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- Toujours à la recherche de nouvelles aventures ? Qu’allez-vous
choisir cette fois-ci ?
- Jusqu’ici je n’ai guère eu le choix.
- C’est vrai. Eh bien moi, je vous propose un choix. Vous connaissez
le jeu de Pile ou Face ? Je vous laisse choisir : Pile vous allez dans
un sens, et Face vous allez dans l’autre.
- Cela ne revient-il pas au même ?
- Pas toujours. . . Alors ? Que choisissez-vous ?
- Heu.. Pile. C’est Face. Evidemment.
- Ah, ah, ah, ne vous inquiétez pas, Monsieur Acquefacques. A ce
jeu là, on ne perd jamais. Mais on ne gagne pas non plus.

Marc-Antoine Mathieu - L’épaisseur du miroir
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Avant-propos

Ce mémoire d’habilitation est une synthèse des travaux que j’ai effectués depuis ma thèse de
doctorat, soutenue en juin 2012 à l’Université Pierre et Marie Curie. Ma recherche s’inscrit dans
le domaine des systèmes de particules en champ-moyen et leurs perturbations (dynamique en
environnement et sur des graphes aléatoires) et les applications de ces modèles à des systèmes
physiques (e.g. synchronisation de modèles d’oscillateurs) ou biologiques (populations de neu-
rones en interaction). Deux asymptotiques de ces systèmes sont étudiées : en grande population
et en temps long.

Ces travaux ont donné lieu aux publications référencées ci-dessous, dont on donne ici un bref
descriptif :

— Les articles suivants s’intéressent au comportement en grande population sur un intervalle
de temps borné de systèmes en champ-moyen soumis à diverses perturbations :
1. En présence d’un milieu aléatoire, que ce soit du point de vue de la convergence (loi des

grands nombres) de la mesure empirique vers la solution d’une équation de Fokker-
Planck non linéaire et des fluctuations associées [L1, L4] mais aussi des Grandes
Déviations (quenched) [L8] autour de cette limite.

2. Pour des modèles avec interactions spatiales, possiblement singulières, là encore du
point de vue de la loi des grands nombres [L3] et du Théorème Central Limite [L6]
de la mesure empirique.

3. Pour des modèles interagissant sur des graphes aléatoires possiblement dilués (lois des
grands nombres [L5, L10] et fluctuations [L14]).

— Un second aspect des travaux exposés dans ce manuscrit concerne le comportement en
temps long de processus de McKean-Vlasov non linéaires associés à ces modèles de champ-
moyen. L’accent est mis sur l’émergence, la stabilité et la régularité de trajectoires pério-
diques pour ces processus :
1. L’article [L2] traite de l’existence de solutions périodiques stables pour le modèle de

Kuramoto soumis à un désordre asymétrique,
2. Les articles [L9, L11] s’intéressent à l’influence du bruit et de l’interaction sur l’émer-

gence de solutions périodiques pour des systèmes excitables et en particulier pour le
modèle de FitzHugh-Nagumo,

3. La question générale de la stabilité et de la régularité des ces solutions périodiques
est abordée dans [L12].

— Un troisième aspect des travaux exposés ici concerne la stabilité des comportements pé-
riodiques évoqués plus haut vis-à-vis de la mesure empirique du système microscopique
de taille finie. Le comportement en temps long de la mesure empirique du modèle de Ku-
ramoto en présence de désordre symétrique est abordé dans [L7] et le problème similaire
dans un cadre général de systèmes excitables est traité dans [L15].

— Un dernier aspect traité ici concerne un intérêt récent pour des dynamiques à sauts de
type Hawkes en présence d’inhibition. L’apport de l’article [L13] est de proposer une
modélisation nouvelle de l’inhibition dans de tels modèles et d’en étudier l’émergence de
solutions macroscopiques périodiques.

Par ailleurs, je co-encadre, avec Ellen Saada, depuis septembre 2020 la thèse de Zoé Agathe-
Nerine portant sur la dynamique en grande population et en temps longs de processus de Hawkes
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en interaction sur des graphes aléatoires, thématique présentant des liens forts avec les outils
développés dans ce manuscrit.

Pour faciliter la lecture du manuscrit, les résultats évoqués sont souvent non exhaustifs,
parfois mentionnés sous des hypothèses simplificatrices et seules les lignes directrices des preuves
seront données. Pour un exposé plus complet des résultats, on convie le lecteur à se référer aux
articles eux-mêmes.
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Chapter 1

Introduction: perturbations of
mean-field interacting particle
systems

The purpose of this manuscript is to present in a coherent way the research I have been
conducting since my PhD thesis on the topic of mean field interacting particle systems subject
to (possibly random) inhomogeneities. The main attention will be put on the influence of these
perturbations (seen as a random environment) on the behavior of the system for two asymptotics:
in large population and in long time. This introductory chapter is the opportunity to present
the main objects we will consider in the manuscript as well as the main issues on these models.

1.1 Mean-field particle systems in large population

1.1.1 The mean-field framework

A fairly generic instance of mean-field interacting diffusions may be given as follows: let n ≥ 1
be the size of the population, T > 0 the time horizon and d ≥ 1 the dimension of the state space
and consider the solution (θ1,n

t , . . . , θn,nt ) in (Rd)n to the following system of coupled Stochastic
Differential Equations (SDEs)

dθi,nt = F (θ
i,n
t )dt + Γ (θi,nt , µn,t)dt + σ (θi,nt , µn,t) ⋅ dBi

t, i = 1, . . . , n, t ∈ [0, T ], (1.1)

where µn is the empirical measure of the particles (θ1,n, . . . , θn,n)

µn,t ∶=
1
n

n

∑
i=1
δ
θi,nt

, t ∈ [0, T ], (1.2)

element of the space C([0, T ],P(Rd)) of continuous functionals with values in the set of probabil-
ity measures on Rd. The structure of (1.1) accounts for various dynamical features: a local drift
F (⋅) representing the intrinsic dynamics of each particle, a global coupling term Γ (θi,nt , µn,t)

modelling all-to-all interaction between particles through the empirical measure of the system
(1.2) and (possibly multiplicative) noise, in the presence of i.i.d. standard Brownian motions
(Bi

t) on Rd. Note that the mean-field formalism does not reduce to diffusions, as it is for
example possible to include various dynamics with jumps, see e.g. [APF18, DIRT15, Cor21].
An instance of mean-field interacting point processes modelling neuronal activity (Hawkes pro-
cesses) will be analysed in Chapter 6. The applications of system (1.1) are numerous and
particularly well-covered in the literature (see [CD22] for a review): to list only a few, statistical
physics [DdH96, CR16, CDF15, CFT16, GP15], biological models of synchrony [DPGR14, CG19,
AM19a], neuroscience [BFFT12, nT20, GPPP12, GP15, MQT16, THF12, DL17, CTV21], life
sciences [JTT18, DFL12], social sciences [CDS10], fluid dynamics [AM19b], finance [JR13], this
list being by no means exhaustive. Note that the possibility that the interaction kernel Γ may
have singularities often raises serious questions concerning the well-posedness of (1.1) and its

13



14 CHAPTER 1. INTRODUCTION

behavior as T → ∞, see e.g. [JTT18, TT20, BCD20]. This is not a point that will concern us
mostly in this manuscript: the appropriate smoothness hypotheses on Γ and σ will be adopted
when required. In fact, there is already for us sufficient difficulty in analysing the following
simpler instance of (1.1): with an obvious abuse of notation, choose a linear interaction in µ,
Γ(θ, µ) = ∫ Γ(θ, θ′)µ (dθ′) and some constant diffusion σ (θ, µ) = σ

dθi,nt = F (θ
i,n
t )dt +

1
n

n

∑
j=1

Γ (θi,nt , θj,nt )dt + σdBi
t, i = 1, . . . , n, t ∈ [0, T ]. (1.3)

Extending the results of this manuscript from (1.3) to the general (1.1) may present technical
difficulties that we do not address here (although most of the present results extend readily to
the case of multiplicative noise provided σ is nondegenerate).

1.1.2 Propagation of chaos and McKean-Vlasov diffusions

The first standard question concerns the behavior of the empirical measure (1.2) in large
population, that is as n → ∞ on some bounded time interval [0, T ]. Applying Ito formula to
(1.1) (see (1.8) below), and passing formally to the limit as n→∞, we see that the limit µt of µn,t
is the weak solution to the following nonlinear Fokker-Planck equation, with a(θ, µ) ∶= σσ†(θ, µ),
(where σ† denotes the transpose of σ)

∂tµt =
1
2

d

∑
k,l=1

∂2
k,l (ak,l (θ, µt)µt) −∇ ⋅ {(F (θ) + Γ (θ, µt))µt} . (1.4)

The question of convergence of the empirical measure (1.2) to its mean-field limit (1.4) has
raised a considerable interest since the seminal works of Kac [Kac56] and McKean [McK67].
It would be pointless to review here the vast literature on such matter, but let us nonetheless
briefly comment on the main issues at stake. A key point in the analysis of (1.1) relies on the
notion of exchangeability: the law fnt of (θ1,n

t , . . . , θn,nt ) at time t is invariant by permutation,
provided that the same holds at time t = 0 (this is for example true when (θ1,n

0 , . . . , θn,n0 ) are
i.i.d.). In such a case, the k-th marginal fk,nt of fnt for any k ≥ 1 is defined without ambiguity
as the law of any finite collection of k variables among (θ1,n

t , . . . , θn,nt ). Intuitively, as the
interaction between k particles in (1.1) is weak (of order 1

n ÐÐÐ→n→∞
0), these particles decorrelate

as n→∞. This is formalised in terms of the k-chaoticity of fn: for all fixed k ≥ 1, fk,n converges
weakly to µ⊗k where µ solves (1.4). This convergence can be considered for various topologies
(see [HM14, CD22] for extensive reviews on the subject). A classical result (see e.g. [Szn91,
Prop. 2.2]) is that k-chaoticity of fn for some k (itself equivalent to k-chaoticity for k = 2)
is equivalent to the convergence of the empirical measure µn to µ. The celebrated notion of
propagation of chaos states that chaoticity for (1.1) at time t = 0 propagates at later times t > 0.
Once again, we do not aim to be exhaustive on this point, but let us at least mention the main
strategies that have been followed to prove such propagation of chaos in mean-field systems.

Coupling arguments

A first approach is to proceed via coupling arguments: the proper limit candidate as n→∞
for one particle, say θ1,n

t , on [0, T ] is given by the nonlinear McKean-Vlasov process (where
L(θ) is the law of θ)

dθ̄t = F (θ̄t)dt + Γ (θ̄t, µt)dt + σ (θ̄t, µt)dBt, t ∈ [0, T ], µt = L(θ̄t). (1.5)

The nonlinear character of the diffusion (1.5) lies in the fact that θ̄ interacts with its own law µ
solution to (1.4). The well-posedness of (1.5) is an issue in itself, especially in case of singular
coefficients (a standard way is to proceed with some fixed-point arguments [Szn91] in case of
regular (Lipschitz) coefficients). A standard coupling between the particle system (1.1) and its
mean-field limit (1.5) is the simplest synchronous one, defined as follows: consider the collection
of i.i.d. (θ̄i)

i=1,...,n solutions to (1.5), driven by the same Brownian motions (Bi) as for (1.1)



1.2. TOWARDS NON-EXCHANGEABILITY 15

with the same initial condition θ̄i0 = θ
i,n
0 . Then, some easy Grönwall arguments [Szn91] show

that under reasonable (Lipschitz) conditions on F , Γ and σ, the following estimate holds

E
⎛

⎝
sup
t∈[0,T ]

∣θi,nt − θ̄
i
t∣
⎞

⎠
≤
C(T )
√
n
, (1.6)

hence implying the k-chaoticity of fk,n for all k ≥ 1 as n→∞. Note that an alternative approach
using reflective coupling (that we will not use here) has been successfully used to estimate rates
of convergence to equilibrium for nonlinear McKean-Vlasov SDEs [Ebe16, EGZ16] as well as
uniform propagation of chaos for mean-field systems (1.1) (see [DEGZ20] and references therein).
Estimate (1.6) directly implies the weak convergence of the empirical measure µn of the particles
(1.2) towards the solution µ to the nonlinear Fokker-Planck equation (1.4). This can be expressed
simply in terms of the bounded-Lipchitz distance on the set P (Rd) of probability measures on
Rd, i.e. dBL (µ, ν) = supf,∥f∥∞≤1,∥f∥Lip≤1 ∣∫ fdµ − ∫ fdν∣ as

E
⎛

⎝
sup
t∈[0,T ]

dBL (µn,t, µt)
⎞

⎠
≤
C(T )
√
n
, (1.7)

but numerous alternative results that encode the convergence in law are possible e.g. in terms
of Wasserstein metrics. We refer e.g. to [CD22] for more references on the subject.

Compactness arguments

A second approach is to tackle the convergence of µn to µ directly from the semimartingale
decomposition of µn, easily derived from Ito’s formula: for any regular test function f (use the
usual duality notation ⟨µ , f⟩ = ∫ fdµ),

⟨µn,t , f⟩ = ⟨µn,0 , f⟩ + ∫
t

0
⟨µn,s ,

1
2

divθ (σσ†
∇θf) +∇θf ⋅ F ⟩ds

+ ∫

t

0
⟨µn,s , ∇θf ⋅ ∫ Γ(⋅, θ′)µn,s(dθ′,dω′)⟩ds +Mn,t(f), (1.8)

where Mn,t(f) is a martingale. A common strategy in this context is (i) to prove tightness of
(µn) (exploiting classical criteria in P (C ([0, T ],Rd)) see e.g. [Bil99]), (ii) to characterise any
limit point as a solution to a martingale problem and (iii) to prove that this problem has a
unique solution. We refer e.g. to [Szn84, Gär88, Oel84] for results in this direction. This kind
of techniques have proven to adapt easily to different dynamics such as moderately interacting
diffusions [JM98].

Remark 1.1.1. In comparison with coupling arguments, one drawback of tightness/martingale
formulations is that they do not provide with rate of convergence for the empirical measure
µn towards µ. On the contrary, this approach allows for more general assumptions on the
initial condition µn,0: with coupling arguments, one generically needs to have i.i.d. (or at least
independent) initial conditions (θ1,n

0 , . . . , θn,n) whereas tightness arguments only require that the
initial empirical measure µn,0 converges to µ0 (see e.g. [Gär88, Th. 1.5]). This remark, which
may not be critical in the context of homogeneous mean-field systems as (1.1), will be crucial in
the case of inhomogeneous versions of (1.1) that will be discussed below, as the exchangeability
of the system will not be preserved by the dynamics. Therefore it will be essential to consider
initial conditions that are not a priori exchangeable.

1.2 Towards non-exchangeability

From a modelling point of view, system (1.1) suffers from several limitations.
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1.2.1 Diffusions in random environment

The first limitation is that, by definition, the system (1.1) is exchangeable. In particular, one
assumes the local dynamics F to be the same along the entire population. As far as applications
are concerned, this assumption is questionable: to take only one biological example, there is
evidence [Luo20] of a large diversity in the nature, morphology and behavior within a mesoscopic
population of neurons (e.g. excitable vs inhibitory neurons within a same population). In this
respect, it is natural to consider the following generalization: take first a sequence (ωi)i≥1 in Rp,
(p ≥ 1) and consider the system

dθi,nt = F (θ
i,n
t , ωi)dt +

1
n

n

∑
j=1

Γ (θi,nt , θj,nt , ωi, ωj)dt + σ ⋅ dBi
t, i = 1, . . . , n, t ∈ [0, T ]. (1.9)

Here, ωi has to be considered as some disorder, some local intrinsic inhomogeneity for each
particle θi,n, so that the local dynamics F (⋅, ωi) may vary with i. Although one convenient
way to define the sequence (ωi)i≥1 is through a random procedure (a random environment, e.g.
(ωi)i≥1 i.i.d. with law ν), the point of view will always be to see (ωi)i≥1 as much as possible
as a deterministic sequence (quenched model), in opposition to the annealed model where one
integrates w.r.t. the law of the disorder. Whereas the quenched system (1.9) is no longer
exchangeable, it nonetheless remains within the mean-field framework, up to the additional cost
of extending the definition of µu: the interaction in (1.9) is still a functional of the double-layer
empirical measure [DdH96]

µ
(ω)
n,t ∶=

1
n

n

∑
j=1

δ(θi,nt ,ωi), (1.10)

the superscript (ω) being to stress that this is defined for a fixed realisation of (ω) ∶= (ωi)i≥1.
Note here that this not a matter of simply extending the dimension of the problem: one could
of course think that solving the system (1.9) in (Rd)n is formally equivalent to considering the
system solved now by (θit, ωt,i)i ∈ (Rd+1)

n with the additional constraint that dωi,t = 0. But
then, the difficulty lies on the initial condition: in the quenched model, (θi0, ωi)i=1,...,n is by no
means a sequence of i.i.d. random variables. Hence, there is a crucial difficulty in understanding
the effect of non-exchangeability on systems like (1.9).

1.2.2 A crucial example: phase oscillators

Definitions

One of the main example considered in the manuscript concerns the Kuramoto model and
its extensions, firstly introduced in [Kur75] as idealized models for synchronization. Synchrony
is an ubiquitous phenomenon in physics and biology (social behavior of insects [Buc88], lasers
arrays [KLN+95], circadian rhythms [THHI07], pacemaker cells [MMJ87], neuronal networks
[Wai10]). Phase oscillators models (that is, interacting angles, i.e. diffusions on the torus
T ∶= R/[0,2π]) have met a considerable interest in the physics literature [Kur75, ABPV+05,
Str00], since, despite their simplicity, they have been able to reproduce several key features
of synchronicity (incoherence, partial synchronization, [SM88a, SM88b, BS00], traveling waves,
chimera states [MVS+14, AS06]). Take σ = 1 in the following for simplicity.

Definition 1.2.1 (Phase oscillators). Let T be the one dimensional torus and consider the family
of diffusions in T

dθi,nt = δF (θ
i,n
t , ωi)dt +

1
n

n

∑
j=1

J (θi,nt − θ
j,n
t )dt + dBi

t, i = 1, . . . , n, t ∈ [0, T ]. (1.11)

Here, δ ≥ 0 is a scaling parameter and, following the original definition of [Kur75], J is given as

J(θ) = −K sin (θ) , θ ∈ T, (1.12)



1.2. TOWARDS NON-EXCHANGEABILITY 17

where K ≥ 0 is the strength of interaction between particles. The corresponding nonlinear Fokker-
Planck equation is described as µt(dθ,dω) = pt(θ,ω)dθν (dω), where pt solves

∂tpt(θ,ω) =
1
2
∂2
θpt(θ,ω) − ∂θ (pt(θ,ω){∫ J ∗ pt(⋅, ω

′
)ν(dω′) + δF (θ,ω)}) , θ ∈ T, ω ∈ Supp(ν)

(1.13)
where h∗µ(⋅) = ∫ h(⋅ −θ′)µ(dθ′) denotes the convolution. Equation (1.13) is nothing else than a
disordered version of the general nonlinear Fokker-Planck equation (1.4), where pt(⋅, ω) stands
for the density (in a infinite population) of oscillators having the same disorder ω.

We will concentrate mostly on the following particular cases of Definition 1.2.1:
Example 1.2.2 (Kuramoto model, [Kur75, ABPV+05]). Take F (θ,ω) ∶= ω in (1.11). The
Kuramoto model is described as

dθi,nt = δωidt +
1
n

n

∑
j=1

J (θi,nt − θ
j,n
t )dt + dBi

t, i = 1, . . . , n, t ∈ [0, T ]. (1.14)

and the nonlinear Fokker-Planck equation reads

∂tpt(θ,ω) =
1
2
∂2
θpt(θ,ω)−∂θ (pt(θ,ω){∫ J ∗ pt(⋅, ω

′
)ν(dω′) + δω}) , θ ∈ T, ω ∈ Supp(ν). (1.15)

In this setting, (1.14) models two contradictory effects: the interaction kernel J(⋅), that tends to
make all phases θ1, . . . , θn equal (which is the basic meaning that one would give to the notion of
synchronization) and the presence of a local frequency ωi for each particle, that tends to deviate
each particle from the common center of synchronisation. Note that this model is intrinsically
invariant by rotation: one only needs to know the behavior of the particles (θ1, . . . , θn) up to a
global phase translation on the torus T.

Example 1.2.3 (Active rotators, [SK86a]). Suppose for simplicity that ω ≡ 0 and take F (θ,ω) =
−∂θV (θ), for some smooth potential V on T in (1.11). In this case, the nonlinear Fokker-Planck
equation reads

∂tpt(θ) =
1
2
∂2
θpt(θ) − ∂θ (pt(θ)(J ∗ pt(θ))) + δ∂θ (pt(θ)∂θV (θ)) , θ ∈ T. (1.16)

This models is a slight generalization of the Kuramoto model in the sense that one isolated
particle has now a nontrivial dynamics on T, driven by the potential V .

Synchronisation in the Kuramoto model

The first step towards a rigorous meaning of synchronization for (1.14) was carried out by
Kuramoto [Kur75] and Sakaguchi [Sak88] (see also [ABPV+05, dH00] and references therein).
Synchronization reads in terms of the existence of nontrivial stationary solutions q to (1.15).
Crucial features of evolution (1.15) are captured by order parameters rt ≥ 0 and ψt ∈ T defined
by:

rte
iψt = ∫

T
eiθpt(θ,ω)dθdν(ω). (1.17)

The quantity rt ∈ [0,1] captures the intensity of synchronization of a solution, the two extreme
examples being (i) rt = 0 when pt =

1
2π is the uniform measure on T (representing total lack

of synchronisation, or incoherence) and (ii) rt = 1 when pt is a Dirac (representing complete
synchronisation within the population). The variable ψt identifies the center of synchronization
(at least for unimodal profiles). Reformulating the interaction in (1.15) in terms of (rt, ψt) in
(1.17) and noting that (1.15) is invariant by rotation, we see that any stationary solution of
(1.15) is necessarily of the form qr,ψ(θ,ω) = qr,0(θ − ψ,ω) where r ≥ 0 solves the stationary
version of (1.17):

r = ∫
T

cos(θ)qr,0(θ,ω)dθdν(ω) and 0 = ∫
T

sin(θ)qr,0(θ,ω)dθdν(ω). (1.18)

Any solution r to the nonlinear fixed-point relation (1.18) provides a stationary solution to
(1.15) (e.g. r = 0 always solves (1.18) which corresponds to the incoherent profile q(⋅) ≡ 1

2π , see
Figure 1.1).
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The reversible case δ = 0. When δ = 0, the dynamics of (1.11) is reversible with respect to
the Gibbs measure ρn(dθ1, . . . ,dθn) ∶= 1

Zn
exp (− K

σ2n ∑
n
i,j=1 cos(θi − θj))dθ1 . . .dθn (that is, the

classical mean-field XY model [CR16]). One is left with the following version of the Fokker-
Planck equation

∂tpt(θ) =
1
2
∂2
θpt(θ) − ∂θ (pt(θ) (J ∗ pt) (θ)) , θ ∈ T. (1.19)

The fixed-point problem (1.18) reduces to

r0 = Ψ0(2Kr0) where Ψ0(x) ∶=
I1(x)

I0(x)
, (1.20)

where Ik(x) = 1
2π ∫T cos(θ)kex cos(θ)dθ is the modified Bessel function of order k. The mapping

Ψ0 is increasing, concave [Pea81], with derivative at 0 equal to 1
2 . Consequently if K ≤ Kc ∶= 1,

r0 = 0 is the unique solution of (1.20) and q(⋅) ≡ 1
2π (incoherent solution) is the only stationary

solution of (1.19). If K > 1, we get in addition a circle (by rotation invariance) of synchronized
solutions (Figure 1.1)

M0 ∶= {qr,ψ(θ) = qr,0(θ − ψ), ψ ∈ T} , with qr,0(θ) =
e2Kr cos(θ)

∫T e
2Kr cos(θ)dθ

, (1.21)

where r > 0 is the unique positive solution to (1.20).

q ≡ 1

2π

qr; (·)

T 

qr; (·)

Figure 1.1 – Synchronisation in the mean-field Kuramoto model: transition from incoherence
to synchrony in (1.19) reads in term of the unique existence of the incoherent solution q ≡ 1

2π
when K ≤ 1 to its coexistence with the circle M0 of synchronized solutions, all translations of
the same nontrivial pattern given in (1.21), when K > 1.

The disordered case δ > 0. Adding some non-trivial disorder to (1.14) makes the system no
longer reversible: we intrinsically deal with a nonequilibrium system. For a symmetric law ν,
stationary solutions to (1.15) can be still written in a semi-explicit way [Sak88, dH00] as

qr,ψ(θ,ω) ∶= qr,0(θ + ψ,ω) with qr,0(θ,ω) ∶=
S(θ,ω,2Kr)
Z(ω,2Kr)

(1.22)

with S(θ,ω, x) = eG(θ,ω,x) [(1 − e4πω) ∫
θ

0 e
−G(u,ω,x)du + e4πω

∫
2π

0 e−G(u,ω,x)du] and G(u, y, x) =

x cos(u) + 2yu, Z(ω,x) = ∫T S(θ,ω, x)dθ so that (1.18) turns into

r = Ψν(2Kr), where Ψν(x) ∶= ∫
R

∫T cos(θ)S(θ,ω, x)dθ
Z(ω,x)

ν(dω) . (1.23)

Solving (1.23) gets much more complicated even for simples instances of the disorder ν, as
Ψν may no longer be concave (see e.g. [Luç12, Prop. 3.11]). Uniqueness of a synchronized
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circle is expected when ν is unimodal, but this has not been established. Nonetheless, a
phase transition from incoherence to a single circle of synchronized patterns can be proven
at least when Supp(ν) ⊆ [−ω̄, ω̄] for ω̄ ≥ 0 sufficiently small (see [L2, Lem. 2.3] or [Luç12,
Prop. 3.13]): there is some Kc > 0 such that if K ≤ Kc, the only stationary solution to
(1.15) is 1

2π whereas for K > Kc, there is in addition a circle a stationary measures Mν ∶=

{qr,ψ(θ,ω) = qr,0(θ − ψ,ω), ψ ∈ T, ω ∈ Supp(ν)}.

Stability of synchronisation in the reversible case δ = 0

A considerable step further in the mathematical analysis of (1.19) was carried out in the
seminal work of Bertini, Giacomin and Pakdaman in [BGP10]. As it is at the core of the analysis
of the present manuscript, we briefly review the results of [BGP10] here. A crucial observation
in [BGP10] is that, for δ = 0, (1.19) is in gradient form: ∂tpt(θ) = ∂θ [pt(θ)∂θ ( δF(pt)δpt(θ) )], where
δG(q)/δq(θ) is the L2-Fréchet derivative of the functional G and F(q) ∶= 1

2 ∫T q(θ) ln q(θ)dθ −
K
2 ∫T2 cos(θ − θ′)q(θ)q(θ′)dθdθ′. Consequently, the energy decreases along the trajectories of
(1.19): ∂tF(pt) = − ∫T pt(θ) (∂θ

δF(pt)
δpt(θ) )

2
dθ ≤ 0 (which is a weak form of stability of synchroni-

sation). The main object of [BGP10] is to study the linear stability of nontrivial synchronised
solutions (1.21) in the supercritical case K > 1. Setting q ∶= qr,0 (recall (1.21)) the linearised
operator L0

q around the stationary solution q is defined as

L0
qu(θ) =

1
2
∂2
θu(θ) +K∂θ [q(θ)∫T

sin(θ − θ′)u(θ′)dθ′ + u(θ)∫
T

sin(θ − θ′)q(θ′)dθ′] . (1.24)

By invariance by translation, one has L0
q∂θq = 0. The main result of [BGP10] is then

Theorem 1.2.4 (Th. 1.8 in [BGP10]). The operator L0
q is essentially selfadjoint in H−1

1/q, its
spectrum is pure point and lies in (−∞,0]. The eigenvalue 0 is one-dimensional, spanned by ∂θq
and the distance between 0 and the rest of the spectrum is λ(K) > 0.

Here, H−1
1/q is the weighted Hilbert space of distributions u such that u = U ′, with U ∈ L2,

such that ∫T U(θ)/q(θ)dθ = 0, endowed with the norm

∥u∥−1,q ∶= (∫T

U(θ)2

q(θ)
dθ)

1/2
. (1.25)

Explicit lower bounds on the spectral gap λ(K) (in terms of K and r solving (1.18)) are also
given. We will rely heavily on this result, which gives local stability of the manifold M0 in
(1.21), as it will be at the core of many perturbation arguments. The simplicity of the sine
interaction in (1.19) has allowed for further detailed analysis of the nonlinear stability of M0,
see [GPP12, GPPP12, FGVG14, DFGV16] for further details.

Phase oscillators and generalisations

In comparison with more elaborate oscillator systems in Rd (e.g. the FitzHugh-Nagumo
model in Example 1.3.2), models of phase oscillators on T possess significant mathematical
advantages. A crucial simplifying point of Example 1.2.2 is its rotation invariance: the fact
that periodicity naturally appears in such models is essentially true by construction, whereas
proving the existence of limit cycles in the FitzHugh-Nagumo model (Example 1.3.2) is a highly
nontrivial problem which in itself requires a proof (we will address this point in Chapter 4).
A second nice feature of Definition 1.2.1 comes from the simplicity of the sine interaction in
(1.11), which allows for a direct parameterisation of the synchronised solutions as well as most
of the time explicit computations. Thirdly, the fact that the state space T in Definition 1.2.1
is compact is a considerable simplifying technical assumption, in comparison with the case of
oscillators in Rd (in the analysis of FitzHugh-Nagumo oscillators in [L9, L11], a considerable
amount of work is spent to carefully control the behavior of the system at infinity). This last
point (which is not a minor point in the analysis) is not only technical, it is also an illustration
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of the difficulty of rigorously implementing a phase reduction method for a dynamical system
with some (locally) stable limit cycle (that is how to simplify the analysis of its trajectory by
projecting it along this limit cycle) in situation where both non-vanishing noise and mean-field
interaction are present. This subject has attracted much attention in recent years (mostly in the
physics literature, see e.g. [GTNE10, TNE09, Wai10], see also [Nak16] for a formal derivation of
the Kuramoto model from general mean-field oscillators but also from a rigorous point of view
[Poq14, GPS18]). We will discuss below the contributions of [L9, L12, L15] on this matter.

1.2.3 Spatially-structured interactions

In the definition of (1.9), the interaction between particles θi,n and θj,n may also depend
on the respective value of the disorder ωi and ωj . A relevant interpretation is to consider
ωi = xi as a fixed spatial position of the particle θi,n so that the nature and intensity of
interaction between θi,n and θj,n depend on xi and xj : a generic choice would be to take
Γ(θ, θ′, x, x′) = Γ(θ, θ′)Ψ(x,x′) where Ψ is a nontrivial spatial kernel. Spatial extensions of
mean-field dynamics are particularly relevant in a context of neuroscience where one accounts
for the spatial organisation of neurons in the cortex (see [Mül17, CT18a, CDLO19, MSSZ20]
and references therein). The corresponding system becomes

dθi,nt = F (θ
i,n
t )dt +

1
n

n

∑
j=1

Γ (θi,nt , θj,nt )Ψ (xi, xj)dt + σ ⋅ dBi
t, i = 1, . . . , n, t ∈ [0, T ]. (1.26)

Having in mind applications to neuroscience, the random variable θi would incorporate the
value of the potential Vi of a neuron (as well as auxiliary variables accounting e.g. for the
proportion of open channels along the axons of the neuron, as in the Hodgkin-Huxley model,
see e.g. [BFFT12] for precise definitions). The variable xi would then account for the position
in Rd of the neuron i within the cortex (of within cortical columns, see e.g. [Tou14] for more
details). Another interpretation of this spatial variable comes from the modelling of the visual
cortex: supposing that x ∈ T, the spatial variable represents the susceptibility of a neuron in the
visual cortex to accommodate for a given orientation [KE13]. We have been interested here to
cases where Ψ presents singularities, the main examples being x, y ∈ T and Ψ(x, y) = 1d(x,y)≤R,
R ∈ [0,1) (P nearest neighbor model) and Ψ(x, y) = 1

d(x,y)α for α ∈ (0,1). We analyze in [L3, L6]
the influence of the singularities of the kernel Ψ on the law of large numbers and the fluctuations
of the empirical measure around its mean-field limit.

Content of Chapter 2

The purpose of Chapter 2 is to address the behavior of both (1.9) and (1.26) as n →∞, on
any bounded time interval [0, T ]. We first review [L1, L8] where the Law of Large Numbers,
Central Limit Theorem and Large Deviation Principle for the empirical measure (1.10) are
addressed, in a situation where the disorder (ωi) has been frozen (quenched regime). We also
briefly review the work [L4], taken from my PhD Thesis, where the long-time behavior of the
resulting fluctuation process is analyzed in the context of the Kuramoto model with disorder.
In a second time, the purpose of Chapter 2 will be to comment on the works [L3, L6] where the
influence of singular spatial interactions is addressed at the level of Law of Large Numbers and
fluctuations for the empirical measure of the system.

1.2.4 Perturbing the graph of interaction

The second limitation of (1.1) is that one assumes all-to-all coupling between particles: the
graph of interaction is by definition the complete graph Kn ∶= ({1, . . . , n} ,{1, . . . , n}2), with
homogeneous uniform strength of interaction of order 1

n along the whole population. This is
again both questionable from a modelling point of view (and not true in the case of neuronal
networks) and a strong mathematical limitation: if one removes any finite number of edges from
the interaction graph Kn in (1.1), it is intuitively true that the asymptotic behavior of (1.2) as
n→∞ remains unchanged (and one point of what follows will be to show that one can actually
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remove far more than a finite number of edges). A natural extension of (1.1) is then to consider a
generic graph Gn = (En,Vn) with set of vertices En ∶= {1, . . . , n} and set of edges Vn ⊂ {1, . . . , n}2.
Encoding the presence (resp. absence) of the edge i→ j in Vn by setting ξni,j ∶= 1 (resp. ξni,j ∶= 0),
define the particle system (θ1,n, . . . , θn,n) interacting on the graph Gn by

dθi,nt = F (θ
i,n
t )dt +

1
dni

n

∑
j=1

ξni,jΓ (θ
i,n
t , θj,nt )dt + σ ⋅ dBi

t, i = 1, . . . , n, t ∈ [0, T ], (1.27)

Here, the interaction is renormalised by dni ∶= ∑
n
j=1 ξ

n
i,j , the degree of vertex i ∈ En so that the

interaction remains of order 1 as n → ∞. Informally speaking, if the graph Gn is sufficiently
close to the complete graph Kn (in a way to be made precise), one naturally expects the same
asymptotics as n → ∞ as for the pure mean-field case. On a general level, the main questions
are

Question 1.2.5. 1. How universal the mean-field framework is? How much can we per-
turb the complete graph of interaction Kn of (1.1) into some graph Gn and nonetheless
conserve similar asymptotics (in particular the same mean-field limit (1.4)) for the em-
pirical measure of (1.27) as n→∞? At which level is this universality true? law of large
numbers, fluctuations, large deviations?

2. Is this universality annealed or quenched? Are the previous claimed asymptotics true for
any fixed realisation of the possibly random graph Gn?

3. Is it possible to quantify the proximity of µn to its mean-field limit µ in terms of the
proximity between Gn and Kn? for which graph topology? what does it imply on the local
or global structure of the graph Gn? To which extent can we consider diluted graphs?

Again, contrary to the classical mean-field setting (1.1), exchangeability is lost for (1.27):
the main difficulty regarding Question 1.2.5 (which is already present once only one edge is
removed from Kn) comes from the observation that the interaction in (1.27) is now no longer a
functional of the empirical measure (1.2), but rather of a collection of local empirical measures

µin,t ∶=
1
dni

n

∑
j=1

ξni,jδθj,nt
, i = 1, . . . , n, (1.28)

Each µin accounts for particles within distance 1 of node i in the graph Gn. The problem is that
the dynamics of these local empirical measures depend themselves on higher order empirical
measures (that involve particles at distance 2, etc.): a whole hierarchy of empirical measures
arises and the difficulty is to find a way to properly close this expansion as n→∞.

Content of Chapter 3

The purpose of Chapter 3 will be to address this question of universality of the mean-field
framework for several general classes of graphs Gn: firstly homogeneous graphs, both at the level
of the law of large numbers [L5] and fluctuations [L14] of the empirical measure and secondly
in the case of inhomogeneous graphs [L10].

1.3 Long-time periodicity for mean-field systems

All the previous results concerned the asymptotics of (perturbations of) the particle system
(1.1) as n → ∞, on a bounded time interval [0, T ]. A crucial remark (that is already relevant
for the homogenous case (1.1)) concerns the dependence in T in the estimate (1.7). Without
prior knowledge on F , Γ and σ, the Grönwall argument leading to (1.7) gives an exponential
constant C(T ) = eCT for some C = C(F,Γ, σ) > 0 so that this estimate remains relevant only for
times that are logarithmic in n, i.e. T ∼ c lnn for some c > 0 sufficiently small. A natural and
important question is then
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Question 1.3.1. Is it possible to obtain a better constant C(T ) in (1.7), even ultimately inde-
pendent of T ? In other words, does µt remain a proper approximation of µn,t on time scales
that go beyond t ∼ c lnn ?

The answer to Question 1.3.1 is intrinsically model-dependent. A case that has received
particular attention in the recent years concerns granular type models, where F = −∇V and
Γ = −∇W ∗ ⋅, (see e.g. [Tug13]). Under appropriate hypotheses on regularity and convexity at
infinity of the potentials V and W , the answer to Question 1.3.1 is mostly positive: due to the
gradient structure of the model, the use of functional inequalities has proven to be a powerful way
to obtain exponential rate of convergence to equilibrium for such models as well as uniform in
time propagation estimates, see e.g. [BGM10, CGM08, Mal03, MT19, GM21, CMV03, BGG12]
and references therein. Note however that this class of dynamics is intrinsically reversible and
may not be transposed without difficulty to the examples we have in mind, which are non
reversible.

However, and this is one of the major difficulties here, it is easy to see that the answer to
Question 1.3.1 is negative in general as the limits as n → ∞ and T → ∞ do not commute (see
the discussion in [L5]): noise has a cumulative effect on the empirical measure of the system
(1.2) on time scales beyond lnn, so that the dynamics of the microscopic system (1.1) and its
nonlinear counterpart (1.5) generically diverge on a time-scale that is not bounded. One crucial
point is to understand how to take into account this cumulative influence of noise so as to derive
the correct asymptotic for the empirical measure (1.2) from (1.4).

1.3.1 Periodicity in noisy mean-field systems

The next point of this manuscript is to question this absence of uniform propagation of
chaos in case (1.4) exhibits synchronized periodic behaviors. Collective oscillations reflects
a common feature of self-organization in complex systems (e.g. circadian rhythms [KYW+10],
synchrony in neural networks in motor systems or pacemaker cells [Luo20, Buz06] or pathologies
of the brain [Buz04, TPVE20, Wan10]). Several papers in physics have studied the existence
of coherent structures (e.g. coherence resonance [LSG99], pattern formation [GaOS99] or wave
propagation [LGONSG04]) for systems exhibiting excitability properties [LGONSG04, Bre14a,
Izh07]. Excitability is a key feature of neuronal dynamics, as it is at the basis of signal processing
and transmission in neuronal systems. Roughly speaking, excitability refers to the ability of a
neuron to emit spikes (oscillations) in the presence of perturbations (noise and/or external input)
whereas this neuron would be at rest (steady state) without perturbation. A crucial question,
that is still poorly understood [OBH08, BH99], concerns the role of noise and interaction in the
emergence and stability of periodic behaviors. Noise can be intrinsic to each neuron (e.g. the
random switching of ion channels [GT12, PTW10]) or can come from the random input from
other neurons.

A prominent example of excitable dynamics (and one of the main examples that we will con-
sider here) concerns the FitzHugh-Nagumo model [Fit61, NAY62, RsGGt00, BFFT12, BPG+03],
introduced as a two-dimensional idealization of neuronal dynamics:

Example 1.3.2 (FitzHugh-Nagumo model). Take d = 2, θ = (v,w) and

F (v,w) = (v −
v3

3
−w,

1
c
(v + a − bw)) (1.29)

with chosen constants a ∈ R and b, c > 0. Here, v stands for the voltage whereas w is the recovery
variable.

The existence of random attractors and the effect of noise on random dynamical systems has
a longstanding history (see e.g. [FGS17, SV18, LMS22] for further references on the subject).
Talking about periodic behaviors for mean-field systems, it is important to distinguish the
microscopic system (1.1) from its mean-field limit (1.5). One should not expect the microscopic
system (1.1) to have a periodic law for any (possibly large) but finite n: for fixed n ≥ 1,
system (1.1) is a time-homogeneous Markov process and hence either possesses an invariant
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probability measure that is globally asymptotically stable or escapes each compact set for t→∞
with probability 1 [Kha12]. This is however no longer true for the non Markovian nonlinear
diffusions (1.5). This was originally observed by Scheutzow in [Sch85] who provided examples
of nonlinear diffusions (in dimension 1) exhibiting oscillatory behaviors in presence of noise
(whereas no oscillations are present without noise). It is also shown in [Sch85] that noise may
induce the existence of a globally stable invariant measure for a nonlinear diffusion, that would
not exist in absence of noise. Existence of periodic behaviors for (1.5) was also proven in [Sch86]
in the 2-dimensional Brusselator model. Note here that the Active rotators model mentioned
in Example 1.2.3 possesses similar excitability features in a mathematically simpler context
[SSK88, GPPP12, EK86]. Emergence of periodic behaviors induced by noise and interaction for
this model has been proven in the seminal work [GPPP12]. The crucial argument of [GPPP12]
(and a central notion for us) relies on the concept of Stable Normally Hyperbolic Manifold and
on the stability of these dynamical structures under perturbation.

