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Chapter 1

Introduction

1.1 Summary of the thesis

The subject of this thesis are applications of persistence modules and barcodes to
geometry and dynamics. More precisely, we present applications to symplectic topology
following [122,144] and to topological function theory1 and spectral geometry following
[113].

The theory of persistence modules and barcodes emerged inside topological data
analysis community in the early 2000s, see [50, 167], with certain precursors, most
notably in the work of Barannikov [16]. Since then it witnessed a rapid expansion
and development both inside and outside topological data analysis, see [49,70,30,159,
19, 20] for surveys, [48, 106, 35] for detailed treatments of the theory and [120] for an
exposition focused on applications to pure mathematics. Recently, the technique of
persistence modules and barcodes has been successfully used in symplectic and contact
topology. For instance, [121], [150], [166], [122], [143], [81] and [139] used persistence
modules constructed from Floer homology to study questions in Hamiltonian dynamics,
while [26], [89], [137], [80] and [138] applied persistence techniques in the framework of
C0-symplectic topology. On the other hand, in [63], persistence modules defined using
generating function homology were considered, while [47] used barcodes to deduce
displacement energy bounds for Legendrian submanifolds. Persistence modules coming
from filtered symplectic homology were considered in [144] and [148].

There exist different definitions of a persistence module in the literature, depending
on the level of generality. For us, a persistence module over a filed K will be given
by a family of finite-dimensional K-vector spaces V t, dimK V

t <∞, indexed by a real
parameter t ∈ R, together with a family of linear structure maps πs,t : V s → V t for

1The term “topological function” theory was taken from [120]. It refers to the study of properties

of functions which are invariant under the action of diffeomorphisms or homeomrphisms of the

underlying space, such as the C0-norm.
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all s ≤ t. Moreover we ask that

πt,t = 1V t and πs,t ◦ πr,s = πr,t for all r ≤ s ≤ t.

A typical example of a persistence module is given using a Morse function f on a closed
manifold M. We define V t

k (f) = Hk({f < t};K), structure maps πs,t being induced
by inclusions {f < s} ⊂ {f < t}. Informally, this persistence module encodes how
topology of the sublevel set {f < t} changes as we vary parameter t.Other examples of
interest for us will be given by filtered Floer homology, filtered symplectic homology
and filtered Morse-Bott homology. In these examples, M is replaced by the free
loop space of a symplectic or Riemannian manifold, while the role of f is played by
symplectic action functional or Riemannian energy functional, see Chapters 2, 3 and
4 for details.

A barcode is a collection of intervals in R, called bars, each bar appearing finitely
many times, possibly more than once. As such, barcode is a combinatorial object.
However, the structure theorem for persistence modules, Theorem 2.1.8, tells us that
to each isomorphism class of persistence modules corresponds a unique barcode. In
order to get the intuition about this correspondence, it is instructive to consider the
above mentioned example of a persistence module associated to a Morse function.
Each bar in the corresponding barcode represents a lifespan of a homology class of
the sublevel set as level parameter increases. A left endpoint of a bar represents a
“birth” of a homology class, i.e., the value of a function at which the homology class
first appears in the sublevel set. Similarly, a right endpoint of a bar represents a
“death” of a homology class, i.e., the value of a function at which the homology class
disappears2. Since topology of the sublevel set changes only upon passing through a
critical value, all endpoints of all bars are critical values of the function.

One may define a distance on the space of all barcodes, called the bottleneck
distance and denoted by dbottle. Informally, dbottle measures the minimal value ε we
need in order to bijectively match the bars in the two barcodes with error at most ε
at the endpoints. One of the major results of the theory of persistence modules and
barcodes is the stability theorem of Cohen-Steiner, Edelsbrunner and Harer proven
in [38]. It states that for two Morse functions f and g on a closed manifold M and
any integer k it holds

dbottle(Bk(f),Bk(g)) ≤ dC0(f, g), (1.1)

where Bk(·) denotes the barcode of the persistence module Vk(·) and dC0(f, g) =
|f − g|C0 = maxx∈M |f(x) − g(x)|. One may interpret (1.1) as saying that barcodes
behave in a stable way with respect to C0-perturbations of functions. Moreover, the
stability theorem tells us that barcode can be used as an invariant to quantitatively
study the space of functions equipped with the C0-distance.

The stability theorem has a far-reaching, abstract generalization called the isometry
theorem. Namely, one may define, in purely algebraic terms, a distance between

2This value might be equal to +∞ if the class never disappears, i.e., if it is a homology class of

the underlying manifold.
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two persistence modules, called the interleaving distance and denoted by dinter. The
isometry theorem states that for any two persistence modules V andW with corresponding
barcodes B(V ) and B(W ) it holds

dbottle(B(V ),B(W )) = dinter(V,W ). (1.2)

In order to deduce (1.1) from (1.2) it is enough to show that dinter(Vk(f), Vk(g)) ≤
dC0(f, g). This can be done in a straightforward manner using functorial properties
of homology, see Section 2.1 for details. Due to the abstract nature of the isometry
theorem, the same idea may be applied in different contexts and stability results
similar to (1.1) can be proven systematically. Indeed, an important ingredient in [121]
and in our paper [122] (which builds on [121]) is a stability result similar to (1.1),
with dC0 replaced by Hofer’s metric and with barcodes coming from filtered Floer
homology. On the other hand, in [144] we use a stability result analogous to (1.1)
with dC0 replaced by the recently defined symplectic Banach-Mazur distance and
with barcodes coming from filtered symplectic homology. These results allow us
to quantitatively study Hofer’s metric and symplectic Banach-Mazur distance using
barcodes. Let us now briefly describe the content of [122,144,113].

Morse and Floer homology carry product structures given by the intersection
product and the pair-of-pants product respectively. In [122] we made a first step
towards integrating these products in the framework of persistence modules. To
this end, we introduced the notion of a persistence module with an operator and
extended certain elements of persistence theory to this framework. As an application,
we generalized the main result of Polterovich and Shelukhin from [121] about Hofer’s
distance to full p-th powers of Hamiltonian diffeomorphisms. As another illustration
of our technique we provided an example of two Morse functions which can not be
distinguished using standard persistence modules, but can be distinguished using
persistence modules with operators. Along the way we also proved a version of the
Künneth formula for persistence modules.

In [144] we studied the recently defined symplectic Banach-Mazur distance using
persistence techniques. In general, symplectic Banach-Mazur distance, denoted by
dSBM , is a distance on the space of Liouville domains. Roughly speaking, it measures
how much we need to rescale the domains so that we can symplectically embed them
into one another. In [144] we restricted ourselves to fiberwise star-shaped domains
in the cotangent bundle of a fixed closed manifold M. Denote the space of all such
domains by CM , (CM , dSBM) being a pseudo-metric space. Our main result states that
if M is a closed, orientable surface of positive genus, then (CM , dSBM) is large in the
sense that there exists a quasi-isometric embedding from (Rn, | · |∞) to (CM , dSBM)
for all n ∈ N. The proof of this statement relies on a stability result analogous to
(1.1) with dSBM playing the role of dC0 and barcodes coming from filtered symplectic
homology. In order to construct the quasi-isometric embeddings, we analyse closed
geodesics on certain surfaces of revolution, which gives us information about the
relevant barcodes. The domains from CM realizing the embedding are then given
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as unit codisc bundles of these metrics of revolution. As another application, using
similar methods, we obtained a result about stability of closed geodesics on a general
closed Riemannian manifold with respect to perturbations of the Riemannian metric.

The main object we studied in [113] is a functional, Φ1, on the space of Morse
functions on a fixed manifold M , given by

Φ1(f) = max f −min f + total length of all finite bars in B(f).

This functional can be thought of as a measure of total oscillation of a function.
We proved that when M is a compact, orientable surface with a Riemannian metric,
Φ1(f) admits an upper bound in terms of the L2-norms of derivatives of f up to order
two. The proof relies on a similar estimate for the integral of the Banach indicatrix
due to Polterovich and Sodin - [123] and some elementary topological considerations.
We should note that this result of Polterovich and Sodin is a part of a classical
subject of estimating the integral of the Banach indicatrix, see [87, 153, 162]. As a
direct corollary of the bound on Φ1, we obtained an upper bound on the number of
“significant” critical values of a Morse function. Other corollaries include an inverse
result about C0-approximations of a function, possibly after a change of variables, by
a linear combination of Laplace-Beltrami eigenfunctions, as well as an upper bound on
the average length of a finite bar in B(f), f being a Morse function on a 2-dimensional
torus.

Organization of the thesis: In the rest of the chapter we present the main
results of the thesis in greater detail. Precisely, the results of [122], [144] and [113]
are described in Sections 1.2, 1.3, and 1.4 respectively. Chapter 2 is divided in two
sections. The first one contains necessary background about persistence modules and
barcodes, while the second one gives a brief overview of symplectic topology and Floer
theory. Chapters that follow, namely Chapters 3, 4 and 5, are based on [122], [144]
and [113] respectively. They provide a detailed treatment of the results announced in
Sections 1.2, 1.3 and 1.4, as well as some additional results.

1.2 Hofer’s geometry and distance to powers

Let (M,ω) be a closed symplectic manifold, Ham(M) the group of Hamiltonian
diffeomorphisms of M and d the Hofer’s metric on Ham(M). For an integer p ≥ 2,
denote by

Powersp(M) = {φ ∈ Ham(M) | ∃ψ ∈ Ham(M), φ = ψp},

the set of all p-th powers of Hamiltonian diffeomorphisms and let

powersp(M) = sup
φ∈Ham(M)

d(φ,Powersp(M)).

The following question was considered by Polterovich and Shelukhin in [121].
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Question: Is it true that powersp(M) = +∞?

In other words, we are asking if there exist Hamiltonian diffeomorphisms arbitrary
far away in Hofer’s metric from the set of p-th powers. There are many different
motivations to ask this question. For example, the set of autonomous Hamiltonian
diffeomorphisms is contained in Powersp(M) and thus a positive answer to the above
question would imply that there exist Hamiltonian diffeomorphisms arbitrarily far
away from the autonomous ones. Even for M = S2, the question of existence of
such Hamiltonian diffeomorphisms is a well-known open problem posed in 2006 by
Kapovich and Polterovich, see [97, Chapter 14, Problems 21 and 22]. For other
motivations and more context surrounding this question we refer the reader to [121].
The main result of [121] is the following.

Theorem 1.2.1 ( [121]). Let (Σ, σ) be a closed oriented surface of genus at least 4,
endowed with an area form, and let (N,ωN) be either a point, or a closed symplectically
aspherical symplectic manifold. Then for each p ∈ Z, p ≥ 2 there exists a sequence
φj ∈ Ham(Σ, σ) such that

d(φj × 1N ,Powersp(Σ×N))
j→∞−−−→∞.

In particular powersp(Σ×N) = +∞.

In order to prove Theorem 1.2.1, Polterovich and Shelukhin decribed a general
framework for tackling the above question. Namely, on a symplectically aspherical
manifold, they considered filtered Hamiltonian Floer homology as a persistence module,
called Floer persistence module, and denoted by HF t

∗(H)α. More precisely, for a
homotopy class of free loops α and a non-degenerate Hamiltonian H, HF t

∗(H)α is
the homology of a Floer chain complex of H, generated by closed orbits in class α of
index ∗ with action less than t. As explained in [121], when (M,ω) is symplectically
aspherical, HF t

∗(H)α is a persistence module which depends only on the time-one
diffeomorphism generated by the Hamiltonian flow ofH. In other words, Floer persistence
module HF t

∗(φ)α is well defined for a non-degenerate φ ∈ Ham(M).

The first thing which was noticed in [121] is that the stability of barcodes holds
for Floer persistence modules, i.e.

d(B(HFk(φ)α),B(HFk(θ)α)) ≤ d(φ, θ),

for every degree k, every homotopy class α and all non-degenerate φ, θ ∈ Ham(M).
This inequality follows from the isometry theorem for persistence modules combined
with standard action estimates for continuation maps in Floer theory. We give it’s
proof in Subsection 2.2.8.

The second thing noticed in [121] is that Floer persistence module HF∗(φ
p)α can

be endowed with a Zp-action by acting with φ on all the elements in the construction
of the Floer chain complex. Moreover, if φ ∈ Powersp(M), this action can be upgraded
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to a Zp2-action. Using these algebraic structures, Polterovich and Shelukhin defined
an invariant, called multiplicity-sensitive spread, which can be used to distinguish a
Hamiltonian diffeomorphism from Powersp(M) in a Hofer-robust way.

Finally, to prove Theorem 1.2.1, a sequence of Hamiltonian diffeomorphisms φj
was constructed as time-one maps of the family of egg-beater flows. The properties
of the egg-beater flows were analysed directly, which allowed for the estimate of the
multiplicity-sensitive spread.

Our work [122] can be seen, to a large extend, as a continuation of [121]. In [122],
we worked with symplectically monotone manifolds and aimed to include the product
structure, given by the pair-of-pants or quantum product, in the framework of Floer
persistence modules. To this end, we introduced the notion of a persistence module
with an operator. This notion encompasses the previously considered Zp-action as well
as intersection, pair-of-pants or quantum product with a fixed class in the ambient
homology. Algebraic considerations of these structures yield a refinement of Theorem
1.2.1, which is the main result of [122]. Let us formulate this result precisely.

Let p ≥ 2 be an integer, (N,ω), dimN = 2n, a monotone symplectic manifold,
i.e. ω|π2(N) = κc1|π2(N) with κ > 0, and denote by cN the minimal Chern number3 of
N. Let K be a field whose characteristic does not divide p and which contains all p-th
roots of unity, i.e. xp− 1 ∈ K[x] splits over K. Moreover, assume that for a primitive
p-th root of unity ζp and an integer k, the equation xp− (ζp)

k = 0 has no solutions in
K unless p|k. An example of such a field is the splitting field Qp of xp− 1 over Q. Let

ΛK =

ß∑
i∈Z

aiq
i

∣∣∣∣ ai ∈ K, (∃i0 ∈ N) ai = 0 for i ≥ i0

™
,

be the field of bounded from above Laurent series in a formal variable q with coefficients
in K. Denote by

QH(N) = H(N ;K)⊗K ΛK,

the quantum homology of N , ΛK serving as a Novikov field. QH(N) is given a Z-
grading by declaring that deg q = 2cN . Fixing a homogenous element e ∈ QH(M),
quantum product yields a K-linear map

e∗ : QHr(N)→ QHr−2n+deg e(N) (1.3)

for every r ∈ Z.We define the r-th Betti number associated to e as br(e) = dimK(im(e∗)),
where e∗ has domain QHr(N) as in 1.3. These Betti numbers satisfy br(e) = br+2cN (e)
for every r ∈ Z because multiplication by q induces an isomorphism

q : QHr(N)→ QHr+2cN (N),

which commutes with e ∗ . Thus, there are at most 2cN different ones, namely
b0(e), . . . , b2cN−1(e). The following theorem is the main result of [122].

3Minimal Chern number is defined as cN > 0 s.t. c1(π2(N)) = cN · Z.
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Theorem 1.2.2 (Theorem 3.1.2). Let (Σ, σ) be a closed oriented surface of genus
at least 4, endowed with an area form and (N,ωN) a closed symplectically monotone
manifold. If there exists a homogenous e ∈ QH(N) such that p - br(e) for some
r ∈ {0, . . . , 2cN − 1} then

powersp(Σ×N) = +∞.

A symplectically aspherical manifold can be considered to be symplectically monotone
with cN = +∞. Theorem 1.2.2 also applies to symplectically aspherical manifolds,
in which case quantum homology is replaced by the usual homology and quantum
product is replaced by the intersection product. Since the fundamental class [N ]
is the unit for the intersection product, it follows that bk([N ]) = dimK(Hk(N ;K))
for all degrees k. Taking k = 0 we get b0([N ]) = 1 and hence Theorem 1.2.2 implies
Theorem 1.2.1. Other concrete examples to which Theorem 1.2.2 applies are discussed
in Subsection 3.1.2.

Remark 1.2.3. Another generalization of Theorem 1.2.1 was obtained in [166], see
Subsection 3.1.2 for the formulation of the result and comparison with Theorem 1.2.2.

Theorem 1.2.2 is the main application of the framework of persistence modules
with operators introduced in [122]. In order to prove it, we analysed persistence
modules coming from tensor products of pairs of filtered Floer chain complexes.
To this end, we also proved a Künneth type formula for persistence modules, see
Subsection 3.2.2. To further illustrate the utility of our method, we provided an
example of two Morse functions on a surface of genus two, whose associated barcodes
and spectral invariants are equal, but which can be distinguished using operators
coming from the intersection product. This example is discussed in Subsection 3.2.4.

1.3 Symplectic Banach-Mazur distance

Let M be a closed, orientable manifold, T ∗M it’s cotangent bundle, λcan the canonical
Liouville 1-form on T ∗M and ωcan = dλcan the canonical symplectic form on T ∗M.
The Liouville vector field X is given by ωcan(X, ·) = λcan and is expressed as X =∑dimM

i=1 pi
∂
∂pi

in Darboux coordinates (q, p), p = ( ∂
∂q

)∗. We call U ⊂ T ∗M an admissible

domain if it is a smooth, fiberwise star-shaped4, domain with boundary such that
X t ∂U. This condition renders (∂U, λcan|∂U) into a contact manifold and is necessary
in order for our method of filtered symplectic homology to work, see Section 4.3 for
more details. Admissible domains of particular importance for us are unit codisc
bundles U∗gM ⊂ T ∗M of Riemannian metrics g on M.

Denote by CM the set of all admissible domains in T ∗M. We wish to define a
distance on CM and study it’s large-scale geometry. To this end, we must first

4By star-shaped we mean star-shaped with center at 0. In particular 0M ⊂ U.
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introduce a couple of notions. Let U, V ∈ CM . A π̃1-trivial Liouville embedding φ :
U → V is an exact symplectic embedding, i.e. an embedding such that φ∗λcan− λcan
is exact, which acts as identity on free homotopy classes of loops in T ∗M. Assume
that U ⊂ V and φ : U → V is a π̃1-trivial Liouville embedding. We call φ strongly
unknotted if there exists a homotopy between φ and the inclusion i : U → V which
goes through exact symplectic embeddings of U to V. It can be easily shown that
such a homotopy can be generated by a Hamiltonian flow, i.e. φ(U) is a Hamiltonian

deformation of U. We denote by U
φ
↪−→ V the π̃1-trivial Liouville embedding φ : U → V.

For U
φ
↪−→ V and C > 0 define φ(C) : CU → CV as φ(C)(·) = Cφ( 1

C
·) where

multiplication is fiberwise C(q, p) = (q, Cp). It is easy to check that φ(C) is also a
π̃1-trivial Liouville embedding.

Definition 1.3.1. Let U, V ∈ CM . Define symplectic Banach-Mazur distance between
U and V as

dSBM(U, V ) = inf

{
lnC

∣∣∣∣ ∃ 1
C
U

φ
↪−→ V

ψ
↪−→ CU (and hence 1

C
V

ψ(C−1)
↪−−−−→ U

φ(C)
↪−−→ CV )

s.t. ψ ◦ φ and φ(C) ◦ ψ(C−1) are strongly unknotted

}

As we already mentioned, we are interested in the large-scale geometry of (CM , dSBM).
Since symplectic maps preserve volume, we immediatly see that the diameter of
(CM , dSBM) is infinite if there are no restrictions on the volume of domains. Hence,
we denote

C̄M =
{
U ∈ CM

∣∣∣ Vol(U) =

∫
U

(ωcan)∧n

n!
= 1
}
,

and focus on the large-scale geometry of (C̄M , dSBM). Recall that a map Φ : (X1, d1)→
(X2, d2) between pseudo-metric spaces is called a quasi-isometric embedding if there
exist A ≥ 1, B ≥ 0 such that

1

A
d1(x, y)−B ≤ d2(Φ(x),Φ(y)) ≤ Ad1(x, y) +B,

for all x, y ∈ X1. The main result of [144] is the following.

Theorem 1.3.2 (Corollary 4.1.14). If M = Σ is a closed, orientable surface whose
genus is at least 1 then for every N ∈ N there exists a quasi-isometric embedding

Φ : (RN , | · |∞)→ (C̄M , dSBM).

If M = S2, then there exists a quasi-isometric embedding

Φ : ([0,∞), | · |)→ (C̄M , dSBM).

Intuitively, Theorem 1.3.2 states that for any N ∈ N there exist N linearly
independent unbounded directions inside (C̄Σ, dSBM) and there exists an unbounded
ray inside (C̄S2 , dSBM). The proof of this theorem can, rougly speaking, be divided
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in two parts. The first part consists of proving stability of barcodes coming from
filtered symplectic homology with respect to dSBM . This is a genereal result which
holds for any base manifold M. We should note that the definition of dSBM as well as
this stability result were first suggested by Ostrover and Polterovich - [117,118,105].
The importance of unknottedness-condition was noticed by Gutt and Usher in [75].
Finally, precise statements and proofs of stability appeared, in various contexts,
around the same time in [120,144,148].

The second part of the proof consists of constructing domains which realize the
quasi-isometric embeddings in Theorem 1.3.2. For ~x ∈ RN we construct a domain
Φ(~x) as the unit codisc bundle of a Riemannian metrics g~x, which roughly looks as
in Figure 1.1. On the cut-out cylindrical part the metrics are metrics of revolution

γ1 γ2 γ2N

Figure 1.1. Riemannian metric g~x

and different directions in (C̄M , dSBM) are obtained by “shrinking the necks”. To
make this precise we use the above mentioned stability result, together with the fact
that filtered symplectic homology of U∗gM is isomorphic, as a persistence module, to
the homology of the free loop space L(M) filtered by energy, see Section 4.4. More
precisely, computing the barcode of filtered symplectic homology of U∗gM is equivalent
to computing the barcode of V t = H∗({Eg ≤ t}) where

Eg : L(M)→ R, Eg(γ) =

∫ 1

0

‖γ̇(τ)‖2

2
dτ.

Critical points of Eg are closed geodesics on (M, g) and hence the endpoints of bars in
the barcode of H∗({Eg ≤ t}) are energies of certain closed geodesics. So, in order to
describe the barcode of H∗({Eg ≤ t}), we need to analyse closed geodesics on (M, g).
This is possible in the example shown in the figure, due to the fact that geodesic flow
on a surface of revolution is an integrable system, see Section 4.6 for details.

Remark 1.3.3. In [148], Usher proved a result analogous to Theorem 1.3.2 in the
case of star-shaped domains in R2n. Roughly speaking, in a similar fashion as above,
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one defines the space of admissible star-shaped domains in R2n, denoted by S2n, as
well as symplectic Banach-Mazur distance, dSBM , on this space. Usher proved that
for n ≥ 2 and any N ∈ N there exists a quasi-isometric embedding from (RN , | · |∞) to
(S2n, dSBM). While the formulations of the two results are similar, the constructions
of the quasi-isometric embeddings are rather different.

In a somewhat different direction, we exploit the fact that energies of closed
geodesics correspond to the endpoints of bars in the barcode of H∗({Eg ≤ t}) in
order to study stability of closed geodesics with respect to perturbations of a metric.
Given two Riemannian metrics g1 and g2 on M , we use g1 � g2 to denote the fact
that ‖v‖g1 ≤ ‖v‖g2 for every v ∈ TM. In [144] we proved the following theorem.

Theorem 1.3.4 (Theorem 4.1.19). Let g1, g2 be two bumpy metrics on a closed,
orientable manifold M such that 1

C1
g1 � g2 � C2g1. If there exists a bar [x, y) in the

barcode of H∗({Eg1 ≤ t}) such that y
x
> C1C2 then there exist closed geodesics γ1 and

γ2 of (M, g2), whose energies satisfy

1

C1

x ≤ Eg2(γ1) ≤ C2x,
1

C1

y ≤ Eg2(γ2) ≤ C2y,

and the barcode of H∗({Eg2 ≤ t}) contains the bar [Eg2(γ1), Eg2(γ2)). In the case of
an infinite bar [x,+∞), there exists a closed geodesic γ1 of (M, g2) such that

1

C1

x ≤ Eg2(γ1) ≤ C2x,

and the barcode of H∗({Eg2 ≤ t}) contains the bar [Eg2(γ1),+∞).

The statement about infinite bars can be considered a reformulation of the following
result which can be traced back to Birkhoff. If g2 � g1 then l(g2) ≤ l(g1), where
l(g) denotes the length of the shortest non-constant and “homologically visible”
closed geodesic of g. Indeed, endpoints of infinite bars correspond to energies of
“homologically visible” closed geodesic and the mentioned result is a statement about
the smallest endpoint of an infinite bar, see Corollary 4.1.21 for more details. On the
other hand, finite bars in the barcode ofH∗({Eg ≤ t}) belong to the realm of Gromov’s
quantitative homotopy theory, as noticed by Weinberger, see Remark 4.1.20. In order
to illustrate the appearance of finite bars, in Example 4.1.23 we computed the full
barcode of a specific metric of revolution on T2.

1.4 Oscillations of Laplace eigenfunctions

Let M be a compact, orientable, surface, possibly with boundary, equipped with a
Riemannian metric g. Denote by ∆ the positive definite Laplace-Beltrami operator
and by ‖ ·‖ the L2-norm induced by g. Let f : M → R be a Morse function, which we
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assume to vanish on ∂M if ∂M 6= ∅. Denote by B′(f) the multiset of all finite bars5 in
the barcode of the persistence module V t

∗ (f) = H∗({f < t};R). Let u : R→ [0,+∞)
be a continuous function. Define

Φu(f) =



max f∫
min f

u(t) dt+
∑

I∈B′(f)

∫
I

u(t) dt if ∂M = ∅,

0∫
min f

u(t) dt+
∑

I∈B′(f)

∫
I

u(t) dt if ∂M 6= ∅.

(1.4)

The main result of [113] is the following.

Theorem 1.4.1 (Theorem 5.1.76). In the above setup it holds

Φu(f) ≤ κg(‖f‖+ ‖∆f‖) · ‖u ◦ f‖,

where κg is a constant which depends only on (M, g).

Remark 1.4.2. By slightly abusing the notation, we denote all constants which
depend only on (M, g) by κg.

Let us explain the intuition and give some context behind Theorem 1.4.1. We
focus on the case u ≡ 1, since Φ1 has a relatively transparent meaning. Φu for
arbitrary u can be considered a u-weighted version of Φ1. Related functionals have
been earlier considered in [39] and certain upper bounds in the spirit of Theorem
1.4.1 were proven, see Remark 5.1.19 and a discussion in [120].

Firstly, note that Φ1(f) can be defined on an arbitrary manifold using the same
expression (1.4) and that it equals the sum of lengths of all the finite bars in the
barcode of f and the length of the range of f (or min f if ∂M 6= ∅). Now, assume
that M = S1. A Morse function on S1 has the same number, denote it by N , of local
minima x1, . . . , xN and local maxima y1, . . . , yN and they appear in an alternating
order on S1 as follows

x1, y1, . . . , xN , yN , x1.

Basic properties of barcodes (see Lemma 2.1.10) now imply that

Φ1(f) =
N∑
i=1

(f(yi)− f(xi)) =
1

2
Var(f),

where Var(f) denotes the total variation of f , see Example 5.1.15 for more details.
Thus, we might consider Φ1(f) to be a measure of the total variation of f. To give
further evidence in support of this claim, let us consider what happens in higher

5By this we mean the union over all degrees k of all finite bar in the barcode of Hk({f < t};R).
6Strictly speaking, there is a slight difference between Theorem 1.4.1 and Theorem 5.1.7.

However, the proof of Theorem 1.4.1 can be easily extracted from the proof of Theorem 5.1.7.
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dimensions. To this end, denote by β(t, f) the number of connected components of
f−1(t). Function β(t, f) is called the Banach indicatrix of f. It is easy to see that

I(f) :=

∫ +∞

−∞
β(t, f)dt = Var(f),

for a Morse function f on a closed interval. In fact the analogous statement, known as
the Banach indicatrix theorem, was proven by Banach for every continuous function
on a closed interval. Based on this fact, the integral of the Banach indicatrix I(f) was
considered a measure of the total variation of f in higher dimensions, see [153]. We
showed in [113], see Proposition 5.3.1, that on a compact orientable surface, possibly
with boundary, it holds

Φ1(f) ≤ I(f). (1.5)

Moreover, on the sphere (1.5) becomes an equality. Thus, Theorem 1.4.1 can be
interpreted as an upper bound on the total variation of f in terms of it’s W 2,2-
Sobolev norm. We should note that bounding I(f) from above by various norms of f
is a classical topic in analysis, see [87, 153, 162]. Due to (1.5), any such bound yields
an upper bound for Φ1(f). In particular, Theorem 1.4.1 follows from a u-weighted
version of (1.5) and an upper bound for a u-weighted version of I(f) due to Polterovich
and Sodin - [123].

Remark 1.4.3. Proposition 5.3.1 which asserts (1.5) actually gives a similar estimate
in arbitrary dimension. However, the results of [123] hold only in dimension two.

We now present certain applications, obtained in [113], of Theorem 1.4.1 to the
study of linear combinations of eigenfunction of ∆. From now on we always assume
that M is a compact orientable surface, possibly with boundary.

For λ > 0, let Fλ = {f ∈ C∞(M) | ‖f‖ = 1, ‖∆f‖ ≤ λ}. This set contains
normalized linear combinations of eigenfunction of ∆ with eigenvalue ≤ λ. It follows
from Theorem 1.4.1 that if f ∈ Fλ is Morse then

Φ1(f) ≤ κg(λ+ 1). (1.6)

We call a critical value of f δ-significant if it is an endpoint of a bar of length ≥ δ.

Denote by Nδ(f) the total number of δ-significant critical values of f (counted with
multiplicities if there are multiple bars with this endpoint). The following is a direct
corollary of (1.6).

Corollary 1.4.4 (Corollary 5.1.11). If f ∈ Fλ is a Morse function, then

Nδ(f) ≤ κg
δ

(λ+ 1).

It is easy to see that the above inequality does not hold if δ-significant condition
is dropped, see Example 5.1.12.
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Another application of (1.6) is to C0-approximation theory. Denote by

approxλ(f) = inf
ϕ∈Diff(M)

dC0(f ◦ ϕ,Fλ).

This quantity measures how well can a function f be approximated by functions from
Fλ, after a change of variables. C0-approximation of a function after a change of
variables is a classical topic in Fourier analysis, see [132,103,71]. Since barcodes of f
and f ◦ φ coincide for every φ ∈ Diff(M), invariants coming from barcodes, such as
Φ1 are naturally adapted to these kind of questions. In particular we may prove the
following.

Proposition 1.4.5 (Proposition 5.2.1). For every Morse function f : M → R,
vanishing on the boundary, the following inequality holds

approxλ(f) ≥


1

2·(|B′(f)|+1)

Å
Φ1(f)− κg(λ+ 1)

ã
for ∂M = ∅

1
2|B′(f)|+1

Å
Φ1(f)− κg(λ+ 1)

ã
for ∂M 6= ∅

(1.7)

where |B′(f)| denotes the number of finite bars.

The lower bound in Proposition 1.4.5 becomes negative as λ→ +∞. This means
that this proposition is not of asymptotic nature, i.e. it concerns fixed, possibly large,
values of λ. We refer the reader to Subsection 5.2.1 for further discussion.

Finally, we want to mention that, in the case of a flat torus M = R2/(2πZ)2,
Proposition 1.4.5 becomes an inverse statement about C0-approximation of a function
by trigonometric polynomials. Juxtaposition of this result with a direct result due
to Yudin - [163], yields an upper bound on the average length of a finite bar in the
barcode of a function on T2 in terms of it’s modulus of continuity, see Subsection
5.2.2.
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Chapter 2

Background

This chapter covers some basic aspects of the theory of persistence modules and
barcodes, symplectic topology and Floer theory. It’s purpose is to provide a background
on these subjects needed in the rest of the thesis.

2.1 Persistence modules and barcodes

In this section we briefly review the theory of persistence modules and barcodes. For
detailed treatments of the theory we refer the reader to [48, 106,35, 120]. During the
exposition we assume that the reader is familiar with basic Morse theory. A brief
survey of Morse homology can be found in Subsection 2.2.1.

2.1.1 Basics and the structure theorem

Let K be a field.

Definition 2.1.1. A persistence module (V, π) over K consists of a family of finite-
dimensional K-vector spaces V t, indexed by a real parameter t ∈ R, together with
linear structure maps πs,t : V s → V t for all s ≤ t which satisfy

1. For all t ∈ R, πt,t = 1V t ;

2. For any r, s, t ∈ R such that r ≤ s ≤ t it holds

πs,t ◦ πr,s = πr,t.

We sometimes abbreviate and write V for the persistence module (V, π).

Remark 2.1.2. The object defined by Definition 2.1.1 is sometimes referred to as a
“pointwise finite-dimensional persistence module indexed over R”. This comes from
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the fact that one may consider similar object, by allowing some V t to have infinite
dimension or by taking t in a different partially ordered set. We should note that
not all of the theory presented here carries over to these, more general, setups. All
persistence modules we consider in this thesis fit in the framework od Definition 2.1.1.

Example 2.1.3. Let M be a closed manifold and f : M → R a Morse function. For
k ∈ Z define a persistence module (Vk(f), π) by

V t
k (f) = Hk({f < t};K) for t ∈ R,

structure maps πs,t : V s
k (f)→ V t

k (f) being induced by inclusions of sublevel sets

{f < s} ⊂ {f < t} for s ≤ t.

Since topology of sublevel sets only changes upon passing through a critical value,
one readily sees that πs,t is an isomorphism if [s, t] contains no critical values of f .
We denote by V (f) = ⊕kVk(f) the persistence module coming from total homology.
V (f) is a persistence module of Z-graded vector spaces.

Definition 2.1.4. Let (V, πV ), (W,πW ) be two persistence modules over K. A morphism
of persistence modules or persistence module morphism f : (V, πV ) → (W,πW ) is a
family of linear maps ft : V t → W t for each t ∈ R which satisfy

πWs,t ◦ fs = ft ◦ πVs,t for all s ≤ t.

One defines ker f and im f as persistence modules given by

(ker f)t = ker f t ⊂ V t, (im f)t = im f t ⊂ W t,

structure maps πker f and πim f being the restrictions of πV and πW to ker f and im f.
Direct sum (V ⊕W,πV⊕W ) of persistence modules is given by

(V ⊕W )t = V t ⊕W t, πV⊕Ws,t = πVs,t ⊕ πWs,t.

Given these definitions, persistence modules form an abelian category.

Remark 2.1.5. Let (R,≤) be a poset category, i.e. a category whose objects are
real numbers and which has a unique morphisms between s and t whenever s ≤ t.

A persistence module may be defined in more categorical terms as a functor from
the poset category (R,≤) to the category of finite-dimensional vector spaces. In this
language, a morphism of persistence modules is a natural transformation of functors.

Definition 2.1.6. A barcode B = {(I,mI)} is a multiset1 of intervals I ⊂ R, called
bars, with finite multiplicities mI .

1Recall that a multiset is a set in which elements may appear more than once. The number of

times an element appears in the multiset is called the multiplicity of that element.
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As mentioned in Section 1.1, the structure theorem for persistence modules tells us
that to each isomorphism class of persistence modules corresponds a unique barcode.
To formulate this theorem precisely we will need the following abstract example of a
persistence module associated to and interval.

Example 2.1.7. Let K be a field and I ⊂ R an interval. Define an interval persistence
module KI by

Kt
I =

{
K, for t ∈ I
0, otherwise

, πKI
s,t =

{
1K, for s, t ∈ I
0, otherwise

.

Interval modules are building blocks for all persistence modules, i.e. the following
holds.

Theorem 2.1.8 (The structure theorem). To every persistence module (V, π) over K
corresponds a barcode B(V ), unique up to isomorphisms of persistence modules, such
that

(V, π) ∼=
⊕

(I,mI)∈B(V )

((KI , π
KI ))mI .

The term barcode was first used in [167] and a version of Theorem 2.1.8 for
persistence modules indexed over N was proven. Analogous objects in the framework
of filtered chain complexes were previously considered in [16] and a theorem analogous
to Theorem 2.1.8 was proven. Theorem 2.1.8, in the level of generality as stated here,
was proven in [44].

Let us now elaborate on the persistence module-to-barcode correspondence in the
case of persistence modules coming from Morse functions, introduced in Example
2.1.3. For a Morse function f , denote by Bk(f) = B(Vk(f)) the degree k barcode of
f and by B(f) = B(V (f)) = ∪kBk(f) the full barcode of f. We start by a concrete
example of a Morse function on S1.

Example 2.1.9. Let f : S1 → R be a height function on a deformed circle (see
Figure 2.1). Critical values of f are a, b, c and d, and for t ∈ R, the sublevel sets
f−1((−∞, t)) are homeomorphic to:

f−1((−∞, t)) =



∅, for t ≤ a

I, for a < t ≤ b

I t I, for b < t ≤ c

I, for c < t ≤ d

S1, for d < t

where I stands for an open interval. Degree 1 barcode is now easily seen to contain
one infinite bar B1(f) = {(d,+∞)}, while degree 0 barcode contains one infinite and
one finite bar B0(f) = {(a,+∞), (b, c]}. The finite bar (b, c] corresponds to the fact
that for b < t ≤ c, f−1((−∞, t)) has two connected components which merge for
t > c. The full barcode is given by B(f) = {(a,+∞), (d,+∞), (b, c]}.
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Figure 2.1. Height function on a deformed circle.

Firstly, we notice that all the bars in Example 2.1.9 have the form (a, b] or (a,+∞)
for a, b ∈ R. This is true for any Morse function f . Indeed, notice that when t ≤ min f ,
{f < t} = ∅ and hence V t(f) = 02. Thus, all bars in B(f) are left-bounded. The fact
that they have left endpoints open and right endpoints closed comes from the choice
of strict inequality in the definition of sublevel sets {f < t}. If we would consider
{f ≤ t} instead, the situation would be exactly the oposite, i.e. the left endpoints of
bars would be closed and right endpoints would be open.

Secondly, notice that the number of infinite bars, i.e. rays of the form (a,+∞),
in Bk(f) equals dimHk(M ;K). Again, this is true for Morse functions in general. To
see this, note that when t > max f , {f < t} = M and thus V t

k (f) stabilizes, meaning
that πs,t are isomorphisms for s, t > max f . Now, for t > max f , dimV t

k (f) is on the
one hand equal to the number of infinite bars in Bk(f) and on the other hand equal
to dimHk({f < t};K) = dimHk(M ;K).

Finally, we notice that endpoints of bars in B(f) correspond to critical values of
f. As we already mentioned in Example 2.1.3, homology of sublevel sets only changes
upon passing through a critical value, hence the endpoints of bars in B(f) must be
equal to critical values of f. Moreover, we claim that each critical point of f of index
k and with critical value c either starts a bar in Bk(f) at c or ends a bar in Bk−1(f)
at c. More formally, the following holds.

Lemma 2.1.10. Let f be a Morse function on a closed manifold M and c its critical
value. The number of critical points of f with critical value c and index k is equal to

2Here and in the rest of the thesis we use a convention that homology of the empty set is zero.
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the combined number of bars in Bk(f) starting at c and bars in Bk−1(f) ending at c.

Proof. All considerations work for homology over an arbitrary field K, so we omit K
from the notation. For t ∈ R denote by M t = {f < t}. Assume that there are m
critical points of f of index k at critical level f−1(c) and assume that ε > 0 is such
that [c−ε, c+ε] contains no critical values other than c. It is a standard fact of Morse
theory that in this case

dimHk(M
c+ε,M c−ε) = m.

Consider the following part of the long exact sequence of the pair (M c+ε,M c−ε) :

Hk(M
c−ε)

i−→ Hk(M
c+ε)

p−→ Hk(M
c+ε,M c−ε)

∂−→ Hk−1(M c−ε)
j−→ Hk−1(M c+ε).

The number of bars in Bk(f) starting at c is equal to dimHk(M
c+ε)−dim(im i), while

the number of bars in Bk−1(f) ending at c is equal to dim(ker j). From the exactness
of the above sequence we have

dimHk(M
c+ε)− dim(im i) = dimHk(M

c+ε)− dim(ker p) = dim(im p) = dim(ker ∂),

as well as
dim(ker j) = dim(im ∂).

Since dim(ker ∂) + dim(im ∂) = dimHk(M
c+ε,M c−ε) = m the claim follows.

A couple of remarks are in order. Firstly, we wish to point out that Lemma 2.1.10
does not hold for non-Morse functions, as can be seen from an example of a function
on S1 with three critical points.

Secondly, the proof of Lemma 2.1.10 does not construct a canonical bijection
between critical points of f and endpoints of bars in B(f). In general, there is no reason
to expect the existence of a canonical bijection between these two sets. However, one
may construct a different basis of the Morse chain complex, in which the boundary
operator has a particularly simple form and for which there is a canonical bijection
between basis vectors and the endpoints of bars. The existence of such a basis was
used in [16] to prove a theorem analogous to Theorem 2.1.8 in the case of filtered
chain complexes. For more details on this approach see [120] and references therein.

Lastly, we want to point out that barcodes of f and f ◦ φ coincide for any
diffeomorphism φ ∈ Diff(M). Indeed for every t ∈ R restricting φ to {f ◦ φ < t}
gives a homeomorphism

φ : {f ◦ φ < t} → {f < t},

which for every k ∈ Z induces an isomorphism

φ∗ : Hk({f ◦ φ < t};K)→ Hk({f < t};K).

It is easy to see that this is an isomorphism of persistence modules Vk(f) and Vk(f ◦φ)
and hence Bk(f) = Bk(f ◦ φ) for every k ∈ Z.
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2.1.2 Stability and isometry theorems

In this subsection we introduce a quantitative perspective on persistence modules and
barcodes. To this end, we define the distance on the space of all barcodes, called the
bottleneck distance as well as it’s algebraic counterpart, the interleaving distance on
the space of all persistence modules. The highlight of the discussion are the stability
theorem, Theorem 2.1.17, and the isometry theorem, Theorem 2.1.21. For a detailed
treatment of the isometry theorem, see [19, 20] and references therein.

Definition 2.1.11. A matching σ, between multisets X and Y is a bijection between
subsets of X and Y called, respectively, the coimage and the image of σ and denoted
by coimσ and imσ. In other words

σ : coimσ
bijection−−−−−→ imσ, for some coimσ ⊂ X, imσ ⊂ Y.

Remark 2.1.12. In Definition 2.1.11, the terms subset and bijection refer to a subset
and a bijection in the sense of multisets. This means that coimσ and imσ are
multisets whose elements have multiplicities not greater than their original multiplicities
in X and Y. Similarly, a bijection σ must match each copy of an element from coim σ
with (a copy of) an element in imσ. In particular, the total multiplicities of all
elements in coimσ and imσ are equal.

For a barcode B and ε ≥ 0, denote by Bε ⊂ B the subset of all bars of length ≥ ε.
We use notation 〈a, b〉 to denote any of the intervals (a, b), [a, b), (a, b] or [a, b].

Definition 2.1.13. Let B1,B2 be two barcodes and let ε ≥ 0. A matching σ, between
B1 and B2, is called an ε-matching if

1) B2ε
1 ⊂ coimσ,B2ε

2 ⊂ imσ;

2) If σ(〈a, b〉) = 〈c, d〉 then |a− c| ≤ ε and |b− d| ≤ ε.

We say that B1 and B2 are ε-matched if there exists an ε-matching between them.

Remark 2.1.14. In property 2) of Definition 2.1.13 some endpoints may be infinite.
In this case we take |−∞− (−∞)| = |+∞− (+∞)| = 0, i.e. infinite endpoints have
to match exactly. In particular, in order to have an ε-matching between B1 and B2,
we need the numbers of left-infinite rays, right-infinite rays and bars (−∞,+∞) in
B1 and B2 to be equal.

If σ is an ε-matching, B1 \ coimσ and B2 \ imσ only contain bars of length < 2ε.
Informally, we may think of these bars as being erased, or matched with empty
intervals. Thus, an ε-matching may be thought of as a bijection up to an error of ε
at the endpoints of bars.
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Definition 2.1.15. Let B1,B2 be two barcodes. The bottleneck distance between B1

and B2 is given by

dbottle(B1,B2) = inf{ε | B1 and B2 are ε-matched}.

