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CERI Systèmes numériques
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Abstract

The ever increasing number of communicating devices as well as the enormous growth of high

data rate applications are driving the transition to future generation of wireless networks.

As such, many challenges arise in terms of users’ connectivity, energy- and spectral-efficiency

as well as managing the interference. To tackle such challenges in multi-user wireless net-

works, the aim of this HDR thesis is to study the interaction between information theory and

optimization.

Many investigations showed that in heterogeneous and multi-user networks, the interfer-

ence exhibits an impulsive nature, which is not encompassed by the Gaussian model. In the

first part of this HDR thesis, we focus on approximating the resulting non-linear log-likelihood

ratios (LLR) using an information-theory based criterion. Since sending pilots decreases the

useful data rate, we propose an unsupervised LLR estimation in both the asymptotic and the

short blocklength regime, without requiring any prior on the input and noise distribution.

Our proposed LLR estimation method, numerically evaluated using LDPC codes, was shown

to be able to cope with various noise models.

In the second part of this HDR thesis, we focus on resource optimization for cooperative

multi-user communications, where we first derive the achievable rate regions of the considered

networks. On the one hand, we investigate a backscatter enhanced multi-user downlink non

orthogonal multiple access (NOMA) transmission, whose energy-efficiency is maximized under

user minimum quality of service (QoS) constraints. For this, we consider both the perfect

channel state information (CSI) case and the other extreme case, where no CSI is available

at the transmitter side and for which this lack of knowledge is compensated by the use of

reinforcement learning. On the other hand, we study a relay-aided cognitive radio network,

where the opportunistic achievable rate is maximized under a primary QoS constraint. While

under NOMA the optimal resource allocation policy was derived in closed-form in the perfect

CSI case, deep learning techniques were used in the cooperative cognitive network because

the non-linear relay operations rendered the optimization problem non-convex and difficult

to solve.

The HDR thesis is concluded by discussing some open and future research directions.
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Résumé

Le nombre toujours croissant de dispositifs communicants ainsi que l’augmentation sans

précédent des applications à haut débit entrâınent la transition vers la future génération de

réseaux sans fil. Ainsi, de nombreux défis se posent en termes de connectivité des utilisateurs,

d’efficacité énergétique et spectrale ainsi que de gestion des interférences. Pour relever ces

défis dans les réseaux sans fil multi-utilisateurs, l’objectif de cette thèse d’HDR est d’étudier

l’interaction entre la théorie de l’information et l’optimisation.

De nombreux travaux de recherche ont montré que, dans des réseaux hétérogènes et multi-

utilisateurs, l’interférence présente une nature impulsive qui n’est pas prise en compte par le

modèle Gaussien. Dans la première partie de cette thèse d’HDR, nous nous concentrons sur

l’approximation des rapports de log-vraisemblance (LLR) non linéaires résultants en utilisant

un critère basé sur la théorie de l’information. Puisque l’envoi de pilotes diminue le débit

de données utiles, nous proposons une estimation non supervisée des LLRs dans le régime

asymptotique et pour des blocs de taille finie, sans hypothèses a priori sur l’entrée du canal

et la distribution du bruit. La méthode d’estimation du LLR que nous proposons, évaluée

numériquement à l’aide de codes LDPC, est capable de faire face à divers modèles de bruit.

Dans la deuxième partie de cette thèse d’HDR, nous nous concentrons sur l’optimisation

des ressources pour les communications multi-utilisateurs coopératives, où nous dérivons

d’abord les régions de débit atteignable pour les réseaux considérés. D’une part, nous étudions

une transmission multi-utilisateurs descendante à accès multiple non orthogonal (NOMA)

améliorée par rétrodiffusion, dont l’efficacité énergétique est maximisée sous des contraintes

de qualité de service (QoS) minimales par utilisateur. Pour cela, nous considérons à la fois

le cas d’une information parfaite sur l’état du canal (CSI) et l’autre cas extrême, où aucune

CSI n’est disponible du côté de l’émetteur et pour lequel ce manque de connaissance est

compensé par l’utilisation de l’apprentissage par renforcement. D’autre part, nous étudions

un réseau de radio cognitive assisté par un relais, où le débit atteignable opportuniste est

maximisé sous une contrainte de qualité de service primaire. Alors que sous NOMA, la

politique d’allocation optimale de ressources a été obtenue de façon analytique dans le cas

d’une CSI parfaite, des techniques d’apprentissage profond ont été utilisées dans le réseau

de radio cognitive coopératif car les opérations non linéaires du relais rendent le problème

d’optimisation non convexe et difficile à résoudre.

La thèse d’HDR est conclue en discutant de plusieurs axes de recherche ouverts pour de

futures investigations.
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Chapter1
Activity review

Following the previous brief Curriculum Vitae, this chapter is dedicated to a detailed review

of both the teaching and research activities, as well as the administrative and scientific

responsibilities, I have been leading as an Enseignante-Chercheuse in IMT (Institut Mines

Télécom) Nord Europe since September 2016. My research activities have been performed

within IEMN, UMR 8520 and partially supported by IRCICA, CNRS USR 3380 from Sept.

2016 to Feb. 2023, and performed within the Centre for Digital Systems (CERI SN) of IMT

Nord Europe since 2019.

1.1 Teaching activities

During my PhD, between October 2012 and September 2015, my teaching activities were given

in ENSEA (Ecole Nationale Supérieure de l’électronique et ses application, Cergy-Pontoise,

France). During these three years, I mainly taught TD (Travaux dirigés - tutorials) and

TP (Travaux pratiques - lab sessions) in digital signal processing, random processes, digital

communications and channel coding as well as proposing some new lectures on multimedia

compression. I also served as a referee for some internships. The total amount of taught

hours reached 192 hours (équivalent TD).

Since September 2016, my teaching activities were first given in the former Department

of Communication System of Télécom Lille, and then in the Centre for Digital Systems of

IMT Nord Europe.

IMT Nord Europe follows from the fusion of two former engineer schools, namely Télécom

Lille and Mines de Douai. Although some classes were given in Télécom Lille, all the material

has been updated for IMT Nord Europe since the teaching volume of a module changed

radically: all modules in IMT Nord Europe taught at the master level (M1 and M2) are

intensive 4 weeks-duration classes, which was not the case in Télécom Lille. Further, some

classes, especially in the electronic domain were removed from the training tracks proposed

in Télécom Lille.

IMT Nord Europe, and previously Télécom Lille, proposes two main training tracks: one

for apprentices, termed as FISA; and one for post-bac and post-CPGE students, termed

1



2 Chapter 1. Activity review

as FISE. Even if the names of some modules are the same in the two training tracks, the

contents are rather different: more practical interpretations and lab sessions are provided to

the apprentices students, at the price of a slightly lighter mathematical content.

Table 1.1 offers a concise summary of my teaching activities in terms of amount of hours,

student level and type: CM (Cours magistral - lecture), TD, TP. The students projects are

added to the TP of the corresponding course. The hours listed under ’Other’ correspond

to various modules and administrative responsibilities as well as internships and apprentices

supervision. Table 1.2 provides an overview of the taught subjects from 2020 to present:

2020 was the first year where only the new training tracks of IMT Nord Europe were taught,

whereas the training tracks of both Télécom Lille and IMT Nord Europe were taught simul-

taneously from 2017 to 2020. The corresponding module names are given in Table 1.3.

Year CM TD TP Other Total

2016 - 2017 61 66 44.5 25 196.5
2017 - 2018 67.5 42 48.5 25 183
2018 - 2019 94.5 35.5 31.5 70 231.5
2019 - 2020 110 14.5 55.5 88 268
2020 - 2021 117 27.5 47 93 284.5
2021 - 2022 ‡ 49.5 1.5 25 74 150
2022 - 2023 35.5 18 36.5 75 173

Total 535 205 288.5 450 1478.5

Table 1.1: Teaching at IMT Nord Europe from 2016 to present in nb hours (équivalent TD),
‡: maternity leave from August 2021 to January 2022

Subject Level Type Nb hours Percentage

Signal processing L3 FISE TD 4 1.2
Intro. to Telecommunications L3, FISE, FISA CM, TD, TP 97 29.2

Digital communication M1, FISE, FISA CM, TD, TP 101 30.4
Information theory M1 FISE CM, TP 112 33.8

Mobile communications M1, M2, FISE, FISA CM 18 5.4

Table 1.2: Subjects taught at IMT Nord Europe from 2020 to present in nb hours (équivalent
TD) under both the FISE and FISA status.

Subject Module Name Level

Signal processing Signal L3 FISE
Intro. to Telecommunications I-CNUM L3 FISE, FISA

Digital communication CNUM M1 FISE
Digital communication CNUM-A M1 FISA
Information theory CODES M1 FISE

Mobile communications MOBIL M1, M2, FISE FISA

Table 1.3: Classes names of the taught subjects at IMT Nord Europe from 2020 to present
under both the FISE and FISA status.

Tables 1.4 and 1.5 summarize my teaching activities in terms of modules in the former
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Télécom Lille and current IMT Nord Europe training tracks for the different levels under

FISE and FISA status respectively. Both tables also highlight the modules I am currently

coordinating (or coordinated for Télécom Lille), marked as (*), as well as the modules I have

created from scratch (in bold) or entirely changed (in italic). Note that after the fusion, my

teaching activities focused mainly on telecommunication (signal processing, digital and mobile

communications), whereas my implication in the electronics domain vanished, following the

suppression of the VHDL module.

Télécom Lille IMT Nord Europe

Analog Electronics L2

Signal and Communication L3 Signal L3
I-CNUM (*) L3

Digital Communication M1 CNUM M1
VHDL M1 CODES (*) M1

MOBIL M1, M2

Table 1.4: Taught classes in the former Télécom Lille and current IMT Nord Europe training
track for post-bac and post-CPGE (FISE) students. Courses marked as (*) correspond to
classes I am currently coordinating (or coordinated for Télécom Lille); courses in italic are
courses I have changed and entirely prepared; bold courses correspond to courses I have
created from scratch.

Télécom Lille IMT Nord Europe

I-CNUM (*) L3

CNUM-A (*) M1 CNUM-A M1

MOBIL M1, M2

Table 1.5: Taught classes in the former Télécom Lille and current IMT Nord Europe training
track for apprentice (FISA) students. Courses marked as (*) correspond to classes I am
currently coordinating (or coordinated for Télécom Lille); courses in italic are courses I have
changed and entirely prepared; bold courses correspond to courses I have created from scratch.

In the following, I briefly present the content of the taught classes within the IMT Nord

Europe training tracks.

Level: M1 FISE and M2 FISA

Content: Mobile communications, GSM, GPRS, EDGE, 3G, 4G, Application
with NEMO

Implication: I taught mainly the basis of GSM and GPRS (network equipment,
mobility, identities, physical layer).

MOBIL

Level: L3 FISE

Content: Digital signal processing, Fourier transform, random processes

Implication: I taught some TD (tutorials).

Signal
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1.1.1 Proposed Modules

Since September 2016, I have proposed and prepared from scratch the two following

modules (which did not exist):

Level: L3 FISE and FISA

Content: Information theory (entropy, mutual information, channel capacity),
Digital communication (baseband transmission, eye diagram and ISI, modulation),
Mobile communication (network equipment, security and mobility management)

Type:
FISE - CM (12 hours);
FISA - CM (12 hours), TD (3 hours), TP (9 hours)

Implication: I created this module from scratch. I am in charge of all lecture
slides and TDs, as well as the coordination (exam sheets and planning) since
2018. This class is also taught to the apprentices since 2021 with additional TPs
on image compression.

I-CNUM

Level: M1 FISE

Content: Information theory (entropy, mutual information, channel capacity
computation), Source coding (rate distortion theory, scalar and vector quantiza-
tion, Lloyd Max algorithm), Application to image and speech compression (JPEG,
Haar wavelet), Modern channel coding (convolutional codes, polar codes and
LDPC), Application to image transmission, Resource allocation (Water-filling,
Reinforcement learning)

Type: CM (33 hours), TP (22.5 hours), Project (28.5 hours)

Implication: I created this module from scratch. I am in charge of all lecture
slides, TDs, and TPs, as well as project subjects. I am coordinating this module
since 2019 (exam sheets and planning).

CODES

Further, I have also entirely changed and prepared the following, although

existed, two modules:

Level: M1 FISE

Content: Signal processing recap, Baseband communication, Digital modula-
tions, ISI, Error probability, Bandwidth, Bennett formula, Physical layer of GSM

Type: CM (33 hours), TD (10,5 hours), TP (6 hours), Project (13.5 hours)

Implication: Although existing in a former version within the Télécom Lille train-
ing track, I have entirely changed, jointly with C. Séguinot (IMT Nord Europe,
France), this class for IMT Nord Europe. We proposed new class slides, new TDs
and new TPs, as well as student projects. The coordination (exam sheets and
planning) of this module was shared with C. Séguinot from 2019 to 2022.

CNUM
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Level: M1 FISA

Content: Baseband transmission (Gray labeling, eye diagram and ISI, error prob-
ability), Analog modulation, Digital modulation (modulations, bandwidth, error
probability)

Type: CM (10,5 hours), TD (4.5 hours)

Implication: Although existing in a former version, I have entirely changed and
prepared this class when I arrived in 2016. I proposed new class slides and new
TDs. I have been coordinating (exam sheets and planning) this module from 2016
to 2022 (until its new version due to a major apprentices classes update).

CNUM-A

1.1.2 Module responsibilities

I have been in charge of organizing (exam sheets, grading, updating or creating the contents,

plannings) of the following modules:

• CNUM (jointly with C. Seguinot from 2020 to 2022)

• CODES (2019 to present)

• I-CNUM (2019 to present)

• CNUM-A (2016 to 2022)

I also coordinated (exam sheets, planning, inviting all external lecturers) the module

PMS (Models and Principles of security) in 2022 - 2023 after the leave of the Cybersecurity

professor previously in charge of this class.

1.2 Research activities

1.2.1 Summary and main research interests

My research activities as an Associate Professor (Enseignante-chercheuse) have been per-

formed at IEMN, UMR 8520 (Sept. 2016 to Feb. 2023) and IMT Nord Europe, CERI SN

(from 2019 to present), and partially supported by IRCICA, CNRS USR 3380, Lille, France

from Sept. 2016 to Feb. 2023. My research interests focus on information theory and multi-

user information theory and more precisely on channel coding aspects, resource optimization

in cooperative multi-user networks and physical layer security.

During my PhD, which was performed at ETIS lab (Equipes Traitement de l’Information

et Systèmes), UMR 8051, Cergy-Pontoise, France, under the direction of David Declercq and

the co-supervision of Claudio Weidmann, my research has focused on both source coding

with coded side information and deriving achievable rate regions for cooperative communi-

cations. Regarding the source coding part, my main contribution was to characterize the

fundamental Hamming-space Voronoi region of a convolutional code by the help of a finite

state machine and then to exploit the later to improve the decoding algorithm as well as to
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optimize the Low Density Parity Check (LDPC) code used [C1], [C2]. Regarding the cooper-

ative communication part, I focused on the Gaussian full-duplex relay channel with correlated

noises, the Gaussian full-duplex two-way relay channel with correlated noises and the Gaus-

sian multiway relay channel with direct link for which I derived both upper-bounds on the

capacity and lower-bounds achieved by Decode-and-Forward (DF), Compress-and-Forward

(CF), Amplify-and-Forward (AF), Compute-and-Forward or Compress/Decode-and-Forward

[C3], [C4], [J1].

Since my PhD, both the range of applications and exploited tools have diversified. Al-

though related to information theory, the main focus of my current research activity lies in

optimization, with tools ranging from convex optimization to machine learning techniques.

Here optimization can be either related to resource optimization in multi-user and cooper-

ative network, where the cooperation can be achieved with the help of a relay node or an

ambient backscatter node; or to information theory-based Log-Likelihood Ratio (LLR) es-

timation optimization when the additive noise exhibits an impulsive nature. Nonetheless,

a non-negligible part of my research activities remains related to channel coding, especially

polar or LDPC codes, and deriving achievable rate regions.

More precisely, since my PhD, I have been interested in the following issues and applica-

tions:

Channel coding and information theory

Under impulsive noise

• Publications: 1 journal [J3] and 5 international conferences [C5], [C7], [C9], [C10],
[C15]

• Collaborations: A. Goupil (Univ Reims, France), L. Clavier (IMT Nord Europe,
France), P. Mary (INSA Lyon, France), M. Egan (INSA Lyon, France), JM. Gorce
(INSA Lyon, France)

• Students: Y. Mestrah (PhD, 30% supervision), D. Anade (PhD), M. de Freitas (PhD)

• Supported by: ANR Arburst

Polar codes

• Publications: Publications: 1 journal [J7 sub] and 2 international conferences [C17],
[C18]

• Collaborations: P. Mary (INSA Rennes), JY. Baudais (INSA Rennes),

• Students: S. Gelincik (Post-doc)

• Supported by: ANR Arburst
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Physical layer security

• Publications: 1 journal [J2]

• Collaborations: M. Bloch (Georgia Institute of Technology, Atlanta, USA), G. Cervia
(IMT Nord Europe, France)

• Students: M. Tahmasbi (PhD), M. Alam (PhD, 40% supervision)

• Supported by: ANR Wise-Phy, Beyond5G

Resource optimization for cooperative networks

NOMA and ambient backscattering via convex optimization and online learning

• Publications: 2 journals [J5], [J6] and 4 international conferences [C11], [C13], [C14],
[C20]

• Collaborations: E. V. Belmega (ESIEE, France), R. de Lamare (PUC, Rio, Brazil)

• Students: H. El Hassani (PhD, 40% supervision)

• Supported by: ANR PRCI ELIOT

Cooperative cognitive networks via convex optimization and deep learning

• Publications: 1 journal [J4] and 5 international conferences [C16], [C19], [C12], [C8],
[C6]

• Collaborations: E. V. Belmega (ESIEE, France), R. Negrel (ESIEE, France), M. Bennis
(Univ. Oulu, Finland)

• Students: Y. Benatia (PhD, 40% supervision)

• Supported by: POTIONS, student mobility grant

1.2.2 Advising

Since 2016, my overall student advising activities (including the official advising percentages)

can be summarized as follows:

• Post-docs: 1 ongoing, 1 alumni

• PhD students: 2 ongoing (40%, 40%) and 2 defended (30%, 40%)

• M1 students: 4

• M2 students: 2

Ongoing PhD students

1) Miled Alam

Title: Secrecy energy efficient power allocation for multi-user NOMA transmissions
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Period: April 2022 - April 2025

Advising: 40% with G. Cervia (IMT Nord Europe, France, 50%), L. Clavier (IMT

Nord Europe, France, 5%, co-director) and S. Lecomte (IMT Nord Europe, France, 5%,

co-director)

Funding: 1/2 IMT Nord Europe, 1/2 Beyond 5G

2) Yacine Benatia

Title: Cooperation, optimization and AI for future communications: interplay between

model-based and data-driven approaches

Period: Oct. 2020 - Sept. 2023

Defense date: Expected in Sept./Oct. 2023

Advising: 40% with R. Negrel (ESIEE, France, 30%) and E. V. Belmega (ESIEE,

France, 30%, official director)

Funding: 1/2 IMT Nord Europe, 1/2 ED EM2PSI

Publications: [C16], [C19]

Defended PhD students

1) Hajar El Hassani

Title: Energy-efficient solutions for non-orthogonal multiple access systems aided by

ambient backscattering

Period: Oct. 2019 - Sept. 2022 + 6 months (COVID)

Defense date: 2nd December 2022

Jury: M. Wigger (Rewiever - Telecom Paris, France), R. Schober (Rewiever - FAU,

Germany), M. di Renzo (L2S, France), M. G. Di Benedetto (Univ Rome, Italy),

P. Mary (INSA Rennes, France), JM. Gorce (INSA Lyon, France), R. de Lamare (PUC,

Brazil)

Advising: 40% with E. V. Belmega (ESIEE, France, 60%, official director)

Funding: ANR PRCI ELIOT

Publications: [J5], [J6], [C11], [C13], [C14], [C20]

Current position: Post-doctoral researcher, L2S, France

2) Yasser Mestrah

Title: Robust communication systems with unknown noise distribution

Period: Oct. 2016 - Sept. 2019

Defense date: 16th December 2019

Jury: C. Poulliat (Reviewer - ENSEEIHT, France), P. Mary (Reviewer - INSA Rennes,

France), V. Vrabie (Univ Reims, France), E. Boutillon (UBS, France), M. Egan (INSA

Lyon, France)

Advising: 30% with A. Goupil (Univ. Reims, France, 50%) and L. Clavier (IMT Nord

Europe, France 20%, official director)

Funding: 1/2 Univ. Reim, 1/2 Télécom Lille

Publications: [J3], [C7], [C9], [C15]
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Current position: R&D engineer, Mitsubishi Eletric, Rennes, France

Ongoing Post-doc

1) Mariem Belhor

Title: Wireless attack localization

Period: July 2023 - August 2024

Collaborators: A. Fleury (IMT Nord Europe), V. Loscri (INRIA Lille), V. Deniau

(UGE Lille)

Funding: ANR ASTRID DEPOSIA

2) Sahar Masmoudi

Title: Characterization of sensor networks data

Period: October 2022 - December 2023

Collaborators: C. Garnier, V. Itier, S. Sauvage (IMT Nord Europe, France), P. Kaluzny

(TERA, Marseille, France)

Funding: Plan de relance

Alumni Post-doc

1) Samet Gelincik

Title: Channel coding for finite block-length

Period: March 2020 - March 2022

Collaborators: P. Mary and JY. Baudais (INSA Rennes, France)

Funding: ANR Arburst

Publications: [J7 sub], [C17], [C18]

Current position: Post-doctoral researcher, Eurecom, France

M1 students:

1) Mohammed Achbouk, Summer 2023 - Processing of data measured by pollution sensors

using deep learning

2) Stephen Somsack, Summer 2020 - Machine learning for communications

3) Mengxuan Li, Summer 2017 - Spiking neuron - Performance of an IF detector

4) Haoyang Zheng, Summer 2017 - Spiking neuron - Sequence recognition

M2 students:

1) Birhanu Samuel, Nov. 2018-Feb. 2019 - Spiking neuron - LIF

2) Ashenafi Fekede Haile, Nov. 2018-Feb. 2019 - Spiking neuron - LIF

1.2.3 Research projects

Since 2016, I have participated to the following research projects:
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• PEPR 5G: 2022 - 2027 (Member)

Consortium: CNRS, CEA, IMT

Co-PI of PC7 WP1.4 Backscattering communications;

Member of PC6 WP3.2 AI for energy-efficient resource management in highly mobile

and non-stochastic IoT networks

Funding: 2 PhD students to be hired (expected start: Oct. 2023, Oct. 2024)

• Plan de relance: Oct. 2022 - Dec. 2023 (Member)

Consortium: IMT Nord Europe, TERA environement

Characterization of sensor networks data

Funding: Post-doctoral researcher S. Masmoudi

• ANR ASTRID DEPOSIA: Dec. 2021 - Dec. 2024 (Member)

Consortium: UGE, IMT Nord Europe, INRIA, INODESIGN Group, MC2 Technologies

Member of WP5 Data analysis and AI for detection and geolocation of outdoor attacks

Funding: Post-doctoral researcher M. Belhor

• France Relance Beyond 5G: 2021 - 2024 (Member)

Consortium: Thalès, Ericson, IMT, Eurecom

Member of WP2 Access layer and physical layer techniques for massive access in B5G

networks

Funding: PhD M. Alam (1/2 Beyond 5G, 1/2 IMT Nord Europe)

• ANR U-Wake: 2021 - 2024 (Member)

PI: L. Clavier (IMT Nord Europe, France)

Member of WP1 Prerequisites: Energy harvesting and signal detection

Consortium: IEMN, INSA Lyon, IRISA

• ANR Arburst: 2016 - 2020 (Member)

PI: JM. Gorce (INSA Lyon, France)

Consortium: INSA Lyon, INSA Rennes, IMT Nord Europe

Funding: Post-doctoral researcher S. Gelincik

Since 2016, I also lead as Principal investigator several projects.