Content of Chapter 4

The strategy of proof of [Sch85] relies on the fact that the nonlinear diffusion considered in
the paper admits Gaussian solution so that the dynamics of the whole process boils down to
the analysis of its mean and variance (see [THF12] for similar ideas), which is not a path that
one can follow here. We review in Chapter 4 several works proving the emergence of rotating
waves for various instances of (1.4): we first deal in [L2] with the simpler case of Kuramoto
type oscillators (Example 1.2.2) in the presence of asymmetric frequencies. In the case of the
FitzHugh-Nagumo model (Example 1.3.2), the existence of periodic solutions to (1.4) was only
remarked based on numerical simulations [BFFT12, nT20] but a rigorous proof was lacking.
The main contribution of [L9, L11] is precisely to prove the emergence of periodic solutions to
(1.4) for Example 1.3.2, in both cases of full connectivity (elliptic case [L9]) and also in the more
difficult kinetic case where noise and interaction are only present on the voltage variable v in
[L11]. We complement these existence results in [L12] with stability and regularity estimates
that will be necessary for Chapter 5.

1.3.2 Going beyond the finite time scale

As already mentioned, even if the nonlinear dynamics (1.4) might possess periodic solutions,
no such periodic behavior is possible for the finite particle system (1.1). However, taking advan-
tage of the stability of these limit cycles, it is possible to show that the empirical measure (1.2)
stays for a long time in the vicinity of such structures. The second step is then to understand
on which time scale one observes a nontrivial dynamics for (1.2) along these limit cycles and
how to characterize this dynamics. The point is therefore to look at the empirical measure (1.2)
when both n and t go to ∞ simultaneously, that is, at the process (µn,αnt)t∈[0,T ], where αn →∞
is an appropriate scaling parameter. This program was first initiated by Bertini, Giacomin and
Poquet in [BGP14] for the Kuramoto model without disorder. We have further developed and
extended this strategy for various instances of mean-field models in [L7] and [L15].

Content of Chapter 5

We address this question in Chapter 5, first about the Kuramoto model [L7] in presence
of inhomogeneities (where we show the emergence of traveling waves induced by the quenched
environment on the time scale αn ∼

√
n), and secondly in a general case [L15], where we show

that, for αn = n, the empirical measure µn,nt follows the periodic solution of the Fokker-Planck
equation (1.4), up to a diffusive correction term that scales as a Brownian motion as n→∞.

1.4 Inhibition and oscillations for mean-field Hawkes processes

The last point of this manuscript concerns a recent interest in mean-field interacting point
processes, with direct applications to neuroscience. In opposition to Hodgkin-Huxley or FitzHugh-
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Nagumo models which directly model the evolution of the membrane potential of a neuron, a
simplifying and mathematically convenient point of view is to consider action potentials as
stereotyped in their shape and intensities [Bri88], so that the only remaining relevant informa-
tion is the sequence of instants of spikes. This formalism has led to a large variety of models
with jump dynamics, where any jump or reset encodes for a spiking event. The model we con-
sider enters into the framework of Hawkes processes [HO74, DFH16], that models directly the
stochastic intensity of a neuron through the following general formalism

λit = Φi
⎛

⎝
∑
j→i
∫

t

0
hj→i(t − u)dZju

⎞

⎠
, (1.30)

where λit is the intensity of neuron i and Zjt is the counting process associated with neuron j.
The form of the intensity λit in (1.30) accounts for the dependance of the activity of neuron i
in the history of the whole system through the positive function Φi (the spike rate function)
and hj→i(t) (the synaptic kernel associated with the synapse between neurons j and i). This
Hawkes formalism, originally introduce to model earthquake activity [HO74] has been sufficiently
versatile to accommodate for various features such as age-dependent behaviors/refractory pe-
riods [Che17b, Che17a, RL20] or spatially-structured dynamics [CDLO19]. We refer to e.g.
[BM96, DFH16, DL17, CDLO19, Che17b] and references therein for more details. A partic-
ularly important instance of (1.30) that is explicitly solvable concerns the linear case where
Φi(x) = µi + x. Note that in this case one needs to assume that hi→j ≥ 0 to make sure that the
intensity λit remains nonnegative.

The main motivation here is to incorporate inhibition in Hawkes processes. Inhibition is
a crucial feature in neuronal systems, as a key mechanism in the control and coordination of
neuronal systems [Luo20]. The main strategy followed in the literature so far has been to model
inhibition by using kernels hj→i(⋅) in (1.30) taking negative values [CGMT20, RL20, RBRTM13,
BHS21] or positive kernels h (e.g. of Erlang type) multiplied by random and possibly negative
coefficients [DL17, DLO19, PRS22]. This is what one could qualify as an additive inhibition,
in the sense that the intensity of a neuron is the (temporal) additive superposition of several
memory kernels hi→j . In order to keep λit positive, one crucially needs here to modulate this
superposition by a positive (necessarily nonlinear) synaptic function Φi, (e.g. Φi(x) = µ

i + x+
where x+ = max(x,0)). Considering both signed hi→j and nonlinear Φi is a major step forward
in the difficulty as it breaks totally the monotonicity that one has for purely excitatory Hawkes
processes. Understanding the temporal dynamics of (1.30) is very difficult and very few rigorous
results exist on this matter (see [CGMT20, CCC22, RL20, DL17]).

Content of Chapter 6

We review in Chapter 6 the article [L13] where the main novelty is to propose an alternative
mechanism for inhibition that is multiplicative. The main advantage of this strategy is to cir-
cumvent the difficulty mentioned above of models with additive inhibition as the multiplicative
structure allows to keep the positivity of the kernels hi→j and hence the monotonicity of the
system. We prove in [L13] propagation of chaos for a system of n coupled Hawkes processes with
multiplicative inhibition as n → ∞ towards a system of inhomogeneous Poisson processes with
coupled intensities. Secondly, we give in [L13] sufficient conditions for the convergence of the
mean-field intensities as t→∞, revealing in particular biological features of inhibition (notably
that inhibition prevents supercriticality). We give finally insights and numerical evidence that
inhibition may lead to oscillations, leaving the ground for future proof of this phenomenon.



Chapter 2

Large population behavior of
inhomogeneous particles

We analyse in this chapter the large n behavior, on a bounded time interval [0, T ] of the
disordered system

dθi,nt = F (θ
i,n
t , ωi)dt +

1
n

n

∑
j=1

Γ (θi,nt , θj,nt , ωi, ωj)dt + σ ⋅ dBi
t, i = 1, . . . , n, t ∈ [0, T ], (2.1)

where n ≥ 1, T > 0, θi,nt ∈ X , ωi ∈ E for each i = 1, . . . , n and (Bi) is a sequence of i.i.d. Brownian
motions in X , defined on a probability space (Ω,F ,P). Here, X = Rd for some d ≥ 1 but it is
also possible to assume that X = Td is the compact torus. In a same way, E = Rp for some p ≥ 1
and F ∶ X ×E → X and Γ ∶ X 2×E2 are the local term and the interaction kernel respectively. The
system (2.1) lives in a random environment, given by a sequence of random variables (ωi)i≥1
defined on a common probability space (Ω̃, F̃ ,P). Two different models are possible: firstly the
annealed model, where one analyses the behavior of (2.1) under the joint law P⊗P of the noise
and disorder. We are rather interested in the quenched model, where we consider (2.1) under P
only, for a fixed realisation of the disorder (ωi)i≥1, as the point of view will always be to see (ωi)
as much as possible as a deterministic sequence. Note that exchangeability of the particle system
(θ1,n, . . . , θn,n) is obviously lost. Following the original formalism of Dai Pra and den Hollander
[DdH96, dH00], define the double-layer empirical flow

µ
(ω)
n,t ∶=

1
n

n

∑
j=1

δ(θi,nt ,ωi), t ∈ [0, T ] (2.2)

the superscript (ω) being to stress that µn (seen as an element of C ([0, T ],P(X ))×E) is defined
for a fixed realisation of (ω) ∶= (ωi)i≥1.

Remark 2.0.1. Note also that Dai Pra and den Hollander originally considered (2.1) for
X = E = R and F (θ,ω) = −∂θg(θ,ω) and Γ(θ, θ′, ω, ω′) = ∂θf(θ − θ′, ω, ω′). In the annealed
setting, this corresponds to a reversible dynamics, with unique equilibrium the Gibbs measure

1
Zn

exp (−Hn (θ,ω)), with Hn (θ,ω) =
1

2n ∑
n
i,j=1 f(θi − θj , ωi, ωj) +∑i=1 g(θi, ωi). This particular

assumption, motivated by considerations of Large Deviations, is not needed at the level of the
law of large numbers and fluctuations for the empirical measure.

2.1 Quenched limit for the empirical flow

2.1.1 The McKean-Vlasov process and the nonlinear Fokker-Planck equa-
tion: existence, uniqueness and regularity.

Suppose that there exists a probability measure µ0 in X ×E such that the sequence (θi,n0 , ωi)
satisfies µn,0 = 1

n ∑
n
i=1 δ(θi,n0 ,ωi) ÐÐÐ→n→∞

µ0 (dθ,dω) = µω0 (dθ)ν(dω) for the topology of weak conver-
gence on P (X × E), where ν is the marginal of µ0 on E . Note that this implies in particular the

25
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weak convergence of the empirical measure of the disorder sequence (ωi)i≥1 to ν:

ν(ω)n ∶=
1
n

n

∑
i=1
δωi ÐÐÐ→n→∞

ν. (2.3)

The nonlinear process associated to (2.1) is then

dθ̄ωt = F (θ̄ωt , ω)dt + ∫ Γ (θ̄ωt , θ′, ω, ω′)µt (dθ′,dω′)dt + σ ⋅ dBt, t ∈ [0, T ], (2.4)

where µt(dθ,dω) is the joint law of (θ̄ωt , ω). Contrary to the homogeneous case (1.3), the
dependence in the local variable ωi in both the dynamics term F (⋅, ωi) and the interaction term
Γ (⋅) persists at the limit: the limit process θ̄ω still depends on its local inhomogeneity variable ω.
This µt ∈ P (X × E) is then the natural limit of the empirical flow (2.2) and solves the nonlinear
Fokker-Planck equation, written in a weak form:

⟨µt , f⟩ = ⟨µ0 , f⟩ + ∫
t

0

1
2
⟨µs , div (σσ†

∇f)⟩ds

+ ∫

t

0
⟨µs , ∇f ⋅ {∫ Γ (⋅, θ′, ⋅, ω′)µs (dθ′,dω′) + F}⟩ds (2.5)

Note that the marginal ν of µ0 on E is preserved by the dynamics (2.5) at any time t > 0.

Well-posedness result and regularity estimates

The question of wellposedness of (2.4) and (2.5) has arisen repeatedly in all of the works
mentioned in this manuscript, under varying hypotheses on the state space X or coefficients F
and Γ. Hence, we take the opportunity of this paragraph to give a unifying set of hypotheses
that are representative of the framework adopted throughout this manuscript. We require that
both F and Γ are regular, that θ ↦ F (θ,ω) is locally Lipschitz for all ω and that the following
one-sided Lipschitz condition holds: there exists some CF > 0 such that uniformly on ω,

⟨F (θ,ω) − F (θ′, ω) , θ − θ′⟩ ≤ CF ∣θ − θ
′∣

2 (2.6)

Note that (2.6) includes the case of the FitzHugh-Nagumo model (Example 1.3.2), which is
not globally Lipschitz. Here, the inhomogeneity may lie in the choice of the parameters ωi ∶=
(ai, bi, ci) in (1.29), so that (2.6) holds as long as ω remains bounded. Suppose also some
polynomial control on F

∣F (θ,ω)∣ ≤ CF (1 + ∣θ∣k + ∣ω∣l) (2.7)
Require finally that Γ is Lipschitz, uniformly on the environment

∣Γ (θ1, θ
′
1, ω, ω

′) − Γ (θ2, θ
′
2, ω, ω

′)∣ ≤ CΓ (∣θ1 − θ
′
1∣ + ∣θ2 − θ

′
2∣) (2.8)

together with some sublinear control ∣Γ(θ, θ′, ω, ω′∣ ≤ CΓ (1 + ∣θ∣ + ∣θ′∣). Note that this set of
assumptions on Γ not only include bounded interactions but also the linear case Γ(θ, θ′) = θ−θ′.
Proposition 2.1.1. Under the previous assumptions, there is a unique weak solution µ in
P (C([0, T ],X ) × E) to the nonlinear Fokker-Planck equation (2.5) with initial condition µ0.
Moreover, this solution µ is such that for ν almost every ω, µω(dθ) is the law of the nonlinear
process (θ̄ωt )t∈[0,T ] given in (2.4).

In the homogeneous case (1.3), a vast literature exists on similar well-posedness results
(see e.g. [McK67, Oel84, Szn91, Gär88]). The first result in the inhomogeneous case was
originally stated in [DdH96, Th. 2], identifying µ solution to (2.5) as the unique zero of the
Large Deviation rate function concerning the empirical measure (2.19), under some regularity
of the initial condition and restrictive hypotheses on the coefficients F and Γ and the disorder.
Concerning the present manuscript, similar well-posedness results have appeared on multiple
occasions under various hypotheses: we refer in particular to [L1, Th. 2.5] (in the case X = T
with bounded coefficients), in [L8] (as the unique zero of a rate function), in [L3, Prop. 2.19] and
[L6] in the case of diffusions with spatial structure. The present Proposition 2.1.1 can be seen
as an adaptation of [L10, Prop. 2.7] (see also [L9, Lem. 4.1, Prop. 4.3] for similar arguments).
We reproduce here the main lines of proof.
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Main lines of proof of Proposition 2.1.1. The existence part of a weak solution to (2.5) follows
from an adaptation of a usual fixed-point argument (which goes back to Sznitman [Szn91] in the
homogeneous case): considerMν as the set of probability measures µ ∈ P (C([0, T ],X ) × E) with
fixed marginal on E equal to ν, equipped with the Wasserstein-like metric (see also another possi-

ble alternative distance in [L3, Def. 3.1]) δT (µ1, µ2) = supω∈E infπ (sups≤T ∫X ∣ϑω1,s − ϑω2,s∣
2k
π (dϑ1,dϑ2))

1
2k ,

where the infimum is taken over all coupling π under which ϑω1 ∼ µω1 and ϑω2 ∼ µω2 . Fix now some
m = (mt (dθ,dω))t∈[0,T ] ∈Mν and consider Θm as the law of (θωm, ω) where

dθωm,t = F (θωm,t, ω)dt + ∫ Γ (θωm,t, θ′, ω, ω′)mt (dθ′,dω′)dt + σ ⋅ dBt. (2.9)

By the Lipschitz properties of the coefficients, m ↦ Θm is a contraction for the above metric
and its fixed-point µ = Θµ gives a weak solution to (2.5). The uniqueness part of the analysis
has also been the subject of many works in the absence of disorder, see [Oel84, DdH96, Gär88].
In our context, a possibility is to use a propagator argument (see [L10, App. A.2] for details):
for all regular test function f , and s ≤ t ≤ T , define as

Ps,tf(θ,ω) ∶= Ef (θts(θ,ω), ω) , (2.10)

where s ↦ θts(θ,ω) solves (2.9) for m = µ, with initial condition θss = θ. Now, if one takes
another solution µ′ to (2.5) with the same initial condition, the point is to apply Ito’s formula to
s↦ Ps,tf(θµ′,s, ω), where θµ′,ω solves (2.9) for m = µ′. Using the fact that, under the additional
assumption that F is globally Lipschitz, s↦ Ps,t satisfies a Backward Kolmogorov equation and
Ps,sf = f , we obtain finally that

∫ f(θ,ω) {µωt (dθ) − µ
′,ω
t (dθ)} = ∫

t

0
{∫ ∇Ps,tf(θ,ω) ⋅ Γ(θ, θ′, ω, ω′)µωs (dθ)}{µω

′

s (dθ′) − µ′,ω
′

s (dθ′)}ν(dω′)ds

The function integrated in the right hand side of the previous inequality is Lipschitz, uniformly
on f with ∥f∥Lip ≤ 1. Hence, it is controlled in terms of C ∫

t
0 W1(µ

ω′
s , µ

′,ω′
s )ν(dω′)ds. Taking the

supremum in f with ∥f∥Lip ≤ 1, we retrieve also the Wasserstein distance W1(µ
ω′
t , µ

′,ω′
t ) on the

lefthand side and a Grönwall lemma gives uniqueness. Note that one can remove the additional
assumption that F is globally Lipschitz and work under (2.6) only by introducing the Yosida
approximation of F , we refer to [L3, Section 7] and [L10, App. A.2] for further details.

Extension 2.1.2. The well-posedness result of Proposition 2.1.1 is stated in the space of prob-
ability measures on trajectories. Based on the observation that, by Sobolev embeddings [AF03],
P (Rd) ⊆H−r (Rd) when r > d

2 (here H−r (Rd) is the dual of the set Hr (Rd) of test functions with
derivatives of order r in L2), an alternative approach would be to prove directly well-posedness
of (2.5) in H−r (Rd) (or more precisely in the affine space {u ∈H−r (Rd) , ⟨u , 1⟩ = 1}, noting
that mass is preserved by (2.5)). We refer to [L12, Th. 1.2] where we follow such approach in
the case of linear interaction, based on some fixed-point argument [SY13].

When σ is nondegenerate, standard results for uniform parabolic PDEs [Aro68, Fri64] state
that the unique solution µt to (2.5) is absolutely continuous w.r.t. dθ ⊗ ν(dω), µt (dθ,dω) =
pt (θ,ω)dθν(dω), where pt is the strong solution to

∂tpt(θ,ω) = ∇ ⋅ (σσ
†
∇pt) (θ,ω)

−∇ ⋅ (pt(θ,ω){∫ Γ(θ, θ′, ω, ω′)pt(θ′, ω′)dθ′ν(dω′) + F (θ,ω)}) , θ ∈ X , ω ∈ Supp(ν) (2.11)

A convenient point of view is to see (2.11) as a system of McKean-Vlasov equations, whose
unknown is pt(⋅, ω) for each ω ∈ Supp(ν), which are all coupled through the integration w.r.t. ν.
Smoothness results of (t, θ) ↦ pt(θ,ω) can be easily deduce from standard bootstrap methods
(see [L2, Prop. 7.1] and [L9, Prop. 4.10]; see also [GPP12, Th 2.1] for more refined analyticity
estimates on pt in the case of the Kuramoto model). Note that it is also possible to obtain
regularity estimates on ω ↦ pt(θ,ω), either directly from parabolic estimates [L2, Lem. 7.2]
or with propagator techniques similar to the proof of Proposition 2.1.1, even in the case Γ is
singular in ω,ω′, see [L10, App. A.3].
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2.1.2 Quenched law of large numbers

The next point concerns the convergence of the empirical flow (2.2) towards the solution µ
to (2.5). A very simple tightness argument in the case where X = T is given in [L1]:

Proposition 2.1.3 (Theorem 2.5 in [L1]). Assume that X = T, E = R, F , Lipschitz contin-
uous in θ (uniformly in ω), uniformly continuous on T × R, Γ continuous and bounded and
suppose that the sequence (θi,n0 , ωi)i=1,...,n is such that µ(ω)n,0 converges in law to µ0 for the topol-
ogy of weak convergence in P (T ×R). Suppose also that (recall the definition of ν in (2.3))
∫R supx∈T ∣F (x,ω)∣ν(dω) <∞, then the empirical flow µ

(ω)
n converges in law, in C ([0, T ],P(T ×R))

to µ unique solution to (2.5).

This convergence is a quenched result, i.e. valid for a fixed realisation of the environment
(ωi). Note that we do not require the initial condition (θ1,n

0 , . . . , θn,n0 ) to be i.i.d. (in particular
they may very well depend on the environment ωi), all we need is the convergence of the empirical
measure µn,0 as n → ∞. Proof of Proposition 2.1.3 follows a very simple strategy: first prove
tightness in C([0, T ],P(T×R)) endowed with the topology of vague convergence [RC86, Bil99],
then prove that the mass ⟨µn , 1⟩ is conserved as n → ∞ and finally identify any limit point µ
as the unique solution to (2.5).

Extensions: Proposition 2.1.3 has been stated for simplicity in [L1] in the case X = T.
Direct extensions of this method are possible to X = Rd, provided one assumes further that
(θ, θ′) ↦ Γ (θ, θ′, ω, ω′) is with compact support. An alternative to this result would be to use
some propagator method as developed in [L3] and [L14]: an easy adaptation of [L14, Th. 2.4]
also shows a similar quenched convergence of the empirical flow, under assumptions (2.6), (2.7)
and (2.8) on F and Γ, under the additional assumption that Γ may be written as Γ(θ, θ′, ω, ω′) =
∑
+∞
p=0 cpαp(θ,ω)βp (θ

′, ω′), for some coefficients (cp)p≥0 such that ∑p≥0 ∣cp∣ < ∞ and αp and βp
functions bounded by 1 with Lipchitz constants smaller than 1 (see [DdH96, Eq. (1.31)] for the
same hypothesis). In such a case, it is easy to prove that provided µn,0 converges weakly to µ0,
one has E [sups≤T dBL(µn,s, µs)] ÐÐÐ→n→∞

0, almost surely w.r.t. the disorder sequence (ωi). We
refer to [L14, App. C] for more details on this approach.

Remark 2.1.4. An alternative approach to Proposition 2.1.3 would be to proceed with a coupling
argument: define the sequence (θ̄ω1 , . . . , θ̄ωn) as independent copies of the nonlinear process (2.4),
where for each i = 1, . . . , n, θ̄ωi is driven by the same Brownian motion Bi as for θi,n solving
(2.1), with the same disorder ωi and with identical initial condition θ̄ωi0 = θ

i,n
0 . Then, an easy

adaptation of [L10, Prop. 4.1] (which concerns the more difficult case where a random graph
is present) shows that supi=1,...,nE [sups≤T ∣θ

i,n
s − θ̄

ωi
s ∣] ÐÐÐ→n→∞

0, almost surely w.r.t. the disorder
sequence, from which we deduce also the convergence of the empirical flow. Note that this result
englobes also the case where Γ is linear. However, it is necessary for this last proof that one
assumes (θ1,n

0 , . . . , θn,n0 ) to be independent (although not necessarily identically distributed). Note
that the coupling sequence (θ̄ω1 , . . . , θ̄ωn) is made of independent variables, but not identically
distributed (as each θ̄ωi obeys to its own intrinsic inhomogeneity ωi). In comparison with the
discussion in the homogeneous case in Chapter 1, one should rather speak here of propagation
of independence [JPS21]: for fixed k ≥ 1, if one denotes as fn,(1,...,k) as the law of the first k
variables (θ1,n, . . . , θk,n) (by lack of exchangeability, fn,(1,...,k) depends not only on k, but on the
whole sequence of indices (1, . . . , k)), we have that, under the hypothesis that fn,(1,...,k)0 at time 0
is a product measure (this is what one could call as k-independent, instead of k-chaotic), then for
t > 0, fn,(1,...,k)t converges weakly as n→∞ to the product measure µω1⊗ . . .⊗µωk where µω is the
law of θ̄ω solving (2.4). A crucial point here is that this notion of k-independence is no longer
equivalent to the convergence of the empirical flow µ

(ω)
n , as it was the case for k-chaoticity.

2.2 Quenched fluctuations
This part is taken from my PhD thesis, that is only briefly discussed here. We complement

Proposition 2.1.3 with fluctuations results. The motivation comes from the Kuramoto model
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(Example 1.2.2). A crucial aspect of the quenched convergence result of Proposition 2.1.3 is the
self-averaging character of this limit: every typical disorder configuration (ωi)i≥1 leads to the
same deterministic evolution (2.11) as n→∞. However this may not be the case at the level of
fluctuations: even if the distribution ν is symmetric (take the simple case where ν = 1

2 (δ−1 + δ1) to
fix ideas), the fluctuations of a fixed chosen sample of the disorder (ω1, . . . , ωn) of spins in {±1}n
makes it not symmetric, resulting in a slow rotation of synchronized solutions in the direction of
the majority, with a speed that depends randomly on the sample of the disorder (Fig. 2.1). This
can be measured by computing the finite-size order parameters (i.e. the microscopic equivalents
of (rt, ψt) in (1.17)):

r
(ω)
n,t e

iψ
(ω)
n,t =

1
n

n

∑
j=1

eiθ
j,n
t = ⟨µ

(ω)
n,t , e

iθ
⟩ (2.12)

where µ(ω)n is defined in (2.2). In particular, t↦ ψ
(ω)
n,t which captures the position of the center of

synchronization for finite n (see Figure 2.1a) has an approximately linear behavior whose slope
depends on the choice of the disorder (Figure 2.1b).
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(a) Evolution of the marginal on T of µ(ω)n for n = 600
oscillators (ν = 1

2(δ−1 + δ1), K = 6). The oscillators
are initially chosen independently and uniformly on
T independently of the disorder. First the dynamics
leads to synchronization of the oscillators (t = 6)
to a profile which is close to a nontrivial stationary
solution of (1.15). Secondly, the center ψ(ω)n,t of this
density moves to the right with an approximately
constant speed.

(b) Trajectories of the center of synchronization ψ
(ω)
n for

different realisations of the disorder (µ = 1
2(δ−0.5 + δ0.5),

K = 4, n = 400). Direction and speed of the center of syn-
chronization depend on the choice of the initial n-sample
of the disorder. Moreover, these simulations are compati-
ble with a speed of order 1/

√
n. The red trajectory corre-

sponds to the case where we average w.r.t. the disorder:
non self-averaging does not hold in the averaged model.

Figure 2.1 – Non self-averaging for the quenched Kuramoto model (Example 1.2.2).

2.2.1 Quenched Central Limit Theorem for the empirical flow

The point of [L1] is to address this non self-averaging issue in presence of disorder at the
level of fluctuations of the empirical flow. Consider

η
(ω)
n,t ∶=

√
n (µ

(ω)
n,t − µt) , t ∈ [0, T ]. (2.13)

for a fixed realisation of the disorder (ωi)i≥1. The fluctuation process η(ω)n has trajectories in the
space of signed measures on X ×E . In a non-disordered context, similar fluctuation analysis goes
back to [Szn85, Szn84, ST85], where it is proven that the fluctuation field (

√
n (⟨µn , f⟩ − ⟨µ , f⟩) , f ∈ F)

(recall (1.2) and (1.4)) converges as n → ∞ to some Gaussian field with prescribed covariance.
Here, typically F = {f ∈ L2(P ),EP (f) = 0}, where P is the law of the nonlinear process. The
main strategy of proof is then twofold: first apply a Girsanov transform, which allows to get rid
of the interaction in (1.1) so that the problem reduces to i.i.d. random processes and secondly
apply classical asymptotic results for U -statistics [Bre83]. The covariance of the limiting pro-
cess is then expressed in terms of integral operators appearing naturally within the limit of the
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Radon-Nykodym derivative. In our context of disordered systems, the previous strategy presents
several downsides: first, the above convergence is only stated in the sense of finite distribution,
whereas one might expect a full convergence result of the fluctuation process. Secondly (and
more importantly) the above techniques rely heavily on the exchangeability of (1.1), which is
no longer true in our quenched context. And thirdly, the structure of covariance of the limiting
process is expressed in terms on not so explicit integral operators, so that the analysis of the
fluctuation process itself is not facilitated.

A strategy that is more amenable for our present situation concerns Hilbertian techniques
developed in [FFG92] and used by Fernandez and Méléard [FM97] (see also [HM86, Mit83])
in the context of the fluctuation of the homogeneous system (1.1). The point is to start with
the weak semimartingale decomposition of the fluctuation process ηn =

√
n (µn − µ) written

informally as
⟨ηn,t , f⟩ = ⟨ηn,0 , f⟩ + ∫

t

0
⟨ηn,s , L

µn
s f⟩ds +Mn,t(f) (2.14)

The difficulty here is to find a proper functional space in which one could pass to the limit
n → ∞ into the above formula resulting in a limit described in terms of a linear Stochastic
PDE ηt = η0 + ∫

t
0 L

µ,∗
s ηsds +Wt, where W is an appropriate Gaussian process. The point of

[FM97] is to use weighted Sobolev spaces [Mét87] W −j,α, dual of test functions g such that

(∑k≤j ∫Rd
∣Dkg(x)∣2

1+∣x∣2α dx)
1
2
< ∞. The strategy follows from a tightness argument [Reb79, JM86]

(based on compact Sobolev embeddings) and uniqueness of the limit (see e.g. [Oel87, JM98] for
extensions of these techniques to moderately interacting diffusions).

In the present model, if now one fixes once and for all a realisation of the disorder (ωi),
understanding ⟨η(ω)n , f⟩ for all test functions f requires in particular to consider test functions
of the form f(θ,ω) = g(ω), that is to look at

√
n ( 1

n ∑
n
i=1 g(ωi) − ∫ g(ω)ν(dω)), quantity that

does not converge for a fixed realisation of the sequence (ωi): there is no hope to prove that η(ω)n

might be tight for a fixed realisation of (ωi). The strategy developed in [L1] to state a weak
form of quenched convergence, that still captures the dependence in the disorder at the limit,
is based on the following observation: even if, for fixed (ω), the law Hn(ω) ∈ P (C ([0, T ],S ′))
of the process (η(ω)n ) is not tight, the random variable (ω) ↦ H(ω)n is tight (we work here S ′ is
the Schwartz space of tempered distributions on X × E , that can endowed with a structure of
nuclear Fréchet space). The main result of [L1] is

Theorem 2.2.1 (Theorem 2.10 in [L1]). Suppose that X = T, that (ωi) are i.i.d. random
variables with ∫ ∣ω∣

k ν (dω) < ∞ for a sufficiently large k and that F and Γ are regular in θ, θ′

with appropriate moment condition in ω,ω′. Then (ω) ↦ Hn(ω) converges in law to a random
variable ω ↦ H(ω), where for fixed ω, H(ω) is the law of the unique solution to the Ornstein-
Uhlenbeck process ηω in S ′:

ηωt =X(ω) + ∫
t

0
L
∗
sη
ω
s ds +Wt (2.15)

where X(ω) is a Gaussian process with mean value C(ω), independent from W . As a random
variable in ω, ω ↦ C(ω) is a Gaussian process.

The only remaining dependence in the disorder at the limit is in the initial condition X(ω)
which has a nontrivial mean value for fixed ω: this is the signature of the non-selfaveraging phe-
nomenon mentioned above, at the level of the CLT. Let us give briefly some lines of proof for The-
orem 2.2.1. The difficulty part is the tightness of the law Θn of (ω)↦H(ω)n (that is an element of
P (P (CS′)), where CS′ ∶= C ([0, T ],S ′),). The first ingredient is Mitoma’s criterion: a sequence
(Pn) of probability measures on CS′ is tight if for any φ in a suitable countable dense subset of S,
(PnΠ−1

φ ) is tight in C ∶= C ([0, T ],R), for Πϕ ∶ ψ(⋅) ∈ CS′ ↦ ⟨ψ(⋅) , φ⟩ ∈ C . The second is Aldous
criterion for tightness in C : a sequence (Y n) of processes with paths in C is tight if the two condi-
tions hold: (i) Condition [T]: for any values t in a dense set of [0, T ] and q ≥ 1, there exists C > 0
such that supnP (∣Y n

t ∣ > C) ≤
1
q , (Tt,q,C) and (ii) Condition [A]: for all p1, p2 ≥ 1, there exist C > 0,

n0 ≥ 1 such that for all stopping time τ , supn≥n0 supθ≤C P (∣Y n
τ − Y

n
τ+θ∣ ≥

1
p2
) ≤ 1

p1
, (Ap1,p2,C).
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Figure 2.2 – Evolution of the process ⟨ηωt , sin⟩, for different realisations of ω; the trajectories
are sample-dependent and compatible with the ones observed in Fig. 2.1.

Then for a countable dense family (φj)j≥1 in the nuclear space S, define for all ε > 0, the subsets
of P (CS′): Kε

1 (φ1, . . . , φJ) ∶= {P, ∀t, q, 1 ≤ j ≤ J, PΠ−1
φj satisfies (Tt,q,C1)}, Kε

2 (φ1, . . . , φJ) ∶=

{P, ∀1 ≤ j ≤ J, ∀p1, p2 > 0, PΠ−1
φj satisfies (Ap1,p2,C2)} and finally Kε ∶= ⋂J≥1K

ε
1 (φ1, . . . , φJ) ∩

Kε
2 (φ1, . . . , φJ). By construction Kε is relatively compact in P (CS′) and the point is to prove

that lim supnΘn (K
ε,c) ≤ ε for a careful choice of values of C1 = C1(q, ε) and C2 = C2(ε, p1, p2) to

conclude. The key to this last estimate is based on the crucial observation that the fluctuation
process satisfies, for an adequate Sobolev norm with index r, E [supt≤T ∥ηnt ∥

2
−r] ≤ Cn(ω1, . . . , ωn)

for a quantity Cn depending only on the disorder, that is not bounded almost surely in (ω) but
is such that limA→∞ lim supn→∞ P (Cn > A) = 0. This last bound is proven via a careful use of
the Hilbertian techniques of [FM97].

2.2.2 Large time analysis of the fluctuation process

We briefly mention another result of my PhD thesis [L4], which concerns the analysis of the
fluctuation SPDE (2.15) as t→∞, in the case of the Kuramoto model. One observes numerically
that ⟨ηωt , sin⟩ where ηωt solves (2.15) shows non-self-averaging behavior as t→∞ similar to the
ones observed for the microscopic center of synchronisation ψ

(ω)
n,t in Figure 2.1, see Figure 2.2.

The main result of [L4] is

Theorem 2.2.2 (Theorem 2.10 in [L4]). Suppose that ν = 1
2 (δ−ω0 + δω0) for some ω0 > 0. There

exists a Sobolev space H of distributions, such that for K > 1, if ω0 > 0 is sufficiently small,
there exists a unique solution η to (2.15) in H and for fixed initial condition ηω, there exists
v(ω) ∈ R (explicit in terms of ηω0 ) such that

ηωt
t
ÐÐ→
t→∞

v(ω)∂θq (2.16)

Moreover, ω ↦ v(ω) is a Gaussian random variable with explicit variance σ2 > 0.

Here, q = qr,0 is the synchronised stationary profile given in (1.22) and the linear operator
L∗s driving (2.15) corresponds to the linearised operator around the solution pt(θ,ω) to (1.15):

L
∗
t h(θ,ω) = L

ν
pth(θ,ω) =

σ2

2
∂2
θh(θ,ω) − ∂θ (h(θ,ω) (∫ J ∗ ptdν + ω) + pt(θ,ω)∫ (J ∗ h)dν) ,

(2.17)
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with domain D ∶= {h(θ,ω) ∈ C2(T), ∫T×R h(θ,ω)dθν(dω) = 0}. The space H in Theorem 2.2.2
is essentially an extension of the weighted Sobolev space given in (1.25), but adapted to the
context of test functions with disorder [L4, § 2.3]: we define as H =H−1

ν,q the weighted spaces of
distributions, defined as the closure of D w.r.t. the norm

∥h∥−1,ν,q ∶= (∫R
(∫

T
h(θ,ω)dθ)

2
ν(dω) + ∫

R
∫
T

H2
0(θ,ω)

q(θ,ω)
dθν(dω))

1
2

(2.18)

where for fixed ω, θ ↦H0(θ,ω) is the primitive of h0 ∶= θ ↦ h(θ,ω)−(∫T h(u,ω)du) q(θ,ω) (note
that ∫ h0(θ,ω)dθ = 0) such that ∫T

H0(θ,ω)
q(θ,ω) dθ = 0. The crucial point of Theorem 2.2.2 concerns

the spectral properties of the operator (Lνq ,D): it is proven in [L4, Th. 2.8] that (Lνq ,D) is
densely defined, closable in H, with compact resolvent and generates an analytic semigroup
with spectrum in {z ∈ C,R(z) ≤ 0}. The dimension of the characteristic space of the eigenvalue
0 is exactly 2, spanned by ∂θq and p such that Lνq∂θq = 0 and Lνqp = ∂θq. In words, this last
identity states that there is a Jordan block of size 2 in 0, which is the crucial observation for
the linear behavior (2.16) of ηω as t → ∞. Whereas the identity Lνq∂θq = 0 is trivial (it is
the invariance by rotation of the problem), the difficult part is the existence of some p such
that Lνqp = ∂θq. This is based on coercivity estimates on the Dirichlet form associated to Lνq ,
E(h, l) ∶= ⟨Lνqh , l⟩−1,ν,q. Here we take advantage of the symmetry of the system: one has that
∂θq ∈ O and Lνq(O) ⊂ O so we work in O ∶= {h; ∀(θ,ω) ∈ T × Supp(ν), h(−θ,−ω) = −h(θ,ω)}.
Denote by λ the Lebesgue measure on T. Then, integration by parts formulas and considerations
of symmetry give that E(h, l) = Γ(h, l)+Kℓ(h)ℓ(l), for all (h, l) ∈ D(E) ∶= (L2

ν ∩O)×(H−1
ν,q ∩O),

where ℓ(l) ∶= ∫T×R l sin(⋅)dλdµ and Γ(h, l) ∶= −1
2 ∫T×R

hl
q dλdµ + ∫T×R κ(⋅)

hL
q2 dλdµ, where κ(ω) ∶=

1−e4πω

2Z(ω) and L is the primitive of l such that ∫T
L
q dλ = 0. It is easy to see by direct calculations

that there is some p2 such that ℓ(l) = ⟨Lνqp2 , l⟩−1,ν,q so that it remains to show the existence of
some p1 such that Γ(p1, l) = ⟨∂θq , l⟩−1,ν,q. This is done by coercivity estimates: for the Hilbert
space H ∶= L2

ν ∩O and the normed space G ∶= H−1
ν,q ∩O, Γ is bilinear on H × G and Γ (⋅, φ) is

continuous for each φ ∈ G. Moreover choosing h of the form h = qfL with f some carefully
chosen explicit function, we obtain Γ(h, l) = ∫T×R {

1
4∂θf + κ(⋅)

f
q }L

2. Choosing precisely f such
that the term within brackets is equal to 1

q , one obtains that Γ(h, l) = ∥l∥2−1,ν,q. We conclude
from this that inf∥φ∥−1,ν,q=1 sup∥h∥2,ν≤1 ∣Γ(h,φ)∣ ≤ C for some universal constant C > 0. This is
the desired coercivity estimate, which implies the result by the extension of the Lax-Milgram
theorem in [Sho97, Chap. 3].

The rest of the proof follows from a perturbation argument (see [Kat95]) from the non-
disordered case (Theorem 1.2.4), noting that the disordered operator Lνq is nothing else (up to
technical details) than a relatively bounded perturbation of L0

q defined in (1.24). However, note
that the combination of Theorem 2.2.1 and Theorem 2.2.2 does not give a rigorous proof of the
non-self-averaging phenomenon observed in Figure 2.1, as one takes first the limit in n→∞ (for
fixed t) in Theorem 2.2.1 and then t→∞ in Theorem 2.2.2, whereas the analysis of Section 2.2
would require to take a joint limit of (2.2) when both (n, t)→∞. We will address precisely this
question later in Chapter 5.

2.3 Quenched Large Deviation Principles for empirical measure
and flow

So far, we have addressed the case of the quenched Law of Large Numbers concerning
the empirical flow (Proposition 2.1.3), as well as the quenched fluctuations around its limit
(Theorem 2.2.1) [1]. A way to complement these results is to look at Large Deviations issues (the
very motivation of [DdH96] was precisely to establish an annealed Large Deviations Principle
for the flow (2.2) as n→∞). The picture would not be complete without some quenched Large

[1]. The annealed counterparts of these results are obviously true, definitely easier to prove and anyway inef-
fective in view of the quenched traveling waves experimented in Figure 2.1.
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Deviations Principle: this is the purpose of the work [L8] that we address below. Note here
that, as in [DdH96], we are not only interested in the empirical flow (2.2) but also in the more
general [2] double-layer empirical measure

L(ω)n ∶=
1
n

n

∑
j=1

δ(θi,n⋅ ,ωi) ∈ P (C([0, T ],X × E)) . (2.19)

We do not aim to enter into too much formalism on large deviations here, we refer to the
classical references on the subject [DZ98, DS89]. Let us just recall informally that a sequence of
probability measures (Pn) on a topological space X satisfies a (strong) Large Deviation Principle
(LDP) with speed n and good rate function I if the level sets {I ≤ α} are compact and that the
following holds: for all closed sets F (resp. open sets O) in X ,

− inf
x∈O

I(x) ≤ lim inf
n→∞

1
n

lnPn(O) and lim sup
n→∞

1
n

lnPn(F ) ≤ − inf
x∈F

I(x). (2.20)

A seminal work concerning LDP in the homogeneous case is the article of Dawson and Gärtner
[DG87], where it is proven, using projective limits, that the rate function governing the LDP
for the empirical measure (1.2) as n→∞ is expressed in terms of the action functional S(µ) ∶=

∫
T

0 ∥∂tµ(t) −L(µ(t))
∗µ(t)∥2µ(t) dt, where ∥ϑ∥2µ = 1

2 supϕ
∣⟨ϑ , f⟩∣2

⟨µ , ∣∇f ∣⟩2 and L is the generator of (1.4).
This formalism has been further developed for a class of Curie-Weiss model in [DG89], where
the quasi-potential associated to S has been related to the free energy functional associated
with the equilibrium large deviations of the system. The techniques introduced in [DG87] have
been successfully applied to extensions of mean-field models (see e.g. [Mül17] in the case with
spatial dependence). Note that another approach using weak convergence methods have been
developed in [BDF12].