If there exists no ε-matching between B1 and B2 for any 0 ≤ ε < +∞, we set
dbottle(B1,B2) = +∞.

One readily checks that the bottleneck distance satisfies all axioms for a genuine
metric except that two different barcodes may be at bottleneck distance zero. Indeed,
for a, b ∈ R, a < b each two of the following barcodes

B1 = {(a, b)}, B2 = {[a, b)}, B3 = {(a, b]}, B4 = {[a, b]},

are on bottleneck distance zero. Since bottleneck distance can also be equal to +∞,
it is an extended pseudo-metric.

Example 2.1.16. Barcodes B1 = {(0, 2], [0, 1]}, B2 = {(0, 2)}, B3 = ∅, B4 =
{[−100,+∞)} satisfy

dbottle(B1,B2) =
1

2
, dbottle(B1,B3) = dbottle(B2,B3) = 1, dbottle(Bi,B4) = +∞

for i = 1, 2, 3.

In [38], Cohen-Steiner, Edelsbrunner and Harer proved that barcodes associated
to Morse functions behave in a stable way with respect to C0-perturbations of a
function. Namely, let M be a closed manifold. For two functions f and g on M
denote dC0(f, g) = |f − g|C0 = maxx∈M |f(x) − g(x)| and recall from Example 2.1.3
that Bk(f) denotes the barcode associated to V t

k (f) = Hk({f < t};K).

Theorem 2.1.17 (The stability theorem - [38]). Let M be a closed manifold and f
and g two Morse functions on M. For every k ∈ Z it holds

dbottle(Bk(f),Bk(g)) ≤ dC0(f, g).

In particular, it also hold

dbottle(B(f),B(g)) ≤ maxk dbottle(Bk(f),Bk(g)) ≤ dC0(f, g).

As we mentioned in Subsection 1.1, stability results in the spirit of Theorem 2.1.17
will be crucial for our applications of barcodes to symplectic topology. In order to
prove results of this sort, we will use an abstract generalization of Theorem 2.1.17
called the isometry theorem. Let us now formulate this theorem.

25



Definition 2.1.18. Let (V, πV ) be a persistence module. For δ ∈ R define a δ-shifted
module (V [δ], πV [δ]) by

(V [δ])t = V t+δ, π
V [δ]
s,t = πVs+δ,t+δ.

If f : V → W is a morphism of persistence modules, we denote by f [δ] : V [δ]→ W [δ]
the induced morphism given by f [δ]t = ft+δ.

Remark 2.1.19. The barcode B(V [δ]) is equal to the barcode B(V ) translated by
−δ.

Definition 2.1.20. Let δ ≥ 0. We say that persistence modules (V, πV ) and (W,πW )
are δ-interleaved if there exists a pair of morphisms of persistence modules

f : V → W [δ], g : W → V [δ],

such that for all t ∈ R it holds

(g[δ] ◦ f)t = πVt,t+2δ, (f [δ] ◦ g)t = πWt,t+2δ.

A pair of morphisms f and g as above is called a δ-interleaving between V and W .
The interleaving distance between V and W is defined as

dinter(V,W ) = inf{δ | V and W are δ-interleaved}.

Similarly to dbottle on barcodes, dinter defines an extended pseudo-metric on the
space of persistence modules. An interested reader may check that the interleaving
distance between any two of the following interval modules equals to zero:

K(a,b), K[a,b), K(a,b], K[a,b], for a, b ∈ R, a < b.

Theorem 2.1.21 (The isometry theorem - [38, 34, 90]). For any two persistence
modules V and W it holds

dinter(V,W ) = dbottle(B(V ),B(W )).

We refer the reader to [19,20] for a detailed historical account of the isometry theorem.
Let us now show how Theorem 2.1.21 implies Theorem 2.1.17.

Proof of Theorem 2.1.17. Denote by δ = dC0(f, g). From the definition of dC0 it
follows that for each t ∈ R it holds

{f < t} ⊂ {g < t+ δ} and {g < t} ⊂ {f < t+ δ}.

For each k ∈ Z, these inclusions induce maps in k-th homology

Hk({f < t};K)→ Hk({g < t+ δ};K) and Hk({g < t};K)→ Hk({f < t+ δ};K),

and one readily checks that these maps constitute a δ-interleaving between Vk(f) and
Vk(g). Thus

dinter(Vk(f), Vk(g)) ≤ δ = dC0(f, g),

and Theorem 2.1.21 implies that
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dbottle(Bk(f),Bk(g)) ≤ dC0(f, g).

We shall see in Chapters 3 and 4 how the idea of the proof of Theorem 2.1.17 can
be applied to obtain different stability results in the spirit of Theorem 2.1.17. Our
motto in these chapters will be to construct interleavings using functorial properties
of Floer and symplectic homology and then analyze barcodes in a more combinatorial
fashion.

2.1.3 Persistence modules of finite and locally finite type

The theory presented in Subsections 2.1.1 and 2.1.2 applies to a wide class of persistence
modules given by Definition 2.1.1. However, for many applications (in particular for
purposes of this thesis) it is enough to consider a smaller class of persistence modules
called persistence modules of finite or locally finite type. We give a quick review of
these persistence modules and refer the reader to [120] for a more detailed study.

Definition 2.1.22. A persistence module (V, π) is said to be of finite type if it satisfies
the following properties:

1) For all but a finite number of points r ∈ R, there is a neighbourhood U 3 r
such that πs,t are isomorphisms for all s < t with s, t ∈ U ;

2) There exists t− such that V t = 0 for t < t−;

3) For every t ∈ R there exists ε > 0 such that πs,t are isomorphisms for all
t− ε < s ≤ t.

Exceptional points in 1), i.e. points r ∈ R for which there does not exist a
neighbourhood U 3 r such that πs,t are isomorphisms for all s, t ∈ U , are called
spectral and the set of all such points is called the spectrum of (V, π) and denoted by
S(V ). One readily checks that if [s, t] ∩ S(V ) = ∅ then πs,t is an isomorphism. In
other words, V t only changes upon passing through a spectral point.

In terms of the barcode, S(V ) is the set of all endpoints of bars in B(V ) and 1)
is equivalent to saying that B(V ) is finite. Property 2) is equivalent to saying that
all the bars in B(V ) are left-bounded. Property 3) forces bars to have left endpoints
open and right endpoints closed, i.e. to be of the form (a, b] or (a,+∞) for a, b ∈ R.

Example 2.1.23. Persistence module V (f) from Example 2.1.3, associated to a
Morse function f on a closed manifold M , is of finite type. Indeed, as we discussed at
the end of Subsection 2.1.1, S(V (f)) consists of critical values of f. Since f is Morse
it’s critical points are isolated and since M is compact there are only finitely many of
them which proves 1). To verify 2) it is enough to take t− = min f. Finally, 3) comes
from the choice of a strict inequality in {f < t}.
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Remark 2.1.24. Let (V, π) be a persistence module of finite type. Since it’s spectrum
is finite, there exists t+ such that πs,t are isomorphisms for all t+ ≤ s ≤ t. Thus, for
t large enough, all V t are canonically isomorphic to V ∞ := lim−→V t. Let f be a Morse
function on a closed manifold and for k ∈ Z let Vk(f) = Hk({f < t};K) be a
persistence module considered in Examples 2.1.3 and 2.1.23. In this case, there exists
a natural isomorphism Ψ : V ∞k (f)→ Hk(M ;K) and given a ∈ Hk(M ;K), a 6= 0, we
can define a number

c(a, f) := inf{t ∈ R |Ψ−1(a) ∈ im(V t
k (f)→ V ∞k (f))}.

This number is called a spectral invariant associated to f and a, and has many
remarkable properties. One can prove that for each a 6= 0, c(a, f) is a starting
point of an infinite bar in the barcode of V∗(f), and each such starting point can be
obtained in this way.

In Chapter 3, we will ne need the following lemma whose proof is straightforward.

Lemma 2.1.25. Let V1, . . . , Vl and W1, . . . ,Wl be persistence modules of finite type.
Then

S(
l⊕

r=1

Vr) =
l⋃

r=1

S(Vr), B(
l⊕

r=1

Vr) =
l∑

r=1

B(Vr),

and

dbottle

Å
B(

l⊕
r=1

Vr),B(
l⊕

r=1

Wr)

ã
≤ max

r
dbottle(B(Vr),B(Wr)).

Here Σ denotes multiset sum, that is, union of elements, adding up multiplicities.

All persistence modules we will consider in Chapters 3 and 5 will be of finite type.
For purposes of Chapter 4, a slightly more general framework is necessary. According
to [120], a persistence module is said to be of locally finite type if it satisfies property
3) from Definition 2.1.22, as well as a modified property 1), namely the following:

1’) The set of exceptional points S(V ), as defined in 1), is a closed, discrete,
bounded from below subset of R.

Persistence modules of locally finite type are not required to satisfy 2), even though
from 1’) it follows that πs,t are isomorphisms for s, t small enough.

Remark 2.1.26. Morally speaking, persistence modules we consider in Chapter 4
are of locally finite type. However, there is a slight ambiguity, as persistence modules
appearing in Chapter 4 satisfy property 1’), but not property 3). Namely, property 3)
forces all bars in the barcode to have left endpoints open and right endpoints closed,
while in Chapter 4 we use the opposite conventions, i.e., bars have left endpoints closed
and right endpoints open. Since we are interested in metric properties of persistence
modules and barcodes, this difference is rather superficial. Indeed, by modifying the
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endpoints of bars in a barcode in any way, one obtains a barcode whose bottleneck
distance from the original one is zero. We leave it as an exercise to the reader to
modify 3) to obtain conventiones we use in Chapter 4.

Example 2.1.27. Let (M, g) be a closed Riemannian manifold. Define the energy of
a loop γ : S1 = R/Z→M as

Eg(γ) =

∫ 1

0

‖γ̇(τ)‖2
g

2
dτ.

For a generic metric g, Eg is a Morse-Bott function on the (appropriately chosen)
free loop space and it’s critical points are closed geodesics. In this case, persistence
module given by

V t
k = Hk({Eg < t};Z2), πs,t being induced by inclusions {Eg < s} ⊂ {Eg < t},

is of locally finite type and endpoints of bars in the barcode B(V t
k ) are energies of

certain closed geodesics.

By switching from {Eg < t} to {Eg ≤ t} in the above example one obtains a
persistence module with opposite conventions on the endpoints of bars in the barcode,
as discussed in Remark 2.1.26. In Chapter 4 we use this persistence module to
compute filtered symplectic homology of unit codisc bundles, as well as to study
the existence and stability of closed geodesics with respect to perturbations of a
Riemannian metric.

2.2 Basics of Floer theory

In this section we discuss (Hamiltonian) Floer theory and Floer persistence modules.
These are the main technical tools used in our work in symplectic topology - [122,144].

2.2.1 Morse homology on closed manifolds

Floer theory is an infinite-dimensional version of Morse theory on the loops space
of a symplectic manifold. We start our exposition of Floer theory by presenting an
approach to Morse homology on a closed, finite-dimensional, manifold which mimics
the construction of Floer homology. The material covered in this subsection should
be considered a toy-model whose purpose is to provide intuition about the infinite-
dimensional (Floer) case. To this end, we try to keep the exposition brief and
technically non-demanding and omit most of the details of proofs. These details
are standard and can be found in various places in the literature, see [134,13,125].

Let us recall basic notions of Morse theory. Let N be a smooth manifold and
f : N → R a smooth function. For a critical point x of f define the Hessian of f at
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x as a bilinear form

Hessf (x) : TxN × TxN → R

given by

Hessf (x)(Xx, Yx) = Xx(Y (f)),

where X and Y are vector fields defined in a neighborhood of x. Since df(x) = 0, we
have that

Xx(Y (f))− Yx(X(f)) = df(x)([X, Y ]) = 0,

and hence Xx(Y (f)) = Yx(X(f)). From here one concludes that Hessf (x) only
depends on Xx and Yx and not on their extensions to the neighborhood of x, as well
as that it is a symmetric bilinear form. In local coordinates the Hessian is expressed
by a matrix of second derivatives of f. Denote by Crit(f) the set of all critical points
of f.

Definition 2.2.1. A critical point x ∈ Crit(f) is called non-degenerate if Hessf (x)
is a non-degenerate bilinear form. In this case, the number of negative eigenvalues
of Hessf (x) is called the index or Morse index of x and is denoted by ind(x). If all
critical points of f are non-degenerate f is called Morse. For a Morse function f , we
denote by Critk(f) the set of all critical points of f of index k.

Example 2.2.2. Let N = Rn, c ∈ R and f : Rn → R be given by

f(x1, . . . , xn) = c−
k∑
i=1

x2
i +

n∑
i=k+1

x2
i .

We have that

df(x1, . . . , xn) = −2
k∑
i=1

xidxi + 2
n∑

i=k+1

xidxi,

and hence 0 is the only critical point of f. With respect to the basis ∂
∂x1
, . . . , ∂

∂xn
,

Hessf (0) is given by the matrix of second derivatives

Hessf (x) =
[ ∂2f

∂xi∂xj

]
i,j=1,...,n

=

Å
−21k 0

0 21n−k

ã
.

We conclude that f is Morse and that ind(0) = k. In other words Crit(f) = Critk(f) =
{0}.

The above example describes the local form of any function near a non-degenerate
critical point. Namely, if N is any smooth manifold and x ∈ Crit(f) a non-degenerate
critical point of index k then there exist local coordinates (x1, . . . , xn) in a neighborhood
of x s.t.

f(x1, . . . , xn) = f(x)−
k∑
i=1

x2
i +

n∑
i=k+1

x2
i .
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This statement is called Morse lemma. It implies, in particular, that non-degenerate
critical points are isolated. Thus, if f is a Morse function on a closed manifold, it has
only finitely many critical points.

We assume from now on that N is a closed manifold of dimension n and f : N → R
a Morse function. Let g be a Riemannian metric on N. We are interested in the flow
φt : N → N of the negative gradient vector filed

d

dt
φt(x) = −∇f(φt(x)).

Since N is compact, this flow is defined for all times t ∈ R and the negative gradient
trajectory or negative gradient flow line is a curve γ : R→ N s.t.

γ̇(t) = −∇f(γ(t)). (2.1)

One shows that limt→±∞ γ(t) exist and are critical points of f. This means that each
negative gradient trajectory connects two critical points. For x, y ∈ Crit(f) define
the space of connecting trajectories

M(x, y) = {γ : R→ N | γ̇(t) = −∇f(γ(t)), γ(−∞) = x, γ(+∞) = y}.

Theorem 2.2.3. Let N be a closed manifold and f : N → R a Morse function. For
a generic Rimenannian metric g the following holds. For every two x, y ∈ Crit(f),
M(x, y) has a structure of a smooth manifold of dimension ind(x)− ind(y).

Let us comment on the formulation and the proof of this theorem. Firstly, we
notice that M(x, y) can be identified with the following subset of N

W (x, y) = {q ∈ N | lim
t→−∞

φt(q) = x, lim
t→+∞

φt(q) = y}.

Indeed, mapping

M(x, y) 3 γ → γ(0) ∈ W (x, y)

is a bijection due to the existence and uniqueness of solutions of the ordinary differential
equation (2.1). Secondly, we see that

W (x, y) = W u(x) ∩W s(y),

where

W u(x) = {q ∈ N | lim
t→−∞

φt(q) = x}, W s(y) = {q ∈ N | lim
t→+∞

φt(q) = y}

are the stable manifold of x and the unstable manifold of y. One may show that these
sets are indeed manifolds whose dimensions are

dimW u(x) = ind(x), dimW s(y) = n− ind(y).

31



Metric g in Theorem 2.2.3 should be chosen so that stable and unstable manifolds of
every two critical points intersect transversally. This condition is satisfied for a generic
Riemannian metric. It implies that W (x, y), and hence also M(x, y), is a smooth
manifold of dimension ind(x)−ind(y) as a transverse intersection ofW u(x) andW s(y).
Now notice that for every γ ∈M(x, y) and t0 ∈ R the curve t0 ·γ given by (t0 ·γ)(·) =
γ(t0 + ·) also belongs to M(x, y). Assuming x 6= y, this gives us a free R-action
on M(x, y) and we denote by M̄(x, y) = M(x, y)/R the space of unparametrized
trejectories. This space is a smooth manifold of dimension ind(x)− ind(y)− 1. When
ind(x) = ind(y)+1, M̄(x, y) is 0-dimensional and it turns out that it is also compact,
i.e. it consists of finitely many points.

We now have all ingredients necessary to define Morse homology with Z2-coefficients.
Let f : N → R be a Morse function and (f, g) a generic pair in the sense of Theorem
2.2.3. For k ∈ Z, define Morse chain complex of (f, g) in degree k as

CMk(f, g) = SpanZ2(Critk(f)).

The differential
∂ : CMk(f, g)→ CMk−1(f, g)

is a Z2-linear map given on x ∈ Critk(f) by

∂x =
∑

y∈Critk−1(f)

#2M̄(x, y)y,

#2 denoting cardinality modulo two.

Theorem 2.2.4. It holds ∂2 = 0.

Sketch of a proof. Let x ∈ Critk(f), z ∈ Critk−2(f). In this case M̄(x, z) is a 1-
dimensional manifold which can be compactified to a 1-dimensional manifold with
boundary M̃(x, z) such that

∂M̃(x, z) =
⋃

y∈Critk−1(f)

M̄(x, y)× M̄(y, z).

Intuitively, elements of
⋃
y∈Critk−1(f) M̄(x, y)×M̄(y, z) are “broken” unparametrized

negative gradient trajectories connecting x and y. In other words failure of compactness
of M(x, y) can be described by a “breaking mechanism” which we illustrate in
Example 2.2.7. Now, we compute

∂(∂x) = ∂
( ∑
y∈Critk−1(f)

#2M̄(x, y)y
)

=
∑

y∈Critk−1(f)

#2M̄(x, y)∂y

=
∑

y∈Critk−1(f)

(
#2M̄(x, y)

∑
z∈Critk−2(f)

#2M̄(y, z)z
)

=
∑

z∈Critk−2(f)

∑
y∈Critk−1(f)

(#2M̄(x, y) ·#2M̄(y, z))z

=
∑

z∈Critk−2(f)

#2∂M̃(x, z)z = 0.
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The last equality follows because #2∂M̃(x, z) = 0 since compact 1-dimensional
manifolds have an even number of boundary components.

Theorem 2.2.4 implies that (CM∗(f, g), ∂) is a chain complex. The homology of
this chain complex is called Morse homology of (f, g) and is denoted by HM∗(f, g). It
turns out that Morse homologies of different generic pairs (f, g) are isomorphic and
are moreover isomorphic to singular homology of N with Z2-coefficients.

Example 2.2.5. Let f : S1 → R be a height function (y-coordinate) on the unit
circle in the plane. More precisely, S1 = R/Z embeds in R2 via t→ (cos 2πt, sin 2πt)
and f(t) = sin 2πt. This function has two critical points, x = 1

4
, y = 3

4
which are it’s

maximum and minimum, see Figure 2.2.

x

y

γ̇(t) = −∇f (γ(t))

Figure 2.2. Negative gradient trajectories of f

The Hessian is given by

Hessf (x) = f ′′
(1

4

)
= −4π2, Hessf (y) = f ′′

(3

4

)
= 4π2

and hence x and y are non-degenerate, i.e. f is Morse, and ind(x) = 1, ind(y) = 0.
Let g be a metric on S1 induced from the standard flat metric on R2. One readily
computes that there are two negative gradient trajectories connecting x to y and
hence M̄(x, y) consists of two points, as shown in Figure 2.2. We may now compute
Morse homology of (f, g). We have that

CM0(f, g) = Z2 · y, CM1(f, g) = Z2 · x, ∂(y) = 0, ∂(x) = #2M̄(x, y)y = 0.

Thus

HMk(f, g) =

{
Z2, for k = 0, 1

0, otherwise
,

as we already could predict from the isomorphism with singular homology.
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Example 2.2.6. For n ≥ 2, define a height function on the n-dimensional sphere

f : Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + . . . x2

n+1 = 1} → R

as

f(x1, . . . , xn+1) = xn+1.

A direct computation shows that f has two critical points, a maximum x = (0, . . . , 0, 1)
and a minimum y = (0, . . . , 0,−1), both of them are non-degenerate and ind(x) =
n, ind(y) = 0. Thus

CM0(f, g) = Z2 · y, CMn(f, g) = Z2 · x,

and since the index difference between x and y is greater than one it follows that
∂x = ∂y = 0. Hence

HMk(f, g) =

{
Z2, for k = 0, n

0, otherwise
.

Example 2.2.7 (Example 10.2.3 in [119]). Let T2 = R2/(2π · Z)2 and f : T2 → R
given by f(s, t) = sin s+ sin t, (s, t) ∈ R2. Critical points of f are

x =
(π

2
,
π

2

)
, y =

(
− π

2
,
π

2

)
, z =

(π
2
,−π

2

)
, w =

(
− π

2
,−π

2

)
.

The Hessian is given by the matrix of second derivativesHessf (s, t) =

Å
− sin s 0

0 − sin t

ã
and hence we see that x, y, z, w are all non-degenerate and ind(x) = 2, ind(y) =
ind(z) = 1, ind(w) = 0. Let g = ds2 + dt2 be the flat metric on T2. It follows that
−∇f(s, t) = (− cos s,− cos t) and we may draw the negative gradient trajectories as
in Figure 2.3.

z

z

w w

w w

x yy

Figure 2.3. Negative gradient trajectories on T2
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It follows that each of the spaces M̄(x, y),M̄(x, z),M̄(y, w),M̄(z, w) contains exactly
two points and hence all coefficients of the Morse differential are zero. This gives us
that ∂ = 0 and hence

CMk(f, g) = HMk(f, g) =


Z2, for k = 0, 2

Z2 ⊕ Z2, for k = 1

0, otherwise

.

Finally, notice that the breaking mechanism described in the proof of Theorem 2.2.4
can be clearly seen on Figure 2.3. Indeed, M̄(x,w) consists of four 1-dimensional
families of unparametrized trajectories, one in each of the four squares. As we
approach y, these trajectories break into two concatenated trajectories, one from
x to y, the other from y to w. These concatenated trajectories belong to ∂M̃(x,w).
Similar breaking is seen as we approach z.

Remark 2.2.8. We defined Morse homology only with Z2-coefficients. Similar construction
can be carried for arbitrary coefficients. The main difference is that we would have
to count trajectories with appropriate signs which requires additional considerations
regarding orientations.

2.2.2 Basics of Symplectic topology

In this subsection we introduce basic notions of symplectic topology.

A differential 2-form ω on a smooth manifold M is called a symplectic form if it
is non-degenerate and closed. By non-degenerate we mean that for every x ∈M and
v ∈ TxM there exists w ∈ TxM such that ω(v, w) 6= 0. A smooth manifold equipped
with a symplectic form is called a symplectic manifold. A linear algebra argument
implies that, due to non-degeneracy of ω, the dimension of a symplectic manifold M
has to be even. Denoting dimM = 2n, non-degeneracy of ω is equivalent to ω∧n

being a volume form on M. In particular, symplectic manifolds are orientable.

Example 2.2.9. Let (x1, . . . , xn, y1, . . . , yn) be standard coordinates on R2n. Define
a 2-form

ω0 =
n∑
i=1

dxi ∧ dyi.

It is easy to see that ω0 is non-degenerate and closed, i.e. (R2n, ω0) is a symplectic
manifold. This form is called the standard symplectic form on R2n. In the case of R2,
ω0 is the standard area form.

Example 2.2.9 gives a local model for all symplectic manifolds. Namely, the
famous Darboux’s theorem states that every point on a symplectic manifold has
a neighborhood and local coordinates in this neighborhood in which symplectic form
equals to ω0. These coordinates are called Darboux coordinates and local charts
ϕ : (U, ω)→ (R2n, ω0) for which ϕ∗ω0 = ω are called Darboux charts.
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Example 2.2.10. Using Example 2.2.9 we may define a symplectic form on the 2n-
dimensional torus T2n. Indeed, define ω = ω0 in the local coordinates inherited from
the quotient T2n = R2n/(2πZ)2n. These coordinates are clearly Darboux coordinates
in a neighborhood of every point on T2n.

Example 2.2.11. A closed, orientable, surface with an area form (Σ, σ) is a symplectic
manifold. Indeed, σ is non-degenerate as an area form and closed because dim Σ = 2.

Example 2.2.12. Let (M1, ω1), (M2, ω2) be two symplectic manifolds. The product
(M1 ×M2, ω1 ⊕ ω2) is also a symplectic manifold. This construction gives another
way to define a symplectic form on T2n by viewing T2n = (T2)n and using Example
2.2.11.

Example 2.2.13. Let N be any smooth manifold and denote by T ∗N the cotangent
bundle of N. Denote by π : T ∗N → N the canonical projection. Every point p ∈ T ∗N
is a covector on the tangent space Tπ(p)N. Define a canonical 1-form λcan on T ∗N ,
called the canonical Liouville form, by

λcan(p)(ξp) = p(π∗(p)(ξp)),

where ξp ∈ TpT
∗N is any tangent vector and π∗(p) : TpT

∗N → Tπ(p)N is the
differential of π at p. Canonical Liouville form can also be characterized as a unique
1-form on T ∗N such that for every 1-form α on N it holds α∗λcan = α. Here α plays
both the role of a 1-form on N and of a section of T ∗N over N.

We claim that ωcan = dλcan is a symplectic form on T ∗N. To prove this, we describe
local Darboux coordinates for ωcan on T ∗N as follows. Let (q1, . . . , qn) be any local
coordinates on N and denote by (( ∂

∂q1
)∗, . . . , ( ∂

∂qn
)∗) the dual frame to ( ∂

∂q1
, . . . , ∂

∂qn
),

i.e. ( ∂
∂qi

)∗( ∂
∂qj

) = δij. Define coordinates (p1, . . . , pn) on the fibers by expressing each

covector p as p =
∑n

i=1 pi(
∂
∂qi

)∗. A direct computation shows that in these coordinates
λcan =

∑n
i=1 pidqi and hence ωcan = dλcan =

∑n
i=1 dpi ∧ dqi.

Example 2.2.9 can be seen as a special case of Example 2.2.13, after identifying
R2n = T ∗Rn. In both of these examples the symplectic form ω has a primitive 1-
form λ, ω = dλ, which means that ω is not only closed, but also exact. Symplectic
manifolds with an exact symplectic form are called exact. Since ω∧n is a volume
form one readily sees that closed symplectic manifolds can not be exact, i.e. an exact
symplectic manifold has to be non-compact.

A smooth map φ : (M1, ω1) → (M2, ω2) between symplectic manifolds is called
symplectic if φ∗ω2 = ω1. In case the manifolds are exact, ω1 = dλ1, ω2 = dλ2

condition φ∗ω2 = ω1 is equivalent to φ∗λ2 − λ1 being closed. If moreover this form
is exact, symplectic map φ is called exact. A symplectic diffeomorphism is called a
symplectomorphism. Let us give a couple of examples of symplectomorphisms.

Example 2.2.14. Let ω0 be the standard symplectic form on R2n defined in Example
2.2.9. The group of symplectic matrices is defined as

Sp(2n) = {A ∈ GL(2n,R) | A∗ω0 = ω0}.
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Multiplication by a symplectic matrix is a linear symplectomorphism. Denote by

J0 =

Å
0 −1
1 0

ã
the matrix representing the standard complex structure on R2n (we

identify R2n with Cn by zj = xj + iyj). The standard scalar product 〈·, ·〉, J0 and ω0

are related in the following way

(∀v, w ∈ R2n) 〈v, w〉 = ω0(v, J0w). (2.2)

Using (2.2) one checks that the condition A∗ω0 = ω0 is equivalent to ATJ0A = J0. It
is also not difficult to prove that after identifying Cn with (R2n, J0) it holds U(n) ⊂
Sp(2n), see [97].

Example 2.2.15. By definition, every volume preserving diffeomorphism of a surface
with a volume form is a symplectomorphism.

Example 2.2.16. Let N be a smooth manifold. A diffeomorphism φ ∈ Diff(N)
defines a map φ∗ : T ∗N → T ∗N. A direct computation shows that (φ∗)∗λcan = λcan
where λcan is the canonical Liouville form on T ∗N defined in Example 2.2.13. This
implies that φ∗ is a symplectomorphism which is moreover exact.

A class of symplectomorphisms of particular interest for us can be constructed
using flows of Hamiltonian systems. The construction goes as follows. First note that
non-degeneracy of ω implies that a map Iω : TM → T ∗M given by Iω(v) = ω(v, ·) is
an isomorphism of vector bundles. This means that for every 1-form α there exists a
unique vector field X = (Iω)−1(α) such that ω(X, ·) = α(·).

Definition 2.2.17. A function H : M × [0, 1] → R is called a time-dependent
Hamiltonian function on M . A time-dependent vector field XHt given by

ω(XHt , ·) = −dHt(·), for all t ∈ [0, 1],

is called a Hamiltonian vector field. Integrating XHt we obtain the Hamiltonian flow
of H, denoted by φHt . In other words, φHt : M → M is a family of diffeomorphisms
given as a solution of the ordinary differential equation

d

dt
(φHt (x)) = XHt(φ

H
t (x)), φH0 = 1M .

Time-one map φH1 of this flow is called a Hamiltonian diffeomorphism. We will
sometimes abbreviate XHt to XH .

Using Cartan’s formula we get that

d

dt
((φHt )∗ω) = (φHt )∗(d(iXHtω) + iXHtdω) = (φHt )∗(−ddHt) = 0,

and hence (φHt )∗ω = ω for all t ∈ [0, 1]. In particular (φH1 )∗ω = ω, which means
that every Hamiltonian diffeomorphism is a symplectomorphism. If H does not
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depend on t it is called autonomous. In this case XH also does not depend on t

and hence φHs ◦ φHt = φHs+t, i.e. {φHt }t∈R is a 1-parameter subgroup3 of Hamiltonian
diffeomorphisms. Hamiltonian flow and Hamiltonian diffeomorphism generated by an
autonomous Hamiltonian are also called autonomous. Since for autonomous flows

d

dt
(H(φHt (x))) = dH(XH(φHt (x))) = −ω(XH , XH) = 0,

the level sets of H are invariant under the flow of φHt .

Example 2.2.18. Let H : R2n+2 → R be given by H(z) = 1
2
‖z‖2. Now dH =∑n

j=1(xjdxj + yjdyj) and hence ω(XH , ·) = −dH implies that

XH(x1, . . . , xn+1, y1, . . . , yn+1) = (−y1, . . . ,−yn+1, x1, . . . , xn+1).

Using the complex coordinates zj = xj + iyj we get that XH(z) = iz and hence

φHt (z) = eitz.

Restricting the flow to the level H−1(1
2
) = S2n+1, we get a free S1-action on S2n+1,

which foliates S2n+1 into invariant circles. Now, for every z ∈ S2n+1, the symplectic
complement

(TzS
2n+1)ω = {v ∈ R2n+2 | ω(v, w) = 0 for all w ∈ TzS2n+1}

is spanned byXH(z). Indeed, by a linear algebra argument we can show that (TzS
2n+1)ω

is 1-dimensional and for every v ∈ TzS2n+1 it holds

ω0(XH , v) = −ω0(v,XH) = ω0(v, J0J0XH) = 〈v, J0XH〉 = 0,

because J0XH = iXH ⊥ S2n+1. Thus, ω induces a symplectic form on the quotient
S2n+1/S1 = CP n. This form is called the Fubini-Study form4 and is denoted by ωFS.
The method of defining a symplectic form on a quotient which we used can be applied
in more general contexts and is called symplectic or Marsden–Weinstein reduction.

Remark 2.2.19. As explained in Arnol’d’s [12], an important invariant formulation
of the equations of motion of classical mechanics involves a symplectic manifold
(M,ω), the phase space, and a smooth, possibly time-dependent, Hamiltonian function
H : [0, 1] × M → R on M, the total energy of the system. The dynamics on the
symplectic manifold is then described by the Hamiltonian flow of H. In this language,
the fact that level sets of an autonomous Hamiltonian are invariant with respect to
the Hamiltonian flow corresponds to the law of conservation of energy.

3Hamiltonian diffeomorphisms form a group as we will explain at the end of this subsection.
4A different normalizations might appear in the literature, i.e. the Fubini-Study form may be

defined to be a multiple of the form we just defined.
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Denote by Ham(M,ω) the set of all Hamiltonian diffeomorphisms of M. It turns
out that Ham(M,ω) is actually a group with respect to the composition. To prove
this one first proves (by a straightforward computation) the following formula for the
symplectic change of coordinates:

φ∗XHt = XHt◦φ−1 , (2.3)

φ being any symplectomorphism. Using this property, one now proves that the
Hamiltonian

(H#F )t = Ht + Ft ◦ (φHt )−1

generates the flow φHt ◦φFt . Time one map of this flow is φH1 ◦φF1 and hence Ham(M,ω)
is closed with respect to compositions. One proves, in a similar fashion, that if
φ ∈ Ham(M,ω) then φ−1 ∈ Ham(M,ω) and hence Ham(M,ω) is a group. We leave
the details of these computations to an interested reader.

Remark 2.2.20. It follows from the definitions that for any smooth function a :
[0, 1] → [0, 1] with a(0) = 0, Hamiltonian a′(t)Ha(t) generates the flow φHa(t). In

particular, by taking a(t) = ct, c ∈ [0, 1] we see that for each t ∈ [0, 1], φHt is a
Hamiltonian diffeomorphism. On the other hand, by taking a = 0 in a neighborhood
of 0 and a = 1 in a neighborhood of 1, we conclude that every Hamiltonian diffeomorphism
can be generated by a 1-periodic Hamiltonian function.

2.2.3 Hofer’s metric

We now wish to introduce a quantitative perspective on the group of Hamiltonian
diffeomorphisms. In order to do this, we will define a bi-invariant metric on Ham(M,ω)
called Hofer’s metric. The existence and non-degeneracy of Hofer’s metric were major
discoveries in symplectic topology in the 1990s. Today, the study of Hofer’s metric
and notions derived from it are some of the classical topics in symplectic topology,
see [116, 119, 120] and references therein for a detailed treatment of the subject. We
will use stability of barcodes coming from Floer homology with respect to Hofer’s
metric to study the Hofer geometry of Ham(M,ω).

Let (M,ω) be a closed5 symplectic manifold. In order to define Hofer’s metric,
we wish to consider Ham(M,ω) as an infinite-dimensional Lie group. The procedure
we use is formal and applies to any Lie group. It goes as follows. Firstly, we define a
norm on the Lie algebra. This norm can be extended to a Finsler metric on the Lie
group in two ways, using either left or right translations. If, however, the norm on the
Lie algebra was invariant with respect to the adjoint action of the group, these two
Finsler metrics coincide. In this case we define lengths of curves on the group using
this Finsler metric and then define the distance between two elements of the group as

5Non-compact case is treated similarly. We will not discuss it, since all our results about Hofer’s

metric concern closed manifolds.
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the infimum of lengths of curves connecting them. The distance on the group defined
in this way will automatically be bi-invariant.

Following this procedure, we start by describing the Lie algebra of Ham(M,ω). Let
ht, t ∈ [0, ε), h0 = 1M be a smooth path in Ham(M,ω). By a result of Banyaga - [15],
it follow that ht is generated by a time-dependent Hamiltonian function, i.e. ht = φHt
for some H. By pointwise differentiation we conclude that d

dt
|t=0 ht can be identified

with XH0 . In other words, the Lie algebra of Ham(M,ω) consist of Hamiltonian vector
fields XH0 given as solutions of

ω(XH0 , ·) = −dH0(·). (2.4)

Since dH0 determines H0 up to a constant, XH0 also determines H0 up to a constant.
We say that a Hamiltonian H : M × [0, 1] → R is normalized if

∫
M
Htω

∧n = 0
for all t ∈ [0, 1]. Now, solutions of (2.4) bijectively correspond to normalized (time-
independent!) function on M. In other words, the Lie algebra of Ham(M,ω) is given
by

ham(M,ω) =
{
F : M → R

∣∣∣ ∫
M

Fω∧n = 0
}
.

Let F ∈ ham(M,ω) and denote by ft the Hamiltonian flow of F. Using the formula
for symplectic change of coordinates (2.3), we see that for every φ ∈ Ham(M,ω) the
adjoint action is given by

Adφ(F ) =
d

dt

∣∣∣
t=0

(
φ ◦ ft ◦ φ−1

)
= XF◦φ−1 ,

which after identification of vector fields and functions gives

Adφ(F ) = F ◦ φ−1.

So, in order to obtain a bi-invariant metric on Ham(M,ω), we need a norm on
ham(M,ω), i.e. on normalized functions, such that ‖F‖ = ‖F ◦ φ−1‖ for every
φ ∈ Ham(M,ω). Since φ preserves symplectic volume, natural choices for these norms
are the Lp-norms for p ∈ [1,+∞]. Eliashberg and Polterovich showed in [52] that for
p ∈ [1,+∞) the metric on Ham(M,ω) obtained from the Lp-norm is identically equal
to zero. However, the case of p = +∞ gives a non-degenerate bi-invariant metric on
Ham(M,ω) called Hofer’s metric.

Definition 2.2.21. Hofer’s distance between Hamiltonians Ft and Gt on M , t ∈ [0, 1]
is given by

E(F −G) =

∫ 1

0

Å
max
x∈M

(Ft(x)−Gt(x))−min
x∈M

(Ft(x)−Gt(x))

ã
dt.

Hofer’s metric on Ham(M,ω) is given by

d(f, g) = inf E(F −G),
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where the infimum runs over all the F,G such that φF1 = f, φG1 = g. Hofer’s pseudo-

metric on the universal cover fiHam(M,ω) of Ham(M,ω) is defined as

d̃(f̃ , g̃) = inf E(F −G),

where the infimum runs over all the F,G such that [{φFt }] = f̃ , [{φGt }] = g̃ infiHam(M,ω).

We should note that all axioms for the definition of a metric immediately follow
from the construction, except for non-degeneracy. Proving non-degeneracy of Hofer’s
metric turned out to be a difficult problem which was solved by a combined work
of different researchers - [77, 151, 114, 88]. To this day there exists no elementary
proof of this fact. While significant progress in understanding Hofer’s geometry of
Ham(M,ω) has been made, many questions still remain open. For example, it is not
known whether the Hofer-diameter of Ham(M,ω) is infinite in general (even thought
it has been proven to be infinite in many cases). We discussed certain questions about
Hofer’s geometry in Section 1.2 and will deal with them in more detail in Chapter 3.

2.2.4 Almost complex structures

An almost complex structure J on a smooth manifold M is a smooth family of linear
maps Jx : TxM → TxM such that J2

x = −1TxM for all x ∈ M. Assume now that
(M,ω) is symplectic. We call an almost complex structure J compatible with ω if
g(v, w) := ω(v, Jw) is a Riemannian metric on M.

Example 2.2.22. Recall from Examples 2.2.9 and 2.2.14 that the standard symplectic
form ω0, the standard complex structure J0 and the standard scalar product 〈, 〉 on
R2n satisfy

(∀v, w ∈ R2n) 〈v, w〉 = ω0(v, J0w).

This means that J0 is compatible with ω0.

Example 2.2.23. If M is a complex manifold, it’s tangent bundle is a complex vector
bundle and multiplication by i induces an almost complex structure on M. If (M,ω) is
also symplectic and this almost complex structure is compatible with ω, M is called
Kähler. As explained in Example 2.2.10 the standard symplectic form ω0 on R2n

induces a symplectic form on the torus T2n = R2n/(2πZ)2n. Similarly, J0 induces a
complex structure on T2n which is compatible with the symplectic form, as in Example
2.2.22. Thus, T2n is a Kähler manifold. Another example of a Kähler manifold is the
complex projective space with Fubini-Study form (CP n, ωFS) introduced in Example
2.2.18. Indeed, ωFS and the complex structure on CP n are inherited from ω0 and J0

via symplectic reduction and since J0 is compatible with ω0, (CP n, ωFS) is Kähler.

One might show that on every symplectic manifold (M,ω) there exists an almost
complex structure compatible with ω. Moreover, the space of all compatible almost
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complex structures, denoted by J (M,ω), is contractible, see [97]. Due to this fact, we
may define the first Chern class of (M,ω), c1(M,ω) ∈ H2(M ;Z), as the first Chern
class of (TM, J) for any J ∈ J (M,ω) and the definition will not depend on a choice
of J . First Chern class of (M,ω) plays an important role in Floer theory, especially
in the definition of grading in Floer homology. We will now define two classes of
symplectic manifolds, called symplectically aspherical and symplectically monotone,
for which the definition of Floer homology is the simplest possible. Nevertheless,
these two cases are sufficient for all results presented in this thesis.

Using Hurewicz homomorphism h∗ : π2(M)→ H2(M ;Z) we consider ω and c1 to
be maps from π2(M) to R.

Definition 2.2.24. Symplectic manifold (M,ω) is called symplectically aspherical if
ω = c1 = 0 as maps from π2(M).

Example 2.2.25. Every symplectic manifold for which π2(M) = 0 is symplectically
aspherical. This includes (R2n, ω0), surfaces of positive genus with a volume form and
products of these.

Example 2.2.26. Cotangent bundle of a closed manifold with the canonical symplectic
form (T ∗M,ωcan = dλcan) is symplectically aspherical. Since ωcan = dλcan it follows
from Stokes’ theorem that ωcan|π2(M) = 0. The proof that c1|π2(M) = 0 is more
technical and we omit it here.

Definition 2.2.27. Symplectic manifold (M,ω) is called monotone or symplectically
monotone if ω|π2(M) = κc1|π2(M) for some κ > 0. κ is called the monotonicity constant.

Example 2.2.28. Complex projective space with the Fubini-Study form is a monotone
symplectic manifold. To prove this, first notice that

im(h∗ : π2(M)→ H2(M ;Z)) = H2(M ;Z) = Z · [CP 1],

where [CP 1] is the homology class of a submanifold

{[z0 : z1 : 0 : . . . : 0] | z0, z1 ∈ C} ⊂ CP n.

Since ωFS([CP 1]) > 0 it is enough to show that c1([CP 1]) > 0. Indeed, it holds

c1([CP 1]) = n+ 1.

This can be shown by decomposing

TCP n ⊕ C ∼= (γ1,n)∗ ⊕ . . .⊕ (γ1,n)∗︸ ︷︷ ︸
n+1 times

,

where C is a trivial complex line bundle and (γ1,n)∗ is the dual of the tautological line
bundle over CP n.
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Compatible almost complex structures were used by Gromov in his revolutionary
work - [72] in order to develop a theory of holomorphic curves on symplectic manifolds.
Let Σ be a complex curve (real dimension two) and j : TΣ→ TΣ, j2 = −1 induced
from multiplication by i. Given a symplectic manifold (M,ω) with a compatible
almost complex structure J , a map u : Σ→M which satisfies

du ◦ j = J ◦ du

is called a J-holomorphic or pseudo-holomorphic curve. The study of pseudo-holomorphic
curves and their moduli spaces lead to a discovery of striking rigidity phenomena in
symplectic topology. Even though we do not explicitly discuss Gromov’s theory in
this thesis, it is present in the background of our discussion of Floer theory. For an
extensive treatment of the subject we refer the reader to [98].

2.2.5 The Arnol’d conjecture and Floer homology

Before we begin a detailed presentation of Floer theory we give a short historic outlook
on Arnold’s conjecture and briefly describe Floer’s work and it’s relation to Arnol’d’s
conjecture in the simplest setting of symplectically aspherical manifolds.

Fixed points of the Hamiltonian diffeomorphism φ = φH1 correspond to 1-periodic
orbits of the flow {φHt }t∈[0,1]. In the 1960’s Arnol’d has proposed a famous conjecture
[10, 11] which states that, essentially, the number of fixed points of φ ∈ Ham(M,ω)
should satisfy the same lower bounds as the number of critical points of a smooth
function f on M. The most common interpretation of this conjecture states that under
the nondegeneracy6 assumption on H, the number of fixed points of φH1 is bounded
from below by the sum of the rational Betti numbers of M . This conjecture has
been a major driving force for the development of the field of symplectic topology. It
was first proven in dimension 2 by Eliashberg [51], for tori of arbitrary dimension by
Conley and Zehnder [41], and on complex projective spaces by Fortune and Weinstein
[61,62]. The decisive breakthrough on this question was achieved by Floer [55,56,58],
who combined the variational methods of Conley-Zehnder and Gromov’s then-recent
discovery of the theory of pseudo-holomorphic curves on symplectic manifolds [72], to
construct a homology theory on the loop space of M which parallels the more classical
Morse homology (in turn originating in Witten’s interpretation of Morse theory [161];
cf. [134]). Floer’s idea for proving Arnold’s conjecture goes as follows.

