic channels is applied, producing
the required energy-dependent vibronic scattering matrix.

The first step is performed by the vibronic frame transfor-
mation

Sl ′m′v′i′,lmvi(Eel ) = 〈ϕv′i′ (R)|Sl ′m′i′,lmi(Eel, R)|ϕvi(R)〉, (6)

where ϕvi(R) and ϕv′i′ (R) are wave functions of the initial
and final vibrational states. Index v or v′ corresponds to the
number of vibrational quanta in initial i or final i′ electronic
states. The brackets imply an integration over the vibrational
coordinate R.

In the second step, the energy-dependent physical scatter-
ing matrix Sphys(Eel ) is obtained by the QDT vibronic closed-
channel elimination procedure, described by the same Eqs. (1)
and (3), except that the energies Ei(R) of closed channels are
replaced with energies of vibronic channels Evi, i.e.,

β(Eel ) = π√
2(Evi − Eel )

δv′i′,vi . (7)

The cross sections σv′i′,vi(Eel ) for vibronic excitation or
de-excitation of CH+ are computed using Eq. (4), where
Sphys

l ′m′i′,lmi(Eel, Re ) is replaced with Sphys
l ′m′v′i′,lmvi(Eel ).

Figure 7 illustrates cross sections obtained for different
combinations of initial and final vibronic states. Figure 7(a)
shows results for pure vibrational excitations between levels
of the ground electronic state X 1�+. As expected, the cross
section for the transition with 	v = 1 is the largest one
between inelastic processes. Figure 7(b) gives cross sections
from the ground vibronic state X 1�+, v = 0 to several vi-
brational levels of the a 3� state. Since the potential curves
of the X 1�+ and a 3� states have similar shapes near the
equilibrium, the largest X 1�+ → a 3� cross section is ex-
pected to be for 	v = 0, as the present calculation indeed
demonstrated. Figure 7(c) gives cross sections for the de-
excitation process a 3�, v = 0 → X 1�+, v′ = 0 − 3.

Cross sections for vibronic excitations were recently es-
timated by Chakrabarti et al. [5] using a rough theoretical
approach, in which cross sections for electronic excitations
computed at the CH+ equilibrium geometry were multiplied
with Franck-Condon overlaps for various combinations of
initial and final vibrational levels to obtain the cross sections
for vibronic transitions. In that study, vibronic Feshbach res-
onances as well as differences in vibrational excitation ener-
gies were neglected. The cross sections obtained in Ref. [5]
differ significantly—more than an order of magnitude for
several transitions—from the present results. We attribute the

disagreement to the mentioned approximations employed in
Ref. [5]: (1) neglected differences in vibrational excitation
threshold energies, (2) neglected dependence of e−-CH+ scat-
tering parameters with the internuclear distance, and (3) the
neglected resonances in closed vibronic channels.

Thermally averaged rate coefficients kv′i′,vi(T ) for these
vibronic (de-)excitations from 10 to 10 000 K are then com-
puted using Eq. (5), where σi′,i(Eel, Re ) is substituted with
σv′i′,vi(Eel ). Figure 8 shows computed rate coefficients for the
same transitions as the cross sections in Fig. 7.

As in previous studies [62–65] and for convenience of
use, the computed thermally averaged rate coefficients kv′i′←vi

were fitted using the following analytical formula,

kfit
v′i′←vi(T ) = 1√

T
e− 	

v′ i′,vi
T Pfit

v′i′,vi(x), (8)

where Pfit
v′i′,vi(x) is a quadratic polynomial

Pfit
v′i′,vi(x) = a0 + a1x + a2x2 and x = ln(T ) (9)

with Pfit
v′i′,vi(x) ≈ Pfit

vi,v′i′ (x). This quantity could be viewed
as the (de-)excitation probability. 	v′i′,vi in Eq. (8) is the
threshold energy defined as

	v′i′,vi =
{

Ev′i′ − Evi > 0 for excitation,
0 for de-excitation. (10)

Numerically fitted parameters for vibronic transitions are
given in Tables I–VI. When the parameters given in the tables
are used in the fitting formulas of Eqs. (8) and (9) with T in K,
obtained numerical values of rate coefficients will be in units

TABLE I. Parameters a0, a1, and a2 of the polynomial Pfit
vi,v′i′ (x)

of Eqs. (8) and (9) for several pairs of initial and final vibrational
levels of the ground electronic state X 1�+ of CH+. We specify the
threshold energy 	v′ i′,vi for the excitation process in the pair v′i′, vi
in the second column of each table. For the de-excitation process,
	vi,v′i′ = 0.

v′i′ ↔ vi 	v′i′,vi (K) a0 a1 a2

10 ↔ 00 3 934 2.90 × 10−6 −1.20 × 10−7 2.30 × 10−9

20 ↔ 00 7 700 1.10 × 10−6 1.60 × 10−8 −6.60 × 10−9

30 ↔ 00 11 299 2.90 × 10−7 5.00 × 10−8 −5.10 × 10−9

20 ↔ 10 3 766 7.85 × 10−7 2.17 × 10−7 −1.22 × 10−8

30 ↔ 10 7 365 4.57 × 10−7 1.02 × 10−7 −8.64 × 10−9

30 ↔ 20 3 599 2.39 × 10−6 2.51 × 10−8 −5.26 × 10−9
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TABLE II. Same as Table I for the electronic state a 3�.

v′i′ ↔ vi 	v′ i′,vi (K) a0 a1 a2

11 ↔ 01 3 633 5.43 × 10−6 4.68 × 10−7 −4.41 × 10−8

21 ↔ 01 7 039 2.01 × 10−6 5.14 × 10−9 −3.18 × 10−9

31 ↔ 01 10 216 1.17 × 10−6 −3.37 × 10−8 −2.65 × 10−9

21 ↔ 11 3 405 7.53 × 10−6 6.95 × 10−8 −2.30 × 10−8

31 ↔ 11 6 583 2.99 × 10−6 3.58 × 10−8 −2.48 × 10−9

31 ↔ 21 3 178 6.55 × 10−6 2.04 × 10−7 −8.40 × 10−9

of cm3/s. In the tables, the electronic states are numerated
with index i (or i′) with i = 0 corresponding to X 1�+, i = 1
to a 3�, and i = 2 to A 1�.

V. CALCULATIONS OF ELECTRONIC STRUCTURE,
SCATTERING, AND VIBRATIONAL

DYNAMICS OF THE PROCESS

In this section, we provide details about numerical calcula-
tions of the vibrational wave functions of the ion and ab initio
calculations performed for the bound electronic states of the
ion and the e−-CH+ scattering.

The configuration of the ground electronic state X 1�+ of
CH+ is 1σ 22σ 23σ 2 in the C∞v symmetry group of the ion.
The potential energy curves V (R) of CH+ were calculated
using the C2v symmetry group with a multireference config-
uration interaction (MRCI) method and the cc-pV5Z basis set
using the MOLPRO code [66]. We kept the 1σ orbital of carbon
doubly occupied and used 14 orbitals, i.e., 2σ -7σ , 1π -3π ,
and 1δ as the complete active space (CAS). The calculated
potential energy curves of the X 1�+, a 3�, A 1�, b 3�−, and
c 3�+ electronic states are shown in Fig. 1. The X 1�+, a 3�,
A 1�, and c 3�+ curves correlate with the C+(2P) + H(2S)
dissociation limit at large internuclear distances.