2.3.1 Some hypotheses

We consider (2.1) in the case Γ(θ, θ′, ω, ω′) = ∂θf (θ − θ′, ω, ω′), for some symmetric and
regular f : f(θ,ω,ω′) = f (−θ,ω′, ω). Note that it is assumed in the original work of [DdH96] that
the same gradient structure holds for F (θ,ω) = −∂θg(θ,ω) and also that the initial conditions
(θ1,n

0 , . . . , θn,n0 ) are i.i.d with law γ and that (ωi)i≥1 is a sequence of i.i.d. random variables with
law ν: these last assumptions are actually not necessary and will be discarded in our analysis
for the quenched model.

2.3.2 The annealed case

First recall the main arguments of [DdH96] in the annealed case: denote by P (ω)n ∈ P(C ([0, T ],X )n)
the law of (θ1,n, . . . , θn,n) solving (2.1) in case both F and Γ are present. Denote in a same way
by Wn,0 the law of (θ1,n, . . . , θn,n) when there is no interaction and intrinsic dynamics (F ≡ 0
and Γ ≡ 0). The main line of arguments in [DdH96] is simple: when F ≡ 0 and Γ ≡ 0, in the
case of i.i.d. initial conditions, under the annealed law Wn (⋅) ∶= ∫ Wn,0 (L

(ω)
n ∈ ⋅)ν⊗n (d(ω)),

(θi,n, ωi)i=1,...,n is a simple sequence of i.i.d. random variables, so that, by Sanov’s theorem, the
empirical measure (2.19) satisfies a LDP governed by the entropy λ ↦ H (λ∣W ⊗ ν), where W
is the law of a standard Brownian motion. Next, by Girsanov transform and an application of
Ito’s formula (which uses the gradient structure of F and Γ), one sees that the Radon-Nykodym
derivative dP (ω)n

dWn,0
= exp (nR(L(ω)n )) can be expressed as a bounded and continuous (w.r.t. the

weak topology) functional of L(ω)n . One deduces immediately from Varadhan’s Lemma the full
LDP for the empirical measure (2.19) with rate function λ ↦ H (λ∣W ⊗ ν) −R(λ). Additional
calculations lead to the following final expression of the annealed rate function (see [DdH96,

[2]. The knowledge of (2.19) gives more information than (2.2), as one obtains µ(ω)n,t from L
(ω)
n via the canonical

projection πt ∶ C([0, T ],X ) × E → X × E , (x,ω)↦ (xt, ω), i.e. µ(ω)n,t = πtL
(ω)
n .
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Cor. 1])

G
ann
∶= λ↦

⎧⎪⎪
⎨
⎪⎪⎩

∫ H (λ
ω ∣P λ,ω)λ2(dω) +H (λ2∣ν) , if λ2 ≪ ν,

+∞ otherwise
(2.21)

where λ ∈ P (C ([0, T ],X ) × E) disintegrates into λ(dθ,dω) = λω(dθ)λ2 (dω) and where P λ,ω ∈
P (C ([0, T ],X )) is the law of the unique strong solution to dθt = F (θt, ω)dt − ∫ ∂θf(θt −
θ′, ω, ω′)λt (dθ′,dω′)dt + dBt, θ0 ∼ γ.

2.3.3 Quenched LDP for the empirical measure

Now turn to the LDP for (2.19) in our quenched setting. The result is somehow technical and
we do not give the full hypotheses here, we only highlight the relevant main points in comparison
with the hypotheses in [DdH96]. A first important remark concerns F : we no longer assume that
F is bounded, only that it satisfies appropriate polynomial bound supθ∈X ∣F (θ,ω)∣ ≤ C (1 + ∣ω∣

k
)

as well as Lipschitz continuity w.r.t. both variables (θ,ω). Secondly, we no longer suppose that
F derives from a potential, as in [DdH96]. Thirdly, the i.i.d. assumption concerning both (ωi)
and the initial condition is discarded: we fix once and for all a (deterministic) sequence (ωi)i≥1
satisfying (2.3) (together with some further asymptotics on moments). We suppose the initial
conditions (θ1,n

0 , . . . , θn,n) to be independent (but not necessarily i.i.d.) with θi,n0 ∼ γωi with
appropriate (Feller) regularity hypotheses and moment conditions on the family ω ↦ γω.

The strategy of [L8] in the quenched set-up follows similar lines as for [DdH96], with several
significant bifurcations that we make explicit here. The fact that F no longer derives from a
potential is not a real issue: the point is simply to modify slightly the Girsanov argument of
[DdH96] by computing dP (ω)n

dW (ω)
n,F

(to compare with dP (ω)n

dWn,0
in [DdH96]), where

W
(ω)
n,F =W

ω1
F ⊗ . . .⊗W

ωn
F ∈ P (C ([0, T ],X )n) (2.22)

is the law of (2.1) when there is no interaction (Γ ≡ 0), but F is present. Note here that since
Γ = 0, (2.1) consists of independent but non identically distributed diffusions: (2.22) is a product
measure (here Wω

F is the law of the diffusion dθt = F (θt, ω)dt+ σdBt). Doing so, one easily sees
that the gradient structure on F is irrelevant to the calculations. This technical point apart, the
major difficulty in the quenched setting is that the first argument of [DdH96] no longer applies:
under the quenched law W

(ω)
n,F , the particles (θi,n)

i,...,n
are independent, but no longer identically

distributed: the usual Sanov’s theorem does not apply. The first argument of the proof is then

Proposition 2.3.1 (Proposition 2.1 in [L8]). Under the present hypotheses, the quenched law
W(ω)

n (⋅) ∶=W
(ω)
n (L

(ω)
n ∈ ⋅) (that is the law of the empirical measure (2.19) with no interaction,

Γ ≡ 0) satisfies a LDP in P (C ([0, T ],X ) × E) with good rate function

I ∶= λ↦

⎧⎪⎪
⎨
⎪⎪⎩

H (λ∣Wω(dθ)ν(dω)) , if λ2 = ν,

+∞ otherwise
(2.23)

where Wω(dθ) is the law of dθt = F (θt, ω)dt + σdBt, θ0 ∼ γ
ω.

Proposition 2.3.1 is a quenched version of Sanov’s Theorem (see e.g. [Léo07, CL95] and
[DZ98, Th. 6.2.10] for variants of this result). Proof of Proposition 2.3.1 uses crucially large
deviation techniques for projective limits introduced by Dawson and Gärtner [DG87, Th. 3.4]:
the first point is to note that for any bounded continuous ϕ, the log-Laplace transform Λn(ϕ) ∶=
1
n ln ∫ exp (n ⟨λ , ϕ⟩)W(ω)

n (dλ) has a limit Λ(ϕ) as n → ∞. Indeed, noting that the assumed
Feller property of the initial condition ω ↦ γω propagates to the whole law Wω (see [L8,
Lem. 2.4]), one can simply apply the convergence of the empirical measure of the disorder
(2.3) to Λn(ϕ) = 1

n ∑
n
i=1 ln ∫C([0,T ],X ) exp (ϕ(x,ωi))Wωi(dx) to obtain that Λn (ϕ) ÐÐÐ→

n→∞
Λ(ϕ) ∶=

∫E ln ∫C([0,T ],X ) exp (ϕ(x,u))W u(dx)ν(du). It remains to show that Λ is Gâteaux differentiable
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and that Λ∗(λ) < ∞ implies that λ2 = ν, where Λ∗(λ) ∶= supϕ {⟨λ , ϕ⟩ −Λ (ϕ)} is the Fenchel-
Legendre transform of Λ (see [L8, Th. 6.1] for further details). Then Proposition 2.3.1 is then a
direct consequence of the abstract result of Dawson and Gärtner [DG87, Th. 3.4].

Following the same lines as for [DdH96], the next point is to compute the Radon-Nykodym
derivative dP (ω)n

dW (ω)
n,F

= exp(nR(L(ω)n )) (where the functional R is explicit, see [L8, Prop. 3.1]). A

second crucial difficulty here is that under our present hypotheses (recall in particular that F is
no longer bounded), the function R is no longer continuous nor bounded for the weak topology
so that Varadhan’s Lemma does not apply directly. We proceed by a truncation argument of
the disorder by replacing ωi by χM(ωi) = (ωi ∧M) ∨ (−M) for some M > 0, apply Varadhan’s
Lemma for fixed M > 0 and proceed with M →∞, using exponential approximation techniques.
This only gives a weak LDP (i.e. the upper-bound is only valid on compact sets in (2.20)) and
the rest of the proof consists of properly identifying the rate function and prove that the LDP
is strong. We refer to [L8] for further details on this point. All of this gives

Theorem 2.3.2 (Theorem 1.7 in [L8]). Under the present hypotheses, the sequence P(ω)n (⋅) ∶=

P
(ω)
n (L

(ω)
n ∈ ⋅) satisfies a strong LDP in P (C ([0, T ],X ) × E), with speed n, governed by the good

rate function

G
quen
∶= λ↦

⎧⎪⎪
⎨
⎪⎪⎩

∫ H (λ
ω ∣P λ,ω)λ2(dω), if λ2 = ν,

+∞ otherwise
(2.24)

Note that 0 ≤ Gann(⋅) ≤ Gquen(⋅) and that both rate functions have a unique zero λ∗ that is
the law of (θ̄ω, ω) where θ̄ω is the nonlinear process (2.4). An easy corollary of Theorem 2.3.2 is
the quenched convergence of the empirical measure (2.19) to λ∗, by an immediate Borel-Cantelli
argument. Byproducts of Theorem 2.3.2 and the contraction principle are also LDP concerning
the empirical measure on the particles only 1

n ∑
n
i=1 δθi,n and local empirical measures conditioned

on the value of the disorder. We refer to [L8, Prop. 1.15 and 1.19] for more details.

2.3.4 Quenched LDP for the empirical flow

By Theorem 2.3.2 and the contraction principle, the empirical flow (2.2) satisfies a strong
LDP for the rate function

G1 ∶ q ∈ C ([0, T ],P (X × E))↦ inf {Gquen(λ), πλ = q} (2.25)

where π is the canonical projection. The main objective of [L8, Th. 1.12] is to identify the rate
function G1 with

G ∶= q ↦
⎧⎪⎪
⎨
⎪⎪⎩

∫ K (q, ω)ν(dω), if q ∈ A,
+∞ otherwise

(2.26)

where

K (q, ω) ∶= sup
ϕ∈C∞0 (]0,T [×X )

{∫

T

0
⟨ϕ(t, ⋅) , ∂tq

ω
t −L ωqωt ⟩dt −

1
2 ∫

T

0
⟨(∂θϕ (t, ⋅))

2 , qωt ⟩dt} (2.27)

and A is the set of all admissible flows such that t↦ qωt is weakly differentiable for ν-almost every
ω and q2 = ν. Equality G1(q) = G (q) is standard (see [DdH96]), provided that one can make sure
first that both quantities are finite: when G1(q) <∞, since Gquen is a good rate function, there
exists some λ such that πλ = q and G(λ) = G1(q) < ∞. In particular λ(dθ,dω) = λω(dθ)ν(dω)
and Gquen(λ) = ∫ H (λω ∣Wω)ν(dω)−J (λ), where J is the functional arising from the Girsanov
transform, see [L8, eq. (3.3)]. J (λ) only depends on q. Therefore, for ν a.e. ω, λω minimises
H (λω ∣Wω) under the constraint πλω = qω. This implies [Föl88] that λω is the law of a diffusion
dθωt = bωt (θωt )dt + dwt. Plugging this expression into the expression of Gquen and using the

alternative form K (q, ω) = 1
2 supϕ∈C∞0 (]0,T [×X )

(∫ T0 ⟨ϕ(t,⋅) , ∂tqωt −L ωqωt ⟩dt)
2

∫ T0 ⟨(∂θϕ(t,⋅))2 , qωt ⟩
gives the desired equality

G1(q) = G (q). The main difficulty is to prove that G (q) <∞ implies that G1(q) <∞ (this point
is the object of a circular reasoning in [DdH96]). The proof of statement is carried out in [L8,
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Prop. 5.2]) (note that another alternative proof could be to use projective limits as in [DG87,
Mül17]) and is briefly discussed here: suppose that G (q) <∞, then for ν-a.e. ω, K (q, ω) <∞ and
one can alternatively write K (q, ω) = supϕ∈C∞0 (]0,T [×X ) {U(ϕ) −

1
2 ∫

T
0 ∫ (∂θϕ(θ, t))

2 qωt (dθ)dt},
with U (ϕ) ∶= ∫ ϕ(θ, t)qωT (dθ)−∫ ϕ(θ,0)qω0 (dx)−∫

T
0 ∫ (∂t + (L

ω)
∗
)ϕ(θ, t)qωt (dθ)dt. One obtains

then that for all γ > 0, ∣U(ϕ)γ ∣ ≤
1
γ2

1
2 ∫

T
0 ⟨(∂θϕ (t, ⋅))

2 , qωt ⟩dt+K (q, ω) and choosing γ = ∥∂θϕ∥2,qω ,
we have ∣U(ϕ)∣ ≤ (1

2 +K (q, ω)) ∥∂θϕ∥2,qω . Hence U can be extended to a continuous linear form
on H−1

0 (q
ω), completion of smooth function under ∥∂θϕ∥2,qω . By Riesz Theorem, there exists

some Bω ∈H−1
0 (q

ω) such that U(ϕ) = ∫
T

0 ∫ (∂θϕB
ω)dqωt dt. Plugging this expression into (2.27),

one obtains finally K (q, ω) = supϕ∈C∞0 (]0,T [×X ) {⟨B
ω , ∂θϕ⟩2,qω −

1
2 ∥∂θϕ∥

2
2,qω} =

1
2 ∥B

ω∥
2
2,qω . We

then borrow from the deep result of [CL94, Th. 5.9]: there exists λω∗ such that πλω∗ = qω and
H(λω∗ ∣P

q,ω) = 1
2 ∥B

ω∥
2
2,qω (this λω∗ is the law of the diffusion with generator 1

2∂
2
θ +B

ω∂θ, so-called
Nelson processes, see [CL94, CL95] for further references). We immediately derive from the last
equality and (2.25) and (2.26) that G1(q) <∞ and we are done.

2.3.5 Perspectives

The fact that the interaction kernel Γ derives from a potential is mostly a convenient technical
tool allowing to apply Ito’s formula in the calculation of the Radon-Nykodym derivative, but
this does not appear in the formal definition of the rate function. In the recent work [BPR22],
the authors prove an annealed LDP on the empirical measure (2.19) without supposing that
the interaction kernel is gradient (see also [DFMS18] for an alternative approach using rough
paths methods). An extension to the quenched setting seems a natural perspective, although
not straightforward.

2.4 The case of singular spatial interactions

The point of this section is to comment on the works [L3, L6] where the influence of the
possible singularity in the interaction is analyzed. Here, the point of view is to consider the
disorder as a spatial position ωi = xi, so that we address the spatially-extended version of (2.1)

dθi,nt = F (θ
i,n
t )dt +

1
n

n

∑
j=1

Γ (θi,nt , θj,nt )Ψ (xi, xj)dt + σ ⋅ dBi
t, i = 1, . . . , n, t ∈ [0, T ], (2.28)

where each position xi lives in some space I (typically I = [0,1]d or Rd) and Ψ is a fixed spatial
kernel on I2. Spatially-extended systems as (2.28) are particularly relevant in various contexts,
especially in neuroscience as there is biological evidence of spatial organization of neurons in
the brain (e.g. cortical columns in the visual cortex [Luo20]). The point of this paragraph is to
question the influence of the spatial kernel Ψ on the dynamics of (2.28) as n →∞, at the level
of both LLN and CLT results for the empirical measure. Of course, if Ψ were to be smooth,
the results of the previous sections would apply: we are interested here in situations where Ψ is
singular.

2.4.1 Law of large numbers

In [L3], we concentrate on the case I ∶= [0,1]d with deterministic regular positions xi = i
n ,

i ∈ {1, . . . , n}d and aim at looking at the behavior as n →∞ of the spatially-extended empirical
measure

µnt ∶=
1
n

n

∑
i=1
δ(θi,nt ,xi)

(2.29)

Once again, typical assumptions are one-sided Lipschitz continuity for F (2.6) and boundedness
and uniform Lipschitz concerning the interaction kernel Γ. It is supposed for simplicity in [L3]
that the initial conditions in (2.28) are i.i.d. with appropriate moment conditions (but one
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could very well relax this assumption towards non identically distributed initial conditions).
The corresponding nonlinear Fokker-Planck equation is then µt(dθ,dx) weak solution to

⟨µt , f⟩ = ⟨µ0 , f⟩ + ∫
t

0

1
2
⟨µs , div (σσ†

∇f)⟩ds

+ ∫

t

0
⟨µs , ∇f ⋅ {∫ Γ (⋅, θ′)Ψ (⋅, x′)µs (dθ′,dx′) + F}⟩ds (2.30)

The hypotheses on the kernel Ψ in [L3] are rather technical, let us only mention here the most
important one: we suppose that there exists some ι ∈ (0,1] such that

δΨ(x, y) ∶= ∫
I
∣Ψ(x, z) −Ψ(y, z)∣dz ≤ C ∣x − y∣ι , x, y ∈ I. (2.31)

In other words, although the kernel Ψ might be singular, the quantity

Din
Ψ(x) ∶= ∫

I
Ψ(x, z)dz, x ∈ I (2.32)

that one might interpret as the macroscopic indegree of x (i.e. the sum of all incoming contri-
butions of other all nodes z within the macroscopic graph induced on I2 by the kernel Ψ) is
regular in x. The assumption (2.31) includes particularly the following examples:

Example 2.4.1 (P -nearest neighbor model). Take I = [0,1]d and Ψ(x, y) = 1∣x−y∣≤R for some
R ∈ (0,1]: this corresponds to the situation where one particle only interacts with a proportion
R of closest particles [OMHS11]. Assumption (2.31) is satisfied for ι = 1.

Example 2.4.2 (Singular polynomial interaction). Take I = [0,1]d and

Ψ(x, y) = 1
∣x − y∣α

, x ≠ y ∈ I (2.33)

for some α ∈ [0, d). This example is originally motivated by the XY model with long-range
interaction [GPR12, GCR12]. Assumption (2.31) is satisfied for ι = (d − α) ∧ 1.

We see here from (2.30) and the above examples a technical difficulty that is intrinsic to
the model: the kind of regularity we need on the test functions f(θ, x) in (2.30) is significantly
different w.r.t. the θ variable (in this respect, some C2 regularity is sufficient) and w.r.t. the
x-variable (dealing with possibly discontinuous functions, the only relevant regularity w.r.t. x
is only Lp for some p ≥ 1). This lack of regularity w.r.t. the spatial variable rises two main
questions: first, concerning the well-posedness of (2.30) (and the regularity of the solution w.r.t.
the x variable) and secondly, when it comes to the convergence of the empirical measure (2.29)
towards (2.30), the question being which topology one should put on P(X × I), as the weak
topology may not be sufficient. The first question of well-posedness of (2.30) is addressed in
[L3, Prop. 2.19]:

Proposition 2.4.3 (Proposition 2.19 in [L3]). Under the previous hypotheses and technical
assumptions that include both Examples 2.4.1 and 2.4.2, for every initial condition µ0(dθ,dx),
there exists a unique solution µ ∈ P (C ([0, T ],X ) × I) to (2.30).

Existence follows from ad-hoc extensions of Sznitman’s fixed-point argument for the existence
of a nonlinear process associated to (2.28), in the same spirit as for Proposition 2.1.1. Uniqueness
follows from Theorem 2.4.5 below, based on the observation that any solution to (2.30) is
necessarily the weak limit of the empirical measure (2.29).

Remark 2.4.4 (Spatial regularity of µ). Writing the solution µ to (2.30) as µ (dθ,dx) =
µx(dθ)dx, it is proven in [L10, Lemma A.3] that x↦ µx has the same regularity as δΨ in (2.31):
there exists C > 0 such that for any Lipschitz function θ ↦ f(θ), ∣∫ f(θ)µxt (dθ) − ∫ f(θ)µ

y
t (dθ)∣ ≤

∥f∥LipCe
CtδΨ(x, y).
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The main point of [L3] is to address the second point raised above, that is the convergence
of the empirical measure (2.29) towards (2.30). The strategy is to construct an ad-hoc distance
on P(X × I) that is adapted to test functions with the kind of regularity of Examples 2.4.1
and 2.4.2. We specify here only the main lines of construction adapted to singular interactions
of Example 2.4.2. For fixed a ∈ I, denote by Ca (with corresponding semi-norm ∥⋅∥a) as the
set of test functions (θ, x) ↦ f(θ, x) such that, when renormalised by ∣x − a∣α, are regular in
both (θ, x): require that ∣x − a∣α f(θ, x) is bounded, Lipschitz in θ and with Hölder regularity
in x. Then for fixed K ≥ 1, if DK ∶= {( j1K , . . . ,

jd
K
) , 0 ≤ j1 ≤K, . . . ,0 ≤ jd ≤K} is the regular

discretization of [0,1]d of order K, define the sequence (dK)K≥1 of distances on P (X × I) given
by dK(λ, ν) ∶= supf (E (∣⟨f , λ − ν⟩∣

p
)

1/p
) for some appropriate p ≥ 1, where the supremum is

taken over all f ∈ ⋃a∈DK′ ,1≤K′≤K Ca, ∥f∥a ≤ 1. The final distance follows a standard Fréchet
construction from the intermediate distances dK : define d∞(λ, ν) ∶= ∑K≥1 aKdK(λ, ν), for some
appropriate choice of summable family (aK)K≥1. We see here the point of d∞: it is to follow the
singularity (uniformly as n→∞) of test functions of the form g(θ)Ψ(x, kn) that appear naturally
in (2.28). Note that the distance d∞ is somehow weaker than the usual bounded-Lipschitz
distance dBL in the sense that the supremum in test functions is outside the expectation, not
inside (as we had for the extensions of Proposition 2.1.3 mentioned earlier). The main result of
[L3] is then

Theorem 2.4.5 (Theorem 2.18 of [L3]). Under the previous hypotheses, there exists some C > 0,
such that for any ϵ > 0 and any arbitrary solution µ to (2.30),

sup
t∈[0,T ]

d∞ (µ
n
t , µt) ≤ C

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

n−{(
d
2−ϵ)∧1} if α ∈ [0, d2),

(lnn)n−{ d2∧1} if α = d
2 ,

(lnn)n−{(d−α)∧1} if α ∈ (d2 , d) .
(2.34)

The proof is based on a propagator argument similar to the one mentioned in the proof of
Proposition 2.1.1: take here d = 1 for simplicity. Note at this point that we have not proven
uniqueness of a solution to (2.30): let µ be any of such solutions. Using again the propagator
Ps,t defined in (2.10), a way to couple µnt with µt is to consider the evolution of Ps,tf(θk,n(s))
for any k = 1, . . . , n, where θk,n solves (2.28): Ito’s formula gives (see [L3, Lem. 4.3]), for any
regular test function (θ, x)↦ f(θ, x),

⟨µn,t − µt , f⟩ = ⟨µn,0 − µ0 , f⟩ +
1
n

n

∑
k=1
∫

t

0
∂θ (Ps,tf) (θ

k,n
s , xk)dBk,t

+
1
n

n

∑
k=1
∫

t

0
∂θ(Ps,tf) (θ

k,n
s , xk) [⟨µn,s − µs , Γ(θk,ns , ⋅)Ψ(xk, ⋅)⟩]dt ∶= (A) + (B) + (C) (2.35)

The key to Theorem 2.4.5 is to note that ∥Ps,tf∥a ≤ C ∥f∥a, uniformly over regular test functions
f (see [L3, Lem. 4.4]). Then, Theorem 2.4.5 boils to down to control each term in (2.35), once one
has taken expectation and the supremum in f in (2.35): (B) is a standard Brownian term. The
transition described in (2.34) comes from the scaling of the term (A), which captures both the
dependence in the initial condition and in the space variable x. The distance d∞ described above
is precisely built up to deal with the coupling term (C), which gives rise to a Grönwall term.
Uniqueness of a solution to (2.30) follows readily from (2.34), as the unique limit of the empirical
measure µn. Note that we have left aside an important technical issue: the calculations leading to
(2.35) require F to be Lipschitz, whereas we only require the one-sided Lipschitz condition (2.6).
This can be circumvented by observing that all the previous calculations do not actually depend
on the Lipschitz constant of F , only in the constant CF in (2.6). Hence, if F is not Lipschitz, one
can replace the dissipative F by its Yosida approximation [Cer01, App. A] Fλ(θ) ∶= F (Rλ(λθ)),
where Rλ(θ) = (λ − F (θ))−1: Fλ is now Lipschitz (with a constant that diverges with λ → ∞)
but one-sided Lipschitz with the same constant CF , uniformly in λ. The point is then to apply
the previous estimates with Fλ in place of F and then proceed with approximation arguments
with λ → ∞. We refer to [L3, § 7] for further details. The conclusion of Theorem 2.4.5 is a
strong indication that the spatial singularities induces a phase transition in the scaling of the law
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of large numbers: in the subcritical regime α < d
2 , the speed of convergence is arbitrarily close

to the Gaussian scaling n−{ d2∧1}, whereas (forgetting the lnn term that is mostly technical) the
speed of convergence is essentially given by n−{(d−α)∧1} (note here that the rates of convergence
in (2.34) are non optimal, see the next paragraph below). Similar techniques apply to the case
of Example 2.4.1 and one obtains the usual Gaussian scaling n−{ d2∧1} for any R ∈ (0,1], see [L3,
Th. 2.13].

2.4.2 Fluctuations

The natural question is to understand whether the rates given by (2.34) are optimal (they
are not) and whether it is possible to obtain some exact CLT results concerning (2.29) around its
mean-field limit (2.30). This is the purpose of [L6] where we consider Example 2.4.2 when I = T
with d = 1 for simplicity. The above discussion suggests to consider the following fluctuation
process

ηnt ∶= an (µ
n
t − µt) (2.36)

where an = n
1
2 when α ∈ [0,1/2) and an ∶= n

1−α when α ∈ (1/2,1). It is easy to see that these
scalings are indeed the correct ones: the convergence of µn to µ comes from the competition
between the convergence of the empirical distribution of both the initial condition θi,n0 and
Brownian motions Bi (which scales typically as n1/2) and the convergence with respect to the
spatial variable xi. Setting F ≡ 0 and Γ ≡ 1 in (2.28) to fix ideas, everything boils down to
the approximation of the integral ∫I

1
∣x−xi∣αdx by the Riemann sum 1

n ∑
n
j=1

1
∣xj−xi∣α , for which the

rate of this last convergence is exactly n1−α. So the previous choice of an simply corresponds
to the predominant scaling in both cases (see [FR01, eq. (27)] for heuristics on this derivation
in a similar context). This intuition also suggests that when α < 1

2 , the randomness prevails
and one should obtain Gaussian fluctuations as n → ∞, whereas when α > 1

2 the randomness
disappears under the scaling n1−α and one should obtain a deterministic limit for ηn. The main
result of [L6] is precisely to make this intuition rigorous: we show that the fluctuation process
ηn converges to the unique solution of a linear stochastic partial differential equation when α < 1

2
and that ηn has a deterministic limit in the supercritical case α > 1

2 , see Theorem 2.4.6.

An auxiliary fluctuation process

We use here similar Hilbertian techniques [FM97] already introduced earlier (recall § 2.2.1):
we consider ηn as a random distribution over test functions (θ, x) ↦ f(θ, x). There is however
a major difficulty here: the embeddings techniques in [FM97] require a sufficient regularity
(typically Ck for sufficiently large k) on the test functions f . This is in apparent contradiction
with our present case, since in order to study ηn in (2.36), one needs to consider test functions
(θ, x)↦ f(θ, x) that reproduce the singularities of the kernel Ψ w.r.t. the variable x, and hence
are not regular in the x variable. We bypass this difficulty by introducing a key auxiliary process,
that we call two-particle fluctuation process:

H
n
t ∶= an

⎛

⎝

1
n2

n

∑
i,j=1

Ψ(xi, xj)δ(θi,nt ,xi,θ
j,n
t ,xj) − µ

n
t ⊗ µt (Ψ⋅)

⎞

⎠
, t ∈ [0, T ], (2.37)

One can easily see that Hn captures the correct fluctuations induced by the space variables
(especially in the supercritical case α > 1

2): applying Hn to the constant test function g ≡ 1, one
obtains that ⟨Hnt , 1⟩ = 1

n ∑
n
i=1 {an (

1
n ∑

n
j=1 Ψ(xi, xj) − ∫I Ψ(xi, x̃)dx̃)}, which is exactly of order

1 when α > 1
2 .

From a purely technical point of view, what makes the use of Hn critical is that it enables
to separate the issue of the singularity of the spatial kernel Ψ from the issue of the regularity
of the test functions: it is the weighted process Hn itself that carries the singularity in (x, x̃)
(through the weight Ψ), not the test functions. Hence, we are allowed to consider test functions
as regular as required in all variables (θ, x) so that the Sobolev embeddings techniques of [FM97]
remain applicable. Note that this two-level process is not only a convenient technical tool, but
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a relevant part of the fluctuation result: in the supercritical case α > 1
2 , the fluctuations of the

system are necessarily described in terms of the joint limit (η,H) of (ηn,Hn) as n → ∞ (see
Theorem 2.4.6). The starting point of the analysis is to write a semimartingale decomposition
for both processes ηn and Hn. We see in particular that the part that involves the singular
kernel Ψ in the semimartingale decomposition of ηn is completely expressed in terms of Hn: for
all t ∈ [0, T ], one has

⎧⎪⎪
⎨
⎪⎪⎩

ηnt = ηn0 + ∫
t

0 L
1,∗
s ηns ds + ∫

t
0 Φ∗Hns ds +M1,n

t ,

Hnt =Hn0 + ∫
t

0 L
2,∗
s H

n
s ds + ∫

t
0 R

n
sds +M2,n

t ,
(2.38)

where L1
s, L2

s and Φ are explicit linear operators (acting on smooth functions), Rn is a remainder
term and Ml,n

t for l = 1,2 are martingales. Based on this joint semimartingale description, the
main result is

Theorem 2.4.6 (Theorems 2.7 and 2.8 in [L6]). Under regularity assumptions on F and Γ and
moment conditions on the initial condition, there exist appropriate Sobolev spaces H1 and H2
with negative regularity, such that

1. if α ∈ [0,1/2), the random process ηn converges in law in C ([0, T ],H1) to the unique
solution to the well-posed linear stochastic partial differential equation

ηt = η0 + ∫
t

0
L

1,∗
s ηsds +M1

t (2.39)

where η0 and M1 are explicit independent Gaussian processes.
2. if α ∈ (1/2,1), the random process (ηn,Hn) converges in law in C ([0, T ],H1 ⊗H2) to the

unique solution to the well-posed coupled system of linear partial differential equations
⎧⎪⎪
⎨
⎪⎪⎩

ηt = ∫
t

0 L
1,∗
s ηsds + ∫

t
0 Φ∗Hsds,

Ht =H0 + ∫
t

0 L
2,∗
s Hsds,

(2.40)

where H0 is some nontrivial initial condition.

Some comments on Theorem 2.4.6: (2.39) reduces to the linear SPDE found in the homo-
geneous mean-field regime in [FM97] when α = 0: in the subcritical case α < 1

2 , the spatial
damping on the interactions in (2.28) is not strong enough to have an effect on the behavior
of the fluctuations of the system and the mean-field fluctuations remain universal and Gaus-
sian. The main point is to realise that the two-level fluctuations Hn vanishes as n → ∞ in
this case. To see this, the strategy is to show that the limit H satisfies in any case the linear
equation Ht = H0 + ∫

t
0 L

2,∗
s Hsds and that the initial condition H0 ≡ 0 in the subcritical case.

Hence, by linearity, Ht ≡ 0 for all t ≥ 0 and the fluctuations are described in terms of the pro-
cess ηt only. On the contrary, in the supercritical case, the spatial constraints prevail and the
first correction to the fluctuations as n → ∞ is deterministic. Note that in this case, the only
point that makes this limit nondegenerate is the nontrivial initial condition H0 of the two-level
fluctuation process. Having defined both processes (ηn,Hn), the strategy of proof follows the
same procedure as in [FM97] (that is tightness and identification of the limit) with the notable
technical difficulty that Hn acts now on test functions on four variables (θ, x, θ̃, x̃). A key (and
quite technical) argument at this point is to close the fluctuation decomposition by showing
that the remainder term Rn in (2.38) effectively goes to 0 as n → ∞. In comparison with the
similar fluctuation result for random graphs in Section 3.2 below, dealing with this remainder
term is actually conceptually easier than for Section 3.2, as there is no superposition here of an
additional randomness: the control of Rn is essentially deterministic (although very technical as
one has to deal with test functions of four variables (θ, x, θ̃, x̃) with singular dependence in x, x̃).
The use of weighted empirical processes such as Hn in the context of interacting particle systems
is reminiscent of previous works (see in particular the articles of Kurtz and Xiong [KX99, KX04]
on particle approximations for nonlinear SPDEs). The supercritical case may also be related to
a class of models previously studied in the literature, that is moderately interacting diffusions
[JM98, Oel87]. This class of models also exhibits deterministic fluctuations (see [JM98] p. 755),
but one should point out that the precise scaling an is not explicitly known [JM98, Rem. 3.15].
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2.5 Comments and perspectives
When α > 1

2 , the leading term in the asymptotic expansion of the empirical measure µn

around µ is deterministic, of order n−(1−α). A natural question would be about the existence
and the nature of the next term in this expansion. Concerning the dependence in the spatial
variable, the nest term in the expansion of 1

n ∑
n
j=1

1
∣xj ∣α is of order n−1, which is in any case

smaller than the Gaussian scaling n−1/2. Consequently, one should expect the next term in the
expansion of µn to be Gaussian, of order n−1/2. The precise form of this term remains unclear
(see [Oel87] for a similar analysis concerning moderately interacting diffusions). Another natural
question would be to ask what happens at the critical case α = 1

2 (that is when the spatial and
Gaussian fluctuations are exactly of the same order). Although it is natural to think that the
correct scaling is exactly

√
n, the present work only provides partial answers (all that is proven

in [L6] is that the correct scaling is at least an =
√
n

lnn). The behavior as n→∞ of systems similar
to (2.28) in the case α > 1 is also of interest (see [FR01] for heuristics). The analysis of this
case goes beyond the framework of mean-field analysis and requires alternative techniques. As
far the P -nearest neighbors model (Example 2.4.1) is concerned, the above results only cover
the case where the proportion R > 0 is fixed (that would correspond to the dense case, with the
formalism of Chapter 3). The diluted case where R = Rn → 0 with n → ∞ remains to be fully
investigated, in connection with the framework of moderately interacting diffusions [JM98].
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Chapter 3

Beyond the mean-field assumption:
spatially-structured models and
random graphs

Whereas the nature of the homogeneities considered in Chapter 2 was essentially local (each
local disorder ωi is attached to the particle θi,n), we are interested here in the case where
the disorder lies on the interaction between two particles θi,n and θj,n. Recall the setting of
(1.27): let Gn = (En,Vn) be a generic graph with sets of vertices En ∶= {1, . . . , n} and edges
Vn ⊂ {1, . . . , n}2. Encoding the presence (resp. absence) of the edge i→ j in Vn by ξni,j ∶= 1 (resp.
ξni,j ∶= 0), define the particle system (θ1,n, . . . , θn,n) interacting on the graph Gn by

dθi,nt = F (θ
i,n
t )dt +

κni
n

n

∑
j=1

ξni,jΓ (θ
i,n
t , θj,nt )dt + σ ⋅ dBi

t, i = 1, . . . , n, t ∈ [0, T ], (3.1)

Here, κni is a possibly inhomogeneous dilution parameter in order to compensate for the local
sparsity of the graph around vertex i. At this point, the chosen graph Gn could be random
(build upon some probability Pg) or simply deterministic.

Moving from the homogeneous (1.3) to (3.1) constitutes a considerable step further in the
difficulty as one formally leaves the mean-field framework: the interaction in (3.1) is no longer
a functional of the empirical measure µnt = 1

n ∑
n
i=1 δθi,nt

but of the collection of local empirical
measures

µi,nt ∶=
κni
n

n

∑
j=1

ξni,jδθj,nt
, i = 1, . . . , n. (3.2)

In particular, there is no immediate argument that for two vertices i ≠ j, the local empirical
measure µi,n around i should be close to µj,n, nor that both should be close to the global
empirical measure µn. By Ito’s formula to (3.1), the dynamics of these local empirical measures
depend themselves on empirical measures of higher order in the graph so that the main question
is to find how to properly close this hierarchy as n → ∞. Having in mind Question 1.2.5, we
want to understand under which condition on the graph Gn the weighted measure

µ̂i,nt ∶= µ
i,n
t − µ

n
t =

1
n

n

∑
j=1
(κni ξ

n
i,j − 1) δ

θj,nt
(3.3)

effectively goes to 0 as n→∞. The key (and the major present difficulty) to this convergence is
to find a way to decouple in (3.3) what is relevant to the proximity of the graph sequence w.r.t.
the complete graph (that is (κni ξni,j − 1) in (3.3)) from the dynamics δ

θj,nt
itself. This is not a

trivial task as θj,nt intricately depends on the graph itself, so that it is unclear if any estimate
one might have on graph observables such as 1

n ∑
n
j=1 (κ

n
i ξ
n
i,j − 1) would propagate to µ̂i,nt .

43
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3.1 Homogeneous graphs: Law of Large Numbers

3.1.1 Uniform propagation of chaos

We first address Question 1.2.5 at the level of the law of large numbers, that is the convergence
of the empirical measure µnt of (3.1) to µt solution to the nonlinear Fokker-Planck equation (1.4).
The first elementary and natural approach of [L5](but yet quite unsatisfactory, see commentaries
below) is to tackle this question by proving global propagation of chaos for (3.1), that is to look
at the following convergence

sup
i=1,...,n

E
⎡
⎢
⎢
⎢
⎣

sup
s∈[0,T ]

∣θi,ns − θ̄
i,n
s ∣

2⎤⎥
⎥
⎥
⎦
ÐÐÐ→
n→∞

0 (3.4)

where (θ̄1,n, . . . , θ̄n,n) is the usual sequence of i.i.d. nonlinear mean-field synchronous coupling
(with the same initial conditions and Brownian motions as for (3.1), recall (1.5)). A very simple
argument based on Ito’s formula and the Lipschitz continuity of Γ shows that

E [ sup
0≤s≤T

∣θi,ns − θ̄
i,n
s ∣

2
] ≤ C ∫

t

0
E [ sup

0≤v≤u
∣θi,nv − θ̄

i,n
v ∣

2
]du

+ ∫

t

0
E
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR

κni
n

n

∑
j=1

ξni,jΓ (θi,nu , θj,nu ) − ∫ Γ (θ̄iu, θ′)µu (dθ′)
RRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎦

du
(3.5)

The idea of [L5] is very simple: whereas in the last term of (3.5), ξni,j and Γ (θi,nu , θj,nu ) are coupled
in a nontrivial way, the situation gets much better if one considers instead κni

n ∑
n
j=1 ξ

n
i,jΓ (θ̄

i,n
u , θ̄j,nu ),

as, by construction, the nonlinear process θ̄i,nt no longer depends on the graph. Noting that the
difference Γ (θi,nu , θj,nu ) − Γ (θ̄i,nu , θ̄j,nu ) only gives rise to Grönwall terms, we see from (3.5) that
the natural condition to obtain the convergence (3.4) is to require that

bn = bn(Gn) ∶= sup
i=1,...,n

RRRRRRRRRRR

1
n

n

∑
j=1

ξ̂ni,j

RRRRRRRRRRR

ÐÐÐ→
n→∞

0, for ξ̂ni,j ∶= κni ξni,j − 1. (3.6)

Condition (3.6) is a way to measure the proximity of the graph Gn with the complete graph Kn

which is essentially a condition of uniform homogeneity on the degrees: suitably renormalized,
each vertex in Gn has its degree din = ∑nj=1 ξni,j which approaches n. Hence, we obtain

Theorem 3.1.1 (Theorem 1.1 in [L5]). Suppose that the initial conditions in (3.1) are i.i.d.
with law µ0. Suppose that there is some κn such that κin = κn for all i = 1, . . . , n and κn

n ÐÐÐ→n→∞
0.

Under Lipchitz regularity of the coefficients F and Γ, assuming condition (3.6), there exists some
constant C = CF,Γ > 0 and n0 such that for all n ≥ n0 and any t ≥ 0,

sup
i=1,...,n

E
⎡
⎢
⎢
⎢
⎣

sup
s∈[0,t]

∣θi,ns − θ̄
i,n
s ∣

2⎤⎥
⎥
⎥
⎦
≤ C (

κn
n
+ b2

n) exp (Ct)ÐÐÐ→
n→∞

0. (3.7)

In particular, for any sequence tn such that (κnn + b
2
n) exp (Ctn) = o(1),

E
⎡
⎢
⎢
⎢
⎣

sup
s∈[0,tn]

dBL (µn,s, µs)
⎤
⎥
⎥
⎥
⎦
ÐÐÐ→
n→∞

0, (3.8)

where (µt)t∈[0,T ] solves (1.4) with initial condition µ0.

Example 3.1.2 (Erdös-Rényi random graphs, ER(n, pn)). Let pn ∈ (0,1] and let ξni,j , i, j =
1, . . . , n be i.i.d. Bernoulli random variables with parameter pn (that is P (ξni,j = 1) = pn = 1 −
P (ξni,j = 0)). One is interested in two situations here: the dense case, when pn ÐÐÐ→

n→∞
p ∈ (0,1]

(this corresponds to a situation where each vertex interacts with a proportion of size n of the
population) and the diluted case (or vanishing degree case), when pn ÐÐÐ→

n→∞
0. In such a case,
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for κn = 1
pn

, condition (3.6) is valid for almost every realisation of the graph (see [L5, Prop. 1.3])
provided the following dilution condition is met

npn
lnn
→∞ as n→∞. (3.9)

Example 3.1.3 (Random regular graphs). One can build a graph in which each vertex has
degree d = d(n) provided 3 ≤ d < n and dn even [Bol01] and condition (3.6) is met for κn = n

d(n)
with d(n)→∞.