Assuming thatM is symplectically aspherical, that is, ω|π2(M) = 0, c1(M,ω)|π2(M) =
0, one can define the action functional AH on the space L[pt]M of contractible loops
on M by setting

AH(z) =

∫ 1

0

Ht(z(t)) dt−
∫
D2

z∗ω,

6Meaning that det(1−dφH1 (x)) 6= 0 for every fixed point x of φH1 , i.e., the graph of φH1 intersects

the diagonal in M ×M transversely.
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where z : [0, 1] → M , z(0) = z(1) and z : D2 → M , z(e2πit) = z(t). Indeed by the
asphericity assumption this value depends only on z, and not on z.

Periodic orbits of the Hamiltonian flow coincide with critical points of the action
functionalAH , which serves as a Morse function in the construction of Floer homology.
Since critical points are generators of Morse chain complexes, in analogy to Morse
homology, if H is non-degenerate, Floer chain complex CF∗(H) is generated by
contractible periodic orbits of H. Floer homology turns out to be isomorphic to
singular homology of M with rational coefficients, and hence there must be at least

dimCF∗(H) ≥ dimHF∗(H) =
∑
k

dimHk(M ;Q),

such periodic orbits in M. This solves the rational homological version of the Arnol’d
conjecture. The detailed construction of Floer homology is rather involved and it has
been developed in increasing generality over the years by a combined work of many
people (cf. [65, 66, 111, 92, 127, 107]), in particular proving the above statement for
general M (without assumptions on π2(M)). However, various other interpretations
of the conjecture are still open in general, with only partial results currently achieved
(see for example [58,128,57,76,46,104,17]).

In the rest of this section we will focus on explaining the construction of Floer
homology with Z2-coefficients on symplectically aspherical and monotone symplectic
manifolds, as well as how it fits in the framework of persistence modules.

2.2.6 Conley-Zehnder index

We now briefly discuss Conley-Zehnder index of a path of symplectic matrices. In
Floer theory, this index (up to constants and signs) plays the role of the Morse index
and is used to define grading on Floer homology. For a detailed exposition of the
subject, see [41,131,126].

Definition 2.2.29. Let A : [0, 1] → Sp(2n) be a path of symplectic matrices such
that A(0) = 1, det(A(1)− 1) 6= 0. t∗ ∈ [0, 1] is called a crossing if det(A(t∗)− 1) = 0.
Crossing form Γ(A, t∗) : ker(A(t∗)− 1)→ R is a quadratic form given by

Γ(A, t∗)v = ω0(v, Ȧ(t∗)v). (2.5)

Crossing t∗ is called regular if Γ(A, t∗) is non-degenerate and A is a regular path if all
it’s crossings are regular.

Crossing form is symmetric and we may compute it’s matrix in the following way.
Recall from Example 2.2.14 that since A(t) ∈ Sp(2n) it holds AT (t)J0A(t) = J0.

Differentiating this expression with respect to t implies that S(t) = −J0Ȧ(t)A−1(t) is
symmetric for every t ∈ [0, 1] and hence

Ȧ(t) = J0S(t)A(t), (2.6)
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where S is a path of symmetric matrices. Using this equality we have that for v ∈
ker(A(t∗)− 1) it holds

Γ(A, t∗)v = ω0(v, Ȧ(t∗)v) = ω0(v, J0S(t∗)A(t∗)v) = ω0(v, J0S(t∗)v) = 〈v, S(t∗)v〉,

and hence S(t∗) is the symmetric matrix which represents the crossing form Γ(A, t∗).

One proves that regular crossing are isolated and hence a regular path has only
finitely many crossings. Thus, we may give the following definition.

Definition 2.2.30. The Conley-Zehnder index of a regular path A : [0, 1]→ Sp(2n)
is defined as

indCZ(A) =
1

2
sgn Γ(A, 0) +

∑
t∗−crossing

sgn Γ(A, t∗).

Here sgn Γ(A, t) = sgn S(t) denotes the signature of a symmetric form, i.e. the
difference between the number of positive and negative eigenvalues.

Example 2.2.31. Let a ∈ R \ 2πZ. Identify R2n ∼= Cn, zj = xj + iyj and define
A : [0, 1]→ Sp(2n) by

A(t)v = eaitv, for every v ∈ R2n.

We see that ker(A(t) − 1) 6= 0 when at ∈ 2πZ and hence the crossings of A are
2π
a
Z ∩ [0, 1]. For every crossing t∗ ∈ 2π

a
Z ∩ [0, 1] we have that A(t∗) = 1 and hence

ker(A(t∗)− 1) = R2n. Since

S(t∗) = −J0Ȧ(t∗)A
−1(t∗) and Ȧ(t∗) = a · J0A(t∗),

it follows that S(t∗) = a · 1. Thus, for every crossing t∗ it holds

sgn Γ(A, t∗) = sgn(a · 1) = 2n · sign(a).

This finally gives us

indCZ(A) = sign(a)
(
n+ 2n

⌊ |a|
2π

⌋)
,

where b |a|
2π
c denotes the largest integer not greater than |a|

2π
.

Example 2.2.32. Previous example naturally appears when considering the following
autonomous Hamiltonian H : R2n → R :

H(z) = a · ‖z‖2, a ∈ R \ πZ.

By definition, the Hamiltonian vector field XH is computed from ω0(XH , ·) = −dH
to be

XH(x, y) = 2a
(
− y ∂

∂x
+ x

∂

∂y

)
.

In complex coordinates XH(z) = 2aiz and the Hamiltonian flow of H is given by

φHt (z) = e2aitz.
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The origin is a critical point of H and hence also a fixed point of φHt . By identifying
T0R2n ∼= R2n we obtain

dφHt (0) : R2n → R2n, dφHt (0)v = e2aitv.

The previous example gives us

indCZ(dφHt (0)) = sign(a)
(
n+ 2n

⌊ |a|
π

⌋)
.

Now, if |a| < π it follows that

indCZ(dφHt (0)) = n · sign(a) = n− ind(0),

where ind(0) denotes the Morse index of 0 as a critical point of H.

Let A,B : [0, 1] → Sp(2n) be two regular paths, A(0) = B(0) = 1, A(1) =
B(1) and det(A(1) − 1) = det(B(1) − 1) 6= 0. One may show that if A and B are
homotopic relative to the endpoints then indCZ(A) = indCZ(B). Moreover, every path
C : [0, 1] → Sp(2n) s.t. C(0) = 1, det(C(1) − 1) 6= 0 is homotopic relative to the
endpoints to a regular path and hence the definition of the Conley-Zehnder index
extends to all such paths. This and many other properties of the Conley-Zehnder
index, as well as generalizations and relations to other indices (such as the Maslov
index) are discussed in detail in [41,131,126]. Here, we only state one such property in
the lemma that follows, in order to clarify our definition of grading in Floer homology
in the next subsection.

Lemma 2.2.33. Let (M,ω) be a closed symplectic manifold and H : M → R a
C2-small function, which is non-degenerate as a Hamiltonian (this implies that H is
Morse). For every z ∈ Crit(H) it holds

ind(z) = n− indCZ(dφHt (z)),

where ind(z) denotes the Morse index of z and indCZ is computed with respect to a
symplectic trivialization (TzM,ω)→ (R2n, ω0).

Example 2.2.32 is a special case of this lemma. Indeed, the statement of the
lemma clearly localizes to neighborhoods of critical points, i.e. the global structure
of M plays no role in the lemma.

2.2.7 Floer homology in the symplectically aspherical case

We will now present the construction of Floer homology with Z2-coefficients on a
closed symplectically aspherical manifold. Even though this is the simplest case, the
details of the construction are still technically involved and greatly surpass the scope
of this thesis. Our treatment will focus on describing the structure and properties of
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Floer homology, having persistence perspective in mind. Hence, most of the proofs
will be omitted and some statements will be taken as “black boxes”. We refer the
reader to [98,13,129] for detailed treatments of the theory. Expositions more similar
to ours and well suited to our context can be found in [119,120].

Let (M,ω) be a 2n-dimensional, closed, symplectically apsherical manifold and
H : M × [0, 1]→ R a time-dependent Hamiltonian. We will assume that Ht+1 = Ht,
i.e. H : M × S1 → R, which is inessential due to Remark 2.2.20. As before, denote
by φHt the Hamiltonian flow and by φH1 the Hamiltonian diffeomorphism generated
by H. Periodic orbits7 of the Hamiltonian flow

z : S1 →M, ż(t) = φHt (z(0)),

correspond bijectively to fixed points of φH1 via z → z(0). We call a periodic orbit z
and a fixed point z(0) non-degenerate if dφH1 : Tz(0)M → Tz(0)M does not have 1 as
an eigenvalue. Hamiltonian H and diffeomorphism φH1 are called non-degenerate if
all periodic orbits of the corresponding flow are non-degenerate. Equivalently, H is
non-degenerate if graph(φH1 ) ⊂ M ×M is transversal to the diagonal ∆ ⊂ M ×M.
From compactness of M it follows that the Hamiltonian flow of a non-degenerate H
has only finitely many periodic orbits.

Denote by L[pt]M the space of contractible loops in M and define the action
functional

AH : L[pt]M → R, AH(z) =

∫ 1

0

Ht(z(t))dt−
∫
D2

z̄∗ω,

where z̄ : D2 → M, z̄|S1 = z is a capping disc of z. Since ω|π2(M) = 0 it follows
that the value of AH(z) does not depend on the choice of a capping disc. Action
functional plays the role of a Morse function in our construction. Let us formally
calculate the differential of AH . A curve u : (−ε, ε)→ L[pt]M can be thought of as a
map u : (−ε, ε)× S1 →M. We always denote the parameter of u as a path in L[pt]M
by s, s ∈ (−ε, ε) and the loop parameter by t, t ∈ S1. Now, if z(t) = u(0, t), we have
that ∂u

∂s
(0, t) ∈ Tz(t)M is a vector field along z and we identify Tz(L[pt]M) with the

space of vector fields along z. Let ξ ∈ Tz(L[pt]M) and take u such that ∂u
∂s

(0, t) = ξ(t).
We compute

dAH(z)(ξ) =
d

ds

∣∣∣
s=0
AH(u) =

∫ 1

0

d

ds

∣∣∣
s=0

Ht(u(s, t))dt−
∫
D2

d

ds

∣∣∣
s=0

ū∗sω,

where ūs denotes a capping disc of u(s, ·). A short computation using Cartan’s formula
and Stokes’ theorem shows that∫

D2

d

ds

∣∣∣
s=0

ū∗sω =

∫ 1

0

ω(ξ(t), ż(t))dt.

From the definition of the Hamiltonian vector field XH , we get

dAH(z)(ξ) =

∫ 1

0

ω(ξ(t), XH(z(t))− ż(t))dt. (2.7)

7By a periodic orbit we mean a 1-periodic orbit.
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Since ω is non-degenerate, it follows from (2.7) that dAH(z) = 0 if and only if
ż(t) = XH(z(t)). In other words, critical points of AH are periodic orbits of the
flow of H and we denote the set of these orbits by Crit(AH). As in the Morse case,
elements of Crit(AH) will be generators of the Floer chain complex. Let us now define
the analogue of the Morse index in Floer theory.

Let z ∈ Crit(AH) and let z̄ : D2 →M be a capping disc of z. Let

Ψ : (z̄∗TM, z̄∗ω)→ D2 × (R2n, ω0),

be a symplectic trivialization, which exists since D2 is contractible. Denoting by Ψt

the restriction of Ψ to Tz(t)M, we obtain a path of symplectic matrices

A : [0, 1]→ Sp(2n), A(t) = Ψt ◦ dφHt ◦Ψ−1
0 .

It follows from properties of the Conley-Zehnder index that indCZ(A) does not depend
on the choice of a trivialization Ψ. Hence, we may define indCZ(z̄) as well as

ind(z̄) = n− indCZ(z̄).

To see that ind(z̄) only depends on the orbit z and not on the capping, we use
the following relation between the Conley-Zehnder index and the first Chern class,
see [97]. Let z̄ and z̄′ be two discs capping z. It holds

indCZ(z̄)− indCZ(z̄′) = 2c1(z̄#(−z̄′)), (2.8)

where # denotes gluing of discs along the boundary. Since our manifold is symplectically
aspherical, c1(z̄#(−z̄′)) = 0 and we may define indCZ(z) as well as

ind(z) = n− indCZ(z).

Now, we wish to consider negative gradient flow lines of AH . To this end, let
{Jt}t∈S1 be an S1-family of almost complex structures compatible with ω. For z ∈
L[pt]M define a bilinear form on TzL[pt]M by

〈ξ(t), η(t)〉 =

∫ 1

0

ω(ξ(t), Jtη(t))dt, ξ, η ∈ TzL[pt]M.

This bilinear form will play the role of a Riemannian metric on L[pt]M. The gradient
of AH is defined by

dAH(z)(ξ) = 〈ξ,∇AH〉
and using (2.7) we obtain

∇AH(z(t)) = Jt(ż(t)−XH(z(t))). (2.9)

By looking at u : R→ L[pt]M as a map u : R× S1 → M , the negative gradient flow
equation of AH becomes the following first-order PDE

∂u

∂s
+ Jt

(∂u
∂t
−XH(u(s, t))

)
= 0. (2.10)
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This equation is called Floer equation. In general, the flow of Floer equation on L[pt]M

fails to be defined even for short times, see [119] for an explicit example. This prevents
us from directly applying Morse-theoretic techniques to AH . However, a revolutionary
idea, due to Floer, is to consider the solutions of the following boundary value problem

u : R× S1 →M , u(−∞, t) = z−(t), u(+∞, t) = z+(t), u satisfies (2.10), (2.11)

where z−, z+ ∈ Crit(AH) and u(±∞, ·) denotes the uniform limit. Define the space
of Floer trajectories

M(z−, z+) = {u : R× S1 →M | u solves (2.11)}.

The following theorem is one of the first major results of Floer theory.

Theorem 2.2.34. Let (M,ω) be a closed, symplectically aspherical manifold and
H : M × S1 → R a non-degenerate Hamiltonian. For a generic choice of {Jt ∈
J (M,ω)}t∈S1 the following holds. For any z−, z+ ∈ Crit(AH) the space M(z−, z+)
has a structure of a smooth manifold of dimension ind(z−)− ind(z+).

Remark 2.2.35. Let us comment on our use of the word “generic” and the definition
of a smooth manifold structure on M(z−, z+). Both of these come from the use of
Sard-Smale transversality theorem for Fredholm maps of Banach manifolds. Namely,
M(z−, z+) arise as inverse images of zero8 under the map

u→ ∂u

∂s
+ Jt

(∂u
∂t
−XH(u(s, t))

)
,

while J (M,ω) serves as a space of parameters used to achieve transversality.

Note that if u ∈ M(z−, z+) and s0 ∈ R then s0 · u = u(s0 + ·, ·) also belongs to
M(z−, z+) since Floer equation is invariant under translations of the s-parameter. If
z− 6= z+, these translations define a free R-action on M(z−, z+) and we denote by
M̄(z−, z+) =M(z−, z+)/R. This space is a smooth manifold of dimension ind(z−)−
ind(z+)− 1. Following the analogy with the Morse case, the differential should count
(modulo two) the elements of M̄(z−, z+) for ind(z−) = ind(z+) + 1. In order for this
to make sense, M̄(z−, z+) should be a finite set. Since it is a 0-dimensional manifold,
this is equivalent to it being compact. This turns out to be true, see Remark 2.2.36.
We are now in a position to define Floer homology.

For k ∈ Z denote by Critk(AH) = {z ∈ Crit(AH) | ind(z) = k} and by
CFk(H, J) = SpanZ2(Critk(AH)). Define the differential

∂ : CFk(H, J)→ CFk−1(H, J)

as a Z2-linear map whose value on a generator z− ∈ Critk(AH) is given by

∂(z−) =
∑

z+∈Critk−1(AH)

#2M̄(z−, z+)z+,

8More precisely of the zero section of a certain Banach bundle.
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where #2 denotes cardinality modulo 2. One may prove that ∂2 = 0, see Remark
2.2.36, and hence (CF (H, J), ∂) is a chain complex over Z2, called Floer chain
complex. The homology of this complex is called Floer homology of (H, J) and is
denoted by HF∗(H, J). A generic pair (H, J) for which the presented construction of
HF∗(H, J) works is called regular. It turns out that HF∗(H, J) do not depend on a
choice of a regular pair (H, J). Moreover, it holds

HF∗(H, J) ∼= H∗(M ;Z2),

whereH∗ denotes singular homology. Let us sketch the construction of these isomorphisms.

Isomorphisms between Floer homologies of different pairs (H, J) are constructed
as follows. Let F,G : M×S1 → R be two non-degenerate Hamiltonians and J (1), J (2) :
S1 → J (M,ω) such that pairs (F, J (1)), (G, J (2)) are regular. Let H : R×S1×M → R
and J : R × S1 → J (M,ω) be homotopies between F,G and J (1), J (2) respectively,
i.e.

H(s, t, x) =

{
F (t, x), for s ≤ −1

G(t, x), for s ≥ 1
Js,t =

{
J

(1)
t , for s ≤ −1

J
(2)
t , for s ≥ 1

.

Consider the parametric version of the Floer equation given as follows

∂u

∂s
+ Js,t

(∂u
∂t
−XHs(u(s, t))

)
= 0. (2.12)

Let z− ∈ Crit(AF ), z+ ∈ Crit(AG) and consider the following boundary value problem

u : R× S1 →M , u(−∞, t) = z−(t), u(+∞, t) = z+(t), u satisfies (2.12). (2.13)

Similarly to Theorem 2.2.34, for a generic homotopy (H, J) each of the spaces

Mpar(z−, z+) = {u : R× S1 →M | u solves (2.13)}

can be given a structure of a smooth manifold of dimension ind(z−)− ind(z+). Since
(2.12) is not invariant under the translations of the s-parameter, there is no R-action
on Mpar as in the case of M. However, if we take ind(z−) = ind(z+), Mpar(z−, z+)
is compact, i.e. it consists of finitely many points. Thus, for every k ∈ Z, we may
define a Z2-linear map

Cchain : CFk(F, J
(1))→ CFk(G, J

(2))

given on z− ∈ Critk(AF ) by

Cchain(z−) =
∑

z+∈Critk(AG)

#2M̄par(z−, z+)z+.

This is a chain map and hence it induces a map on HF , called continuation map,
which we denote by C(F,G). Continuation maps do not depend on a generic choice
of a homotopy (H, J), but rather on the regular pairs (F, J (1)), (G, J (2)), see Remark
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2.2.36. Now, if (F, J (1)) = (G, J (2)) then C(F,G) = 1, which can be proven by
taking a constant homotopy. Moreover, for any three regular pairs (H(i), J (i))i=1,2,3

the following diagram commutes

HF∗(H
(1), J (1))

C(H(1),H(2)) ))

C(H(1),H(3)) // HF∗(H
(3), J (3))

HF∗(H
(2), J (2))

C(H(2),H(3))

55
(2.14)

By taking (H(1), J (1)) = (H(3), J (3)) we conclude that continuation maps are isomorphisms
and hence Floer homologies of different regular pairs are isomorphic. In other words,
we may define HF∗(M,ω).

Finally, to see that HF∗(M,ω) ∼= H∗(M ;Z2) one should choose H to be a C2-
small function and Jt ≡ J not dependent on t. One proves that in this case the only
fixed points of φH1 are critical points of H, non-degeneracy of H as a Hamiltonian
is equivalent to it being Morse and the above defined index coincides with the
Morse index (see Lemma 2.2.33). Now, CF∗(H, J) essentially degenerates into the
Morse complex CM∗(H,ω(·, J ·)) and since Morse homology is isomorphic to singular
homology, the claim follows. The precise statements and details of the proof can be
found in [13].

Remark 2.2.36. Statements that M̄(z−, z+),M̄par(z−, z+) are compact when they
are 0-dimensional, that ∂2 = 0, as well as that Cchain is a chain map and that C is
independent of the choice of a homotopy are similar in nature. Namely, their proofs
follow from analysing compactifications of spaces of Floer trajectories such as M
and Mpar (we already used this idea to prove that ∂2 = 0 in the Morse case, see
the proof of Theorem 2.2.4). Assuming that (M,ω) is symplectically aspherical, the
compactifications appearing in the proofs of these statements can be given structures
of manifolds with boundaries. If non-empty, their boundaries consist of the so-called
“broken Floer trajectories”. The main technical ingredients used to construct these
compactifications are Gromov’s compactness theorem and Floer’s gluing technique. In
general, the boundary of a space of Floer trajectories might be much more complicated
due to the possible appearance of pseudo-holomorphic bubbles. This is excluded in
our case by the asphericity assumption. For a detailed discussion, we refer the reader
to [98] and references therein.

Remark 2.2.37. The construction of Floer homology described here can be applied
to some non-compact symplectically aspherical manifolds, such as cotangent bundles.
In this case, we assume that, outside of a compact set, H is linear and J has a
particularly simple form. This guarantees that all Hamiltonian periodic orbits, as
well as all Floer trajectories remain inside a compact set and the construction of HF∗
follows as in the closed case. We should note that in this setup HF∗(H, J) depends
on the slope of H at infinity. In order to define invariants independent of (H, J) one
usually takes a limit of HF∗ over a certain set of Hamiltonians. An invariant defined in
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this way, called symplectic homology, plays a crucial role in our work [144], presented
in Chapter 4. In Chapter 4, we elaborate on the definition of Floer homology of
cotangent bundles and describe construction and properties of (filtered) symplectic
homology.

2.2.8 Morse and Floer persistence modules

In this subsection we will define Morse and Floer persistence modules and prove
stability of respective barcodes with respect to dC0 and Hofer’s metric. Let us start
by recalling the example of a persistence module considered in Section 2.1.1. Let N
be a closed manifold and f : N → R a Morse function. For each k ∈ Z we defined a
persistence module Vk(f) as

V t
k (f) = Hk({f < t};K), πs,t induced by inclusions {f < s} ⊂ {f < t} for s ≤ t.

We can give an alternative definition of V t
k (f), using the Morse chain complex of f ,

as follows. Let K = Z2 and let g be a Riemannian metric such that (f, g) is a regular
pair. For t ∈ R, define the filtered Morse complex in degree k

CM t
k(f, g) = SpanZ2({x ∈ Critk(f) | f(x) < t}).

Now, notice that f decreases along the negative gradient flow lines. Indeed, if x, y ∈
Crit(f), γ ∈M(x, y), we have that

d

dt
(f(γ(t))) = df(γ(t))(γ̇(t)) = −‖∇f(γ(t))‖2

g ≤ 0,

which after integration yields

f(x)− f(y) =

∫ +∞

−∞
‖∇f(γ(t))‖2

gdt ≤ 0. (2.15)

This implies that ∂ maps CM t
k(f, g) to CM t

k−1(f, g) and we define filtered Morse
homology HM t

∗(f, g) as homology of the chain complex (CM t
∗(f, g), ∂). Notice that for

s ≤ t it holds CM s
∗ (f, g) ⊂ CM t

∗(f, g) and these inclusion induce maps on homology

πHMs,t : HM s
∗ (f, g)→ HM t

∗(f, g).

Together with these maps filtered Morse homology is a persistence module called
Morse persistence module of (f, g). It is a standard result of Morse theory that
(Vk(f), π) and (HMk(f, g), πHM) are isomorphic persistence modules for every degree
k ∈ Z. Thus, Theorem 2.1.17 implies that

dbottle(B(HMk(f1, g1)),B(HMk(f2, g2))) ≤ dC0(f1, f2),

for any two regular pairs (f1, g1), (f2, g2) and any degree k.
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Remark 2.2.38. From the definition of Morse persistence module it immediately
follows that the endpoints of bars in B(HM∗(f, g)) are equal to certain critical values
of f. Since HM∗(f, g) ∼= V∗(f), we know from Lemma 2.1.10 that in fact every critical
value appears as an endpoint of a bar. One can also prove this fact by applying the
same arguments as in the proof of Lemma 2.1.10 to the Morse chain complex, without
relaying on an isomorphism with V∗(f).

The construction of Morse persistence module translates to Floer homology in a
straightforward manner. Let (M,ω) be a closed, symplectically aspherical manifold,
H : M × S1 → R a non-degenerate Hamiltonian and {Jt}t∈S1 a family of compatible
almost complex structure such that (H, J) is regular. For k ∈ Z, t ∈ R define filtered
Floer complex in degree k

CF t
k(H, J) = SpanZ2({z ∈ Critk(AH) | AH(z) < t}).

A computation similar to the one in the Morse case shows that for z−, z+ ∈ Crit(AH), u ∈
M(z−, z+), it holds

AH(z−)−AH(z+) =

∫ +∞

−∞

∫ 1

0

∥∥∥∂u
∂s

(s, t)
∥∥∥2

Jt
dtds, (2.16)

where ‖ · ‖Jt denotes the norm induced by the metric ω(·, Jt·). Again, as in the Morse
case, (2.16) implies that

∂ : CF t
k(H, J)→ CF t

k−1(H, J),

and we define filtered Floer homology HF t
∗(H, J) as the homology of the chain complex

(CF t
∗(H, J), ∂). Inclusions CF s

∗ (H, J) ⊂ CF t
∗(H, J) for s ≤ t induce maps on homology

πs,t : HF s
∗ (H, J)→ HF t

∗(H, J).

Taking these maps as structure maps we obtain Floer persistence module of (H, J),
(HF∗(H, J), π).

Remark 2.2.39. As in the Morse case, one readily sees that the endpoints of bars
in B(HF∗(H, J)) are equal to AH(z) for some z ∈ Crit(AH). Moreover, by adapting,
in a straightforward manner, the proof of Lemma 2.1.10 one proves an analogous
statement for Floer persistence modules.

Let us now focus on proving the stability of Floer persistence modules with respect
to Hofer’s metric. Recall from Subsection 2.2.3 that for two Hamiltonians F,G :
M × S1 → R

E(F −G) =

∫ 1

0

Å
max
x∈M

(Ft(x)−Gt(x))−min
x∈M

(Ft(x)−Gt(x))

ã
dt.
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and that Hofer’s metric between f = φF1 and g = φG1 is given by

d(f, g) = inf E(F −G),

where infimum runs over all Hamiltonians F,G which generate f, g. Note that adding
a constant c ∈ R to the Hamiltonian F does not change the flow φFt nor the value
of E(F − G). However, the action functional AF shifts by c, which results in a shift
by c of the Floer persistence module. In order to deal with this ambiguity, we will
consider normalized Hamiltonians. Recall from Subsection 2.2.3 that a Hamiltonian
H is called normalized if

∫
M
Htω

∧n = 0 for all t ∈ S1. In order to prove stability of
barcodes with respect to d, we will need the following lemma, which is a parametric
version of (2.16). It’s proof is similar to the proofs of (2.15) and (2.16).

Lemma 2.2.40. Let (F, J (1)), (G, J (2)) be two regular pair and (H, J) a homotopy
between them. For z− ∈ Crit(AF ), z+ ∈ Crit(AG) and u ∈Mpar(z−, z+) it holds

AF (z−)−AG(z+) =

∫ +∞

−∞

∫ 1

0

∥∥∥∂u
∂s

(s, t)
∥∥∥2

Jt
dtds−

∫ +∞

−∞

∫ 1

0

∂H

∂s
(u(s, t))dtds.

To prove stability, we use continuation maps as interleavings between Floer persistence
modules. Lemma 2.2.40 gives an estimate of the size of such an interleaving. More
precisely, we have two following corollary.

Corollary 2.2.41. Let F and G be two non-degenerate, normalized Hamiltonians and
J (1), J (2) such that (F, J (1)), (G, J (2)) are regular. For every k ∈ Z, Floer persistence
modules HFk(F, J

(1)) and HFk(G, J
(2)) are E(F −G)-interleaved.

Proof. Since
∫ +∞
−∞

∫ 1

0

∥∥∥∂u∂s (s, t)
∥∥∥2

Jt
≥ 0, Lemma 2.2.40 implies that for any homotopy

(H, J) between (F, J (1)) and (G, J (2)), z− ∈ Crit(AF ), z+ ∈ Crit(AG) and u ∈
Mpar(z−, z+), it holds

AG(z+) ≤ AF (z−) +

∫ +∞

−∞

∫ 1

0

∂H

∂s
(u(s, t))dtds. (2.17)

Let β : R→ [0, 1] be a smooth function such that β|(−∞,−1] ≡ 0, β|[1.+∞) ≡ 1 and β is
increasing on [−1, 1]. Now consider a homotopy

Hs,t(x) = (1− β(s))Ft(x) + β(s)Gt(x).

We have that

∂H

∂s
(x) = β′(s)(Gt(x)−Ft(x)) ≤ β′(s) max

x∈M
(Gt(x)−Ft(x)) = −β′(s) min

x∈M
(Ft(x)−Gt(x)),

which together with (2.17) implies

AG(z+) ≤ AF (z−)−
∫ 1

0

min
x∈M

(Ft(x)−Gt(x))dt. (2.18)
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Since F and G are normalized we have that maxx∈M(Gt(x) − Ft(x)) ≥ 0, which
together with (2.18) gives us

AG(z+) ≤ AF (z−) + E(F −G).

Now, as in the case of continuation maps, after choosing a generic J , one defines for
every t ∈ R a map

Cchain : CF t
∗(F, J

(1))→ CF t+E(F−G)
∗ (H, J (2))

by counting, modulo two, the solutions of the equation (2.12). Adapting the arguments
in the definition of continuation maps to the filtered setting yields

C(F,G) : HF t
∗(F, J

(1))→ HF t+E(F−G)
∗ (H, J (2)).

Since Cchain clearly commutes with inclusions of subcomplexes CF s ⊂ CF t for s ≤ t,
it follows that C(F,G) is a morphism of the following persistence modules

C(F,G) : HF∗(F, J
(1))→ HF∗(H, J

(2))[E(F −G)].

Similarly we define

C(G,F ) : HF∗(G, J
(2))→ HF∗(F, J

(1))[E(F −G)].

A filtered version of the diagram (2.14) implies that these maps define an E(F −G)-
interleaving which finishes the proof.

A priori, Floer persistence module depends on a choice of a regular pair (F, J (1)).
However, one might prove that if F andG generate the same Hamiltonian diffeomorphism
φ, φ = φF1 = φG1 , then Floer persistence modules HF∗(F, J

(1)) and HF∗(G, J
(2)) are

isomorphic. This is a non-trivial fact which relies on the assumption that (M,ω)
is symplectically apsherical, see a discussion in [121]. In other words, if (M,ω)
is a closed, symplectically aspherical manifold and φ ∈ Ham(M,ω) a Hamiltonian
diffeomorphism whose fixed points are non-degenerate, we may define Floer persistence
module of φ, denoted by HF∗(φ). The following theorem was proven in [121].

Theorem 2.2.42. Let (M,ω) be a closed, symplectically aspherical manifold and
φ, ψ ∈ Ham(M,ω) such that all their fixed points are non-degenerate. Then for every
k ∈ Z it holds

dbottle(B(HFk(φ)),B(HFk(ψ))) ≤ d(φ, ψ).

Proof. It follows from Corollary 2.2.41 that for every F and G such that φ = φF1 , ψ =
φG1 it holds

dinter(HFk(φ), HFk(ψ)) ≤ E(F −G).

After taking the infimum over F and G we get that

dinter(HFk(φ), HFk(ψ)) ≤ d(φ, ψ).

Now, the isometry theorem, Theorem 2.1.21, yields the statement.
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Remark 2.2.43. One may use Theorem 2.2.42 to extend certain invariants derived
from the barcode from non-degenerate Hamiltonian diffeomorphisms to all of Ham(M,ω).
It is also possible to extend the definition of HF t

∗(H, J), t ∈ R to all Hamiltonians
H via a limit procedure, see a discussion in [121]. However, the object obtained in
this way is not necessarily a persistence module in the sense of Definition 2.1.1.

Remark 2.2.44. Instead of relaying on an isomorphism with V∗(f), we could also
prove stability of Morse persistence modules with respect to C0-distance using the
same method we used for Floer persistence modules, i.e. via continuation maps.

Remark 2.2.45. In this chapter we only considered Floer persistence modules defined
using contractible loops in M. One may define, in an analogous way, Floer chain
complex generated by periodic orbits in a fixed, not necessarily trivial, free homotopy
class α. Using this chain complex we may again define the Floer persistence module
of (H, J) in class α, denoted by HF t

∗(H, J)α, and stability given by Theorem 2.2.42
continues to hold, see [121] for details. Unfiltered Floer homology in a non-trivial
class α is equal to zero, as can be seen by taking a C2-small autonomous Morse
Hamiltonian which has no non-constant periodic orbits.

2.2.9 Floer theory in the monotone case

As the last piece of background we explain how to extend the definitions of Floer
homology and Floer persistence module to monotone symplectic manifolds.

Recall that a symplectic manifold is called monotone if ω|π2(M) = κc1|π2(M) for
some κ > 0. Let (M,ω) be a closed, monotone symplectic manifold, which we assume
not to be symplectically aspherical9, i.e. c1|π2(M) 6= 0. The first issue we run into
when defining Floer homology in the monotone case is that the value of the action
functional

AH(z) =

∫ 1

0

Ht(z(t))dt−
∫
D2

z̄∗ω

depends on the capping disc z̄. Thus, in order to define AH we need to keep track of
cappings of orbits. To this end, denote by

π̄2(M) := π2(M)/ ker(ω) = π2(M)/ ker(c1),

the last equality following from monotonicity. Let‡L[pt]M = {(z, u) | z ∈ L[pt]M, u : D2 →M, u|∂D2 = z}/ ∼

where ∼ is the equivalence relation given by

(z1, u1) ∼ (z2, u2)⇔ z1 = z2, [u1#(−u2)] = 0 ∈ π̄2(M),

9We exclude symplectically aspherical manifolds in order to avoid ambiguity in some definitions

and statements. Symplectically aspherical case is simpler and has been discussed in Subsections

2.2.7 and 2.2.8.
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# denoting gluing of discs along the boundary. Now, we may define AH : ‡L[pt]M → R
by

AH([z, u]) =

∫ 1

0

Ht(z(t))dt−
∫
D2

u∗ω.

By the definition of π̄2(M) the value of AH only depends on the equivalence class
[z, u] of (z, u). The same calculation as in the symplectically aspherical case shows
that

Crit(AH) = {[z, u] | z is a periodic orbit of φHt }.

Assuming H is non-degenerate, the definition of index of an element of Crit(AH)
directly carries over to the monotone setting. Indeed, for [z, u] ∈ Crit(AH) we may
compute the Conley-Zehnder index of dφHt (z(0)) using any symplectic trivialization
of (u∗TM, u∗ω). The result will only depend on the equivalence class of [z, u] due
to the relation between the first Chern class and the Conley-Zehnder index given by
formula (2.8). As before, we define

ind([z, u]) = n− indCZ([z, u]).

Denote by Critk(AH) ⊂ Crit(AH) the subset of critical points of index k. We claim
that this set is finite. Indeed, the non-degeneracy assumption on H implies that there
are only finitely many 1-periodic orbits z of φHt . Furthermore, if [z, u1] 6= [z, u2] we
have that c1(u1#(−u2)) 6= 0 and formula (2.8) implies that ind([z, u1]) 6= ind([z, u2]).
Thus, for a fixed k, to each periodic orbit z corresponds at most one class [z, u] ∈
Crit(AH) such that ind([z, u]) = k. We modify the definition of the space of Floer
trajectories M(z−, z+) as follows

M([z−, u−], [z+, u+]) = {u : R× S1 →M | u solves (2.11), [u−#u#(−u+)] = 0},

where [u−#u#(−u+)] = 0 ∈ π̄2(M). The analogue of Theorem 2.2.34 holds, i.e.
M([z−, u−], [z+, u+]) is a smooth manifold of dimension ind([z−, u−]) − ind([z+, u+])
for a (generic) regular pair (H, J). The space M̄([z−, u−], [z+, u+]) is defined as in
the symplectically aspherical case and satisfies the same properties. The rest of the
construction is analogous to the one in the aspherical case. Namely, we define for
k ∈ Z the Floer chain complex in degree k as

CFk(H, J) = SpanZ2(Critk(AH)).

Since Critk(AH) is finite, this is a finite-dimensional Z2-vector space. As before, the
differential

∂ : CFk(H, J)→ CFk−1(H, J)

is a Z2-linear map given by

∂(x) =
∑

y∈Critk−1(AH)

#2M̄(x, y)y,
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for x = [z, u] ∈ Critk(AH). It again follows that ∂2 = 0 and we define Floer homology
HF∗(H, J) as the homology of the Floer chain complex. The theory of continuation
maps verbatim translates to the monotone case by modifying the definition of Mpar

in the same way we modified the definition of M. In other words, we may define
HF∗(M,ω).

Remark 2.2.46. The arguments used while constructing compactifications of spaces
of trajectories (see Remark 2.2.36) are slightly different in the monotone and in
the symplectically aspherical case. Namely, the appearance of pseudo-holomorphic
bubbles in the monotone case is excluded via index considerations.

In the symplectically aspherical case each periodic orbit z gave rise to exactly one
generator of CF∗(H, J) and, since there were finitely many of them, CF∗(H, J) was
finite dimensional. In the monotone case, each periodic orbit gives rise to a countable
set of generators, obtained from different cappings of the orbit, which all have different
indices. Thus, while for each k ∈ Z, HFk(H, J) is finite dimensional, there might be
infinitely many k for which HFk(H, J) 6= 0. This is indeed the case and moreover
HF∗(H, J) are periodic in degree. Namely, if c1(π2(M)) = cM · Z, cM > 0 being the
minimal Chern number, we claim that for every k ∈ Z

HFk(H, J) ∼= HFk+2cM (H, J).

Let us explain the origin of this periodicity. Notice that π̄2(M) acts on the Floer
chain complex as follows. For v : S2 →M , [v] ∈ π̄2(M) define

[v] · [z, u] = [z, u#(−v)]

and extend this action to CF∗(H, J) by Z2-linearity. Formula (2.8) implies that

ind([v] · [z, u]) = ind([z, u]) + 2c1([v]). (2.19)

Now c1 : π̄2(M)→ cM ·Z is by definition an isomorphism and we denote by Q ∈ π̄2(M)
the generator such that c1(Q) = cM . It follows from (2.19) that, for every k ∈ Z, the
action of Q is an isomorphism

Q : CFk(H, J)→ CFk+2cM (H, J).

Moreover, for every x, y ∈ Crit(AH), it holds M(x, y) = M(Q(x), Q(y)) and hence
Q ◦ ∂ = ∂ ◦Q. This implies that, for every k ∈ Z, Q induces an isomorphism of Floer
homologies (which we denote again by Q):

Q : HFk(H, J)→ HFk+2cM (H, J).

Now recall that in symplectically aspherical case HF∗(H, J) was isomorphic to
singular homology H∗(M ;Z2). In the monotone case Floer homology is isomorphic to
another invariant, called quantum homology, which is defined as follows. Let

ΛZ2 =

ß∑
i∈Z

aiq
i

∣∣∣∣ ai ∈ Z2, (∃i0 ∈ N) ai = 0 for i ≥ i0

™
,

58



be the Z2-vector space of Laurent series in a formal variable q with Z2-coefficients. One
readily checks that ΛZ2 is also a field with respect to usual addition and multiplication
of power series, which we call the Novikov field. Quantum homology with Z2-coefficients
is a finite-dimensional ΛZ2-vector space

QH(M) = H(M ;Z)⊗Z2 ΛZ2 .

We may define grading on QH(M) by declaring that deg q = 2cM . This gives us, for
each k ∈ Z, a finite dimensional Z2-vector space QHk(M). Moreover, multiplication
by q defines an isomorphism

q· : QHk(M)→ QHk+2cM (M).

On the other hand, by defining q · x = Q(x) for every x ∈ CF∗(H, J) we turn
HF∗(H, J) into a finite dimensional ΛZ2-vector space. Due to (2.19), it holds deg q =
2cM in Floer homology as well. A similar argument as in the aspherical case (taking
C2-small Morse Hamiltonian) implies that

HF∗(M,ω) ∼= QH∗(M,ω)

both as graded Z2-vector spaces and as ΛZ2-vector spaces.

Finally, we wish to say that by fixing a degree k, one defines Floer persistence
module (HFk(H, J), π) in the same way as in the symplectically aspherical case. In
contrast to the symplectically aspherical case, in the monotone case (HFk(H, J), π)

depends on the class of the path [φHt ] ∈ fiHam(M,ω) in the universal cover of Ham(M,ω).
The same proof as the proof of Theorem 2.2.42 shows that for every k ∈ Z it holds

dbottle(B(HFk(φ̃)),B(HFk(ψ̃))) ≤ d̃(φ̃, ψ̃)

where φ̃, ψ̃ ∈ fiHam(M,ω) and diffeomorphisms φ̃1, ψ̃1 ∈ Ham(M,ω) are non-degenerate.
The same remains true for Floer persistence modules in a non-trivial free homotopy
class α, see Remark 2.2.45.
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Chapter 3

Persistence modules with operators

in Morse and Floer theory

3.1 Introduction

In a recent paper [121] (extended in [166]) it was observed that the arithmetical
properties of barcodes are pertinent to such questions on Hofer’s geometry as the
study of the minimal Hofer’s norm of a perturbation of a given Hamiltonian diffeomorphism
necessary to make it autonomous, or more generally - to admit a root of order p ≥ 2.
In this chapter, we introduce and discuss the notion of persistence modules with
operators, which allows us to use operators of intersection with cycles in the ambient
(quantum) homology to further control the multiplicities of bars in the barcode. This
provides new results on Hofer’s geometry, and can be shown to provide strictly new
information, as compared with traditional persistent homology (including spectral
invariants), about the C0-geometry of Morse functions.

3.1.1 Persistence modules with operators

As before, denote the C0-distance between two smooth functions f and g on a compact
manifold by

dC0(f, g) = |f − g|C0 = max
x∈X
|f(x)− g(x)|,

and Hofer’s distance between Hamiltonians Ft and Gt, t ∈ [0, 1] on (M,ω) by

E(F −G) =

∫ 1

0

Å
max
x∈M

(Ft(x)−Gt(x))−min
x∈M

(Ft(x)−Gt(x))

ã
dt.

Recall from Subsection 2.2.3 that the Hofer’s metric on Ham(M,ω) is given by

d(f, g) = inf E(F −G),
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where the infimum runs over all the F,G such that φF1 = f, φG1 = g. Similarly, Hofer’s

pseudo-metric on the universal cover fiHam(M,ω) of Ham(M,ω) is defined as

d̃(f̃ , g̃) = inf E(F −G),

where the infimum runs over all the F,G such that [{φFt }] = f̃ , [{φGt }] = g̃ infiHam(M,ω). As explained in Chapter 2, barcodes coming from Morse and Floer
persistence modules are stable with respect to dC0 , d and d̃. Stability of Floer barcodes
with respect to d was a crucial property used in [121].

In this chapter we primarily investigate an additional structure on Morse and Floer
persistence modules coming from the ambient homology. Our main observation is that
the ambient homology acts on the persistence module by intersecting cycles in the
sublevel sets of functions (and a similar picture holds in the Floer case). We consider
this action as a particular case of the notion of a persistence module with an operator.
Namely, we consider pairs (V,A) where A : V t → V t+cA is a persistence module
morphism, as main objects of interest and define morphisms between these objects
to be usual persistence module morphisms which commute with the corresponding
operators. We may now define operator interleaving as an interleaving in this new
category, i.e., an interleaving which commutes with the operators. The fact that
(V,A) and (W,B) are c-operator interleaved will immediately imply that imA and
imB (as well as kerA and kerB) are c-interleaved (see Section 3.2.3 for a discussion
of persitence modules with operators).

