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Abstract

Over the past decade, deep learning has advanced the analysis of text,
image, audio, and video. More recently, transformers and self-supervised
learning have triggered a global competition to train gigantic models on
Internet-scale datasets, with massive computational resources. This thesis
deals with large-scale 3D point cloud analysis and adopts a different approach
focused on efficiency. We introduce methods which improve several aspects
of the state-of-the-art: faster training, fewer parameters, smaller compute or
memory footprint, and better utilization of realistically-available data. In
doing so, we strive to devise solutions towards a more frugal and accessible
Artificial Intelligence (AI).

We first introduce a 3D semantic segmentation model that combines the
efficiency of superpoint-based methods with the expressivity of transformers.
We build a hierarchical data representation which allows us to drastically
accelerate the parsing of large 3D point clouds. Our network proves to match or
even surpass state-of-the-art approaches on a range of sensors and acquisition
environments, while boasting orders of magnitude fewer parameters, with
faster training and inference.

We then build on this framework to tackle panoptic segmentation of large-scale
3D point clouds. Existing instance and panoptic segmentation methods do not
scale well to large scene with numerous objects because the computation of
their loss function implies a costly matching step between true and predicted
instances. Instead, we frame this task as a scalable graph clustering problem,
which a small network is trained to address from local objectives only, without
computing the actual object instances at train time. Our lightweight model
can process ten-million-point scenes at once on a single GPU in a few seconds,
opening the door to 3D panoptic segmentation at unprecedented scales.

Finally, we propose to exploit the complementarity of image and point cloud
modalities to enhance 3D scene understanding. We place ourselves in a
realistic acquisition setting where multiple arbitrarily-located images observe
the same scene, with potential occlusions. Unlike previous 2D-3D fusion
approaches, we learn to select information from various views of the same
object based on their respective observation conditions: camera-to-object
distance, occlusion rate, optical distortion, etc. Our efficient implementation
achieves state-of-the-art results both in indoor and outdoor settings, with
minimal requirements: raw point clouds, arbitrarily-positioned images, and
their cameras poses.

Overall, this thesis upholds the principle that for settings with limited data
availability, exploiting the structure of the problem unlocks both efficient and
performant architectures.
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Résumé

Au cours de la dernière décennie, l’apprentissage profond a fait progres-
ser l’analyse de texte, d’image, d’audio et de vidéo. Plus récemment, les
transformers et l’apprentissage auto-supervisé ont déclenché une compétition
généralisée visant à entraîner des modèles gigantesques sur d’immenses jeux
de données, au moyen d’énormes ressources de calcul. Cette thèse porte sur
l’analyse de nuages de points 3D à grande échelle et adopte une approche
différente centrée sur l’efficacité. Nous introduisons des méthodes qui amé-
liorent plusieurs aspects de l’état de l’art : entrainement plus rapide, moins de
paramètres, coût de calcul plus faible, plus économe en mémoire et meilleure
utilisation des données disponibles de manière réaliste. Ce faisant, nous nous
efforçons de concevoir des solutions en vue d’une Intelligence Artificielle (IA)
plus sobre et plus accessible.

Nous introduisons d’abord un modèle de segmentation sémantique 3D qui
combine l’efficacité des méthodes basées superpoints avec l’expressivité des
transformers. Nous construisons une représentation hiérarchique des données
qui nous permet d’accélérer considérablement l’analyse de grands nuages de
points 3D. Notre réseau se révèle égaler, voire surpasser, les approches de
pointe sur une gamme de capteurs et d’environnements d’acquisition, tout en
réduisant le nombre de paramètres et le temps d’entrainement de un à deux
ordres de grandeur.

Nous étendons ensuite ce cadre à la segmentation panoptique de nuages de
points à grande échelle. Les méthodes existantes de segmentation d’instance
et de segmentation panoptique ne sont pas adaptées aux grandes scènes
comportant de nombreux objets, car le calcul de leur fonction de coût implique
une étape fastidieuse d’appariement entre les instances réelles et prédites. Au
lieu de cela, nous formulons cette tâche comme un problème de clustering
de graphe, qu’un petit réseau est entrainé pour résoudre à partir d’objectifs
locaux uniquement, sans nécessiter le calcul d’instances durant l’entraînement.
Notre modèle peut traiter des scènes de dix millions de points à la fois sur un
seul GPU en quelques secondes, ouvrant la voie à la segmentation panoptique
3D à des échelles sans précédent.

Enfin, nous proposons d’exploiter la complémentarité des modalités image et
nuage de points pour améliorer l’analyse de scènes 3D. Nous nous plaçons dans
un cadre d’acquisition réaliste, où plusieurs images arbitrairement positionnées
observent la même scène, avec de potentielles occultations. Contrairement
aux approches existantes de fusion 2D-3D, nous apprenons à sélectionner
des informations à partir de différentes vues du même objet en fonction
de leurs conditions d’observation respectives : distance caméra-objet, taux
d’occultation, distorsion optique, etc. Notre implémentation efficace atteint
l’état de l’art tant pour des scènes d’intérieur que d’extérieur, avec des
exigences minimales : nuages de points bruts, images positionnées de manière
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arbitraire et les poses de leurs caméras.

Dans l’ensemble, cette thèse soutient le principe que, dans des régimes où les
données sont rares, exploiter la structure du problème permet de développer
des architectures à la fois efficaces et performantes.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1 ś Large-Scale 3D Scene Understanding. We develop methods for the
efficient semantic analysis of large 3D point clouds. Other methods analyze indoor 3D
scenes room by room, ours can consider hundred-room buildings at once, in a few seconds
on a single GPU.

3D point cloud processing finds applications in disciplines as diverse as

environment monitoring [289, 339, 116], city planning [343, 324, 153], and

autonomous navigation [194, 7]. These domains benefit from the acquisition

of large amounts of 3D data and its automated analysis. As both acquisition

technologies and computer vision have seen recent advances, deep learning on

3D point clouds has become a promising research direction.

Of late, the prevailing recipe for deep learning on text or images consists

in training gigantic models on extensive datasets using ever-growing computa-

tional resources. This practice is motivated by the observation that increasing

model and dataset sizes leads to gains in performance, albeit with diminishing

returns. However, unlike its image processing counterpart, the 3D community

does not benefit from web-scale open annotated datasets to train on, which

currently hampers the emergence of very large 3D models. To illustrate, the

largest open 3D dataset to date Objaverse-XL [69, 68] contains 10 million 3D

objects collected from the Web, while its image counterpart LAION-5B [279]

encompasses 5 billion images. In addition, this “bigger is better” trend comes

at a high energy cost and progressively excludes practitioners with limited

hardware and data resources.
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We propose a different stance and call for more sober approaches in the

context of 3D point cloud analysis. Specifically, we seek efficient methods

accessible to researchers and practitioners alike. These methods should scale

to large 3D scenes, without sacrificing performance or efficiency. They will

preferably involve small models, with fast training and reasonable hardware

requirements. Besides, we favor solutions evaluated on publicly available

datasets, providing open-source code for easy reproducibility. In this thesis,

we present 3 works that follow these principles. We propose scalable methods

for 3D point cloud analysis which are compact and resource efficient, and

a multimodal approach capable of leveraging arbitrarily localized images to

improve 3D scene parsing.

In this introductory chapter, we first situate this thesis in the context of a

recent 3D deep learning history in Section 1.1. From there, we present in

Section 1.2 our motivations for working on the efficient analysis of large 3D

point clouds, and the corresponding challenges that stand up against our

goals in Section 1.3. Next, we present in Section 1.4 the main contributions

of this thesis and summarize our scientific publications and research activities

in Section 1.5. Finally, Section 1.6 summarizes the outline of the present

document.

Prerequisites. This thesis assumes that the reader is familiar with deep learn-

ing, and deep learning for computer vision, in particular. For an introduction

to these concepts, we suggest referring to Goodfellow et al . [100].

1.1 A Glance at 3D Deep Learning

First, we provide contextual background on the past 10 years of deep

learning research and how they have shaped the field of 3D deep learning;
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from the recent supremacy of artificial neural networks to the wide adoption

of Transformer architectures and the revolution of self-supervised learning.

1.1.1 The Rise of Large Neural Networks

Deep learning is a subfield of Machine Learning, which focuses on train-

ing deep artificial neural networks. Contrary to other algorithms in the

machine learning toolbox [315, 23, 126], artificial neural networks do not

need carefully engineered input features, but learn to construct useful feature

representations directly from raw data [186]. Inspired first by the study

of biological neural networks [218], early work on artificial neural networks

dates back to the mid-20th century [271]. However, as shown in Figure 1.2,

deep learning only gained its current popularity in the early 2010s, when

advances in hardware and the availability of large public datasets allowed

deep neural network training that outperformed all previous approaches in

speech recognition [64], text processing [60], and image classification [169].

From then on, deep learning helped push the boundaries in research fields

as diverse as speech-to-text [105] and text-to-speech [241] translation, video

classification [160], image generation [101], playing Go [286], or protein folding

prediction [155]. Important breakthroughs came from methods that enabled

the training of deeper networks, such as Rectified Linear Unit (ReLU) [5],

batch normalization [143], or residual connections [118].

Although artificial neural networks do not account for all the complexity

and mechanisms of biological neural networks, deep learning has long been

influenced by neurosciences [360]. In particular, the study of neuroplasticity

shows that, when a person loses one sense during childhood, brain cells that

used to be dedicated to processing the associated input signals are progressively

taken over by other senses, indiscriminately [59, 274]. Going even further,

the human brain can learn to process and interpret new sensory inputs such
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Figure 1.2 ś The Rising Popularity Deep Learning. Historic occurrence of łdeep
learningž in academic articles on Google Scholar between 2000 and 2020.

as electrotactile signals encoding a camera input sent to the tongue or the

skin [77]. These findings suggest the possibility of a learning algorithm for

training neural networks to process any input sensory signal, without priors

on its structure. This underlying idea has been encouraging deep learning

research towards a unified, input-agnostic learning architecture [147].

For a while, deep learning models mostly relied on modality- and task-

specific building blocks with relatively strong inductive priors. Inductive

priors [102] (or inductive biases) are assumptions introduced in a learning

algorithm to predict outputs for previously unseen inputs. Simply put, these

are design choices which force the algorithm to learn one specific pattern over

another. There are many ways to encode such biases in an artificial neural

network, among which regularization strategies [21, 290, 170], architectural

restrictions [118, 210, 347], parameter sharing [127, 249], training recipes [125,

81, 72, 51], or invariance or equivariance to known transformations [184, 264,

353, 169, 87]. While beneficial for practical use cases, the reliance on inductive

biases tailored to specific tasks and modalities does not align with the quest

for a unified deep learning algorithm.
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1.1.2 Transformers Take Over

In 2017, the introduction of the transformer architecture [313] for neural

machine translation significantly impacted the Natural Language Process-

ing (NLP) community. Unlike a Recurrent Neural Network (RNN), which

iteratively processes elements of a sequence, the transformer constructs a rep-

resentation for each element based on its surrounding context, in parallel. This

approach outperforms previous methods, while making fewer assumptions,

hence having fewer inductive priors. Soon, transformer-based architectures

permeated other fields, such as image [76], audio [99], speech [75], or video [19]

processing, replacing domain-specific building blocks with more versatile self-

attention modules. Pushing this idea further, Perceiver [147] proposed a

modality-agnostic transformer architecture to process image, audio, video,

and point clouds.

While this may have been a bitter lesson for researchers attempting to

instill domain expertise into their models [295], today’s deep learning com-

munity seems to largely share the belief that larger models with as little

human-engineered inductive priors are always better, if trained end-to-end

on sufficiently large datasets. This strategy is not suitable for 3D computer

vision, whose publicly available datasets are smaller, as will be discussed

in Section 1.2.2. In this thesis, we uphold the principle that in data-scarce

regimes, exploiting the structure of the problem to design strong inductive

priors is key to achieving good performance.

1.1.3 The Revolution of Self-Supervised Learning

Humans and animals are able to learn representations about the world

from multiple sensory inputs at once without explicit supervision and can

generalize concepts from very few examples [43, 176, 216]. However, deep

learning models trained with supervised learning require large amounts of
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annotated data to address a single task and tend to poorly generalize to other

domains or tasks. For instance, training an image classification model requires

a collection of images, each tagged with a class label. The vast majority of

available data are gathered from the Internet in the form of text, images,

and videos. Yet, these do not come with explicit task-specific annotations

for models to learn from, and producing such annotations or labels is costly

and labor-intensive. Thus, there is a need for methods capable of learning

generalizable representations from readily accessible unlabeled data.

Arguably different from evolutionary and natural learning mechanisms,

self-supervised learning [183] has recently shown promising results for building

generalizable concepts from large amounts of raw data. In self-supervised

learning, the model is trained on unlabeled data to address a pretext task

designed to provide a supervision signal, in the hope of learning generic

representations expressive enough to be useful for downstream tasks. The

learned representations can then be used as a starting point for fine-tuning

a model on a task for which few annotations are available. Pretext tasks

for self-supervised learning usually rely on a priori knowledge of the input

data structure and are designed to encourage the model to learn semantic

representations of the data. For example, in image processing, relevant pretext

tasks may consist of predicting the relative position of two image patches [74],

the order of a sequence of images [223], or the rotation angle of an image [97]

as presented in Figure 1.3. In text processing, a common pretext task is to

predict masked words from a sentence [258, 72]. Of the many self-supervised

learning pretext tasks in the literature, two predominant families emerge:

masked modeling, in which models aim to reconstruct hidden portions of an

input signal, and contrastive learning, in which models are trained to map

two distinct views of the same input to similar representations.

Self-supervised learning has been central to several breakthroughs in AI
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Figure 1.3 ś Learning Image Rotations. The self-supervised learning task proposed
in RotNet [97] is the following. Given an image rotated by a random multiple of 90°,
the model is tasked with learning to recover the rotation angle. The authors show that
addressing this task requires learning meaningful semantic representations of the image
content: the sky is up, the ground is down, eyes are above the nose which is above the
mouth, etc. Source: [97]

research since 2020, covering domains as diverse as language [258, 72, 259,

32, 304], image [51, 103, 106, 45, 17, 121], audio [204], video [277], and time

series [330] processing. In computer vision, self-supervised representations

have been able to match and even surpass representations learned in a fully-

supervised fashion on image classification [71], provided that model and

pretraining datasets are sufficiently large [120, 45, 121]. Furthermore, the

contrastive framework has proven valuable for aligning representations across

multiple modalities without explicit supervision, particularly exemplified in

the domain of image-text alignment [260, 262, 236, 8, 326]. These notable

advances can be attributed to the recent combination of transformer-based

models, vast web-scale datasets, and massive computational resources. In

this context, the AI community has seen the appearance of loosely defined

foundation models [22]: large networks pretrained on extensive datasets and

serving as the basis for various downstream tasks with little to no supervision.

While crucial in text and image processing tasks, training such models demands

colossal computational resources and extensive datasets that only a handful of

private actors such as OpenAI, Meta, or Google currently have. As an example,

to train their GPT-3 [32] language model, OpenAI used 1024 V100 GPUs for

95 GPU-hours and spent $4.6M in compute alone [230]. Nevertheless, the
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open-source community has been actively pushing to share these essential

tools, contributing to their widespread availability and usability.

In this work, we explore 3D computer vision problems where dataset size

and compute power tend to be more modest, hindering the emergence of

foundation models for 3D understanding. For this reason, we choose to focus

on efficient approaches trained with supervised learning.

1.1.4 The 3D Data Boom

In recent years, the field of 3D computer vision has evolved significantly

under the influence of 2D deep learning and the growing availability of

3D data. Indeed, advances in 3D sensing techniques like structure-from-

motion (SFM) [303, 84, 114], time-of-flight cameras [240], structured-light

cameras [354, 90], and LiDAR [150, 328] have led to the proliferation of

affordable 3D acquisition devices capable of capturing the geometry of large

scenes, as represented in Figure 1.4. Consequently, the increasing quantity of

3D data calls for scalable and efficient processing methods.

Various 3D deep learning architectures have been proposed for processing

point clouds, which may be categorized by the data structure on which they

operate. Point clouds can be treated as sets [252, 253], rendered images [25],

converted to voxel grids [58], or graphs of groups of points [180]. For a detailed

review of the field, the reader is referred to Chapter 2. Like other deep learning

fields, the “transformer craze” has permeated the 3D community [359, 175].

More recently, self-supervised learning also made inroads into 3D computer

vision, with promising avenues including pretraining for downstream 3D

reconstruction and registration tasks [338, 356], 3D masked modeling [254],

2D-3D alignment [254, 130], and text-3D alignment [237, 247, 1] leveraging

2D as a pivot modality. However, self-supervised learning has yet to impact

3D semantic understanding as it did image processing.
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(a) Structure From Motion [164]

(b) Depth Camera [285]

(c) LiDAR [94]

Figure 1.4 ś 3D Point Cloud Acquisition Techniques. Multiple acquisition methods
exist to capture 3D scenes. Structure From Motion 1.4a relies on stereo vision to reconstruct
a 3D scene from multiple images. Depth cameras 1.4b use structured light patterns to
recover depth from a single image. LiDAR 1.4c emits laser pulses and measures the time
of ŕight to infer depth.

Overall, progress in 3D deep learning has been partly driven by insights

from 2D deep learning. However, its smaller community, limited datasets,

and the challenges of its data structures have hindered the development of
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foundation models for 3D computer vision (more details in Section 1.3).

The past decade has been eventful for deep learning research, and methods

for processing data as diverse as text, image, video, and 3D point clouds

have been converging towards more unified transformer-based architectures

pretrained in a self-supervised manner. However, the success of these models

generally hinges on the availability of enormous datasets and computational

resources. In the following Section 1.2, we will discuss the limitations of these

trends and our motivation for more efficient 3D deep learning methods.

1.2 Motivations

This thesis focuses on efficient methods for analyzing large 3D point clouds.

In the section at hand, we first present domains of application for 3D point

cloud processing. Next, we justify the need for efficient approaches, in light

of the current trends in 3D deep learning, previously outlined in Section 1.1.

We then introduce a simple typology for algorithmic efficiency which will help

us navigate the rest of this work.

1.2.1 Automated 3D Scene Understanding

The semantic analysis of large 3D scenes finds applications in diverse do-

mains, where both private and public actors resort to point clouds for distinct

purposes. In the field of autonomous driving, car manufacturers employ

3D scene analysis to empower their automation systems [194], while other

industrial companies use it for facility management [4, 11]. Meanwhile, public

institutions rely on 3D point cloud processing for various objectives such as

urban planning with digital twins [173, 324], natural disaster prevention [348,

145], or forest inventory [336, 156]. Figure 1.5 shows point cloud acquisitions

with their potential application domains.



12 CHAPTER 1. INTRODUCTION

These real-world applications typically deal with data scales that exceed

the processing capabilities of conventional academic methods. Our aim is

to engineer techniques capable of effectively handling vast 3D scenes and

extensive objects, such as long pipes in an industrial plant or entire buildings

in a city [134, 288, 199]. In this process, we rely on deep learning, which,

as mentioned in Section 1.1, has proven to be a powerful tool for computer

vision.

(a) Territory monitoring [98] (b) Urban planning [142]

(c) Factory modeling [232] (d) Autonomous driving [41]

Figure 1.5 ś Domains of Application for 3D Point Cloud Processing. Point clouds
from diverse acquisition platforms may be used in a variety of applications.

1.2.2 Bigger Is Not Always Better

As presented in Section 1.1, the rapid progress of deep learning in the past

decade has been marked by an increase in model size, dataset scale, and com-

putational resources (see Figure 1.6). Although the performance of the model

correlates with these three factors [159], the constant competition for more

powerful models sometimes seems reduced to “the bigger the better” [67], with

little consideration of the impacts of this ideology. Yet, the race for training
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enormous transformer models with self-supervision on massive datasets is not

without inconvenience, as we explain in this section.

Laborious Training. Despite their wide adoption, training a transformer-based

model is notoriously difficult. First, transformers need more training data

to match the performance of their CNN counterparts [76]. One explanation

could be that their reduced inductive priors make transformers more “data-

hungry”. This observation suggests that models with inductive priors may be

necessary to achieve good performance with limited data. Second, optimizing

numerous attention layers is challenging, requiring careful architecture design

and hyperparameter tuning [235, 136, 202].

Likewise, in spite of its current popularity and exciting results, self-

supervised learning remains challenging. To such extend that training a

model to learn representations with self-supervision even calls for a “cook-

book” [16]. In particular, designing a relevant pretext task in the hope that

the learned features will be useful for other tasks of interest is not trivial. For

example, pretext tasks suitable for 3D reconstruction or registration do not

necessarily produce good representations for semantic understanding [338,

356].

Environmental Impact. Deep learning requires considerable computational

resources in the form of GPU or TPU clusters. The construction and opera-

tion of these systems incur substantial energy costs, carbon emissions, and

nonrenewable resource consumption. Keeping with our previously used exam-

ple, the training of GPT-3 [32] on 1024 V100 GPUs emitted 552 tCO2e [246],

which matches the annual CO2 emissions of 62 French citizens in 2021 [305].

For this reason, the rapid growth of deep learning has been characterized by

a negative environmental impact, which is slow to be taken into account by

the community [198, 332, 276]. In this context, the general trend to blindly
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increase model size and compute budget for (often marginally) improved

performance is not sustainable and calls for more sober methods.

Social Impact. The growing disparity in access to computational resources

widens the gap between the research capabilities of a select few private

entities (e.g . OpenAI, Google, Meta) and the broader scientific community.

For illustration, reproducing a single training experiment of the “efficient

foundation language model” LLaMA [304], would take more than two centuries

on a single Nvidia V100 GPU. In addition, the achievements of models such as

ChatGPT [242] and DALL-E [262] have sparked enthusiasm within society for

their widespread distribution. However, the deployment of very large models is,

again, challenged by the resources they demand. Therefore, the development

of powerful yet efficient models is of prime importance for protecting open

academic research and to permit their adoption by laboratories with limited

compute or knowledge of deep learning, and by society at large.

Scaling 3D Models. Contrary to image and text, “large” academic point

cloud datasets are relatively small. For comparison purposes, the ImageNet

dataset [71], which is now considered relatively “small” within the realm

of 2D computer vision, comprises roughly 104 times the number of pixels

compared to the popular S3DIS [13] and ScanNet [66] point cloud datasets.

For this reason, the model scaling strategies [159] used in other fields cannot

be directly implemented on 3D deep learning, for lack of comparably large

open datasets. Instead, we favor approaches designing smaller architectures

with more inductive priors, which are better suited for “low-data” regimes.

To summarize, far from dismissing the power of large transformers and self-

supervised learning on extensive datasets, we propose to focus on developing

efficient 3D point cloud analysis methods matching the performance of larger
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Figure 1.6 ś Size of Language Models Across Time. The number of parameters of
language models has been experiencing exponential growth over the past years. Although
scaling model, dataset, and compute has proven to consistently improve performance [159],
these large language models also have negative environmental and social repercussions.
Figure taken from a 2020 Microsoft blog post [272]

models, due to environmental, social, and practical considerations.

1.2.3 Five Shades of Efficiency

We propose a simple typology of five properties characterizing the efficiency

of a machine learning algorithm. This loose categorization encompasses five

key dimensions of efficiency: compute, memory, hardware, data, and human

labor.

Memory Efficiency. This aspect refers to the memory footprint of an algo-

rithm. Unless specified otherwise, in the context of deep learning, memory

efficiency relates to GPU or CPU memory usage, but it could also refer to

disk occupancy. In the general deep learning setup, the GPU is used to

perform the bulk of neural network computations, while CPU processes are

tasked with asynchronously preparing data batches to be fed to the GPU.
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Optimizing memory use may serve several purposes: running on a smaller

less-expensive hardware, expanding the model size for higher expressivity, or

increasing the batch size for faster training and better generalization. For

instance, mixed precision training [221] reduces the memory footprint of a

model by performing less precision sensitive operations on float16 rather than

float32. Investigating memory efficiency is key to processing batches of large

3D point clouds whose size can easily exceed the memory capacity of a single

GPU.

Compute Efficiency. We refer to the number of operations required to run

an algorithm as its computational efficiency. In the context of deep learn-

ing, minimizing CPU and GPU operations will usually permit running the

model faster, which can benefit time-sensitive applications, or simply reduce

experimentation time. However, a more subtle relationship links compute

and memory when training neural networks. In fact, the dominant method

for training neural networks is the backpropagation algorithm [201], which

requires storing the output of each operation in memory for the gradient

calculation. For this reason, minimizing the number of operations in a neural

network will also reduce memory usage during training. Similarly to memory

efficiency, compute efficiency is pivotal to extracting meaningful local and

contextual information from large 3D point clouds within reasonable time.

Hardware Efficiency. The hardware requirements of an algorithm. This can

characterize the number of GPUs to run a model or the type of sensors

necessary to produce the input data. The trend to increase the number

of parameters in deep learning models in the hope of slightly increased

performance comes with a need for larger and more numerous GPUs, making

it harder for laboratories with limited resources to use these models. Minding

hardware efficiency can contribute to making an algorithm more accessible,
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reducing the cost of data acquisition, or leveraging readily available data. In

the case of this thesis on 3D computer vision, we advocate robust solutions

capable of processing data generated from a variety of acquisition techniques

(see Section 1.1.4), with minimal hardware requirements.

Data Efficiency. Data efficiency characterizes how much training data a

machine learning algorithm needs to achieve a given performance. Training

a deep learning model requires especially large amounts of data [10, 159].

Unfortunately, data acquisition and annotation are costly and time-consuming,

a fortiori for 3D point clouds. Hence, we prefer strategies that minimize the

amount of annotated data needed to train a model. 3D acquisition platforms

frequently produce both point clouds and images, which carry complementary

representations of a scene. In Chapter 5, we will see that exploiting models

trained on large image datasets is a data-efficient strategy for 3D point cloud

analysis.

Human Efficiency. Several steps of a machine learning project may require

human intervention: data acquisition, data annotation, experimentation,

hyperparameter tuning, and model selection. We consider human time to

be costly and precious, and generally favor human efficient strategies which

aim at reducing the needed amount of human labor or time. As an example,

transfer learning [30, 29] can be considered more human-efficient than training

a model from scratch, as it reduces the amount of human annotations required

to train a model, and tends to reduce the training time until convergence.

These categories are not mutually exclusive. Often, improving one aspect of

the efficiency of a method will also impact another. For example, a technique

to train with fewer data while maintaining performance will be both data

efficient and human efficient. In this thesis, our proposed approaches explicitly
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focus on memory, compute, and data efficiency.

In a nutshell, this work is motivated by the development of 3D deep learning

techniques capable of processing real-world large-scale point clouds, while

aiming for efficiency in terms of memory, compute, hardware, data, or human

labor. Next, Section 1.3 will detail the challenges relative to this goal.

1.3 Challenges

Figure 1.7 ś Challenges of 3D Point Cloud Analysis. Some point clouds acquisition
characteristics make 3D processing challenging. In this sample from the Semantic3D [111]
dataset, we notice the absence of connectivity between points, occlusions, missing data,
and radial sampling density.

Processing 3D point clouds comes with a set of challenges that we detail

in this section. Point clouds imperfectly characterize 3D scenes.

Unlike meshes, which explicitly describe a surface, point clouds only

represent a (potentially noisy) sampling of a real surface. Sparsely sampled

regions may discard fine-grained geometric details [282]. The variety of

acquisition techniques results in point clouds with distinct characteristics.
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For example, photogrammetric point clouds [303] exhibit distance-dependent

precision and present artifacts resulting from erroneous matching. Meanwhile,

LiDAR sensors [150] are subject to reflections producing outliers. Common

to all 3D acquisition methods, the constant angular resolution of the sensor

induces a radial distribution of points; objects farther away from the sensor are

sampled with fewer points. This phenomenon can be observed in Figure 1.7.

Consequently, extracting meaningful information from point clouds calls for

methods robust to uneven density, noisy point coordinates, occlusions, and

acquisition artifacts.

The above “generic” challenges are inherent to 3D point clouds and are

shared by all point cloud processing methods. In this thesis, we tackle three

important 3D computer vision challenges, specific to our ambition to efficiently

process large 3D scenes: extracting information at multiple scales, enriching

point cloud representations with additional modalities, and 3D processing

implementation.

1.3.1 Efficient Multiscale Reasoning

(a) Input point cloud (b) First partition level (c) Second partition level

Figure 1.8 ś Hierarchical Representation. Our method takes as input a point cloud
(a) and computes its hierarchical partition into geometrically homogeneous superpoints at
multiple scales: (b) and (c).