2020 - 2023 POTIONS - Cooperation, optimization and artificial intelligence

for future communications: interplay between model-based and

data-driven approaches

Funding: PhD Y. Benatia (1/2 IMT Nord Europe, 1/2 ED

EM2PSI, Cergy-Pontoise)

2016 - 2018 IRCICA internal call

Funding: B. Samuel, A. Fekede Haile, M. Li and H. Zheng (M.Sc.)

2019 - 2020 IMT Nord Europe internal call

Funding: S. Somsack (M.Sc.)
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1.2.4 Collaborations

International collaborations

Rodrigo de Lamare, PUC-Rio, Brazil

Supported by: ANR PRCI ELIOT

Publications: [J6], [C14], [C20]

Matthieu Bloch, Georgia Institute of Technology, Atlanta, USA

Supported by: ANR Wise-Phy

Publications: [J2]

Mehdi Bennis, Univ. Oulu, Finland

Supported by: mobility grant CY and GdR ISIS for Y. Benatia

National collaborations

Jean-Yves Baudais, INSA Rennes

Supported by: ANR Arburst

Publications: [J7 sub], [C17], [C18]

E. Veronica Belmega, ESIEE

Supported by: POTIONS, ANR PRCI ELIOT

Publications: [J5], [J6], [J4], [C11], [C13], [C14], [C20], [C16], [C19], [C12], [C8], [NC10]

Virginie Deniau, UGE Lille

Supported by: ANR ASTRID DEPOSIA

Malcolm Egan, INSA Lyon

Supported by: ANR Arburst

Publications: [C5], [C10], [C15]

Jean-Marie Gorce, INSA Lyon

Supported by: ANR Arburst

Publications: [C5], [C10], [C15]

Alban Goupil, Univ. Reims

Publications: [J3],[C7], [C9], [C15]

Valeria Loscri, INRIA Lille

Supported by: ANR ASTRID DEPOSIA

Philippe Mary, INSA Rennes

Supported by: ANR Arburst

Publications: [J7 sub], [C15], [C17], [C18]

Romain Negrel, ESIEE

Supported by: POTIONS

Publications: [C16], [C19]
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Local collaborations

Giulia Cervia

Supported by: B5G

Laurent Clavier

Supported by: ANR Arburst, ANR U-wake

Publications: [J3],[C7], [C9], [C15], [C6]

Anthony Fleury

Supported by: ANR ASTRID DEPOSIA

Christelle Garnier

Supported by: Plan de relance

Vincent Itier

Supported by: Plan de relance

Stéphane Sauvage

Supported by: Plan de relance

1.2.5 International stays

• Georgia Institute of Technologies, Atlanta, USA

Duration: Post-doc in 2015-2016

• TUM, Munich, Germany

Duration: 3 months in 2014

1.3 Scientific and collective responsibilities

1.3.1 Scientific responsibilities

Editorial activity

From January 2020 to February 2023, I served as Executive Editor for the Transactions

on Emerging Telecommunications Technologies (ETT), for which I handled 20 papers as an

Editor.

Since February 2023, I serve as Editor in Area 2: Network Optimization and Resource

Management for the IEEE Transactions on Machine Learning in Communications and Net-

working.

Conference and seminar organization, session chairing

• Workshop RAWNET, WiOPT 2023 - jointly with S. Lasaulce, S. Perlaza, V. Y. F. Tan,

C. Zhang
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• Session chair of the Session ’Machine Learning & Data analytics’ at EAI ValueTools

2019

• Volunteer in the local organization team (gift bags, welcoming participants, technical

support, ...) of GRETSI 2019, Lille, France

• GdR ISIS meeting ’Methods and mathematical tools for IoT network modeling’, jointly

organized with P. Mary (INSA Lyon, France) and C. Goursaud (INSA Lyon, France),

France, Nov. 2017

• Organization of 5 seminars at IRCICA, CNRS USR 3380, Lille, France

Research project expert

French ANR - phase 2: 2023, 2022

National responsibilities

• Invited speaker to the Table ronde ’Some advice for young female researchers in signal

processing’, GRETSI, Nancy, France, Sep. 2022

• Invited talks: ETIS, Cergy-Pontoise, France (4); IMS Bordeaux, France (1); INSA

Lyon, France (1); Cristal, Lille, France (1); Télécom Lille, France (1); Télécom Paris,

France (1); Télécom Bretagne, France (1); LNT Munich, Germany (1); Workshop

IWITC, IEMN, Lille, France (1); Webinar IMT, online (1)

Local responsibilities

• Since Dec. 2022, I am an elected member of the CSAS (former CST) of IMT Nord

Europe.

• Since 2021, I am an elected member (Associated Professor representative) of the Comité

de Pilotage (COPIL) of the Centre for Digital System, IMT Nord Europe. This com-

mittee addresses all the strategical and budget aspects of the Centre of Digital System

of IMT Nord Europe.

• Since 2017, I am an elected member of the Commission de Qualification pour Promotion

et Changement d’Appellation of IMT Nord Europe. This committee is in charge of

studying the possibility of an internal promotion at IMT Nord Europe.

Technical Program Committees (TPC)

• IEEE EuCNC 2023, 2022, 2021, 2020, 2019

• IEEE SPAWC 2023, 2022, 2019

• WiOpt 2023 Workshop Rawnet
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• IEEE WCNC 2019 Workshop MoTION

Reviewing

• International journals: IEEE Internet of Things Magazine, IEEE Transactions on In-

formation Forensics and Security, IEEE Communications letters, IEEE Signal Pro-

cessing Letters, IEEE Transactions on Communications, Transactions on Emerging

Telecommunications Technologies, EURASIP Journal on Wireless Communications &

Networking, International Journal of Communication Systems, Computers & Security

• International conferences: IEEE ISIT 2023; IEEE SSP 2021; IEEE EuCNC 2023,

2022, 2021, 2020, 2019; IEEE SPAWC 2022, 2019; IEEE ITW 2019; IEEE ISTC

2018; IEEE PIMRC 2021, 2018; IEEE WCNC 2018, 2017; IEEE Globecom 2016;

IEEE ICC 2016; IEEE VTC-Fall 2015; NCC 2021

1.3.2 Collective and pedagogical responsibilities at IMT Nord Europe

• Since 2019, I have been in charge Telecom-oriented internship content validation.

• Oct. 13rd, 2020 - Examiner of the VAE (Validation des acquis de l’expérience - accred-

itation of prior experiential learning) jury of Xavier Foin, IMT Nord Europe, France.

• Since 2016, I have been the referee of several engineer internships as well as apprentices.

• Since 2016, I have participated to various apprentices and AST (Admis sur titre) selec-

tion jury.

• Participation to the Open Door Days.

1.4 Personal bibliography

1.4.1 Bibliometry

Since the beginning of my PhD in 2012, my research activities lead to the following publica-

tions:

• Peer-reviewed international journals: 6 + 1 submitted

• Peer-reviewed international conferences: 20

• National conferences: 10 + 1 submitted

In the following, all PhD students and Post-doc researchers are underlined.
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1.4.2 Peer-reviewed international journal papers

Post-PhD: 5 + 1 submitted

[J8 prep] Y. Benatia, A. Savard, R. Negrel, E. V. Belmega, “Robust DNN for power allo-

cation problems in cognitive relay networks”, in preparation, Feb. 2023

[J7 sub] S. Gelincik, P. Mary, A. Savard, J-Y. Baudais, “A Pre-Transformation Method to

Increase the Minimum Distance of Polar-Like Codes”, submitted to IEEE Transactions on

Communications, major revision

[J6] H. El Hassani, A. Savard, E. V. Belmega, R. de Lamare, “Multi-user downlink NOMA

systems aided by an ambient backscatter device: achievable rate region and energy-efficiency

maximization”, IEEE Transactions on Green Communications and Networking, accepted,

March 2023

[J5] H. El Hassani, A. Savard, E. V. Belmega, “Adaptive NOMA in time-varying wireless

networks with no CSIT/CDIT relying on a 1-bit feedback”, IEEE Wireless Communications

Letters, Vol. 10, No. 4, April 2021, pp. 750-754

[J4] A. Savard, E. V. Belmega, “Full-duplex Relaying for Opportunistic Spectrum Access

under an Overall Power Constraint ”, IEEE Access, Vol. 8, 2020, pp. 168262 - 168272

[J3] Y. Mestrah, A. Savard, A. Goupil, G. Gellé, L. Clavier, “An Unsupervised LLR Esti-

mation with unknown Noise Distribution”, EURASIP Journal on Wireless Communications

and Networking, Springer Open, 2020, 26, pp. 1 - 11.

[J2] M. Tahmasbi, A. Savard, M. R. Bloch, “Covert Capacity of Non-Coherent Rayleigh-

Fading Channels”, IEEE Transactions on Information Theory, Vol. 66, No. 4, April 2020,

pp. 1979-2005

PhD: 1

[J1] A. Savard, C. Weidmann, “On the Gaussian multiway relay channel with intra-cluster

links”, EURASIP Journal on Wireless Communications and Networking, Springer Open,

2016, 52, pp. 1 - 17.

1.4.3 Peer-reviewed international conference papers

Post-PhD: 16

[C20] H. El Hassani, A. Savard, E. V. Belmega, R. de Lamare, “Energy-Efficient Solutions

in Two-user Downlink NOMA Systems Aided by Ambient Backscattering”, IEEE Globecom,

Rio de Janeiro, Brazil, 2022

[C19] Y. Benatia, R. Negrel, A. Savard, E. V. Belmega, “Robustness to imperfect CSI of

power allocation policies in cognitive relay networks”, IEEE SPAWC, Oulu, Finland, 2022



16 Chapter 1. Activity review

[C18] S. Gelincik, P. Mary, A. Savard, J-Y. Baudais, “Preserving the Minimum Distance

of Polar-Like Codes While Increasing the Information Length”, IEEE ISIT, Espoo, Finland,

2022

[C17] S. Gelincik, P. Mary, J-Y. Baudais, A. Savard, “Achieving PAC Code Performance

with SCL Decoding without Extra Computational Complexity”, IEEE ICC, Seoul, South

Korea, 2022

[C16] Y. Benatia, A. Savard, R. Negrel, E. V. Belmega, “Unsupervised deep learning to

solve power allocation problems in cognitive relay networks”, IEEE ICC Wokshop, Seoul,

South Korea, 2022

[C15] Y. Mestrah, D. Anade, A. Savard, A. Goupil, M. Egan, P. Mary, JM. Gorce, L.

Clavier, “Unsupervised Log-Likelihood Ratio Parameter Estimation for Short LDPC Packets

in Impulsive Noise”, IEEE WCNC, Austin, USA, 2022

[C14] H. El Hassani, A. Savard, E. V. Belmega, R. de Lamare, “Energy-efficient Cooperative

Backscattering Closed-Form Solution for NOMA”, IEEE Globecom, Madrid, Spain, 2021

[C13] H. El Hassani, A. Savard, E. V. Belmega, “Energy-efficient 1-bit feedback NOMA in

wireless networks with no CSIT/CDIT”, IEEE SSP workshop, Rio de Janeiro, Brazil, 2021

[C12] A. Savard, E. V. Belmega, “Optimal power allocation policies in multi-hop cognitive

radio networks”, IEEE PIMRC, London, UK, 2020

[C11] H. El Hassani, A. Savard, E. V. Belmega, “A closed-form solution for energy-efficiency

optimization in multi-user downlink NOMA”, IEEE PIMRC, London, UK, 2020

[C10] M. de Freitas, M. Egan, L. Clavier, A. Savard, JM. Gorce, “Power Control in Parallel

Symmetric α-Stable Noise Channels”, IEEE SPAWC, Cannes, France, 2019

[C9] Y. Mestrah, A. Savard, A. Goupil, G. Gellé, L. Clavier, “Robust and Simple Log-

Likelihood Approximation for Receiver Design”, IEEE WCNC, Marrakech, Morocco, 2019

[C8] A. Savard, E. V. Belmega, “Optimal Power Allocation in a Relay-aided Cognitive

Network”, ACM EAI ValueTools, Palma de Mallorca, Spain, 2019

[C7] Y. Mestrah, A. Savard, A. Goupil, L. Clavier, G. Gellé, “Blind Estimation of an

Approximated Likelihood Ratio in Impulsive Environment”, IEEE PIMRC, Bologna, Italy,

2018

[C6] A. Savard, L. Clavier, “On the two-way diamond relay channel with lattice-based

Compress-and-Forward”, IEEE WCNC, Barcelona, Spain, 2018

[C5] M. Egan, L. Clavier, M. de Freitas, L. Dorville, JM. Gorce, A. Savard, “Wireless

Communication in Dynamic Interference”, IEEE Globecom, Singapour, 2017

PhD: 4

[C4] A. Savard, C. Weidmann, “Lattice coding for the Gaussian one- and two-way relay

channels with correlated noises”, IEEE ISIT, Hong-Kong, Jun. 2015
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[C3] A. Savard, C. Weidmann, “On the multiway relay channel with direct links”, IEEE

ITW, Hobart, Australia, Nov. 2014

[C2] A. Savard, C. Weidmann, “Optimized codes for the binary coded side-information

problem”, IEEE ISTC, Bremen, Germany, Aug. 2014

[C1] A. Savard, C. Weidmann, “Improved decoding for binary source coding with coded

side information”, IEEE ITW, Sevilla, Spain, Sep. 2013

1.4.4 Peer-reviewed national conference papers

Post-PhD: 6 + 1 submitted

[NC11] R. Negrel, Y. Benatia, A. Savard, E. V. Belmega, “Sélection de relais robuste

aux canaux imparfaits pour la radio cognitive coopérative exploitant des réseaux profonds”,

GRETSI 2023, Grenoble, France

[NC10] A. Savard, E. V. Belmega, “Achievable rate regions for cooperative cognitive radio

networks with complex channels and circular normal additive noises”, GRETSI 2022, Nancy,

France

[NC9] H. El Hassani, A. Savard, E. V. Belmega, R. de Lamare, “Rétrodiffusion coopérative

efficace en énergie pour un système multi-utilisateurs à accès multiple NOMA”, GRETSI

2022, Nancy, France

[NC8] Y. Mestrah, A. Savard, A. Goupil, G. Gellé, L. Clavier, “Mesure indirecte des per-

formances de LLR approché”, GRETSI 2019, Lille, France

[NC7] A. Savard, L. Clavier, F. Danneville, C. Loyez, “Performance théorique d’un neurone

à spikes Integrate-and-Fire”, GRETSI 2019, Lille, France

[NC6]A. Savard, L. Clavier, “Canal à deux relais utilisant Compress-and-Forward”, GRETSI

2019, Lille, France

[NC5] A. Savard, E. V. Belmega, “Allocation de puissance pour les réseaux radio cognitifs

à relais”, GRETSI 2019, Lille, France

PhD: 4

[NC4] A. Savard, C. Weidmann, “Codage basé sur les réseaux de points pour le canal à

relais Gaussien mono- et bidirectionnel avec bruits corrélés”, GRETSI 2017, Juan les Pins,

France

[NC3]A. Savard, C. Weidmann, “Canal à relais multidirectionnel avec liens directs”, GRETSI

2015, Lyon, France

[NC2] A. Savard, C. Weidmann, “Décodeur amélioré pour le codage de source avec infor-

mation adjacente compressée”, GRETSI 2013, Brest, France

[NC1] A. Savard, C. Weidmann, “Codes LDPC non-binaires pour le codage de source”,
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Journées Codage et Cryptographie 2012, Dinard, France

1.4.5 PhD Thesis

[PhD] A. Savard, “Coding for cooperative communications: Topics in distributed source

coding and relay channels”, Ph.D. Dissertation, Université de Cergy-Pontoise, France, Advi-

sors: C. Weidmann and D. Declercq
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Chapter2
LLR approximation in Symmetric α-stable noise

In this chapter, we overview the most relevant contributions [J3], [C9] of the work performed

by the PhD student Yasser Mestrah, whom I have co-advised (at 30%) jointly with Laurent

Clavier (IMT Nord Europe, 20%, official director) and Alban Goupil (Université de Reims,

50%).

Many decoding schemes rely on log-likelihood ratios (LLRs), whose derivation
depends on the knowledge of the noise distribution which can be difficult to obtain,
especially in dense and heterogeneous network settings. For example, when the
interference exhibits an impulsive nature, LLRs become highly non linear and
consequently computationally prohibitive. We thus propose to directly estimate
the LLRs without relying on the noise knowledge by carefully selecting and tuning
the LLR estimation in a parametric family of functions. Our main contributions
are the following:

• Deriving an information-theory-based Genie-aided LLR estimation in the
asymptotic regime, where the receiver has access to a long sequence of pilot
samples.

• Deriving an information-theory-based unsupervised LLR estimation in the
asymptotic regime in order to avoid the need of a training sequence.

• Deriving an information-theory-based unsupervised LLR estimation in the
short block length regime, where we first analyze the reasons leading to poor
LLR approximation in such a regime and then proposing two mechanisms
to improve the later.

Main contributions

2.1 Preliminaries

2.1.1 Impulsive noises

5G and future network generations have to deal with denser and heterogeneous networks for

which interference may exhibit an impulsive behavior as suggested by theoretical analysis

[C5], [1], [2], which is not encompassed by the Gaussian model.

21
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Several models have been proposed to handle the impulsive nature of the interference,

ranging from Middleton model to the α-stable one. Middleton first proposed to tackle the

impulsive nature by considering a Gaussian mixture with an infinite number of components

[3]–[6]. Its model has been shown to accurately model electromagnetic interference and back-

ground noise in power line communication [7], [8]. Nonetheless, handling an infinite number

of components is not practical, hence various approximation models have been proposed, such

as Gaussian mixture or ϵ-contaminated which only consider a limited number of components.

On the other hand, α-stable distributions, introduced by Paul Lévy in the 1920s, form a rich

class of probability distributions capable of representing skewness and heavy tails. The later

were also shown to accurately model the interference in wireless communication systems [C5],

[1], [9]–[11] and encompass the widely used Gaussian model as a special case.

In the remaining of this chapter, we assume that the additive impulsive noise Z received

over the channel follows a symmetric α-stable (SαS) distribution. Its characteristic function

is expressed as ΦZ(t) = exp (−γα|t|α) , where 0 < α ≤ 2 denotes the characteristic exponent

and γ ≥ 0 the scale parameter. The characteristic exponent α sets the degree of impulsiveness:

the smaller α, the heavier the tail of the probability density function (pdf), and hence, the

more likely to observe large values. The scale parameter γ plays a similar role to the variance

in the Gaussian case.

The main drawback of SαS distributions is the lack of closed-form expression of their pdf,

except for the following special cases: α = 0.5 (Lévy), α = 1 (Cauchy) and α = 2 (Gaussian).

Nevertheless, the later can be numerically computed as

gα(x, γ) =
1

2π

∫ ∞

−∞
exp(−γα|t|α) exp(−jtx)dt, (2.1)

which however induces a generally prohibitive computational burden as well as requiring the

knowledge of the noise parameters.

Let us now briefly introduce modern channel coding, and more specifically low density

parity check (LDPC) codes that will be used later on for numerical simulations.

2.1.2 Modern channel coding: LDPC codes

Low-density parity check (LDPC) codes are block codes first proposed by Gallager in the

60s [12], but mostly ignored due to the computational limitation of the hardware, until their

rediscovery by MacKay in the 90s [13], [14].

In block coding, an information sequence is segmented into message blocks each of length

K. At the transmitter side, each input message u = [u1, . . . , uK ] is encoded into a longer

binary sequence x = [x1, . . . , xN ], with N > K. The sequence x is called the codeword

associated to the message u. The N − K added bits, called redundancy, do not carry any

new information but provide the capacity of detecting and/or correcting errors at the receiver

side. The ratio K/N , called the code rate, represents the average number of information bits

carried by each code bit.

A binary LDPC code is usually represented by its sparse parity check matrix H of size
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(N −K) × N , where all non-zeros entries are ones. The codewords are then defined as the

set of binary sequences X ∈ {0, 1}N such that HX = 0.

At the receiver side, a decoder is used to recover the sent codeword X̂ from the received

signal Y = X + Z, where Z is the additive noise sequence.

Since maximum likelihood decoding of a LDPC code is a NP-hard problem, sub-optimal

decoders based on iterative belief propagation (BP) have been proposed [12], [13], [15], [16].

The later achieve near-capacity performance while exhibiting a complexity linear in the code

length. The main ingredient of BP decoding is the iterative update of LLRs given the received

one, defined as Li = log P(Yi=yi|Xi=0)
P(Yi=yi|Xi=1) , where Yi denotes the i-th component of the received

signal Y .

Thanks to near-capacity performance as well as to their powerful decoding implementa-

tion, LDPC codes are nowadays widely used in wireless communication [13], [17]–[20].