In the Morse and the Floer case, fixing a (quantum) homology class a, we obtain
an operator a∗ induced by intersection (or quantum) product. Continuation maps
commute with this operator, hence constitute morphisms of persistence modules with
operators and induce operator interleavings. Finally, they provide both im(a∗) and
ker(a∗) for two functions f and g or two Hamiltonians F and G, with c-interleavings,
for c = |f − g|C0 or c = E(F −G) respectively. This means that we may bound these
values from below by using barcodes associated to im(a∗) or ker(a∗). Following this
line of reasoning, we show that there exists a pair f, g of Morse function on a manifold
(even of dimension 2) such that all their spectral invariants, as well as their barcodes
coincide, and yet the corresponding im(a∗) modules are at a positive (computable)
interleaving distance c. We conclude that the two functions must be at C0-distance
at least c (see Section 3.2.4 for an example).

Finally, we present an application to Hofer’s geometry, by proving new cases of
the conjecture that on any closed symplectic manifold and for any integer p ≥ 2,
there exist Hamiltonian diffeomorphisms which are arbitrarily far away, in Hofer’s
metric, from having a root of order p. First results of this kind were obtained in [121],
and were then extended to certain other cases in [166] (for p a sufficiently large prime
number). In our situation, the multiplication with classes in ambient homology allows
to adjust multiplicities of certain long bars, the number theoretic properties of which
are crucial to the argument, and allows to extend the class of p’s for which the result
holds, yielding Theorem 3.1.2 (see Section 3.1.2).
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3.1.2 Hofer’s distance to p-th powers

We will now introduce some of the notations used in the rest of the chapter and recall
Theorem 1.2.2 from Section 1.2, see Theorem 3.1.2 below. We will also give concrete
examples to which this result applies.

Let p ≥ 2 be any integer. As in Section 1.2, in this chapter we shall assume that
the ground field K has characteristic which does not divide p, char(K) - p, K contains
all p-th roots of unity1, and fixing a primitive p-th root of unity ζp and an integer q,
the equation xp − (ζp)

q = 0 has no solutions in K unless p|q. An example of such a
field is the splitting field Qp over Q of xp − 1 ∈ Q[x] (see Lemma 3.2.17 below).

Let (M,ω) be a closed symplectic manifold, and denote by Powersp(M,ω) ⊂
Ham(M,ω), where p is an integer, the set of all diffeomorphisms in Ham(M,ω),
admitting a root of order p (in the same group). Denote by powersp(M) the supremum
of the Hofer’s distance to p-th powers in Ham(M). That is, for each φ ∈ Ham(M)
let d(φ,Powersp(M)) = inf

θ∈Powersp(M)
d(φ, θ) and define

powersp(M) := sup
φ∈Ham(M)

d(φ,Powersp(M)).

Conjecture 3.1.1. For every closed symplectic manifold M and every integer p ≥ 2
it holds

powersp(M) = +∞.

Let (Σ, σ) be a closed oriented surface of genus at least 4 equipped with a volume
form. In [121], Polterovich and Shelukhin solved a special case of Conjecture 3.1.1,
when M = Σ×N , N being a symplectically aspherical manifold, see Theorem 1.2.1.
Theorem 1.2.2, announced in the introduction, covers some instances of Conjecture
3.1.1 not covered by Theorem 1.2.1. For completeness, we will now formulate Theorem
1.2.2 again, see Theorem 3.1.2 below. This theorem is the main result of this chapter.

Assume that N is a monotone symplectic manifold, fix an integer p ≥ 2 and denote
by ΛK the field of Laurent series in a formal variable q with coefficients in K,

ΛK =

ß∑
i∈Z

aiq
i

∣∣∣∣ ai ∈ K, (∃i0 ∈ N) ai = 0 for i ≥ i0

™
.

The quantum homology of N with K-coefficients is the vector space H∗(N ;K)⊗K ΛK
over ΛK, which we denote by QH(N). Assuming that deg q = 2cN , where cN is the
minimal Chern number of N , QH(N) has a natural Z-grading, that is, we can define
QHr(N) for r ∈ Z, which will be vector spaces over the base field K. We also have

1That is the polynomial xp − 1 ∈ K[x], which is separable by the assumption char(K) - p, splits

over K.
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that QHr+2cN (N) ∼= QHr(N) for every r ∈ Z, where the isomorphism is given by
multiplication by q. Let e ∈ QH(N) be a homogeneous element and define a map

e∗ : QH(N)→ QH(N), (e∗)a = e ∗ a,

where ∗ denotes the quantum product. This map is a linear morphism between vector
spaces over ΛK which restricts to a linear morphism between vector spaces over K
after fixing the grading:

e∗ : QHr(N)→ QHr−2n+deg e(N), for r ∈ Z.

Now E := e ∗ (QH(N)) ⊂ QH(N) is a vector space over ΛK and

Er := e ∗ (QHr(N)) ⊂ QHr−2n+deg e(N),

are vector spaces over K which satisfy Er ∼= Er+2cN , the isomorphism being induced
by multiplication by q. These spaces give us 2cN Betti numbers associated to a
homogeneous element e ∈ QH(N), which we define as

br(e) = dimKEr, r = 0, . . . , 2cN − 1.

Now, we can state the result regarding Hofer’s geometry.

Theorem 3.1.2 (Theorem 1.2.2). If there exists e ∈ QH(N) such that p - br(e) for
some r ∈ {0, . . . , 2cN − 1} then

powersp(Σ×N) = +∞.

To prove this result we describe the Floer theoretical setup that fits into our
algebraic framework of equivariant persistence modules with operators, and then make
a concrete computation in the case of the egg-beater flow, which yields the result.

Example 3.1.3. Taking N to be any monotone or symplectically aspherical manifold
and e ∈ QH(N), r ∈ {0, . . . , 2cN − 1} such that br(e) 6= 0 (for example r = 0 and
e = [N ] the fundamental class), we have p - br(e) for large enough p. This means that
for large enough p

powersp(Σ×N) = +∞.
Since autonomous Hamiltonian diffeomorphisms have p-th roots for all p, we in
particular have that Hofer’s distance to autonomous flows in Ham(Σ×N) is unbounded.

Example 3.1.4. Let N be connected, dimN = 2n and assume cN ≥ n + 1. We
now have that b0([N ]) = b0(N) = 1, where [N ] is the fundamental class and b0(N)
classical Betti number, and hence

powersp(Σ×N) = +∞, for all p.

This is for example the case for N = CP n. Connected symplectically aspherical N
fall in this class of manifolds, with cN = +∞.

64



Example 3.1.5. Let N = S2×S2 and denote by P = [pt], A = [S2×pt], B = [pt×S2]
and by [N ] the fundamental class. These four classes form a basis of QH(N) over ΛK
and multiplication is completely described by the relations

A ∗B = P, A2 = B2 = q−1[N ].

We calculate

(A+B) ∗ A = (A+B) ∗B = P + q−1[N ] ∈ QH0(N),

as well as

(A+B) ∗ [N ] = A+B ∈ QH2(N), (A+B) ∗ P = q−1(A+B) ∈ QH−2(N),

and hence b0(A+B) = b2(A+B) = 1. This implies that

powersp(Σ×N) = +∞, for all p.

Note that in this example it is crucial that A + B is not invertible. Otherwise,
multiplication would be an isomorphism of QH(N) and all the Betti numbers would
be equal to 2, so we would have to assume p ≥ 3.

Remark 3.1.6. A different extension of [121, Theorem 1.3], using different methods,
was obtained recently by Zhang in [166]. In the setup of that paper p is assumed to
be a prime number. The result refers to a more general manifold, namely the product
Σ×N , where N is any symplectic manifold (not necessarily monotone or aspherical)
and gives a condition on p in terms of quantum Betti numbers for powersp(Σ × N)
to be infinite. The k-th quantum Betti number is defined as

qbk(N) =
∑
s∈Z

bk+2cN ·s(N),

where bi(N) are classical Betti numbers. The main theorem of [166] states that if

p - qbp(N) + 2qb0(N) + qb−p(N),

then

powersp(Σ×N) = +∞.

One immediately sees that when N is monotone, qbk(N) = bk([N ]), thus in this
case our theorem implies Zhang’s result. The above examples of N = CP n and
N = S2 × S2 show that our criterion covers some new cases of N and p, e.g., when
p = 2.
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3.2 Persistence modules

3.2.1 Conventions

In this chapter we will always work with persistence modules of finite type assuming
conventions which guarantee that all bars in the barcode are of the form (a, b] or
(a,+∞) for a, b ∈ R, a < b. Precisely, we require that our persistence modules (V, π)
also satisfy

1) For all but a finite number of points r ∈ R, there is a neighbourhood U 3 r

such that πs,t are isomorphisms for all s < t with s, t ∈ U ;

2) There exists t− such that V t = 0 for t < t−;

3) For every t ∈ R there exists ε > 0 such that πs,t are isomorphisms for all
t− ε < s ≤ t.

The category of all such persistence modules will be denoted by pmod and we will
simply refer to them as persistence modules.

3.2.2 Künneth formula for persistence modules

As we mentioned before, pmod is an abelian category, and we wish to define a
monoidal structure ⊗ and its derived functors in this category in a similar fashion to
the situation which we have for Z modules (similar constructions, yet with different
aims and applications, appeared in [31, 32, 45, 154, 155]). Let (V s, πV ) and (W t, πW )
be two persistence modules and define vector spaces

Xr =
⊕
t+s=r

V s ⊗W t, and Y r ⊂ Xr for every r ∈ R,

given by

Y r =

≠ß
(πVα,s1vα)⊗ (πWβ,t1wβ)− (πVα,s2vα)⊗ (πWβ,t2wβ)

™∑
,

where 〈S〉 stands for vector space over K generated by the set S and indices s1, s2, t1, t2, α
and β satisfy s1 + t1 = s2 + t2 = r, α ≤ min{s1, s2}, β ≤ min{t1, t2}. We may now
define (V ⊗W )r = Xr/Y r and maps πV ⊗ πW on Xr induce maps πV⊗W on V ⊗W ,
which give this space the structure of persistence module. We call this module the
tensor product of persistence modules (V, πV ) and (W,πW ). Another way to think of
V ⊗W is that (V ⊗W )r is the colimit in the category of (finite-dimensional, as is easy
to see) vector spaces over our ground field of the diagram with objects {V s⊗W t}s+t≤r
and maps πs1,s2 ⊗ πt1,t2 : V s1 ⊗W t1 → V s2 ⊗W t2 for s1 ≤ s2 and t1 ≤ t2 (we use the
convention that πt,t = 1V t).
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It is easy to see that we can also define the tensor product f ⊗ g : V ⊗ W →
V ′ ⊗W ′ of persistence module morphisms f : V → V ′ and g : W → W ′ by setting
f ⊗ g([vα ⊗ wβ]) = [f(vα)⊗ g(wβ)].

Fixing a persistence module W we get a functor ⊗W : pmod → pmod which
acts on objects and morphisms by

⊗W (V ) = V ⊗W, ⊗W (f) = f ⊗ 1W .

One can check that ⊗W is a right exact functor and in order to define its derived
functors we need to construct a projective resolution of every persistence module
V . In the simplest case when V is an interval module K(a,b] we have the following
projective resolution of V of length two:

0→ K(b,+∞) → K(a,+∞) → K(a,b] → 0,

where arrows denote obvious maps. Note that we used the fact that K(a,+∞) is
projective object for every a ∈ R. One may also check that in fact a persistence
module V is projective if and only if its barcode contains no finite bars. Using this
fact together with Theorem 2.1.8 we may construct a projective resolution of length
two of every persistence module V in the same manner as we did for the interval
module. Recall that (classical) derived functors of ⊗W applied to V are computed
as homologies of the sequence

. . .→ P2 ⊗W
f2⊗1−−−→ P1 ⊗W

f1⊗1−−−→ P0 ⊗W → 0,

where . . . → P2
f2−→ P1

f1−→ P0
f0−→ V → 0 is a projective resolution of V . Since

every persistence module has a projective resolution of length two, there is only one
non-trivial derived functor of ⊗W , which we denote by Tor(·,W ). Both ⊗ and Tor
are symmetric in the sense that V ⊗W ∼= W ⊗ V and Tor(V,W ) ∼= Tor(W,V ) and
it immediately follows that if either V or W is projective Tor(V,W ) = 0.

Example 3.2.1. Let V = K(a,b],W = K(c,d] be two interval persistence modules. It
follows directly from the definition of ⊗ that

V ⊗W = K(a,b] ⊗K(c,d] = K(a+c,min{a+d,b+c}].

In order to compute Tor(K(a,b],K(c,d]), let us take the following projective resolution
of K(a,b]:

0→ K(b,+∞) → K(a,+∞) → K(a,b] → 0.

After applying ⊗K(c,d] to this resolution we get

0→ K(b+c,b+d] → K(a+c,a+d] → K(a+c,min{a+d,b+c}] → 0,
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and hence after calculating homology we get

Tor(K(a,b],K(c,d]) = K(max{a+d,b+c},b+d].

Our goal is to establish a Künneth type formula for filtered homology groups using
⊗ and Tor. Let us first recall the following definition.

Definition 3.2.2. We say that chain complex (Ck, ∂k), ∂k : Ck → Ck−1, k ∈ Z of
finite-dimensional vector spaces over a field K is filtered by function ν if ν : C∗ →
R ∪ {−∞} and

1) ν(x) = −∞ if and only if x = 0;

2) For all λ ∈ K, λ 6= 0 it holds ν(λx) = ν(x);

3) For all x, y ∈ C∗ it holds ν(x+ y) ≤ max{ν(x), ν(y)};

4) For all x ∈ C∗ it holds ν(∂∗x) ≤ ν(x).

Remark 3.2.3. This definition of a chain complex filtered by a function is the special
case of the definition of a Floer-type complex over the Novikov field ΛK,Γ given in [150]
in case of Γ = {0} and trivial valuation on K.

The main examples of filtered chain complexes of interest to us are the Morse chain
complex CM∗(f) for a Morse function f , where f also serves as a filtration function
and the Floer chain complex CF∗(H)α filtered by the action functional AH , where H
is a Hamiltonian function and α is an atoroidal or toroidally monotone class of free
loops (see Section 3.3.1 for details).

Now if (C∗, ∂∗, ν) is a chain complex with filtration function ν, we may define Ct
∗ =

{x ∈ C∗|ν(x) < t} for evert t ∈ R and by property 4) we have that ∂∗ : Ct
∗ → Ct

∗−1.
This implies that (Ct

∗, ∂|Ct∗) is a new chain complex and we denote its homology by
H t
∗(C) and refer to it as filtered homology. Since Cs ⊂ Ct for s ≤ t, inclusions induce

maps πs,t : Hs
∗(C) → H t

∗(C), which render (H t
∗(C), π) into a persistence module.

In order to obtain the Künneth formula for filtered homology, we must examine the
product of two filtered chain complexes. Let us start with an example.

Example 3.2.4. Let (C1
∗ , ∂

1
∗ , ν

1) and (C2
∗ , ∂

2
∗ , ν

2) be two filtered chain complexes
given by

C1
0 = 〈x〉, C1

1 = 〈y〉, ∂1x = 0, ∂1y = x, ν1(x) = a, ν1(y) = b,

and
C2

0 = 〈z〉, C2
1 = 〈w〉, ∂1z = 0, ∂1w = z, ν2(z) = c, ν2(w) = d.

We have that

H t
0(C1) = Kt

(a,b], H
t
0(C2) = Kt

(c,d], H
t
∗(C

1) = H t
∗(C

2) = 0 for ∗ 6= 0.
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The product complex (C1 ⊗ C2, ∂, ν = ν1 + ν2) (with usual product differential) is
given by

(C1 ⊗ C2)0 = 〈x⊗ z〉, (C1 ⊗ C2)1 = 〈{x⊗ w, y ⊗ z}〉, (C1 ⊗ C2)2 = 〈y ⊗ w〉,

∂(x⊗ z) = 0, ∂(x⊗ w) = ∂(y ⊗ z) = x⊗ z, ∂(y ⊗ w) = x⊗ w − y ⊗ z,

with filtration ν(x⊗w) = a+ d, ν(y ⊗ z) = b+ c, ν(x⊗ z) = a+ c, ν(y ⊗w) = b+ d.
It readily follows that

H t
0(C1 ⊗ C2) = Kt

(a+b,min{a+d,b+c}] = (H0(C1)⊗H0(C2))t,

H t
1(C1 ⊗ C2) = Kt

(max{a+d,b+c},b+d] = (Tor(H0(C1), H0(C2))t,

and H t
2 = 0.

Remark 3.2.5. Note that the Tor functor naturally appears even in the simplest
case of product of interval modules. As already mentioned, in this case torsion comes
from finite bars in the barcode and hence is unavoidable even when we work with
fields and vector spaces. This becomes more transparent if one adopts the definition
of persistence modules as modules over the polynomial ring K[t] (see [167]). In this
case the action of structure maps comes from multiplication by formal variable t and
thus finite bars correspond to homology classes x for which tn ·x = 0 for some n ∈ N,
which are torsion elements. It seems likely that, by carefully analysing how the two
approaches correspond to one another, one may obtain the results of this subsection
from the universal coefficient theorem for complexes of modules over K[t].

We may now formulate the full statement.2

Proposition 3.2.6 (Künneth formula for filtered homology). Let (C1, ∂1, ν1) and
(C2, ∂2, ν2) be two filtered chain complexes and let (C1 ⊗ C2, ∂, ν = ν1 + ν2) be
their product complex. Then for every k ∈ Z there exists a short exact sequence
of persistence modules

0→
⊕
i+j=k

(Hi(C
1)⊗Hj(C

2))t
K−→ H t

k(C
1 ⊗ C2)→

→
⊕

i+j=k−1

(Tor(Hi(C
1), Hj(C

2)))t → 0,

which splits. Here, K denotes the canonical map given by

K([
∑
i

λixi]⊗ [
∑
j

µjyj]) = [
∑
i,j

λiµjxi ⊗ yj].

2Some form of this statement was already known to experts, in particular to Michael Usher and

Jun Zhang.
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Sketch of the proof. We already saw in Example 3.2.4 that the statement holds
when C1 and C2 have the following form

. . .→ 0→ 〈y〉 → 〈x〉 → 0→ . . . .

It readily follows that the statement is also true if we allow C1 and C2 to be of the
following form

. . .→ 0→ 〈x〉 → 0→ . . . .

By Remark 3.2.3 we may look at our complexes as a special case of the definition given
in [150] and we may use the existence of singular value decomposition of operator
∂ proven there. This theorem essentially states that every filtered chain complex
decomposes into a direct sum of the simple complexes which have one of the two
forms described above. Now, the general case follows by reduction to the two simple
ones and considerations about interval modules.

Remark 3.2.7. Essentially the same computation of the product of chain complexes
as one presented in Example 3.2.4 and in the proof of Proposition 3.2.6 appears
in [166]. The context is, however, slightly different, since we eventually work on the
level of homology, while the author of [166] works on chain level. One may also try to
prove Proposition 3.2.6 directly, without referring to much more general machinery
developed in [150].

3.2.3 Persistence modules with operators

The methods we use, which are of independent interest, have to do with persistence
modules endowed with an additional structure, and their equivariant version.

Consider the category pmod-op with objects pairs (V,A) with V ∈ pmod, and
A : V → V [cA], for certain cA ∈ R, a morphism of persistence modules. Morphisms
between (V,A) and (W,B), when cA = cB consist of morphisms F : V → W of
persistence modules such that F [cA] ◦ A = B ◦ F, and if cA 6= cB, only of the zero
morpishm V → W.

Examples

Example 3.2.8. (Shift operator) For each δ ≥ 0, each V ∈ pmod comes with
a canonical shift operator sh(δ) : V → V [δ]. For δ = 0, this is simply the identity
operator. For δ > 0, sh(δ)t : V t → V t+δ is defined as the persistence structure map
πt,t+δ of V. Hence (V, sh(δ)) is an object of pmod-op .

Example 3.2.9. (Zp-action) Fix an integer p ≥ 2.Given a Zp = Z/pZ-representation
in pmod, the action of the cyclic generator 1 ∈ Zp gives an operator A : V → V,

with cA = 0 (that satisfies Ap = 1V ).
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Example 3.2.10. (Product map) Consider a Morse function f : X → R on a
closed finite-dimensional manifold X of dimension dimX = m. It defines a Z-graded
persistence module by V∗(f)s = H∗({f ≤ s};K) = H∗({f < s};K), for s a regular
value of f. Let ps : H∗(X)→ H∗(X, {f ≥ s}) = H∗({f ≤ s}, {f = s}) be the natural
map. Taking a class a ∈ Hr(X), the intersection product with ps(a), (ps(a)∩) :
V∗(f)s → V∗+r−m(f)s defines an operator (a∩) : V∗(f) → V∗(f), with ca∩ = 0, that
shifts the grading by r −m.

Key estimate

For two objects (V,A) and (W,B) of pmod-op with cA = cB, and δ ≥ 0, define an
operator-δ-interleaving between them to be a δ-interleaving f : V → W [δ], g : W →
V [δ] that commutes with the operators A and B, that is

f [cA] ◦ A = B[δ] ◦ f, g[cB] ◦B = A[δ] ◦ g.

Define the operator-interleaving distance between them by

dop-inter((V,A), (W,B)) = inf{δ ≥ 0| there exists a δ-operator-interleaving}.

Proposition 3.2.11. For all (V,A), (W,B) in pmod-op with cA = cB,

dinter(im(A), im(B)) ≤ dop-inter((V,A), (W,B)).

Put c := cA = cB. The proof is an immediate diagram chase in the following
diagram (and its analogue with f, g interchanged):

V t f−→ W [δ]t
g[δ]−−→ V [2δ]t

At↓ Bt[δ]↓ At[2δ]↓

V [c]t
f [c]−−→ W [c+ δ]t

g[c+δ]−−−→ V [c+ 2δ]t

(3.1)

Discussion

While Proposition 3.2.11 is elementary, it turns out to be useful already in the more
basic examples.

Example 3.2.12. (Shift operator) Proposition 3.2.11 applied to the example of
persistence shift maps, reduces to the following statement. If V,W are δ-interleaved,
then V ′ = im sh(c)V , W

′ = im sh(c)W are δ-interleaved for every c ∈ R. The
reason is that with respect to shift operators, operator-δ-interleaving is the same
as δ-interleaving, so V,W being δ-interleaved implies that they are also operator-δ-
interleaved.
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Example 3.2.13. (Intersection product) In Section 3.2.4 we give examples of two
Morse functions f, g on a surface Σ2 of genus 2 with identical barcodes, and identical
spectral invariants, the images of whose persistence modules under the intersection
product with a class in H1(Σ2;K) are, however, at a positive interleaving distance c >
0. We conclude, by Proposition 3.2.11, that any two functions in the respective orbits
of f, g under the identity component of the diffeomorphism group are at C0-distance
c > 0. Indeed for such a diffeomorphism ψ ∈ Diff0(Σ2), (V (f ◦ψ), a∩) and (V (f), a∩)
are isomorphic objects in pmod-op, and dop-inter((V (f), a∩), (V (g), a∩)) ≤ |f − g|C0 .

3.2.4 Example of a Morse function on T2]T2

We present an example in Morse homology illustrating the effect of a product on
the Floer persistence module which we will define later and we also justify claims of
Example 3.2.13.

Adopting the setup of Example 2.1.3 and Example 3.2.10, to a Morse function f
on a closed manifold X of dimension m we associate a persistence module (V t

∗ (f), π)
by taking V t

∗ (f) = H∗({f < t};K), the structure maps πs,t being induced by inclusion
of sublevel sets. Alternatively, we may consider the Morse chain complex induced by
the critical points whose critical value is less than t. Now, a ∈ H∗(M) acts on V t

∗ (M)
by intersecting cycles (or by counting Y-shaped configurations of gradient flow lines
in the Morse picture) and we get a map:

a∩ : V t
∗ (f)→ V t

∗+deg a−m(f).

Let Σ2 be a surface of genus 2. We construct two Morse functions on Σ2 which have
same barcodes and same spectral invariants associated to every homology class, but
their intersection barcodes with a fixed class differ by a finite bar. First, observe
that Σ2 = T2]T2 and hence H1(Σ2) ∼= H1(T2) ⊕H1(T2), where generators are given
by standard generators of T2 = S1 × S1, namely two circles. We consider a Morse
function f : Σ2 → R given by the height function on the following picture:

f

d
c

b

a+ ε
a

0
ε
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We observe thatH1(Σ2) is generated by four homology classes represented by embedded
circles, two of which have spectral invariants associated to f equal to ε and the other
two with spectral invariants equal to b.

The other function we consider is the height function g on the same picture with left
and right reversed. More precisely, g = f ◦ϕ, where ϕ : Σ2 → Σ2 is a diffeomorphism
which interchanges two copies of T2 \ D2 which we glue together to form Σ2. Since
g = f ◦ ϕ, the barcodes of f and g are the same and they look as follows:

0 ε a a+ ε c

0
0

b d

0

1
1
1

1
1

2

One also readily checks that for every z ∈ H∗(M), c(z, f) = c(z, g), where c(z, f), c(z, g)
are spectral invariants associated to functions f and g and a homology class z (see
Remark 2.1.24). This means that standard methods, namely barcodes and spectral
invariants fail to distinguish between f and g. However, after intersecting with one
of the two big circles (for example the one on the left in the above picture), which
corresponds to the homology class e with spectral invariants c(e, f) = c(e, g) = b, we
get the following intersection barcodes:

0 ε a a+ ε cb d

0
0

1

e ∩HM(f)
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0 ε a a+ ε cb d

0

1

e ∩HM(g)

These barcodes differ by a finite bar (ε, a]. Thus, by using the product structure in
homology and analysing its effect on the barcode we are able to make a distinction
between f and g. Note also that the bar (ε, a] did not exist in the original barcode.

It would be interesting to find a general formula for the image persistence module
of the intersection by homology class a. Examples show that this is not a trivial
question.

3.2.5 Equivariant version

In order to study the question of Hofer’s distance to autonomous Hamiltonian diffeomorphisms
and more generally to full p-th powers in Ham, persistence modules with additional
Zp = Z/pZ action were used in [121]. A Zp persistence module (V, π, T ) is a
persistence module (V, π) together with an automorphism T : (V, π) → (V, π) which
satisfies T p = 1. This definition immediately implies that Tt : V t → V t is a linear
operator whose eigenvalues are p-th roots of unity. Hence, for ζp = 1, πs,t maps a
ζ-eigenspace of Ts to ζ-eigenspace of Tt and we can define a ζ-eigenspace of T to be
a persistence module obtained by restricting π to ζ-eigenspaces of each Tt.

We require the following immediate statement.

Lemma 3.2.14. Let (Vr, Tr), r ∈ 1, . . . , l be Zp persistence modules, (V, T ) = (
l⊕

r=1

Vr,
l⊕

r=1

Tr)

and denote by Lζ, ζ-eigenspace of T , where ζp = 1, ζ 6= 1. Then

Lζ =
l⊕

r=1

Lrζ ,

where Lrζ are ζ-eigenspaces of Vr.

Interleavings between Zp persistence modules which commute with the Zp action
are called equivariant. Again, taking infimum over all δ > 0 such that V and W
are eqivariantly δ-interleaved gives us an equivariant interleaving distance, which we
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denote by d̂inter(V,W ). It immediately follows that

d̂inter(V,W ) ≥ dinter(V,W ) and d̂inter(V,W ) ≥ dinter(Lζ , Kζ), (3.2)

where Lζ and Kζ are the ζ-eigenspaces of TV and TW respectively.

Applying our new method to the equivariant situation is tantamount to studying
Zp persistence modules with an operator A : V → V [cA], which moreover commutes
with the Zp-action. Examples of such operators will come from a version of the
pair-of-pants product in Floer homology.

Definition 3.2.15. A Zp persistence module with an operator is a pair (V,A) where
V is a Zp persistence module and A : V → V [cA] is a morphism of persistence modules
that commutes with the Zp-action.

Let (V,A) and (W,B) be two Zp persistence modules with operators with c =
cA = cB, and suppose that f : V → W [δ] and g : W → V [δ] is an equivariant δ-
interleaving. We say that this interleaving is op-equivariant if it respects the operator
actions, that is,

B(δ) ◦ f = f(c) ◦ A, A(δ) ◦ g = g(c) ◦B.

Taking infimum over all δ such that V and W are op-equivariantly δ-interleaved gives
us a new distance, which we denote d̂op-inter(V,W ). Since A and B are Zp persistence
module morphisms we have that im(A) ⊂ V a and im(B) ⊂ W a are Zp persistence
submodules of V a and W a. Every op-equivariant interleaving between V and W
induces an equivariant interleaving between im(A) and im(B), which in particular
implies

d̂op-inter((V,A), (W,B)) ≥ d̂inter(im(A), im(B)). (3.3)

Note however that in general this may not be an equality.

Remark 3.2.16. The situation we encounter when working with singular, Morse or
Floer homology is not exactly the same as described above since our product map
may change the degree and not just the filtration. One can overcome this ambiguity
by giving a slightly more general definition analogous to the one given above, where
A : V t → V̄ t+a for different persistence modules V and V̄ or by considering graded
vector spaces.

In order to tackle the problem of Hofer’s distance to full powers in Ham a numerical
invariant µp(W ) called multiplicity-sensitive spread was defined in [121]. We recall
the definitions and properties of µp and an auxiliary invariant µp,ζ , which we use later
(see [121] for proofs).

For an interval I = (a, b] or I = (a,+∞) and c ∈ R let Ic = (a + c, b − c], when
b − a > 2c, or Ic = (a + c,+∞). Let B be a barcode, I an interval and denote by
m(B, I) the number of bars in B containing I (counted with multiplicities). We will
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write µp(B) for a supremum of those c ≥ 0 for which there exists an interval I of
length greater than 4c such that m(B, I) = m(B, I2c) = l with l not divisible by p.
Using this notation we define µp,ζ as

µp,ζ(W ) = µp(B(Lζ)),

where Lζ is ζ-eigenspace of T . Now µp is defined as

µp(W ) = max
ζ
µp,ζ(W ).

We have that

|µp(B(Lζ))− µp(B(Kζ))| = |µp,ζ(V )− µp,ζ(W )| ≤ dbottle(B(Lζ),B(Kζ)), (3.4)

where Lζ and Kζ are the ζ-eigenspaces of TV and TW respectively.

A Zp persistence module (W,T ) is called a full p-th power if T = Sp for some morphism
S : W → W .

From now on we impose the same assumption on the ground field K as in Section 3.1.2.
An important property of µp for such a ground field K is that µp(W ) = 0 given that
W is a full p-th power. The proof of this fact is the same as in the case when p is a
prime number and has been carried out in [121]. However, the proof of the fact that
splitting field Qp of xp−1 over Q satisfies the required assumptions is slightly different
and we present it here for completeness. The following lemma is the substitution for
Lemma 4.14 in [121].

Lemma 3.2.17. Let p ≥ 2 be any integer, ζp ∈ Qp a primitive p-th root of unity and
assume that equation

xp − (ζp)
q = 0,

has a solution in Qp for some integer q. Then p|q.

Proof. For an integer k ≥ 2, we denote by ζk a fixed k-th primitive root of unity and
by Qk = Q(ζk) the cyclotomic extension of Q by ζk. We may embed Qp ⊂ Qp2 ⊂ Q,
where Q is the algebraic closure of Q and we may also assume that (ζp2)

p = ζp. Now
if x is a solution of the above equation, for some m ∈ Z it holds that x = (ζp2)

q · (ζp)m
inside Q and hence if x is in Qp so is (ζp2)

q. If p does not divide q, we have that
gcd(p, q) = d < p and p = nd for some natural number n. Taking u, v ∈ Z such that
uq + vp = d, we get that

(ζp2)
d = (ζp2)

uq · (ζp2)vp ∈ Qp.

However, (ζp2)
d = ζpn and hence Qp = Qpn, which is only possible when p is odd and

n = 2 (see [96, Corollary 3]). This cannot happen because n|p.
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3.3 Floer theory and Hofer’s geometry

3.3.1 Product map on Floer persistence module

Let (M,ω) be a closed symplectic manifold, and denote by c1(TM) the first Chern
class of the tangent bundle, equipped with any ω-compatible almost complex structure.
Take a homotopy class of free loops α ∈ π0(LM) and denote by LαM all loops in
class α. We say that (M,ω) is α-toroidally monotone if there exists κ > 0 such that

〈[ω], A〉 = κ · 〈c1(TM), A〉,

for all A ∈ Im(Ψ), where Ψ : π1(LαM) → H2(M ;Z) sends a loop β ∈ π1(LαM),
regarded as a map β : T2 → M , to β∗([T2]). It readily follows that M is also
spherically monotone with same monotonicity constant κ, that is,

[ω] = κ · c1(TM),

where both [ω] and c1(TM) are regarded as functionals on π2(M). Assuming M

is α-toroidally monotone3, to every element f̃ ∈ fiHam(M) of the universal cover of
Ham(M) that is non-degenerate in class α, we associate a Floer persistence module
HF t

∗(f̃)α with parameter t (see [121,147]).

Remark 3.3.1. Here, and later on in Section 3.3.2, we deal with degenerate Hamiltonian
diffeomorphisms 1 ∈ Ham(M) and φ × 1 ∈ Ham(Σ ×N) (for Σ a closed symplectic
surface of higher genus, and N a monotone symplectic manifold), which, however,
are of Morse-Bott degeneracy in the appropriate classes of orbits. Associating a
persistence module to this situation can be done in two different ways. First, we
may perturb 1 and obtain a persistence module as a limit when perturbations tend
to zero. More precisely, we fix a Morse function h, replace 1 with the flow of δ · h,
and look at the appropriate persistence modules as δ → 0. Using standard action
estimates, one sees that these modules converge in interleaving distance to a well-
defined genuine persistence module (which is uniquely determined up to isomorphism
by this property). In our cases, the spectrum of this persistence module is discrete,
since the set of the critical values of the action functional of the zero Hamiltonian is
discrete. This approach is essentially the same as the one described in [121, Definition
2.8]. The second way to proceed is by using Frauenfelder’s approach of cascades [64] to
the Morse-Bott case, which readily yields a persistence module by the same procedure
as in [121,147].

Let us now describe the product structure which we will be using. First note that
the Novikov field ΛK admits a non-Archimedean valuation

ν : ΛK → R ∪ {−∞},
∑
n∈Z

anq
n 7→ max{n · (κcN)| an 6= 0}.

3All the considerations in this section also apply to α which is symplectically atoroidal, meaning

ω = c1 = 0 on π1(LαM).
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This valuation naturally extends to QH(M), by declaring that ν(x) = 0 for all non-
zero x ∈ H∗(M ;K)⊗1. Now, in a fixed degree r ∈ Z, QH t

r(M) is defined asQH t
r(M) =

{x ∈ QHr(M)| ν(x) < t}. The product map

∗ : QH t
∗(M)⊗HF s

∗ (f̃)α → HF t+s
∗ (f̃)α,

has a direct description via intersection of cycles representing elements in QH t
∗(N)

with Floer trajectories. This product structure is sometimes referred to as the
quantum module structure since in the filtration-free setting it describes Floer homology
as a module over quantum homology (see [111, Example 3.4] or [136]).

Another way to define this product is by exploiting the fact thatHF t
∗(1)pt = QH t

∗(M),
where HF t

∗(1)pt is understood in the sense of Remark 3.3.1 and QH t
∗(M) is made into

a persistence module by defining structure maps on it to be the obvious inclusions.
Now the product map

∗ : HF t
∗(1)pt ⊗HF s

∗ (f̃)α → HF t+s
∗ (f̃)α (3.5)

has a different description depending on which of the two definitions of HF t
∗(1)pt we

adopt. In the perturbative setting, it is defined by counting pairs of pants on the
chain level and the action estimates follow from [135, Section 4.1], [53], [102, Section
6.2], while in the Morse-Bott setting, the product takes the form of counting ”spiked
cylinders”, quite similar to the definition of the PSS map [111] (see for example [33]
and references therein for details on the more complicated, Lagrangian, version).

Let us examine some of the properties of this product.

Denote by d̃ the Hofer’s pseudo-distance on fiHam(M) and by d the Hofer’s distance

on Ham(M). We write f̃ ∈ fiHam(M) for a homotopy class of paths relative endpoints
in Ham(M) and f ∈ Ham(M) for its endpoint. Let ν : QH(M)→ R be the natural
valuation. Fixing homogeneous a ∈ QH(M) we obtain a map

a∗ : HF t
r(f̃)α → HF

t+ν(a)
r−2n+deg a(f̃)α.

The map a∗ is a persistence module morphism between V t
r = HF t

r(f̃)α and ‹V t
r =

HF
t+ν(a)
r−2n+deg a(f̃)α. Moreover, it follows from standard considerations in Floer theory

that a∗ commutes with continuation maps

C(F,G) : HF t
r(F )α → HF t+E+(G−F )

r (G)α,

where E+(G− F ) =
∫ 1

0
maxM(Gt − Ft)dt.

Now, let g ∈ Ham(M) and define a map

P (g) : HF t
∗(f̃)α → HF t

∗(
˜g ◦ f ◦ g−1)α,
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by acting with g on all the objects appearing in the construction of Floer chain
complex. More precisely, on the chain level P (g) defines an isomorphism of filtered
chain complexes

P (g) : (CF (H, J)α,AH)→ ((CF (H ◦ g−1, g∗(J))α,AH◦g−1)),

by sending a periodic orbit z(t) of H to a periodic orbit g(z(t)) of H ◦ g−1. This map
is called the push-forward map (see [121] for a detailed treatment of push-forward
maps). One can check that P (g) and a∗ commute.

Our objects of interest are Floer persistence modules of the form HF t
∗(f̃

p)α for

f̃ ∈ fiHam(M). In this case P (f) : HF t
∗(f̃

p)α → HF t
∗(f̃

p)α defines a Zp action on
HF t

∗(f̃
p)α and we get a Zp Floer persistence module. Since P (f) and a∗ commute,

a∗ is a Zp persistence module morphism and we wish to treat it as an operator
on HF t

∗(f̃
p)α and apply considerations from Section 3.2.5. To do so, define a Zp

persistence module

W t
r(a, f̃

p) = im(a∗) = (a∗)(HF t
r(f̃

p)α) ⊂ HF
t+ν(a)
r−2n+deg a(f̃

p)α,

with Zp action given by P (f). Denote by Ft andGt normalized 1-periodic Hamiltonians

generating paths in Ham(M) which represent classes of f̃ and g̃ in fiHam(M) respectively

and by F
(p)
t = pFpt and G

(p)
t = pGpt normalized 1-periodic Hamiltonians generating

paths which represent f̃p and g̃p. Continuation maps

HF t
r(F

(p))α
C(F (p),G(p))−−−−−−−→ HF t+p·E+(G−F )

r (G(p))α,

and

HF t+p·E+(G−F )
r (G(p))α

C(G(p),F (p))−−−−−−−→ HF t+p·(E+(G−F )−E−(G−F ))
r (F (p))α,

induce a p · (E+(G−F )−E−(G−F )) op-equivariant interleaving between HF t
∗(f̃

p)α
and HF t

∗(g̃
p)α, where E−(G− F ) =

∫ 1

0
minM(Gt − Ft)dt. Taking infimum over all F

and G generating f̃ , g̃ ∈ fiHam(M) we get that

p · d̃(f̃ , g̃) ≥ d̂op-inter(HF
t
∗(f̃

p), HF t
∗(g̃

p)),

which together with (3.3) gives us

p · d̃(f̃ , g̃) ≥ d̂op-inter(HF
t
∗(f̃

p), HF t
∗(g̃

p)) ≥ d̂inter(W
t
∗(a, f̃

p),W t
∗(a, g̃

p)). (3.6)

Remark 3.3.2. Let f ∈ Ham(M) and fix a lift f̃ ∈ fiHam(M) of f . We can
use W t

r(a, f̃
p) to estimate Hofer’s distance from f to p-th powers inside Ham(M).

Indeed, denote by Powersp(M) ⊂ Ham(M) the set of all p-th powers of Hamiltonian

diffeomorphisms and by ·�Powersp(M) ⊂ fiHam(M) the set of all lifts of elements from

Powersp(M). In other words ·�Powersp(M) = π−1(Powersp(M)) under the natural

projection π : fiHam(M)→ Ham(M). For g̃ ∈ ·�Powersp(M), we have that W t
r(a, g̃

p) is
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a full p-th power persistence module because g = φp implies P (φ)p = P (g) and P (φ)
restricts to W t

r(a, g̃
p) because P (φ) and a∗ commute. It follows that µp(W

t
r(a, g̃

p)) = 0
and thus by (3.4)

|µp(W t
r(a, f̃

p))| = |µp(W t
r(a, f̃

p))− µp(W t
r(a, g̃

p))| ≤ dbottle(B(Lζ),B(Kζ)),

where Lζ andKζ denote ζ-eigenspaces of P (f) and P (g) insideW t
r(a, f̃

p) andW t
r(a, g̃

p)
respectively. Now, combining (3.2) with the isometry theorem yields

|µp(W t
r(a, f̃

p))| ≤ dbottle(B(Lζ),B(Kζ)) ≤ d̂inter(W
t
r(a, f̃

p),W t
r(a, g̃

p)),

which together with (3.6) gives us

|µp(W t
r(a, f̃

p))| ≤ d̂inter(W
t
r(a, f̃

p),W t
r(a, g̃

p)) ≤ p · d̃(f̃ , g̃).

Finally, we have

d(f,Powersp(M)) = d̃(f̃ , ·�Powersp(M)) ≥ 1

p
· |µp(W t

r(a, f̃
p))|. (3.7)

3.3.2 Stabilization and the egg-beater example

We now turn to a manifold M of the form M = Σ×N , where Σ is surface of genus
at least 4 and N is a spherically monotone symplectic manifold with monotonicity
constant κ. The element ψ̃λ ∈ fiHam(M) which we consider is

ψ̃λ = ϕ̃pλ × 1, ϕ̃λ ∈ fiHam(Σ), 1 ∈ fiHam(N),

where ϕ̃λ is given by the egg-beater flow on Σ, with mixing parameter λ. Construction
and detailed analysis of the egg-beater flow are carried out in [8, 121]. What we will
use is that there exists a family of Hamiltonian flows ϕ̃λ on Σ, depending on an
unbounded increasing real parameter λ, along with a family of classes of free loops
αλ on Σ which satisfy:

1) ϕpλ has exactly 22p p-tuples of fixed points with same indices and actions {z, ϕλ(z), . . . , ϕp−1
λ (z)},

for sufficiently large λ;

2) If z1 and z2 belong to different p-tuples their action differences satisfy

|A(z1)−A(z2)| ≥ c0λ+O(1);

3) The indices of all fixed points are bounded by a constant which does not depend
on λ.
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The class αλ ∈ π0(LM) which we consider is a product of classes

αλ = αλ × pt, αλ ∈ π0(LΣ),

Σ being symplectically αλ-atoroidal. Our manifold M will be αλ-toroidally monotone
with same monotonicity constant κ. We will leave out these classes from the notation
and write HF t

∗(ϕ̃
p
λ×1) and HF t

∗(ϕ̃
p
λ) for HF t

∗(ϕ̃
p
λ×1)αλ and HF t

∗(ϕ̃
p
λ)αλ . Let us now

work out the example which proves Theorem 3.1.2.

Proposition 3.3.3. Let ϕ̃λ be the egg-beater flow and assume e ∈ QH(N) satisfies
assumptions of Theorem 3.1.2. There exists k ∈ Z such that

µp(W
t
k([Σ]⊗ e, ϕ̃pλ × 1)) ≥ cλ+O(1),

for some c > 0, when λ→ +∞. Here [Σ]⊗ e ∈ QH(M) = QH(Σ×N).

Proof. Let α1, α2 be two toroidally monotone classes of free loops in symplectic
manifolds M1 and M2, with the same monotonicity constant κ (we may also take

one of both of them to be atoroidal) and let φ̃ ∈ fiHam(M1), ψ̃ ∈ fiHam(M2). The
manifold M1 ×M2 is symplectic and the class α1 × α2 is toroidally monotone with
the same monotonicity constant κ. Now, we apply Proposition 3.2.6 for general
filtered homologies to Floer chain complexes filtered by the action functional and
Floer persistence modules to get the short exact sequence:

0→
⊕
i+j=k

(HFi(φ̃)α1 ⊗HFj(ψ̃)α2)
t K−→ HF t

k(φ̃× ψ̃)α1×α2 →

→
⊕

i+j=k−1

(Tor(HFi(φ̃)α1 , HFj(ψ̃)α2))
t → 0,

for K([
∑

i λixi]⊗ [
∑

j µjyj]) = [
∑

i,j λiµjxi ⊗ yj].