In image processing, the extraction of features at multiple scales provides

rich representations of the content of an image [35, 36, 215]. High-resolution

(high-frequency) features capture local details, while lower-resolution (low-
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frequency) features capture contextual, long-range interactions in the image.

Similarly, point cloud processing methods rely on features captured at different

scales to characterize 3D shapes [253, 58, 301]. state-of-the-art 3D deep

learning methods either rely on a hierarchy of arbitrary point [255, 175] or

voxel [58] samplings of decreasing resolutions to capture local and contextual

information. However, these methods are compute- and memory-intensive and

do not scale to large scenes. For instance, KPConv [301] can only consume

2 m-radius crops of 3D scenes at once, and Stratified Transformer [175] requires

four GPUs to process a single room of the S3DIS dataset [13]. Such approaches

do not scale to scenarios that require both local geometric details and long-

range interactions to be captured. For example, in an urban mapping [197]

scenario, objects of interest may span a wide range of scales: from the traffic

sign characterized by small geometric patterns and its global location on the

street, to the large multi-story building, characterized by the aggregation of

numerous smaller shapes grouped into one large concept.

This challenge has led us to develop in this thesis a hierarchical data

representation, shown in Figure 1.8, that adapts to the geometric complexity

of the scene, allowing for compute- and memory-efficient multiscale reasoning.

1.3.2 Efficient Multimodal Fusion

Fusing information from additional modalities such as images can improve

the performance of 3D point cloud analysis. Indeed, these two modalities

carry complementary information, as point clouds capture the geometry, while

images capture the texture and context. Figure 1.9 illustrates this synergy

between 3D point clouds and images.

One way of exploiting this complementarity is to colorize point clouds.

Yet, such colorization is often a blackbox preprocessing [188, 83, 306] which

discards a large portion of the dense textural and contextual information
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Figure 1.9 ś Multimodal Fusion. Point clouds capture the geometry of the scene,
while images capture textures and context. The pink halo in the images illustrates which
pixels łseež a 3D point from the sample. This mapping is necessary to both point cloud
colorization and 2D-3D learning. We seek methods capable of building such mappings
and fusing information from both point clouds and arbitrarily-posed images, with minimal
sensor and preprocessing requirements.

carried by the images. Methods capable of directly processing point clouds

and images should have access to more information about the scene.

Recent multimodal 2D-3D approaches [65, 149, 135] propose using a 3D

network to process point clouds, and a 2D network to extract image features

that are projected onto the point cloud, outperforming methods operating

on colorized point clouds. However, we identify two limitations of these

approaches. First, their reliance on specific depth cameras or compute-

intensive meshing operations to map points to pixels does not align with our

search for hardware and compute-efficient solutions. Second, they aggregate

features from all views of the same object, without taking their observation

conditions into account.

In this thesis, we propose a method for efficiently extracting and fusing

features from point clouds and an arbitrary number of images in the wild.

Our method does not require any specific sensor or meshing, only raw point

clouds, images, and their poses.
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1.3.3 Efficient Implementation

Efficiently processing 3D point clouds requires careful implementation.

Unlike 2D images whose fixed-size matrix format conveniently adapts to hard-

ware and tensor reasoning, 3D point clouds do not capture local connectivity,

are often unordered, and exhibit varying sizes. Basic operations such as

nearest-neighbor search, trivial for image pixels, can quickly become compute

or memory bottlenecks in 3D. As a result, although not typically advertised in

the literature, efficient 3D processing necessitates a non-negligible implemen-

tation effort. For example, by developing an elegant sparse voxel convolution

library, MinkowskiNet [58] paved the way for scaling voxel-based methods.

Such endeavor was necessary to bypass the cubic complexity of dense voxel

convolutions, but entailed the fastidious development of an entire library

for sparse tensor calculus. Similarly, algorithmic engineering represents an

important part of the work presented in this thesis.

To summarize, this section highlights the challenges to efficiently process

large 3D point clouds. These challenges encompass efficient multiscale feature

extraction, fusing information from point clouds and images, and imple-

mentation. Coming next, Section 1.4 details how our work addresses these

challenges.

1.4 Contributions

This thesis introduces two main contributions for the efficient analysis of

large-scale 3D scenes.

Lightweight 3D Analysis Our first main contribution is an efficient framework

for point cloud semantic analysis, which can match and even surpass state-of-
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the-art methods while benefitting from one to two orders of magnitude fewer

parameters and significantly faster training and inference times. This achieve-

ment is based on two key ideas. First, different from competing methods

operating on arbitrary point or voxel samplings, we partition point clouds into

geometrically and radiometrically homogeneous superpoints organized in a

hierarchical structure. Second, we use a streamlined transformer architecture

to propagate information between adjacent superpoints and reason on the

scene at each level of hierarchy.

By confining point- or grid-based reasoning to local feature extraction,

our data structure drastically reduces the problem complexity, leading to

significant gains in compute and memory efficiency. With limited training

and inference times on a single consumer-grade GPU, our algorithm makes

experimentation on 3D point clouds fast and accessible, proving to be both

hardware and human-efficient. We validate our approach for semantic [267]

and panoptic [268] segmentation, across multiple datasets, sensor technologies,

and acquisition environments. Our method proves to be suitable for capturing

long-range dependencies and scales to very large scenes without performance

loss. In particular, our semantic segmentation architecture matches or out-

performs competing methods on all benchmarks, with up to 200 times fewer

parameters and 70 times faster training. For panoptic segmentation, we set a

new state-of-the-art on all benchmarks and process of unprecedented size in

a few seconds scenes on a single GPU.

Multimodal 2D-3D Analysis Our second main contribution is an architecture

capable of jointly extracting information from both 3D point clouds and 2D

images. In particular, our method learns to aggregate information from an

arbitrary number of views of the same point, based on their viewing conditions,

such as angle of view or distance to the sensor.
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Unlike similar methods which rely on mesh reconstruction or depth cameras

to map points with pixels, we only use raw point clouds and images with

poses. Our sparse, parallelized implementation ensures that we can efficiently

scale to large 3D scenes with an arbitrary number of images. In addition, by

leveraging the knowledge learned from larger image datasets to improve 3D

scene understanding without additional 3D annotations, our approach is data

and human efficient.

To summarize, this thesis exploits structures in 3D point clouds and multi-

modal data to devise deep learning architectures achieving high performance,

while being efficient and scalable.

1.5 Publications and Research Activities

International Conferences. All the works presented in this thesis were pub-

lished in three international computer vision conferences.

— Damien Robert, Bruno Vallet, Loic Landrieu. “Learning Multi-View

Aggregation in the Wild for Large-Scale 3D Semantic Segmentation”.

In: CVPR (2022), Shortlisted for the Best Paper award, top 0.4%

submissions.

— Damien Robert, Hugo Raguet, Loic Landrieu. “Efficient 3D Semantic

Segmentation With Superpoint Transformer”. In: ICCV (2023), top

26.8% submissions.

— Damien Robert, Hugo Raguet, Loic Landrieu. “Scalable 3D Panoptic

Segmentation As Superpoint Graph Clustering”. In: 3DV (2024), Oral,

pending acceptance rate.

International Workshops and Schools. Some of the above publications were

also presented at international workshops or schools.
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— Damien Robert, Bruno Vallet, Loic Landrieu. “Learning Multi-View

Aggregation in the Wild for Large-Scale 3D Semantic Segmentation”. In:

ISPRS congress (2022).

— Damien Robert, Bruno Vallet, Loic Landrieu. “Learning Multi-View

Aggregation in the Wild for Large-Scale 3D Semantic Segmentation”. In:

International Computer Vision Summer School (2022).

— Damien Robert, Hugo Raguet, Loic Landrieu. “Efficient 3D Semantic

Segmentation With Superpoint Transformer”. In: 4th Visual Inductive

Priors for Data-Efficient Deep Learning Workshop, ICCV (2023).

Open-Source Code. All code produced during this thesis has been publicly

released on GitHub. These repositories allow the reproduction of the results

communicated in our papers, provide tools for 3D vision, or research in

general.

� drprojects/DeepViewAgg 205 ⋆ 23 ⋔

� drprojects/superpoint_transformer 202 ⋆ 36 ⋔

� drprojects/point_geometric_features 21 ⋆ 3 ⋔

� drprojects/nora 15 ⋆ 0 ⋔

Dissemination. I was invited to present my work to the following research

groups.

2021 May French Mapping Agency - IGN

2022 Jan GDR ISIS

2022 May École Polytechnique - LIX lab

2022 June École des Ponts - IMAGINE lab

2022 Nov Federal Agency for Cartography and Geodesy - BKG

2023 May Samp

https://github.com/drprojects/DeepViewAgg
https://github.com/drprojects/superpoint_transformer
https://github.com/drprojects/point_geometric_features
https://github.com/drprojects/nora
https://ign.fr
https://www.gdr-isis.fr
https://www.lix.polytechnique.fr
https://imagine-lab.enpc.fr
https://www.bkg.bund.de/EN/Home/home.html
https://samp.ai
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2023 May Valeo.ai

2023 May University of Zurich - EcoVision lab

2023 June ENGIE Lab CRIGEN - CSAI

2023 Sept ETH Zurich - Photogrammetry and Remote Sensing group

2023 Sept ETH Zurich - Vision and Learning Group

2023 Oct National Land Survey of Finland - Maanmittauslaitos

2023 Nov École des Ponts - IMAGINE lab

Teaching. During this thesis, I carried out the following teaching missions.

2020 Course on Deep Learning for Computer Vision at École Polytechnique

for 1st year Master students (12 hours)

2022 Course on Deep Learning for Remote Sensing at ENSG for 2nd year

Master students (9 hours)

2022 Tutorial on 3D Deep Learning at ENGIE Lab CRIGEN - CSAI for

researchers (1 day)

2022 Tutorial on 3D Deep Learning for Remote Sensing at the XXIV ISPRS

congress for researchers (1 day)

2023 Course on Deep Learning for Remote Sensing at ENSG for 2nd year

Master students (13 hours)

1.6 Outline

This thesis is organized as follows.

Chapter 1: Introduction. We start by placing this thesis in the larger context

of deep learning for 2D and 3D computer vision. Then we discuss our

motivations behind this work and the challenges that stand in our way to

https://www.valeo.com/en/valeo-ai
https://www.spacehub.uzh.ch/en/research-areas/earth-observation/EcoVision-Lab.html
https://www.engie.com/en/innovation-transition-energetique/centres-de-recherche/crigen
https://prs.igp.ethz.ch
https://vlg.inf.ethz.ch
https://www.maanmittauslaitos.fi
https://imagine-lab.enpc.fr
https://portail.polytechnique.edu
https://ensg.eu
https://www.engie.com/en/innovation-transition-energetique/centres-de-recherche/crigen
https://www.isprs2022-nice.com/index.php/session/deep-learning-for-3d-point-clouds-analysis/
https://www.isprs2022-nice.com/index.php/session/deep-learning-for-3d-point-clouds-analysis/
https://ensg.eu
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achieve our goals. Finally, we present the contributions of this thesis and

outline the structure of the document.

Chapter 2: Related Work. We start by introducing the main families of 3D

deep learning models. Then, we review existing strategies for efficient deep

learning on images and point clouds. Next, we expand on superpoint-based

methods for efficient 3D processing. Finally, we overview approaches for

multimodal learning with point clouds.

Chapter 3: Efficient and Scalable 3D Semantic Segmentation. We present

our superpoint-based transformer architecture to efficiently perform semantic

segmentation on large-scale 3D scenes. This method relies on a fast algorithm

for partitioning point clouds into a hierarchical superpoint structure, as well

as a self-attention mechanism to learn the relationships between superpoints

at multiple scales. We demonstrate state-of-the-art performance on three 3D

semantic segmentation benchmarks with up to 200× fewer parameters and

up to 70× faster training, compared to competing approaches.

Chapter 4: Efficient and Scalable 3D Panoptic Segmentation. We cast the 3D

panoptic segmentation task as a scalable graph partitioning problem, which a

small model can be trained to address based on local objectives only. Our

framework circumvents several limitations of competing methods, such as

computing the segmentation at training time, matching predicted and target

instances, or hard-coded priors on the minimum or maximum number of

objects in a scene. It can naturally be extended to the superpoint paradigm

presented in Chapter 3, which allows for efficiently scaling to vast 3D scenes.

We reach state-of-the-art performance on four 3D panoptic segmentation

benchmarks and demonstrate the efficiency of our method in training and

inference time.
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Chapter 5: Learning From Point Clouds and Images in the Wild. We propose

an end-to-end multi-view aggregation method for 3D semantic segmentation

from images and point clouds. We reach state-of-the-art performance on

two 3D semantic segmentation benchmarks without requiring point cloud

colorization, meshing, or depth sensors: only point clouds, images, and their

poses.

Chapter 6: Conclusion. We summarize the contributions of this thesis and

discuss directions for future work on efficient 3D computer vision.
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Our contributions for the efficient processing of large point clouds build

upon several bodies of literature which we detail in the present chapter. First,

we introduce in Section 2.1 the main families of 3D deep learning models.

We then review in Section 2.2 existing strategies for efficient deep learning,

with a final focus on point-cloud-specific methods. This leads us to expand,

in Section 2.3, on the superpoint-based research directions that inspired our

work in Chapter 3 and Chapter 4. Finally, Section 2.4 provides an overview

of the approaches related to the multimodal learning framework proposed in

Chapter 5.

2.1 3D Deep Learning

3D Deep Learning architectures can be broadly categorized according to

the data representation they operate on: voxel-based, image-based, point-

based. This section gives an overview of these categories and how each relates

to 2D deep learning. Figure 2.1 provides a visual summary of the presented

categories. For a more in-depth review of 3D deep learning literature, we

refer the reader to [110].

Formally, in our setting, a 3D point cloud refers to a collection of points

defined by their (generally Cartesian) coordinates in three-dimensional space.

These points are assumed to form a discrete, unordered, and potentially noisy

sampling of a real 3D surface. Optionally, such points may be endowed with

additional information such as color, normal vector, or intensity.

Image-Based Methods. Image-based or view-based approaches project 3D

point clouds into multiple 2D views and analyze the resulting images with 2D

neural networks. First introduced for shape classification by MVCNN [292],

this strategy was extended to 3D object detection [52] and semantic seg-

mentation of large scenes [25]. Image-based methods conveniently leverage
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(a) Point Cloud (b) View-Based

(c) Voxel-Based (d) Set-Based

(e) Convolution-Based (f) Graph-Based

(g) Transformer-Based (h) Superpoint-Based

Figure 2.1 ś 3D Deep Learning Methods. A variety of methods have been proposed
to extract features from point clouds 2.1a. Some approaches discard information by
rendering 2D views of the points 2.1b, or discretizing the cloud in a voxel grid 2.1c.
Other methods directly operate on unordered sets of points 2.1d, or generalize discrete 2D
convolutions to continuous 3D space 2.1e. Alternatives use graph neural networks 2.1f
or transformers 2.1g to reason on a local neighborhood. Closely related to our work,
superpoint-based approaches 2.1h reason on a partition of the scene.

readily-available architectures and easier-to-annotate datasets from the 2D

computer vision community. However, some limitations hinder the wide

adoption of these methods: rendering occlusions when projecting points ne-

cessitates a costly surface reconstruction [25], aggregating information from

multiple views of the same object is nontrivial [278, 318], and the projection

operation inevitably discards information.
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Voxel-Based Methods. Voxel-based (or volumetric) methods convert unstruc-

tured 3D point clouds to 3D voxel grids. This straightforward representation

adapts successful 2D computer vision methods operating on pixel grids to

3D. VoxNet [217] introduces a 3D convolutional neural network for processing

dense 3D grids, and OctNet [266] uses an octree to mitigate the memory foot-

print of dense voxel representations. SEGCloud [299] circumvents the memory

problem by using convolutions on large voxels and a graphical model for

subvoxel segmentation. Motivated by the sparsity of voxelized point clouds,

MinkowskiNet [58] designs a library for sparse 3D convolutions on GPU,

making it possible to process large scenes with volumetric methods. Recently,

hybrid approaches [207, 297, 352] address the small-scale information loss

inherent to voxelization. Although conceptually simple, voxel-based meth-

ods tend to be compute- and memory-intensive, and their three-dimensional

kernels require more parameters than their 2D counterparts.

Point-based methods operate directly on the point cloud, without introducing

explicit information loss by discretization or projection. This category can be

further divided into set-based, convolution-based, graph-based, transformer-

based, and superpoint-based methods.

Set-Based Methods. Unlike image-based and voxel-based methods that draw

their inspiration from 2D computer vision to address point cloud processing,

set-based methods are specifically designed to operate on unordered data

such as point clouds. Deep Set [350] and PointNet [252] proposed similar

pioneer models for encoding permutation-invariant sets of points. Inspired

by multiscale encoders from image processing, PointNet++ [253] introduces

an architecture for hierarchical reasoning on sets of increasing coarseness.

Different from the max-pooling operation commonly used for downsampling
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pixel grids, this model combines farthest point sampling (FPS), nearest

neighbor search, and an aggregation function to progressively coarsen the

point sets. Although set-based methods were among the first 3D deep learning

algorithms in the literature, PointNeXt [255] recently achieved state-of-the-art

performance by scaling PointNet++ with modern training recipes.

Convolution-Based Methods. Convolution-based methods seek to generalize

discrete 2D convolutions to continuous 3D space [193, 24]. Contrary to pixels

or voxels, where convolution kernels align with grid-based neighborhoods of

constant size and shape, defining a convolution operator for points localized

in a continuous space is not straightforward [31], due to the varying size and

distribution of the neighborhood of points. KPConv [301] and ConvPoint [24],

for instance, learn convolution kernels which can be placed at any position

in a continuous space. Although mathematically elegant, convolution-based

methods involve sensitive parameterization, and their computational cost

hinders their scalability.

Graph-Based Methods. Graph-based methods treat individual points as

graph vertices, connected based on their spatial proximity. Graph process-

ing models are then used to extract features in the spatial [287, 327] or

spectral [300] domain. The adjacency graph structure presents a sensible

representation for analyzing point clouds and their underlying surface geom-

etry. Nevertheless, graph-based methods are challenged by their restricted

connectivity, sequential treatment, limited expressivity, and small receptive

fields.

Transformer-Based Methods. The success of the Transformer [313] architec-

ture in natural language processing and its adaptation to image analysis [76,

206] have inspired the development of transformer-based methods for point
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clouds. These models can be seen as a generalization of graph-based ap-

proaches to dynamic graphs, where edge weights evolve depending on the

node features, allowing for the adaptive aggregation of neighborhood infor-

mation. 3D vision transformers have demonstrated strong performance on

various point cloud analysis tasks [359] and the ability to capture long-range

interactions [175]. Yet, the quadratic complexity of their self-attention scheme

leads to high memory consumption when applied on dense point clouds, which

limits their ability to process large scenes.

Superpoint-Based Methods. Scenes with many points can often be broken

down into a much smaller set of simple shapes. This especially applies to

anthropic objects that exhibit smooth, regular shapes. The surface of a

house, for instance, is largely made of planes making up its walls, floor,

ceiling, and roof. In addition, adjacent points sharing similar geometry and

color often share the same semantic meaning. Hence, instead of reasoning

on individual points, 3D scene analysis could be simplified to reasoning

on much sparser shapes. Following this train of thought, superpoint-based

methods partition point clouds into superpoints : sets of adjacent points with

similar geometric and radiometric properties. Closely related to our work,

Superpoint Graph [180] processes 3D scenes as graphs of superpoints with a

graph neural network. Operating on superpoint partitions reduces the size of

the point cloud parsing problem by several orders of magnitude, leading to

efficient models with few parameters capable of processing extensive scenes.

However, superpoint-based approaches rely on graph neural networks which,

as previously mentioned, tend to lack in expressivity. A deeper introduction

of these methods will be provided in Section 2.3.

The work presented in this thesis spans all three categories. Chapter 3 presents
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an efficient and scalable model that inherits from transformer- and superpoint-

based methods. Meanwhile, Chapter 5 addresses 2D-3D multimodal learning

with inspiration from image- and voxel-based approaches.

2.2 Efficient Point Cloud Analysis

As 3D scans of real-world scenes can contain hundreds of millions of points,

the efficiency of 3D analysis is critical. In this section, we first provide a

high-level overview of research directions for efficient deep learning. Then, we

introduce some works specific to efficient 3D point cloud analysis.

2.2.1 Efficient Deep Learning

Inspired by Menghani [220], we broadly categorize research directions

pursuing efficient deep learning as follows: compression, training, AutoML,

implementation, and architecture.

Figure 2.2 ś Pruning. A simpliőed illustration of pruning weights (connections) and
neurons (nodes) in a neural network comprising fully connected layers. Source: [220]

Compression. Compression techniques aim to reduce the size of a neural

network, with a potential trade-off in performance. As illustrated in Figure 2.2,

pruning methods search for non-essential neurons to sparsify the network [185,

115]. Quantization methods reduce the memory cost of neural networks by

encoding their activations and weights with low-precision datatypes. This can
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be done at inference time, by mapping high-precision values to finite sets of

discrete values [167, 146, 57]. Alternatively, quantized networks can be trained

directly with low precision [139, 190]. Meanwhile, low-rank compression [141]

approximates the weight matrix of each layer by the product of two smaller

matrices.

Training. Efficiency can be gained by improving the training process itself.

Data augmentation can be seen as an efficient strategy to artificially increase

the size of the data set [169, 293]. Distillation techniques [124] use a large,

pretrained teacher model to supervise a smaller student network to be deployed

in downstream applications. Low-rank adaptation [132] makes the fine-

tuning of large models easier by using a low-rank approximation of the

network weights. Departing from traditional supervised learning, weakly

supervised [364] makes use of inexpensive or partial annotations. For instance,

for the subfield of semi-supervised learning [345] only a fraction of data points

have annotations, while multi-instance learning [42] only provides labels for

bags of data points. Pushing even further, self-supervised learning [97, 51,

120, 121] relies on pretext tasks to learn useful representations from data

without labels. Typical pretext tasks involve reconstructing the input from a

corrupted version of itself [121], or pairing transformed versions of the same

input [51].

AutoML. AutoML techniques propose to minimize human intervention in the

model search process. Hyperparameter optimization [18, 224, 6] automates

the exploration of hyperparameters for a given neural network architecture,

while neural architecture search [78, 296] explores the design space of neural

network architectures to find the most efficient one for a given task.



2.2. EFFICIENT POINT CLOUD ANALYSIS 37

Implementation. The implementation of deep learning algorithms may lead to

savings in computation or memory. For example, mixed precision training [221]

only uses high-precision datatypes for sensitive operations, thus reducing the

memory footprint of the network. By accumulating the gradients computed on

smaller batches, microbatching [137] can train large models on limited memory.

Differently, gradient checkpointing [50, 34] saves memory at training time

by discarding intermediate activations in the forward pass and recomputing

them during backpropagation.

Figure 2.3 ś Depth-Separable Convolution. By separating the traditional convolution
operation into a per-channel convolution followed by a 1x1 channel-mixing operation,
depth-separable convolution [56] reduce the number of parameters per convolutional layer.
Source: [307]

Architecture. Designing new building blocks for neural networks can im-

prove model efficiency. Often, introducing inductive priors in the architec-

ture may reduce the number of parameters or operations. For example, by

sharing parameters to enforce translation equivariance, convolutional neural

networks [186] are more efficient than fully-connected networks for image

processing. Similarly, atrous convolutions [48] assume some local regularity in
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the features to increase the receptive field of convolutions without increasing

the number of parameters. As shown in Figure 2.3, the depth-separable

convolutional layers [56, 273] disentangle spatial and channel-wise correlations

by factorizing standard convolutions, with fewer parameters. With the recent

popularity of transformer architecture, multiple works have proposed efficient

variants [298, 163, 325], while ConvNeXt [208] has shown that convolutional

networks can still outperform their less efficient transformer counterparts

when trained with similar recipes.

While the combination of several of these strategies certainly holds potential,

our contribution mainly lies in proposing new architectures for efficient 3D

deep learning.

2.2.2 Efficient Deep Learning on Point Clouds

Various architectures for efficiently processing 3D point clouds can be found

in the literature. The seminal PointNet [252] and PointNet++ [253] models

provide fast, parameter-efficient 3D analysis baselines. RandLANet [133]

demonstrates that efficient sampling strategies can yield excellent results,

by replacing the costly Farthest Point Sampling of PointNet++ with sim-

ple random sampling. Akin to ConvNeXt [208] mentioned above for im-

ages, PointNeXt [255] achieves state-of-the-art performance by updating

PointNet++ [253] with modern training recipes, outperforming less efficient

transformer-based architectures [359].

Other works explore efficient data representations for point cloud analysis.

To circumvent the prohibitive memory and compute footprint of 3D convo-

lutions on dense voxel grids, SparseConvNet [104] and MinkowskiNet [58]

operate on sparse representations, conducing voxel-based models capable of

processing large scenes while maintaining high resolution. More recently,
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hybrid point cloud representations [207, 209] have also helped reduce memory

cost, while capturing both fine-grained local details and contextual informa-

tion.

However, by leveraging the local similarity of dense point clouds to con-

struct geometry-informed data structures, superpoint-based methods can

achieve an input reduction of several orders of magnitude, resulting in unpar-

alleled efficiency. The next section provides a more in-depth introduction to

these methods.

2.3 Superpoint-Based Learning

Part of our work draws inspiration from superpoint-based methods to

develop efficient and scalable approaches for 3D semantic segmentation and

panoptic segmentation. This section provides an overview of image partition

methods and these more recently inspired 3D point cloud partition. We then

focus on existing superpoint-based approaches for semantic segmentation,

which serve as the basis for our methods in Chapter 3 and Chapter 4.

2.3.1 Superpixel Partitioning

Partitioning images into superpixels has been extensively studied to simplify

image analysis, both before [265, 3] and after [308, 148] the widespread use

of deep learning. By decomposing images into meaningful parts, superpixels

offer a computationally efficient representation, which has been applied to

various tasks such as object detection [284, 342], semantic segmentation [91,

283], and depth estimation [310].

Superpixel algorithms can be categorized into graph-based and clustering-

based approaches. Graph-based methods formulate superpixel segmentation

as a graph partitioning problem, with nodes corresponding to pixels and edges

representing the connectivity between adjacent pixels. Popular algorithms
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Figure 2.4 ś SLIC Superpixel Partition. SLIC [3] is an image partitioning algorithm
that segments images into compact, uniform superpixels. Here, two images are partitioned
using SLIC with different resolutions. Source: [3]

in this category include normalized cuts [265], Felzenszwalb and Hutten-

locher [85], energy minimization [26], and entropy rate superpixels [203].

Clustering-based methods embed pixels into a space where clustering tech-

niques can be leveraged to produce a superpixel partition. Central to this

category, SLIC [3] embeds pixels with their XY position and Lab color fea-

tures, and uses a k-means variant to mitigate the computational cost. See

Figure 2.4 for examples of superpixel partitions produced by SLIC. Subse-

quent works propose different features [195, 205], make SLIC faster [2], or

differentiable [148].

2.3.2 Superpoint Partitioning

Partitioning large 3D point clouds into groups of adjacent and homoge-

neous points, called superpoints, is also an active area of research. Superpoint

partitioning has been used successfully applied for point cloud oversegmen-
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tation [243, 200, 177], semantic segmentation [180, 140], and object detec-

tion [113, 80].

Akin to superpixels, superpoint methods may be clustering-based or graph-

based. Clustering approaches such as VCCS [243] draw inspiration from

SLIC [3] and use k-means on point features, under local adjacency constraints.

However, k-means-based methods rely on a fixed number of randomly initial-

ized clusters, proscribing the processing of point clouds of arbitrary size and

geometric complexity. On the other hand, Landrieu et al . [180] cast point

cloud oversegmentation as a structured optimization problem and uses the

cut-pursuit [178] algorithm to generate superpoints. This method does not

make any assumption on the number of superpoints and produces a partition

whose granularity adapts to the 3D geometry.

2.3.3 Superpoints for Semantic Segmentation

Superpoint Graph (SPG) [180] proposes learning the relationship between

superpoints using graph convolutions [287] for semantic segmentation, as

detailed in Figure 2.5. While this method trains fast, its preprocessing is slow

and its expressivity and range are limited, as it operates on a single partition.

Recent works have proposed ways of learning superpoints themselves [177,

140, 302], which yields improved results but at the cost of an extra training

step or a large point-based backbone [158].