In order to determine the vibrational energies Ev and the
corresponding vibrational wave functions ϕv (R) within these
electronic states of CH+, we solved the Schrödinger equation
for vibrational motion along R[

− h̄2

2μ

d2

dR2
+ V (R)

]
ϕv (R) = Evϕv (R), (11)

using a discrete variable representation (DVR) method [67].
In the above equation, μ denotes the reduced mass of CH+.
The lowest four vibrational energy levels v = 0, 1, 2, 3 of the
X 1�+ state are listed in Table VII. As one can see, the present
computed energies agree well with the theoretical calculations
by Biglari et al. [68].

TABLE III. Same as Table I for the electronic state A 1�.

v′i′ ↔ vi 	v′ i′,vi (K) a0 a1 a2

12 ↔ 02 2 290 5.44 × 10−6 1.74 × 10−7 −1.09 × 10−8

22 ↔ 02 4 271 2.16 × 10−6 −1.24 × 10−8 −6.08 × 10−10

32 ↔ 02 5 971 1.49 × 10−6 −8.82 × 10−9 5.33 × 10−10

22 ↔ 12 1 981 1.33 × 10−5 −1.13 × 10−7 −3.47 × 10−10

32 ↔ 12 3 680 7.74 × 10−6 8.39 × 10−9 −8.35 × 10−10

32 ↔ 22 1 699 3.48 × 10−6 −1.17 × 10−8 6.50 × 10−10

TABLE IV. Same as Table I for vibronic transitions vX 1�+ ↔
v′a 3�.

v′i′ ↔ vi 	v′i′,vi (K) a0 a1 a2

01 ↔ 00 13 572 5.10 × 10−6 −1.20 × 10−8 2.30 × 10−9

11 ↔ 00 17 205 3.50 × 10−7 2.70 × 10−7 −2.20 × 10−8

21 ↔ 00 20 610 5.00 × 10−7 3.80 × 10−9 −3.80 × 10−10

31 ↔ 00 23 788 2.00 × 10−7 5.70 × 10−8 −5.70 × 10−9

01 ↔ 10 9 638 4.90 × 10−7 2.57 × 10−7 −1.84 × 10−8

11 ↔ 10 13 271 4.30 × 10−6 5.30 × 10−8 −2.80 × 10−9

21 ↔ 10 16 677 7.13 × 10−7 1.72 × 10−8 −6.09 × 10−10

31 ↔ 10 19 854 6.00 × 10−7 1.98 × 10−8 −5.12 × 10−10

01 ↔ 20 5 872 7.06 × 10−7 1.55 × 10−7 −1.78 × 10−8

11 ↔ 20 9 505 1.93 × 10−6 −3.01 × 10−8 −5.86 × 10−9

21 ↔ 20 12 910 3.97 × 10−6 −7.95 × 10−8 6.09 × 10−9

31 ↔ 20 16 088 9.13 × 10−7 2.49 × 10−8 −2.09 × 10−9

01 ↔ 30 2 273 3.24 × 10−7 4.24 × 10−8 −2.23 × 10−9

11 ↔ 30 5 906 8.23 × 10−7 1.61 × 10−8 −3.03 × 10−9

21 ↔ 30 9 311 1.77 × 10−6 −1.22 × 10−8 −4.08 × 10−9

31 ↔ 30 12 489 3.31 × 10−6 −4.24 × 10−8 3.17 × 10−10

The e−-CH+ scattering calculations were carried out
using the UK R-matrix code [60,69] with the help
of the Quantemol-N interface [70]. The cc-pVQZ ba-
sis set and CAS configuration interaction (CI) method
in the C2v Abelian subgroup were used in the calcula-
tions. The inner orbital 1a1

2 of CH+ was frozen, and
four external electrons were distributed in the space of
the [2a1, 3a1, 4a1, 5a1, 6a1, 7a1, 8a1, 1b1, 2b1, 3b1, 1b2, 2b2,

3b2, 1a2] orbitals (2σ, 3σ, 4σ, 5σ, 6σ, 7σ, 1π, 2π, 3π, 1δ in
C∞v symmetry group). We chose an R-matrix sphere of
radius 13 bohrs and continuum Gaussian-type orbitals with
partial waves l � 4. The two different R-matrix calculations
described in Sec. III closed-coupling expansions with 3 and
14 lowest electronic states of CH+ were used for construct-
ing the total wave functions for the e−-CH+ system. In the

TABLE V. Same as Table I for vibronic transitions vX 1�+ ↔
v′A 1�.

v′i′ ↔ vi 	v′ i′,vi(K) a0 a1 a2

02 ↔ 00 34 147 3.30 × 10−6 −2.10 × 10−7 9.90 × 10−9

12 ↔ 00 36 437 1.70 × 10−6 −7.70 × 10−8 2.90 × 10−9

22 ↔ 00 38 418 6.70 × 10−7 −1.20 × 10−8 4.70 × 10−10

32 ↔ 00 40 117 3.40 × 10−7 −2.70 × 10−9 1.50 × 10−10

02 ↔ 10 30 213 1.21 × 10−6 4.41 × 10−8 −3.94 × 10−9

12 ↔ 10 32 503 8.20 × 10−7 −2.90 × 10−8 −9.71 × 10−10

22 ↔ 10 34 484 1.01 × 10−6 2.69 × 10−9 −3.61 × 10−10

32 ↔ 10 36 183 7.74 × 10−7 1.83 × 10−8 −9.69 × 10−10

02 ↔ 20 26 446 4.39 × 10−7 2.69 × 10−8 −1.11 × 10−9

12 ↔ 20 28 737 1.17 × 10−6 −2.14 × 10−8 7.31 × 10−10

22 ↔ 20 30 718 2.36 × 10−7 8.67 × 10−10 −5.88 × 10−11

32 ↔ 20 32 417 3.82 × 10−7 −5.63 × 10−9 3.06 × 10−10

02 ↔ 30 22 847 4.27 × 10−7 −1.51 × 10−8 −5.84 × 10−11

12 ↔ 30 25 138 1.46 × 10−6 2.16 × 10−8 −2.89 × 10−9

22 ↔ 30 27 119 7.21 × 10−7 1.48 × 10−9 −3.23 × 10−10

32 ↔ 30 28 818 1.19 × 10−6 −1.90 × 10−8 1.04 × 10−9
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TABLE VI. Same as Table I for vibronic transitions va 3� ↔
v′A 1�.

v′i′ ↔ vi 	v′ i′,vi (K) a0 a1 a2

02 ↔ 01 20 575 3.28 × 10−6 4.81 × 10−8 −7.56 × 10−9

12 ↔ 01 22 865 7.02 × 10−7 2.32 × 10−9 −1.11 × 10−9

22 ↔ 01 24 846 5.83 × 10−7 −4.73 × 10−9 −2.56 × 10−11

32 ↔ 01 26 545 4.43 × 10−7 2.81 × 10−9 −1.53 × 10−10

02 ↔ 11 16 941 5.03 × 10−6 2.61 × 10−7 −1.85 × 10−8

12 ↔ 11 19 232 1.08 × 10−6 1.17 × 10−8 −3.14 × 10−9

22 ↔ 11 21 213 1.52 × 10−6 −4.00 × 10−9 −3.32 × 10−10

32 ↔ 11 22 912 6.47 × 10−7 −3.27 × 10−9 1.69 × 10−10

02 ↔ 21 13 536 1.39 × 10−6 1.24 × 10−7 −6.56 × 10−9

12 ↔ 21 15 826 3.69 × 10−6 −1.94 × 10−8 9.08 × 10−10

22 ↔ 21 17 807 7.26 × 10−7 −2.50 × 10−8 1.19 × 10−9

32 ↔ 21 19 507 5.32 × 10−7 6.38 × 10−9 −3.78 × 10−10

02 ↔ 31 10 358 1.30 × 10−6 −9.89 × 10−8 2.13 × 10−9

12 ↔ 31 12 649 2.41 × 10−6 7.13 × 10−8 −5.00 × 10−9

22 ↔ 31 14 630 1.54 × 10−6 9.42 × 10−9 −6.05 × 10−10

32 ↔ 31 16 329 1.08 × 10−6 −1.35 × 10−9 4.25 × 10−11

vibrational frame transformation of Eq. (6), the electron scat-
tering calculations were performed in the interval between
1.537 and 3.937 bohrs with a step of 0.1 bohrs along the
internuclear coordinate R.