In our case φ̃ = ϕ̃pλ, α1 = αλ, ψ̃ = 1 ∈ fiHam(N),α2 = {pt} and we have
HF t

∗(1){pt} = QH t
∗(N), where QH t

∗(N) = {x ∈ QH∗(N)| ν(x) < t} is a persistence
module with trivial structure maps given by πs,t(x) = x since QHs

∗(N) ⊂ QH t
∗(N)

for s ≤ t.

This readily gives us that the barcode of QH t
∗(N) has only infinite bars and thus

QH t
∗(N) is a projective persistence module and Tor(HFi(ϕ̃

p
λ), QHj(N)) = 0 for all

j ∈ Z, which implies that

K :
⊕
i+j=k

(HFi(ϕ̃
p
λ)⊗QHj(N))t → HF t

k(ϕ̃
p
λ × 1),

is an isomorphism. Moreover, it holds that P (ϕλ × 1) ◦ K = K ◦ (P (ϕλ) ⊗ 1)
(see [121] for a proof in the atoroidal case, the proof in the toroidally monotone case
is the same) and thus K is also an isomorphism of Zp persistence modules. Now,
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consider multiplication by e as a persistence module morphism (e∗) : QH t
r(N) →

QH
t+ν(e)
r−2n+deg e(N) betweenQH t

r(N) and shifted moduleQH
t+ν(e)
r−2n+deg e(N) = QH t

r−2n+deg e(N)[ν(e)],
for every r ∈ Z. Our product map splits on the components of the product, i.e., it
enters the following commutative diagram:⊕

i+j=k

(HFi(ϕ̃
p
λ)⊗QHj(N))t HF t

k(ϕ̃
p
λ × 1)

⊕
i+j=k

(HFi(ϕ̃
p
λ)⊗QHj−2n+deg e(N)[ν(e)])t HF t

k−2n+deg e(ϕ̃
p
λ × 1)[ν(e)]

K

1⊗(e∗) ([Σ]⊗e)∗

K

where each arrow represents a Zp persistence module morphism. Using this diagram
we calculate

W t
k = W t

k([Σ]⊗ e, ϕ̃pλ × 1) =
⊕
r∈Ik

(HFk−r(ϕ̃
p
λ)⊗ (e∗)(QHr(N)))t,

where Ik is the set of all r such that there exists a fixed point of ϕpλ of index k − r
and im(e∗)t = (e∗)(QH t

r(N)) ⊂ QH t
r−2n+deg e(N)[ν(e)]. Let us describe the barcode

of im(e∗)t explicitly.

First, note that we have inclusions of all QH t
r(N) into the full quantum homology

QHr(N) = QH+∞
r (N) and moreover for s ≤ t, QHs

r (N) ⊂ QH t
r(N) ⊂ QHr(N)

and structure maps act as 1 under these inclusions. Now, Er = e ∗ (QHr(N)) ⊂
QHr−2n+deg e(N) is the image of the full quantum homology group QHr(N) and by
definition dimKEr = br(e).

We may also look at Er as a persistence submodule of the shifted module Et
r ⊂

QH t
r−2n+deg e(N)[ν(e)] and (e∗) : QH t

r(N) → Et
r is a persistence module morphism.

Since the structure maps on Et
r are restrictions of structure maps onQHr−2n+deg e(N)[ν(e)],

we again have that they act as 1 under the inclusions to the full quantum homology
group QHr−2n+deg e(N) and the same holds for im(e∗)t. This implies that the barcode
of im(e∗)t contains no finite bars. Now, if we denote ar = min{ν(x)|x ∈ QHr(N)}
and Ar = max{ν(x)|x ∈ QHr(N)}, it follows that (e∗)(QH t

r(N)) = 0 for t ≤ ar
and (e∗)(QH t

r(N)) = Er for t > Ar and thus the barcode of im(e∗)t consists of bars
(cr,1,+∞), . . . , (cr,br(e),+∞) where ar ≤ cr,1 ≤ . . . ≤ cr,br(e) ≤ Ar. Moreover, since
the Zp action on QH t

r(N) is trivial for all r we have that

im(e∗)t =

br(e)⊕
i=1

(Kt
(cr,i,+∞),1),

as Zp persistence modules, which together with the above diagram gives us

(W t
k, P (ϕλ × 1)) ∼=

⊕
r∈Ik

ÅÅ
HFk−r(ϕ̃

p
λ)⊗

br(e)⊕
i=1

K(cr,i,+∞)

ãt
, P (ϕλ)⊗ 1

ã
,
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the isomorphism being given by K. Elementary calculations on interval persistence
modules now imply

(W t
k, P (ϕλ × 1)) ∼=

⊕
r∈Ik

br(e)⊕
i=1

Å
HF

t−cr,i
k−r (ϕ̃pλ)αλ , P (ϕλ)

ã
.

Denoting the ζ-eigenspace of (HF t
k(ϕ

p
λ)αλ , P (ϕλ)) by Ltk,ζ and ζ-eigenspace of (W t

k, P (ϕλ×
1)) by Ltζ we have by Lemma 3.2.14

Ltζ
∼=
⊕
r∈Ik

br(e)⊕
i=1

L
t−cr,i
k−r,ζ .

The indices of fixed points of the egg-beater map are uniformly bounded (the bound
does not depend on λ) and thus we have |r| < M for r ∈ Ik for some constant M not
depending on λ. This also gives us that there exists a constant C > 0 independent
of λ such that |ar| < C and |Ar| < C for all r ∈ Ik and thus |cr,i| < C for all
r ∈ Ik, i = 1, . . . , br(e). By Lemma 2.1.25 we have that

dbottle

Å
B(Ltζ),B

Å⊕
r∈Ik

(Ltk−r,ζ)
br(e)

ãã
< C,

and hence by Lipschitz property of µp we have

µp(W
t
k) ≥ µp,ζ(W

t
k) = µp

Å⊕
r∈Ik

br(e)⊕
i=1

L
t−cr,i
k−r,ζ

ã
≥ µp

Å⊕
r∈Ik

(Ltk−r,ζ)
br(e)

ã
− C.

Assume now that p - br0(e) and that the index of a fixed point z0 of ϕpλ with minimal
action A = A(z0) in class αλ is d0. Taking k = d0 + r0 we have that⊕

r∈Ik

(Ltk−r,ζ)
br(e) = (Ltd0,ζ)

br0 (e) ⊕
⊕
r 6=r0

(Ltk−r,ζ)
br(e).

If z is a fixed point of ϕpλ with action A(z) 6= A it follows that A(z) ≥ B = A+ c0λ+
O(1) and we have that

m

Å
B
Å⊕
r∈Ik

(Ltk−r,ζ)
br(e)

ã
, (A,B]

ã
= br0(e).

Now, p - br0(e) and thus

µp

Å
B
Å⊕
r∈Ik

(Ltk−r,ζ)
br(e)

ãã
≥ c0

4
λ+O(1),

which gives us µp(W
t
k) ≥ cλ+O(1) as claimed.

The proof of Theorem 3.1.2 follows directly from Proposition 3.3.3 and Remark 3.3.2.
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3.3.3 Erratum: behavior of µp under stabilization in the aspherical

case.

This erratum is written in order to correct a mistake in Theorem 4.24 in [121]. The
main theorem (which this mistake could potentially affect), [121, Theorem 1.3], holds
still. See Theorem E1 and the update to the proof of [121, Theorem 1.3] below.

Alternatively, as noted in Example 3.1.4, [121, Theorem 1.3] holds as a special case
of the main theorem, Theorem 3.1.2 of the current chapter, and its proof extends the
proof of [121, Theorem 1.3].

In fact the estimate µp(φ) ≤ µp(φ × 1) cannot be expected to hold, as can be
seen by elementary examples. The error in the proof of Theorem 4.24 is contained
in the implication ”Thus we are left with i = 0...” because the barcodes Br−i(φ)ζ
for i > 0 can have I and I2c with different multiplicities, thus affecting the value of
µp,ζ(r, φ× 1N).

Denote

γp,ζ(r, φ) =
1

2
max
i>0

β(Br−i(φ)ζ).

By (26), and the remarks on the Künneth formula in the proof of Theorem 4.24, it is
immediate that

µp,ζ(r, φ× 1N) ≥ µp,ζ(r, φ)− γp,ζ(r, φ).

Indeed

dbottle(Br(φ)ζ ,Br(φ× 1N)ζ) ≤ γp,ζ(r, φ),

which can be seen by erasing all intervals corresponding to (bi(N)-copies of) the
barcode Br−i(φ)ζ (recall that β(B) is the maximal length of a finite bar in the barcode
B).

Thus denoting

µreduced
p,ζ (r, φ) = µp,ζ(r, φ)− γp,ζ(r, φ),

and

µreduced
p (r, φ) = max

ζ
µreduced
p,ζ (r, φ)

we replace Theorem 4.24 by the following.

Theorem E1. For φ ∈ Ham(M), α ∈ π0(LM), and any closed connected symplectically
aspherical manifold N, consider the stabilization φ × 1 ∈ Ham(M ×N) of φ. Then
we have

µreduced
p (φ) ≤ µp(φ× 1N) ≤ µp(φ),

the value µp(φ× 1N) being computed in the class α× ptN in π0(L(M ×N)).

Now we turn to Section 5.1 and show how to adapt the proof of Theorem 1.3 in
view of the corrected Theorem E1 above. The necessary changes are:
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� The sentence

”Further, among the 22p p-tuples of fixed points of φpλ in the class αλ choose the
p-tuple, say {z, φλ(z), . . . , (φλ)

p−1(z)} with the minimal action. Let r be the
index of z.”

should be corrected to

”Further, among the 22p p-tuples of fixed points of φpλ in the class αλ choose the
p-tuple, say {z, φλ(z), . . . , (φλ)

p−1(z)} with the minimal index r, and minimal
action among p-tuples of this index.”

� The passage

”By the definition of the multiplicity-sensitive spread, we conclude that µp(φλ) ≥
λ(c− 2ε)/4”

should read

”By the definition of the multiplicity-sensitive spread and the observation that
γp,ζ(r, φλ) = 0, we conclude that µreduced

p (φλ) ≥ λ(c− 2ε)/4”
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Chapter 4

Persistence modules, symplectic

Banach-Mazur distance and

Riemannian metrics

4.1 Introduction

In this chapter, we will consider persistence modules coming from filtered symplectic
homology in order to study fiberwise star-shaped domains in the cotangent bundle of
a fixed manifold in a quantitative fashion.

4.1.1 The metrical set-up

The quantitative perspective which we wish to adopt has its roots in the concept
of Banach-Mazur distance, initially appearing in functional analysis with the aim of
comparing convex bodies. Let M be a closed, orientable manifold of dimension n. Its
cotangent bundle T ∗M is equipped with a canonical symplectic form ωcan = dλcan,
where λcan is the Liouville form, and a canonical vector field X given by iX(ωcan) =
λcan called Liouville vector field. We call a domain U ⊂ T ∗M admissible if it is a
compact, fiberwise star-shaped domain, centered at the zero section 0M ⊂ U ⊂ T ∗M,
whose boundary ∂U is smooth and such that X t ∂U. Restriction of the Liouville
form to the boundary of an admissible domain is a contact form, i.e. (∂U, λcan|∂U) is
a contact manifold. Denote

CM = {admissible domains U in T ∗M}.

For two admissible domains U, V ∈ CM , an embedding φ : U → V satisfying
φ∗λcan−λcan = df for some smooth function f : U → R is called a Liouville embedding.
Denote the set of homotopy classes of free loops in M by π̃1(M). Notice that any
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U ∈ CM deformation retracts to the zero section 0M of T ∗M, and the projection
π : T ∗M → M restricted to U induces a homotopy equivalence π|U : U → M. Thus,
any Liouville embedding φ : U → V between two admissible domains in T ∗M induces
a map φ∗ on π̃1(M). Majority of maps which we will consider in this chapter will be
a special type of Liouville embeddings which are defined as follows.

Definition 4.1.1. Given two admissible domains U, V ∈ CM , a Liouville embedding

φ : U → V is π̃1-trivial if φ∗α = α for all α ∈ π̃1(M). We adopt the notation U
φ
↪−→ V

for a π̃1-trivial Liouville embedding φ : U → V .

One readily checks that the composition of two π̃1-trivial Liouville embeddings
is again a π̃1-trivial Liouville embedding. The following definition modifies a key
definition from [75].

Definition 4.1.2. Let U ⊂ V be two admissible domains in T ∗M and φ : U → V a
Liouville embedding. We call φ strongly unknotted if there exists an isotopy {φt}t∈[0,1]

such that each φt : U → V is a Liouville embedding and φ0 = iU , φ1 = φ, iU being
the inclusion iU : U → V.

Let us illustrate these concepts on an example coming from Riemannian geometry.
This example is also going to be the main example considered in this chapter.

Example 4.1.3. Let (M, g) be a closed, orientable Riemannian manifold with induced
norm ‖ · ‖g : TM → R and denote the unit ball at a point q by B1(g)q = {x ∈
TqM | ‖x‖g ≤ 1}. The dual norm ‖ · ‖g∗ on T ∗M is given by ‖ξq‖g∗ = max{ξq(x) |x ∈
B1(g)q} and the unit coball B∗1(g∗)q = {p ∈ T ∗qM | ‖p‖g∗ ≤ 1} defines a convex
set in T ∗qM. Denoting the unit codisc bundle (union of unit coballs over all points
of the manifold) by U∗gM, we have that U∗gM is an admissible domain in T ∗M. The
boundary ∂U∗gM is the unit cosphere bundle and the Reeb flow on (∂U∗gM,λcan|∂U∗gM)
is the cogeodesic flow of g. Now, if for every q ∈ M and every x ∈ TqM , it holds
||x||g1 ≤ ||x||g2 , we have that U∗g1M ⊂ U∗g2M and inclusion i : U∗g1M → U∗g2M is a
π̃1-trivial Liouville embedding. Obviously, this embedding is also strongly unknotted.

We will now define the distance which we wish to consider.

Definition 4.1.4. (Ostrover, Polterovich, Gutt, Usher [117,118,105,120,75,148]) For
U, V ∈ CM , we define symplectic Banach-Mazur distance dSBM(U, V ) by

dSBM(U, V ) = inf

{
lnC

∣∣∣∣ ∃ 1
C
U

φ
↪−→ V

ψ
↪−→ CU (and hence 1

C
V

ψ(C−1)
↪−−−−→ U

φ(C)
↪−−→ CV )

s.t. ψ ◦ φ and φ(C) ◦ ψ(C−1) are strongly unknotted

}

Here multiplication CU applies on the covector component, i.e. for any (q, p) ∈ U ,
C(q, p) = (q, Cp). Moreover, φ(C) is defined as φ(C)(q, p) = Cφ(q, p/C), for (q, p) ∈
U , where again multiplication acts on the covector component and ψ(C−1) is defined
similarly.
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In order to study unit codisc bundles of different Riemannian metrics with respect
to dSBM , we will need an auxiliary distance defined on the space of Riemannian
metrics on M. Denote by

GM = {Riemannian metrics g on M}.

Similarly to dSBM on CM , we have

Definition 4.1.5. For g1, g2 ∈ GM , we define Riemannian Banach-Mazur distance
denoted by dRBM(g1, g2) as follows,

dRBM(g1, g2) = inf

ß
lnC ∈ [0,∞)

∣∣∣∣∃φ ∈ Diff0 (M) s.t.
1

C
g1 � φ∗g2 � Cg1

™
,

where g1 � g2 means that for any q ∈M and any x ∈ TqM , ||x||g1 ≤ ||x||g2 . Diff0(M)
stands for the identity component of Diff(M).

Remark 4.1.6. Riemannian Banach-Mazur distance can be considered a smooth
isotopy version of the well-known Lipschitz distance, see Remark 4.2.9.

As we saw in Example 4.1.3, every Riemannian metric g defines a domain U∗gM ∈
CM and thus GM can be naturally identified with a subset of CM . With this in mind,
dRBM and dSBM are two pseudo-metrics on GM which turn out to be comparable.
More precisely, the following inequality is proven in Proposition 4.2.8

2 · dSBM(U∗g1M,U∗g2M) ≤ dRBM(g1, g2). (4.1)

Recall that given a contact manifold (Y, µ) with Reeb flow ϕµt , a periodic Reeb
orbit ϕµt (x), ϕµT (x) = x of period T is called non-degenerate if det(dϕµT |kerµ(x) −
1kerµ(x)) 6= 0. If all periodic Reeb orbits are non-degenerate, contact manifold (Y, µ)
is called non-degenerate. In the light of this definition an admissible domain U
is called non-degenerate if (∂U, λcan|∂U) is a non-degenerate contact manifold. A
classical tool used to study admissible domains is symplectic homology, denoted by
SH∗(U ;α), for U ∈ CM and α a homotopy class of free loops in M. Assuming U is
non-degenerate, a filtered version of symplectic homology SHa

∗(U ;α), a > 0 can be
viewed as a persistence module which we denote by SH∗,α(U), see Subsection 4.3.1.
Multiplying the domain by C > 0 results in the proportional scaling of the filtration,
that is SHCa

∗ (CU ;α) = SHa
∗(U ;α) for all a > 0. In accordance with Definition 4.1.4

we introduce the logarithmic version of SH∗(U ;α),

St∗(U ;α) = SHet

∗ (U ;α), t ∈ R,

which satisfies St+lnC
∗ (CU ;α) = St∗(U ;α). The resulting persistence module is denoted

by S∗,α(U). We are able to estimate dRBM and dSBM from below using the associated
barcodes, namely the following stability property holds.
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Theorem 4.1.7. For U, V ∈ CM non-degenerate, denote the barcodes of S∗,α(U) and
S∗,α(V ) by B∗,α(U) and B∗,α(V ) respectively. Then

dbottle(B∗,α(U),B∗,α(V )) ≤ dSBM(U, V ).

In particular, when U = U∗g1M and V = U∗g2M , it follows from (4.1) that

2 · dbottle(B∗,α(U),B∗,α(V )) ≤ dRBM(g1, g2).

Precise definitions and a proof of this theorem are given in Section 4.3. Different
versions of Theorem 4.1.7 for star-shaped domains in R2n can be found in [120] and
[148].

Remark 4.1.8. (Alternative definition) One may give a definition of symplectic
Banach-Mazur distance different from Definition 4.1.4 as follows.

Definition 4.1.9. Let U, V ∈ CM and

ρ(U, V ) = inf

®
lnC ∈ [0,∞)

∣∣∣∣ ∃ 1
C
U

φ
↪−→ V

ψ
↪−→ CU

s.t. ψ ◦ φ is strongly unknotted

´
.

We define d′SBM(U, V ) = max{ρ(U, V ), ρ(V, U)}.

One may prove that d′SBM defines a pseudo-metric on CM in a similar way to the
proof of Proposition 4.2.1. However, in order to prove the stability of dbottle with
respect to d′SBM , i.e. an analogue of Theorem 4.1.7, one needs a stronger version
of the classical isometry theorem for barcodes which was communicated to us by M.
Usher, [149]. Quantities ρ and d′SBM can be considered analogous to δf and df defined
in [148], as explained in Subsection 1.2 of [148].

Remark 4.1.10. Throughout this chapter, we assume that the base manifold M is
orientable. This is done in order to simplify considerations regarding the grading
in symplectic homology, see Subsection 4.3.1. It seems likely that, using the results
from [156], one may apply similar arguments and obtain analogous results in the
non-orientable case.

Remark 4.1.11. All the persistence modules considered in this chapter are defined
using conventions which guarantee that all the intervals in the corresponding barcodes
have left endpoints closed and right endpoints open. In other words, all the bars are
either equal to (−∞,+∞) or of the form [a, b) for a < b ≤ +∞ with finite a.Moreover,
we sometimes use the set of parameters t ∈ R+ = (0,+∞) instead of t ∈ R in the
definition of our persistence modules. This difference is non-essential because the
two sets of parameters can be related by an order-preserving bijection, for example
ln : R+ → R.
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4.1.2 Large-scale geometry of the space of Riemannian metrics

Recall that a map Φ : (X1, d1) → (X2, d2) between two (pseudo-)metric spaces is
called quasi-isometric embedding if there exist constants A ≥ 1, B ≥ 0 s.t.

1

A
d1(x, y)−B ≤ d2(Φ(x),Φ(y)) ≤ Ad1(x, y) +B,

for all x, y ∈ X1.

From a general perspective, given a (pseudo-)metric space (X, d), we wish to ask
the following questions with the flavor of large-scale geometry.

(A) What is the diameter of (X, d)?

(B) If diam (X, d) = +∞, how many unbounded linearly independent directions
are there in X? More precisely, for which N does there exist a quasi-isometric
embedding of RN into (X, d)?

Our goal is to give partial answer to these questions for the space of admissible
domains in T ∗M , i.e. when (X, d) = (CM , dSBM). In the case of Hofer’s metric,
i.e. (X, d) = (Ham(M,ω), dHofer), these questions have been studied and partially
answered using advanced tools from symplectic topology (see, for instance, [115] and
[147]).

Before we state the main results we wish to point out that without imposing
additional assumptions on spaces (CM , dSBM) and (GM , dSBM) it is easy to see that
both of their diameters are infinite. This follows from the fact that dSBM satisfies
dSBM(U,CU) = lnC for any U ∈ CM and C ≥ 1. Indeed, for any C ≥ 1 it readily
follows that dSBM(U,CU) ≤ lnC simply by taking φ and ψ in the definition of dSBM
to be inclusions. On the other hand, if there would exist some C ′ < C such that
U/C ′ ↪→ CU ↪→ C ′U , the second embedding would contradict preservation of volume
and hence dSBM(U,CU) = lnC. Thus, in order to make question (A) meaningful we
must introduce certain normalizations. To this end we define

C̄M = {admissible domains U in T ∗M s.t. Vol(U) = Vn} ,

where Vol(U) =
∫
U

(dλcan)∧n

n!
=
∫
U

(ωcan)∧n

n!
and Vn denotes the volume of the n-dimensional

unit ball. Similarly, we define

ḠM = {Riemannian metrics g on M s.t. Volg(M) = 1 and diam(M, g) ≤ 100}.

Note that when U = U∗gM , one has Vol(U) = Vn ·Volg(M) and hence we may include
ḠM in C̄M via the map g → U∗gM. Slightly abusing the notation we write ḠM ⊂ C̄M .

Remark 4.1.12. We also wish to explain the restriction that we put on the diameter
of (M, g). Assume that g2 � C2g1, for a constant C ≥ 1. Now, for every smooth curve
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γ in M it holds that Lg2(γ) ≤ C ·Lg1(γ), Lgi denoting the length with respect to gi, and
thus diam(M, g2) ≤ C ·diam(M, g1). If diam(M, g1) is fixed and diam(M, g2)→ +∞,
we see that C → +∞ and since diam(M, g2) = diam(M,φ∗g2) for all diffeomorphisms
φ, we have that dRBM(g1, g2)→ +∞. This means that if there was no restriction on
the diameter of (M, g), the space (GM , dRBM) would trivially have infinite diameter
even if we fix the volume of M .

The following theorem is the main result of the chapter.

Theorem 4.1.13. If M = S2, then there exists a quasi-isometric embedding

Φ : ([0,∞), | · |)→ (ḠM , dSBM).

If M = Σ is a closed, orientable surface whose genus is at least 1, then for every
N ∈ N there exists a quasi-isometric embedding

Φ : (RN , | · |∞)→ (ḠM , dSBM).

Both statements remain true if we replace dSBM by dRBM .

Since ḠM ⊂ C̄M we immediately obtain the following.

Corollary 4.1.14 (Theorem 1.3.2). If M = S2, then there exists a quasi-isometric
embedding

Φ : ([0,∞), | · |)→ (C̄M , dSBM).

If M = Σ is a closed, orientable surface whose genus is at least 1 then for every
N ∈ N there exists a quasi-isometric embedding

Φ : (RN , | · |∞)→ (C̄M , dSBM).

Corollary 4.1.14 readily implies that if M is any closed, orientable surface it
holds diam(C̄M , dSBM) = +∞, which answers question (A). However, regarding
question (B), we observe a sharp contrast between cases of a sphere and of higher
genus surfaces. Indeed, when M = Σ is a closed, orientable surface of positive
genus, Corollary 4.1.14 proves the existence of many unbounded directions inside
(C̄M , dSBM), namely there exist N unbounded directions inside (C̄M , dSBM) for any
N ∈ N. On the other hand when M = S2 it provides only one unbounded direction.
This contrast ultimately comes from the fact that π1(S2) = 0 while π1(Σ) 6= 0.
Nevertheless, we pose the following conjecture.

Conjecture 4.1.15. For every N ∈ N, there exists a quasi-isometric embedding

Φ : (RN , | · |∞)→ (C̄S2 , dSBM).

We break down the proof of Theorem 4.1.13 into the following two propositions.
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Proposition 4.1.16. For any ε > 0, there exists a map Φ : [0,∞) → ḠS2 such that
for any x, y ∈ [0,∞),

|x− y| − ε ≤ 2dSBM(U∗Φ(x)M,U∗Φ(y)M) ≤ dRBM(Φ(x),Φ(y)) ≤ 2|x− y|+ ε. (4.2)

Proposition 4.1.17. Let Σ be a closed, orientable surface of genus at least 1. Then
for any N ∈ N and any ε > 0, there exists a map Φ : RN → ḠΣ such that for all
~x, ~y ∈ RN

1

4
· |~x− ~y|∞ − ε ≤ 2dSBM(U∗Φ(~x)M,U∗Φ(~y)M) ≤ dRBM(Φ(~x),Φ(~y)) ≤ 4N · |~x− ~y|∞ + ε.

The lower bounds are the most significant parts of Propositions 4.1.16 and 4.1.17.
Their proofs use the technique of barcodes and occupy the entire Section 4.5. The
upper bounds in both theorems are proven simultaneously in Subsection 4.6.3.

In order to construct quasi-isometric embeddings Φ as above, we consider geometric
models which we call bulked spheres and multi-bulked surfaces. A bulked sphere is a
surfaces of revolution. Roughly speaking, it is obtained as a connected sum of two
spheres through a very narrow “neck” as shown in Figure 4.8. We analyze closed
geodesics on a bulked sphere in Section 4.6. More precisely, in Subsection 4.6.1 we
analyze the shortest non-constant closed geodesic, coming from the connecting neck,
and its iterates, while in Subsection 4.6.2 we analyze the rest of the closed geodesics.
By shrinking the neck we produce the desired direction going to infinity in terms of
dSBM . On the other hand, a multi-bulked surface is a closed, orientable surface of
genus at least one which has a part that looks like a connected sum of N + 1 spheres
through N “narrow necks”, see Figure 4.10. By shrinking different necks, we obtain
different unbounded directions. The behaviour of closed geodesics in a multi-bulked
surface is also discussed in Subsections 4.6.1 and 4.6.2. Finally, in order to exclude
multiple covers of the same loop from our considerations, we work with symplectic
homology in the non-trivial class of loops α. This explains the significance of the
condition on the genus of Σ, since every loop in S2 is contractible.

Remark 4.1.18. A theorem similar to Theorem 4.1.13 was proven by M. Usher
in [148] in the context of star-shaped domains in Cn. Even though the general set-
up is similar, the constructions of the quasi-isometric embeddings as well as the
arguments used in the proofs of these two results are fundamentally different.

4.1.3 Applications to the study of closed geodesics

If g is bumpy, homologies H∗(Lλα(M);Z2) form a persistence module with parameter
λ ∈ R, which we denote by H∗,α(M, g) (here the homology of the empty set is taken
to be zero). Structure maps

ιλ,η : H∗(Lλα(M);Z2)→ H∗(Lηα(M);Z2)
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for λ ≤ η are given by the inclusions {γ |Eg(γ) ≤ λ} ⊂ {γ |Eg(γ) ≤ η}. Now, Morse-
Bott theory of Eg implies that the endpoints of bars in the barcode B(H∗,α(M, g))
are equal to energies of certain closed geodesics. This allows us to use persistence
modules to study closed geodesics, namely, in Subsection 4.7.2, we prove the following
result.

Theorem 4.1.19 (Theorem 1.3.4). Let g1, g2 be two bumpy metrics on a closed,
orientable manifold M such that 1

C1
g1 � g2 � C2g1. If there exists a bar [x, y) ∈

B(H∗,α(M, g1)) such that y
x
> C1C2 then there exist closed geodesics γ1 and γ2 of

(M, g2) in homotopy class α, whose energies satisfy

1

C1

x ≤ Eg2(γ1) ≤ C2x,
1

C1

y ≤ Eg2(γ2) ≤ C2y,

and furthermore [Eg2(γ1), Eg2(γ2)) ∈ B(H∗,α(M, g2)).

In the case of an infinite bar [x,+∞) ∈ B(H∗,α(M, g1)), there exists a closed
geodesic γ1 of g2 such that

1

C1

x ≤ Eg2(γ1) ≤ C2x,

and we have that [Eg2(γ1),+∞) ∈ B(H∗,α(M, g2)).

Remark 4.1.20. Infinite rays in B(H∗,α(M, g)), i.e. bars of the form [x,+∞), have
transparent meaning. Indeed, the total number of left endpoints of such bars below
any λ ∈ R equals to rank(H∗(Lλα(M);Z2) → H∗(Lα(M);Z2)). On the other hand,
finite bars in B(H∗,α(M, g)) are a meaningful invariant from the viewpoint of Gromov’s
quantitative homotopy theory, see [73]. Namely, Gromov considered the following
question:

For l > 0 define f(l) as the minimal L such that every closed contractible curve of
length ≤ l can be contracted to a point by a homotopy passing through closed curves
of length ≤ L. Can one estimate f(l)?

The same question can be posed by replacing the length by the Lipschitz constant
or the energy. A connection between this question and the barcode of H0,[pt](M, g)
was, to the best of our knowledge, first observed in [159], see also [160, Section 4]. As
noted in [159, 160], a bar [x, y) ∈ B(H0,[pt](M, g)) signifies the fact that there exists
a closed geodesic of energy x such that every homotopy connecting this geodesic to
a curve of energy less than x must pass through a curve of energy at least y. For a
detailed study of similar ideas see [74,158,160] and references therein.

In [145], for a fixed Finsler metric F, the quantity l(F ) was introduced as the length
of the shortest non-constant and “homologically visible” closed geodesic γ0. Assume
that F comes from a Riemannian bumpy metric g and denote by Lg the length with

respect to g. Since γ0 has constant speed we have Eg(γ0) = Lg(γ0)2

2
= (l(F ))2

2
. In the
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language of barcodes (l(F ))2

2
is equal to the smallest non-zero endpoint of an infinite

bar in B(H∗,α(M, g)), where smallest means smallest among all such endpoints for all
α. Now Theorem 4.1.19 implies the following.

Corollary 4.1.21 (Theorem 1.10 in [145] - Bumpy metric case1). Let g1, g2 be
two bumpy metrics on a closed, orientable manifold M such that g2 � g1. Then
l(g2) ≤ l(g1) and in particular there exists a non-constant “homologically visible”
closed geodesic γ of g2 such that Lg2(γ) ≤ l(g1).

Proof. Since M is compact, there exists C1 such that 1
C1
g1 � g2 � g1. For some α we

have that ï
l(g1)2

2
,+∞

ã
∈ B(H∗,α(M, g1)),

and thus Theorem 4.1.19 implies that there exists a “homologically visible” closed
geodesic γ of g2 such that

1√
C1

l(g1) ≤ Lg2(γ) ≤ l(g1),

which finishes the proof.

Remark 4.1.22. In view of Corollary 4.1.21, Theorem 4.1.19 may be considered a
quantitative version of Theorem 1.10 in [145] (in the case of bumpy metrics on an
orientable manifold). Indeed, it provides estimates for the energies (or equivalently
lengths) of the closed geodesics in terms of constants C1 and C2 which are used to
measure the discrepancy between g1 and g2. Another benefit of our method is that
it allows us to study “homologically invisible” closed geodesics, i.e. finite bars in
B(H∗,α(M, g)).

Let us illustrate the appearance of finite bars in B(H∗,α(M, g)) on a concrete
example of metrics of revolution on T2.

Example 4.1.23. Let A > 0, f : [−A,A]→ (0,+∞) a smooth, even function, strictly
increasing on [−A, 0] and hence strictly decreasing on [0, A] with unique maximum
at 0 and two minima at ±A. Moreover, assume that f extends 2A-periodically to a
smooth function on R and let g be a Riemannian metric on T2 = R/2AZ × R/2πZ
induced by an embedding into R3 given by

(x, θ)→ (x, f(x) cos θ, f(x) sin θ).

Define a change of variable X(x) =
∫ x

0

√
1 + (f ′(t))2dt, x ∈ [−A,A] and denote

by T =
∫ A

0

√
1 + (f ′(t))2, so that X ∈ [−T, T ]. In X variable we denote F (X) =

f(x(X)).

In Subsection 4.8.3 we give a detailed analysis of the geodesic flow of g. In
particular, this analysis shows that parallel circles X = ±T and X = 0 (i.e. x = ±A
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X−T 0 T

γ̌

γ̂

γ̌

Figure 4.1. Metric of revolution on T2

and x = 0) are closed geodesics which we denote by γ̌ and γ̂ respectively, see Figure
4.1.

Let α be the homotopy class of loops γ̌ and γ̂ oriented in the direction in which θ-
coordinate increases. The function F which we wish to consider is defined2 on [−1, 1]
as a C0-small smoothing of 1√

kX2+m
for k,m > 0,

√
k < m. Namely in Subsection

4.8.3 we prove the following:

Lemma 4.1.24. Let k,m > 0,
√
k < m. For small enough ε > 0 there exists

Fε : [−1, 1] → (0,+∞) as above such that Fε(X) = 1√
kX2+m

for X ∈ [−1 + ε, 1 − ε]
and there are no closed geodesics of metric g induced by Fε in class α other than γ̌
and γ̂. Moreover, γ̌ and γ̂ are non-degenerate and ind γ̌ = 0, ind γ̂ = 1. Furthermore,

Fε
C0

−→ 1√
kX2+m

as ε→ 0.

Using Lemma 4.1.24 we may compute the whole barcode B(H∗,α(T2, g)). To this
end, first note that

H∗(Lα(T2);Z2) =


Z2, ∗ = 0, 2

Z2 ⊕ Z2, ∗ = 1

0, otherwise

(4.3)

Indeed, using the group action of T2 on L(T2) one proves that L(T2) ∼= T2×ΩT2, ΩT2

being the based loop space of T2, and hence Lα(T2) ' T2. For another computation
of H∗(Lα(T2);Z2), using symplectic homology, see Section 5 in [24] .

1A version of this corollary can be traced back to Birkhoff.
2In principal, one should define f in order to define g, however, in this case one may show that

f is implicitly defined by F as explained in Subsection 4.8.3.
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In order to compute B(H∗,α(T2, g)) we use filtered (by λ ∈ R) Morse-Bott chain
complex3 CMBλ

∗,α(Eg), described in detail in Subsection 4.4.1. Since γ̌ is non-
degenerate, it contributes two generators to CMBλ

∗,α(Eg), one in degree ind γ̌ = 0,

the other in degree ind γ̌+ 1 = 1, both on filtration level Emin = Eg(γ̌) = 2π2

k+m
+ o(ε).

Similarly, γ̂ contributes two generators to CMBλ
∗,α(Eg), one in degree 1, the other in

degree 2, both on filtration level Emax = Eg(γ̂) = 2π2

m
. The general rules for computing

the barcode of HMBλ
∗,α(Eg) = H∗(Lλα(M);Z2) are the following (see Lemma 2.1.10

for the case of Morse functions or [150] for a much more general version of this
procedure):

Each generator corresponds to an endpoint of a bar equal to it’s filtration level.
Moreover, the generator in degree d corresponds either to a left endpoint of a bar in
B(Hd,α(M, g)) or to a right endpoint of a bar in B(Hd−1,α(M, g)). All infinite bars are
of the form [·,+∞) and they correspond to linearly independent homology classes in
H∗(Lα(M);Z2). Hence, the number of infinite bars is equal to the total dimension of
H∗(Lα(M);Z2).

In our case, in particular, there are 4 infinite bars in B(H∗,α(T2, g)) by (4.3). Since
there are only 4 generators of CMBλ

∗,α(Eg) each of them contributes an infinite bar
or in other words we have

B(H∗,α(T2, g)) =


{[Emin,+∞)}, ∗ = 0

{[Emin,+∞), [Emax,+∞)}, ∗ = 1

{[Emax,+∞)}, ∗ = 2

(4.4)

Let us now define for each n ∈ N a metric of revolution gn, on T2 = R/2nZ×R/2πZ
by stacking n copies of a profile function F next to each other, see Figure 4.2.

γ̌1

γ̂1

γ̌2

γ̂2

γ̌n

γ̂n

γ̌1

X0 1 2 3 4 2n− 2 2n− 1 2n

Figure 4.2. Metric of revolution gn on T2

Same analysis as in the proof of Lemma 4.1.24 shows that γ̌i, γ̂i, i = 1, . . . , n are
the only closed geodesics of gn in class α as well as that they are non-degenerate and

3Here we omit the auxiliary height function h on S1 from the notation.
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ind γ̌i = 0, ind γ̂i = 1 for all i. Similarly to the previous situation, we conclude that in
filtered Morse-Bott chain complex CMBλ

∗,α(Egn) on filtration level Emin there are n
generators in degree 0 and n generators in degree 1 coming from γ̌i. On the other hand,
on filtration level Emax there are n generators in degree 1 and n generators in degree 2
coming from γ̂i. From (4.3) we know that one of degree-0 generators contributes a bar
[Emin,+∞), one of degree-2 generators contributes a bar [Emax,+∞), and there are
two more infinite bars coming from degree-1 generators. Hence, the remaining 4n− 4
generators correspond to endpoints of finite bars, i.e. there are 2n − 2 finite bars in
B(H∗,α(T2, gn)) , n−1 of them in B(H0,α(T2, gn)) and n−1 of them in B(H1,α(T2, gn)).
Since differential ∂CMB strictly lowers filtration, there are no degenerate bars, meaning
bars of length zero, in B(H∗,α(T2, gn)). Thus all finite bars are equal to [Emin, Emax)
and it readily follows that

B(H∗,α(T2, gn)) =


{[Emin,+∞), [Emin, Emax)× (n− 1)}, ∗ = 0

{[Emin,+∞), [Emax,+∞), [Emin, Emax)× (n− 1)}, ∗ = 1

{[Emax,+∞)}, ∗ = 2
(4.5)

Remark 4.1.25. One may define a “non-symmetric” version of dRBM in the following
way. We say that g1, g2 are (C1, C2)-equivalent if there exists a diffeomorphism φ ∈
Diff0(M) such that C1g1 � φ∗g2 � C2g1. Define equivalence-distance dEQ on GM by

dEQ(g1, g2) = inf

ß
ln
C2

C1

∣∣∣∣ there exist C2 ≥ C1 > 0 such that

(g1, g2) are (C1, C2)-equivalent

™
.

One readily checks that dEQ(g1, g2) ≥ 0, dEQ(g1, g2) = dEQ(g2, g1) and dEQ(g1, g2) +
dEQ(g2, g3) ≥ dEQ(g1, g3). On the other hand, if for some φ ∈ Diff0(M) it holds
φ∗g2 = Cg1 then dEQ(g1, g2) = 0. It follows from the definitions that

dEQ(g1, g2) ≤ 2dRBM(g1, g2).

Finally, we wish to mention that by taking C1 = C2 in Theorem 4.1.19, we obtain
Corollary 4.1.26 given below. This corollary also has a direct proof using stability of
barcodes, i.e. Theorem 4.1.7, which we present in Section 4.7.

Corollary 4.1.26. Let M be a closed, orientable manifold, α a homotopy class of free
loops in M , g1 a bumpy metric on M and suppose that [a2/2, b2/2) ∈ B(H∗,α(M, g1))
for some 0 < a < b. For any bumpy metric g2 on M , such that 0 ≤ dRBM(g1, g2) <
ln(b/a), there exist non-constant closed geodesics γ1, γ2 of g2 in homotopy class α such
that

max

ß∣∣∣∣lnÅEg2(γ1)

a2/2

ã∣∣∣∣ , ∣∣∣∣lnÅEg2(γ2)

b2/2

ã∣∣∣∣™ ≤ dRBM(g1, g2).
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In the case of an infinite bar [a2/2,+∞) ∈ B(H∗,α(M, g1)), there exists a “homologically
visible” closed geodesic γ1 of g2 which satisfies∣∣∣∣lnÅEg2(γ1)

a2/2

ã∣∣∣∣ ≤ dRBM(g1, g2).

4.2 Basic properties of dSBM and dRBM

4.2.1 Symplectic Banach-Mazur distance

Symplectic Banach-Mazur distance dSBM is defined in [120] in the setting of general
Liouville manifolds and it is proven to be a pseudo-metric. Our case of admissible
domains in the cotangent bundle is a special case of this situation. For completeness,
we include the proof of the following proposition

Proposition 4.2.1. dSBM defines a pseudo-metric on CM .

We start the proof with a lemma.

Lemma 4.2.2. Let 1
C
U

φ
↪−→ V

ψ
↪−→ CU , U, V ∈ CM , C > 1 be π̃1-trivial Liouville

embeddings such that ψ◦φ is strongly unknotted. Then for any D > 1 and embeddings

1

CD
U

φ(D−1)
↪−−−−→ V

ψ(D)
↪−−→ CDU,

ψ(D) ◦ φ(D−1) is strongly unknotted

Proof. For t ∈ [0, 1] consider the following maps

1

C(1 + (D − 1)t)
U

φ((1+(D−1)t)−1)
↪−−−−−−−−−−→ V

ψ(1+(D−1)t)
↪−−−−−−−→ C(1 + (D − 1)t)U. (4.6)

Since D − 1 > 0 we have that C(1 + (D − 1)t) ≥ C and hence

1

CD
U ⊂ 1

C(1 + (D − 1)t)
U, C(1 + (D − 1)t)U ⊂ CDU.

Composing (4.6) with these inclusions, we get

1

CD
U

ψ(1+(D−1)t)◦φ((1+(D−1)t)−1)
↪−−−−−−−−−−−−−−−−−−→ CDU,

Denoting

βt = ψ(1 + (D − 1)t) ◦ φ((1 + (D − 1)t)−1), βt :
1

CD
U ↪→ CDU,
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we get β0 = ψ ◦ φ| 1
CD

U , β1 = ψ(D) ◦ φ(D−1). Since ψ ◦ φ is strongly unknotted, there

exists αt : 1
C
U ↪→ CU such that α0 = i 1

C
U , α1 = ψ ◦ φ. Restricting αt to 1

CD
U and

composing with the inclusion CU
i
↪−→ CDU, we get that α′t = i ◦ (αt| 1

CD
U) satisfies

α′0 = i 1
CD

U , α
′
1 = β0. Concatenation of α′ and β gives the desired isotopy.

Proof. (Proof of Proposition 4.2.1) It readily follows that dSBM(U,U) = 0 by taking
C = 1, φ = ψ = 1U in the definition of dSBM .

To prove symmetry and triangle inequality we need the following two properties

which can be proven by direct calculations. If U
φ
↪−→ V

ψ
↪−→ W and C,D > 0 then

(∗) (φ ◦ ψ)(C) = φ(C) ◦ ψ(C),

(∗∗) (φ(C))(D) = φ(CD).

Now, if U/C
φ
↪−→ V

ψ
↪−→ CU, V/C

ψ(C−1)
↪−−−−→ U

φ(C)
↪−−→ CV, are such that ψ ◦ φ and

φ(C) ◦ ψ(C−1) are strongly unknotted, (∗) implies that so are

1

C
V

ψ(C−1)
↪−−−−→ U

φ(C)
↪−−→ CV,

1

C
U

φ(C)(C−1)
↪−−−−−−→ V

ψ(C−1)(C)
↪−−−−−−→ CU.