2.2 System model and Information theoretical-based LLR op-

timization

2.2.1 System model

In the remaining, we consider the transmission between a single device and a receiver and

further assume that the considered channel is memoryless. The information source is first

encoded using a binary LDPC code and then mapped onto a binary phase shift keying

(BPSK) constellation. Hence, the channel input X takes its value in ∈ {−1,+1}N with equal

probability. The channel output Y is given as Y = X + Z, where the additive noise Z,

independent of the message X, is an independent sequence of SαS random variables. At

the receiver side, the sequence Y is decoded using the BP algorithm, requiring hence the

computation of the LLRs Li = log P(Yi=y|Xi=+1)
P(Yi=y|Xi=−1) = log gα(y−1,γ)

gα(y+1,γ) , where gα(x, γ) denotes the

pdf of the noise given in (2.1). Since gα(x, γ) cannot be obtained in closed-form, efficient

computation of the LLR is not straightforward. We hence propose to instead focus on LLR

approximations that will be fed to the BP decoder.

2.2.2 LLR approximations

Figure 2.1: LLR under SαS noise with parameters α = 1.4, γ = 0.5
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The LLR under an additive SαS noise of parameters α = 1.4 and γ = 0.5, which is

highly non linear, is depicted in Figure 2.1. Except for α = 2, which corresponds to the

Gaussian case for which the LLR is linear and given as L(y) = 2
σ2 y, the obtained shape in

Figure 2.1 is similar for other choices of α and γ. As the channel output increases, the LLR

decreases, meaning that the received sample becomes less reliable (as it likely follows from a

high amplitude noise sample). Moreover, two specific parts can be observed:

• when the channel output y is close to 0, the LLR is almost a linear function of the

channel output;

• whereas when the channel output y is larger, the LLR presents a power-law decrease.

This observation is the starting point of many parametric LLR approximations in impulsive

noise depicted in Figure 2.2. At first, only piece-wise linear LLR parametric approximations

have been proposed in the 90s, such as the hole puncturer [21] given in (2.2) or the soft limiter

[21] (also termed clipping [22]) given in (2.3).

Lhp(y) =




ay if |y| <

√
b/a

0 otherwise
(2.2)

Lclip(y) =




ay if |y| <

√
b/a

sign(y)
√
ab otherwise

(2.3)

The first proposed LLR approximation exhibiting a non linear part was proposed in [23]

for SαS noise and is given as L(y) = sign(y)min
{√

2
γ |y|,

2(α+1)
|y|

}
. The later nonetheless

requires the knowledge of the noise parameters.

The main contribution of Yasser Mestrah PhD thesis was to consider a parametric non-

linear LLR approximation Lθ(.) and to optimize the vector of parameters θ. Neither the

noise model, nor the noise parameters are required at the receiver side while optimizing the

LLR approximation. In the remaining, and based on the two specific regions observed in

Figure 2.1, we focus on a two terms-based LLR approximation given as

Lθ(y) = Lab(y) = sign(y)min

(
a|y|, b

|y|

)
, with θ = (a, b) ∈ R2

+. (2.4)

In [C9], we also proposed a three terms-based LLR approximation that slightly improves

the performance in terms of bit error rate (BER), but at the price of estimating one more

optimization parameter.

2.2.3 Information theory based LLR approximation optimization

Once a LLR approximation has been chosen, the question of estimating the parameters vector

remains. While various methods, such as direct estimation of the noise model parameters

[24], [25] or noise distribution estimation [26], have been proposed in the literature, it was

shown in [26] that the one based on maximizing the mutual information between the channel

input and output [27] yields the best performance.
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Figure 2.2: Parametric approximations of the LLR in SαS noise with α = 1.4, γ = 0.4

Recall that the capacity of any memoryless, binary input, and symmetric output channel

can be expressed as a function of the LLRs L as [27], [28]

CL = 1− EX,Y [log2(1 + e−XL(Y ))] = 1− EX,Y [log2(1 + e−L(XY ))], (2.5)

where the last equality follows since LLRs are odd functions and X = ±1. This expression

comes from the decomposition I(X;Y ) = H(X)−H(X|Y ), where

H(X|Y ) = EX,Y [− log2 p(X|Y )] = EX,Y [log2(1 + e−XL(Y ))].

Following the idea of [27], under approximated LLRs Lθ, one does not have access to the

capacity given in (2.5) but to a lower bound expressed as

CLθ
= 1− EX,Y [log2(1 + e−XLθ(Y ))] = 1− EX,Y [log2(1 + e−Lθ(XY ))]. (2.6)

Further, approximating the LLRs is equivalent to approximate the conditional probability

p(x|y) = 1
1+exp(−xL(y)) by q(x|y) = 1

1+exp(−xLθ(y))
, and thus to approximate the conditional

entropy H(X|Y ) by Ĥ(X|Y ) = EX,Y [log2(1+e
−XLθ(Y ))]. The difference between the channel

capacity given in (2.5) and its lower bound (2.6) is directly related to the Kullback-Leibler

divergence between the conditional densities p(x|y) and q(x|y) as CL − CLθ
= DKL(p||q).

Hence, the channel capacity lower bound CLθ
achieves the capacity if the approximated

density q(x|y) equals the true distribution p(x|y).

Our goal is thus to derive the optimal LLR estimations parameters as

θ∗ = argmin
θ

EX,Y

[
log2

(
1 + e−Lθ(XY )

)]
. (2.7)

As a stochastic optimization problem, assuming that input samples Xi can be obtained, θ∗

can be estimated via sample average approximation as

θ̂∗ = argmin
θ

1

n
Ĥn(θ, {Ψi}ni=1) (2.8)
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where n denotes the number of available samples, Ψi = XiYi and

Ĥn(θ, {Ψi}ni=1) =
n∑

i=1

log2

(
1 + e−Lθ(Ψi)

)
. (2.9)

Recall that the chosen LLR approximation is given as Lθ(Ψi) = sign(Ψi)min
(
a|Ψi|, b

|Ψi|

)
.

Ĥn(θ, {Ψi}ni=1) =

n∑

i=1

log2

(
1 + e

−sign(Ψi)min
(
a|Ψi|, b

|Ψi|

))

=
∑

i,Ψi≥0

log2

(
1 + e

−min
(
aΨi,

b
Ψi

))
+
∑

i,Ψi<0

log2

(
1 + e

min
(
−aΨi,− b

Ψi

))

=
∑

i,Ψi≥0

max
{
log2

(
1 + e−aΨi

)
; log2

(
1 + e

− b
Ψi

)}

+
∑

i,Ψi<0

min
{
log2

(
1 + e−aΨi

)
; log2

(
1 + e

− b
Ψi

)}
(2.10)

In order to minimize Ĥn(θ, {Ψi}ni=1), one has to increase the estimation parameters a, b

whenever the samples Ψi = xiyi are positive and decrease the estimation parameters whenever

the samples Ψi = xiyi are strictly negative. Minimizing the objective function is hence a

compromise between minimizing each of the two sums in (2.10), one of which tends to increase

the value of the optimization parameters while the other tends to decrease it. Despite the

considered problem being non-convex, we use a simplex method based algorithm to obtain

at least a local minimum.

Let us now focus on the LLR estimation when the blocklength N is large enough. We first

consider a supervised approach, in which some pilots samples are available at the receiver

side, and then consider an unsupervised one. In both cases, neither the noise model, nor

its parameters are known at the receiver side, and the proposed method can be applied to

a large set of noise models, from impulsive ones to the Gaussian one as will be shown in

Section 2.3.3.

2.3 LLR estimation in the asymptotic regime

2.3.1 Baseline approach: genie-aided approximation

In order to estimate the performance of our proposed LLR estimation approach, we start by

considering a genie-aided approach, in which a pilot sequence {Xi} of n samples is available at

the receiver side. The optimization parameter θ∗ is triggered after receiving the corresponding

channel outputs {Yi} as shown in Figure 2.3, and once obtained, it is used to compute the

approximated LLRs Lθ∗(Y ) fed to the BP decoder. All these steps are thereafter denoted as

Genie-aided Decoder (GAD) and were presented in [J3], [C7].

In the above, the number of available pilots n can either be N , the length of the send

codeword, or only a fraction of it. Of course, the larger the number of available pilots, the
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Figure 2.3: Principle of the genie-aided decoder (GAD)

closer the approximated LLRs to the true LLRs, as can be seen in Figure 2.4. The impact

of the number of available pilots will be evaluated in terms of BER curves in Section 2.3.3.

Intuitively, to obtain good performance in terms of BER, the estimated LLRs need to be as

close as possible to the true LLRs.

Figure 2.4: Comparison between true LLRs and approximated LLRs when the noise follows
a SαS distribution of parameter α = 1.8, γ = 0.55 for n = 20000 and n = 900 available pilot
samples. The more available pilot samples, the closer the approximated LLR to the true one.

A major drawback of this supervised approach is the necessity of the pilots, as it induces

an increase in signaling and a decrease of the useful rate. Further, the number of available

pilots needs to be large enough to obtain an accurate LLR estimation. We hence propose to

move to unsupervised LLR approximation, which directly operates on the channel outputs,

without any prior on the input or noise distribution.

2.3.2 Proposed unsupervised approximation

Since our information-theory-based LLR estimation method requires both the channel out-

puts and inputs, which are no longer available under unsupervised estimation, we proposed

in [J3], [C7] to extract a noise sequence Z̃ from the received channel outputs, which is used

to simulate a transmission with the all-one codeword at the receiver side. More precisely, the

extracted noise sequence is obtained with the help of a sign-detector as Z̃ = Y − sign(Y ).

The simulated input symbols are X̃i = 1 and the corresponding channel outputs are Ỹi =

X̃i + Z̃i = 1 + Z̃i. Hence, θ∗ is obtained using the samples (1, Ỹi) instead of (Xi, Yi) when

computing (2.8). The principle of such an unsupervised decoder, denoted as USD, is depicted
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in Figure 2.5.
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Channel

Z̃ = Y − sign(Y ) +
Ỹ
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Lθ∗(·)
Lθ∗(Y )

BP
X̂

Figure 2.5: Unsupervised decoder (USD)

Figure 2.6 compares the evolution of the mean and standard deviation of the estimated

LLR parameters a and b as a function of the γ parameter of a SαS noise with α = 1.4. One can

note that the gap between the supervised and unsupervised estimation of the parameter a of

the approximation Lab keeps very close, whereas the one for the parameter b is significantly

larger. The later follows from the fact that b depends on large noise samples which are

rare events; consequently its estimation is more difficult. Figure 2.7 compares the LLR

shapes obtained under supervised and unsupervised estimations to the true one. Despite the

aforementioned gap for the parameter b, the unsupervised approximated LLR keeps rather

close to the true one.

(a) Mean and standard deviation in the estimation
of the parameter a of the approximated LLRs

(b) Mean and standard deviation in the estimation
of the parameter b of the approximated LLRs

Figure 2.6: Comparison in the approximation parameters under the supervised and unsuper-
vised optimization for a SαS noise with α = 1.4.

2.3.3 Numerical simulations

Let us now investigate the impact of our proposed LLR approximation in terms of BER when

the source sequence is encoded using a regular (3,6) LDPC code of length N = 20000.

In a first step, we investigate the link between the objective function minimized for the

LLR approximation given in (2.8) and the obtained BER performance. In Figure 2.8(a) we

represent a 3D plot of the objective function under supervised estimation with n = 20000

available pilot samples. The white contour delineates the area where the objective function
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Figure 2.7: Comparison of the supervised, unsupervised estimated LLRs to the true LLR
under SαS noise of parameter α = 1.4, γ = 0.5.

reaches values very close to its minimal value. Note that the objective function is rather flat

around its minimal value, leading to an estimation very sensitive to noise and to the number

of available pilots. In Figure 2.8(b), we illustrate the link between the objective function and

the BER. The white contour is the same as in Figure 2.8(a). Note that the area of small

BER and the one corresponding to the minimal value of the objective function overlap and

the optimal θ∗ values under both the supervised and unsupervised estimation allows the BP

decoder to achieve a BER below 10−5.

𝜸 = 𝟎. 𝟒𝟓

(a) Objective function

Supervised

Unsupervised

(b) BER of the (3,6) regular LDPC code

Figure 2.8: Empirical link between the objective function under study Ĥn(θ, {ψi}ni=1) and
BER for a SαS noise with α = 1.4, γ = 0.45 for N = 20000

Figure 2.9 compares the obtained BER under the supervised and unsupervised LLR esti-

mation, as well as the one obtained with the true LLR for a SαS noise of parameter α = 1.8

and α = 1.4 respectively. The curve labeled LLRLa corresponds to a linear LLR estimation

with only the parameter a. Regarding supervised estimation, we use either n = 1200 or

n = 20000 pilots. The longer pilot sequence allows to assess the performance of the LLR

estimation, whereas the shorter one allows to evaluate the performance loss due to estima-

tion with a more realistic number of pilots. The proposed supervised estimation under large

pilot samples performs very close to the true LLR, which validates the good performance of
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our approach. Further, even if the unsupervised approach exhibits a gap compared to the

supervised one with long pilot sequence, it performs significantly better than the supervised

approach under a realistic pilot amount as well as the linear LLR approximation.

(a) Low impulsive noise (α = 1.8) (b) Highly impulsive noise (α = 1.4)

Figure 2.9: BER comparison in impulsive SαS noise

Figure 2.10 compares the BER performance of our supervised and unsupervised approach

in other impulsive noises (Middleton and the special Gaussian one). We can note that our

proposed approach is able cope with various noise models without requiring its knowledge at

the receiver side.

(a) Highly impulsive Middleton Class A noise (A = 0.1
and Γ = 0.1)

(b) Gaussian noise

Figure 2.10: BER comparison in other noises

2.4 Shortening the block length

The Internet of Things (IoT) has driven the emergence of Low Power Wide Area Networks, in

which devices with limited transmit power communicate with an access point. Furthermore,

these devices are only allowed to transmit very small quantities of data, leading to the use of

short channel codes.

Although our proposed USD performs well for large blocklength N , its performance de-

grades as the blocklength decreases, as will be illustrated in Figure 2.13.

In this Section, we propose a new unsupervised LLR estimation, termed NUSD [C15],

which overcomes the performance degradation when the blocklength is small (of the order of
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N = 500). The later is achieved by first analyzing when poor estimation occurs, and then

introducing a combination of sampling and regularization techniques.

2.4.1 Quantifying the risk of poor estimation

First note that based on the LLR approximation form given in Figure 2.11, the domain of

the LLR approximation in (2.4) can be partitioned into four regions:

B− =
[
−∞,−

√
b/a
]
, A− =

[
−
√
b/a, 0

]
, A+ =

[
0,
√
b/a
]
, B+ =

[√
b/a,+∞

]
.
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Figure 2.11: The four regions defined in the LLR under Lab

The objective in (2.9) can therefore be written as

Ĥn(θ, {Ψ̃i}ni=1) =
∑

i:Ψ̃i∈B−∪B+

log2(1 + e
− b

Ψ̃i ) +
∑

i:Ψ̃i∈A−∪A+

log2(1 + e−aΨ̃i). (2.11)

Observe that when Ψ̃i is in A+ or B+, the exponent inside the logarithm is negative. On

the other hand, when Ψ̃i is in A− or B−, the exponent is positive. As a consequence,

samples Ψ̃i in B+ tend to increase the optimized values of b, while samples in B− tend to

decrease the optimized values of b. A similar observation also holds for the a parameter. As

a consequence, if only a small number of samples falls in any of these regions, the resulting

LLR approximation in (2.4) may be poor.

It is therefore important to understand for which regions the GAD algorithm produces

very few samples. Recall that the noise sample estimates are obtained via Z̃i = Yi − sign(Yi)

with Ỹi = 1 + Z̃i and X̃i = 1. As a consequence, Ψ̃i = X̃iỸi < 0 when Yi < −2. Hence,

samples Ψ̃i ∈ A+∪B+ will occur with very high probability. However, samples Ψ̃i ∈ A−∪B−

will occur more rarely. While this is less problematic for long packets, it greatly impacts the

estimation of Lθ for short packets. In particular:

1. No samples Ψ̃i in B
− results in b∗ →∞ and consequently the threshold

√
b/a tends to

infinity. This is not problematic for Gaussian noise where the optimal receiver is linear

(i.e., b∗ =∞), but causes a problem if the noise is impulsive.

2. No samples Ψ̃i in A
− results in a∗ →∞, leading to

√
b/a→ 0. The LLR approximation
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around Ψ̃i ≈ 0 is therefore poor. As a consequence, an error floor can occur for small

values of γ.

Due to the importance of obtaining samples Ψ̃i in A
− ∪ B−, it is desirable for the LLR

parameter estimation to yield samples in these regions. To quantify the probability such

samples do indeed arise, we introduced in [C15] the notion of degeneration risk.

Proposition 2.4.1. [C15] The degeneration risk of the GAD and USD is the probability that

the sequence Ψi or Ψ̃i, i = 1, . . . , n respectively has only positive elements. That is,

ηGAD
n = P(Ψi > 0, ∀i ∈ {1, . . . , n}) and ηUSD

n = P(Ψ̃i > 0, ∀i ∈ {1, . . . , n}). (2.12)

The later are given as

ηGAD
n =

[
1−Qα

(
1

γ

)]n
and ηUSD

n =

[
1− 1

2
Qα

(
3

γ

)
− 1

2
Qα

(
1

γ

)]n
, (2.13)

where Qα(x) =
∫ +∞
x gα(u; 1) du, with gα(·; 1) denoting the probability density function of a

standard SαS random variable.

Figure 2.12 compares the degeneration risk for the GAD and USD as a function of the noise

scale parameter γ for n = 1 and α = (1.4; 1.8). Observe that there is a significant increase

in the degeneration risk for the USD, which suggests that the lack of samples Ψ̃i ∈ A− ∪B−

may be a key factor leading to performance losses when packets are short.

.
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Figure 2.12: Degeneration risk

2.4.2 New unsupervised LLR approximation

Motivated by the aforementioned observations, we proposed in [C15] a new unsupervised LLR

estimation (NUSD). In particular, we introduced two techniques to reduce the degeneration

risk: a regularization term to limit the growth of a; and an improved sampling method to

obtain a better estimate of b.

Estimation of a Our first goal is to improve the estimation of the parameter a when no

samples Ψ̃i lie in A−, which leads to a very large value of a∗. To avoid this problem, we

incorporated the effect of a small negative sample into the objective in (2.9), now given as

˜̂Hn(θ, {Ψ̃i}ni=1) = Ĥn(θ, {Ψ̃i}ni=1) + log2(1 + eaϵ).
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Estimation of b The optimization parameter b impacts the way large amplitude samples

are treated. Improving its convergence is trickier than improving the one of parameter a, since

under Gaussian noise, the optimal value is b∗ =∞ leading to a fully linear receiver; whereas

under SαS noise with α < 2, a too large value of b can lead to a poorly estimated LLR. Hence,

adding a regularization term in the objective function is not efficient as it would cause severe

performance loss under Gaussian noise. Instead, we propose to increase the spread in the

extracted noise sequence, which in turn increases the spread in Ỹ and, as a consequence,

reduces the degeneration risk. The proposed solution is described in Algorithm 1.

First, we double the learning sequence length by concatenating the extracted noise Z̃ with

its opposite version (−Z̃), yielding a symmetric sequence Z̃ which length c is twice the one of

the original noise sequence N , i.e. c = 2N . Then we generate the training sequence Ψ̃ = Ỹ

of length c. Since poor LLR approximation arises when the region B− is empty, we ensure

to populate this region by creating a negative sample when Z̃i > 1. Indeed, in order for a

sample to belong to B−, the noise sample must be of opposite sign than X̃i = 1 and such

that |Z̃i| ≥
√
b/a+ 1.

Algorithm 1 Generating the training sequence Ψ̃

1: Compute Z̃ = Y − sign(Y ).
2: Concatenate Z̃ and −Z̃ into Z̃.
3: for i=1 to c do
4: if Z̃i ≥ 1 then
5: Ψ̃i = 1− Z̃i.
6: else
7: Ψ̃i = 1 + Z̃i.
8: end if
9: end for

2.4.3 Numerical simulations

Figure 2.13(a) plots the frame error rate (FER) as a function of γ for a SαS noise with

α = 1.8 for a regular (3, 6) LDPC code of size N = 408. The curve labeled ’Optimal’

is achieved with the true numerically computed LLRs, whereas the one labeled ’USD’ is

achieved with the previously proposed unsupervised LLR approximation of [J3], [C7]. Since

GAD almost achieves the FER obtained with the true LLRs, the performance loss of the

USD is solely due to the unsupervised optimization and not to the LLR approximation itself.

The FER curve obtained with our proposed training sequence design and the adding of

the regularization term with ϵ = 0.1 is also provided in Figure 2.13(a) under the label ’NUSD’.

First, observe that the FER achieved by the NUSD is monotonic and does not exhibit any

bump as the one obtained under the USD of [J3], which appears to be due to the lack of

samples Ψ̃i lying in A−. Furthermore, the performance of NUSD is close to that of GAD.

Hence, our proposed method improves the performance of LLR parameter estimation for

short packets without requiring the noise model knowledge at the receiver.

The ’UB saddlepoint’ curve in Figure 2.13(b) is an achievable FER. This bound follows

from an upper-bound based on the dependence testing bound [29, Theorem 17], which is
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Figure 2.13: FER comparison under a SαS noise of parameter α = 1.8 for the regular (3,6)
LDPC code with N = 408

computed using the recently proposed method of [30, Theorem 5]. Since the FER achieved

by our NUSD (and indeed the ’Optimal’ decoder with perfect knowledge of LLR parameters)

and the one achieved by the saddlepoint technique do not match, we can conclude that there

is still room for efficient LDPC code design under impulsive noise and short blocklength.

2.5 Conclusions and perspectives

In this chapter, we proposed a receiver design that can adapt to various noise models, ranging

from Gaussian ones to impulsive ones by approximating by a parametric function the LLRs

fed to the BP decoder. The estimation parameters are tuned by minimizing an approximated

conditional entropy. We further proposed an unsupervised estimation to avoid the use of a

learning sequence that, as shown by the numerical simulations needs to be long enough to

obtain good performance. We further studied the robustness of our proposed unsupervised

estimation in the short blocklength regime. Whereas adding an extracted noise sequence

to the all-zero codeword performed well in the asymptotic regime, the later exhibits severe

performance loss in the short blocklength regime. As such we proposed a new design for the

simulated transmission required by our unsupervised approach and added a regularization

term in the considered optimization problem. These two mechanisms allowed to perform

close to a genie-aided decoder in a wide range of noise types.