3.1.2 Discussion

On the optimality of the dilution condition

First note that the hypothesis κn
n ÐÐÐ→n→∞

0 in Theorem 3.1.1 is the minimal condition where
to expect some mean-field behavior for (3.1). In case of Example 3.1.2, this corresponds to the
condition (slightly better than (3.9))

npn →∞ (3.10)

i.e., the expected degree of each vertex goes to ∞ as n → ∞. As far as the convergence (3.8)
of the empirical measure is concerned, condition (3.10) is certainly optimal: in the critical
regime npn ÐÐÐ→

n→∞
λ for some λ > 0, the degree of each vertex remains a.s. finite (asymptotically

Poisson(λ)) and it is well-known that ER(n, pn) converges (in the sense of local topology on
graphs [Bor16]) to some Galton-Watson tree. The limit of (3.1) is then no longer mean-field but
given as interacting diffusions on Galton-Watson trees [ORS20, LRW23].

In the annealed case (i.e. when (3.8) is also averaged w.r.t. the law of the graph), one
easily obtains the optimal condition (3.10) [BCW20]. We stress here that there is an intrinsic
difficulty in capturing the same optimal condition in the quenched regime. The main reason
is that the dilution condition (3.9) (slightly improved into lim infn→∞ pnn

log(n) > 0 in [CDG20, eq.
(2.1)], see § 3.1.4 below for more details) is likely to be optimal for the uniform propagation
of chaos (3.4). Indeed, considering Example 3.1.2, pn ∼ lnn

n is the threshold for connectivity
for Gn: when pn = a

lnn
n with a < 1, there is with high probability about n1−a isolated vertices

(see the discussion before [Dur07, Th. 2.8.1]). In particular, the dynamics of these particles are
simply Brownian and their law not close to a McKean-Vlasov process. Hence, if ones believes in
the optimality of condition (3.10) for the convergence of the empirical measure (3.8), a uniform
propagation result such as (3.4) is necessarily not an appropriate strategy in this intermediate
regime 1

n ≪ pn ≪
lnn
n . We see here a particularly striking illustration of the effect of non-

exchangeability in (3.1): the convergence (3.4) of the law of one single particle is no longer
equivalent to the convergence (3.8) of the empirical measure.

Going beyond logarithmic scale

There is further evidence that (3.4) (and its corresponding condition (3.6)), as appealing
as it may seem at first look, may not be the correct approach for the convergence (3.8) of the
empirical measure. This is discussed at length in [L5], we reproduce here the main arguments.
The point is that condition (3.6), although uniform along the graph Gn, is essentially of local
nature, as its concerns only the behavior of the renormalized degree of each vertex. In particular,
(3.6) does not even require Gn to be connected. This leads to some phenomenological paradox
that we present here.

Example 3.1.4. Consider the non-disordered Kuramoto model (i.e. Example 1.2.2 in the case
ω ≡ 0). Condition (3.6) does not distinguish at all between

1. some fully connected Gn = ER(n, 1
2)

2. two disjoints components Gn ∶=K(1)n ⊔K(2)n where K(1)n (resp. K(2)n ) is the complete graph
with vertices {1, . . . , n/2} (resp. {n/2 + 1, . . . , n}).
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Indeed, both cases satisfy (3.6) with κn = 2. Applying then Theorem 3.1.1, with i.i.d. initial con-
ditions uniformly distributed on T shows that in both cases, the empirical measure µn converges
to the same µ, solution to the following non-disordered version of (1.15)

∂tµt(θ) =
1
2
∂2
θµt(θ) − ∂θ [µt(θ)J ∗ µt(θ)] , (3.11)

where J(⋅) = −K sin(⋅), with initial condition µ0 =
1

2π .

Having in mind the dynamical properties of the Kuramoto model (Example 1.2.2) roughly
sketched in Chapter 1, Example 3.1.4 contradicts somehow the dynamics for t large observed
on simulations: when K > 1, the system would leave the unstable uniform stationary solution
1

2π and stabilize around some point qr,ψ(⋅) = qr,0(⋅ − ψ) of the stable circle of synchronized
solutions {qr,ψ(θ) = qr,0(θ − ψ), ψ ∈ T}, with qr,0 given by (1.21). In the fully connected case 1.
of Example 3.1.4, one observes a synchronized unimodal solution whereas the system converges
to a bimodal profile (made of two independent unimodal distributions) in the disjoint case
2. Hence, there is evidently a breakdown between the information that carries the mean-field
solution µt of (3.11) and the empirical measure µnt .

The solution to this apparent paradox lies in the fact that the convergence (3.8) is only valid
up to times tn that cannot go beyond a time scale of order lnn (which is from a simulation
perspective and most of real life systems, essentially a finite time). This impossibility of ex-
tending propagation of chaos beyond bounded times scales is something that is already relevant
in the homogeneous mean-field case. In a word: there is no uniform propagation of chaos in
the Kuramoto model (at least not uniformly w.r.t. the initial condition, see [DT21] for more
refined results). Let us be more precise on this point: if we rewrite (3.11) in terms of the Fourier
coefficients

ck(t) ∶= ∫ µt(θ) cos(kθ)dθ and sk(t) ∶= ∫ µt(θ) sin(kθ)dθ, k ≥ 1 , (3.12)

one verifies that at a linear level all modes decouple and solve the equation ẋ = λkx, with
λk = −k

2/2 for every mode k ≥ 2 and λ1 = (K − 1)/2 (hence these are the two unstable modes,
the zero mode is conserved). At an informal level, for initial condition given by i.i.d. random
variables uniformly distributed on the circle, a good approximation for the large n evolution of
the empirical mean c1,n(t) ∶=

1
n ∑

n
j=1 cos(θj,nt ) is the linear SDE

dx(t) = (K − 1)
2

x(t)dt + 1
√
n

dBt , (3.13)

with initial condition N (0,1/n), independent of the (standard) Brownian motion B (a rigor-
ous justification of this approximation is close in spirit to the analysis made in [DMPV86] in
the context of reaction-diffusion particle systems). The same is true for the sine mode, call
s1,n(t) the corresponding empirical mean, with new (independent) Brownian motion and initial
condition. The solutions of these equations are centered Gaussian processes. Computing the
synchronization degree rn(t) =

√
(c1,n(t))2 + (s1,n(t))2 (using (3.13)), one obtains

E [(rn(t))2] ≈
1
n

exp(2λ1t) (1 +
1

2λ1
(1 − exp(−2λ1t))) , (3.14)

for n large and as far as the linear approximation is reliable. In analogy with [DMPV86], the
fluctuations lead to the escape from the flat state at a time a logn, a ∶= (2λ1)

−1 in the sense
that for t ≤ c logn, any c ∈ (0, a), the empirical measure of the system converges for n → ∞ to
the uniform probability, but for t = c logn, any c > a, it converges to one of the synchronized
solutions. One can convince oneself easily that the previous argument is fairly general and valid
for any mean-field process having both an unstable point and a stable structure (here a circle of
stationary solutions): starting from this unstable point, the system would leave this point and
reach the stable structure on logarithmic times scales. However, it is possible to obtain uniform
propagation of chaos estimates, if one starts away from this unstable point, see [DT21] for more
details.
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3.1.3 Partial conclusion

We deduce from the previous discussion the following important points:

There is no uniform propagation of chaos for the Kuramoto model

This is something already true in the homogeneous mean-field case: the convergence (3.8)
cannot be substantially improved beyond logarithmic time scales as there is a breakdown in the
information that the mean-field limit µt carries. Note here that the previous argument for non
uniformity in propagation of chaos is specific to the fact that the initial condition is the unstable
point 1

2π . The same argument no longer holds for any initial condition away from 1
2π : in such

a case, we indeed refer to the deep result of [DT21] where a weak form of uniform propagation
of chaos is proven (in the mean-field case). In the homogeneous mean-field case, the cumulative
influence of noise on time scales larger than lnn will be analysed in details in Chapter 5.

Condition (3.6) is not the correct one

Example 3.1.4 shows that Condition (3.6) is too weak and certainly not sufficient in itself
to analyse the dynamics of the empirical measure of (3.1) beyond logarithmic time scales. One
necessarily needs to complement this condition in order to push further the analysis of µn,t. This
is essentially due to the fact that (3.6) does not capture the right topology on graphs: choosing
tj ≡ 1, we have obviously bn ≤ b∞→∞n where

b∞→∞n ∶= sup
i=1,...,n

sup
t∈{±1}n

RRRRRRRRRRR

1
n

n

∑
j=1

ξ̂ni,jtj

RRRRRRRRRRR

(3.15)

where the supremum is on every sequence of signs t = (t1, . . . , tn) ∈ {±1}n. Here the notation
∞→∞ (and∞→ 1 below) borrows from the formalism of graphs limits introduced by Lovász and
Szegedy [LS06] (see also [Jan13, DJ08] for further references): b∞→∞n is equal to ∥W Gn − 1∥∞→∞
where W Gn is the step-graphon associated to Gn (see e.g. [BCL+08, § 3]) and

∥W ∥∞→∞ ∶= sup
∥g∥∞≤1

∥∫[0,1]
W (⋅, y) g(y)dy∥

∞
(3.16)

Replacing the local condition (3.6) with the global and stricter b∞→∞n ÐÐÐ→
n→∞

0 is obviously too
demanding: in the case of ER(n, pn) (Example 3.1.2), b∞→∞n = supi=1,...,n 1

n ∑
n
j=1 ∣ξ̂

n
i,j ∣ is of order

2(1 − pn), which only goes to 0 in the asymptotically mean-field case pn → 1. We see here the
problem of considering (3.6): we are not looking at the right topology w.r.t. graph convergence.
It would be preferable to consider the norm ∥W Gn − 1∥∞→1 with

∥W ∥∞→1 ∶= sup
∥g∥∞≤1

∫[0,1]
∣∫[0,1]

W (x, y) g(y)dy∣dx (3.17)

This corresponds to requiring that

b∞→1
n ∶= ∥W Gn − 1∥∞→1 = sup

s,t∈{±1}n
1
n2

n

∑
i,j=1

ξ̂ni,jsitj ÐÐÐ→n→∞
0. (3.18)

The latter condition is well-known in the literature as it captures the convergence of the graph
Gn towards the complete graph in terms of the cut-norm ∥⋅∥◻ (see e.g. [BCL+08])

∥W ∥◻ ∶= sup
S,T⊂[0,1]

∣∫
S×T

W (x, y)dxdy∣ (3.19)

Condition (3.18) has been considered by Coppini [Cop22] for the longtime dynamics of the
Kuramoto model on ER graphs and is valid under the optimal condition (3.10) only (see [Cop22,
Lem. A.3]). Another indication that condition (3.18) may be much more relevant than (3.6) for
the convergence of the empirical measure is that (3.18) carries much more information on the
structure of Gn: it implies in particular the existence of a unique giant component in Gn [Cop22,
Lem. A.2] so that Example 3.1.4 is no longer significant.
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There is absolute necessity of considering initial conditions for (3.1) that are not
exchangeable

The convergence result (3.7) requires crucially to have independent initial conditions θ1,n
0 , . . . , θn,n0

(this is inherent to the synchronous coupling technique, as already mentioned in Remark 1.1.1).
In view of the discussion of the first paragraph of § 3.1.2, improving the condition (3.9) into
(3.10) for the convergence (3.8) necessarily requires to discard this assumption of independence.
There is also a crucial need to consider initial conditions with laws that are non necessarily iden-
tical. Here, Example 3.1.4 is somehow misleading, as its conclusions rely heavily on the choice
of uniform distribution on T of the initial condition (θ1,n

0 , . . . , θn,n0 ): in Case 2. of Example 3.1.4,
choosing different laws µ1

0 and µ2
0 for the initial configuration of the two components leads to the

convergence of µn,t to µCase 2
t ∶= 1

2 (µ
1
t + µ

2
t ) where both µk solves (3.11) with initial condition

µk0, k = 1,2. The same initial condition for Case 1. leads to the convergence to µ Case 1 solving
(3.11) with initial condition µ Case 1

0 ∶= 1
2 (µ

1
0 + µ

2
0). But (3.11) is nonlinear: µ Case 1 ≠ µ Case 2

unless µ1
0 = µ

2
0. This observation is elementary, but it reveals the fundamental difficulty in go-

ing beyond the results of Theorem 3.1.1: the state of the system depends on the graph at any
positive times even though it might not be the case at t = 0.

3.1.4 Extensions and semimartingale approach

A first generalisation of Theorem 3.1.1 was provided by Coppini, Dietert and Giacomin in
[CDG20]: the strategy is still to proceed with some coupling, but the point is now to couple
the particle system θi,n(3.1) not to its nonlinear limit θ̄i,n but rather to its mean-field com-
panion θ̃i,n (that is the same system as (3.1) but that lives on the complete graph, with the
same initial condition and Brownian motion). The proof is then two-fold: first, to prove that
1
n ∑

n
i=1 E [sups∈[0,T ] ∣θ

i,n
s − θ̃

i,n
s ∣

2
] ÐÐÐ→
n→∞

0 (deterministically in the graph and noise) and second,

to take advantage of the fact that µ̃n (the empirical measure for the mean-field system θ̃) con-
verges to (1.4) whatever the initial condition, provided only µ̃n0 converges to µ0 at time t = 0
[Gär88, CDFM20]. The result of [CDG20] hence extends the convergence (3.8) to ER(n, pn)
graphs with non-necessarily i.i.d. initial conditions (one only requires that they do not depend
on the graph) under the single assumption that µn0 converges to µ0, under the dilution condition
(slightly weaker than (3.9)) lim infn→∞ pnn

log(n) > 0. Note also that some Large Deviation Principle
for the empirical measure (with the same rate function as in the mean-field case) is also proven
in [CDG20].

General convergence result

These results being stated, there is however room for improvement in at least two directions:
first to consider initial conditions that possibly depend on the graph itself, and second to prove
the convergence (3.8) under the optimal condition (3.10) only. This point is precisely addressed
in a previous work by Coppini [Cop22, Th. 2.1], for the particular dynamics of Kuramoto
oscillators. The convergence in [Cop22, Th. 2.1] is somehow weaker than Theorem 3.1.5 below,
as it is stated in probability, whereas (3.21) is in expectation. Note also that Theorem 3.1.5 also
addresses the convergence of the local empirical measures µi,n defined in (3.2).

Theorem 3.1.5 (Theorem 2.4 in [L14]). Suppose that the state space is T with regularity condi-
tions on Γ and F . Suppose that Gn is the realisation of an ER(n, pn) graph. Suppose that the ini-
tial conditions (θ1,n

0 , . . . , θn,n0 ) are chosen independently on the Brownian motions (B1, . . . ,Bn)

(but not necessarily i.i.d. and they may depend on the graph), such that their empirical measure
µn0 converges weakly to some µ0 in the following way:

dBL (µ
n
0 , µ0)ÐÐÐ→

n→∞
0, a.s, (3.20)

where dBL is the bounded Lipschitz distance. Under (3.20) and the dilution condition (3.10),
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the global empirical measure µn verifies, for almost every realisation of the graph

E [sup
s≤T

dBL (µ
n
s , µs)]ÐÐÐ→n→∞

0. (3.21)

Supposing moreover that the initial condition is independent of the graph, if np3
n →∞ as n→∞,

then for any fixed l ≥ 1, the local empirical measure µn,l defined in (3.2) verifies, for almost
every realisation of the graph

E [sup
s≤T

dBL (µ
n,l
s , µs)]ÐÐÐ→

n→∞
0. (3.22)

Remark 3.1.6. Although stated in [L14] for simplicity for Erdős-Rényi graphs, the convergence
(3.21) is really more general: the convergence (3.21) is valid for any (possibly deterministic)
graph Gn satisfying (3.18) i.e. ∥W Gn − 1∥∞→1 ÐÐÐ→n→∞

0. In case of Erdős-Rényi graphs, this latter
condition is valid under (3.10). This indicates that the cut-norm is effectively the right topology
on graphs to ensure convergence of mean-field models.

Contrary to the previous strategies based on couplings (for which we have discussed at length
above on their potential limitations) the idea is here to proceed via a semimartingale argument.
Introducing as for the proof of Proposition 2.1.1 the propagator Ps,tf(θ) ∶= EB [f (Φt

s(θ))],
where t↦ Φt

s(θ) is the solution to the mean-field equation dθt = ∫ Γ (θt, θ)µt (dθ)dt + dBt with
Φs
s(θ) = θ, one obtains with straightforward calculations, for all f regular

E ∣⟨µnT − µT , f⟩∣ ≤ E ∣⟨µn0 − µ0 , P0,T f⟩∣ +E ∣ 1
n

n

∑
k=1
∫

T

0
∂θPt,T f(θ

k,n
t )dB

k
t ∣

+∫

T

0
E
RRRRRRRRRRR

1
n2

n

∑
i,j=1

ξ̂ni,j∂θPt,T f(θ
i,n
t )Γ (θ

i,n
t , θj,nt )

RRRRRRRRRRR

dt

+∫

T

0
E ∣ 1

n

n

∑
i=1
∂θPt,T f(θ

i,n
t ) ⟨Γ (θ

i,n
t , ⋅) , µnt − µt⟩∣dt ∶= (A) + (B) + (C) + (D)

(3.23)

Recall that ξ̂ni,j =
ξni,j
pn
−1. Term (A) is controlled by the hypothesis (3.20) on the initial condition,

(B) is a standard noise term, scaling as n−1/2 and (D) is controlled by dBL(µn, µ) and will give
rise to a Grönwall term.

Key idea: Grothendieck inequality

The main difficulty is to deal with the term (C) in (3.23): in view of the structure of (C),
one would be inclined to use concentration arguments on the weighted sum of i.i.d. centered
variables 1

n2 ∑
n
i,j=1 ξ̂

n
i,jui,j for any fixed bounded sequence of weights (ui,j). This would work very

well in the case ui,j would be independent on the graph, as one would be able to apply standard
concentration inequalities. The problem is that ui,j ∶= ∂θPt,T f(θi,nt )Γ (θ

i,n
t , θj,nt ) depends in a

highly nontrivial way on the graph sequence ξni,j itself. The key argument is to make use of
a powerful algebraic tool, the Grothendieck inequality (see e.g. [AN06, Ver18]) that can be
stated as follows: consider an infinite dimensional Euclidian space with coordinates indexed by
a space A, l2(A) = {x = (xα)α∈A ∈ CA ∶ ∑α∈A ∣xα∣2 <∞}, endowed with the usual scalar product
⟨x , y⟩l2(A) = ∑α∈A xαȳα and the associated norm ∥ ⋅∥l2(A). Then there exists a universal constant
K such that for any finite scalar array (ajk),

sup
⎧⎪⎪
⎨
⎪⎪⎩

RRRRRRRRRRR

∑
j,k

ajk⟨xj , yk⟩l2(A)

RRRRRRRRRRR

∶ xj , yk ∈ l
2
(A), ∥xj∥l2(A) ≤ 1, ∥yk∥l2(A) ≤ 1

⎫⎪⎪
⎬
⎪⎪⎭

≤ K sup
⎧⎪⎪
⎨
⎪⎪⎩

RRRRRRRRRRR

∑
j,k

ajksjtk

RRRRRRRRRRR

∶ sj = ±1, tk = ±1
⎫⎪⎪
⎬
⎪⎪⎭

. (3.24)
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In a word, one can replace ⟨xj , yk⟩ (with possible nontrivial dependence with the coefficients
ai,j by arbitrary signs sj , tk. This is precisely our point here: we deduce [1] that the term (C)
is exactly controlled by b∞→1

n defined in (3.18). Hence, the convergence holds for any graph Gn
satisfying b∞→1

n → 0. In the present Erdős-Rényi case, all that remains is to show that b∞→1
n is

exactly of order 1√
npn
→ 0, under assumption (3.10): indeed, by Bernstein’s inequality and on

a union bound, we obtain P (sups,t∈{±1}n ∣
1
n2 ∑

n
i,j=1 ξ̂

n
i,jsitj ∣ > t) ≤ 2 ⋅ 4n exp(−1

2
t2n2pn

2+ t3
). Thus, the

choice t = c√
npn

leads to

P(b∞→1
n >

c
√
npn
) ≤ 2 ⋅ 4n exp

⎛

⎝
−

1
2

c2n

2 + c
3√npn

⎞

⎠
, (3.25)

which is summable for c = 3 under the hypothesis npn Ð→
n→∞

∞. The last difficulty is that one
cannot put the supremum in f ∈ BL inside the expectation in the lefthand side of (3.23). This
is circumvented via a compactness argument.

Remark 3.1.7. For fixed signs si, tj, the standard deviation of 1
n2 ∑

n
i,j=1 ξ̂

n
i,jsitj is of order

1
np

1/2
n

: one easily sees with the same Bernstein/Borel-Cantelli argument that, for fixed si, tj, for

arbitrary ε ∈ (0,1/2), a.s., n1−εp1/2−ε
n ∣ 1

n2 ∑
n
i,j=1 ξ̂

n
i,jsitj ∣ → 0. We see here the tradeoff for the use

of Grothendieck inequality: dealing with the supremum w.r.t. all 4n possible signs requires to
keep a factor n in the exponential bound in order to maintain summability. Hence, we loose
some speed of convergence w.r.t. the standard deviations (what we need is really moderate
deviations rather than Gaussian deviations from the CLT). In this sense, let us appreciate the
present miracle: the Grothendieck inequality gives that b∞→1

n → 0 under the optimal (3.10) only.
The fact that one needs to assume the (certainly non optimal) condition np3

n →∞ for the local
empirical measure (3.22) comes from the use of Grothendieck inequalities of higher order, for
which the quality of speed of convergence given by Bernstein inequality degrades as pn → 0.

3.2 Homogeneous graphs: Central Limit Theorem
At this point, the reader may be convinced that we have addressed Question 1.2.5 as much

as possible (at least in the case of homogeneous graphs) at the level of the law of large numbers
concerning the empirical measure: the same universal macroscopic limit holds as long as the
optimal condition (3.10) is met. We now address Question 1.2.5 at the level of fluctuations.
This is the main purpose of [L14]. We are not only interested in the global fluctuation process

ηn ∶=
√
n (µn − µ) (3.26)

but also in the mutual convergence of local fluctuation processes around two vertices 1 and 2
(recall (3.2)), that is

ζnt ∶= (ζ
n,1
t , ζn,2t ) ∶= (

√
npn (µ

n,1
t − µt) ,

√
npn (µ

n,2
t − µt)) (3.27)

One point is to understand how the limits of both ηn and ζn may or may not differ from their
mean-field counterparts and whether or not their convergence depend on a specific realisation
of the graph or on the graph structure itself (in particular the fact that the graph may be dense
of diluted). As far as CLT on random graphs are concerned, we are only aware of [BBW19]
where the global fluctuation of systems like (3.1) are analysed in an annealed framework (that
is the behavior of (3.26) under the joint law P ⊗ P), in the dense case lim infn→∞ pn > 0, with
i.i.d. initial condition. The point of [L14] is precisely to address these three points: we work
as much as possible in a quenched case, in a possibly diluted regime pn → 0 and we will drop
the exchangeability assumption on the initial condition. Note also that [BBW19] consider the
convergence of (3.26) in terms of finite dimensional marginals, whereas we address the full
convergence of (3.26) as a process.

[1]. This requires to interpret (C) in terms of a scalar product: this is done in [L14] using Fourier series.
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On the importance of the initial conditions

We place ourselves again for simplicity on the state space T [2], with appropriate regularity
and boundedness assumptions on both Γ and F . An important motivation of [L14] concerns
the influence of the choice of the initial condition (θ1,n

0 , . . . , θn,n0 ) in (3.1) on the nature of
the fluctuations: the original CLT result in [FM97] relied heavily on the fact that the initial
datum consisted of i.i.d. random variables. One significant improvement of [L14] is that we
only suppose here that the initial conditions are chosen independently on the Brownian motions
(B1, . . . ,Bn) (but not necessarily i.i.d. and they may depend on the graph), requiring only the
convergence of the empirical measure at time t = 0 (3.20) as well as initial convergence and
control on the fluctuation process ηn0 , i.e. supnE0 (∥η

n
0 ∥

1+α
−r ) < +∞, Pg-a.s. for some α ∈ (0,1)

and the convergence of ηn0 to some η0 in some suitable Sobolev space H−r (T) for some r > 0.
These assumptions not only include the case of i.i.d. initial conditions but also sequences
satisfying suitable mixing conditions (including geometrically ergodic Markov processes, see
[L14] for further details).

Semimartingale decompositions of the fluctuation processes

As before, start with the semimartingale decomposition for ηn: for any f regular,

⟨ηnt , f⟩ = ⟨η
n
0 , f⟩ + ∫

t

0
⟨ηns , L

(1),n
s f⟩ds +Hn,1

t (f) + ⟨W
n
t , f⟩ , (3.28)

where L(1),ns is an explicit linear operator and Wn is a martingale. Decomposition (3.28) differs
from the mean-field semimartingale decomposition only by the presence of the remaining term

Hn,1
t (f) ∶= ∫

t

0

1
n3/2

n

∑
i,j=1

ξ̂ni,jΓ (θi,ns , θj,ns )∂θf (θ
i,n
s )ds (3.29)

Recall that ξ̂ni,j ∶=
ξni,j
pn
− 1, so that Hn,1

t exactly captures the proximity of the graph Gn w.r.t.
Kn. This decomposition is not closed in ηn: Hn,1 is a functional of the second order fluctuation
process

η̂n ∶=
1
n3/2

n

∑
i,j=1

ξ̂ni,jδ(θi,n,θj,n) (3.30)

One could rightfully hope that Hn,1 would go to 0 as n → ∞: applying again Grothendieck
inequality (3.24), one obtains that ∣Hn,1

t (f)∣ ≤ KΓ,f supsi,tj∈{±1}n
1

n3/2 ∑
n
i,j=1 ξ̂

n
i,jsitj . Bad news:

concentration estimates (recall (3.25)) only tell us that this bound if of order c√
pn

: this at best
tells us that Hn is bounded (and only in the dense case pn → p > 0!) but in any case, gives no
information whatsoever on the fact that Hn,1 goes to 0. The idea is then to proceed further in
the asymptotic expansion of µn and write also the semimartingale decomposition of η̂n: one has
again

η̂nt = η̂
n
0 + ∫

t

0
L
(2),n,∗
s η̂ns ds +

√
nHn,2

t + Ŵn
t (3.31)

in a suitable Sobolev space. Here, we are more optimistic w.r.t. the remainder term
√
nHn,2

(g) ∶=
√
nHn,

(g) +
√
nHn,

(g) (3.32)
with

Hn,
(g) =∫

t

0

1
n3

n

∑
i,j,k=1

ξ̂nij ξ̂
n
ik∂θ1g(θ

i,n
s , θj,ns )Γ(θi,ns , θk,ns )ds (3.33)

Hn,
(g) = ∫

t

0

1
n3

n

∑
i,j,k=1

ξ̂nij ξ̂
n
jk∂θ2g(θ

i,n
s , θj,ns )Γ(θj,ns , θk,ns )ds, (3.34)

as it concerns higher order functionals within the graph, so that one might expect them to be
of smaller order in n. The main problem is that the standard Grothendieck inequality (3.24) is
no longer applicable, as it concerns now trilinear functionals, not only bilinear scalar products.

[2]. Dealing with diffusions in Rd would only entail technical complications, through especially the use of
weighted Sobolev norms but the result would certainly be unchanged.
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Generalised Grothendieck inequalities

Extensions of Grothendieck inequalities are known to fail in general when the scalar prod-
uct in (3.24) is replaced by a bounded trilinear functional, see e.g. [Pis12]. However, in
[Ble11], R. Blei describes a family of multilinear functionals for which this inequality remains
valid. Consider a positive integer m and a sequence U = (S1, . . . , SN) of non empty sets
that satisfy ∪Ni=1Si = {1,2, . . . ,m}. For α = (αj)1≤j≤m ∈ Am define the projections πSi(α) =
(αj)j∈Si . Consider the functional νU ∶ l2 (A∣S1∣)× . . .× l2 (A∣SN ∣)→ C defined as νU(x1, . . . , xN) =

∑α∈Am x1(πS1(α))⋯xN(πSN (α)). Denote, for 1 ≤ j ≤ m, by kj the incidence of j in the
covering sequence U , that is kj(U) = ∣{i ∶ j ∈ Si}∣ and by IU the minimal incidence IU =
min {kj(U) ∶ j ∈ {1, . . . ,m}}.

Theorem 3.2.1 (Theorem 11.11, Section 12.4 in [Ble11]). Suppose that IU ≥ 2. Then there exists
a positive constant KU , depending only on the covering U , such that for any finitely supported
scalar n-array aj1...jN ,

sup
RRRRRRRRRRR

⎧⎪⎪
⎨
⎪⎪⎩

∑
j1...,jN

aj1...jN νU(x1, . . . , xN) ∶ ∥x1∥l2(A∣S1 ∣) ≤ 1, . . . , ∥xN∥l2(A∣SN ∣) ≤ 1
⎫⎪⎪
⎬
⎪⎪⎭

RRRRRRRRRRR

≤ KU sup
⎧⎪⎪
⎨
⎪⎪⎩

RRRRRRRRRRR

∑
j1,...,jN

aj1...jN s1,j1⋯sN,jN

RRRRRRRRRRR

∶ s1,j1 = ±1, . . . , sN,jN = ±1
⎫⎪⎪
⎬
⎪⎪⎭

. (3.35)

An additional technical difficulty concerning the estimation of (3.32) is that uniform esti-
mates (in the test functions g) are required, as we consider Hn,2 in distribution spaces. Secondly,
using (3.35) requires to identify (3.32) as proper multilinear functionals on appropriate l2(A).
These two issues are treated in [L14] using Fourier series and Hilbertian techniques. Let us make
a representative calculation here: let (Ξnijk)i,j,k=1,...,n a field that depends on the graph Gn (e.g.

in (3.33), Ξ(n)ijk = n
−3ξ̂nij ξ̂

n
ik) and consider the weighted statistics

Sn(f) ∶= ∫
T

0

n

∑
i,j,k=1

Ξ(n)ijk ∂θ1f(θ
i,n
s , θj,ns )Γ(θi,ns , θk,ns )ds. (3.36)

The point is to establish a bound on Sn(f) that only depends on T , some norm of Γ and some
Sobolev norm of f . Expand ∂θ1f and Γ into Fourier series in L2(T2) ((ea)a∈Z is the canonical
basis of L2(T)):

∂θ1f(θ1, θ2) = ∑
a∈Z

ea(θ2)∫
T
∂θ1f(θ1, θ)ēa(θ)dθ and Γ(θ1, θ2) =∑

b∈Z
eb(θ2)∫

T
Γ(θ1, θ)ēb(θ)dθ.

For some δ > 0 define the following sequences, indexed by a, b ∈ Z: x1,i(a, b) ∶= C
2
δ ((1 + a2)(1 +

b2))
1/4+δ

(∫T ∂θ1f(θ
i,n
s , θ)ēa(θ)dθ) (∫T Γ(θi,ns , θ)ēb(θ)dθ), x2,j(a) ∶= C

−1
δ (1+a2)−1/4−δea(θ

j,n
s ) and

x3,k(b) ∶= C
−1
δ (1 + b2)−1/4−δeb(θ

k,n
s ), where Cδ = (∑a∈Z(1 + a2)−1/2−2δ)1/2 for some δ > 0. By

construction
Sn(f) = ∫

t

0

n

∑
i,j,k=1

Ξ(n)ijk ∑
a,b∈Z

x1,i(a, b)x2,j(a)x3,k(b)ds,

with ∥x2,j∥ℓ2(Z) = ∥x3,k∥ℓ2(Z) = 1 and a direct calculation show that

∥x1,i∥
2
ℓ2(T2) ≤ C

4
δ CΓ,δ∑

a∈Z
(1+a2

)
1/2+2δ

∣∫
T
∂θ1f(θ

i,n
s , θ)ēa(θ)dθ∣

2
= C4

δ CΓ,δ ∥∂θ1f(θ
i,n
s , ⋅)∥

2
H1/2+2δ(dθ2) ,

where the constant CΓ,δ only depends on Γ and δ. Here, we use the standard fractional Hs-norm
(0 < s < 1) on T and ∥∂θ1f(θ

i,n
s , ⋅)∥

2

H1/2+2δ(dθ2)
= ∥∂

1/2+2δ
θ2

∂θ1f(θ
i,n
s , ⋅)∥

2

L2(dθ2)
≤ supθ∈T ∥∂

1/2+2δ
θ2

∂θ1f(θ, ⋅)∥
2

L2(dθ2)
.

The last term is a mixed Sobolev-norm on test functions (θ1, θ2) ↦ f(θ1, θ2), that is W 1,∞ in
θ1 and H1/2+2δ in θ2. Choosing δ = 1/4, one obtains finally, by Sobolev embeddings (see [L14,
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App. A] for details), ∥x1,i∥
2
ℓ2(T2) ≤ CΓ ∥f∥

2
H3(dθ1,dθ2) < ∞. Hence, we can apply Theorem 3.2.1

withA = Z, m = 2, N = 3, U = {{1,2},{1},{2}} to obtain ∣Sn(f)∣ ≤ C ∥f∥H3(dθ1,dθ2) supr,s,t∈{±1}n ∣∑
n
i,j,k=1 Ξnijkrisjtk∣,

so that taking the supremum in t ∈ [0, T ] and in f ∈H3 (T2), we finally obtain

∥Sn∥C([0,T ],H−3(T2)) ≤ C sup
r,s,t∈{±1}n

RRRRRRRRRRR

n

∑
i,j,k=1

Ξnijkrisjtk
RRRRRRRRRRR

(3.37)

Applying this calculation to (3.33) (the same holds for (3.34)) and using standard concentration
results [Tao12] on the righthand side of (3.37) gives that ∥

√
nHn, ∥

−3
is of order 1√

np2
n

which
goes to 0 provided that

np4
n ÐÐÐ→n→∞

0. (3.38)

The main conclusion is that one can close the asymptotic expansion of the fluctuation process at
the level of (3.30): the global fluctuations of the system are described only in terms of (ηn, η̂n).

Remark 3.2.2 (On extensions to Rd). In [L14], the state space is assumed for simplicity to
be T. This has two simplifying advantages: (i) straightforward boundedness assumptions on the
coefficients of (3.1) and (ii) the use of Fourier series as above. Extending the present results to
Rd is however possible: the point (i) is easily circumvented by the use of weighted Sobolev spaces
as in [Mit85, FM97]. Concerning point (ii), a possible approach in Rd to a similar Fourier
expansion as above would be to assume that the interaction kernel (θ, θ̃) ↦ Γ (θ, θ̃) is in L1

Fourier class (see e.g. [OR19, Ass. 4] for more details), that is to assume the existence of a
complex measure m over (Rd)2 such that Γ (θ, θ̃) = ∫(Rd)2 exp (2πi ⟨(θ, θ̃) , (u, v)⟩)m(du,dv).
Developpements similar as before follow easily from this identity.

The global fluctuation result

This use of generalised Grothendieck inequalities coupled with more standard Hilbertian
techniques (similar to the ones used for Theorem 2.4.6) lead to the first main result of [L14]:

Theorem 3.2.3 (General global fluctuations, Theorem 2.7 in [L14]). Under the previous hy-
potheses and under the dilution condition (3.38), for some appropriate Sobolev spaces of distri-
bution H1 and H2, for almost every realisation of the graph Gn, (ηn, η̂n) converges in law in
C([0, T ],H1 ⊗H2) to (η, η̂) to the well-posed coupled system

⎧⎪⎪
⎨
⎪⎪⎩

ηt = η0 + ∫
t

0 L
(1),∗
s ηsds + ∫

t
0 Θ∗η̂sds +Wt,

η̂t = η̂0 + ∫
t

0 L
(2),∗
s η̂sds

(3.39)

where L(1)s ,L
(2)
s ,Θ are explicit linear operators and (Wt)t∈[0,T ] is a Gaussian process with explicit

covariance, independent of (η0, η̂0).

We stress again that we consider much more general initial conditions than i.i.d.: we only
impose the convergence (3.20) and that (ηn0 , η̂n0 )→ (η0, η̂0). The proof here diverges significantly
from [FM97]: a crucial step in the tightness estimate (see [FM97, Prop. 3.5]) is to derive uniform
bounds on moments of the fluctuation process of the form supn supt≤T E (∥ηnt ∥

2
H) < ∞, for an

appropriate Hilbert space H. The proof of [FM97, Prop. 3.5] relies heavily on the exchangeability
of the particle system when the graph of interaction is complete, which is not a path one can
follow here. We circumvent this difficulty by rewriting (3.28) and (3.31) into equivalent weak-
mild formulations: denoting by St ∶= et∆ the semigroup of the Laplacian on T, we have, for all
test functions h
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ηnt , h⟩ = ⟨ηn0 , Sth⟩ + ∫
t

0 ⟨η
n
s , (Γ ∗ µns )∂θSt−sh⟩ds + ∫

t
0 ⟨µs , (Γ ∗ ηns )∂θSt−sh⟩ds +wnt (h)

+ ∫
t

0
1

n3/2 ∑
n
i,j=1 ξ̂

(n)
ij ⟨δθi,ns

, (Γ ∗ δ
θj,ns
)∂θSt−sh⟩ds,

⟨η̂nt , h⟩ = ⟨η̂n0 , Sth⟩ + ∫
t

0 ⟨η̂
n
s , Λns ⋅ [∇St−sh]⟩ds + ŵnt (h)

+ ∫
t

0
1

n3/2 ∑
n
i,j=1 ξ̂

(n)
ij ⟨δθi,ns

⊗ δ
θj,ns

, Λ̂ns,ij ⋅ ∇St−sh⟩ds,
(3.40)
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where

Λns (θ1, θ2) ∶= (⟨µ
n
s (dθ′) , Γ(θ1, θ

′
)⟩ , ⟨µns (dθ′) , Γ(θ2, θ

′
)⟩) ∈ R2, (3.41)

Λ̂ns,ij(θ1, θ2) ∶= (⟨µ̂
n,i
s (dθ′) , Γ(θ1, θ

′
)⟩ , ⟨µ̂n,js (dθ′) , Γ(θ2, θ

′
)⟩) ∈ R2, (3.42)

and wnt and ŵnt are explicit martingale terms. In (3.40), the bracket ⟨⋅ , ⋅⟩ stands for the duality
H−r,Hr for some appropriate index r. One now can take advantage of the regularising properties

of the heat kernel St: one has that for h ∈ Hr (Td), ∥St−sh∥k ≤ C (1 + 1
(t−s)

k−r
2
)∥h∥r. Plugging

this kind of estimate into the first line of (3.40) gives for α ∈ [0,1),

E (∥ηnt ∥
1+α
−r ) ≤ ∥η

n
0 ∥

1+α
−r +C ∫

t

0

⎛

⎝
1 + 1
(t − s)

1+α
2

⎞

⎠
E (∥ηns ∥

1+α
−r )ds+E (∥wnt ∥

1+α
−r )+C sup

t∈[0,T ]
E (∥η̂nt ∥

1+α
−r )

(3.43)
Two conclusions from (3.43): firstly, ηn is controlled in terms of the auxiliary process η̂n. Ap-
plying again the same techniques to the second line of (3.40) (and using controls on the re-
maining terms similar to (3.37)) gives a uniform control on this auxiliary process of the form
supn supt≤T E (∥η̂nt ∥

1+α
−r ) <∞ for some appropriate r. In return, this uniform control on η̂n prop-

agates back to ηn via (3.43). The second and main observation from (3.43) is that the singularity
of the term 1

(t−s)
1+α

2
requires to have α < 1 (and one then concludes from a Grönwall-type argu-

ment a similar control on ηn). In particular, one cannot reach α = 1, as it was originally the case
in [FM97] (but this 1 + α < 2 is actually sufficient for the remaining of the tightness argument).
Dealing with this singular kernel is the price to pay to use the regularity of the heat kernel (and
hence to bypass the loss of exchangeability of the system and being able to consider very general
initial conditions, not necessarily i.i.d.).

Universality of mean-field fluctuations

A crucial observation from (3.39) is that one retrieves the universal mean-field fluctuation
SPDE for ηt (obtained in [FM97] in the pure mean-field case pn ≡ 1 under i.i.d. initial conditions)

ηt = η0 + ∫
t

0
L
(1),∗
s ηsds +Wt, (3.44)

if and only if the auxiliary term ∫
t

0 Θ∗η̂sds vanishes (and it is the case if η̂ ≡ 0). Since the
dynamics of η̂ in (3.39) is linear and deterministic, we have that η̂t ≡ 0 if η̂0 ≡ 0. An important
point of [L14] (see Proposition 2.11) is to note that this is indeed the case under the following
condition

Condition 3.2.4. Suppose that the initial condition (θ1,n
0 , . . . , θn,n0 ) is chosen independently of

the graph (but not necessarily i.i.d.!).

Based on the previous observation, we have the important corollary:

Theorem 3.2.5 (Universality of mean-field fluctuations, Th. 2.8, Prop. 2.11 in [L14]). Under the
assumptions of Theorem 3.2.3, suppose in addition Condition 3.2.4. Then, (ηn) converges in law
as n →∞ to η, unique solution to the mean-field fluctuation SPDE (3.44) with η0 independent
of W .