Hierarchical partitions are used for image processing [12, 340, 357] and 3D

analysis tasks, such as point cloud compression [82] and object detection [49,

196]. Hierarchical approaches for semantic segmentation use octrees with

fixed grids [229, 266]. On the contrary, our model Superpoint Transformer

(SPT), introduced in Chapter 3, uses a multiscale hierarchical structure that

adapts to the local geometry of the data. This hierarchical partition conforms

more closely to semantic boundaries than grid-based structures, enabling the
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network to model the interactions between objects or object parts.

(a) Colorized Point Cloud (b) Superpoint Partition

(c) Superpoint Graph (d) Semantic Segmentation

Figure 2.5 ś Superpoint Graph. Superpoint Graph [180] partitions an input point
cloud 2.5a into geometrically simple superpoints 2.5b. A superpoint graph 2.5c is then
constructed by linking nearby superpoints. A network is trained to transform superpoints
into compact embeddings then processed with graph convolutions, and őnally classiőed
into semantic labels 2.5d. Source: [180]

2.3.4 Superpoints for Panoptic Segmentation

The panoptic segmentation task is related to semantic and instance seg-

mentation [162]. Like semantic segmentation, all points must be assigned a

single semantic label. But unlike instance segmentation, each point must also

belong to exactly one predicted instance. This setting makes partition-based

methods naturally suitable for panoptic segmentation. We further elaborate

on this idea and the related literature in Section 4.2.

The superpoint paradigm is central to our work. In Chapter 3, we get
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inspiration from SPG [180] to develop an efficient 3D semantic segmentation

architecture that relies on expressive transformer blocks to reason on a

hierarchical partition of the scene. In Chapter 4, we propose a fast and scalable

superpoint graph clustering approach to address panoptic segmentation of

large 3D point clouds.

2.4 Leveraging Images for 3D Understanding

Point cloud understanding may be enriched by information from other

modalities, such as images. In doing so, data-efficient methods can leverage

readily-available knowledge from 2D models pretrained on large 2D datasets.

In Chapter 5, we propose a method that learns to aggregate information from

an arbitrarily-posed views of the same 3D object, based on their viewing

conditions. This section contextualizes our approach. A deeper review of the

literature on this topic can be found in Section 5.2.

2.4.1 Point Cloud Colorization

One way to exploit images to improve 3D understanding is to colorize

point clouds. Unlike photogrammetry-based [303] acquisition techniques which

naturally produce colorized points, active sensors such as LiDAR [150] or

time-of-flight cameras [240] do not. In practice, these clouds can be colorized

through a nontrivial heuristics-based preprocessing that requires localized

RGB images and their camera parameters [154]. Colorized point cloud

datasets [13, 111, 66, 197] are frequently used to compare 3D deep learning

methods [252, 301, 58], which consistently perform better when radiometric

information is available [255]. In short, point cloud colorization assumes

either a specific sensor or heuristics-based preprocessing, and discards dense,

contextual, multi-view information carried by images. Hence, 3D analysis

methods capable of directly processing raw point clouds and localized images
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would be less hardware-dependent and more data-efficient.

2.4.2 Learning to Fuse Points and Images

Advances in image and point cloud analysis using deep neural networks

naturally invite to devise architectures capable of jointly extracting features

from both modalities. We further present this active field of research in

Section 5.2.

The work presented in Chapter 5 is a novel method for learning to extract

and fuse information from arbitrarily-posed images and large point clouds in

an end-to-end fashion.
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Efficient and Scalable 3D Semantic

Segmentation
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Abstract

We introduce a novel superpoint-based transformer architecture for efficient

semantic segmentation of large-scale 3D scenes. Our method incorporates a

fast algorithm to partition point clouds into a hierarchical superpoint structure,

which makes our preprocessing 7 times faster than existing superpoint-based

approaches. Additionally, we leverage a self-attention mechanism to capture

the relationships between superpoints at multiple scales, leading to state-of-

the-art performance on three challenging benchmark datasets: S3DIS (76.0%

mIoU 6-fold validation), KITTI-360 (63.5% on Val), and DALES (79.6%).

With only 212k parameters, our approach is up to 200 times more compact

than other state-of-the-art models while maintaining similar performance.

Furthermore, our model can be trained on a single GPU in 3 hours for a

fold of the S3DIS dataset, which is 7× to 70× fewer GPU-hours than the

best-performing methods. Our code and models are accessible at

https://github.com/drprojects/superpoint_transformer.

This chapter’s work was initially presented in: Damien Robert, Hugo

Raguet, Loic Landrieu, “Efficient 3D Semantic Segmentation With Superpoint

Transformer”, ICCV, 2023.

https://github.com/drprojects/superpoint_transformer
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3.1 Introduction

104 105 107
60

70

75

SPT

SPT-nano

SPG

KPConv

Stratified Trans.

RandLaNet

Point Trans.

MinkowskiNet

Deep
View
Agg

PointNeXt

S

B

L

XL

100h

25h
5h

Training time
(GPU-h)

Model Size

m
Io

U
6-

F
ol

d

Figure 3.1 ś Model Size vs. Performance. We visualize the performance of different
methods on the S3DIS dataset (6-fold validation) in relation to their model size in log-scale.
The area of the markers indicates the GPU-time to train on a single fold. Our proposed
method Superpoint Transformer (SPT) achieves state-of-the-art with a reduction of up to
200-fold in model size and 70-fold in training time (in GPU-h) compared to recent methods.
The even smaller SPT-nano model achieves a fair performance with 26k parameters only.

As the expressivity of deep learning models increases rapidly, so do their

complexity and resource requirements [96]. In particular, vision transformers

have demonstrated remarkable results for 3D point cloud semantic segmen-

tation [359, 244, 109, 175, 209], but their high computational requirements

make them challenging to train effectively. Additionally, these models rely on

regular grids or point samplings, which do not adapt to the varying complexity

of 3D data: the same computational effort is allocated everywhere, regardless
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of the local geometry or radiometry of the point cloud. This issue leads to

needlessly high memory consumption, limits the number of points that can be

processed simultaneously, and hinders the modeling of long-range interactions.

Superpoint-based methods [180, 177, 140, 256] address the limitation of reg-

ular grids by partitioning large point clouds into sets of points—superpoints—

which adapt to the local complexity. By directly learning the interaction

between superpoints instead of individual points, these methods enable the

analysis of large scenes with compact and parsimonious models that can be

trained faster than standard approaches. However, superpoint-based methods

often require a costly preprocessing, and their range and expressivity are

limited by their use of local graph-convolution schemes [287].

In this chapter, we propose a novel superpoint-based transformer architec-

ture that overcomes the limitations of both approaches, see Figure 3.1. Our

method starts by partitioning a 3D point cloud into a hierarchical superpoint

structure that adapts to the local properties of the acquisition at multiple

scales simultaneously. To compute this partition efficiently, we propose a new

algorithm that is an order of magnitude faster than existing superpoint pre-

processing algorithms. Next, we introduce the Superpoint Transformer (SPT)

architecture, which uses a sparse self-attention scheme to learn relationships

between superpoints at multiple scales. By viewing the semantic segmentation

of large point clouds as the classification of a small number of superpoints, our

model can accurately classify millions of 3D points simultaneously without

relying on sliding windows. SPT achieves near state-of-the-art accuracy on

various open benchmarks while being significantly more compact and able to

train much quicker than common approaches. The main contributions of this

work are as follows:

— Efficient Superpoint Computation: We propose a new method to

compute a hierarchical superpoint structure for large point clouds, which
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is more than 7 times faster than existing superpoint-based methods. Our

preprocessing time is also comparable or faster than standard approaches,

addressing a significant drawback of superpoint methods.

— State-of-the-Art Performance: Our model reaches performance at

or close to the state-of-the-art for three open benchmarks with distinct

settings: S3DIS for indoor scanning [13], KITTI-360 for outdoor mobile

acquisitions [197], and DALES for city-scale aerial LiDAR [311, 288].

— Resource-Efficient Models: SPT is particularly resource-efficient as

it only has 212k parameters for S3DIS and DALES, a 200-fold reduction

compared to other state-of-the-art models such as PointNeXt [255] and takes

70 times fewer GPU-h to train than Stratified Transformer [175]. The even

more compact SPT-nano reaches 70.8% 6-Fold mIoU on S3DIS with only

26k parameters, making it the smallest model to reach above 70% by a factor

of almost 300.

3.2 Method

Our method has two key components. First, we use an efficient algorithm to

segment an input point cloud into a compact multiscale hierarchical structure.

Second, a transformer-based network leverages this structure to classify the

elements of the finest scale.

3.2.1 Efficient Hierarchical Superpoint Partition

We consider a point cloud C with positional and radiometric information.

To learn multiscale interactions, we compute a hierarchical partition of C

into geometrically-homogeneous superpoints of increasing coarseness; see

Figure 3.2. We first define the concept of hierarchical partitions.

Definition 1 Hierarchical Partitions. A partition of a set X is a collection

of subsets of X such that each element of X is in one and only one of such
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(a) Input point cloud (b) Ground truth labels

(c) First partition level (d) First superpoint-graph

(e) Second partition level (f) Second superpoint-graph

Figure 3.2 ś Superpoint Transformer. Our method takes as input a point cloud (a)
and computes its hierarchical partition into geometrically homogeneous superpoints at
multiple scales: (c) and (e). For all partition levels, we construct superpoint adjacency
graphs (d) and (f), which are used by an attention-based network to classify the őnest
superpoints.

subsets. P := [P0, · · · ,PI ] is a hierarchical partition of X if P0 = X , and

Pi+1 is a partition of Pi for i ∈ [0, I − 1].

Throughout this chapter, all functions or tensors related to a specific

partition level i are denoted with an exponent i.
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Hierarchical Superpoint Partitions. We propose an efficient approach for con-

structing hierarchical partitions of large point clouds. First, we associate each

point c of C with features fc representing its local geometric and radiometric

information. These features can be handcrafted [108] or learned [177, 140].

See Section 3.2.4 for more details on point features. We also define a graph G

encoding the adjacency between points usually based on spatial proximity,

e.g . k-nearest neighbors.

We view the features fc for all c of C as a signal f defined on the nodes

of the graph G. Following the ideas of SuperPoint Graph [180], we compute

an approximation of f into constant components by solving an energy min-

imization problem penalized with a graph-based notion of simplicity. The

resulting constant components form a partition whose granularity is deter-

mined by a regularization strength λ > 0: higher values yield fewer and

coarser components.

For each component of the partition, we can compute the mean position

(centroid) and feature of its elements, defining a coarser point cloud on which

we can repeat the partitioning process. We can now compute a hierarchical

partition P := [P0, · · · ,PI ] of C from a list of regularization strengths

λ1, · · · , λI . First, we set P0 as the point cloud C and f 0 as the point features

f . Then, for i = 1 to I , we compute (i) a partition Pi of f i−1 penalized with

λi; (ii) the mean signal f i for all components of Pi. The coarseness of the

resulting partitions [P0, · · · ,PI ] is thus strictly increasing. See Section B-

4 for a more detailed description of this process, and Section B-5 for our

parameterization recipe.

Hierarchical Graph Structure. A hierarchical partition defines a polytree

structure across the different levels. Let p be an element of Pi. If i ∈ [0, I−1],

parent(p) is the component of Pi+1 which contains p. If i ∈ [1, I], children(p)
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is the set of components of Pi−1 whose parent is p.

Superpoints also share adjacency relationships with superpoints of the

same partition level. For each level i ≥ 1, we build a superpoint-graph Gi by

connecting adjacent components of Pi, i.e. superpoints whose closest points

are within a distance gap ϵi > 0. For p ∈ Pi, we denote N (p) ⊂ Pi the set

of neighbors of p in the graph Gi. See Section 3.2.5 for more details on the

superpoint-graph construction.

Hierarchical Parallel ℓ0-Cut Pursuit. Computing the hierarchical components

involves solving a recursive sequence of non-convex, non-differentiable opti-

mization problems on large graphs. We propose an adaptation of the ℓ0-cut

pursuit algorithm [179] to solve this problem. To improve efficiency, we

adapt the graph-cut parallelization strategy initially introduced by Raguet et

al . [261] in the convex setting.

3.2.2 Superpoint Transformer

Our proposed SPT architecture draws inspiration from the popular U-

Net [270, 93]. However, instead of using grid, point, or graph subsampling, our

approach derives its different resolution levels from the hierarchical partition

P .

General Architecture. As represented in Figure 3.3, SPT comprises an en-

coder with I stages and a decoder with I − 1 stages: the prediction takes

place at the level P1 and not on individual points. We start by computing

the relative positions x of all points and superpoints with respect to their

parent. For a superpoint p ∈ Pi, we define xip as the position of the centroid

of p relative to its parent’s. The coarsest superpoints of PI have no parent

and use the center of the scene as a reference centroid. We then normalize

these values so that the sets {xip|p ∈ children(q)} have a radius of 1 for all
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Figure 3.3 ś Superpoint Transformer. We represent our proposed architecture with two
partitions levels P1 and P2. We use a transformer-based module to leverage the context
at different scales, leading to large receptive őelds. We only classify the superpoints of the
partition P1 and not individual 3D points, allowing fast training and inference.

q ∈ Pi+1. We compute features for each 3D point by using a multi-layer

perceptron (MLP) to mix their relative positions and handcrafted features:

g0 := ϕ0
enc([x

0, f 0]), with [·, ·] the channelwise concatenation operator.

Each level i ≥ 1 of the encoder maxpools the features of the finer partition

level i − 1, adds relative positions xi and propagates information between

neighboring superpoints in Gi. For a superpoint p in Pi, this translates as:

gip = T
i

enc ◦ ϕ
i
enc

([

xip, max
q∈children(p)

(

gi−1q

)

])

(3.1)

with ϕi
enc an MLP and T i

enc a transformer module explained below. By

avoiding communication between the 3D points of P0, we bypass a potential

computational bottleneck.
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The decoder passes information from the coarser partition level i+1 to the

finer level i. It uses the relative positions xi and the encoder features gi to

improve the spatial resolution of its feature maps hi [270]. For a superpoint p

in partition Pi with 1 ≤ i < I − 1, this can be expressed as:

hi
p = T

i
dec ◦ ϕ

i
dec

([

xip, g
i
p, h

i+1
parent(p)

])

(3.2)

with hI = gI , ϕi
dec an MLP, and T i

dec an attention-based module similar to

T i
enc.

Self-Attention Between Superpoints. We propose a variation of graph-attention

networks [314] to propagate information between neighboring superpoints of

the same partition level. For each level of the encoder and decoder, we asso-

ciate to superpoint p ∈ Pi a triplet of key, query, value vectors Kp, Qp, Vp of

size Dkey, Dkey and Dval. These values are obtained by applying a linear layer

to the corresponding feature map m after GraphNorm normalization [39].

We then characterize the relationship between two superpoints p, q of Pi

adjacent in Gi by a triplet of features akey
p,q , a

que
p,q , a

val
p,q of dimensions Dkey, Dkey

and Dval, and whose computation is detailed in the next section. Given a

superpoint p, we stack the vectors akey
p,q , a

que
p,q , a

val
p,q for q ∈ N (p) in matrices

Akey
p , Aque

p , Aval
p of dimensions | N (p)| ×Dkey or | N (p)| ×Dval. The modules

T i
enc and T i

dec gather contextual information as follows:

[T (m)]p
+
= att(Q⊺

p ⊕A
que
p , KN (p)+Akey

p , VN (p)+Aval
p ) , (3.3)

with
+
= a residual connection [118], ⊕ the addition operator with broadcasting

on the first dimension, and KN (p) the matrix of stacked vectors Kq for

q ∈ N (p). The attention mechanism writes as follows:

att(Q,K, V ) := V ⊺ softmax

(

Q⊙K1
√

| N (p)|

)

, (3.4)
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with ⊙ the Hadamard termwise product and 1 a column-vector with Dkey

ones. Our proposed scheme is similar to classic attention schemes with two

differences: (i) the queries adapt to each neighbor, and (ii) we normalize

the softmax with the neighborhood size instead of the key dimension. In

practice, we use multiple independent attention modules in parallel (multi-

head attention) and several consecutive attention blocks.

3.2.3 Leveraging the Hierarchical Graph Structure

The hierarchical superpoint partition P can be used for more than guidance

for graph pooling operations. Indeed, we can learn expressive adjacency

encodings capturing the complex adjacency relationships between superpoints

and employ powerful supervision and augmentation strategies based on the

hierarchical partitions.

Adjacency Encoding. While the adjacency between two 3D points is entirely

defined by their distance vector, the relationships between superpoints are

governed by additional factors such as their alignment, proximity, and differ-

ence in sizes or shapes. We characterize the adjacency of pairs of adjacent

superpoints of the same partition level using a set of handcrafted features

whose description is provided in Section 3.2.4.

For each pair of superpoints (p, q) adjacent in Gi, we jointly compute

the concatenated akey
p,q , a

que
p,q , a

val
p,q by applying an MLP ϕi

adj to the handcrafted

adjacency features defined above. Further details on the superpoint-graph

construction are provided in Section 3.2.5.

Hierarchical Supervision. We propose to take advantage of the nested struc-

ture of the hierarchical partition P into the supervision of our model. We

can naturally associate the superpoints of any level i ≥ 1 with a set of 3D

points in P0. The superpoints at the finest level i = 1 are almost semantically
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pure (see Figure 3.7), while the superpoints at coarser levels i > 1 typically

encompass multiple objects. Therefore, we use a dual learning objective:

(i) we predict the most frequent label within the superpoints of P1, and (ii)

we predict the label distribution for the superpoints of Pi with i > 1. We

supervise both predictions with the cross-entropy loss.

Let yip denote the true label distribution of the 3D points within a super-

point p ∈ Pi, and ŷip a one-hot-encoding of its most frequent label. We use a

dedicated linear layer at each partition level to map the decoder feature gip to

a predicted label distribution zip. Our objective function can be formulated

as follows:

L =
∑

p∈P1

−N 1
p

| C |
H(ŷ1p, z

1
p)+

I
∑

i=2

∑

p∈Pi

µiN i
p

| C |
H(yip, z

i
p) , (3.5)

where µ2, · · · , µI are positive weights, N i
p represents the number of points

within a superpoint p ∈ Pi, and |C| is the total number of points in the point

cloud, and H(y, z) = −
∑

k∈K yk log(zk) and K the class set.

Superpoint-Based Augmentations. Although our approach classifies super-

points rather than individual 3D points, we still need to load the points of P0

in memory to embed the superpoints from P1. However, since superpoints are

designed to be geometrically simple, only a subset of their points is needed

to characterize their shape. Therefore, when computing the feature g1p of a

superpoint p of P1 containing n points with Equation 3.1, we sample only a

portion tanh(n/nmax) of its points, with a minimum of nmin. This sampling

strategy reduces the memory load and acts as a powerful data augmentation.

The lightweight version of our model SPT-nano goes even further. It ignores

the points entirely and only use handcrafted features to embed the superpoints

of P1, thus avoiding entirely the complexity associated with the size of the

input point cloud P0.
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To further augment the data, we exploit the geometric consistency of

superpoints and their hierarchical arrangement. During the batch construction,

we randomly drop each superpoint with a given probability at all levels.

Dropping superpoints at the fine levels removes random objects or object parts,

while dropping superpoints at the coarser levels removes entire structures

such as walls, buildings, or portions of roads, for example.

3.2.4 Handcrafted Features

(a) Input (b) Linearity (c) Planarity

(d) Scattering (e) Verticality (f) Elevation

Figure 3.4 ś Point Geometric Features. Given an input cloud (a), the computed
PCA-based geometric features (b, c, d, e) and distance to the ground (f) offer a simple
characterization of the local geometry around each point.

Similar to SPG [180], our method relies on simple handcrafted features to

build the hierarchical partition and learn meaningful points and adjacency

relationships. In this section, we provide further details on the definition of

these features and how to compute them. It is important to note that these

features are only computed once during preprocessing, and thanks to our

optimized implementation, this step only takes a few minutes.
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Point Features. We can associate each 3D point with a set of 8 easy-to-

compute handcrafted features, described below.

— Radiometric features (3 or 1): RGB colors are available for S3DIS and

KITTI-360, and intensity values for DALES. These radiometric features

are normalized to [0, 1] at preprocessing time. For KITTI-360, we find

that using the HSV color model yields better results.

— Geometric features (5): We use PCA-based features: linearity, planarity,

scattering, [70] and verticality [108], computed on the set of 50-nearest

neighbors of each point. This neighbor search is only computed once

during preprocessing and is also necessary to build the graph G. We also

define elevation as the distance between a point and the ground below

it. Since the ground is neither necessarily flat nor horizontal, we use the

RANSAC algorithm [88] on a coarse subsampling of the scene to find a

ground plane. We normalize the elevation by dividing it by 4 for S3DIS

and 20 for DALES and KITTI-360.

At preprocessing time, we only use radiometric and geometric features

to compute the hierarchical partition. At training time, as mentionned in

Section 3.2.2, SPT computes point embeddings by mapping all available point

features, along with the normalized point position, to a vector of size Dpoint

with a dedicated MLP ϕ0
enc.

We provide an illustration of the geometric point features in Figure 3.4, to

help the reader apprehend these simple geometric descriptors.

Adjacency Features. The relationship between adjacent superpoints provides

crucial information to leverage their context. For each edge of the superpoint-

graph, we compute the 18 following features:

— Interface features (7): All adjacent superpoints share an interface, i.e.



3.2. METHOD 59

pairs of points from each superpoint that are close and share a line of

sight. SPG [180] uses the Delaunay triangulation of the entire point cloud

to compute such interfaces, while we propose a faster heuristic approach

in Section 3.2.5 called the Approximate Superpoint Gap algorithm. Each

pair of points of an interface defines an offset, i.e. a vector pointing from

one superpoint to its neighbor. We compute the mean offset (dim 3),

the mean offset length (dim 1), and the standard deviation of the offset

in each canonical direction (dim 3).

— Ratio features (4): As defined in [180], we characterize each pair of

adjacent superpoints with the ratio of their lengths, surfaces, volumes,

and point counts.

— Pose features (7): For each superpoint, we define a normal vector as its

principal component with the smallest eigenvalue. We then characterize

the relative position between two superpoints with the cosine of the

angle between the superpoint normal vectors (dim: 1) and between

each of the two superpoints’ normal and the mean offset direction (dim:

2). Additionally, the offset between the centroids of the superpoints is

used to compute the centroid distance (dim: 1) and the unit-normalized

centroid offset direction (dim: 3).

Note that the mean offset and the ratio features are not symmetric and

imply that the edges of the superpoint-graphs are oriented.

As mentioned in Section Section 3.2.3, a network ϕi
adj maps these hand-

crafted features to a vector of size Dkey +Dque +Dval, for each level i ≥ 1 of

the encoder and the decoder.

3.2.5 Superpoint-Graphs Computation

The Superpoint Graph method by Landrieu and Simonovsky [180] builds a

superpoint-graph from a point cloud using Delaunay triangulation, which can
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take a long time for large point clouds. In contrast, our approach connects

two superpoints in Pi, where i ≥ 1 if their closest points are within a

distance gap ϵi > 0. However, computing pairwise distances for all points

is computationally expensive. We propose a heuristic to approximately find

the closest pair of points for two superpoints, see Algorithm 1. We also

accelerate the computation of adjacent superpoints by approximating only

for superpoints with centroids closer than the sum of their radii plus the gap

distance. This approximation helps to reduce the number of computations

required for adjacency computation, which leads to faster processing times.

All steps involved in the computation of our superpoint-graph are implemented

on the GPU to further enhance computational efficiency.

Algorithm 1 Approximate Superpoint Gap

Input: superpoints p1 and p2, num_steps
c1 ← centroid(p1)
c2 ← centroid(p2)
for s ∈ num_steps do

c2 ← argminp∈p2 ∥c1 − p∥
c1 ← argminp∈p1 ∥c2 − p∥

end for
return ∥c1 − c2∥

Recovering the interface between two adjacent superpoints as evoked in

Section 3.2.4 involves a notion of visibility: we connect points from each

superpoint which are facing each other. This can be a challenging and

ambiguous problem, which SuperPoint Graph [178] tackles using a Delaunay

triangulation of the points. However, this method is impractical for large

point clouds. To address this issue, we propose a heuristic approach with the

following steps: (i) first, we use the Approximate Superpoint Gap algorithm

to compute the approximate nearest points for each superpoint. Then, we

restrict the search to only consider points within a certain distance of the

nearest points. Finally, we match the points by sorting them along the

principal component of the selected points.
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3.3 Experiments

We evaluate our model on three diverse datasets described in Section 3.3.1.

In Section 3.3.2, we evaluate our approach in terms of precision, but also

quantify the gains in terms of preprocessing, training, and inference times.

Finally, we propose an extensive ablation study in Section 3.3.3.

3.3.1 Datasets and Models

Datasets. To demonstrate its versatility, we evaluate SPT on three large-scale

datasets of different natures.

S3DIS [13]. This indoor dataset of office buildings contains over 274 mil-

lion points across 6 building floors—or areas. The dataset is organized by

individual rooms, but can also be processed by considering entire areas at

once.

KITTI-360 [197]. This outdoor dataset contains more than 100 k laser

scans acquired in various urban settings on a mobile platform. We use the

accumulated point clouds format, which consists of large scenes with around

3 million points. There are 239 training scenes and 61 for validation.

DALES [311, 288]. This 10 km2 aerial LiDAR dataset contains 500 millions

of points across 40 urban and rural scenes, including 12 for evaluation.

We subsample the datasets using a 3 cm grid for S3DIS, and 10 cm

for KITTI-360 and DALES. All accuracy metrics are reported for the full,

unsampled point clouds. We use a two-level partition (I = 2) with µ2 = 50 for

all datasets and select the partition parameters to obtain a 30-fold reduction

between P1 and P0 and a further 5-fold reduction for P2. See Table 3.1 for

more details.

Models. We use the same model configuration for all three datasets with

minimal adaptations. All transformer modules have a shared width Dval,
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Table 3.1 ś Partition Configuration. We report the point count of different datasets
before and after subsampling, as well as the size of the partitions.

Dataset Points Subsampled | P1 | | P2 |

S3DIS [13] 273m 32m 979k 292k

DALES [311, 288] 492m 449m 14.8m 2.56m

KITTI-360 [197] 919m 432m 16.2m 2.98m

a small key space of dimension Dkey = 4, 16 heads, with 3 blocks in the

encoder and 1 in the decoder. We set Dval = 64 for S3DIS and DALES

(210k parameters), and Dval = 128 (777k parameters) for KITTI360. See

the Section B-6 and our open repository for the detailed configuration of all

modules.

We also propose SPT-nano, a lightweight version of our model that does

not compute point-level features but operates directly on the first partition

level P1. The value of the maxpool over points in Equation 3.1 for i = 1 is

replaced by f 1, the aggregated handcrafted point features at the level 1 of

the partition. This model never considers the full point cloud P0 but only

operates on the partitions. For this model, we set Dval = 16 for S3DIS and

DALES (26k parameters), and Dval = 32 for KITTI360 (70k parameters).

Batch Construction. Batches are sampled from large tiles : entire building

floors for S3DIS, and full scenes for KITTI-360 or DALES. Each batch is

composed of 4 randomly sampled portions of the partition with a radius of

7 m for S3DIS and 50 m for KITTI-360 and DALES, allowing us to model

long-range interactions. During training, we apply a superpoint dropout rate

of 0.2 for each superpoint at all hierarchy levels, as well as random rotation,

tilting, point jitter and handcrafted features dropout. When sampling points

within each superpoint, we set nmin = 32 and nmax = 128.
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Optimization. We use the ADAMW optimizer [212] with default parameters,

a weight decay of 10−4, a learning rate of 10−2 for DALES and KITTI-360 on

and 10−1 for S3DIS. The learning rate for the attention modules is 10 times

smaller than for other weights. Learning rates are warmed up from 10−6 for

20 epochs and progressively reduced to 10−6 with cosine annealing [213].

3.3.2 Quantitative Evaluation

Table 3.2 ś Performance Evaluation. We report the Mean Intersection-over-Union
of different methods on three different datasets. SPT performs on par or better than
recent methods with signiőcantly fewer parameters. † superpoint-based. ⋆/∗ model with
777k/70k parameters.