Nonetheless, a non-negligible gap remains between our proposed approach and a theo-

retical achievable error rate, showing that there is still room for LDPC code design under

impulsive noise. LDPC codes can be optimized by the mean of differential evolution and

density evolution, the later requiring the pdf of the received LLR. Whereas this pdf is given

in closed-form and hence easy to implement under Gaussian noise, it is not the case in impul-

sive noise. The almost vanishing gap between the results obtained with the true numerically
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computed LLR and with our proposed approximated ones could hence be used to provide

the pdf of the estimated LLRs as the input of the density evolution step, allowing to design

better performing codes in impulsive noise than the ones designed for Gaussian ones.

The next part will focus on resource allocation for cooperative multi-user communications.
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Part II

Resource allocation for cooperative

multi-user communications
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Chapter3
Preliminaries

The ever increasing number of communicating devices, along with the enormous growth of

bandwidth-hungry and high speed applications are challenging the existing wireless networks

and driving the transition to future generations of mobile networks. Future communications

target highly ambitious objectives, among which, a 1000 times increase in network capacity

and throughput, an explosion of the number of users and devices, as well as a large number

of use cases while saving 90% of energy [31], [32]. In order to reach these goals, various

candidate technologies are envisioned, such as Non-Orthogonal Multiple Access (NOMA),

ambient backscattering, cognitive radio, cooperative or full-duplex communications, that each

focus on specific targets. Further, the resulting network optimization problems are complex

and usually non-convex, as such their solution requires tools beyond classical optimization,

like data-driven tools, deep networks and machine learning techniques, emerging as promising

and necessary for the design of future networks.

This chapter first presents the technologies considered in this HDR manuscript, namely

NOMA, ambient backscattering, full-duplex cooperative communications and cognitive radio,

and then briefly introduces the considered optimization metrics as well as the used machine

learning tools.

3.1 Candidate technologies envisioned for future wireless net-

works

3.1.1 Power domain downlink NOMA

In previous generations of wireless systems, orthogonal multiple access (OMA) techniques,

allowing several users to share the communication resources, were designed such that only

one user was served on each resource block. While these techniques prevent any interfer-

ence between users, they are limited by the number of available orthogonal resources and

hence cannot efficiently deal with the ever increasing number of communicating devices and

users. Recently, Non-Orthogonal Multiple Access (NOMA) has been proposed as a promising

technique to support the expected massive connectivity of future wireless networks by super-

posing the messages of an arbitrary number of users on the same resource block [33]–[36],

39
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where at the receiver side, the resulting interference is managed via successive interference

cancellation (SIC) [37], [38].

Let us introduce the principle of power-domain NOMA by the considering a two users

downlink transmission as a toy example. In such a case, each user i ∈ {1, 2} is intended

a message Xi such that E[X2
i ] = 1. The transmitter, e.g. a base station (BS), employs

superposition coding and broadcasts the message X =
√
p1X1+

√
p2X2, where pi denotes the

power allocated to user i that is constrained by the BS available power budget as p1+p2 ≤ P .
At the receiver side, each user receives the signal Yi = hiX +Zi, where the additive noise

Zi, i ∈ {1, 2} follows a Gaussian distribution Zi ∼ N (0, 1). Let us without loss of generality

assume that the channel gains are ordered as h21 ≥ h22. Each user then recovers its intended

message by applying SIC based on the ordering of the channel gains: it decodes the messages

of users with weaker channel gains to cancel out their interference but suffers the interference

of users with better channel gains. In our considered toy example, the strongest user, here

user 1, first decodes the message X2 intended to user 2, cancels it out from its received signal

and finally decodes its message X1; whereas the weakest user, here user 2, directly decodes

its message X2 by treating the message intended to user 1 as additional noise, as depicted in

Figure 3.1.

Note that under NOMA, more power is usually allocated to users with poor channel links

to ensure some minimum Quality of Service (QoS) at each user or to to enhance user fairness,

which in our toy example would result in p2 ≥ p1.

Decode X2

Subtract Decode X1

Decode X2

X = X1 + X2

X2

X1

X2

Figure 3.1: Principle of power-domain downlink NOMA

From an information point of view, NOMA is a special case of superposition coding and

SIC over the degraded broadcast channel, in which the strong and weak users are considered

as least and most degraded respectively, i.e. I(X2;Y2) ≤ I(X2;Y1). As such, its capacity

region is known [39], [40].

Building on our example, the capacity region of the considered 2 users downlink NOMA

setup is given as

R1 ≤ I(X1;Y1|X2) decoding of X1 knowing X2 at user 1 (3.1)

R2→1 ≤ I(X2;Y1) decoding of X2 at user 1 (3.2)

R2→2 ≤ I(X2;Y2) decoding of X2 at user 2, (3.3)

where R1 denotes the data rate of the message X1 and R2→i, i ∈ {1, 2} denotes the required

data rate when decoding the message X2 at user i. Since the message X2 is decoded at both

users, the achievable data rate of the messageX2 must satisfy R2 ≤ min{I(X2;Y1), I(X2;Y2)}.
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However, since the channel is degraded, R2 reduces to R2 ≤ I(X2;Y2) and the capacity region

writes as

R1 ≤ I(X1;Y1|X2), R2 ≤ I(X2;Y2), (3.4)

leading to the following capacity region in the Gaussian case:

R1 ≤ C
(
h21p1

)
, R2 ≤ C

(
h22p2

h22p1 + 1

)
,

where C(x) = 1
2 log2(1+x) denotes the capacity of the point-to-point additive white Gaussian

noise (AWGN) channel.

3.1.2 Ambient backscattering

Recently, ambient backscatter communications (AmBC) has emerged as a very promising

low-energy technology [41], [42] able to transmit data in a passive way by recycling radio

frequency (RF) waves in the vicinity of the backscatter device while harvesting energy. As

such, backscatter devices do not require local oscillators to generate carrier frequencies, and

hence, consume much less power than conventional devices [43], [44]. In its simplest imple-

mentation, the backscatter device, consisting of a dipole antenna being in either a short or

open circuit, switches between two states: a backscattering one, in which the ambient signal

coming from a RF source is reflected; and a transparent one, in which no signal is reflected.

These two states encode its own binary message that can be decoded via a simple energy

detector [41], [45], [46]. The principle of ambient backscatter communications is depicted in

Figure 3.2.

More formally, let h denote the channel between the RF source and the backscatter device

and X the message sent by the RF source. The signal sent by the backscatter device is given

as

Xb =
√
ρhXB, (3.5)

where ρ denotes the reflection coefficient of the backscatter device, representing the percentage

of the backscattered signal, and B denotes the backscatter device binary message. The other

portion (1− ρ) of the signal is used for energy harvesting. The binary message B is encoded

by modulating the amplitude of the received RF signal with two distinct scattering states:

the backscattering one, in which B = 1; and the transparent one, in which B = 0. Note that,

in the transparent state where B = 0, the backscatter device does not reflect the ambient

signal, which is hence fully harvested for energy.

3.1.3 Full-duplex cooperative communications

Traditionally, mobile networks rely either on frequency or time division duplexing, requiring

thus two separate modes in order to achieve an orthogonal reception and transmission. This

leads to a waste of half of the available resources. To counter this waste, full-duplexing is an

emerging technology that enables full-duplex nodes to transmit and receive data simultane-
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Figure 3.2: Ambient backscatter communication

ously in the same frequency band and to double the spectral efficiency [47]. In the remaining,

we assume that the full-duplex operating node can perfectly cancel out any self-interference.

Even if the assumption of perfect self-interference cancellation may not be realistic in prac-

tical settings, it allows us to simplify the expressions of the achievable rates, and hence the

considered optimization problems, leading to low-complexity optimal power allocation poli-

cies. In order to provide insights or closed-form expressions of the outage probabilities when

the relay cannot perfectly cancel the self-interference, other assumptions such as: a high

signal-to-noise regime, an interference-limited environment, or neglecting some links in the

network, etc. are necessary [48]–[52].

Cooperative communications aim at increasing the network capacity and throughput by

taking advantage of the wireless medium, which allows any node within range to access and

potentially relay the transmitted message, enhancing thus the communication between the

source and its destination. The easiest model of such a cooperative communication is the

well-known relay channel composed of three nodes: a source, its associated destination and

an extra helping node, called relay [53], as depicted in Figure 3.3. The relay does not have

any message on its own to transmit but assists the transmission between the source and the

destination.

Source

Relay

Destination

Figure 3.3: Relay channel

Three main relaying schemes have been proposed in the literature: Amplify-and-Forward

(AF), where the relay amplifies its observed signal [54]; Decode-and-Forward (DF), where the

relay decodes the sent message; and Compress-and-Forward (CF), where the relay quantizes

the received signal [55].

None of the above is optimal in all settings; nevertheless, they have been shown to perform



3.2 Resource allocation in wireless communications networks 43

well over various extensions of the basic relay channel [53], such as the two-way relay channel

[56], the diamond relay channel [C6], the multiway relay channel [C3], [C4], [J1], and the

interference relay channel [57], [58]. Moreover, DF usually performs well when the relay is

close to the source, whereas CF performs well when the user is close the destination. AF, on

the other side, is easy to implement but is usually outperformed by CF and DF.

Ambient backscattering communication vs. AF At a first glance, AmBC seems to

operate similarly to AF relaying. Indeed, under AF, the relay receives the signal Y = hX+Z,

where X is the message sent by the source, h is the channel between the source and the relay

and Z is the AWGN at the relay; which is then amplified by a factor G before forwarding

XR = G(hX + Z). (3.6)

The amplification gain G, which depends on the power budget at the relay, seems hence to

play a similar role as the reflection coefficient ρ of the ambient backscatter device.

Nonetheless, there are major differences between the two technologies:

i) AmBC are more efficient in terms of energy and in hardware complexity since relays require

dedicated power source and active electronic components [59], leading to an increase of the

cost and the power consumption in the system;

ii) thanks to the absence of active components in AmBC, no noise is reflected at the receiver

side as shown in (3.5), as opposed to AF as shown in (3.6);

iii) the relay only improves the communication between one source and its destination without

sending any message of its own; whereas the ambient backscatter device exploits the signal

sent by the source to send its own information.

3.1.4 Cognitive radio

Cognitive radio is another candidate technology to tackle the spectrum scarcity by allowing

an opportunistic access to underutilized licensed bands. Three paradigms of cognitive radio

can be found in the literature: interweave, overlay and underlay [60], [61]. On the one

hand, under the interweave mode, secondary transmission is only allowed over non-occupied

primary frequency bands, requiring hence spectrum sensing. On the other hand, under both

overlay and underlay mode, the secondary and the primary transmissions coexist: in the

overlay mode, the secondary users cooperate with the primary ones to enhance the primary

transmissions and hence be granted access, whereas in the underlay mode, the secondary

transmissions are allowed provided that the primary transmissions are not degraded below a

given threshold [47], [62]. In the following, underlay cognitive radio will be considered.

3.2 Resource allocation in wireless communications networks

3.2.1 Performance metrics

The exponential growth of the number of connected devices, alongside with the development

of high speed applications, raises serious sustainability concerns. On the one hand, ever
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increasing network throughput is required but on the other hand, the power consumption

must be reduced: trading off between these two aspects becomes hence ineluctable for future

wireless networks.

In the remaining of this manuscript, we will focus on two different performance metrics

trading off between maximizing the network throughput and limiting the power consumption

for two distinct considered networks:

i) Opportunistic rate maximization in the context of cooperative cognitive radio, where

the opportunistic user and the relay powers need to be kept as low as possible to protect the

primary transmission and as large as possible to enhance the opportunistic data rate. The

resulting optimization problems, detailed in Chapter 5, which are not convex, are solved by

the use of deep learning that is briefly presented later on in Section 3.2.3.

ii) Energy efficiency maximization defined as either the tradeoff between the achievable

sum rate vs. power consumption or the ratio of the two in the context of multi-user downlink

NOMA transmission enhanced by the presence of a backscatter device in static or dynamic

environments. The resulting optimization problems, detailed in Chapter 4, are not convex

but are either solved by introducing some relaxation leading to convex optimization problems

solved via the Karush-Kuhn-Tucker (KKT) conditions, or by turning to online learning, which

will be briefly explained in Section 3.2.2.

Before presenting the machine learning tools used in our studies, let us present the two

energy efficiency metrics defined as either the tradeoff or the ratio of the sum rate vs. power

consumption.

Sum rate vs. power consumption tradeoff Energy efficiency, which captures the trade-

off between the sum rate and the power consumption of a system, can be formulated as a

bi-criterion optimization problem [63], [64], in which the objectives are the sum rate Rsum on

the one hand and the negative overall power consumption on the other hand:

max
x∈X

(Rsum(x);−Psum(x)− Pc) (3.7)

where x denotes the optimization variables, for instance the power allocation policy, X is the

feasible set and Psum and Pc are respectively the total transmit power and the circuit power

consumption taking into account the power dissipated in all transmitter and receivers circuit

blocks. The two above objectives are obviously contradictory: maximizing the sum rate

requires the transmission to take place at full power, which is not energy-efficient; whereas

no transmission should take place to minimize the power consumption, which is neither

rate- nor QoS-efficient. Solving such a bi-criterion optimization problem requires to find the

Pareto-boundary of the feasible set, which contains all feasible rate-power pairs that cannot

be improved in both objectives simultaneously while remaining in the feasible set. If both

objectives are convex, and if the feasible set X is convex, finding the Pareto boundary reduces
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to maximize a weighted sum of the two contradictory objectives [65] given as

max
x∈X

Rsum(x)− α(Psum(x) + Pc), (3.8)

where α ≥ 0 is the parameter that trades off between the sum rate and the power consump-

tion: Setting large values of α turns the optimization problem into a power-consumption

driven one; whereas choosing small values of α turns the optimization problem into a rate-

driven one.

Sum rate vs. power consumption ratio Let us now consider another popular energy

efficiency metric defined as the ratio between the sum rate and the overall power consumption

ξEE(x) = Rsum(x)
Psum(x)+Pc

[63], [64], [66], whose solution lies on the Pareto boundary of the bi-

criterion optimization problem (3.7) [67].

Assuming that the sum rate is concave and since the overall power consumption is affine,

the maximization of the ratio ξEE is a concave-convex fractional problem whose solution

is equivalent to find the unique zero of the scalarized trade-off between the sum-rate and

the total power consumption of (3.8) with respect to α [66], which can be obtained with

Dinkelbach’s iterative algorithm [66], [68], [69] given in Algorithm 2.

Algorithm 2 Dinkelbach’s algorithm

1: Initialize ϵ > 0, n = 0, α0 = 0
2: repeat
3: Compute x∗n = argmaxx∈X Rsum(x)− αn(Psum(x) + Pc)
4: Update F (αn) = Rsum(x∗n)− αn(Psum(x∗n) + Pc)

5: Update αn+1 ← Rsum(x∗
n)

Psum(x∗
n)+Pc

6: n← n+ 1
7: until F (αn) ≤ ϵ

3.2.2 Online learning

Reinforcement learning is a branch of machine learning that learns through trial and error by

receiving a positive or negative feedback from the environment for taking certain decisions

or actions [70].

Later on in Chapter 4, we exploit the so-called Multi-Armed Bandits (MAB) framework,

a class of reinforcement learning. At each iteration t of a repeated decision process, an agent

or decision maker selects an arm or action a(t) among a given and known set of actions A
and receives the corresponding reward u(t)(a(t)) generated by the environment. Given this

reward, the agent chooses the next action or arm, the goal being to maximize the expected

reward which is unknown. As such, the agent faces an exploration-exploitation tradeoff: On

the one hand, exploring more arms allows the agent to obtain more information about actions

that have no been played so far, leading to possible better choices in the future; but on the

other hand, by doing so, the agent fails to exploit arms which have already lead to good

payoff [71].
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Regret as a performance metric: The performance of a MAB algorithm is usually

measured in terms of pseudo-regret [72] defined as

E[RegT ] = µ∗ − 1

T

T∑

t=1

E[u(t)(a(t))], (3.9)

where µ∗ represents the maximal expected reward given as µ∗ = maxa∈A µ(a), with µ(a) =

E[u(t)(a)] being the unknown expected reward of an arbitrary action a ∈ A. In other words,

the pseudo-regret measures the gap between the agent’s online policy a(t), ∀t ∈ {1, ..., T}
and the best fixed action that maximizes the expected reward over the given horizon of play

a∗ = argmaxa∈A µ(a).

The figure of merit of an online optimization problem, and hence of MABs, is to design

an online policy that achieves no regret, i.e. is such that lim supT→∞RegT ≤ 0. Intuitively,

the later means that the designed online policy needs to perform at least as good as the fixed

policy which maximizes the expected reward when the time horizon T grows large. Further,

among all policies exhibiting the no-regret property, one should also choose the one with the

best possible regret decay rate, which of course is not straightforward since unknown and

arbitrary variations in the environment lead to a reward function not known in advance [71].

Below, we briefly provide an overview of two of the most popular no-regret MAB algo-

rithms, namely UCB and EXP3. The former is based on a deterministic arm selection update

rule, whereas in the latter, the next arm to be selected is drawn from a random iteratively

updated probability distribution.

Upper Confidence Bound (UCB): UCB is a deterministic no-regret algorithm designed

specifically for stochastic environments. Its pseudo-regret decay rate is optimal in the sense

that it achieves the best possible one, i.e. E[RegT ] = O(log T/T ) [73], where the expectation

is taken over the stochastic environment [72]. Its deterministic updating rule is given as

a(t+1) = argmax
a∈A

(
µ̂(t)a +

√
δ log t

2n
(t)
a

)
, (3.10)

where n
(t)
a is the number of times arm a has been played so far, µ̂

(t)
a denotes the empirical

mean reward of arm a up to time t and δ is the learning parameter that trades off between

data exploitation and exploration. Intuitively, the first term of the updating rule tends to

exploit the arm with the highest empirical mean, whereas the second term allows to explore

arms that have not be played much so far, especially in the first iterations of the algorithm.

Having a deterministic updating rule, UCB can easily be brought to a fault when the

environment is adversarial. Hence, other updating rules such as EXP3, based on random

arm selection drawn from some given probability, have been proposed.

Exponential weights for exploration and exploitation (EXP3): EXP3 is a random

no-regret algorithm designed for more general environments going beyond the stochastic case,

e.g. adversarial one [74]. Its pseudo-regret decay rate is such that E[RegT ] = O(1/
√
T ), hence
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slower than the one of UCB, but having the advantage of accounting for arbitrary dynamics

that may even be adversary (some simulations in adversarial environments were presented in

[J5]). The expectation in the regret decay rate is here taken with respect to the randomness

within the EXP3 algorithm and any randomization employed by the adversary.

Under EXP3, the arm a(t+1) ∈ A is randomly drawn following the updated probability

distribution

q(t+1)(a) =
q(t)(a) exp(η û(t)(a))

∑|A|
b=1 q

(t)(b) exp(η û(t)(b))
, ∀a ∈ A, (3.11)

where û(t)(b) = u(t)(a(t))1[b = a(t)]/q(t)(b) is the estimated reward of arm b and η is the

learning parameter. In the above, 1[x] denotes the indicator function which equals 1 when x

is true and 0 otherwise.

3.2.3 Deep learning

Deep learning is a branch of machine learning field that exploits deep neural networks (DNNs)

composed of multiple hidden layers to predict an output from relevant training data [75].

Whereas deep learning has already been widely used in many fields, such as image process-

ing, computer vision, language processing, etc., its use in wireless communication networks

is rather new. Indeed, up to very recently, various mathematical models were available in

the field of wireless communications, making the use of data-driven approaches not necessary

[76]. Nonetheless, future wireless networks are expected to be very heterogeneous and dense

ones, as such the lack of explicit mathematical models could be compensated by the use of

data-driven approaches, the most promising one being deep learning. As such, deep learn-

ing techniques have been widely considered to solve non-convex and complex optimization

problems, thanks to their universal approximation capability, i.e. their ability to learn any

input-output relationship when properly trained [76].

Deep learning can be performed either in a supervised or unsupervised manner. Under the

supervised approach, the DNN is trained with the help of labeled data to either classify them

into some given categories or to predict a continuous outcome. In this case, each training

sample is composed of both the input and its associated ground-truth label or variable to be

predicted. During the training process, the DNN identifies relationships between the input

and the corresponding desired output to then generalize over new unseen data for which of

course no labels are provided. On the other hand, under the unsupervised approach, the

DNN is trained with only raw data without any associated ground-truth output. The DNN

hence identifies patterns and relationships based only on the inputs.

In the remaining of this section, we briefly present some DNN-based works related to

resource allocation in cooperative cognitive relay networks, the framework under study in

Chapter 5.

In the context of cognitive radio networks, various resource allocation problems have been

tackled via deep learning [77]–[80]. In [77], the authors have proposed a deep learning ap-

proach for resource allocation problems in cognitive radio networks maximizing the spectrum

and energy efficiency. Further, the opportunistic spectral efficiency of such a system was
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maximized using DNN-based techniques while regulating the interference caused to the pri-

mary user, either in a centralized [79], or in a distributed manner [80]. In [78], a DNN is used

to determine the power allocation over multiple channels of the opportunistic users.

On the other hand, regarding cooperative communications, various optimization prob-

lems, such as maximizing the energy efficiency, selecting the best relay within a set of can-

didates as well as selecting the best relaying scheme to be performed, can also be solved via

deep learning. In [81], the authors studied the power allocation and relay selection problem

maximizing the energy efficiency of an AF relay channel with the help of a DNN. Many works

can be found regarding DNN-based relay selection, in which one searches for the best relay

node among multiple relay candidates [82]–[84], as well as on relaying scheme selection [85],

[86], in which the relaying scheme yielding the best signal-to-noise ratio or the lowest outage

were respectively selected in [85] and [86].

The following two chapters present some of our main results on resource allocation for

cooperative multi-user networks.

More precisely, Chapter 4 focuses on energy-efficiency maximization in cooperative backscat-

tering downlink NOMA networks under two extreme cases regarding the available channel

state information (CSI), namely perfect CSI knowledge and no CSI at the transmitter side.

Under perfect CSI, the optimal resource allocation policy is obtained in closed-form (up to a

line search) thanks to some constraints relaxation leading to a convex optimization problem;

whereas in the extreme case of no CSI, online learning is used to compensate the lack of CSI.

Chapter 5 then presents our results on opportunistic rate maximization in cooperative

cognitive radio networks where we first assume that perfect CSI is available, leading to a

closed-form solution under CF but already requires the use of deep learning techniques under

DF as the non-linear operations performed at the relay render the optimization problem non-

convex and hence difficult to solve. We then study the impact of imperfect CSI, leading to

a deep learning based solution under both CF and DF, and finally extend our DNN-based

solutions to jointly optimize the power allocation policy and select the best relaying scheme

to be performed.