Theorem 3.2.5 is a first positive answer to Question 1.2.5 at the level of the CLT: for a generic
Erdős-Rényi graphs of parameter pn (satisfying the dilution condition (3.38)), the system (3.1)
conserves the same global fluctuations as in the mean-field case, provided one chooses the initial
condition independently from the graph. Note that we do not expect the dilution condition
(3.38) to be sharp: the bound pn ≫

1
n1/4 is required by the use of concentration inequalities for

Grothendieck estimates that may not be optimal in the diluted regime pn → 0 (this is due to
the lack of sub-Gaussianity of ξ̂ni,j =

ξni,j
pn
−1 as pn → 0). Any improvement in these bounds would

necessarily improve condition (3.38). Note nonetheless that there is good confidence that these
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universal fluctuations should hold beyond (3.38): an indication in this direction concerns the
large deviations principle considered by Coppini, Dietert and Giacomin: it is proven in [CDG20,
Th. 2.2] that under the condition lim infn→∞ pnn

log(n) > 0, the empirical measure of (3.1) satisfies
the same LDP than in the mean-field framework. But in case the rate function has sufficient
convexity properties around its unique zero, it is possible to derive a weak form of CLT (in
the sense of convergence of finite dimensional marginals) from the LDP estimate. We refer to
[Bol86] and [DdH96] where this procedure has been carried out for Kuramoto-type oscillators.
Hence, the same LDP indicates the possibility of the same CLT beyond (3.38).

An example of non-universal fluctuations

An interesting question is what happens when one relaxes Condition 3.2.4, that is when
one considers initial conditions that depend on the graph. We describe in [L14] an example
of such initial conditions, such that η̂n0 has a non zero limit, so that the limit fluctuations are
non-universal, i.e. completely described by (3.39) and no longer by the mean field fluctuations
(3.44) (so that, in a sense, Condition 3.2.4 is optimal w.r.t. mean-field universality):

Proposition 3.2.6 (Proposition 2.14 in [L14]). Take Γ(θ, θ′) = − sin (θ − θ′). For any graph
sequence (ξni,j), there exists a choice of initial conditions (θ1,n

0 , . . . , θn,n0 ) such that (ηn0 , η̂n0 )
converges in law (w.r.t. the annealed law P ⊗ P) to (η0, η̂0) with η0 = Z1δ0 + Z2δπ2 (where

(Z1, Z2) ∼ N (0,K) with K = (
1
4 −1

4
−1

4
1
4
) and η̂0 =

1
6
√
π
(−δ(0,0) + 2δ(π2 ,0) − δ(π2 ,π2 )). In particular,

Γ ∗ η̂n0 converges to − 1
3
√

2π δ
π
2
/≡ 0, so that the limiting process ηt is governed by (3.39) and not

by the universal mean-field SPDE (3.44).

Figure 3.1 – Histograms representing 5000 realizations of
√
n(ψn1 − ψ1), where rnt e

iψnt =

⟨µnt (dθ), eiθ⟩ and rteiψt = ⟨µt(dθ), eiθ⟩, for the choice of interaction kernel Γ(θ, θ′) = −K sin(θ−θ′)
with K = 2. For the blue histogram the interaction is of mean-field type with i.i.d. initial con-
dition of distribution 1

2δ0 +
1
2δπ2 , while for the brown one it is of symmetric Erdős-Renyi type

with p = 0.5 and initial condition as described by Proposition 3.2.6. We observe a dephasing at
time t = 1 at the level of fluctuations, induced by the graph-dependent initial condition.

Local fluctuation results

The same techniques can be applied to the local random field (3.27). As global fluctuations
compete with local fluctuations, the main result concerns the joint convergence of the joint
fluctuation process (ζn,1, ζn,2, ηn). For simplicity, we place ourselves in the case of i.i.d. initial
conditions, independent on the graph.

Theorem 3.2.7 (Local fluctuations, Theorem 2.9 in [L14]). Suppose that (θ1,n
0 , . . . , θn,n0 ) are

i.i.d. random variables with law µ0, independent from the graph. Suppose that lim infn np5
n =∞

and denote by p ∶= limn→∞ pn ∈ [0,1]. Then, there exists some Sobolev space of distribution H1
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such that for almost every realisation of the graph Gn, the joint fluctuation process (ζn,1, ζn,2, ηn)
converges as n→∞ in C ([0, T ], (H1)

3
) to (ζ1, ζ2, η) solution to the well-posed system

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ζ lt = ζ
l
0 + ∫

t

0
U
∗
s ζ

l
sds +

√
p∫

t

0
V
∗
s ηsds +W l

t , l = 1,2,

ηt = η0 + ∫
t

0
L
(1),∗
s ηsds +Wt.

(3.45)

where Us,Vs are explicit differential operators, (ζ1
0 , ζ

2
0 , η0) and (W 1

t ,W
2
t ,Wt) Gaussian processes

with explicit covariance, the initial condition (ζ1
0 , ζ

2
0 , η0) and the noise (W 1,W 2,W ) being inde-

pendent.

We refer to [L14] for an explicit description of the covariance structure of both the noise
and initial condition in (3.45). What we only need to retain here is that there is a significant
breakdown of the mean-field universality at the level of local fluctuations: in the dense case
pn → p > 0, ζ1 and ζ2 are correlated through a nontrivial correlation of their noise and initial
conditions, and through the coupling of the global fluctuation process η (this is in accordance
with the fully coupled case p ≡ 1 where η = ζ1 = ζ2). However, in the diluted case pn → p = 0, the
processes (ζ1, ζ2, η) become mutually independent.

3.3 Inhomogeneous graphs

So far, we have addressed the case of homogeneous random graphs Gn. One crucial ob-
servation is that most of the techniques used above in the homogeneous case do not actually
require the ξni,j to be identically distributed. This leads to the following generalisation of the
law of large numbers result to inhomogeneous graphs, carried out in [L10]. This analysis of
mean-field particle systems interacting on inhomogeneous random graphs originates from a se-
ries of paper from Medvedev and coauthors [Med14a, KVM17, KVM18, CM19, Med14b] on
macroscopic limits for Kuramoto-type models, in the deterministic case σ = 0. In addition to
the fact that we consider here more general dynamics, the crucial point is the presence of noise
in (3.1) that changes considerably the analysis (in particular, the fixed-point argument [Neu84]
used in [KVM18, CM19] for the convergence of the empirical measure in the deterministic case
does not seem to generalize easily to the case σ ≠ 0). The work that is closest to the present
analysis is the recent work [OR19] where annealed large deviations estimates are given in the
case of bounded graphons. Some of the results of [L10] have been partially and independently
reproduced in a subsequent [BCW20], in an annealed regime. Among results that are closest to
[L10], one should cite [OR19], for an annealed LLN and LDP in a case of bounded kernels W ,
[BCN20] for an annealed LLN in an exchangeable framework with possibly random graphons
(still in a bounded case). Contrary to [OR19], we do not address large deviation estimates here.
Let us finally mention the recent works [JPS21, KX22] where similar law of large numbers is
established for sparse graphs represented by measure-valued graphons.

3.3.1 A generic law of large numbers for the empirical measure

An inhomogeneous graph of interaction

Consider again the system (3.1) (with standard hypotheses on F and Γ) when now the ξni,j
are sampled in a inhomogeneous way: take for simplicity the compact I ∶= [0,1] and associate
to each vertex i = 1, . . . , n a position variable xni ∶=

i
n ∈ I encoding some local inhomogene-

ity for the vertex i in the graph Gn [3]. Then, introduce a kernel Wn ∶ I
2 → [0,1] such that

Wn (x
n
i , x

n
j ) ∈ [0,1] represents the probability of the presence of the edge i→ j in the graph Gn:

on a common probability space (Ω,F ,P), (ξni,j)i,j=1,...,n;n≥1 is a family of independent Bernoulli
random variables with parameter Wn (x

n
i , x

n
j ). Contrary to the homogeneous case, the dilution

[3]. the case of a general set I with generic, possibly random, positions xni can be also considered, provided one
supposes the convergence of the empirical measure of the positions, see [L10] for details.
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parameter κni > 0 in (3.1) (which compensates for the possible local sparsity of the graph Gn
around vertex i) is intrinsically inhomogeneous: κni may actually depend on the whole sequence
of positions in the graph Gn: κni = κ

n
i (x

n
1 , . . . , x

n
n). We assume for simplicity that the initial

condition (θ1,n
0 , . . . , θn,n0 ) in (3.1) are independent with law θi,n0 ∼ ν

xni
0 , with appropriate moment

conditions. Note here that we allow a priori the initial law of the particles to depend on their
positions xk = xnk . An intermediate particle system that naturally approximates (3.1) is

dθi,nt = F (θ
i,n
t )dt +

κni
n

n

∑
j=1

Wn (x
n
i , x

n
j )Γ (θi,nt , θj,nt )dt + σ ⋅ dBi

t, i = 1, . . . , n, t ∈ [0, T ]. (3.46)

Here, the sequence (κniWn (x
n
i , x

n
j ))i,j=1,...,n encodes for a graph Ḡn which is the annealed (as ξni,j

is replaced by its expectation Wn(xi, xj)) and weighted (as each edge i → j carries the weight
βi,j = κ

n
i ) version of the original graph Gn.

Assumptions on the graph Ḡn and its limit W

The second main ingredient is a notion of proximity of the graph Ḡn to some macroscopic
kernel W ∶ I2 → [0,+∞) (in the Erdős-Rényi case, this is simply W ≡ 1). Suppose the existence of
κn ≥ 1 and wn ∈ (0,1] such that κn∞(x) ∶=maxi=1,...,n (κni (x)) ≤ κn and maxi,j=1,...,n (Wn(xi, xj)) ≤
wn satisfying, as n→∞,

κ2
nwn = o(

n

lnn
) , as n→∞. (3.47)

Assumption (3.47) is the exact counterpart of the dilution condition (3.9) in our inhomogeneous
framework (which one recovers in Example 3.1.2, taking wn = 1 and κni ≡ κn =

1
pn

for all
i = 1, . . . , n). The main assumption we ask is the existence of some kernel W ∶ [0,1]2 → [0,+∞)
verifying (recall the definition of ∥⋅∥∞→∞ in (3.16))

∥W Ḡn −W∥
∞→∞

ÐÐÐ→
n→∞

0. (3.48)

Here, for any weighted graph G (with weights βi,j on each edge i, j = 1, . . . , n), W G is the
step function W G(x, y) = ∑ni,j=1 βi,j1(x,y)∈Ii×Ij for Ik = [k−1

n , kn[. We refer to § 3.3.3 for further
comments about (3.48), regarding especially the observations made in § 3.1.3 in the homogeneous
case W ≡ 1.

We need also some regularity estimates on W . We leave aside all the (technical but natural)
assumptions on W and only mention here that these hypotheses do not directly concern W itself
but rather the degree functionals x ↦ ∫ W (x, y)rdy for some r ≥ 1. In particular, one crucially
needs the following uniform control

sup
x∈I

Din
(x) ∶= sup

x∈I
∫ W (x, y)dy <∞. (3.49)

i.e. that in the limit n → ∞, the indegree of each node x ∈ I (i.e. the global incoming contri-
bution onto x of all other vertices y in the macroscopic graph W ) remains uniformly bounded
[DDS20] [4]. A sufficient condition for (3.49) is of course that W is bounded itself (assumption
that is commonly met in the literature [LS06]), but there are interesting examples of unbounded
kernels W satisfying (3.49). Note that we do not suppose any symmetry of the kernels W and
Wn, nor that W and Wn are functions of the distance x − y (this is a natural hypothesis if one
thinks of applications in neuroscience, as the mutual influence between neuron i on neuron j
need not be symmetric). Interestingly, this set-up unifies the framework of diffusions interacting
on a random graph with spatially extended McKean-Vlasov diffusions considered in § 2.4: the
natural coupling of the original particle system (3.1) is then described by independent copies
(θ̄x1 , . . . , θ̄xn) (with same initial conditions and noise) of the nonlinear process

dθ̄xt = F (θ̄xt )dt + ∫ W (x, y)Γ (θ̄xt , θ̃)µ
y
t (dθ̃)dydt + σdBt, 0 ≤ t ≤ T. (3.50)

[4]. actually one requires a further bound on the moment of order 2, i.e. ∥W2∥∞ < ∞, but this is mostly
technical.
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where, for fixed (x, t), µxt (dθ) is the law of θ̄xt . The joint law µ(dθ,dx) = µx(dθ)dx of (θ̄x, x)
solves the nonlinear Fokker-Planck equation (φ(θ, x) being a regular test function)

⟨µt , φ⟩ = ⟨µ0 , φ⟩ + ∫
t

0
⟨µs ,

1
2
∇θ (σσ

†
∇θφ) +∇θφ ⋅ F ⟩ds

+ ∫

t

0
⟨µs(dθ,dx) , ∇θφ(θ, x) ⋅ ∫ W (x, y)Γ(θ, θ̃)µs(dθ̃,dy)⟩ds, (3.51)

that is (writing formally µt(dθ,dx) = pt(θ, x)dθdx) the weak formulation of

∂tpt =
1
2
∇θ (σσ

†
∇θpt) −∇θ (pt (F + ∫ Γ(⋅, θ′)W (⋅, y)pt(θ′, y)dθ′dy)) . (3.52)

The main convergence result

The main result of [L10] is

Theorem 3.3.1 (Theorems 2.13 and 2.15 in [L10]). Fix T ≥ 0. Under the previous hypotheses
on F,Γ, Ḡn and W , we have that

sup
i=1,...,n

E [sup
s≤T
∣θi,ns − θ̄

xi
s ∣

2
]→ 0 as n→∞, (3.53)

for almost every realization of the graph Gn and one has the convergence of the empirical measure
towards the solution to (3.51)

E [sup
s≤T

dBL(µ
n
s , µs)]→ 0 as n→∞. (3.54)

Proof of Theorem 3.3.1 relies on a similar coupling as for Theorem 3.1.1, with the substantial
nontrivial technical complexity due to the presence of spatial inhomogeneities in (3.46). The
bound on supi=1,...,nE [sups≤T ∣θ

i,n
s − θ̄

xi
s ∣

2
] is now expressed in terms of

bn(Gn, Ḡn) = sup
i=1,...,n

RRRRRRRRRRR

1
n

n

∑
j=1
(κni ξ

n
i,j −Wn(xi, xj))

RRRRRRRRRRR

(term that can be seen as an inhomogeneous version of bn in (3.6) and is treated by concentration
arguments) as well as terms involving ∥W Ḡn −W∥

∞→∞
. Note that the convergence to 0 of the

previous term captures in particular a notion a regularity of the kernel W (this consideration is
obviously totally absent in the Erdős-Rényi case as W ≡ 1). An important point of the proof
is to obtain precise estimates on the regularity of x ↦ µx in (3.51). For this, one needs to
understand the kind of regularity that is required on the kernel W itself. This strongly depends
on the nature of the spatial sequence (x1, . . . , xn) one considers: taking regular positions xi = i

n
basically requires Hölder regularity on the degree x ↦ ∫ W (x, y)dy whereas choosing random
i.i.d. positions only requires Lp estimates on W (this point is detailed at length in [L10, § 3]).

3.3.2 Examples of graphs satisfying Theorem 3.3.1.

The present examples are directly inspired by the formalism of W -random graphs, introduced
in [LS06, BCL+08, BCL+12, BCCZ19, BCCZ18] and used in [Med14a, KVM17, KVM18, CM19,
Med14b] (and references therein). The probability field Wn(x, y) is directly constructed upon a
predetermined nonnegative deterministic kernel, possibly unbounded, P(x, y).

Definition 3.3.2 (Generic random graph with graphon P). For fixed n ≥ 1 and a given positive
measurable kernel (x, y)↦ P(x, y) on I2, we define

Wn(x, y) ∶= ρnmin( 1
ρn
,P(x, y)) , (3.55)

where ρn ∈ [0,1].
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One important aim of [LS06, BCL+08, BCL+12, BCCZ19, BCCZ18] (and references therein)
is precisely to prove that Gn given by Definition 3.3.2 converges to P for the cut-norm (3.19). In
this context, one generally distinguishes between bounded graphons P [LS06, BCL+08, BCL+12]
and unbounded graphons (a typical hypothesis being that P ∈ Lp(I2) for some p ≥ 1 see [BCCZ19,
BCCZ18] and references therein). Note that when the graphon P is bounded (and up to the
change ρn ↔ ρn

∥P∥∞
, one can always suppose that ∥P∥∞ = 1), (3.55) boils down to

Wn(x, y) = ρnP(x, y), x, y ∈ I. (3.56)

When ρn = 1, we are dealing with dense graphs, whereas in the case ρn ÐÐÐ→
n→∞

0, we consider
diluted graphs. (3.56) is an inhomogeneous version of the Erdős-Rényi case (Example 3.1.2 is
P(x, y) ≡ 1). When P is not bounded, one usually assumes in (3.55) that ρn → 0 and nρn →∞,
as n → ∞. Here the distinction is not really on the boundedness of P in (3.55), but rather
a control on the degree of P, that is either uniformly bounded supx ∫ P(x, y)dy < +∞ or not:
supx ∫ P(x, y)dy = +∞.

The case of uniformly bounded degrees

Assumption 3.3.3. Suppose here that

sup
x∈I
∫ P(x, y)dy < +∞. (3.57)

Then the result is the following

Proposition 3.3.4 (§ 3.3 of [L10]). Assume here that Wn is given by (3.55) for some P verifying
Assumption 3.3.3. Choose a renormalization that is uniform on the nodes i = 1, . . . , n, i.e.

κni = κn ∶=
1
ρn
, i = 1, . . . , n and wn = ρn, (3.58)

satisfying κn =
1
ρn
= o ( n

lnn) , as n → ∞. Then, under appropriate regularity hypotheses on P
and for an appropriate choice of ρn, the limit for Ḡn in the sense of (3.48) is simply given by
W ∶= P itself (see Proposition 3.6 in [L10]). In particular Theorem 3.3.1 is true.

Example 3.3.5. Interesting choices include P(x, y) = 1−max(x, y) or P(x, y) = f(x)g(y) (Ex-
pected Degree Distribution [CL02] with f ≥ 0 bounded and g integrable, see [BCCZ18, BCL+11]
for many other interesting examples). Our hypotheses are sufficiently general to capture some in-
teresting cases where P is not continuous, such as the P -nearest neighbor model (Example 2.4.1)
or singular polynomial interaction P(x, y) ∶= 1

∣x−y∣α on I = [0,1] (for 0 < α < 1
2) as in Exam-

ple 2.4.2. They also include the case of kernels with values in {0,1} (with ρn = 1) (this case
corresponds to deterministic graphs, see [Med14a], § 4).

Let us mention another example of unbounded P such that (3.57) is nonetheless verified:

Example 3.3.6 ([KVM17]). Let Wn be given by (3.55) where

P(x, y) ∶= (1 − α)y−α, α ∈ [0, 1
2
) , x, y ∈ I = [0,1], (3.59)

and κni is given by (3.58) and ρn = n
−δ for some α < δ < 1

2 . Then, Ḡn converges to W = P (see
[L10, Ex. 3.7].

The case of diverging degree We discuss also in [L10, § 3.4] the consequence of having P
satisfying

sup
x∈I
∫ P(x, y)dy = +∞. (3.60)
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Here, the uniform renormalization (3.58) is no longer adapted: we consider instead

κni =
n

ρn∑
n
j=1 min ( 1

ρn
,P(xi, xj))

, i = 1, . . . , n. (3.61)

This corresponds to renormalising the interaction in (3.1) by the averaged degree ∑jWn(xi, xj)
of each vertex. Here, the correct choice for the macroscopic interaction kernel W is

W (x, y) ∶=
P(x, y)

∫ P(x, z)dz
, x, y ∈ I. (3.62)

Note here that despite that the indegree of P is unbounded (3.60), the indegree of W is uniformly
1 so that (3.49) remains valid. We see here the effect of the inhomogeneous renormalisation in
the interaction, see Remark 3.3.8 and § 3.3.3 for further comments on this point. Then again,
under suitable regularity conditions on P, Theorem 3.3.1 is true (see [L10, § 3.4] for details).
An example is the following:

Example 3.3.7 ([KVM17], Ex. 2.1). Consider here (3.55) and (3.61) where

P(x, y) ∶= (1 − α)2x−αy−α, α ∈ [0, 1
2
) , x, y ∈ I = [0,1]. (3.63)

In this case, for an appropriate choice of ρn, Ḡn converges to W (x, y) = (1 − α)y−α, see [L10,
Prop. 3.12].

Remark 3.3.8. The macroscopic limits in Example 3.3.6 and Example 3.3.7 are the same,
although the underlying graphs Gn have really different structures. In Example 3.3.6, Gn is more
or less homogeneous whereas Example 3.3.7 is much more hub-like: nodes with positions close
to 0 are connected to the whole population with probability close to 1. We see here the effect of
the renormalization (3.61): it compensates for the hubs in the graph Gn so that, even though the
graphs Gn might be different, the renormalized graphs Ḡn are actually quite similar.

3.3.3 Some remarks on graph convergence

On the importance of graph distances

It is worth comparing the assumption (3.48) with the hypotheses made in the homogeneous
case § 3.1. Note in particular that we do not ask that ∥W Gn −W ∥∞→∞ ÐÐÐ→n→∞

0 (which is too
demanding, as noticed already in § 3.1.3). The convergence is really about the annealed graph
Ḡn towards W , not about Gn towards W . In the case of Example 3.1.2, assumption (3.48) is
empty, as ∥W Ḡn − 1∥

∞→∞
is equally 0 for all n: the difficulty in handling the norm ∥⋅∥∞→∞ is

really w.r.t. the randomness of the graph, not from its deterministic annealed structure. Here,
the proximity between Ḡn and Gn is handled directly via concentration estimates, in the same
way as in [L5]. We provide below examples of graphs where (3.48) is satisfied. The choice of the
norm ∥⋅∥∞→∞ is intrinsically linked with the fact that we want to have a global propagation of
chaos result, i.e. to estimate the supremum over all particles i = 1, . . . , n in (3.53). The following
weaker convergence (which also implies (3.54)) is possible

1
n

n

∑
i=1

E [sup
s≤T
∣θi,ns − θ̄

xi
s ∣

2
]→ 0 as n→∞. (3.64)

Although this is not written in [L10], (3.64) is then valid under the weaker assumption (recall
(3.17))

∥W Ḡn −W∥
∞→1

ÐÐÐ→
n→∞

0, (3.65)

provided the following additional hypothesis is met

sup
y∈I

Dout
(y) ∶= sup

y∈I
∫ W (x, y)dx <∞. (3.66)
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One may find the weaker convergence assumption (3.65) more natural than (3.48) (since (3.65) is
equivalent to the convergence of Ḡn to W w.r.t. the cut-norm (3.19) [LS06]). However, it comes
to a price of requiring a supplementary uniform control on the outdegrees (3.66) (the contribution
of edges z → x leaving z) in the macroscopic graph induced by W , whereas (3.49) only requires
the same uniform bound on the indegree of vertex x (i.e. the contribution of all incoming edges
y → x). This additional cost is of course transparent when W is bounded or symmetric (and
this is in particular why e.g. [BCW20, BCN20] only require (3.65), as they restrict to bounded
graphons). However, hypothesis (3.66) may be not satisfied in many interesting case, such as
Example 3.3.6. Proving (3.64) where (3.66) is discarded remains an open question. In case of
bounded W , (3.65) is indeed the correct hypothesis (this is a minor extension of Remark 3.1.6
in the Erdős-Rényi case).

On the importance of renormalisation

An important point concerning the convergence of Theorem 3.3.1 is that a lot of the structure
of the microscopic graph Gn is lost in the limit n →∞: the macroscopic limit (3.50) essentially
captures a dynamics that lives on the renormalized graph Ḡn, which may be significantly different
to Gn, due to the presence of the renormalizing coefficients (κni )i=1,...,n in (3.1): when Gn has
vertices with diverging degree as n→∞, the limit P of Gn is in general different from the limit
W of Ḡn given by (3.48): Examples 3.3.6, 3.3.7 give two different Gn, converging to different
P, such that their renormalized graphs Ḡn converge to the same W . In particular, even though
the graph of interaction Gn might be of power-law type, the renormalized graph Ḡn and its
macroscopic counterpart W are never of power-law type: the degree of each macroscopic node
of W remains uniformly of order 1, recall (3.49).

3.3.4 The nonlinear spatial profile

Let us mention briefly an auxiliary result in [L10]. In [Med14a, Med14b, KVM17, KVM18], a
different approach to the large population behavior of (3.1) is considered. The point of view here
is to consider the deterministic macroscopic spatial profile (ψ(⋅, t))t∈[0,T ] that, in our context,
solves the following nonlinear integro-differential equation

∂tψ(x, t) = F (ψ(x, t)) + ∫
I

Γ(ψ(x, t), ψ(y, t))W (x, y)dy. (3.67)

In the context of [Med14b], (3.67) is referred to as the nonlinear heat equation on the graph
W . For FitzHugh-Nagumo dynamics with linear interaction, (3.67) corresponds to the reaction-
diffusion equation addressed in the recent work [CFF19]. We consider here weak solutions to
(3.67) in the sense of the following definition: if C([0, T ], Lk(I)) is the set of continuous functions
with values in Lk(I) for some k ≥ 2, we say that ψ(⋅, t)t∈[0,T ] ∈ C([0, T ], Lk(I)) is a weak solution
to (3.67) if for all regular test functions J ∶ I → Rd, for all t ∈ [0, T ], we have

∫
I
⟨ψ(x, t) , J(x)⟩dx = ∫

I
⟨ψ(x,0) , J(x)⟩dx + ∫

t

0 ∫I
⟨F (ψ(x, s)) , J(x)⟩dxds

+ ∫

t

0 ∫I2
⟨Γ(ψ(x, s), ψ(y, s)) , J(x)⟩W (x, y)dydxds. (3.68)

Following the approach of [Med14b], it is possible to consider the spatial field:

θn(x, t) ∶= θ
⌊nx+1⌋,n
t =

n

∑
i=1
θi,nt 1[xni−1,x

n
i )(x), x ∈ I, t ≥ 0. (3.69)

The convergence is the following:

Theorem 3.3.9. Under the previous assumptions, for almost every realization of the graph Gn,
the spatial field (θn) given in (3.69) converges weakly in C([0, T ], Lk) to ψ(⋅, t)t∈[0,T ], unique
solution in C([0, T ], Lk) to (3.68) with initial condition

ψ0(x) ∶= ∫
Rd
θνx0 (dθ). (3.70)
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The present result can be seen as a generalization of [Med14a, Med14b, KVM17, KVM18],
where the case of Kuramoto-type interaction (namely Γ of the form Γ(θ − θ̃) with Γ(⋅) and F (⋅)
Lipschitz and bounded) in absence of noise (σ = 0) is considered.

3.4 Perspectives

3.4.1 Spatial extensions of phase oscillators

In the context of phase oscillators (recall Definition 1.2.1), (3.1) and its mean-field counter-
part (3.51) give rise to a family of Kuramoto models with spatial extension already considered
in the literature (P -nearest neighbor model [OMHS11], long-range interactions [GPR12]). In
the simple case without disorder, (3.52) reads

∂tpt(θ, x) =
σ2

2
∂2
θpt(θ, x) +K∂θ (pt(θ, x){∫

I
W (x, y)∫

T
sin(θ − θ′)pt(θ′, y)dy}) , θ ∈ T, x ∈ I

(3.71)
Properly characterizing the synchronized states of (3.71), as for the original homogeneous Ku-
ramoto model, is still an ongoing question (see [AS06, GCR14] and references therein). The
fixed-point procedure recalled in § 1.2.2 in the homogeneous case gets considerably more com-
plex as the self-consistency relation (1.18) involves now the space variable x (see [GCR14]).
Although solving this relation in full generality of W might be complicated, the interesting
cases where W (x, y) = W (x − y) is translation invariant (in such a case the spatial interaction
in (3.71) is a convolution) of when W (x, y) = f(x)g(y) for two probability densities f and g
on I (i.e. the so-called Expected Degree Distribution Model, EDD [CL02]) seem to be more
manageable. The characterization of the dynamics of (3.1) on such graphs is a natural per-
spective, the important question being: to what extent the inhomogeneity of the graph may or
may not induce an inhomogeneity in the dynamics? To illustrate this, we give in Figure 3.2
an explicit representation of a typical stationary measure for (3.71) in the particular case of
f(x) = g(x) = 2(1 − x).

Figure 3.2 – The Kuramoto model interacting on a W -random graph given by W (x, y) = 4(1 −
x)(1 − y). Left: representation of the empirical distribution µn,t =

1
n ∑

n
i=1 δ(θi,t,xi) of the system

(3.46) for regular positions xi = i
n on [0,1], with n = 7000, K = 10 and t = 50 and i.i.d. initial

condition uniformly distributed on the circle T. Right: a typical stationary solution to (3.71),
centered in θ = π (any other stationary solution to (3.71) being a translation of the previous
one). We see here the influence of the inhomogeneity of the graph on the dynamics: vertices
with positions x close to 1 have fewer connections so that the corresponding oscillators tend to
incoherence.

3.4.2 Discarding the bounded indegree assumption (3.49)

We have discussed at length in Section 3.3.3 on the importance of the hypothesis that the
indegree of each node in the macroscopic graph induced by W remains uniformly bounded (recall
(3.49)). We claim that this uniform control on degrees crucially depends on the choice we make
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on the dilution coefficients (κni ). To illustrate this, consider the graph Gn with diverging degrees
defined in Example 3.3.7 where, instead of (3.61), we choose now

κni =
1
ρn
, i = 1, . . . , n, (3.72)

that is, the same uniform dilution as for bounded kernels (3.58) (example already considered in
[KVM17], § 6.2). The graph Ḡn remains convergent ([L10, p. 6794]) in the sense of (3.48) to

W (x, y) ∶= P(x, y) = (1 − α)2x−αy−α. (3.73)

But now, the uniform renormalization (3.72) (well adapted to vertices with low degree, with posi-
tion away from 0) is no longer sufficient to compensate for vertices with high degree with position
close to 0 and the boundedness assumption (3.49) is no longer satisfied for (3.73): macroscopic
nodes x ∈ [0,1] have diverging degrees as x → 0. At the level of generality considered in this
work (but even for Kuramoto-type interaction), it is unclear if the present convergence results
remain true when assumption (3.49) is discarded. Interestingly, the previous analysis of sta-
tionary solutions to (3.71) in the case (3.73) reveals some explosive synchronisation: stationary
solutions to (3.71) approach formally to some Dirac mass as x→ 0. The rigorous analysis of this
phenomenon remains to be done.

3.4.3 Going beyond the first order

The previous analysis reveals a fundamental property of (3.1): how inhomogeneous the
renormalisation by κni may be, one intrinsically renormalises the sum in (3.1) by the (expected)
degree of vertex i. Doing so, the leading order in the sum (and the only part that survives in the
n→∞ limit) only concerns the dense part of the neighbors of vertex i: the diluted connections
are not conserved as n→∞. To illustrate this, let us consider one simple example (which is an
instance of the Stochastic Block model with only two communities): let n an even number and
divide the population into two clusters Cn1 = {1, . . . , n2} and Cn2 = {

n
2 + 1, . . . , n}, and suppose

that the ξni,j are independent with Bernoulli law with parameter pi,j = p if i, j belong to the
same cluster and pi,j = q if i, j belong to different clusters. To fix ideas, suppose that p = 1
but that q = qn → 0 as n → ∞. Then the mean degree of each node is n(1+qn)

2 ∼ n
2 so that one

renormalizes with κni = 2. Obviously, the macroscopic limit as n →∞ of the empirical measure
is then given by (3.51) for W = 1[0, 1

2 ]
2 +1[ 1

2 ,1]
2 : at first order, the mean-field limit only captures

the dynamics of two disjoint mean-field communities! But obviously this does not represent
the actual dynamics of the particle system for n large but finite as the two communities are
connected: there is synchronization (see Figure 3.3). Open questions at this point are: (i) can
we derive correctly a second-order expansion of the empirical measure around (3.51) capturing
the connectivity between clusters? (ii) is it at the level of the LLN or at the level of fluctuations?
(ii) on which time scale (possibly depending on qn) do we see synchronisation? (iii) and what
about a general graph with a dense skeleton with a diluted neighborhood?

3.4.4 Fluctuations and long-time behavior

Concerning fluctuations, there is every indication that the CLT analysis done in [L14] should
not be specific to the homogeneous Erdős-Rényi case and should readily apply to the inhomoge-
neous case of W -random graphs (at least for regular and bounded graphons W ). The exact form
of the fluctuations processes is not absolutely clear, though, but one can expect straightforward
extensions. Theorem 3.3.1 comes with all the comments and restrictions raised in [L5]: the
convergence results are only valid on bounded time intervals [0, T ], where T is independent of
n (although that, with a little more work, it would certainly be possible to extend the result
up to times T which grows logarithmically in n, as in [L5], Corollary 1.2). The question of the
long-time analysis of the empirical measure µn on larger time scales (for which we will discuss at
length in Chapter 5 in the mean-field case) remains open even in the homogeneous Erdős-Rényi
graph. Applying the formalism of Grothendieck inequalities on this matter is an obvious natural
issue.
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Figure 3.3 – Trajectories of the center of synchronization of two mean-field communities of
Kuramoto oscillators, with additional random connections between the two communities with
probability pn = λ

n , for n = 500, K = 5, λ = 4, up to T = 2000. Although the asymptotic graphon
consists of two disjoints communities W = 1[0, 1

2 ]
2 + 1[ 1

2 ,1]
2 , the finite size clusters synchronize.

3.4.5 Application to neuroscience: neural field equation and traveling waves

A case of interest for (3.51) concerns the case of FitzHugh-Nagumo oscillators (recall Exam-
ple 1.3.2). Theorem 3.3.1 gives a new interpretation of such spatially-extended PDEs in terms
of the mean-field limit of diffusions on random graphs. Several existing works [CFF19, Sta13,
ABR04] have considered the same PDE, especially when it comes to its stability of synchronized
patterns in presence of macroscopic noise. The question of the links between these macroscopic
features and the microscopic system (3.1) remain unclear. Another interesting case is when one
considers (3.67) when d = 1, F (θ) = −αθ (for some α > 0) and Γ(θ, θ̃) = f(θ̃) (typically f is a
sigmoid function):

∂tψ(x, t) = −αψ(x, t) + ∫
I
f(ψ(y, t))W (x, y)dy. (3.74)

Equation (3.74) is nothing else than the neural field equation, introduced from a phenomeno-
logical point of view by Wilson and Cowan [WC72] and Amari [Ama77] in order to describe the
macroscopic activity of a population of neurons with spatial extension (we will come back to it in
Chapter 6). Eq. (3.74) has been the subject of an extensive literature (see [Bre14b, Bre12] and
references therein; see in particular the recent works [CDLO19, AN22b] showing that (3.74) is a
proper limit for spatially-extended Hawkes processes). An important issue here is the existence
and stability of traveling waves [FK18, RAB+14]. In this context, it is reasonable to expect that
the effect of thermal noise in (3.1) will persist on larger time intervals, resulting in stochastic
neural field equations [FI15, IM16, KS14, Lan16].

3.4.6 Interaction on balanced networks

In (3.51), the kernel W is supposed to be nonnegative. In a neuroscience context, this
corresponds to an excitatory network. It is certainly possible to accommodate for inhibitory
connections in (3.1): in order to keep it simple, think e.g. to the following homogeneous case
(but the reader may convince himself that the extension to W -random graphs would follow
easily): simply choose ξni,j = 1 with probability p and ξni,j = −1 with probability 1− p. The mean-
field limit would follow easily with kernel W ≡ (1−2p). An interesting case would correspond to
a balanced network when p = 1

2 . Then, we fall in a CLT regime where the interaction typically
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scales as 1√
n

, not 1
n . This situation is reminiscent to spin glass systems [BAG97, CT18b] with

only difference that the interaction is discrete, not Gaussian. This situation has already been
considered in [PRS22, ELL22] in a context of Hawkes processes, but the diffusion case, to the
best of my knowledge, does not seem to have been considered (especially when it comes to
general inhomogeneous random graphs).

3.4.7 Other topologies and time dependent graphs

Going beyond the optimal dilution condition npn → ∞ (3.10) requires to look at the case
where npn → λ. As already mentioned, we leave here the framework of mean-field analysis, as the
correct limit is given in terms of diffusions interacting on Galton-Watson trees [OR19, LRW23].
The dynamics of such diffusions on trees (and their extensions e.g. to deterministic regular
trees) is far from being understood. A possibility would be to look first at stationary versions of
these processes (e.g. the XY model), see [DM10a, DM10b] for related works in the Ising case.

This chapter only concerns the case of diffusions interacting on graphs to do not depend
on time. There is from a modelling perspective a crucial need to understand the corresponding
dynamics where the graph of interaction itself evolves with time (to mention only one application,
the need to understand synaptic plasticity in neuronal networks [RV21b, RV21a]). So far,
existing results mainly tackle the easier case where the evolution of the graph is independent
from the particles [BBW19], but the interesting point is obviously when the graphs depends
itself on the particle dynamics. Understanding the role of the dynamics on the graphs (possibly
on toy models derived from the formalism of W -random graphs of the present chapter), and the
different time scales for both dynamics is a crucial issue, on a longer perspective.
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Chapter 4

Periodicity for nonlinear
Fokker-Planck equations

The present chapter is concerned with the difficult question of the dynamics of the solution
µt to the Fokker-Planck equation (1.4) when t →∞. As discussed in § 1.3, this issue is model-
dependent and has been mostly considered in reversible situations. We are mostly interested in
situations where µt exhibits periodic behaviors.

4.1 About Stable Normally Hyperbolic Manifolds (SNHM)

4.1.1 A general framework

In order to analyse (1.4) as t→∞ we need structure: the key notion of this chapter concerns
Stable Normally Hyperbolic Manifolds (SNHM). Let us briefly give an informal definition (see
[BLZ98]): let X be a functional (Banach) space with norm ∣⋅∣. Let T t ∶X →X, t ≥ 0 a semiflow
that gives rise to an evolution {ut}t≥0, with u0 = u ∈ X given by ut ∶= T

tu. One says that a
compact regular manifold M is a Stable Normally Hyperbolic Manifold (SNHM) if for all m ∈M ,
there exists a decomposition

X =Xc
m ⊕X

u
m ⊕X

s
m (4.1)

of closed subspaces in X with Xc
m the tangent space to M at m (here, c: center, u: unstable

and s: stable) such that the following holds
1. For each m ∈ M , t ≥ 0, for mt = T

t(m), the differential of the semiflow DT t(m)∣Xα
m
∶

Xα
m →Xα

mt for α = c, u, s and DT t(m)∣Xα
m

is an isomorphism from Xu
m onto Xu

mt .
2. There exists t0 ≥ 0 and λ < 1 such that for all t ≥ t0

λ inf {∣DT t(m)xu∣ , xu ∈Xu
m, ∣x

u
∣ = 1} >max (1, ∥DT t(m)∣Xc

m
∥) , (4.2)

λmin {1, inf {∣DT t(m)xc∣ , xc ∈Xc
m, ∣x

c
∣ = 1}} > ∥DT t(m)∣Xs

m∥ (4.3)

Condition (4.2) essentially says that the semiflow T t is, locally around m, expansive in the
unstable direction Xu

m at a rate that is strictly greater than on Xc
m, while (4.3) states that T t

is locally contractive along the stable direction Xs
m at a rate greater than on Xc

m. This kind of
dynamical structure originally goes back to Fenichel [Fen72, Fen79] for flows in finite dimension
and then generalized in [HPS77] in the case of Riemannian manifolds and in [BLZ98, SY13]
in the infinite dimensional setting. A crucial point of the previous references (and an essential
argument for us) is to note that these structures are stable under perturbations [BLZ98, SY13].

The main goal of this chapter is to address the existence of SNHM for the nonlinear Fokker-
Planck equation (1.4) and to analyse the reduced dynamics on these manifolds (in particular
limit cycles). Note that the solutions µ to (1.4) take values in the set of probability measures:
we are intrinsically working in an infinite dimensional set-up, a typical choice of X being some
L2
ρ(Rd) or some Sobolev space H−kρ (Rd) for some index k ≥ 0 and possibly some weight ρ,

(or affine spaces constructed upon such spaces in order to keep track of the fact that we are
dealing with probability measures). In this infinite dimensional setting, the fact that we may

67
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have to deal with e.g. unbounded coefficients F in (1.4) (think of the FitzHugh-Nagumo case,
Example 1.3.2) is a major difficulty: applying the previously mentioned theoretical stability
results of [BLZ98, SY13] will not be necessarily possible. A serious issue will be to build ad-hoc
procedures and to find suitable functional spaces where to obtain similar existence and stability
results.

4.1.2 An alternative definition

We are here mostly interested in situations with oscillations, that is where M is a one-
dimensional circle or more generally some stable limit cycle. In such a case, the unstable
component Xu

m in (4.1) is trivial and the definition of a SNHM can be expressed in terms of
the following equivalent formulation: associate to the dynamics ut = T tu, with u0 = u, the
linear evolution semigroup {Φ(u, t)}t≥0 in X, satisfying ∂tΦ(u, t)v = L(t)Φ(u, t)v and Φ(u,0)v =
v, where L(t) is the operator obtained by linearizing the evolution around ut. Then, a 1-
dimensional curve, M ⊆ X is a SNHM of characteristics λ1, λ2 (0 ≤ λ1 < λ2) and C > 0 if M is
a C1 compact connected manifold which is invariant under the dynamics and for every u ∈ M
there exists a projection P o(u) on the tangent space of M at u, that is R(P o(u)) =∶ TuM , which,
for v ∈ L2

0, satisfies the following properties:
1. for every t ≥ 0 we have

Φ(u, t)P o(u0)v = P
o
(ut)Φ(u, t)v , (4.4)

2. we have
∣Φ(u, t)P o(u0)v∣ ≤ C exp(λ1t)∣v∣ , (4.5)

and, for P s ∶= 1 − P o, we have

∣Φ(u, t)P s(u0)v∣ ≤ C exp(−λ2t)∣v∣ , (4.6)

for every t ≥ 0;
3. there exists a negative continuation of the dynamics {ut}t≤0 and of the linearized semi-

group {Φ(u, t)P o(u0)v}t≤0 and for any such continuation, we have, for t ≤ 0,

∣Φ(u, t)P o(u0)v∣ ≤ C exp(−λ1t)∣v∣. (4.7)

Once again, the condition 0 ≤ λ1 < λ2 expresses the fact that the rate of contraction of the linear
dynamics along the orthogonal component is strictly greater than the rate of expansion along
the tangential component.