Model
Size S3DIS KITTI

DALES
×106 6-Fold Area 5 360 val

PointNet++ [253] 3.0 56.7 - - 68.3

† SPG [180] 0.28 62.1 58.0 - 60.6

ConvPoint [24] 4.7 68.2 - - 67.4

† SPG + SSP [177] 0.29 68.4 61.7 - -

† SPNet [140] 0.32 68.7 - - -

MinkowskiNet [58, 46] 37.9 69.1 65.4 58.3 -

RandLANet [133] 1.2 70.0 - - -

KPConv [301] 14.1 70.6 67.1 - 81.1

Point Trans.[359] 7.8 73.5 70.4 - -

RepSurf-U [263] 0.97 74.3 68.9 - -

DeepViewAgg [269] 41.2 74.7 67.2 62.1 -

Strat. Trans. [175, 323] 8.0 74.9 72.0 - -

PointNeXt-XL [255] 41.6 74.9 71.1 - -

† SPT (ours) 0.21 76.0 68.9 63.5⋆ 79.6

† SPT-nano (ours) 0.026 70.8 64.9 57.2∗ 75.2

Performance Evaluation. As seen in Table 3.2, SPT performs at the state-of-

the-art on two of three datasets despite being a significantly smaller model.

On S3DIS, SPT beats PointNeXt-XL with 196× fewer parameters. On
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KITTI-360, SPT outperforms MinkowskiNet despite a size ratio of 49, and

surpasses the performance of the even larger multimodal point-image model

DeepViewAgg. On DALES, SPT outperforms ConvPoint by more than 12

points with over 21 times fewer parameters. Although SPT is 1.5 points

behind KPConv on this dataset, it achieves these results with 67 times fewer

parameters. SPT achieves significant performance improvements over all

superpoint-based methods on all datasets, ranging from 7 to 14 points. SPT

overtakes the SSP and SPNet superpoint methods that learn the partition in

a two-stage training setup, leading to preprocessing times of several hours.

Interestingly, the lightweight SPT-nano model matches KPConv and

MinkowskiNet with only 26k parameters.

See Figure 3.5 for qualitative illustrations.

Preprocessing Speed. As reported in Table 3.3, our implementation of the pre-

processing is highly efficient. We can compute partitions, superpoint-graphs,

and handcrafted features, and perform I/O operations quickly: 12.4 min

for S3DIS, 117 for KITTI-360, and 148 for DALES using a server with a

48-core CPU. An 8-core workstation can preprocess S3DIS in 26.6 min. Our

preprocessing time is as fast or faster than point-level methods and 7× faster

than SuperPoint Graph’s, thus alleviating one of the main drawbacks of

superpoint-based methods.

Training Speed. We trained several state-of-the-art methods from scratch and

report in Figure 3.6 the evolution of test performance as a function of training

time. We used the official training logs for the multi-GPU Point Transformer

and Stratified Transformer. SPT can train much faster than all methods

not based on superpoints while attaining similar performance. Although

Superpoint Graph trains even faster, its performance saturates earlier, 6.0

mIoU points below SPT. We also report the inference time of our method
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Table 3.3 ś Efficiency Analysis. We report the preprocessing time for the entire S3DIS
dataset and the training and inference time for Area 5. SPT and SPT-nano shows
signiőcant speedups in preprocessing, training, and inference times.

Preprocessing Training Inference

in min in GPU-h in s

PointNet++ [253] 8.0 6.3 42

KPConv [301] 23.1 14.1 162

MinkowskiNet [58] 20.7 28.8 83

Stratified Trans. [175] 8.0 216.4 30

Superpoint Graph [180] 89.9 1.3 16

SPT (ours) 12.4 3.0 2

SPT-nano (ours) 12.4 1.9 1

in Table 3.3, which is significantly lower than competing approaches, with a

speed-up factor ranging from 8 to 80. All speed measurements were conducted

on a single-GPU server (48 cores, 512Go RAM, A40 GPU). Nevertheless, our

model can be trained on a standard workstation (8 cores, 64Go, 2080Ti) with

smaller batches, taking only 1.5 times longer and with comparable results.

SPT performs on par or better than complex models with up to two

orders of magnitude more parameters and significantly longer training times.

Such efficiency and compactness are beneficial for real-world scenarios where

hardware, time, or energy may be limited.

3.3.3 Ablation Study

We evaluate the impact of several design choices in Table 3.4 and reports

here our observations.

a) Handcrafted features. Without handcrafted point features, our model

performs worse on all datasets. This observation is in line with other works

which also remarked the positive impact of well-designed handcrafted features

on the performance of smaller models [131, 263].
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A more in-depth investigation of the influence of the handcrafted features

can be found in Section B-3.

b) Influence of Edges. Removing the adjacency encoding between superpoints

leads to a significant drop of 6.3 points on S3DIS; characterizing the relative

position and relationship between superpoints appears crucial to exploiting

their context. We also find that pruning the 50% longest edges of each super-

point results in a systematic performance drop, highlighting the importance

of modeling long relationships.

Table 3.4 ś Ablation Study. Impact of some of our design choices on the mIoU for all
tested datasets.

Experiment S3DIS KITTI DALES

6-Fold 360 Val

Best Model 76.0 63.5 79.6

a) No handcrafted features -0.7 -4.1 -1.4

b) No adjacency encoding -6.3 -5.4 -3.0

b) Fewer edges -3.5 -1.1 -0.3

c) No point sampling -1.3 -0.9 -0.5

c) No superpoint sampling -2.7 -2.5 -0.7

c) Only 1 partition level -8.4 -5.1 -0.9

c) Partition-Based Improvements. We assess the impact of several improve-

ments made possible by using hierarchical superpoints. First, we find that

using all available points when embedding the superpoints of P1 instead of

random sampling resulted in a small performance drop. Second, setting the

superpoint dropout rate to 0 worsens the performance by over 2.5 points on

S3DIS and KITTI-360.

While we did not observe better results with three or more partition levels,

only using one level leads to a significant loss of performance for all datasets.
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d) Influence of Partition Purity. In Figure 3.7, we plot the performance

of the “oracle” model which associates each superpoint of P1 with its most

frequent true label. This model acts as an upper bound on the achievable

performance with a given partition. Our proposed partition has significantly

higher semantic purity than a regular voxel grid with as many nonempty

voxels as superpoints. This implies that our superpoints adhere better to

semantic boundaries between objects.

We also report the performance of our model for different partitions of

varying coarseness, measured as the number of superpoints in P1. Using,

respectively, ×1.5 (×3) fewer superpoints leads to a performance drop of

2.2 (4.7) mIoU points, but reduce the training time to 2.4 (1.6) hours. The

performance of SPT is more than 20 points below the oracle, suggesting that

the partition does not strongly limit its performance.

3.3.4 Model Scalability

We study the scalability of SPT by comparing models with different

parameter counts on each dataset. It is important to note that the superpoint

approach drastically compresses the training set, which can lead to overfitting,

see Section 3.3.6. For example, as illustrated in Table 3.5, SPT-128 with

Dval = 128 (777k param.) performs 1.4 points below Dval = 64 on S3DIS.

We report a similar behavior for other hyperparameters: in Table 3.6,

Dkey = 8 instead of 4 incurs a drop of 1.0, while in Table 3.7, Nheads = 32

instead of 16 a drop of 0.1 point. For the larger KITTI-360 dataset (13M

nodes), Dval = 128 performs 1.9 points above Dval = 64, but 5.4 points above

Dval = 256 (2.7m param.).
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Table 3.5 ś Impact of Model Scaling. Impact of model size for each dataset.

Model Size S3DIS KITTI DALES

×106 6-Fold 360 Val

SPT-32 0.14 74.5 60.6 78.7

SPT-64 0.21 76.0 61.6 79.6

SPT-128 0.77 74.6 63.5 78.8

SPT-256 1.80 74.0 58.1 77.6

Table 3.6 ś Impact of Query-Key Dimension. Impact of Dkey on S3DIS 6-Fold.

Dkey 2 4 8 16

SPT-64 75.6 76.0 75.0 74.7

Table 3.7 ś Impact of Heads Count. Impact of the number of heads Nhead on the S3DIS
6-Fold performance.

Nhead 4 8 16 32

SPT-64 74.3 75.2 76.0 75.9

3.3.5 Hierarchical Supervision

We explore, in Table 3.8, alternatives to our hierarchical supervision

introduced in Section Section 3.2.3 : predicting the most frequent label for P1

and the distribution for P2. We use “freq-Pi” to refer to the prediction of the

most frequent label applied the Pi partition. Similarly, “dist-Pi" denotes the

prediction of the distribution of labels within each superpoint of the partition

Pi.

We observe a consistent improvement across all datasets by adding the

dist-Pi supervision. This illustrates the benefits of supervising higher-level

partitions, despite their lower purity. Moreover, supervising P1 with the

distribution rather than the most frequent label leads to a further performance
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drop. This validates our choice to consider P1 superpoints as sufficiently pure

to be supervised using their dominant label.

Table 3.8 ś Ablation on Supervision. Impact of our hierarchical supervision for each
dataset.

Loss S3DIS KITTI DALES

6-Fold 360 Val

freq-Pi-P1 dist-Pi-P2 76.0 63.5 79.6

freq-P1 -0.2 -0.8 -0.8

dist-Pi-P1 -0.8 -1.3 -0.8

3.3.6 Limitations

Our model provides significant advantages in terms of speed and compact-

ness but also comes with its own set of limitations.

Overfitting and Scaling. The superpoint approach drastically simplifies and

compresses the training sets: the 274M 3D points of S3DIS are captured by

a geometry-driven multilevel graph structure with fewer than 1.25M nodes.

While this simplification favors the compactness and speed of the training of

the model, this can lead to overfitting when using SPT configurations with

more parameters, as shown in Section 3.3.4. Scaling our model to millions of

parameters may only yield better results for training sets that are sufficiently

large, diverse, and complex.

Errors in the Partition. Object boundaries lacking obvious discontinuities,

such as curbs vs. roads or whiteboards vs. walls, are not well recovered by

our partition. As partition errors cannot be corrected with our approach,

this may lead to classification errors. To improve this, we could replace our

handcrafted point descriptors (Section 3.2.4) with features directly learned

for partitioning [177, 140]. However, such methods significantly increase the
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preprocessing time, contradicting our current focus on efficiency. In line

with [131, 263], we use easy-to-compute yet expressive handcrafted features.

Our model SPT-nano without point encoder relies purely on such features

and reaches 70.8 mIoU on S3DIS 6-Fold with only 27k param, illustrating

this expressivity.

Learning Through the Partition. The idea of learning point and adjacency

features directly end-to-end is a promising research direction to improve our

model. However, this implies efficiently backpropagating through superpoint

hard assignments, which remains an open problem. Furthermore, such a

method would consider individual 3D points during training, which would

necessitate to perform the partitioning step multiple times during training,

which may negate the efficiency of our method

Predictions. Finally, our method predicts labels at the superpoint level P1

and not individual 3D points. Since this may limit the maximum performance

achievable by our approach, we could consider adding an upsampling layer to

make point-level predictions. However, this does not appear to us as the most

profitable research direction. Indeed, this may negate some of the efficiency of

our method. Furthermore, as shown in the ablation study Section 3.3.3 of the

present chapter, the “oracle” model outperforms ours by a large margin. This

may indicate that performance improvements should primarily be searched in

superpoint classification rather than in improving the partition.

Our model also learns features for superpoints and not individual 3D points.

This may limit downstream tasks requiring 3D point features, such as surface

reconstruction or panoptic segmentation. However, we argue that specific

adaptations could be explored to perform these tasks at the superpoint level.
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3.4 Conclusion

We have introduced the Superpoint Transformer approach for semantic

segmentation of large point clouds, combining superpoints and transformers

to achieve state-of-the-art results with significantly reduced training time,

inference time, and model size. This approach particularly benefits large-scale

applications and computing with limited resources. More broadly, we argue

that small, tailored models can offer a more flexible and sustainable alternative

to large, generic models for 3D learning. With training times of a few hours

on a single GPU, our approach allows practitioners to easily customize the

models to their specific needs, enhancing the overall usability and accessibility

of 3D learning.
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Figure 3.5 ś Qualitative Results. We represent input samples (with color or intensity) of
our approach and its predictions for all three datasets. Additionally, we show the coarsest
partition level and demonstrate how superpoints can accurately capture the contours of
complex objects and classify them accordingly. Black points are unlabeled in the ground
truth. Color legend given in Section A-1.
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Figure 3.7 ś Partition Purity. We plot the highest achievable łoraclež prediction for our
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Abstract

We introduce a highly efficient method for panoptic segmentation of

large 3D point clouds by redefining this task as a scalable graph clustering

problem. This approach can be trained using only local auxiliary tasks,

thereby eliminating the resource-intensive instance-matching step during

training. Moreover, our formulation can easily be adapted to the superpoint

paradigm, further increasing its efficiency. This allows our model to process

scenes with millions of points and thousands of objects in a single inference.

Our method, called SuperCluster, achieves a new state-of-the-art panoptic

segmentation performance for two indoor scanning datasets: 50.1 PQ (+7.8)

for S3DIS Area 5, and 58.7 PQ (+25.2) for ScanNetV2. We also set the first

state-of-the-art for two large-scale mobile mapping benchmarks: KITTI-360

and DALES. With only 209k parameters, our model is over 30 times smaller

than the best-competing method and trains up to 15 times faster. Our code

and pretrained models are available at

github.com/drprojects/super_cluster.

This chapter’s work was initially presented in: Damien Robert, Hugo

Raguet, Loic Landrieu, “Scalable 3D Panoptic Segmentation As Superpoint

Graph Clustering”, 3DV, 2024.

github.com/drprojects/super_cluster
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4.1 Introduction

Understanding large-scale 3D environments is pivotal for numerous high-

impact applications such as the creation of “digital twins” of extensive in-

dustrial facilities [257, 238, 153] or even the digitization of entire cities [173,

341, 239]. Extensive and comprehensive 3D analysis methods also benefit

large-scale geospatial analysis, e.g . for land [343, 289] or forest surveys [339,

116], as well as building inventory [320] for country-scale mapping. These

problems call for scalable models that can process large point clouds with

millions of 3D points, accurately predict the semantics of each point, and

recover all instances of specific objects, a task referred to as 3D panoptic

segmentation [162].

Most existing 3D panoptic segmentation methods focus on sparse LiDAR

scans for autonomous navigation [15, 89, 365]. Given the relevance of large-

scale analysis for industry and practitioners, there is surprisingly little work

on large-scale 3D panoptic segmentation [337]. Although they contain non-

overlapping instance labels, S3DIS [13] and ScanNet [66] only have a few

panoptic segmentation entries, and KITTI-360 [197] and DALES [311, 288]

currently have none.

Large-scale 3D panoptic segmentation is particularly challenging due to the

sheer scale of the scenes, often featuring millions of 3D points, and the diversity

in objects—ranging from a few to thousands and with extreme size variability.

Current methods typically rely on large backbone networks with millions of

parameters, restricting their analysis to small scenes or portions of scenes

due to their high memory consumption. Furthermore, training these models

requires resource-intensive procedures, such as non-maximum suppression

and instance matching. These costly operations prevent the analysis of large

scenes with many points or objects. Most methods also require a pre-set limit
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Figure 4.1 ś Large-Scale Panoptic Segmentation. We present the results of Super-
Cluster for the entire Area 5 of S3DIS [14] (ceiling removed for visualization) with 9.2M
points (78M pre-subsampling) and 1863 true łthingsž objects. Our model can process
such large scan in one inference on a single V100-32GB GPU in 3.3 seconds and reach a
state-of-the-art PQ of 46.3.

on the number of detectable objects, introducing unnecessary complexity

and the risk of missing objects in large scenes. Although recent mask-based

intance segmentation methods [280] have demonstrated high performance

and versatility, they fail to scale effectively to large scenes, as they predict a

binary mask that covers the entire scene for each proposed instance.

To address these limitations, we present Super-Cluster, a novel approach

for large-scale and efficient 3D panoptic segmentation. Our model differs from

existing methods in three main ways:

— Scalable graph clustering: We view the panoptic segmentation task

as a scalable graph clustering problem, which can be resolved efficiently at

a large scale without setting the number of predicted objects in advance.
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— Local supervision: We use a neural network to predict the parameters

of the graph clustering problem and supervise with auxiliary losses that

do not require an actual segmentation. This allows us to avoid resource-

intensive non-maximum suppression or instance-matching steps.

— Superpoint-only segmentation: Our approach can easily be adapted

to a superpoint-based approach. Feature computation, supervision, and

prediction are entirely conducted at the superpoint level and never

individual points, starkly decreasing their complexity.

These features make SuperCluster particularly resource-efficient, fast, and

scalable, while ensuring high precision, as shown in Figure 4.1. Our primary

contributions are:

— Large-scale panoptic segmentation: SuperCluster significantly

improves the panoptic segmentation state-of-the-art for two indoor scan-

ning datasets: 50.1 PQ (+7.8) on S3DIS Fold5 [14], and 58.7 PQ (+25.2)

on ScanNetV2 [66]. We also set the first panoptic state-of-the-art for

S3DIS 6-fold and two large-scale benchmarks (KITTI-360 [197] and

DALES [311, 288]).

— Fast and scalable segmentation: SuperCluster contains only 209k

trainable parameters (205k in the backbone), yet outperforms networks

over 30 times larger. SuperCluster inference is also as fast as the fastest

instance segmentation methods and trains up to 15-times faster: 4 h for

one S3DIS fold and 6 h for ScanNet.

4.2 Related Work

The panoptic segmentation of point clouds with millions of points has

received little attention from the 3D computer vision community. In this

chapter, we aim to address this gap.
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Over the last few years, deep learning approaches for 3D point clouds have

garnered considerable interest [110]. Autonomous driving, in particular, has

been the focus of numerous studies, resulting in multiple proposed approaches

for object detection [351, 7], as well as semantic [366, 209, 355], instance [361,

363], and panoptic segmentation [15, 89, 365, 225]. However, these methods

consider sequences of sparse LiDAR acquisition, and focus on a small set of

classes (pedestrians, cars).

For the panoptic segmentation of dense LiDAR point clouds, the volume

of research is surprisingly small [337]. A limited number of studies have ad-

dressed the panoptic segmentation of indoor spaces using RGB-D images [333,

231]. Dense scans have primarily been used in the context of instance seg-

mentation [280, 234, 122, 344, 152, 317]. However, while this task is related

to panoptic segmentation, these methods often adopt specific strategies to

maximize instance segmentation metrics [337, 54]. Moreover, many methods

require specifying the maximum number of predicted instances in advance, a

constraint that proves inefficient for small scenes and results in missing objects

in large scenes. Additionally, when implementing a sliding-window strategy,

the predicted instances must be stitched together using either heuristic tech-

niques or resource-intensive post-processing. Lastly, the best-performing

methods [280, 234] rely on a computationally expensive matching step be-

tween the predicted and true instances [44, 344, 151]. This process often

depends on the Hungarian algorithm, which has cubic complexity in the

number of objects and, therefore, cannot scale to large scenes.

The strategy of partitioning large 3D point clouds into groups of adjacent

and homogeneous points, called superpoints, has been used successfully for

point cloud oversegmentation [177, 243, 200], semantic segmentation [180,

267, 140], and object detection [113, 80]. Our approach shares similarities

with some superpoint-based approaches for 3D instance segmentation [294,
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196]. However, these methods are limited in scalability due to their reliance

on point-wise encoders. Furthermore, the work by Sun et al . [294] employs

a Hungarian-type instance matching scheme and allocates a binary mask to

each predicted instance, covering the entire scene and drastically limiting the

number of detected instances. Liang et al . [196] resort to quadratic-complexity

agglomerative clustering to merge superpoints, and heavy post-processing

for refining and scoring superpoints. In contrast, our method employs a fast

graph clustering approach [179, 165], which does not require any instance

matching or post-processing steps.

4.3 Method

superpoint

adjacency

(a) Superpoint Graph Computation

predicted class: chair / sofa

(b) Semantic Prediction

predicted affinity

same diff

(c) Object-Agreement Prediction

superpoint cluster
instance prediction

(d) Graph Clustering

Figure 4.2 ś SuperCluster. We illustrate the sequence of operations of SuperCluster for
a simpliőed scene with two objects: a chair and a sofa. (a) showcases the őrst stage of
our process, where the point cloud is partitioned into connected superpoints with simple
geometric shapes. In (b), we predict a semantic class distribution for each superpoint. In
(c), we predict the object agreement for each pair of adjacent superpoints, indicating the
likelihood that they belong to the same object. Finally, (d) showcases the output of a
graph clustering problem which merges superpoints with compatible class distribution and
object agreement while cutting edges at the transition between objects. The resulting
superpoint clusters deőne the instances of a panoptic 3D segmentation

Our objective is to perform panoptic segmentation of a large 3D point
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cloud P with potentially numerous and broad objects. For clarity, we first

present our graph clustering formulation at the point level. We then explain

how our approach can be supervised purely with local objectives, making

its training particularly efficient. Finally, we detail how our method can be

easily generalized to superpoints to further increase its scalability. Our final

pipeline is illustrated in Figure 4.2.

Problem Statement. Consistently with the image panoptic segmentation

setup [162], each point p ∈ P is associated with its position, a semantic

label cls(p) ∈ [1, C] with C the total number of classes, and an object index

obj(p) ∈ N. Points identified with a “thing” label (e.g . chair, car) are given

an index uniquely identifying this object. Conversely, points with a “stuff”

label (e.g . road, wall) are assigned an index shared by all points with the same

class within P . Our goal is to recover the class and object index of all points

in P .

4.3.1 Panoptic Segmentation as Graph Clustering

We propose viewing the panoptic segmentation task as grouping adjacent

points with compatible class and object predictions. We formulate this task

as an optimization problem structured by a graph. Specifically, we connect

the points of P to their K nearest neighbors, forming a graph G = (P , E)

where E ⊂ P × P denotes these connections.

Spatial-Semantic Regularization. We use a neural network to associate each

point p with a probabilistic class prediction xclass
p ∈ [0, 1]C . The architecture

and supervision of this network are detailed in Section 4.3.2. A simple way to

obtain a panoptic segmentation would be to group spatially adjacent points

with the same class prediction argmaxc x
class
p,c . However, this approach ignores

the structure of objects, and thus would lead to two types of issues: adjacent
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but distinct objects of the same class might be erroneously merged, and

the probabilistic nature of the prediction xclass may lead to unwanted object

fragmentation.

To tackle this last issue, we aim to enforce the spatial consistency of

the object prediction. We introduce the signal x, defined for each point

p as the channelwise concatenation of its position xpos
p and its semantic

prediction: xp = [xclass
p , xpos

p ]. We propose to compute a piecewise-constant

approximation y⋆ of x with an energy minimization problem regularized by

the graph cut [27] between its constant components [181]. This approach

aligns with well-established practices in 2D [182, 227] and 3D [172] analyses,

and leads to the following optimization problem:

y⋆ =argmin
y∈R(C+3)×|P|

∑

p∈P

d(xp, yp) + λ
∑

(p,q)∈E

wp,q[yp ̸= yq] , (4.1)

where [a ̸= b] := 0 if a = b and 1 otherwise, λ > 0 is a parameter controlling

the regularization strength, and wp,q is a nonnegative weight associated with

edge (p, q), see below.

The dissimilarity function d takes into account both the spatial and se-

mantic nature of x:

d(xp, yp)=H(yclass
p , xclass

p ) + η∥xpos
p − ypos

p ∥
2 , (4.2)

where yclass
p is the first C coordinates of yp and ypos

p the last 3, and η ≥ 0

a parameter. The term H(x, y) denotes the cross-entropy between two

distributions: H(x, y) = −
∑C

c=1 yc log(xc).

Object-Guided Edge Weights. The edge weight wp,q determines the cost of

predicting an object transition between p and q. Designing appropriate edge

weights is critical to differentiate between objects of the same class that are

spatially adjacent, such as rows of chairs or cars in traffic. Edge weights
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should encourage cuts along probable object transitions and prevent cuts

within objects.

To facilitate this, we propose to train a neural network to predict an object

agreement ap,q ∈ [0, 1] for each edge (p, q) in E . This value represents the

probability that both points belong to the same object. We then determine

the edge weight wp,q ∈ [0,∞] as follows:

wp,q = ap,q/(1− ap,q + ϵ) , (4.3)

with ϵ > 0 a fixed parameter. High values of wp,q discourage cuts between

points p and q that are confidently predicted to belong to the same object.

Conversely, a smaller wp,q means that cuts between edges with a probable

transition ap,q are not heavily penalized.

Graph Clustering. The constant components of the solution y⋆ of Equation 4.1

define a clustering K of P . The clusters K contain spatially adjacent points

with compatible semantics, and their contours should follow predicted object

transitions.

Converting to a Panoptic Segmentation. We can derive a panoptic segmen-

tation from the clusters K. For each cluster, we calculate the average point

distribution of its constituent points and select the class with the highest

probability. We then associate a unique object index to each cluster k pre-

dicted as a “thing” class. Likewise, we assign to each cluster classified as “stuff”

an index shared by all clusters predicted as the same class. Finally, each

individual point is labeled with the class and object index of its respective

cluster.

Optimization. The optimization problem expressed in Equation 4.1 is widely

explored within graph optimization literature. Referred to as the generalized
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minimal partition problem [179], this problem is related to the Potts mod-

els [251] and image partitioning techniques [182, 227]. We adapt the parallel

ℓ0-cut pursuit algorithm [261, 181] to the dual spatial-semantic nature of the

regularized signal. The resulting algorithm is particularly scalable and can

handle graphs with hundreds of millions of edges on a standard workstation.

This allows us to process large point clouds in one inference without the need

for tiling and instance stitching post-processing.

4.3.2 Local Supervision

A major benefit of our approach is that it can be entirely supervised with

local auxiliary tasks: all losses described in this section are sums of simple

functions depending on one or two points at the time. In particular, we

bypass the computationally expensive step of matching true instances with

their predicted counterparts.

Recall from Section 4.3.1 that we can obtain a panoptic segmentation

by predicting the parameters of a graph clustering problem: the semantic

predictions xclass
p and the object agreements ap,q. This quantities are both

derived from a common pointwise embeddings {ep}p∈P , computed by a neural

network.

Predicting Semantics. We predict the class distribution xclass
p = softmax(ϕclass(ep))

with ϕclass a Multi-Layer Perceptron (MLP). This distribution is supervised

by its cross-entropy against the true class cls(p):

Lclass
p = H(xclass

p ,1(cls(p))) , (4.4)

with 1(c) ∈ {0, 1}C the one-hot embedding of class c.

Predicting Object Agreement. To predict the object agreement ap,q between

two adjacent points (p, q) ∈ E , we employ an MLP ϕobject whose input is a
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symmetric combination of the points’ embedding vectors:

ap,q = sigmoid

(

ϕobject

([

1

2
(ep + eq), | ep − eq |

]))

, (4.5)

where | · | refers to the termwise absolute value. The true object agreement

âp,q is assigned the value of 1 if obj(p) = obj(q) and 0 otherwise. The

prediction of as,t can be seen as a binary edge classification problem as inter-

and intra-object edges [177], and is supervised with the cross-entropy between

true and predicted object agreements:

Lobject
p,q = H(Bern(ap,q),Bern(âp,q)) , (4.6)

where Bern(a) denote the Bernoulli distribution parametrized by a ∈ [0, 1].

Loss Function. We combine the two losses above into a single objective L:

L =
1

| P |

∑

p∈P

Lclass
p +

1

| E |

∑

(p,q)∈E

Lobject
p,q , (4.7)

with | E | and | P | the total number of edges and 3D points, respectively.

4.3.3 Extension to Superpoints

In this section, we discuss the extension of our method to a superpoint-

based approach for enhanced scalability.

Motivation. We aim to design a panoptic segmentation method that can

scale to large 3D point clouds. While the formulation presented in the

previous section is advantageous, it still requires computing embeddings and

predictions for each individual point, which can be memory-intensive and

limits the volume of data that can be processed simultaneously. We propose to

group adjacent points with similar local geometry and color into superpoints,
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and to only compute embeddings and predictions for superpoints and not

individual points. By doing so, we drastically reduce the computational and

memory requirements of our method, enabling it to handle larger 3D point

clouds at once. Our pipeline is illustrated in Figure 4.2.

Computing Superpoints. We partition the point cloud P into a set of non-

overlapping superpoints S. We use the superpoint partition method imple-

mented by Robert et al . in SPT [267], which defines the superpoints as the

constant components of a low-surface piecewise constant approximation of

geometric and radiometric point features.