VI. CONCLUSIONS

In conclusion, cross sections and rate coefficients for vi-
bronic excitation and de-excitation of CH+ by electron impact
were computed in a framework using first principles only.
The theoretical approach combines fixed-nuclei scattering
matrices obtained for a number of internuclear distances using
the UK R-matrix code, the vibronic frame transformation, and
the QDT closed-channel elimination procedure. The approach
is validated in model calculations for electronic excitation,
performed for a single fixed internuclear distance of the target,
comparing the results from a direct R-matrix calculation and
the QDT channel elimination procedure. The main advantage
of this method compared with the previous state of theory is
that it can be applied to collisions of electrons with molecular

TABLE VII. Comparison of the four lowest vibrational energy
levels (in eV) of the X 1�+ state obtained in this study with the
calculations by Biglari et al. [68].

Ref. v = 0 v = 1 v = 2 v = 3

Biglari et al. [68] 0.175218 0.514360 0.838974 1.149288
This work 0.175189 0.514102 0.838515 1.148720
Relative error 0.017% 0.050% 0.055% 0.054%

ions with low-lying excited electronic states, including open-
shell ions. The approach is quite general and can be applied
for a number of different processes, taking place in colli-
sions of molecular ions with electrons, including rovibronic
excitation, dissociative excitation (DE), photoionization, and
dissociative recombination (DR).

In this study, we took into account only the electronic
and vibrational structure of the target ion. The rotational
structure of each vibrational level was neglected. The de-
scription of the rotational structure and couplings could be
included into the treatment in the same way as was made
in many previous treatments (see, for example, Ref. [65] and
references therein). Therefore, the obtained cross sections and
rate coefficients should be viewed as averaged over initial
rotational states and summed over final rotational states of
the corresponding vibrational levels. The inclusion of the
rotational structure and couplings is important if one needs
rotationally resolved cross sections or thermally averaged rate
coefficients at temperatures T comparable or smaller than the
CH+ rotational constant, i.e., at T � 20 K. An extension of
this method to include nuclear rotation will be discussed in a
later publication.
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Cross sections and rate coefficients for vibrational excitation and de-excitation of the N2O molecule by a
low-energy electron for transitions between the lowest vibrational levels are computed using a first-principles
approach. The present theoretical approach employs the normal-mode approximation for the description of target
vibrational states, the vibrational frame transformation to compute amplitudes of vibrational transitions, and the
R-matrix method to compute ab initio electronic bound and continuum states. It was found that the nonadiabatic
Renner-Teller effect, which couples partial waves of the incident electron with degenerate bending vibrations
of N2O, is responsible for the excitation of the bending mode. Theoretical results obtained agree reasonably
well with available experimental data at low energies. Thermally averaged rate coefficients are computed for
temperatures in the 10–10 000 K range.

DOI: 10.1103/PhysRevA.102.032808

I. INTRODUCTION

Vibrational (de-)excitation by electron impact is a process
in which an electron scatters off a molecule and exchanges
energy with it in a way that leaves the molecular target in a dif-
ferent vibrational state. For N2O, vibrational (de-)excitation
can be depicted by

e− + N2O(νi ) → e− + N2O(νi
′), (1)

where νi and and ν ′
i denote the initial and final vibrational

states of N2O, respectively.
Due to the importance of nitrous oxide (N2O) in a plethora

of research fields ranging from astrochemistry [1–3] to low-
temperature plasma technology [4] and medicine [5], different
electron-N2O collisional processes have been experimen-
tally and theoretically explored over the years. Differential
and integrated cross sections for elastic and certain inelas-
tic processes have been measured by several groups [6–26].
Although the experimental investigations generally agree on
the position of an observed resonance near 2.3–2.5 eV, they
disagree on the assignment for the symmetry of the resonant
state. Furthermore, there is also disagreement with respect to
a second resonance observed around or above 8.0 eV. On the
theoretical side, the earlier studies by Morgan [27], Sarpal
et al. [28], and Bettega et al. [29] aimed at clearly specifying
the nature of the two resonances observed in the experiments.
Morgan and Sarpal et al. employed the R-matrix method with
different models to study electron scattering by N2O in its
equilibrium geometry. They obtained a resonance near 2.3 eV

*mehdi.ayouz@ecp.fr

with 2� symmetry. Later, using a slight modification of the
Schwinger multichannel method of incorporating polarization
effects, Bettega [29] was able to reproduce the experimental
features between the two resonances.

To our knowledge, no theoretical vibrational cross sec-
tions have been reported to date, while several experimental
cross sections have: by Hayashi and Akashi [30], Kitajima
et al. [18], Allan and Skalický [21], and Nakamura [22].
A compilation of their work can be found in a recent re-
view [31]. Hayashi and Akashi presented cross sections for
electron-induced vibrational excitations from electron swarm
parameters in pure N2O. Kitajima et al. as well as Allan
and Skalický measured absolute differential cross sections
for vibrationally inelastic electron scattering with a range of
electron scattering energies from the threshold region up to
20 eV. Allan and Skalický reported measurements for only
one scattering angle, 135◦, and multiplied each of the mea-
sured differential cross sections by the factor 4π to estimate
the integral cross section. Nakamura [22] derived cross sec-
tions for vibrational excitation from swarm parameters.

The present work represents the first theoretical vibrational
excitation (VE) study of N2O by electron impact. We present
cross sections and rate coefficients for transitions between
ground and first vibrational states of N2O using the theoretical
and computational formalism recently employed to study the
VE of NO2 [32]. The rotational structure is neglected in the
present study.

The paper is organized as follows. The next section, Sec. II,
describes the theoretical approach and computational details
employed in our calculations. In Sec. III, the results obtained
numerically are analyzed using the model of Renner-Teller
coupling for linear molecules. In Sec. IV, the obtained VE

2469-9926/2020/102(3)/032808(8) 032808-1 ©2020 American Physical Society



HAINAN LIU et al. PHYSICAL REVIEW A 102, 032808 (2020)

cross sections and corresponding rate coefficients are shown
and discussed. Section V presents uncertainty estimations of
the present approach, and the last section, Sec. VI, is devoted
to our conclusions.

II. THEORETICAL APPROACH

Our approach can be summarized as follows. We start by
characterizing the molecular target according to its equilib-
rium geometry, vibrational frequencies, and dipole moment
value at equilibrium: features that can be obtained by perform-
ing ab initio electronic bound molecular states calculations.
We proceed by performing ab initio electronic continuum
molecular states calculations to obtain a scattering matrix at
different molecular geometries along the vibrational normal-
mode coordinates. We then transform the scattering matrix
into the basis of vibrational states of the target molecule.
Finally, we compute the vibrational (de-)excitation cross sec-
tions from the transformed scattering matrix.

The approach used in our study has been previously de-
scribed and applied to the NO2 molecule [32], and a more
detailed narrative of the simplified model on which our ap-
proach is based can be found in Refs. [33,34]. Therefore,
we limit the description presented in this section to the main
ingredients of the theoretical formalism—the normal-mode
approximation and the vibrational frame transformation—and
to the computational details of our calculations.