The problem of existence of such manifolds left apart, another crucial issue concerns the
regularity of such structures (e.g. for limit cycles, expressed in terms of some regular isochron
map associated to the dynamics). Whereas this regularity is essentially straightforward in the
finite-dimensional case X = Rd (see [Fen79]), the same issue in the infinite-dimensional setting
is no longer clear (see [BLZ98] for results in this direction). Some effort will be spend here to
obtain regularity estimates that will be crucial for us in the next chapter, where the microscopic
companion problem will be addressed.

4.1.3 A seminal work: perturbation analysis for phase oscillators

The first work to address the emergence of nontrivial structured collective behaviors for
nonlinear Fokker-Planck equations goes back to the paper of Giacomin, Pakdaman, Pellegrin
and Poquet [GPPP12] in the case of the Active rotators model (Example 1.2.3). In order to
motivate the next results (and in particular to motivate why we cannot directly apply the same
techniques in the case of FitzHugh-Nagumo oscillators), we briefly review here the results of
[GPPP12]: [GPPP12] slightly generalizes (1.16) into

∂tpt(θ) =
1
2
∂2
θpt(θ) − ∂θ (pt(θ)(J ∗ pt(θ))) + δG[pt](θ), θ ∈ T. (4.8)
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where G is a smooth and bounded functional from L2(T) to H−1(T) (see [GPPP12], § 2.2 for
more examples). This is indeed the case for G[p] ∶= ∂θ (p∂θV ) in (1.16), as V is supposed to be
smooth and bounded. The main result of [GPPP12] (Th. 2.1) states the existence of a smooth
SNHM M δ for the dynamics (4.8) for δ > 0 small enough. Asymptotics in δ of the dynamics of
the phase along this manifold are also provided, in the general case [GPPP12, Th. 2.2] and in
the case of Active rotators [GPPP12, § 3].

As it will be at the core of the arguments given in the following, let us briefly comment on
the main structure of the proof here (which relies on arguments given in [SY13] with special
attention given in [GPPP12] to the relationships between the various small parameters). The
starting point is to note that when δ = 0 in (4.8), we retrieve the reversible equation (1.19).
Recalling Section 1.2.2, when K > 1, the circle M0 of stationary solutions to (1.19) defined in
(1.21) is linearly stable (recall Theorem 1.2.4). Hence, M0 is a simple instance of a SNHM in
the sense of Section 4.1.2, for the choice of λ1 = 0 and λ2 = λK (where we recall the spectral gap
λK in Theorem 1.2.4). Note here that X = L2(T) and for qψ ∈ M0, the projection P oqψ on the

tangent space is explicitly written as P oqψu =
⟨u,∂θqψ⟩−1,qψ
⟨∂θqψ ,∂θqψ⟩−1,qψ

∂θqψ, where ⟨⋅ , ⋅⟩−1,q is the scalar

product associated to the norm (1.25).
Now proceed with perturbation arguments for small δ > 0. At least in a small neighborhood

N of M0, one can construct a suitable projection on M0 that is adapted to the underlying local
Hilbertian structure: for any p ∈ N , there exists a unique q ∶= v(p) ∈ M0 such that p − v(p) is
orthogonal to M0 at point v(p): ⟨p − q , ∂θq⟩−1,q = 0. Define then the space F(ε, l) of continuous
functions f ∶ M0 → L2 such that ∥f∥∞ ≤ ε and ∥f∥Lip ≤ l for some ε > 0 and l ∈ [0,1], as well
as ⟨f(q) , ∂θq⟩−1,q = 0 (think as f(q) as a notion of a distance around q, so that for any f ,
M ′ ∶= (Id + f)(M0) is a perturbation of size ε of the original manifold M0). The main point is
to find a suitable f so that the new manifold M ′ remains invariant for the dynamics of (4.8): in
order to do so, construct a set of functionals {Xt}t≥0 ∶ F(ε,1) → C(M0, L

2(T)) that is adapted
to the dynamics (4.8) such that, for some T sufficiently large, (Xt)t∈[T,2T ] stabilises F(ε,1) and
is contracting on such space:

∥XT (f1) −XT (f2)∥∞ ≤
1
2
∥f1 − f2∥∞ , f1, f2 ∈ F(ε,1). (4.9)

More precisely, one defines Xt as the unique mapping satisfying for any t > 0,

Xt(f)(v(p(t;p0))) = p(t;p0) − v(p(t;p0)), p0 = q + f(q), q ∈M0, (4.10)

where p(t;p0) is the solution to (4.8) at time t with initial condition p0. In words, starting
at a distance f(q) from q ∈ M0, for any t, Xt(f) associates to the phase v(p(t;p0)) ∈ M0 of
the solution p(t;p0) at time t, its actual height above M0, i.e. p(t;p0) − v(p(t;p0)). Hence, if
Xt possesses a unique fixed-point f0, i.e. Xt(f0) = f0, one obtains readily from the previous
identity that Mδ ∶= (Id + f0)(M0) is indeed an invariant manifold for the dynamics that has all
the requirements for a SHNM, see Figure 4.1 and [GPPP12] for further details. Proving both
the stability XT (F(ε,1)) ⊂ F (ε,1) and the contraction (4.9) requires to estimate the proximity
of a solution pt to (4.8) to some generic q ∈ M (as well as the dependence of such quantities
when the initial condition varies). The key to such estimates is based on the following mild
formulation: for q ∈M0 and wt = pt − q, wt verifies

wt = e
−tL0

qw0 + ∫
t

0
e−(t−s)L

0
q (∂θ (wsJ ∗ws) + δG[q +ws])ds. (4.11)

All of the arguments developed above rely on a careful control of two antagonistic terms in
(4.11): first, the contraction of the semigroup e−tL

0
q (Theorem 1.2.4) so that if w0 is of order ε,

e−tL
0
qw0 will be of order, say, ε4 if t is sufficiently large and secondly, the remaining perturbations

terms in (4.11): firstly the term δG, that however remains of order δ, by boundedness of G
and secondly, the quadratic term ∂θ (wsJ ∗ws). Dealing with this last term is not an essential
problem: proximity arguments around M0 require w to be small, so that ∥w∥2 is even smaller and
standard extensions of Grönwall lemmas apply. Putting everything together roughly says that
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q

∂θq

p0

p(t; p0)

v(p(t; p0))

f(q)
Xt(f)(v(p(t; p0)))

M0

Figure 4.1 – Construction of the functional Xt: starting from p0 at a distance f(q) from q ∈M0,
one follows the dynamics of (4.8) until time t where one projects back onto M0. Xt(f) is the
distance between p(t;p0) and its projection v(p(t;p0)) onto M0. Hence, if f is the unique fixed-
point to Xt and one defines M ′ ∶= (Id + f) (M0), we have v(p(t;p0)) + f(v(p(t;p0))) = p(t;p0)
so that p(t;p0) ∈M

′: M ′ is invariant for the dynamics.

wt will be of order ε
4 +O(δ) which can be rendered smaller than ε

2 if δ is taken sufficiently small:
up to technical details, we have essentially obtained our contraction result (4.9). Note here that
a key argument of the previous proof is to require that G is bounded and smooth. An important
difficulty we will be facing in § 4.3 is when we will have to move from the compact state space
T to Rd: we will have to deal with unbounded functionals G (a prominent example being the
polynomial FitzHugh-Nagumo case in Example 1.3.2), so that the control of the counterpart of
(4.11) will be less clear.

4.2 Traveling waves in the asymetric Kuramoto model

Before dealing with these difficulties, let us mention briefly the results of [L2] where the tech-
niques developed in [GPPP12] are applied to the disordered Kuramoto model (Example 1.2.2).
As the proof relies on the same perturbation techniques, we leave the technical details to [L2].
We reproduce here (1.15) for convenience

∂tpt(θ,ω) =
1
2
∂2
θpt(θ,ω) − ∂θ (pt(θ,ω){∫ J ∗ pt(⋅, ω

′
)ν(dω′) + δU(θ,ω)}) , θ ∈ T, ω ∈ Supp(ν).

(4.12)
for the choice of U(θ,ω) ∶= ω. Hence, the dependence in the disorder taken apart, (4.12) is
formally equivalent to (4.8), for the bounded perturbation G[p](θ,ω) = −∂θ(p(θ,ω)ω). Note
that this approach generalises easily to generic perturbations U , namely the case of Active
rotators U(θ,ω) = b + ω + a sin(θ), a, b ∈ R. We refer to [SK86b, GPPP12] for more details. The
aim of [L2] is to analyse the influence of the law ν of the disorder on the long-time dynamics of
(4.12). Note first that one can always assume ν to be centered (otherwise, the system is mapped
into the same system rotating at constant speed ∫ ων(dω). Two natural questions arise: 1) in
case of symmetric ν, what are the stability properties of the manifold of synchronised profiles
qr,ψ(θ,ω) parameterized by r > 0 solving the fixed-point relation (1.23) and 2) what happens if
the distribution ν is not symmetric?

4.2.1 Emergence of rotating waves for asymmetric disorder

The main result of [L2] is actually independent on any symmetry assumption of ν. Making
δ = 0 in (4.12) does not here exactly give the non-disordered equation (1.19) but rather the
similar

∂tpt(θ,ω) =
1
2
∂2
θpt(θ,ω) − ∂θ (pt(θ,ω)∫ J ∗ pt(⋅, ω

′
)ν(dω′)) (4.13)

where the dependence in ω simply reduces to ineffective labels, but its evolution turns out to
be identical to (1.19). In the statement below, ∥ ⋅ ∥2,ν is the L2-norm w.r.t. the measure dθ ⊗ ν
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and q ∈M0 is the element of the synchronized manifold such that for all ω, q(⋅, ω) = q0(⋅). The
main result of [L2] is then

Theorem 4.2.1 (Theorem 2.2 in [L2]). Suppose that Supp(ν) ⊂ [−1,1]. For every K > 1, there
exists δ0 = δ0(K) > 0 such that for ∣δ∣ ≤ δ0, there exists q̃δ ∈ L2(dθ⊗ν), satisfying ∥q̃δ−q∥2,ν = O(δ)
and a value cµ(δ) ∈ R such that if we set

q
(ψ)
t (θ,ω) ∶= q̃δ(θ − cµ(δ)t − ψ) , (4.14)

then q
(0)
t solves (4.12). Moreover, the family of solutions {q(ψ)⋅ }ψ is stable: there exist β =

β(K) > 0 and C = C(K) > 0 such that if pδ0 is close enough to M0 and ∫T p
δ
0(θ,ω)dθ = 0

ν(dω)-a.s., then there exists ψ0 ∈ T such that for all t ≥ 0

∥q
(ψ0)
t − pδt ∥2,ν ≤ 2C exp(−βt) . (4.15)

In other words, a nontrivial disorder ν induces a macroscopic rotating wave for (4.12) with
speed cν(δ), on a bounded time scale (that is on [0, T ] for any fixed T > 0). Theorem 4.2.1 is
complemented in [L2] with asymptotic development as δ → 0 of the speed of rotation:

cµ(δ) = c3δ
3
+ c5δ

5
+ . . . . (4.16)

where the coefficients ck are expressed in terms of the linearized evolution operator of (4.13)
around q0 ∈M0, Au(θ,ω) ∶= 1

2∂
2
θu(θ,ω) − ∂θ(q0(θ) ∫ J ∗ u(θ)dν + u(θ,ω)J ∗ q0(θ)). We refer to

[L2, § 2.2] for more details on this expansion.

4.2.2 Stability of synchronization in the symmetric case

When ν is symmetric, the development (4.16) yields zero terms to all orders: this only reflects
the fact that the manifold Mδ = {q̃δ(⋅ − ψ), ψ ∈ T} (unique in a neighborhood of M0 of size δ for
δ small enough, which converges to M0 as δ ↘ 0, in Cj , for every j) consists of stationary
points. In this case, Theorem 4.2.1 provides only a stability statement for Mδ. This result can
be sharpened, with precise results on the linearisation around each element q ∈ Mδ: define the
linear operator

Lqu(θ,ω) ∶=
1
2
∂2
θu(θ,ω) − ∂θ(u(θ,ω) (⟨J ∗ q⟩ν(θ) + δω) + q(θ,ω)⟨J ∗ u⟩ν(θ)). (4.17)

A summarised statement of Th. 2.5 in [L2] is then

Theorem 4.2.2 (Th. 2.5 in [L2]). Assume Supp(ν) ⊂ [−1,1]. Then for all K > 1, for δ > 0
sufficiently small, Lq is the infinitesimal generator of an analytic semi-group, the spectrum of
Lq lies in a cone C ⊆ {z ∈ C; R(z) ≤ 0}, 0 is a simple eigenvalue, with eigenspace spanned by
(θ,ω) ↦ ∂θq(θ,ω) and the distance between 0 and the rest of the spectrum is strictly positive,
perturbation of the spectral gap λK of the Kuramoto model without disorder.

Although written in a qualitative way, what we really prove are quantitative explicit es-
timates. Proof of Theorem 4.2.2 relies on standard techniques concerning relatively bounded
perturbations of linear operators (see e.g. [Paz83, Kat95]). We refer to [L2] for more details.
The present analysis shows that, in the symmetric case, the disorder has essentially no influence
on the macroscopic system (4.12). This is particular does not explain the non-self-averaging
effect mentioned in Section 2.2 concerning the microscopic system (1.14). Pushing further the
analysis from the macroscopic PDE (4.12) to the microscopic empirical measure (2.2) of the
system requires some further work that will be discussed later in Chapter 5.
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4.3 Excitable systems and the FitzHugh-Nagumo model
We now turn to the main point of the present chapter, that is the analysis of the more general

case of emergence of oscillations for interacting excitable systems in Rd in the presence of noise
and linear interaction, that we write as follows

∂tµt(x) = ∇ ⋅ (σ
2
∇µt)(x) +∇ ⋅ (Kµt(x) (x − ∫

Rd
zµt(dz))) − δ∇ ⋅ (µt(x)F (x)) , t ≥ 0 , (4.18)

where F ∶ Rd → Rd. Solution (µt)t≥0 to (4.18) is a probability measure-valued process on Rd,
describing the law of the nonlinear process

dXt = (δF (Xt) −K(Xt −E[Xt]))dt +
√

2σdBt , t ≥ 0 . (4.19)

The microscopic counterpart of (4.19) is of course

dXi,t =
⎛

⎝
δF (Xi,t) −K

⎛

⎝
Xi,t −

1
n

n

∑
j=1

Xj,t
⎞

⎠

⎞

⎠
dt +
√

2σdBi,t , i = 1, . . . , n , t ≥ 0 , (4.20)

where B1, . . . ,Bn is a collection of independent standard Brownian motions in Rd. Two param-
eters are relevant for (4.18): K = diag(k1, . . . , kd) and σ = diag(σ1, . . . , σd) (with ki ≥ 0, σi ≥ 0),
two matrices (supposed to be diagonal for simplicity) modelling respectively the intensity of
interaction and noise within the population.

4.3.1 Persistence and emergence of synchronized structures under noise and
interaction

Some general questions

Our main (but not exclusive) interest concerns situations where the isolated system (i.e.
K = σ = 0 and δ = 1 in (4.19))

dXt = F (Xt)dt, (4.21)

possesses excitable features, as described in Section 1.3.1.

Question 4.3.1. Two main issues are particularly relevant here:
1. Persistence of periodicity: in case the isolated system (4.21) has a periodic behavior, does

this periodicity persists with nontrivial interaction and noise in (4.19)?
2. Emergence of periodicity: is there a possibility that noise and interaction may induce for

(4.20) a structured dynamics (e.g. synchronization, collective periodic behavior, oscilla-
tions) that is not originally observed for the isolated system (4.21)?

Generically, in order to maintain and observe macroscopic oscillations in (4.18), some balance
has to be found in the intensity of noise and interaction that one needs to put in the system.
Hence, addressing Question 4.3.1 requires to obtain quantitative estimates on the relative size of
the interaction K and the noise σ in order to maintain these macroscopic structures. The aim
of this section is to provide a general framework in order to answer rigorously to Question 4.3.1
and to give concrete illustrations of applications of this framework.

The particular case of FitzHugh-Nagumo dynamics

Although several examples are discussed at length in [L9] (see e.g. Stuart-Landau oscillators
or the Cucker-Smale alignment model [BCnCD16]), for simplicity, the only example that we
discuss in this manuscript is the FitzHugh-Nagumo model (Example 1.3.2). In this context,
(4.18) corresponds to FitzHugh-Nagumo oscillators with electrical synapses [BFFT12]. We are
interested in two instances of the model (4.18): the elliptic case, where both interaction and
noise are nontrivial on all coordinates: ki > 0, σi > 0 for all i = 1, . . . , d and the kinetic case
(mathematically more challenging but biologically more adequate), where interaction and noise
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in only present on the voltage variable. These two cases will be addressed in this section. Ad-
dressing Question 4.3.1 in the whole generality of Example 1.3.2 is certainly a complicated task,
as the bifurcation diagram for the isolated system (4.21) is known to be complex [RsGGt00].
One may highlight however two main scenarios for (4.21) (both of interest in biological applica-
tions [LGONSG04, TPVE20]): the excitable case, where the nullcline of w in (1.29) intersects
only once the nullcline of v and the bistable case where three distinct equilibrium points (one
unstable, the other two stable) coexist for the dynamics (4.21). Again, for simplicity of expo-
sition, we will be only concerned here with the excitable case and we refer to [L9] where the
bistable case is addressed.

The model (4.18) with FHN dynamics has been the subject of several previous mathematical
papers: [MQT16] addresses well-posedness results for (4.18) and proves the existence of equilibria
for the limit mean-field dynamics in the weak interaction regime (K → 0), in the kinetic case.
[nT20] addresses the same model in the case of strong interaction (K → ∞) and proves the
convergence of solutions to (4.18) to singular Dirac solutions (clamping) in this case. Note that
neither K → 0 nor K → ∞ are proper frameworks for the emergence of collective oscillations:
intuitively, a reasonable balance between noise and interaction is needed, so that K should not
be too small or too large. Our analysis lies precisely within this range of parameters:

Hypothesis 4.3.2. We suppose that the parameters in (4.18) are such δ → 0 and K and σ
remain of order 1.

The persistence and emergence of periodic behaviors under noise and interaction in the
FitzHugh-Nagumo model has been observed in several previous papers based on numerical sim-
ulations (see e.g. [BFFT12, TPVE20]), but a rigorous proof was lacking. To our knowledge, the
results of the present section provide the first mathematical proof of these phenomena.

Why addressing Question 4.3.1 is difficult

Our analysis will rely again on SNHM structures as in § 4.1.1. Note however that the nature
of the dynamics F poses serious major difficulties that we want to emphasize here. Firstly,
in whole generality, contrary to phase oscillators, there is no rotational invariance for (4.18),
so that one cannot build upon the hypothetic existence of one limit cycle for (4.18) when
δ = 0: as we will see below, (4.18) when δ = 0 simply reduces to some stationary Ornstein-
Uhlenbeck process with Gaussian invariant measures. Hence, one difficulty will be to prove the
existence of limit cycles, whereas it was more or less obvious by construction in the case of phase
oscillators. Secondly, a major simplifying technical assumption in case of phase oscillators is
that T is compact. In case of generic particles in Rd, one will have to be careful about the
control one has on the dynamics of (4.19) at infinity: as we will see below, a proper functional
setting for the analysis of (4.18) is to work with L2-spaces L2

ρ with Gaussian weights (in which
the Ornstein-Uhlenbeck operator is self-adjoint). In such spaces, the major difficulty is that
the perturbation G[µ] ∶= ∇ ⋅ (µ(x)F (x)) is not bounded, typical examples being F with sub-
exponential (or polynomial) growth, as in Example 1.3.2. Hence, we cannot apply directly the
existing perturbations results as in [GPPP12, BLZ98]. Control of such perturbation will rely on
a careful interplay between such L2

ρ weighted spaces with different weights ρ.

4.3.2 The elliptic case

Let us first review the work [L9], where existence of limit cycles for (4.18) is proven in the
elliptic case, that is ki > 0, σi > 0 for all i = 1, . . . , d. Note here that the result of [L9] is general
and does not restrict to the FHN model.

Slow-fast dynamics and invariant manifold

Our approach is based on the fact that, since the two first terms of the right hand side of
(4.18) leave the mean

mt ∶= Πm(µt) ∶= ∫
Rd
xµt(dx) ∈ Rd (4.22)
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invariant, this PDE is in fact equivalent to the system

{
∂tpt(x) = ∇ ⋅ (σ

2∇pt(x)) +∇ ⋅ (Kpt(x)x) +∇ ⋅ (pt(x)(ṁt − δF (x +mt)))

ṁt = δ ∫Rd F (x +mt)pt(dx)
, (4.23)

where pt ∶= Π0(µt) is the centered version of µt, i.e. satisfies for all test function φ

∫
Rd
φ(x)pt(dx) ∶= ∫

Rd
φ(x)Π0(µt)(dx) ∶= ∫

Rd
φ(x −mt)µt(dx) . (4.24)

The mapping µ ↦ (Π0(µ),Πm(µ)) is an obvious one-to-one correspondence between P1(Rd),
the set of probability measures on Rd with first finite moment and P0(Rd)×Rd, where P0(Rd) ∶=
{p ∈ P1 (Rd) , ∫Rd xp (dx) = 0}, whose inverse given by (p,m) ↦ µ defined by ∫ φ(x)µ(dx) =
∫Rd φ(x +m)p (dx).

Taking δ small, the system (4.23) defines a slow-fast dynamics. Making δ = 0 in (4.23)
gives ∂tpt(x) = ∇ ⋅ (σ2∇pt(x)) +∇ ⋅ (Kpt(x)x) that is nothing else than an Ornstein-Uhlenbeck
dynamics, for which it is standard to prove exponential convergence to the Gaussian invariant
measure with density q0,σ2K−1 , where

qm,Γ(x) =
1

((2π)d det(Γ)) 1
2

exp(−1
2
(x −m) ⋅ Γ−1

(x −m)) , x ∈ Rd. (4.25)

When δ > 0 is small, the intuition would be to replace pt by this limit in the evolution of mt in
(4.23) obtaining the approximation

ṁt ≈ δ∫
Rd
F (x +mt)q0,σ2K−1(x)dx = δ∫

Rd
F (x)qmt,σ2K−1(x)dx , (4.26)

which simply corresponds to replacing the right-hand side of (4.21) with its average with respect
to a Gaussian measure centered inmt, and slowing down the dynamics by a factor δ. The purpose
of [L9] is make this approximation rigorous, and thus reducing drastically the dimension of the
problem: one can look for structured dynamics for (4.19) at the level of the d-dimensional
problem (4.26). In our case the manifold

M
0
= {(q0,σ2K−1 ,m) ∶ m ∈ Rd} (4.27)

is a stable manifold of stationary solutions for (4.23) with δ = 0, and our aim is to prove that it
persists in an invariant manifold Mδ for δ > 0 small, and that the phase dynamics on Mδ can
be approximated by (4.26) (more precisely we only prove the existence of positively invariant
manifolds, see Theorem 4.3.3).

Set-up and main hypotheses

We work in essentially two functional settings, i.e. weighted L2 and H1 norms defined as
∥u∥L2(w) = (∫Rd ∣u(x)∣

2w(x)dx)
1
2 and ∥u∥H1(w) = (∥u∥

2
L2(w) +∑

d
i=1 ∥∂xiu∥

2
L2(w))

1
2 , for weights

wθ(x) ∶= exp(θ
2
x ⋅Kσ−2x) , x ∈ Rd (4.28)

for different well chosen values of θ ∈ R. We give here only the main assumptions on F , under
a simplified setting (see [L9] for more details): we suppose exponential moments on the initial
condition of (4.19) and that there exist cF ,CF , r > 0 and some (explicitly) sufficiently small ε > 0
such that the following holds

1. One-sided Lipschitz continuity:

(F (x) − F (y)) ⋅ (x − y) ≤ CF ∣x − y∣
2, x, y ∈ Rd . (4.29)

2. Confinement outside some ball:

F (x) ⋅ x ≤ CF1{∣x∣≤r} − cF ∣x∣2 , x ∈ Rd (4.30)
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3. The confinement controls the derivative: the following limits holds:

lim
∣x∣→∞

∣∂xkF (x)∣

F (x) ⋅Kσ−2x
= 0 for k = 1, . . . , d . (4.31)

4. Exponential control of the dynamics:

max(∣F (x)∣ , sup
k=1,...,d

∣∂xkF (x)∣ , sup
k,l=1,...,d

∣∂2
xk,xl

F (l)(x)∣) ≤ CFwε(x), x ∈ Rd. (4.32)

Main result

The main result of [L9] is the following:

Theorem 4.3.3 (Th.2.3 and 2.5 in [L9]). Under the previous assumptions, there exist a bounded
open set V ⊂ Rd, α ∈ (0,1) and C > 0 such that the following is true: for all δ ≥ 0 small enough,
there exists a positively invariant manifold Mδ = {(pδm,m) ∶ m ∈ V} for (4.18), where pδm is a
probability measure on Rd for all m ∈ V, and Mδ is a perturbation of size δ of the manifold M0

in the following sense:
sup
m∈V
∥pδm − q0,σ2K−1∥

L2(wα) ≤ Cδ . (4.33)

Furthermore,Mδ is stable: there exist β ∈ (0, α), λ, c, c′, c′′,C ′ > 0 such that the following is true:
if (p0,m0) satisfies m0 ∈ V, ∫Rd xp0(dx) = 0, ∫Rd wα(x+m0)p0(dx) ≤ c, ∥p0−q0,σ2K−1∥L2(wα) ≤ c

′δ

and ∥p0−p
δ
m0∥L2(wβ) ≤ c

′′δ, then for (pt,mt) the solution of (4.23) with initial condition (p0,m0)
we have for all t > 0:

mt ∈ V , and ∥pt − p
δ
mt∥L2(wβ)

≤ C ′e−λt ∥p0 − p
δ
m0∥L2(wβ)

. (4.34)

Finally, the phase dynamics t ↦mδ
t of the solution of (4.23) starting from (pδm0 ,m0) ∈M

δ has
the following expansion in δ → 0

ṁδ
t = δ∫Rd

F (u)qmδt ,σ2K−1(u)du + δ2gδ(mδ
t ), (4.35)

with ∥gδ∥C1 ≤ C.

Consequences

The main conclusion of Theorem 4.3.3 is that, in the regime δ → 0, one can reduce (up to
a time change of order δ) the analysis of the (infinite dimensional) mean-field system (4.18) to
the d-dimensional synchronised system

ẋt = ∫
Rd
F (u)qxt,σ2K−1(u)du . (4.36)

In (4.36), the presence of noise and interaction lies in the parameters ϖ1 = σ
2
1/k1, . . . ,ϖd = σ

2
d/kd

of the diagonal matrix σ2K−1. Addressing Question 4.3.1 simply boils down to comparing the
isolated system (4.21) (without noise and interaction) with the reduced dynamics (4.36) where
noise and interaction is present.

Persistence of oscillations

Answering the question of persistence is easy: supposing here that (4.21) possesses a dynam-
ical structure persistent under C1-perturbation that is included in a bounded open set V0 with
smooth boundaries (think of hyperbolic fixed-points, limit cycles, and more generally normally
hyperbolic invariant manifolds [Fen72, Wig13], but also chaotic structures, as given by Lorenz-
like flows [GW79, APV10]) classical convolution arguments show that the dynamics given by
(4.36) is a C1-perturbation (with perturbation of order maxiϖi) of (4.21), so that (4.36) admits
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a similar persistent structure for maxiϖi small enough. This observation holds for various ex-
amples that are extensively detailed in [L9, § 3.2] (e.g. the Stuart-Landau model [L9, eq. (3.3)]).
Concerning the FHN case, starting from (1.29), the key point is to note that the convolution
kernel driving the synchronised system (4.36) is simply

∫
R2
F (u)q(x,y),σ2K−1(u)du = ((1 −ϖ1)x −

x3

3
− y,

1
c
(x + a − by)) (4.37)

and so (4.37) defines again a FitzHugh-Nagumo system, with a modified prefactor 1−ϖ1 in front
of the x variable. Thus, if the parameters (a, b, c) in (1.29) are chosen so that the isolated system
(4.21) is away from a bifurcation point (e.g. in the case of a limit cycle) and if ϖ1 ∈ [0,1) is small
enough, (4.36) will conserve the same type of dynamics: we have persistence of periodicity for
the synchronized system (4.18), at least when the noise is small w.r.t. the interaction (as it had
already been observed in [ABR04]). Similar persistence of periodic dynamics had already been
obtained in [Sch86] for the mean-field Brusselator model, without any results on local stability
of the solutions, using different techniques.

Emergence of structured dynamics

The question of emergence of oscillations is also intuitive: suppose that (4.21) exhibits a
bifurcation and that a careful choice of parameters in the functional F brings (4.21) close to
the bifurcation point. It may be that the introduction of the parameters ϖ1, . . . ,ϖd in (4.36)
makes the system cross this bifurcation point: we would then be precisely in a situation where
the addition of noise and interaction induce a structured dynamical behavior that is not initially
present in the IDS (4.21) (see [L9, § 3.3] for detailed applications to Stuart-Landau oscillators,
[L9, Th. 3.1] and the Cucker-Smale model for collective dynamics [BCnCD16], see [L9, Th. 3.4]).
For FHN oscillators, take (1.29) with parameters a = 1

3 , b = 1, c = 10. This is an excitable case
when (4.21) has a unique stationary point (x, y) = (−1,−2

3). The transitions of (4.36) driven by
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Figure 4.2 – Phase diagrams for the dynamics driven by (4.36) for parameters a = 1
3 , b = 1,

c = 10 and different choices of u ∶= 1 −ϖ1. Stable (resp. unstable) points and limit cycles are
represented in blue (resp. red). The nullclines y = ux − x3

3 and y = x+a
b are represented in black

dashed lines. Starting from the fixed-point dynamics of u = 1 (ϖ1 = 0, no noise, case (a)), a
saddle-node bifurcation of cycles then occurs (numerically estimated at u ≈ 0.91435) after which
a stable point and a stable cycle coexist, separated by an unstable cycle (case (b)). Then,
at u ≈ 0.88604 the stable point and the unstable cycle collide in a subcritical Andronov-Hopf
bifurcation. The dynamics is then given by a limit cycle surrounding an unstable point (case
(c)), until the supercritical Andronov-Hopf bifurcation at u ≈ 0.28383, after which the dynamics
is again given by a fixed-point (case (d)).

(4.37) from u ∶= 1 −ϖ1 = 1 (ϖ1 = 0, no noise) to larger values of the ratio ϖ1 are described in
Figure 4.2. While the whole description of Figure 4.2 (especially the saddle node bifurcation of
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cycles (a)→(b)) is based on numerical simulations, it is possible to give a rigorous proof of the
Andronov-Hopf bifurcations ((b)→(c) and (c)→(d) in Figure 4.2) in the following Theorem 4.3.4:

Theorem 4.3.4 (Emergence of oscillations for the FHN model, see Th. 3.3 in [L9]). Suppose that
d = 2 and that F is given by (1.29), for the choice of a = 1

3 , b = 1, c = 10. Then Theorem 4.3.3 is
valid and there exist 0 <ϖ′1 <ϖ′′1 at which the averaged dynamics (4.36) undergoes an Andronov-
Hopf birfurcation (that is subcritical in ϖ′1 and supercritical in ϖ′′1 ). In particular, there exist
values of ϖ1 such that, for δ small enough, the PDE (4.18) admits a periodic solution whereas
the isolated system (4.21) converges to its unique stable fixed-point (−1,−2

3).

Remark 4.3.5. Theorem 4.3.4 states the existence of a limit cycle for (4.18) for δ small. Let
us be more precise on the dependence of this limit cycle in δ: for the prescribed values of the
parameters a, b, c and the interaction/noise ratio ϖ1 (note that the value of ϖ1 is independent
of δ), the system (4.36) (independent of δ) has a limit cycle, say Γ0. Then

ẏδt = ∫Rd
F (u)qyδt ,σ2K−1(u)du + δgδ(yδt ) (4.38)

is a C1-perturbation of (4.36): there exists δ∗ > 0 such that for δ ∈ [0, δ∗), (4.38) admits a limit
cycle Γδ (perturbation of Γ0). But then the slow-downed version of (4.38) mδ

t ∶= y
δ
δt solves (4.35)

and admits the same limit cycle Γδ. In other words, the limit cycle Γδ we observe for (4.35) (and
hence for (4.18)) for δ > 0 is a perturbation of order δ (covered at small speed δ) of a pre-existing
limit cycle Γ0, see Figure 4.3. The fact that one tends to a trivial (constant) dynamics for (4.18)
as δ → 0 does not come from the fact that this limit cycle Γδ disappears as δ → 0, this is only
due to the fact that the speed of (4.35) along Γδ ≈ Γ0 vanishes as δ ≈ 0.

The existence of oscillations for (4.36) translates into similar oscillations for the system
(4.18), see Figure 4.4.

Main lines of proof of Theorem 4.3.3

The main arguments for the proof of Theorem 4.3.3 rely on the same normally hyperbolic
structure as developed in Section 4.1.3. The main point is to construct the invariant manifoldMδ

for (4.18) as Mδ = (Id + f)(M0) where f is some distance functional satisfying an appropriate
fixed-point relation in a similar fashion as in § 4.1.3. First mention a technical point that differs
from the case of phase oscillators which concerns the control of the dynamics at infinity: one
needs to make sure that, starting from a neighborhood ofM0, the dynamics of (4.18) sufficiently
discriminates between trajectories with means mt that remain in a sufficiently large ball from
the ones with mean that eventually escape from this ball. This is done by artificially modifying
the dynamics (4.18) outside a sufficiently large ball in Rd, an operation that is transparent to
the existence of the manifold Mδ due to the confining properties of F , see [L9, Lemma 5.9] for
a precise statement.

Let us now deal with our main problem, that is the control of the unbounded terms involving
F in (4.18). The first remark is that under the dissipativity assumption of F (4.29), we have
existence of exponential moments for (4.19) [L9, Lem. 4.1]: for any T > 0, α ∈ (0,1), supposing
that E(wα(X0)) (recall (4.28)), then there is some κ0 > 0 such that supt∈[0,T ]E (wα(Xt)) ≤

max (κ0,E (wα(X0))). This estimate is crucial in order to properly control the behavior of F
in infinity (recall (4.32)). As for § 4.1.3, the main point is to control both the proximity of a
solution pt to (4.23) to the Gaussian q0,σ2K−1 (recall (4.33)) as well as the dependence of (4.23)
w.r.t. its initial condition. In order to illustrate the difficulty of working with unbounded F
on Rd, let us make a typical calculation: compare two solutions, say p1

t , p
2
t , to (4.23) with close

initial conditions p1
0 and p2

0. The main starting point is similar to (4.11): for F it = F (⋅ +mi
t)

and F 12
t ∶= F

1
t −F

2
t , recalling the definition of the weight w in (4.28), the difference πt ∶= p1

t − p
2
t

verifies

1
2

d
dt
∥πt∥

2
L2(wβ) = ⟨Lπt , πt⟩L2(wβ) − δ ⟨∇ ⋅ (πt(F

1
t − ⟨µ

1
t , F ⟩)) , πt⟩L2(wβ)

− δ ⟨∇ ⋅ (p2
t (F

12
t − ⟨µ

1
t − µ

2
t , F ⟩)) , πt⟩L2(wβ)

. (4.39)
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Here, Lu ∶= Lθu for θ = 1 where

Lu = ∇ ⋅ (σ2
∇u) + θ∇ ⋅ (Kxu) (4.40)

is the standard Ornstein-Uhlenbeck operator. It is well-known that such an operator L is
dissipative in L2(wθ) for the choice θ = 1 (recall the definition of wθ in (4.28)). As it will be
clear below, an essential point of the proof is to obtain the dissipativity of L in L2(wθ) for a
large choice of θ, not only for θ = 1: we have (see [L9, Lem. 4.8]) that for any u ∈ L2(wθ) such
that ∫ u(x)dx = 0, for θ ∈ (0,1),

⟨Lu , u⟩L2(wθ) ≤ −
kθ

θ (Tr(K) + k)
∥σ∇u∥2L2(wθ) ≤ −kθ ∥u∥

2
L2(wθ) , (4.41)

for kθ ∶= θk − 1−θ
2 TrK, with k ∶= mini ki. Inequality (4.41) is the generic dissipativity esti-

mate to deal with the first term in the right-hand side of (4.39): one has ⟨Lπt , πt⟩L2(wβ) ≤

−
kβ

β(Tr(K)+k) ∥σ∇πt∥
2
L2(wβ). The second term in the right-hand side of (4.39) can be dealt directly

using the hypotheses made on F : by integration by parts, −δ ⟨∇ ⋅ (πt(F 1
t − ⟨µ

1
t , F ⟩)) , πt⟩L2(wβ)

=

δ
2 ∫ ∣πt∣

2
(βF 1

t ⋅Kσ
−2x −∇ ⋅ F 1

t − β ⟨µ
1
t , F ⟩ ⋅Kσ

−2x)wβ ≤ Cδ ∥∇πt∥
2
L2(wβ), using (4.30) and (4.31).

The necessity of working with general parameters β and θ in both (4.39) and (4.41) comes from
the difficulty in handling the remaining term in (4.39). The technical details left apart, cal-
culations give an upper bound in terms of Cδ ∥∇πt∥L2(wβ) ∥G∥L2(wβ), where G is generically
written as G = H(p1

t , p
2
t )F for some explicit smooth functional H. The issue is that the only

bound one has on F is exponential ∣F ∣ ≤ CFwε, recall (4.32). Hence, the only possible bound is
∥G∥L2(wβ) ≤ C (∥p

1∥
L2(wα) + ∥p

2∥
L2(wα)) as long as β + 2ε < α. It is therefore necessary to work

under an a priori control on the L2(wα)-norm of p1
t and p2

t . This a priori estimate is essentially
contained in (4.33) and proven in [L9, Lem. 5.3] using the dissipativity hypotheses on F and
the exponential moments on Xt. Finally putting al these considerations together in (4.39), one
obtains then, using the Poincaré inequality (4.41)

d
dt
∥πt∥

2
L2(wβ) ≤ − (kβ −Cδ) ∥πt∥

2
L2 +Cδ sup

s≤t
∣m1

s −m
2
s ∣

2
. (4.42)

Choosing now δ > 0 sufficiently small so that χ(δ) ∶= kβ − Cδ > 0, one obtains from standard
extensions of Grönwall inequalities ([L9, Lem. A.2]) a typical estimate of the form

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∥p1
t − p

2
t ∥

2
L2(wβ)

≤max (∥p1
0 − p

2
0∥

2
L2(wβ)

,Cδ sups≤t ∣m1
s −m

2
s ∣

2
) ,

∥p1
t − p

2
t ∥

2
L2(wβ)

≤ e−χ(δ)t ∥p1
0 − p

2
0∥

2
L2(wβ)

+Cδ sups≤t ∣m1
s −m

2
s ∣

2
.

(4.43)

The control of the part concerning the mean-values ∣m1
s −m

2
s ∣ is treated separately, with similar

techniques. Hence, the previous calculation tells us that it is necessary to perform the claimed
fixed-point procedure on a adapted version of the distance functional Xt (as in § 4.1.3) using
both spaces L2(wα) and L2(wβ). We refer to [L9, § 5.3] for more details. At this point, a
second important issue remains: once the fixed-point procedure carried-out, one only obtains
the existence of a SNHM Mδ in a δ- neighborhood of M0. However, in order to obtain param-
eterisation (4.35), one needs to make sure that Mδ has sufficient regularity (i.e. the fact that
the previous fixed-point f is C1), which is not ensured as this point of the proof. A significant
part of the work of [L9] is to obtain this required regularity, see [L9, § 6]: the strategy is first to
establish a formal equation that the derivative of f should satisfy, secondly to perform a similar
fixed-point procedure for this derivative and finally to identify formally this second fixed-point
as the derivative of f . With this at and, (4.35) is then a simple by-product of the construction
of f .

4.4 FHN model: the kinetic case
We now review [L11] where we analyse the emergence of similar periodicity patterns in (4.18)

for the FHN model in the kinetic case: that is d = 2, F given by (1.29) with k1, σ1 > 0 but with
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k2 = σ2 = 0. This corresponds to a modelling more closely related to biological applications
as the recovery variable w in (1.29) captures nonlinear mechanisms that are intrinsic to each
neuron, so that imposing interaction between recovery variables between neurons does not really
make sense from a biological perspective. The McKean-Vlasov diffusion (4.19) here becomes

⎧⎪⎪
⎨
⎪⎪⎩

dXt = δ (Xt −
X3
t

3 − Yt)dt −K (Xt −E[Xt])dt +
√

2σdBt
dYt = δ

c (Xt + a − bYt)dt
, t ≥ 0, (4.44)

Let us sum up here the main heuristics, that relies again on a slow-fast approach: under Hy-
pothesis 4.3.2, for δ small, in (4.44), the interaction and noise terms constitute a fast part of the
dynamics, while the intrinsic dynamics term δF constitutes a slow one. When δ = 0, the fast
dynamics part of (4.44) simply reduces an Ornstein-Uhlenbeck process (of constant expectation)
with Gaussian invariant measure. The only difference is that this Gaussian has singular vari-
ance w.r.t. the Yt-coordinate. When δ is now positive but small, the distribution of Xt should
be approximated (at first order in δ) by N (E[Xt], σ

2/K), where E[Xt] evolves slowly in time.
Now if Xt is at first order Gaussian, so is Yt since its dynamics is linear. So, at first order in
δ, (Xt, Yt) should have a Gaussian distribution N (mt,Γδ), where Γδ is a symmetric covariance
matrix. Obtaining the first order in δ for mt = (E[Xt],E[Yt]) is easy: taking the expectation

in (4.44), mt satisfies ṁt = δ (
E[Xt] −

E[X3
t ]

3 −E[Yt]
1
c (E[Xt] + a − bE[Yt])

) and considering that Xt ≈ N (xt, σ
2/K),

we obtain E[X3
t ] ≈ E[Xt]

3 + 3σ2

K , which leads to the same dynamics (4.36) for the expectation
as in the elliptic case. To compute Γδ, denote by (Zxt , Z

y
t ) as the first order approximation of

(Xt −E(Xt), Yt −E(Yt)) defined as

⎧⎪⎪
⎨
⎪⎪⎩

dZxt = −KZxt dt +
√

2σdBt,
dZyt = δ

c(Z
x
t − bZ

y
t )dt.

