
HAL Id: tel-04448986
https://hal.science/tel-04448986

Submitted on 9 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Understanding Human Behavior by
Time-Series Analysis of 3D Motion

Hazem Wannous

To cite this version:
Hazem Wannous. Towards Understanding Human Behavior by Time-Series Analysis of 3D Motion.
Computer Vision and Pattern Recognition [cs.CV]. Université de Lille, 2018. �tel-04448986�

https://hal.science/tel-04448986
https://hal.archives-ouvertes.fr


MANUSCRIT
présenté en vue d’obtenir le diplôme de

HABILITATION À DIRIGER DES RECHERCHES

Université de Lille
Spécialité: Informatique

Par

Hazem WANNOUS

Towards Understanding Human Behavior
by Time-Series Analysis of 3D Motion

Soutenue le 5 Décembre 2018 devant le jury composé de :

Mme Jenny BENOIS-PINEAU Professeur, Université de Bordeaux, Rapporteur
M. Philippe-Henri GOSSELIN Principal Scientist, Technicolor Rapporteur
M. Christophe ROSENBERGER Professeur, ENSICaen Rapporteur
M. Pierre BOULET Professeur, Université de Lille Examinateur
M. Franck MULTON Professeur, Université de Rennes 2 Examinateur
M. Jean-Philippe VANDEBORRE Professeur, IMT Lille Douai Examinateur-Garant

Univ. Lille, CNRS, Centrale Lille, IMT Lille Douai, UMR 9189 - CRIStAL, F-59000 Lille, France

Centre de Recherche en Informatique,
            Signal et Automatique de Lille





Preface

THIS document constitutes the manuscript submitted to obtain the “Habilitation à Diriger
des Recherches” of the University of Lille. It describes the professional activities that I
have carried out since my recruitment as associate professor at University of Lille and
IMT Lille Douai in 2010. This document is organized in two parts as follows:

• The first part contains a synthetic curriculum vitae which details my teaching activities at
IMT Lille Douai as well as my research activities at CRIStAL laboratory UMR CNRS 9189.

• The second part presents my research activities on human motion analysis. This part is or-
ganized in 4 chapters dealing with different modalities of human behavior analysis: motion
retrieval from 3D videos, human action recognition from 3D joint sequences, human activity
recognition in depth video and hand gesture recognition from depth cameras.
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CHAPTER 1

Curriculum-vitae

I am currently Associate Professor at University of Lille and IMT Lille Douai. I am a member of
the Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL - UMR 9189).
This chapter provides a summary of my activities since my nomination in my present position at
IMT Lille Douai. It summarizes all my teaching and research activities. The exhaustive list of my
publications is given at the end of the chapter.

1.1 Personal Information

Last and first names WANNOUS Hazem
Date and place of birth August 5, 1975 Bechraghi (Syria)

Nationalities French and Syrian
Personal address 30Ter, Rue Jules Guesde, 59390 Lys Lez Lannoy
Current position Maître de conférences, Université de Lille / IMT Lille Douai

Research Team MINT - CRIStAL UMR CNRS 9189
Professional address IMT Lille Douai - Rue Marconi, 59653 Villeneuve d’Ascq Cedex, France

Telephone number +33 3 20 43 64 27
Email address hazem.wannous@univ-lille.fr

Webpage http://pagesperso.telecom-lille.fr/wannous/

1.2 Academic Positions

Since 12/2010 Associate Professor
University of Lille / IMT Lille Douai, department of Computer Science, Lille,
France
CRIStAL Centre de Recherche en Informatique, Signal et Automatique de
Lille (UMR CNRS 9189), France

09/2009 - 08/2010 Research Engineer (Ingénieur de recherche)
Institut Polytechnique de Bordeaux, Universiteé de Bordeaux 1, Bordeaux,
France

09/2008 - 08/2009 Temporary Lecturer and Research Assistant (Attaché Temporaire
d’Enseignement et de Recherche)
Ecole Polytechnique, Université d’Orléans, Laboratoire PRISME, Orléan,
France

1.3 Academic Background

December 2008 Ph.D. in Computer Science, University of Orleans, France
Specialty Image Processing & Computer Vision

mailto:hazem.wannous@univ-lille.fr
http://pagesperso.telecom-lille.fr/wannous/
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Thesis Multi view classification of color regions : application to the 3D assessment of
chronic wounds

June 2005 M.Sc. (Master Professionnel), University of Bourgogne, France
Specialty Image, vision and artificial intelligence

Thesis Automatic adjustment of a road image processing chain
June 2003 M.Sc. (DEA), University of Clermont-Ferrand, France

Specialty Composants et Systemes pour le Traitement de l’Information (CSTI) - Robotic
vision

Thesis Real-time object tracking by a particle filter
June 2000 Engineer Degree, Tishreen University, Syria

Specialty Computer Science

1.4 Teaching activities

Since joining IMT Lille Douai (formerly Télécom Lille) as an Associate Professor in December 2010,
I am a member of the department of Computer Science (Informatique et Réseaux). IMT Lille Douai
is an engineering school resulting from the merger of Mines Douai and Télécom Lille on January
1, 2017. IMT Lille Douai, as one of the 11 engineering and management schools form IMT (Institut
Mines-Télécom), was established under the supervision of the French Minister of the Economy and
Industry, in partnership with University of Lille.

In the rest of this section, I quickly present my past teaching activities in other French institu-
tions before my current position at IMT, then I describe my main current teaching activities and my
administrative duties within the school.

My teaching activities started in September 2006, at the second year of my Ph.D. thesis, as tem-
porary teacher at École Nationale Supérieure d’Ingénieurs (ENSI) and at Institut Universitaire de
Technologie (IUT) in Bourges (France) for 2 years. Then, I was nominated full-time “Attaché tempo-
raire d’enseignement et de recherche” (ATER) at École Polytechnique of University of Orléans for one
year. In 2009, I had the opportunity to teach at ENSEIRB-MATMECA in Bordeaux (France). From
2006 to 2010, I was teaching to students in 2nd year IUT and 1st to 3rd year at ENSI and Polytech
Orléans (393h ETD1). The lectures in which I am mostly involved during this periode are:

• Signal processing on DSP processors (laboratory courses for the development of digital filters
on the DSK 5416 board): 16h ETD, 3rd year of engineering, ENSEIRB-MATMECA (2009).

• Object-oriented C++ language exercises: 78h ETD, 3rd year of engineering, Polytech Orléans
(2008).

• Windows environment programming MFC laboratory courses: 80h ETD, 2nd year of engi-
neering, Polytech Orléans (2008).

• Image processing lecturers, 26h ETD, 2nd year of engineering, Polytech Orléans (2018).

• Computer vision laboratory courses, microprocessor (assembler) laboratory courses, telecom-
munication lectures and exercises and industrial electrical engineering lectures and exercises,
80h ETD, 2nd and 3rd years of engineering ENSI Bourges (2007-2008).

1ETD (“Equivalent Travaux Dirigés”) is the common measure, in the French academic system, for calculating the num-
ber of hours taught - the following formula is used to obtain the ETD: (40m lecture)=(1h exercise course)=(1h lab. course).
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• Computer tools laboratory courses and digital electronic circuits laboratory courses, 103h
ETD, 1st and 2nd years IUT Bourges (2006).

In the remaining of this document, I will describe only my teaching activities since my nomina-
tion in December 2010 as Associate Professor at IMT Lille Douai.

1.4.1 Synthetic report of teaching experience

In Table 1.4, details of my teaching activities are reported in terms of lectures/exercise courses/lab.
courses.

2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018

Algo. and struct. prog. 24/21/30 23/6/3 22/3/22 27/6/23 33/-/21 38/-/- 38/-/- 30/-/-
MultiMedia indexing -/-/- 18/-/24 17/-/24 18/-/17 21/-/37 -/-/- -/-/- -/-/-
Advanced prog. tech. -/-/- 18/-/42 18/-/24 12/3/21 9/6/23 9/6/- 9/-/15 9/-/12

Intro. to telcom -/-/- 3/6/3 -/6/- -/6/- -/6/- -/-/- -/-/- -/-/-
Big multimedia data -/-/- -/-/- -/-/- -/-/- -/-/- 21/-/12 21/-/12 21/-/12
Image proc. mobile -/-/- -/-/- -/-/- -/-/- -/-/- 9/-/21 9/-/30 6/-/36
3D vision and IHM -/-/- 6/-/30 24/-/27 21/-/30 21/-/27 24/-/24 24/-/24 24/-/24

Internship tutor -/15/- -/15/- -/15/- -/25/- -/20/- -/20/- -/25/- -/25/-
Project tutor -/25/- -/15/- -/15/- -/15/- -/30/- -/30/- -/20/- -/30/-

Number of hours (ETD) 115 212 217 224 254 214 227 229

Table 1.4: Teaching activities in hours (lectures/exercise courses/lab. courses) per field/specialty
and year

1.4.2 Details on Main Courses

In this section, the courses in which I am involved the most at IMT Lille Douai are detailed.

Algorithmic and Structured Programming. It is the first course on programming for the 1st year
students at IMT, I am coordinating it. It aims to present the basic requirements for the design of a
program and its implementation on a computer.

• Architecture of computers and operating systems

• Introduction to algorithmic

• Programming in C language (expressions, variables, control flow, functions, arrays, struc-
tures, pointers, ...)

• Software development project: programming a game in C

I am responsible for lectures and have also participated in the past in exercise and laboratory
courses.

Introduction to telecommunications It is a 1st year engineering course at IMT. I am coordinating
it and have also participated in the past in exercise and laboratory courses. The course aims to
provide a basic culture on computer and telephone networks for the 1st year students. The focus is
on the principles and technologies implemented to transmit information between two elements of
a network. The topics covered here include:

5



Chapter 1. Curriculum-vitae

• transmission media

• network protocols,

• xDSL technologies, Wifi, RTC

• mobiles (1/2/3/4G)

Advanced programming technologies. It is a 2nd year engineering course. I am coordinating
it. The objective of this course is to deepen the students’ knowledge of computer science and pro-
gramming through teamwork on a project. Each team is typically composed of 4 subgroups. Each
subgroup handles one aspect of the project (lexical analyzer, synthetic parser, evaluation engine
and graphics and HMI). The final integration of the project depends on the quality of the prelimi-
nary work concerning the study, the specification, the overall coherence of each of the parts. I am
responsible for lectures and have also participated in the past in exercise and laboratory courses.

Computer vision and human-machine interaction. It is a 5th year engineering course. The main
goal of this course is to introduce the basic technological components involved in the digital en-
tertainment industry. An important part of this course is devoted to the study of 3D modeling
techniques that are used in the creation of 3D content, 3D acquisition techniques that allow 3D de-
tection in the real world and an introduction to the techniques of the human-machine interaction.
The main subjects on this courses:

• digital representations of real objects (3D acquisition techniques, reconstruction);

• presentation of advanced technologies for 3D modeling;

• virtual reality, human-machine interaction.

Machine learning and multimedia data processing. It is a 5th year course at IMT. It is part of a
bigger course (Big Multimedia Data), which we offer since 2016 with colleagues from the depart-
ment as an evolution of a former course that I coordinated "Multimedia Retrieval and Networks".
This course addresses a growing field, the big data, with a focus on application related to multime-
dia data (web pages, videos, ...). The topics covered in my course include:

• classical machine learning techniques;

• deep learning techniques for time-series;

• analysis and retrieval of multimedia content;

• retrieval for information on the web.

Image processing on mobile terminal It is a 4th year E-learning engineering course. In Septem-
ber 2015, I created a novel 4th year engineering course on data science, which is a quickly growing
field, at the interface of computer vision, data analysis and mobile applications. The topics covered
here include:

• basic image processing, filtering;

• visual keypoint detection and feature description;

6
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• convolutional neural networks;

• development of applications for mobile terminals: the Android platform;

• web services and HTML;

• analysis and retrieval of multimedia content.

1.4.3 Educational responsibilities

At IMT Lille Douai, the coordination of a Unité de Valeur (UV) or a course is a complete task which
involves the creation of the course in terms of lectures, exercises, and laboratory courses, the design
of the teaching materials, including room reservations/management. The coordination of teaching
staff, the design and grading of exams, the participation in committees, etc. The teaching times
given in this paragraph are in-class hours, that is excluding coordination, grading, etc. The table
below summarizes my activities in my main UV/courses. It indicates, for each UV, the average
number of students enrolled each year (which varies from year to another), the number of hours
spent in class by students, the number of these hours (lecture / exercise course / lab. course) that I
personally performed in this UV, and the number of teachers involved and managed in the overall
course of the UV.

UV/courses Nb. of students Nb. of hours Nb. hours of interventions Nb. of speakers to manege

algorithmic and structured programming 130 90 25 4
advanced programming technologies 80 30 15 3

multimedia indexing and retrieval 25 120 40 6
big multimedia data 30 120 30 1

3D digital entertainment technologies 15 120 40 10
image processing on mobile terminal 20 80 40 3
Introduction to telecommunications 130 30 0 4

Table 1.5: A summary of my activities in my main UV/courses

My educational responsibilities are mainly the coordination of the following courses:

• algorithmic and structured programming (1st year of engineering),

• advanced programming technologies (2nd year of engineering),

• 3e entertainment technologies (5th year of engineering),

• image processing on mobile terminal (4th year E-learning engineering),

• introduction to telecommunications.

I am the designer and coordinator of the UV 3DETech. 3DETech is a scientific optional advanced
course for 5th year engineering students, which presents methods and techniques for interacting
with digital and virtual environments, revolving around 3D digital entertainment. An important
part of this course is devoted to 3D vision and image synthesis techniques that will be at the heart
of the services and uses of tomorrow. This UV represents 120 hours of classes for the student. My
courses on 3D computer vision and IHM represent about 40 hours of teaching.

I am the co-designer and the coordinator of the UV "Image processing on mobile terminal". This
UV is a scientific optional advanced course for 4th year E-learning engineering students, on data
analysis and mobile applications. This UV represents 120 hours of teaching for the student, spread

7



Chapter 1. Curriculum-vitae

over 4 months for E-learning setting in class with a software project (smartphone application). My
courses (lecture and lab. course) on computer vision and machine learning represent about 60
hours of teaching.

I am also the coordinator of "Algorithmic and Structured Programming", "Advanced program-
ming technologies" and "Introduction to telecommunications" courses.

Due to the creation of the new school IMT Lille Douai after the merging of Telecom Lille with
Mines Douai, I have been also largely involved, since 2016, in the design of the syllabus of the new
engineering program that began in September 2018. I am also in charge, with a colleague from
the school, of the creation of a Specialized Master in "Data Science and Applications", which is
scheduled to start in September 2019. Finally, I represent IMT at Campus des métiers et des qualifi-
cations Image numérique et industries créatives2 and I am in the steering committee and the scientific
committee.

2http://campus-inic.fr
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1.5 Research activities

1.5.1 Supervision

Post-doctoral students

December 2015–August 2016 Maxime Devanne
Funding FUI grant

Co-supervision Mohamed Daoudi
Subject Human Behavior Understanding by Body and Face Analysis

Publications [C4]

Ph.D. students

October 2018–September 2021 Théo Voillemin
Funding University of Lille and IMT Lille Douai

Co-supervision Jean-Philippe Vandeborre
Subject Personalized augmented reality assistance by hand gesture

recognition using head-mounted displays
October 2014–December 2017 Quentin De Smedt

Funding Bourse d’Excellence IMT Lille Douai
Co-supervision Jean-Philippe Vandeborre

Subject Dynamic Hand Gesture Recognition - from Traditional Hand-
crafted to recent Deep Learning Approaches

Publications [C1, P3, C3, C5]
February 2012–December 2014 Maxime Devanne

Funding University of Lille 1 and University of Florence, Italy
Co-supervision Mohamed Daoudi and Pietro Pala

Subject 3D Human Behavior Understanding by Shape Analysis of Hu-
man Motion and Pose

Publications [J1, C6, J4, C10]
November 2011–October 2014 Rim Slama

Funding University of Lille 1 and Region Nord-Pas-de-Calais
Co-supervision Mohamed Daoudi

Subject Geometrical Approach for 3D Human Motion Analysis: Appli-
cation to Action Recognition and Retrieval

Publications [J2, C7, J3, C8, C9]

Master students

April 2018–August 2018 Denis Balschakov
Master Master DCISS – Université de Grenoble Alpes

Co-supervision Esperanza Perdrix and Aude Bourin
Subject Deep Learning Approach for Prediction of Atmospheric Pollu-

tants
April 2017–September 2017 Manel Rhif
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Master Projet de Fin d’Etude ISAMM Tunis, Tunisie
Subject Action Recognition from Skeleton Sequences using Convolutional

Neural Network on Lie Group Manifold
Publications [C2]

February 2016–August 2016 Elliot Vanegue
Master Master Recherche IVI – Université de Lille1

Co-supervision Jean-Philippe Vandeborre
Subject An Interactive Approach to Semantic Segmentation of 3D Objects

Retrieval
February 2012–August 2012 Maxime Devanne

Master Projet de Fin d’Etude – Télćom Lille
Co-supervision Olivier Losson

Subject 3D Human body modeling by Kinect camera

1.5.2 Research Projects

2013 – 2017 CrABEx ANR-13-CORD-0013 (Participant)
Subject Creating 3D Graphic Content Assisted by a Database of Examples

Academic partners CRIStAL - UMR CNRS 9189, LIRIS UMR 5205, LTCI UMR 5141 (Télécom
PariTech)

Industrial partners 3DDUO (Plaine Image, Tourcoing), ICOM / Gamagora (Université de Lyon
2)

Participation Proposal co-writing and participation in the 3D interactive semantic seg-
mentation part

2014 – 2016 FUI MAGNUM - Fonds Unique Interministériel (Participant)
Subject Measurement, Analysis and Flow Management, Native Unified in Stores

17ème appel à projets des pôles de compétitivité
Academic partners CRIStAL - UMR CNRS 9189 (Université Lille 1), LSIS UMR 7296 (Université

Aix Marseille)
Industrial partners Easycomptage, euroshaktiware, Robopec, WIT SA, IQC Assest Management

et Arclan System
Participation Proposal co-writing and participation in the workpackage concerning the

realization of the recognition of emotional gestures of people in front of a
showcase equipped with 2D / 3D sensors

2014 – 2015 It’s Me - Bonus Funding Research (project leader)
Subject Artistic 3D holographic video - gesture recognition and interaction

Funding Funds for interactive and innovative projects with high development poten-
tial (PICTANOVO, Région Nord-Pas-de-Calais

Academic partners CRIStAL- UMR CNRS 9189 (Université Lille 1)
Industrial partners Idées-3Com, Acnot, Holusion.

1.5.3 Event organization and committee member

2017 Co-organizer and General Chair of the 3D Shape Retrieval Contest 2017 3D Hand
Gesture Recognition Using a Depth and Skeletal Dataset SHREC2017, Lyon, April
23-24, 2017
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2016 Co-organizer and General Chair of the "International Workshop on Understand-
ing Human Activities through 3D Sensors (UHA3DS’16), in conjunction with IAPR-
ICPR, Cancun, Mexico, December 4-8 2016

2015 Member of the organization committee of Shape Modeling International conference
SMI 2015, Telecom, Lille June 24-26 2015

2015 Co-organizer and General Chair of the International Workshop on Understanding
Human Activities through 3D Sensors UHA3DS’15, in conjunction with IEEE-FG,
Ljubljana, Slovenia, May 4-8 2015

2014 Area Chair of the IAPR International Conference on Pattern Recognition (Pattern
Recognition Applications Track), Stockholm, Sweden, 24-28 August 2014

Since 2014 Member of the program committee of Eurographics Workshop on 3D Object Re-
trieval, 2014 - 2018

2012 Member of the organization committee of French national conference COmpression
et REprésentation des Signaux Audiovisuels CORESA 2012, Lille, May 24, 2012,

1.5.4 Evaluation and review panels

Ph.D. committees

06/12/2017 Alexandre Pérez
Institution Université de Cergy Pontoise - ENSEA

Thesis Analysis and Recognition of Gestures with a RGBD Sensor

Evaluation of research project

09/2018 Reviewer of a research project proposal on Support of Research, Development and
Innovation - Czech Science Foundation.

Reviewing Activities

International Journals IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE
Transactions on Image Processing, IEEE Transactions on Multimedia,
Pattern Recognition, IEEE Transactions on Cybernetics, IEEE Trans-
actions on Image Processing, Journal of Electronic Imaging, Applied
Sciences, Computer Vision and Image Understanding

International Conferences IAPR ICPR 2016, CORESA, Eurographics Workshop on 3D Object Re-
trieval 3DOR 2017, 3DOR 2016, IEEE FG 2015, 3DOR 2015, Workshop
DIFF-CV2015, VISUAL 2015, AVSS 2014, ICIAP 2013

1.5.5 Seminar and invited talks

September 21, 2018 Hand gesture detection and recognition by a deep learning approach, in-
vited talk Sequel research team at INRIA Lille, France.

January 31, 2018 3D Human motion analysis from RGBD sensors, talk at the workshop on
motion capture organized by TCTS team, University of Mons, Belgium.
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February 22, 2016 Shape analysis of human motion and Pose, seminar at NUMEDIART Re-
search institute, University of Mons, Belgium.

December 11, 2014 Approche géométrique pour la reconnaissance d’actions humaines à partir
d’un capteur RGB-D, Journée GDR-ISIS "Action Visage, geste, action et com-
portement"

April 12, 2011 Reconstruction et localisation 3D en environnement intérieur pour
l’indexation de vidéo issue de caméra portée, Journée GDR-ISIS "SfM-SfX
- Structure à partir du mouvement et d’autres indices visuels : état de l’art et évo-
lution du domaine"

January 21, 2011 Localisation 3D en environnement intérieur par caméra portée pour la dé-
tection d’événements liés aux activités, Journée GDR-ISIS Suivi d’objets dans
l’espace 3D: méthodes et applications

April 02, 2009 Conception d’un outil complet d’aide au diagnostic clinique: de
l’application à la classification couleur multi-vues, Journée GDR ISIS du
groupe SCATI : Les Systèmes de Vision: de l’acquisition à l’interprétation

January 09, 2017 Classification tissulaire robuste appliquée au suivi thérapeutique
d’escarres", école d’hiver sur l’imagerie numérique couleur, Campus du
Futuroscope, Université de Poitiers

September 28, 2006 Evaluation et réglage d’une chaîne de traitement d’images routiéres, Journée
bilan du groupe SCATI : chaîne et pilotage de traitements GdR ISIS

1.5.6 Scientific collaboration

Here are only mentioned the most significant collaborations that have resulted in the publication
of at least one international conference or journal paper.

• Pietro Pala and Stefano Berretti (Media Integration and Communication Center MICC), Uni-
versity of Florence, Italy. Maxime Devanne, PhD student, was in collaboration between the
University of Lille 1, France and the University of Florence, Italie (2012 - 2015)

• Anuj Srivastava (Statistical Shape Analysis and Modeling Group SSAMG), Florida State Uni-
versity, USA

• Francisco Florez-Revuelta (University of Alicante), Spain.

1.5.7 Distinction and awards

2015 Ph.D. and research supervision bonus (PEDR): awarded by the University of Lille (ap-
plication is approved by the National Council of Universities CNU) in october 2015 for a
period of 4 years.

1.5.8 Synthetic report of scientific production

• 3 submitted papers in international journals,

• 7 international journal papers,

• 21 international conference papers,
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1.6. Full list of publications

• 5 national conference papers,

• 1 book chapters,

• 3 national medical journal papers,

1.6 Full list of publications

1.6.1 Submitted papers

[P1] H. WANNOUS, J.-P. VANDEBORRE, and Q. DE SMEDT. “Dynamic Hand Gesture Detec-
tion and Recognition using Combined Convolutional and Recurrent Networks”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence – in review, 2018.

[P2] S. RIBET, H. WANNOUS, and J.-P. VANDEBORRE. “Survey on Style in 3D Human Body Mo-
tion: Taxonomy, Data, Recognition and its Applications”. In: IEEE Transactions on Affective
Computing – in review (minor revisions submitted), 2018.

[P3] Q. DE SMEDT, H. WANNOUS, and J.-P. VANDEBORRE. “Heterogeneous hand gesture
recognition using 3D dynamic skeletal data”. In: Computer Vision and Image Understanding
– in review (minor revisions submitted), 2018.

1.6.2 International journal papers

[J1] M. DEVANNE, S. BERRETTI, P. PALA, H. WANNOUS, M. DAOUDI, and A. D. BIMBO. “Mo-
tion segment decomposition of RGB-D sequences for human behavior understanding”. In:
Pattern Recognition 61, 2017, pp. 222–233. ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.
patcog.2016.07.041.

[J2] R. SLAMA, H. WANNOUS, M. DAOUDI, and A. SRIVASTAVA. “Accurate 3D action recogni-
tion using learning on the Grassmann manifold”. In: Pattern Recognition 48 (2), Feb. 2015,
pp. 556–567.

[J3] R. SLAMA, H. WANNOUS, and M. DAOUDI. “3D human motion analysis framework for
shape similarity and retrieval”. In: Image and Vision Computing 32 (2), 2014, pp. 131–154.
ISSN: 0262-8856. DOI: http://dx.doi.org/10.1016/j.imavis.2013.12.011.

[J4] M. DEVANNE, H. WANNOUS, S. BERRETTI, P. PALA, M. DAOUDI, and A. DEL BIMBO.
“3D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian
Manifold”. In: IEEE Trans. on Cybernetics 45 (7), 2014, pp. 1340–1352. ISSN: 2168-2267. DOI:
10.1109/TCYB.2014.2350774.

[J5] H. WANNOUS, Y. LUCAS, S. TREUILLET, A. MANSOURI, and Y. VOISIN. “Improving color
correction across camera and illumination changes by contextual sample selection”. In:
Journal of Electronic Imaging 21 (2), June 2012, pp. 023015-1–023015-14. DOI: 10.1117/1.JEI.2
1.2.023015.

[J6] H. WANNOUS, Y. LUCAS, and S. TREUILLET. “Enhanced Assessment of the Wound-
Healing Process by Accurate Multiview Tissue Classification”. In: IEEE Transactions on
Medical Imaging 30 (2), 2011. 12 Pages, pp. 315–326. DOI: 10.1109/TMI.2010.2077739.

[J7] H. WANNOUS, S. TREUILLET, and Y. LUCAS. “Robust tissue classification for reproducible
wound assessment in telemedicine environments”. In: Journal of Electronic Imaging 19, 2
Feb. 2010. DOI: 10.1117/1.3378149.
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CHAPTER 2

Introduction

Human motion analysis has been an active topic from the early beginning of computer vision [181]
due to its relevance to a large variety of domains, each one deals with a specific aspect of the
problem. It has received a great interest during the last decade and became currently one of the
most active research topics in computer vision. Body motions are the natural way of the people
to communicate with their real world environments. Hence, the interpretation and understanding
of such human motions is valuable in many field of application, such as virtual reality, gaming,
human-computer interfaces and assisted living, etc.

Human motion analysis concerns the detection, tracking, recognition of people activities and
and more generally, the understanding of its behaviors from image sequences involving humans.
Human detection involves motion segmentation and object classification, and mainly employed
in video surveillance. Tracking is particularly important in human motion analysis because of
its role in several methods of pose estimation and action recognition. The tracking algorithms
within human motion analysis usually relates to the human motion detection in video sequences
as well as its tracking over the sequence. In most cases, the overall motion of the whole body is
taken into account in order to determine global attitude of people in the crowd. In contrast to
human detection and tracking, body motion analysis focuses on how the movement is executed.
Such issues are particularly useful for many applications, like people gait recognition, abnormal
detection and sport rehabilitation. Human behavoir understanding relates to the local body parts
or whole body analysis of the human motion in order to recognize it and understand its meaning.

Human behavior analysis from vision cues is composed of sub-domains of research differing in
scale, both spatially –face, hand, upper-body, whole body clues– and temporally –time to perform
an expression, a gesture, an action or yet an activity–. Similar approaches can be used to tackle
each or a part of those problems. However, each of them has its own particularities that have
to be taken into account to create robust and efficient recognition systems. The main concern of
this dissertation is the issue of human behavior understanding trough vision-based analysis of
the human motion limited to body behaviour. The behaviour in this document, according to the
complexity of motion, can be conceptually categorized into different types of motion modalities:
gestures, actions, activities and grained-fine hand gestures. However, we note from a state-of-
the-art overview, the boundaries between these terminologies are often smooth as on behavior
can lie between two behavior types. For instance, a simple action performed with one arm can
be assimilated as a gesture. Conversely, an action performed with an object can be viewed as an
activity.

The rest of the chapter presents the recent scientific context of my research directions and a
summary of my contributions organized in four chapters dealing with different modalities of hu-
man behavior analysis: motion retrieval from 3D videos, human action recognition from 3D joint
sequences, human activity recognition in depth video and hand gesture recognition from depth
cameras.



Chapter 2. Introduction

2.1 Scientific Context

Human motion analysis has evolved substantially in parallel with major technological advance-
ments, especially capturing technologies. Wide investigations of human behavior understanding
in computer vision started with the development of techniques to operate on regular visual data,
i.e. color images or videos from RGB cameras [65, 107, 161]. However, most of these methods
suffer from some limitations coming from 2D videos, like the sensitivity to color and lighting con-
ditions, background clutter and occlusions, in addition to the fact they can only capture projective
information of the real world.

Besides, 3D representation of human motion has been introduced through the use of multi-
ple camera systems, in which the surface structure of the human body can be reconstructed, and
thereby a more descriptive representation for human posture and motion can be captured [183,
199]. In such videos, each frame is a mesh approximation of the body surface shape often gener-
ated independently regardless of its neighboring frames.

With the recent release of RGB-D sensors, like Microsoft Kinect [91] or Asus Xtion PRO
LIVE [105], that revolutionized pose estimation approaches [31, 146], new opportunities have
emerged in this field. The analysis of human motion goes, however, beyond the pose extraction,
where a higher level of interpretation is required in order to understand human behaviors.

Human behavior analysis has shown considerable progress in the field, yet unresolved prob-
lems remain, especially those related to motion representation and time series modeling. The com-
plex nature of human motion makes understanding human behavior a difficult task. Indeed, hu-
man movements span a high dimensional space and motions with similar meanings performed
by different subjects exhibit substantial variations. Further complications arise from the fact that
the recognition system must be sufficiently robust with respect to the speed of execution and the
geometric transformations of the movement, such as the size of the subject, its position and its
orientation in the scene. Additionally, in complexe activities, interactions with objects add more
challenges to the behavoir recognition issue. One of the main issues of recognition systems is the
online capability for early detection and recognition. This capability anables the analysis of very
long motion sequences of different behaviors performed successively, and makes the interaction
system more natural.

The work that I present in this document is essentially based on the following research works:

• Rim Slama’s Ph.D. thesis (2011-2014) Geometric Approaches for 3D Human Motion Analysis: Ap-
plication to Action Recognition and Retrieval

• Maxime Devanne’s Ph.D. thesis (2012-2015) 3D Human Behavior Understanding by Shape - Anal-
ysis of Human Motion and Pose

• Quentin De Smedt’s Ph.D. thesis (2014-2017) Dynamic Hand Gesture Recognition - from Tradi-
tional Handcrafted to Recent Deep Learning Approaches
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2.2 Contributions of the HdR

The scientific context described above raises many challenges, including:

Human motion retrieval from 3D videos With the emergence of capture technology for motion
data collection, human motion data have become available and widely used in several research
areas in computer vision and computer graphics. Thus, an efficient motion data retrieval method
is needed. However, 3D shape representation and similarity is critical to perform an accurate and
efficient human motion retrieval. Our focus in Chapter 3 concerns two interesting retrieval sce-
narios: (1) Retrieving frames containing human in same poses, which helps to analyze repetitions
in the sequence, to take decisions about motion transition and to concatenate 3D video sequences
while producing a novel character animation. (2) Retrieving subsequences which represent human
in same motion. Several applications arises from this such as video understanding, summarizar-
ion and video synthesis. These potential applications subsequently require solving the problem of
pose/motion retrieval in 3D human videos.

Starting point being the data representation issue, we chose to formulate the human shape
representation as Extremal Human Curve descriptor extracted from both the spatial and the topo-
logical dimensions of the body surface. Its extraction is based on extremal features and geodesics
between each pair of them. Being invariant to pose changes, EHC descriptors allow the comparison
of pose and motion of subjects regardless of translation, rotation and scaling. Such a representation
can be employed not only in pose retrieval for video annotation and concatenation but also in mo-
tion retrieval, clustering and activity analysis. The key idea behind its extension to the temporal
domain was to represent the sequence as a succession of EHC representations and thus model the
human motion as a trajectory on the shape space. To compare two sequences of motion, we pro-
pose the use of dynamic time warping to align correspondent trajectories and to give a similarity
score between them.

Human action and gesture recognition on the Grassmann manifold More recently, effective and
inexpensive depth video cameras, much less cumbersome than multiple camera or scanning sys-
tems, are increasingly emerging. These range sensors provide 3D structural information of the
scene, which offers more discerning information to recover human postures. Often compared to
2D cameras, these devices are more robust to common low-level issues in RGB imagery like back-
ground subtraction and light variations. Chapter 4 addressed the issue of human action recognition
from such depth cameras. Recognizing human actions have many potential applications including
video surveillance, human computer interfaces, sport video analysis, health care, etc. Each appli-
cation has its own constraints, sometimes conflicting, often linked. However, main requirements
in action recognition systems remain: accuracy and speed. Each solution must find its own balance
between its constraints, depending on its application context.

To perform action recognition, we proposed to model sequence features temporally as sub-
spaces lying in Grassmann manifold. Action recognition is performed by introducing a learning
algorithm on the manifold. First, we constructed time series as a sequence of consecutive fea-
ture vectors with temporal order. Second, to capture the dynamic of the motion, we propose to
capture spatiotemporal information by linear dynamic systems. Then, the observability matrix of
this model is characterized as an element of a Grassmann manifold. To formulate our learning
algorithm, we propose two distinct processes, in which we perform classification using features
computed from depth map information using: (1) a Truncated Wrapped Gaussian model using
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features computed from depth map information, one for each class in its own tangent space, and
(2) a vector representation formed by 3D skeleton coordinates in tangent spaces associated with dif-
ferent classes in order to train a linear SVM. Our approach in terms of accuracy/latency revealed
an important ability for a low-latency action recognition system.

The effectiveness of skeleton data has been proven for the analysis and recognition of relatively
simple behaviors, like human actions. However, more complex behaviors like activities involving
manipulation of objects. So as to characterize such human-object interactions, hybrid approaches
combining description of both human motion and objects are appreciated. Such activities also
involve more complex human motions. Hence, a temporally local analysis of the motion is often
required. Finally, Linear Dynamic Systems are not adapted to model complex activities, thus to
extend our approach to this task, time-varying LDS model can be considered. Particularly, this
model can be described as a trajectory on the space of LDS models. Thus, under local stationary
assumptions, we could perform classification problems by modeling trajectories on the manifold.

Human activity recognition by shape analysis of motion trajectories In order to address the
problem of human behavior understanding where many issues are still open, we introduced in
Chapter 5 a new approach related to the local and/or global analysis of the human motion in order
to better understand its meaning. In particular, we extend the Riemannian framework presented in
Chapter 3 to deal with high dimensional curves, by considering the human action representation
as a trajectory in action space over the time. First, shapes of trajectories are interpreted within
a Riemannian manifold and an elastic metric is employed for computing shape similarity, thus
improving robustness to the execution speed of actions.

Second, the extension to complex behaviors, like activities, became possible, by segmenting
the motion into short motion units and considering both human movement and depth appearance
to characterize human-object interactions. Finally, the sequence of temporal segments is modeled
through a Dynamic Naive Bayesian Classifier. Extensive experiments carried out on several public
datasets evaluate the potential of the proposed approach in different contexts, including action
recognition and online activity detection and recognition.

Despite its usefulness in describing the depth appearance description around hand joints, its ef-
fectiveness remains limited in a complex scenario of human-object interactions. While it allows us
to differentiate similar activities in terms of human motion, such method sills insufficient to inter-
pret fine hand gestures, which is a critical problem for behaviour understanding. Among human
body parts, hands are the most effective and intuitive interaction tools in Human-Computer Inter-
action applications. Thus, hand gesture analysis and recognition present a crucial task to achieve a
deeper understanding of the behavior.