Although the superpoints S form a high-purity oversegmentation of P ,

some superpoints can span multiple objects. To account for this, we associate

each superpoint s with its majority-object obj(s) defined as the most common

object index within its points: obj(s) = mode{obj(p) | p ∈ s}. Likewise, we

define cls(s) = mode{cls(p) | p ∈ s}.

Adapting Graph Clustering. Our clustering step can be directly adapted by

substituting the point set P with the superpoint set S, and defining the graph

G by connecting superpoints with adjacent points following the approach

of SPT [267]. We replace the point position xpos
p by the coordinates of the

superpoints’ centroids xpos
s . All other steps are unchanged.

Superpoint Embedding. We use a superpoint-embedding network to assign

compute the superpoint features es for s ∈ S. We employ the SuperPoint

Transformer model [267] for its efficiency and ability to leverage large spatial

context.

Superpoint Semantic Supervision. We supervise the semantic superpoint

prediction xclass
s with Equation 4.4 where we replace cls(p) with cls(s).
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Figure 4.3 ś Superpoint Object Agreement. We compute for each pair of adjacent
superpoint (s, t) an object agreement score âs,t. This value is deőned by the average overlap
ratio between s and t and their majority-objects obj(t) and obj(s), see Equation 4.8.

Superpoint Object Agreement Supervision. While the true object agreement

âp,q between two points is binary, the agreement between superpoints spans a

continuum. As illustrated in Figure 4.3, we quantify this agreement as:

âs,t =
1

2

(

| s ∩ P|obj(t) |

| s |
+
| t ∩ P|obj(s) |

| t |

)

, (4.8)

where P|o := {p ∈ P | obj(p) = o} is the set of points of P with the object

index o, and | s | is the count of 3D points in s. We can now supervise the

predicted object agreement as,t with Equation 4.6 unchanged.

4.4 Experiments

We first present the datasets and metrics used for evaluation in Section 4.4.1,

then our main results and their analysis in Section 4.4.2, and finally an ablation

study in Section 4.4.3.

4.4.1 Datasets and Metrics

Datasets. We present the four datasets used in this chapter.

— S3DIS [14]: This indoor scanning dataset consists of 274 million points

distributed across 271 rooms in 6 building floors—or areas. We do

not use the provided room partition, as they require significant manual

processing and may not translate well to other environments such as
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open offices, industrial sites, or mobile mapping. Instead, we merge all

rooms in the same area and treat each floor as one single large-scale

acquisition [301, 46].

We follow the standard evaluation protocol, using the area 5 as a test set

and implementing 6-fold cross-validation. In line with Xiang et al .’s [337]

proposal, we treat all 13 classes as “thing”. However, certain classes,

such as walls, ceiling, and floors, are susceptible to arbitrary division

due to room splitting, making their evaluation somewhat inconsistent.

As a result, we also present panoptic metrics where these three classes

are considered as “stuff”.

— ScanNet.[66] This dataset consists of 237M 3D points organized in

1501 medium-scale indoor scenes. We evaluate SuperCluster on Scan-

Net’s open test set, as the hidden test set is not evaluated for panoptic

segmentation. We use for “things” the class evaluated in the instance

segmentation setting: bathtub, bed, bookshelf, cabinet, chair, counter,

curtain, desk, door, other furniture, picture, refrigerator, shower cur-

tain, sink, sofa, table, toilet, and window. The walls and floor class are

designated as “stuff”.

— KITTI-360 [197]: Containing over 100k mobile mapping laser scans

from an outdoor urban environment, we utilize the accumulated point

clouds format, which aggregates multiple sensor rotations to form 300

extensive scenes with an average of more than 3 million points. We train

on 239 scenes and evaluate it on the remaining 61. Building and cars

classes are treated as “thing” while the remaining 13 are classified as

“stuff”.

— DALES [311, 288]. This large-scale aerial scan data set spans 10 km2

and contains 500 millions of 3D points organized along 40 urban and

rural scenes, of which we use 12 for evaluation. The “thing” classes
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are buildings, cars, trucks, power lines, fences, and poles. Ground and

vegetation evaluated as “stuff”.

Evaluation Metrics. Recognition Quality (RQ) assesses a model’s capacity

to identify and classify objects. Segmentation Quality (SQ) evaluates the

alignment between an object’s true and predicted segmentation. Panoptic

Quality (PQ) combines both measures by computing their product. We also

compute the semantic segmentation performance of our method by associating

each point with the class of the superpoint to which it belongs and measuring

the class-averaged Intersection over Union (mIoU).

Model Parameterization. Our backbone for the S3DIS and DALES datasets

is a small SPT-64 model [267] with 205k parameters. We use a larger SPT-128

(791k parameters) for KITTI-360 and a slightly modified model for ScanNet

(1M) parameters. SuperCluster adds two small MLP ϕclass and ϕobject for

a total of 4.4k parameters for S3DIS and DALES, and 8.8k parameters for

KITTI-360 and ScanNet.

Our training batches are composed of 4 randomly sampled cylinders with

a radius of 7 m for S3DIS, and 50 m for KITTI-360 and DALES, and entire

scenes for ScanNet. The partition parameters are adjusted so that S/P ∼ 30

for S3DIS, DALES, and KITTI-360, and 20 for ScanNet.

Graph Clustering. We can tune the graph clustering parameters post-training

to optimize the PQ on the training set: λ in Equation 4.1, η in Equation 4.2,

and ϵ in Equation 4.3. As the clustering step is particularly efficient, we can

evaluate tens of values in a few minutes. We detail in Table 4.1 the tuned

parameters for each dataset.
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Table 4.1 ś Graph Clustering Parameters. We provide the graph clustering parameters
used for each dataset.

Dataset λ η ϵ

S3DIS 10 5.10−2 10−4

S3DIS - no “stuff” 20 5.10−2 10−4

ScanNet 20 5.10−2 10−4

KITTI-360 10 5.10−2 10−4

DALES 20 5.10−2 10−4

4.4.2 Results and Analysis

We compare our method quantitatively with state-of-the-art models in

Table 4.2 to 4.6. We also report a runtime analysis in Table 4.7 and qualitative

illustrations in Figure 4.4.

S3DIS. We report in Table 4.2 the performance of our algorithm evaluated

for Area 5 of the S3DIS dataset. Compared to several baselines for panoptic

segmentation, our model shows a notable improvement with a PQ boost of

+7.8 points and a mIoU increase of +3.2 points. Remarkably, our model is

more than 33 times smaller than the highest performing model. Furthermore,

we compute panoptic metrics by treating wall, ceiling, and floor as “stuff”

classes to account for their arbitrary boundaries.

In Table 4.3, we present the same metrics evaluated with 6-Fold cross-

validation. This classic setting is typically used to evaluate semantic segmen-

tation; however, we are the first to report panoptic results in this context.

Despite its smaller size, our model achieves high semantic segmentation

performance, improving the Area 5 performance of SPT by 1 point and

reaching near state-of-the-art performance on the 6-fold evaluation.

ScanNet. As shown in Table 4.4, SuperCluster significantly improves the

state-of-the-art of panoptic segmentation by 25.2 PQ points. Our model does
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Table 4.2 ś S3DIS Area 5. We report the semantic (SS ) and panoptic segmentation
results of the top-performing semantic segmentation methods on the őfth area of S3DIS, as
well as panoptic segmentation approaches implemented by Xiang et al . [337]. We provide
two panoptic metrics by considering all classes as łthingsž (PS - no “stuff”) and with wall,
ceiling and floor as łstuffž (PS ).

size SS PS - no łstuffž PS

×106 mIoU PQ RQ SQ PQ RQ SQ

Semantic segmentation models

SPT [267] 0.21 68.9 - - - - - -

Point Trans.[359] 7.8 70.4 - - - - - -

PointNeXt-XL [255] 41.6 71.1 - - - - - -

Strat. Trans. [175, 323] 8.0 72.0 - - - - - -

Panoptic segmentation models

Xiang et al . [337] 0.13

+ PointNet++ [253] +3.0 58.7 24.6 32.6 68.2 - - -

+ Minkowski [58] +37.9 63.8 39.2 48.0 74.9 - - -

+ KPConv [301] +14.1 65.3 41.8 51.5 74.7 - - -

PointGroup [207] in [337] 7.7 64.9 42.3 52.0 74.7 - - -

SuperCluster (ours) 0.21 68.1 50.1 60.1 76.6 58.4 68.4 77.8

not perform as well as large networks designed for semantic segmentation but

provides decent results with a small backbone of just 1M parameters.

DALES and KITTI-360. To the best of our knowledge, SuperCluster is the

first method capable of processing the large tiles of the DALES and KITTI-360

data sets at once, thus establishing the first panoptic state-of-the-art for these

datasets given in Table 4.5 and Table 4.6.

Inference and Training Speed. In Table 4.7, we compare the inference speed

of our approach with state-of-the-art instance and panoptic segmentation

algorithms. Although we used our smallest GPU (a 1080Ti) to replicate

the setting used to measure most of the approaches’ speed (a Titan-X), the
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Table 4.3 ś S3DIS 6-Fold. We report the 6-Fold cross-validated semantic and panoptic
segmentation results on S3DIS. No panoptic methods were evaluated in this setting to the
best of our knowledge.

size SS PS - no łstuffž PS

×106 mIoU PQ RQ SQ PQ RQ SQ

Semantic segmentation models

DeepViewAgg [269] 41.2 74.7 - - - - - -

Strat. Trans. [175, 323] 8.0 74.9 - - - - - -

PointNeXt-XL [255] 41.6 74.9 - - - - - -

SPT [267] 0.21 76.0 - - - - - -

Panoptic segmentation models

SuperCluster (ours) 0.21 75.3 55.9 66.3 83.8 62.7 73.2 84.8

Table 4.4 ś ScanNetv2 Val. We report the Semantic Segmentation (SS ) and Panoptic
Segmentation (PS ) performance for various methods on the open test set of ScanNetv2. †
code and models unavailable.

size SS PS

×106 mIoU PQ RQ SQ

Semantic segmentation models

KPConv [301] 14.1 69.2 - - -

Point Trans [359] 7.8 70.6 - -

Point Trans. v2[334] 11.3 75.4 - - -

OctFormer [322] 44.0 75.7 - - -

Panoptic segmentation models

SceneGraphFusion [333, 319] 2.9 - 31.5 42.2 72.9

Panoptic Fusion [231] † - 33.5 45.3 73.0

SuperCluster (ours) 1.0 66.1 58.7 69.1 84.1

values are not entirely comparable. Still, our model is on par with the fastest

methods and offers superior scalability.

None of the reported runtimes include the method’s preprocessing times.
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Table 4.5 ś KITTI-360 We report the Semantic Segmentation (SS ) and Panoptic Seg-
mentation (PS ) performance for various methods on the open test set of KITTI-360. No
panoptic methods were evaluated on this dataset to the best of our knowledge.

size SS PS

×106 mIoU PQ RQ SQ

Semantic segmentation models

Minkowski [58] 37.9 58.3 - - -

DeepViewAgg [359] 41.2 62.1 - - -

SPT [267] 0.78 63.5 - - -

Panoptic segmentation models

SuperCluster (ours) 0.79 62.1 48.3 58.4 75.1

Table 4.6 ś DALES We report the Semantic Segmentation (SS ) and Panoptic Segmentation
(PS ) performance for various methods on the open test set of DALES. No panoptic methods
were evaluated on this dataset to the best of our knowledge.

size SS PS

×106 mIoU PQ RQ SQ

Semantic segmentation models

ConvPoint [24] 4.7 67.4 - - -

PointNet++ [253] 3.0 68.3 - - -

SPT [267] 0.21 79.6 - - -

KPConv [301] 14.1 81.1 - - -

Panoptic segmentation models

SuperCluster (ours) 0.21 77.3 61.2 68.6 87.1

Thanks to SPT’s efficient implementation, our entire preprocessing, including

the superpoint partition, is faster or equivalent to all existing 3D segmentation

methods. For instance, preprocessing the entirety of S3DIS (271 rooms) takes

only 12 minutes with an A40 GPU [267].

Our model can be trained in an amount of time comparable to its backbone

SPT for semantic segmentation [269]. One fold of S3DIS takes just under
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4 hours, which is substantially quicker than most existing semantic, instance,

or panoptic segmentation models. For instance, PointTransformer [359] trains

for 63h and Stratified Transformer [175] 216 GPU-h. SuperCluster trains on

6 h on ScanNet, compared to 78 h for Mask3D [280] and 20 h for ISBNet [234].

Table 4.7 ś Runtime. We compare the speed of our model to various instance and
panoptic segmentation models. We report the time spent in the backbone network (őrst
number) and performing panoptic segmentation (second number) on ScanNet Val. scans.
⋆ optional CRF post-processing.

hardware runtime in ms

Instance segmentation methods average per scan

PointGroup [152] Titan X 452 = 128 + 324

SoftGroup [317] Titan X 345 = 152 + 148

HAIS [49] Titan X 339 = 154 + 185

Mask3D [280] Titan X 339

ISBNet [234] Titan X 237 = 152 + 85

SuperCluster (ours) 1080Ti 238 = 193 + 45

Panoptic segmentation methods scan scene0645_01

PanopticFusion [231] 2×1080Ti 485 = 317 + 168 (+ 4500⋆)

SuperCluster (ours) 1080Ti 482 = 376 + 106
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In
pu

t
T
ru

e
cl

as
se

s
P

re
d.

cl
as

se
s

T
ru

e
in

st
an

ce
s

P
re

d.
in

st
an

ce
s

Figure 4.4 ś Qualitative Results. We present the panoptic predictions of our model
for the four considered datasets. The scenes’ size corresponds to a single batch item
during training. łStuffž classes are represented with a lower opacity. Color legend given in
Section A-1.
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4.4.3 Ablation Study

We evaluate the impact of our design choice by performing several experi-

ments whose results are given in Table 4.8.

Constant Edge Weights. Replacing all edge weights with a constant value

of 1 yields a drop of 4.2 PQ points. This experiment shows the benefit of

learning object transitions.

Offset Prediction. Several bottom-up [123] segmentation approaches [152,

337, 174, 113] propose clustering points by shifting their positions towards

the predicted position of the object centroid. To reproduce this strategy, we

adjust the position of xpos
s in x along a vector that predicts the center of the

majority object. We supervise this prediction with the L1 loss, as it produced

the best results among several alternatives that we examined. Despite our

efforts, this approach did not improve the results: −1.3 PQ points. We

attribute this to the size diversity of objects observed in large-scale scenes

(corridors, buildings), resulting in an unstable prediction.

Smaller Superpoints. To demonstrate the benefits of using superpoints, we

consider a finer partition with S/P ∼ 15 instead of 30. This requires training

with smaller 3 m cylinders instead of 7, decreasing the performance by −1.8

PQ points. This result illustrates that the superpoint paradigm is central to

our approach.

Superpoint Oracle. Using superpoints greatly improves the efficiency and

scalability of SuperCluster. However, since the predictions are made at the

superpoint level and never for individual 3D points, the semantic and object

purity of the superpoints can restrict the model’s performance. To evaluate

this impact, we define the superpoint oracle, which assigns each superpoint s
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the class and index of its majority object obj(s). The resulting performance

provides an upper bound of what our model could potentially achieve. The

high performance of this oracle (93.4 PQ) indicates that very little precision

is lost by working with superpoints.

Clustering Oracle. In a similar vein, we calculate the upper bound of our

model by computing the results of the graph clustering with perfect network

predictions: xclass is set as the one-hot-encoding of the class of the majority

object, and the object agreement is set to its true value: ap,q = âp,q. The

performance of this oracle (83.6 PQ) shows that our scalable clustering

formulation does not significantly compromise the model’s precision in its

current regime.

Table 4.8 ś Ablation Study. We report the performance of different experiments on
S3DIS Area 5 with wall, ceiling and floor as łstuffž.

Experiment
PS

PQ RQ SQ

Best Model 58.4 68.4 77.8

Constant Edge Weights 54.2 64.2 76.6

Offset Prediction 57.1 65.2 77.1

Smaller Superpoints 56.6 64.6 78.6

Superpoint Oracle 93.4 99.7 93.7

Clustering Oracle 83.6 91.7 90.8

4.4.4 Large-Scale Inference

Our method can process large 3D point clouds with just one inference. In

this section, we represent the largest portion of each dataset that SuperCluster

can handle in one inference with an A40 GPU (48G of VRAM). Results for

each dataset are presented in Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8.
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Area 1 Area 2 Area 3 Area 4
Area 6
(65%)

Figure 4.5 ś Large-Scale Inference on S3DIS. Largest scan that SuperCluster can
segment in one inference on an A40 GPU: 4.6 areas, 21.3m points, 646k superpoints,
5298 target objects, and 4565 predicted objects. Inference takes 7.4 seconds.

Figure 4.6 ś Large-Scale Inference on ScanNet. Largest number of scans that
SuperCluster can segment in one inference on an A40 GPU: 105 scans , 10.9m points,
398k superpoints , 1683 target objects, and 2148 predicted objects. The inference takes
6.8 seconds.
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Figure 4.7 ś Large-Scale Inference on DALES. Largest scan that SuperCluster
can segment in one inference on an A40 GPU: 15.3 tiles, 7.8km2, 18.0m points, 589k
superpoints, 1727 target objects, and 1559 predicted objects. Inference takes 10.1
seconds.
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Figure 4.8 ś Large-Scale Inference on KITTI-360. Largest scan that SuperCluster
can segment in one inference on an A40 GPU: 7.5 tiles, 11.0m points, 414k superpoints,
602 target objects, and 1947 predicted objects. Inference takes 6.6 seconds.
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4.4.5 Limitations

Our approach, while efficient, is not devoid of constraints. The functional

minimized in Equation 4.1 is noncontinuous and nondifferentiable. This

hinders the computation of gradients and the possibility of learning the

panoptic segmentation end-to-end. Nevertheless, this aspect lends itself to

the speed and simplicity of our training process. Although our approach can

run on diverse acquisition setups, the superpoint partition is sensitive to low

point density and may fail for sparse scans as can be observed on the edge of

some KITTI-360 acquisitions.

We use a lightweight SPT network to ensure maximum scalability. This net-

work, while expressive, is not the most powerful existing architecture. There

is a potential for improved results using more resource-intensive networks,

especially for medium-scale datasets like ScanNet and S3DIS.

Local panoptic supervision does not translate into higher semantic seg-

mentation performance in our experiments.

4.5 Conclusion

In this paper, we introduced SuperCluster, a novel approach for 3D panoptic

segmentation of large-scale point clouds. We propose a new formulation of

this task as a scalable graph clustering problem, bypassing some of the most

compute-intensive steps of current panoptic segmentation methods. Our

results across multiple benchmarks, including S3DIS, ScanNet, KITTI-360,

and DALES, demonstrate that our model achieves state-of-the-art performance

while being significantly smaller, scalable, and easier to train.

Despite the considerable industrial applications, large-scale panoptic seg-

mentation has been relatively unexplored by the 3D computer vision commu-

nity. We hope that our positive results and the state-of-the-art we established
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on new datasets and settings will encourage the development of future panoptic

approaches for large-scale 3D scans.
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Abstract

Recent works on 3D semantic segmentation propose to exploit the synergy

between images and point clouds by processing each modality with a dedicated

network and projecting learned 2D features onto 3D points. Merging large-

scale point clouds and images raises several challenges, such as constructing a

mapping between points and pixels, and aggregating features between multiple

views. Current methods require mesh reconstruction or specialized sensors to

recover occlusions, and use heuristics to select and aggregate available images.

In contrast, we propose an end-to-end trainable multi-view aggregation model

leveraging the viewing conditions of 3D points to merge features from images

taken at arbitrary positions. Our method can combine standard 2D and 3D

networks and outperforms both 3D models operating on colorized point clouds

and hybrid 2D/3D networks without requiring colorization, meshing, or true

depth maps. We set a new state-of-the-art for large-scale indoor/outdoor

semantic segmentation on S3DIS (74.7 mIoU 6-Fold) and on KITTI-360 (58.3

mIoU). Our full pipeline only requires raw 3D scans and a set of images and

poses. Our code is publicly accessible at

https://github.com/drprojects/DeepViewAgg.

This chapter’s work was initially presented in: Damien Robert, Bruno

Vallet, Loic Landrieu, “Learning Multi-View Aggregation in the Wild for

Large-Scale 3D Semantic Segmentation”, CVPR, 2022.

https://github.com/drprojects/DeepViewAgg


5.1. INTRODUCTION 107

5.1 Introduction

Figure 5.1 ś Combining 2D and 3D Information. We propose to merge the com-
plementary information between point clouds and a set of co-registered images. Using a
simple visibility model, we can project 2D features onto the 3D points and use viewing
conditions to select features from the most relevant images. We represent images at their
position with the symbol and color the 3D points according to the image they are seen
in.

The fast-paced development of dedicated neural architectures for 3D data

has led to significant improvements in the automated analysis of large 3D

scenes [110]. All top-performing methods operate on colorized point clouds,

which requires either specialized sensors [331], or running a colorization

step which is often closed-source [306, 83, 188] and sensor-dependent [154].

However, while colorized point clouds carry some radiometric information,

images combined with dedicated 2D architectures are better suited for learning

textural and contextual cues. A promising line of work sets out to leverage the

complementarity between 3D point clouds and images by projecting onto 3D
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points the 2D features learned from real [65, 135, 149] or virtual images [171,

55]

Combining point clouds and images with arbitrary poses (i.e. in the wild)

as represented in Figure 5.1, involves recovering occlusions and computing

a point-pixel mapping, which is typically done using accurate depth maps

from specialized sensors [309, 40] or a potentially costly meshing step [25].

Furthermore, when a point is seen in different images simultaneously, the

2D features must be merged in a meaningful way. In the mesh texturation

literature, multi-view aggregation is typically addressed by selecting images

for each triangle based on their viewing conditions, e.g . distance, viewing

angle, or occlusion [9, 189, 318]. Hybrid 2D/3D methods for large-scale point

cloud analysis usually rely on heuristics to select a fixed number of images

per point and pool their features uniformly without considering viewing

conditions. Multi-view aggregation has also been extensively studied for

shape recognition [86, 292, 329], albeit in a controlled and synthetic setting

not entirely applicable to the analysis of large scenes.

In this work, we propose to learn to merge features from multiple images

with a dedicated attention-based scheme. For each 3D point, the information

from relevant images is aggregated based on the point’s viewing condition.

Thanks to our GPU-based implementation, we can efficiently compute a point-

pixel mapping without mesh or true depth maps, and without sacrificing

precision. Our model can handle large-scale scenes with an arbitrary number

of images per point taken at any position (with camera pose information),

which corresponds to a standard industrial operational setting [128, 316, 248].

Using only standard 2D and 3D backbone networks, we set a new state-of-

the-art for the S3DIS and KITTI-360 datasets. Our method improves on

both standard and hybrid 2D/3D approaches without requiring point cloud

colorization, mesh reconstruction, or depth sensors. In this work, we present
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a novel and modular multi-view aggregation method for semantizing hybrid

2D/3D data based on the viewing conditions of 3D points in images. Our

approach combines the following advantages:

— We set a new state-of-the-art for S3DIS 6-fold (74.7 mIoU), and KITTI-

360 Test (58.3 mIoU) without using points’ colorization.

— Our point-pixel mapping operates directly on 3D point clouds and images

without requiring depth maps, meshing, colorization, or virtual view

generation.

— Our efficient GPU-based implementation handles arbitrary numbers of

2D views and large 3D point clouds.

5.2 Related Work

Point Cloud Colorization. One way of exploiting the complementarity be-

tween 3D point clouds and images is to colorize the points. Unlike photogrammetry-

based [303] acquisition techniques which naturally produce colorized points,

active sensors such as LiDAR [150] or time-of-flight cameras [240] do not. In

practice, these clouds can be colorized through a nontrivial heuristics-based

preprocessing requiring localized RGB images and their camera parame-

ters [154]. Colorized point cloud datasets [13, 111, 66, 197] are frequently used

for comparing 3D deep learning methods [252, 301, 58], which consistently

perform better when radiometric information is available [255]. In short,

point cloud colorization assumes either a specific sensor or heuristics-based

preprocessing, and discards dense, contextual, multi-view information carried

by images. Hence, 3D analysis methods capable of directly processing raw

point clouds and localized images would be less hardware-dependent and

more data efficient.
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Attention-Based Modality Fusion. Methods using attention mechanisms to

learn multi-modal representation have attracted a lot of attention, in par-

ticular for combining textual and visual information [38, 138, 107] as well

as videos [129, 211]. Closer to our setting, Lu et al . [214] use an attention

scheme to select the most relevant parts of an image for visual question

answering. Li et al . [192] define a two-branch attention-based modality fu-

sion network merging 2D semantic and 3D occupancy for scene completion.

Such work confirms the relevance of using attention for learning multi-modal

representations.

2D/3D Scene Analysis with Deep Learning. Over the last few years, deep net-

works specifically designed to handle the 3D modality have reached impressive

degrees of performance and maturity, see the review of Guo et al . [110]. Re-

cent work [65, 149, 135] propose to use a dedicated 3D network for processing

point clouds, while a 2D convolutional network extracts radiometric features

which are projected to the point cloud. These methods require the true

depth of each pixel to compute the point-pixel mapping, which makes them

less applicable in a real-world setting. SnapNet [25], as well as more recent

work [171, 55] generate virtual views processed by a 2D network and whose

predictions are then projected back to the point cloud. These approaches,

while performing well, require a costly mesh reconstruction preprocessing to

generate meaningful images. Some approaches [117, 168] fuse RGB and range

images, which requires dedicated sensors and can not handle multiple views

with occlusions. Existing hybrid 2D/3D methods rely on a fixed number of

images per point chosen with heuristics such as the maximization of unseen

points [65, 149, 171]. Then, the different views are merged using pooling

operations (max [292, 65] or sum-pool [149]) or based on the 2D features’

content [135]. To the best of our knowledge, no method has yet been proposed
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to leverage the viewing conditions for multi-view aggregation for the semantic

segmentation of large scenes.

The problem of selecting and merging the best images for a 3D scene has

been extensively studied for surface reconstruction and texturing. Images are

typically chosen according to the viewing angle with the surface normal [189,

20], proximity and resolution [9, 33], geometric and visibility priors [278], as

well as crispness [92], and consistency with respect to occlusions [318]. While

most of these criteria do not directly apply to point clouds, they illustrate

the importance of camera pose information for selecting relevant images.

Related to our setting is the Next Best View selection problem [281], which

consists in planning the camera position giving the most information about

an object of interest [61]. This criterion takes different meanings according

to the setting, such as the number of unseen voxels [312], diversity [226],

information-theoretic measures of uncertainty [144], or can be directly learned

end-to-end [219, 335]. Our setting differs in that the images have already

been acquired, and the task is to choose which one contains the most rele-

vant information for each point. We draw inspiration from the end-to-end

approaches demonstrating that a neural network can assess the quality of

information contained in an image from pose information.

The problem of view selection is also addressed in the literature on shape

recognition [292]. Features from different images can be merged based on their

similarity [321], discriminativity [86], or using patch matching schemes [344,

349] or graph-neural networks [329]. Some methods use 3D features [346]

or camera position [157, 112] to select the best views, but no technique yet

makes explicit use of the viewing configuration. Furthermore, these methods

operate on synthetic views of artificial shapes, which differs from our goal of

analyzing large scenes with images in arbitrary poses.

Closer to our problem, Armeni et al . [14] aggregate views using handcrafted
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heuristics. Bozic et al . [28] use a distance-aware attentive view aggregation

for 3D reconstruction, but disregard other viewing conditions.

5.3 Method

Let P be a set of 3D points and I a collection of co-registered images, all

acquired from the same scene. We characterize points by their position in

space, and images by their pixels’ RGB values along with intrinsic and extrinsic

camera parameters. Our goal is to exploit the correspondence between points

and image pixels to perform 3D point cloud semantic segmentation with

features learned from both modalities.

Our method starts by computing an occlusion-aware mapping between 3D

points and pixels, then uses viewing conditions through an attention scheme

to aggregate relevant image features for each 3D point. This approach can

be easily integrated into a standard 3D network architecture, allowing us to

learn from both point clouds and images simultaneously in an end-to-end

fashion.

5.3.1 Point-Image Mapping

We start by efficiently computing a mapping between the images of I and

the points of P . We say that a point-image pair (p, i) ∈ P × I is compatible

if p is visible in i, i.e. p is in the frustum of i and not occluded. For such a

pair, we define the re-projection pix(p, i) as the pixel of i in which p is visible.