At low energies around the equilibrium position, the po-
tential energy curve of the most rigid molecules is fairly well
described by the quadratic potential of a harmonic oscillator.
In our approach, we describe vibrational wave functions of the
molecular target using the normal-mode approximation. The
approximation allows us to perform a significant part of the
calculations analytically. For molecules of astrophysical and
low-temperature plasma interest, like N2O, only the lowest
vibrational levels are significantly populated at low temper-
atures and the range of scattering energies needed to study
vibrational excitation is within the validity of the normal-
mode model.

After computing the scattering matrix, we perform a vi-
brational frame transformation [35] to change the scattering
matrix obtained for clumped nuclei for a number of molecular
geometries to the vibrating-molecule picture that the electron
sees when it is at large electronic distances.

The clumped nuclei basis of asymptotic channels is de-
noted by the channel quantum numbers {l, λ} that label the
angular momentum of the incoming and outgoing electrons
and their respective projections on the z axis in the molecular
frame coordinate system. The three axes of the molecular
coordinate system are chosen along the principal axes on the
inertia of the molecule, such that the quantization axis (the z
axis) is directed along the molecular axis in calculations for
linear geometries. For bent geometries of the molecule, the z
axis is perpendicular to the plane of the molecule, with the x
axis aligned along the axis of the smallest moment of inertia.
In Sec. III we introduce another set of quantum numbers
{l, λ̃} and corresponding channel functions, which replace the
spherical harmonic Y λ

l with their real-valued combinations of
Y ±λ

l . The target vibrational wave functions are labeled by the
{νi, ν

′
i} set of quantum numbers.

The vibrational frame transformation of the scattering ma-
trix elements is given by

Sνi
′νi

l ′λ′,lλ = 〈χνi
′ (q)|Sl ′λ′,lλ(q)|χνi (q)〉, (2)

where q collectively represents the normal-mode coordinates
and the index i denotes the vibrational mode. N2O has three
normal modes of vibration, namely, NO stretching, the doubly
degenerate bending mode, and NN stretching, represented
by ν1, ν2, and ν3, respectively. The physical meaning of an
element of the transformed scattering matrix is the scattering
amplitude from one vibrational state, χνi (q), of the target
molecule to another, χν ′

i
(q). The vibrational frame transfor-

mation of Eq. (2) can only be performed if the fixed-nuclei
S-matrix element, Sl ′λ′,lλ, is a smooth function of the incident
electronic energy [36]. This means, in particular, that for this
approach to be applicable, the fixed-nuclei S matrix should not
have low-energy electronic resonances. As discussed above,
the lowest electronic resonance in e−-NO2 collisions occurs
at collision energies of about 2.5 eV.

The cross section σνi
′νi for vibrational (de-)excitation can

be obtained from the corresponding matrix element Sνi
′νi

l ′λ′,lλ by
the expression

σνi
′νi (Eel ) = π h̄2

2meEel

∑
l ′λ′,lλ

∣∣Sνi
′νi

l ′λ′,lλ − δ
νi

′νi
l ′λ′,lλ

∣∣2
, (3)

where me and Eel are, respectively, the reduced mass of the
electron-N2O system and the energy of the incident elec-
tron. Although the fixed-nuclei scattering matrix Sl ′λ′,lλ(q) is
weakly dependent on the energy, the remaining energy depen-
dence introduces an ambiguity in the choice of the matrix
in the integrand of Eq. (2). In the present calculation, we
choose the following procedure: Integrating over the normal
mode q in Eq. (2) for a given energy Eel of the electron in
the incident channel (see the above equation) and at each
integration point q, the scattering matrix Sl ′λ′,lλ(q) is taken
from the R-matrix calculations performed at this particular
fixed-nuclei geometry q and the electron scattering energy Eel.
Because the energy dependence of the fixed-nuclei scattering
matrix is weak below 2.5 eV, the corresponding uncertainty
of the final cross section is much smaller than the uncertainty
related to the choice of the ab initio model (discussed below).

The cross section of Eq. (3) for vibrational excitation does
not account for the rotational structure and can be compared
with experiments or used in applications where the rotational
structure of the initial and final vibrational levels is not im-
portant or not resolved. This is, generally, the case for most
current experiments (including swarm measurements) and
plasma applications at room or higher temperatures: With the
rotational N2O constant of 0.419 01 cm−1 = 5.195×10−5 eV
[37] at 300 K, at least 25 rotational states are significantly
populated.

Computational details

At its equilibrium geometry, N2O has a linear asymmetric
“N-N-O” molecular structure, described by the C∞v symme-
try point group with the group electronic state of the 1	+
symmetry. The equilibrium geometry and the normal-mode
coordinates with corresponding frequencies were computed

032808-2
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TABLE I. Energies h̄ωi (in eV) of N2O normal modes obtained in the present study and compared with experimental data from Ref. [38].

h̄ωi

Mode (νi) Degeneracies Symmetry Experimental Calculated

NO stretching (ν1) 1 	+ 0.1610 0.1622
Bending (ν2) 2 � 0.0739 0.0761
NN stretching (ν3) 1 	+ 0.2830 0.2849

with the MOLPRO suite [39] using the complete active space
self-consistent field (CASSCF) method and the cc-pVTZ ba-
sis set [40] centered on each atom. N2O has 22 electrons in a
closed-shell electronic ground-state configuration given by

1
	+: 1σ 22σ 23σ 24σ 25σ 26σ 21π47σ 22π4.

In the calculations preserving the C∞v symmetry group,
the 10 electrons which occupy the lowest five σ molecular
orbitals were kept frozen and the remaining 12 electrons
were allowed to distribute themselves according to symme-
try and spin restrictions in the complete active space (CAS)
formed by the remaining 6σ1π7σ2π ground-configuration
orbitals and the next three molecular orbitals, 8σ , 9σ , and
3π , which are empty in the ground configuration. Because
available quantum chemistry codes cannot handle continuous
groups like C∞v , the calculations were performed in the C2v

group for the geometries describing NO and NN stretching
displacements. For geometries breaking the C∞v symmetry
group—the bending-mode displacements—the same 10 elec-
trons were kept frozen in the lowest 5 a′ orbitals and the
remaining 12 electrons were distributed in the 6–12 a′ and
1–3 a′′ orbitals of the corresponding Cs symmetry group.

Upon optimization of the equilibrium geometry, the N-N
and N-O bond lengths were found to be 1.131 and 1.186 Å,
respectively, in good agreement with the experimental val-
ues, 1.128 and 1.184 Å [38]. Table I reports a comparison
between the obtained normal-mode frequencies and the avail-
able experimental data [38]. Our frequencies agree with the
experimental references with a difference of less than 3%.

After characterizing the equilibrium geometry and normal-
mode frequencies with MOLPRO [39], we carried out

calculations of the potential energy of the ground electronic
state of N2O and calculations of continuum states using the
U.K. R-matrix code [41] with the Quantemol-N suite [42].
For consistency with the MOLPRO calculations, we have used
the same basis set and CAS. However, Quantemol-N does
not have CASSCF built into it, and a series of convergence
tests showed that the available complete active space con-
figuration interaction (CAS-CI) model with the Hartree-Fock
orbitals built with MOLPRO gave the best results. Figure 1
displays the ground-state electronic potential energy curves
of N2O for each normal mode obtained with Quantemol-N.
For comparison, we also show the potential energy curves of
harmonic oscillators generated with the frequencies obtained
from MOLPRO. The Quantemol-N potential energy curves
agree reasonably well with the potential energies calculated
in the harmonic approximation. Small discrepancies are at-
tributed to the anharmonicity of the actual N2O potential.
The permanent electric dipole moment of the target molecule
obtained from the R-matrix calculation is 0.1 D, which is con-
sidered to be in satisfactory agreement with the experimental
value, 0.16 D [38].