Fine-grained hand gesture recognition Like action and activity recognition, hand gesture anal-
ysis has been widely investigated in the literature, especially from 2D videos captured with RGB
cameras. There were, however, challenges confronted by these methods, such as the sensitivity to
color and illumination changes, background clutter and occlusions. Afterwards, thanks to the re-
cent release of inexpensive depth sensors, new opportunities for hand pose estimation and gesture
recognition emerge. The area of hand gesture analysis covers hand pose estimation and gesture
recognition. Hand pose estimation is considered to be more challenging than other human part es-
timation due to the small size of the hand, its greater complexity and its important self occlusions.
Beside, the development of a precise hand gesture recognition system is also challenging. Differ-
ent occurrences of the same gesture type contain high dissimilarities derived from ad-hoc, cultural
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and/or individual factors in the style, the position and the speed of gestures. In addition, ges-
tures with different meanings contain high similarities derived from the heterogeneity of possible
gestures.

All the above considerations lead us to address in, Chapter 6, the problem of hand gesture
recognition according to two distinct approaches: handcrafted and deep learning. Hence, we in-
vestigate in the first part the gesture recognition problem by employing geometric features derived
from hand posture, represented as skeletal data, for heterogeneous and fine dynamic hand ges-
tures. The hand pose, can be either captured directly by certain depth sensors, or extracted later
from depth images. In the second part, we extend the study to online dynamic hand gestures taking
over the whole pipeline of the recognition process, from hand pose estimation to the recognition
process, using a deep learning approach. So as to face the main challenges, we propose to revisit
the feature pipeline by combining the merits of geometric shape and dynamic appearance, both
extracted from a Convolutional Neural Network model trained for hand pose estimation problem.
Transfer learning strategy has been employed in our approach to transfer the knowledge of a CNN
model, trained using a large hand pose estimation dataset, to extract relevant features describe the
gesture. The use of the transfer learning anable us to outperform state-of-the-art deep learning
approaches using less than half of the number of parameters of the baseline model. However, we
limited our experiments for only two hand gesture datasets simulating human-computer interface
based on hand gestures acquired in online scenario.
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CHAPTER 3

3D Human Motion Retrieval
Static Poses and Motion Shape Analysis

This chapter presents our contributions on shape representation and similarity in 3D human video
sequences. These contributions originate from the work done by Rim Slama during her Ph.D thesis
[38]. The chapter is organized as follows. After a description of the context of this work as well
as the state-of-the-art methods of the domain in Section 3.1, Section 3.2 presents our 3D shape
representation by extremal curve extraction. Section 3.3 describes the pose modeling in shape space
and the elastic metric used for curve comparison. In section 3.4, we discuss the evaluation of our
framework in terms of shape similarity, video segmentation and retrieval. Finally, Section 3.5 gives
conclusion.

The contribution presented in this chapter were published in the journal paper [J3] and confer-
ence papers [C8, C9], and from where some parts of this chapter are extracted.

3.1 Context

Unlike the analysis of human body in 2D video, human body analysis in 3D video is still a little ex-
plored field. Since significant progress in multiple view reconstruction techniques has been made
[183, 199], 3D video sequences of human motion are more and more available. However, the need
for handling and processing such data led to several approaches using temporal shape representa-
tion and matching. In such videos, each frame is a mesh approximation of the body surface shape
often generated independently regardless of its neighboring frames. Most work on 3D video have
been mainly focused on performance, quality improvements and compression methods [169, 183,
192].

The acquisition of long sequences may produce massive quantity of data which necessitates effi-
cient schemes for navigating, browsing and people and motion searching. Thus, there is a real need
to develop such a retrieval method to accelerate and facilitate browsing this data. There are several
retrieval scenarios but the ones we are targeting here concerne: (1) human pose retrieval in several
motions, which helps to analyze repetitions in the sequence, to take decisions about motion transi-
tion and to produce character animation. (2) human subsequence retrieval in same motion. Several
applications arises from this such as video understanding, summarizarion and video synthesis.
These potential applications subsequently require solving the problem of pose/motion retrieval in
3D human videos. This retrieval system is based on the definition of pose or motion descriptors
and similarity measure to compare them.

In this chapter, we consider the problem of 3D shape similarity in 3D video sequences of peo-
ple motions. Existing approaches use traditional global descriptors of shape to define the shape
similarity using L2 like distance. However, such a coarse representation present limits for whole
and/or body part pose similarity. Besides, they are not allowing doing statistics on human body
pose representations. For these rasons, For these reasons, we are interested in pose descriptors
which represent and compare the pose information, in high dimentionality, using a unified geo-
metric framework providing several processing modules within a duality pose/motion approach.
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We first focus on the analysis of human pose and we propose a novel 3D human curve-based
shape descriptor called Extremal Human Curves (EHC). This descriptor, extracted on body surface,
is based on extremal features and geodesics between them. Every 3D mesh is represented by a
collection of these open curves. The mesh to mesh comparison is then performed in a Riemannian
shape space using an elastic metric between each two correspondent human curves. At this level,
our ultimate goal is to be able to perform reliable reduced representation based on geodesic curves
for shape and pose similarity metric. Invariant to pose changes, our EHC descriptor allows pose
(and motion) comparison of subjects regardless of translation, rotation and scaling. Such descriptor
can be employed not only in pose retrieval for video annotation and concatenation but also in
motion retrieval, clustering and activity analysis.

Second, we are interested in the task of video segmentation and comparison between motion
segments for video retrieval. As a 3D video of human motion consists of a stream of 3D models, we
assume that EHC features are extracted from all 3D shape frames of the sequence, which is further
segmented. For direct comparison of video sequences, the motion segmentation can play an im-
portant role in the dynamic matching by segmenting automatically the continuous 3D video data
into small units describing basic movements, called clips. For the segmentation of these units, an
analysis of minima on motion vector is performed using the metric employed to compare EHC rep-
resentations. Finally, the motion retrieval is achieved thanks to the dynamic time warping (DTW)
algorithm in the feature vector space.

3.1.1 3D human body acquisition systems and datasets

First of all, we present some of the most known 3D acquisition systems and public 3D static and
dynamic human body datasets before introducing our approaches. 3D scanners are generally used
to acquire real 3D human models [224, 226]. They are easy to use and offer various softwares to
model the result measurements, but they are quite expensive. They work according to different
technologies (laser beam, structured light, ...) and provide million of points with often related
color information. Other techniques are based on silhouette extraction [217] or multi-image pho-
togrammetry [209]. Recently, it is increasingly popular to scan the 3D human body using single
or multiple depth sensors like kinect as introduced in works of [101, 124]. The acquired models
using these technologies are noisy and have lower resolution than scanned models. Moreover, syn-
thetic 3D human bodies can be generated artificially. These synthetic models are created by graphic
designer using specialized software (like 3D studio max [227]). 3D human video is composed of
a consecutive sequence of frames. Each frame is represented as a polygon mesh of a human in
a certain pose. Namely, each frame is expressed by coordinates of vertices, their normals, their
connection (topology), and sometimes color, and others information corresponding to the repre-
sentation format. Such kind of data can be generated using a multi-camera environment. Such
environment consists on a fixed zone of interest surrounded by various cameras facing it at differ-
ent angles. These cameras are calibrated and the internal and external parameters of calibration
of each camera are estimated beforehand. This system allows capturing synchronized multi-view
images, taken at several instants over time. Then, images are used to build a sequence of tex-
tured meshes describing the captured dynamic scene [169, 204]. The most significant characteristic
in 3D video generated from multi-camera system is that each frame is generated regardless to its
neighboring frames. Therefore, the connectivity and topology differ from one frame to an other.
Many recent approaches have been proposed to improve multi-reconstruction systems [128, 156,
158, 184]. Many 3D static and dynamic human body datasets are published, where the most know
are presented in Table 3.1.
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Data Static/Dynamic Real/Synthetic
Ceasar [228] static real

Pickup et al.[50] static Synthetic and real
Haster et al. [174] static real

Liu et al. [158] static real
Gkalelis et al. [175] dynamic real
Huang et al. [167] dynamic synthetic
Vlasic et al. [180] dynamic real
Starck et al. [186] dynamic real

4dr [225] dynamic real

Table 3.1: Summary of datasets containing 3D human body in static poses and also in motion.

3.1.2 Related work

3D shape representation and similarity have been addressed in various research domains, such as
computer vision, computer graphics, and for various applications, such as 3D object recognition,
classification, retrieval. We address below, the most relevant works related to our approach, which
only utilize the full-reconstructed 3D data for shape similarity in 3D human video. The most known

Static descriptors include: spin images, spherical harmonics, shape context and shape distribu-
tion. Spin image descriptor is proposed by Johnson et al. [212] to encode the density of mesh
vertices into 2D histogram. Osada et al. [206] use a Shape Distribution, by computing the dis-
tance between random points on the surface. Ankerst et al. [213] represent the shape as a volume
sampling spherical histogram by partitioning the space containing an object into disjoint cells cor-
responding to the bins of the histogram. This later is extended with color information by Huang et
al. [173]. A similar representation to the Shape Histogram is presented by Kortgen et al. [202] as 3D
extended shape context. Kazhdan et al. [203] apply spherical harmonics to describe an object by
a set of spherical basis functions representing the shape histogram in a rotation-invariant manner.
These approaches use global features to characterize the overall shape and provide a coarse de-
scription, that is insufficient to distinguish similarity in 3D video sequence of an object having the
same global properties in the time. A comparison of these shape descriptors combined with self-
similarities is made by Huang et al. [167]. Other works on the 3D shape similarity can be found
in the literature, where surface-based descriptors are often used with a step of features detection.
The advantage of these features is that their detection is invariant to pose change. The extremities
can be considered as the one among the most important features for the 3D objects. They can be
used for extracting a topology description of the object like Reeb-graph descriptor [123] or closed
surface-based curves [136, 143, 187]. The extraction and the matching of these features have been
widely investigated using different scalar functions from geodesic distances to heat-kernel [162,
172]. Tabia et al. [143] propose to extract arbitrarily closed curves amounting from feature points
and use a geodesic distance between curves for 3D object classification. Elkhoury et al. [136] extract
the same closed curves but they use heat-kernel distance in the 3D object retrieval process.

Temporal descriptors are presented in several works as an extension of static descriptors to tem-
poral ones for frame retrieval in a 3D human video, using time filtering and shape flows obtained
via invariant-rotation shape histograms [167]. Such approaches usually do not capture any geomet-
rical information about the 3D human body pose and joint positions/orientations. This prevents
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using them in certain applications that require accurate estimation of the pose (and the joints in
some cases) of the body parts. The temporal similarity in 3D video is addressed also in the case of
skeletal motion and is evaluated from difference in joint angle or position together with velocity
and acceleration [208]. Huang et al. [166] demonstrate that skeleton-based Reeb-Graph descriptor
has a good performance in the task of finding similar poses of the same person in 3D video. Shape
similarity is also used for solving the problem of video retrieval by matching frames and comparing
correspondent ones using a specified metric. In Yamasaki et al. [185], the modified shape distribu-
tion histogram is employed as feature representation of 3D models. The similar motion retrieval
is realized by Dynamic Programming matching using the feature vectors and Euclidean distance.
The Dynamic Time Warping algorithm (DTW), based on Dynamic Programming and some restric-
tions, was also widely used to resolve the problem of temporal alignment. Given two time series
with different size, DTW finds an optimal match measuring the similarity between these sequences
which may vary in time or speed. Thereby, by a frame descriptor and the temporal alignment us-
ing DTW, many authors succeed to perform action recognition or sequence matching for indexing
[116, 125, 141]. Recently, Tung et al. [123] propose a topology dictionary for video understanding
and summarizing. Using the Multi-resolution Reeb Graph as a relevant descriptor for the shape in
video stream for clustering. In this approach, they perform a clustering of the video frames into
pose clusters and then they represent the whole sequence with a Markov motion graph in order to
model the topology change states.

From the above review, we can identify certain issues may be considered in our approach. The
use of global description of the model ignores the local details. The aspect of motion is usually
incorporated by time convolution of the distance metric itself computed from static poses. We are
convinced of the extremities feature points as they are used in many state-of-the-art algorithms as
an important compact semantic representation of human posture. Finally, the shape analysis of
curves extracted from human body mesh may enable us to represent the shape variations. Such
representative curves of the body surface may provide an efficient and a compact representation of
human shape for the similarity task.

3.2 Principle of Extremal Curve

Our strategy consists of describing the body shape as a skeleton based shape representation, ex-
tracted on the surface of the mesh by connecting features located on the extremities of the body.
This allows us to analyze pose variation with elastic deformation of the body, using representative
curves on the surface.

3.2.1 Feature point detection

The points of the surface located at the extremity of its prominent components are well used in
many applications, including deformation transfer, mesh retrieval, texture mapping and segmen-
tation. Our strategy consists in using such feature points to represent human pose descriptor based
on curves connecting each two extremities. Many existing approaches have been proposed to ex-
tract feature points. Some of them select vertices as feature points [207], where Gaussian curva-
ture exceeds a given threshold. However, this method can miss some feature points because of the
threshold parameter and cannot resolve extraction on constant curvature areas. Katz et al. [198] de-
velop an algorithm based on multidimensional scaling, in quadratic execution complexity. Tierny
et al. [191] proposed an approach based on geodesic distance evaluation to detect body extremity
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points. This approach is invariant to geometrical transformations and model pose, and its process
can be simply summarized as the following:

Let v1 and v2 be the most geodesic distant vertices on a connected triangulated surface M of a
human body. These two vertices are the farthest on M , and can be computed using Tree Diameter
algorithm (Lazarus et al. [211]). Now, let f1 and f2 be two scalar functions defined on each vertex
v of the surface M as follows:

f1(v) = g(v, v1) \ f2(v) = g(v, v2) (3.1)

where g(x, y) is the geodesic distance between points x and y on the surface. Let E1 and E2

be respectively the sets of extrema vertices (minima and maxima) of f1 and f2 on M (calculated
in a predefined neighborhood). We define the set of feature points of the surface of human body
M as the intersection of E1 and E2. Concretely, we perform a crossed analysis in order to purge
non-isolated extrema, as illustrated in Figure 3.1. The f1 local extrema are displayed in blue color,
f2 local extrema are displayed in red color and feature points resulting from their intersection are
displayed in mallow color. Figure 3.2 shows different persons from three different datasets where
feature extraction is stable despite change in shape, pose and clothing for each actor.

Å
=

Figure 3.1: Extraction process of 3D human body extremity points. (top) The two distant ver-
tices on the surface of the human body. (bottom) The set of local extrema and the result of their
intersection.

We opted to use this extremity point process for our body shape representation approach.
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Figure 3.2: Extremity points extracted on different human body subjects in different poses.

3.2.2 Collection of extremal curve

First of all, let describe our curve extraction process allowing to extract a set of feature points on the
body E = {e1, e2, e3, e4, e5} from For a body surface M. Let � denotes the open curve on M which
joints two feature points of M {ei, ej}. To obtain �, we seek for the geodesic path Pij between ei
and ej . We repeat this step to extract ten extremal curves from the body surface so that we do all
possible paths between elements of E. The body pose can be approximated by using these extremal
curves M ⇠

S
�ij , as shown in the top of Figure 3.3. These curves can be categorize into 5 categories

corresponding to the body part in question (Figure 3.3 bottom).
Note that modeling objects with curves is carried out for several applications; Abdelkader et

al. [160] use closed curves extracted from human silhouettes to characterize human poses in 2D
videos for action recognition. Drira et al. [100] use open curves extracted from nose tip and face
surface as a surface parametrization for 3D face recognition.

In our approach, we have chosen to model the body pose by a collection of curves as they offer
a reduced representation of the mesh surface, and allow later to analyze the shape variation using
Riemannian geometry of shape space introduced by Joshi et al. [189].

3.3 Shape analysis for Human Pose Modeling

Shape analysis has been widely investigated in computer vision for different application domains,
like object recognition in a scene, evolution of illness in medical imaging an facial recognition. We
focus in this chapter on the analysis of human pose characterized by a set of the above presented
curves. To achieve this analysis, we believe that the human shape cue is very important due to the
geometric nature of human pose and motion.
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Figure 3.3: Body representation as a collection of extremal curves.

Many existing approaches have been developed in past years to analyze shapes of 2-D curves,
like those based on Fourier descriptors, moments or the median axis. More recent works in this
area consider a formal definition of shape spaces as a Riemannian manifold of infinite dimension
on which they can use the classic tools for statistical analysis. The recent results of Michor et al.
[193], Klassen et al. [200] and Yezzi et al. [196] show the efficiency of this approach for 2-D curves.
Recently, a generalization of this work to the case of curves defined in Rn is proposed by Joshi et
al. [189]. We adopt this work to our our collection of curves defined in R3.

3.3.1 A short note on Riemannian shape space framework

To analyze the shape of human body, first in static posture and later in motion, while facing the
constraints related to geometrical elastic transformation, we employ a Riemannian Shape Analysis
framework [189]. Such framework allows us to capture and interpret shapes of curves in R3 within
a Riemannian manifold and provides an elastic metric to measure the similarity between such
shapes. In addition, using such manifold offers a wide variety of statistical and modeling tools that
can be used to improve and deepen the analysis of human pose deformation and shape similarity.
Let us now giving some brief comments on the basic importance of the notion of the Shape Analysis
framework [189]. For more detail, reader is referred to the Rim Slama’s Ph.D thesis [38], from where
this short note is extracted.

Human shape representation. While human body is an elastic shape, its surface can be simply
affected by a stretch (raising hand) or a shrinking (squatting). In order to analyze human curves
independently to this elasticity, an elastic metric is needed within a shape space framework.

Let � : I ! R3, for I = [0, 1], represents an extremal curve obtained as described above. To
analyze its shape, we shall represent it mathematically using a square-root velocity function (SRVF),
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denoted by q(t), according to:

q(t) =
�̇(t)q
k�̇(t)k

. (3.2)

q(t) is a special function introduced by Joshi et al.[189] that captures the shape of � and is par-
ticularly convenient for shape analysis. The classical elastic metric for comparing shapes of curves
becomes the `2-metric under the SRVF representation. This point is very important as it simplifies
the calculus of elastic metric to the well-known calculus of functional analysis under the `2-metric.
Hence, the SRV representation finds its potential for its ability for elastic matching. Actually, un-
der `2-metric, the re-parametrization group acts by isometry on the manifold of q function (or SRV
representation). This is not valid in the case of �. More formally, let �1 and �2 represent two open
curves and � = {� : [0, 1]! [0, 1]/� is a diffeomorphism } is the set of all re-parametrizations.

k�1 � �2k 6= k�1 � � � �2 � �k. (3.3)

The use of SRV representation allows the re-parametrization group to act by isometry on the
manifold of SRV representations. This point is very important as the curve matching could be done
after re-parametrization. The change of parametrization before the matching is able to reduce the
effect of stretching and/or biding of the curve.

We define the set (pres-shape space):

C = {q : I ! R3, kqk = 1} ⇢ `2(I,R3) . (3.4)

where using `2-metric on its tangent spaces, C becomes a Riemannian manifold.

Since the elements of C have a unit `2 norm, C is a hypersphere in the Hilbert space `2(I,R3). In
order to compare the shapes of two extremal curves, we can compute the distance between them
in C under the chosen metric. This distance is defined to be the length of a geodesic connecting the
two points in C. Since C is a sphere, the geodesic length between any two points q1, q2 2 C is given
by:

dc(q1, q2) = cos�1(hq1, q2i) , (3.5)

and the geodesic path  : [0, 1]! C, is given by:

 (⌧) =
1

sin(✓)
(sin((1� ⌧)✓)q1 + sin(✓⌧)q2) ,

where ✓ = dc(q1, q2).

We define the equivalent class containing q as:

[q] = {
p
�̇(t)Oq(�(t))|O 2 SO(3), � 2 �} ,

to be equivalent from the perspective of shape analysis. The set of such equivalence classes, de-
noted by S .

= C/(SO(3)⇥ �) is called the shape space of open curves in R3. S inherits a Riemannian
metric from the larger space C due to the quotient structure [144].Thanks to SRV representation, the
groups �⇥SO(3) act by isometries. This is a necessary condition to let the quotient space S inherit
the metric from the pre-shape space C.

To obtain geodesics and geodesic distances between elements of S , one needs to solve the opti-

32



3.3. Shape analysis for Human Pose Modeling

mization problem:
(O⇤, �⇤) = arg min

(O,�)2SO(3)⇥�
dc(q1,

p
�̇O(q2 � �)) .

For a fixed O in SO(3), the optimization over � is done using Dynamic Programming. Similarly,
for a fixed � 2 �, the optimization over SO(3) is performed using Singular Value Decomposition
method.

By iterating between these two, we can reach a solution for the joint optimization problem. Let

q⇤2(t) =
q

˙�⇤(t)O⇤q2(�⇤(t))) be the optimal element of [q2], associated with the optimal rotation O⇤

and re-parameterization �⇤ of the second curve, then

ds([q1], [q2])
.
= dc(q1, q

⇤
2) , (3.6)

and the shortest geodesic between [q1] and [q2] in S is given by:

 (⌧) =
1

sin(✓)
(sin((1� ⌧)✓)q1 + sin(✓⌧)q⇤2)

,
where ✓ is now ds([q1], [q2]).

In this way, the distance between the shape of two curves in R3 is invariant to their translation,
scale, rotation and re-parametrization. Figure 3.4 illustrates the geodesic path on the open curve
shape space between two given extremal curves.

Figure 3.4: Geodesic path between extremal human curves of neutral pose with raised hands.

3.3.2 Similarity measure and average pose

Similarity measure can be defined using he elastic metric applied on extremal curve-based de-
scriptors. Given two 3D meshes x, y and their descriptors x0 = {qx1 , qx2 , qx3 , ..., qxN} and y0 =

{qy1 , q
y

2 , q
y

3 , ..., q
y

N
}, the mesh-to-mesh similarity can be represented by the curve pairwise distances

and can be defined as follows:
s(x, y) = d(x0, y0) , (3.7)

d(x0, y0) =

P
N

i=1 d(�
x
i
,�y

i
)

N
=

P
N

i=1 ds(q
x
i
, qy

i
)

N
. (3.8)

where N is the number of curves representing the mesh and ds is the elastic distance of Equation
3.6. If we average the arithmetic distances between all corresponding curves, we can captures the
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similarity between their postures.

Shape geometric mean of a set of data sufficiently close to each other, in Riemannian geometry,
can be computed by minimization of a cost function computed from the data. A common algorithm
for such mean computation on Riemannian manifold is called the Karcher mean or Riemannian
center of mass [221] and employs as cost function the sum of squared geodesic distances between
a given data and all other data. Here we propose to use this algorithm to identify a mean shape.
For a given set of shapes q1, . . . , qn 2 S , their Riemannian center of mass can be defined as:

µ = argmin
[q]

nX

i=1

ds([q], [qi])
2 . (3.9)

So as to minimize such cost function, the algorithm employs both the exponential map and
logarithm map operators in an iterative process to update the Riemannian center of mass until
convergence. More specifically, at each iteration i, shapes are first projected into the tangent space
at the current mean shape µi using the inverse exponential map. Based on the resulted velocity
vectors, the average direction is computed and the mean shape is slightly moved in that direction.
The exponential map is finally used to transfer the updated mean shape µi+1 back on the shape
space.

Average of human poses can be computed, using Riemannian center of mass [221], between
different poses to represent the intermediate pose, or between similar poses done by several actors
to represent a template of similar poses.

An example of using the Karcher mean to compute average curve for 6 extremal human curves
connecting hand and foot from the same side is shown in the top of Figure 3.5. In the bottom of
this figure, we show the average EHC representation computed using the Karcher mean.

Figure 3.5: Examples of Karcher mean computation as mean curve for six extremal human curves:
curve connecting hand and foot from the same side.
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3.4 Application to 3D Motion Sequences

Let us present how such a reduced representation of 3D human posture by based-geodesic curves
can be used for a reliable shape and pose similarity metric, which can be employed for several
purposes related to 3D video analysis. To show the practical relevance of our method, we present
a quantitative analysis of the effectiveness of our descriptor for both 3D shape similarity in video
and content-based pose retrieval for static shapes. We first evaluate our descriptor for shape simi-
larity application over public static shape database [174] and evaluate the results against Spherical
Harmonic descriptor [203]. Secondly, we measure the efficiency of our descriptor to capture the
shape similarity in 3D video sequences of different actors and motions from other public 3D syn-
thetic [167] and real [180, 186] video databases. We evaluate this later against Temporal Shape
Histogram [167], Multi-resolution Reeb-graph [166] and other classic shape descriptors, using pro-
vided Ground Truth.

3.4.1 Static and temporal shape retrieval

In order to extract our curves , we need to identify the feature end-points as head, right/left hand
and right/left foot, which is not affordable in practice. We can start from observations: First, the
geodesic path connecting each one of the hand end-points and the head end-point is shortest among
all possible geodesics between the five end-points. Second, the geodesic path connecting right
hand to left foot end-points or left hand to right foot end-points is the longest. The first observation
allows to identify precisely the end-point corresponding to the head, the two end-points connected
to this later corresponding to the hands without distinguishing between right and left. The second
one allows the identification of the couple of hand/foot as corresponding to same side of the body.
Rest to distinguish between left and right, which can be done if we consider a prior knowledge on
the direction of the posture of the human body for static pose and in the starting frame for video
sequence.

Static shape similarity. To evaluate the effectiveness of our EHC descriptor for static shape sim-
ilarity, we performed several tests on a the challenging statistical shape database [174]. Captured
with a 3D laser scanner, this database contains more than hundred subjects doing more than thirty
different poses. We perform our descriptor on a subset of more than 300 shape models obtained
from 144 male and female subjects aged between 17 and 61 years. Only 18 consistent poses (p0-p13,
p16, p28, p29, p32) are used in this experiments and some of them are illustrated in Figure 3.6.

For the purpose of static and video retrieval evaluations, we use Recall/Precision plot in addi-
tion to the four statistics indicating the percentage of the top K matches that belong to the same
pose class as the query pose: nearest neighbor statistic (NN), first tier statistic (FT), second tier
statistic (ST) and E-Measures. More detail about their definitions can be found in [38].

Additionally, a Sequential Forward Selection method, applied on elastic distance values and
coupled with ST statistic, has been used to select the best combination of curves among all possible
ones. From a quantitative point of view, we present the Recall/Precision plot obtained by EHC
compared to the popular Spherical Harmonic (SH) descriptor with optimal parameter setting (Ns =

32 and Nb = 16) [213]. This plot and accuracy rates (NN, FT and ST) reported in Table 3.2 show
that our approach provides better retrieval precision. EHC using only the five selected curves
outperforms SH and EHC using the 10 curves to retrieve models with the same pose.

The self similarity matrix obtained from the mean elastic distance of the five selected curves is
shown in the Figure 3.8.
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Figure 3.6: Example of body poses in the static human dataset [174].

Figure 3.7: Precision-recall plot for pose-based retrieval.

Approach NN(%) FT(%) ST(%) E-Measure(%)
SH 71.0 57.9 75.5 41.3

EHC 10 curves 80.3 75.5 85.2 42.5
EHC 5 curves 84.8 77.2 89.1 43.0

Table 3.2: Retrieval statistics for pose based retrieval experiment

This matrix demonstrates that similar poses have a small distance (cold color) and that this
distance increases with the degree of the change between poses (hot color). This allows pose clas-
sification or pose retrieval by comparing models using their extremal curve representation and the
elastic metric.

Temporal shape similarity. We used two datasets for the evaluation of the proposed temporal
shape descriptor: the synthetic 3D video dataset with their ground-truth annotations proposed by
Huang et al. [167] and the real captured 3D video dataset [180]. Let us presented how to compute
a temporal ground-truth similarity between each two surfaces. Having two human body mesh X

and Y with N vertices xi 2 X and yi 2 Y , a temporal-ground truth CT is computed by combining
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Figure 3.8: Confusion similarity matrix of pose dissimilarity between models of a 3D humans in
different poses.

a shape similarity Cp and a temporal similarity Cv as follows:

CT (X,Y ) = (1� ↵)Cp(xi, yj) + ↵Cv(xi, yj)

Cp(X,Y ) = 1
N

P
N

k=1 d(xi, yj)

Cv(X,Y ) = 1
N

P
N

k=1 d(ẋi, ẏj)

(3.10)

where d is an Euclidean distance, ẋi and ẏj are the derivation of x and y between next and
current frame. the parameter ↵ is used to balance the equation and it is set to 0.5. In order to
identify frames as similar or dissimilar, the temporal ground truth similarity matrix is binarized
using a threshold set to 0.3 similarly to Huang et al. [167]. Finally, recognition performance is eval-
uated using the ROC curves, and the true and false dissimilarity compare the predicted similarity
between two frames, against the ground-truth similarity.

An example of self-similarity matrix computed using temporal ground-truth descriptor, static
and temporal descriptors are shown in Figure 3.9. This figure illustrates also the effect of time
filtering with increasing temporal window size for EHC descriptors on a periodic walking motion.

A comparison is made between our Temporal Extremal Human Curve (TEHC) and several
descriptors from the state-of-the-art, like Shape Distribution (SD) , Spin Image (SI) , Spherical
Harmonics Representation (SHR), two Shape-flow descriptors, the global / local frame alignment
Shape Histograms (SHvrG / SHvrS) (Huang et al. [167]) and Reeb-Graph as skeleton based shape
descriptors (aMRG) (Tung et al. [197]). To measure the performance of the similarity metric results,
we plot the ROC curves obtained from our EHC descriptor (see3.10). These results are compared
with ROC curves obtained by all state-of-the-art descriptors presented in figure 6 at [167] where
our descriptor is among the more three efficient descriptors.

We analyze these results from various points of view, including the role of the time-filer, the
relative performance of the descriptors and the relative performance per action. First, we notice
that recognition performance of EHC increases with the increase of the window size of time-filter
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Figure 3.9: Similarity measure for "Fast Walk" motion in a straight line compared with itself. Cold-
est colors indicate most similar frames. 1st matrix: temporal Ground-Truth (TGT). 2nd, 3rd and 4th

matrix: self-similarity matrix computed with Temporal EHC with window size 3, 5 and 7 respec-
tively.

Figure 3.10: Evaluation of ROC curve for static and time-filtered descriptors on self-similarity
across 14 people doing 28 motions. From right to left: ROC curves obtained by our TEHC descrip-
tor with three different values of windows size Nt, ROC curve obtained by our EHC descriptor
compared to different algorithms and ROC curves obtained with Nt= 1.

like any other descriptor. In fact, time-filter reduces the minima in the anti-diagonal direction,
resulting from motion in the static descriptor. In addition, the MDS is insensitive to mesh defor-
mation which maintains the geodesic distance and shows lower recognition performances. Our
descriptor outperforms MDST and other classic shape descriptors (SI, SHRT, SD) and shows com-
petitive results with (SHvrG/SHvrS) and aMRG. Third, multiframe shape-flow matching required
in SHvrG allows the descriptor to be more robust but the computational cost will increase by the
size of selected time window. Our descriptor demonstrates a comparable recognition performance
to aMRG. It is efficient as the curve extraction is instantaneous and robust as the curve represen-
tation is invariant to elastic and geometric changes thanks to the use of the elastic metric. Finally,
the result analysis for each action shows that TEHC gives a smooth rates that are stable and not
affected by the complexity of the motion, like rock and roll, vogue dance, faint and shot arm, as
illustrated in Figure 3.11

We apply the time filtering Extremal Human Curves descriptor to real captured 3D video se-
quences of people. Inter-person similarity across two people in a walking motion with an example
similarity curve are shown in Fig. 3.12. Our temporal similarity measure identifies correctly simi-
lar frames across different people. These similar frames are located in the minima of the similarity
curve.

We finally applied the time filtering Extremal Human Curves descriptor on real captured 3D
video sequences of people. The first sequence is extracted from the dataset [180]. The second one
is extracted from real data reconstructed by multiple camera video [186]. Inter-person similarity
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Figure 3.11: ROC curves (a) for static (Nt = 0) and time-filtered EHC decriptor (Nt = 1, Nt = 2)
on self-similarity across 14 people doing 28 motions, (b) ROC performance for 4 complex motions
obtained by EHC, for fixed window size 5 (Nt = 2) against Temporal Ground Truth.

across two people in a walking motion with an example similarity curve are shown in Figure 3.12
(a). Our temporal similarity measure identifies correctly similar frames across different people.
These similar frames are located in the minima of the similarity curve. In addition, despite the
topology change and the reconstruction noise as shown in Figure 3.12 (b), our algorithm succeed
to identify correctly the frame in the sequence similar to the query.

3.4.2 Motion segmentation for 3D video analysis

Now we have a reliable representation of 3D human mesh in a static pose based on EHC descriptor,
we can use it to compute a similarity between sequences of video. To do this, we match all pairwise
correspondent EHCs using the geodesic distance in the shape space. However, a human motion
sequence can be composed of several distinct actions, and each one can be repeated several times.
Dividing continuous sequence into separate motion clips using our EHC can play an important
role in the video analysis and matching.

In order to split automatically the continuous sequence into segments which exhibit basic move-
ments, called clips, we use the notion of human pose representation by our EHC descriptor and the
elastic distance in the shape space manifold. As we need to extract meaningful clips, the segmen-
tation should be overly fine and can be considered as finding the alphabet of the motion. For this
reason, we believe that motion speed can be an important factor [220]. In fact, when human changes
motion type or direction, the motion speed becomes small and this results in dips in velocity. We
exploit this latter by finding the local minima for the change in type of motion and local maxima
for the change in direction. The extrema detected on velocity curve should be selected as segment
points. In our approach, we consider only the change in type of motion as a meaningful clip. Thus,
clips with slight variations and a small number of frames are avoided. Note that optimum local
minimum, that detect precise break points where the motion changes, should be selected in a pre-
defined neighbourhood. For this reason, we fix a size of window to test the efficiency of the local
minimum in this condition. The speed variation can be computed using an elastic distance between
each two successive EHC in the sequence, and then represented in a vector of speed for a further
smoothing.
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(a) (b)

Figure 3.12: Inter-person similarity measure for real sequences. Similarity matrix, curve and ex-
ample frames for (a) Walk motion across two actors [180] (b)walk motion for Roxanne [186] Game
Character Walk .

Once the motion clips are obtained, we need to evaluate the segmentation process. To do this,
we conduct our evaluating on the synthetic dataset [167]. In particular, we have chosen 14 dif-
ferent motions: walk (slow, fast, circle left/right, cowboy, march, mickey), run (slow, fast, circle
left/right), sprint, and rockn’roll. These motions are performed by two actors (a woman and a
man) making a total of 28 motions (2800 frames). They are chosen for their interesting challenges
as: (i) change in execution rate (slow/fast motions) (ii) change in direction while moving (walking
in straight line, moving in circle and turning left and right) (iii) change in shape (a woman and a
man). We used these motion sequences for both segmentation and later retrieval experiment. To
validate the segmentation step, we segment all these 3D video sequences with the proposed ap-
proach and then compare results to provided manual segmented ground-truth. Lets now present
some results of motion segmentation experiments.

Practical case of motion segmentation. Plotting the distance between EHC representation of suc-
cessive frames gives a very noisy curve. The break points from this curve do not define semantic
clips and the extracting of minima leads to an over-segmentation of the sequence (see Figure 3.13
(top)). To obtain more significant local minima, we convolve the curve with a time-filter allowing
to take into account the motion variation, not only between two successive frames but also in a
time window. The motion degree after convolution is shown in Figure 3.13 (bottom). Break points
are more precise and delimits significant clips corresponding to step change in the video sequence.
In order to evaluate its efficiency, we apply our segmentation method on the whole dataset [180]
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and then compare the results to a manual segmentation of the base done carefully . The segmen-
tation of the dataset gives 83 segmented clips (78 correct clips and 5 incorrect clips). This can be
explained by the fact that the 5 failing clips are short. They contain about 6 frames at most and do
not describe atomic significant actions. Otherwise, the a total of 144 clips have been obtained by
the segmentation of the 14 motions taken from the dataset [167] performed by two actors.

Figure 3.13: Speed curve smoothing.

Figure 3.14 shows some results of motion segmentation on a "slow walk" and a "fast walk"
motions. Although the walk speed increases, the motion segmentation remains significant and
does not change and corresponds to the step change of the actor. The Rockn’roll dance motion
segmentation is also illustrated in Figure 3.14 (bottom). Thanks to the selection of local minima in
a precise neighborhood, only significant break points are detected.