Note that as points are zero-dimensional objects (zero-volume), pix(p, i) is a

single pixel. We denote by v(p) the views of p, i.e. the set of images in which

p is visible.

Point-Pixel Mapping Construction. We operate in a general in the wild multi-

view setting in which the optical axes of the cameras and the 3D sensor are



5.3. METHOD 113

not necessarily aligned. Consequently, computing the point-image mapping

requires a visibility model to detect occlusions. This can be done by computing

a full mesh reconstruction from the point clouds or by using a depth map

obtained by a camera-aligned depth sensor or other means. In contrast,

we propose an efficient implementation of the straightforward Z-buffering

method [291] to compute the mapping directly from images and point clouds.

For each image i ∈ I, we replace all 3D points in the frustum of i under a

pre-determined distance by a square plane section facing towards i and whose

size depends on their distance to the sensor and the resolution of the point

cloud. We can compute the projection mask—or splat—of each square onto

i using the camera parameters of i. We iteratively accumulate all splats in

a depth map called Z-buffer by keeping track of the closest point-camera

distance for each pixel. Simultaneously, we store corresponding point indices

in an index map, along with other relevant point attributes. Once all splats

have been accumulated, visible points are the ones whose indices appear in

the index map. For each visible point p, we set pix(p, i) as the pixel of i in

which p itself is projected. Our GPU-accelerated implementation can process

the entire S3DIS dataset [13] subsampled at 5 cm (12 million points and 1413

high-resolution equirectangular images) within 65 seconds. See Figure 5.2 for

an illustration of our mapping construction, and Section 5.4.3 for an analysis

of alternate visibility models.

Projection Information. To each compatible point-image pair (p, i), we as-

sociate a D-dimensional vector o(p,i) describing the conditions under which

the point p is seen in i. In practice, we define this vector as a set of D = 8

handcrafted features qualifying the observation conditions of (p, i).

— Normalized depth (1). An image seeing a point at a distance may

contain relevant contextual cues but poor textural information. We
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(a) Image (b) Point Cloud

(c) Z-buffer (d) True depth

Figure 5.2 ś Mapping Computation. We estimate pixel depth for all (a) images using the
co-registered (b) point cloud. We compute (c) Z-buffers with an efficient GPU-accelerated
implementation, resulting in depth maps comparable to the (d) true distance given by
camera-aligned depth sensors. We use our estimated depth maps to compute point-image
mappings. Better seen on a monitor.

compute the distance dist(p, i) between point p and image i and divide

by the maximum viewing distance R = 8 m for indoor scenes and

R = 20 m for outdoor scenes.

— Local geometric descriptors (3). The geometry of a point cloud

can impact the quality of its views in images. Indeed, while planar

surfaces may be better captured by a camera, a highly irregular surface

may present many occlusions or grazing rays. We compute geometric

descriptors (linearity, planarity, scattering) based on the eigenvalues of

the covariance matrix between a point and its 50 neighbors [70].
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— Viewing angle (1). An image seeing a surface from a right angle may

better capture its surroundings than if the view angle is slanted with

respect to the surface. We compute the absolute value of the cosine

between the viewing angle and the normal estimated from the covariance

matrix calculated at the previous step.

— Pixel row (1). To account for potential camera distortion near the top

and bottom of the image (e.g . for equirectangular images), we report

the row of pixels and divide by the image height (number of rows). Note

that we could derive a similar feature for cameras with radial distortion,

such as fisheye cameras.

— Local density (1). Density can impact occlusion and be an indicator of

the local precision of the 3D sensor. We compute the area of the smallest

disk containing the 50th neighbor and normalize it by the square of the

voxel grid resolution.

— Occlusion rate (1). Occlusion may significantly impact the quality of

the projected image features. We compute the ratio of the 50 nearest

neighbors of p also seen in i.

See Section 5.4.3 for an analysis of the impact of these values.

Efficient Implementation. In the Z-buffering step, we only consider points at

a maximum distance R = 8 m for indoor scenes and R = 20 m for outdoor

settings. We replace the points in image i by cubes oriented towards i and

with a size given by the following formula involving dist(p, i) the distance

between point p and image i, k = 1 a swell factor ruling how much closer cubes

are expanded and c the resolution of the voxel grid, or a typical inter-point

distance (2-8cm in our experiments):

size_of_cubes(dist(p, i)) = c(1 + ke− dist(p,i)/R) . (5.1)
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This heuristic increases the size of cubes that are close to the image to

ensure that they do hide the cubes behind them. Note that this heuristic

operates on the size of the 3D cubes before camera projection and not on

their projected pixel masks, which are computed based on camera intrinsic

parameters. See Algorithm 2 for the pseudo-code of the mapping computation.

Storing point-pixel mappings for large-scale scenes with many images can

be challenging. To minimize the memory impact of such a procedure, we use

the Compressed Sparse Row (CSR) format. This allows us to represent the

mappings compactly and treat large scenes at once.

Algorithm 2 Z-buffering-Based Point-Pixel Mapping

Input: I image set, P point cloud
for i ∈ I do

zBuffer ← maxFloat array of size i
indexMap ← NaN array of size i
P ′ ← points of P in frustum of i and closer than R
for p ∈ P ′ do

s← size_of_cubes(dist(p, i))
mask ← pixel mask covered by the projection

of a cube of size s at p onto the image i
for (u, v) ∈ mask do

if dist(p, i) < zBuffer[u, v] then
zBuffer[u, v]← dist(p, i)
indexMap[u, v]← p

end if
end for

end for
for p ∈ P ′ do

if p appears in indexMap then
pix(p, i)← pixel at the projection of p on i

else
pix(p, i) not deőned, p not seen in i

end if
end for

end for
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5.3.2 Learning Multi-View Aggregation

We denote by {f 2D
i }i∈I a set of 2D feature maps of width C associated to

the images I , typically obtained with a convolutional neural network (CNN).

Our goal is to transfer these features to the 3D points by exploiting the

correspondence between points and images. However, not all viewing images

contain equally relevant information for a given 3D point. We propose an

attention-based approach to weigh and aggregate features from the viewing

images for each point p.

View Features. The mapping pix(p, i) described in Section 5.3.1 allows us to

associate image features to each compatible point-image pair (p, i):

f̃ 2D
(p,i) = MLP

(

f 2D
i [pix(p, i)]

)

, (5.2)

with MLP : RC 7→ R
C a Multi-Layer Perceptron (MLP). Learned image

features can contain information of different natures: contextual, textural,

class-specific, and so on. To reflect this consideration, we split the channels

of f̃ 2D
(p,i) into K contiguous blocks of ⌊C/K⌋ channels:

f̃ 2D
(p,i) =

[

f̃ 2D
(p,i),1, · · · , f̃

2D
(p,i),K

]

. (5.3)

with [ · ] the channel-wise concatenation operator. Each block of channels

represents a subset of the image information contained in f̃ 2D.

View Quality. The conditions under which a point is seen in an image can

be more or less conducive to certain types of information, see Figure 5.3.

For example, an image viewing a point from a distance may give important

contextual cues, while an image taken close and at a straight angle with

respect to the local 3D surface may give detailed textural information. In

contrast, an image in which a point’s local surface is seen from a slanted angle
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or under high distortion may not contain relevant information and may need

to be discarded. To model these complex dependencies, we propose to predict

for each compatible point-image pair (p, i) a set of K quality scores xk(p,i) ∈ R

from its viewing conditions o(p,i) defined in Section 5.3.1. The quality xk(p,i)

represents the relevance for point p of the information contained in the feature

block k of image i .

For each point p, we consider the set v(p) of images in which it is visible.

We propose to learn to predict the view quality xk(p,i) for each feature block k

by considering all images i ∈ v(p) simultaneously. Indeed, the relevance of

an image can depend on the context of the other views. For example, while

a given image may provide less-than-perfect viewing conditions of a given

3D point, it may be the only available image with global information of the

point’s context. We use a deep set architecture [350] to map the set of viewing

conditions {o(p,i)}i∈v(p) to a vector of size K:

z(p,i) = ϕ1(o(p,i)) (5.4)

x(p,i) = ϕ3

([

z(p,i), ϕ2

(

max{z(p,i)}i∈v(p)
)])

, (5.5)

with ϕ1 : R
D 7→ R

M , ϕ2 : R
M 7→ R

M , and ϕ3 : R
2M 7→ R

K three MLPs, M

the size of the set embedding, and max the channelwise maximum operator

for a set of vectors.

View Attention Scores. We can now compute K attention scores ak(p,i) in

[0, 1] corresponding to the relative relevance for point p of the kth feature

block of image i. The attentions are obtained by applying a softmax function

to the quality scores xk(p,i) across the images in v(p). To account for the

possibly varying number of views per point, we scale the softmax according
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Figure 5.3 ś Multi-View Information. A 3D point is seen in several images with
different insights. Here, the green image contains contextual information, while the pink
image captures the local texture. The orange image sees the point at a slanted angle and
may contain no additional relevant information.

to the number of images seeing the point p :

ak(p,i) = softmax

(

1
√

|v(p)|

{

xk(p,i)

}

i∈v(p)

)

. (5.6)

View Gating. A limitation of using a softmax in this context is that the

attention scores ãk(p,i) always sum to 1 over v(p) regardless of the overall

quality of the image set. Because of occlusion or limited viewpoints, some

3D points may not be seen by any relevant image for a given feature block

k (e.g . no close or far images). In this case, it may be beneficial to discard

an information block from all images altogether and purely rely on geometry.

This allows the 2D network to learn image features without accounting for

potentially spreading corrupted information to points with dubious viewing

conditions. To this end, we introduce a gating parameter gkp whose role is to

block the transfer of the features block k if the overall quality of the image

set v(p) is too low:

gkp = ReLU

(

tanh

(

αk max
i∈v(p)

(

xk(p,i)

)

+ βk

))

, (5.7)
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with α, β ∈ R
K trainable parameters and ReLU the rectified linear activa-

tion [228]. If all quality scores xk(p,i) are negative for a given point p and block

k, the gating parameter gkp will be exactly zero and block possibly detrimental

information due to sub-par viewing conditions.

Attentive Image Feature Pooling. For each point p seen in one or more

images, we merge the feature maps f̃ 2D
(p,i) from each view (p, i). For each

block k, we compute the sum of the view features f̃ 2D
(p,i),k weighted by their

respective attention scores ak(p,i) and multiplied by the gating parameter gkp .

The combined image feature P(f 2D, p) associated to point p is then defined

as the channelwise concatenation of the resulting tensors for all blocks:

P(f 2D, p) =



gkp
∑

i∈v(p)

ak(p,i)f̃
2D
(p,i),k





K

k=1

. (5.8)

5.3.3 Bimodal Point-Image Network.

We can use the multi-view feature aggregation method described above to

perform semantic segmentation of a point cloud and co-registered images by

combining a network operating on 3D point clouds and 2D CNN.

Fusion Strategies. We use a 2D fully convolutional network to compute

pixel-wise image feature maps f 2D. We also consider a 3D deep network

following the classic U -Net architecture [270] and composed of three parts:

(i) an encoder E3D mapping the point cloud into a set of 3D feature maps

at different resolution (innermost map and skip connections); (ii) a decoder

D3D converting these maps into a 3D feature map at the highest resolution

(iii) a classifier C3D associating to each point a vector for class scores of size

N , the number of target classes.
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early, intermediate 
and late fusion 

attentive feature 
pooling

point of interest 

pyramid pixel  
pooling

viewing conditions

concatenation

Figure 5.4 ś Bimodal 2D/3D Architecture. Using our multi-view aggregation module,
we combine a 2D convolutional encoder E2D and a 3D network composed of an encoder
E3D, a decoder D3D, and a classiőer C3D. We associate relevant 2D features to each 3D
point according to their viewing conditions in each compatible image. We propose three
different 2D/3D fusion strategies: early (our choice in the experiments), intermediate, and
late fusion.

As shown in Figure 5.4, we investigate three classic fusion schemes [117,

149, 168], connecting the image features at different points of the 3D network:

(i) directly with the raw 3D features before E3D (early fusion), (ii) in the

skip connections (intermediate fusion) (iii) between the decoder D3D and the

classifier C3D (late fusion:). See the Section D-2 for the details and equations

for these fusion schemes.

Dynamic-Size Image-Batching. The number of images v(p) in which a point

p is visible can vary significantly. Furthermore, when dealing with large-scale

scenes, only a subset Psample of the 3D scene is typically processed at once (e.g .

spherical sampling). For this reason, the part of an image i for which points of
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Figure 5.5 ś Dynamic Batching. We can improve the quantity of information contained
in each training batch by cropping images around the sampled point clouds. We represent
a set of 10 images with different crop size őtting in a budget of pixels corresponding to 4
full-size images.

Psample are visible can sometimes be only a small fraction of the entire image.

This will typically occur with equirectangular images or when Psample is far

away from i. We use the adaptive batching scheme depicted in Figure 5.5

to stabilize memory usage across batches and avoid needless computations

on excessively large images. The first step is to crop each image using the

smallest window across a fixed set of sizes (e.g . 64× 64, 128× 64, etc.) such

that the crop contains the bounding box of all seen points of P with a given

margin. Observing that the memory consumption of a fully convolutional

encoder is linear w.r.t. the number of input pixels, we allocate to each point

cloud in the batch a budget of pixels. Images are then chosen randomly by

iteratively selecting images with a probability proportional to their number

of pixels and to the number of newly seen points in the cloud, until the

pixel budget is spent. Finally, the images are organized into different batches

according to their sizes, allowing for their simultaneous processing. Note that

at inference time, we can take batches as large as the GPU memory allows.
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More details on our dynamic-size batching implementation are provided in

Section D-3.

5.3.4 Implementation Details

We use sparse encoding for mappings in order to only store compatible

point-image pairs. This proves necessary for the large scale, in-the-wild setting

with varying number of images seeing each point. The exact network and

training configurations are given in Section D-4. Our code is available at

https://github.com/drprojects/DeepViewAgg.

5.4 Experiments

We propose several experiments on public large-scale semantic segmentation

benchmarks to demonstrate the benefits of our deep multi-view aggregation

module (DeepViewAgg). Our approach yields significantly better results

than our 3D backbone directly operating on colorized point clouds. We set

a new state-of-the-art for the highly contested S3DIS benchmark using only

standard 2D and 3D architectures combined with our proposed module.

5.4.1 Datasets

S3DIS [13]. This indoor dataset of office buildings contains over 278 million

semantically annotated 3D points across 6 building areas—or folds. A com-

panion dataset can be downloaded at https://github.com/alexsax/2D-

3D-Semantics, and contains 1413 equirectangular images. To represent

our large-scale, in-the-wild setting, we merge each fold into a large point

cloud and discard all room-related information. We apply minor registration

adjustments detailed in Section D-5.

https://github.com/drprojects/DeepViewAgg
https://github.com/alexsax/2D-3D-Semantics
https://github.com/alexsax/2D-3D-Semantics
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(a) S3DIS (b) ScanNet (c) KITTI-360

Figure 5.6 ś Datasets. Illustration of the sampling procedure for all considered datasets
with point clouds alongside some of the available images. The 3D components of batches
are constituted of spheres for (a) S3DIS, rooms for (b) ScanNet, and cylinders for (c)
KITTI-360.

ScanNet [66]. This indoor dataset contains over 1501 scenes obtained from

2.5 million RGB-D images with pose information. To account for the high

redundancy between images, we select one in every 50 image. This dataset

deviates slightly from our intended setting as 2D and 3D are derived from

the same sensors.

KITTI-360 [197]. This large outdoor dataset contains over 100k laser scans

and 320k images captured with a multi-sensor mobile platform. We use one

image every five from the left perspective camera. We report the class-wise

performance on the official withheld test set.

General Setting. All datasets provide colorized point clouds obtained with

dataset-specific preprocessings. To handle the large size of scans, we define

batches using a sampling strategy for S3DIS (2 m-radius spheres) and KITTI-

360 (6 m-radius vertical cylinders), while we process ScanNet room-by-room,

see Figure 5.6. We down-sample the point clouds for processing (S3DIS:

2cm, ScanNet: 3cm, KITTI-360: 5cm) and interpolate our prediction to full

resolution for evaluation. To mitigate the memory impact of the 2D encoder,

we also down-sample S3DIS images to 1024× 512 but keep the full resolution
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for ScanNet (320× 240) and KITTI-360 (1408× 376).

5.4.2 Quantitative Evaluation

Table 5.1 ś Quantitative Evaluation. Mean Intersection-over-Union of different state-
of-the-art methods on S3DIS’s Fold 5 and 6-fold, ScanNet Val, and KITTI-360 Test. All
methods except the last line are trained on colorized point clouds. State-of-the-art,
second highest. 1 with 3D supervision only.

Model
S3DIS ScanNet KITTI

Fold 5 6-Fold Val 360 Test

Methods operating on colorized point clouds

PointNet++ [253] - 56.7 [46] 67.6 [47] 35.7 [197]

SPG+SSP [180, 177] 61.7 68.4 - -

MinkowskiNet [58] 65.4 65.9[46] 72.4 [233] -

KPConv [301] 67.1 70.6 69.3 [233] -

RandLANet [133] - 70.0 - -

PointTrans.[79] 70.4 73.5 - -

Our 3D Backbone 64.7 69.5 69.0 53.9

Methods operating on point clouds and images

MVPNet [149] 62.4 - 68.3 -

VMVF [171] 65.4 - 76.4 -

BPNet [135] - - 69.71 -

3D Backbone+
67.2 74.7 71.0 58.3

DeepViewAgg (ours)

In Table 5.1, we compare the performance of our approach and other

learning methods on S3DIS, ScanNet Validation, and KITTI-360 Test using

the class-wise mean Intersection-over-Union (mIoU) as metric. Our method

(DeepViewAgg) uses images in the 2D encoder and raw uncolored point

clouds in the 3D encoder. All other approaches, including our backbone (3D

Backbone), use the colorized point clouds provided by the datasets.

DeepViewAgg sets a new state-of-the-art for S3DIS for all 6 folds and the

second-highest performance for the 5th fold. In particular, we outperform the

VMVF network [171], showing that our multi-view aggregation model can



126 CHAPTER 5. DEEPVIEWAGG

overtake methods relying on costly virtual view generation using only available

images. Furthermore, VMVF uses true depth maps, colorized point clouds,

normals, and room-wise normalized information. In contrast, our method

only uses raw XYZ data in the 3D encoder and estimates the mappings. Our

approach also overtakes the recent PointTransformer [79] (PointTrans.) by

1.2 mIoU points, even though this method outperforms our 3D backbone by

4 points on colorized points. Our model also improves the performance of

our 3D backbone on the KITTI-360 test set by 4.4 points, illustrating the

importance of images for both indoor and outdoor datasets alike.

While giving reasonable results, our method does not perform as well on

the validation set of ScanNet comparatively. We outperform the 2D/3D fusion

method of BPNet [135] when restricted to 3D annotations, illustrating the

importance of view selection. We argue that the limited variety in the camera

points of view of ScanNet RGB-D scans, as well as their small field-of-view

and blurriness reduce the quality of the information provided by images. This

is reinforced by the impressive performance of VMVF, which synthesizes its

own images with controlled points of view and resolution. See Figure 5.7 for

qualitative illustrations.
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(a) Colorized Point Cloud

(b) Ground Truth

(c) 3D Backbone Predictions

(d) Our Model Predictions

Figure 5.7 ś Qualitative Illustration. Scenes from our considered datasets (top: S3DIS,
middle: ScanNet, bottom: KITTI-360) with (a) colorized point clouds, (b) ground truth
point annotations, (c) prediction of the backbone network operating on the colorized point
cloud, and (d) our method operating on raw uncolored point clouds and images. Our
approach is able to use images to resolve cases in which the geometry is ambiguous or
unusual, such as a large amphitheater with tiered rows of seats (top row). Color legend
given in Section A-1.
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5.4.3 Analysis

We conduct further analyses on Fold 5 and Fold 2 of S3DIS (subsampled

at 5cm for processing) and the validation set of KITTI-360 in Table 5.2. We

added Fold 2 along the commonly used Fold 5, as it benefited most from our

method, and hence is more conducive to evaluating the impact of our design

choices.

Modality Combinations. As observed in Table 5.2, combining a 3D deep

network operating on raw 3D features and a 2D network with our method (Best

Configuration) improves the performance by over 6 to 15 points compared to

the same 3D backbone operating on colorized point clouds alone (XYZRGB).

To illustrate that point colorization is not a trivial task, we train our 3D

backbone with point clouds colorized by averaging for each point the color of

all pixels in which it is visible (XYZ Average-RGB). Compared to the “official”

colored point clouds, we observe a drop of 1 point for Fold 5 and 1.3 point for

KITTI-360, but a gain of almost 5 points for Fold 2. This shows how different

point cloud colorization schemes can yield vastly different results. Not using

any radiometric information and purely relying on 3D points without color

(XYZ) decreases the score of XYZRGB by a further 3 to 4 points on S3DIS.

For KITTI-360, XYZ outperforms XYZ Average-RGB, suggesting that poor

colorization can even be detrimental.

We also evaluate a scheme in which the 3D network is entirely removed,

and 3D points are classified solely based on features coming from a 2D encoder-

decoder and our view aggregation module, without any 3D convolution (Pure

RGB). This method outperforms even (XYZRGB) for S3DIS, illustrating the

relevance of images for point cloud segmentation. On KITTI-360, as many

3D points are not seen by the cameras used, this approach perform worse.

Training our best 2D+3D model with images downsampled by a factor of 2
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(Lower Image Resolution) brings a large performance drop. In contrast, using

2 cm of 3D resolution instead of 5 cm (Higher 3D Resolution) has little impact

for S3DIS. We conclude that when the images already contain fine-grained

information, the impact of the resolution of the 3D voxel grid decreases.

Table 5.2 ś Ablation Study. Mean IoU comparison of different modalities and design
choices on Fold 2 and Fold 5 of S3DIS down-sampled at 5cm for processing and KITTI-360
Val.

Model
S3DIS KITTI

Fold 2 Fold 5 360 Val

Best Configuration 63.2 67.5 57.8

Modality Combinations

XYZRGB -15.9 -6.0 -3.6

XYZ Average-RGB -10.8 -7.0 -4.9

XYZ -19.5 -9.5 -4.1

Pure RGB -5.3 -5.4 -14.5

Lower Image Resolution -5.9 -0.8 -0.7

Higher 3D Resolution -1.0 -0.3 -

Design Choices

Late Fusion -9.1 -1.0 -1.3

Only One Group -4.8 -0.8 -0.4

No Gating -3.0 -0.4 -1.1

No Dynamic Batch -6.9 -1.9 -4.5

No Pretraining -7.2 -6.7 -3.7

MaxPool -0.8 -1.5 -2.9

Smaller 3D backbone -0.5 -0.7 +0.7

Design Choices. Using late fusion (Late Fusion) instead of early fusion gives

comparable results on Fold 5 and KITTI-360, but significantly worse for

Fold 2 for which the gain of using images is more pronounced. Using only one

feature group (Only One Group, K = 1 in Equation 5.3) results in a drop of

4.8 points for Fold 2, highlighting that our method can learn to treat different

types of radiometric information specifically. Removing the gating mechanism

(No Gating, see Equation 5.7) decreases the IoU by 3 points for Fold 2, and
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1.1 on KITTI-360. Not using dynamic batches forces us to limit ourselves to

4 full-size images per 3D sphere/cylinder, which results in performance drops

of 2 to 7 points. Pretraining the 2D network on related open-access datasets

(No 2D Pretraining) accounts for up to 7 mIoU points. Not only do images

contain rich radiometric information, but they also allow us to leverage the

ubiquitous availability of annotated 2D datasets.

Using featurewise max-pooling to merge the views results in a drop of 1

to 1.5 points for S3DIS and 3 points for KITTI-360. This illustrates that as

long as we employ proper mapping, batching, and pretraining strategies, even

simple pooling operations can perform very well. However, the addition of

our model appears necessary to improve the precision even further and reach

state-of-the-art results.

Switching our 3D backbone to a lighter version of MinkowskiNet with

decreased widths, we observe no significant impact on the prediction quality.

This suggests that we could use our approach successfully with smaller models.

Influence of the Viewing Conditions. We propose to highlight the role viewing

conditions descriptor. In Table 5.3, we estimate the usage by our model of

each feature as the drop in mIoU on S3DIS Fold 5 & KITTI-360 when they

are replaced by their dataset average (e.g . all points appear at the same

distance). We also measure the feature sensitivity by averaging the squared

partial derivative [95, p. 3.3.1] of the view compatibility score x defined in

(4) w.r.t. each view descriptor. We observe that our model makes use of all

observation features, and that the compatibility scores are most sensitive to

small differences in scattering for S3DIS Fold 5, and depth for KITTI-360

Val.

To visualize the influence of viewing conditions, we represent in Figure 5.8

quality score heatmaps when varying pairs of features for a given view point
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Figure 5.8 ś Influence of Viewing Descriptors. Given a point-image pair (top left), we
compute the quality scores when varying two of its viewing conditions from their initial
values •. For simplicity, we omit the inŕuence of other images. We observe feature blocks
specializing in retrieving information from views at a given depth range and containing
planar objects (bottom left) or blocking straight yet occluded (top right) or sparse and
occluded (bottom right) views.

from S3DIS.

Influence of the Visibility Model. We propose further ablations whose results

in Table 5.4. To assess the quality of our visibility model, we propose

to compute the point-pixel mappings using the depth maps provided with

S3DIS instead of Z-buffering. When running our method with such mappings

(Mapping from Depth), we observe lower performances. This can be explained
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by the fact that depth-based mapping computation is sensitive to minor

discrepancies between the depth map and the real point positions. Such a

phenomenon can be observed on S3DIS depth images where the surfaces

are viewed from a slanted angle, resulting in fewer point-image mappings

being recovered. See Figure 5.9 for an illustration of this phenomenon. In

conclusion, not only can our approach bypass the need for specialized sensors

or costly mesh reconstruction altogether, but our direct point-pixel mapping

may yield better results than the provided mappings obtained with more

involved methods.

To compare our fusion schemes, we evaluate a model with the intermediate

fusion scheme described in D-3 (Intermediate). We observe that, for our

module, intermediate fusion does not perform as well as early and late

fusion. This could indicate that fusing modalities at their highest respective

resolutions yields better results and that matching the encoder levels of 2D

and 3D networks may not be straightforward. To ensure that our proposed

module captures all radiometric information contained in colorized point

clouds, we trained our chosen architecture to run on colorized point clouds

and images (XYZRGB + DeepViewAgg). The resulting performance confirms

that colorizing 3D points does not bring additional information not already

captured by images.

Influence of the Maximum Depth. The maximum point-image depth is chosen

as the distance beyond which adjacent 3D points appear in the same image

pixel: 8 m for S3DIS sampled at 5 cm with images of width 1024 and 20 m

for KITTI-360. As illustrated in Table 5.5, reducing this parameter too much

leads to a drop in performance both on S3DIS Fold 5 and KITTI-360, while

slight modifications do not significantly affect the results. Since the number

of point-image mappings grows quadratically with this parameter, one may
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(a) True depth

(b) Depth-based visibility

Figure 5.9 ś Depth-Based Mapping Computation. Based on an input depth map (a),
we compute the point-image mappings (b) by searching points within a small margin of
the target depth. We note that slight depth discrepancies near slanted surfaces prevents
mapping from being recovered. Better seen on a monitor.

consider smaller values to decrease the memory usage or computing time.

Influence of the Number of Images. In contrast to existing methods (e.g .

MVPNet [149], VMVF [171], BPNet [135]), our set-based, sparse implementa-
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tion of point-image mappings allows us to have a varying number of views per

3D point. In Table 5.6 we investigate the performance drop w.r.t. our best

model when limiting the number of images per point cloud to a fixed number

of images and not using dynamic batching. Under these conditions, our

performance decreases by 6.8 pts on S3DIS Fold 5 and 3.5 pts on KITTI-360

when using only 3 images, i.e. the configuration of BPNet. For comparison,

3D points of S3DIS are seen in 5.0 images on average (STD 3.3), and 2.5 for

KITTI-360 (STD 2.1).

5.4.4 Limitations

While our method does not require sensors with aligned optical axes, true

depth maps, or a meshing step, we still need camera poses. In some “in

the wild” settings, they may not be available or require a pose estimation

and registration step which may be costly and error-prone. Our mapping

computation also relies on the assumption that the 2D and 3D modalities are

acquired simultaneously.