Using the molecular orbitals obtained from the structure
calculations and the continuum Gaussian-type orbitals with
partial waves up to l � 4, we performed the electronic con-
tinuum molecular states calculations with Quantemol-N. The
radius of the R-matrix sphere was set to be 11 bohr. All the
electronic states of the target below the cutoff energy, 16 eV,
have been included in the close-coupling expansion. From the
scattering calculations we can obtain the eigenphase sums and
the reactance matrix (K matrix) at clumped nuclei.

Figure 2 displays the eigenphase sum of different irre-
ducible representations at equilibrium and at displacements
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FIG. 1. Potential energy curves for the ground electronic state of N2O as a function of the (a) NO stretching, (b) bending, and (c) NN
stretching normal-mode coordinates. The abscissa axes represent dimensionless normal-mode coordinates. In each panel, only one mode is
varied, while the other modes are kept fixed at their equilibrium positions. Solid red curves show the actual potential energies obtained from the
R-matrix code, while dashed black curves represent energies calculated in the harmonic approximation, i.e., simply ∼ h̄ωi

2 q2
i . Dashed horizontal

lines denote the energies of vibrational states.
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FIG. 2. Sum of eigenphases as a function of the electron scat-
tering energy for equilibrium geometry and displacements qi =
±0.8668 (dimensionless) along each normal mode. Due to the sym-
metry of the bending mode, the eigenphase sums of q2 = +0.8668
and q2 = −0.8668 are the same. The curves are color-coded accord-
ing to the different symmetries of the e− + N2O system.

away from the equilibrium along each normal-mode coor-
dinate. We obtained the position and width of calculated
resonances by fitting the eigenphase sum to a Breit-Wigner
form. At equilibrium, the lowest resonance is found at 3.0 eV
and has 2� symmetry. To compare with the available ex-
perimental data (the resonance around 2.3–2.5 eV [21,43]),
the zero-point energy h̄(ω1 + 2ω2 + ω3)/2 = 0.3 eV of the
ground vibrational level should be accounted for. There-
fore, in the present calculation, the energy of the resonance
is 2.7 eV above the ground vibrational level. The dif-
ference from the experimental position of the resonance
is attributed to the large uncertainty associated with the
Born-Oppenheimer approximation used to identify the en-
ergy of the resonance in the theoretical calculation: The
position of the resonance depends strongly on the choice
of the fixed geometry near the N2O equilibrium at which
the scattering calculations were performed. In addition, the
width (about 1 eV) of this shape resonance is larger than
the difference between the experimental and the theoretical
results.

The K matrix obtained from the scattering calculations
was used to compute the clumped-nuclei scattering matrix (S
matrix). Figure 3 displays selected dominant elements (the
absolute value squared) of the S matrix at equilibrium geom-
etry. In the figure (as well as in Fig. 4), the indices λ̃ refer
to real-valued combinations of spherical harmonics Y ±λ

l with
positive and negative projections λ. The real-valued harmon-
ics Ylλ̃ with positive λ̃ transform as cosine-type functions with
respect to the rotational angle φ about the axis z perpendic-
ular to the plane of the molecule, while the harmonics with
negative λ transform as sine-type functions. Except for the
S10,00 element, all other elements behave smoothly with the
electronic energy below the first resonance. The minimum is
observed near 0.4 eV for the 10 ← 00 transition.

FIG. 3. Largest S-matrix elements (absolute values squared,
|Sl ′ λ̃′,lλ̃|2) computed at the N2O equilibrium geometry as a function of
the scattering energy. Top: Couplings between channels with �l = 0
in dashed curves. Bottom: Couplings between channels with �l = 1
in solid curves.

Although the S10,00 element has a strong energy depen-
dence, which breaks the condition of the applicability of
the vibrational frame transformation (the energy dependence
should be smooth), its contribution to the VE cross section in
Eq. (3) is negligible compared to that of the dominant terms
(diagonal over lλ̃), and therefore, it does not compromise the
present theoretical approach. The vibrationally transformed S
matrix is calculated according to Eq. (2), where the integration
over vibrational coordinates is performed numerically using a
Gaussian-Legendre quadrature with 10 points.

FIG. 4. Largest fixed-nuclei S-matrix elements as a function of
the bending coordinate q2, computed for scattering energy 0.26 eV.
The upper (lower) panel shows the real (imaginary) part of the
S-matrix elements. Couplings l ′λ̃′ ← lλ̃ between different partial
waves, represented by real-valued harmonics Yl,λ̃, are labeled by
curves of different colors.
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III. RENNER-TELLER COUPLING IN N2O VIBRATIONAL
EXCITATION BY ELECTRONS

It is instructive to analyze the dependence of major cou-
pling elements of the scattering matrix as a function of the nor-
mal coordinates, especially for the bending mode. For the NO
and NN stretching modes, the main contribution to the VE
cross section is due to variation of the diagonal elements of
the scattering matrix with low l .

In constrast, for the bending mode, the major contribution
is due to the q2 dependence of nondiagonal elements between
the 2	+ and the 2� states of the e− + N2O system near the
linear geometry. This is the Renner-Teller coupling, whose
effect on electron-molecule collisions has been discussed in
several previous studies [33,44–48]. For a linear triatomic
(and larger) molecule with a ground electronic state of 1	
symmetry, the Renner-Teller effect couples σ and π partial
waves of the incident electron with vibrational bending mo-
tion of the target molecule.

Due to the symmetry of the bending mode, all matrix
elements Sl ′λ̃′,lλ̃ are symmetric or antisymmetric with respect
to the change in the sign q2 → −q2 of the displacement along
the bending mode. The elements which are symmetric, such as
diagonal and some nondiagonal elements, do not contribute
to the vibrational excitation by one quantum of the bending
mode. For an element Sl ′λ̃′,lλ̃ to be antisymmetric with re-
spect to the q2 → −q2 operation, one of λ̃′ and λ̃ should be
negative, with the other positive or 0. In addition, there is a
selection rule regarding the elements that do not vanish: For
displacements along q2, both spherical harmonics in Sl ′λ̃′,lλ̃
should be of a′ or a′′ irreducible representations of the Cs

symmetry group (of the bent molecule). Figure 4 shows the
largest (in magnitude) antisymmetric S-matrix elements as a
function of the bending coordinate.

In Fig. 4, we see that most of the elements are linear with
the q2 coordinate, with the notable exception of S1−1,00, which
has a strong cubic dependence q3

2. We attribute the significant
cubic contribution to the coupling to the fact that the sσ partial
wave penetrates closer to the N2O core electrons such that the
linear approximation for the coupling between the Y0,0 and the
Y1,−1 harmonics is no longer valid and higher terms are needed
if a Taylor expansion is used to represent the coupling.

The linear dependence of the coupling between partial
wave components in a linear molecule for small displacements
along the bending coordinate is one of the main characteris-
tics of the Renner-Teller effect. The effect cannot be easily
observed in e−-N2O scattering experiments, but it manifests
itself in the bound states of the e−-N2O system: Due to the
degeneracy of the 2� electronic state of the e−-N2O complex
and the degenerate bending mode of N2O, the relatively strong
Renner-Teller coupling results in a bending configuration of
the equilibrium geometry of the N2O− anion [49,50].

IV. CROSS SECTIONS AND RATE COEFFICIENTS

We calculated the vibrational (de-)excitation cross sections
for transitions between the ground and the first excited vibra-
tional states for each of the normal modes. Figure 5 displays
a comparison of the theoretical 1 ← 0 VE cross sections
with the available experimental data [21,22,30], mentioned in
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FIG. 5. Comparison of the present theoretical results with the
available experimental cross sections for the vibrational v = 0 →
v′ = 1 excitation of the (a) NO stretching, (b) bending, and (c) NN
stretching modes. The experimental results are taken from Hayashi
[30,31] (solid line with circles), Allan and Skalický [21] (solid line
with triangles), and Nakamura [22] (dashed-dotted line).