Chapter4
Energy-efficient cooperative backscattering NOMA

In this chapter, we overview the most relevant contributions [J6], [C14] of the work performed

by the PhD student Hajar El Hassani, whom I have co-advised (at 40%) jointly with E.

Veronica Belmega (ETIS lab, 60%, official director).

Let us consider a multi-user downlink Non-Orthogonal Multiple Access (NOMA)
system aided by an ambient backscatter device that modulates its own information
by reflecting the incident signal coming from the NOMA transmitter. We propose
a joint optimization framework for maximizing the system energy efficiency (EE)
under user minimum rate constraints and perfect channel state information (CSI).
We further investigate the robustness of our solution to imperfect CSI. We then
move to the 2-users case with no CSI nor channel distribution information (CDI)
when the basckscatter is only in the harvesting mode and propose an online learn-
ing method that is energy efficient and relies only on a 1-bit feedback.
Our main contributions are the following:

• Deriving the information-theoretic achievable rate region of a multi-user
downlink NOMA system aided by an ambient backscatter device that reflects
the signal coming from a source employing NOMA while sending its own
binary information.

• Proposing a joint optimization framework to maximize the system EE given
as the tradeoff and ratio between the overall sum rate and the power con-
sumption. We jointly optimize the reflection coefficient and the power alloca-
tion under power budget, QoS, SIC decoding order and reflection coefficient
constraints, which is not convex.

• Introducing a modification on the constraints enabling to decouple the prob-
lem which can then be solved analytically.

• Proposing an adaptive MAB-based NOMA scheme maximizing the EE for
the 2-users case when no CSI nor CDI is available at the transmitter’s side.

Main contributions

4.1 System model

Consider the ambient backscatter multiple access downlink NOMA communication system

depicted in Figure 4.1. The later is composed of one transmitter or source (e.g., BS, femtocell,

49
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g

hk

gk

...

...

Figure 4.1: Multi-user downlink NOMA system aided by an ambient backscatter device

Wi-Fi hotspot, etc.), K ≥ 2 receivers or users (e.g., mobile phones, IoT devices, etc.) and one

ambient backscatter device. The source sends the messageMi encoded asXi intended for each

receiver i ∈ {1, . . . ,K} with power pi via superposition coding and broadcasts X =
∑K

i=1Xi.

We further denote by P the power budget of the BS, such that
∑

i pi ≤ P . Also, each user

k is required to meet a QoS constraint expressed in terms of a minimum achievable rate of

Rmin,k. We moreover assume that the backscatter device sends a common binary information

B to all receivers.

The received signal Yk at user k is composed of the direct signal coming from the source

and the backscattered signal, which is given by

Yk = hkX︸︷︷︸
direct signal

+
√
ρ g gkBX︸ ︷︷ ︸

backscattered signal

+Zk, (4.1)

where hk, g and gk are the channel gains between the source and receiver k, the source and

the backscatter device and the backscatter device and receiver k, respectively, Zk ∼ N (0, σ2)

is AWGN, and the parameter ρ is the reflection coefficient of the backscatter device.

Let us first assume that perfect CSI is available at the source and that without loss of

generality, the channel gains hk, k ∈ {1, . . . ,K} are arranged in a decreasing order such that
h2
k

σ2
k
≥ h2

k+1

σ2
k+1

,∀k [87], [88]. Following the superposition coding principle adopted in NOMA, each

receiver i performs SIC [87], [89] by first decoding the messages Xj , j ∈ {K,K−1, . . . , i+1},
while treating other messages Xs, s ∈ {i−1, . . . , 1} as noise, before decoding its own message

Xi. Note that the source decides the SIC ordering only based on the direct link to the

users without accounting for the backscattered link. Indeed, since the backscatter device is

inherently opportunistic when sending its own message, the source has no control over its

backscattering state.

Most of the existing works [90]–[97] consider either the simple backscattering state B = 1,

or that the backscattered signal composed of the product BX follows a Gaussian distribution

in order to approximate the achievable rate region with the help of Shannon’s capacity func-

tion C(·). These assumptions may not be realistic in practice, since the backscatter device

usually has its own information to transmit besides harvesting energy for its circuit operation

and when both X and B are random variables, the received signal is no longer Gaussian.



4.2 Achievable rate region 51

As such, we first derive an achievable rate region by explicitly taking into account the

message of the backscatter device, which clearly sets our work apart from the existing liter-

ature.

4.2 Achievable rate region

4.2.1 Discrete case

Let us start with the discrete memoryless channel case of the joint multiple access and

broadcast communication system depicted in Figure 4.2, and then derive an achievable rate

region for the Gaussian channel described in our predefined model.

Figure 4.2: Source-backscatter device to K-receivers discrete channel model

Both the source and the backscatter device wish to send independent messages reliably

to K receivers. The backscatter device encodes its common message M0 into a codeword Bn

and transmits it over the shared channel. The source uses a superposition coding technique

to encode each private message Mi destined to receiver i in a layered manner and broadcasts

the codeword Xn consisting of all merged encoded messages M1, . . . ,MK . Upon receiving

the sequence Y n
i , receiver i ∈ {1, . . . ,K} computes an estimate M̂0→i of the message M0 and

uses SIC to obtain an estimate M̂i→i of the message Mi, by first computing the estimates

M̂j→i of the messages Mj , for all j ∈ {K,K − 1, . . . i + 1} following this precise successive

order.

Theorem 4.2.1. [J6] An achievable rate region of the discrete memoryless source-backscatter

device to K receivers channel is given by the set of rate tuples (R0, R1, . . . , RK) defined below:

R0 ≤ min
1≤i≤K

I(B;Yi|UK), (4.2)

RK ≤ min
1≤i≤K

I(UK ;Yi|B), (4.3)

R0 +RK ≤ min
1≤i≤K

I(UK , B;Yi), (4.4)

Rj ≤ min
i≤j

I(Uj ;Yi|B,UK , . . . , Uj+1), ∀ 1 ≤ j ≤ K − 1, (4.5)

where Ui are auxiliary randoms variables accounting for Xi for all 2 ≤ i ≤ K.

Proof. The proof follows from standard information-theoretic techniques [39], [40]. Superpo-

sition coding, with auxiliary random variables Uj , j ∈ {2, . . . ,K} serving as “cloud centers”

representing the messages Mj that can be distinguished by receivers i ≤ j, is used at the
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source side. The achievable rates are then obtained by defining the error events of unsuc-

cessful decoding of X and B and by using typicality arguments. The detailed proof can be

found in [J6].

In practice, the data rate of the backscatter device is significantly lower than that of

the source because of its design simplicity and power limitations as argued in [41], [43], [92],

[98]–[101]. Assuming that R0 ≪ RK in particular, the expressions (4.3) and (4.4) in Theorem

4.2.1 reduce to

RK ≤ min

(
min

1≤i≤K
I(UK ;Yi|B), min

1≤i≤K
I(UK , B;Yi)

)
(a)
= min

1≤i≤K
I(UK ;Yi|B), (4.6)

where (a) follows from the chain rule and the positivity of the mutual information. This

yields the achievable rate region given in the following Lemma.

Lemma 4.2.1. [J6] Assuming that the backscatter device has a very low data rate compared

to that of the source, R0 ≪ RK , the achievable rate region in Theorem. 4.2.1 simplifies to

R0 ≤ min
1≤i≤K

I(B;Yi|UK), (4.7)

RK ≤ min
1≤i≤K

I(UK ;Yi|B), (4.8)

Rj ≤ min
i≤j

I(Uj ;Yi|B,UK , . . . , Uj+1), ∀ 1 ≤ j ≤ K − 1. (4.9)

4.2.2 Gaussian case

Let us now move to the AWGN case described in 4.1 and more specifically for the received

signal Yk given in (4.1).

The message of the backscatter device B follows the Bernoulli distribution B ∼ Bern(q),

where q = P[B = 1] is the probability of the backscattering state and (1 − q) = P[B = 0] is

the probability of the transparent state. By assuming, as commonly used in the literature

when describing the codeword X =
∑K

k=iXi sent using NOMA, that X1 = V ∼ N (0, p1)

and Xi = Ui ∼ N (0, pi), ∀i ∈ {2, . . . ,K}, we can compute an achievable rate region for the

Gaussian case which is given in the following theorem.

Theorem 4.2.2. [J6] An achievable rate region of the AWGN source-backscatter device to

K-receiver channel is the set of rate tuples (R0, R1, . . . , RK), such that

R0 ≤ min
1≤i≤K

H(Yi|UK)− q
2
log2

(
2πeσ2i

(
Hi|1(ρ)

K−1∑

k=1

pk+1

))
− 1−q

2
log2

(
2πeσ2i

(
Hi|0

K−1∑

k=1

pk+1

))

Rk ≤ qC
(
min
i≤k

(γk→i|1)

)
+ (1− q)C

(
min
i≤k

(γk→i|0)

)
, ∀ 1 ≤ k ≤ K,

where Hi|0 = h2i /σ
2
i , Hi|1(ρ) = (hi +

√
ρggi)

2/σ2i represent the channel gains when the

backscatter device is in the transparent state (B = 0) and in the backscattering state (B = 1),
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respectively, and γk→i|0 =
Hi|0pk

1+Hi|0(p1+...+pk−1)
and γk→i|1 =

Hi|1(ρ)pk
1+Hi|1(ρ)(p1+...+pk−1)

are the cor-

responding signal-to-interference-plus-noise ratio (SINR) values when receiver i decodes the

message intended for receiver k.

Note that the expression of R0 cannot be obtained in closed form because the term

H(Yi|UK) is very difficult to compute due to the non trivial sum of two independent variables

X and BX in the received signal Yk, where B ∼ Bern(p) and X ∼ N (0,
∑K

i=1 pi), which is

left open for future investigation. Also, the achievable rate of receiver k can be seen as an

expected value of the Shannon capacity over the message B ∈ {0, 1} (i.e., the ergodic rate

over the fading channel hk +
√
ρggkB).

Let us now investigate the system energy-efficiency maximization defined as the tradeoff

between the sum of the achievable data rates and the consumed power. Since by assumption

we have R0 ≪ RK and knowing that the backscatter device is a low-power device which

performs energy harvesting for its own circuit operations, we only focus on maximizing the

energy efficiency (EE) of the downlink NOMA system (enhanced by ambient backscattering).

4.3 Resource allocation for energy-efficient NOMA in static

environments

4.3.1 Optimization problem under study

The energy efficiency maximization problem under study writes as [63], [66]

(EE0) max
(ρ,p)∈P

K∑

k=1

Rk(ρ,p)− α

(
K∑

k=1

pk + Pc

)
, (4.10)

where Rk(ρ,p) denotes the achievable rate of receiver k and follows from Theorem 4.2.2

Rk(ρ,p) = qC

(
min
i≤k

(γk→i|1)

)
+ (1− q)C

(
min
i≤k

(γk→i|0)

)
, ∀ 1 ≤ k ≤ K. (4.11)

The set P contains all admissible reflection coefficients ρ and transmit power allocation

policies p = (p1, . . . , pK). This feasible set accounts for all the constraints: the maximum

power budget of the source, the receivers targeted QoS, the successful SIC process expressed

as qC
(
γk→i|1

)
+(1−q)C

(
γk→i|0

)
≥ qC

(
γk→k|1

)
+(1−q)C

(
γk→k|0

)
to avoid error propagation

when receiver i, ∀i ≤ k−1, performs SIC and decodes the message destined to receiver k and

the range of the reflection coefficient, respectively.

Special case q = 0: When q = 0, the optimization problem (EE0) is equivalent to the

optimization problem solved in [C11], in which the system model was only composed by

one BS and K users, served with downlink NOMA, for which we derived the optimal power

allocation policy in closed form.

Special case q = 1: On the other hand, when q = 1, the optimization problem (EE0)

is equivalent to the optimization problem solved in [C14], in which the system model was
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composed by one BS, K users served with downlink NOMA and one backscatter which was

always in the backscattering state with B = 1. The optimal power and reflection coefficient

allocation policy was derived in closed form. The later was extended to the two-users multiple

backscatter devices case, where the optimal power and reflection coefficient allocation policy

was derived in closed form for the special case of 2 backscatter devices and numerically derived

for more than 2 backscatter devices in [C20].

General case: Since SIC decoding is a key component for NOMA [87], [89], [102]–[105],

it has to be performed successfully and independently from the backscatter device state

(backscattering or transparent) in order to avoid error propagation that may affect the per-

formance of the system (e.g., the targeted quality of service). To ensure successful SIC, we

impose a minimum QoS constraint for each state of the backscatter device: γk→i|1 ≥ γk→k|1

and γk→i|0 ≥ γk→k|0, ∀k ∈ {1, . . . ,K} and i ≤ k. All the above leads to the feasible set:

P ≜



(ρ,p) ∈ [0, 1]× RK

+

∣∣∣∣ 0 ≤ ρ ≤ 1,

K∑

j=1

pj ≤ P ,Rk(ρ,p) ≥ Rmin,k,

γk→i|0 ≥ γk→k|0, γk→i|1 ≥ γk→k|1, ∀1 ≤ k ≤ K,∀i ≤ k
}
. (4.12)

Note that the successful SIC decoding constraint in the transparent state γk→i|0 ≥ γk→k|0

is readily satisfied due to the assumed channels ordering. By ensuring that γk→i|1 ≥ γk→k|1

is met in the optimization problem (EE0), the achievable rate of receiver k in (4.11) reduces

to

Rk(ρ,p) = qC(γk→k|1) + (1− q)C(γk→k|0), ∀ 1 ≤ k ≤ K. (4.13)

To simplify the presentation, we introduce the notations θk(p) =
∑k

i=1 pi, ∀1 ≤ k ≤ K

with θ0(p) = 0 and Ak = 22Rmin,k . The optimization problem hence writes as

(EE0) max
ρ,p

K∑

k=1

Rk(ρ,p)− α(θK(p) + Pc)

s.t. θK(p) ≤ P , (C1)

Rk(ρ,p) ≥ Rmin,k, ∀1 ≤ k ≤ K (C2)

γk→i|1(ρ,p) ≥ γk→k|1(ρ,p),∀2 ≤ k ≤ K,∀i ≤ k − 1 (C3)

0 ≤ ρ ≤ 1. (C4)

Unfortunately, (EE0) is not convex due to the joint optimization of the reflection coeffi-

cient and the vector of allocated powers p as well as to the constraint (C2) in which the rate

Rk(ρ,p) is not concave w.r.t. p.

To overcome this challenge, we introduce a modification to this constraint as follows:

instead of having Rk(ρ,p) ≥ Rmin,k, we require each of the averaged terms in (4.13) to be

bounded: C(γk→k|0) ≥ Rmin,k and C(γk→k|1) ≥ Rmin,k. This means that the QoS constraint

needs to be satisfied in the transparent state and in the backscattering state individually.
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This modification restricts in fact the original feasible set, leading to a potential optimality

loss in case the optimal solution of (EE0) lies outside of the restricted constraints. In our

setting, we believe that any incurred optimality loss will be limited. This intuition, validated

through numerical results in Section V, is based on the the fact that the rate of the backscatter

device is much lower than that of the source in practice. This implies that the message of the

backscatter remains fixed for a relatively long period of time from the source’s perspective

and, hence, imposing the minimum source rate constraint for each individual backscatter

state is relevant.

By imposing the QoS constraints on each state separately, and after some mathematical

manipulations, the constraint (C2) can be expressed as

θk(p) ≥ Akθk−1(p) +
Ak − 1

Hk|0
, ∀ 2 ≤ k ≤ K,∀i ≤ k − 1, (4.14)

θk(p) ≥ Akθk−1(p) +
Ak − 1

Hk|1(ρ)
, ∀ 2 ≤ k ≤ K,∀i ≤ k − 1, (4.15)

where Ak = 22Rmin,k . The main advantage of this modification is that it leads to the following

simpler non-convex optimization problem, which we show can be solved analytically.

(EE1) max
ρ,p

K∑

k=1

Rk(ρ,p)− α(θK(p) + Pc)

s.t. θK(p) ≤ Pmax, (C1)

θk(p) ≥ Akθk−1(p) +
Ak − 1

Hk|0
, ∀2 ≤ k ≤ K,∀i ≤ k − 1 (C2a)

θk(p) ≥ Akθk−1(p) +
Ak − 1

Hk|1(ρ)
, ∀2 ≤ k ≤ K,∀i ≤ k − 1 (C2b)

pk
1

Hi|1(ρ)
+ θk−1(p)

≥ pk
1

Hk|1(ρ)
+ θk−1(p)

, ∀2 ≤ k ≤ K,∀i ≤ k − 1 (C3)

0 ≤ ρ ≤ 1, (C4)

where (C2a) and (C2b) are the modified QoS constraints for the transparent and backscat-

tering states, respectively, and all other constraints remain unchanged. Note that since

Hk|1(ρ) ≥ Hk|0 (Hk|1(ρ) is a composition of the direct and backscattered channels), the

constraint (C2b) will be omitted since satisfying (C2a) is sufficient.

Even though we restricted (C2) to simplify the problem (EE0), the resulting optimization

problem (EE1) remains non-convex due to the joint optimization of the reflection coefficient

ρ and the vector of allocated powers p. Nevertheless, following a similar approach to [C14]

(in which the backscatter device did not transmit any information and operated always in

a backscattering state), we show here that (EE1) can be solved by decoupling it into two

sub-problems without loss of optimality:

i) we first optimize ρ for an arbitrary power allocation p;

ii) then optimize p with the fixed optimal reflection coefficient ρ∗.
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4.3.2 Optimal resource allocation policy

Let us first consider a fixed arbitrary power allocation p ∈ P and solve the optimization

problem (EE1) w.r.t to the reflection coefficient ρ.

Proposition 4.3.1. [J6] The optimal reflection coefficient is independent of p and can be

obtained in closed form as

ρ∗ =




min (1,min ξ) , if ξ ̸= ∅

1, otherwise,
(4.16)

where ξ ≜

{(
hk
σk
− hk+1

σk+1

)2/(
g
(

gk+1

σk+1
− gk

σk

))2
| 2 ≤ k ≤ K s.t. gk+1 > gk

}
. When the re-

flection coefficient is set to ρ∗, the constraints (C3) and (C4) of the optimization problem

(EE1) are readily satisfied.

Proof. For a fixed arbitrary power allocation p, one can show that the objective function

is increasing w.r.t. ρ. Hence, the reflection coefficient must be chosen as large as possible

within the feasible range given by the constraints (C3) and (C4). A detailed proof can be

found in [C14].

Because the optimal reflection coefficient ρ∗ in (4.16) is independent of p and since the

remaining constraints (C1) and (C2′) are independent of ρ, decoupling the optimization

problem by first optimizing over the reflection coefficient and then over the power allocation

policy does not induce any optimality loss.

We can thus fix ρ = ρ∗ and solve the remaining convex problem in terms of the power

allocation policy p with no optimality loss.

(EE2) max
p

ηEE(p) ≜
K∑

k=1

Rk(ρ
∗,p)− α(θK(p) + Pc)

s.t. θK(p) ≤ P , (C1)

θk(p) ≥ Akθk−1(p) +
Ak − 1

Hk|0
, ∀ 1 ≤ k ≤ K. (C2a)

The next theorem states both the feasibility condition as well as the optimal power allo-

cation policy.

Theorem 4.3.1. [J6] The optimization problem (EE2) is feasible if and only if the following

condition holds:

Pmin ≜
K∑

i=1

(Ai − 1)

Hi|0

K∏

j=i+1

Aj ≤ P . (4.17)

If the optimization problem (EE2) is feasible, the optimal power allocation p is given analyt-
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ically as follows:

p∗k = (Ak − 1)

(
1

Hk|0
+ p∗1

k−1∏

i=2

Ai +

k−1∑

i=2

(Ai − 1)

Hi|0

k−1∏

j=i+1

Aj

)
, ∀ k ≥ 2,

p∗1 = max (min (p1;u) ; ℓ) ,

where ℓ = (A1−1)
H1|0

, u =


P − Pmin + ℓ

K∏

j=2

Aj



/ K∏

i=2

Ai and p1 represents the unique critical

point of the single variable function f1(p1) ≜ ηEE(p1, p
∗
2, . . . , p

∗
K) w.r.t p1.

Proof. Provided that the feasibility condition is met, and given that (EE2) is convex, we can

apply the Lagrange multipliers to obtain the optimal expressions of p∗k, ∀k ≥ 2 as functions of

p1 by solving the KKT optimality conditions, which are necessary and sufficient [65]. Hence,

the multi-variable problem (EE2) is turned into a single variable optimization problem w.r.t.

p1 which is proved to be a convex optimization problem in [J6].

Ratio between the achievable sum rate and the overall consumed power Let us

now consider the EE metric defined as the ratio between the achievable sum rate and the

overall consumed power ξEE(ρ,p) =
∑K

k=1 Rk(ρ,p)∑K
k=1 pk+Pc

. Since only the numerator depends on

the reflection coefficient ρ, the optimal ρ∗ given in (4.16) also maximizes ξEE(ρ,p) for all

feasible p. Once ρ∗ obtained, since the numerator is is concave w.r.t. p and the denominator

is affine, ξEE(ρ
∗,p) is a fractional program that can be solved using Dinkelbach’s method,

which reduces to finding the solution to the following equation w.r.t. α:

F (α) ≜
K∑

k=1

Rk(ρ
∗,p∗)− α

(
K∑

k=1

p∗k + Pc

)
= 0. (4.18)

4.3.3 Numerical simulations

In the following, the positions of the users are uniformly drawn in a disk of radius 20m

around the source, whereas the backscatter device position is drawn in a disk of radius

4m surrounding the source. Since the coverage area of ambient backscatter communication

systems is relatively small, we assume that the communication links have a strong line-of-

sight (LOS) and fading-free pathloss channels of the type h = d−
γ
2 [106]–[109], where d is the

distance between different nodes and γ = 2.5 is the path loss exponent. The other system

parameters are: σ2 = −20 dBm, Rmin,k = Rmin = 1 bpcu, ∀k, P = 30 dBm, unless stated

otherwise, and Pc = 30 dBm. The simulation results are averaged over 103 random draws of

the nodes positions satisfying the feasibility condition in Theorem 4.17.