This proves that dSBM(U, V ) = dSBM(V, U).

Thus, we are left to prove the triangle inequality. Given U/C
φ
↪−→ V

ψ
↪−→ CU

and V/D
θ
↪−→ W

ξ
↪−→ DV with strongly unknotted compositions, we claim that the

composition of the following maps

1

CD
U

φ(D−1)
↪−−−−→ 1

D
V

θ
↪−→ W

ξ
↪−→ DV

ψ(D)
↪−−→ CDU

is also strongly unknotted. Indeed, denote by αt : 1
D
V ↪→ DV the isotopy such that

α0 = i 1
D
V , α1 = ξ ◦ θ, given by the unknottedness of ξ ◦ θ and by βt : 1

CD
U ↪→ CDU

the isotopy such that β0 = i 1
CD

U , β1 = ψ(D) ◦ φ(D−1), given by the unknottedness of

ψ ◦ φ and Lemma 4.2.2. Now, the isotopy γt : 1
CD
U ↪→ CDU given by

γt =

ß
β2t for 0 ≤ t ≤ 1/2

ψ(D) ◦ α2t−1 ◦ φ(D−1) for 1/2 ≤ t ≤ 1

satisfies γ0 = i 1
CD

U , γ1 = ψ(D) ◦ ξ ◦ θ ◦ ψ(D−1) which proves the claim.

This way, we proved that the composition of maps

1

CD
U

θ◦φ(D−1)
↪−−−−−→ W

ψ(D)◦ξ
↪−−−−→ CDU

is strongly unknotted. What is left is to prove that the composition of maps

1

CD
W

(ψ(D)◦ξ)((CD)−1)
↪−−−−−−−−−−→ U

(θ◦φ(D−1))(CD)
↪−−−−−−−−−→ CDW (4.7)
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is strongly unknotted. Using (∗) and (∗∗), we reformulate (4.7) as

1

CD
W

(ξ(D−1))(C−1)
↪−−−−−−−−→ 1

C
V

ψ(C−1)
↪−−−−→ U

φ(C)
↪−−→ CV

(θ(D))(C)
↪−−−−−→ CDW.

Now the same construction of the isotopy as the one we used for γ applies, only

starting from W/D
ξ(D−1)
↪−−−−→ V

θ(D)
↪−−→ DW and W/C

ψ(C−1)
↪−−−−→ V

φ(C)
↪−−→ CW.

Remark 4.2.3. Note that dSBM is not a genuine metric. Indeed if U, V ∈ CM are
exactly symplectomorphic via a π̃1-trivial map, i.e. there exists a diffeomorphism
φ : U → V such that 1-form φ∗λcan − λcan is exact and φ∗ = 1π̃1(M), we have

U
φ
↪−→ V

φ−1

↪−−→ U and V
φ−1

↪−−→ U
φ
↪−→ V

and thus dSBM(U, V ) = 0. This is, for example, the case when V = φ(U) and
φ ∈ Hamc(T

∗M).

Remark 4.2.4. Using (∗) and (∗∗) one easily checks that for all C > 0 and all
U, V ∈ CM it holds dSBM(CU,CV ) = dSBM(U, V ) as well as dSBM(U,CU) = lnC.

4.2.2 Riemannian Banach-Mazur distance

We begin with the following statement

Proposition 4.2.5. dRBM defines a pseudo-metric on GM .

Proof. By taking C = 1 and φ = 1M one readily concludes that dRBM(g, g) = 0. On
the other hand, for φ ∈ Diff0 (M) and C ≥ 1, we have that (1/C)g1 � φ∗g2 � Cg1 if
and only if

1

C
g2 � (φ−1)∗g1 � Cg2.

This implies dRBM(g1, g2) = dRBM(g2, g1).

Finally, for φ1, φ2 ∈ Diff0 (M) and C,D ≥ 1, the relations (1/C)g1 � φ∗1g2 � Cg1

and (1/D)g2 � φ∗2g3 � Dg2 imply

1

CD
g1 �

1

D
(φ∗1g2) � φ∗1(φ∗2g3) � D(φ∗1g2) � CDg1.

Setting φ = φ2 ◦ φ1 gives dRBM(g1, g3) ≤ lnC + lnD and thus taking infimum over C
and D gives dRBM(g1, g3) ≤ dRBM(g1, g2) + dRBM(g2, g3).

Remark 4.2.6. Similarly to dSBM , dRBM is also not a genuine metric. Indeed, if
there exists some φ ∈ Diff0 (M) such that g1 = φ∗g2, taking C = 1 we have

g1 � φ∗g2 = g1 � g1.

This implies dRBM(g1, g2) = 0.
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Remark 4.2.7. One readily checks that it holds dRBM(Cg1, Cg2) = dRBM(g1, g2) as
well as dRBM(g1, Cg1) = lnC for all C > 0 and all g1, g2 ∈ GM .

As we saw in Example 4.1.3, GM can be identified with a subset of CM via inclusion
g(∈ GM) 7→ U∗gM(∈ CM). Therefore, it makes sense to compare dSBM with dRBM on
GM and we have

Proposition 4.2.8. Let M be a closed, orientable manifold and g1, g2 ∈ GM . Then

2 · dSBM(U∗g1M,U∗g2M) ≤ dRBM(g1, g2).

Proof. For any ε > 0, there exists some C2 > 1 and φ ∈ Diff0 (M) such that ln(C2) ≤
dRBM(g1, g2) + ε and (1/C2)g1 � φ∗g2 � C2g1. Since B1(g2) ⊂ B1(g1) if g1 � g2 we
have that

U∗1
C2 g1

M ⊂ U∗φ∗g2M ⊂ U∗C2g1
M. (4.8)

One also readily checks that U∗1
C2 g1

M = 1
C
U∗g1M and U∗C2g1

M = CU∗g1M .

On the other hand, φ ∈ Diff0 (M) lifts to a symplectomorphism φ# of T ∗M , given
by φ#(p, ξ) = (φ(p), (φ−1

φ(p))
∗ξ). Since φ is isotopic to 1M , the lift φ# is isotopic to

1T ∗M and in particular, φ# acts trivially on π̃1(M). Moreover, one may check that
φ# is exact as well as that φ#(U∗φ∗gM) = U∗gM. Therefore (4.8) can be rewritten as

1

C
U∗g1M ⊂ (φ−1)#(U∗g2M) ⊂ CU∗g1M

which implies

1

C
U∗g1M

(φ#)| 1
C
U∗g1M

↪−−−−−−−→ U∗g2M
(φ−1)#|U∗g2M
↪−−−−−−−→ CU∗g1M.

The above maps are π̃1-trivial Liouville embeddings and their composition is the
inclusion, thus strongly unknotted. We are left to check that the composition

1

C
U∗g2M

(φ−1)#|U∗g2M
(C−1)

↪−−−−−−−−−−−→ U∗g1M
(φ#)| 1

C
U∗g1M

(C)

↪−−−−−−−−−→ CU∗g2M.

is strongly unknotted. This follows from the fact that φ#(C) = φ# for all φ ∈
Diff0(M) and all C ≥ 1.

Therefore, by the definition of dSBM , we obtain

dSBM(U∗g1M,U∗g2M) ≤ lnC ≤ 1

2
dRBM(g1, g2) +

ε

2
.

Since the inequality holds for every ε > 0, the conclusion follows.

Remark 4.2.9. Recall that, for C ≥ 1, a homeomorphism φ : (X, dX) → (Y, dY )
between two metric spaces is called C-bi-Lipschitz if it holds

1

C
dX(x, y) ≤ dY (φ(x), φ(y)) ≤ CdX(x, y),
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for every two x, y ∈ X. The Lipschitz distance (see [27]) between two bi-Lipschitz
homeomorphic metric spaces (X, dX) and (Y, dY ) is defined as

dLip(X, Y ) = inf{lnC ∈ [0,+∞) | ∃φ : (X, dX)→ (Y, dY ), φ is C-bi-Lipschitz}.

The following lemma shows a connection between dRBM and dLip.

Lemma 4.2.10. Let g1, g2 be two Riemannian metrics on a closed manifold M and
let φ ∈ Diff(M). Then

1

C2
g2 � φ∗g2 � C2g1 ⇔ φ : (M, g1)→ (M, g2) is C-bi-Lipschitz.

Proof. We will prove the two directions separately.
⇒: Let x, y ∈ M and let γ : [0, 1] → M be a curve s.t. γ(0) = x, γ(1) = y. We
estimate

Lg2(φ ◦ γ) =

∫ 1

0

‖γ̇(t)‖φ∗g2dt ≤ C

∫ 1

0

‖γ̇(t)‖g1dt = CLg1(γ).

Taking infimum over γ yields dg2(φ(x), φ(y)) ≤ Cdg1(x, y). Inequality 1
C
dg1(x, y) ≤

dg2(φ(x), φ(y)) is proven similarly.
⇐: Take any x ∈M and v ∈ TxM. Let U 3 x be a convex normal neighborhood of x
with respect to g1 and V 3 φ(x) a convex normal neighborhood of φ(x) with respect
to g2. Let γ : (−ε, ε)→ U be a curve such that γ(0) = x, γ̇(0) = v and im(φ ◦ γ) ⊂ V.
Since U and V are convex and normal it holds

dg1(x, γ(t)) = ‖(expg1x )−1(γ(t))‖g1 ,

as well as

dg2(φ(x), φ ◦ γ(t)) = ‖(expg2φ(x))
−1(φ ◦ γ(t))‖g2 .

Thus, from the bi-Lipschitz condition we have that

1

C
‖(expg1x )−1(γ(t))‖g1 ≤ ‖(exp

g2
φ(x))

−1(φ ◦ γ(t))‖g2 ≤ C‖(expg1x )−1(γ(t))‖g1 .

Restricting to t > 0 and dividing all inequalities by t gives us

1

C

∥∥∥∥(expg1x )−1(γ(t))

t

∥∥∥∥
g1

≤
∥∥∥∥(expg2φ(x))

−1(φ ◦ γ(t))

t

∥∥∥∥
g2

≤ C

∥∥∥∥(expg1x )−1(γ(t))

t

∥∥∥∥
g1

.

Taking limt→0+ we get that

1

C

∥∥∥ d
dt

∣∣∣
t=0

(expg1x )−1(γ(t))
∥∥∥
g1
≤
∥∥∥ d
dt

∣∣∣
t=0

(expg2φ(x))
−1(φ ◦ γ(t))

∥∥∥
g2

≤ C
∥∥∥ d
dt

∣∣∣
t=0

(expg1x )−1(γ(t))
∥∥∥
g1
.
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Since exp∗(0) = 1 it follows that

1

C
‖γ̇(0)‖g1 ≤ ‖φ∗(γ̇(0))‖g2 ≤ C‖γ̇(0)‖g1 ,

i.e.
1

C
‖v‖g1 ≤ ‖v‖φ∗g2 ≤ C‖v‖g1 ,

which completes the proof.

One might modify the definition of the Lipschitz distance by considering only bi-
Lipschitz homeomrphisms which are homotopic to the identity. Denote the distance
defined in this way by dLip0 . In light of the above lemma, the definitions of dRBM(g1, g2)
resembles that of dLip0((M, g1), (M, g2)) (up to a factor of two), the difference being
in the choice of diffeomorphisms versus bi-Lipschitz homeomorphisms. It would be
interesting to compare dRBM and dLip0 .

4.3 Symplectic homology as a persistence module

4.3.1 Background on symplectic homology

Symplectic homology has been developed in the 90’s by the work of many people,
see [59, 60, 36, 37, 152]. There exist different versions of the theory, depending on the
class of manifolds and admissible Hamiltonians which are considered. We will use the
version developed in [24] and [157] (with different signs from [24]).

Throughout this chapter, all Floer homologies as well as symplectic homology are
taken with Z2-coefficients. As a result all persistence modules will also be persistence
modules over Z2.

We start by briefly recalling the setup of [24] and [157]. For a fixed homotopy
class α of free loops in M , consider the following space

Lα(T ∗M) =
¶
z : S1 → T ∗M | z = (x, y), x : S1 →M s.t. [x] = α and y(t) ∈ T ∗x(t)M

©
.

Recall that (T ∗M,ωcan = dλcan) is a symplectic manifold and given a Hamiltonian
function H : R/Z × T ∗M → R we may define its Hamiltonian vector field XH by
iXHωcan = −dH. The collection of all Hamiltonian 1-periodic orbits of H in Lα(T ∗M)
is denoted by P(H;α). Recall also that the symplectic action functional AH is given
by

AH(z) =

∫ 1

0

Ht(z(t))dt−
∫
S1

z∗λcan,

for any loop z : S1 = R/Z→ T ∗M. The action spectrum of H in class α is

Spec(H;α) = {AH(z) | z ∈ P(H;α)}.
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Since T ∗M is not compact, in order to define Floer homology, we need to impose
certain restrictions on the Hamiltonian H. The standard assumption in this situation
is that H is linear4 outside a compact subset of T ∗M. For simplicity, in this section
we only consider compactly supported Hamiltonians, i.e. linear outside of a compact
set with slope equal to zero, as this class of Hamiltonians suffices to define symplectic
homology. However, in the proof of Theorem 4.4.6 we will need to work with non-zero
slopes and we will review the relevant setup in Subsection 4.4.2.

Now, to a given compactly supported Hamiltonian H : R/Z× T ∗M → R, a class
α of free loops in M and real numbers a < b not belonging to Spec(H;α) (and also
0 /∈ [a, b] if α = [pt]) we associate Hamiltonian Floer homology in action window

[a, b) denoted by HF
[a,b)
∗ (H)α. This is homology of a Floer chain complex generated

by elements of P(H;α) with action in [a, b) (see [24,157] for details).

Grading on Floer chain complex is defined using the Lagrangian distribution of
vertical subspaces T vT ∗M ⊂ TT ∗M given by T vxT

∗M = ker dπ(x) where π : T ∗M →
M is projection. Namely, let z ∈ P(H;α) and let Φ : S1 × R2n → z∗(TT ∗M) be a
symplectic trivialization such that Φt(0×Rn) = T vz(t)T

∗M for all t ∈ S1. The existence
of such a trivialization follows from orientability of z∗(T vT ∗M) (which follows from
orientability of M), see, for example, Lemma 1.2 in [2]. Now, if φHt is the Hamiltonian
flow of H, φHt (z(0)) = z(t), we have a path of symplectic matrices

P (t) = Φ−1
t ◦ dφHt (z(0)) ◦ Φ0, t ∈ [0, 1],

and we define indHF (z) = indCZ(P ), where indCZ stands for the Conley-Zehnder
index. It is easy to check that indHF (z) does not depend on the choice of Φ as above,
see Lemma 1.3 in [2]. Moreover, our conventions for the Conley-Zehnder index are
chosen in such a way that isomorphism in Theorem 4.4.6 preserves grading, see [156,2]
and references therein.

Remark 4.3.1. The definition of Floer homology also includes an auxiliary choice of
an almost complex structure. Since HF

[a,b)
∗ (H)α does not depend on this choice, we

omit it from the notation. We should also mention that one first defines HF
[a,b)
∗ (H)α

for Hamiltonians H whose periodic orbits are non-degenerate. Floer homology of a
general Hamiltonian H as above is then defined, roughly speaking, as HF

[a,b)
∗ (H ′)α,

where H ′ is a C∞-small perturbation of H whose periodic orbits are non-degenerate.

We now focus on defining symplectic homology of an admissible domain U ∈ CM .
Denote byHU the set of all functions on S1×T ∗M compactly supported in S1×Int(U).
Given a < b (with a, b possibly being ±∞), let

HU,a,b = {H ∈ HU | a, b /∈ Spec(H;α) and 0 /∈ [a, b] if α = [pt]}
4Linearity of H in this context can be understood as Ht(x, y) = β‖y‖g∗ + β′ for some β, β′ ∈ R

and a fixed Riemannian metric g on M. More generally, if (U, λ) is a Liouville domain, linearity is

understood as linearity with respect to the radial coordinate in the completion of (U, λ) and the

previously described linearity corresponds to the case (U, λ) = (U∗gM,λcan).
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If b = +∞, we denote HU,a,+∞ by HU,a.

Define a partial order on HU,a,b as follow. For H1, H2 ∈ HU,a,b, H1 � H2 if and
only if H1(t, z) ≥ H2(t, z) for all (t, z) ∈ S1×U. If H1 � H2 then there exists a smooth
homotopy τ → Hτ from H1 to H2 such that ∂τHτ ≤ 0. We call such a homotopy
monotone. Every monotone homotopy induces a Z2-linear continuation map

σ12 : HF [a,b)
∗ (H1)α → HF [a,b)

∗ (H2)α.

Moreover, the map σ12 does not depend on the choice of the monotone homotopy.
In general, σ12 may not be an isomorphism. However if there exists a monotone
homotopy τ → Hτ such that Hτ ∈ HU,a,b for every τ , then σ12 is an isomorphism,
see Proposition 4.5.1 in [24]. Such a monotone homotopy is called action-regular.
For a detailed treatment of maps induced by monotone homotopies, see [24,157] and
references therein. We will need the following statement (see, for example, Lemma
2.7 in [157]).

Lemma 4.3.2. Let U ∈ CM . For any three functions H1, H2 and H3 in HU,a,b with
H1 � H2 � H3, the induced maps on Hamiltonian Floer homologies in action window
[a, b) satisfy σ13 = σ23 ◦ σ12.

Note that Lemma 4.3.2 together with the fact that continuation map is independent
of the choice of the monotone homotopy implies that if H1 � H2 � H3 and H1 �
H4 � H3, Hi ∈ HU,a,b, the following diagram commutes

HF
[a,b)
∗ (H2)α

σ23 // HF
[a,b)
∗ (H3)α

HF
[a,b)
∗ (H1)α σ14

//

σ12

OO

HF
[a,b)
∗ (H4)α.

σ43

OO
(4.9)

We will use this in the proof of Theorem 4.4.6.

Now notice that (HU,a,b,�) is a downward directed partially ordered system, i.e. for
any H2, H3 ∈ HU,a,b, there exists some H1 ∈ HU,a,b such that H1 � H2 and H1 � H3.

Lemma 4.3.2 implies that Floer homologies HF
[a,b)
∗ (H)α, H ∈ HU,a,b together with

continuation maps σ12 : HF
[a,b)
∗ (H1)α → HF

[a,b)
∗ (H2)α for H1 � H2, define an inverse

system of Z2-vector spaces over (HU,a,b,�). Thus we can take the inverse limit of such
an inverse system, which leads to the definition of symplectic homology. For a general
background on inverse system and inverse limit, see subsection 4.6 in [24].

As we mentioned in the introduction, if U ∈ CM then (∂U, λcan|∂U) is a contact
manifold. We denote by Spec(∂U) the set of periods of all periodic Reeb orbits of
(∂U, λcan|∂U). Recall that U is called non-degenerate if all periodic Reeb orbits of
(∂U, λcan|∂U) are non-degenerate. In this case for every T > 0 there are finitely many
Reeb orbits of period less than T and in particular Spec(∂U) is discrete.
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Definition 4.3.3. For a homotopy class α of free loops in M , U ∈ CM non-degenerate
and a > 0, a /∈ Spec(∂U) define the filtered symplectic homology of U by

SHa
∗(U ;α) = lim←−

H∈HU,a

HF [a,∞)
∗ (H)α.

The symplectic persistence module of U in class α is given by the collection of data

SH∗,α(U) =
{
{SHa

∗(U ;α)}a∈R>0 ; {ιa,b : SHa
∗(U ;α)→ SHb

∗(U ;α)}a≤b}
}

with ιa,b being induced from corresponding filtered Hamiltonian Floer homologies.

There are two points which we wish to clarify regarding Definition 4.3.3. Firstly,
if 0 < a ≤ b and H ∈ HU,a ∩ HU,b the map ιHa,b : HF

[a,+∞)
∗ (H)α → HF

[b,+∞)
∗ (H)α

is induced by the inclusion of Floer chain complexes5. This map commutes with
continuation maps and hence induces a map ιa,b : SHa

∗(U ;α) → SHb
∗(U ;α) for a, b /∈

Spec(∂U).

Secondly, we only defined SHa
∗(U ;α) for a /∈ Spec(∂U). However, due to non-

degeneracy of U we may extend the definition of SHa
∗(U ;α) to all a > 0 by asking

for all the bars in the barcode of SH∗,α(U) to have left endpoints closed and right
endpoints open. Indeed, one may show that for each b > 0, b /∈ Spec(∂U), SHb

∗(U ;α)
is a finite dimensional Z2-vector space as well as that if [b, c]∩Spec(∂U) = ∅ then ιb,c is
an isomorphism, see Remark 4.4.5 for the case of unit codisc bundles. Since Spec(∂U)
is discrete, for every a ∈ Spec(∂U) there exists ε > 0 such that [a− ε, a+ ε] contains
no other points from Spec(∂U). Now, we define SHa

∗(U ;α) by asking for ιa,a+ε to be
an isomorphism, or, more formally, by setting SHa

∗(U ;α) = lim←−
t∈(a,a+ε]

(SHt
∗(U ;α), ι). An

interested reader may check that all the bars in the barcode of a symplectic persistence
module defined this way have endpoints in Spec(∂U), each point in Spec(∂U) is
an endpoint of finitely many bars and all bars have left endpoints closed and right
endpoints open.

We are mainly interested in the functorial properties of filtered symplectic homology,
which are expressed by the following proposition.

Proposition 4.3.4. Let U, V,W ∈ CM be non-degenerate.

(1) If U
φ
↪−→ V (recall that this means there exists a π̃1-trivial Liouville embedding

from U to V ), then there exists a persistence module morphism hφ : SH∗,α(V )→
SH∗,α(U). Moreover, if U

φ
↪−→ V

ψ
↪−→ W , the following diagram commutes

SH∗,α(W )
hψ //

hψ◦φ
44

SH∗,α(V )
hφ // SH∗,α(U) .

5Here we think of a Floer chain complex CF[a,+∞)
∗ (H,α) as a quotient CF[a,+∞)

∗ (H,α) =

CF(−∞,+∞)
∗ (H,α)/CF(−∞,a)

∗ (H,α).
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(2) For C, a > 0, there exists a canonical persistence module isomorphism rC :
SHa
∗(U ;α)

'−→ SHCa
∗ (CU ;α). These ismorphisms satisfy (rC)−1 = r 1

C
for all

C > 0. Moreover for C ≥ 1, we have a commutative diagram

SHCa
∗ (CU ;α)

hCai ((

SHa
∗(U ;α)

ι
SH∗,α(U)

a,Ca
ww

'
rCoo

SHCa
∗ (U ;α)

where hCai is the persistence module morphism induced by inclusion U
i
↪−→ CU

and ι
SH∗,α(U)
a,Ca is the structure map of the persistence module SH∗,α(U).

Similarly, for C ≤ 1, we have the commutative diagram

SHCa
∗ (CU ;α) SHa

∗(U ;α)'
rCoo

SHCa
∗ (U ;α)

hCai

hh

ι
SH∗,α(U)

Ca,a

77

where hCai is the persistence module morphism induced by inclusion CU
i
↪−→ U

and ι
SH∗,α(U)
Ca,a is the structure map of the persistence module SH∗,α(U).

(3) If φ : U → V is a π̃1-trivial Liouville embedding, then for any positive C and a,
it holds hCaφ(C) ◦ rC = rC ◦ haφ. In other words, the following diagram commutes:

SHa
∗(V ;α)

haφ //

rC '
��

SHa
∗(U ;α)

rC'
��

SHCa
∗ (CV ;α)

hCa
φ(C)

// SHCa
∗ (CU ;α)

(4) Let U ⊂ V and suppose a Liouville embedding φ : U → V is isotopic to inclusion
iU through Liouville embeddings, i.e. strongly unknotted. Then hφ = hiU .

The proof of Proposition 4.3.4 can be derived from Definition 4.3.3 and is left to
an interested reader. The proof is analogous to the proof in the case of star-shaped
domains which is treated in [120]. The main difference between the two cases is in
the way the grading is defined. Indeed, in the case of star-shaped domains this is
done using a symplectic trivialization of the tangent bundle over a disc capping the
orbit, while, as explained above, we use the vertical Lagrangian distribution. Hence,
we should prove that in our case hf preserves grading. We do this in the lemma that
follows.

Lemma 4.3.5. Let M be a closed, orientable manifold, U, V ∈ CM non-degenerate
domains and let f : U → V be a π̃1-trivial Liouville embedding. Then hf preserves
grading.
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Proof. For H ∈ HU , denote by f∗H ∈ HV the extension by zero of H ◦ f−1. Recall
from [120] that hf is induced by the map f∗ between Floer chain complexes of H
and f∗H. This map sends a periodic orbit z ∈ P(H;α) to a periodic orbit f ◦ z ∈
P(f∗H;α). Hence, we need to prove that indHF (z) = indHF (f ◦z) where both indices
are calculated using the vertical Lagrangian distribution. To this end, let Φ : S1 ×
R2n → z∗(TT ∗M),Ψ : S1×R2n → (f ◦ z)∗(TT ∗M) be symplectic trivializations such
that for all t ∈ S1 it holds

Φt(0× Rn) = T vz(t)T
∗M, Ψt(0× Rn) = T vf(z(t))T

∗M.

By definition
indHF (z) = indCZ(Φ−1

t ◦ dφHt (z(0)) ◦ Φ0),

as well as
indHF (f ◦ z) = indCZ(Ψ−1

t ◦ dφ
f∗H
t (f(z(0))) ◦Ψ0).

Since f is a symplectic embedding, we have that dφHt = (df)−1 ◦ dφf∗Ht ◦ df and thus

indHF (z) = indCZ(Φ−1
t ◦ (df)−1 ◦ dφf∗Ht ◦ df ◦ Φ0)

= indCZ(Φ−1
t ◦ (df)−1 ◦Ψt ◦Ψ−1

t ◦ dφ
f∗H
t ◦Ψ0 ◦Ψ−1

0 ◦ df ◦ Φ0)

= indCZ(θ(t) ◦ Φ−1
0 ◦ (df)−1 ◦Ψ0 ◦Ψ−1

t ◦ dφ
f∗H
t ◦Ψ0 ◦Ψ−1

0 ◦ df ◦ Φ0),

where θ(t) = Φ−1
t ◦ (df)−1 ◦ Ψt ◦ Ψ−1

0 ◦ df ◦ Φ0 is a loop of symplectic matrices. One
readily checks that θ(0) = θ(1) = 1 and hence, using loop and naturality properties
of the Conley-Zehnder index, we have that

indHF (z) = indCZ(Φ−1
0 ◦ (df)−1 ◦Ψ0 ◦Ψ−1

t ◦ dφ
f∗H
t ◦Ψ0 ◦Ψ−1

0 ◦ df ◦ Φ0) + 2µ(θ)

= indCZ(Ψ−1
t ◦ dφ

f∗H
t ◦Ψ0) + 2µ(θ)

= indHF (f ◦ z) + 2µ(θ),

where µ denotes the Maslov index. Thus, our goal is to show that µ(θ) = 0.

Fix a Lagrangian subspace V0 ⊂ R2n given by V0 = Φ−1
0 ((df)−1(T vf(z(0))T

∗M)).
Loop θ induces a loop of Lagrangian subspaces Λ(t) = θ(t)V0 and from properties of
Φ and Ψ it follows that Λ(t) = Φ−1

t ((df)−1(T vf(z(t))T
∗M)). Let G : [0, 1]× S1 → U be

a homotopy such that G0(t) = z(t), G1(t) = z̄(t) for z̄ : S1 →M ⊂ U (such G exists
because U is fiberwise star-shaped). Let Φ̃ : [0, 1] × S1 × R2n → G∗(TT ∗M) be a
symplectic trivialization such that for all t ∈ S1, Φ̃0,t = Φt and for all s ∈ [0, 1], t ∈ S1

it holds6 Φ̃s,t(0 × Rn) = T vG(s,t)T
∗M. Denote by Φ̄t = Φ̃1,t : S1 × R2n → z̄∗(TT ∗M).

Now, Φ̃−1
s,t ((df)−1(T vf(G(s,t))T

∗M)) provides a homotopy between loops Λ(t) and Λ̄(t) :=

Φ̄−1
t ((df)−1(T vf(z̄(t))T

∗M)) of Lagrangian subsapaces of R2n. Thus,

µ(θ) = µ(Λ) = µ(Λ̄) = µ(Φ̄−1
t ((df)−1(T vf(z̄(t))T

∗M)), 0× Rn)

= µ(Φ̄−1
t ((df)−1(T vf(z̄(t))T

∗M)), Φ̄−1
t (T vz̄(t)T

∗M)),

6The existence of such a trivialization Φ̃ follows from an argument similar to the proof of Lemma

1.7 in [2]. In [2], Φ̃1,t is predetermined and hence Φ̃s,t(0×Rn) = T vG(s,t)T
∗M only holds for s = 0, 1.

One may notice that this weaker condition would also be sufficient for our purposes.
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where µ(·, ·) denotes the relative Maslov index for the pair of Lagrangian paths,
see [126].

Now, notice that (df)−1(T vT ∗M) and T vT ∗M are Lagrangian subbundles of the
symplectic vector bundle TT ∗M over M and we may define their Maslov class,
µT vT ∗M,(df)−1(T vT ∗M) ∈ H1(M ;Z), see [14] for the definition and properties of the
Maslov class of a pair of Lagrangian subbundles. Moreover, it holds

µ(Φ̄−1
t ((df)−1(T vf(z̄(t))T

∗M)), Φ̄−1
t (T vz̄(t)T

∗M)) = µT vT ∗M,(df)−1(T vT ∗M)([z̄]). (4.10)

Since, T vT ∗M and TM are fiberwise transversal Lagrangian subbundels of TT ∗M ,
we have that µ(TM, T vT ∗M) = 0 and hence

µT vT ∗M,(df)−1(T vT ∗M) = µTM,T vT ∗M + µT vT ∗M,(df)−1(T vT ∗M) = µTM,(df)−1(T vT ∗M). (4.11)

Usind df to identify TT ∗M and f ∗(TT ∗M) as symplectic vector bundles over M, we
have that

µTM,(df)−1(T vT ∗M) = µTM,f∗(T vT ∗M) = µf , (4.12)

where µf denotes the Maslov classs of a Lagrangian immersion f : M → T ∗M. Since f
is actually an exact Lagrangian embedding, it follows from [86, Appendix E] that µf =
0 and we have µ(θ) = µf ([z̄]) = 0, which proves that indHF (z) = infHF (f ◦ z).

As explained in the introduction, in order to use standard (additive) parametrization
of persistence modules, we also consider a logarithmic version of SH∗,α(U).

Definition 4.3.6. For t ∈ R, let St∗(U ;α) = SHet

∗ (U ;α). Define a logarithmic version
of the symplectic persistence module associated to U ∈ CM as

S∗,α(U) =
{
{St∗,α(U)}t∈R; {ιs,t = ιSH

es,et : Ss∗(U ;α)→ St∗(U ;α)}s≤t
}
.

4.3.2 Proof of Theorem 4.1.7

Proof. The second inequality directly follows from the first one and Proposition 4.2.8.
Thus we will prove the first inequality. By Definition 4.1.4, for any ε > 0, there exists
C ≥ 1 with lnC ≤ dSBM(U, V ) + ε such that

(∗) U/C
φ
↪−→ V

ψ
↪−→ CU and ψ ◦ φ is strongly unknotted;

(∗∗) V/C
ψ(C−1)
↪−−−−→ U

φ(C)
↪−−→ CV and φ(C) ◦ ψ(C−1) is strongly unknotted.

Then, (1) and (4) in Proposition 4.3.4 together with (∗) imply for any positive
a, haφ ◦ haψ = haψ◦φ = hai where i is the inclusion i : U/C → CU. Moreover, (2) in
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Proposition 4.3.4 implies that the following diagram commutes

SHa
∗(CU ;α)

haψ //

ha
i′

$$

hai

44
SHa
∗(V ;α)

haφ // SHa
∗(U/C;α)

' rC

��
SH

a
C
∗ (U ;α)

ι
SH∗,α(U)

a/C,a

//

'rC

OO

SHa
∗(U ;α)

ι
SH∗,α(U)

a,Ca

//

ha
i′′

::

SHCa
∗ (U ;α)

(4.13)

where hi′ is induced by the inclusion i′ : U → CU and hi′′ is induced by the inclusion
i′′ : U/C → U . Now set

� Ψ := hψ ◦ rC where Ψa/C = haψ ◦ rC : SH
a
C
∗ (U ;α)→ SHa

∗(V ;α);

� Φ := rC ◦ hφ where Φa = rC ◦ haφ : SHa
∗(V ;α)→ SHCa(U ;α).

For any positive a, (4.13) implies

Φa ◦Ψa/C = (rC ◦ haφ) ◦ (haψ ◦ rC)

= rC ◦ hai′′ ◦ hai′ ◦ rC
= ι

SH∗,α(U)
a,Ca ◦ ιSH∗,α(U)

a/C,a = ι
SH∗,α(U)

a/C,Ca .

Similarly to (4.13) , (1), (2) and (4) in Proposition 4.3.4 together with (∗∗) give
a commutative diagram

SHa
∗(CV ;α)

ha
φ(C) //

ha
j′

$$

haj

44
SHa
∗(U ;α)

ha
ψ(C−1) // SHa

∗(V/C;α)

' rC

��
SH

a
C
∗ (V ;α)

ι
SH∗,α(V )

a/C,a

//

'rC

OO

SHa
∗(V ;α)

ι
SH∗,α(V )

a,Ca

//

ha
j′′

::

SHCa
∗ (V ;α)

(4.14)

where hj, hj′ and hj′′ are induced by the inclusions j : V/C → CV , j′ : V → CV and
j′′ : V/C → V respectively. Moreover, applied to Ψ and Φ which we defined above,
(3) in Proposition 4.3.4 gives

Φa/C = rC ◦ ha/Cφ = haφ(C) ◦ rC and Ψa = hCaψ ◦ rC = rC ◦ haψ(C−1).

Then commutative diagram (4.14) implies

Ψa ◦ Φa/C = (hCaψ ◦ rC) ◦ (rC ◦ ha/Cφ )

= rC ◦ haψ(C−1) ◦ haφ(C) ◦ rC
= rC ◦ haj′′ ◦ haj′ ◦ rC
= ι

SH∗,α(V )
a,Ca ◦ ιSH∗,α(V )

a/C,a = ι
SH∗,α(V )

a/C,Ca .
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Therefore, passing to the logarithmic version of symplectic persistence modules defined
in Definition 4.3.6, the existence of the pair (Φ,Ψ) implies that S∗,α(U) and S∗,α(V )
are (lnC)-interleaved. Hence, by the isometry theorem (Theorem 2.1.21),

dbottle(B∗,α(U),B∗,α(V )) = dinter(S∗,α(U),S∗,α(V )) ≤ lnC ≤ dSBM(U, V ) + ε.

We draw the conclusion by letting ε→ 0.

4.4 Filtered homology of the free loop space

In this section we review basic notions about the homology of the free loop space
filtered by energy and show how this filtered homology relates to symplectic homology
of the unit codisc bundle.

4.4.1 Morse-Bott perspective

Let (M, g) be a closed, orientable, Riemannian manifold, α a homotopy class of free
loops in M and Lα(M) the space of smooth loops in M in class α. Recall that

the energy functional Eg : Lα(M) → R is defined as Eg(γ) =
∫ 1

0

||γ̇||2g
2
dt for any

γ ∈ Lα(M). This functional is never Morse, but rather Morse-Bott in a generic
situation. In this subsection we briefly review some basic notions of Morse-Bott
homology in the context of Eg. Our exposition mostly follows Section 4 in [3], which
is based on [1] and [64]. For other treatments of this topic, see [84,101].

Let f : W → R be a smooth function on a Hilbert manifold W and assume that
Crit(f) consists of a disjoint union of closed submanifolds of W. Hessian, Hess(f)p,
at a point p ∈ Crit(f) is a bilinear form on TpW , and we have that TpCrit(f) ⊂
ker(Hess(f)p). Let N ⊂ Crit(f) be a connected component and p ∈ N a critical
point.

We define nullity of p to be equal to dim(ker(Hess(f)p))− 1 and index of p to be
the maximal dimension of a subspace of TpW on which Hess(f)p is negative definite.
Both index and nullity are constant along N and hence we may define index and
nullity of N as index and nullity of any point in N. N is said to be a non-degenerate
critical submanifold of f if ker(Hess(f)p) = TpCrit(f) for all p ∈ N or equivalently if
nullity of N equals dimN − 1.

We consider Eg as a functional on the space W 1,2(S1,M) ⊃ Lα(M) which is a
Hilbert manifold. Critical points of Eg are closed geodesics (this includes constant
loops too). By a closed geodesic, we mean a closed curve γ : S1 →M such that∇γ̇ γ̇ =
0. In particular, ||γ̇||2g = constant. Constant geodesics form a critical submanifold
diffeomorphic to M. This critical submanifold is always non-degenerate and has index
equal to 0 (see Proposition 2.4.6 in [84]). On the other hand, any non-constant
closed geodesic appears in an S1-family corresponding to reparameterizations. More
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precisely, if γ is a non-constant closed geodesic of constant speed, so is s · γ, s ∈ S1

given by (s · γ)(t) = γ(t + s). We say that a non-constant closed geodesic γ is non-
degenerate if S1 · γ is a non-degenerate critical submanifold, i.e. nullity of S1 · γ is
zero.

Definition 4.4.1 ( [6]). A metric g is called bumpy if all of its closed geodesics are
non-degenerate. One may check that this definition is equivalent to (U∗gM,λcan) being
a non-degenerate domain.

Remark 4.4.2. A generic Riemannian metric is bumpy, see [6, 9] for a precise
statement.

Remark 4.4.3. In certain cases index and nullity of a closed geodesic γ can be
computed in a more direct way by analyzing Poincare return map and Jacobi vector
fields along γ. We will make this precise in Section 4.6 and use it to carry out
calculations for the bulked spheres and multi-bulked surfaces.

If Crit(Eg) consists only of non-degenerate critical submanifolds Eg is called
Morse-Bott. For a bumpy g, Eg is Morse-Bott and one may use it to define Morse-
Bott homology. There are different approaches to constructing Morse-Bott homology
(see [78] and references therein for finite dimensional cases) and we focus on the one
described in [64] which uses moduli spaces of flow lines with cascades. Let g by a
bumpy metric and pick an auxiliary Morse function h on Crit(Eg), meaning Morse on
each connected component of Crit(Eg). If x ∈ Crit(h), it follows that x ∈ N, where
N ⊂ Crit(Eg) is a connected critical submanifold of Eg and we define total index of
x as

indEg ,h(x) = indEg(N) + indh(x),

where indEg(N) denotes the index of N as a critical submanifold and indh(x) denotes
the standard Morse index. Slightly abusing the notation, throughout this chapter we
will write just ind when it is clear what is the index in question. Morse-Bott k-th
chain group in homotopy class α is defined as

CMBk,α(Eg, h) = SpanZ2

(
{x ∈ Crit(h) | [x] = α, indEg ,h(x) = k}

)
.

In order to define the differential, we introduce moduli spaces of flow lines with
cascades. Fix two regular metrics7, one on W 1,2(S1,M), the other one on Crit(Eg)
and denote by ∇Eg and ∇h the gradient vector fields corresponding to these metrics.
For x, y ∈ Crit(h) let

Mcas
0 (x, y) = {u : R→ W 1,2(S1,M) | u̇ = −∇h(u), u(−∞) = x, u(+∞) = y}.

Note thatMcas
0 (x, y) can only be non-empty if x and y belong to the same connected

component of Crit(Eg). For k ≥ 1 define Mcas
k (x, y) as the set of pairs (u, t) where

u = (u1, . . . , uk) is a k-tuple of negative gradient flow lines ui : R→ W 1,2(S1,M),

u̇i = −∇Eg(ui),
7Regular means such that transversality is achieved in the definition of all the moduli spaces

which appear. Such choice of metrics is generic.
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and t = (t1, . . . , tk−1) a (k − 1)-tuple of non-negative numbers ti ≥ 0 such that

1. u1(−∞) ∈ W u(x), uk(+∞) ∈ W s(y), whereW u(x) andW s(y) denote respectively
unstable and stable manifolds of x and y with respect to the flow of −∇h.

2. For every 1 ≤ i ≤ k − 1 there exists a negative gradient flow line vi : R →
Crit(Eg), v̇i = −∇h(vi) such that

vi(0) = ui(+∞), vi(ti) = ui+1(−∞).

Now, R acts freely on each of ui by translations and thus Rk acts freely on
Mcas

k (x, y) and we denote

M̄cas
k (x, y) =Mcas

k (x, y)/Rk and M̄cas(x, y) =
⋃
k≥0

M̄cas
k (x, y).

Regularity of the choice of metrics implies that M̄cas(x, y) is a smooth manifold of
dimension indEg ,h(x)− indEg ,h(y)− 1. When indEg ,h(x) = indEg ,h(y) + 1 this manifold
is zero-dimensional and compact, i.e. it is a finite set of points, and we denote by
n(x, y) the number of points in M̄cas(x, y) modulo 2. The Morse-Bott differential
∂ : CMBk,α(Eg, h)→ CMBk−1,α(Eg, h), is given by

∂x =
∑

y,ind y=k−1

n(x, y)y.

It satisfies ∂2 = 0 and the resulting Morse-Bott homology does not depend on the
regular choices of two metrics, h or Eg. In fact, we have that

HMBk,α(Eg, h) ∼= Hk(Lα(M);Z2).

For our purposes it is essential to consider Morse-Bott chain complex together with
the filtration by energy, i.e., we define

CMBλ
k,α(Eg, h) = SpanZ2

(
{x ∈ Crit(h) | [x] = α, indEg ,h(x) = k,Eg(x) ≤ λ}

)
.

Since Eg decreases along the flow lines of −∇Eg, ∂ restricts to CMBλ
k,α(Eg, h) and

we may define filtered Morse-Bott homology HMBλ
k,α(Eg, h). In this case it holds

HMBλ
k,α(Eg, h) ∼= Hk(Lλα(M);Z2), (4.15)

and this isomorphism commutes with the maps induced from inclusions of sublevel
sets {Eg ≤ λ}.

If g is bumpy, then for all λ ≥ 0 there are finitely many critical submanifolds in the
sublevel {Eg ≤ λ} and hence CMBλ

k,α(Eg, h) is finitely generated (see Theorem 3.5
in [101] and references therein). This, together with (4.15) implies that the collection
of data

H∗,α(M, g) =

ß
{H∗(Lλα(M, g);Z2)}λ∈R>0 ;

{ιλ,η : H∗(Lλα(M, g);Z2)→ H∗(Lηα(M);Z2)}λ≤η

™
(4.16)
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forms a persistence module with Z2-coefficients, where ιλ,η are induced by inclusion
Lλα(M, g) ↪→ Lηα(M, g) when λ ≤ η. Moreover, since the endpoints of bars in the
barcode B(H∗,α(M, g)) come from generators of CMBλ

k,α(Eg, h), the barcode B(H∗,α(M, g))
has only finitely many endpoints of bars below every fixed λ ≥ 0. These endpoints
are equal to the energies of certain closed geodesics.

Remark 4.4.4. For isomorphism (4.15) to hold it is enough that all closed geodesics
of energy not greater than λ are non-degenerate. Indeed, one may apply the same
considerations as above directly to Lλα(M).

Let us sum up the important features of the above construction. Firstly, every
non-constant, non-degenerate closed geodesic gives rise to a critical submanifold of
Eg diffeomorphic to S1. There exists a function on S1 which has exactly 2 critical
points of Morse index 0 and 1 (for example the standard height function). By picking
the auxiliary function h to be equal to such a function on each of the S1-critical
submanifolds, we obtain that to each non-constant, non-degenerate closed geodesic γ
correspond two critical points of h whose total indices are equal to ind γ and ind γ+1.
In other words, γ produces two generators of the chain complex CMB∗,α(Eg, h), one
in degree ind γ and the other one in degree ind γ + 1. On the other hand, critical
submanifold of constant geodesics is diffeomorphic to M and has index equal to 0.
Hence it gives rise to critical points of h whose total indices are equal to their Morse
indices with respect to h. In other words, if we view h as a function on M, each
critical points of Morse index k produces a generator of CMBk,pt(Eg, h). Finally the
differential counts certain broken trajectories in LαM. Each broken trajectory can be
viewed as a tuple of maps from a cylinder to M connecting different closed geodesics.