Analysis of motion retrieval result. The similarity metric represented by elastic measure values
between each pair of clips allows us to generate a confusion matrix for all classes of clips, in order
to evaluate the recognition performance by computing dynamic retrieval measures thanks to a
manually annotated ground truth. An example of the matrix representing the similarity evaluation
score among clips in sequences performed by a female actress against the clips of sequences of
motions performed by a male actor is shown in Figure 3.15. More the color is cold more the clips
are similar.

Thanks to the use of DTW, it is noticed that similarity score between same clips done in different
speeds is small (see Figure 3.15). The matching between the clip representing change in step in a
slow walk motion composed of 25 frames and a fast walk motion, composed of 18 frames, is small.
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Figure 3.14: Various motion segmentation. From right top to left bottom, motions are: slow walk,
Rockn’roll dance, fast walk, vogue dance.

Besides, our approach succeed to retrieve clips within motions done in different ways. For ex-
ample, the walk circle clips can be matched with the clips of slow walk motion done in a straight
line (see Figure 3.15). This explains why the use of an elastic metric, to compare and match tra-
jectories, makes the process independent to rotation. Although the actors performing the motions
are different, it is observed that similar clips yield smaller similarity score. Like it is shown in
"Rockn’roll" dance motion, steps of the dance performed by different actors are correctly retrieved.

It is demonstrated that 79.26% of similar motion clips are included in the first tier and 93% of
clips are correctly retrieved in the second tier. It is a rather good performance considering that only
such low-level feature as the EHC is utilized in the matching. This can be explained by the fact that
geodesics are not completely invariant to the topology changes. Thereby, the extracted sequential
curves that represent the trajectory tend to change the path on the models for certain motions and
therefore mislead the matching performed by DTW.

We also apply our retrieval approach to a real captured 3D video sequence from the real dataset
[180]. Self similarity example with an actor in a walking motion (walking in circular way) and its
similarity curve are shown in Figure 3.16. For the query clip presented at the right of the figure,
retrieved clips are found correctly in the sequence when the actor is turning.

3.4.3 Video summarization and retrieval.

In order to represent compactly a video sequence, one of the most important factor is to exploit the
redundancy of information over time. The challenging task here is to find geometric relations be-
tween consecutive data stream elements, as this redundancy should be extracted from motion and
not from frames separately. We therefore propose to use EHC to represent a pose and a trajectory as
key descriptors characterizing geometric data stream. Based on EHC representation, we develop
several processing process, like video clustering, summarization and retrieval.

Clip matching. The problem of clip matching is interesting in any time-series retrieval task where
a distance metric is used to look for, in a database, the sequences whose distance to the query is
below a threshold value. We firstly need to encode the motions in a specific representation that we
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Figure 3.15: Similarity matrix evaluation between clips.

can compare regardless to certain variations. Indeed, motion clips are considered similar even if
there are changes in the shape of the actor and the speed of the action execution. In particular, we
represent each clip as a temporal sequence of human poses, characterized by EHC representation
associated to shape model. Then, extremal curves are tracked in each sequence to characterize a
trajectory of each curve in the shape space, as illustrated in Figure 3.17 (top). Finally, the trajectories
of each curve are matched and a similarity score is obtained. However, due to the variation in
execution rates while doing the same motion, two trajectories do not necessarily have the same
length. Therefore, a temporal alignment of these trajectories is crucial before computing the global
similarity measure (see illustarion in Figure 3.17 (bottom)).

The popular Dynamic Time Warping (DTW) is an appropriated technique for this kind of tem-
poral variation problems. Especially, we use DTW algorithm proposed by (Giorgino et al. [176])
to find optimal non-linear warping function to match a given time-series with another one, while
adhering to certain restrictions such as the monotonicity of the warping in the time domain. The
optimization process is usually performed using dynamic programming approaches given a mea-
sure of similarity between the features of the two sequences at different time instants. Since DTW
can operate with any measure of similarity between different temporal features, we adapt it to fea-
tures that reside on the shape space manifold. The global accumulated costs along the path define
a global distance between the query clip and the motion segments found in the database.
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Figure 3.16: Experimental results for 3D video retrieval using motion of "walk in circle".

Average clip. Similarly to the average pose process, we introduced the notion of average clip
using both Karcher mean and DTW algorithms. Thus, we can extend the notion of mean of a set of
human poses to the mean of trajectories of poses in order to compute an "average" of several clips.
Let’s see how can we do it. Let N be the number of clips represented by N trajectories T1, T2 · · ·TN .
For a specific human curve index, we look for the mean trajectory that has the minimum distance
to the all N trajectories. As shown in Algorithm 3.1, the mean trajectory is given by computing
the non-linear warping functions and setting iteratively the template as the Karcher mean of the N

warped trajectories represented as points on the Riemannian manifold.

Algorithm 3.1 Computing the mean of a set of trajectories

Require: N trajectories from N clips T1, T2 · · ·TN

Initialization: chose randomly one of the N input trajectories as an initial guess of the mean trajectory Tmean

repeat
for i=1 : N do

find optimal path p⇤ using DTW to warp Ti to Tmean

end for
Update Tmean as the Karcher mean of all N warped trajectories

until Convergence

Data clustering. Finally, since similarity between clips has now become possible, a clustering
technique can be performed for efficient indexing, searching, and visualization. Let V denotes a
video stream of human sequence containing elements {ei}i=1...k, where e can be a frame or a clip.
To cluster V , the data set is recursively split into subsets Ct and Rt as described in the following
recursive algorithm 3.2.

Algorithm 3.2 Data clustering

Require: V {ei}i=1...k;
At time C0 = ? ; R0 = {e1, . . . , ek};

if (Rt 6= ?)&&(t <= k) then
Ct = {f 2 Rt�1 : dist(et, f) < Th};
Rt = Rt�1 \ Ct;

end if

The result of clustering is contained in Ct=1..k where Ct is a subset of V representing a cluster
containing similar elements to et. For each iteration of clustering steps, t = 1 · · ·K, the closest
matches to et are retrieved and indexed with the same cluster reference as et. Any visited element
et already assigned to a cluster in C during iteration step is considered as already classified and
is not processed subsequently. We regroup nonempty sub sets Ct in l clusters {c1, ..., cl} (with
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Figure 3.17: Graphical illustration of a sequence, obtained during a walking action, as trajectory
on shape space manifold (top). Alignment process between trajectories of same curve index using
DTW (bottom).
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l 6 k). Similarities between elements of V are evaluated using a similarity distance dist allowing
to compare the elements of V . The threshold Th is defined experimentally .

If we consider the video V as a long stream of 3D meshes, the clusters that should be obtained
must gather models with similar poses. In this case, the EHC feature vector is used as an abstraction
for every mesh and the similarity distance is the elastic metric computed between each pair of
human poses. Motion can be incorporated in this similarity by applying a simple time filter on
static similarity measure with a window size chosen experimentally [C9]. The use of temporal filter
integrates consecutive frames in a fixed time window, thus allowing the detection of individual
poses while taking into account smooth transitions.

The video sequence being a stream of clips resulting from the video segmentation approach
and clusters here gather clips with similar repeated atomic actions. In this case: the feature vector
used as abstraction for each clip is a trajectory on shape space of extremal human curves, and the
similarity distance, used to compare clips, is based on the DTW algorithm.

Content-based summarization So that the different analysis tools of 3D human motion video
have been developed, we can build a content-based summarization system. This system is consists
of three phases: (1) the whole video is segmented and clustered into several clusters of clips. (2)
only the most significant clip (the nearest one to all cluster elements) of each cluster is kept. (3) a
subsequence is then constructed, from the starting video, where these representative clips of each
cluster are concatenated. Finally, this new subsequence is clustered into clusters of poses, and only
most representative poses are kept to describe the dataset. This summarization allows a reduction
of dimension for the original dataset where we can display only main clips if we stop on third step,
or to display key frames if we continue summarization process until pose clustering.

The performance of the content-based summarization approach is evaluated for pose and clip
data. To validate the pose-based summarization, we use a composed long sequence of a subject
performing walk and squat motions from the dataset [180]. For clip-based summarization exper-
iment, the same 28 motions used for video segmentation and the retrieval have been used. The
evaluation criterion of clustering method is based on the number of clusters found which should
allow the identification of eventual redundant patterns.

The Figure 3.18 shows the clustering result obtained from the composed long sequence. The
number of clusters decreases with the increase of the threshold Th. We obtain the best result for
Th = 0.5 with 51 clusters partitioned as the bar diagram shown in the right of the Figure 3.18.

Figure 3.18: Frame clustering process with respect to threshold Th.

Pose-based clustering process can be improved by increasing the window size of the time filter
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as shown in Figure 3.19.

Figure 3.19: Frame clustering with respect to a threshold and with different window size.

We notice from this figure that for a Th = 0.2, the number of clusters varies from 330 to 440 and
a good compromise is obtained for Nt = 3.

Furthermore, we evaluate our clip-based clustering approach on the dataset [180], by applying
the clustering on a set of 14 motions performed by two actors. By decreasing the threshold Th of
the clustering algorithm, we obtain more clusters. Experimentally, we set Th to 0.43 and obtain 23
clusters from initially 110 clips for the first actor and 26 clusters for the second one (see Figure 3.20).
We notice that clips representing sprint or running steps are clustered together.

An hierarchical structure of video summarization process can be designed, starting by video
segmentation into clips, followed by clip-based clustering and then a pose-based clustering per-
formed on the frames of all represented clusters of the clips resulting from the last step. Figure
3.21 show the possess applied for the sequence of a real actor performing walking and squatting
motion. From 500 frames segmented into 18 clips, the clustering process gives 6 clusters. The new
subsequence containing 6 clips (most representative clip in each cluster) and 180 frames is then
clustered into 41 clusters where each one represent a class of pose.

Motion data retrieval. Using our data representation descriptor and related tools, we propose an
hierarchical retrieval structure combining the clustering and the content-based retrieval process. If
we consider the element of cluster as a pose, clusters are firstly performed over the entire sequence
in order to gather frames with similar poses and then a template model (as average pose) is ob-
tained for each cluster by computing its Karcher Mean. The retrieval system can then be described
as an hierarchical structure composed of two levels, the first one containing templates and the sec-
ond one containing all models of the dataset. In view of this structure, a natural way is to start at
the top, compare the query with the template of each cluster and proceed down the branch that
leads to the closest shape.

As experimental test, we applied the hierarchical approach to the dataset in [174]. Each query
model is compared to each one of the template models representing the clusters. Then, we gener-
ated a confusion matrix for all classes of pose using elastic measure values. Thanks to the provided
ground truth, we evaluated the recognition performance by computing statistic retrieval measures.
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Figure 3.20: Clustering clips from a sequence of two actors performing 14 motions from the dataset
(3) for a total of 1400 frames, with respect to Th. In second raw, the variation of clip number in each
cluster is presented.

The matrix of comparison in the first level (model-template comparison), is shown in Figure 3.22.
The effectiveness of the summarization can be assessed by simply comparing this matrix to

that already obtained for the same dataset without the use of summarization (Figure 3.8). The
summarization process reduce the computation time which complexity pass from n to log(n) while
keeping relevant information. Retrieval performances obtained from this matrix for FT, ST and
E-Measure are respectively 84.5% , 88.2% and 43.6%. Comparing these results to those in Table 3.2,
a small improvement is achieved for classic retrieval scenario in term of second tier.

Furthermore, an accuracy of 90.24% is obtained in terms of pose categorization (classification),
where the most significant confusion can be observed between the two classes ]2 ]16, both being
represent people with hands outstretched.

Finally, within the hierarchical structure, the elements of cluster could be motion clips, where a
video segmentation is firstly performed on the whole sequence. In this case, the template model is
now computed as a "mean" for each cluster of clips thanks to its Karcher Mean. The retrieval sys-
tem can then be viewed as above with hierarchical structure. To evaluate the performance of our
approach in terms of clip retrieval, we conducted a similar experimentation on the 14 motions per-
formed by two actors as already evaluated in the section 7.3. In this experimentation, each query is
a clip compared to each one of the template models representing the clusters of clips. The similarity
measure values obtained by DTW algorithm between clips are used to generate a confusion matrix
for all classes of clips, in order to evaluate the recognition performance by computing statistic re-
trieval measures thanks to the provided ground truth. The matrix of comparison in the first level
(model-template comparison) is shown in Figure 3.23.

Retrieval performances obtained from this matrix for FT, ST and E-Measure are respectively
84.09%, 95.83% and 55.26%. In term of clip classification, obtained accuracy is about 93.75%. The
analysis of the result given by the binarized matrix shows that the most misclassified clips are those
of "fast run" class. In fact, they are assigned to class template representing “sprint” motion class.
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Figure 3.21: Summarization process: (a) for a sequence of 500 frames segmented into 18 clips, the
clustering process returns 6 clusters of clips using Th = 0.38 (b) subsequence of clustered clips (180
frames) where each cluster is represented by only one clip chosen as the Karcher Mean clip of the
cluster, (c) clustering of subsequence into 41 clusters of frames using Th = 0.5, (d) distribution of
the number of frames in clusters.

3.5 Conclusion

This chapter summarizes our works on shape representation and similarity in 3D human video
sequence, in which we proposed a unified framework in order to represent human body shape with
a pose descriptor, as well as a sequence of frames with a specific representation. In this framework,
we opted a skeletal representation of human shape based on extremal features and geodesics (in
form of local open-3D-curves) between each pair of them. The representation of these curves and
the comparison between them are performed in the Riemannian shape space of open curves. By
this way, we have chosen to represent the pose of a mesh regardless to its rotation, translation and
scale. Convoluted with a time filter to incorporate the motion, it becomes a temporal descriptor
for pose retrieval. The degree of motion using feature vector, extracted from this descriptor, is
then used for spliting continuous sequence into elementary motion segments called clips. Each
clip describing an atomic movement is characterized by curve representation associated to human
mesh. The open curves in 3D space are viewed as a point in the shape space of open curves and
hence each clip is represented by a trajectory on this space. Similarity metric between each two
clips is obtained by a classical Dynamic Time Warping technique to align different trajectories on
the manifold.

The use of skeletal surface representation enabled us to obtain a a good performance in terms
of shape similarity and motion retrieval show the potential of our approach. However, this repre-
sentation has some limitations. First, it depends on the accuracy of extremities (head and limbs)
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Figure 3.22: Similarity matrix and its binarization for template pose of each class against all models
in the dataset.

Figure 3.23: Similarity matrix and its binarization for template clip of each class against all clips in
the dataset.

extraction and on the definition of the path connecting end-points. In fact, the extraction of end-
points and extremal curves is based on the definition of geodesic distance between each pair of
curves. Thus, geodesic distances play an important role in our geometric representation of the hu-
man body shape. However, they are sensitive to significant topology changes. Second, we noted
that our curve extraction can be sensitive to loose clothes, especially for a mesh of human body
wearing a skirt. This problem will be even more critical if she wears a long skirt. Finally, a prior
knowledge on the direction of the posture of the human body for the starting frame in video se-
quence is used to distinguish between left/right hand and foot. Other feature matching algorithms,
like Heat Kernel Signature as proposed by Sun et al. [171] and Zheng et al. [67], could be used to
correctly identify the right from the left side.

Our approach of motion segmentation and clip matching could be used for more semantic tasks
like human motion classification for action and gesture recognition. However, the lake of fully re-
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constructed 3D human videos dedicated to action recognition and the difficulty of the applicability
of dynamic meshes acquisition systems in real scenarios make this task inappropriate. In the other
side, the emergence of novel RGB-D sensors with high efficiency in real time processing, make their
stream more adapted for action recognition and human motion understanding.
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CHAPTER 4

Human Action Recognition
Learning on the Grassmann Manifold

This chapter address the problem of modelling and analyzing of human motion by focusing on
3D body skeletons captured by a depth sensor. These contributions originate from the work done
by Rim Slama during his Ph.D thesis [38]. It is organized as follows. After a description of the
context of this work, as well as an overview of our approach in Section 4.1, Section 4.2 reviews
related work from two points of view: manifold-based approaches and depth data representation.
Section 4.3 gives a brief introduction of the Grassmann manifold. The two-fold learning process of
our approach with corresponding experiments are discussed: when Truncated Wrapped Gaussian
in Section 4.4 and when using Representative Tangent Vectors in Section 4.5, before concluding in
Section 4.6.

The contribution presented in this chapter were published in the journal paper [J2] and confer-
ence/workshop paper [C7], and from where some parts of this chapter are extracted.

4.1 Context

Recognizing human actions in video sequences represent a task of interest for many multimedia
applications, including entertainment, medicine, sport, video surveillance, human-machine inter-
faces and active assisted living. This wide spectrum of potential applications encouraged computer
vision community to address the issue of human activity understanding from 2D videos taken from
standard RGB cameras [106–108, 139, 159]. However, most of these methods suffer from some lim-
itations, like the sensitivity to color and illumination changes, background clutter and occlusions.
Since the recent release of RGB-D sensors, new opportunities have emerged in the field of human
motion analysis and understanding. Hence, many research groups investigated data provided by
such cameras in order to benefit from some advantages compared to RGB cameras [26, 36, 97, 149,
154]. Indeed, depth data allows a better understanding of the 3D structure of the scene and thus
makes background subtraction and people detection easier. In addition, the technology behind
such depth sensors provides robustness to light variations as well as the capability to work in com-
plete darkness. Finally, the combination of such depth sensors and powerful pattern recognition
algorithms [146] enables the representation of human pose at each frame as a set of 3D joints. In
the past decades, human motion analysis from 3D data provided by motion capture systems has
been widely investigated [41, 57, 201]. While these systems are very accurate, they present some
disadvantages. First, the cost of such technology may limit its use. Second, it implies that the
subject wears some physical markers so as to estimate the 3D pose. As a result, this technology is
not convenient for the general public. All these considerations motivated us to focus our study of
human motion from RGB-D data.

Challenges In this chapter we address the problem of modelling and analyzing human action in
the 3D human joint space. Particularly, our intent is to represent skeletal joint motion in a com-
pact and efficient way that leads to an accurate action recognition. Our ultimate goal is to develop
an approach that avoids an overly complex design of feature extraction and is able to recognize
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actions performed by different actors in different contexts. Additionally, we study the ability of
our approach for reducing latency: in other words, to quickly recognize human actions from the
smallest number of frames possible to permit a reliable recognition of the action occurring. Fur-
thermore, we analyze the impact of reducing the number of actions per class in the training set on
the classifier’s accuracy. In our approach, the spatio-temporal aspect of the action is considered
and each movement is characterized by a structure incorporating the intrinsic nature of the data.
We believe that 3D human joint motion data captures useful knowledge to understand the intrinsic
motion structure, and a manifold representation of such simple features can provide discriminating
structure for action recognition. This leads to manifold-based analysis, which has been successfully
used in many computer vision applications such as visual tracking [188] and action recognition in
2D video [95, 127, 129, 137].

Motivations The Grassmann manifold has long been known for its interesting mathematical
properties, and as an example of homogeneous spaces of Lie groups [219]. However, its appli-
cations in computer science and engineering have appeared rather recently in signal processing
and control, numerical optimization and machine learning in computer vision. In our case, we are
interested in the representation of the video sequence in a space where each element of this space is
a sequence of ordered elements. In such a space, we have to be able to compute distance between el-
ements, and also to perform some statistical operations needed for temporal sequence classification
task. Let us define a video as an ordered collection of feature vectors with time-stamps (temporal
information). This sequence can be modelled as linear subspaces through linear dynamic systems
that take into account the temporal information. These subspaces represented in Grassmann man-
ifold allow encoding a matrix information as a point on this manifold. Besides, studies show that
better performance can be achieved when the geometry of Riemannian spaces is explicitly consid-
ered [46, 96]. Especially, Grassmann manifold provides a natural way to deal with the problem of
sequence representation, matching and clustering. In fact, this manifold offers tools to compare
and to perform statistics.

Overview of our approach We propose in this chapter to take into consideration all the above
issues, within a novel geometric approach in the Grassmann manifold, in where the analysis pro-
vides a natural way to deal with the problem of sequence matching. Especially, this manifold al-
lows to represent a sequence by a point on its space and offers tools to compare and to do statistics
on this manifold. The classification problem in this case can be transformed to point classification
problem on the Grassmann manifold. Indeed, action recognition is performed by introducing a
learning process on the manifold in conjunction with dynamic modelling process. Time series of
consecutive feature vectors with temporal order are firstly constructed. Then, linear dynamic sys-
tems are used to capture the dynamic of the motion, before caracterizing the observability matrix of
this model as an element of a Grassmann manifold. We formulate our approach through two-fold
process: In the first one, we perform classification using a Truncated Wrapped Gaussian model us-
ing features computed from depth map information. In the second one, we perform the recognition
using a vector representation formed by 3D skeleton coordinates in tangent spaces associated with
different classes in order to train a linear classifier.
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4.2 Related works

Our approach being based on a geometrical consideration related to a Riemannian manifold, but
also specific to the information data captured by depth sensors, this section reviews two categories
of related works from two points of view: manifold-based approaches and depth data representa-
tion.

4.2.1 Depth-based representation

Recentlty, human action recognition from RGB-D cameras has received growing attention [71, 102].
Maps obtained by RGB-D sensors are able to provide additional body shape information to differ-
entiate actions that have similar 2D projections from a single view. It has therefore motivated recent
research works, to investigate action recognition using the 3D information. We propose to group
related approaches into three main categories, according to the way they use the depth channel:
skeleton-based, depth map-based and hybrid approaches.

Depth map-based approaches rely on the extraction of meaningful descriptors from the entire
set of points of depth images. These methods have tendency to extrapolate techniques already
developed for 2D video sequences. These approaches use points in depth map sequences as a gray
pixels in images to extract meaningful spatiotemporal descriptors. Wanqing et al. [164], projected
depth maps onto the three orthogonal Cartesian planes (X � Y , Z �X , and Z � Y planes) and the
contours of the projections are sampled for each frame. The sampled points are used as bag-of-points
to characterize a set of salient postures that correspond to the nodes of an action graph used to model
explicitly the dynamics of the actions. Local feature extraction approaches like spatiotemporal
interest points (STIP) are also employed for action recognition on depth videos. Bingbing et al.[151]
use depth maps to extract STIP and encode Motion History Image (MHI) in a framework combining
color and depth information.

Xia et al [72] propose a method to extract STIP a on depth videos (DSTIP). Then around these
points of interest they build a depth cuboid similarity feature as descriptor for each action. In
the work proposed by Vieira et al. [122], each depth map sequence is represented as a 4D grid
by dividing the space and time axes into multiple segments in order to extract SpatioTemporal
Occupancy Pattern features (STOP). Also in Wang et al. [119], the action sequence is considered as
a 4D shape but Random Occupancy Pattern (ROP) is used for features extraction. Yang et al.[109]
employ Histograms of Oriented Gradients features (HOG) computed from Depth Motion Maps
(DMM), as the representation of an action sequence. These histograms are then used as input to
SVM classifier. Similarly, Oreifej et al. [87] compute a 4D histogram over depth, time, and spatial
coordinates capturing the distribution of the surface normal orientation. This histogram is created
using 4D projectors allowing quantification in 4D space.

Skeleton-based approaches have become popular thanks to the availability of 3D sensors that
made possible to estimate the 3D positions of the body’s joints. Especially thanks to the work of
Shotton et al. [79], where a real-time method is proposed to accurately predict 3D positions of body
joints. Thanks to this work, skeleton based methods have become popular and many approaches
in the literature propose to model the dynamic of the action using these features. Xia et al. [114]
compute histograms of the locations of 12 3D joints as a compact representation of postures and use
them to construct posture visual words of actions. The temporal evolutions of those visual words
are modeled by a discrete HMM. Yang et al. [111] extract three features, as pair-wise differences
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of joint positions, for each skeleton joint. Then, principal component analysis (PCA) is used to
reduce redundancy and noise from feature, and it is also used to obtain a compact Eigen Joints
representation for each frame. Finally, a naïve-Bayes nearest-neighbour classifier is used for multi-
class action classification.

Techniques historically will-known in speech recognition area like Dynamic Time Warping
(DTW) [176] also used for action recognition. The feature vector of time series is directly con-
structed from human body joint orientation extracted from depth camera or 3D Motion Capture
sensors, and then DTW is used to match temporal distortions between two data trajectories. Reyes
et al. [148] perform DTW on a feature vector defined by 15 joints on a 3D human skeleton obtained
using PrimeSense NiTE. Similarly, Sempena et al. [147], by the 3D human skeleton model, use
quaternions to form a 60-element feature vector. DTW and its derivatives techniques are relatively
sensitive to noise as they require all elements of the sequences to be matched to a corresponding
elements of the other sequence. It also has a drawback related to its computational complexity in-
curring in quadratic cost. However, many works have been proposed to bypass its drawbacks by
means of probabilistic models [103] or incorporating manifold learning approach [60, 155]. Finally,
recognition in in-line scenario for different applications in IHM present more challenges, in which
a trade-off between accuracy and latency can be highlighted. Ellis et al. [98] study this trade-off
and employed a Latency Aware Learning (LAL) method, reducing latency when recognizing ac-
tions. They train a logistic regression-based classifier, on 3D joint position sequences captured by
kinect camera, to search a single canonical posture for recognition. Another work is presented by
Barnachon et al. [64], where a histogram-based formulation is introduced for recognizing streams
of poses. In this representation, classical histogram is extended to integral one to overcome the
lack of temporal information in histograms. They also prove the possibility of recognizing actions
even before they are completed using the integral histogram approach. Tests are made on both 3D
MoCap from TUM kitchen dataset [170] and RGB-D data from MSR-Action dataset [164].

Hybrid approaches try to combine positive aspects of both skeleton data features and depth in-
formation. Azary et al. [138] propose spatiotemporal descriptors as time-invariant action surfaces,
combining image features extracted using radial distance measures and 3D joint tracking. Wang
et al. [117] compute local features on patches around joints for human body representation. The
temporal structure of each joint in the sequence is represented through a temporal pattern represen-
tation called Fourier Temporal Pyramid. In Oreifej et al. [87], a spatiotemporal histogram (HON4D)
computed over depth, time, and spatial coordinates is used to encode the distribution of the surface
normal orientation. Similarly to Wang et al. [117], HON4D histograms [87] are computed around
joints to provide the input of an SVM classifier. Althloothi et al. [49] represent 3D shape features
based on spherical harmonics representation and 3D motion features using kinematic structure
from skeleton. Both feature are then merged using multi kernel learning method.

4.2.2 Manifold-based approaches

Beside classical methods performed in Euclidean space, a variety of techniques based on manifold
analysis are recently proposed. These geometric methods explore the characteristics of Grassmann
manifold and perform classification based on intrinsic geometry of data space.

Turaga et al. [142] involve a study of the geometric properties of the Grassmann and Stiefel
manifolds and give appropriate definitions of Riemannian metrics and geodesics for the purpose of
video indexing and action recognition. In another work, Turaga et al. [168] use the same approach
to represent complex actions by a collection of subsequences. These sub-sequences correspond to
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a trajectory on the Grassmann manifold. Both DTW and HMM are used for action modelling and
comparison. Lui et al. [153] introduce the notion of tangent bundle to represent each action se-
quence on the Grassmann manifold. Videos are expressed as a third-order data tensor of raw pixel
from action images, which are then factorized on the Grassmann manifold. As each point on the
manifold has an associated tangent space, tangent vectors are computed between elements on the
manifold and obtained distances are used for action classification in a nearest neighbour fashion.
In the same way, Lui et al. [130] factorize raw pixel from images by high-order singular value de-
composition in order to represent the actions on Stiefel and Grassmann manifolds. However, in
these works, no dynamic modelling of the sequence, where the raw pixels are directly factorized as
manifold points. In addition, no training process on data and only distances obtained between all
actions are used for action classification.

Kernels [95] are also used in order to transform the subspaces of a manifold onto a space where
Euclidean metric can be applied. Shirazi et al. [126] embed Grassmann manifolds upon a Hilbert
space to minimize clustering distortions and then apply a locally discriminant analysis using a
graph. Video action classification is then obtained by a Nearest-Neighbour classifier applied on Eu-
clidean distances computed on the graph-embedded kernel. Similarly, Harandi et al. [95] propose
to represent the spatio temporal aspect of the action by subspaces as elements of the Grassmann
manifold. They embed this manifold into reproducing kernel Hilbert spaces in order to tackle the
problem of action classification on such manifolds. It is important to note that, to date (2014 date of
completion of the works [J2, C7]), few works have recently proposed to use Grassmann manifold
analysis for 3D action recognition. Indeed, Azary et al. [104] use a Grassmannian representation as
an interpretation of Depth Motion Image (DMI) computed from depth pixel values. All DMI in the
sequence are combined to create a motion depth surface representing the action as a spatiotemporal
descriptor.

From above state-of-the-art methods, we can conclude that the geometrical modelling of the
action sequence from 2D images on the Grassmann manifold is significant and it allows discrim-
inating between different classes of actions. This has been shown by the work of [95, 153] who
proposed to compare sequences using a metric defined on the Grassmann manifold. This metric
is sometimes complex and is based on the notion of tangent Bundle. Recently, Harandi et al. [95]
have checked the performance of Riemannian manifolds, in representing human activity, against
several state-of-the-art methods. Conducting several experiments, including gesture recognition
and person identification, Grassmann manifold has been demonstrated as the one that gives the
best performance. Besides, Linear Dynamic Systems (LDS) [76] show more and more promising
results on the motion modelling since they exhibit the stationary properties in time, so they fit for
action representation. Thus, the problem of action recognition using 3D images from depth stream
can be investigated using the LDS and Grassmann manifold geometry.
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4.3 A short note on Grassmann manifolds

Let us giving some brief comments on the basic importance of the notion of the Grassmann man-
ifold. For more detail, reader is referred to the work proposed by Gallivan et al. [205] and Rim
Slama’s Ph.D thesis [38], from where this short note is extracted.

4.3.1 Mathematical notations and definitions

To model, learn and compare sequences on the Grassmann manifold, we need to understand the
representation of points, distance metrics and statistical models on the manifold. A manifold is a
topological space locally similar to Euclidean space and a Riemannian manifold is provided with a
metric which allows measuring the similarity between two points. In this work, we are interested in
Grassmann manifold Gn,d, which can be defined as the set of all d-dimensional linear subspaces of
Rn. Several textbooks describe the Grassmann manifold structure and its geometry and calculus. In
this document we focus on the algorithms proposed by Gallivan et al. [205]. Here, the Grassmann
manifold is viewed as the quotient space : SO(n)/SO(d) ⇥ SO(n � d) where SO(n) is the special
orthogonal group of orthogonal matrix with determinant +1.

Special orthogonal group SO(n) Let GL(n) be the generalized linear group of n ⇥ n nonsingular
matrices. The set GL(n) is a differentiable manifold, therefore although it is not a vector space,
it can be locally approximated as a vector space using smoothly varying Euclidean coordinates.
This property is essential to understanding the task of modifying tools from standard Euclidean
statistics to nonlinear manifolds. By being a group and a differentiable manifold GL(n) is a Lie
group. The subset of all orthogonal matrices with determinant +1, form a subgroup SO(n), called
the special orthogonal group. This latter is a submanifold of GL(n) and, therefore, also possesses a
Lie group structure.

To perform differential calculus on a manifold, one needs to specify its tangent spaces. For the
n⇥n identity matrix I , the tangent space TI(SO(n)) is the set of all n⇥n skew-symmetric matrices
given by [222]:

TI(SO(n)) = X 2 Rn⇥n : X +XT = 0 (4.1)

Exponential map and logarithm map computation Exponential map and logarithm map oper-
ators are interesting tools allowing going from the manifold to the tangent space and vice versa
from the tangent space to the manifold. They are specially used to take benefit from the fact that
the tangent space is a vector space. Besides, these tools will be used in statistical computation step,
for example to compute intrinsic mean. Also the action modelling and classification is using these
operators in the learning algorithms presented thereafter.

Computing velocity matrix (log) [205] Given two points on the manifold U1 and U2 with or-
thonormal basis Y1 and Y2, we need an efficient way to compute the velocity parameter V such that
traveling in this direction from S0 leads to S1 in unit time. Given two subspaces S0 and S1 and
corresponding n⇥ d orthonormal basis vectors Y1 and Y2:

1. Compute the n⇥ n orthogonal completion Q of Y1.

2. Compute the thin decomposition of QTY2 given by QTY1 =

"
X

Y

#
=

"
M1 0

0 M2

#"
�(1)

⌃(1)

#
V T
1
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3. Compute {✓i} which are given by the arcsine and arcos of the diagonal elements of � and ⌃
respectively. Form the diagonal matrix ⇥ containing ✓ s on its diagonal.

4. Compute V = M2⇥M1.

Moving along the geodesic (exp) [205] Given a point on the Grassmann manifold U1 represented
by orthonormal basis Y1, and a direction matrix B, the geodesic path emanating from Y1 in this
direction is given by Y (t) = Q exp(tA)J , where, Q 2 SO(n) and QTY1 = J and J = [Id; 0n�d,d].
Given Y1 and A the following are the steps involved in sampling Y (t) for various values of t:

1. Compute the n ⇥ n orthogonal completion Q of Y1. This can be achieved by the QR decom-
position of Y1.

2. Compute the compact SVD of the direction matrix B = M2⇥M1.

3. Compute the diagonal matrices �(t) and ⌃(t) such that �i(t) = cos(t✓i) and �i(t) = sin(t✓i),
where ✓ are the diagonal elements of ⇥.

4. Compute Y (t) =

"
M1�(t)

�M2⌃(t)

#
for various values of t 2 [0, 1].

Let now µ denotes an element of Gn,d, the tangent space to this element is noted Tµ, it is the
tangent plane to the surface of the manifold at µ. It is possible to map a point U1, of the Grassmann
manifold, to a vector V1 in the tangent space Tµ using the logarithm map as defined by Gallivan et
al. [205]. This operation will be noted in this thesis by log where logµ : Gn,d 7�! Tµ(Gn,d). An other
important tool in statistics is the exponential map, expµ : Tµ(Gn,d) ! Gn,d which allows to move
on the manifold in certain direction. An illustration of these concepts is presented in Figure 4.1.

V1

U1

Tangent plane to µ 

Tµ

µ 

Expµ(V1)

Grassmann manifold

V2

U2

Logµ(U2)

Figure 4.1: Illustration of tangent spaces, tangent vectors, and geodesics on Grassmann manifold.
µ is a point on the manifold. Tµ is the tangent space at µ. Tangent vector corresponds to the
velocity of the curve on the manifold. Geodesic path is constant velocity curves on the manifold.
The exponential map is a pullback map which takes a point on the tangent space and pulls it onto
the manifold in a manner that preserves distances. An example of one point V1 on the tangent
space at pole µ.

Angles and distance Between two points U1 and U2 on Gn,d there are d principal angles of Rn:
0  ✓1  ✓2  · · ·  ✓d  ⇡

2 . The principal angles may be computed as the inverse cosine of the
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singular values of UT
1 U2. The minimum length curve connecting these two points is the geodesic

between them computed as:

dG(U1, U2) =k [✓1, ✓2, · · · , ✓i, · · · , ✓d] k2 (4.2)

This is known as the arc length metric, commonly used to compute distances on the Grassmann
manifold. The geometric framework for this description is presented with more details in [205].

4.3.2 Karcher mean on Grassmann manifold

Given a set of data points {U1, U2 · · ·UN} on a Grassmann manifold sufficiently close to each others,
one way to define their geometric mean is via the minimization of a certain cost function. If one
chooses the cost as the sum of squared geodesic distances between a given point and all the data
points, we end up with the definition of the Karcher mean. The Figure 4.2 illustrates a Karcher
mean of a sample of elements.

V1

Tµ

µ 

V2
V3

V4

…
Vk

U1U2U3

Figure 4.2: Grassmann points, their Karcher mean and their projection onto the tangent space of µ.

The algorithm exploits log and exp maps (4.3.1) in a predictor/corrector loop until convergence
to an expected point. The pseudocode for computing a sample karcher mean on Grassmann mani-
fold is summarized in Algorithm 4.1.

Karcher mean in our geometric framework for action recognition is useful in various situations,
including: computation of mean of each class of actions to use it as a template, computation of
mean of all action observations to construct a vocabulary of actions.