Our multi-view aggregation method operates purely on viewing conditions

and does not take the geometric and radiometric features into account in

the computation of attention scores. We implemented a self-attention-based

approach using such features, which resulted in a significant increase in

memory usage without tangible benefits: the viewing conditions appear to be

the most critical factor when selecting and aggregating images features.

5.5 Conclusion

We proposed a deep learning-based multi-view aggregation model for the

semantic segmentation of large 3D scenes. Our approach uses the viewing

condition of 3D points in images to select and merge the most relevant 2D

features with 3D information. Combined with standard image and point
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cloud encoders, our method improves the state-of-the-art for two different

datasets. Our full pipeline can run on a point cloud and a set of co-registered

images at arbitrary positions without requiring colorization, meshing, or

true depth maps. These promising results illustrate the relevancy of using

dedicated architectures for extracting information from images even for 3D

scene analysis.
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Table 5.3 ś Usage and Sensitivity of Viewing Conditions. Feature usage is reported
as a drop in mIoU, and the sensitivity is given as the proportion of squared partial
derivative of the compatibility across all features.

view feature
usage (mIoU drop) sensitivity (in %)

S3DIS KITTI-360 S3DIS KITTI-360

depth 1.1 1.7 12.6 46.0

linearity 1.0 0.8 11.9 0.7

planarity 1.0 1.4 15.8 1.9

scattering 0.7 1.0 52.7 0.7

viewing angle 1.3 1.2 2.8 7.4

pixel row 1.1 0.8 1.6 33.2

local density 1.2 1.3 0.6 1.8

occlusion 0.7 0.9 2.0 8.2

Table 5.4 ś Supplementary Ablation Study. Mean IoU comparison of different design
choices on Fold 2 and Fold 5 of S3DIS down-sampled at 5cm for processing.

Model Fold 2 Fold 5

Best Conőguration 63.1 67.5

Design Choices

Mapping from Depth -5.4 -1.9

Intermediate -7.6 -3.2

XYZRGB + DeepViewAgg -0.5 -0.9

Table 5.5 ś Effect of Maximum Depth. We report the drop in mIoU when removing
mappings beyond a threshold distance.

S3DIS FOLD 5

Max depth 8 7 6 5 4 3 2

mIoU drop 0.0 0.0 0.0 0.4 0.6 1.9 8.6

KITTI-360 Val

Max depth 20 15 10

mIoU drop 0.0 0.5 2.6
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Table 5.6 ś Impact of the Number of Images. We report the drop in mIoU when limiting
the number of images per point cloud.

# images 8 7 6 5 4 3

S3DIS Fold 5 0.5 1.2 1.7 2.1 3.5 6.8

KITTI-360 0.5 0.1 0.5 1.3 1.9 3.5
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This concluding chapter recapitulates our contributions in Section 6.1,

before sketching out in Section 6.2 future research directions that we identify

as promising.

6.1 Contributions

This thesis advances the field of 3D computer vision with novel methods for

the efficient and scalable analysis of 3D point clouds. Our three contributions

can be summarized as follows.

Efficient and Scalable 3D Semantic Segmentation. In Chapter 3, we propose

Superpoint Transformer, a novel approach for the efficient semantic segmen-

tation of large 3D point clouds. Our method brings together the best of

two worlds: the efficiency of superpoint-based methods and the expressiv-

ity of transformer-based methods. We achieve state-of-the-art performance

on three 3D semantic segmentation benchmarks while being up to 200×

more parameter-efficient and 70× faster to train than competing approaches.

This work illustrates how designing an adequate data structure with strong

inductive priors can render multimillion-parameter models futile.

Efficient and Scalable 3D Panoptic Segmentation. In Chapter 4, we formulate

3D panoptic segmentation as a scalable graph partitioning problem, which

our small SuperCluster model is trained to address. Contrary to existing 3D

instance and panoptic segmentation, our supervision relies on local objectives

only, which allows us to circumvent several limitations of competing methods

and scale to very large scenes. We reach state-of-the-art performance on four

3D panoptic segmentation benchmarks and show that our method can process

scenes of unprecedented size at once on a single consumer-grade GPU.
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Learning From Point Clouds and Images in the Wild. In Chapter 5, we

introduce DeepViewAgg, an end-to-end multi-view aggregation method for 3D

semantic segmentation from images and point clouds. Contrary to existing 2D-

3D methods, our approach does not require point cloud colorization, meshing,

or depth sensors: only point clouds, images, and their poses. Despite these

minimalistic requirements, we achieve state-of-the-art performance on two

3D semantic segmentation benchmarks. In a way, this work can be seen as

learning to colorize point clouds with features from arbitrarily posed images.

6.2 Perspectives

The works presented in this thesis open the door to several exciting research

directions.

6.2.1 Superpoint-Based Learning

We believe that superpoint-based methods introduced in Chapter 3 and

Chapter 4 pave the way for promising efficient 3D point cloud processing

approaches.

Model Expressivity. Currently, SPT extracts point features using a small

PointNet-like model [252] for each superpoint taken in isolation. This

approach may lack expressivity and ignores the local relationship between

points at the border between superpoints. Inspired by other transformer-based

architectures for 2D [206] and 3D [175] analysis that rely on convolution-based

modules to extract features from the raw input signal, we hypothesize that

our model may benefit from a more expressive point encoder inspired by

KPConv [301] or MinkowskiNet [58].
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Point Cloud Tokenization. Contrary to other 2D and 3D transformer-based

models [76, 206, 175] which reason on arbitrary grid-based representations

of the input signal, we show in Chapter 3 that training a transformer to

reason on superpoint partitions, allows for tremendous compute and memory

efficiency gains. We believe partitioning point clouds into geometrically

homogeneous primitives could become a standard preprocessing step similar

to tokenization [222] for natural language processing. Such point cloud

tokenizer could then be used by 3D deep learning methods as a blackbox

preprocessing converting million-point clouds into much smaller collections

of basic shapes. Unlike our current algorithm, which relies on handcrafted

features to characterize the local geometry, a point cloud tokenizer should

ideally be an unsupervised procedure based on dataset statistics, with minimal

parameterization.

Learnable Partition. Following SGP [180], our framework in Chapter 3 relies

on the cut-pursuit algorithm [179, 261] for computing a fixed partition, at

preprocessing time, and based on handcrafted point features. Obviously

enough, learning to partition end-to-end would be an attractive alternative.

However, our cut-pursuit step is currently a non-differentiable operation. To

this end, Landrieu et al . [177] propose to pretrain with a dedicated network

to learn point features presenting a high contrast at object boundaries, to

improve the partition with cut-pursuit. Unfortunately, this approach involves

a two-step training and requires instance-level annotations. An end-to-end

trainable solution leveraging semantic segmentation labels or no labels at all

would be a more convenient solution.

Several directions could be explored. First, the partition could be updated

every few training epochs, based on point features learned for the task at

hand. Yet, with this approach, the gradient would not be used to adjust
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the partition itself. An alternative would be to treat the partition step as a

blackbox combinatorial optimization step [250]. Finally and more ambitiously,

the partition step could be made entirely differentiable. Although this may

require substantial theoretical work for cut-pursuit, differentiable alternatives

exist for superpixel [148] or superpoint [140] partitions. However, these

approaches are essentially variants of k-means that operate on a fixed number

of sampled centroids, which limits their ability to scale to point clouds of

arbitrary size or to adapt to the geometric complexity.

Super-X Reasoning. While the methods presented in Chapter 3 and Chapter 4

operate on point clouds, adapting our framework to other modalities, such

as images, depth maps, or videos would be a natural next step. Essentially,

operating on a new modality would be easy and would only require defining

an adjacency graph and local features for the partition step, as well as a

trainable modality-specific feature extractor, which is likely to be found in

the relevant literature.

6.2.2 2D-3D Learning

Our work in Chapter 5 may be further extended for multimodal learning

on point clouds and images.

Multi-View Multi-Sensor Aggregation. Some acquisition systems, such as

autonomous vehicles, can be equipped with several image sensors with different

optical properties. For example, the KITTI-360 [197] dataset comprises point

clouds and images from perspective and fisheye cameras located at different

positions on the vehicle. By extending the observation condition features

with information about the sensor of each image, we may be able to train

DeepViewAgg to selectively attend to different sensors depending on the

viewing conditions. For example, our method may learn that the distortion
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in fisheye images makes pixel features less reliable as we move away from the

center. Meanwhile, the model may also learn that some cameras may be more

adequate than others to detect pedestrians, based on their orientation on the

acquisition platform.

Multimodal Aggregation. DeepViewAgg proposes to exploit the synergy

between point clouds and localized images. However, other modalities may

carry complementary information about the 3D scene. Radar sensors, for

example, are more robust to visibility and weather conditions than RGB

cameras, making them ideal for autonomous driving, as exemplified by the

nuScenes [37] dataset. Other potentially informative modalities include HD

maps, street camera images, aerial images, and satellite images. Provided a

feature extractor and a mapping to 3D points for each modality, we believe

the attentive, multi-view formulation of our framework could allow for more

than two modalities.

Robust 2D-3D Mapping. Similar to other works on 2D-3D learning, the

mapping construction in DeepViewAgg makes two important assumptions:

static scenes and known camera parameters.

If an object has moved between the acquisition times of the 3D and 2D

sensors, our purely geometric mapping construction will be incorrect. Yet, such

dynamic scenes are ubiquitous in robotic and autonomous driving scenarios,

where surrounding objects such as vehicles or pedestrians may be dynamic.

Taking temporality into account for multimodal mapping and multi-view

aggregation would make for an interesting extension of DeepViewAgg. This

problem is related to moving object segmentation [245, 161, 53, 166], which

is an active research field.

Our mapping computation will also suffer from incorrect camera poses or

intrinsics. This typically affects small pixel structures, which correspond to
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either small or far-away 3D objects. Existing works on 2D-3D registration [191,

73] could help alleviate this issue, making our method more robust to camera

parameter errors.

Super-X Multimodal Learning. Combining the superpoint and multimodal

paradigms developed in this thesis offers multiple possibilities. Using super-

points may increase the robustness of DeepViewAgg. Indeed, aggregating

pixel features at the superpoint level rather than for individual points may

lead to more robust features. In addition, more robust observation condition

features may also be computed at the superpoint level.

Aligning superpixel and superpoint partitions provides a promising frame-

work for large-scale, cross-modal self-supervised learning. For instance,

SLidR [275] learns to distill image features into a 3D model, by partitioning

images with SLIC and projecting the resulting superpixels onto 2.5D LiDAR

range images. However, this approach does not handle scenes with multiple

arbitrarily-posed 2D views and occlusions. Besides, it relies on images to

partition the point cloud, ignoring the available 3D geometric information.

We expect several building blocks introduced in this thesis to be helpful in

exploring these directions.

Finally, as mentioned above, SPT could naturally be adapted to other

modalities such as images and depth maps. Combined with DeepViewAgg,

this would open the way to efficient models capable of processing multimodal,

multi-view, large-scale data.
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Appendix A

Additional Notes

In this appendix, we detail the colormaps usedfor each dataset in Section A-

1.

A-1 Dataset Colormaps

We use the same colormaps for each dataset across all chapters. These

colormaps are detailed in Table A-1.
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S3DIS

ceiling floor wall beam column

window door chair table bookcase

sofa board clutter unlabeled

ScanNet

wall floor cabinet bed chair

sofa table door window bookshelf

picture counter desk curtain refrigerator

shower toilet sink bathtub otherfurniture

ignored

KITTI-360

road sidewalk building wall fence

pole traffic light traffic sign vegetation terrain

person car truck motorcycle bicycle

ignored

DALES

ground vegetation car truck power line

fence pole building unknown

Figure A-1 ś Colormaps. Throughout all visualizations in this work, we use these
colormaps to represent the semantic of each point.



Appendix B

Additional Results on

Efficient and Scalable 3D Semantic

Segmentation

(a) Position (b) Ground Truth
(c) Linearity, Planarity & Ver-
ticality

(d) RGB (e) Predictions & Errors (f) Level-2

Figure B-1 ś Interactive Visualization. Our interactive viewing tool allows for the
manipulation and visualization of sample point clouds colorized according to their position
(a), semantic labels (b), selected geometric features (c), radiometry (d), and to visualize
our network’s prediction (e) and partitions (f).
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In this document, we introduce our interactive visualization tool (Section B-

1), share our source code (Section B-2), provide an analysis (Section B-3)

of all handcrafted features used by our method, detail the partition process

(Section B-4), and provide guidelines on how to choose the partition’s hy-

perparameters (Section B-5). Finally, we clarify our architecture parameters

(Section B-6) and detail the class-wise performance of our approach on each

dataset (Section B-7).

B-1 Interactive Visualization

We release for this project an interactive plotly visualization tool that

produces HTML files compatible with any browser. As shown in Figure B-1,

we can visualize samples from S3DIS, KITTI-360, and DALES with different

point attributes and from any angle. These visualizations were instrumental

in designing and validating our model, and we hope that they will facilitate

the reader’s understanding as well.

B-2 Source Code

We make our source code publicly available at

https://github.com/drprojects/superpoint_transformer.

The code provides all necessary instructions for installing and navigating

the project, simple commands to reproduce our main results on all datasets,

ready-to-use pretrained models, and ready-to-use notebooks.

Our method is developed in PyTorch and relies on PyTorch Geometric,

PyTorch Lightning, and Hydra.

https://github.com/drprojects/superpoint_transformer
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Table B-1 ś Ablation on Handcrafted Features. Impact of handcrafted features on
the mIoU for all tested datasets.

Experiment S3DIS KITTI DALES

6-Fold 360 Val

Best Model 76.0 63.5 79.6

a) Point Features

No radiometric feat. -2.7 -4.0 -1.2

No geometric feat. -0.7 -4.1 -1.4

b) Adjacency Features

No interface feat. -0.2 -0.6 -0.7

No ratio feat. -1.1 -2.2 -0.4

No pose feat. -5.5 -1.2 -0.8

c) Room Features

Room-level samples -3.8 - -

Normalized Room pos. -0.7 - -

B-3 Influence of Handcrafted Features

In Table B-1, we quantify the impact of the handcrafted features detailed

in Section 3.2.4 on performance. To this end, we retrain SPT without each

feature group and evaluate the prediction on S3DIS Area 5.

a) Point Features. Our experiments show that removing radiometric features

has a strong impact on performance, with a drop of 2.7 to 4.0 mIoU. In

contrast, removing geometric features results in a performance drop of 0.7 on

S3DIS, but 4.1 on KITTI-360.

We observe that both outdoor datasets strongly benefit from local geometric

features, which we hypothesize is due to their lower resolution and noise level.

These results indicate that radiometric features play an important role for

all datasets and that geometric features may facilitate learning on noisy or
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subsampled datasets.

b) Adjacency Features. The analysis of the impact of adjacency features on

our model’s performance indicates that they play a crucial role in leveraging

contextual information from superpoints: removing all adjacency features

leads to a significant drop of 3.0 to 6.3 mIoU points on the datasets, as shown

in Section 3.3.3. Among the different types of adjacency features, pose fea-

tures appear particularly useful in characterizing the adjacency relationships

between superpoints of S3DIS, while interface features have a smaller impact.

These results suggest that the relative pose of objects in the scene may have

more influence on the 3D semantic analysis performed by our model than the

precise characterization of their interface. On the other hand, interface and

ratio features seem to have more impact on outdoor datasets, while the pose

information seems to be less informative in the semantic understanding of

the scene.

c) S3DIS Room Partition. The S3DIS dataset is divided into individual

rooms aligned along the x and y axes. This setup simplifies the identification

of classes such as walls, doors, or windows as they are consistently located

at the edge of the room samples. Some methods also add normalized room

coordinates to each points. However, we argue that this partition may not

generalize well to other environments, such as open offices, industrial facilities,

or mobile mapping acquisitions, which cannot naturally be split into rooms.

To address this limitation, we use the absolute room positions to reconstruct

the entire floor of each S3DIS area [301, 46]. This enables our model to

consider large multi-room samples, resulting in a performance increase of

3.8 points. This highlights the advantage of capturing long-range contextual

information. Additionally, we remark that SPT performs better without

using room-normalized coordinates, which may lead to overfitting and poor
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performance on layouts that deviate from the room-based structure of the

S3DIS dataset such as large amphitheaters.

B-4 Details on Hierarchical Partitions

We present here a more detailed explanation of the hierarchical partition

process. We define for each point c of C a feature fc of dimension D, and

G := (C, E , w) is the k-nn adjacency between the points, with w ∈ R
E
+ a

nonnegative proximity value. Our goal is to compute a hierarchical multilevel

partition of the point cloud into superpoints homogeneous with respect to f

at increasing coarseness.

Piecewise Constant Approximation on a Graph. We first explain how to

compute a single-level partition of the point cloud. We consider the pointwise

features fc as a D-dimensional signal f ∈ R
D×|C| defined on the nodes of

the weighted graph G := (C, E , w). We first define an energy J (e; f,G, λ)

measuring the fidelity between a vertex-valued signal e ∈ R
D×|C| and the

length of its contours, defined as the weight of the cut between its constant

components [178]:

J (e; f,G, λ) := ∥e− f∥2 + λ
∑

(u,v)∈E

wu,v [eu ̸= ev] , (B-1)

with λ ∈ R+ a regularization strength and [a ̸= b] the function equals to 0

if a = b and 1 otherwise. Minimizers of J are approximations of f that are

piecewise constant with respect to a partition with simple contours in G.

We can characterize such signal e ∈ R
D×|C| by the coarsest partition Pe

of P and its associated variable f e ∈ R
D×|Pe| such that e is constant within

each segment p of Pe with value f e
p . The partition Pe also induces a graph

Ĝe := (Pe, Ee, we) with Ee linking the component of Pe adjacent in G and we
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the weight of the cut between adjacent elements of P e:

Ee := {(U, V ) | U, V ∈ Pe, (U × V ) ∩ E ̸= ∅} (B-2)

For (U, V ) ∈ Ee, we
U,V :=

∑

(u,v)∈U×V ∩E

wu,v (B-3)

We denote by partition (e) the function mapping e to these uniquely

defined variables:

f e,Pe, Ĝe := partition (e) . (B-4)

Point Cloud Hierarchical Partition. A set of partitions P := [P0, · · · ,Pi]

defines a hierarchical partition of C with I levels if P0 = C and Pi+1 is a

partition of Pi for i ∈ [0, I − 1]. We propose to use the formulations above

to define a hierarchical partition of the point cloud C characterized by a list

λ1, · · · , λI of nonnegative regularization strengths defining the coarseness of

the successive partitions. In particular, We chose λ1 such that |P1|/|P0 ∼ 30

in our experiments.

We first define Ĝ0 as the point-level adjacency graph Ĝ and f0 as f . We

can now define the levels of a hierarchical partition Pi for i ∈ [1, I]:

fi,Pi, Ĝi := partition( argmin
e∈RD×|Pi−1|

J
(

e; fi−1, Ĝi−1, λi−1

)

). (B-5)

Given that the optimization problems defined in Equation B-5 for i > 1

operate on the component graphs Ĝi, which are smaller than Ĝ0, the first

partition is the most demanding in terms of computation.

Note that we used the hat notation Ĝi, because these graphs are only used

for computing the hierarchical partitions Pi, and should be distinguished from

the superpoint graphs Gi on which is based our self-attention mechanism,

constructed from Pi as explained in Section 3.2.5.
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B-5 Parameterizing the Partition

We define G as the k = 10-nearest neighbor adjacency graph and set

all edge weights w to 1. The point features fp whose piecewise constant

approximation yields the partition are of three types: geometric, radiometric,

and spatial.

Geometric features ensure that the superpoints are geometrically homoge-

neous and with simple shapes. We use the normalized dimensionality-based

method described in Section 3.2.4. Radiometric features encourage the border

of superpoints to follow the color contrast of the scene and are either RGB or

intensity values; they must be normalized to fall in the [0,1] range. Lastly, we

can add to each point their spatial coordinates with a normalization factor µ

in m−1 to limit the size of the superpoints. We recommend setting µ as the

inverse of the maximum radius expected for a superpoint: the largest sought

object (facade, wall, roof) or an application-dependent constraint.

The coarseness of the partitions depends on the regularization strength λ

as defined in Section 3.2.1. Finer partitions should generally lead to better

results but to an increase in training time and memory requirement. We

chose a ratio | P0 | / | P1 |∼ 30 across all datasets as it proved to be a

good compromise between efficiency and precision. Depending on the desired

trade-off, different ratios can be chosen by trying other values of λ.

B-6 Implementation Details

We provide the exact parameterization of the SPT architecture used for

our experiments. All MLPs in the architecture use LeakyReLU activations

and GraphNorm [39] normalization. For simplicity, we represent an MLP by

the list of its layer widths: [in_channels, hidden_channels, out_channels].
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Table B-2 ś Model Configuration. We provide the detailed architecture of the SPT-X
architecture. In this work, we use X = 64 and X = 128.

Parameter Value

Handcrafted features

Dhf
point Dradio

point +Dgeof
point

Dhf
adj 18

Embeddings sizes

Dpoint 128

Dadj 32

Transformer blocks

Dval X

Dkey 4

# blocks encoder 3

# blocks decoder 1

# heads 16

MLPs

ϕi
adj [Dhf

adj, Dadj, Dadj, 3Dadj]

ϕ0
enc [Dhf

point +Dpos
point, 32, 64, Dpoint]

ϕ1
enc [Dpoint +Dpos

point, Dval, Dval]

ϕ2
enc [Dval +Dpos

point, Dval, Dval]

ϕ1

dec [Dval +Dval +Dpos
point, Dval, Dval]

Point Input Features. We refer here to the dimension of point positions,

radiometry, and geometric features as Dpos
point = 3, Dradio

point, and Dgeof
point = 4

respectively. As seen in Section 3.2.4, S3DIS and KITTI-360 use Dradio
point = 3,

while DALES uses Dradio
point = 1.

Model Architecture. The exact architecture SPT-64 used for S3DIS and

DALES is detailed in Table B-2. The other models evaluated are SPT-16,

SPT-32, SPT-128 (used for KITTI-360), and SPT-256, which use the same

parameters except for Dval.
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SPT-nano. For SPT-nano, we use and Dval = 16, Dadj = 16, and Dkey = 2.

As SPT-nano does not compute point embedding, it does not use ϕ0, and we

set up ϕ1
enc as [Dhf

point +Dpos
point, Dval, Dval].

B-7 Detailed Results

We report in Table B-3, Table B-4, and Table B-5 the class-wise per-

formance across all datasets for SPT and other methods for which this

information was available. As previously stated, SPT performs close to

state-of-the-art methods on all datasets, while being significantly smaller and

faster to train. By design, superpoint-based methods can capture long-range

interactions and their predictions are more spatially regular than point-based

approaches. This may explain the performance of SPT on S3DIS, which

encompasses large, geometrically homogeneous objects or whose identification

requires long-range context understanding, such as ceiling, floor, columns,

and windows. For all datasets, results show that some progress could be made

in analyzing smaller objects with intricate geometries. This suggests that a

more powerful point-level encoding may be beneficial.
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Appendix C

Additional Results on

Efficient and Scalable 3D Panoptic

Segmentation

In this appendix, we introduce our interactive visualization tool in Sec-

tion C-1, our source code in Section C-2, and implementation details in

Section C-3. Finally, we provide detailed class-wise results for each dataset in

Section C-4.

C-1 Interactive Visualization

We propose a Plotly-based interactive visualization tool in the form of

HTML pages compatible with any browser and provided in the supplementary

materials. As shown in Figure C-1, we can visualize samples from the datasets

with different point attributes and from any angle. These visualizations were

instrumental in designing and validating our model; we hope they will also

facilitate the reader’s understanding. We added one such visualizations for

each dataset in the supplementary material.

189
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(a) Position (b) RGB (c) Level-1 (d) Level-2

(e) Semantic (f) Semantic Predictions (g) Panoptic (h) Panoptic Predictions

Figure C-1 ś Interactive Visualization. Our interactive viewing tool allows for the
manipulation and visualization of point cloud samples colorized according to their position
(a), radiometry (b), partition level (c)(d), semantic annotations (e) and predictions (f),
and panoptic annotations (g) and predictions (h).

C-2 Source Code

We make our source code available to the reviewers at

github.com/drprojects/super_cluster.

The code provides all necessary instructions for installing and navigating the

project, simple commands to reproduce our main results on all datasets, and

ready-to-use notebooks.

Our method is developed in PyTorch and relies on PyTorch Geometric,

PyTorch Lightning, and Hydra.

C-3 Implementation Details

We provide the exact parameterization of the SuperCluster architecture

used for our experiments. For simplicity, we represent an MLP by the list of

its layer widths: [in_channels, hidden_channels, out_channels].

Backbone. Our backbone model follows the same model configurations as the

Superpoint Transformer [267] with minor modifications, described below. We

github.com/drprojects/super_cluster
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use SPT-64 for S3DIS and DALES and SPT-128 for KITTI360 and ScanNet.

For all datasets, we reduce the output dimension of the point encoder ϕ0
enc

from 128 to 64 [267]. We find that this does not affect SPT performance

while reducing its memory impact.

For ScanNet, we find that using 32 heads instead of 16 and setting Dadj = 64

instead of 32 [267] improves performance.

Object Agreement Head. The object agreement prediction head ϕobject is a

normalization-free MLP with LeakyReLU activations and layers [2D, 32, 1],

where D is the output feature dimension of the backbone (i.e. 64 for S3DIS

and DALES, and 128 for ScanNet and KITTI-360).

C-4 Detailed Results

We report in Table C-1, Table C-2, Table C-3, Table C-4, and Table C-5

the average and per-class performances of SuperCluster on each dataset.
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Table C-5 ś DALES Class-wise Performance. We report the average and per-class
panoptic quality (PQ), recognition quality (RQ), segmentation quality (SQ), precision
(Prec), and recall (Rec) performance of SuperCluster on DALES. We indicate łstuffž classes
with †.

Metric Avg. ground † vegetation † car truck power line fence pole building

PQ 61.2 95.6 90.3 70.9 45.0 18.8 23.5 64.3 81.5

RQ 68.6 100.0 99.0 78.4 51.1 23.1 31.3 79.6 86.6

SQ 87.1 95.6 91.2 90.4 88.2 81.3 75.0 80.8 94.1

Prec. 68.5 100.0 99.0 87.3 55.1 16.3 24.2 81.5 84.7

Rec. 71.0 100.0 99.0 71.1 47.5 39.7 44.3 77.8 88.5



Appendix D

Additional Results on

Learning From Point Clouds and Images

in the Wild

In this appendix, we introduce our interactive visualization tool and code

in Section D-1, describe our various multimodal fusion schemes in Section D-2,

detail our Dynamic-Size Image-Batching algorithm in Section D-3, and provide

a full description of our model implementation in Section D-4. Section D-5

details the camera pose adjustments made to S3DIS for 2D-3D mapping.

Finally, we provide detailed class-wise results for each dataset in Section D-6.

D-1 Interactive Visualization and Code

We release our code at

https://github.com/drprojects/DeepViewAgg.

The provided code allows for reproduction of our experiments and inference

using pretrained models.

Our repository also contains interactive visualizations as HTML files,

showing different images and model predictions for spheres sampled in S3DIS,

as shown in Figure D-1. This tool makes it easier to see the additional insights

197
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brought by images than the visuals included in the chapter.

D-2 Fusion schemes

We denote by {f 2D
i }i∈I a set of 2D feature maps of width C associated

with the images I, typically obtained with a convolutional neural network.

f 3D designates the raw feature of the point cloud given by the sensor: position,

but also intensity/reflectance if available (not used in this work). We denote

by P(f 2D, P ) the projection of the learned image features f 2D onto the point

cloud P by our multi-view aggregation technique. The early and late fusion

schemes can be written as follows:

yearly = C
3D ◦ D3D ◦ E3D

([

f 3D,P(f 2D, P )
])

(D-1)

ylate = C
3D
([

D3D ◦ E3D
(

f 3D
)

,P(f 2D, P )
])

. (D-2)

For the intermediate fusion scheme, the 2D and 3D features are merged

directly in the 3D encoder. Our 3D backbone follows a classic U-Net archi-

tecture, and its encoder is organized in L levels {E3D
l }

L
l=1 processing maps

of increasingly coarse resolution. Each level l > 1 is composed of of a down-

sampling module downl, typically strided convolutions (down1 = Id), and a

convolutional module convl, typically a sequence of ResNet blocks. The 2D

encoder is also composed of L levels {E2D
l }

L
l=1 corresponding to the different

image resolutions. We propose to match the 2D and 3D levels at full resolution

(1024× 512 and 2 cm for S3DIS), and all subsequent levels after the same

number of 2D/3D downsampling. At each level l = 1 . . . L, we concatenate

the downsampled higher resolution 3D map f 3D
l−1 with the map f 2D

l obtained

from the images at the matched resolution:

f 3D
l = conv

([

down
(

f 3D
l−1

)

,P(f 2D
l , P )

])

, (D-3)
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with f 3D
0 the raw 3D features. The decoder and classifiers follow the same

organization than the 3D backbone.