4.4.2 The isomorphism with symplectic homology

In this subsection, we will elaborate a result which enables us to transfer computations
from symplectic homology to the homology of the loop space. It states that, under
certain parametrizations, filtered versions of these homologies are isomorphic as persistence
modules, see Theorem 4.4.6. We will use this result to describe the barcode of the
symplectic persistence module associated to the unit cotangent bundle of metrics
coming from our main geometric constructions, see Sections 4.5 and 4.6.

The isomorphism between symplectic homology or Floer homology of the cotangent
bundle and the homology of the loop space first appeared in [152]. Other versions of
this isomorphism, constructed using different methods, have appeared in [130,157,2,
4,5]. The version which fits our conventions is the one from [157] and we give a short
exposition of it below. Let us recall some notions first.

Given a closed, orientable, Riemannian manifold (M, g) and a homotopy class α
of free loops, denote the loop space of M in class α by Lα(M). We define the length
spectrum of g in class α, denoted by Λα, to be the set of lengths of all closed geodesics
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in class α. Recall that if g is bumpy there are finitely many closed geodesics below
any fixed energy level and hence Λα is discrete.

Remark 4.4.5. One may check that all the endpoints of all bars in B(SH∗(U∗gM ;α))
belong to Λα. Indeed, it is enough to check that

ιa,b : SHa
∗(U

∗
gM ;α)→ SHb

∗(U
∗
gM ;α)

is an isomorphism if 0 < a ≤ b are such that [a, b] ∩ Λα = ∅. To prove this one
considers a radially symmetric Hamiltonian H(ξ) = h(‖ξ‖g∗) for h : [0,+∞) → R.
If h is a decreasing function such that h|[0,1−ε] = C, and h|[1,+∞) = 0, taking C large
enough (namely C > b) and ε small enough one sees that there are no periodic orbits
of H in the action window [a, b]. This implies that

ιa,b : HF [a,∞)
∗ (H)α → HF [b,∞)

∗ (H)α

is an isomorphism and by taking C → +∞, ε→ 0 we get the desired conclusion. For
more details see [157].

Recall that
Lλα(M, g) = {γ ∈ Lα(M) |Eg(γ) ≤ λ}.

We have expained in (4.16), that if g is a bumpy metric then {H∗(Lλα(M, g);Z2)}λ∈R>0

form a persistence module H∗,α(M, g) such that B(H∗,α(M, g)) has finitely many
endpoints of bars below every fixed λ. Moreover the endpoints of bars in B(H∗,α(M, g))
are equal to energies of certain closed geodesics. We are now ready to state the result.

Theorem 4.4.6. ( [152,130,157,2,4,5]) Let (M, g) be a closed, orientable, Riemannian
manifold with bumpy metric g and α a homotopy class of free loops in M . There exists
a family of isomorphisms

Φa : SHa
∗(U

∗
gM ;α)→ H∗(La

2/2
α (M);Z2),

for a > 0, which commute with structure maps. In other words, under suitable
parameterizations, Φ is a persistence module isomorphism.

For every a ∈ R>0\Λα, the isomorphism Φa as in Theorem 4.4.6 has been constructed
in Theorem 3.1 in [157]. Our goal is to show that this Φ commutes with structure
maps and then to extend it to a persistence module isomorphism for all a ∈ R>0. For
reader’s convenience, let us review the construction of Φa from [157] first.

According to Definition 4.3.3, in order to study symplectic homology, we need
to understand the associated Hamiltonian Floer homologies. In Subsection 4.3.1
we explained how to associate Floer homology HF

[a,b)
∗ (H)α to H ∈ HU,a,b. In an

analogous fashion, instead of considering compactly supported Hamiltonians, one
may look at the sets

KU∗gM = {H : S1×T ∗M → R | ∃β > 0, β′ ∈ R s.t. Ht(ξ) = −β‖ξ‖g∗+β′ for ‖ξ‖g∗ ≥ 1},
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and

KU∗gM,a,b = {H ∈ KU∗gM | a, b /∈ Spec(H;α) and either β /∈ Λα or β′ /∈ [a, b]}.

Hamiltonians compactly supported inside U∗gM constitute the case β = β′ = 0 and
thus HU∗gM,a,b ⊂ KU∗gM,a,b. As in the compactly supported case if H1 � H2 one may
define a continuation map associated to a monotone homotopy (manifestly if H1 � H2

slopes satisfy −βH1 ≥ −βH2). Analogously, a monotone homotopy Hτ such that
Hτ ∈ KU∗gM,a,b for every τ is called action-regular. Continuation maps will have the
same properties as before, in particular the existence of an action-regular monotone
homotopy will imply that the corresponding continuation map is an isomorphism,
see [157] for more details.

We are now ready to define Φa. Fix a ∈ R>0\Λα and take a radially symmetric
Hamiltonian H ∈ HU∗gM , H(ξ) = h(‖ξ‖g∗) with h : [0,+∞)→ R such that h|[0,1−ε) =
C > a, h is decreasing and h|[1,+∞) = 0. Moreover consider a monotone homotopy,
shown in Figure 4.3, from H to a new Hamiltonian H̃a which we obtain by making
the “tail” of H linear with slope −a. More precisely, one sees that there are exactly

monotone homotopy

constant slope −a when r is large

a

r = ||ξ||g∗ r = ||ξ||g∗

y y

H H̃a

a

Figure 4.3. Monotone homotopy 1

two points r1, r2 ∈ [0, 1] for which h′(ri) = −a for i = 1, 2. If we label them by r1 ≤ r2

then h(r1) ≈ C and h(r2) ≈ 0. Up to a small smoothing at ‖ξ‖g∗ = r2, Hamiltonian
H̃a is equal to H for ‖ξ‖g∗ ∈ [0, r2] and is linear with slope −a for ‖ξ‖g∗ ∈ [r2,+∞).

The monotone homotopy from H to H̃a gives the isomorphism

ca : HF [a,∞)
∗ (H)α

'−→ HF [a,∞)
∗ (H̃a)α (4.17)

because no Hamiltonian 1-periodic orbit with action in the action window [a,∞)
appears during the homotopy, i.e. it is action-regular.

Moreover, we construct the third Hamiltonian, denoted by Ha, in the similar
fashion to the construction of H̃a. Namely, up to a small smoothing at ‖ξ‖g∗ = r1,
Ha coincides with H on the set ‖ξ‖g∗ ∈ [0, r1] and is linear with slope −a for ‖ξ‖g∗ ∈
[r1,+∞).
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Now, there exists another action-regular monotone homotopy from Ha to H̃a, see
Figure 4.4, which provides another isomorphism

sa : HF [a,∞)
∗ (Ha)α

'−→ HF [a,∞)
∗ (H̃a)α. (4.18)

r = ||ξ||g∗

y

H̃a

a

r = ||ξ||g∗

y

Ha

a

monotone homotopy

linear with slope −a

Figure 4.4. Monotone homotopy 2

Following [157], for a radially symmetric Hamiltonian function H = h(r), r =
||ξ||g∗ with h′′(r) ≤ 0, define for any λ ∈ R≥0,

C(H,λ) = λr∗ + h(r∗) where h′(r∗) = −λ, (4.19)

if such r∗ exists. Observe that C(H,λ) is the y-intercept of the line passing through
point (r∗, h(r∗)) with slope −λ. Since the Hamiltonian function Ha in Figure 4.4 is
concave with respect to r, value C(Ha, λ) is well-defined for all λ ∈ [0, a]. Now, the
advantage of considering Hamiltonian Ha is that it does not have any Hamiltonian
1-periodic orbit of action less than a. On the other hand, the maximal action of the
Hamiltonian 1-periodic orbit of Ha is less than C(Ha, a). Therefore, one gets the
following isomorphisms

HF (−∞,C(Ha,a))
∗ (Ha)α

iaHa−−→
'

HF (−∞,∞)
∗ (Ha)α

πaHa−−→
'

HF [a,∞)
∗ (Ha)α (4.20)

from the equality on the chain level. For more details regarding all the constructions
see Section 3 in [157].

Finally, Theorem 2.9 in [157] claims that there exists an isomorphism

ψaHa : HF (−∞,C(Ha,a))
∗ (Ha)α

'−→ H∗(La
2/2
α (M);Z2). (4.21)

Map ψaHa essentially comes from the main result in [130] which compares the symplectic
action functional with a certain energy functional on the loop space. Combining all
the above defined isomorphisms together, one obtains the following isomorphism,

ΦH,a : HF [a,∞)
∗ (H)α → H∗(La

2/2
α (M);Z2) (4.22)

where ΦH,a = ψaHa ◦ (iaHa)
−1 ◦ (πaHa)

−1 ◦ s−1
a ◦ ca. The desired isomorphism Φa is then

given by Φa = lim←−H∈HU∗gM
ΦH,a.
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Proof. (Proof of Theorem 4.4.6) It follows from the definitions that both persistence
modules SH∗,α(U∗gM) and H∗,α(M, g) are such that all the bars in their barcodes
have left endpoints closed and right endpoints open. Moreover, by Remark 4.4.5, the
endpoints of bars in the barcode of SH∗,α(U∗gM) belong to Λα and since g is bumpy,
for every fixed λ > 0, Λα ∩ [0, λ] is finite. Thus, it is enough to prove Theorem 4.4.6
for a ∈ R>0\Λα and afterwards extend Φa to a ∈ Λα by continuity.

From the definition of symplectic homology, it readily follows that for any a < b,
there exists a single H ∈ HU∗gM,{a,b} such that ιSHa,b : SHa

∗(U
∗
gM ;α) → SHb

∗(U
∗
gM ;α)

can be seen as

ιHFa,b : HF [a,∞)
∗ (H)α → HF [b,∞)

∗ (H)α.

The example of such H which we consider is a radially symmetric Hamiltonian, shown
in Figure 4.5, such that maxH ≥ b (thus also maxH ≥ a), H is equal to maxH for
‖ξ‖g∗ = r ≤ 1− ε with some small ε > 0 and is decreasing in r.

r = ||ξ||g∗11− ε

H

b

a

Figure 4.5. A radially symmetric Hamiltonian which computes symplectic homology

Using this H, we can carry out monotone homotopies as described above and
shown in Figure 4.3 and Figure 4.4 for both slopes a and b. This way, we obtain new
Hamiltonian functions H̃a, H̃b as well as Ha, Hb, see Figure 4.6. We claim that the
following diagram commutes.

HF
[a,∞)
∗ (H)α

ca

vv
c′b
��

ιHFa,b // HF
[b,∞)
∗ (H)α

cb
��

HF
[a,∞)
∗ (H̃a)α

c̃ //

s−1
a

��

HF
[a,∞)
∗ (H̃b)α

inc∗ // HF
[b,∞)
∗ (H̃b)α

s−1
b
��

HF
[a,∞)
∗ (Ha)α

sa

OO

c // HF
[a,∞)
∗ (Hb)α

inc∗ //

s′b

OO

HF
[b,∞)
∗ (Hb)α

sb

OO

Commutativity comes from the following arguments:
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H̃a

H̃b

slope is −b

slope is −a

a

b
Ha

Hb

slope is −b

slope is −a

b

a

Figure 4.6. New Hamiltonian functions coming from monotone homotopies

� In the upper-left triangle, c′b is induced from a monotone homotopy from H
to H̃b and c̃ is induced from a monotone homotopy from H̃a to H̃b. Because
H � H̃a � H̃b, c

′
b = c̃ ◦ ca comes from Lemma 4.3.2.

� In the lower-left rectangle, s′b is induced from a monotone homotopy from Hb

to H̃b and c is induced from a monotone homotopy from Ha to Hb. Because
Ha � H̃a � H̃b and Ha � Hb � H̃b, from (4.9) we get c̃ ◦ sa = s′b ◦ c, which
implies c̃ = s′b ◦ c ◦ s−1

a where s−1
a is the inverse of sa (sa is an isomorphism by

(4.18)).

� The upper-right rectangle trivially commutes because we may take monotone
homotopy inducing c′b to be the same as the monotone homotopy inducing cb
and hence the maps count the same Floer trajectories.

� The lower-right rectangle trivially commutes by the same reason as above, which
implies inc∗ = s−1

b ◦ inc∗ ◦ s′b.

Finally, we also claim that the following diagram commutes.

HF
[a,∞)
∗ (Ha)α

c //

(πaHa )−1

��

HF
[a,∞)
∗ (Hb)α

inc∗ // HF
[b,∞)
∗ (Hb)α

(πbHb
)−1

��

HF
(−∞,∞)
∗ (Ha)α

c //

πaHa

OO

(iaHa )−1

��

HF
(−∞,∞)
∗ (Hb)α

1 //

πaHb

OO

HF
(−∞,∞)
∗ (Hb)α

πbHb

OO

(ibHb
)−1

��

HF
(−∞,C(Ha,a))
∗ (Ha)α

c //

iaHa

OO

ψaHa **

HF
(−∞,C(Hb,a))
∗ (Hb)α

inc∗ //

iaHb

OO

ψaHb
��

HF
(−∞,C(Hb,b))
∗ (Hb)α

ibHb

OO

ψbHb
��

H∗(La
2/2
α (M))

ιH
a2/2,b2/2 // H∗(Lb

2/2
α (M))
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The only non-trivial commutativity is of the lower-left triangle and the lower-right
rectangle. The former comes from the second proposition of Theorem 2.9 in [157] while
the latter comes from the third proposition of Theorem 2.9 in [157]. Notice that maps
πaHa , i

a
Ha

and πbHb , i
b
Hb

are all isomorphisms by (4.20), but iaHb is not an isomorphism.
Denote by ιHa2/2,b2/2 the persistence structure map from filtration level a2/2 to filtration

level b2/2 of persistence module H∗,α(M, g). Using the definition of ΦH,a given by
(4.22) and the two commutative diagrams above we obtain ιHa2/2,b2/2◦ΦH,a = ΦH,b◦ιHFa,b ,
which finished the proof.

4.5 Proofs of Proposition 4.1.16 and Proposition

4.1.17 (lower bounds)

In this section, we prove lower bounds in Propositions 4.1.16 and 4.1.17. To this
end, we will describe two classes of Riemannian metrics which realize quasi-isometric
embeddings in Propositions 4.1.16 and 4.1.17. The first class of metrics will be defined
on S2 and metrics in this class will be called bulked sphere metrics on S2. The other
class will be defined on a closed, orientable surface Σ of genus at least 1, and metrics in
this class will be called multi-bulked metrics on Σ. The way we construct these metrics
enables us to precisely analyze closed geodesics and prove that they have various nice
properties, see Propositions 4.5.4 and 4.5.8. Then, using Theorem 4.4.6, we are able
to describe parts of the barcodes of the corresponding symplectic persistence modules.
Finally, the lower bounds in both Proposition 4.1.16 and Proposition 4.1.17 comes
from the stability property - Theorem 4.1.7 and a combinatorial result - Lemma 4.5.1,
which we will now prove.

4.5.1 A combinatorial lemma

The following combinatorial lemma says that a particular shape of barcodes can help
us get a lower bound on the bottleneck distance.

Lemma 4.5.1. Let B1 and B2 be two barcodes. Let a1 ≥ ... ≥ an be the n smallest left
endpoints of bars in B1 and denote by [a1, Ca1), ..., [an, Can) ∈ B1 the corresponding
bars. Similarly let b1 ≥ ... ≥ bn be the n smallest left endpoints of bars in B2 with
corresponding bars [b1, Cb1), ..., [bn, Cbn) ∈ B2. Assume that

min{Ca1 , ..., Can , Cb1 , ..., Cbn} > max{a1, b1}.

Then it holds
1

2
|~a−~b|∞ ≤ dbottle(B1,B2),

where ~a = (a1, ..., an) and ~b = (b1, ..., bn). The statement remains true if some of the
Cai or Cbj are equal to +∞.
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Proof. Let k be such that |~a−~b|∞ = |ak − bk| and assume without loss of generality
that ak ≤ bk. Further assume that there exists a δ-matching σ : B1 → B2. It is enough
to prove that 2δ ≥ bk − ak = |~a−~b|∞. We split the proof in three cases.

• Case 1 - One of the bars [ak, Cak), . . . , [an, Can) is erased.

Denote by l the index of the erased bar. Since al ≤ ak and Cal > b1 we have

2δ ≥ Cal − al ≥ Cal − ak > b1 − ak ≥ bk − ak.

• Case 2 - None of the bars [ak, Cak), . . . , [an, Can) are erased, but at least one of them
is matched with a bar different from [bk, Cbk), . . . , [bn, Cbn).

Let l, k ≤ l ≤ n be such that [al, Cal) is not matched with any of the bars
[bk, Cbk), . . . , [bn, Cbn) and let σ([al, Cal)) = [x, y). By the assumption of the theorem,
we have that x ≥ bk and hence

δ ≥ x− al ≥ bk − al ≥ bk − ak.

• Case 3 - Bars [ak, Cak), . . . , [an, Can) are all matched with bars [bk, Cbk), . . . , [bn, Cbn).

Let l, k ≤ l ≤ n be such that σ([al, Cal)) = [bk, Cbk). We have

δ ≥ bk − al ≥ bk − ak,

and the proof is finished.

4.5.2 Proof of Proposition 4.1.16

We start with the definition of a bulked sphere.

Definition 4.5.2. A bulked sphere S ⊂ R3 is a surface of revolution obtained by
rotating a profile function r : [−L,L]→ [0,∞) around axis l as shown in Figure 4.7.

−L Ll = −a l = al = 0

profile function r

Figure 4.7. Profile function of a bulked sphere S

We ask for r to satisfy the following properties.
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� r(l) is a smooth even function on (−L,L) and r(l) = 0 exactly at l = L and −L.

� r(l) has only three critical points at l = −a, 0, a and r attains global maximum
at l = a,−a and local minimum at l = 0.

� r′′(0) > 0.

Figure 4.8 shows a general picture of a bulked sphere. A bulked sphere metric g is a
metric on S2 induced from the standard metric on R3.

γ
−

γ+

γ0

Figure 4.8. A general picture of a bulked sphere

A parallel circle is a geodesic if and only if it passes through a local extremum. In
other words, we have three non-constant geodesic parallel circles of a bulked sphere
metric, which we denote by γ−, γ0 and γ+ as shown in Figure 4.8.

Lemma 4.5.3. For m ∈ N, denote by γm0 the m-times iteration of a closed geodesic
γ0 and by γ−m0 the m-times iteration of γ0 in the opposite direction. For every m ∈ N,
γ±m0 are non-degenerate and Ind(γ±m0 ) = 0.

The proof of Lemma 4.5.3 comes from a direct computation which we carry out
in Subsection 4.6.1. The following proposition is crucial for our proof of Proposition
4.1.16 (lower bound).

Proposition 4.5.4. Given any 0 < ε0 < 1, there exists a positive δ0 << 1 such
that for every x ∈ [0,∞), there exists a bulked sphere metric gx ∈ GS2 satisfying the
following properties.

(1) Closed geodesic γ0 has energy Egx(γ0) =
δ20
2
e−2x.

(2) Any closed geodesic γ of (S2, gx) different from γ±m0 , m ∈ N has energy Egx(γ) >
δ20
2

.

(3) There exists a constant Rx ∈
î»

1
1+ε0

,
»

1
1−ε0

ó
such that Rx · gx ∈ ḠS2.
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Part (2) of Proposition 4.5.4 is proven in Subsection 4.6.2. Roughly speaking, it
comes from a fact that every closed geodesic γ different from γ±m0 has to exit the
“narrow neck” and enter the two “spherical regions”, i.e. regions where l /∈ [−a, a].
By making these regions sufficiently large we get that the length of γ must be large
compared to the length of γ0. Finally, in order to prove (1) and (3) in Proposition
4.5.4, we need an explicit parametrization of S, see Subsection 4.8.1 in the Appendix.

Remark 4.5.5. Metrics gx in Proposition 4.5.4 are not bumpy8 due to the existence of
a rotational symmetry. However, they can be perturbed, by a C∞-small perturbation,
to a bumpy metric which still satisfies all the properties from Lemma 4.5.3 and
Proposition 4.5.4 (up to a small difference in logarithms of energies), see [9]. Since
C∞-small perturbations create small differences in dSBM , we ignore this point in the
proof that follows, for the sake of clarity.

We are now ready to give a proof of the lower bound in Proposition 4.1.16.

Proof. (Proof of Proposition 4.1.16 (lower bound)) Define Φ̃ : [0,∞)→ GS2 as Φ̃(x) =
gx where gx is the metric given by Propostion 4.5.4.

Recall that
Lλpt(S2, gx) = {γ ∈ Lpt(S2) |Egx(γ) ≤ λ}.

and also that H∗,pt(S2, gx) denotes the persistence module given by Hλ
∗,pt(S

2, gx) =
H∗(Lλpt(S2, gx);Z2), structure maps being induced by inclusions of sublevel sets. Our
goal is to describe the barcode B(H∗,pt(S2, gx)). By Proposition 4.5.4 all closed geodesics

of energy ≤ δ20
2

are iterations of γ0 and they are all non-degenerate. Thus, we may
use Morse-Bott techniques described in Subsection 4.4.1, namely the identity (4.15),
see also Remark 4.4.4.

As explained in Subsection 4.4.1, constant geodesics will produce two generators
p0 ∈ CMB0,pt(Eg, h) and p2 ∈ CMB2,pt(Eg, h) corresponding to two critical points
of a height function on S2. On the other hand, by Lemma 4.5.3, every γ±m0 satisfies
Ind(γ±m0 ) = 0 and hence every γ±m0 produces two generators p0

±m ∈ CMB0,pt(Eg, h)
and p1

±m ∈ CMB1,pt(Eg, h). These two generators correspond to minimum and maximum
of a height function on S1-critical submanifold S1 · γ±m0 .

Furthermore Egx(p0) = Egx(p2) = 0 while

Egx(p
0
±m) = Egx(p

1
±m) = mEgx(γ0) = m · δ

2
0

2
e−2x.

The boundary operator does not increase energy and thus we have that

∂p1
1 = n(p1

1, p0)p0 + n(p1
1, p

0
1)p0

1 + n(p1
1, p

0
−1)p0

−1,

where n(p1
1, p0) equals the number of flow lines with cascades connecting p1

1 to p0,

and same for n(p1
1, p

0
1), n(p1

1, p
0
−1), see Subsection 4.4.1. Since p1

1 and p0
1 belong to

8They may be thought of as ”bumpy below energy level
δ20
2 ”.
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the same S1-critical submanifold we have that n(p1
1, p

0
1) = 2 = 0 mod 2. On the

other hand, p1
1 and p0

−1 have the same energy, but belong to different S1-critical
submanifolds, which implies that there are no flow lines with cascades connecting
them, i.e. n(p1

1, p
0
−1) = 0. Finally, as the global minimum, p0 represents the homology

class of a point which is not zero, i.e. ∂p1
1 6= p0 and we conclude that ∂p1

1 = 0. The
same argument shows that ∂p1

−1 = 0. Thus, we may schematically present boundary
relations with the following diagram.

index 1 p1
−1, p

1
1

NOT

xx

NOT
��

p1
−2, p

1
2 . . .

index 0 p0 p0
−1, p

0
1 p0

−2, p
0
2 . . .

energy λ0 = 0 λ1 =
δ20
2
e−2x λ2 = δ2

0e
−2x . . . .

Since γ±m0 do not produce any critical points of index 2, (2) in Proposition 4.5.4

guarantees that [p1
−1], [p1

1] ∈ H1(Lλpt(S2, gx);Z2) are non-zero for all λ ≤ δ20
2
. In other

words B(H1,pt(S
2, gx)) contains a bar [Egx(γ0), Cx) with Cx ≥ δ20

2
(in fact it contains

two such bars). Moreover Egx(γ0) is the smallest left endpoint in B(H1,pt(S
2, gx)).

Recall that B1,pt(U
∗
gxS

2) denotes the barcode of a symplectic persistence module
with logarithmic parametrization in degree one and homotopy class of a point. Theorem
4.4.6 implies that[

ln
»

2Egx(γ0), ln
√

2Cx

)
=
î
ln δ0 − x, ln

√
2Cx

ä
∈ B1,pt(U

∗
gxS

2).

By (2) in Proposition 4.5.4 we also have that ln
√

2Cx ≥ ln δ0 − y for any y ≥ 0.
Hence, for any x, y ∈ [0,∞) Lemma 4.5.1 gives

1

2
|x− y| ≤ dbottle(B1,pt(U

∗
gxS

2),B1,pt(U
∗
gyS

2)),

which together with Theorem 4.1.7 implies 1
2
|x− y| ≤ dSBM(U∗gxS

2, U∗gyS
2).

Now define the desired embedding Φ : [0,∞)→ ḠS2 by

Φ(x) = Rx · Φ̃(x) = Rx · gx,
where Rx is the rescaling factor given by (3) in Proposition 4.5.4. From Remark 4.2.4
it follows that

dSBM(U∗Φ(x)S
2, U∗Φ(y)S

2) = dSBM(
√
RxU

∗
gxS

2,
√
RyU

∗
gyS

2)

= dSBM(
»
Rx/RyU

∗
gxS

2, U∗gyS
2)

≥ dSBM(U∗gxS
2, U∗gyS

2)− dSBM(U∗gxS
2,
»
Rx/RyU

∗
gxS

2)

= dSBM(U∗gxS
2, U∗gyS

2)− 1

2
| lnRx − lnRy|

≥ 1

2
|x− y| − 1

2
| lnRx − lnRy|.
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For any ε > 0, take ε0 = e2ε−1
e2ε+1

in Proposition 4.5.4. Then the range of Rx given by
(3) in Proposition 4.5.4 implies | lnRx− lnRy| ∈ [0, ε]. Thus, we get the desired lower
bound.

4.5.3 Proof of Proposition 4.1.17

Let us give the definition of a multi-bulked surface first. Let Σ be a closed, orientable
surface of genus at least 1.

We call a subset of R3 a cylindrical segment if it can be obtained as an open
surface of revolution with a constant profile function r : (L−, L+) → R on some
interval (L−, L+).

For N ≥ 1 an open chain of N − 1 spheres, denoted by O(N), is an open surface
of revolution with a smooth profile function r : (L−, L+) → R which satisfies the
following properties:

� r(`) has N local minima a1, . . . , aN and N − 1 local maxima b1, . . . , bN−1.

� r′′(ai) > 0 for all i = 1, . . . , N.

Profile function of an open chain of N − 1 spheres is illustrated in Figure 4.9.

x a1 b1 a2 b2 aNbN−1 y ℓ

profile function r

Figure 4.9. Profile function of an open chain of N − 1 spheres

Definition 4.5.6. Fix an embedding φ : Σ→ R3 such that imφ contains a cylindrical
segment. A multi-bulked surface S ⊂ R3 is obtained by cutting out the cylindrical
segment from imφ and inserting O(N). A general picture of a multi-bulked surface
is shown in Figure 4.10. A multi-bulked metric g is a metric on Σ induced by the
standard metric on R3. If we want to emphasize the role of N , we will also use terms
an N-bulked surface and an N-bulked metric.
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γ1 γ2 γN

open end open end

O(N)

∆01

∆12 ∆23 ∆(N−1)N

∆N(N+1)

Figure 4.10. A general picture of a multi-bulked surface

Denote the short simple closed geodesics coming from the “narrow necks” in O(N)
by γ1, .., γN from left to right as in Figure 4.10. All of γi belong to the same free
homotopy class, which we denote by α. Denote the long simple closed geodesics from
the “spherical parts” in O(N) by ∆12, ...,∆(N−1)N from left to right and the boundary
curves of O(N) by ∆01 and ∆N(N+1) as in Figure 4.10. Moreover, we put the following
requirements.

� Lengths of ∆i(i+1) satisfy Lg(∆12) = ... = Lg(∆(N−1)N).

� Energies of γi satisfy Eg(γ1) ≤ ... ≤ Eg(γN).

For any N ∈ N, let

T (N) =
{
~x = (x1, ..., xN) ∈ [0,∞)N |x1 ≤ x2 ≤ ... ≤ xN

}
.

Similarly to Lemma 4.5.3, we have the following result.

Lemma 4.5.7. Each closed geodesic γi is non-degenerate and Ind(γi) = 0 for i ∈
{1, ..., N}.

Lemma 4.5.7 is proven in Subsection 4.6.1. Similarly to Proposition 4.5.4, we have
the following result.
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Proposition 4.5.8. Let Σ be a closed, orientable surface of genus at least 1. For
any N ∈ N and 0 < ε0 < 1, there exists a positive δ0 << 1 such that for any
~x = (x1, ..., xN) ∈ T (N), there exists an N-bulked metric g~x ∈ GΣ satisfying the
following properties.

(1) Each closed geodesic γi has energy Eg~x(γi) =
δ20
2
e−2xi for i ∈ {1, ..., N}.

(2) Any closed geodesic γ on (Σ, g~x) different from γ1, ..., γN and their iterates has

energy Eg~x(γ) >
δ20
2

.

(3) Every cylinder connecting γi and γj for i 6= j must pass through a loop with

energy greater than
δ20
2

.

(4) There exists some constant R~x ∈
î»

1
1+ε0

,
»

1
1−ε0

ó
such that R~x · g~x ∈ ḠΣ.

Properties (1), (2) and (3) in Proposition 4.5.8 can be confirmed by the same
argument as (1), (2) and (4) in Proposition 4.5.4. Property (3) in Proposition 4.5.8
essentially comes from the fact that curves ∆i(i+1) are very long compared to γj.

The quasi-isometric embedding of (RN , | · |∞) into ḠΣ which we construct to prove
Proposition 4.1.17 will be realized as a composition of two quasi-isometric embeddings
according to the following scheme

(RN , | · |∞)
Q−→ (T (2N), | · |∞)

Ψ−→ ḠΣ.

To this end, in Subsection 4.8.2 we prove the following lemma.

Lemma 4.5.9. Fix N ∈ N. There exists a map Q : (RN , | · |∞) → (T (2N), | · |∞)
such that for any ~x, ~y ∈ (RN , | · |∞),

1

4
|~x− ~y|∞ ≤ |Q(~x)−Q(~y)|∞ ≤ (2N) · |~x− ~y|∞.

Remark 4.5.10. Similarly to metrics gx in Proposition 4.5.4, metrics g~x in Proposition
4.5.8 may not be bumpy. As exaplained in Remark 4.5.5, they can be perturbed by
a dSBM -small perturbation to a bumpy metric which still satisfies all the properties
from Lemma 4.5.7 and Proposition 4.5.8 (up to a small difference in logarithms of
energies). Again, we ignore this point in the proof that follows, for the sake of clarity.

We are now in a position to give a proof of the lower bound in Proposition 4.1.17.

Proof. (Proof of Proposition 4.1.17 (lower bound)) Define a map Ψ̃ : T (2N) → GΣ

as Ψ̃(~x) = g~x, where ~x = (x1, ..., x2N) ∈ T (2N) and g~x is a 2N -bulked metric given
by Proposition 4.5.8. The short geodesics in the O(2N) part are labelled from the
longest to the shortest by γ1, . . . , γ2N . Denote the homotopy class of these geodesics
by α = [γ1] = ... = [γ2N ].
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For this α, reversed loops γ−1
i as well as iterations γ±mi for m ≥ 2 are all not in

α. Constant loops are also not in α and thus (3) in Proposition 4.5.8 implies that the

only closed geodesics in class α with energy less or equal to
δ20
2

are γi, i = 1, . . . , 2N.
Lemma 4.5.7 guarantees that all γi are non-degenerate and thus we may use Morse-
Bott techniques introduced in Subsection 4.4.1, namely the identity (4.15), see also
Remark 4.4.4.

As in the proof of Proposition 4.1.16 each γi, i = 1, . . . , 2N produces two generators
of the Morse-Bott chain complex, p0

i ∈ CMB0,α(Eg~x , h) and p1
i ∈ CMB1,α(Eg~x , h).

Moreover these these are the only generators of CMBλ
∗,α(Eg~x , h) for λ ≤ δ0

2
.

In terms of the boundary operator we have that for all i = 1, . . . , 2N it holds
∂p0

i = 0 as well as n(p1
i , p

0
i ) = 0 because p1

i and p0
i belong to the same S1-critical

submanifold. We claim that also n(p1
i , p

0
j) = 0 when i 6= j. Indeed, assume that there

exists a flow line with cascades (u1, . . . , uk, t1, . . . , tk−1) connecting p1
i and p0

j . Since
γi 6= γj, we must have k ≥ 1 and one of the flow lines ul would have to start at a
critical submanifold S1 · γi1 and end at a critical submanifold S1 · γi2 with i1 6= i2.
However, this would mean that imul ⊂ Σ defines a cylinder which connects γi1 and

γi2 and which passes only through loops of energy no greater than λ ≤ δ20
2
. Existence

of such a cylinder is ruled out by (3) in Proposition 4.5.8 and hence n(p1
i , p

0
j) = 0 for

all i, j. This means that for λ ≤ δ20
2
, ∂ = 0 on CBMλ

∗,α(Eg~x , h).

Using (4.15) we conclude that B(H1,α(Σ, g~x)) contains bars [Eg~x(γi), Ci(~x)) for

i = 1, . . . , 2N , with Ci(~x) ≥ δ20
2

(possibly Ci(~x) =∞). Moreover, Eg~x(γi) are the 2N
smallest left endpoints of bars in B(H1,α(Σ, g~x)).

Recall that B1,α(U∗g~xΣ) denotes the barcode of a symplectic persistence module
with logarithmic parametrization in degree one and homotopy class α. Theorem
4.4.6 implies that, for any i ∈ {1, ..., 2N},[

ln
»

2Eg~x(γi), ln
»

2Ci(~x)
)

=
[
ln δ0 − xi, ln

»
2Ci(~x)

)
∈ B1,α(Ug∗

~x
Σ).

Similar conclusion holds for any ~y ∈ T (2N). Moreover, ln
√

2Ci(~x) ≥ ln δ0 − yj for
any yj ∈ [0,∞). Hence, Lemma 4.5.1 implies

1

2
|~x− ~y|∞ ≤ dbottle(B1,α(U∗g~xΣ),B1,α(U∗g~yΣ)).

Theorem 4.1.7 then yields 1
2
|~x− ~y|∞ ≤ dSBM(U∗g~xΣ, U

∗
g~y

Σ).

Now Lemma 4.5.9 provides an embedding Φ̃ := Ψ̃ ◦Q : RN → GΣ, which satisfies

1

8
|~x− ~y|∞ ≤

1

2
|Q(~x)−Q(~y)|∞ ≤ dSBM(U∗

Φ̃(~x)
Σ, U∗

Φ̃(~y)
Σ),

for any ~x, ~y ∈ RN .

Finally, Φ : RN → ḠΣ is defined by setting Φ(~x) = RQ(~x) · Φ̃(~x) = RQ(~x) · gQ(~x),

where RQ(~x) is the rescaling factor given by (4) in Proposition 4.5.8, associated to
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vector Q(~x) ∈ T (2N). The same argument as in the proof of Proposition 4.1.16
(lower bound) implies

1

8
|~x− ~y|∞ −

1

2
| lnRQ(~x) − lnRQ(~y)| ≤ dSBM(U∗Φ(~x)Σ, U

∗
Φ(~y)Σ).

For any ε > 0, take ε0 = e2ε−1
e2ε+1

in Proposition 4.5.8. Then (4) in Proposition 4.5.8
implies the desired lower bound.

4.6 Bulked sphere and multi-bulked surface

4.6.1 Analyzing short geodesics

The goal of this subsection is to prove Lemmas 4.5.3 and 4.5.7. All considerations in
this subsection are local and hence apply equally to both propositions. Let us focus
on γ0 on a bulked sphere S.

Lemma 4.6.1. The geodesic γ0 on a bulked sphere is hyperbolic.

We start with some necessary background. Let (M, g) be an n-dimensional Riemannian
manifold. Recall that a vector field J along the geodesic path γ : [0, 1]→M is called
Jacobi field if it satisfies the Jacobi equation

∇γ̇∇γ̇J +R(J, γ̇)γ̇ = 0, (4.23)

where R(·, ·) stands for the curvature tensor associated to g. Jacobi fields are tangent
to the space of geodesic paths with free endpoints. When γ is a closed geodesic, they
can be used to calculate index and nullity of γ. To this end, first notice that Jacobi
field is uniquely determined by two initial conditions J(0) and ∇γ̇J(0). Moreover, we
may choose these two vectors freely, which means that the space of Jacobi fields is
2n-dimensional. The two initial conditions J0(0) = γ̇(0), ∇γ̇J0(0) = 0 and J̄0(0) = 0,
∇γ̇J̄0(0) = γ̇(0) yield Jacobi fields J0(t) = γ̇(t) and J̄0(t) = tγ̇(t) which are tangent
to γ. Let

E(t) = (Tγ(t))⊥ ⊕ (Tγ(t))⊥ ⊂ Tγ(t)M ⊕ Tγ(t)M

be the (2n − 2)-dimensional vector bundle along γ, where (Tγ(t))⊥ denotes the
orthogonal space to γ̇(t) inside Tγ(t)M. It is easy to check that if J(0) ⊥ γ̇(0) and
∇γ̇(0)J(0) ⊥ γ̇(0) then J(t) ⊥ γ̇(t) and ∇γ̇(t)J(t) ⊥ γ̇(t) for all t ∈ [0, 1]. This means
that we may define a family of maps

P (t) : E(0)→ E(t)

by P (t)(v, w) = (J(t),∇γ̇J(t)) where J is the Jacobi field with the initial condition
(J(0),∇γ̇J(0)) = (v, w). In particula if γ is closed, i.e. γ(t+ 1) = γ(t), we have that

P (1) : E(0)→ E(0)

and this map is called the linearized Poincare map.
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Definition 4.6.2. Closed geodesic γ is called hyperbolic if no eigenvalue of the
linearized Poincare map has norm equal to 1.

Taking advantage of the geometry of a bulked sphere, the proof of Lemma 4.6.1
comes from a direct computation of eigenvalues of the linearized Poincare map.

Proof. (Proof of Lemma 4.6.1) Suppose that our bulked sphere S comes from rotating
a profile function r around the x-axis and denote the radius of the circle γ0(t) by
r(0) := r. Then

γ0(t) = (0, r cos(2πt), r sin(2πt)), t ∈ [0, 1]

and its velocity is given by

γ̇0(t) = (0,−2πr sin(2πt), 2πr cos(2πt)).

Gaussian curvature KG along γ0(t) is constant and can be expressed using the formula
for the Gaussian curvature of the surface of revolution. More precisely, we have

KG = −r
′′(0)

r
,

which is negative by the third property in the definition of a bulked sphere, namely
r′′(0) > 0, see Definiton 4.5.2.

In order to calculate the linearized Poincare map, we are only interested in the
Jacobi fields orthogonal to γ̇0(t). Let J = J(t) be such a Jacobi field, J(t) ⊥ γ̇0(t)
for all t ∈ [0, 1]. Since dimS = 2, J(t) and γ̇0(t) span the tangent planes Tγ(t)S.
On the other hand, the curvature tensor satisfies 〈R(J, γ̇0)γ̇0, γ̇0〉 = 0 and hence
R(J(t), γ̇0(t))γ̇0(t) is proportional to J(t). We calculate

〈R(J(t), γ̇0(t))γ̇0(t), J(t)〉 = |γ̇0(t)|2|J(t)|2 〈R(e2, e1)e1, e2〉 with {e1, e2} orthonormal

= |γ̇0(t)|2|J(t)|2KG

= (2πr)2|J(t)|2 · −r
′′(0)

r
= −4π2rr′′(0)|J(t)|2

= −4π2rr′′(0) 〈J(t), J(t)〉 .

Denoting K = −4π2rr′′(0), (4.23) is simplified as

∇γ̇0∇γ̇0J +K · J = 0. (4.24)

Note that K is always negative because r′′(0) > 0.

Now, since S is a surface of revolution with axis of rotation being the x-axis, and
since r′(0) = 0, the tangent space to S at γ0(t) is generated by γ̇0(t) and (1, 0, 0).
This means that a Jacobi field orthogonal to γ̇0 has the form J(t) = (J1(t), 0, 0). It
follows that

∇γ̇0J(t) = (J̇1(t), 0, 0), (4.25)
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as well as
∇γ̇0∇γ̇0J(t) = (J̈1(t), 0, 0), (4.26)

and (4.24) becomes a second order equations

J̈1(t) +K · J1(t) = 0. (4.27)

Two solutions of this equation are vector fields J+(t) = (e
√
−Kt, 0, 0) and J−(t) =

(e−
√
−Kt, 0, 0). Moreover, initial vectors

(J+(0), (∇γ̇0J+)(0)) = ((1, 0, 0), (
√
−K, 0, 0))

and
(J−(0), (∇γ̇0J−)(0)) = ((1, 0, 0), (−

√
−K, 0, 0))

are linearly independent and hence generate E(0) = (Tγ0(0))⊥ ⊕ (Tγ0(0))⊥. In order
to compute the eigenvalues of the linearized Poincare map P : E(0) → E(1) it is
enough to notice that from (4.25) we have

(J+(1), (∇γ̇0J+)(1)) = ((e
√
−K , 0, 0), (

√
−Ke

√
−K , 0, 0))

as well as

(J−(1), (∇γ̇0J−)(1)) = ((e−
√
−K , 0, 0), (−

√
−Ke−

√
−K , 0, 0)).

Thus ((1, 0, 0), (
√
−K, 0, 0)) and ((1, 0, 0), (−

√
−K, 0, 0)) are eigenvectors of P with

eigenvalues λ1 = e
√
−K and λ2 = e−

√
−K . Since K 6= 0, neither one of these has norm

one, which means that γ0 is hyperbolic by definition.

Recall that a closed geodesics is non-degenerate if its nullity is zero. The following
lemma is a direct consequence of the second variation formula, see, for example,
Corollary 2.5.6 in [85].

Lemma 4.6.3. Nullity of a closed geodesic γ is equal to the dimension of the space
of periodic Jacobi fields along γ minus one. In particular, γ is non-degenerate, that
is nullity of γ is 0, if and only if there are no periodic Jacobi fields along γ which are
orthogonal to γ̇.

Note that “minus one” in Lemma 4.6.3 comes from the need to exclude the tangent
Jacobi field J0(t) = γ̇(t).

When a closed geodesic is hyperbolic, its index as well as the indices of all its
iterations are particularly easy to compute. Let us recall some related formulas.
When γ is hyperbolic, we have a splitting

E = Es ⊕ Eu

such that P (t)|Es is contracting and P (t)|Eu is expanding as t goes from 0 to 1. Now,
for each t∗ ∈ [0, 1], define a number ι(t∗) to be the dimension of the subspace of Jacobi
fields J(t) along γ such that (J(t), (∇γ̇J(t))) ∈ Es(t), for all t ∈ [0, 1] and J(t∗) = 0.
The number of points t∗ for which ι(t∗) > 0 is finite and the following holds.
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Lemma 4.6.4 (Proposition 5, page 4 of [83]). If γ is hyperbolic, then

Ind(γ) =
∑

t∗∈[0,1)

ι(t∗).

One may regard this lemma as an analogue of the well-known Morse index theorem
for a geodesic segment. A general result about the index of a closed geodesic (not
necessarily hyperbolic) is worked out in [82]. Finally,

Lemma 4.6.5 (Corollary 3.2.15 in [85]). For a hyperbolic γ it holds:

Ind(γm) = m · Ind(γ).

We are now ready to give the desired proofs.

Proof. (Proof of Lemmas 4.5.3 and 4.5.7) From the computations in the proof of
Lemma 4.6.1, we know that the space of Jacobi fields orthogonal to γ̇0 is generated
by the fields J+(t) = (e

√
−Kt, 0, 0) and J−(t) = (e−

√
−Kt, 0, 0). Since e

√
−Kt → +∞

and e−
√
−Kt → 0 when t→ +∞, no linear combination of J+ and J− can be periodic.

Thus, by Lemma 4.6.3, we know that γm0 are non-degenerate for all m ∈ N.

On the other hand, by (4.25) we have that for t ∈ [0, 1]

(J+(t), (∇γ̇0J+)(t)) = ((e
√
−Kt, 0, 0), (

√
−Ke

√
−Kt, 0, 0))

as well as

(J−(t), (∇γ̇0J−)(t)) = ((e−
√
−Kt, 0, 0), (−

√
−Ke−

√
−Kt, 0, 0)).