Sec. I. None of the three experimental data resolve the ν1 =
1/ν2 = 2 and ν3 = 1/ν1 = 2 thresholds, i.e., the experimental
cross section for the excitation of the NO mode (ν1 = 0 → 1)
includes also a contribution for the transition ν2 = 0 → 2, and
the cross section for the excitation of the NN mode includes
a contribution for the ν1 = 0 → 2 transition. But these addi-
tional contributions are expected to be significantly smaller
due to the vibrational propensity rule: The transitions with a
change of only one vibrational quantum are the largest. There
is a significant disagreement between the experimental data,
up to a factor of 20–50 for certain energies. On the other hand,
the theoretical results also do not agree better with one or
another experiment: For the NO stretching mode [Fig. 5(a)],
the theory agrees better with the experiment by Hayashi [30].
For the bending mode [Fig. 5(b)], the theory agrees better
with the other two experiments, although the agreement is
quite poor. Note that the integral cross sections presented by
Allan and Skalický [21] were obtained from the measured
differential cross sections. Finally, for the NN stretching mode
[Fig. 5(c)], the theory again agrees better with the data of
Hayashi [30].
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FIG. 6. Thermally averaged rate coefficients for excitation and
de-excitation transitions between the ground and the first excited
vibrational states of the NO stretching mode (black curves), bending
mode (blue curves), and NN stretching mode (red curves). Vibra-
tional (de-)excitations are labeled νi

′ ← νi. To provide an idea of
the uncertainty of the present results, we also plotted the results of
calculations with model 2 (dotted lines) and model 3 (thin lines). The
three calculations produce curves that are almost indistinguishable.

In a recent review article [31], the swarm data of Naka-
mura [22], shown by the dashed-dotted lines in Fig. 5, were
recommended as the most accurate among the available exper-
imental cross sections. However, it should be stressed that the
recommended swarm data may not be very accurate because
of an ambiguity in their interpretation [22] (see the discussion
in Secs. 3.3 and 3.5 in Ref. [31]). Therefore, the recommended
experimental data should have a relatively large uncertainty
and could be improved in a more accurate future experiment.

The present theoretical cross sections are expected to be
valid only for energies below the energy of the 2� resonance
mentioned above, i.e., below 2.3 eV. They are included in the
Supplemental Material to this paper [51].

Thermally averaged rate coefficients ανi
′νi (T ) for vibra-

tional excitation are obtained from the cross sections of Eq. (3)
using the standard formula

ανi
′νi (T ) = 8π

(2πkBT )
3
2

∫ ∞

0
σνi

′νi (Eel )e
− Eel

kBT EeldEel, (4)

where kB is the Boltzmann constant and T is the temperature.
The computed rate coefficients are shown in Fig. 6 in different
colors.

For convenient use in plasma models, the computed coeffi-
cients were also fitted using the analytical formula employed
in our previous studies [36,52,53],

αfit
νi

′νi
(T ) = 1√

T
e−

�
νi

′νi
T Pfit

νi
′νi

(x) , (5)

where Pfit
νi

′νi
(x) is a quadratic polynomial,

Pfit
νi

′νi
(x) = a0 + a1x + a2x2 and x = ln(T ), (6)

TABLE II. Parameters a0, a1, and a2 of the polynomial Pfit
νi

′νi
(x)

in Eqs. (5) and (6) for transitions between the ground and the first
vibrational states in each normal mode. We specify the excitation
threshold energies �νi

′νi of Eq. (7) in the second column. The thresh-
old �νi

′νi = 0 for the de-excitation process.

1 ↔ 0 �νi
′νi (K) a0 a1 a2

NO stretch 1888 1.22×10−7 6.60×10−11 −3.14×10−11

Bending 885 1.37×10−8 −2.50×10−11 4.40×10−12

NN stretch 3316 4.34×10−7 7.42×10−10 −5.20×10−10

where Pfit
νi

′νi
(x) ≈ Pfit

νi
′νi

(x) can be viewed as the excitation and
de-excitation probabilities, with �v′i′,vi being the threshold
energy, defined as

�νi
′νi =

{
Eνi

′ − Eνi > 0 for excitation,
0 for de-excitation. (7)

The numerically fitted parameters for vibrational excitation
are listed in Table II. When the parameters listed in the table
are used in the fitting formulas of Eqs. (5) and (6) with the
temperature in kelvins, the obtained numerical values of the
rate coefficients will be in units of cm3/s.

V. UNCERTAINTY ESTIMATIONS

We have performed a number of calculations to assess
the uncertainty of the obtained theoretical results. There are
two main sources of uncertainty in the present theoretical
approach. The first is the accuracy of the fixed-nuclei S-matrix
elements computed for the polar molecule (with a small dipole
moment) in the limited basis of spherical harmonics. It has
been discussed by Liu [32]. The uncertainty associated with
this approximation was estimated to be of the order of 6%
for NO2 [32]. It should not be larger for N2O because it
has a smaller dipole moment so that the couplings between
partial waves induced by the permanent dipole moment of
this molecule have a weaker effect on the final cross sections.
Therefore, it is reasonable to assume that the corresponding
uncertainty in the present case is below 6%.

The second source of uncertainty derives from the partic-
ular scattering model used in the calculation. The uncertainty
can be assessed by performing a complete calculation with
different parameters of the model. With the parameters dis-
cussed in Sec. II, referred to as model 1, we obtained the
results shown above. In the second calculation, with model 2,
the CAS in the configuration calculation was the same as in
model 1 but a larger basis set, cc-pVQZ, was used. Finally, in
the model 3 calculation the electronic basis set remained cc-
pVTZ, but the CAS was reduced compared to that in model 1:
12 electrons were placed in frozen orbitals and the remaining
10 electrons in the lowest orbitals were allowed to be freely
distributed in the active space. The rate coefficients obtained
in the three models are shown in Fig. 6. The difference in the
rate coefficients produced in the three models is about 6%.
Consequently, the overall uncertainty of the present theoreti-
cal result is estimated to be below 12%.
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VI. CONCLUSIONS

In this study, we computed cross sections for vibrational
(de-)excitations of N2O by a low-energy electron using (a) the
normal-mode approximation to describe the vibrational states
of the target molecule, (b) the R-matrix method to evaluate
the fixed-nuclei electron-N2O scattering matrices, and (c) the
vibrational frame transformation to evaluate the amplitudes
for vibrational transitions. In this approach, we neglected the
rotational structure of each vibrational level, which corre-
sponds to the situation where the rotational structure is not
resolved in the initial and final states of the target molecule.

The computed results show a reasonable agreement with
experimental data for the NO and NN stretching modes. For
the bending mode the agreement is rather poor at energies
above 0.4 eV. It was found that Renner-Teller coupling is
responsible for the excitation of the bending mode, as was
expected from general theoretical considerations. We are quite
confident about the present theoretical cross sections for the
bending mode because the numerical calculations of the fixed-

nuclei scattering matrix fit well to the theory of Renner-Teller
coupling. It should be stressed here that the most reliable ex-
perimental cross section for the bending mode by Nakamura
[22,31] was obtained from swarm data and a direct measure-
ment of the differential cross section at a single scattering
angle by Allan and Skalický [21] and, therefore, may have
a large uncertainty. This suggests that a better direct mea-
surement of vibrational excitation in N2O, at least for a few
energies, is needed.
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Abstract
Cross-sections for dissociative recombination and electron-impact vibrational excitation of the
BF2

+ molecular ion are computed using a theoretical approach that combines the normal modes
approximation for the vibrational states of the target ion and use of the UK R-matrix code to
evaluate electron–ion scattering matrices for fixed geometries of the ion. Thermally-averaged
rate coefficients are obtained from the cross-sections for temperatures in the 10–3000 K range.