Algorithm 4.1 Karcher mean computation on a Grassmann manifold
{U1, U2 · · ·UN} : points belonging to Gn,d,
" = 0.5, ⌧ : threshold which is a very small number µj : mean of {Ui}i=1:N

1- µ0: initial estimate of Karcher mean, for example one could just take µ0 = U1

kvk < ⌧
i 1 N 2- Compute vi = logµ(Ui)
3- Compute the average direction v = 1

n

P
n

i=1 vi
4- Move µj in the direction of v by ": µj+1 = expµj ("v)
5- j=j+1
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4.4 Recognition using depth map sequences

In this section, we present our approach presented by Slama et al. [J2, C7] to recognize human
action sequences, represented in the depth map space. More particularly, we present a geomet-
ric representation of the motion from depth images, leading to a an accurate recognition. In this
representation, we can consider data information from depth images, where each sequence is rep-
resented by a time series from its local displacement features. Figure 4.3 presents our first proposal
approach.

Figure 4.3: The pipeline of our first approach, which is composed of two main modules: (1) tem-
poral modelling of time series data and manifold representation (2) learning approach using prob-
ability density function on tangent class-specific.

4.4.1 3D oriented displacement features

With a depth sensor, the distance between the pixel position and the depth sensor z, is obtained
and quantized into 11-bit digits. The depth information captured by a depth sensor is usu-
ally called the depth image. We denote each pixel in the depth image as P = (x; y; z). Let
I = [I(1), I(2), ..., I(t), I(⌧)] denotes the depth sequence. This sequence can be seen as a 4D surface
S in the 4D space if we consider a function [87].

R3 �! R1

(x, y, t) 7�! z = f(x, y, t)
(4.3)

Since the orientation of the normal vector, at every surface point, can describe the surface of
an object, the local 4D geometry characteristics (Depth + motion) can be represented as a local
displacement of the normal vector orientation. The normals of this surface are given by a derivation
of S(x, y, z, t) where S(x, y, z, t) = f(x, y, t) � z = 0. Thus, the result of the derivation, following
the same demonstration of Tang et al. [77], is given by:

n = 5S = (
@z

@x
,
@z

@y
,
@z

@t
,�1)T = (nx, ny, nt,�1)T (4.4)

Experimentally @z

@x
, @z

@y
and @z

@t
are calculated using the finite difference approximation respec-

tively:
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nx = @z

@x
' I(x�Diff, y, t)� I(x+Diff, y, t)

ny = @z

@y
' I(x, y �Diff, t)� I(x, y +Diff, t)

nt =
@z

@t
' I(x, y, t)� I(x, y, t+ 1)

(4.5)

where Diff is a positive value of displacement on image matrix. Encoding orientation informa-
tion of this normal is more meaningful for describing the surface, than (x,y,z,t) coordinates. Thus,
these local oriented displacements can be parametrized using spherical coordinates represented
as 3 angles ⇥, � and  describing respectively zenith angle, azimuth angle and inclination angle.
These angles, which are illustrated in Figure 4.4, are computed as follows:

⇥ = tan�1(
q

n2
x + n2

y + n2
t
)

� = tan�1(ny

nx
)

 = tan�1( ntp
(n2

x+n2
y)
)

(4.6)
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Figure 4.4: 3D angles illustration. From the left to the right the angles ⇥, � and  .

4.4.2 Temporal modeling

After feature extraction step, the sequence of depth images can be represented as a time series
model of features: F = [f(1), f(2), ..., f(⌧)].

3D oriented displacement features computed on each image are linearized on a vector f(t) for
modeling the time series.

Let  (x, y, t) denotes the angle orientation of a pixel computed between I(t) and I(t + 1).
f(t) = [ (1, 1, t), (1, 2, t), · · · (n,m, t)], with n ⇥ m = p the resolution of the image I . F =

f(1), f(2), , f(T ), with T the number of frames -1 and f 2 Rp. A motion sequence can then be seen
as a matrix representing a time-series from angle features. Dynamics and continuity of movement
implies that action can not be resumed as a simply set of oriented 3D normal because of the tem-
poral information contained in the sequence. Instead of directly using original time-series data, we
believe that a linear dynamic system, like that often used for dynamic texture modeling, is essential
before manifold analysis. Therefore, to capture both the spatial and the temporal dynamics of a mo-
tion, linear dynamical system characterized by ARMA models, is applied to the time-series matrix
M . The dynamic captured by the ARMA model during an action sequence M can be represented
as:

p(t) = Cz(t) + w(t), w(t) ⇠ N(0, R), (4.7)

z(t+ 1) = Az(t) + v(t), v(t) ⇠ N(0, Q) (4.8)
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where z 2 Rd is a hidden state vector, A 2 Rd⇥d is the transition matrix and C 2 R3⇤J⇥d the
measurement matrix. w and v are noise components modeled as normal with mean equal to zero
and covariance matrix R 2 Rp⇥p and Q 2 Rd⇥d respectively. The goal is to learn parameters of
the model (A,C) given by these equations. Let U

P
V T be the singular value decomposition of M .

Then, the estimated model parameters A and C are given by:

Ĉ = U

Â =
P

V TD1V (V TD2V )�1P�1 (4.9)

where D1 = [0 0, I⌧�1 0] and D2 = [I⌧�1 0, 0 0] where I represents the identity matrix. Com-
paring two ARMA models can be done by simply comparing their observability matrices. The
expected observation sequence generated by an ARMA model (A,C) lies in the column space of the
extended observability matrix given by

✓T1 = [CT , (CA)T , (CA2)T , ...] (4.10)

This can be approximated by the finite observability matrix [142]:

✓Tm = [CT , (CA)T , (CA2)T , ..., (CAm�1)T ] (4.11)

The subspace spanned by columns of this finite observability matrix correspond to a point on
a Grassmann manifold Gn,d, and the action recognition problem is brought back to a classification
problem on this manifold.

4.4.3 Learning by Truncated Wrapped Gaussian

If we follow the common learning approach on manifolds, we shall use only one-tangent space,
which usually can be obtained as the tangent space to the mean (µ) of the entire data points without
regard to class labels. All data points on the manifold are then projected on this tangent space to
provide the input of a classifier. However, this flattening of the manifold through tangent space is
not without drawbacks. In fact, the tangent space on the global mean can be far from other points,
and the distance on this tangent space between two arbitrary points is generally not equal to the
true geodesic distance, which may lead to inaccurate modelling.

Instead of using only one tangent space of the whole data, we opted for the use of several
tangent spaces, each obtained on a class of the learning dataset. In order to learn a classifier, our
strategy consists on learning a probability law on each class sample having the same label. Indeed,
in addition to the mean µ, it is possible to compute the standard deviation � between all actions
belonging to the same class. The � value can be computed on {Vi}i=1:N where V = exp�1

µ (Ui) are
the projections of actions from the Grassmann manifold into the tangent space defined on the mean
µ. Thus, we estimate the parameters of a probability density function such as a Gaussian, and then
use the exponential map to wrap these parameters back onto the manifold using exponential map
operator [142]. However, the exponential map is not a bijection for the Grassmann manifold. In
fact, a line on tangent space with infinite length, can be wrapped around the manifold many times.
Thus, some points of this line are going to have more than one image on Gn,d. It becomes a bijection
only if the domain is restricted. Therefore, we can restrict the tangent space by a truncation beyond
a radius of ⇡ in Tµ(Gn,d) as illustrated in 4.5.

By truncation, the normalization constant changes for multivariate density in Tµ(Gn,d). In fact,
it gets scaled down depending on how much of the probability mass is left out of the truncation
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μ δ

Fit gaussian :N(0,δ)

Figure 4.5: Conceptual TWG learning method on the Grassmann manifold to estimate class-
conditionals on class-specific poles.

region. Let f(x) denotes the probability density function (pdf) defined on Tµ(Gn,d) by :

f(x) =
1p
2⇡�2

e
�x2

2�2 (4.12)

After truncation, an approximation of f gives:

f̂(x) =
f(x)⇥ 1|x|<⇡

z
(4.13)

where z is the normalization factor :

z =

Z
⇡

�⇡

f(x)⇥ 1|x|<⇡dx (4.14)

Using Monte Carlo estimation, it can proved that the estimation of z is given by:

ẑ =
1

N

NX

i=1

1|xi|<⇡ (4.15)

In practice, we employ wrapped Gaussian in each class-specific tangent space. Separate tangent
space is considered for each class at its mean computed by Karcher mean algorithm. Predicted
class of an observation point is estimated in these individual tangent spaces. In the training step,
the mean, standard deviation and normalization factor in each class of actions are computed. The
predicted label of an unknown action is estimated as a function of probability density in class-
specific tangent spaces.

4.4.4 Experiments

We experimented our proposed approach on three public 3D action and gesture datasets containing
various challenges, including MSR-action 3D [164], UT-kinect [114] and MSR-Gesture3D [119]. All
datasets that do not provide depth are discarded in these experiments.

MSR-Action 3D dataset MSR-Action 3D [164] is a public dataset of 3D action captured by a depth
camera. It consists of a set of temporally segmented actions where subjects are facing the camera
and they are advised to use their right arm or leg if an action is performed by a single limb. The
background is pre-processed clearing discontinuities and there is no interaction with objects in
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performed actions. Despite of all of these facilities, it is also a challenging dataset since many
activities appear very similar due to small inter-class variation.

Angle normal computation is performed on cropped area around models. For each frame nor-
mal angles features computed on cropped area gives 3800 features. To reduce this feature dimen-
sion, we learn a low dimension features using PCA. This dimension reduction allows working
with features with lower size and also avoid the manipulation of long vectors, whose computation
is costly, containing redundant information.

The feature vector initially contains 3800 features. This feature dimension can be reduced to 500
while kiping 100% of information. In our experiments we chose to reduce the feature vector to 200
by kipping 87% of the information. This final feature vector is computed on each frame allowing
to build the time series that characterize the action. Then, we fit an ARMA model and we compute
observability matrix and its basis which represents the action as a point on Gn,d with n = 200⇥m

and d = m = 16. Accuracies of our approach and the state-of-the-art methods are summarized in
Table 4.1. To evaluate our approach, we followed the same experimental setup as in Oreifej et al.
[87] and Jiang et al. [117], where first five actors are used for training and the rest for testing.

Method Accuracy %
Histograms of 3D Joints [xia:2012:cvpr:HistogramofJoints] 78.97
Eigen Joints [111] 82.33
DMM-HOG [109] 85.52
HON4D [87] 85.80
Random Occupancy patterns [119] 86.50
HOH4D + Ddisc [87] 88.89
✓ angle 79.02
� angle 84.14
✓ + + � angles 85.19
 angle 86.21

Table 4.1: Recognition accuracy (in %) for the MSR-Action 3D dataset obtained using our approach
and the most known state-of-the-art approaches .

We firstly choose to test the efficiency of normal angles separately, then we use the 3 angles as
feature for each image. We note that our method using angles as features to model the time series
gives the best recognition rate comparing to ⇥, � or even the three angles together as illustrated in
4.1. Using  angle,our approach achieves an accuracy of 86.21%, just below the best method from
the state-of-the-art proposed by Oreifej et al. [87]. Knowing that our approach is based on only
3D oriented displacement features without any information about 3D joint positions, compared to
other approaches, such as [87] and [119] which use the depth information around joint locations.
All results in the rest of experiments are obtained using only  angle as feature to represent the
time series.

UT-Kinect dataset From this dataset, we use only depth sequences which resolution is 320 ⇥
240. We remember that this dataset contain the challenge of human-object interaction. To compare
our results with state of the art approaches, we follow the leave-one-out cross-validation protocol
proposed by Xia et al. [114]. Table 4.2 compared the recognition accuracy produced using our
approach and previous systems. As shown, our approach outperforms the tow methods proposed
in literature. Indeed, all the actions are correctly classified with a score more than 90%. Some
actions in this dataset include human-object interaction (pick-up, carry, throw), which Devanne et
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al. [C10] fail to correctly classify these actions since their approach rely totally on skeleton features.
Thus, actions like throw (action with object interaction) and push (action without object iteration)
are classified the same. However, our approach, since it is based on features computed on depth
images, overcomes this problem.

Method Accuracy %
Histogram of 3D joints [114] 90.92
Space-time Pose Representation [C10] 91.5
Our approach [C7] 95.25

Table 4.2: Recognition accuracy (in %) for the UT-kinect dataset using our approach compared to
the previous approaches.

MSR Gesture 3D dataset The MSR Gesture 3D dataset [133] contains 336 depth sequences of 12
hand gesture defined by American sign language (ASL). Following experiment setup used by Ku-
rakin et al. [133], the protocol used for evaluation is Leave-one-subject-out-cross-validation. We
note that the resolution of depth maps is different from one sequence to an other. In order to en-
sure the consistency of the scale, each depth sequence is resized to the same size given images with
resolution 50 ⇥ 50. Accuracies obtained with our approach and using state-of-the-art approaches
are summarized in table 4.3. The precision given by the proposed approach is better than HON4D
method which is presented by Oreifej et al. [87]. This can be explained by the fact that HON4D
computes histograms of 4D normals while we are using directly the normal information. Besides,
he is segmenting the sequence into fixed number of cells which is very sensitive to change in ex-
ecution rate. Finally, using subspaces allows being robust to noise and missing data and in this
dataset, several frames are either empty or with noise.

Method accuracy
Oreifej et al. [87] 92.45
Jiang et al. [109] 88.50
Yang et al. [119] 89.20
Klaser et al. [182] 85.23
Our approach [C7] 98.21

Table 4.3: The performance on MSR Hand gesture 3D dataset compared to previous approaches.

Discussion We obtain a good performance for action sequences with object-subject interaction
(ex. UT-kinect dataset), and also when only depth images are available (ex. MSR Gesture 3D
dataset). However, when actors are facing the camera in interaction with the computer as in gam-
ing or sport action scenarios [164], our approach gives performances equal or less than approaches
using only skeleton information. In the same time, the computation cost in our approach is ex-
pensive because of the use of the entire set of points around each model which give long features
extracted on each frame. Although, we are using PCA to reduce feature dimension, the Grass-
mann manifold dimension remains high ( n = 200 ⇥ m). In order to reduce computational time
and latency effect, and motivated by the robust joints extraction of RGB-D, we propose to compute
time-series using 3D joint coordinates and investigate action recognition in the joint space.
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4.5 Recognition using 3D skeleton sequences

In this section, we present the second process fold of our approach, which models human motion
in the 3D human joint space. Here, the 3D skeletal motion representation benefits from geometric
properties of Grassmann manifold. An overview of our second approach is sketched in Figure
4.6. Each action sequence is represented by a dynamical system whose observability matrix is
characterized as an element of a Grassmann manifold. The dynamic system of a motion is obtained
via an autoregressive and moving average model (ARMA) from its time series. Then, statistical
modelling of inter-classes and intra-class variations are analyzed in conjunction with appropriate
tangent vectors on this manifold.

Figure 4.6: Overview of the approach. The illustrated pipeline is composed of two main modules:
(1) temporal modelling of time series data and manifold representation (2) learning approach using
vector representations formed by concatenating local coordinates in tangent spaces associated with
different action classes.

4.5.1 Time series of 3D Joints

The skeletal data provides 3D joint positions of the whole body. The 3D joint coordinates of these
skeleton are, however, not invariant to the position and the size of actors. Therefore to be invariant
to human location in the scene, the hip joint of each skeleton is placed at the origin of the coor-
dinates system. Besides, to be scale invariant, each skeleton is normalized such that all skeletons
parts lengths are equal.

Let pj
t

denote the 3D position of a joint j at a given frame t i.e., pj = [xj , yj , zj ]j=1:J , with J is
the number of joints. The joint position time-series of joint j is pj

t
= {xj

t
, yj

t
, zj

t
}t=1:⌧
j=1:J , with T the

number of frames. A motion sequence can then be seen as a matrix collecting all time-series from J
joints, i.e., M = [p1p2 · · · p⌧ ], p 2 R3⇤J . Each 3D joint sequence is represented as time series matrix
of size p⇥ ⌧ with ⌧ the number of frames in the sequence and p the number of features per frame.
The number of features p depends on the number of estimated joints (60 values for Microsoft SDK
skeleton and 45 for PrimeSense NiTE skeleton).

4.5.2 Learning by Representative Tangent Vectors

Our strategy here is to consider such data points to be embedded in higher dimensional repre-
sentation providing a natural and implicit separation of directions. We use the notion of tangent
bundle on the manifold to formulate our learning algorithm. The tangent bundle of a manifold is
defined in the literature as the manifold along with the set of tangent planes taken at all points on
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RTV of one sequence

Figure 4.7: Conceptual RTV learning methods on the Grassmann manifold. An action presented
by a point on the manifold is projected on all CTs, and thus construct a new observation which is
the input of the SVM classifier.

it. Each such a tangent plane can be equipped with a local Euclidean coordinate system. Instead of
defining an intrinsic distance for the tangent bundle like [130], we propose here to consider several
"local" bundles, each one represents the tangent planes taken at all points belonging to a class from
training dataset and expressed as class-specific local bundle.

We generate Control Tangents (CT) on the manifold, which represent all class-specific local
bundles of data points. Each CT can be seen as the tangent space of the Karcher mean of all points
belonging to the same class of points from only training data. Karcher mean algorithm can be
employed here for mean computation. We then introduce an upswing of the manifold learning
so-called Representative Tangent Vector (RTV), in which proximities are required between each
point on the manifold and all CTs. The RTV can be viewed as a parameterization of a point on
the manifold which incorporates implicitly release properties in relation to all class clusters, by
mapping this point to all CTs using logarithm map. The LTBs can provide the input of a classifier,
like the linear SVM classifier as in our case. We note here that frames of 3D joints are concatenated,
similarly like in the above section, to form the input of the learning system in a time series matrix.

In experiments, we compare our learning approach RTVSVM to the classical one denoted as
One-Tangent SVM (TSVM), in which the mean is computed on the entire training dataset regardless
to class labels. Then, all points on the manifold are projected on this later to provide the inputs of
a linear SVM. A graphical illustration of the RTV construction can be shown in Figure 4.7.

4.5.3 Experiments

To evaluate our proposed approach, we conducted several experiments on three public 3D action
datasets providing 3D skeleton sequences, including MSR-action 3D [164], UT-kinect [114] and
UCF-kinect [98].

First of all, each action from all datasets is interpreted as an element of the Grassmann manifold
Gn⇥d with n = m⇥J where J represents the number of joints and d is subspace dimension learnt on
the training data. We set m = d, while m represents the truncation parameter of observation. In our
RTVSVM approach, we train a linear SVM on our RTV representations of points on the Grassmann
manifold.

MSR-Action 3D dataset The first experiment conducted on this reference dataset is presented in
Figure 4.8, where each class is represented by a template. This latter is computed as the mean of
the class sample using Karcher mean, then we compute distances from the test sample to these
templates and show distance matrix and its binarization.

In addition, Table 4.4 shows the accuracy of our approach compared to several state-of-the-art
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High arm wave

Horizontal arm wave

Hammer
Hand catch

Forward punch

High throw

Draw X

Draw tick

Draw circle

Hand clap

Two hand wave

Side-boxing

Bend

Forward kick

Side kick

Jogging

Tennis swing

Tennis serve

Golf swing

Pick up & throw

Figure 4.8: Results obtained using the template based method for classification on the MSR-3D
Action dataset (a) The 20 ⇥ 260 similarity matrix between the 260 test sequences on the 20 action
models learned (b) The same matrix binarized.

methods. We followed the same experimental setup as in Oreifej et al. [87] and Jiang et al. [117],
where first five actors are used for training and the rest for testing.

Our results obtained in this table correspond to four learning methods: simple Karcher Mean

Method accuracy %
Histograms of 3D Joints [114] 78.97
Eigen Joints [111] 82.33
DMM-HOG [109] 85.52
HON4D [87] 85.80
Random Occupancy patterns [119] 86.50
Actionlet Ensemble [117] 88.20
HOH4D + Ddisc [87] 88.89
TSVM on one tangent space 74.32
KM 77.02
TWG 84.45
RTVSVM 91.21

Table 4.4: Recognition accuracy (in %) for the MSR-Action 3D dataset using our approach [J2]
compared to previous approaches.

(KM), One tangent SVM (TSVM), Truncated Wrapped Gaussian (TWG) and Representative Tangent
Vectors SVM (RTVSVM). Our approach using RTVSVM achieves an accuracy of 91.21%, exceeding
the best method from the state-of-the-art proposed by Oreifej et al. [87]. Knowing that our approach
is based on only skeletal joint coordinates as motion features, compared to other approaches, such
as Oreifej et al. [87] and Wang et al. [119] which use the depth map or depth information around
joint locations.

To analyze results obtained by our approach according to the action type, the confusion matrix
is illustrated in Figure 4.9. For most of the actions, about 11 classes of actions, video sequences
are 100% correctly classified. The classification error occurs if two actions are very similar, such as
’horizontal arm wave’ and ’high arm wave’. Besides, one of most problematic action to classify is
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Figure 4.9: The confusion matrix for the proposed approach on MSR-Action 3D dataset.

’hammer’ action which frequently is confused with ’draw X’. The particularity of these two actions
is that they start in the same way but one finish before the other. If we show only the first part of
’draw X’ action and the whole sequence of ’hammer’ action we can see that they are very similar.
The same for ’hand catch’ action which is confused with ’draw circle’. It is important to note that
’hammer’ action was completely misclassified with the approach presented by Oreifej et al. [87]
which present second better recognition rate after our approach.
Note here that some applications need to train with a very reduced number of data in order to
reduce latency when recognizing actions. To study the effect of the amount of training dataset,
we measured how the accuracy changed as we iteratively reduced the number of actions per class
in the training dataset. Table 4.5 shows obtained accuracy results with different size of training
dataset.

As noted, in contrast to the approaches that use HMM who require a large number of training
dataset, our approach reveals a robustness and efficiency. This robustness due to the fact that the
Control Tangents, which play an important role in learning process, can be computed efficiency
using small number of action points per class on the manifold.

UT-Kinect dataset To compare our results on this dataset with state of the art approaches, we
follow experiment protocol proposed by Xia et al. [114]. The protocol is leave-one-out cross-
validation. In Table 4.6, we show comparison between the recognition accuracy produced by our
approach and the approach presented by Xia et al. [114].

This table shows the accuracy of the five least-recognized actions in UT-kinect dataset and the
five best-recognized actions. Our system performs the worst when the action represents an inter-
action with an object: ’throw’, ’push’, ’sit down’ and ’pick up’. However, for the best five recog-
nized actions, our approach improves the recognition rate reaching 100%. These actions contain
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Actions
per class

Training dataset % Accuracy %

5 37.17 73.36
6 44.23 77.64
7 51.13 83.10
8 58.36 84.79
9 65.54 88.51
10 72.49 89.18
11 79.95 87.83
12 86.24 88.85
13 91.07 90.20
14 95.91 90.54
15 100 91.21

Table 4.5: Recognition accuracy, obtained by our approach using RTVSVM on MSR-Action 3D
dataset, with different size of training dataset.

Action Acc % Xia et al. [114] Acc % RTVSVM
Walk 96.5 100
Stand up 91.5 100
Pick up 97.5 100
Carry 97.5 100
Wave 100 100
Throw 59 60
Push 81.5 65
Sit down 91.5 80
Pull 92.5 85
Clap hands 100 95
Overall 90.92 88.5

Table 4.6: Recognition accuracy (per action) for the UT-kinect dataset obtained by our approach [J2]
using RTVSVM compared to Xia et al.
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variations in view point and realization of the same action. This means that our approach is view-
invariant and it is robust to change in action types thanks to the used learning approach. The
overall accuracy of Xia et al. [114] is better than our recognition rate. However on MSR Action3D
database, the recognition rate obtained by this approach gives only 78.97%. This can be explained
by the fact that this approach requires a large training dataset. Especially for complex actions which
affect adversely the HMM classification in case of small samples of training.

Evaluation of early recognition Our intent here is to evaluate our approach in terms of its ability
for a rapid (low-latency) action recognition. The goal is to automatically determine when enough
of a video sequence has been observed to permit a reliable recognition of the occurring action. For
many applications, a real challenge is to define a good compromise between "making forced de-
cision" on partial available frames (but potentially unreliable) and "waiting" for the entire video
sequence. We conducted several tests on UCF-kinect dataset [98], on which skeletal joint locations
(15 joints) over sequences of this dataset are estimated using Microsoft Kinect sensor and the Prime-
Sense NiTE. The same experimental setup as in Ellis et al. [98] is followed. For a total of 1280 action
samples contained in this dataset, a 70% and 30% split is used for respectively training and testing
datasets.

From the original dataset, new subsequences were created by varying a parameter correspond-
ing to the K first frames. Each new subsequence was created by selecting only the first K frames
from the video. For videos shorter than K frames, the entire video is used. We then compare the
result obtained by our approach to those obtained by Latency Aware Learning (LAL) method pro-
posed by Ellis et al. [98] and other baseline algorithms: Bag-of-Words (BoW) and Linear Chain
Conditional Random Field (CRF), also reported by Ellis et al. [98].

As shown in Figure 4.10, our approach using RTVSVM clearly achieves improved early recogni-
tion performance compared to all other baseline approaches. Analysis of these curves shows that,
accuracy rates for all other approaches are close when using small number of frames (less than 10)
or a large number of frames (more than 40). However, the difference increases significantly in the
middle range. The table joint to Figure 4.10 shows numerical results at several points along the
curves in the figure. Thus, given only 20 frames of input, our system achieves 74.37%, while BOW,
CRF recognition rate below 50% and LAL achieves 61.45%.

It is also interesting to notice the improvement of accuracy of 92.08% obtained by RTVSVM
compared to 82.7% obtained by TWG, with maximum frame number equal to 30. For a large num-
ber of frames, all of the methods perform globally a good accuracy, with an improvement of the
ours (97.91% comparing to 95.94% obtained by LAL proposed in Ellis et al. [98]). These results
show that our approach can recognize actions at the desired accuracy with reducing latency. The
detail of recognition rates, when using the totality of frames in the sequence, are shown through
the confusion matrix in Figure 4.11. Unlike what gives LAL, we can observe that the ’twist left’,
’twist right’ actions are not confused with each others. All classes of actions are classified with a
rate more than 93.33% which gives a lot of confidence to our proposed learning approach.

Finally, in order to visually interpret our representation of data, we analyzed the dispersion
of actions in each dataset while representing actions by Grassmann representation and using the
appropriate metric defined on the maifold. In Figure 4.12, we display the resulting multidimen-
sional scaling (MDS) for the three datasets used in this experimental section. The MDS plot gives
an impression on where the actions are located in action space. It allows to display the information
contained in a distance matrix. Here, the distance matrix is computed using distance defined in
equation 4.2 between each two actions presented as points on Grassmann manifold. We note that
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Figure 4.10: Accuracies obtained by our approach vs. state-of-the-art approaches over videos
truncated at varying maximum lengths. Each point of this curve shows the accuracy achieved by
the classifier given only the number of frames shown in the x-axis.

our modeling via Grassmann manifold allows a good separation of classes especially for UCF and
UT kinect datasets. In MSR-action dataset some overlapping between classes can be seen. These
classes are mainly ’Hammer’ and ’Draw X’ actions.

4.6 Conclusion

In this chapter, we presented a geometric framework for sequence representation and action learn-
ing. The proposed framework allows modelling and recognizing human motion in both 3D skele-
tal joint space and depth images. In this framework, sequence features are modeled temporally
as subspaces lying to a Grassman manifold. A new learning algorithm on this manifold is intro-
duced to improve action recognition performances. Experimental results and the analysis of the
performance of our proposed approach show promising results with high accuracies equivalent or
superior to the state-of-the-art approaches on three different datasets.

In terms of learning method, we generalized a learning algorithm to work with data points
which are geometrically lying to a Grassmann manifold. Other approaches are tested in the learn-
ing process on the manifold: one tangent space (TSVM) and class-specific tangent spaces (TWG).
In the first one, recognition rate is low. In fact, the computation of the mean of all actions from all
classes can be inaccurate. Besides, projections on this plane can lead to big deformations. A better
solution is to operate on each class by computing its proper tangent space, as in TWG [131] which
improve TSVM results. The particularity of our learning model is the incorporation of proximities
relative to all Control Tangent representing class clusters, instead of classifying using a function of
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Figure 4.11: The confusion matrix for the proposed method on UCF-kinect dataset, with an overall
accuracy of 97.91% is achieved.
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Figure 4.12: MDS plots for actions from three datasets using our proposed geometric framework.
In this plot, each point is an action and each color represents a class.

local distances. Results supported our hypothesis, demonstrating that the proposed algorithm is
more efficient in action recognition scenario when inter-variation classes is present as a challenge.

In terms of early recognition, the evaluations have clearly revealed the efficiency of our ap-
proach for a rapid recognition. It is possible to recognize actions up to 95% using only 40 frames
which is a good performance comparing to state-of-the-art approaches presented in [98]. Thus, our
approach can be used for interactive systems. Particularly, in entertainment applications to resolve
the problem of lag and improve some motion-based games. Since the proposed approach is based
on only skeletal joint coordinates, it is simple to calculate and it needs only a small computation
time. In fact, with our current implementation written in C++, the whole recognition time takes
0.26 sec to recognize a sequence of 60 frames. The joint extraction and normalization take 0.0001
sec, the Grassmann and the RTV representation take 0.0108 sec and the prediction on SVM takes
0.251 sec. These computation time are reported on UCF-Kinect dataset, with Grassmann manifold
dimension n = 540 and d = 12.

Finally, the limitation of our approach comes from the fact that is a 3D joint-based framework
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4.6. Conclusion

designed for human action recognition from skeletal joint sequences. In the case of presence of
object interaction in human actions, our approach do not provides any relevant information about
objects and thus, action with and without objects are confused. This limitation can be leveraged
the use of additional features, which can be extracted from depth or color images associated. The
proposed approach works with atomic actions which are not complex and continuous. To be op-
erational in all action recognition scenarios, specially in real-time scenarios and while actions are
more complex, the present framework should be increased by modules for: (1) identification of
the beginning and the end of each atomic action, (2) identification of each skeleton for sequences
containing more than one person in the scene. An extension seems necessary to us at this level
is to investigate more challenging problems like human activity recognition, and using additional
features from depth images associated to 3D joint locations to solve the problem of human-object
interaction.
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CHAPTER 5

Human Activity Recognition
Shape Analysis of Motion Trajectories

In this chapter we introduce our contributions in the field of behavior recognition related the anal-
ysis of both the human pose and motion that characterize its activities. The recognition of such
motions is a challenging task due to the variability of the human pose, the complexity of human
motion and possible interactions with the environment. In particular, we discuss a methodological
evolution of the shape analysis tools, introduced in Chapter 3, applied her for tarjectories in action
space. The contributions in this chapter originate from the work done by Maxime Devanne dur-
ing his Ph.D thesis [25]. The chapter is organized as follows. Section 5.1 introduces the context of
this work and, gives an overview of our approach and completes the existing related methods pre-
sented in Chapter 4 by those addressing activity recognition. Section 5.2 discusses the Riemannian
framework that we employ for shape analysis of human motion and presents corresponding ex-
periments for action recognition from skeleton sequences. In Section 5.3, we describe the extension
of our approach to the activity domain, combining human pose and motion analysis. Section 5.4
gives conclusion.

The contribution presented in this chapter were published in the journal papers [J1, J4] and con-
ference/workshop papers [C4, C6, C10], and from where some parts of this chapter are extracted.

5.1 Context

Human motion analysis has evolved substantially in parallel with major technological advance-
ments, especially capturing technology. Before the realese of RGB-D sensors, human motion anal-
ysis from 3D motion capture data has been widely investigated [41, 57, 201]. While these systems
are very accurate, they present some disadvantages which may limit its use for the general public,
such as to their cost and the fact that the subject must wear physical markers to estimate its 3D
pose.

Recently, recognition and understanding of human activities by analyzing data provided by
depth cameras have attracted the interest of several research groups [70]. While some methods
focus on the analysis of human motion in order to recognize human gestures or actions, other ap-
proaches try to also model interactions with objects, so as to analyze more complex behaviors, like
activities. Hybrid solutions are often proposed, which use depth maps for modeling scene objects,
and body skeleton for modeling the human motion [118]. Other methods propose to describe
and model spatio-temporal interactions between human and objects characterizing the activities
[94]. Whereas these solutions study short sequences, where one single movement is performed
along the sequence, additional challenges appear when several different movements/actions are
executed sequentially over a long sequence.

5.1.1 Challenges

While constraints defined in Chapter 4 for action recognition, like robustness to geometric trans-
formations remain and dynamic modeling, some additional challenges appear when it comes to
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study more complex human motions, like activities. Indeed, the high degree of freedom of hu-
man motions and the variability of gesture combinations that can characterize the human activities
greatly complicate the analysis task. Local analysis in time of human movement is often neces-
sary for a thorough understanding of the action performed, knowing that certain activities involve
manipulations of objects and/or interactions with the real-world environment. In addition, object
manipulation also involves possible occlusions of parts of the human body, resulting in missing
or noisy data. Finally, the ability to detect and recognize in online scenarios is one of the major
challenges of recognition methods, but also the to analyze long continuous sequence of activities,
allowing to answer to a more realistic need.

5.1.2 Our approach

In order to face all these issue, we focus our work in this chapter on the analysis of both the human
pose and the human motion that characterize such activities. The motion analysis presented in
Chapter 4 lakes joint local and temporal consideration. Therefore, the combination of these two
analysis provides information about the human body at each time as well as its evolution along a
time interval. To achieve such goals, we first propose to take into account the human pose with its
particular configuration, of different body parts with respect to the others in the scene, in order to
capture the geometry of the human body in order to examine its shape.

Second, human motion is characterized by the evolution of its pose along the time.
Second, to capture the dynamic evolution of the pose along the sequence as well as the geomet-

ric deformation, we propose to analyze the shape of trajectory of the human pose. As a result, we
recast the problem of human pose and human motion analysis to a problem of shape analysis seen
in Chapter 3.

Our contributions in this chapter are structured into two separate levels. At the first level, short
presegmented human motion sequence (action) are considered within a compact representation of
its 3D joint trajectories in a suitable action space. The action recognition problem is then formulated
as the problem of computing the similarity between the shape of trajectories in a Riemannian man-
ifold. At the second level, more complex human motion sequence (activity) are locally investigated
by detecting short temporal segments representing elementary motion, called Motion Segments
(MS). For each MS, human motion and depth appearance around human hands are described to
characterize the interaction with objects. This provides a deeper analysis of the human movement
and allows the recognition of human gestures, actions and activities. In particular, in this chapter,
gestures indicate simple movements performed with only one part of the body, actions represent a
combination of gestures with different parts of the body, and activities refer to more complex mo-
tion patterns possibly involving interaction with objects. The proposed solution can be adapted to
realistic scenarios, where several actions or activities are performed subsequently in a continuous
sequence. Continuous sequences should certainly be considered in order to detect the starting and
ending time of actions. Therefore, our goal consists at the development of an approach operat-
ing on the data stream directly, without assuming the availability of a segmentation module that
identifies the first and last frame of each action/activity.

5.1.3 Related Work

In recent years, recognition and understanding of human behavior by analyzing depth data has
attracted the interest of several research groups [58, 66, 69, 73]. While some methods focus on the
analysis of human motion in order to recognize human gestures or actions, other approaches try to
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model more complex activities including object interaction. These solutions focus on the analysis of
short sequences, where one single behavior is performed along the sequence. However, additional
challenges appear when several different behaviors are executed one after another over a long
sequence. In order to face these challenges, methods based on online detection have been proposed.
Such methods can recognize behavior before the end of their execution by analyzing short parts of
the observed sequence. Thus, these methods are able to recognize multiple behaviors within a long
sequence, which may not be the case for methods analyzing the entire sequence directly. Existing
methods for human behavior recognition using depth data are shortly reviewed here. Methods
analyzing human motion for the task of gesture/action recognition from RGB-D sensors can be
grouped into three categories: skeleton-based, depth map-based and hybrid approaches, presented
in in Chapter 4. Analyzing human motion by these approaches, however, may not be sufficient
to understand more complex behaviors involving human interaction with the environment (i.e.,
what we call activities). Hybrid solutions are often proposed, which use depth maps for modeling
scene objects and body skeleton for modeling human motion. For example, Wang et al. [118] used
Local Occupancy Patterns to represent the observed depth values in correspondence to skeleton
joints. Other methods propose to describe and model spatio-temporal interaction between human
and objects characterizing the activities, using Markov Random Field [66]. A graphical model is
also employed by Wei et al. [74] to hierarchically define activities as combination of sub-events
including description of the human pose, the object and interaction between them. Yu and Liu [44]
propose to capture meaningful skeleton and depth features using a middle level representation
called orderlet.