D-3 Dynamic-Size Image-Batching

Algorithm D-3 Dynamic-Size Image-Batching

Input: Psample point cloud, I image set
Parameters: B budget of pixels, m border margin
Isample ← {i | i ∈ I and ∃p ∈ Psample s.t i ∈ v(p)}
scores ← array of 0 of size Isample

for i ∈ Isample do
i← tightest crop(i) to contain Psample with margin m
scores[i]← score(i, Psample, Isample,∅)

end for
batch ← []
while B > 0 and length Isample > 0 do

pick i ∈ Isample randomly w.r.t. scores
batch ← [batch, i]
Isample ← Isample \ {i}
B ← B − area(i)
for i ∈ Isample do

scores[i]← score(i, Psample, Isample, batch)
end for

end while

We consider Psample a portion of a point cloud to add to the 3D part of a

batch. In order to build the image batch we iteratively select images according

to the following procedure. We first select the image set Isample seeing at

least one point of Psample. For equirectangular images, we rotate the images

to place the mappings at the center. We then crop each image i along the

tightest bounding box containing all seen point of Psample with a minimum

margin of m along a fixed set of image size along: crops = {64× 64, 128×

64, 128× 128, 256× 128, 256× 256, 512× 256, 512× 512, 1024× 512}. We
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then associate with each cropped image a score defined as follows:

score(i, Psample, Isample, batch)) =
area(i)

max(area(i) | i ∈ Isample)
+

λ
unseen(i, Psample, batch))

max(unseen(i, Psample, batch) | i ∈ Isample)
,

(D-4)

with area(i) the area of the cropped image i in pixels, batch the current

image batch, unseen(i, Psample, batch) the number of points of Psample seen in

image i but not in any image of the current batch, and λ = 2 a parameter

controlling the trade-off between maximum area and maximum coverage. The

current image batch is initialized as an empty set, but the scores must be

updated as it is filled. The images are chosen randomly with a probability

proportional to their score. We chose in all experiments a margin m = 8

pixels and a budget corresponding to 4 full resolution mapping.

D-4 Implementation Details

Our method is developed in Pytorch and is implemented within the open-

source framework Torch-Points3d [46].

For our backbone 3D network, we use TorchPoint3D’s [46] Res16UNet34

implementation of MinkowskiNet [58]. This UNet-like architecture com-

prises 5 encoding layers and 5 decoding layers. Encoding layers are com-

posed of a strided convolution of kernel_size = [3, 2, 2, 2, 2] and stride =

[1, 2, 2, 2, 2] followed by N = [0, 2, 3, 4, 6] ResNet blocks [119] of channel size

[128, 32, 64, 128, 256], respectively. The decoding layers are built in the same

manner, with a strided transposed convolution of kernel_size = [2, 2, 2, 2, 3]

and stride = [2, 2, 2, 2, 1] as their first operation, followed by a concatenation

with the corresponding skipped-features from the encoder and N = 1 ResNet

block of channel size [128, 128, 96, 96, 96], respectively. A fully connected
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linear layer followed by a softmax converts the last features into class scores.

Unless specified otherwise, ReLU activation and batch normalization [143]

are used across the architecture.

For our 2D encoders, we use the encoder part of pretrained ResNet18

networks [118]. For indoor scenes, we use the modified ResNet18 from [63]

pretrained on ADE20K [362], which has 5 layers of output channel sizes

[128, 64, 128, 256, 512] and resolution scale = [4, 4, 8, 8, 8]. The relatively

high resolution of the output feature map allows us to map the 2D fea-

tures of size C = 512 from the last layer directly to the point cloud

without upsampling. For outdoor scenes, we use the ResNet18 from [187]

pretrained on Cityscapes [62], which has 5 layers of output channel sizes

[128, 64, 128, 256, 512] and resolution scale = [4, 4, 8, 16, 32]. We use pyramid

feature pooling [358] on layers 1, 2, 3, and 4, which results in a feature vector

of size C = 960 passed to the mapped points.

For our DeepViewAgg module, the extracted image features are converted

into view features of size C with the MLP ϕ0 of size C 7→ C 7→ C. For the

computation of quality scores, we use the following MLPs: ϕ1 : 8 7→M 7→M ,

ϕ2 : M 7→M 7→M , and ϕ3 : 2M 7→M 7→ K with M = 32 and K = 4.

For indoor scenes, we use the lowest resolution map of a network [63]

pretrained on ADE20K [362]. For the outdoor scenes, we use pyramid feature

pooling [358] with a network [187] pretrained on Cityscapes [62]. We use early

fusion in all experiments unless specified otherwise.

All models are trained with SGD with an initial learning rate of 0.1 for 200

epochs with decay steps of 0.3 at epoch 80, 120, 160 for indoor datasets, and

20 epochs with decay at epoch 10, 16 for the outdoor dataset. The pretrained

2D networks use a learning rate 100 times smaller than the rest of the model.

We use random rotation and jittering for point clouds, random horizontal flip

and color jittering for images, and featurewise jittering for descriptors of the
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viewing conditions.

For more details on the implementation, we refer the reader to our provided

code.

D-5 S3DIS Adjustment

We adjusted some room and image positions in S3DIS [13] and https:

//github.com/alexsax/2D-3D-Semantics to recover mappings between

points and equirectangular images. More specifically, we rotate hallway_11

from Area_2 and hallway_6 from Area_5 by 180° around the Z-axis, and we

shift and rotate all images in Area_5b by the same manually-found corrective

offset and angle. These fixes are all available in our repository.

D-6 Detailed Results

We report in Table D-1, Table D-2, and Table D-3 the class-wise perfor-

mance across all datasets. We see a clear improvement for indoor datasets

for classes such as windows, boards, and pictures. These are expected results

because these classes are hard to parse in 3D but easily identified in 2D.

Besides, we can see that S3DIS’s classes such as beams, columns, chairs,

and tables also benefit from the contextual information provided by images.

For the KITTI-360 dataset, the multimodal model outperforms the 3D-only

baseline for all classes. We can see the benefit of image features on small

objects or underrepresented classes in 3D, such as traffic signs, persons, trucks,

motorcycles, and bicycles.

https://github.com/alexsax/2D-3D-Semantics
https://github.com/alexsax/2D-3D-Semantics
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Figure D-1 ś Interactive Visualization. We propose interactive visualizations of hybrid
2D/3D data along with predictions of our model. We also provide the code necessary to
create more such visualizations.
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Annexe E

Résumé Long en Français

Apprentissage Efficace sur Nuages de Points 3D
à Grande Échelle

E-1 Introduction

Figure E-1 ś Analyse de Scènes 3D à Grande Échelle. Nous développons des
méthodes pour l’analyse sémantique efficace de grands nuages de points 3D. Ici, nous
présentons les résultats de notre travail sur la segmentation panoptique, sur S3DIS [14].
Alors que la plupart des méthodes opèrent sur une pièce à la fois, la nôtre peut en considérer
des centaines. En particulier, nous atteignons l’état de l’art tout en traitant des bâtiments
de dizaines de millions de points en une seule inférence, sur un seul GPU, en seulement
7.4 secondes.

Cette thèse aborde l’analyse automatisée de scènes 3D, pouvant trouver

des applications dans des domaines tels que la surveillance de l’environnement

et la planification urbaine. Contrairement à la tendance actuelle consistant

207
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à entraîner des modèles 3D massifs avec d’énormes jeux de données, nous

préconisons des approches sobres et efficientes, adaptées aux chercheurs et pra-

ticiens disposant de ressources limitées. Les méthodes proposées sont conçues

pour traiter des scènes 3D étendues sans compromettre les performances, avec

une évaluation sur des jeux de données publics et un code open source pour la

reproductibilité. En résumé, cette thèse vise des solutions accessibles, efficaces

et respectueuses de l’environnement pour l’analyse de nuages de points 3D.

Dans ce chapitre introductif, nous situons d’abord cette thèse dans le

contexte de l’histoire récente de l’apprentissage profond en 3D. Ensuite, nous

exposons nos motivations pour travailler sur l’analyse efficace de grands

nuages de points 3D, ainsi que les défis correspondants à nos objectifs. Nous

présentons ensuite les principales contributions de cette thèse. Enfin, nous

résumons la structure du présent document.

Au cours de la dernière décennie, la recherche en apprentissage profond a

connu des avancées notables, passant par les réseaux neuronaux convolutifs à

l’adoption généralisée des architectures de type transformer et à la révolution

de l’apprentissage auto-supervisé. Le domaine a été marqué par la montée en

puissance de modèles toujours plus grands et par l’essor de l’apprentissage auto-

supervisé, mais ces avancées ont été principalement axées sur le traitement

du texte et de l’image. En parallèle, la vision par ordinateur 3D a évolué avec

l’explosion des données 3D et l’émergence d’architectures adaptées, bien que

les jeux de données annotés restent limités. Cette thèse se positionne dans

ce contexte, cherchant à développer des méthodes d’apprentissage profond

3D efficaces malgré des données moins abondantes et des ressources plus

modestes.

Cette thèse se concentre sur des méthodes efficaces pour analyser de grands

nuages de points 3D, notamment dans des domaines tels que la conduite

autonome et la gestion urbaine. Nous justifions cette approche en considération
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des tendances actuelles de l’apprentissage profond 3D, soulignant la nécessité

de l’efficacité face à la course à la taille des modèles. Pour guider notre travail,

nous proposons une typologie de cinq dimensions d’efficacité : mémoire,

calcul, matériel, données et travail humain. En résumé, notre objectif est de

développer des techniques d’apprentissage profond 3D efficientes pour traiter

efficacement les vastes scènes 3D du monde réel.

Les nuages de points offrent une représentation imparfaite des scènes 3D

en raison de l’absence de connectivité entre les points, entraînant des défis

tels que la perte de détails géométriques fins et des caractéristiques distinctes

selon les techniques d’acquisition. Pour surmonter ces défis, cette thèse se

concentre sur trois aspects clés : le raisonnement multiniveau efficace, la

fusion multimodale efficace et une mise en œuvre efficiente. Le raisonnement

multiniveau efficace repose sur une représentation de données hiérarchique

adaptative à la complexité géométrique de la scène. La fusion multimodale

efficace propose une méthode pour extraire et fusionner efficacement des

descripteurs à partir de nuages de points et d’images, sans dépendre d’une

acquisition spécifique ou de prétraitements coûteux. Enfin, une mise en

œuvre efficace est soulignée comme un aspect essentiel, nécessitant des efforts

d’ingénierie algorithmique pour surmonter les défis liés à la nature non

structurée et variante en taille des nuages de points 3D. Ces contributions

visent à relever les défis liés au traitement efficace des vastes scènes 3D du

monde réel.

Cette thèse propose deux contributions majeures pour l’analyse efficace

de scènes 3D à grande échelle. La première consiste en un modèle léger

pour l’analyse sémantique des nuages de points, surpassant les méthodes

existantes avec moins de paramètres et des temps plus rapides. La seconde

est une architecture capable d’extraire des informations à partir de nuages

de points 3D et d’images 2D de manière conjointe, avec une implémentation
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parcimonieuse et parallélisée. En résumé, ces contributions exploitent les

structures des nuages de points 3D et des données multimodales pour créer des

architectures d’apprentissage profond performantes, efficientes et évolutives.

Chapitre 2 : État de l’Art. Introduction aux principales familles de modèles

d’apprentissage profond 3D. Revue des stratégies existantes pour l’appren-

tissage profond efficace sur images et nuages de points. Présentation des

méthodes basées sur les superpoints pour le traitement 3D efficace et aperçu

des approches d’apprentissage multimodal avec les nuages de points.

Chapitre 3 : Segmentation Sémantique Efficace à Grande Echelle. Présen-

tation de notre architecture de transformer basée sur les superpoints pour

effectuer efficacement la segmentation sémantique de scènes 3D à grande

échelle. Cette méthode repose sur un algorithme rapide de partitionnement

des nuages de points en une structure hiérarchique de superpoints, ainsi que

sur un mécanisme d’auto-attention pour apprendre les relations entre les

superpoints à plusieurs échelles. Nous démontrons des performances de pointe

sur trois référentiels de segmentation sémantique 3D, avec jusqu’à 200× moins

de paramètres et jusqu’à 70× d’entraînement plus rapide par rapport aux

approches concurrentes.

Chapitre 4 : Segmentation Panoptique Efficace à Grande Echelle. Formulation

de la tâche de segmentation panoptique 3D comme un problème évolutif de

partitionnement de graphe, que peut traiter un petit modèle en se basant uni-

quement sur des objectifs locaux. Notre cadre contourne plusieurs limitations

des méthodes concurrentes et peut être étendu naturellement au paradigme

des superpoints présenté dans le Chapitre 3, permettant une mise à l’échelle

efficace vers des scènes 3D vastes. Nous atteignons des performances de pointe

sur quatre référentiels de segmentation panoptique 3D, démontrant l’efficacité
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de notre méthode à l’entraînement et à l’inférence.

Chapitre 5 : Apprentissage sur Nuages de Points et Images Arbitrairement

Localisées. Proposition d’une méthode d’agrégation multi-vues de bout en

bout pour la segmentation sémantique 3D à partir d’images et de nuages de

points. Nous atteignons des performances de pointe sur deux référentiels de

segmentation sémantique 3D sans nécessiter de colorisation des nuages de

points, de maillage ou de capteurs de profondeur : uniquement des nuages de

points, des images et leurs poses.

Chapitre 6 : Conclusion. Résumé des contributions de cette thèse et discussion

des orientations futures pour la vision informatique 3D efficace.

E-2 État de l’Art

Nos contributions pour le traitement efficace de grands nuages de points

s’appuient sur diverses parties de la littérature détaillées dans ce chapitre.

Nous présentons ici les principales familles de modèles d’apprentissage profond

3D et examinons les stratégies existantes pour l’apprentissage profond efficace,

en mettant l’accent sur les méthodes spécifiques aux nuages de points. Nous

développons également des directions de recherche basées sur les superpoints,

qui ont inspiré notre travail dans les chapitres Chapitre 3 et Chapitre 4.

Enfin, nous présentons un aperçu des approches liées au cadre d’apprentissage

multimodal proposé dans le chapitre Chapitre 5.

Les architectures d’apprentissage profond 3D peuvent être largement caté-

gorisées selon la représentation des données sur laquelle elles opèrent : basées

sur des voxels, sur des images et sur des points. Les méthodes basées sur des

images projettent des nuages de points 3D en plusieurs vues 2D, exploitant

la vision informatique 2D pour analyser la scène. Les méthodes basées sur



212 ANNEXE E. RÉSUMÉ LONG EN FRANÇAIS

(a) Nuage de Points (b) Multi-Vues

(c) Voxel (d) Ensemble

(e) Convolution (f) Graphe

(g) Transformer (h) Superpoint

Figure E-2 ś Méthodes d’apprentissage profond 3D. Une variété de méthodes ont
été proposées pour extraire des descripteurs à partir de nuages de points E-2a. Certaines
approches éliminent des informations en rendant des vues 2D des points E-2b, ou en
discrétisant le nuage dans une grille de voxels E-2c. D’autres méthodes opèrent directement
sur des ensembles non ordonnés de points E-2d, ou généralisent les convolutions discrètes
2D à l’espace continu 3D E-2e. D’autres alternatives utilisent des réseaux neuronaux
graphiques E-2f ou des transformers E-2g pour raisonner sur un voisinage local. Étroitement
liées à notre travail, les approches basées sur les superpoints E-2h raisonnent sur une
partition de la scène.

des voxels convertissent les nuages de points 3D en grilles de voxels 3D. Les

méthodes basées sur des points opèrent directement sur le nuage de points sans

perte d’information explicite par discrétisation ou projection. Ces méthodes

peuvent être divisées en méthodes basées sur des ensembles, des convolutions,

des graphes, des transformers et des superpoints. Dans cette thèse, nous

proposons des méthodes à l’intersection de ces catégories, avec un modèle
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efficace et scalable héritant des méthodes de transformers et de superpoints,

et une approche d’apprentissage multimodal 2D-3D inspirée des approches

basées sur des images et des voxels.

L’analyse efficace des nuages de points 3D est essentielle compte tenu de

la taille considérable de certains scans 3D. Elle présente d’abord une vue

d’ensemble des directions de recherche pour l’apprentissage profond efficace,

couvrant la compression, l’entraînement, l’automatisation, l’implémentation et

l’architecture. Les stratégies incluent la compression pour réduire la taille des

réseaux neuronaux, l’optimisation des processus d’entraînement, l’automatisa-

tion de la recherche d’hyperparamètres, des mises en œuvre plus efficaces, et la

conception de nouveaux blocs de construction. En ce qui concerne l’efficacité

des nuages de points 3D, plusieurs architectures sont explorées, telles que

PointNet, RandLANet, et PointNeXt, montrant des performances rapides et

des analyses 3D efficaces. Des représentations de données efficaces, comme les

convolutions sur grilles de voxels épars, sont également étudiées pour réduire

l’empreinte mémoire des modèles tout en conservant une résolution élevée.

Cependant, les méthodes basées sur des superpoints, exploitant la similarité

locale des nuages de points denses, permettent une réduction significative de

l’entrée, assurant une efficacité inégalée.

Les superpixels, appliqués aux images, sont utilisés pour simplifier la dé-

tection d’objets et la segmentation sémantique. De manière similaire, les

superpoints, appliqués aux nuages de points 3D, sont efficaces pour l’over-

ségmentation et la segmentation sémantique. Les méthodes basées sur les

superpoints peuvent être de type regroupement ou graphiques, s’adaptant à la

géométrie 3D sans hypothèses sur le nombre de superpoints. Pour la segmenta-

tion sémantique, SPG utilise des convolutions graphiques pour apprendre les

relations entre les superpoints. Les partitions hiérarchiques dans le Chapitre 3

sont adaptatives à la géométrie locale, permettant une modélisation précise
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des interactions entre les objets. Pour la segmentation panoptique dans le Cha-

pitre 4, notre approche utilise un regroupement graphique rapide, améliorant

ainsi l’efficacité et la scalabilité par rapport aux méthodes existantes.

Dans le Chapitre 5, notre méthode propose d’apprendre à agréger des

informations à partir de vues arbitrairement orientées du même objet 3D,

en fonction de leurs conditions d’observation. Des méthodes utilisant des

mécanismes d’attention pour apprendre des représentations multimodales

ont été étudiées, notamment pour fusionner des informations textuelles et

visuelles, ainsi que des vidéos. Certains travaux récents montrent la pertinence

de l’utilisation de l’attention pour fusionner des modalités, comme celui de Li

et al., qui fusionne la sémantique 2D et l’occupation 3D pour la complétion

de scène. Dans le domaine de l’analyse de scènes 2D/3D avec l’apprentissage

profond, des réseaux dédiés à la modalité 3D ont atteint des performances

impressionnantes, mais nécessitent souvent une profondeur réelle pour chaque

pixel, ce qui limite leur applicabilité dans des environnements réels. Notre

travail dans le Chapitre 5 présente la première approche multimodale de bout

en bout qui apprend à agréger des informations multi-vues en fonction des

conditions d’observation.

E-3 Segmentation Sémantique Efficace à Grande Echelle

Nous introduisons une nouvelle architecture novatrice de transformer basée

sur les superpoints pour une segmentation sémantique efficace de vastes

scènes 3D. Notre méthode intègre un algorithme rapide pour partitionner les

nuages de points en une structure hiérarchique de superpoints, rendant notre

prétraitement 7 fois plus rapide que les approches existantes basées sur les

superpoints. De plus, nous exploitons un mécanisme d’auto-attention pour

capturer les relations entre les superpoints à plusieurs échelles, conduisant à

des performances de pointe sur trois jeux de données de référence difficiles :
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Figure E-3 ś Taille du modèle vs Performance. Nous visualisons les performances de
différentes méthodes sur S3DIS (validation croisée) en relation avec leur taille de modèle en
échelle logarithmique. La superőcie des marqueurs indique le temps GPU nécessaire pour
l’entraînement sur un seul fold. Notre méthode proposée Superpoint Transformer (SPT)
atteint l’état de l’art avec une réduction allant jusqu’à 200 fois de la taille du modèle et 70
fois du temps d’entraînement (en heures GPU) par rapport aux méthodes récentes. Le
modèle encore plus petit, SPT-nano, atteint des performances correctes avec seulement
26k paramètres.

S3DIS (76.0% mIoU, validation 6-fold), KITTI-360 (63.5% sur Val) et DALES

(79.6%). Avec seulement 212k paramètres, notre approche est jusqu’à 200

fois plus compacte que d’autres modèles de pointe tout en maintenant des

performances similaires. De plus, notre modèle peut être entrainé sur un seul

GPU en 3 heures pour un fold de S3DIS, nécessitant de 7 à 70 fois moins

d’heures GPU que les méthodes les plus performantes. Notre code et nos

poids sont accessibles sur https://github.com/drprojects/superpoint_

transformer.

https://github.com/drprojects/superpoint_transformer
https://github.com/drprojects/superpoint_transformer


216 ANNEXE E. RÉSUMÉ LONG EN FRANÇAIS

E-4 Segmentation Panoptique Efficace à Grande Echelle

Figure E-4 ś Segmentation Panoptique à Grande Échelle. Nous présentons les
résultats de SuperCluster pour l’ensemble de la Zone 5 de S3DIS [14] (plafond supprimé
pour la visualisation) avec 9.2 millions de points (78 millions avant sous-échantillonnage)
et 1863 objets łthings". Notre modèle peut traiter une telle scène en une seule inférence
sur un seul GPU V100-32GB en 3.3 secondes et atteindre un PQ de pointe de 46.3.

Nous présentons une méthode hautement efficace pour la segmentation

panoptique de vastes nuages de points 3D en redéfinissant cette tâche comme

un problème de regroupement de graphes scalable. Cette approche peut être

entrainée en n’utilisant que des tâches auxiliaires locales, éliminant ainsi l’étape

coûteuse en ressources d’appariement d’instances pendant l’entraînement.

De plus, notre formulation peut facilement être adaptée au paradigme des

superpoints, augmentant encore son efficacité. Cela permet à notre modèle

de traiter des scènes avec des millions de points et des milliers d’objets

en une seule inférence. Notre méthode, appelée SuperCluster, atteint une
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nouvelle performance de pointe en segmentation panoptique pour deux jeux de

données de scènes d’intérieure : 46,3 PQ (+4.0) pour S3DIS Area 5 et 54,5 PQ

(+21.0) pour ScanNetV2. Nous établissons également la première performance

de pointe pour deux benchmarks de cartographie mobile à grande échelle :

KITTI-360 et DALES. Avec seulement 209 000 paramètres, notre modèle est

plus de 30 fois plus petit que la meilleure méthode concurrente et s’entraîne

jusqu’à 15 fois plus rapidement. Notre code et nos modèles pré-entraînés sont

disponibles sur github.com/drprojects/super_cluster.

E-5 Apprentissage sur Nuages de Points et Images Ar-

bitrairement Localisées

Des travaux récents sur la segmentation sémantique 3D proposent d’exploi-

ter la synergie entre images et nuages de points en traitant chaque modalité

avec un réseau dédié et en projetant les descripteurs 2D apprises sur les

points 3D. Fusionner d’importants nuages de points et des images soulève

plusieurs défis, tels que la construction d’une correspondance entre points

et pixels et l’agrégation de descripteurs entre plusieurs vues. Les méthodes

actuelles nécessitent une reconstruction de maillage ou des capteurs spécialisés

pour récupérer les occultations et utilisent des heuristiques pour sélectionner

et agréger les images disponibles. En revanche, nous proposons un modèle

d’agrégation multi-vues entraînable de bout en bout exploitant les conditions

de vision des points 3D pour fusionner les descripteurs d’images prises à

des positions arbitraires. Notre méthode peut combiner des réseaux 2D et

3D standard et surpasse à la fois les modèles 3D opérant sur des nuages de

points colorisés et les réseaux hybrides 2D/3D sans nécessiter de colorisa-

tion, de maillages ou de cartes de profondeur réelles. Nous établissons une

nouvelle référence en segmentation sémantique intérieure/extérieure à grande

github.com/drprojects/super_cluster
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Figure E-5 ś Fusion Multimodale et Multi-vues. Nous proposons de fusionner les
informations complémentaires entre les nuages de points et un ensemble d’images localisées.
En utilisant un modèle de visibilité simple, nous pouvons projeter les descripteurs 2D sur
les points 3D et utiliser les conditions de visualisation pour sélectionner les descripteurs des
images les plus pertinentes. Nous représentons les images à leur position avec le symbole
et colorons les points 3D en fonction de l’image dans laquelle ils sont vus.

échelle sur S3DIS (74.7 mIoU en validation croisée) et sur KITTI-360 (58.3

mIoU). Notre pipeline complet nécessite uniquement des scans 3D bruts et

un ensemble d’images et de poses. Notre code est accessible publiquement sur

https://github.com/drprojects/DeepViewAgg.

E-6 Conclusion

Ce chapitre de conclusion récapitule nos contributions, avant d’esquisser les

orientations de recherche futures que nous identifions comme prometteuses.

Cette thèse apporte des contributions significatives à la vision par ordina-

teur 3D, avec trois méthodes novatrices :

https://github.com/drprojects/DeepViewAgg
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Chapitre 3 : Segmentation Sémantique Efficace à Grande Echelle. Une ap-

proche efficiente pour la segmentation sémantique 3D, combinant superpoints

et transformers, surpassant les méthodes concurrentes en performances tout

en étant beaucoup plus compacte et rapide à entraîner.

Chapitre 4 : Segmentation Panoptique Efficace à Grande Echelle. Une formu-

lation novatrice de la segmentation panoptique 3D comme un problème de

partitionnement de graphe, avec un modèle léger (SuperCluster) atteignant

des performances de pointe et capable de traiter de grandes scènes sur un

seul GPU.

Chapitre 5 : Apprentissage sur Nuages de Points et Images Arbitrairement

Localisées. Une méthode d’agrégation multi-vue pour la segmentation sé-

mantique 3D à partir d’images et de nuages de points, dépassant les méthodes

existantes sans nécessiter de colorisation ou de maillage des nuages de points.

Ces travaux ouvrent des perspectives pour des recherches futures dans le

domaine de la vision 3D.

Apprentissage basé sur les superpoints.

— Expressivité du modèle : Pour améliorer l’expressivité de SPT, l’utili-

sation d’un encodeur de points plus expressif inspiré de KPConv ou

MinkowskiNet est envisagée.

— Tokenisation des nuages de points : La partition des nuages de points

en primitives géométriquement homogènes pourrait devenir une étape

de prétraitement standard, similaire à la tokenisation pour le traitement

du langage naturel.

— Partition apprenable : L’apprentissage de la partition en temps réel est

envisagé, bien que la non-différentiabilité de l’étape de partition actuelle

soit un défi.
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— Raisonnement Super-X : L’extension du cadre à d’autres modalités,

comme les images, est suggérée, ouvrant la voie à des adaptations pour

des modalités multiples.

Apprentissage Multimodal 2D-3D.

— Aggrégation multi-vue multi-capteurs : L’adaptation de DeepViewAgg

pour tenir compte de plusieurs capteurs d’image avec des propriétés

optiques différentes est suggérée.

— Ajout de modalités : L’extension de DeepViewAgg à d’autres modalités

complémentaires est proposée, telles que les capteurs radar, les cartes

HD, les images de rue et les images satellite.

— Mapping robuste 2D-3D : L’intégration de la temporalité pour prendre

en compte les mouvements d’objets et la robustesse aux erreurs de

paramètres de la caméra est recommandée.

— Apprentissage multimodal Super-X : La combinaison des paradigmes

Super-X et multimodal offre des possibilités intéressantes pour l’ap-

prentissage auto-supervisé à grande échelle et l’adaptation naturelle à

d’autres modalités.

En résumé, ces perspectives suggèrent des directions prometteuses pour

de futurs développements en vision par ordinateur 3D et en apprentissage

multimodal.
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