(4.45)

Straightforward covariance considerations show that the equilibrium of (4.45) is N (0,Γδ) with
Γδ necessarily given by

Γδ =
σ2

K
(

1 δ
Kc+bδ

δ
Kc+bδ

δ
b(Kc+bδ)

) . (4.46)

4.4.1 Main results

In view of the analysis made for Theorem 4.3.4, fix the parameters (a, b, c, σ,K) in (1.29)
such that the system (4.36) admits a (stable) limit cycle. Note that the existence of such limit
cycle does not depend on δ: if, for δ = 1, this stable periodic solution is (γt)t∈[0,Tγ) (with period
Tγ), the corresponding periodic orbit for δ > 0 becomes (γδt ) ∶= (γδt)t∈[0,Tγ/δ), with period Tγ

δ .
The previous heuristics suggest that one should compare any solution µt of (4.18) to Gaussian
distributions driven by the above limit cycle (γt)t∈[0,Tγ). More precisely, denote qm the Gaussian
distribution with mean m and covariance Γδ given by (4.46),

qm(z) = q
δ
m(z) ∶=

1
2π det(Γδ)

exp(1
2
(z −m) ⋅ Γ−1

δ (z −m)) , z ∈ R
2, (4.47)

and define the Gaussian limit cycle

Gδ ∶= {q
δ
γδt
∶ t ≥ 0} . (4.48)

Of course, Gδ is not a limit cycle for (4.18) (it is only approximately invariant for the dynamics,
see § 4.5 below). The point of [L11] is to prove that there exists a limit cycle Cδ for (4.18) in
a neighborhood of Gδ. Proximity is here measured in terms of an adequate Wasserstein-type
distance (more details below). The main result of [L11] is the following:

Theorem 4.4.1. [Th. 1.4 in [L11]] Choose parameters a, b, c, K and σ2 such that (4.36) admits
an stable limit cycle. Then there exists a δc > 0 such that for all δ ≤ δc there exists a periodic
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solution νper
t to (4.18), defining an invariant cycle Cδ which satisfies supt distW2(ν

per
t ,Gδ) = O(δ).

Moreover there exist C1,C2 > 0 that do not depend on δ, C(δ) > 0 and a rate λ(δ) > 0 such that
if µ0 ∈ P2 satisfies

∫
R2
z6dµ0(z) ≤ C1, and distW2(µ0,Cδ) ≤ C2δ, (4.49)

then for t↦ µt the solution to (4.18) with initial condition µ0 we have:

distW2(µt,Cδ) ≤ C(δ)e
−λ(δ)tdistW2(µ0,Cδ). (4.50)

4.4.2 Elliptic vs kinetic: main difficulties and lines of proof

The main difficulty of Theorem 4.4.1 is of course the lack of control one has on the Y -
coordinate in (4.44). In particular, it is impossible to derive Theorem 4.4.1 from its elliptic
counterpart Theorem 4.3.3 while making k2, σ2 → 0: stability analysis leading to Theorem 4.3.3
crucially requires the interaction and noise to be nontrivial on every coordinates. One can
however note that the dynamics of mt in the elliptic case does not depend on k2, σ2 (at least at
first order in δ): the system (4.36) only involves the ratio ϖ1 =

σ2
1
k1

. It is therefore not surprising
to retrieve the same dynamics for mt in the kinetic case. This implies in particular that one
observes the emergence of oscillations for the same parameters as in the elliptic case. The only
signature of the lack of ellipticity in the kinetic case lies in the covariance structure of the
problem: due to the absence of noise on the Y -coordinate, the variance along the Y -direction
is here significantly smaller than in the elliptic case and Γδ given in (4.46) becomes singular as
δ → 0 (see Figure 4.5).

This consideration comes along with a technical issue: the lack of control on Y in the kinetic
case prevents us from obtaining some strong L2-control as one has in the elliptic case: there
is no similar spectral gap for the Ornstein-Uhlenbeck operator as in (4.41) in the kinetic case.
We circumvent this difficulty by working with a weaker topology, that is with some suitable
Wasserstein metric, that is adapted to our needs: if P2 = P2(R2) is the set of probability
measures with second finite moment, for β ∈ (0,1) and b > 0, define for ν1, ν2 ∈ P2,

W (ν1, ν2) =max (δβ ∣∫
R2
zν1(dz) − ∫

R2
zν2(dz)∣ , inf

√

E [∣X̃1 − X̃2∣2], b inf
√

E [∣Ỹ1 − Ỹ2∣2]) ,

(4.51)

where the infimum is taken over all couplings (Xi, Yi), i = 1,2 such that (Xi, Yi) ∼ νi and where
X̃ ∶= X − E(X). This decomposition into mean-value and centered process allows us to treat
the dynamics of the centered process solution to (4.18) and the dynamics of its expectation in
a relatively separate way. The point of the proof of Theorem 4.4.1 is again to proceed with
contraction arguments of the dynamics of (4.18) for δ small. The control of the expectation m
is ensured by the local stability of the limit cycle (γt)t∈[0,Tγ) of (4.36) (via Floquet estimates),
whereas the control on the centered variables (X̃t, Ỹt) is made via a two-step procedure: first
the exponential stability on the X-coordinate and second the fact that this stability propagates
to the Y variable through the linearity of the interaction. The calculations in [L11] being
quite technical, let us only illustrate the use of the Wasserstein metric (4.51) on a preliminary
result (see [L11, Lem. 2.4, Lem. 3.2]), expressing the proximity of the centered measure µ̃t with
the Gaussian q0 defined in (4.47): there exist δ1 > 0, κ0, κ1 > 0 such that whenever ∫ (x6 +
y6)µ0(dx,dy) ≤ κ0, if δ ∈ (0, δ1) and W (µ̃0, q0) ≤ κ1δ then

sup
t≥0

W (µ̃t, q0) ≤ κ1δ. (4.52)

Indeed, for any ε > 0, take a coupling {(X̃0, Ỹ0) , (Z
x
0 , Z

y
0 )} between µ̃0 and q0 such that

E (∣X̃0 −Z
x
0 ∣

2
) + E (∣Ỹ0 −Z

y
0 ∣

2
) < W (µ̃0, q0)

2
+ ε. Then Ito formula applied to the (centered

version of the) first components of (4.44) and (4.45) gives 1
2d (X̃t −Z

x
t ) = −K(X̃t − Z

x
t )

2 +

(X̃x
t −Z

x
t ) (δ (Xt −

X3
t

3 − Yt) − ẋt), with mt = (xt, yt). A priori bounds on X and x show that
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E((δ (Xt −
X3
t

3 − Yt) − ẋt)
2
)

1
2
≤ Cδ, using the control on moments of order 6 we have assumed

on the initial condition. Hence one obtains

1
2

d
dt

E ((X̃t −Z
x
t )

2
) ≤ Cδ (E ((X̃t −Z

x
t )

2
))

1
2
−KE ((X̃t −Z

x
t )

2
) . (4.53)

Then a Grönwall argument shows that for δ small, supt≥0 E ((X̃t −Z
x
t )

2
) ≤ Cδ+ε. But then this

estimates propagates to the Y - variable of (4.44): since c
2δd(Ỹt −Zyt )2 = (Ỹt −Z

y
t ) (X̃t −Z

x
t )dt−

b (Ỹt −Z
y
t )

2 dt, plugging the above estimate on X̃, we obtain in a same way that supt≥0 E ((Ỹt −Zyt )
2
) ≤

1
b2 (Cδ

2 + ε). Estimates are in particular true for the infimum over all couplings W (µ̃t, q0) and
letting ε → 0 gives the result (4.52). Note we have not been precise here on the control on the
constants C appearing above, but the dissipativity on the X-variable in (4.53) indeed ensures
that once W (µ̃0, q0) ≤ κ1δ then (4.52) is indeed true for the same constant κ1. We refer to [L11,
Lem. 2.4] for details.

The prefactor δβ in the definition of the distance W accounts for the typical difference of
scaling between the dynamics of the expectation mt and the recentered version µ̃t of a solution
µt to (4.18): a generic situation to have in mind is the case of some distribution µ0 with mean
m0 such that ∣m0 − γ

δ
θ ∣ of order δ1−ϵ (ϵ > 0) and W (µ̃0, q0) of order δ (and hence smaller than

∣m0 − γ
δ
θ ∣). The presence of δβ in the definition of W is here to ensure that W (µ0, qγδ

θ
) remains

of order δ: in other words, the contraction of m around γδ given by the approximation (4.36)
is not too much perturbed by the dynamics of µ̃t. Note however that this choice of rescaling is
mostly transparent as W is equivalent to the standard Wasserstein-2 distance W2: for δ small
enough cW ≤W2 ≤ 3δ−βW . We refer to [L11] for more details.

4.5 On regularity of limit cycles and isochrons

4.5.1 Isochrons maps

Theorem 4.3.3 addresses the existence of a stable limit cycle related to the PDE (4.18)). A
related question concerns the existence of pseudo-periodic behaviors for the empirical measure
µn,t of the particle system (4.20) (pseudo in the sense that there cannot be any periodic behavior
for (4.20) as recalled in § 1.3.1). This issue will be the purpose of Chapter 5. Having in mind
the possible connections between the PDE (4.18) and its microscopic counterpart (4.20), one
may find Theorem 4.3.3 unsatisfying for several reasons. A technical issue first: the existence
of limit cycles for (4.18) is stated in a L2 framework, that is perfectly suitable for the study of
the smooth probability-valued process µt solution to (4.18) but is certainly not adapted to its
microscopic companion µn,t. We circumvent this by working rather in some spaces more natural
for empirical processes, that is suitably weighted Sobolev space with negative index H−k.

Secondly and more importantly, as we will see in Chapter 5, the study of µn,t requires to
have a precise understanding of the regularity of the trajectories of (4.18) in a neighborhood
of the limit cycle. The analysis of Chapter 5 relies on the existence of a smooth (mostly C2,
as we will want to apply Ito’s formula) isochron map related to (4.18), which is not addressed
by Theorem 4.3.3. Let us briefly recall informally the basic notions here, which relates to
Floquet Theory, originally set in finite dimension (see [Tes12, HPS77, GW79]): suppose that
some dynamics ẋt = F (xt) in Rd, with F smooth, admits a stable limit cycleM, with period T .
Introduce the linearized equation around some qt ∈M, żt = DF (qt)zt. Then, it can be shown
that the principal matrix solution Π associated to the periodic solution q, solving ∂tΠ(t, s) =
DF (qt)Π(t, s) can be written as Π(s+ t, s) = N(s+ t, s)e−tQ(s), with t↦ N(s+ t, s), T -periodic.
Any Q(s) and Q(t) are similar and hence have the same spectrum. Hyperbolic stability of M
can be expressed in terms of the spectrum of Q(0): 0 is a eigenvalue to Q(0) with multiplicity 1
and the rest of the spectrum has strictly negative real part. Denoting as Φ(x, t) as the solution
xt with x0 = x, this stability can be equivalently expressed as limt→∞ eγtdist (Φ(x, t),M) = 0,
as long as γ < γ0, where γ0 is the spectral gap of Q(0). In this setting, the isochron W (x) of
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a point x ∈M is defined as W (x) ∶= {y ∈ Rd, dist (Φ(x, t),Φ(y, t))ÐÐ→
t→∞

0}: W (x) consists of
all initial values leading to a trajectory that ultimately approaches the one initiated at x on
the limit cycle. Standard arguments (see e.g. [HPS77]) show that for every x ∈M, W (x) is of
dimension (d − 1), is transverse to F (x) at x, with the same regularity and {W (x), x ∈M} is
a foliation of the stable manifold W of M. One can finally define the isochron map: for every
y ∈ Rd, define θ(y) as the unique t ∈ [0, T [ such that y ∈W (qt). In other words, θ ∶W → R modT
gives a notion of phase along the limit cycle for every point in W .

This notion of isochron was extended to an infinite dimensional setting: in the present result
[L12], we rely heavily on an abstract result developed by Bates, Lu and Zheng [BLZ98], in the
context of SNHM as described in § 4.1.1. It is shown in [BLZ98] that if a system admits a
manifold that is approximately invariant and approximately normally hyperbolic (in a way to
be precised later), then the system possesses an actual normally hyperbolic invariant manifold
in a neighborhood of the approximately invariant one. As in the finite dimensional setting, it
is in addition proven in [BLZ98] that the stable manifold of the actual SNHM (in our case M
is attractive, the stable manifold is in fact a neighborhood W of M) is foliated by invariant
foliations: W = ∪m∈MWm and that there exists an isochron map Θ ∶ W → R modT . Note
however that the deep general result of [BLZ98] only ensures that Θ is Hölder continuous, which
is not entirely satisfactory in view of the analysis of Chapter 5: we will require Θ to be C2. One
challenge of [L12] is precisely to ensure that Θ will have the required regularity.

4.5.2 Main hypotheses and settings

Transposed to our setting of (4.18), one main drawback of the method developed in [BLZ98]
is that it requires the function F and its derivatives to be bounded (hypothesis that is not
met in the case of the FitzHugh Nagumo model). However replacing F in (4.18) by some
F̃ ∶= x ↦ F (x)ψ(ε∣x∣), F̃ becomes bounded and the existence of a limit cycle for (4.18) with F̃
will imply the same for F .

Empirical measures within weighted Sobolev spaces

The point now is to work in Sobolev spaces with negative indices: we consider again norms
with Gaussian weights wθ given by (4.28) for various choices of θ, supposing ellipticity of the
coefficients: ki, σi > 0 for all i = 1, . . . , d. Denote again as L2

θ = L
2(wθ) and L∗θf = ∇ ⋅ (σ2∇f) −

θKx ⋅∇f the adjoint of the Ornstein-Uhlenbeck operator (4.40). It is well-know (see for example
[BGL14]) that L∗θ is diagonalisable L∗θψl = −λlψl along the orthonormal basis (ψl)l∈Nd given
for all l ∈ Nd by ψl(x) ∶= ψl,θ(x) = ∏

d
i=1 hli (

√
θki
σ2
i
xi) with λl = θ∑

d
i=1 kili. Here hn is the nth

renormalized Hermite polynomial: hn(x) = (−1)n
√
n!(2π)

1
4
e
x2
2 dn

dxn {e
−x

2
2 }. For f, g with decompositions

f = ∑l∈Nd flψl and g = ∑l∈Nd glψl, define the scalar products

⟨f, g⟩Hr
θ
= ⟨(aθ −L

∗
θ)
rf, ḡ⟩L2

θ
= ∑
l∈Nd
(aθ + λl)

rflḡl, (4.54)

where aθ = θTrK (this choice of aθ is made to simplify some technical proofs in [L12], another
choice of positive constant would produce an equivalent norm) and denote by Hr

θ the completion
of the space of smooth function u satisfying ∥u∥Hr

θ
<∞. We work in [L12] in H−rθ the dual of Hr

θ ,
which is in particular a proper space to deal with empirical measures: any Dirac mass δx in Rd
belongs to H−rθ as long as r > d/2. Note here that special attention has to be put on a technical
issue: the control on the norm of δx is exponential in x, ∥δx∥H−r

θ
≤ Cw θ

4−η
(x) for η > 0 [L15,

Lemma 2.1] (this is a significant difficulty compared to the case of phase oscillators, where the
compactness of the state space induces a uniform bound supx∈T ∥δx∥H−rθ ≤ C, which is a major
simplification to the analysis). Note here another significant technical issue: anticipating on
Chapter 5 and [L15] which addresses the behavior of the particle system (4.20) (Xi,t)i=1,...,N , a
key argument in [L15] will be to obtain bounds on exponential moments of the form E [wmθ(Xi,t)]

with m possibly very large. Therefore, we will have to consider small values of θ in order to
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maintain proper controls on the previous expectation, so that we need to work in H−rθ for general
θ > 0 and not only for the standard choice θ = 1. A great deal of effort is spend in [L12] in order to
look at the dependence in various parameters θ, θ′ of the contraction properties of the Ornstein-
Uhlenbeck operator Lθ′ in H−rθ (see [L12, App. A] for more details): a typical result and the key
to the present analysis is the existence of C > 0 such that for r sufficiently large (independent
of θ), for 0 < θ ≤ θ′, for any λ < θmin(k1, . . . , kd), for all u ∈H−rθ such that ∫ u = 0,

∥etLθ′∥
H−r
θ

≤ Ce−λt ∥u∥H−r
θ
. (4.55)

We refer to [L12, Prop. A.3] for other estimates and a (particularly technical) proof of these
results.

4.5.3 Main results

The starting point is to suppose that the ordinary differential equation (4.36) admits a stable
periodic solution (γδt )t∈[0,T

δ
] that is hyperbolically stable (in the sense of Floquet formalism as

previously stated). Under this hypothesis, (γδt )t∈[0,T
δ
] is a simple example of a d-dimensional

SNHM in the sense of § 4.1.2. Rewrite again (4.18) in the slow-fast formulation (4.23), whose
solution is µt = (pt,mt). We work in H−rθ = H

−r
θ ×R. A simplified statement of the main result

of [L12] is (the main interesting point being item 3. below):

Theorem 4.5.1. [Thms 1.2, 1.4 and 1.6 in [L12]]
1. The slow fast system (4.23) is well-posed: for any µ0 = (p0,m0) ∈ H−rθ with ∫Rd p0 = 1,

there exists a unique mild solution µt ∶= (pt,mt) = T
t(µ) to (4.23) defined for all t ≥ 0

and µ↦ T t(µ) is C2.
2. Periodicity: there exists δ0 > 0 and r0 ≥ 1 such that for all r ≥ r0, δ ∈ (0, δ0) and θ ∈ (0,1],

equation (4.23) admits a periodic solution

(Γδt)t∈[0,Tδ] ∶= (q
δ
t , γ

δ
t )t∈[0,Tδ] (4.56)

in H−rθ with period Tδ > 0. Moreover qδt is a probability distribution for all t ≥ 0, and
t↦ ∂tΓδt and t↦ ∂2

t Γδt are in C([0, Tδ),H−rθ ).
3. Regularity: if

M
δ
∶= {Γδt ∶ t ∈ [0, Tδ)} (4.57)

there exists a neighborhood Wδ ∈ H−rθ of Mδ and a C2 mapping Θδ ∶ Wδ → R/TδZ that
satisfies, for all µ ∈Wδ, denoting µt = T tµ,

Θδ
(µt) = Θδ

(µ) + t mod Tδ, (4.58)

and there exists a positive constant CΘ,δ such that, for all µ ∈Wδ with µt = T tµ,

∥µt − ΓδΘδ(µ)+t∥H−r
θ

≤ CΘ,δe
−λδt ∥µ − ΓδΘδ(µ)∥H−r

θ

. (4.59)

Remark 4.5.2. The existence of the manifold Mδ is accompanied with the existence of smooth
projections on the tangent space to Mδ with appropriate contraction properties along the stable
direction (see [L12, Th. 1.4] for more detailed statements on this point). The stability result
(4.59) comes along also with similar controls on the Fréchet derivatives of the isochron map Θ
(see [L12, Th. 1.6] for more details).

4.5.4 Comments and main strategy of proof

The slow-fast viewpoint described in the previous paragraphs suggests that for δ small, the
manifold (recall the definition of q0,σ2K−1 in (4.25))

M̃
δ
∶= {(q0,σ2K−1 , γt) ∶ t ∈ [0, T )} (4.60)
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is an approximately invariant manifold which is approximately normally hyperbolic (with-
out unstable direction). The notion of approximately invariant manifold goes back to the
work of Bates, Lu and Zeng [BLZ08] and is highly technical. Let us only retain here the
main type of estimate here: there exists a positive constant κ1 such that for all u ∈ R/Tδ Z,
∥T

τ
δ (q0,σ2K−1 , γu) − (q0,σ2K−1 , γu+ τ

δ
)∥

H−r
θ

≤ κ1δ: M̃δ is approximately invariant for the discrete

semigroup (Tn τδ )
n≥0. The other conditions (mostly technical, see [BLZ08] and [L12, § 1.5] for

details) essentially require regularity assumptions on M̃δ along the stable and tangent direction,
ensuring that the estimates one has on the discrete semigroup propagates on continuous time.
The deep result of [BLZ08] then implies the existence of an actual invariant manifold Mδ for
(4.23) that is located at a distance of order δ from M̃δ given in (4.60). In [BLZ08] it is in
addition proven that the stable manifold of the actual SNHM (in our case Mδ is attractive,
the stable manifold is in fact a neighborhood Wδ of Mδ) is foliated by invariant foliations:
Wδ = ∪m∈MδWδ

m, where ν ∈Wδ
m if and only if T t(ν) − T t(m) converges to 0 exponentially fast.

This implies the existence of an isochron map Θδ ∶ Wδ → R/TδZ that satisfies Θδ(ν) = t if
ν ∈ Wδ

Γδt
. The second main result of [L12] is then to prove the regularity of the isochron map

Θ, following similar arguments in the finite-dimensional case, see e.g. [Guc75], that we briefly
comment here: the strategy is simply based on the following identity: the isochron map satisfies
ΓδΘ(µ) = S(µ) ∶= limn→∞ TnTδµ, where we recall that Γδ is the limit cycle obtained from Theo-
rem 4.5.1, with period Tδ. Implicit theorem considerations show that the regularity of Θ is the
same as the regularity of S, so that it remains to prove that S is C2. This is done by writing
the proper equations for DT t(µ) and D2T t(µ) and proving that the sequences (DTnTδ)

n≥0 and
(D2TnTδ)

n
are Cauchy sequences. We refer to [L12, § 5] for details.

4.6 Perspectives

4.6.1 Electrical vs chemical synapses

The FHN system (4.18) described in § 4.3 corresponds to the so-called electrical synapse
transmission between neurons [BFFT12]. Electrical synapses are often found in neural systems
that require very fast connections between neurons (e.g. defensive reflexes or in neurons involved
in the visual system). Postsynaptic potential in electrical synapses is not caused by the opening
of ion channels by chemical transmitters, but rather by direct electrical coupling between pre
and post-synaptic neurons [Luo20]. These connections represent however a minority w.r.t. the
more common chemical synapses. A simplified model for chemical synapses would then write
(see [BFFT12, § 2.5]) as (Vi,wi, yi)i=1,...,n solving

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

dVi,t = (δ (Vi,t −
V 3
i,t

3 −wi,t) −
K
n ∑

n
j=1 (Vi,t − Vj,t) yj,t)dt +

√
2σdBi,t,

dwi,t = δ
c (Vi,t + a − bwi,t)dt,

dyi,t = (S(Vi,t)(1 − yi,t) − yi,t)dt +
√

2σ (Vi,t, yt,i)dWi,t

, i = 1, . . . , n , t ≥ 0 ,

(4.61)
for suitably chosen functions S and σ (see [BFFT12, BFT15] for further details). The only
(major) change from (4.20) is in the presence of the variable yi ∈ [0,1] which accounts for the
fraction of open channels in the presynaptic neuron j. A natural question in this case would
be to ask wether similar emergence or stability of periodic behaviors hold in the chemical case,
as suggested by numerical simulations (see e.g. [BFFT12, § 4]). The system we have studied
so far corresponding to the situation where each yt is equally 1. It is certainly very likely to
obtain similar results for modifications of (4.61) where each yi,t is a.s away from 0. Extending
the present results to the chemical case (4.61) would require to have precise estimates on the
possibility that the gating variables yi,t get close to 0. A technical difficulty in handling the
multiplicative nature of the noise in (4.61) is expected. It is certainly a worthy perspective of
research.
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4.6.2 And beyond FHN dynamics?

The same techniques developed here are certainly applicable of generalisable to more general
dynamics (e.g. the Morris-Lecar model, also exhibiting excitable properties [New14]). The recent
work [BFO19] have analysed synchronisation properties of mean-field Hodgkin-Huxley oscillators
(with also numerical evidence that oscillations are present in this system, see [BFO19, § 3]). The
question of applying the present techniques to these models is a natural perspective.

4.6.3 Quasi-cycles and the role of inhibition in oscillations

As already said, oscillations are ubiquitous in neuronal systems. One particular key idea is
that neural oscillations influence information transfer between different areas of the brain (see
[GW22] and references therein). In particular, the role of inhibition in neuronal activity in the
emergence of oscillations is definitely not fully elucidated so far. A simple model in this direction
may be given by EI oscillators [GW22, BG10]: the model consists of a pair of Excitatory (E)
and Inhibitory (I) oscillators with linear cross-interaction under noise. Under specific choice of
parameters, the deterministic system possesses a unique fixed-point with conjugated complex
eigenvalues: we have damped-oscillations. It has been shown in [BG10] that these oscillations
are sustained under the presence of noise (so called quasi-cycles). A precise rigorous estimate
on the dynamics of the radial part of the process is given in [BG10] in terms of an Ornstein-
Uhlenbeck process. It is very natural to inquire about the nature of these quasi-cycles in a
mean-field setting. What is the influence of the interaction on the emergence or stability of
quasi-cycles in this case? It is natural to expect that the formalism developed in this chapter
might apply to this setting.

4.6.4 Systems with delays

On a more general perspective, it is of crucial importance w.r.t. neuroscience applications
to consider versions of (4.20) where delay is present in both the dynamics and the interaction.
Delay is in particular present within the transport of information through axons. We refer to
[Tou14, Ami97, CL09] for the biological motivations of the importance of delays for the modelling
of neuronal populations. From a mathematical point of view, it is well-known that delay may be
responsible for the emergence of oscillations in deterministic ODEs. In a mean-field context, we
are not aware of any rigorous results on the emergence of oscillations in such a context. The only
rigorous result known to the author concerns only propagation of chaos on a bounded interval for
mean-field dynamics with delay in e.g. [Tou14], with numerical evidence of oscillations induced
by delay, see [Tou14, Fig. 2 and 3]. Since the very principle of the methods developed in this
chapter is to reduce an infinite dimensional dynamics of a nonlinear Fokker-Planck PDE in terms
of a finite dimensional ODEs, the question of deriving the same procedure in a context with
delay seems a very promising perspective of research.
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Πm

Π0

P0(Rd)

Rd

q0

M0

Γ0

q0(· +m1) q0(· +m2)

m1

m2

(a) The case δ = 0: the invariant manifold M0 for (4.18) consists of translations of the same
Gaussian measure q0 = q0,σ2K−1 given by (4.25). Hence the projection of M0 onto P0(Rd) is
trivial, reduced to {q0}. We have reproduced in gray the ineffective limit cycle Γ0 for (4.36), seed
for the limit cycle Γδ when δ > 0 (recall Remark 4.3.5).

Πm

Π0

P0(Rd)

Rd

q0

M0

Γ0

Mδ

Γδ

µδ
t

mδ
t

pδmt

= O(δ)

(b) The case δ > 0: Mδ is a perturbation of order δ of M0 and the dynamics onto Mδ is param-
eterised by the mean-value, driven by a limit cycle Γδ, perturbation of Γ0, recall Remark 4.3.5.

Figure 4.3 – The perturbation argument leading to Theorem 4.3.3: we move from a trivial
Euclidean invariant manifold M0 for (4.18) when δ = 0 (Figure 4.3a) to some stable Mδ with a
nontrivial dynamics parameterised by its mean-value (4.35) (Figure 4.3b).
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Figure 4.4 – From left to right: evolution of the empirical measure of the system (4.20) for the
FitzHugh-Nagumo model, in the excitable regime given by a = 1

3 , b = 1 and c = 10. The theoretical
limit-cycle is represented in dotted-lines. Lower-right: trajectories of the corresponding mean-
values on [0,800]. Simulations are made for n = 50000 particles and parameters k1 = k2 = 1,
σ2

1 = σ
2
2 = 0.2 and δ = 0.2.

Figure 4.5 – Time evolution of the empirical density of the particle system (4.20) in the kinetic
case, for FHN oscillators with δ = 0.2, a = 1

3 , b = 1, c = 10, k1 = 1, σ2
1 = 0.2 and n = 105. The

corresponding evolution of the empirical mean-value is represented.
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Chapter 5

Long-time analysis of inhomogeneous
diffusions

We are concerned in the present chapter with the following question: how to transpose the
existence of periodic solutions for the Fokker-Planck equations (1.4) (Chapter 4) into pseudo-
periodic behaviors for the empirical measure µn,t (1.2) of the microscopic system (1.1) on un-
bounded times scales? On an informal level, the general statement is:
Informal statement 5.0.1. Suppose that the Fokker-Planck equation (1.4) admits a stable
periodic orbit M ∶= (qt)t∈[0,T0]. Then, there exists a time scale αn with αn ÐÐÐ→

n→∞
+∞ and

a random phase process Θn,t such that, provided the initial condition µn,0 is close enough to
M, then the rescaled process (µn,αnt) converges in probability to (qΘn,t) with (Θn,t) having a
nontrivial limit as n→∞.

Typically αn will be
√
n or n. This informal statement was originally proven in the case of

the Kuramoto model without disorder (recall Example 1.2.2, for ν ≡ δ0), in the seminal work of
Bertini, Giacomin, Poquet [BGP14]: the main result of [BGP14] is that Statement 5.0.1 is true
for the choice of the scaling αn = n (M being the stable circle of stationary solutions M0 defined
in (1.21)). Here the rescaled empirical measure µn,nt wanders along M with a phase that is
essentially diffusive: Θn,t converges in law to some Brownian motion on the circle. We refer to
[BGP14] for details. Note that similar issues have been considered in the context of SPDE models
for phase separation, in particular for Ginzburg-Landau dynamics [BDMP95, BB98, Fun95] and
for Cahn-Hilliard equation [ABK12].

5.1 Random traveling waves in the disordered Kuramoto model
The first aim of the chapter is to review [L7] which addresses Statement 5.0.1 in the case

of the Kuramoto model with nontrivial disorder (Example 1.2.2). Recall § 1.2.2 and § 4.2.2:
the Fokker-Planck (1.15) admits a circle of stationary solution M that is linearly stable. Recall
also the analysis made in § 4.2 (in particular Theorem 4.2.1): in case the law of the disorder
ν is symmetric, Theorem 4.2.1 is essentially empty, as the macroscopic speed of rotation is
equally zero. The relevant phenomenon happens on a microscopic level. Suppose here that
(ωi)i≥1 is an i.i.d. sequence with symmetric law ν = 1

2 (δ−ω0 + δ+ω0) (note that the result is
quenched and does not really depend on the underlying mechanism that produced the sequence
(ωi)i≥1, it only depends on the asymmetry of this sequence, see [L7, Def. 2.1] for straightforward
generalisations). Even though ν is symmetric, fluctuations of any finite sample of the disorder
(ω1, . . . , ωn) induce a microscopic asymmetry (of size 1√

n
) in favour of one population (+ω0,

say). This suggests that on a time scale αn =
√
n, the empirical measure µn,

√
nt will follow

this asymmetry and perform a traveling wave along the manifold of stationary solutions M
with speed deterministic in the sample (ωi)i≥1. The asymmetry of the sample (ω1, . . . , ωn) is
characterised for all n by the quantity (ξ−n , ξ+n) defined by: ξ±n ∶= n1/2 (n

±

n −
1
2), where n± is the

number of frequencies in (ω1, . . . , ωn) taking the value ±ω0. Note that ξ−n + ξ+n = 0 for all n ≥ 1.
The main result of [L7] is the following.

89
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Theorem 5.1.1 (Th. 2.4 in [L7]). For all K > 1, there exists δ(K) such that, for all δ ≤ δ(K),
there exists v > 0 (depending on K, δ and ω0) and a real number ε0 > 0 such that the following
holds: for any vector of probability measures p0 satisfying distH−1(p0,M) ≤ ε0 such that for all
ε > 0,

P (∥µn,0 − p0∥−1 ≥ ε)→ 0, as n→∞ , (5.1)
there exists θ0 ∈ T (depending on p0) and a constant c such that for each finite time tf > 0 and
all ε > 0, denoting tn0 = cn−1/2 logn, we have

P
⎛

⎝
sup

t∈[tn0 ,tf ]
∥µn,n1/2t − qθ0+v(ξ+n−ξ−n)t∥−1 ≥ ε

⎞

⎠
→ 0, as n→∞ . (5.2)

Moreover, we have the following expansion in δ: v = δω0 +O(δ
2).

Theorem 5.1.1 is simply saying that, on a time scale of order n1/2, the empirical measure µn
is asymptotically close to a synchronized profile q ∈M , traveling at speed v along M . This drift
depends on the asymmetry ξn of the quenched disorder (ωi)i≥1. In (5.2), tn0 represents the time
necessary for the system to get sufficiently close to the manifold M .

Main lines of proof

In Theorem 5.1.1, we work with a disordered extension of the H−1 topology introduced in
(1.25). The strategy of proof (which borrows from [BGP14]) is the following: the starting point
is to consider the dynamics of the difference between the empirical measure µn,t and any generic
element of q ∈M , νn,t ∶= µn,t − q. We write here a mild formulation of νn,t (where all the terms
make sense as elements of C([0,∞),H−1)), which is a direct consequence of Ito’s formula and
(1.15):

νn,t = e
tLνn,0 + ∫

t

0
e(t−s)L (Dn − ∂θRn(νn,s))ds +Zn,t, n ≥ 1, t ≥ 0 . (5.3)

Here, etL is the semigroup of the linearized operator around q ∈ M defined by (4.17), Dn ∶=

−∂θ (q ((
n+

n −
1
2) (J ∗ q

+)) + (n
−

n −
1
2) (J ∗ q

−)) reflects the asymmetry of the disorder, Rn is the
quadratic error induced by linearisation around q and Zn = 1

2 (Z
−
n +Z

+
n) is the noise term where

Z±n,t(h) =
1
n±

n±

∑
j=1
∫

t

0
∂θ [(e

(t−s)L∗h)] (θj(s))dBj(s) , (5.4)

We refer to [L7] for the precise definitions of the previous objects. Equation (5.3) reflects the
competition of the two main antagonist phenomena. The first effect is deterministic: from the
spectral decomposition of L, we know that the semigroup etL is contracting along the orthogonal
direction at q ∈ M , whereas the tangent direction remains neutral (by invariance by rotation
of the problem). This simply means that the deterministic part of (5.3) (in absence of the
other terms Dn, Rn and Zn) leads to the convergence of µn to some q ∈ M . On the other
hand, the noise term Zn and the drift term Dn tend to deviate µn from q. But thanks to
the orthogonal stability of M , this deviation can essentially only occur w.r.t. the tangential
direction. Therefore the strategy is to proceed with a time discretisation: we divide [0,

√
nt[

into
√
n intervals of length T and proceed by recursion. Starting from νn,0 = µn,0 − qψ0 , where

ψ0 is a proper projection of µn,0 on M , since one can easily prove that the noise term Zn is of
order at most N−1/2+ζ (for small ζ > 0), if one supposes that initially νn,0 is of order N−1/2+2ζ ,
it will remain of order 2N−1/2+2ζ on [0, T ] (since Rn is quadratic, if νn is small, Rn will be even
smaller). The end of the recursion is then to project back the process µn,T onto M (defining a
new projection qψT ) and to proceed further the recursion with νn,t = µn,t − qψT for t ∈ [T,2T ].
The key argument is here to make sure that νn,T = µn,T − qψT is not only of order 2N−1/2+2ζ but
goes back exactly to order N−1/2+2ζ . We use here the contraction of the dynamics around M by
using that ∥eTLP⊥u∥ ≤ e−γT ∥u∥ and choosing T sufficiently large. The end of the argument is to
look at the dynamics of the projected process qψn and to check that, suitably rescaled, this gives
the desired drift term. Since the strategy is similar to the one followed in the next paragraph,
we leave the details to [L7].
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5.2 Long-time diffusive behavior for general mean-field diffu-
sions

We have recently transposed the above techniques and results to the general case of diffusions
in Rd with linear interaction as described in § 4.3. The work [L15] is the companion paper of
[L12] mentioned in § 4.5: we work in the same set of hypotheses, (especially the same regime of
small δ > 0) ensuring in particular that the Fokker-Planck PDE (4.18) (or equivalently its slow-
fast formulation (4.23)) admits a stable periodic orbit (recall Theorem 4.5.1). For the analysis
of the empirical measure of (4.20), it is convenient to adopt a slow-fast reformulation that is
similar to (4.23): the knowledge of the empirical measure µn,t of (4.20) is exactly equivalent to
the knowledge of µn,t ∶= (pn,t,mn,t) t ≥ 0, where pn,t ∶= 1

n ∑
n
k=1 δYi,t is the empirical measure of

the rescaled process

Yi,t ∶=Xi,t −mn,t, i = 1, . . . , n (5.5)

and
mn,t =

1
n

n

∑
j=1

Xj,t, t ≥ 0. (5.6)

Standard propagation of chaos result gives that (pn,t,mn,t) is close as n → ∞ to (pt,mt) so-
lution to (4.23). Placing ourselves under the hypotheses of Theorem 4.5.1, we know that the
deterministic system (4.23) admits a stable limit cycle (qδt , γδt )t∈[0,Tδ]. In particular, we know
from Theorem 4.5.1 that qδ is close to be Gaussian. Therefore, its microscopic equivalent pn
should be close to a Gaussian too: defining gN(x) = 1

(2π)
d
2 (1− 1

N
)d
√

det(K−1σ2)
w N
N−1
(x) (recall the

definition of wθ in (4.28)), we can state the main result of [L15]:

Theorem 5.2.1. Suppose that the hypotheses of Theorem 4.5.1 are satisfied. There exist γ ∈
(0,1), some sufficiently small θ > 0 and r ≥ 1 sufficiently large and δ1 > 0 such that for all
δ ∈ (0, δ1) the following holds: if we suppose that there exist κ0 > 0, u0 ∈ [0, Tδ) such that for all
ε > 0

sup
n≥1

E [⟨pn,0,w−γ⟩] <∞, (5.7)

P (∥pn,0 − gn∥H−r+2
θ
≤ κ0) Ð→

n→∞
1, (5.8)

P (∥µn,0 − Γu0∥H−r
θ
≤ ε) Ð→

n→∞
1, (5.9)

then for all ε > 0, we have

P
⎛

⎝
sup

t∈[0,tf ]
∥µn,nt − Γu0+nt+vn,t∥H−r

θ

≤ ε
⎞

⎠
Ð→
n→∞

1, (5.10)

where the random process vn,t satisfies vn,0 = 0 and converges weakly to vt = bt + a
2wt, where w

is a standard Brownian motion and b and a are constant coefficients.