Keywords: non-equilibrium plasmas, plasma immersion ion implantation, electron molecular
cation reactive collisions, dissociative recombination, vibrational excitation, vibrational frame
transformation, R-matrix theory

1. Introduction

Non-equilibrium plasmas produced by electrical discharges in
BF3-containing feed gas are of continually increasing interest
for a large number of applications. In particular, BF3 is very
often the boron carrier when plasmas are used for material
processing [1–3]. Basically, BF3 plasmas are used either for
(i) the synthesis of ultra-hard boron compounds, e.g. boron
carbides [1], (ii) the deposition of boron nitride, an advanced
material with a large number of functionalities [2], and (iii)
p-type doping by boron in the semi-conductor and photo-
voltaic industries [3, 4]. As far as doping applications are
concerned, plasma immersion ion implantation (PIII) pro-
cesses are probably one of the most promising in terms of
cost and technical performance [4, 5]. These processes make

use of very low pressure, very high density magnetized
plasmas generated in a BF3-containing feed gas. Depending
on the level of the power coupled to the plasma, several
cations—BF3

+, BF2
+, BF+, B+

—and anions—e.g. F−—may
be produced [6, 7]. The positive ions are then extracted from
the source to an implantation chamber where the processed
silicon substrate is submitted to very high negative voltage
pulses. These pulses result in a large acceleration of the
positive ions that are implanted in the substrate, which results
in the doping of the latter. The implantation depth depends on
the nature and the energy distribution of the ions impinging
the substrate, while the doping level depends on the ion flux
and, consequently, on the plasma density. The plasma density
and the relative predominance of the different ions are
determined by the ionization kinetics in the source region.
The plasma sources used in PIII processes are usually mag-
netized [8]. The ambipolar diffusion in the radial direction
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that is perpendicular to the magnetic field is strongly reduced
with respect to the parallel diffusion. Under typical plasma
conditions used in PIII processes, i.e., B≈100−500 G and
p≈1 Pa, electron cyclotron frequency in the GHz range,
while the electron-neutral momentum transfer collision fre-
quency is in the MHz range, according to equation (5.4.5) of
[9] the diffusion coefficient in the radial direction is reduced
by approximately 6 orders of magnitude with respect to the
parallel diffusion coefficient. The characteristic time esti-
mated for perpendicular diffusion for typical PIII reactor
geometries is at the order of 100 s, while the dissociative
recombination (DR) characteristic time is around 0.1 s. Fol-
lowing a similar procedure, one can easily show that mutual
neutralization is also likely to dominate diffusion losses
provided the negative ion density is of the same order of
magnitude as the electron density, i.e. moderately electro-
negative plasmas. It appears, therefore, that under PIII dis-
charge conditions, positive ion losses at the reactor wall are
dominated by their DR with electrons and by their neu-
tralization through collisions with negative ions. The invest-
igation of DR of molecular ions is therefore of major interest
for these processes. This is especially the case with BF2

+,
which is often the major ion in BF3-containing plasma in
discharge conditions corresponding to PIII process [5]. This
study is a continuation of a previous work performed in the
theoretical framework of the multichannel quantum defect
theory on the DR and competitive processes of BF+ [10].

The article is organized as follows. After the Introduc-
tion, section 2 describes the theoretical approach used in the
present calculation. In section 3, the obtained cross-sections
and the corresponding rate coefficients are displayed and
discussed. Section 4 concludes the study.

2. Theoretical approach

2.1. Dissociative recombination and vibrational excitation
cross-section formulas

Since the basic formalism used in our model is presented in
detail in [11, 12], we restrict ourselves here to underlining its
major ideas. The molecular cation under study, BF+2 , is linear
in its equilibrium geometry.

The theoretical model starts with the following assump-
tions (see for example [12]): (i) the rotation of the molecule
is neglected, (ii) the cross-section is averaged over the
autoionizing resonances, (iii) the autoionization lifetime is
assumed to be much longer than the predissociation lifetime
and (iv) the harmonic approximation is used to describe the
vibrational state of the core ion. Using (i)–(iv) and applying
the frame transformation, the DR cross-section is given by
equation (13) of [12], in which the scattering matrix elements
were expanded to first order in the normal coordinates. The
cross-section for vibrational excitation (VE) of the mode i is
written as
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Here qi, iw and gi (i=1, 2,3) are respectively the dimen-
sionless coordinate, the energy and the degeneracy of the
mode i. The degeneracy is two for the bending mode 2 and
one for the symmetric and asymmetric stretching modes.
Sl l,l l¢ ¢ is an element of the fixed-nuclei scattering matrix for
electron–BF2

+ collisions with initial channel (λl) and exit
channel ( ll¢ ¢), l being the electron angular momentum and λ

its projection on the molecular axis. Finally, m is the reduced
mass of the electron–ion system, Eel the incident energy of the
electron and θ the Heaviside step function. The present
theoretical approach can describe the (de-)excitation process
changing only one quantum in each normal mode of the target
ion. (De-)excitation cross-sections for changing two or more
quanta in a mode are much smaller (the propensity rule) and
are neglected in this study. In the present case, the initial state
of the ion is the ground vibrational level, so the electron can
only be captured into the first excited vibrational state of each
normal mode.

The situation is similar if the electron energy is not
sufficient to excite the ion and then to leave it. In such a
situation, the present model suggests that the probability of
excitation of the ion by the electron is described by the same
physics, but instead of leaving the vibrationally excited ion,
the electron is captured in a Rydberg resonance attached to
that vibrational state, excited by the electron. If the electron is
captured by the ion, the system will most likely dissociate,
rather then autoionize. Correspondingly, the cross-section for
DR is then obtained [12] as
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Here i runs over all three modes: two stretching modes ν1 and
ν3 (symmetric and asymmetric) with respective frequencies
ω1 and ω3 and corresponding coordinates q1 and q3, and a
doubly degenerate transverse mode ν2 with a lower frequency
ω2 and coordinates q q,x y2 2( ).

To calculate the derivative of the scattering matrix
S ql l i,¶ ¶l l¢ ¢ with respect to the normal coordinate qi, the

scattering matrix is evaluated for two values of qi keeping the
other normal coordinates qi¢ fixed at q 0i =¢ .

The elements S ql l,l l¢ ¢
( ) of the scattering matrix S q

ˆ ( ) at a
given geometry q


specified by four normal coordinates q


=

q q q q, , ,1 2 3 4{ } = q q q q, , ,x y1 2 3 2{ } are computed from the

reactance matrix K̂ , obtained numerically as discussed below:
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where 1̂ is the identity matrix.

2.2. The properties of the BF+
2 ion and the scattering

calculations

The main electronic ground state configuration g
1S+ of the ion

in its natural point group symmetry D h¥ is 1 u
2s+( ) 1 g

2s+( )
2 g

2s+( ) 2 u
2s+( ) 3 g

2s+( ) 4 g
2s+( ) 3 u

2s+( ) 1 u
2p-( ) 1 u

2p+( ) 1 g
2p-( )

1 g
2p+( ) . The normal coordinates and the related frequencies are

obtained using the cc-pVTZ basis set centered on each atom

2
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and including s, p and d orbitals. Performing configuration
interaction (CI) calculations in the D2h symmetry group, using
the MOLPRO suite of codes [13], we found that the equili-
brium geometry of the ion has a B–F distance of 1.2215Å.
Table 1 gives the vibrational frequencies obtained from CI
calculations using the cc-pVTZ basis set, and compares with
the data available in literature.