Some of the works reviewed above have also online action recognition capabilities, as they com-
pute their features within a short sliding window along the sequence [44]. This challenge has
recently been investigated for continuous depth sequences, where several actions or activities are
performed successively. For example, Huang et al. [58] proposed and applied the Sequential Max-
Margin Event Detector algorithm on long sequences comprising many actions in order to perform
online detection by successively discarding not corresponding action classes.

5.2 Shape Analysis of Motion Trajectories

The dynamic evolution of the human pose characterize naturally the human motion. 3D skeletal
data, which provide an accurate representation of the pose, are easy to extract from depth sensors,
and they also provide local description of the human body. However, despite the availability of ac-
curate 3D joint positions, recognizing an action is still a difficult task due to significant spatial and
temporal variations in the way of performing an action. These challenges motivated us to propose
an approach based on the evolution of the position of the skeleton joints detected on a sequence
of 3D joints. For this purpose, a high-dimensional vector of 3D joints coordinates is computed for
each frame of the sequence. Then, the trajectory described by this vector in the multi-dimensional
space is regarded as a signature of the temporal dynamics of the movements of all the joints. These
trajectories are then interpreted in a Riemannian manifold, so as to model and compare their shapes
using elastic registration and matching in the shape space. In so doing, we recast the action recog-
nition problem as a statistical analysis on the shape space manifold. Furthermore, by using an
elastic metric to compare the similarity between trajectories, robustness of action recognition to the
execution speed of the action is improved.
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5.2.1 Trajectories in the action space

Since the release of the RGB-D cameras, such as the Microsoft Kinect, a 3D humanoid skeleton can
be estimated in real-time al. [146], in form of 3D position of a certain number of joints representing
different parts of the human body. For each frame t of a sequence, the real-world 3D position of
each joint i of the skeleton is represented by three coordinates expressed in the camera reference
system pi(t) = (xi(t), yi(t), zi(t)). Let Nj be the number of joints the skeleton is composed of, the
posture of the skeleton at frame t is represented by a 3Nj dimensional tuple:

v(t) = [x1(t) y1(t) z1(t) . . . xNj (t) yNj (t) zNj (t)]
T . (5.1)

For an action sequence composed of Nf frames, Nf feature vectors are extracted and arranged
in columns to build a feature matrix M describing the whole sequence:

M =
⇣
v(1) v(2) . . . v(Nf )

⌘
. (5.2)

The matrix M can be seen as feature representation of the evolution of the skeleton pose over
time. Each column vector v is regarded as a sample of a continuous trajectory in R3Nj representing
the action in a 3Nj dimensional space called action space. The size of such feature matrix is 3Nj⇥Nf .

Invariance to geometric transformations. An efficient action recognition system must be able
to recognize two instances of the same action differing only for the position and orientation of
the person with respect to the capture device. This goal can be achieved either by adopting a
translation and rotation invariant representation of the action sequence or providing a suitable
distance measure that copes with translation and rotation variations. We adopt the first approach
by normalizing the position and the orientation of the subject in the scene before the extraction
of the joint coordinates. For this purpose, we first define the spine joint of the initial skeleton
as the center of the skeleton (root joint). Then, a new base B is defined with origin in the root
joint: it includes the left-hip joint vector

�!
hl , the right-hip joint vector

�!
hr, and their cross product

�!nB =
�!
hl ⇥

�!
hr. This new base is then translated and rotated, so as to be aligned with a reference

base B0 computed from a reference skeleton (selected as the neutral pose of the sequence). The
calculation of the optimal rotation between the two bases B and B0 is performed using Singular
Value Decomposition (SVD). For each sequence, once the translation and the rotation of the first
skeleton is computed with respect to the reference skeleton, we apply the same transformations to
all other skeletons of the sequence. This makes the representation of action sequence invariant to
the position and orientation of the subject in the scene.

Representation of body parts. The representation of human pose by its 3D skeleton enable us
to take into consideration, not only the whole body, but also of individual body parts, such as the
legs and the arms. There are several reasons that make us consider in our approach the parts of
the body. First of all, many actions involve motion of just some parts of the body. For example,
when subjects answer a phone call, they only use one of their arms. In this case, analyzing the
dynamics of the arm rather than the dynamics of the entire body is expected to be less sensitive
to the noise originated by the involuntary motion of the parts of the body not directly involved
in the action. Furthermore, during the actions some parts of the body can be out of the camera
field of view or occluded by objects or other parts of the body. This can make the estimation of the
coordinates of some joints inaccurate, compromizing the accuracy of action recognition. Finally,
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due the symmetry of the body along the vertical axis, one same action can be performed using
one part of the body or another. With reference to the action “answer phone call”, the subject
can use his left arm or right arm. By analyzing the whole body we can not detect such variations.
Differently, using body parts separately, simplifies the detection of this kind of symmetrical actions.
To analyze each part of the body separately, we represent a skeleton sequence by four feature sets
corresponding to the body parts. Each body part is associated with a feature set that is composed
of the 3D normalized position of the joints that are included in that part of the body. Let Njp be the
number of joints of a body part, the skeleton sequence is now represented by four trajectories in
3⇥Njp dimensions instead of one trajectory in 3⇥Nj dimensions. The actual number of joints per
body part can change from a dataset to another according to the SDK used for estimating the body
skeleton. In all the cases, Njp < Nj and the body parts are disjoint (i.e., they do not share any joint).

5.2.2 Shape analysis of trajectories

The sequence of poses composing an action can be regarded as the result of sampling a continuous
curve trajectory in the 3Nj-dimensional action space where each frame is composed of 3D Nj joints.
The trajectory is defined by the motion over time of the feature point encoding the 3D coordinates of
all the joints of the skeleton, or by all the feature points coding the body parts separately. According
to this, two instances of the same action are associated with two curves with similar shape in the
action space. Hence, action recognition can be regarded and formulated as a shape matching task.

Furthermore, since the first and the last poses of an action are not known in advance and may
differ even for two instances of the same action, the measure of shape similarity should not be
biased by the position of the first and last points of the trajectory. In the following we present a
framework to represent the shape of the trajectories, and compare them using the principles of
elastic shape matching.

In order to capture the geometric deformation of the pose as well as the dynamics of the mo-
tion, we propose to consider the motion as a trajectory of the human pose and analyze its shape.
As a result, we recast the problem of human motion analysis to a problem of shape analysis by
employing the Shape Analysis framework, presented in Chapter 3. In this framework, the shape
of a n-dimensional curve � : I ! Rn, normalized in the interval I = [0,1], is captured through

the Square-root Velocity Function (SRVF) [190] defined as: q(t) .
= �̇(t)/

q
k�̇(t)k. As a result, each q

function can be viewed as an element of a Riemannian manifold C and the distance between two
elements q1 and q2 is the length of the geodesic path connecting them on C. Such geodesic path rep-
resents the elastic deformation of the shape q2 to correspond to the shape q1. As C is a hyper-sphere,
the geodesic length between two elements q1 and q2 is defined as ✓ = dC(q1, q2) = cos�1(hq1, q2i).

The SRVF representation is invariant to translation and scaling, but it is not invariant to rotation
and re-parametrization. To cope with this, we define the equivalence class of q as [q], where ele-
ments of [q] are equivalent up to rotation and re-parametrization. The set of all equivalence classes
is called the shape space denoted as S . To compute the geodesic distance between [q1] and [q2] on
S , we first need to find the optimal rotation and re-parametrization that register the element q2
with respect to q1 resulting in q⇤2 . Then, the distance dS([q1], [q2]) = dC(q1, q⇤2) is invariant to transla-
tion, scale, rotation and re-parametrization of curves. In practice, SVD is used to find the optimal
rotation, and Dynamic Programming is used to find the optimal re-parametrization.
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5.2.3 Action recognition on the manifold

In our proposed approach, action recognition is performed by the K-Nearest Neighbors (kNN)
algorithm applied both to whole body and separate body parts. Let us present the process of the
classification using the elastic metric on the manifold. Suppose that {(Xi,yi)}, i = 1, . . . , N , are the
training set with respect to the class labels, where Xi belongs to a Riemannian manifold S , and yi
is the class label taking values in {1, . . . , Nc}, with Nc the number of classes. The objective is to
find a function F (X) : S 7�! {1, . . . , Nc} able to categorize data lying in different submanifolds of
a Riemannian space, based on the training set of labeled items of the data. To this end, we propose
a kNN classifier on the Riemannian manifold, learned by the points on the open curve shape space
representing trajectories. Such learning method exploits geometric properties of the open curve
shape space, particularly its Riemannian metric. This relies on the computation of the (geodesic)
distances to the nearest neighbors of each data point of the training set.

Statistics of the trajectories. Riemannian approach provides tools for the computation of statis-
tics of the trajectories, like the Karcher mean [221] to compute an average from several trajectories.
The average trajectory among a set of different trajectories can be computed to represent the inter-
mediate one, or between similar trajectories obtained from several subjects to represent a template,
which can be viewed as a good representative of a set of trajectories.

To recognize an action, represented as a trajectory on action space and as a point on the mani-
fold, we need to compute the total warping geodesic distances to all points from training data. For
a large number of training data this can be associated to a high computational cost. This can be re-
duced by using the notion of “mean” of class action, and computing the mean of a set of points on
the manifold. As a result, for each action class we obtain an average trajectory, which is represen-
tative of all the actions within the class. According to this, the mean can be used to perform action
classification by comparing the new action with all the cluster means using the elastic metric. For
a given set of training trajectories q1, . . . , qn on the shape space, their Karcher mean can be defined
as:

µ = argmin
nX

i=1

ds([q], [qi])
2 . (5.3)

There is no only ways to to perform each action by actors. In fact, two different subjects can
perform the same action in two different ways. This variability in performing actions between
different subjects can affect the computation of average trajectories and the resulting templates may
not be good representatives of the action classes. For this reason, we compute average trajectories
for each subject, separately. Instead of having only one representative trajectory per action, we
obtain one template per subject per action. In this way, we keep separately each different way
of performing the action and the resulted average trajectories are not any more affected by such
possible variations. As a drawback, with this solution the number of template trajectories in the
training set increases. Let Nc be the number of classes and NStr the number of subjects in the
training set, the number of training trajectories is Nc⇥NStr. However, as subjects perform the same
action several times, the number of training trajectories is still lower than using all trajectories.

Body parts-based classification Our classification process using kNN computes distances be-
tween corresponding parts of the training sequence and the new sequence. As a result, we obtain
four distances, one for each body part. The mean distance is computed to obtain a global distance
representing the similarity between the training sequence and the new sequence. We keep only the
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k smallest global distances and corresponding labels to take the decision and associate the most
frequent label to the new sequence. Note that in the case where some labels are equally frequent,
we apply a weighted decision based on the ranking of the distances. In that particular case, the
selected label corresponds to the smallest distance. However, one main motivation for considering
the body parts separately is to analyze the moving parts only. To do this, we compute the total
motion of each part over the sequence. We cumulate the Euclidian distances between correspond-
ing joints in two consecutive frames for all the frames of the sequence. The total motion of a body
part is the cumulated motion of the joints forming this part. We compute this total motion on the
re-sampled sequences, so that it is not necessary to normalize it. Let jk : k = 1, . . . , Njp , be a joint
of the body part, and Nf be the frame number of the sequence, then the total motion m of a body
part for this sequence is given by:

m =

NjpX

k=1

Nf�1X

i=1

dEuc(j
k

i , j
k

i+1) , (5.4)

where dEuc(j1, j2) is the Euclidian distance between the 3D joints j1 and j2, and Njp is the number
of joints per body part (i.e., this number can change from a dataset to another according to the SDK
used for the skeleton estimation).

Once the total motion for each part of the body is computed, we define a threshold m0 to sepa-
rate moving and still parts. We assume that if the total motion of a body part is below this threshold,
the part is considered to be motionless during the action. In the classification, we consider a part
of the body only if it is moving either in the training sequence or the probe sequence (this is the
sequence representing the action to be classified). If one part of the body is motionless in both ac-
tions, this part is ignored and does not concur to compute the distance between the two actions. For
instance, if two actions are performed only using the two arms, the global distance between these
two actions is equal to the mean of the distances corresponding to the arms only. We empirically
select the threshold m0 that best separates moving and still parts with respect to a labeled training
set of ground truth sequences. To do that, we manually labeled a training set of sample sequences
by assigning a motion binary value to each body part. The motion binary value is set to 1 if the
body part is moving and set to 0 otherwise. We then compute the total motion m of each body part
of the training sequences and give a motion decision according to a varying threshold. We finally
select the threshold that yields the decision closest to the ground truth. In the experiments, we
notice that defining two different thresholds for the upper parts and lower parts slightly improves
the accuracy in some cases.

5.2.4 Experiments

To evaluate the efficiency of our approach, we conducted several experiments and compare the ob-
tained results to state-of-the-art ones using three public benchmark datasets (MSR Action 3D [165],
Florence 3D Action [81], UTKinect [113]). These three benchmark datasets differ in the characteris-
tics and difficulties of the included sequences. This allows an in depth investigation of the strengths
and weaknesses of our solution. In addition, we measure the capability of our approach to reduce
the latency of recognition on UCF-kinect dataset [99], by evaluating the trade-off between accuracy
and latency over a varying number of actions.

Action recognition analysis. A comparison between our approach and some existing state-of-
the-art methods is reported in Table 5.1. The same experimental setup of Oreifej et al. [88] and Wang
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Table 5.1: MSR Action 3D. Comparison of the proposed approach with the most relevant state-of-
the-art methods.

Method Accuracy (%)

EigenJoints [112] 82.3
STOP [121] 84.8
DMM & HOG [110] 85.5
Random Occupancy Pattern [120] 86.5
Actionlet [118] 88.2
DCSF [73] 89.3
JAS & HOG2 [90] 94.8
HON4D [88] 88.9
Ours [J4] 92.1

Table 5.2: Florence 3D Action. We compare our method with the one presented in [81].

Method Accuracy (%)

NBNN + parts + time [192] 82.0
Our Full Skeleton [J4] 85.85
Our Body part [C6] 87.04

et al. [118] are followed, where the actions of five actors are used for training and the remaining
actions for test. Our approach outperforms the other methods except the one proposed in [90].
However, this approach uses both skeleton and depth information. They reported that using only
skeleton features an accuracy of 83.5% is obtained, which is lower than our approach.

We then conduct the same experiments exploring all possible combinations of actions used
for training and for test. For each combination, we first use only kNN on body parts separately,
and obtain an average accuracy of 86.09% with standard deviation 2.99% (86.09 ± 2.99%). The
minimum and maximum values of the accuracy are, respectively, 77.16% and 93.44%. Then, we
conduct the same experiments using the full skeleton and the Karcher mean per action and per
subject, and obtain an average accuracy of 87.28 ± 2.41% (mean ± std). In this case, the lowest
and highest accuracy are, respectively, 81.31% and 93.04%. Compared to the work in [88], where
the mean accuracy is also computed for all the possible combinations, we outperform their result
(82.15 ± 4.18%). In addition, the small value of the standard deviation in our experiments shows
that our method has a low dependency on the training data.

Furthermore, we computed the confusion matrix for individual actions. Figure 5.1 shows the
confusion matrix when we use the kNN and the Karcher mean per action and per subject with the
full skeleton (Figure 5.1a) and with body parts (Figure 5.1b). It can be noted that for each variation
of our approach, we obtained very low accuracies for the actions hammer and hand catch. This can
be explained by the fact that these actions are very similar to some others. In addition, the way
of performing these two actions varies a lot depending on the subject. For example, for the action
hammer, subjects in the training set perform it only once, while some subjects in the test set perform
it more than once (cyclically). In this case, the shape of the trajectories is very different. Our method
does not deal with this kind of variations.

Obtained results by our approach on Florence 3D Action dataset [82] are reported in Table 5.2.
It can be observed that the proposed approach outperforms the results obtained in [82] using the
same protocol (leave-one-subject-out cross validation), even if we do not use the body parts variant.

From the confusion matrix in Figure 5.2a, obtained by our method using body parts separately,
we can notice that the proposed approach obtains very high accuracies for most of the actions.
However, there are some confusions between similar actions using the same group of joints. This
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Figure 5.1: Confusion matrix for two variations of our approach obtained on MSR Action 3D
dataset: (a) Full skeleton with kNN and Karcher mean per action and per subject; (b) Body parts
with kNN and Karcher mean per action and per subject.

can be observed in the case of read watch and clap hands, and also in the case of arm wave, drink and
answer phone. For these two groups of actions, the trajectories of the arms are very similar. For the
first group of actions, in most of the cases, read watch is performed using the two arms, which is
very similar to the action clap hands. For the second group of actions, the main difference between
the three actions is the object held by the subject (no object, a bottle, a mobile phone). As we use
only skeleton features, we cannot detect and differentiate these objects. As an example, Figure 5.3
shows two different actions, drink and phone call, that in term of skeleton are similar and difficult to
distinguish.
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Figure 5.2: Confusion matrix obtained by our approach on (a) Florence 3D Action and (b) UTKinect.
We can see that similar actions involving different objects are confused.

Finally, we conducted the same experiments on UTK-Kinect dataset [113] using leave one se-
quence out cross validation protocol. For each iteration, one sequence is used as test and all the
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(a) (b)

Figure 5.3: Example of similar actions from Florence action 3D dataset: (a) drink action where the
subject holds a bottle; (b) phone call action, where the subject holds a phone.

other sequences are used as training. The operation is repeated such that each sequence is used
once as testing. We obtained an accuracy of 91.5%, which improves the accuracy of 90.9% reported
in [113]. This shows that our method is robust to different points of view and also to occlusions of
some parts of the body. However, by analyzing the confusion matrix in Figure 5.2b, we can notice
that lower accuracies are obtained for those actions that include the interaction with some object, for
instance the carry and throw actions. These actions are not always distinguished by actions that are
similar in terms of dynamics yet not including the interaction with some object, like walk and push,
respectively. This result is due to the fact that our approach does not take into account any informa-
tive description of objects. Results on different datasets show that our approach outperforms most
of the state-of-the-art methods. First, some skeleton based methods like [112] use skeleton features
based on pairwise distances between joints. However, results obtained on MSR Action 3D dataset
show that analyzing how the whole skeleton evolves during the sequence is more discriminative
than taking into consideration the joints separately. In addition, the method proposed in [112] is
not invariant to the execution speed. To deal with the execution speed, in [81] a pose-based method
is proposed. However, the lack of information about temporal dynamics of the action makes the
recognition less effective compared to our method, as shown in Table 5.2. Second, the comparison
with depth-map based methods shows that skeleton joints extracted from depth-maps are effective
descriptors to model the motion of the human body along the time. However, results also show
that using strength of both depth and skeleton data may be a good solution as proposed in [90].
The combination of both data can be very helpful especially for the case of human-object interac-
tion, where skeleton based methods are not sufficient as shown by the experiments on UTKinect
dataset.

Discussion. The experimental results on the MSR Action 3D, Florence 3D Action and UTKinect
datasets demonstrate that our approach outperforms the existing state-of-the-art methods in most
of the cases. However, experiments also demonstrated some limits of our approach. Firstly, we
identify a failure case when actions can be characterized by a different number of repetitions of a
single gesture. In that case the shape of the resulted motion trajectories may differ and the recog-
nition effectiveness can be affected. Secondly, as we are using only skeleton data, we only have
information about the human pose and its evolution along the time. The analysis of obtained re-
sults on benchmark action dataset shown that some different actions may be very similar in term
of human motion. What differentiate such similar actions is the object held by the subject. By
only using skeleton data, we are unable to describe such interaction with objects and thus to dif-
ferentiate these similar actions. Finally, our proposed method is a sequence-based approach: we
analyze and classify a full delimited sequence. Indeed, during experiments, we consider that each
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sequence contains only one action starting in the beginning of the sequence and finishing at its end.
However, this consideration does not reflect a real-world context in which a camera is continuously
observing a scene. Hence, the subject may perform different actions successively as well as remain
still during a certain time interval. Thus our method is not appropriate for this real-world context.
In the following section, we investigate a way to deal with these limits and thus we propose a
method suitable for more complex cases.

5.3 Analysis of complex activities by motion segmentation

The skeleton and its changes across time provide valuable information. However, understanding
the human behavior is still a difficult task due to the complexity of human and spatial/temporal
variations in the way gestures, actions, or activities are performed. These challenges motivated us
to analyze locally the motion sequences.

Human pose within the sequence is firstly represented by a 3D curve describing the spatial
configuration of the skeleton. This representation permits to interpret the curves in a Riemannian
manifold of shape space where their shapes can be modeled and compared using elastic metric
of this manifold. Thanks to such shape analysis, we can identify similar human poses and group
them together. As a result, a motion sequence is temporally segmented into a set of successive sub-
sequences of elementary motions, called Motion Segments (MS). A MS is thus characterized by a
sequence of skeletons, each of which is modeled as a multi-dimensional vector by concatenating
the three-dimensional coordinates of its joints. Then, the trajectory described by this vector in the
multi-dimensional space is regarded as a signature of the temporal dynamics of all the joints. Sim-
ilarly to pose curves, the shape of such motion trajectories is analyzed in a shape space manifold.
A statistical analysis on this manifold allows us to compare motion trajectories independently to
their execution speed, and then to identify relevant shapes characterizing a set of MSs. It should
be noted here that skeletal data do not sufficiently describe human behavior in presence of object
manipulation. However, the depth appearance around subject hands if considered in MS, it can
provide useful information about possible human-object interactions. Therefore, we employ a Dy-
namic Naive Bayes classifier to model the sequence of MSs, by combining both skeleton and depth
features in order to fully describe the dynamics of human behavior.

Our strategy in this part is to propose an approach based on the analysis of both human pose
and human motion. Using a shape analysis framework, an activity sequence can be analyzed and
described through two steps: First, we locally regard it at the level of human poses in order to
segment the full human motion into a set of Motion Segments (MSs). Then, the analysis of these
segments allows us to describe the sequence as a combination of successive MSs.

5.3.1 Shape analysis of human pose

While Human motion is characterized by the evolution of the human pose across time, a pose of
human body can be characterized by the spatial configuration of body parts. So, we propose to
analyze the shape of such spatial configuration. In order to capture the geometric deformation of
the pose as well as the dynamics of the motion, we propose to consider the motion as a trajectory
of the human pose and analyze its shape. As a result, we recast the problem of human pose and
human motion analysis to a problem of shape analysis by employing the Shape Analysis frame-
work, presented in Chapter 3 and used in Section 5.2. Human body is represented by a set of 3D
joints located in correspondence to different body parts. Thus, a human pose is characterized by
a certain spatial configuration of these 3D joints. In order to describe human poses, we propose
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to analyze the shape of the spatial configuration of 3D joints. By connecting the 3D joints, human
pose can be viewed as a 3D curve representing the shape of human body. As shown in Figure 5.4,
in order to keep the human shape information associated to the limbs, we keep a coherent structure
linking together joints belonging to the same limb. Thus, a 3D curve representing the human pose
connects successively the spine joints, then the arms joints (left/right) and finally the legs joints
(left/right). In this way, a human pose is represented by a 3D curve instead of a 3D skeleton. Thus,
We can perform shape analysis of curves using the shape analysis framework and the provided
distance (see Sect. 5.2 for n = 3 as each joint is represented by the x, y, z coordinates. Note that,
as we will explain later, we need to compare successive human poses from a same sequence (same
subject). Hence, we can assume that the scale of skeletons as well as the orientation of the subject
between two successive poses are unchanged during a short time interval. Likewise, as a 3D curve
connects joints in a predefined order, the parametrization of curves remains the same along a single
sequence. Since it is not necessary to find the optimal re-parametrization between two shapes, the
analysis of the shape of the 3D curves is simplified. Figure 5.4 shows a geodesic path between two
human poses represented by their 3D curve.

(a) (b)

Figure 5.4: Human pose interpretation as curve in the shape space manifold. (a) Shape of 3D curves
representing human poses represented in the shape space where the distance between two shapes
is measured through the geodesic distance. (b) Visualization of the geodesic path representing a
natural deformation between shape of poses.

5.3.2 Motion decomposition of activity sequence

To deal with the complexity of human motion activities, our approach decomposes firstly the full
motion into shorter MSs. The idea of decomposing a motion sequence into a set of MSs has al-
ready been investigated by several state-of-the-art approaches. In [134] the "movelet" is proposed
on accelerometer data by concatenating features within overlapping temporal intervals with fixed
length. However, as the length of each temporal interval is fixed, it may not represent a relevant
MS. Another idea called "dyneme" is employed in [57], where human poses are clustered to iden-
tify several temporal segments with similar poses represented by one centroid pose. However, the
use of pose information only may lack of information about the dynamics of the MS. In addition,
labeling successive poses independently may result in irrelevant intervals. In our approach, the
decomposition process is based on the analysis of the human pose at each frame of the sequence to
identify relevant MSs including continuous elementary motions.

Thanks to the elastic distance measuring the similarity between the shape of two poses is de-
fined, we can analyze the deformation of human body along an activity sequence. Thus, we iden-
tify MSs by breaking the continuous sequence of activity in correspondence to points where the
speed of change of the 3D curve has a local minimum. To compute the speed of change, we benefit
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from the shape analysis framework that enables the computation of statistics, like the mean and the
standard deviation, on the manifold. Hence, given the poses p1, . . . , pn observed over a temporal
window of predefined duration, the average pose shape µ is computed as the Riemannian center
of mass [221] of the pose shapes q1, . . . , qn on the shape space. For this purpose, the distance dS
described in Sect. 5.2 (more detail can be found in Chapter 3) is used according to the following
expression:

µ = argmin
[q]

nX

i=1

dS([q], [qi])
2 . (5.5)

Once the mean pose shape is computed, the standard deviation � between this mean shape and
all the shapes within the window is estimated:

� =

vuut 1

n

nX

i=1

dS([µ], [qi])2 . (5.6)

Higher values of � correspond to faster motion, while lower values correspond to slower mo-
tion, i.e., transition intervals. By detecting local minima along the sequence, we are able to tempo-
rally localize the motion transition, and thus decompose the sequence into MSs.

As an example, Figure 5.5 shows the variation of � along a sequence and the MSs identified by
breaking the sequence in correspondence to local minima of �.
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Figure 5.5: Segmentation of a sequence based on minima of the standard deviation �. Different
MSs and corresponding poses are displayed with different colors.

5.3.3 Segment features

After the segmentation of the activity sequence, all MSs are taken into consideration in the sec-
ond phase in order to describe the whole sequence. The features here is twofold: motion features
describing the evolution of pose over the segment, and appearance features describing the depth
appearance around hands in order to characterize possible objects held by the subject.

Motion features. Here, we interpret the pose changes across a time interval corresponding to a
MS. For each frame included in a MS, we concatenate the xi, yi, zi coordinates of each joint to build
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a feature vector. Let Nj be the number of joints of the skeleton, the posture of the skeleton at frame
t is represented by a 3Nj dimensional tuple:

v(t) = [x1(t) y1(t) z1(t), . . . , xNj (t) yNj (t) zNj (t)]
T . (5.7)

For a MS composed of Nf frames, Nf feature vectors are extracted and arranged in columns to
build a feature matrix M describing the whole segment:

M =
⇣
v(1) v(2) . . . v(Nf )

⌘
. (5.8)

This matrix captures the changes of the skeleton pose across time. Hence, it can be viewed as
a trajectory in R3Nj representing the motion in a 3Nj dimensional space. The size of such feature
matrix is 3Nj ⇥ Nf . Note that, in order to guarantee invariance to MSs translation and rotation,
we normalize the position and the orientation of the subject before extracting the features. We use
the spine and hips joints to form the base representing the position and orientation of the body.
We align the initial pose of a segment with respect to a reference posture by finding the best rigid
transformation between corresponding bases. The optimal transformation is then applied to all
other poses of the segment. This makes the representation invariant to the position and orientation
of the subject in the scene. With this representation, an activity sequence can be viewed as a set of
short spatiotemporal trajectories in R3Nj representing MSs.

Appearance features. Features of human motion are complemented with appearance features
describing the objects the user is interacting with, if any. Such combination of motion and object
features improves the robustness of the activity recognition, and is also necessary to discriminate
between actions that would be almost identical in terms of motion patterns. Indeed, discrimi-
nating between activities like Drink and Phone call would require a description pattern capable of
accurately distinguishing whether the user hand is closer to the mouth than to the ear. This level
of accuracy is generally beyond the capability of commercial depth sensor, unless the user is very
close to the sensor. Differently, two such actions can be easily distinguished by considering the
objects with which the user interacts.

In order to describe the distribution of depth pixels within a local region around subject hands,
the Local Occupancy Pattern (LOP) [120] descriptor can be used. In this approach, a depth image is
viewed as a 3D point cloud, and the local regions are represented by 3D bounding boxes centered at
the hand joints. As shown in Figure 5.6a, each bounding box is partitioned into Nc = Nx⇥Ny⇥Nz

3D cells, and the number of 3D points that fall in each cell is counted. In the experimental tests, we
empirically select a local region of size 0.3m⇥ 0.3m⇥ 0.3m divided into 5⇥ 5⇥ 5 cells.

This local depth representation is combined with the motion features, which represent an activ-
ity as a sequence of successive MSs. For each frame of a MS, we compute the LOP feature for each
hand joint (ll and lr) and concatenate them to form one global LOP feature vector Lf = [ll, lr] for
the frame f . The length of such feature vector is 2⇥Nc. However, MSs can have different duration.
As a consequence, they are described with a different number of LOP features, which is not conve-
nient in the comparison. To deal with duration variability, we propose a compact representation of
the depth appearance, which is independent from its duration. First, we assume the object held by
the subject during the time interval corresponding to a MS does not change considerably, and we
compute the mean of the LOP features among frames of a MS. Thus, one single feature, that we call
Mean LOP (MLOP) is used to describe the average depth appearance of a MS. Then, we consider
changes of depth appearance around hand joints, which can be induced by object manipulation

90



5.3. Analysis of complex activities by motion segmentation

(a) (b)

Figure 5.6: LOP feature computation. (a) A 3D cuboid divided into 3D cells is extracted from the
depth image around the hand joint and the number of 3D points within each 3D cell is counted.
(b) Schema of the 4DLOP feature representing depth appearance evolution along a MS in two time
steps.

during a MS. For instance, for the activity Drink a MS would consist of bringing the container to
the mouth. In that case, the support where the object is located may appear in the local region
around the hand, in the first part of the MS, but the face of the subject may be present in this local
region at the end of the MS. To represent this depth variation, we adopt an extension of LOP feature
in four dimensions called 4DLOP. The spatio-temporal volume representing the change of the local
region around hands along the MS is also partitioned in Nt divisions across temporal dimension.

Note that, differently to [43], which analyzes depth variation in fixed 4D boxes, we consider
depth variation in a moving spatio-temporal region following the motion of human hands. This
idea is illustrated in Figure 5.6b. As a result, each MS is represented by a feature vector describing
the depth appearance independently to its duration (either MLOP or 4DLOP).

5.3.4 Vocabulary of Motion Units

We propose to use a bag-of-word paradigm to describe human behaviors, so as to identify code-
book of exemplar MUs (symbols) necessary to build a reference dictionary. Such codebook is usu-
ally learned from training sequences. Then our idea is that unknown complex motion sequences
can be represented as a set of generic MUs from the learn codebook, thus facilitating their analysis
and understanding. As each MU is described by two types of features representing human motion
and depth appearance, we identify two distinct codebooks for each of the feature.

Motion codebook. Human Motion Units are represented by the shape of the corresponding mo-
tion trajectories in the shape space. To learn the codebook of exemplar shapes, we perform clus-
tering of shapes using the k-means clustering algorithm, using elastic distance, on the shape space.
Such clustering provides a mapping between trajectory shapes represented on the shape space and
a finite set of symbols corresponding to clusters. In order to describe each cluster by using only its
corresponding exemplar shape, we propose to learn a density function for each cluster. These den-
sity functions capture the variability between shapes belonging to the same cluster and provide a
deeper modeling of each cluster. In so doing, we assume the distribution of shapes within a cluster
follows a multivariate normal model.
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Unfortunately, learning such density functions on the shape space is not straightforward,
mainly due to the non-linearity and infinite-dimensionality of such manifold (i.e., shapes are rep-
resented by functions, so they have infinite dimension). Different methods have been proposed
to deal with these two challenges [145, 195]. A common way to circumvent the non-linearity of
the manifold is to consider a hyper-plane tangent to the manifold at the mean shape (i.e., tangent
space). Such tangent space is a linear vector space, where conventional statistics applies, like the
computation of density functions. We denote TµkS the tangent space at the mean shape of the k-th
cluster µk. For each shape qi 2 S within the k-th cluster, we compute its corresponding tangent
vector vi 2 TµkS using the logarithm map. This approximation is valid because samples belong
to the same cluster. Thus, we can assume that they lie in a small neighborhood around the mean
shape µk. To deal with the problem of infinite-dimensionality, we assume the variations in tangent
vectors are restricted to an m-dimensional subspace. Using tangent vectors of each cluster, we use
PCA to learn a principal subspace for each cluster. We denote n the dimension of such principal
subspace. Tangent vectors vi are then projected into the learned subspace. Let ṽi be such projected
vectors, we compute the covariance matrix⌃ between all projected vectors ṽi belonging to the same
cluster. Finally, we use the resulting mean shape µ and covariance matrix ⌃ to learn a multivariate
normal distribution for each cluster. Its corresponding probability density function is defined as:

f(ṽ) =
1

(2⇡)n/2 |⌃|1/2
e�

1
2 ṽ

T⌃�1
ṽ . (5.9)

where ⌃ corresponds to the covariance matrix computed on the learned principal subspace. The
process of learning the distribution on the shape space is illustrated in Figure 5.7.

Figure 5.7: For each cluster, the mean shape µ is computed (red) from shapes qi belonging to the
same cluster. Then, the shapes qi (black) are projected on the corresponding tangent space TµS .
Such tangent vectors vi (blue) are used to compute the covariance matrix and learn the multivariate
distribution for each cluster.

As mentioned above, the codebook is learned only from MUs belonging to training sequences.
Such learned codebook is used to label a MU of a test sequence, characterized by its trajectory shape
on the shape space. The test shape is first projected into the learned subspace of a cluster k. Then,
using the corresponding covariance matrix, we can compute the probability that the test shape has
been generated by the learned density function corresponding to the cluster k. We do the same for
each cluster and assign the test shape to the cluster giving the highest probability.

To compute such probability, a common way is to use the log probability. Let ṽk being a test
shape q projected in the principal subspace of the cluster k with a corresponding covariance matrix
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⌃k. Then the log probability that the shape q belongs to the cluster k is defined as:

L = �1

2
ln(|⌃k|) �

1

2
ṽTk ⌃

�1
k

ṽk �
n

2
ln(2⇡) (5.10)

Appearance codebook. Motion appearance is described by a LOP feature representing depth dis-
tribution around subject hands. Similarly to motion trajectories, we use the k-means algorithm to
cluster LOP features and build a codebook of exemplar LOP. The distance dl that we use to compare
two LOP feature vectors lA and lB is the l2-norm:

dl = klA � lBk2Nc
=

NcX

i=1

(ai � bi)
2 , (5.11)

where ai and bi are the i-th components of lA and lB , respectively. Such clustering provides a
mapping between LOP feature vectors and a finite set of LOP symbols represented by the clus-
ter centroids. Similarly to human motion, the codebook is learned from MU segments of training
sequences. For MU segments of test sequences, we first compute the distance dl between the cor-
responding LOP feature and all the exemplar LOP. Finally, the labeling is done using the nearest
rule.

5.3.5 Dynamic modeling of activity sequences

The activity sequence is decomposed now into MSs, and each MS is described in terms of human
motion and depth appearance around subject hands. Thus, the dynamics of a sequence can be
viewed as combination of two sequences of successive symbols, one corresponding to human mo-
tion, and the other corresponding to depth appearance around hands. In so doing, we assume that
sequences of the same class are represented by similar arrangements of MSs. Conversely, differ-
ent sequences of symbols should represent different classes. Hence, we need a method to analyze
the change of symbols across time, and recognize different arrangements of MSs. To this end, we
propose to use the Dynamic Naive Bayes classifier (DNBC) [179] as statistical model.