Here, we work once again in Sobolev spaces with negative indexes H−rθ = H
−r
θ × R defined

in § 4.5.2. Hypotheses (5.7) and (5.8) ensure sufficient control on the moments of the initial
condition and (5.9) require the initial condition to be sufficiently close to the periodic orbit.
Hence, (5.10) is nothing else than a reformulation of Statement 5.0.1: with high probability, on
a time scale of order αn = n, the empirical measure µn,nt performs a Brownian motion on the
periodic orbit Γ. (Not so) explicit formulaes for b and a2 are given in [L15] in terms of the first
two derivatives of the isochron Θ taken on (Γu)u∈[0,Tδ]. For simplicity, the result of Theorem 5.2.1
is proved for initial conditions close to a point Γδu0 of the stable periodic solution, but as it was
done in [BGP14] and [L7] one could start close to a point lying in the basin of attraction of the
periodic solution, and show that the empirical measures first reaches a neighborhood of size ε
of the periodic solution (after a time interval of length independent from n).
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5.2.1 Main lines of proof

The proof relies on a similar procedure than for [L7], but with the numerous extra difficulties
coming from the fact that we work in the non compact space Rd. The first step is to prove that
the proximity (5.8) of the re-centered process pn,t with the Gaussian gn propagates from t = 0
to any time of order n. This is carried out by writing the semi-martingale decomposition of
p
(k)
n,t − gn ∶= pn,kT+t − gn for k = 0, . . . , n

p
(k)
n,t − gn = e

tUn (p(k)n,0 − gn) − δ∫
t

0
e(t−s)Un∇ ⋅ {(Fmn,kT+s − ⟨p

(k)
n,s , Fmn,kT+s⟩)p

(k)
n,s}ds + V (k)n,t ,

(5.11)

Here, Un = (n−1
n
) (∇ ⋅ (σ2∇p) + n

n−1∇ ⋅ (pKx)) = (
n−1
n
)L n

n−1
where L n

n−1
is the Ornstein-Uhlenbeck

operator given in (4.40) and V
(k)
n is the noise term

V
(k)
n,t (f) =

n

∑
i=1
∫

t

0
∇e(t−s)U

∗
nf(Yi,kT+s) ⋅ σ

⎛

⎝
dBi,kT+s −

1
n

n

∑
j=1

dBj,kT+s
⎞

⎠
. (5.12)

Here we exploit the stability properties of the Ornstein-Uhlenbeck operator (note here the im-
portance to obtain spectral gap estimates such as (4.55) that are uniform in the parameter θ′

as θ′ = n
n−1 depends on n). The main difficulty lies in the control of the noise term V

(k)
n : one

is typically interested in controls of the following type (for a sufficiently large m ≥ 1, see [L15,
Prop. 3.6] details)

E [∥V (k)n,t − V
(k)
n,s ∥

2m

H−r+2
θ

] ≤ C
(t − s)m

nm
(5.13)

Estimate (5.13) is a consequence of the Burkholder-Davis-Gundy inequality in Hilbert spaces
[MR16] and essentially boils down to estimating norms of Dirac masses ∥δYi,s∥H−r+2

θ

. But this
last quantity may only be bounded by exponential terms Cw θ

4−η
(Yi,s) for any η > 0. Hence,

proving (5.13) requires to have uniform a priori bounds on E [w mθ
4−η
(Yi,s)]. Since we consider

cases where Yi,s has a distribution close to be Gaussian, the last expectation is bounded provided
θ is sufficiently small. Therefore, a special attention has to be put on the spectral properties of
Lθ′ in H−rθ not only when θ = θ′ = 1 but uniformly for θ → 0. This is one of the main difficulty
in both [L12, L15], we refer e.g. to [L12, App. A] for more details on this point. Applying now
Garsia-Rademich-Rumsey Lemma (see [SV06] and [L15, Lem. 3.7], we deduce from (5.13) that
the event

An ∶=

⎧⎪⎪
⎨
⎪⎪⎩

max
k=0,...,kf

sup
t∈[0,T ]

∥V
(k)
n,t ∥H−r

θ

≤ n−
1
2+ζ
⎫⎪⎪
⎬
⎪⎪⎭

(5.14)

is such that, for δ, ζ small and appropriate r ≥ 1, P (An) ÐÐÐ→
n→∞

1 (see [L15, Lem. 3.7]). Hence,
from now on, we are allowed to place ourselves on this event An and essentially perform deter-
ministic estimates. The second point of the proof is to show that the proximity (5.8) propagates
from t = 0 to times of order n (see [L15, Prop. 4.1]): for small δ > 0 and appropriate r ≥ 1 and
κ0, θ, γ > 0, if supn≥1 E (⟨pn,0 , w−γ⟩) ≤∞ and P (∥pn,0 − gn∥H−r+2

θ
≤ κ0)ÐÐÐ→

n→∞
1, then there exists

κ1 > 0 such that

P
⎛

⎝
sup

0≤t≤ntf
∥pn,t − gn∥H−r+2

θ
≤ κ1
⎞

⎠
ÐÐÐ→
n→∞

1 (5.15)

Proving (5.15) relies again on the semimartingale decomposition (5.11) and a recursive argument
on k, using the spectral gap estimates we have on the Ornstein-Uhlenbeck operator (4.55), in
a very similar way to the proof of Theorem 5.1.1. The next point is then to prove the main
proximity result (5.10): the difficulty is here to properly write a mild formulation of a semi-
martingale decomposition similar to (5.11) of µn in the vicinity of the stable orbit Γ and using a
local stability argument of Γ expressed in terms of Floquet operators (see [L15, § 4.2] for more
details).
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The third and last point of the proof is to look at the dynamics of the isochron phase
Θ(µn,t) along the manifold. The use of the isochron to derive the proper asymptotics of the
empirical measure along the periodic orbit goes back to the work of Giacomin, Poquet and
Shapira [GPS18] who used similar techniques for finite-dimensional SDEs with vanishing noise.
The difficulty is here again to extend these techniques to an infinite-dimensional setting. In
a word, the point is to apply Ito’s formula to the phase process Θ(µn,t), on a time scale of
order n. Ito’s formula gives that Θ(µn,nt) is basically of order nt (that is, the contribution of
the deterministic dynamics along Γ), plus supplementary terms coming from the Ito correction
(involving the first and second derivatives DΘ and D2Θ) that become only apparent on the time
scale of order n. We refer to [L15, § 5] for more details.

5.3 Perspectives

5.3.1 Interaction on a no longer complete graph

We discussed at length in Chapter 3 on the large population dynamics of particles interacting
on a graph that is no longer complete. This discussion only concerned dynamics on a bounded
time interval [0, T ] and a natural question is of course about the possibility of transposing
the techniques of the present chapter to look at the dynamics on a longer time scale. This is
actually a difficult question, that has raised only recent partial answers so far. The main step
in this direction was made by Coppini [Cop22] for both subcritical and supercritical Kuramoto
model on Erdős-Rényi graphs. In the subcritical case, it is shown in [Cop22] that the empirical
measure µn,αnt remains close to the uniform measure 1

2π up to sub-exponential times scales
αn = exp(o(n)), which is a very satisfactory result. In the supercritical case, however, [Cop22]
only proves a partial result: µn,αnt remains in a vicinity of the synchronized manifold for αn =
exp(o(n)). The precise dynamics of the empirical measure along this manifold on a time scale
of order n (as in § 5.1 or [BGP14]) remains largely open for now. Extending the previous
result to Erdős-Rényi graphs is a real challenge as it requires to identify the terms of order 1

n
in the expansion of the empirical measure around its mean-field limit (whereas the CLT result
of Chapter 3 only required to go up to 1√

n
). A question would then be about the possibility of

applying Grothendieck inequalities in this case, as we have done in § 3.2.

5.3.2 Other types of dynamics

From what we have seen in the present chapter, the main ingredients leading to State-
ment 5.0.1 (for both Kuramoto model and FHN-type dynamics) is informally the combination
of 1) an invariant manifold for the mean-field limit with sufficient stability properties and 2) a
random microscopic dynamics seen as a perturbation of the deterministic dynamics along this
invariant manifold, with sufficient control on the noise part. An important remark is that abso-
lutely nothing indicates that the dynamics should be of diffusive type. There are in particular
many examples of mean-field systems with jump dynamics that also present oscillatory behav-
iors. We have in particular in mind the case of mean-field Hawkes processes, that have been
intensively studied recently to model neuronal dynamics (we refer to the classical references
[DFH16, BM96] and the next chapter of this manuscript for further definitions and references).
Many extensions of Hawkes processes present oscillatory behaviors under the additional presence
of inhibition [DL17], [L13] or spatial extension [DL17].

The PhD thesis of Zoé Agathe-Nerine

The previous remark is the starting point of the PhD thesis of Zoé Agathe-Nerine I have been
supervising in co-direction with Ellen Saada since sept. 2020. The point of the work of Zoé is to
look at mean-field Hawkes dynamics interacting on possibly inhomogeneous W -random graphs
(hence, this is in connection with Chapters 3, 5 and 6 of this manuscript). Informally speaking,
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the point is to look at (Z1, . . . , Zn) counting processes with conditional intensities given by

λi,nt = Φ (Xn,i
t− ) , X

n,i
t =

κni
n

n

∑
j=1

ξni,j ∫
t

0
h(t − s)dZjj,u (5.16)

where the ξni,j are sampled according to an inhomogenous graphon W , as in Chapter 3. We refer
to Chapter 6 for insights on (5.16). This work has lead so far to one publication [AN22b] and one
preprint [AN22a]. It is proven in [AN22b] that the system described by (5.16) converges as n→∞
to a family of inhomogeneous Poisson process whose deterministic intensity solves a nonlinear
spatially-extended convolution equation. In case of exponential memory kernels, this convolution
equation presents strong links with neural field equations (NFE) which are of prime importance
in the modeling of mesoscopic neural activity in the brain [WC72, Ama77, Bre12, KE13]:

∂tut(x) = −ut(x) + ∫
I
W (x, y)f(ut(u))ρ(dy) + It(x). (5.17)

We refer to [Bre12, Ama77] for precise definitions and biological background on (5.17). The work
of Zoé stems from the seminal article of Chevallier, Duarte, Löcherbach and Ost [CDLO19] who
first gave a microscopic interpretation of (5.17) as the macroscopic limit of interacting Hawkes
processes. [AN22b] generalizes the result of [CDLO19] to general random connections. The
main result of the second work [AN22a] is to prove long-term stability of such Hawkes processes
in case (5.17) possesses a unique equilibrium (using techniques similar to the present chapter).
Zoé is currently working on the long-term stability of the so-called ring model (that would
be the equivalent of (5.17) on the circle I = S1, see [KE13]). Long-term stability and the
asymptotic description of the particle system along this circle (wandering bumps) is expected,
using techniques similar to the ones exposed in the present chapter. One point is here to give a
new rigorous interpretation (on a long time scale) of fluctuations results around (5.17) derived
on a bounded time interval by Chevallier and Ost [CO20].

Looking at the neural field equation on the real line

The results of [CDLO19, AN22b] are only valid when the spatial domain I in (5.17) is
endowed with a probability measure ρ. This in particular does not include the historical NFE
(5.17) [Ama77, WC72] that corresponds to ρ = Lebesgue on I = Rd. This restriction is by no
means a technical issue, as, by a crucial use of the translation invariance of the Lebesgue measure,
it is is possible to prove in the existence of traveling waves [EM93] in case (I, ρ(dx)) = (Rd,dx)
(whereas this translation invariance is broken for any probability measure ρ). In this stetting,
a promising perspective of research is 1) to give a microscopic interpretation of (5.17) in terms
of appropriate spatially-extended Hawkes processes and 2) to investigate long-term stability of
this microscopic system w.r.t. these traveling patterns. Based on recent results on the stability
of these traveling waves [LS16, Lan16, KS14, BW12], it is natural to expect significant progress
in this direction, based on extensions of the techniques developed in the present chapter.



Chapter 6

Hawkes processes with multiplicative
inhibition

The last chapter of this manuscript concerns a recent interest [L13] in mean-field interacting
Hawkes processes, modelling the activity of a population of interacting neurons with inhibition.
The nature of the dynamics is different from diffusions type models as discussed in the rest of
the document, but the philosophy and main objectives remain the same: although the work
presented here could be viewed as preliminary, the techniques developed in this manuscript
(especially the long-term dynamics around periodic solutions) are also likely to be adaptable to
this case.

6.1 Hawkes processes with excitation and inhibition

Following the seminal paper [HO74], the interest in the use of Hawkes processes in the
modelling of neuron dynamics has been renewed by the important paper of Delattre, Fournier,
Hoffmann [DFH16], who especially looked to homogeneous mean-field interacting Hawkes pro-
cesses and their limit in large population, expressed in terms of inhomogeneous Poisson processes.
One typicall looks at interacting counting processes (Z1,t, . . . , Zn,t) whose conditional intensities
(λ1,t, . . . , λn,t) satisfy

λi,nt = λ
n
t = Φ

⎛

⎝

1
n

n

∑
j=1
∫

t−

0
h(t − s)dZj,s

⎞

⎠
. (6.1)

The Hawkes framework has led to a variety of extensions and applications, including Hawkes
processes with age [Che17b, Che17a, RDL19], spatial extension [CDLO19, AN22b, AN22a].
We do not aim to be exhaustive here and refer to the previous references for further details.
Here Φ represents synaptic integration and the kernel h models time interdependence between
neurons. A generic limit as n → ∞ of (6.1) (see [DFH16] for details) is then given in terms of
inhomogeneous Poisson processes Z̄t with deterministic intensity λ(t) solving

λ(t) = Φ(∫
t

0
h(t − s)λ(s)ds) . (6.2)

The convolution equation (6.2) is nothing else than the Nonlinear Renewal Equation (NRE)
that has many applications that encompass largely the case of Hawkes processes. Its longtime
behavior was first studied in the linear case (Φ(x) = µ+x) by Feller [Fel41, ARM76] and further
developed in the fully nonlinear case in [Lon74]. The linear case has a nice interpretation in
terms of Galton-Watson processes with immigration [HO74]. Assuming h to be positive and Φ
nondecreasing in (6.1) corresponds to an excitatory regime: each spike contributes to an increase
(of size 1

n , modulated by the kernel h) of the intensity of each counting process Zi. The difficulty
comes when modelling inhibition: a common framework that has been introduced so far in the
literature (see e.g. or inhibition [DL17, RL20, RBRTM13, CGMT20]) is to allow h to take
negative values (it is therefore possible that a spike of a neuron j may decrease the intensity of
neuron i, this what we could call additive inhibition). A crucial remark is that one necessarily
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needs to modulate the intensity by a positive kernel Φ that is necessarily nonlinear (a typical
example being Φ(x) = x+) in order to preserve the positivity of the intensity in (6.1). This
causes a major difficulty of the long-time analysis of (6.1)- (6.2): the nonlinearity and the fact
that h may take negative values break the monotonicity that is naturally present for (6.2) in
the excitatory case.

6.2 Our model: multiplicative inhibition

The main contibution of the model of [L13] is to bypass the difficulty of the previous models
with additive inhibition (with negative kernels h) by proposing a multiplicative structure for
inhibition, thus allowing to conserve positive kernels and preserve monotonicity in the model.

6.2.1 The model

We give a restrictive version of the model considered in [L13] for simplicity of exposition and
refer to the paper for details (notably the fact that one can work with generic intrinsic functional
for the dynamics of each population). Consider a population of neurons of size n = nA +nB ≥ 1,
that is divided into population A (that is considered to be excitatory) with size nA ∶= ⌊αn⌋ with
α ∈ (0,1) fixed (typically α = 0.8, see [BS98]) and a population B with size nB = n−nA which is
considered to be inhibitory. Define the family of counting processes (Z1,t, . . . , ZnA,t) (population
A) and (ZnA+1,t, . . . , Zn,t) (population B) with coupled conditional stochastic intensities given
respectively by λA and λB as follows

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λA,nt ∶ = (µA +
1
n ∑

1≤j≤nA
∫
t−

0 h1(t − u)dZj,u))ΦB→A (
1
n ∑
nA+1≤j≤n

∫
t−

0 h2(t − u)dZj,u) ,

λB,nt ∶ = µB +
1
n ∑

1≤j≤nA
∫
t−

0 h3(t − u)dZj,u.
(6.3)

with µA, µB ≥ 0 and hi ≥ 0 for i = 1, . . . ,3 with hi(u) ÐÐÐ→
u→∞

0, i = 1, . . . ,3. Suppose the hi,
i = 1, . . . ,3 to be locally integrable on [0,+∞). Suppose also that ΦB→A is globally Lipschitz
and non-increasing with 0 ≤ ΦB→A ≤ 1, ΦB→A(0) = 1 and ΦB→A(x)→ 0 as x→∞.

The dynamics (6.3) is still of mean-field nature (each neuron interacts with a positive pro-
portion of the whole population) but inhomogeneous, as the dynamics of populations A and B
are different: the dynamics of A is essentially a linear Hawkes process (excitation within pop-
ulation A), but where inhibition acts as a multiplicative factor between 0 and 1 applied to the
excitatory inputs, through the kernel ΦB→A. The dynamics of B incorporates retroaction from
population A onto population B, that is supposed to be mostly additive (although considering
nonlinear feedback kernels ΦA→B is possible). Here, the crucial point is that the multiplicative
structure of inhibition in (6.3) no longer requires the synaptic kernels to take negative values:
we only consider nonnegative kernels hi, i = 1, . . . ,3. In this way, the non-negativity of the
intensities is automatically preserved, together with the nice properties of the canonical linear
Hawkes process: we may still take advantage of the positivity of the synaptic kernels and the
monotonicity of ΦB→A to obtain asymptotic results similar to the linear case.

6.2.2 Main results

The results of [L13] are twofold: first the analysis of (6.1) as n→∞ and second, the analysis
of the limiting system as t → ∞. Informally, in the limit n → ∞, (6.3) is correctly described
in terms of a couple of inhomogeneous Poisson processes (Z̄A, Z̄B) with intensities (λA, λB)
solving

⎧⎪⎪
⎨
⎪⎪⎩

λAt = (µA + α ∫
t

0 h1(t − u)λ
A
u du)ΦB→A ((1 − α) ∫

t
0 h2(t − u)λ

B
u du) ,

λBt = µB + α ∫
t

0 h3(t − u)λ
A
u du.

(6.4)
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6.2.3 Large population dynamics

This section is a simple derivation around standard coupling techniques introduced in [DFH16]:
the first result of [L13] is

Proposition 6.2.1 (Prop. 2.7, 2.8 and 2.9 in [L13]). Under the previous assumptions, both
systems (6.3) and (6.4) are well posed. If in addition, the hi are locally square integrable, there
exists a coupling (Zi,t, Z̄i,t) between (6.3) and (6.4) such that, for all T > 0, there exists some
constant C > 0 (depending on T and the parameters of the model) such that

sup
i=1,...,n

E
⎡
⎢
⎢
⎢
⎣

sup
t∈[0,T ]

∣Zi,t − Z̄i,t∣
⎤
⎥
⎥
⎥
⎦
≤
C
√
n
. (6.5)

The coupling mentioned is standard: one simply constructs both processes upon a thinning
procedure on the same i.i.d. Poisson measures on [0,+∞)2 (see e.g. [DFH16]). Note however a
small technical difficulty here: the same result in [DFH16] relies on the fact that the synaptic
kernel Φ in (6.1) is globally Lipschitz. This is not the case here: even though µA + x and ΦB→A
are globally Lipschitz, the product (µA +x)ΦB→A(x) is not and the result of [DFH16] no longer
applies. The key point to note is that, as 0 ≤ ΦB→A ≤ 1, one can stochastically dominate our
process by a linear Hawkes process that is known to exist. It remains to perform on a thinning
procedure on this dominating process to conclude (see [RL20, Prop. 1.4] or [CGMT20, Prop. 2]
for similar ideas).

6.2.4 Long time dynamics of the mean-field limit

The nice thing about the mean-field limit (6.4) (compared to additive inhibition) is that
one can easily analyse rigorously the large-time behavior of (6.4). In the linear case without
inhibition (i.e. (6.1) with Φ(x) = µ + x), it is well-known that there is a phase transition,
expressed in terms of κ ∶= ∥h∥L1 = ∫

+∞
0 h(u)du (see [DFH16]): if κ < 1, the system is subcritical

and λ(t) ÐÐ→
t→∞

µ
1−κ and if κ > 1, λ(t) ÐÐ→

t→∞
+∞ (supercritical case). In our case, the relevant

parameters become

κ1 ∶= α ∥h1∥L1 , κ2 ∶= (1 − α) ∥h2∥L1 , κ3 ∶= α ∥h3∥L1 . (6.6)

The longtime behavior of system (6.4) depends strongly on the connectivity between populations
A and B: crucial criteria are the absence/presence of inhibition from B to A (κ2 = 0 or κ2 > 0)
and the absence/presence of retroaction from A to B (κ3 = 0 or κ3 > 0). We will not address
here the easy three cases where the system is not fully-connected (one among κ2 or κ3 is zero)
(see [L13] for a detailed account). We rather restrict to the more interesting case with full
connectivity that reveals richer dynamical patterns.

Assumption 6.2.2 (Full connectivity). Suppose that the system (6.3) is fully connected that is
κ2 > 0 (inhibition from B to A) and κ3 > 0 (retroaction from A to B).

The first main result is

Theorem 6.2.3 (Th. 3.6 in [L13]). Under the previous assumptions and in particular Assump-
tion 6.2.2, then, whatever the values of κi, i = 1, . . . ,3, λAt does not tend to +∞ as t→∞.

Proof of Theorem 6.2.3 is elementary and basically relies on a contradiction argument: to
put it simply, if one would have that λAt ÐÐ→

t→∞
+∞ then from the second line of (6.4), we see that

λBt would also go to ∞. Using now that ΦB→A(x) ÐÐÐ→
x→∞

0, the first line of (6.4) goes to 0 as
t→∞, which is in contradiction with the fact that λAt ÐÐ→

t→∞
+∞ (this is a bit more complicated

than that, since the first line is actually an indeterminate form ∞ = ∞ × 0, but this can be
rigorously solved, see [L13, § 8.2] for details). Note here that the present argument uses in a
crucial way that the kernels h are nonnegative. Hence, population A cannot be supercritical,
even for arbitrary large values of κ1: it may be possible that in absence of inhibition, population
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A is supercritical, but inhibition and retroaction brings back population A into subcriticality.
This result reflects biological observations: episodes of epileptic seizures, involving abnormal
synchronous firing of large groups of neurons [Luo20, p. 541], constitute an actual example of
population A becoming supercritical when recurrent inhibition from population B is altered or
suppressed.

The second and main result of [L13] is concerned with the existence of a limit of (λAt , λBt ) as
t →∞. The result being technical, we only give a weak simplified statement of the main result
and refer to [L13] for details.
Theorem 6.2.4 (Th. 3.10 in [L13]). Under the previous assumptions and in particular Assump-
tion 6.2.2, if µA > 0, then, if one among (λAt , λBt ) converges as t →∞, both do, and their limit
are necessarily given by ℓA = µAΦB→A(κ2ℓB)

1−κ1ΦB→A(κ2ℓB) and ℓB = ℓ, unique fixed-point of Φ defined by

Φ(ℓ) ∶= µB +
κ3µAΦB→A (κ2ℓ)

1 − κ1ΦB→A (κ2ℓ)
. (6.7)

Moreover, there are sufficient conditions (depending on µA, µB, ΦB→A, κ1, κ2 and κ3) such that
this convergence holds.

The proof of Theorem 6.2.4 is based on the computation of both λι ∶= lim inft→∞ λιt and
λ̄ι ∶= lim supt→∞ λιt for ι ∈ {A,B} in (6.4). The point is to take advantage of the positivity of
the kernels h: in the dynamics of λA in (6.4), the first part λA ↦ µA + α ∫

t
0 h1(t − u)λ

A
u du is

nondecreasing in λA, whereas the second term ΦB→A ((1 − α) ∫
t

0 h2(t − u)λ
B
u du) is nonincreasing

in λB. Hence, λA, λB, λ̄A, λ̄B are linked in an intricate way: one has
⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ̄A ≤ (µA + κ1λ̄
A)ΦB→A (κ2λB) ,

λA ≥ (µA + κ1λ
A)ΦB→A (κ2λ̄B)

λ̄B ≤ µB + κ3λ̄A,

λB ≥ µB + κ3λA

(6.8)

A great deal of effort is spent in [L13] to verify that the quantities in (6.8) are actually finite
(otherwise (6.8) is essentially empty). Letting this point aside, putting these inequalities together
show that

Φ (λ̄B) ≤ λB ≤ λ̄B ≤ Φ (λB) , (6.9)
so that the convergence of λB (and hence λA) mentioned in Theorem 6.2.4 holds if and only if
the previous inequality (6.9) is an actual equality. A technical point here: in order to even define
Φ in (6.7), one has to make sure that the denominator of (6.7) does not vanish as ℓ = limλB. A
point of the proof of [L13] is precisely to show that κ1ΦB→A(κ2λ̄

B) < 1 is always true. This may
however not be the case for λB: one may have that κ1ΦB→A(κ2λ

B) ≥ 1, but this corresponds to
a case where λB < λ̄B: we would then not have convergence. In a word, any possible limit of λBt
concerns cases where κ1ΦB→A(κ2λ

B) < 1 and is the fixed-point of (6.7). A priori bounds give
that a sufficient condition for κ1ΦB→A(κ2λ

B) < 1 is

κ1ΦB→A (
µBκ2
1 − κ3

) < 1. (6.10)

Condition (6.10) has an interesting biological interpretation: in the case where A would be
disconnected from B (κ2 = 0), A is then a standard linear Hawkes process, so that the transition
between sub and supercritical behavior of A is at κ isolated

1 ∶= 1. With nontrivial inhibition and
retroaction, we see from (6.10) that the domain of validity for the convergence of λA becomes
larger: it may happen that κ1 > κ

isolated
1 = 1 but that (6.10) remains valid: this is another

illustration that inhibition has a tendency to quench supercriticality in neuronal systems.
Considering (6.9), it is natural to introduce the domain U ∶= {(u, v), Φ(u) ≤ u ≤ ℓ ≤ v ≤ Φ(u)}:

we have that (λB, λ̄B) ∈ U . In particular, an obvious sufficient condition (the one mentioned
in Theorem 6.2.4 which can be found in [L13, § 5]) to turn (6.9) in an equality is to suppose
that U reduces to the singleton {(ℓ, ℓ)}. This last claim is in particular true under either of the
following conditions: (i) Φ is a contraction or (ii) Φ ○ Φ has a unique fixed-point. We refer to
[L13, § 5] for a detailed analysis of these conditions and applications to concrete examples.
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Remark 6.2.5. We have applied (see [L13, § 5.2]) the previous result to the case of a polynomial
inhibition: fix β,R > 0 and consider

ΦB→A(x) =
1

1 + ( xR)
β

x ≥ 0. (6.11)

It is shown in [L13], Prop. 5.3, that the convergence result of Theorem 6.2.4 is valid under the
following conditions: either (i) β ∈ (0,1] [1], or (ii) β > 1, κ1 < 1, at least when R is sufficiently
large (weak inhibition) or when R is sufficiently small (strong inhibition) or (iii) β > 1, κ1 ≥ 1,
at least when R is sufficiently small (strong inhibition).

The difficulty here is that, at least numerically, convergence of λB seems to remain true even
if {(ℓ, ℓ)} ⊊ U : giving a necessary condition for convergence is out of reach of the present result.

6.2.5 Fluctuations and a test of inhibition

Fluctuation theorems for Hawkes processes (both in large population n→∞ and in large time
t →∞) have already been considered in the literature [DFH16, DL17] and some of the existing
results directly apply to our case: applying [DL17, Th 2], one obtains that under the present
assumptions and some sufficient subcriticality condition, for any subsets IAkA ⊂ {1, . . . , nA} and
IBkB ⊂ {nA + 1, . . . , n} of fixed cardinality kA and kB (independent of n)

⎛

⎝

√

mA
t

⎛

⎝

Zi,At
mA
t

− 1
⎞

⎠
,
√

mB
t

⎛

⎝

Zj,Bt
mB
t

− 1
⎞

⎠

⎞

⎠
i∈IA

kA
, j∈IB

kB

d
ÐÐÐÐÐÐ→
(t,n)→(∞,∞),

t
n
→0

N (0, IkA+kB). (6.12)

Having in mind testing procedures, an estimator ℓ̂n,T for the limiting intensity of population A

may be given through the following approximations: ℓ ≈
T→∞

λT ≈
n→∞

Zi,t
T ∶= ℓ̂n,T , 1 ≤ i ≤ n. ℓ̂n,T

can be computed from the observation of one neuron (recall that in the mean field limit, neurons
within the same population are interchangeable) in a n-particle system of Hawkes processes
observed in a large time T . From a statistical viewpoint, a statement as in (6.12) cannot be
exploited directly as the unknown parameter ℓ does not explicitly appear and secondly the
normalization of Zi,t by mt is unknown.

What is instead required here (for instance to derive testing procedures and confidence
intervals) is a result of the form

√
T (ℓ̂n,T − ℓ)

d
ÐÐÐÐÐÐÐÐ→
(T,n)→(∞,∞)

K for some distribution K. This last

result is at least true in the simple case of an isolated subcritical population A. Here, ℓ = µA
1−κ1

and the following decomposition holds

√
T (ℓ̂n,T − ℓ) =

√
mT

T

√
mT (

Zi,T

mT
− 1) +

√
T (

mT

T
−

µA
1 − κ1

) ∶=

√
mT

T
In,T (1) + IT (2). (6.13)

From (6.12), it immediately follows that In,T (1)
d
Ð→ N (0,1) as (T,n) → (∞,∞), T

n → 0. The
difficulty is here to control the remaining deterministic term I2(T ), which requires to evaluate
the rate at which mT /T converges to its limit µA/(1 − κ1). In this linear case, the answer may
be found in [BDHM13, Lemma 5]: IT (2) = o(1) if ∫

∞
0
√
th(t)dt <∞, so that, we derive

¿
Á
ÁÀ

T

ℓ̂n,T
(ℓ̂n,T − ℓ)

d
ÐÐÐÐÐÐÐ→
(T,n)→(∞,∞)

T
n→0

N (0,1) . (6.14)

A test of inhibition

The convergence (6.14) is of practical use for building a testing procedure for the pres-
ence/absence of inhibition in a population of neurons. This is simply based on the fact that

[1]. Note that β ∈ [0,1] if and only if ΦB→A is convex.
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there is a hierarchy of limits concerning the intensity of population A, depending on the pres-
ence/absence of inhibition and retroaction in the system (see [L13] for details): we have

ℓ
(I)
A > ℓ

(II)
A > ℓ

(III)
A , (6.15)

where ℓνA ∶= limt→∞ λAt , ν ∈ {I, II, III}. Here (I) (resp. (II) and (III)) corresponds to the isolated
case (no inhibition and retroaction), resp. inhibition without retroaction and the fully-coupled
case. This hierarchy, together with the fluctuation result (6.14) allows to build a procedure
detailed in [L13] testing H0: Population B has no inhibitive effect on population A against H1:
Population B has an inhibitive effect on population A. In practice, neurophysiologists studying
synaptic function routinely isolate one type of synaptic coupling with specific toxins, so that
they can for instance suppress inhibition. In a experimental preparation, neurons from the
A population can be continuously recorded in three successive conditions: control (no toxin
applied); Toxin (inhibition blocked) and wash (the physiologists’ term to designate a return to
the control condition after removal of a toxin). Collecting for a duration T the activities of the
neurons of population A leads to the estimators fo the intensity of A in the three cases: ℓ̂Controln,T ,
ℓ̂Toxinn,T and ℓ̂Wash

n,T . Denoting by (ℓControl, ℓToxin) the true intensities of population A with and
without inhibition blocked, the test becomes

H0 ∶ ℓ
Control

= ℓToxin against H1 ∶ ℓ
Control

> ℓToxin.

Considering the test statistics Rn,T = ℓ̂Controln,T − ℓ̂Toxinn,T , where ℓ̂Controln,T and ℓ̂Toxinn,T are independent,
we easily derive from (6.14), that under H0

¿
Á
ÁÀ

T

ℓ̂Controln,T + ℓ̂Toxinn,T

(ℓ̂Controln,T − ℓ̂Toxinn,T )
d, H0

ÐÐÐÐÐÐÐ→
(T,n)→(∞,∞)

T
n→0

N (0,1),

from which one can easily derive a consistent asymptotic test for inhibition (see [L13] for details).

6.2.6 Towards oscillations: inhibition through a sigmoidal kernel

Theorem 6.2.4 is concerned with convergence of the intensities of both populations A and
B as t → ∞. Contrary to the standard excitatory linear case, inhibition is also responsible for
oscillations: oscillations is ubiquitous in neural systems, as it can be observed e.g. in the motor
system but also for the activity of some parts of the cerebral cortex and hippocampus [Luo20,
Chap. 8]. Oscillations are believed to play an important role in perception and cognition. We
give in [L13] detailed non-rigorous intuition and numerical simulations indicating that system
(6.3)-(6.4) presents oscillations. We only give a numerical illustration of this phenomenon in
Figure 6.1 and refer to the paper for details. Note only oscillations are typically observed when
the inhibition kernel ΦB→A is of sigmoid type (think for example to Remark 6.2.5, where ΦB→A
in (6.11) approaches 1[0,R] as β →∞).

6.3 Perspectives
Recall that in the case of interacting diffusions, the microscopic particle system (1.1) is

Markovian and its mean-field limit (1.5) is not. The situation is somehow converse in the Hawkes
setting (think e.g. of the homogeneous case (6.1) for simplicity): the particle system (6.3) is
generically not Markov (apart from particular cases where h is exponential or Erlang [CDLO19])
whereas the mean-field McKean-Vlasov process Z̄t is a (Markovian) time-inhomogeneous Poisson
point process, whose intensity is given by (6.2). A nice feature of Hawkes processes is that the
dynamics of the mean-field process Z̄ is intrinsically finite-dimensional (as its reduces to (6.2)),
that is in itself a considerable simplification w.r.t. the considerations of the previous chapters
in the diffusion case. These two observations indicate that there is much more structure for the
analysis of mean-field nonlinear processes in the Hawkes setting and we are inclined to think of
Hawkes processes as easy examples where to apply the long-term stability techniques that we
reviewed in the previous chapters of this manuscript.
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Figure 6.1 – Trajectories of the microscopic intensities (λA,nt , λB,nt ) (6.3) and their mean-field
counterparts (λAt , λBt ) (6.4). The inhibition kernel ΦB→A is given by (6.11) with R = 1, β = 20.
The synaptic kernels are with compact support hi = 1[0,θi], i = 1,2,3. The parameters are
α = 0.8, κ1 = 5, κ2 = κ3 = 0.5, µA = 9 and µB = 0, on [0, T ] with T = 50 and n = 5000.

6.3.1 Stability of homogeneous Hawkes processes

Even in the simple homogeneous case (6.1)-(6.2), several questions remain unanswered. Two
combined difficulties arise here: the possibility that h might take negative values (in case of
additive inhibition in the sense of [CGMT20]) and the possible nonlinearity of the synaptic
kernel Φ.

Long-time behavior of the mean-field process

Since [Fel41, Lon74], several open questions remain about the longtime behavior of the
NRE (6.2). In the purely excitatory case (h ≥ 0), it is easy to see that if λ(t) ÐÐ→

t→∞
ℓ, then

ℓ is necessarily a fixed-point to ℓ = Φ(∥h∥L1 ℓ). For linear Hawkes process Φ(x) = µ + x the
above convergence is a standard result, under the optimal condition κ ∶= ∥h∥L1 < 1 [DFH16].
This convergence has been generalised in [AN22a] in the case Φ is Lipschitz under the generic
condition ∥Φ∥Lip ∥h∥L1 < 1. It is however very likely that this condition may not be optimal (this
is quite clear when one thinks of the case where Φ is sigmoid: ℓ = Φ(∥h∥L1 ℓ) may have one or
several solutions whereas ∥Φ∥Lip is very large). Let us here mention a few open problems: (i)
in case ℓ = Φ(∥h∥L1 ℓ) has a unique solution, [Lon74] readily implies the convergence of λ(t) to
ℓ. Is it possible to obtain rates of convergence in this case? (ii) what about the case where the
previous fixed-point relation has several solutions (think of a sigmoid Φ) ? can we characterise
convergence in this case? This is quite clear when h is exponential, but the same question with
general h is open. The situation remains even less clear in situations with additive inhibition
(i.e. when one relaxes the hypothesis h ≥ 0 with Φ ≥ 0 nonlinear). Numerical simulation suggest
the possibility of oscillations but the conditions for convergence or oscillations for λ(t) remain
largely open.

Fluctuations

The issue of fluctuations (w.r.t. both time t and size of population n) for various functionals
of Hawkes processes is not fully elucidated. A first question concerns the extension of the
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statistically useful CLT mentioned in § 6.2.5 to the nonlinear case: extending (6.12) to (6.14)
requires a proper control on the rate of convergence of mt

t to ℓ (recall IT (2) in (6.13)). This
has been done only so far in the linear case, but extensions to the general nonlinear case are
expected.

A key argument for (6.14) was the original CLT results of [DFH16, DL17] of the form
√
mt (

Z1,t
mt
− 1)→ N (0,1). The domain of validity (w.r.t. t and n) of these results remain unclear:

[DFH16] restrict to linear Hawkes processes (and the convergence holds with no restriction on
(t, n)→ (+∞,+∞)) whereas the result of [DL17] is valid for generic nonlinear Hawkes processes
but under the restrictive condition (t, n) → (+∞,+∞) with t

n → ∞. What is the regime of
validity of fluctuations in the fully nonlinear case? is the condition t

n → 0 really relevant? is
there something specific happening on a time scale proportional to nα for some α ≥ 1? what is
the specificity of the nonlinearity of Φ on this matter?

An alternative approach for fluctuation results was carried out by Heesen and Stannat [HS21]
by looking at

√
n (λ

(n)
t − λt) as n → ∞ on bounded time interval [0, T ]. The question of the

long-time behavior of the resulting fluctuation process and its connection with the CLT results
of the previous paragraph are unclear.

Long term stability and KMT coupling

The previous questions on fluctuations have actually strong connections with the problem of
stability of Hawkes processes on long time scales. The general setting is similar to Statement 5.0.1
in Chapter 5: suppose that one is able to characterise the behavior of the mean-field intensity
λ(t) as t → ∞. It may be the convergence to some ℓ = Φ(∥h∥L1 ℓ) but one is also interested
in situations when λ(t) has a periodic behavior. We believe that it is indeed the case for the
multiplicative model (6.4) (Figure 6.1) but we have also in mind the result of Ditlevsen and
Löcherbach [DL17] where the existence of limit cycles for the mean-field limit of the potential
Xn,i as in (5.16) in case the graph of interaction has circular connectivity and with Erlang kernels
h is proven. Provided these macroscopic structures have sufficiently stability properties, one is
left with proving long-term stability results in a same way as done in Chapter 5 for diffusions. A
first step of this programme has been carried-out by Zoé Agathe-Nerine: in case h is exponential
and under the condition ∥Φ∥Lip ∥h∥L1 < 1 (hence a unique limit ℓ for λ(t)), [AN22a] proves the
proximity of λn to ℓ up to arbitrary polynomial times in n.

An important question on this matter concerns the specificity of exponential kernels h for
the dynamics of (6.1). Choosing exponential (or Erlang) kernels is a considerable and nice
simplification to the analysis of (6.1), as it allows to use SDEs and Markov structure [DLO19,
AN22a]. But how much is it essential for the intrinsic dynamics? Exponential kernels are in
fact some kind of middle ground for the memory structure of an Hawkes process: the support
is infinite, but the influence of past events decreases fast. Open questions are numerous: (i) in
what way the stability results that exist for exponential kernels are susceptible to perturbations?
(ii) in case ℓ = Φ (∥h∥L1 ℓ) has a unique solution, can we expect long-term stability results for
arbitrary h? (iii) what can we say in the crucial example when ℓ ↦ Φ(∥h∥L1 ℓ) is sigmoid with
three fixed-point when h is not exponential (numerical simulations in [HS21, p. 16] suggest
metastability for Erlang kernels, but this has not been proven)? (iv) what is the specificity of
the nonlinearity of Φ on this matter?

Another interesting point that is not fully elucidated concerns the use of Brownian approx-
imations for Hawkes dynamics such as (6.1) (or inhomogeneous extensions of it). A diffusion
approximation for Hawkes processes was first proposed in [DL17, § 5] (using Markov semigroup
methods to quantify the proximity in law between the two processes on a bounded time inter-
val). This has been further developed in [CMT20] where a pathwise coupling between a Hawkes
system and its diffusive counterpart is proven, again on a bounded time interval. This coupling
uses in an intricate way standard Komlós-Major-Tusnády (KMT) [KMT75] coupling between
Poisson and Brownian paths. Note that similar KMT coupling has been used in [Pro23] for
Markov chains. As far as long-term stability is concerned, we see here two equally interest-
ing ways of addressing this KMT coupling: (i) either apply the previous long-term stability
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methods to the Brownian approximation (but in this case the question of the stability of the
original Hawkes process remains) or (ii) to take advantage of the known long-term stability for
the original Hawkes process (as done in [AN22a]) to derive the same stability for its diffusive
approximation, hence extending on unbounded times the validity of the KMT coupling.

6.3.2 Multiplicative inhibition: oscillations and long-term stability

The multiplicative structure for inhibition introduced in the present chapter suggests the
possibility of bypassing the usual difficulties of models with additive inhibition.

Existence and stability of oscillations

An obvious perspective of § 6.2.6 concerns a rigorous proof for the existence of oscillations
for the intensity (λA, λB) in (6.4). One needs here to understand the role of the kernels hi and
the precise domain validity of the oscillations. The class of exponential (or Erlang) kernels h
has been particularly considered in the literature [CDLO19, DLO19, DL17], as it has the nice
ability to transform the convolution equation (6.2) governing the mean-field intensity λ(t) into
an ODE governing the mean activity X(t) = ∫

t
0 h(t−s)λ(s)ds (see e.g. [DLO19, DL17] for further

details). However, this may not be a good choice for (6.4): numerical simulations suggest that,
oscillations that are present with compactly supported hi would turn into damped oscillations
with exponential kernels with the same κi: the presence/absence of oscillations depend crucially
on the whole shape of these kernels (not simply on the values of κi as for the convergence case).
One would be more optimistic for a proof of oscillations when hi = 1[0,θi], as (6.4) transforms into
ODEs with delays for the mean activities XA,XB. Applying the machinery of delay equations
[HL93, Nus79] seems here a natural perspective.

Once the existence and stability of these periodic orbits established, a natural question
would be of course to address the same long-term asymptotics of the Hawkes process along
these periodic orbits, adapting the techniques of Chapter 5 in the diffusion case. The question
of CLT results remain also open.

Renewal properties

Several important results concerning Hawkes processes with additive inhibition have been
proposed in [CGMT20, CCC22], where the renewal structure of the trajectories of one single
Hawkes process Zt with additive self-inhibition is considered. The authors derive ergodic results
of the form Zt

t

a.s.
ÐÐ→
t→∞

E(W )
E(τ) , where (W,τ) are random variables capturing the renewal structure

of the trajectory of Z. Very few is known on the law of (W,τ) apart from specific examples.
The strategy would be to derive the same analysis but now for a Hawkes with multiplicative
self-inhibition, the hope being that the multiplicative structure would allow for a better under-
standing of this renewal structure.

6.3.3 Introducing inhomogeneities

Spatially-extended systems

The previous questions concern Hawkes processes with homogeneous type interaction. We
already discussed at length in § 5.3.2 of the importance of considering Hawkes processes with
spatial extension and to understand properly the links of these models with the Neural Field
Equation (5.17). Some advances are expected on this matter, based on the transposition of the
techniques of this manuscript to the Hawkes dynamics.

The case of sparse interaction

A particular case of [AN22b] is to look at the convergence of mean-field Hawkes processes
interacting on a Erdős-Rényi graph with parameter pn, provided that npn ≫ logn. The questions
remains of the large population behavior of such system in the sparse regime pn ∼ λ

n . Extending
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the existing results [LRW23, ORS20] for diffusions to the Hawkes setting seems reasonable. One
would then obtain Hawkes processes interacting on Galton-Watson trees, whose dynamics is
completely open so far (see [DFH16] for a similar analysis of Hawkes processes on Zd).
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