The electron-scattering calculations were performed
using the UK R-Matrix code [17, 18] with the Quantemol-N
interface [19]. The calculations were performed in the abelian
subgroup D2h and the target BF2

+ ion was assumed to be in its
ground electronic state. In our CI model, we freeze 10 elec-
trons in the core 1ag, 2ag, 3ag, 1b2u, 2b2u, while the remaining
12 electrons are kept free in the active space of the 4ag, 5ag,
1b3u, 2b3u, 3b2u, 4b2u, 1b1g, 1b1u, 2b1u, 1b3g molecular
orbitals. A total of eight electronic excited target states are
represented by 1844 configuration state functions (CSFs) for
the ground state. All the generated states up to 16 eV were
retained in the final close-coupling calculation. We used an
R-matrix sphere of radius 10 bohrs and continuum Gaussian-
type orbitals with partial waves up to l<4. In the following,
this calculation will be referred to CAS1.

Initially, several basis sets—including DZP and cc-pVTZ
—were tested to investigate the stability of the target prop-
erties such as polarizability and ground state energy and,
finally, we chose the cc-pVTZ basis set in order to perform
the scattering calculations. Since the first electronically
excited state g

3S- is approximately 13 eV above the dis-
sociation limit for the ground state, this latter state is essen-
tially isolated and the non-adiabatic effects are expected to be
small. Therefore, for low electron energy collisions, i.e. below
10 eV, only the ground electronic state is open for ionization
in e–BF2

+ collisions, and the dimension of the geometry-fixed
scattering matrix remains the same at low collision energies.

At low collision energies the fixed-nuclei scattering
matrix depends only weakly on energy. A sharper energy-
dependence is observed at certain relatively high energies,
corresponding to positions of Rydberg states attached to the
excited electronic states of the ion. A quantity convenient for
the analysis of the energy dependence of the scattering matrix
is the eigenphase sum. Figure 1 displays the eigenphase sum
for three different geometries corresponding to a small dis-
placement from equilibrium along each normal mode of the
BF2

+ ion. Bending and asymmetric stretching mode calcula-
tions were performed in the C2v abelian subgroup, while for
the symmetric mode the group D2h was used in the calcula-
tions. The variation of the eigenphase sums is smooth for

energies below 6 eV. Above this value, a sharp energy
dependence at certain energies is observed due to the presence
of electronic Rydberg resonances attached to closed ioniz-
ation limits.

3. Cross-sections and rate coefficients

For convenience, we introduce the quantities
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which could be interpreted as the probability of excitation of
the vibrational mode i, and list them in table 2. Figure 2
shows the weak dependence of those quantities on energy
and, therefore, they could be used as constants in calculations
of the thermally-averaged rate coefficients.

Using Pi, the cross-sections of equations (1) and (2) are
written as
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Figure 3 illustrates the DR cross-section EDR
els ( ) com-

puted based on equation (5). At very low scattering energies,
i.e. below 0.02 eV, the DR cross-section is a smooth function
inversely proportional to the incident energy of the electron,
as predicted by the Wigner threshold law, whereas at higher
energies, it exhibits a drop at each vibrational threshold.

Due to the simple analytical form of the cross-sections,
the corresponding rate coefficients are easily evaluated from
the general expression
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where kb is the Boltzmann coefficient and T is the temper-
ature. The thermally-averaged rate coefficients for DR and
VE are shown in figure 4.

Table 1. Vibrational frequencies (in cm−1) obtained in this study and compared with previous data available in literature.

Mode Symmetric stretching Bending Asymmetric stretching
Symmetry gS+

uP+ and uP-
uS+

ω1 ω2 ω3 Method References

1062.8 469.2 2146.1 CI/cc-pVTZ This work
1023 443 2088 MP2 [14]
1030 450 CI [15]

2 026.1±0.2 Exp. [16]

3
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In order to access the uncertainty of the present theor-
etical model, we have performed a complete calculation
of the DR and VE rate coefficients using different basis sets
and orbital spaces in the electron-scattering calculations. The

calculations were performed for three sets of parameters (1)
the CAS1 with the cc-pVTZ basis set, mentioned above; (2) a
calculation (referred here as cc-pVTZ CAS2) similar to (1) but
with a smaller orbital space, where 8 electrons are kept free in
the active space; and (3) a calculation (referred here as cc-
pVQZ CAS1) similar to (1) but with the larger basis cc-
pVQZ. The results are shown in figure 4. The difference
between the rate coefficients produced in the three calcula-
tions for the DR process and the VE of the asymmetric
stretching and bending modes is about 4%. The uncertainty of
the rate coefficient for the VE of the symmetric stretching

Figure 1. Eigenphase sums as a function of the electron-scattering energy Eel for qi=0.01 (dimensionless) for the symmetric stretching
(left panel), bending (right upper panel), and asymmetric stretching (right bottom panel) modes. The curves of different colors correspond to
different symmetries of the e−–BF2

+ system.

Table 2. Parameters of equations (8) and (9) calculated at
E=0.1 eV collision energy.

Mode i Pi

symmetric stretching 0.053
bending 0.20
asymmetric stretching 0.05

Figure 2. VE of BF2
+: probabilities corresponding to the normal

vibrational modes of the target ion. Figure 3. Cross-section for the DR of BF2
+. The lowest vibrational

threshold of each normal mode is indicated by arrows.

4
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mode is larger, varying in the interval 10%–40% for different
temperatures. Notice that the overall probability for the
symmetric stretching excitation is much smaller than the
probabilities for other modes and DR.

4. Conclusions and discussions

In this study, cross-sections and rate coefficients for DR and
VE of BF2

+ by electron-impact were obtained using a theor-
etical approach that combines the normal modes approx-
imation for the vibrational states of the target ion, the
vibrational frame transformation, and the UK R-matrix code.
The thermally-averaged rate coefficients have a simple ana-
lytical form.

The obtained thermally-averaged rate coefficients are
relevant for the kinetic modeling of molecule based cold non-
equilibrium plasmas, in the context of a complete lack of
other theoretical or experimental data on these processes for
this cation, and are ready to be used in the modeling of
fluorine/boron plasma for etching or implantation processes.
Indeed, we are presently able to make important statements on
the relative importance of BF2

+ with respect to BF+ on the
population and excitation balance. In particular, as shown in
figure 5, the DR of BF2

+ strongly dominates that of BF+

below 7000 K, and the VE displays the same feature below
5000 K.

The rotational structure of the target ion and of the
neutral molecule was neglected in the present approach,
which implies that the obtained cross-sections and rate coef-
ficients should be viewed as averaged over initial rotational

states and summed over final rotational states of the
corresponding initial and final vibrational levels (for VE) or
dissociative states (for DR). Purely rotational transitions, i.e.
without changing the vibrational state, might be useful to
model very cold environments, below 40 K, which is not the
case for the presently investigated BF3 plasma. Moreover
BF2

+ has no permanent dipole, so the rotational transitions are
likely to have very small cross-sections.
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Figure 4. DR and VE of BF2
+: rate coefficients—equations (8) and

(9). To give an idea of the uncertainty of the present results, we also
plotted the results of two calculations with the cc-pVTZ CAS2
(dashed line) and the cc-pVQZ CAS1 (dotted line) sets of parameters
of the model. For the VE of the symmetric stretching mode, the cc-
pVTZ CAS2 and cc-pVQZ CAS1 curves are indistinguishable and
slightly below the cc-pVTZ CAS1 curve. For the remaining three
processes, the three calculations produce curves which are almost
indistinguishable in the figure.

Figure 5. Relative importance of the DR and VE of BF2
+, with

respect to those of BF+.
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