Learning. In DNBC training, we only know the sequence of observations X = {Xa
t | t =

1, . . . , T , 1  a  A}, being A the number of attributes, while the states S = {St|t = 1, . . . , T}
are not available. Thus, we need tools for estimating the model parameters, i.e., the prior, transi-
tion and emission probabilities. The prior probability represents the initial state of the process. The
transition probability is the probability to transit from one state to another state of the process.
The emission probability represents, for each state, the probability of generating each attribute.
Similarly to HMM, a common way to learn such parameters from training sequences of observed
symbols is to use the Baum-Welch algorithm [223]. In the case of DNBC, parameters estimation
is slightly modified due to the model setting, which allows the emission of several attributes per
state (more details on this can be found in [140]). For our task, we assume that each activity class
is modeled with a different DNBC. Let the activity class c 2 {1, . . . , C} with C being the number of
activity classes, we learn one DNBC denoted �c for each class c using the training sequences of to
the class c.

Classification. The classification process of an observed sequence X is the performed as follows.
First, the sequence is presented to each of the trained �c DNBC modeling different activity classes.
Then, the likelihood P (X|�c) that the sequence X has been generated by the �c DNBC is computed
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using the Forward algorithm. Finally, the sequence is classified as the activity whose corresponding
DNBC gives the highest log-likelihood: activity(X) = argmaxc P (X|�c).

This process is then extended to perform the online classification, so that a decision can be taken
before the end of a sequence. This is particularly convenient for real-time applications, permitting
natural interaction with the system. In addition, it allows us to process a sequence as a continuous
stream, where several activities can be performed successively, which is often the case in real-world
contexts. As shown in Sect. 5.3.2, the segmentation process is based on a sliding window technique.
Hence, it can also be applied in an online manner so as to detect MSs from a continuous stream.
Each new frame of the sequence is given as input to the segmentation process. When a MS is de-
tected, we compute the corresponding human motion and depth appearance features and assign a
symbol to each, as described in Sect. 5.2. The resulted observation sequence of length-1 is then pre-
sented to each trained DNBC in order to compute the corresponding log-likelihoods. This process
is performed for each new detected MS. Thus, the length of the observation sequence is increased
by one, and the log-likelihoods are updated. If the log-likelihood of a class falls below a thresh-
old, we discard the activity class. This allows us to gradually reduce the set of possible classes.
The process is repeated until all classes are discarded. Among the remaining classes, we keep the
class with the highest log-probability as the detected activity. However, transitions between activ-
ities are often smooth. Thus, when an activity is finished, its corresponding log-probability may
not considerably decrease and directly fall below the threshold. In order to consider this smooth
transition, we select as the ending boundary of the activity the time step when its corresponding
log-probability starts to decrease instead of the time step when it falls below the threshold. Finally,
we restart the detection process from the successive time step using all the classes. This is repeated
until the end of the sequence. As a result, we obtain the set of detected activities along the sequence
with corresponding starting and ending boundaries. This online activity detection is illustrated in
Figure 5.8.

Figure 5.8: Online detection process. The Activity-2 and Activity-3 are discarded after the fourth
and second time step, respectively, as their log-probability fall below -80. The remaining Activity-1
is discarded after the seventh time interval. As a result, the five first time intervals are classified as
Activity-1, and a new detection is started from the sixth time step.

5.3.6 Experiments

To evaluate the efficiency of our approach to recognize the human activity from complex sequences,
we conducted several tests on four public benchmark datasets, and compare results with those
obtained by state-of-the-art methods.
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MSRC-12 dataset. The first test concerns the task of human gesture recognition. The main goal
of this experiment is to show how the proposed method deals with actions characterized by rep-
etitions of a single gesture. In particular, we want to evidence the proposed decomposition of a
sequence into a set of MSs is capable of managing such variability.

We performed this experiment on the Microsoft Research MSRC-12 dataset, which includes 12
gestures performed by 30 subjects for a total of about 50 sequences per class, where a single gesture
is performed several times along a sequence (10 times in most of the cases, but this number may
vary from 2 to 15). This variability is indeed important to show how it can affect the recognition
accuracy. Only skeleton data is provided in this dataset, so we only use the motion features to
describe each segment. Following the same protocol as in Lehrmann et al. [40], only six gestures
are considered and a 5-fold cross validation protocol is applied. Results are reported in Table 5.3 as
average accuracy across folds in comparison to [40] and [J4].

Table 5.3: MSRC-12. Comparison of the proposed approach with DFM [40] and [J4]. Accuracy is
reported in percentage

Class DFM [40] Devanne et al. [J4] Our [J1]
Duck 96.0 100 100
Goggles 88.0 82.0 91.6
Shoot 85.7 73.5 83.0
Throw 90.0 88.0 90.0
Change weapon 87.5 89.6 94.0
Kick 98.0 98.0 98.2
Mean 90.9 88.5 92.8

From Table 5.3, we can notice the proposed approach outperforms [40] for all gesture classes
except one (Shoot), with an overall accuracy of 92.8%, compared to 90.9% reported in [40]. In ad-
dition, the accuracy of the proposed approach increases of about 4% that reported in our previous
work [J4], where the decomposition into MSs is not considered.

Cornell Activity dataset 120. The second test concerns the task of human activity recognition,
and the tests are conducted on using the Cornell Activity dataset 120 (CAD120) [66]. This dataset
contains 120 RGB-D sequences of ten high-level activities involving manipulation with objects,
performed by four different subjects three times each. The variability of performed activities, the
variability of subject orientation in the scene and the body part occlusion caused by objects make
this dataset quite challenging. For a fair comparison with state-of-the-art methods, the leave-one-
person-out cross protocol is used, and the average accuracy and standard deviation among the four
folds are finally computed. Table 5.4 reports results obtained by our method in comparison to
state-of-the-art. Our best accuracy is obtained by using a codebook size of 100 for both features. In
particular, methods are compared by separating the case in which only the human skeleton is used,
from the case in which both skeleton and depth data are considered.

From the results, we can first notice that our method significantly outperforms the other ap-
proaches when only skeleton data is used. More specifically, in comparison with [J4], which rep-
resents each activity by spatio-temporal trajectory only, the recognition accuracy is improved by
more than 20%. This shows that when activities involve complex motions, it is not sufficient to an-
alyze the global motion. Indeed, local analysis and decomposition of the activity into MSs provides
a better representation of activities, thus allowing a better understanding of the human behavior.
In addition, the accuracy of 69.4% obtained by our method shows that the decomposition of the
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Table 5.4: Cornell Activity dataset 120. Comparison of our approach to state of the art methods

Method Accuracy (%)
Skeleton Only

Koppula et al. [66] 27.4
Devanne et al. [J4] 48.3
Our [J1] 69.4 ± 4.1

Skeleton + Depth
Koppula et al. [66] 80.6
Koppula and Saxena [94] 83.1
Rybok et al. [42] 78.2
Our [J1] (Skel + MLOP) 79.0
Our [J1] (Skel + LOP4D) 82.3 ± 3.4

sequence allows us to quite well recognize activity sequences involving objects manipulation, even
without describing any explicit information about objects held by the subject. However, results
show that using only skeleton data is insufficient to be competitive with state-of-the-art methods.
As we can see in Table 5.4, using depth appearance features in addition to skeleton in our DNBC
allows us to improve the recognition by about 13%. As a result, we obtain competitive accuracy in
comparison with other approaches. Indeed, only [94] is above by less than 1%. Note that methods
in [66] and [94] use ground truth object bounding box in the training process. In our case, we do
not need this information. Moreover, the small value of standard deviation among the folds shows
that our method has a low dependency on training data.

Finally, by comparing the results obtained with our two different depth appearance features,
we can notice that the 4DLOP feature is more effective. This observation is strengthened by the
confusion matrices in Figure 5.9, and particularly by the confusion obtained for the pair of oppo-
site activities stacking and unstacking objects. We can see that using the LOP4D feature results in
less confusion between the two activities than using the MLOP feature. Indeed, in this particular
case, the average depth appearance of putting and taking the object may be very similar and rep-
resented by the same symbol from the codebook. The 4DLOP feature capturing the variation of
depth appearance is more suitable to discriminate the two elementary motions, and thus the two
activities.

On this dataset, we also evaluate the effectiveness of our method when the value of parameters
(size of the codebook and number of DNBC states) is changed. The evolution of the accuracy with
respect to both parameters is displayed in Figure 5.10 for both MLOP and LOP4D features. First,
it can be observed that the proposed method obtains the best accuracy using both features, when a
DNBC with 10 states is trained. It can be also observed that the accuracy is relatively independent
from the number of states (except when only three states are used). Second, we can notice the best
accuracy is obtained with a codebook of size 50 for the MLOP feature, and a codebook of size 100
for the LOP4D feature. In addition, if too much exemplar features (i.e., 200) are used, the accuracy
falls down. Indeed, learning a codebook with too much symbols may result in similar activities
represented by different symbols. Hence, symbols represent more a particular sequence performed
by one subject, than a generic template of one activity class.

Multi-Modal Action database. The third test concerns the task of online action detection. The
Multi-Modal Action Detection (MAD) database [58], has been used to evalaute our method in this
context. This RGB-D database has the advantage of including long sequences of 20 subjects per-
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(a) (b)

Figure 5.9: Confusion matrices obtained on CAD-120 using MLOP (a), and 4DLOP (b).
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Figure 5.10: Accuracy evolution of our method with respect to varying parameters: the number of
states of DNBC (a), and the size of the codebooks (b).

forming successively 35 actions, like Running, Throw and Kicking.
Since actions are performed without objects, and for a fair comparison with state-of-the-art-

methods, we only use skeleton data in these experiments. A five-fold-cross-validation over the 20
subjects is used as evaluation protocol. In each iteration, the labeled sequences of four folds are
used to build the vocabulary of MSs and train the DNBCs. We used the ground truth segmentation
in order to separate each action of the training sequences and learn one DNBC per action. One
model corresponding to the null class is also learned from transition intervals when the human is
standing.

Our method is run in an online way as described in Sect. 5.3.5. As a result, we obtain a seg-
mented sequence with an action label for each AU corresponding to the action we detected. In
order to evaluate the method and compare it with the state-of-the-art, we compute two measures:
Precision, which corresponds to the percentage of correctly detected actions over all the detected
actions; Recall, that is the percentage of correctly detected actions over all the ground truth actions.
An action is considered as correctly detected if it overlaps with 50% of the segments of the ground
truth action. The ground truth provided by the database authors is obtained by manual labeling
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of sequences. We compare these two measures with the SMMED and MSO-SVM methods, both
proposed in [58]. The average and standard deviation values among the five folds are reported
in Table 5.5. We can see that our method outperforms the state-of-the-art approaches for both the
measures.

Table 5.5: MAD database. Comparison of the proposed online detection approach with
SMMED [58] and MSO-SVM [58]. The precision and recall measures are computed

Measure (%) MSO-SVM [58] SMMED [58] Our [J1]
Recall 51.4 57.4 79.7 ± 6.4
Precision 28.6 59.2 72.1 ± 5.8

Fig 5.11 also shows the detection results of one sequence in comparison with the ground truth
and the best state of the art method, SMMED, proposed in [58]. We can see that while both our
method and [58] are able to accurately detect actions along the time, our method detects more
efficiently the end of actions, thus resulting in a duration of detected actions closer to the ground
truth. As an overlap of 50% with ground truth is considered as the criterion of good detection, our
method obtains higher values of recall and precision.

Figure 5.11: Action detection result, for the sequence-1 of subject-1 from the MAD database, of the
SMMED method [58] (second row) and the proposed approach (third row) in comparison to the
ground truth (first row). Our method provides segments whose duration is closer to ground truth
compared to [58].

Online RGB-D dataset. The fourth test concerns the several issues related to the action and activ-
ity detection and recognition. The Online RGB-D dataset [44] proposes different types of sequences,
which allow evaluation in different contexts, like activity recognition and online activity detection.
The dataset contains RGB-D sequences of seven activities, like drinking, eating or reading book. On
this dataset, we first evaluate the effectiveness of our method for activity recognition. To this end,
we follow the same procedure as in [44] by employing a 2-fold cross validation. We compare our
approach with state-of-the-art methods according to the type of features employed. When we use
depth features in our method, we use the 4DLOP feature and learn codebooks of different sizes.
The best accuracy is obtained for a codebook of size 100. Results are reported in Table 5.6.

Table 5.6: Online RGB-D dataset. Comparison of our approach with state of the art methods for
the task of activity recognition

Method Accuracy (%)
Depth Skeleton Depth + Skeleton

DCSF [73] 61.7 - -
Moving Pose [69] - 38.4 -
Actionlet [118] - - 66.0
DOM [44] 46.4 63.3 71.4
Our [J1] 64.5 ± 0.7 71.8 ± 1.8 80.9 ± 1.1
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It can be noticed that the proposed approach outperforms the state-of-the-art methods for every
combination of features. It should also be noted that if only depth features are used, our method is
not fairly comparable to the others. Indeed, even if we only use depth features to describe MSs, our
method still needs skeleton data to identify MSs. Nevertheless, we can see that our segmentation
approach allows a good recognition of activities when each segment is only described by depth
appearance feature. Compared to skeleton-based methods, our approach significantly outperforms
other solutions. This shows that our segmentation approach combined with shape analysis of
human motion allows us to efficiently recognize activities involving manipulation of objects. Even
without considering any information about objects held by the subject, we are able to recognize
71.8% of the activities. This result is higher than that scored by [118] and [44], which combine
both skeleton and depth features. Finally, if we add depth features to the skeleton, the recognition
accuracy is increased to 80.9%, which is almost 10% above the best state-of-the-art method [44].

We evaluate also the latency of our approach by measuring the ability to recognize the activity
without observing the whole sequence. Hence, the average recognition accuracy is computed on
different observed portions of the sequence, as reported in Figure 5.12 in comparison to state-of-
the-art. We can notice that the proposed approach outperforms the methods in [73] and [69] for
every observation ratio. However, our method exceeds the method proposed in [44] from 40% of
observation. Indeed, when we observe less than 40% of the sequence, it often results in activity se-
quences represented by one or two temporal segments. In these cases, the dynamics of the activity
is null (one observation) or very small (two observations). Hence, the use of statistical models like
DNBC is not appropriate and efficient for modeling short portions of the activity sequence. Finally,
our method allows efficient recognition when half of the sequence is observed (accuracy of 75.6%).
This shows that even if our method is not suitable for very early detection of activities (less than
30% of observation), we guarantee a good recognition accuracy when only half of the sequence is
observed.
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Figure 5.12: Latency analysis on Online RGB-D dataset. Accuracy obtained for different portion of
the sequences is compared to and state-of-the-art methods.

Finally, we propose to evaluate our approach for online activity detection. The same set of
activities as for activity recognition is used to train one DNBC for each activity class. In addition,
we use a set of background activities provided by the dataset, so as to learn the null class. Finally,
we run our detection method on a new set of sequences. It includes 36 long sequences from 30sec
to two minutes, where 12 new subjects are successively performing different activities. Manual
labeling provided by the dataset is used as ground truth. Detection is evaluated using a frame-
level accuracy as in [44], computed by averaging the number of well classified frames out the all
set of frames in the test sequences. Results are reported in Table 5.7. We can see that our method
performs better than state-of-the-art approaches to detect activity in an online manner. Using an

99



Chapter 5. Human Activity Recognition
Shape Analysis of Motion Trajectories

unoptimized Matlab implementation with an Intel Core i-5 2.6GHz CPU and a 8GB RAM, we run
our detection method at 7fps.

Table 5.7: Online RGB-D Dataset. Comparison of our approach with state of the art methods for
the task of online activity detection

Method Accuracy (%)
DSTIP + DCSF [73] 32.1
Moving Pose [69] 50.0
DOM [44] 56.4
Our [J1] 60.9

5.4 Conclusions

In this chapter, we addressed the issue of human action and activity analysis and recognition from
RGB-D data, a widely investigated topic due to its large panel of potential applications. We differ-
entiate the study of behaviors according to their complexity.

In a first time, we focused on the recognition of relatively simple short movements, like actions.
To this end, we employed skeleton data provided by RGB-D sensors, which represent the human
body pose as a set of connected 3D joints for each frame of the sequence. In order to analyze the
action performed by the subject during the sequence, a spatiotemporal modeling of motion tra-
jectories in a Riemannian manifold is proposed. Each motion trajectory is expressed as a point in
the open curve shape space. Thanks to the Riemannian geometry of this manifold, action classifi-
cation is solved using the nearest neighbor rule. The efficiency of the proposed method, verified
on three benchmark datasets, demonstrate that our approach outperforms the existing state-of-
the-art methods in most of the cases, in terms of recognition and latency. However, experiments
also demonstrated that the proposed solution suffers from limitations when actions involve long
sequences and/or variable repetitions of a single gesture or manipulations of objects.

In a second time, we extended our approach, so as to simultaneously handle these limitations
and considered more complex movements, like activities. Hence, we proposed a segmentation
method in order to decompose a motion sequence into a set of short elementary Motion Units.
Thanks to a proposed pose-based shape analysis, we decompose a sequence into relevant MSs,
which are then represented as motion trajectories and interpreted in the Riemannian shape space
in order to capture the dynamics of human motion. In addition, adding depth appearance in-
formation enables us to characterize MSs by the motion trajectory and depth appearance around
hand joints, so as to describe the human motion and interaction with objects. Finally, the sequence
of temporal segments is modeled through a Dynamic Naive Bayesian Classifier. Experiments on
several datasets show the potential of our method for the task of human behavior recognition in
comparison with state-of-the-art methods. Finally, we adapt our method to allow online behavior
detection in long sequences, which is an important challenge in real-world contexts. Evaluation
on two datasets demonstrate that the proposed approach outperforms state-of-the-art methods for
online detection of human behavior.

Although the appearance of the depth around the articulations of the hand enables to distin-
guish certain gestures, based on the description of the object in interaction, its effectiveness remains
limited in a complex scenario of human-object interactions. Interpreting fine hand gestures is a crit-
ical problem for understanding human behavior. Among human body parts, hands are the most
effective and intuitive interaction tools in Human-Computer Interaction applications. Thus, hand
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gesture analysis and recognition present a crucial task to achieve a deeper understanding of the
behavior.
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CHAPTER 6

On Hand Gesture Recognition
Migrate from Handcrafted to Deep

Learning Approaches

This chapter presents our contributions on 3D hand gesture recognition problems. We first dis-
cuss a traditional handcrafted approach using hand shape and motion descriptors computed on
3D hand skeletal features. Then, we extend the study of hand gesture analysis to online recog-
nition. Using a deep learning approach, we employ a transfer learning strategy to learn hand
posture and shape features from depth image dataset originally created for hand pose estimation.
We propose this methodological evolution since we are convinced that the understanding of tradi-
tional approaches as well as their challenges and limitations will help to understand modern deep
learning approaches and how they can be used to improve results. During the description of the
approaches, we highlight challenges hand pose detection and its motion description and potential
ways to overcome them. The contributions in this chapter originate from the work done by Quentin
De Smedt during his Ph.D thesis [3]. It is structured as follows. After introducing the problem and
reviewing the related work in Section 6.1, our handcrafted based approach is described in Section
6.2, followed by experimental testes. In Section 6.3, we present an evolution towards deep learning
approaches. Finally, strengths of our approach in terms of online detection and recognition are
demonstrated on two datasets before concluding in Section 6.4.

The contribution presented in this chapter were published in the conference/workshop papers
[C1, C2, C5] and under review in the submitted journal papers [P1, P3], and from where some parts
of this chapter are extracted.

6.1 Context

Among human body parts, the hand is an effective and intuitive interaction tool in most Human-
Computer Interaction (HCI) applications. Consequently, hand gesture recognition is becoming a
central key for different types of applications such as virtual game control, sign language recogni-
tion, HCI, robot control, etc.

Using hand gestures as a Human-Computer Interaction (HCI) modality introduces intuitive
and easy-to-use interfaces for a wide range of applications in virtual and augmented reality sys-
tems, offering support for the hearing-impaired and providing solutions for all environments us-
ing touchless interfaces. However, the hand is an object with a complex topology and has endless
possibilities to perform the same gesture. For example, Feix et al. [177] summarize the grasping tax-
onomy and found 17 different hand shapes to perform a grasp. Grasping is a hand gesture where
we need precise information about the hand shape if we want to recognize it. Other gestures, such
as swipes, which are defined more by hand motions than its shape, are already commonly used
in tactile HCI. Thus, the heterogeneity between useful gestures have to be taken into account in a
hand gesture recognition algorithm.

The area of hand gesture analysis covers hand pose estimation and gesture recognition. Hand
pose estimation is considered to be more challenging than other human part estimation due to the
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small size of the hand, its greater complexity and its important self occlusions. Beside, the devel-
opment of a precise hand gesture recognition system is also challenging. Different occurrences of
the same gesture type contain high dissimilarities derived from ad-hoc, cultural and/or individ-
ual factors in the style, the position and the speed of gestures. In addition, gestures with different
meanings contain high similarities derived from the heterogeneity of possible gestures.

To date, most reliable tools used to capture 3D hand gestures are motion capture devices, which
have sensors attached to a glove delivering real-time measurements of the hand. However, they
present several drawbacks in terms of the naturalness of the hand gesture and cost, in addition
to their complex calibration setup process. Recently, effective and inexpensive depth sensors, like
the Microsoft Kinect, have been increasingly used in the domain of computer vision. By adding a
third dimension into the game, depth images offer new opportunities to many research fields, one
of which is the hand gesture recognition. Hence, many research work have addressed 3D hand
gesture recognition challenges using depth images [19, 27, 33, 52, 53, 63] .

In meantime, deep neural networks have proven their outstanding effectiveness of many area
of research. Indeed, they allowed researchers to make a jump in robustness and efficiency in hand
pose estimation. However, deep learning algorithms are data-hungry and annotating hand pose
datasets is very time-consuming. Similarly to hand pose estimation, methods using deep learning
for the task of hand gesture recognition showed also an improvement in the robustness and the
efficiency of new algorithms based on learned features compared to traditional handcrafted de-
scriptors. However, in the same way, current available hand gesture datasets are small in size and
strategies have to be used to overcome the hungriness of deep learning algorithms. Nevertheless,
the existence of large datasets made for the hand pose estimation issue can be used to pre-train a
deep model for the hand gesture recognition task.

Despite an increasing amount of methods proposed over the last few years, defining an online
dynamic hand gesture recognition system, robust enough to work in real world applications, re-
mains a challenge. Dynamic hand gestures can be defined by shape variations of the hand during
sequences (e.g. fine gestures performed by fingers), or by hand movements (e.g. swipe gestures),
and often both. These multiple characteristics, which have to be taken into account, make harder
the process of feature learning as it has to learn mutually spatial and temporal information.

In order to fully extract relevant features of complex hand gestures using raw data, models of
neural networks need a large number of layers which increase their computation complexity. How-
ever, the computational complexity has to be small enough so that the algorithm can predict a new
incoming gesture in real time. Some methods present acceptable runtime results using very deep
networks but use a powerful hardware with several GPUs. Currently, this hardware configuration
is too much expensive and so not suitable for real-world applications.

6.1.1 Related Work

Gesture recognition has been a widely explored topic in computer vision. Over the past few years,
advances in inexpensive 3D depth sensors have substantially promoted the research of hand ges-
ture detection and recognition. We will focus only in reviewing the works on 3D hand gesture
recognition we consider relevant to two main categories – handcrafted and deep learning based
methods – using depth images.

In traditional handcrafted approaches, 3D depth information is used to recognize hand sil-
houettes or simply hand areas in order to extract features from a segmented hand region [27, 84,
93, 150]. The temporal aspect of hand motion is also considered by Kurakin et al. [132], where
they presented the MSRGesture3D dataset containing 12 dynamic gesture from the American Sign
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Language. Their recognition algorithm is based on a hand depth cell occupancy and a silhouette
descriptor. They used an action graph to represent the dynamic aspect of the gestures. Recently,
using a histogram of 3D facets to encode 3D hand shape information from depth maps, Zhang
et al. [68] outperformed latest results obtained on the MSRGesture3D dataset using a dynamic
programming-based temporal segmentation. One of the tracks of the Chalearn 2014 [63] consists
of using a multimodal database of 4000 gestures drawn from a vocabulary of 20 dynamic Italian
Sign Language gesture categories. They provided sequences of depth images of the whole human
body and body skeletons. From this dataset, Monnier et al. [53] employed both body skeleton and
Histogram of Oriented Gradients (HOG) features computed on the depth map cropped around the
hand to perform a gesture classification using a boosted cascade classifier.

In order to study hand gesture recognition in a real-time scenario for automotive interfaces,
Ohn-Bar and Trivedi [52] made a publicly available dataset of 19 gestures performed in a car cap-
tured with the Microsoft Kinect. The initial resolution obtained by such a sensor is 640⇥480 and the
final region of interest is 115⇥250. Moreover, at some distance from the camera, with the illumina-
tion varying in the car, the resulting depth is very noisy, making the challenge of gesture recognition
tougher. They compared the accuracy of gesture recognition using several known depth features
(HOG, HOG3D, HOG2). In a previous work, De Smedt et al. [C5] investigate the use of a hand
skeleton model in a dynamic hand gesture recognition solution. It includes three gestural features
representing the hand shape and the motion information computed on the skeletal data of the hand
in addition to a temporal encoding of the gesture dynamics. The evaluation of this approach on
three hand gesture datasets containing a set of fine and coarse heterogeneous gestures, shows a
promising way to perform hand gesture recognition with a skeletal-based approach. Nevertheless,
this approach has shown some weaknesses compared to deep neural network-based models, to
represent the complex dynamic and temporal information of a hand gesture.

Like many research areas in pattern recognition, deep learning approaches have recently shown
a particularity high performances for hand gesture recognition. Their ability to learn relevant spa-
tial and/or temporal features in addition to play the role of classifier, has been studied last years.
Convolutional neural networks [214] designed to take images as input have been used for static
hand gesture recognition using RGB data [54, 152] and/or depth maps [35]. Neverova et al. [18]
designed a multi-modal deep learning framework which takes as inputs: RGB, depth, audio stream
and body skeleton data. Their network captured several spatial information, such as motions of the
upper body or the hand, at three distinct spatial scales in order to perform dynamic sign language
recognition. Their framework classified each frame and the final label of a sequence was computed
using a majority vote. Molchanov et al. [33] proposed a dynamic hand gesture algorithm using
a two-stream 3DCNN which takes as inputs stacked image gradients and depth maps to classify
sequence of images. They later enhanced their method and proposed a dynamic hand gesture al-
gorithm – called R3DCNN [19] – using a larger 3DCNN, previously defined by Karpathy et al. [56],
to extract features from sub-sequences followed by a recurrent layer to model the temporal aspect
of gestures. The 3DCNN was composed of eight convolutions with an increasing number of filters
in order to get both spatial and temporal features on sequences of RGB and depth images. In ad-
dition, they used a Connectionist Temporal Classification [194] as the cost function. While it has
been initially designed to perform prediction of sequence in an unsegmented input streams, the
CTC is applied here to perform online classification. To overcome the hungriness of deep learning
algorithms, they pre-trained their model on the large-scale Sport-1M [56] human action recognition
dataset. If they claimed to obtain real-time results, they used a powerful hardware configuration
not suitable for public use.
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The recognition algorithms of dynamic hand gestures based on skeletal data are not yet well
represented in the literature. This is due to the fact that hand pose estimation methods begin only
recently to be robust and efficient in challenging contexts. Lu et al. [20] used a neural based variant
of the HCRF which were fed with features computed on hand skeletal data captured via a Leap
Motion Controller.

However, the problem of modeling skeletal data sequences with deep neural networks has
been studied in the field of action recognition. Wang et al. [5] used a two-stream Recurrent Neural
Network (RNN) architecture for skeleton based action recognition. One stream was used in order
to model temporal information while the other focus on spatial cues. Garcia et al. [8] used a two-
stacked Long-Term Short Memory (LSTM) network as a baseline for their hand action dataset.
LSTM has shown better performance over all previous traditional methods. Du et al. [37] proposed
to divide the human body skeleton in five meaningful parts and fed each one into a distinct RNN
network. They used a bidirectionnal variant [215] of the LSTM in order to use past frames but also
future one to model each time step of a sequence. The recurrent layers are then fused step by step
to be inputs of higher layers. Very recently, Liu et al. [6] defined a global context-aware attention
LSTM networks for skeleton-based action recognition. The idea behind their approach is that an
upstream recurrent network processes an incoming sequence and update a context memory cell
which allowed to extract the potential importance of each body joint in the sequence. A second
LSTM performed the classification paying attention more precisely at some joints using the context
memory.

6.1.2 Challenges and motivations

The development of a precise dynamic hand gesture recognition system, able to take into account
the heterogeneity of possible gesture types, presents some important challenges. Indeed, the in-
traclass gesture dissimilarities, which come from ad-hoc, cultural and/or individual factors in the
style, position and speed of gestures. Indeed, two different actors rarely perform the same gesture
in the same way. These variations are caused by differences of dexterity, size or yet again culture.
In fact, even a particular subject never perform the same gesture twice in the same way. Other than
its position relative to the camera can change, when a user performs a particular type of gesture
multiple times, he makes it his own. It follows sometimes large differences with the example given
at the beginning. In addition, interclass similarities, which come from high similarities between
different types of gestures, represent an important factor. Furthermore, these similarities are ex-
acerbated by deformations due to intraclass variations. Finally, some hand gestures can only be
described by hand shape variations through time. However, a hand is a small object with a high
degree of freedom and with a high potential of self-occlusion. It is very hard to extract precise
information of the hand shape based on data captured using long-ranged depth sensors with a low
image resolution such as the first version of Microsft Kinect. In addition, the noise of depth images,
self-occlusions and environmental variations in the viewpoints make the study of hand shape very
challenging. Nevertheless, new short-ranged depth devices enable more precise hand capture (e.g.
Intel RealSense or the SoftKinetic DS325).
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6.2 Presegmented Hand Gesture Recognition using 3D Dynamic Skele-
tal Data

In the field of action recognition, Shotton et al. [78] proposed a real-time method to accurately
predict the 3D positions of 20 body joints from depth images. Hence, several descriptors in the lit-
erature proved how positions, motions, and orientations of joints could be excellent descriptors for
human actions. Following this statement, hand skeletal data could also handle precise information
of the hands that HCI needs in order to use them as a manipulation tool.

Recently, new devices, such as the Intel RealSense or the Leap Motion Controller (LMC), pro-
vide, in addition to depth images, precise skeletal data of the hand and fingers in the form of a full
3D skeleton corresponding to twenty or so joints in R3. Potter et al. [85] presented an early explo-
ration of the suitability of using such data from a LMC in order to recognize and classify precise
hand gestures in Australian Sign Language. However, hand pose estimation from depth images
remains a prominent field of research. Many issues still have to be solved: properly recognizing
the skeleton when the hand is either closed, perpendicular to the camera, or without an accurate
initialization, or when the user performs a quick gesture. The hand contains more joints than there
are in the rest of the human body model of Shotton et al. [78] and is a smaller object. The hand
has also a more complex structure. If an arm, a head or a leg have different shapes, the hand is
composed of a palm and five similar fingers making its pose estimation more challenging.

6.2.1 Approach overview

To face challenges of dynamic hand gesture recognition, we introduce an original approach using
three features computed on hand skeletal feature sequences to classify unknown hand gestures.

Our proposed method is a hand skeleton-based approach since we consider those features con-
tain precise information about hand motions and shape variations information. In addition, new
devices are able to directly provide us hand skeletal features. However, even if 3D joint positions of
hand skeleton are available, the hand gesture recognition task is still challenging due to significant
spatial and temporal variations in the way of performing a gesture.

First, we use a temporal pyramid to represent the dynamic aspect of gestures. We cut sequences
in overlapping sub-sequences. On each sub-sequences, we compute three set of features: a set
of direction vector which the hand is taking through the sequence, a set of rotation and a hand
shape descriptor called Shape of Connected Joints. Those sets are then transformed into a statistical
representation vector using a Fisher Kernel. The final gesture descriptor is the concatenation of the
three statistical representation features computed for each sub-sequence. Finally, a linear SVM is
used to perform classification.

Since skeleton based approaches became popular thanks to Shotton et al.’s approach [78], more
and more datasets dedicated to human action and activity recognition from human skeleton have
been created [16, 80, 115, 163]. However, in the context of hand gesture recognition, there was no
publicly released dynamic hand gestures dataset providing labeled sequences of depth and hand
skeletal features. We are therefore encouraged to collect a dataset with this type of information data
[C5].

6.2.2 3D Hand Pose Estimation

The task of hand pose estimation aims to map an observed input, generally a 2D or a 3D image,
to a set of 3D joints together forming a possible hand configuration called hand skeleton or hand
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pose, which takes into account the anatomic structure constraints of the hand as depicted in Figure
6.1. The hand pose estimation community has rapidly grown larger in recent years. The introduc-

Figure 6.1: Illustration of the hand pose estimation task. (a) from an input image and after (b) a
pre-processing step, a hand pose estimation system is able to (c) output a set of 3D joints called
together hand skeleton or hand pose based on (d) the anatomic structure constraints of the hand.

tion of commodity depth sensors and the multitude of potential applications have stimulated new
advances. However, it is still challenging to achieve efficient and robust estimation performance
because of large possible variations of hand poses, severe self-occlusions and self-similarities be-
tween fingers in the depth image. The current state-of-the-art methods mostly employ deep learn-
ing approaches to estimate hand pose from a depth image [11, 14, 24, 31, 32, 47]. In meantime, the
availability of a large-scale, accurately annotated dataset is a key factor for advancing this field of
research. Consequently, numerous RGB-D datasets have been made publicly available last years.
Currently, the widely used datasets in the literature for benchmarking purposes are the ICVL [48]
and the NYU [47] datasets. In addition to depth images, the software development kit of the In-
tel RealSense SR300 [17] provides a stream of 3D full hand skeleton of 22 joints at 30 frames per
second. Beside, in July 2013, the Leap Motion Controller (LMC) is launched on the public market,
which was primarily designed for hand tracking, provides 3D full hand skeleton of 24 joints. Such
data offer new opportunities and axes of research related to hand gesture analysis.

6.2.3 Skeletal feature extraction

Using 3D hand skeletal data (an example can be seen in Figure 6.3a), a dynamic gesture can be seen
as a time series of hand skeletons. It describes the motion and the hand shapes along the gesture.
For each frame t of the sequence, the position in the camera space of Nj joint which are represented
by three coordinates, i.e. ji(t) = [ xi(t) yi(t) zi(t) ]. Nj is the number of joints which compose the
hand skeleton. The skeleton at frame t is then represented by the 3Nj dimension row vector:

s(t) = [ x1(t) y1(t) z1(t) ... xNj (t) yNj (t) zNj (t) ] (6.1)
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With Nf representing the number of frames in the sequence, the final representation of the sequence
is a matrix of size Nf ⇥ 3Nj where each line t is the row vector s(t):

M =

2

64
s(1)

...
(Nf )

3

75 (6.2)

This new type of data handles a lot of information on the motion and the shape of the hand along
the sequence. In order to fully represent the gesture, we propose to mainly capture the hand shape
variations based on skeleton joints, but also the direction of the movement and the rotation of the
hand with three distinct features.

Motion features. Some gestures are defined almost only by the way the hand moves in space (e.g.
swipes). To take this characteristic into account, we compute a direction vector in R3 for each frame
t of our sequence using the position of the palm joint noted jpalm:

�!
d dir(t) =

jpalm(t)� jpalm(t� c)

kjpalm(t)� jpalm(t� c)k (6.3)

where c is a constant value chosen experimentally. We normalize the direction vector by dividing
it by its norm.

For a sequence of Nf frames, we have the set SD:

SD =
n �!

d dir(t)
o

[ 1 < t < Nf ]
(6.4)

The rotation of the wrist during the gesture describes also how the hand is moving. For each
frame t, we compute the vector from the wrist node to the palm node to get the rotational informa-
tion in R3 of the hand:

�!
d rot(t) =

jpalm(t)� jwrist(t)

kjpalm(t)� jwrist(t)k
(6.5)

For a sequence of Nf frames, we have the set SR:

SR =
n �!

d rot(t)
o

[ 1 < t < Nf ]
(6.6)

Shape features. To represent the shapes of the hand during the sequence using skeleton data,
we propose a descriptor based on sets of joints, denoted as Shape of Connected Joints (SoCJ). Hand
skeleton returned from sensors consists of 3D coordinates of joints, represented in the camera co-
ordinate system. Therefore, they vary with the rotation and translation of the hand with respect to
the camera. To make our hand shape descriptor invariant to hand geometric transformations, we
propose a normalization phase. Firstly, in order to take into account the differences of hand size
between performers, we estimate the average size of each bone of the hand skeleton using all hands
in the dataset. Secondly, carefully keeping the angles between bones, we change their size by their
respective average size found previously. Indeed, in order to be consistent with the translation and
rotation transformations, we create a reference skeleton hand Hf corresponding to an open hand
in front of the camera with its palm node at [0 0 0] as the root joint. Then, we define a new base
with origin in the root joint, which includes the wrist node vector �!w , the base of the thumb node
vector �!t , and their cross product �!nB = �!w ⇥�!t . This new base is then translated and rotated, so as
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(a) (b) (c)

Figure 6.2: The calculation of the optimal rotation between the two hand skeletons using SV D: (a)
Two skeletons with different orientations; (b) Bases B1 and B2 are built from the two corresponding
wrists; (c) The resulting aligned skeleton (right) is now aligned with respect to the first one (left).