Impact of our modified constraints In Figure 4.3, we compare the EE of the optimal

solution to the original problem (EE0), obtained via exhaustive search, and our analytical

solution to the modified problem (EE1) as a function of q ∈ [0, 1] and for Rmin ∈ {1, 2} bpcu.
We see that the sub-optimality gap becomes smaller when q decreases. Indeed, the case q = 0



58 Chapter 4. Energy-efficient cooperative backscattering NOMA

0 0.2 0.4 0.6 0.8 1

q

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

E
E

 (
b
it
s
/J

)

our proposed solution

optimal EE0

R
min

= 1 bpcu

0 0.2 0.4 0.6 0.8 1

q

4.6

4.8

5

5.2

5.4

5.6

5.8

E
E

 (
b
it
s
/J

)

our proposed solution

optimal EE0

R
min

= 2 bpcu

Figure 4.3: Energy efficiency (ξEE) sub-optimality comparison for different values of q and
Rmin.

corresponds to conventional NOMA, without backscattering, for which the two solutions are

identical (as (EE0) becomes equivalent to (EE1)). The sub-optimality gap increases with

Rmin, but remains negligible, which validates our intuition and highlights the interest of our

analytical solution.
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Figure 4.4: Energy efficiency (ξEE) as a function of the number of receivers K for different
values of q.

NOMA vs. OMA evaluation In Figure 4.4, we plot the EE, defined as the ratio ξEE , of

ambient backscatter-aided NOMA and OMA (as benchmark), as a function of the number of

receivers for different values of q ∈ {0, 0.5, 1} with P = 60 dBm and Rmin = 1 bpcu. First, we

see that NOMA with backscattering always outperforms its OMA counterpart irrespective

from q. Moreover, we observe that the EE decreases with the number of receivers. The

intuition comes from the expression of the optimal reflection coefficient in (4.16) that depends

on the smallest difference between the channel gains. The larger the number of receivers K,

the smaller the channel gap. WhenK increases, ρ∗ tends to zero, vanishing the backscattering

effect and leading to the conventional scheme without backscattering (q = 0).

In Figure 4.5 we plot the achievable sum rate and overall power consumption as functions

of the tradeoff parameter α where q = 0.5 and Rmin = 1bpcu. We see that NOMA achieves

higher sum rate while consuming as much power as OMA, irrespective from α. Moreover,

both the sum rate and the power consumption decrease as α increases. Indeed, for larger
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(a) Achievable sum rate (b) Overall power consumption

Figure 4.5: Achievable sum rate and overall power consumption as functions of the tradeoff
parameter α for an ambient backscatter-aided NOMA system with K = 2 and q = 0.5

values of α, the power minimization is given more weight when maximizing the sum rate vs.

power consumption tradeoff. We also highlight the two points α∗
NOMA and α∗

OMA referring to

the respective solutions of F (α) = 0 in (4.18) providing the achievable sum rate and overall

power consumption that are optimal in the sense of the EE ratio ξEE .
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Figure 4.6: Impact of imperfect CSI on the energy efficiency (ξEE) and outage performance
of NOMA as a function of the number of receivers K for different values of the error variance
σ2e .

Impact of imperfect CSI At last, we investigate the impact of imperfect CSI on our

solution. We assume that only channel gain estimates ĥ are available at the transmitter side

such that ĥ = h − e, where e ∼ N (0, σ2e) represents the estimation error of variance σ2e for

any link h. The power allocation policy is computed based on the estimated channel gains ĥ

and the system performance is obtained with the true channel gains h. Imperfect CSI may

result in violating the user QoS or the SIC constraints in (4.12), leading to an outage event.
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Hence, we plot both the EE when the system is not in outage and the outage probability in

Figure 4.6 for q = 0.5.

As expected, the performance is impacted by the quality of the channel estimation. For

σ2h/σ
2
e ∈ {−10,−20} dB (poor estimation), the system is almost always in outage. For

σ2h/σ
2
e = 20 dB (excellent estimation), the imperfect CSI curves are superposed to the perfect

CSI ones. When σ2h/σ
2
e = 10 dB (good estimation), the outage is negligible and the EE is

impacted but not critically (the loss is below 11% for any K). When the error variance is as

high as the channel variance (σ2h/σ
2
e = 0 dB), the outage is very high: above 50% for K = 2

and reaches up to 90% for K = 7. Except for K = 2, the EE is also highly impacted in this

case, the loss reaching up to 49% for K = 7 users. Hence, our solution relies on high quality

CSI estimation.

In the next Section, we move toward an extreme case, where neither perfect or imperfect

CSI nor channel distribution information (CDI) is available at the transmitter side.

4.4 Resource allocation for energy-efficient NOMA in dynamic

environments

4.4.1 System model

Throughout this Section, we restrict the system model under study to the case of K = 2

users and the backscatter being in the transparent mode (B = 0, q = 0). The received signal

at each user k writes as y
(t)
k = h

(t)
k x(t) + z

(t)
k , where h

(t)
k represents the instantaneous channel

gain which is assumed to follow a stochastic time-varying small-scale fading model as in [110].

The later are unknown to the transmitter; and only the receivers know their own channels.

When the channels are known by the transmitter, the user with the best channel condi-

tions carries out SIC and the other performs single user detection (SUD). Under unknown

channels, the decoding techniques of the users have to be chosen differently. One solution is

to consider it as an optimization variable: let i ∈ {1, 2} and j ∈ {1, 2} \ {i} denote the user

performing SIC and the one performing SUD respectively. The discrete variable i ∈ {1, 2}
assigning the users’ decoding techniques is a control variable that has to be optimized at the

transmitter alongside the power allocation vector p = (pi, pj). User i first decodes the mes-

sage of user j with the data rate R
(t)
j→i = log

(
1 + Γ

(t)
j→i

)
, where Γ

(t)
j→i =

|h(t)
i |2pj

|h(t)
i |2pi+σ2

denotes

the SINR at user i when decoding user j’s message. User i then removes this message and

decodes its own message with the data rate R
(t)
i = log(1+Γ

(t)
i ), where Γ

(t)
i =

|h(t)
i |2pi
σ2 denotes

the SNR at user i. User j treats user i’s message as additional noise, with the data rate

R
(t)
j→j = log(1 + Γ

(t)
j→j), where Γ

(t)
j→j =

|h(t)
j |2pj

|h(t)
j |2pi+σ2

is the SINR at user j.

An EE measure well suited to stochastic small-scale fading channels, as its numerator

represents the long-term average sum rate of the system, is defined as [111], [112]

GEE(i,p) =
(Rmin,1 +Rmin,2)(1− Pout(i,p))

pi + pj + Pc
, (4.19)

where (1−Pout(i,p)) is the probability that the QoS constraints are met. The outage probabil-
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ity, on the other hand, is given as Pout(i,p) = P
[
Γ
(t)
i ≤ Γmin,i ∪ min(Γ

(t)
j→j ,Γ

(t)
j→i) ≤ Γmin,j

]
,

with Γmin,i ≜ 2Rmin,i − 1 and Γmin,j ≜ 2Rmin,j − 1. Since the QoS constraints are incorporated

into the objective, the feasible set simplifies to

P =
{
(i,p) | i, j ∈ {1, 2}, j ̸= i, pi, pj ≥ 0, pi + pj ≤ P

}
.

When CDI is available, the closed-form expressions of the outage probability are known

[34] for Rayleigh distributed channels. Hence finding the optimal policy maximizingGEE(i,p)

reduces to solving two continuous optimization problems (one for each value of i) with respect

to p and then choosing the best value of i.

The absence of CSI and CDI leads to an unknown objective function which cannot be

minimized via classical optimization techniques. Instead, we propose to exploit reinforcement

learning and Multi-Armed Bandits (MABs) to propose iterative and adaptive schemes that

exploit past transmissions and do not rely on CSI/CDI. We first introduced this tool to

minimize the outage probability of the same system model in the absence of CDI and CSI at

the transmitter side in [J5]. Here, MABs are used to maximize an EE metric based on the

outage probability. While transmitting at full power is optimal when minimizing the outage

probability, the later is no longer optimal when maximizing the energy-efficiency leading to

a different feasible set [C13] compared to [J5].

4.4.2 Multi-Armed Bandits for adaptive NOMA with no CSIT/CDIT

In order to exploit the MAB framework, we first need to quantize the feasible set P. Given

that transmitting at full power as in [J5] is not energy-efficient in general, we consider that

only a fraction of the maximum budget P is exploited with β ∈ B ⊂ [0, 1] such that B =

{β1, β2, . . . , βB} is discrete. In order to maintain fairness among users, user i carrying out

SIC is allocated less power than user j; and focus on the special choice of power allocation

policy pβ = (0.25βP , 0.75βP ). Of course, the quantization set B and the 0.25 − 0.75 power

split between the two users will both incur an optimality loss which will be evaluated and

analyzed thoroughly via numerical simulations.

A possible action or arm at the BS is defined by the pair a ≜ (i, β) ∈ A = {1, 2} × B
which will dictate both the decoding schemes of the two users via i and the discrete transmit

power allocation policy pβ via β as described above.

A generic dynamic policy for adaptive NOMA in this framework can be described as

follows. At each iteration t, the BS selects an arm a(t) ∈ A, informs the users of their decoding

schemes i(t), which can be conveyed via 1-bit and transmits the superimposed signal using

p
(t)
β . Then, both users perform their respective decoding schemes and determine if they met

their QoS requirements and send a one-bit ACK feedback. Based on this feedback, the BS

computes the reward u(t)(a(t)) defined in (4.20) and updates the arm selection process.

u(t)(a)=





Rmin,1+Rmin,2

pi,β+pj,β+Pc
, if Γ

(t)
i ≥ Γmin,i and min(Γ

(t)
j→j ,Γ

(t)
j→i) ≥ Γmin,j ,

0, otherwise.
(4.20)
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Note that here, maximizing the expected reward is equivalent to minimizing the outage

probability since µ(a) = E[u(t)(a)] = (1− PNOMA
out )

Rmin,1+Rmin,2

pi,β+pj,β+Pc
= GEE.

4.4.3 Simulation results

Let us now investigate the EE of our proposed adaptive NOMA scheme with no CSI/CDI.

Three cases based on the quantization set B are considered:

a) 5-element B1 = {0.2, 0.4, . . . 1};
b) 10-element B2 = {0.1, 0.2, . . . , 1};
c) 20-element B3 = {0.05, 0.1, . . . , 1} such that B1 ⊂ B2 ⊂ B3.
The considered arm sets are thus given as Ai = {1, 2}×Bi of 10, 20 and 40 arms respectively.

We further assume Rayleigh fading channels, i.e, h
(t)
k ∼ CN (0, 1), and consider the fol-

lowing system parameters: σ2 = 0.1, Γmin,1 = 1 (Rmin,1 = 1 bpcu), Γmin,2 = 10 (Rmin,2 ≃ 3.5

bpcu), Pc = 1 W and P = 100 W (unless stated otherwise). The time horizon is set to

T = 5000 for both UCB and EXP3 algorithms and the illustrated curves are averaged over

103 horizon realizations. The learning parameters were carefully tuned in order to provide

the best performance and were set as δ = 0.1 and η = 0.08.

To benchmark the performance of our proposed adaptive NOMA scheme, we consider

OMA where each of the two users is served in a time-sharing manner.

In Figure 4.7, we compare the EE of our NOMA scheme with UCB and EXP3 using A3

(40 arms), with the fixed optimal arm a∗ computed offline with the use of CDI. Note that

both algorithms reach the EE of a∗, the best fixed offline policy, by requiring only one bit of

feedback and no CSI/CDI. Further, our proposed NOMA scheme significantly outperforms

OMA after a few iterations. UCB outperforms EXP3, as expected in the stochastic case

[113].
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Figure 4.7: Energy efficiency of our adaptive NOMA (via UCB or EXP3) compared to the
best offline arm and OMA.

In Figure 4.8(a) and Figure 4.8(b), we investigate the impact of the number of arms and

the sub-optimality caused by the discretization B and the split 0.25− 0.75 for two scenarios:

P = 100 W and P = 10 W, respectively. For this, we include the following two benchmarks:

a) sub-optimal EE obtained with the user power split 0.25− 0.75, but for an optimal choice

of β;
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b) the optimal EE obtained over the entire set P. Both figures show a vanishing gap between

the above sub-optimal and optimal schemes, showing hence the efficiency of our heuristic

0.25 − 0.75 power split between the two users. In the large transmit power regime of Fig-

ure 4.8(a), the optimality loss of our adaptive NOMA scheme decreases with the number

of arms. However, the gap remains large (more than 50% at low Γmin,2), highlighting the

tradeoff between EE and available feedback. On the other hand, in the low power regime of

Figure 4.8(b), the optimality gap is negligible for 20 arms.
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Figure 4.8: Impact of the number of arms on the GEE

In Figure 4.9, we study how the number of arms affects the regret performance of our

adaptive NOMA. We focus only on UCB, since it is known to have a better decay rate than

EXP3 in the stochastic case, and plot the number of iterations required to reach a regret

level of 10%. We see that the larger the number of arms, the more iterations are needed.

Hence, even if a better EE performance can be achieved by increasing the number of arms,

additional time is needed to explore and exploit all arms. This highlights another fundamental

tradeoff between EE and complexity and a larger amount of time is required to reach better

performance.
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4.5 Conclusions

In this chapter, we analyzed a mutli-user downlink NOMA system aided by an ambient

backscatter device. We first derived the information-theoretic achievable rate regions and

then formulated the energy efficiency maximization as the tradeoff between the achievable

sum rate and the power consumption. Introducing a modification to the problem’s constraints

allowed to turn our non-convex optimization problem into a convex one and to obtain an

analytical solution for the joint optimal reflection coefficient and power allocation policy

(up to a line search). Moreover, the ambient backscatter-aided NOMA system was shown to

outperform conventional NOMA and OMA (with and without backscattering) as benchmarks.

Finally, we investigated the impact of imperfect CSI and highlighted that when the channel

estimation is sufficiently high (SNR higher than 10 dB) our solution is still relevant.

Finally, we considered the extreme case of no available CSI at the receiver side. The lack of

channel state information was overcome by the use of reinforcement learning, more precisely

using the multi-armed bandits framework, under which we proposed a novel adaptive NOMA

scheme relying on a single bit of feedback. Although our numerical simulations demonstrated

the enormous potential of our adaptive solution, the later was obtained by quantizing the

feasible power set with a high enough resolution, implying hence a large amount of time to

explore and exploit the set of arms.

In the next chapter, we consider opportunistic rate maximization in cooperative cognitive

radio systems. Whereas obtaining the analytical solutions to the non-convex optimization

problems considered in this chapter was possible thanks to some modifications in the con-

straints, the later no longer holds in the presence of a full-duplex operating relay node which

performs complex and non-linear operations such as Decode-and-Forward or Compress-and-

Forward. Hence, the solutions of the optimization problems considered in Chapter 5 will be

obtained with the help of deep learning, which can further be applied in the imperfect CSI

case without any feasible set quantization, as opposed to the MAB framework considered in

Chapter 4.



Chapter5
Optimal power allocation maximizing cooperative

opportunistic rates

In this chapter, we overview the most relevant contributions [C16], [C19], [J8 prep] of the work

performed by the PhD student Yacine Benatia, whom I am co-advising (at 40%) jointly with

Romain Negrel (ESIEE, 30%) and E. Veronica Belmega (ETIS lab, 30%, official director); as

well as some preliminary studies derived with my collaborator E. Veronica Belmega [J4].

Let us consider a relay-aided cognitive radio network composed of a licensed link
and an opportunistic link, which is assisted by a full-duplex operating relay node.
The later can perform Decode-and-Forward (DF) or Compress-and-Forward (CF).
We propose a machine-learning based opportunistic rate maximization under a
primary QoS constraint as well as individual power budget, and further investigate
the robustness of our approach under imperfect CSI.
Our main contributions are the following:

• Deriving the achievable rate region under DF and CF.

• Deriving the closed form optimal power allocation policy when the relay
performs CF under perfect CSI.

• Proposing an unsupervised deep learning approach when the relay performs
DF under perfect CSI.

• Proposing a new robust training enabling the neural network to learn when
imperfect CSI is available at its input and to perform much better by avoid-
ing the prohibitive primary QoS violations, even when only poor channel
estimations are available.

• Proposing a new machine learning-based relaying scheme selection procedure
enabling to chose between CF or DF under imperfect CSI.

Main contributions

5.1 System model

The cooperative cognitive radio network under study is illustrated in Figure 5.1 and consists of

one licensed user UP , also called primary user, and its associated destination DP ; whereas the

65
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hPP
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hPR

hSS
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hSP

hRP

hRS

UP DP

US DS

Figure 5.1: Cognitive relay-aided network.

cooperative opportunistic network is composed by a source node US , its associated destination

DS and a full-duplex relay R. The opportunistic user has an underlay access mode to the

spectrum and cannot perturb the licensed transmission above a tolerated level. This model

has been widely studied from an outage point of view, either with a single relay and power

allocation [114], or with multiple relay selection and without power allocation [49]–[51], or

with a single relay and no power allocation [48], [52], [115].

Let XP , XS and XR, of average power pP , pS and pR, denote the messages sent by the

primary, the secondary user and the relay respectively. Further, let ZR and Zi, i ∈ {S, P}
denote the AWGN of variance NR and Ni, at the relay and at destination Di respectively.

The received signals at the relay, primary and secondary destination are thus expressed as

YR = hPRXP + hSRXS + ZR

Yi = hRiXR + hiiXi + hjiXj + Zj ,

where i, j ∈ {P, S}, i ̸= j.

We further assume that the relay only helps the opportunistic transmission. As such,

the message from the relay and from the secondary user are treated as additional noise

at the primary destination when retrieving its own information XP . In the same manner,

the message from the primary user is considered as additional noise at both the relay and

the secondary destination when recovering XS . Hence, we can consider equivalent correlated

additive Gaussian noises at the relay and secondary destination defined as Z̃R = hPRXP +ZR

and Z̃S = hPSXP + ZS , of variance ÑR = h2PRpP +NR and ÑS = h2PSpP +NS respectively;

where the correlation coefficient is given as ρZ = hPRhPSpP√
ÑRÑS

.

Let Ri, i ∈ {P, S} denote the achievable rate of the primary and secondary user respec-

tively. Let further RP denote the achievable primary rate in the absence of the opportunistic

network, which is expressed as RP = 1
2 log2

(
1 +

h2
PP pP
NP

)
.

As per usual in cognitive radio setups, as well as in our previous studies [J4], [C16], [C19],

the opportunistic network is allowed to communicate over the licensed bands provided that

the primary transmission does not degrade too much. Here we consider a minimum QoS
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constraint protecting the primary user’s rate expressed as RP ≥ (1 − τ)RP , τ ∈ [0, 1]: In

other words, the primary user can tolerate at most a fractional decrease of τ ∈ [0, 1] in its

achievable rate compared to its maximum rate achieved in the absence of the opportunistic

network.

In the following, we assume that the relay performs either DF or CF. We do not consider

AF relaying in this study for two main reasons. First, AF is expected to perform poorly in

most multi-user interference settings since the relay also amplifies the interference plus noise

terms, which enhances the noise variance at the secondary destination compared to DF and

CF. Indeed, even in the standard Gaussian relay channel, which is not impaired by multi-

user interference, both DF and CF schemes achieve large rates than AF [116]. Second, AF

relaying in multi-user networks has been investigated mostly in the multi-hop special case, in

which the direct link between the user and its destination is negligible [117]–[125]. When the

direct link is taken into account, as in our work, AF turns the channel into a channel with

memory [116], under which the achievable rate regions have very complex expressions [PhD],

[126] leading to highly non trivial secondary rate maximization problems.

In the next Section, we present the achievable rate regions when the full-duplex relay

performs CF or DF.

5.2 Achievable rate regions

5.2.1 Compress-and-Forward

We start our analysis by investigating the achievable rate region when CF relaying is used.

Under CF relaying, the relay sends a compressed version of its received signal.

To simplify the presentation, the following notations will be used:

K1 = h2SRÑS + h2SSÑR − 2hSRhSSρZ

√
ÑSÑR, K2 = (1− ρ2Z)ÑRÑS

Below, we provide the achievable rate region, which can be derived by exploiting the

results for the Gaussian relay channel with correlated noises [C4].

Proposition 5.2.1. [J4] Assuming CF at the relay and that all non-intended messages are

treated as additional noise, the following rate region is achievable over the cooperative oppor-

tunistic network:

RP ≤ C
(

h2PP pP
h2RP pR + h2SP pS +NP

)

RS ≤ C
(
pS(K1 + h2SSD)

K2 + ÑSD

)
with D =

K1pS +K2

h2RSpR
.

Proof. At the primary destination, the message from both the relay and the secondary user

are considered as additional noise when recovering the primary message, leading to RP given

above. Regarding the opportunistic network, the situation corresponds to the use of CF over

a Gaussian relay channel with correlated additive noise at the relay and destination. The

achievable secondary rate can thus be obtained from [C4, Prop. 1].
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5.2.2 Decode-and-Forward

Let us now investigate the achievable rate region of DF relaying. Under this relaying scheme,

the relay first decodes the message sent by the opportunistic user and then sends a re-encoded

version of this message towards the destinations.

The achievable rates in this case are given in the next proposition, which can be obtained

using standard information theoretic arguments.

Proposition 5.2.2. [J4] Assuming DF scheme at the relay and that all non-intended mes-

sages are treated as additional noise, the following rate region is achievable over the cooper-

ative opportunistic network:

RP ≤ C
(

h2PP pP
h2RP pR + h2SP pS + 2hSPhRPα

√
pSpR +NP

)

RS ≤ min {C(fDF,R(α, pS , pR)), C(fDF,S(α, pS , pR))} ,

where α ∈ [0, 1] and

fDF,R(α, pS , pR) =
h2SR(1− α2)pS

ÑR

,

fDF,S(α, pS , pR) =
h2SSpS + h2RSpR + 2hRShSSα

√
pSpR

ÑS

.

Proof. Superposition coding is used at the secondary user in order to coherently combine the

message sent by the relay and by the secondary user at the secondary destination. α allows

to trade-off between sending a new message and repeating the one from the previous block

at the secondary user. At the primary destination, the message from the relay and from

the secondary user also coherently combine leading to an increase of the additional noise of

2hSPhRPα
√
pSpR. The secondary achievable rate follows from perfect decoding at both the

relay and the secondary destination.

In the following Section, we will present the optimal power allocation policy maximizing

the opportunistic rate under the QoS protecting the primary transmission when the relay

performs CF or DF. The optimal policy under CF can be obtained in closed-form, whereas

the one under DF is obtained using deep learning tools.