(a) (b)

Figure 6.3: Hand skeletal structure: (a) Depth and hand skeletal data returned by the Intel Re-
alSense camera, and (b) An example of the SoCJ descriptor constructed around the thumb tuple.
Let be T = (j1, j2, j3, j4, j5) where ji 2 R3. We compute the displacements from points to their
respective right neighbor resulting in the SoCJ vector

h
~d1, ~d2, ~d3, ~d4

i
.

to be aligned with a reference base B0 computed from Hf . The calculation of the optimal rotation
between the two bases B1 of a current skeleton and B0 of the reference skeleton Hf , is performed
using Singular Value Decomposition (SVD). This process results in a new hand which keeps its shape
but centered around [0 0 0] with the palm facing the camera. For each gesture sequence, we com-
pute the translation and the rotation of the first hand skeleton with respect to the Hf and then
apply the same transformations to all other hand skeletons of the sequence. This guarantees the
invariance of the representation to the position and orientation of the hand in the scene. Figure 6.2
shows an example of alignment of two different hand skeletons.

Let x represent the coordinates of a joint in R3 and T = [x1 x2 x3 x4 x5] a tuple of five ordered
different joints from the hand skeleton s. To describe the shape of the joint connections, we compute
the displacement from one point to its right-hand neighbor:

SoCJ(T ) = [ x2 � x1 ... x5 � x4 ] (6.7)

This results in a descriptor in R12. Figure 6.3b shows an example of a particular SoCJ using
the palm’s joint and the thumb’s. We remind that the skeleton of the Intel RealSense camera
is composed of 22 joints. Theoretically, with C binomial coefficient function , we can compute
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C(22, 5) = 26334 different SoCJs for the hand skeleton s resulting in the set:

ssocj = { SoCJ(i) }[ 1 < i < 26334 ] (6.8)

For a sequence of Nf frames, we have the set Ssocj :

Ssocj = { ssocj(t) }[ 1 < t < Nf ] (6.9)

6.2.4 Feature modeling and classification

The Fisher Vector (FV) coding method was first introduced for large-scale image classification. Its
superiority against the Bag-Of-Word (BOW) method has been analyzed in the image classification
[83] as it is going beyond count analysis. It encodes additional information about the distribution
of the descriptors. It also has been used over the past five years in action recognition [12, 51, 61,
75]. As a particular hand gesture is so far represented by three sets of features, we aim to use the
FV coding method to obtain a statistical representation vector for each of them. First, we train a
K-component Gaussian Mixture Model (GMM) using all sets of a particular feature in the training
set. Once we have the set of Gaussian Models, we can compute our FV which is given by the
derivatives of gradient. We also normalize the final vector with a l2 and power normalization to
eliminate the sparseness of the FV and increase its discriminability. We refer the reader to Sanchez
et al. [83] for more details. It is also interesting to notice that the final size of a FV is 2dK where
d is the size of the feature and K the number of clusters used in the GMM. This observation is a
drawback compared to BOW, which has a size of K, when applied to a long descriptor. However,
this effect can be ignored in our case where K is relatively small.

To model the dynamics of movement, we use a Temporal Pyramid (TP) representation already
employed in action and hand gesture recognition approaches [61, 68]. The principle of the TP is to
divide the sequence into n sub-sequences at each nth level of the pyramid.

After feature extraction, we represent a sequence of hand skeletons by three sets of different
features describing the direction of the hand (SD), its rotation (SR) and its shape (Ssocj) during the
sequence. Adding more levels to the pyramid gives more temporal precision but increases the size
of the final descriptor and the computing time substantially. For gesture classification, we use a
supervised learning classifier SVM with a linear kernel as it easily deals with our high-dimensional
representation. We employ a one-vs-rest strategy resulting in G binary classifiers, where G is the
number of different gestures in the experiment. We make use of the implementation contained in
the LIBSVM library [157].

6.2.5 Experiments

We first evaluate our proposed approach on two datasets and compare it with four state-of-the-art
methods using depth images and skeletal data. We then explore its capa- bility to reduce the latency
of the recognition process by evalu- ating the trade-off between accuracy and latency. We also study
the impact of the hand pose estimation on a third dataset and finally discuss the promising potential
of our approach and lim- itations.

In this section, we first introduce the experimental settings of our method related to descriptor
encoding and the impact of the hand pose estimation algorithm on the recognition process. Second,
we evaluate our proposed approach on three datasets (DHG 14-28 [C3], Handicraft-Gesture [20]
NVIDIA Dynamic Hand Gesture [19]) and compare it to several state-of-the-art methods using
depth images and skeletal data, before concluding the section with discussions.
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Encoding settings. We choose the number of levels Lpyr of the TP as equal to 4 as it provides a sat-
isfactory compromise between the temporal representation of gestures and the final size of our de-
scriptor. The final size of our computed descriptor is then (

PLpyr

i=1 i)⇥(size�D+size�R+size�SoCJ),
where size�x is the FV representation computed from the set of features x. Note that size� = 2dK,
where K is the number of models created in the GMM. d is the feature dimension: respectively in
R3, R3 and R12 for the direction, the rotation and the SoCJ features. For FV encoding, we map our
descriptors into a K-component GMM with K equal to 8, 8 and 256 gaussians respectively for the
direction, the rotation and the SoCJ features. For all experiments conducted on the datasets, we use
a Leave-One-Subject-Out cross-validation protocol.

Influence of hand pose estimation on gesture recognition. The introduction of commodity depth
sensors and the multitude of potential applications have stimulated new advances inside the hand
pose estimation community. However, it is still challenging to achieve efficient and robust esti-
mation performance because of large possible variations of hand poses, severe self-occlusions and
self-similarities between fingers in the depth image. The current state-of-the-art methods mostly
employ deep neural networks to estimate hand pose from a depth image [11, 14, 24, 31, 47]. The
availability of a large-scale, accurately annotated dataset is a key factor for advancing this field of
research. Consequently, numerous RGB-D datasets have been made publicly available last years.
The different hand pose datasets differ in the annotation protocol used, the number of samples, the
number of joints in the hand skeleton representation, the view point and the depth image resolu-
tion. Currently, the widely used datasets in the literature benchmarking purposes are IVCL [39],
NYU [47] and MSRA15 [29]. The IVCL [39] and the MSRA15 [29] datasets are captured using the
Intel Creative depth sensor (time-of-light), and composed respectively of 180K and 76.5K ground
truth annotated depth images with the 3D joint locations of the hand. The NYU [47] comprises 72K
frames of multi-view depth images captured using the Primesense Carmine camera (structured
light). In order to measure the effect of pose estimation on gesture recognition, we performed sev-
eral experiments on the two first datasets as their capture technology corresponds to the used hand
gesture datasets in this work. First, we evaluate three hand pose estimators on DHG dataset, using
the methods proposed by Oberweger et al. [31] and Ge et al. [24] in addition to the Intel RealSense
estimator [17]. We used in these experiments the region-of-interest of the hand returned by Intel
RealSense camera as input to the hand pose estimator algorithms instead of a particular hand ex-
traction algorithm, without any preprocessing step. Both estimators [24, 31] were trained on both
datasets to select the best training one. Tests showed an improvement of 4% of the recognition
accuracy for Oberweger et al.’s estimator using IVCL dataset for training. However, they did not
reveal any significant effect of the used dataset for Ge et al.’s estimator, used for training the pose
estimator, on the gesture recognition result. Thus, we choose the IVCL dataset for all the training
phase of the two estimators. Fig. 6.4 shows the recognition accuracies on our DHG-14 dataset per
class of gestures. The average accuracies by estimator, available in Table 6.1, show that our method
performs well independently to the pose estimation method.

Table 6.1: Average recognition accuracies obtained on the DHG-14 dataset using three hand pose
estimators.

Hand pose estimation algorithm Accuracy (%)
Ge et al. [24] 86.92
Oberwerger et al. [31] 86.24
Intel Realsense [17] 86.86
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Figure 6.4: Recognition accuracies per class of gesture on the DHG-14 dataset following three hand
pose estimators.

Evaluation on DHG 14-28 dataset. The Dynamic Hand Gesture DHG 14/281 dataset [C5] con-
tains 14 heterogeneous dynamic hand gestures performed in two ways: using one finger or the
whole hand (see Table 6.2). Each gesture is performed five times by 20 volunteers in two ways,
resulting in 2800 sequences. Sequences are labeled following their gesture, the number of fin-
gers used and the performer. The Intel RealSense short range depth camera is used to collect the
dataset. Each frame contains a depth image and the coordinates of 22 positions of hand joints in
the 3D camera space. To assess the effectiveness of our algorithm to classify gestures of the DHG
dataset into 14 classes, we compare the results obtained by the hand shape and motion descriptors
separately. Table 6.3 presents the accuracies of our approach obtained using each of our descrip-
tors independently and by combining them. For clarity, we divide the results by coarse and fine
gestures, allowing us to analyze the impact of each descriptor on each gesture category.

Using all descriptors (direction + rotation + SoCJ) presented in Section 6.2, the final accuracy
of our algorithm on the DHG-14 is 86.86%. It rises to 93.77% recognition for the coarse gestures,
but for the fine ones the accuracy drops below 75%. A large difference can be observed between
accuracies obtained for the fine and the coarse gestures, respectively 44.60% and 88.50% when using
only the direction. The analysis of the results obtained using only the SoCJ descriptor shows that
the hand shape is the most effective feature for the fine gestures with an accuracy of 67.84%. On
the other hand, this result shows that the hand shape is also a way to describe coarse gestures with
a fair accuracy of 63.12%. If the rotation descriptor shows a low average accuracy of 50.50% for
both fine and coarse gestures, it is a valuable feature for pairs of similar gestures such as Rotation
CW and Rotation CCW. These results confirm the interest of using several descriptors in order to
completely describe hand gestures. To better understand the behavior of our approach according
to the recognition per class, the confusion matrix is illustrated in Figure 6.5. The first observation
is that 11 gestures out of 14 have scored higher than 85.00%. The second observation is the low

1Available on: http://www-rech.telecom-lille.fr/DHGdataset
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Table 6.2: Gesture list included in the DHG 14-28 dataset.

Index (14) Index (28) Gesture Labelization
1 1, 2 Grab Fine
2 3, 4 Expand Fine
3 5, 6 Pinch Fine
4 7, 8 Rotation CW Fine
5 9, 10 Rotation CCW Fine
6 11, 12 Tap Coarse
7 13, 14 Swipe Right Coarse
8 15, 16 Swipe Left Coarse
9 17, 18 Swipe Up Coarse
10 19, 20 Swipe Down Coarse
11 21, 22 Swipe X Coarse
12 23, 24 Swipe V Coarse
13 25, 26 Swipe + Coarse
14 27, 28 Shake Coarse

Table 6.3: Accuracy comparison fine / coarse / both gesture for the DHG-14 dataset.

Features Fine (%) Coarse (%) Both (%)
Direction 44.60 88.50 72.79
Rotation 50.30 50.61 50.50

SoCJ 67.84 63.12 64.88
SoCJ + Direction + Rotation 74.43 93.77 86.86
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Figure 6.5: The confusion matrix of the proposed approach for the DHG-14 dataset.

accuracy obtained for certain gestures such as Grab is mainly due to the great confusion with Pinch
gesture. By analyzing their sequences, we find that the algorithms of the hand pose perform well
the 3D join estimation. However, we observe that these gestures are very similar and difficult to
distinguish even by the human eye. The main difference between them is the hand movement
amplitude and our approach does not take this characteristic into account. With a final accuracy
of 86.86% obtained on DHG-14 dataset, we noticed that the recognition of dynamic hand gestures
is still challenging. The recognition system has to deal with the considerable differences between
gestures performed by different people, resulting in a challenging heterogeneity of the gestures.

Finally, in order to meet the challenge of gesture recognition when performed with different
numbers of fingers existing in the DHG-28 dataset, we consider hand gestures as belonging to 28
classes related to the gesture type and the way it has been performed (with one finger or the whole
hand). Using our approach, we obtain an accuracy of 84.22%. As shown in Table 6.4, by multiplying
the number of classes by two, we lose 2.64% of accuracy. We compare our approach with four state-
of-the-art methods on the DHG dataset. We chose two depth-based descriptors: HOG2 proposed
by Ohn-Bar et al. [89] and HON4D proposed by Oreifej et al. [86]. We also compare our approach
to a skeleton-based method proposed by Devanne et al. [J4] showing a good accuracy for human
action recognition. Finally, we compare the hand shape descriptor SoCJ with a similar state-of-the-
art feature called Skeletal Quad defined by Evangelidis et al. [61]. The publicly available source
codes of these methods are used in our experiments.

Table 6.4 presents the results obtained by the methods cited previously using 14 and 28 ges-
tures and considering fine and coarse gestures separately from the DHG dataset. We note that our
approach outperformed, with an accuracy of 86.86%, the two depth-based descriptors showing the
promising direction of using skeletal data for hand gesture recognition. The accuracy obtained by
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the action recognition method [J4] applied for 3D hand joints trajectories is 76.61%. It shows that
an action recognition approach is often not appropriate for hand gesture recognition and that hand
trajectories are not sufficiently distinctive enough for hand gesture classification.

When we apply these methods on 28 classes, the HOG2 descriptor [89], which had a good result
on 14 gestures, obtains 76.53% of accuracy. The depth-based methods do not handle enough hand
shape information to deal with the challenge of hand gestures performed with different numbers
of fingers. We note that Devanne’s approach loses 14.61% of recognition rate on this experiment
showing that the method, giving a good result on action recognition dataset, it is unsuitable for fine
and dynamic hand gesture recognition.

Evangelidis et al. [61] propose a local body skeleton descriptor that encodes the relative position
of joint quadruples. It requires a Similarity Normalisation Transform (SNT) that leads to a compact
(6D) view-invariant skeletal feature, called Skeletal Quad. Because of the SNT, their descriptor
takes more computation time and is less suitable for hand shape description as it lost informa-
tion about distances between joints. The accuracy on the DHG-28 dataset using their hand shape
descriptor decreases by 4% compared to the SoCJ descriptor.

Table 6.4: Accuracy comparisons for 14/28 and coarse/fine gestures of the DHG dataset.

Method 14 gestures (%) 28 gestures (%) Coarse (%) Fine (%)
Ohn-Bar et al. [89] 81.85 76.53 86.00 71.60
Oreifej et al. [86] 75.53 74.03 83.88 60.50
Devanne et al. [J4] 76.61 62.00 86.61 58.60
Evangelidis et al. [61] 84.50 79.43 92.22 70.62
Ours [P3] 86.86 84.22 93.77 74.43

We notice also that coarse gestures are defined by the motion of the hand in space and fine ges-
tures are more distinguished by the variation of the hand shape during the sequence. The statement
of a need of precision in the field of dynamic hand gesture recognition is also shown in this experi-
ment. Except for the HOG2 descriptor [89], Oreifej et al. [86] and Devanne et al. [J4] give honorable
results in the task of coarse gesture classification but they show a lack of precision generating a
recognition rate below 61% when trying to classify fine gestures. Although our approach gives the
best results with 74.43% of correctly labeled fine gestures, we note that further improvements are
needed.

Evaluation on Handicraft-Gesture dataset. Handicraft-Gesture is a dataset built with a Leap Mo-
tion Controller (LMC) [20]. A LMC is a device providing accurate information about the hand
skeleton which contains the same 22 joints described. This dataset is made of 10 gestures, which
originate from pottery skills, by 10 volunteers each one performed every gesture three times, re-
sulting in 300 sequences.

To evaluate our approach on the Handicraft-Gesture dataset, we follow the experimental pro-
tocol proposed by Lu et al. [20], i.e. Leave-One-Subject-Out cross-validation. They compute several
features based on palm direction, palm normal, fingertip positions, and palm center position. For
the classification of temporal sequences, they use a Hidden Conditional Neural Field classifier. Ta-
ble 6.5 shows how the hand gesture recognition accuracy has been increased by 2.11% using our
approach.

Evaluation on NVIDIA Dynamic Hand Gesture dataset. Molchanov et al. [19] introduced a new
challenging multimodal dynamic hand gesture dataset captured with depth, color and stereo-IR
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Table 6.5: Recognition accuracies obtained on the Handicraft-Gesture dataset.

Method Accuracy (%)
Lu et al. [20] 95.00
Ours 97.11

sensors in a car simulator. Using multiple sensors, they acquired a total of 1532 gestures of 25 hand
gesture class (see Table 6.6. Similarly to the DHG dataset, this set contains coarse and fine gestures.
A total of 20 subjects participated in data collection, performing gestures with their right hand. The
SoftKinetic DS325 sensor is used to acquire frontal view color and depth videos.

Table 6.6: Gesture list included in the NVIDIA Dynamic Hand Gesture dataset.

Index Gesture Index Gesture
1 move the hand left 13 show the index finger
2 move the hand right 14 show 2 fingers
3 move the hand up 15 show three fingers
4 move the hand down 16 push the hand up
5 move 2 fingers left 17 push the hand down
6 move 2 fingers right 18 push the hand out
7 move 2 fingers up 19 push the hand in
8 move 2 fingers down 20 rotate 2 fingers clockwise
9 click with index finger 21 rotate counter-clockwise

10 call someone 22 push forward with 2 fingers
11 open the hand 23 close the hand twice
12 shake the hand 24 show "thumb up"

25 show "Ok"

To evaluate our approach on this challenging dataset, we use the Ge et al. hand pose estimator
[24] which gives the best recognition accuracy on DHG-14 dataset (see Table 6.1). We performed
the hand region-of-interested extraction step using the same algorithm proposed by [24, 31]. The
extracted 3D joint positions of hand from depth images are used as input for our gesture recogni-
tion method. Following the same protocol proposed in [19], we randomly split the data by subject
into training (70%) and test (30%) sets, resulting in 1050 training and 482 test videos. When consid-
ering the pre-segmented sequences of the dataset, our approach obtain an accuracy of 74%. First,
with such a recognition accuracy, we went beyond the two handcrafted methods [45, 52] which
extract descriptors on the sequence of depth images and obtained respectively 36.3% and 70.7%.
Second, deep learning methods outperformed recent results in many domains in computer vision.
Following this statement, 3D convolutional layers presented in [19, 28] show particularly reliable
accuracies on the task of 3D hand gesture recognition, obtaining, respectively, 78.8% and 80.3% ac-
curacy. Finally, in addition to the recognition challenges, the NVIDIA dataset [19] has been created
to study the detection of gestures. Indeed, an unsegmented stream of gestures contains a lot of
unwanted and meaningless hand motions that do not belong to none of the gesture categories. A
prior gesture detection is required before the recognition process.

Finally, we notice that the accuracy obtained by our method with a prior manual gesture de-
tection step have been significantly improved. This experiment reveals that the detection step for
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Table 6.7: Comparison of our method to the state-of-the-art methods on depth images of the
NVIDIA Dynamic Hand Gesture dataset.

Method Type Data Accuracy (%)
HOG+HOG2 [52] Hand-Crafted Depth 36.3

SNV [45] Hand-Crafted Depth 70.7
C3D [28] Deep Learning Depth 78.8

R3DCNN [19] Deep Learning Depth 80.3
Ours [P3] Hand-Crafted 3D Hand Skeletal 74.0

Ours + manual detection [P3] Hand-Crafted 3D Hand Skeletal 83.3

hand gesture recognition is essential as we improve our previous result by 9.3%. However, there is
room to improve the effectiveness of gesture detection phase , where a recognition of 83.3% can be
reached with a manual detection of gesture.

Comparative results with state-of-the-art methods on the three public datasets demonstrate that
our approach outperforms existing handcrafted approaches. Moreover, we also revealed a lack of
precision to describe the dynamic of complex hand gestures, compared with the feature learning
power of modern deep learning models. In the next part of this chapters, we focus on deep learning
strategies in order to better represent the complex dynamic and temporal information of hand
gestures. Moreover, gesture detection in an online scenario are considered as an extension of our
current approach.

6.3 Online Gesture Recognition using Combined Convolutional and
Recurrent Networks

Deep neural networks have proven their effectiveness in various challenges, improving recognition
rates substantially for various image classification tasks. Furthermore, motivated by their success
for images and videos, many research works have appeared very recently proposing models, such
as convolutional neural network, for learning hand pose features.

Convinced of the usefulness of the pose features to describe hand gestures and motivated by
the success of these approaches, we extend the study to online dynamic hand gestures taking over
the whole pipeline of the recognition process, from hand pose estimation to the classification step,
using deep learning. We aim to structure such a framework following two statements made in
section 6.2: (1) Hand postures along the sequence are relevant features to describe the gesture. (2)
Hand gestures can be efficiently described by the temporal variation of both, hand shape and its
motions.

6.3.1 Approach overview

The dynamic aspect of gesture sequences requires the use of time-series based models, such as
3DCNN on sub-sequences of depth images, or RNN on lighter data sequences, like hand joints
resulting from a hand pose estimation method. The first one requires a powerful hardware con-
figuration and computational complexity, whereas the second one lacks of efficiency related to the
loss of information due to the lack of robustness of current hand pose estimators. On the other
hand, to describe the gesture, hand postures along the sequence are relevant features, but also the
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temporal variation of both, hand shape and its motions need to be considered. Taking into account
these multiple characteristics makes harder the learning process as it has to learn both spatial and
temporal information. All these considerations lead us to address the problem of hand gesture
recognition within a framework based separately on learned features of temporal hand shape and
its posture. Those data are both extracted from a Convolutional Neural Network (CNN) trained on
depth frames of the gesture sequence.

Based on the previous statements, we present in this section a new framework based on deep
learning for online dynamic hand gesture recognition using a transfer learning strategy. So as to
face the main challenges, we propose to revisit the feature pipeline by combining the merits of
geometric shape features and dynamic appearance, both extracted from a CNN trained for hand
pose estimation problem. Note that, despite an increasing amount of methods proposed over the
last few years, defining an online dynamic hand gesture recognition system robust enough to work
in real world applications is still very challenging.

6.3.2 Model architecture

In some field of computer vision, the access to millions of data makes it possible to create very deep
neural networks from scratch. For example, Deng et al. [178] make publicly available the ImageNet
dataset which contains over 10 million images. However, it is not the case while working with
3D data making difficult the use of data-driven approaches easily. To our knowledge, the largest
available dynamic hand gesture dataset contains only 2,800 gesture sequences [C5].

To overcome this problem, we first propose to use a transfer learning strategy to extract hand
shape and posture features for hand gesture recognition purpose. To do so, we train a CNN for
hand pose estimation using the ICVL dataset [48]. Note that a training set of depth images of this
dataset labeled with the 3D joint locations is available. Once the training of the CNN is over, we
use it to output two distinct representations for each time step of a hand depth image sequence:
hand posture features, noted Jt, which represent hand joints locations, and a hand shape feature
vector Xt which represents the coarse hand shape in a high dimensional space.

Thus, original hand depth image sequences, soriginal = {It}t=1...N , are transformed into two dif-
ferent sets of sequences as follows: sposture = {Jt}t=1...N and sshape = {Xt}t=1...N for a sequence of
N frames. Both sequences are fed to two recurrent neural networks: RNNjoints and the RNNshape,
in order to model the temporal aspect separately of the hand poses and the shape variations over
the time. Finally, results are merged to perform the recognition of hand gestures. Figure 6.6 sum-
marizes the model architecture.

Note that a pre-processing step is first applied to extract the region-of-interest (ROI) of the hand
assuming the hand is the closest object to the camera. The estimation is then refined using a 3D
bounding box around the center of the mass, from which we can extract a cropped image of the
hand and we compute its center of the mass Pcom in the original image space.

6.3.3 Deep extraction of CNN features

Inspired by Oberweger et al. [31], we consider the hand pose estimation algorithm based on a
CNN architecture using prior enforcement. The implementation of the prior enforcement is made
by introducing a bottleneck in the penultimate layer, having a smaller size than the final one which
outputs the 3D joint coordinates. The linear mapping between the lower dimensional space and
the final output is kept by not adding any activation function to the bottleneck layer.
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Figure 6.6: Overview of our proposed approach for hand gesture recognition.

The model takes as input a cropped depth image I⇤ around the hand. Given the physical con-
straints over the hand, there are strong correlations between 3D joint locations, and such a lower
dimensional space of 3 ⇥ K are sufficient to parameterize a 3D hand pose of K joints [210], but
not enough to describe the gesture. Thereby, the CNN first maps the image to a high dimensional
space vector X , laying in R1024 containing a coarse description of the hand shape. Then, it follows a
"bottleneck" layer with a smaller size that the desired output to model the physical constraints over
the hand topology. The network architecture, further called CNNhand_pose, is depicted in Figure
6.7.

Using this network, we extract two feature vectors from a hand depth image at coarse and fine
level, respectively hand shape features X and hand joint features J⇤. The shape feature vector X ,
lying in a high dimensional space R1024, is used to describe the coarse hand shape without taking
into account the details of its topology.

The hand joint feature vector J⇤, lying in R3⇤K with K the number of joint, contains 3D hand
joints locations centered around the center of mass of the hand Pcom in the original depth image.
The original joint locations into the image space can be then easily retrieved by applying an inverse
transformation to the joints using Pcom as follows:

Ji = {j⇤i + Pcom}i=1...K (6.10)

where j⇤
i

is the ith joint in the predicted hand pose J⇤, Pcom is the center of mass of the hand in the
original depth image.

Parameters of the CNN model have to be initialized before the training step. A common way to
generate the values is to use a random normal distribution. An exception is made for the bottleneck
layer as we can help the network using prior knowledge. We initialize its weights with the 30
major components from a Principal Component Analysis (PCA) of the hand joint label space of the
training set. As the cost function, we minimize the Huber loss to evaluate the differences between
the hand pose ground-truth and the output of the network.

As the cost function, we minimize the Huber loss to evaluate the differences between the hand
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Figure 6.7: Architecture of the CNN for hand shape and posture feature extraction using prior
enforcement.

pose ground-truth J and the output of the network noted Ĵ :

H(J, Ĵ , �) =

(
1
2(J � Ĵ)2 for |J � Ĵ |  �,
� |J � Ĵ |� 1

2�
2 otherwise.

(6.11)

The Hubert loss is thus quadratic when the error is small ( �) and linear when it becomes larger.
Consequently, this loss function is less sensitive to noisy annotations (which imply large errors)
than the squared error loss function as depicted in Figure 6.8.

Figure 6.8: Huber loss defined in Equation 6.11 (green � = 1) and the squared error loss (blue 1
2x

2)
as functions of J � Ĵ . Huber loss is less sensitive to large errors.
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Figure 6.9: Temporal modeling by RNNs of hand shape and posture cues. (a) RNNshape, (b)
RNNjoints.

6.3.4 Temporal learning of shape and posture features

The hand gesture can be represented, according to the shape feature cue, as a sequence of shape
features s = {Xt}t=1...N which is an ordered list of N vectors and Xt 2 R1024. It can also
be represented, according to the joint feature cue, as a sequence of joint feature vector s =

{[j1, . . . , jK ]}t=1...N be an ordered list of N vectors and ji 2 J . To model the temporal aspect of
gestures, we feed separately these sequences to two Recurrent Neural Models (RNNs), noted re-
spectively RNNshape and RNNjoints, each one composed of two stacked LSTM layers. Their output
h

0
t is finally transform by a fully connected layer, which is a softmax activation function, in order

to output a class-conditional probabilities vector. The final predicted label of the sequence s is
ŷ = argmaxi(ŷiN ), where i 2 {1 . . .K} and K the number of gesture classes. The RNN models are
sketched in Figure 6.9.

During the training phase of both the RNNshape and RNNjoints, a weight decay and a dropout
strategy are applied to prevent overfitting. Networks are trained using the Back-Propagation-
Through-Time (BPTT) algorithm [218]. BPTT is equivalent of unrolling the recurrent layers, trans-
forming them into a multi-layer feed-forward network of depth N ; where N is the number of
frames in the gesture sequence. The standard gradient-based back-propagation is then used. We
average the gradients to consolidate weight updates to duplicated unrolling. The learning rate de-
creases following the number of epochs ne by lr = 0.001 ⇥ N0e��⇥ne. Networks try to minimize
the cross-entropy cost.

To increase variability in the training examples, we apply random horizontal, vertical and depth
translations on depth image sequences before each learning iteration. Since recurrent connections
can learn the specific order of gesture sequences in the training set, we randomly permute the
training gesture videos before each new epoch.
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Figure 6.10: Fusing method using the joint fine-tuning strategy. Hatched boxes are elements that
are fixed and not changed during the training fusion process.

6.3.5 Two-stream RNN fusion

Combining different information or modalities using deep learning is not an obvious task. Wu
et al. [15] investigated intermediate and late fusion strategies for multimodal gesture recognition.
They discover that averaging results in the last stage of the process gives accurate and more robust
results. We propose in our approach a joint-fine-tuning method to fuse the outputs of the RNNshape

and the RNNjoints in order to enhance the classification process, as depicted in Figure 6.10.
The joint fine-tuning method consists in retraining the two last softmax layers of the RNNshape

and the RNNjoints while forcing their sum to be a representation of both networks. This strategy al-
lows the network to learn a joint representation of network outputs, without adding parameters to
the model and so, does not increase its complexity. Since both networks are trained separately, we
retrain last fully connected layers before the softmax activation functions with a new cost function,
noted Lfusion, defined as follows:

Lfusion = �1L1 + �2L2 + �3L3 (6.12)

where L1, L2 and L3 are respectively loss functions computed on the RNNshape, the RNNjoints and
the sum of both outputs. The �1, �2 and �3 are tuning parameters. Each cost function is a cross
entropy function. Let l1 and l2 be respectively the output values of the network RNNjoints and
RNNshape, L3 is then defined as follow:

yi3 = softmax(li1 + li2) (6.13)

L3 = � 1

N

NX

i=1


yi log ŷi3 + (1� yi) log(1� ŷi3)

�
(6.14)

The final decision is obtained using yi3:

ŷ = argmax
i

(yi3) (6.15)

As a result, we utilize three loss functions in the training step: L1, L2 and L3. L1 and L2 are used to
regulate, respectively, both streams and avoid that one of them vanished under the weight of the

123



Chapter 6. On Hand Gesture Recognition
Migrate from Handcrafted to Deep Learning Approaches

Figure 6.11: Different phases of a continuous stream of gestures. The figure depicts a fictive curve
of the motion energy of a sequence of two hand gestures. Frames which do not belong to a ges-
ture, with or without parasitical motions, are in red. Blue, green and orange squares identify,
respectively, pre-stroke, nucleus and post-stroke phases. We note that the second gesture does not
contain a post-stroke phase as with the pre-stroke phase, their existence is not automatic.

other. L3 is used to optimize the fusion of the two modalities. Consequently, we use only y3 for
prediction as it is impacted by both RNNs.

6.3.6 Problem of continuous sequence

Online hand gesture recognition requires a prior gesture detection as the sequence contains motions
belonging to none of the gesture categories.

Gesture detection. An unsegmented stream of gestures contains a lot of unwanted and mean-
ingless hand motions that do not belong to none of the gesture categories. First, hand gesture
movements are often composed of three phases:

• The pre-stroke phase, which is composed of hand motions happening before the relevant ges-
ture when the user needs to put his/her hand in a starting position. For example, when the
user moves the hand from its restful position to a place where the camera can see the hand.

• The nucleus phase, where the hand gesture is performed and has meanings.

• The post-stroke phase, which is composed of hand motions happening after the relevant ges-
ture when the user wants to move back his/her hand to a restful position.

Additionally, a stream of gestures contains motions between the gestures as depicted in Figure
6.11. For example, in a human-computer interface based on hand gestures in a car scenario, while
the user is not performing a gesture, his/her hands are still moving to control the vehicle and,
so, contains a lot of parasitical hands motions. A challenge of online hand gesture recognition
is to detect and extract only hand motions from nucleus phases in order to improve the gesture
recognition accuracy.

Gesture recognition. In real applications, we do not have information about when and where the
hand gesture is going to be performed. Neverova et al. [18] added a binary classification step before
the classification process using {gesture, no_gesture} labels. Instead of performing recognition in
two steps, detection and then recognition, our approach consists of extending the dictionary of
existing gestures by adding a garbage class such as: Y 0 = Y [ { no_gesture}. Consequently, the
softmax layer outputs a class-conditional probability for this additional garbage class. All frames
which do not belong to a nucleus phase are labeled with this new class.
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6.3.7 Experiments

In this section, we evaluate our proposed approach on two challenging datasets – NVIDIA Dy-
namic Hand Gesture dataset [19] and an online version of the DHG 14-28 dataset called Online
Dynamic Hand Gesture dataset [C3]2 – and compare it with four state-of-the-art methods using
depth images.

We address here the online recognition of hand gestures in challenging conditions, including
the heterogeneity of the hand shape depending on the set of fingers used and following two types
of gesture categories: fine-grained and coarse-grained gestures. Due to the complexity of the
hand movement and its potential self-occlusions, the analysis of hand gesture in such conditions
becomes very difficult to achieve using long-range depth cameras like Microsoft Kinect (0.8 - 4.2
meters). Therefore, we exclude of our experimental field certain public datasets, which do not fit
these conditions, as ChaLearn2014 [63], SKIG [92] and [52]. To our knowledge, only two public
datasets meet these requirements/challenges which are DHG-14/28 dataset [des] and NVIDIA
Dynamic Hand Gesture and dataset [19].

Implementation details. To extract the deep features of hand posture and its shape, we train
our CNN on the ICVL dataset [48], which comprises a training set of over 180,000 depth images
showing various hand poses. The dataset is recorded using a time-of-flight Intel Creative Interactive
Gesture Camera and has 16 annotated 3D joints for each depth image. Depth images have a high
quality with little noise.

We use the Hubert loss function defined in Equation 6.11. We choose a sensitive factor to error
� = 500 (we remind that 3D hand coordinates annotations are given in mm). It means that errors on
the joint location prediction superior to half a centimeter is linear while smaller errors are quadratic.

Weight decay is applied with a regularization factor equal to 0.001. The networks are trained
with a batch size of 128 for 100 epochs. The initial learning rate lr is set to 0.01 with a momentum
of 0.9.

To avoid overfitting while training the recurrent layers in the two streams of RNN, weight decay
is applied with a regularization factor equal to 0.001. The dropout strategy has a probabilistic value
equal to 25%. We stop the training after 30 epochs to avoid learning training dataset specification.
The initial learning rate lr is set to 0.001.

For the data augmentation step, the ranges of the horizontal and vertical translations are ±20
pixels and the range of the depth translation is ±100. Parameters for each translation are drawn
from a uniform distribution.

Pre-segmented gesture recognition (offline). Before presenting the results obtained by our ap-
proach, we analyze the individual components (streams) of our proposed approach and evaluate
its usefulness according to the type of gestures and then to asses the benefits coming from their
fusion. We note that the temporal aspect of the gesture includes two RNN models: the RNNshape

model from shape feature cue and the RNNjoints model from joint feature cue. We propose to
evaluate separately the efficiency of each one, before the fusion process. To analyze the recognition
process on our Online Dynamic Hand Gesture dataset, we extract the gesture nucleus resulting in
a dataset of 2800 pre-segmented gestures of either 14 or 28 distinct labels.

2http://www-rech.telecom-lille.fr/shrec2017-hand
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Figure 6.12: The confusion matrix obtained using a joint-fine tuning fusion of the RNNshape and
the RNNjoints on the Online DHG dataset for the task of offline recognition of 14 gesture types.
Labels of gestures can be found in Table 6.2.

14 gesture classes With a vocabulary of 14 gesture types, we obtain an accuracy of 84.52% and
80% respectively using the RNNjoints and the RNNshape. A joint fine tuning fusion of the two RNN
streams provides an overall accuracy of 94.17%. The confusion matrix is depicted in Figure 6.12. It
illustrates that the fusion is not only able to choose the right features to perform the classification
but also takes benefit from both information to outperform the previous recognition accuracies.
For example, the gesture Swipe Down (10) obtained 77% and 72% of accuracy using respectively
the RNNjoints and the RNNshape. Once they are merged, our system is able to correctly recognize
89% of these gestures.

28 gesture classes. Let us now study the capacity of our approach to distinguish the same gestures
performed with one finger or the whole hand. With a vocabulary of 28 gesture types, we obtain an
accuracy of 76.30% and 76.67% respectively using the RNNjoints and the RNNshape. Once fused,
we obtain an overall accuracy equal to 90.48%. This result illustrates the outstanding potential of
fusing shape and posture features to perform fine hand gesture recognition. The confusion matrix
resulting from this experiment, depicted in Figure 6.13, shows that we obtain almost no confusion
between gestures with the same meaning but performed with different number of fingers, thanks
to the rich shape information coming from the RNNshape.
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Figure 6.13: The confusion matrix obtained using a joint-fine tuning fusion of the RNNshape and
the RNNjoints on the Online DHG dataset for the task of offline recognition of 28 gesture types.
Labels of gestures can be found in Table 6.2.
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Comparison with state-of-the-art methods. We compare here our framework to state-of-the-art
methods for the task of offline hand gesture recognition on the Online DHG dataset. First, with two
handcrafted descriptors based on depth images: the HOG+HOG2 descriptor proposed by Ohn-bar
[52] and the HON4D descriptors proposed by Oreifej et al. [86]. Second, we compare our approach
to a skeleton-based method proposed by Devanne et al. [J4] originally designed for human action
recognition. Third, we present the results obtained by our precedent hand skeleton based approach
[C1]. Finally, we report results obtained by Guerry et al.’s approach [C3], based on key frames
detection followed by an CNN. The recognition accuracies, using both 14 and 28 gesture types
of the Online DHG dataset, obtained by the state-of-the-art methods cited below, are presented
in Table 6.8. We note that the publicly available source codes of these methods are used in our
experiments.

Table 6.8: Comparison with state-of-the-art methods on the Online DHG dataset.

Method 14 gestures (%) 28 gestures (%)
Guerry et al. [C3] 82.90 71.90
Ohn-Bar et al. [52] 83.85 76.53
Oreifej et al. [86] 78.53 74.03
Devanne et al. [J4] 79.61 62.00
De Smedt et al. [C5] 88.24 81.90
Ours, RNNjoints 84.52 76.30
Ours, RNNshape 80.60 76.67
Ours, fusion 94.17 90.48

Our method outperforms all these approaches. The key frames detection of Guerry et al. [C3]
leads to a temporal lossy representation of the gestures. Besides, Devanne et al.’s action recognition
method does not provide a good gesture recognizer, because it is obviously not suitable for hand
gesture recognition.

We note that the RNNjoints alone does not outperform our previous handcrafted approach
proposed in [C5]. Only by adding the shape features, our approach can outperform this method
by 6%. The effectiveness of the fusion of the hand shape variations and its motions appears truly
when looking at results obtained on the task of recognizing 28 gestures, where we outperform
state-of-the-art methods by more than 10%.

Online detection and recognition. In this section, we analyze the behavior of our approach on
the early detection and the recognition processes, on the Online DHG and the NVIDIA Dynamic
Hand Gesture datasets. These two datasets have been captured in an online scenario with different
phases of a continuous stream of gestures.

In order to locate properly the nucleus of gestures, as done by Molchanov et al. [19], our solution
is considering adding a garbage class by extending the dictionary of existing gestures such as:
Y 0 = Y [ {no_gesture}. Consequently, the softmax layer outputs a class-conditional probability
for this additional "garbage" class. All frames which do not belong to a nucleus phase are labeled
with this new class. To detect the presence of any one of the 25 gestures relative to {no_gesture},
we compare the highest current class probability output of our approach to a threshold ⇠ 2 [0, 1].
When the detection threshold is exceeded, a classification label is assigned to the most probable
class.
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(a) (b)

Figure 6.14: The Normalized Time to Detect values using a detection threshold ⇠ = 0.15 (a), and
Nucleus lengths in number of frames (b), of the 28 gestures contained in the Online DHG dataset.

Evaluation metrics. To analyze the online detection and recognition capacity, we use three met-
rics: the Receiver Operating Characteristic (ROC) curve [216] and the Normalized Time to Detect
(NTtD) [59] for the detection analysis and finally the recognition accuracy to analyze the recogni-
tion process. First, the ROC plots the True Positive Rate (TPR) – when the detector fires inside a
nucleus phase – versus the False Positive Rate (FPR) – when the detector fires outside the nucleus
phase. We use the area under the ROC for evaluating the detector accuracy. Second, the NTtD de-
fines the fraction of the nucleus that has occurred, from a to b, before the system fires a successful
detection, a  t  b, :

NTtD =
t� a+ 1

b� a+ 1
(6.16)

By adjusting the detection threshold chosen using the ROC curve, one can achieve lower NTtD
at the cost of higher FPR and vice versa. Finally, the recognition accuracy corresponds here to the
fraction of sequences in the test set which is correctly labeled by the approach. Consequently, the
predicted label in an online scenario of a particular gesture is chosen as the predicted label of the
last frame which is not labeled as no_gesture, such as:

ŷ = argmax
i

( yiM ) | argmax
i

( yiM+1...N ) = no_gesture (6.17)

where N is the number of frame in the gesture.

Online DHG dataset. To evaluate the online capability of our approach, we used the unseg-
mented sequences of gestures labeled following the vocabulary containing 28 labels. After plotting
the ROC curve, we obtained an Area Under the Curve equal to 0.91. We choose a gesture detection
threshold equal to 0.15 as it shows a good trade-off between a high TPR (85%) and a low FPR (17%).

The NTtD distribution values for various gesture types is shown in Figure 6.14a. The average
NTtD across all classes is 0.2104, which means that, in average, a hand gesture can be detected
after only 21% of its nucleus. The average nucleus lengths over the whole Online DHG dataset are
illustrated in Figure 6.14b.

We note that nucleus of fine gestures (1 - 10) are shorter than those of coarse gestures (11 - 25).
Moreover, Swipe gestures that contain multiple motions, such as Swipe V, X and + (21 - 28), have
naturally the longest nucleus. Using the detection upstream step, we obtain an overall online accu-
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Figure 6.15: The confusion matrix obtained on the Online DHG dataset for the task of online recog-
nition of 28 gesture types. Labels of gestures can be found in Table 6.2.

racy recognition of 82.14%. The confusion matrix is depicted in Figure 6.15.
Due to issues resulting from the detection of gestures, the recognition accuracy decreases by

8.34% compared to the easiest task of pre-segmented gesture recognition. This difference can re-
sult from incorrect gesture detection or from confusion between gestures with similar parts. For
example, the Swipe Down gesture (20) performed with the whole hand obtains an offline recognition
accuracy up to 87%. In the online scenario, the accuracy decreases by 57% and a high confusion
up to 24% appears with the Swipe V gesture (24). This can be explained as the first half a Swipe V
gesture is extremely similar to the Swipe Down gesture. In addition, the recognition process suffers
from an incorrect prior gesture detection.

NVIDIA dataset. The dataset has been captured following a human-computer interaction based
on hand gestures in a car scenario. While the user is not performing a gesture, his/her hands
still move to control the vehicle and, so, is highly suitable to study gesture detection. To detect
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(a) (b)

Figure 6.16: The Normalized Time to Detect values using a detection threshold ⇠ = 0.16 (a), and
Nucleus lengths in number of frames (b), of the 25 gestures contained in the NVIDIA dataset.

the presence of any one of the 25 gestures relative to no_gesture, we compare the highest current
class probability output of our framework to a threshold ⇠ 2 [0, 1]. When the detection threshold is
exceeded, a classification label is assigned to the most probable class. First, we do it in a frame-wise
manner and compute the ROC curve.Using it, we choose a detection threshold ⇠ equal to 0.16 as
it shows a good trade-off between a high TPR (85%) and a low FPR (17%). The NTtD distribution
values for various gesture types is shown in Figure 6.16a. The average NTtD across all classes is
0.2158 which means that, in average, a hand gesture can be detected after only 22% of its nucleus.
In general, static gestures require the finest portion of the nucleus to be seen before classification
(around 10%), while dynamic gesture are classified on average within 25%. The average nucleus
length over the whole dataset are given in Figure 6.16b.

Static gestures have longest nucleus phases. Intuitively, NTtD differences between dynamic and
static gestures are explained as users letting their hand a long time in front of the camera to express
a static gesture but the algorithm can detect it using few frames. Finally, we compute the overall
recognition accuracy obtained by our approach for an online hand gesture recognition scenario.
We obtained an accuracy of 81.25%. The confusion matrix is given in Figure 6.17.

Comparison with state-of-the-art methods. We compare our approach to several state-of-the-art
methods: HOG+HOG2 descriptors [52], Super Normal Vector (SNV) [45], convolutional 3D (C3D)
[28] and a C3D followed by a recurrent layer (R3DCNN) [19], as well as human labeling accuracy.

To compute HOG+HOG2 descriptors [52], all video sequences are ressampled to 32 frames
and the parameters of the SVM classifier are tuned via grid search to maximize accuracy. Among
the CNN-based methods, we compare against the C3D method [28], which is pre-trained with
the Sports-1M [56] dataset and fine-tuned with the depth modalities of the NVIDIA dataset. The
R3DCNN method uses the C3D network to extract spatiotemporal features of sub-video clip of 8
frames and fed the result sequence in a recurrent layer. Molchanov et al. [19] trained the whole
network using a Connectionist Temporal Classification (CTC) [135, 194] loss function.

Lastly, Molchanov et al. [19] evaluated human performance on the NVIDIA dataset by asking
six subjects to label each of the 482 gestures videos in the test set after viewing the front-view
color video. Prior to the experiment, each subject familiarized themselves with all 25 gesture types.
State-of-the-art method results are given in Table 6.9. We note that handcrafted methods give lower
results that deep learning methods. Our approach achieves the best performances, meanwhile it is
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Figure 6.17: Final confusion matrix using obtained by our approach, showing its capability to per-
form an online hand gesture recognition on the NVIDIA dataset. The average recognition accuracy
is equal to 81.25%.
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Table 6.9: Comparison with state-of-the-art methods on the NVIDIA dataset.

Method Modality Features extraction
strategy Accuracy

Human color 88.4%
HOG+HOG2 [52] depth handcrafted 36.3%
SNV [45] depth handcrafted 70.7%
C3D [28] depth learned 78.8%
R3DCNN [19] depth learned 80.3%
Ours depth learned 81.3%

Table 6.10: Formulas of the number of parameters for different layers with a number of hidden
parameters equal to n and an input of size m.

Layers Formulas Ex. (m=64, n=9)
Fully Connected Layer m⇥ n 576
Recurrent layer m⇥ n+ n2 657
Long Short Term Memory 4⇥ (m⇥ n+ n2) 2628
CNN m⇥ n 576

still below human accuracy (88.4%).

Focus on the number of parameters in networks. The capacity of a neural network model can
be define following its size and its depth. Higher are the size and the depth, higher is the number
of parameters. Differences in the computational complexity between models are not exactly lin-
early comparable to their number of parameters, as some layers can see their computational time
decreases dramatically using parallel computing (e.g. convolutional layer). However, it is a good
start to study the overall complexity differences between models. Formulas giving the number of
parameters of different layers are shown in Table 6.10.

The R3DCNN [19] contains 79, 116, 288 parameters distributed as follows: they extract spa-
tiotemporal features using a 3D CNN of 8 convolutional steps and two fully connected layers of
size 4096 which together contains 77, 885, 776 parameters. They append a recurrent layer of size
256 (1, 114, 112 parameters) and a softmax layer (6, 400 parameters).

Our approach extracts hand shape and joint features from a single light 2D CNN with 3 con-
volutional layers and two fully connected of size 1024 which together contains 3, 182, 414 parame-
ters. Our method uses also two-stacked LSTM layers, both containing 14, 680, 064 parameters and
ends on a single softmax layer of 12, 800 parameters. The whole pipeline of our approach contains
32, 555, 342 parameters, so, less than half the number contained in the R3DCNN [19] network and
still outperforms their accuracy result by 1%.

The transfer strategy using a hand pose estimator to extract hand shape and joint features al-
lowed us to perform better while using a far less complex network

Limitations and discussion. Experiments showed that the proposed solutions guarantee an effec-
tive dynamic hand gesture recognition, but still not exceed the human performance, and gestures
which contain high hand shape similarities still showed confusions.

Some of these confusion due to the fact that different phases of inverse gestures may contain
high similarities. For example, as depicted in Figure 6.18, the pre-stroke phase of a Swipe left gesture

133



Chapter 6. On Hand Gesture Recognition
Migrate from Handcrafted to Deep Learning Approaches

Figure 6.18: An example of a gesture Swipe Left (up) and Swipe Right (down), both hand open, and
their respective phases (blue: pre-stroke, green: nucleus, orange: post-stroke). The figure shows
high similarities between the pre-stroke phase of the Swipe Left gesture and the nucleus phase of
Swipe Right gesture.

consists in moving the hand to the right so that the camera is able to see the entire gesture. However,
this movement to the right can be seen as a Swipe right gesture nucleus by the localization algorithm
and not as a pre-stroke phase of a Swipe left gesture.

Evaluation results for the online detection and recognition show that we can detect an arising
gesture after only 21% of its nucleus. However, some missclassification appear during the first few
frames of gestures where the algorithm has been able to detect a gesture in progress but does not
yet have sufficient information to correctly recognize its type. Figure 6.19a illustrates the output of
our approach on a test sequence of gestures. In this case, the result is almost perfect, each of the 10
gestures is correctly labeled after only few frames. In contrast, Figure 6.19b shows a test sequence
where 5 out of 10 gestures have a misclassification during the first few frames. The issues resulting
from those misclassifications could be overcome by firing an incoming gesture only if its length is
longer than a threshold.

6.4 Conclusion

In this chapter, we addressed several issues of dynamic hand gesture recognition from depth data,
a widely investigated topic due to its wide range of potential applications.

In the first part, we addressed the problem of dynamic hand gesture recognition as a traditional
handcrafted method using three gestural features computed from hand skeletal presegmented se-
quences. Each set of these geometric features was encoded in a statistical representation using a
Fisher Kernel followed by a temporal pyramid model before a classification process. The evalua-
tion of our approach showed a promising potential of the use of skeletal features to perform hand
gesture recognition. Evaluation results demonstrated the efficiency of our approach over the depth
image based descriptors. However, the method presents limitations for online scenarios and the re-
sults also revealed a lack of precision to describe the dynamic of complex hand gestures, compared
with the feature learning power of modern deep learning approaches.
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(a) (b)

Figure 6.19: The gesture detection and recognition performance of our approach on a continuous
video stream of 10 gestures. The top figures illustrate the classification outputs (blue) versus the
ground-truth (orange) where the x-axis is the time in number of frames and the y-axis represents
the class outputs. The bottom figures represent the accuracy for each gesture types along the time
where various colors indicate different gesture types. The no_gesture class is not shown. (a) illus-
trates an almost perfect recognition result and the top curve of (b) shows that five gestures are
miss-classified during the first frames of their nucleus
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Then, We proposed in the second part an online recognition system capable to detect the pres-
ence of a gesture in an unsegmented video stream and to recognize the type of the gesture before
its end, which is an essential capacity for real-world applications. In this approach, we have taken
over the whole pipeline of the recognition process, from hand pose estimation to the classification
step, and used the power of deep learning models to increase the efficiency and the robustness of
our system. Our model architecture consists of combined convolutional and recurrent networks,
designed in a way to extract both hand posture and shape features from depth images. The knowl-
edge of the CNN, trained using a large hand pose estimation dataset, is transferred to extract rel-
evant features describe the gesture. Recurrent networks model separately the temporal variations
of hand postures and its shapes. Experimental results demonstrated that the proposed approach
is capable to recognize hand gestures and to improve state-of-the-art results. In addition, tests on
two challenging datasets showed that our designed system is able to detect an occurring gesture
after only 22% of the nucleus phase, detected by adding a garbage class in training phase.

It is important to emphasize the contribution of the transfer learning strategy employed in our
approach. Indeed, we used a CNN model which can take image as input to extract both hand pos-
ture and shape features. We transferred the knowledge of the CNN, trained using a large hand pose
estimation dataset, to extract relevant features describe the gesture. Thus, hand gestures originally
represented as depth image sequences are encoded into two distinct components: hand joint and
hand shape feature sequences. Finally, we used two recurrent networks to model separately the
temporal variations of hand postures and its shapes, before merging the outputs of both networks
to obtain a single label by gesture. To perform hand gesture detection, we added a garbage class
from all frames that do not belong to a nucleus phase, i.e. where the gesture occurs. The use of
the transfer learning strategy allowed us to outperform state-of-the-art deep learning approaches
using less than half of the number of parameters of the baseline model. However, we limited our
experiments for only two hand gesture datasets simulating human-computer interface based on
hand gestures acquired in online scenario. These datasets are captured with short-rang depth cam-
eras (SoftKinetic DS325 and RealSense SR300) and contain a set of heterogeneous gesture types.
Other datasets such as [23, 63, 92] have been discarded since hand pose estimation becomes very
difficult to achieve using long-range depth cameras like Microsoft Kinect. Thus, the hand pose
estimation needs to be improved and the temporal modeling using recurrent layers need also to be
more investigated for more precise and fine hand gestures recognition.
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CHAPTER 7

Conclusion and perspectives

7.1 Conclusion

This manuscript describes our major contributions made during the last eight years to the area of
human behaviour understanding.

Our aims were to develop new theoretical and application approaches for interconnected open
problems of human behaviour understanding in the context of action, gesture and activity recog-
nition from 3D data streams. Since movements unfold in both space and time, it is mandatory to
provide solutions that describe the spatial and temporal properties of human movement and ex-
amine how the the variation in both spatial and temporal influence the recognition of the meaning
of the motion. To better understand these spatiotemporal data regardless of the application sce-
nario, it is necessary to provide solutions that answer the following questions: What are the most
relevant features to consider? What is the appropriate representation? How to exploit the shape of
the motion? How to model its dynamics? How to make this model independent of the temporal
variations of the execution? How to design the classification process and to adapt it in the real
world scenario?. The research activities we have conducting are organized around these issues.

In this manuscript, a first particular focus is given to fully reconstructed human bodies in 3D
videos in order to study the problem of pose and motion retrieval. Then, the work is oriented
toward motion modelling and action learning for the task of human action and gesture recognition
using RGB-D sensors. Whatever using 3D data given by dynamic meshes or using depth images
and skeletons, human motion sequences can be analyzed from mainly two perspectives, the feature
space and the model space. These spaces can be described mathematically as varieties. In fact, we
have followed the significant progress made over the past decade in the analytical and geometric
understanding of these spaces. Therefore, we proposed different adequate geometric frameworks
in order to model and compare accurately human motion acquired from 3D sensors.

In the first framework, we addressed the problem of human pose and motion retrieval in full
3D reconstructed sequences. The human shape representation is formulated using extremal curve
extracted from the body surface. It allowed an efficient shape to shape comparison taking benefits
from Riemannian geometry in the open curve shape space. The shape analysis idea was extended to
the action recognition problem from human skeletal sequences. The embedding of action sequences
in such a shape space manifold allows to capture simultaneously the body shape and the dynamics
of the motion. The action recognition is then formulated as the problem of computing the similarity
between shape of trajectories in a Riemannian framework.

We proposed a second Riemannian framework for modelling and recognizing human actions
acquired by depth cameras. In this framework, we model sequence features temporally as sub-
spaces lying in Grassmanns, which are manifolds of linear subspaces. Two kinds of feature are
used in this framework: 3D human joints extracted directly by depth camera, and local oriented
displacement features extracted from boxes around each subject in depth frames. Then, we per-
formed a learning process on Grassmann manifold by embedding each action, presented as a point
on this manifold, in higher dimensional representation. The embedding is performed using the no-
tion of tangent spaces approximation on specific classes, providing a natural separation of action
classes. Experimental results demonstrated the efficiency of the proposed methods to recognize
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human gesture and actions from depth sequences, and also revealed an important ability for a low-
latency recognition system. However, experiments also demonstrated that the proposed solution
suffers from limitations when actions involve long sequences and/or variable repetitions of a single
gesture or manipulations of objects.

Therefore, we extend our study to address more complex behaviors, like activities, by analyz-
ing the evolution of the human posture shape in order to decompose the motion stream into short
motion units. Each motion unit is then characterized by the motion trajectory and depth appear-
ance around hand joints, so as to describe the human motion and interaction with objects. Finally,
the sequence of temporal segments is modeled through a Dynamic Naive Bayesian Classifier. The
combination of skeleton and depth appearance features around hand joint, as well as the modeling
of the dynamics of the sequence thanks to the segmentation into motion units, show the poten-
tial of our approaches for the task of online behavior detection and recognition in long sequences,
which is an important challenge in real-world contexts. However, the consideration of appear-
ances around the hand sills insufficient to interpret fine hand gestures in an HCI scenario, which is
a critical problem for behaviour understanding.

In order to go deeper into the analysis of such HCI scenarios, we focused our study on the anal-
ysis and the recognition of hand gestures. We firstly proposed a traditional geometric approach,
taking into consideration the complex topology of the hand and the endless possibilities to per-
form the same gesture, using hand shape and motion descriptors computed on 3D hand skeletal
features. Finally, motivated by the powerful capability of deep neural networks in learning com-
pact and discriminative representations for images and videos, we moved our focus of interest
towards end-to-end data-driven approaches, taking the original depth images as input. Therefore,
we have taken over the whole pipeline of the recognition process, from hand pose estimation to the
classification phase using the power of deep learning models. Our proposed system performs the
recognition of ongoing gesture, which allows the system to detect the presence of a gesture in an
unsegmented video stream and to recognize its type before its end, which is an essential capacity
for an IHC application.

We have demonstrated the interest of the proposed approaches through the multiple exper-
iments conducted on publicly available datasets in terms of action and gesture recognition (MSR
Action 3D [165], Florence 3D Action [81], UTKinect [113], UCF-kinect dataset [99] and MSR Gesture
3D [119]), activity recognition (MSRC-12 [40], CAD120 [66], MAD [58] and Online RGB-D [44]) and
hand gesture detection and recognition (Handicraft-Gesture [20], NVIDIA Dynamic Hand Gesture
[19], DHG 14-28 [C5] and Online DHG [C3] datasets). Furthermore, the evaluation in terms of
latency clearly demonstrates the efficiency of proposed approaches for a rapid recognition. Nev-
ertheless, there are still several open problems and research leads from theoretical and practical
aspects, which we would like to develop in future work.

7.2 Perspectives and future research

Generalization of deep neural network paradigm to non-Euclidean manifolds In this
manuscript, we presented in Chapters 4 and 5 different geometric approaches to recognize human
action and or activity from 3D stream (depth, skeleton, ...). In these approaches, we explore the
characteristics of manifolds, like shape space and Grassmann, and perform recognition based on
intrinsic geometry of data space, by introducing a learning algorithm on the manifold, and some-
times in conjunction with dynamic modelling process. Most of deep learning approaches, in the
other hand, being applied on Euclidean structured data such as images and videos. However, there
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was recently a growing interest to extend these techniques to non-Euclidean data such as manifolds
[1, 2, 9]. In the meantime, preliminary results have been published in [C2], in which we proposed
a deep neural network architecture taking directly as input geometric features extracted from data
laying on a non-Euclidean space. These later have been recently shown to be very effective to
capture the geometric structure of the human pose. In particular, we claimed in our approach to
incorporate the intrinsic nature of the data characterized by Lie Group into deep neural networks
and to learn more adequate geometric features for 3D action recognition problem. We believe that
this field deserves to be better explored, as instead of enforcing geometry at the inputs of networks,
it could be better to extend network architectures where outputs lie on manifolds.

Optimization of hand gesture detection and recognition approach The strong ability of the re-
cent proposed deep neural networks based approaches (RNN and CNN) in learning spatiotempo-
ral representations, outperforms the previous handcrafted feature based methods in many areas.
However, despite an increasing amount of methods proposed over the last few years, defining an
online dynamic hand gesture recognition system robust enough to work in real world applications
is still very challenging. Thus, although many advances have taken place in recognition accuracy
achieved by these approaches, there are still several challenges ahead, but also problems that can
limit the performance. Already convinced by these techniques, we continue to seek ways to im-
prove their efficiency for hand pose estimation and hand gesture recognition.

Experimental results obtained in Chapter 6 showed that the proposed solutions guarantee an
effective dynamic hand gesture recognition but still need improvements, since they are still far from
the human performance. First, hand pose estimation is still an active field of research and the model
designed to extract features used in our framework can be enhanced. Recently, Yuan et al. [4] intro-
duced the million-scale BigHand2.2M benchmark, that makes a significant advancement in terms
of completeness of hand data variation and annotation quality compared to existing benchmarks.
It should help to improve the effectiveness of hand pose estimation and also hand gesture recogni-
tion, being two interconnected problems. Second, several works successfully built well-designed
RNN configurations for action recognition from skeletal human sequences [10, 21, 37]. As a new
field of study, hand gesture recognition using temporal learned features on skeletal sequences has
been only partially studied. Going deeper into the temporal modeling using recurrent layers could
provide more efficient ways to distinguish actions gestures with high similarities. In addition, new
recurrent layers have appeared recently providing an attentional system. Such networks are able
to selectively focus on the informative joint skeletons along a sequence. For example, the system
could automatically detect the the fingers which provides the most reliable information and focus
on them to perform the gesture recognition.

Improvement of transfer learning by regularization Skeleton-based representation of motion
as time series of 3D joint positions constitute models, which are computationally efficient, and
substantially simplifies the view on the complex human body and/or hand locomotion. However,
these models suffer from limitations related to the costly manual annotation of skeleton sequences,
while automatic annotation methods may yield inaccurate predictions.

In Chapter 6, we employed a transfer learning strategy from hand pose dataset towards gesture
recognition task, and focused on abstract hand gestures (i.e. each gesture has a specific meaning for
the system). Meanwhile, in 2017, Garcia et al. [8] introduced a hand daily life activities dataset pro-
viding sequences of depth images and accurate hand poses. They obtained the best performance
using a recurrent neural network on the hand skeletal features. They extracted the hand pose data
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from a kind of data-glove, since state-of-the-art methods in terms of hand pose estimation still face
several issues with fast moving hands or finger self-occlusions. However, the use of a data-glove in
real applications is not suitable. We believe that augmenting the training data with additional infor-
mation from another complementary modality could highlight characteristics, that are important
to the recognition process, missing or poorly represented in the motion sequence. More particu-
larly, we plan to exploit these annotated 3D joints extracted from the data-glove during the training
phase to regularize the deep learning model in focusing on relevant features from depth images.
Once the model is trained, the skeleton data are not needed anymore for the testing phase. The
skeleton model of the hand, has a better ability to be dataset-invariant motion since background
context is excluded, to facilitate the capture of important movement patterns of 3D finger joints,
and thus to improve the performance of a deep neural network like RNN. This approach can be
generalized to other motion components problems, like action and activity recognition, from depth
and/or RGB streams.

Deep cross-modal learning While deep learning techniques has certainly evolved considerably
the last few years, they are still hard to train and optimize and most of today’s applications are
typically designed to only perform a single task. The generalization using transfer learning helps
such a network to reuse the representations of characteristics within the same domain, as we did
in Chapter 6 to learn hand features, from depth image dataset originally created for hand pose es-
timation, for gesture recognition task. Recently, a new work presented by Kaiser et al. from Google
[7], outlines a single machine learning template that can perform different tasks efficiently. The
objective behind their algorithm is to create a single deep learning model that can learn tasks from
multiple areas, such as machine translation, image classification, speech recognition and language
parsing. Their model did not show particular improvements over individual models but it high-
lighted some areas on which learning processes can be drastically improved by sharing knowledge
from different domains. Additionally, the approach seems to require less training data than tradi-
tional algorithms in order to achieve similar levels of efficiency.

Inspired by this work, the aim of our future work could be to create a unified motion specific
deep learning model to solve tasks across multiple human motion modalities – like pose estimation,
gesture, action and activity recognition –, which may be acquired from multiple stream modalities
– like depth map, skeleton, color, ...–. This could be extended later it to more fonctionalities like
motion prediction, synthesis and transfer. The diversity of data input types in our case is less
challenging comparing to the Kaiser’s MultiModel because the motion data inputs are of same
nature.

The desired model consists of individual "sub-networks" to process specific inputs, like hand
pose data, gesture and activity streams, and transform it into a uniform representation, which has
the advantage of being variable in size. Such a model makes possible transfer learning from tasks.
We do not have a single network of modalities per task, but a single network per modality, where
different motion tasks share the same modality networks. Similar to Kaiser’s model, our model
can be seen as a combination of encoders, mixers and decoders and each one of those blocks are
architectured using a combination of convolutional, attention and mixture-of-experts blocks. The
outputs of the modality nets become the inputs to a shared encoder which creates the unified rep-
resentation. An I/O mixer combines the encoded inputs with the previous outputs, and a decoder
processes the inputs and the mixture to generate new outputs. The implementation of such an
architecture offers solutions to interconnected problems, often necessary to solve in a human be-
havior understanding.
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Style motion analysis Human motion can be considered as a combination of two sets of fea-
tures: action variations –specifying actions like walking, jumping, punching, kicking, etc.– and
stylistic variations –related to emotions, individual characteristics, etc.– in which the motions are
performed. While actions have already been quite studied for a while, style in human body motion
is a new growing topic of interest. Accurate realistic motions can be obtained either by the con-
siderable work of 3D animators who manipulate details, or by capturing motions. The animators’
work is time consuming, expensive and tedious, as they do the animations from scratch by hand
most of the time [13]. Capturing motions is also time consuming and a burden for actors, especially
when combinations of actions and styles are needed and should ideally be performed several times
[62]. One way of overcoming this is by generating new motions, thus reducing the amount of cap-
tures needed in datasets and saving animators time [13, 22]. As a result, generating new stylistic
3D human body motion is a problem that is of concern to researchers.

Style in 3D human body motion is therefore studied, particularly when it comes to stylistic
motion generation. We distinguish three types of motion style generation: motion style synthesis,
motion style editing and motion style transfer. We define the motion style editing as a subpart
of motion style synthesis that implies the user intervention, and the motion style transfer as the
process of transforming an input motion into a new style while preserving its original content. It is
also studied as a classification problem and can be a tool to identify persons. A recent work on the
style in 3D human body motion is realized [P2] to address the different trends about its taxonomy,
data and applications.

Following the success of deep learning methods for hand gesture recognition tasks, our ongo-
ing work focuses on using deep learning models, like RNNs and CNN, to model human motion,
with a particular focus on learning time-dependent representations, able to perform tasks not only
for motion recognition, but also short-term prediction and synthesis of human motion in general
and style motion in particular. We intend to introduce in the second time an attentional layer by
focusing on informative body joints. We believe that this objective constitutes a perfect field of ap-
plication of the unified motion specific deep learning model presented above to solve tasks across
multiple human motion modalities.

HCI in virtual environments Human motion modeling is a problem at the intersection of com-
puter vision and computer graphics, with applications spanning HCI, motion recognition, motion
synthesis and motion prediction for virtual and augmented reality. The needs of precise mid-air
HCI for applications, like interaction with a virtual or augmented reality world, attracted partic-
ular attention in the Computer Vision community [24, 30–32, 34, 55]. Indeed, an efficient gesture
recognition system acting as interface with a virtual world can improve the quality of the inter-
action with the computer. A particular interest has been focused, in Chapter 6, on a finite set of
abstract gestures, which imposes a very restrictive use of gestures to interact with a virtual world.
Even though our developed system will be able to recognize that a user is grasping a virtual object,
it does not have precise information about the required transformation to apply on the object to
simulate the real world. To be able to fully reproduce the interaction in the virtual world between
the object and the hand, a lot of physical rules has to be taken into account.

Our hand gesture recognition, as most of current systems, is intrinsically indirect interaction
system and, so, can seem unnatural to users. The barrier of bringing the sense of touch into a
virtual world is a current issue with many challenges. We can imagine futuristic applications where
the limit between the real world and a virtual one is blurring. A potential issue to consider in
future work is to develop approaches able to reproduce the physical rules that guide the interaction
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between objects and haptic interfaces which can reproduce the sense of touch in a virtual reality
application.

A first effort along this line of research was started very recently through the thesis of Théo
Voillemin on personalized augmented reality assistance by hand gesture recognition on head-mounted dis-
plays. Indeed, recent advances in the development of optical head-mounted displays, such as Mi-
crosoft HoloLens or Epson Moverio, which overlay visual information directly in the user’s field
of vision, have opened up new possibilities for augmented reality applications. The aim of the
proposed thesis is the development of an assistant system, that use such displays, to assist the user
during activities in an intuitive and discreet manner. To this end, this system observes the hands
of the user and generates contextual comments based on the recognition of his gestures. Domain
of assisted surgery, self-rehabilitation, and automobile industry as advanced assistance to driver,
could be potential applications of desired system. This project is at the crossroad of the computer
vision, augmented reality and machine learning domains.
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Towards Understanding Human Behavior by Time-Series Analysis of
3D Motion

Hazem WANNOUS

Abstract Human motion analysis has been an active topic from the early beginning of com-
puter vision due to its relevance to a large variety of domains. It is becoming a central key for dif-
ferent types of application including gaming, monitoring, sign language recognition and medical
applications. These applications extend from simple gesture detection to complex behavior under-
standing, and depend on body parts involved and duration of movement. This topic has evolved
substantially in parallel with major technological advancements, especially capturing technologies
and machine learning techniques. The main concern of this dissertation is the issue of human be-
havior understanding trough vision-based analysis of the motion limited to body behavior, which
can be conceptually categorized into different types of motion modalities: gestures, actions, activ-
ities and grained-fine hand gestures. Our aims were to develop new theoretical and application
approaches advancing the motion representation and the recognition of human behavoir involv-
ing different body part and based on various sources of information, such as, 3D mesh, depth and
skeleton data. Since movements unfold in both space and time, it is mandatory to provide solu-
tions that describe its spatial and temporal properties and examine how variations in both spaces
influence the recognition of the meaning of the motion. For this purpose, we proposed a number
of motion representation and recognition frameworks, developed new theoretical and application
approaches, and demonstrated their efficiency on several tasks of motion recognition, including
gestures, actions and activities.

F E
Vers une compréhension du comportement humain par l’analyse en série temporelle de mouvements 3D

Résumé L’analyse du mouvement humain est un sujet actif dans la communauté de la vision
par ordinateur en raison de sa pertinence pour une grande variété de domaines. Il devient un élé-
ment clé pour différents types d’applications, notamment les jeux, la surveillance, la reconnaissance
du langage des signes et les applications médicales. Ces applications vont de la simple détection
de gestes à la compréhension de comportements complexes et dépendant des parties du corps im-
pliquées ainsi que de la durée du mouvement. Ce sujet a considérablement évolué parallèlement
aux avancées technologiques majeures, notamment dans la technologie de capture et les techniques
dâapprentissage automatique. Cette Habilitation a pour thème principal la compréhension du
comportement humain par l’analyse du mouvement limitée au comportement corporel, qui peut
Ãªtre catégorisée conceptuellement en différents modalités de mouvement: gestes, actions, activités
et gestes fins de la main. L’objectif est de développer de nouvelles approches théoriques et applica-
tives faisant progresser la représentation du mouvement et la reconnaissance du comportement
humain impliquant différentes parties du corps, en se basant sur diverses sources d’informations,
telles que des maillages 3D, des images de profondeur et des squelettes 3D. Étant donné que les
mouvements se déroulent à la fois dans lâespace et dans le temps, il est impératif de proposer
des solutions décrivant ces propriétés spatiales et temporelles et dâexaminer comment les vari-
ations dans les deux espaces influencent la reconnaissance du mouvement. À cette fin, nous
avons proposé un certain nombre de méthodes de représentation et de reconnaissance de mou-
vement, développé de nouvelles approches théoriques et applicatives et démontré leur efficacité
dans plusieurs tâches de reconnaissance de mouvement, notamment les gestes, les actions et les
activités.
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