5.3 Resource allocation for opportunistic rate maximization

under perfect CSI

Under both CF and DF, we first assume that perfect CSI is available as commonly considered

in the relevant literature [C3], [C4], [C12], [C8], [C6], [51], [55], [56], [58], [116], [127], [128].

The later can be obtained by pilot-based channel estimation prior to any data transmission.

Nonetheless, we will relax this assumption in the next Section where we will study the impact

of imperfect CSI on the proposed resource allocation policies.
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In the remaining, without loss of generality, we assume that all noise processes Zi, i ∈
{S, P,R} are of unit variance, i.e. NS = NR = NP = 1 or equivalently consider channel gains

normalized by the receiver noise variance, defined as gij =
h2
ij

Ni
. To simplify the mathematical

expressions and derivations, the following notation will be used

A =
gPP pP

(1 + gPP pP )
(1−τ) − 1

− 1.

Further, let h ≜ (
√
gij , ∀i,∀j) denote the vector collecting all normalized network channels.

5.3.1 Optimization problem under study

In this section, we aim at maximizing the secondary achievable rate under the minimum QoS

constraint protecting the primary transmission as well as under individual power constraints

within the secondary network expressed as pS ≤ PS and pR ≤ PR as in our studies [C16],

[C19]. Note that one could instead consider a total power constraint within the secondary

network given as pS + pR ≤ P as considered in [48], [119], [121], [127], [129], [130]. The

resulting optimization problems were studied in our previous studies [J4], [C12].

The optimization problem under study in its general form writes as

(OP) max
pR,pS

RS(pS , pR)

s.t. RP ≥ (1− τ)RP , (QoS)

0 ≤ pS ≤ PS , 0 ≤ pR ≤ PR, (TP)

where the objective, i.e., the achievable rate of the opportunistic user RS(pS , pR) depends

on the specific relaying scheme performed. Replacing the achievable rate regions of Proposi-

tions 5.2.1 and Proposition 5.2.2 into the considered optimization problem (OP) results into

optimization problems of the form

(OxF) max
pR,pS

RxF
S (h, pS , pR)

s.t. QxF (h, pS , pR) ≤ A, (QoS)

0 ≤ pS ≤ PS , 0 ≤ pR ≤ PR, (TP)

where the objective function and QoS constraint are given under CF and DF respectively as

RCF
S (h, pS , pR) = C

(
K1gRSpSpR + gSSpS(K1pS +K2)

K2gRSpR + ÑS(K1pS +K2)

)

QCF (h, pS , pR) = gSP pS + gRP pR

RDF
S (h, pS , pR, α) = min {C(fDF,R(α, pS , pR)), C(fDF,S(α, pS , pR))}

QDF (h, pS , pR, α) = gSP pS + gRP pR + 2α
√
gSP gRP pSpR.

Note that under DF, an additional optimization parameter α ∈ [0, 1], accounting for the used

super-position coding, must also be tuned.
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None of the the above optimization problems (OCF) nor (ODF) is convex. Nonetheless,

a closed-form analytical solution can be obtained under CF; whereas a deep neuron network

(DNN) based method can be applied to solve (ODF).

5.3.2 Closed form expression for CF

To simplify its derivation, we will use the following notations:

C1 = K1gRP (gSSgRP − gRSgSP )

C2 = K1gRSgSPA− 2K1gSSAgRP − gSSgRP gSPK2

C3 = gSSA(K1A+ gSPK2)

C4 = K2gRSg
2
SP − ÑSK1gRP gSP

C5 = ÑSgSP (K1A+K2gSP )

The objective function of the optimization problem (OCF) can be shown to be mono-

tonically increasing unilaterally w.r.t. pS for fixed pR, and w.r.t. pR for a fixed pS . This

implies that the optimal power allocation lies on the Pareto boundary of the feasible set.

Now, regarding the specific shape of the feasible set defining the solution of (OCF), five

cases can arise as depicted in Figure 5.2, depending on the relative position of the QoS curve

and the total power constraints:

[H1] if A
gRP

<PR and A
gSP

< PS , (aside from positivity) only the QoS constraint restricts the

feasible set;

[H2] if A
gRP

< PR and A
gSP

> PS , the QoS constraint intersects the secondary user power

constraint;

[H3] if A
gRP

> PR and A
gSP

< PS , the QoS constraint intersects the relay’s power constraint;

[H4] if A
gRP

> PR and A
gSP

> PS and gSPPS + gRPPR < A, the QoS constraint intersects

both total power constraints;

[H5] if A
gRP

> PR and A
gSP

> PS and gSPPS + gRPPR ≥ A, only the total power constraints

define the feasible set.

A close analysis of these five cases and, since the optimal solution lies on the Pareto

boundary of the feasible set, leads us to the following result.

Theorem 5.3.1. [C19] When the relay employs CF over the cooperative cognitive radio

network, the solution to (OCF) can be found analytically in closed form. Indeed, when [H5]

is met, the QoS constraint is not restrictive and the solution is simply p∗R = PR, p
∗
S = PS.

In all other cases, [H1]–[H4], the solution to (OCF) lies on the QoS constraint such that

p∗R = x∗, p∗S = A−gRP x∗

gSP
, where x∗ is the closed-form solution to the following single-value

optimization problem

(OCFx) max
x

f(x) ≜
C1x

2 + C2x+ C3

C4x+ C5
,

s.t. x ∈ [xℓ; xu]. (5.1)
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Figure 5.2: Feasible set of (OCF).

The values of xℓ and xu defining the box-type constraints depend on the system parameters

and the specific case.

If one replaces the individual power constraints in the opportunistic network by an overall

power constraint, the optimal power allocation policy maximizing the opportunistic rate can

also be obtained in closed form, as proven in [J4].

5.3.3 DNN-based solution for DF

Due to the non-convex nature of the objective function, as well as to the QoS constraint,

obtaining the solution of the optimization problems (ODF) is very challenging and non-

trivial. As such, we proposed to turn to unsupervised learning-based approaches [C16],

which exploits a specifically tailored communication loss function.

Solving constrained optimization problems with DNNs is highly non-trivial, unless the

constraints are of box-type such as the constraint (TP) and 0 ≤ α ≤ 1. This is not the case of

the QoS constraint QDF (h, pS , pR, α) which is a difficult non-convex constraint. Nevertheless,

as opposed to the power constraints (TP), the primary QoS constraint is not a physical (hard)

constraint but rather a requirement, which can be relaxed and included as a penalty in the

objective function below

L =
N∑

ℓ=1

(
−RDF

S (hℓ, pS , pR, α) + λ[QDF (hℓ, pS , pR, α)−A]+
)
,

with [x]+ = max{0, x} and N denoting the total number of channel realizations hℓ, ℓ ∈
{1, . . . , N} in the training dataset.

The hyperparameter λ denotes the unit price in bits/Watt of the primary QoS violation. A
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small value of λ will result in maximizing the achievable opportunistic rate without taking into

account the primary QoS constraint; whereas large values of λ will strictly satisfy the primary

QoS constraint but at the cost of opportunistic rate. This tradeoff between opportunistic rate

and primary QoS will be further investigated via numerical results.
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Figure 5.3: Proposed DNN architecture

Our proposed DNN architecture to solve (ODF) is composed of four fully connected

hidden layers and is depicted in Figure 5.3. The input consists of the channel vector h

which is used to predict the outputs: (α̂, P̂R, P̂S), i.e., the solution of (ODF). The fully

connected architecture is justified because of its generality and given that there is no a priori

structural or temporal information within the input vector h to be exploited via more specific

architectures such as convolutional or recurrent networks.

The four hidden layers are composed of M − 2M − 2M − 2M neurons with M = 128 and

are followed by a rectified linear unit (ReLU) activation function due to its low computational

complexity. This specific architecture is chosen based on extensive empirical experiments, as

discussed in Section 5.3.4.

The final layer is followed by sigmoid activation functions: a standard one sgmα(x) =

1/(1+e−x) to map the predicted α̂ into its feasible set [0, 1], and two modified ones sgmpi(x) =

pi/(1 + e−x), i ∈ {S,R}, to map the predicted powers p̂R and p̂S into [0, PR] and [0, PS ]

respectively.

5.3.4 DNN-based method: Numerical results

Given the lack of real data available in open access, we will assess the performance of our

DNN-based method over simulated data [77], [78], [131], [132]. Unless otherwise specified, we

consider a square cell of dimension 10 × 10 m in which the relay is positioned in the center

whereas both primary and secondary user positions are uniformly distributed over the cell.

We further assume that the channel gains follow a common fading and path-loss model given

as gij ∼
N (0,σ2

g)√
1+dγij

, where dij denotes the distance between the nodes i and j and γ is the path

loss factor [34]. The path loss factor is set to γ = 3 and the channel gain standard deviation

σg = 7. We assume that pP = PR = PS = 10 W and set the threshold τ = 0.25 for the

maximum primary rate degradation.

Dataset In order to train and evaluate our proposed DNN architecture, we use a dataset

composed of three disjoint parts:
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i) a training set containing 106 channel realizations hℓ;

ii) a validation set containing 2 × 105 channel realizations hℓ with the associated ground-

truth, i.e., the corresponding optimal resource allocation policies (α∗, p∗R, p
∗
S) obtained by

brute force (or exhaustive search) for evaluating the generalization capability and for tuning

the hyperparameters of our approach;

iii) a test set containing 2× 105 channel realizations.

Benchmarks and performance metrics In the following, we propose to compare our

DNN-obtained results to the optimal ones obtained by exhaustive search. Thanks to its

implementation simplicity, we chose to use exhaustive search to compensate for the lack of

closed-form expression under DF. We consider three metrics to validate the performance of

our DNN-based method: the relative gap G, the empirical outage Outage and the average

primary rate degradation when in outage ∆out.

The relative gapG assesses the relative gap between the predicted achievable rate obtained

via our DNN R̂S,ℓ and the achievable rate obtained by brute force R∗
S,ℓ as follows:

G =
1
N

∑N
ℓ=1 R̂S,ℓ −R∗

S,ℓ

1
N

∑N
ℓ=1R

∗
S,ℓ

(5.2)

The two other considered metrics rely on the degradation of the primary rate defined as

∆ℓ = 1 − R̂P,ℓ/RP,ℓ, where R̂P,ℓ corresponds to the primary rate achieved by our proposed

DNN. The empirical outage Outage is defined as the proportion of samples in the dataset

for which the primary QoS is not satisfied, whereas ∆out denotes the average primary rate

degradation when in outage:

Outage =
1

N

N∑

ℓ=1

1 [∆ℓ > τ ] , ∆out =

∑N
ℓ=1 1 [∆ℓ > τ ]×∆ℓ∑N

ℓ=1 1 [∆ℓ > τ ]
, (5.3)

where 1 [x] equals 1 when x is true and 0 otherwise.

DNN architecture choice To choose the architecture in Figure 5.3, we have performed

extensive simulations over the validation set. In Figure 5.4, we report the most significant

results. On the left, we analyze the impact of the number of layers and compare four different

architectures composed of one up to four hidden layers as follows: M ,M−2M ,M−2M−2M ,

and M −2M −2M −2M , with M = 128. We see that there is a significant gain in secondary

rate when increasing the number of layers from 1 to 3; moving to 4 layers helps to decrease

the outage. Hence, a 4-layer architecture is a good compromise between performance and

computational cost. Now, on the right, we compare three different such four-layer DNNs, by

varying the number of neurons per layer M ∈ {64, 128, 256}. We see that increasing M from

64 to 128 neurons leads to a significant gain in secondary rate; increasing further the number

of neurons does not seem justified given the incurred computational cost. For these reasons,

we choose M = 128 coupled with the 4-layer architecture in Figure 5.3 henceforth.
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Figure 5.4: Impact of the number of layers and number of neurons on the prediction perfor-
mance over the validation set.
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Figure 5.5: Evolution of the loss function evolution over the training epochs over the training
and validation sets (no overfitting effects).

No overfitting: performance on train and validation sets In Figure 5.5, we plot

the evolution of our custom loss function L over the number of epochs within the training

and validation sets for λ ∈ {100.5, 102}. First, notice that the DNN training converges

within 1000 epochs. The superposed performance over the training and validation sets hints

towards a good generalization capability of our proposed DNN. More importantly, since the

loss function does not increase within the validation set, our approach does not suffer from

overfitting. Finally, the decay rate of the loss function is much faster for λ = 100.5. Indeed,

when λ becomes small, the custom loss is mainly rate-driven and not much emphasis is put

on the primary QoS constraint; this leads to a much easier optimization problem to solve.

At the opposite, for larger values of λ, the custom loss puts an emphasis on satisfying the

primary QoS constraint, which leads to a more difficult problem. Hence, this parameter needs

to be tuned carefully as discussed below.

Choice of the hyperparameter λ In Figure 5.6, the relative gap in (5.2) and the outage

in (5.3) are depicted as functions of λ over the validation set. For small values of λ (rate-

driven custom loss), the relative gap G is positive, which means that the secondary rates

obtained via the DNN are larger than the optimal ones via brute force. The reason is that
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Figure 5.6: Relative average gap G and outage as functions of the hyperparameter λ over the
validation set.
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Figure 5.7: Impact of the hyperparameter λ.

the primary QoS constraints are not necessarily met by our DNN solutions, as illustrated by

the high outage levels. At the opposite, for large values of λ (primary QoS-driven custom

loss), the outage goes to zero as expected at a cost in terms of secondary rates. Indeed, our

predicted secondary rates are smaller than the optimal ones (negative relative gain G), but

this gap is kept below 10 %.

In Figure 5.7, we investigate closer the impact of λ on the primary rate degradation. For

this, we plot the average and maximum values of the primary rate degradation as well as the

average degradation when in outage ∆out in (5.3) in Figure 5.7(a). Also, in Figure 5.7(b),

we illustrate the histogram of the primary rate degradation (∆) for λ ∈ {100.5, 102}. The

mean primary rate degradation falls quickly below the threshold τ = 25 %. For small values

of λ, the worst case primary degradation can reach up to 90 %. Nevertheless, such extreme

degradation is obtained only for a small number of out-layer data points. This is indicated

by the curve ∆out hitting the 25 % threshold reasonably fast as well as by the histogram of

the degradation in Figure 5.7(b).

To sum up, the value λ = 100.5 achieves a good tradeoff between the achievable secondary

rate and the primary QoS degradation in our setting and will be used in the test phase below.
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Figure 5.8: Impact of the relay position (xR, yR).

Impact of the relay position We will now change the setting and fix the positions of the

primary and secondary user/destination nodes: US(5, 2.5), DS(7.5, 5), UP (2.5, 5), DP (5, 7.5)

as in Figure 5.8; and consider that the relay position (xR, yR) varies within the cell. Hence,

we generate a second test set composed of 104 channel realizations. In Figure 5.8(a), Fig-

ure 5.8(b), and Figure 5.8(c), we illustrate the average primary rate degradation, the average

predicted relay power P̂R and the average secondary rate R̂S , respectively as functions of the

relay position (xR, yR) over this new test set.

In Figure 5.8(a), we notice that the average degradation in the primary rate always falls

below the fixed threshold of τ = 25 % irrespective from the relay position. When the relay

is very close to the primary nodes, the degradation drops below 20 %, since very little power

is allocated to the relay as shown in Figure 5.8(b). The worst case degradation arises when

the relay lies between the secondary nodes, since the secondary rate improvement overcomes

the damage the relay causes to the primary link. At last, in Figure 5.8(b), we also notice

that more power is allocated to the relay when it is close to the secondary user. This is to

be expected since DF relaying is known to perform well in terms of achievable rate in these

cases, which is indeed confirmed in Figure 5.8(c).

5.4 Relaying scheme selection under imperfect CSI

Let us now assume that the channel gains are impaired by estimation errors. The later,

modeled as additive Gaussian noise as in [133], [134], only affect the links from the sec-

ondary network to the primary one as we assume that perfect CSI can be obtained by the

help of pilot symbols within the secondary network. Since the secondary user transmits

in an opportunistic manner, it is unlikely from the primary network to feedback any chan-

nel estimation to the secondary user and relay. Hence, ĥij = hij + εij , εij ∼ N (0, σ2ij),

∀(i, j) ∈ {(P, P ), (S, P ), (R,P ), (P,R), and (P, S)} and the normalized estimated channel

gains are given as ĝij = ĥ2ij/Nj . In the above, the estimation error variance is assumed to

be of the form σ2ij = Var[hij ]/SNR, where Var[hij ] denotes the variance of the true channels

hij and SNR ∈ [−10, 20] dB represents the SNR of the estimator. The normalized channel

gains within the secondary network are on the other hand perfectly known and given as
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ĝij = ĥ2ij/Nj = h2ij/Nj , ∀(i, j) ∈ {(S, S), (S,R), and (R,S)}.

5.4.1 Robust DNN training under imperfect CSI

Note that for CF, our closed-form solution presented in the previous Section highly relies

on perfect CSI, which is no longer considered in the remaining of this chapter. As such,

we propose to exploit our proposed deep learning approach to solve (OCF), using the same

neural network architecture as for DF, i.e. depicted in Figure 5.3, with λ = 100.5 by simply

removing the output α, which is specific to DF, and then retraining the network with the

corresponding CF loss function.

Dataset Under imperfect CSI, our train (containing 106 samples of both perfect and imper-

fect channel estimation {ĥℓ,hℓ}ℓ), validation (2× 105 samples of both perfect and imperfect

channel estimation {ĥℓ,hℓ}ℓ) and test (2×105 samples of imperfect channel estimation {ĥℓ}ℓ)
datasets are disjoint.

DNN training In order to make our DNN robust to imperfect CSI, we assume that in

the training phase, we have access to pairs of both perfect and imperfect channel estimations

{ĥℓ,hℓ}ℓ, where the imperfect ones are obtained by adding Gaussian noise to the initial ones.

The perfect channel estimations are fed to our loss function L, whereas the imperfect channel

estimations are given as the input of our DNN and the training process is restarted for each

value of the considered channel estimated SNR. In addition, we use early stopping with a

patience parameter of 20 epochs under both DF and CF to avoid any overfitting effect.

Benchmarks and performance metrics In the following, we propose to compare our

DNN-based predictions under imperfect CSI to the optimal power allocation policies under

perfect CSI. The latter are obtained either in closed form under CF [C19] or by brute force

(exhaustive/grid search) under DF. Thanks to its implementation simplicity, we chose to use

brute force to compensate for the lack of closed-form expression under DF. We consider the

three same metrics as in the previous Section to validate the performance of our DNN-based

method under imperfect CSI, namely the relative gap G, the empirical outage Outage and

the average primary rate degradation when in outage ∆out.

Here, the relative gap G assesses the gap between the predicted rate R̂S,ℓ, achieved by

either the DNN or the benchmark under imperfect CSI, and the ideal optimal rate R∗
S,ℓ

obtained with the benchmark under perfect CSI for each sample in the dataset:

G =
1
N

∑N
ℓ=1 R̂S,ℓ −R∗

S,ℓ

1
N

∑N
ℓ=1R

∗
S,ℓ

(5.4)

Figure 5.9 and Figure 5.10 present the robustness to imperfect CSI in terms of relative

secondary gap, outage and average primary rate degradation as a function of the SNR of the

channel estimation under CF and DF respectively. Under both CF and DF, we compare the

performance achieved by the benchmark under imperfect CSI (either closed-form expression
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under CF or bruteforce under DF), the one achieved by our DNN trained only with perfect

CSI labeled as ’DNN’, and the one achieved with our new proposed robust training labeled

as ’N-DNN’, i.e. when both perfect and imperfect CSI are used in the training phase. First,

note that although designed initially for DF, our proposed DNN is able to generalize to CF

relaying as well with almost no architecture change beside removing one of the predicted

output, as can be seen from the almost zero gap between the performance achieved by the

benchmark and by the DNN. Second, for all relaying schemes, both the benchmark and the

DNN trained with only perfect CSI harm the primary communication in almost 20− 50% of

cases with an average primary rate degradation when in outage between 35 and 65%, highly

above the defined threshold τ = 25%. On the other hand, our DNN with robust training

achieves lower secondary rate compared to the benchmark or to the DNN trained only with

perfect CSI (loss in terms of relative gap of the order of 20−40%) but satisfies almost always

the QoS constraint with an outage of only 5%, which is crucial in cognitive radio setups.

Furthermore, when in outage, the primary rate degradation is kept below 45%. One can also

note that the outage under CF is less than that under DF, which is to be expected since the

optimization problem under DF is more difficult to solve due to the non-convex objective

function and QoS constraint.

Figure 5.9: Impact of imperfect CSI on our proposed solutions for CF over the test set.

Figure 5.10: Impact of imperfect CSI on our proposed solutions for DF over the test set.
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Once our proposed robust training has been validated, one can focus on the comparison

of the two relaying schemes as a function of the nodes spatial positions within the considered

square cell. More specifically, we now assume that the position of the primary and secondary

user/destination pairs is fixed as US(5, 2.5), DS(7.5, 5), UP (2.5, 5), DP (5, 7.5), whereas the

relay can be placed anywhere within the cell.

Figure 5.11 and Figure 5.12 depict the average power transmitted by the secondary net-

work, the average secondary rate as well as the average primary rate degradation for four dif-

ferent channel estimation SNR under CF and DF respectively, where each simulation result is

averaged over 104 channel realizations. Under poor channel estimation (SNR ∈ { −10, 0}dB),
the secondary network barely transmits leading to almost no primary rate degradation and

almost zero secondary rate. As the quality of the CSI increases, one can note that CF per-

forms best when the relay is close to the secondary destination, whereas DF performs well

when the relay is close to the secondary user, as for the standard relay channel. Furthermore,

in all cases, one can see that the average primary rate degradation stays below the fixed

threshold value of τ = 25%.
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Figure 5.11: Impact of the relay position for CF relaying.
Top plots: average total power (W); middle: average secondary rate (bpcu); bottom: average
primary rate degradation (%).

Since none of the two relaying schemes performs best for all network configurations, as

expected from an information point of view, we now investigate the problem of relaying

scheme selection and we propose two different approaches to choose among CF and DF. In

our cognitive radio setting, we focus here the relay scheme selection on protecting the primary

network, which of course may be at the cost of secondary achievable rate.
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Figure 5.12: Impact of the relay position for DF relaying.
Top plots: average total power (W); middle: average secondary rate (bpcu); bottom: average
primary rate degradation (%).

5.4.2 Two DNN-based method

Usually, relaying scheme selection consists in choosing the relaying scheme achieving the

largest SNR [85], [135]. Such a criterion is well-suited for many communication setups but

not for cognitive radio where one should protect the primary transmission. To simplify the

presentation, let ∆CF
ℓ and ∆DF

ℓ denote the degradation of the primary rate caused by the

opportunistic transmission under CF and DF respectively obtained by our proposed DNNs

presented in Section 5.4.1 for the ℓ-th data sample. In the following, we propose to explicitly

incorporate the primary rate degradation within our selection criterion.

In order to choose between CF and DF, we compare the two degradation of the primary

rate ∆CF
ℓ and ∆DF

ℓ . If both relaying schemes meet the QoS constraint, i.e. ∆CF
ℓ ,∆DF

ℓ ≤ τ ,

then we choose the relaying scheme yielding the largest secondary rate. If only one of the

relaying scheme meets the QoS constraint, then we choose this scheme; otherwise we choose

the relaying scheme exhibiting the smallest primary rate degradation. Hence, we put more

emphasis on meeting the primary QoS constraint, at the cost of the secondary rate.

5.4.3 Extra DNN-based method

We now introduce a novel supervised DNN-based relaying scheme selection, where a DNN

takes as inputs the imperfect channel estimations as well as the corresponding optimal powers

under both DF and CF computed by the DNNs presented in Section 5.4.1 and outputs the best

relaying scheme. Our intuition is that, whereas the previously presented heuristic approach

only exploits DNNs specifically trained for either DF or CF, an additional DNN could improve

the two aforementioned DNNs by learning some correlation between the channel gains and
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Figure 5.13: Proposed DNN architecture to choose among CF and DF which relaying scheme
should be performed.

the best relaying scheme.

We hence consider a binary classification problem, for which the binary cross-entropy,

given below, is usually used as loss function:

L = − 1

L

L∑

i=1

yi log ŷi + (1− yi) log(1− ŷi), (5.5)

where L is the number of available training data, yi corresponds to the ground-truth best

relaying scheme (0 stands for CF and 1 for DF) obtained by the naive approach, and ŷi is

the probability of selecting DF computed and outputted by the DNN under perfect CSI.

The architecture of the considered DNN for relaying selection, depicted in Figure 5.13, is

the same as previously for solving the power allocation problem, but we here increase the

number of neurons M to M = 256 as we found this value to achieve good performance

throughout extensive numerical simulations. Also, the final layer consists here in a sigmoid

activation function outputting the probability ŷi of selecting DF; the later is then compared

to a threshold, set either to 0.5 or to a cognitive radio-tailored one allowing to minimize the

average primary degradation when in outage ∆out, to decide whether DF or CF should be

selected.

5.4.4 Numerical results

Dataset The training set contains 107 samples of imperfect channel estimation ĥℓ, the as-

sociated optimal powers obtained via the DNN under our proposed robust training presented

in Section 5.4.1, as well as the corresponding best relaying scheme obtained via our two DNN-

based method. The validation set contains 2 × 105 samples of imperfect channel estimation

ĥℓ as well as the associated optimal powers; and our test set contains 2× 106 samples of im-

perfect channel estimation with the corresponding optimal powers and best relaying scheme

as ground truth, enabling to assess the performance of our proposed DNN-based relaying

scheme selection approach.

DNN training In the training phase, the optimal relaying scheme computed via our two

DNN-based method is fed to the loss function L given in (5.5), whereas the imperfect channel
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estimations and the corresponding optimal powers under both DF and CF are given as input

to our DNN. Note that the training process is restarted for each value of the considered SNR

of the CSI estimator. Here, we use early stopping with a patience parameter of 10 epochs for

both DF and CF to avoid any overfitting effect.
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Figure 5.14: Chosen relaying scheme when the relay position ranges all over the cell under
the two DNN-based method (top), the extra DNN-based one with fixed threshold of 0.5
(middle) and the extra DNN-based one with radio cognitive-tailored threshold (bottom)

Figure 5.14 shows the chosen relaying scheme as a function of the relay position under

the two DNN-based method, the 0.5 fixed-threshold extra DNN-based one, denoted as ’Extra

DNN’, as well as the cognitive-radio tailored threshold extra DNN-based one, denoted as

’Extra DNN-S’, for different levels of CSI estimation respectively. Here we assume that the

position of the primary and secondary users and destinations are fixed, whereas the relay can

be placed anywhere within the square cell. First, we can note that, regardless of the quality

of the CSI estimation, CF is selected more often than DF under all approaches. Furthermore,

as expected from a cooperative communications point of view, DF is more efficient when the

relay is close to the secondary user, which can be observed for all CSI estimation between

[0 − 20]dB under both the fixed-threshold extra DNN and the two DNN-based methods.

Note that under the cognitive radio tailored threshold extra-DNN method, the set of relay

positions where DF is chosen also contains positions where the relay is close to the secondary

destination, for which the achievable data rate under DF is not expected to be large. The

intuition is that, under this method, we choose the relaying scheme which degrades the less



5.4 Relaying scheme selection under imperfect CSI 83

the primary transmission. Indeed, for these relay positions, CF achieves higher rates than

DF by also consuming more power, leading hence to larger primary degradation. Finally,

under all approaches, CF is almost always chosen in very poor CSI estimation conditions,

irrespective from the position of the relay. DF seems indeed to be more sensitive to imperfect

CSI, since the relay needs to correctly decode the secondary message; when it only quantizes

the received signal under CF.
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Figure 5.15: Average degradation when in outage, outage and secondary rate as functions of
SNR over the test set

In Figure 5.15, we compare the two DNN-based method to the two extra DNN-based

ones, with either the threshold set to 0.5, denoted as ’Extra DNN’ or to the cognitive radio-

tailored one denoted as ’Extra DNN-S’, in terms of primary rate degradation when in outage

∆out, percentage of outage and secondary rate for different CSI estimations SNR. First, the

proposed two DNN-based method and the fixed threshold extra DNN-based one achieve more

or less the same performance, meaning that there was little additional relation to be learned

between the channel gains and the best relaying scheme. This highlights the strength of

our proposed robust DNN-based power allocation scheme for a fixed relaying scheme. The

almost zero-gap between the two DNN-based method and the fixed-threshold extra DNN-

based one follows also from the fact that each of the two relaying schemes performs best

for disjoint positions of the relay with respect to all other nodes. Nonetheless, choosing

for each CSI quality the threshold minimizing the primary rate degradation when in outage

significantly increases the performance from a cognitive radio point of view: the number of

outage is divided by a factor of almost 2 for all values of SNR ∈ [−10, 20]dB, whereas the

primary degradation when in average is decreased by up to 8% especially under poor channel

estimation. This increase in terms of primary communication protection comes of course at

the cost of the secondary rate, which in decreased by half, as shown in Figure 5.15. Further,

using a third DNN allows to generalize over which criterion the relaying scheme should be

selected: we here presented the extreme case where the decision was solely based on the

minimization of the primary rate degradation when in outage, but one could instead consider
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any tradeoff weighting between the secondary rate and primary protection instead, which is

not feasible under the two DNN-based method.

5.5 Conclusions and perspectives

In this chapter we studied a full-duplex cooperative cognitive network under two relaying

schemes, namely Decode-and-Forward and Compress-and-Forward. We first derived the

achievable rate regions and then the optimal power allocation policies under both individual

power constraints and a QoS constraint protecting the primary transmission.

Under CF and perfect CSI, the optimal power allocation policy was provided in closed-

form, whereas under DF, due to the resulting non-linear and non-convex optimization prob-

lem, we proposed an unsupervised deep learning based solution. The later was further ren-

dered robust to errors in channel estimation, and also used for CF under imperfect CSI.

Finally, we proposed a new DNN-based relaying selection method exploiting a cognitive ra-

dio tailored threshold at the classifier output allowing to minimize the average primary rate

degradation when in outage.

While all system parameters such as the maximum allowed primary rate degradation τ ,

as well as the power budget within the secondary network PR and PS were fixed and known

by our proposed DNN, it would be an interesting research direction to relax this assumption

and consider some DNN-based approaches able to generalize over variation of the later within

a given range.

The next and final chapter of this HDR manuscript presents an overall discussion of

interesting open issues and prospective research directions.



Chapter6
Open issues and perspectives

In this chapter, we discuss some open research directions, starting with some short- to mid-

term perspectives and ending with long-term ones regarding beyond 5G wireless networks.

In the recent years, the concepts of Internet of Things and Internet of Everything are gain-

ing momentum [136]. Currently, million of sensors and communicating devices are already

deployed in cities, homes, wearables, etc. and this number is expected to experience an explo-

sive growth, reaching several billion by 2030 [137]. Exploiting these widely deployed sensors,

smart homes, smart cities, e-health, e-commerce, etc. are becoming reality. Hence, high-data

rate with reliable communications, both in terms of latency and security are required. Al-

though the 5-th generation (5G) of wireless networks brought improvement in terms of user

connectivity and network throughput, it is expected not to be able to fulfill the demands of

future intelligent and autonomous wireless networks [138], [139], paving hence the road to

the 6-th generation (6G) of wireless networks. Beside the requirements already considered

in 5G, such as network densification, increased throughput, massive user connectivity, high

reliability and energy efficiency, 6G will lead to the emergence of new requirements, such as

handling massive volumes of data, artificial intelligence (AI) integrated communication, en-

hanced security, etc. Furthermore, compared to 5G, 6G has stricter requirement in terms of

energy-efficiency, latency, reliability, security [140]. Various candidate technologies have thus

already been proposed to overcome the bottleneck of 5G to meet the bold 6G requirements,

such as artificial intelligence, full-duplex, intelligent reflecting surfaces (IRS), sub-THz and

visible light communication, simultaneous wireless information and power transfer (SWIPT),

physical layer security and blockchains, etc. [140].

Intelligent Reflecting Surfaces (IRS), backscattering

Intelligent Reflecting Surfaces (IRS) is a very promising technology capable of enhancing

the network energy-efficiency while improving the achievable data rates. IRS are two di-

mensional arrays of low-cost passive elements that do not require a specific energy source to

operate and which are able to reflect the ambient RF signals in a full-duplex manner without

any self-interference. By carefully adjusting the reflection coefficients, the reflected signals

coherently add at the destination without additional noise [141], [142], enhancing hence the

network throughput. For instance, we showed in Chapter 4 that including one backscattering
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device, which is a special case of IRS, enhances the energy-efficiency of the network compared

to the case without backscattering.

Simultaneous wireless information and power transfer (SWIPT)

One of the bottleneck of the future autonomous wireless networks, in which a large number

of smart devices need to communicate at anytime, is the lifetime of batteries, especially if the

later can hardly be replaced. SWIPT is among the most promising techniques to improve

the lifetime of energy-constrained networks by exploiting the RF waves for both wireless

power transfer and information transfer. Using this approach, some energy can be harvested

through the received RF signals and then used to fulfill some power efficiency requirements.

SWIPT can be implemented in different manners, the two more common being time-

switching and power splitting [140]. Under time-switching, the system harvests energy for a

given fraction of the time-slot, whereas the remaining part is used for information transfer.

Under the power splitting mode, a fraction of the received signal is used for energy harvested

during the entire time-slot. Of course, the fraction in time or in power that is used for

harvesting should be optimized, enabling the system to best perform both in terms of system

throughput and energy efficiency.

Artificial intelligence (AI)

Due to the blend of various technologies deployed to reach the requirements of 6G, as well

as to the large number of communicating devices, it is very unlikely to obtain closed-form

network optimization [139]. Machine learning techniques are hence expected to play a vital

role in future wireless communication networks, especially when the later is too complicated

to be optimized by humans as for instance for joint optimization in network design, resource

allocation and management, etc. For instance, we showed in Chapter 5, that even for a

simple cooperative cognitive radio network composed only by one primary and secondary

communication link and a full-duplex operating relay node, maximizing the opportunistic

rate under some QoS and power budget constraints is not-convex and we turned to deep

learning techniques to solve it. Since 6G networks are expected to be more complicated ones,

considering for instance many nodes, AI is among the most important characteristic of 6G

networks.

Whereas most of the current AI deployed in wireless networks is based on centralized

computations, it is expected that the intelligence within future wireless networks will be

implemented at the users end. As such, unsupervised learning or reinforcement learning,

which do not require labeling could be used to operate the network in an autonomous manner

[139]; and federated learning, where users can train the models with only local data without

sending them to a central server [140] could also be deployed.

Physical layer security

Since smart homes, smart cities, e-health, e-commerce etc. are gaining momentum within

6G applications, security, secrecy and privacy are vital features of future wireless networks.

The broadcast nature of wireless medium makes it vulnerable to several security threats,
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such as eavesdropping or jamming. Both passive and active attacks threaten the physical

layer: under passive attacks, the eavesdropper damages data confidentiality by monitoring

the legitimate communication without affecting the data transmission, while under active

attacks, the attacker directly harms the legitimate communication by either affecting the

data availability, integrity or authenticity [140].

Although conventional cryptography-based security techniques are implemented in higher

layers, they are becoming more vulnerable in the age of Big Data and AI. Physical layer

security, on the other hand, is a promising solution exploiting some physical properties such as

the noise, fading and interference to ensure secure communications [143]. The main idea is to

distinguish the quality of the signal received by the legitimate users and by the eavesdropper.

As long as the eavesdropper’s channel quality is worse than the one of the legitimate users,

secret communication can be achieved [143]. In this framework, the secrecy rate Rs is defined

as the gap between the rate Ru achieved by the legitimate user and the rate Re achieved by

the eavesdropper: Rs = max{Ru − Re, 0}. Hence, as long as the legitimate users are closer

to the base station, or the access point, than the eavesdropper, a non-zero secrecy rate can

be achieved.

Let us now consider the blending of some of the above presented technologies, as well as

some 5G enabling techniques such as NOMA, to simultaneously optimize various aspects of

future wireless networks.

The first short- to mid-term perspective consists in combining physical layer security,

NOMA, IRS, SWIPT and AI in order to maximize the secrecy energy efficiency of such a

system.

6.1 Secrecy energy efficiency maximization for multi-user NOMA

systems

While both energy efficiency and secrecy sum rate maximization under a total power budget

and minimum QoS constraints have been studied for downlink multi-user NOMA [C11], [144],

very few works can be found on secrecy energy efficiency maximization in the literature.

To the best of our knowledge, [145] is the first work considering secrecy energy efficiency

optimization in a downlink multi-user NOMA network, where the ratio between the secrecy

sum rate and the power consumption is maximized. The optimal solution was not given in

closed-form but relies on a numerical dichotomy-based method. Since studying efficiencies

defined as a ratio can be more involved than considering scalarized one, we intend to first study

the scalarized tradeoff between the achievable secrecy sum rate and the power consumption.

Note that if the scalarized optimization problem is convex, the obtained solution can be used

in Dinkelbach’s algorithm to also optimize the ratio.



88 Chapter 6. Open issues and perspectives

6.1.1 Secrecy energy efficiency maximization

Let us first consider a network composed of one base station or access point, K legitimate

users and one passive eavesdropper. To cope with the possible large number of users to

be served, NOMA is employed. Hence, the source sends the message Xi intended for each

receiver i ∈ {1, . . . ,K} with power pi via superposition coding and broadcasts X =
∑K

i=1Xi.

We further denote by P the total power budget of the BS, such that
∑

i pi ≤ P . Also, each

user k is required to meet a QoS constraint expressed in terms of a minimum achievable

rate of Rmin,k. At the receiver side, as well as at the eavesdropper side, SIC is employed to

recover the messages. The received signal at user k and at the eavesdropper are respectively

given as Yk = hkX + Zk and Ye = heX + Ze, where the additive noises are assumed to

be Gaussian ones of variance σ2k and σ2e respectively. Without loss of generality, let us

further assume that M − 1 users out of the K served within the network experience poorer

channel condition compared to the eavesdropper and that the channel gains are ordered as:
h2
1

σ2
1
≤ ... ≤ h2

M−1

σ2
M−1

≤ h2
e

σ2
e
<

h2
M

σ2
M
≤ ... ≤ h2

K

σ2
K
. The achievable secrecy sum rate SSR(p) is hence

given as

SSR(p) =
K∑

k=M

C

(
h2kpk

h2k(pk+1+. . .+pK)+σ2k

)
− C

(
h2epk

h2e(pk+1+. . .+pK)+σ2e

)
.

Let us consider the secrecy energy efficiency defined as the scalarized tradeoff between the

achievable secrecy sum rate and the power consumption, which can be seen as an extension

of the scalarized energy-efficiency metric without taking into account physical layer security:

SEE(p) = SSR(p)− α
(∑K

k=1 pk + Pc

)
.

The optimization under study is hence given as

max
p

SSR(p)− α

(
K∑

k=1

pk + Pc

)

s.t.

K∑

k=1

pK ≤ P , (TP )

C

(
h2kpk

h2k(pk+1 + . . .+ pK) + σ2k

)
≥ Rmin,k,∀1 ≤ k ≤ K (QoS)

Solving this optimization problem will be the first objective of Miled Alam, a PhD stu-

dent I am currently co-advising (40%) jointly with Giulia Cervia (50%), Laurent Clavier

(5%, official co-director) and Sylvain Lecomte (5%, official co-director) within the project

Beyond5G.

6.1.2 Backscattering enhanced communications and energy harvesting per-

spectives

In Chapter 4, we showed that including an ambient backscatter device increases the energy

efficiency of a multi-user downlink NOMA transmission even when the backscatter device has

its own data to transmit.
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A mid-term objective within the project Beyond5G is to study the impact of backscatter-

ing in terms of secrecy energy efficiency and energy harvesting. Hence, the achievable secrecy

rate region of such networks needs first to be investigated. Then, in a first step, the reflection

coefficient and the power allocation could be jointly optimized without taking into account

any energy harvesting consideration. Nonetheless, jointly optimizing the secrecy energy ef-

ficiency, the reflection coefficient and the amount of harvested energy is a very interesting

problem allowing to move one step further towards networks autonomy. Note that SWIPT

could also be considered instead of or jointly with backscattering to enhance the network

autonomy [146], [147]. The resulting optimization problems, even without any consideration

on the harvested part, are expected to be complex and non-convex, and as such may lead to

the use of machine learning in their solving.

Another mid-term perspective within the PEPR 5G project is to consider IRS-enhanced

multi-user NOMA networks. By carefully tuning the IRS, sufficient difference between the

users’ effective channel gains can be achieved, leading to cases where NOMA is known to

outperform OMA [148]. Furthermore, in traditional NOMA systems, a large QoS minimum

rate for a weak user usually leads to a network outage, whereas with IRS-enhanced NOMA,

the users’ effective channel gains can be modified and arranged such that users with large

QoS requirements experience large effective channel gains, decreasing hence the probability

of outage [149]. As such, we intend to first derive the achievable rate regions of such net-

works and then to develop efficient algorithms that jointly tune the transmit strategy (power

allocation, assignment of users over carriers) and the backscattering/IRS strategy (reflection

coefficients, energy harvesting).

Another mid-term perspective relies in blending AI and security to jointly detect and

localize some security attacks in indoor and outdoor setups.

6.2 Artificial intelligence for security attack detection and lo-

calization

Due to the broadcast nature of the wireless medium, beside passive attacks such as eavesdrop-

ping, many active attacks, such as jamming, spoofing, man-in-the-middle or denial of service

(DoS), threaten the wireless networks [150]–[152]. For instance, under jamming, legitimate

transmissions get overwhelmed by artificial radio signal, preventing legitimate receivers from

decoding their intended signals. On the other hand, under spoofing, instead of degrading

the quality of legitimate signals, the adversary mimics the transmissions from a legitimate

user at the physical layer for instance to emulate a primary user in cognitive setups, or to

intrude some private network. Under man-in-the-middle, the adversary expropriates the le-

gitimate transmitted signals in order to modify or delete them prior to forwarding them to

the legitimate receivers; whereas under DoS attacks, the legitimate users are denied access

to networks resources. Hence, it is of most importance to detect such attacks and if possible

to localize the attackers to enable the networks to correctly operate. The project DEPOSIA

tackles such security threats by using AI to detect ’non-usual’ situations which are expected
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to be attacks. The goals of this project are three-fold: the first objective is to detect an illicit

RF source by developing new network monitoring architecture, the second one is to develop

an AI able to detect the presence of an attack, whereas the last one is to develop an AI

able to geo-localize the attacker. In the later two objectives, the attacker denotes any illicit

source, as for instance a drone in outdoor environments or any non-authorized device within

a given area. This study will take place both in indoor and outdoor environments, each of

these cases leading to specific monitoring architectures and AI solutions.

The next Section presents a long term perspective investigating the interaction between

distributed learning, and more specifically federated learning, and information theory in

multi-user cooperative networks.

6.3 Interplay between federated learning and information the-

ory in multi-user cooperative networks

Moving toward distributed learning to solve resource allocation problems in future multi-user

networks seems a rather natural move. Due to the current and future user densification,

as well as to spectrum scarcity, simple cooperative cognitive radio networks composed of

one primary and secondary communication link as well as only one relay node as studied in

Chapter 5 are expected to grow, by including multiple primary, secondary and helping relay

nodes. Although the optimal solution can be obtained in a centralized manner, gathering all

required data at a single server or node will become very time- and resource-consuming, espe-

cially in larger networks. Hence, distributed deep learning, such as federated learning [153],

where each of the users and relay computes locally its own transmission parameters (both

the optimal relaying scheme to be performed and the optimal power allocation) seems to be

an interesting solution provided that the considered optimization problem can be decoupled

into several local optimization problems.

In contrast to traditional machine learning, federated learning does not require users to

send their data to a centralized server for training: under federated learning, each end-device

learns a local model given its own learning data, after which it sends its local learning model

parameters, i.e. weight and gradient parameters, to the server for global model aggregation.

Finally, the global model parameters are sent back to each end-device [137].

Nonetheless, considering distributed approaches poses severe challenges in terms of pri-

vacy and security. Although raw data are not forwarded to some central node, and hence

stay at the device end, sharing learning model parameters such as gradients leads to informa-

tion leakage, since it can be used to reconstruct users’ training data [154], [155]. Differential

privacy recently attracted attention in federated learning to guarantee users’ privacy [156]

since it allows to analyze a dataset without reveling individual private information by adding

some noise to either statistical queries or the original data itself. Of course, the larger the

amount of added noise, the better the privacy but the lower the accuracy. Hence questions

such as finding the optimal privacy budget to achieve both good accuracy and strong pri-

vacy protection or finding other variants of differential privacy are very interesting future
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research paths that could benefit from information theory. The former seems somehow re-

lated to covert communications, where from an information theory point of view, the aim is

to find the largest data rate achieving reliable communication in the sense of vanishing error

probability and covertness, defined in terms of bounded Kullback-Leibler divergence or total

variation, hence statistical metrics.
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