In other words contracting and expanding spaces in the splitting E(t) = Es(t)⊕Eu(t)
are generated by (J−(t), (∇γ̇0J−)(t)) and (J+(t), (∇γ̇0J+)(t)) respectively. Since for
all t ∈ [0, 1] it holds J−(t) 6= 0, Lemma 4.6.4 implies that Ind(γ0) = 0 and thus by
Lemma 4.6.5 Ind(γm0 ) = m · Ind(γ0) = 0. Finally, note that the direction of γ0 played
no role in this subsection, i.e. all statements apply equally to γ−m0 . This completes
the proof of Lemma 4.5.3. Since all the considerations are local, the proof of Lemma
4.5.7 follows in the same fashion.

Remark 4.6.6. One may also prove that Ind(γm0 ) = 0 by a direct computation using
Lemma 4.6.4, without realying on Lemma 4.6.5.

4.6.2 Analyzing long geodesics

In this subsection, we will prove (2) in Proposition 4.5.4 as well as (2) and (3) in
Proposition 4.5.8. To this end, let us describe closed geodesics on a bulked sphere
and a multi-bulked surface. We start with a bulked sphere.
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Assume that our bulked sphere S ⊂ R3 is obtained by rotating a profile function
r around an axis l as described in Subsection 4.5.2. For a point p ∈ S we denote by
l(p) he coordinate of p on the l-axis and by r(p) the value of the profile funtction at
l(p), i.e. r(p) is the distance from p to the axis l.

Firstly, we notice that parallel circles given by l = const are geodesics if and only
if r′(l) = 0. This means that γ−, γ0 and γ+ are the only geodesic parallel circles. In
order to describe geodesics which are not parrallel circles we evoke the well-known
Clairaut’s relation, see, for example, Proposition 4.4 in [140].

Theorem 4.6.7. Suppose that S(r) is a surface of revolution obtained by rotating a
profile function r around a fixed axis. Then any geodesic on S(r) satisfies the equation

r cos(φ) = constant (4.28)

where φ is the angle between the geodesic and the parallel circles. Conversely, any
constant speed curve satisfying (4.28) which is not a parallel circle is a geodesic.

Using notations from Subsection 4.5.2, we call the part of the bulked sphere S
where l ∈ (−a, a) the neck of S and the part where |l| ≥ a the spherical regions of S.
The next lemma claims that a closed geodesic different from γ±m0 ,m ∈ N, can not be
entirely contained in the neck.

Lemma 4.6.8. Assume that γ : R/Z → S is a closed geodesics different form
γ±m0 ,m ∈ N such that l(γt0) ∈ (−a, a) for some t0 ∈ R/Z. Then γ intersects either
γ− or γ+.

Proof. Since γ 6= γ±m0 , we have that γ is not a parallel circle and thus for some
T ∈ R/Z, γ̇(T ) is transverse to the parallel circle P = {p ∈ S | l(p) = a0} for some
0 ≤ a0 < a. We may assume that T = 0 as well as that γ̇(0) points away from γ0

and towards γ+. We can make this assumption because if γ̇(0) points towards γ0 we
may look at γ−1(t) = γ(−t) which defines the same curve as γ only with reversed
direction. We may also assume that the angle φ(γ(0)) between the parallel circle P
and γ̇(0) satisfies φ(γ(0)) ∈ (0, π

2
), see Figure 4.11, the case φ(γ(0)) ∈ (π

2
, π) is treated

in the same manner.

Clairaut’s relation implies that r(γ(t)) cos(φ(γ(t))) = C0 > 0. For a small ε > 0 it
holds l(γ(−ε)) < a0, l(γ(ε)) > a0 and since γ is closed, we have that for some τ > 0,
l(γ(τ)) < a0. This means that γ eventually exits the region {l > a} and hence it must
intersect P with a negative angle −φ(γ(0)). Formally, there exists τ1 > 0 such that
γ(τ1) ∈ P and φ(γ(τ1)) = −φ(γ(0)) < 0. It follows that there exists 0 < τ0 < τ1 such
that φ(τ0) = 0, and Clairaut’s relation implies

C0 = r(γ(0)) cos(φ(γ(0))) = r(γ(τ0)) cos(φ(γ(τ0))) = r(γ(τ0)).

Thus r(γ(τ0)) < r(γ(0)) and since r increases on the interval [0, a] we have that
l(γ(τ0)) > a, which proves the claim.
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γ0

P

γ+

γ̇(0)

l = 0 l = a0 l = a

φ

Figure 4.11. Geodesic γ intersecting parallel circle P

Now, if S is a multi-bulked surface defined in Subsection 4.5.3, we call the part
of S between ∆(i−1)i and ∆i(i+1) the neck of γi. Using the same argument as in the
proof of Lemma 4.6.8 we may prove the following.

Lemma 4.6.9. Let γ be a closed geodesic on a multi-bulked surface S which enters
the neck of γi. Then γ intersects either ∆(i−1)i or ∆i(i+1).

Remark 4.6.10. One may also deduce Lemmas 4.6.8 and 4.6.9 form the analysis of
the geodesic flow similar to the one presented in Subsection 4.8.3.

We are now in a position to give a proof of (2) in Proposition 4.5.4 as well as (2)
and (3) in Proposition 4.5.8. However, before we proceed with the arguments, we
wish to explain the general logic which these proofs follow.

In the case of a multi-bulked surface, firstly we fix the genus of the surface and the
number of necks N (in the case of the bulked sphere these are automatically fixed).

Secondly, we fix an embedding φ : Σ → R3, of the surface and a cylindrical
segment inside imφ which we wish to replace by an open chain of N − 1 spheres
O(N) as described in Subsection 4.5.3. After inserting O(N) we obtain the multi-
bulked surface S ⊂ R3.

Finally the major part of S remains fixed as we vary g~x, for ~x ∈ T (N) (or gx, for
x ∈ [0,∞) in the bulked sphere case). In fact, for different ~x ∈ T (N), metrics g~x
only differ in very small neighbourhoods of γ1, . . . , γN (or in a small neighbourhood
of γ0 in the bulked sphere case). Moreover, we have the freedom to define g~x in these
neighbourhoods in such a way that the energies of γ1, . . . , γN (or the energy of γ0)
are equal to any sufficiently small numbers, see Subsection 4.8.1.
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Now, proving the existence of δ0 as in (2) in Proposition 4.5.4 and (2), (3) in
Proposition 4.5.8 actually means providing δ0 which only depends on the fixed part
of S. In other words, δ0 should not depend on the small change that we make in the
neighbourhoods of short geodesics γ1, . . . , γN (or γ0). Given such δ0, we may define
g~x (or gx) in the neighbourhoods of γi in such a way that (1) in Propositions 4.5.4
and 4.5.8 are satisfied, see Subsection 4.8.1.

Proof. (Proof of (2) in Proposition 4.5.4 and (2), (3) in Proposition 4.5.8)

We will prove properties (2) and (3) in Proposition 4.5.8. Property (2) in Proposition
4.5.4 is proven in the same way as (2) in Proposition 4.5.8. Let us start by giving a
lower bound as in (3).

Assume that a cylinder u : R × S1 → M connects γi and γj for i < j, that is
u(−∞, t) = γi(t), u(+∞, t) = γj(t). Since γi and γj belong to different connected
components of Σ \ (∆01 ∪ ∆i(i+1)), we have that im(u) must intersect either ∆01 or
∆i(i+1). Assume first that it intersects ∆i(i+1) and let s0 ∈ R be such that curves
us0 = u(s0, ·) : S1 → M and ∆i(i+1) intersect. Take p = u(s0, t0) ∈ us0 ∩∆i(i+1) and
let B(p; ρ) be a disc of radius ρ around p, with respect to the distance induced by g~x.
If we take ρ to be smaller than the injectivity radius at p, B(p; ρ) is embedded. Since
curve us0 belongs to a non-trivial homotopy class α, it is not completely contained
in B(p; ρ), i.e. there exists t1 such that u(s0, t1) /∈ B(p; ρ). Hence, two arcs form t0
to t1 on S1 are mapped into two paths u

(
t̃0t1
)

and u
(
t̃1t0
)

which connect the center
p of the disc B(p; ρ) with the outside of the disc, see Figure 4.12. This implies that
Lg~x(us0) ≥ 2ρ.

∆i(i+1)

us0

p = us0(t0)

B(p; ρ)

Figure 4.12. Disc centered at a point p ∈ us0 ∩∆i(i+1).
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The exact same reasoning applies if we assume that im(u) intersects ∆01 at some
point p′, in which case we get that Lg~x(us0) ≥ 2ρ′, where ρ′ is smaller than the
injectivity radius at p′. Note also that our metric g~x has S1-symmetry near each
∆k(k+1), 0 ≤ k ≤ N because it was defined as an induced metric on a surface of
revolution. This means that ρ and ρ′ may be chosen to be the same for all p ∈ ∆i(i+1)

and all p′ ∈ ∆01. Moreover, the neighbourhoods of ∆k(k+1) for 1 ≤ k ≤ N − 1 are
all isometric and hence ρ and ρ′ can be chosen independently of i and j. By taking
δ̄0 = min{ρ, ρ′}, we have that Lg~x(us0) ≥ δ̄0. Finally Cauchy-Schwarz inequality yields

Eg~x(us0) ≥
Lg~x(us0)

2

2
≥ δ̄2

0

2
,

which gives a lower bound as in (3).

In order to give a lower bound as in (2), first notice that by Lemma 4.6.9 every
closed geodesics γ in class α, different than γ1, . . . , γN , either intersects ∆i(i+1) for
some i = 0, . . . , N or it is entirely contained in S \ O(N). In the first case we get a
lower bound

Eg~x(γ) ≥ δ̄2
0

2
,

with the same δ̄0 as above by applying the exact same argument to γ that we applied
to us0 .

In the second case we have that γ is also a closed geodesic on imφ ⊂ R3, where
φ : Σ→ R3 is the embedding we fixed in order to define a multi-bulked surface. This
means that

Eg~x(γ) ≥ Emin,

with Emin being the minimal energy of a closed geodesic in class α on imφ. Finally,
taking δ0 < min{δ̄0,

√
2Emin} finishes the proof.

4.6.3 Upper bounds in Proposition 4.1.16 and Proposition

4.1.17

In this subsection, we will explain how to prove the upper bounds in Propositions
4.1.16 and 4.1.17.

Recall that metrics gx, x ∈ [0,∞) which we used to prove lower bound in Proposition
4.1.16 come from bulked spheres which are surfaces of revolution, see Proposition
4.5.4. On the other hand, metrics g~x, ~x ∈ T (N) which we used to prove lower
bound in Proposition 4.1.17, come from multi-bulked surfaces, which contain O(N)-
part which is a surface of revolution, see Proposition 4.5.8. Moreover, for different
~x ∈ T (N), metric g~x only differ in the O(N)-part. Thus in order to compare different
(multi)-bulked metrics, we will first explain how to compare metrics which come from
surfaces of revolution in general.
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Let I ⊂ R be an interval and r : I → [0,∞) a smooth function. Using r as a
profile function, we define a surface of revolution S(r) ⊂ R3 and, by pulling back the
standard metric from R3, we define a metric gr on I × S1. We claim the following.

Lemma 4.6.11. Let r1, r2 : I → [0,∞) be two profile functions and fix C > 0. Then
gr1 � Cgr2 if and only if

(r1(l))2 ≤ C(r2(l))2, 1 + (r′1(l))2 ≤ C(1 + (r′2(l))2)

for all l ∈ I.

Proof. Introduce local coordinates (l, θ) ∈ I×S1. If r : I → [0,∞) is a smooth profile
function, a simple computation shows that the matrix of gr expressed in coordinates
(∂l, ∂θ) satisfies

[gr](l,θ) =

Å
1 + (r′(l))2 0

0 (r(l))2

ã
.

By definition gr1 � Cgr2 is equivalent to ‖ ·‖gr1 ≤ ‖·‖Cgr2 at all points (l, θ) ∈ I×S1,
and hence the claim follows.

From Lemma 4.6.11 we obtain the following corollary.

Corollary 4.6.12. Let r1, r2 : I → [0,∞) be two profile functions and denote by9

C = max
l∈I

max

ß
r1(l)

r2(l)
,
r2(l)

r1(l)
,
r′1(l)

r′2(l)
,
r′2(l)

r′1(l)

™
.

If gr1 , gr2 are the induced Riemannian metrics on I × S1 it holds

1

C2
gr1 � gr2 � C2gr1 .

Proof. By Lemma 4.6.11 gr2 � C2gr1 is equivalent to

(r1(l))2 ≤ C2(r2(l))2, 1 + (r′1(l))2 ≤ C2(1 + (r′2(l))2).

The first inequality follows directly from the definition of C. Since C ≥ 1, the second
inequality follows from

1 + (r′1(l))2 ≤ 1 + C2(r′2(l))2 ≤ C2 + C2(r′2(l))2.

Inequality 1
C2 g

r1 � gr2 is proven by the same argument.

Finally, we have the following proposition.

9Here we use the convention that 0
0 = 1.
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Proposition 4.6.13. Bulked sphere metrics gx, x ∈ [0,∞), whose existence is guaranteed
by Proposition 4.5.4, can be defined in such a way that their profile functions satisfy

max
l∈I

max

®
rx(l)

ry(l)
,
ry(l)

rx(l)
,
r′x(l)

r′y(l)
,
r′y(l)

r′x(l)

´
= e|x−y|

for all x, y ∈ [0,∞). Similarly, multi-bulked metrics g~x, ~x ∈ T (N) in Proposition
4.5.8 can be defined in such a way that the profile functions of the corresponding
O(N)-parts satisfy

max
l∈I

max

®
r~x(l)

r~y(l)
,
r~y(l)

r~x(l)
,
r′~x(l)

r′~y(l)
,
r′~y(l)

r′~x(l)

´
= e|~x−~y|∞

for all ~x, ~y ∈ T (N).

In order to prove Proposition 4.6.13 one must specify precisely the profile functions
which are used to define bulked spheres and multi-bulked surfaces. This is done in
Subsection 4.8.1.

We are now ready to give a proof of the upper bounds.

Proof. (Upper bounds in Propositions 4.1.16 and 4.1.17) We will only prove the upper
bounds in terms of dRBM . The upper bounds in terms of dSBM then follow from
Proposition 4.2.8.

For any x ∈ [0,∞), let gx be the bulked sphere metric given by Proposition 4.5.4.
In order to prove the upper bound in Proposition 4.1.16, notice that Corollary 4.6.12
and Proposition 4.6.13 imply that, for x, y ∈ [0,∞), it holds

e−2|x−y|gx � gy � e2|x−y|gx.

Taking φ = 1M in the definition of dRBM we get

dRBM(gx, gy) ≤ 2|x− y|.

Recall that the embedding Φ : [0,∞)→ ḠS2 is defined by Φ(x) = Rx · gx where Rx is
the rescaling factor from (3) in Proposition 4.5.4. Now, Remark 4.2.7 implies

dRBM(Φ(x),Φ(y)) = dRBM(Rx · gx, Ry · gy)
= dRBM((Rx/Ry) · gx, gy)
≤ dRBM(gx, (Rx/Ry) · gx) + dRBM(gx, gy)

≤ | lnRx − lnRy|+ 2|x− y|.

For any given ε > 0, using (3) in Proposition 4.5.4 with ε0 = e2ε−1
e2ε+1

yields the desired
upper bound in Proposition 4.1.16.
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To prove the upper bound in Proposition 4.1.17, recall that g~x is the multi-bulked
metric given by Proposition 4.5.8. Moreover, metrics g~x for different ~x ∈ T (N) only
differ in the O(N)-part. Hence, Corollary 4.6.12 and Proposition 4.6.13 imply

e−2|~x−~y|∞g~x � g~y � e2|~x−~y|∞g~x,

for any ~x, ~y ∈ T (N). Taking φ = 1M in the definition of dRBM gives

dRBM(g~x, g~y) ≤ 2|~x− ~y|∞. (4.29)

Map Φ : RN → ḠM in the proof of Proposition 4.1.17 is defined by Φ(~x) =
RQ(~x) · gQ(~x) where Q : RN → T (2N) is the quasi-isometric embedding given by
Lemma 4.5.9 and RQ(~x) is the rescaling factor from (4) in Proposition 4.5.8. The
same argument as above together with Lemma 4.5.9 implies, for any ~x, ~y ∈ RN ,

dRBM(Φ(~x),Φ(~y)) ≤ | lnRQ(~x) − lnRQ(~y)|+ 4N · |~x− ~y|∞.

For any ε > 0, using (4) in Proposition 4.5.8 with ε0 = e2ε−1
e2ε+1

yields the desired upper
bound in Proposition 4.1.17.

4.7 Quantitative existence of closed geodesics

The goal of this section is to prove Theorem 4.1.19 and Corollary 4.1.26. Since
Corollary 4.1.26 immediately follows from Theorem 4.1.7, we give its proof first.

Proof. (Proof of Corollary 4.1.26) We will prove the claim in the case of a finite
bar [a2/2, b2/2), the case of an infinite ray is treated in the same fashion. Using the
isomorphism of persistence modules provided by Theorem 4.4.6, we conclude that the
barcode B∗,α(U∗g1M) of S∗,α(U∗g1M), contains the bar [ln a, ln b). Theorem 4.1.7 and
the assumptions give

dbottle(B∗,α(U∗g1M),B∗,α(U∗g2M)) ≤ 1

2
dRBM(g1, g2) <

1

2
(ln b− ln a). (4.30)

Denoting D = dbottle(B∗,α(U∗g1M),B∗,α(U∗g2M)) we have that for every 0 < ε < 1
2
(ln b−

ln a)−D there exists a (D+ ε)-matching between B∗,α(U∗g1M) and B∗,α(U∗g2M). Since
D+ ε < 1

2
(ln b− ln a), the bar [ln a, ln b) ∈ B∗,α(U∗g1M) is not erased in this matching

but rather has a genuine match [cε, dε) ∈ B∗,α(U∗g2M) such that

max {|ln a− cε| , |ln b− dε|} ≤ D + ε.

Since S∗,α(U∗g2M) is pointwise finite dimensional, the fact that a bar [cε, dε) as above
exists for all 0 < ε < 1

2
(ln b− ln a)−D implies that there exists [c0, d0) ∈ B∗,α(U∗g2M)

such that
max {|ln a− c0| , |ln b− d0|} ≤ D. (4.31)
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Indeed, if this was not the case, by shrinking ε we would get infinitely many bars
[cε, dε) ∈ B∗,α(U∗g2M) which all contain the middle ln a+ln b

2
of the interval [ln a, ln b).

This would imply that S
ln a+ln b

2
∗ (U∗g2M ;α) is not finite dimensional.

Finally, by Remark 4.4.5 we know that there exist closed geodesics γ1, γ2 of g2

such that c0 = ln
√

2Eg2(γ1), d0 = ln
√

2Eg2(γ2) and the proof follows.

In the rest of the section, we focus on proving Theorem 4.1.19.

4.7.1 Lemmas about persistence modules

In order to prove Theorem 4.1.19, we will use a lemma about general persistence
modules, see Lemma 4.7.2 below. We start with an auxiliary statement first.

Lemma 4.7.1. Let K[a,b) and K[c,d) be two interval modules over field K. Then a
non-zero persistence module morphism

f = {f t}t∈R : K[a,b) → K[c,d)

exists if and only if c ≤ a ≤ d ≤ b. Similarly for b = d = +∞ a non zero persistence
module morphism

f = {f t}t∈R : K[a,+∞) → K[c,+∞)

exists if and only if c ≤ a.

Proof. Firstly, note that if c ≤ a ≤ d ≤ b there exists a non-zero persistence module
morphism f given by f t(1K) = 1K for t ∈ [a, d) and f t = 0 otherwise. This proves one
direction of the equivalence. For the other direction one readily sees that b > c and
d > a since otherwise [a, b) and [c, d) do not intersect. The rest of the proof follows
from a case analysis in terms of the order of endpoints a, b, c, d. We will analyze
one case, the other cases are treated in the same way. Assume, for example, that
c ≤ a ≤ b < d and let ε > 0 be such that b < b + ε < d. Now, if f t(1K) 6= 0 for some
t ∈ [a, b), on the one hand we have

f b+ε(ιt,b+ε(1K)) = f b+ε(0) = 0,

while on the other hand

f b+ε(ιt,b+ε(1K)) = ιt,b+ε(f
t(1K)) = ft(1K) 6= 0

which gives a contradiction.

Recall that if V is a persistence module, for A > 0, shifted module V[A] is defined

by V[A]t = Vt+A with structure maps ι
V[A]
s,t = ιVs+A,t+A. Barcode B(V[A]) is a shift of

B(V) by A to the left, i.e. [x, y) ∈ B(V[A]) if and only if [x+A, y +A) ∈ B(V). The
following lemma is the main combinatorial ingredient of the proof of Theorem 4.1.19.
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Lemma 4.7.2. Let V,W be two persistence modules, A,B ≥ 0 non-negative constants
and

f : V→W[A], g : W[A]→ V[A+B]

persistence module morphisms such that the following diagram commutes

V
ιVt,t+A+B //

f !!

V[A+B].

W[A]

g

99

If there exists a bar [a, b) ∈ B(V) such that b − a > A + B then there exists a bar
[c, d) ∈ B(W) such that

a−B ≤ c ≤ a+ A, b−B ≤ d ≤ b+ A.

Proof. Fix a decomposition of V given by the structure theorem (Theorem 2.1.8),

V =
⊕
I∈B(V)

KI (4.32)

and let
V[A+B] =

⊕
I∈B(V)

KI [A+B] (4.33)

be the induced decomposition of V[A + B]. Since [a, b) ∈ B(V), K[a,b) is a summand
in (4.32) and K[a,b)[A+B] = K[a−A−B,b−A−B) is a summand in (4.33). Denote by

π[a−A−B,b−A−B) : V[A+B]→ K[a−A−B,b−A−B)

the projection with respect to (4.33). By restricting f to K[a,b) we obtain the following
commutative diagram for all t ∈ R :

Kt
[a,b)

ιt,t+A+B //

f t ##

Kt
[a−A−B,b−A−B)

W[A]t
(π[a−A−B,b−A−B)◦g)t

77

Condition A+B < b− a implies that [a, b) ∩ [a− A−B, b− A−B) 6= ∅ and hence

ιt,t+A+B : Kt
[a,b) → Kt

[a−A−B,b−A−B)

is non-zero and is given by the obvious map equal to 1K when t ∈ [a, b−A−B) and
zero otherwise. Let us fix t0 ∈ (a, b − A − B) and 1t0 ∈ Kt0

[a,b). By previous, It holds

ιt0,t0+A+B(1t0) 6= 0.

Fix a decomposition of W[A],

W[A] =
⊕

I∈B(W[A])

KI (4.34)
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and assume that

f t0(1t0) =
N∑
i=1

λi1
t0
Ii
,

where λi ∈ K, λi 6= 0 and 1t0Ii ∈ Kt0
Ii

for Ii ∈ B(W[A]). Since (π[a−A−B,b−A−B) ◦ g)t0 ◦
f t0 = ιt0,t0+A+B and ιt0,t0+A+B(1t0) 6= 0, we have that (π[a−A−B,b−A−B)◦g)t0(

∑N
i=1 λi1

t0
Ii

) 6=
0 and hence there exists some i0 ∈ {1, ..., N} such that (π[a−A−B,b−A−B)◦g)t0(λi01

t0
Ii0

) 6=
0, see Figure 4.13.

a b

a− A− B b− A− B

x y

Ii0 = [x, y)

t0

1t0

λi01
t0
Ii0

(π[a−A−B,b−A−B) ◦ g)
t0(λi01

t0
Ii0
)

Figure 4.13. Morphisms at a point t0.

Let Ii0 = [x, y). We claim that a−A−B ≤ x ≤ a and b−A−B ≤ y ≤ b. Indeed,
denote by

πIi0 : W[A]→ KIi0

the projection with respect to (4.34). This projection is a morphism of persistence
modules and we have that

πIi0 ◦ f : K[a,b) → KIi0

is a non-zero persistence module morphism because (πIi0 ◦ f)t0(1t0) = λi01
t0
Ii0
6= 0.

Thus, Lemma 4.7.1 imples that x ≤ a and y ≤ b.

Similarly, restricting g to KIi0
gives

π[a−A−B,b−A−B) ◦ g : KIi0
→ K[a−A−B,b−A−B).

This morphism is non-zero because (π[a−A−B,b−A−B) ◦ g)t0(λi01
t
Ii0

) 6= 0 and hence
Lemma 4.7.1 implies that a− A−B ≤ x and b− A−B ≤ y.

To finish the proof notice that [x, y) ∈ B(W[A]) and hence [x+A, y+A) ∈ B(W).
For this bar it holds a−B ≤ x+A ≤ a+A and b−B ≤ y+A ≤ b+A and we may
take [c, d) = [x+ A, y + A).
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4.7.2 Proof of Theorem 4.1.19

Proof. (Proof of Theorem 4.1.19) We will prove only the case of a finite bar [x, y) ∈
B(H∗,α(M, g1)), the other case is proved in the same manner.

It follows from the definition that U∗CgM =
√
CU∗gM. From the assumption 1

C1
g1 �

g2 � C2g1, one concludes that

U∗1
C1
g1
M ⊂ U∗g2M ⊂ U∗C2g1

M,

which is equivalent to

1√
C1

U∗g1M ⊂ U∗g2M ⊂
√
C2U

∗
g1
M. (4.35)

Applying contravariant functor SHa
∗(·;α) to (4.35) gives the following commutative

diagram

SHa
∗(
√
C2U

∗
g1
M ;α)

hinc //

hinc ))

SHa
∗(

1√
C1
U∗g1M ;α)

SHa
∗(U

∗
g2
M ;α)

hinc

55

where hinc denote maps induced by the respective inclusions. Applying (2) in Proposition
4.3.4 with C = 1√

C1C2
≤ 1 to the horizontal arrow gives us

SHa
∗(
√
C2U

∗
g1
M ;α)

ι
a,
√
C1C2a //

hinc ))

SH
√
C1C2a
∗ (

√
C2U

∗
g1
M ;α)

SHa
∗(U

∗
g2
M ;α)

(r 1√
C1C2

)−1◦hinc

55

where ιa,
√
C1C2a denotes the persistence structure map of the symplectic persistence

module SH∗,α(
√
C2U

∗
g1
M) and r 1√

C1C2

is the isomorphism given by (2) in Proposition

4.3.4. In terms of the logarithmic version of symplectic persistence modules, setting
t = ln a gives us

St∗(
√
C2U

∗
g1
M ;α)

ι
t,t+ln

√
C1+ln

√
C2 //

hinc ((

St+ln
√
C1+ln

√
C2

∗ (
√
C2U

∗
g1
M ;α).

St∗(U
∗
g2
M ;α)

(r 1√
C1C2

)−1◦hinc

44

Since [x, y) ∈ B(H∗,α(M, g1)), [ln
√

2x, ln
√

2y) ∈ B∗,α(U∗g1M) by Theorem 4.4.6, where
B∗,α(U∗g1M) denotes the barcode of persistence module S∗,α(U∗g1M). Now, Proposition

4.3.4 implies that [ln
√

2x+ ln
√
C2, ln

√
2y + ln

√
C2) ∈ B∗,α(

√
C2U

∗
g1
M). The length
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of this bar is ln
√

y
x

and since ln
√

y
x
> ln

√
C1 + ln

√
C2 by the assumption, we can

apply Lemma 4.7.2 with A = 0 and B = ln
√
C1 + ln

√
C2.

It follows that there exists a bar (c, d] ∈ B∗,α(U∗g2M) such that

ln
√

2x− ln
√
C1 ≤ c ≤ ln

√
2x+ ln

√
C2,

and
ln
√

2y − ln
√
C1 ≤ d ≤ ln

√
2y + ln

√
C2.

By Theorem 4.4.6, bar [1
2
e2c, 1

2
e2d) ∈ B(H∗,α(M, g2)) and its endpoints satisfy

x

C1

≤ 1

2
e2c ≤ C2x,

y

C1

≤ 1

2
e2d ≤ C2y.

Endpoints of bars in B(H∗,α(M, g2)) correspond to the energies of closed geodesics
and thus there exist closed geodesics γ1, γ2 of g2 such that

Eg2(γ1) =
1

2
e2c, Eg2(γ2) =

1

2
e2d.

This finishes the proof.

4.8 Appendix

4.8.1 Precise parameterizations

In this subsection, we will give precise parameterizations of bulked spheres and multi-
bulked surfaces announced in Sections 4.5 and 4.6. The metrics which we are going
to define will satisfy all the properties that we used in these sections, namely we will
prove (1) and (3) in Proposition 4.5.4, (1) and (4) in Proposition 4.5.8 as well as
Proposition 4.6.13.

Parameterizations of bulked spheres

Let S be a union of two spheres with radius A =
»

1
8π

touching at point. The area of
S is equal to 1 and S can be obtained as a (singular) surface of revolution. The graph
of the profile function r which defines S is the union of two semicircles of radius A
centered at −A and A, see Figure 4.14.

Let n ∈ N and B = 10−nA. We consider n to be a free parameter which will
eventually be chosen large. The profile functions rx, x ∈ [0,∞), which define bulked
sphere metrics gx, will all be even on [−2A, 2A] and they will coincide with r on
[−2A,−B] ∪ [B, 2A]. On [−B,B], each rx will interpolate between two semicircles
and will have a local minimum at 0. Let

δ0 =

…
π

8
· 1

2 · 10n + 1
· 3− 10−2n

√
2 · 10n − 1

. (4.36)
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−2A 0 2A

two semicircles with radius A

Figure 4.14. Profile function r

Since δ0 = O(10
−3n
2 ), by picking large enough n, we can make δ0 arbitrarily small.

The following proposition holds.

Proposition 4.8.1. Given any sufficiently small ε > 0, for all sufficiently large n

and A,B, δ0 as above, there exists a family of profile functions rx, x ∈ [0,∞), each of
which defines a bulked sphere metric gx such that

(1) |Volgx(S
2)− 1| ≤ ε and diam(S2, gx) ≤ 100

√
1− ε.

(2) rx coinicide outside [−B,B] for all x ∈ [0,∞).

(3) rx(0) = δ0
2π
e−x.

(4) For any x, y ∈ [0,∞),

max
l∈[−2A,2A]

max

®
rx(l)

ry(l)
,
ry(l)

rx(l)
,
r′x(l)

r′y(l)
,
r′y(l)

r′x(l)

´
= e|x−y|.

In (4), as before, we use convention that 0
0

= 1.

Proof. We ask for rx to be even on [−2A, 2A], and hence only give their definitions
on [0, 2A]. Let B′ = 10−2nA, h = 3δ0

2π
, hx = δ0

2π
e−x, and define

rx(l) =
h− hx
(B′)2

l2 + hx, for l ∈ [0, B′].

It immediatelly follows that rx(0) = hx = δ0
2π
e−x and hence (3) is satisfied. On the

other hand, a simple computation shows that for all x, y ∈ [0,∞)

max
l∈[0,B′]

max

®
rx(l)

ry(l)
,
ry(l)

rx(l)
,
r′x(l)

r′y(l)
,
r′y(l)

r′x(l)

´
= e|x−y|. (4.37)

Notice also that rx(B
′) = h for all x ∈ [0,∞), i.e., the graphs of all rx meet at the

point (B′, h), see Figure 4.15 (a).
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0 B′

(a) Quadratic functions for x > y

h

hy

hx

l

smin

sx

B′ B

K

2B′ l

r′
x

(b) Derivative of a profile function

qx
rx

ry

Figure 4.15. Parameterization of rx in the region [0, B]

Graphs of profile functions rx will connect (B′, h) to (B,
√
A2 − (A−B)2) on a

semicircle. To this end, let

sx := r′x(B
′) =

2(h− hx)
B′

and K =
A−B√

2AB −B2
.

For x ∈ [0,∞) we have sx ∈ [ 2δ0
πB′

, 3δ0
πB′

) and we denote smin = s0 = 2δ0
πB′

. On the other

hand K is the derivative at B of the function y =
√
A2 − (A− l)2, which defines a

semicircle.

We now define rx by giving its derivative on [B′, B]. Let

qx =
smin(B −B′) +KB′ − sxB′

B −B′
.

On [B′, 2B′], the derivative r′x is by definition equal to a linear function whose graph
connects (B′, sx) and (2B′, qx). On [2B′, B], r′x is equal to another linear function,
whose graph connects (2B′, qx) and (B,K). It is easy to check that r′0 is linear on
[B′, B], i.e. (B′, smin), (2B′, q0) and (B,K) are on the same line, as well as that
K < qx ≤ q0 for all x ∈ [0,∞), see Figure 4.15 (b). Explicitly r′x is given by

r′x(l) =

®
qx−sx
B′

(l −B′) + sx l ∈ [B′, 2B′]
K−qx
B−2B′

(l −B) +K l ∈ [2B′, B]
. (4.38)

Straightforward calculation shows that

rx(B) = h+

∫ B

B′
r′x(l) dl =

»
A2 − (A−B)2,

and thus by setting rx(l) =
√
A2 − (A− l)2 for l ∈ [B, 2A], we obtain a C1-smooth

function rx : [0, 2A] → [0,∞). Another straightforward calculation shows that for
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x, y ∈ [0,∞)

max
l∈[B′,2A]

max

®
rx(l)

ry(l)
,
ry(l)

rx(l)
,
r′x(l)

r′y(l)
,
r′y(l)

r′x(l)

´
≤ e|x−y|. (4.39)

Moreover, by making a C1-small perturbation near the points B′, 2B′ and B, we can
make sure that rx are all smooth while (4.39) remains valid. Finally, we extend rx to
[−2A, 2A] by setting rx(l) = rx(−l). It is clear from the construction that property
(2) holds.

Combining (4.37) and (4.39) proves property (4). By taking large enough n we
can guarantee that property (1) holds, which finishes the proof.

We can now give a proof of (1) and (3) in Proposition 4.5.4.

Proof. (Proof of (1) and (3) in Proposition 4.5.4) Denote by gx the metric induced
from profile function rx given by Proposition 4.8.1. By (2) in Proposition 4.8.1 we
get that Lgx(γ0) = 2πrx(0) = δ0e

−x. Since γ0 has constant speed

Egx(γ0) =
L2
gx(γ0)

2
=
δ2

0

2
e−2x,

which proves (1) in Proposition 4.5.4.

To prove (3) in Proposition 4.5.4, let Rx = 1√
VolgxS

2
. Now VolRx·gxS

2 = 1 and

from (1) in Proposition 4.8.1 it follows that

diam(S2, Rx · gx) = Rx · diam(S2, gx) ≤
…

1

1− ε
· (100

√
1− ε) ≤ 100,

as well as that
R2
x(1− ε) ≤ 1 ≤ R2

x(1 + ε).

Thus Rx · gx ∈ ḠS2 , and taking small enough ε finishes the proof.

Parameterizations of multi-bulked surfaces

Recall that a cylindrical segment is a surface of revolution with constant profile
function r : I → [0,∞) on an open interval I. Let Σ be a closed, orientable surface
of genus at least one and fix N ∈ N. Denote by gstd the standard Riemannian metric
on R3 and let 0 < τ << 1 be a small number. We fix an embedding φ : Σ→ R3 such
that Volφ∗gstd(Σ) = 1, diam(Σ, φ∗gstd) ≤ 99 and imφ contains a cylindrical segment
C given by a profile function rseg : (L−, L+)→ R, rseq ≡ τ with L+ − L− = 2τ.

We construct our N -bulked surface by replacing C with an open chain of N − 1
spheres denoted by O(N). Let AN = τ

N
and take a profile function r : (L−, L+) →

[0,∞) whose graph consists of N − 1 semicircles of radius AN and two connecting
ends. More precisely, on [L−, L− + AN ], r is strictly decreasing, and moreover on
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[L− + AN
2
, L− + AN ] its graph coincides with a part of a semicircle with radius AN

centered at L−. Similarly, r is strictly increasing on [L+ − AN , L+] and on [L+ −
AN , L+ − AN

2
] its graph coincides with a semicircle with radius AN centered at L+,

see Figure 4.16.

τ

L
− L

−
+ 3AN

L+

N − 1 semicircles of radius AN

τ

L
−
+AN L+ −ANL

−
L+

L
−
+

AN

2
L+ −

AN

2

Figure 4.16. Profile function r of the chain of N − 1 spheres

Let gr be the (singular) metric on Σ obtained from the standard metric on R3 after
replacing C with the O(N) given by the above profile function r. The area of O(N) is
of order τ 2, while its diameter is of order τ. Thus, for any given 0 < ε < 1, by taking
τ small enough, we have that |Volgr(Σ)− 1| ≤ ε and diam(Σ, gr) ≤ 100

√
1− ε. Now,

let BN = 10−nAN , δ0(N) = δ0 · ε
√

8π
N

, δ0 being given by (4.36). Notice also that BN

and δ0(N) depend on a parameter n. By carrying out the same construction as in the
bulked sphere case near each of the touching points L− + AN , L− + 3AN , . . . , L+ −
3AN , L+ − AN , we obtain the following proposition.

Proposition 4.8.2. Given any sufficiently small ε > 0, for all sufficiently large n
and AN , BN , δ0(N) as above, there exists a family of profile functions r~x, ~x ∈ T (N),
each of which defines an N-bulked metric g~x such that

(1) |Volg~x(Σ)− 1| ≤ ε and diam(Σ, g~x) ≤ 100
√

1− ε.

(2) For different ~x ∈ T (N), r~x coinicide outside of BN -neighbourhoods of L− +
AN , L− + 3AN , . . . , L+ − 3AN , L+ − AN .

(3) For k = 1, . . . , N , r~x(L− + (2k − 1)AN) = δ0
2π
e−xk , where ~x = (x1, . . . , xN).

(4) For any ~x, ~y ∈ T (N),

max
l∈[L−,L+]

max

®
r~x(l)

r~y(l)
,
r~y(l)

r~x(l)
,
r′~x(l)

r′~y(l)
,
r′~y(l)

r′~x(l)

´
= e|~x−~y|∞ .

In (4), as before, we use convention that 0
0

= 1.
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We can now give a proof of (1) and (4) in Proposition 4.5.8.

Proof. (Proof of (1) and (4) in Proposition 4.5.8) Let g~x be the N -bulked metric from
Proposition 4.8.2. By (2) in Proposition 4.8.1 it follows

Lg~x(γ1) = δ0(N)e−x1 , . . . , Lg~x(γN) = δ0(N)e−xN .

Since all γi have constant speed, we have

Eg~x(γi) =
L2
g~x

(γi)

2
=

(δ0(N))2

2
e−2xi , for i = 1, . . . , N,

which proves (1) in Proposition 4.5.8. The proof of (4) in Proposition 4.5.8 is exactly
the same as the proof of (3) in Proposition 4.5.4 above.

Finally, the proof of Proposition 4.6.13 follows directly from (4) in Proposition
4.8.1 and (4) in Proposition 4.8.2.

4.8.2 Reduction of parameterization space

Recall that T (2N) is defined as

T (2N) =
{
~x = (x1, ..., x2N) ∈ [0,∞)2N |x1 ≤ x2 ≤ ... ≤ x2N

}
.

In this subsection, we will prove Lemma 4.5.9. It claims that for every N ∈ N there
exists a quasi-isometric embedding Q : (RN , | · |∞)→ (T (2N), | · |∞). We construct Q
as a composition of two quasi-isometric embeddings A and L as follows

(RN , | · |∞)
L−→ ([0,∞)2N , | · |∞)

A−→ (T (2N), | · |∞).

Construction of L

Consider a map L : R→ [0,∞)2, given by

L(x) =

ß
(1,−x+ 1) when x < 0

(1 + x, 1) when x ≥ 0
.

If we realize [0,∞)2 as the first quadrant of R2, then map L gives an “L-shaped”
embedding of R with corner at (1, 1). Now define a multi-dimensional version of L,
that is L : RN → [0,∞)2N by

L(~x) = (L(x1), ..., L(xN)).

We claim the following.
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Lemma 4.8.3. For any N ∈ N and ~x, ~y ∈ RN , it holds

1

2
|~x− ~y|∞ ≤ |L(~x)− L(~y)|∞ ≤ |~x− ~y|∞.

Proof. First consider the case when N = 1. When both x, y are negative or both x, y
are non-negative, it is easy to see |x− y| = |L(x)− L(y)|∞. When x < 0 and y ≥ 0,

|L(x)− L(y)|∞ = |(1,−x+ 1)− (1 + y, 1)|∞
= |(−y,−x)|∞ = max{|x|, |y|}
≤ |x|+ y = |x− y|.

On the other hand,

2|L(x)− L(y)|∞ = 2 max{|x|, |y|}
≥ |x|+ |y|
= |x|+ y = |x− y|.

The same argument works for x ≥ 0 and y < 0. Therefore, we get a bi-Lipschitz
relation

|L(x)− L(y)|∞ ≤ |x− y| ≤ 2|L(x)− L(y)|∞ (4.40)

Then

|L(~x)− L(~y)|∞ = max{|L(x1)− L(y1)|∞, ..., |L(xN)− L(yN)|∞}
≤ max{|x1 − y1|, ..., |xN − yN |} = |~x− ~y|∞.

and

2|L(~x)− L(~y)|∞ = max{2|L(x1)− L(y1)|∞, ..., 2|L(xN)− L(yN)|∞}
≥ max{|x1 − y1|, ..., |xN − yN |} = |~x− ~y|∞.

Thus we get the conclusion.

Construction of A

Consider the following map A : [0,∞)2N → T (2N),

A(~x) = A(x1, ..., x2N) = (x1, x1 + x2, ..., x1 + ...+ x2N) .

We have

Lemma 4.8.4. For every N ∈ N and ~x, ~y ∈ [0,∞)2N , it holds

1

2
|~x− ~y|∞ ≤ |A(~x)− A(~y)|∞ ≤ (2N) · |~x− ~y|∞.
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Proof. Conclusion of Lemma 4.8.4 immediately follows from the following inequalities.
For a1, ..., an ∈ R,

1

2
max{|a1|, ..., |an|} ≤ max{|a1|, |a1 + a2|, ..., |a1 + ...+ an|} ≤ n ·max{|a1|, ..., |an|}.

The second inequality comes from the fact that for any k ∈ {1, ..., n},

|a1 + ...+ ak| ≤ |a1|+ ...+ |ak| ≤ k ·max{|a1|, ..., |ak|} ≤ n ·max{|a1|, ..., |an|}.

For the first inequality, consider the two-term case first, that is

max{|a1|, |a1 + a2|} ≥
1

2
max{|a1|, |a2|}. (4.41)

If |a1| ≥ |a2|, the inequality is obvious. If on the other hand, |a1| ≤ |a2|, then

2 max{|a1|, |a1 + a2|} = 2 max{|a1|, |a1 − (−a2)|}
≥ 2 max{|a1|, ||a1| − |a2||}
= 2 max{|a1|, |a2| − |a1|}
≥ |a1|+ |a2| − |a1|
= |a2| = max{|a1|, |a2|}.

This proves (4.41).

For the general case, assume that max{|a1|, |a2|, ..., |an|} = |ak|. If k = 1, the
inequality if obvious. If k ≥ 2 then (4.41) implies that

max{|a1 + ...+ ak−1|, |a1 + ...+ ak|} ≥
1

2
max{|a1 + ...+ ak−1|, |ak|} ≥

1

2
|ak|,

and the claim follows.

Proof. (Proof of Lemma 4.5.9) Set Q = A ◦ L and we get the conclusion.

4.8.3 Geodesic flow on a torus of revolution

We give a detailed analysis of the geodesic flow of the metric of revolution on T2 and
in particular prove Lemma 4.1.24.

Recall from Example 4.1.23 that f : [−A,A] → (0,+∞) was a smooth, even
function, which extends 2A-periodically to a smooth function on R. Moreover, f was
strictly increasing on [−A, 0] and hence strictly decreasing on [0, A] with a unique
maximum at 0 and two minima at ±A. Using f as a profile function, we defined a
metric of revolution g on T2 = R/2AZ × R/2πZ. In other words, g is a pull back of
the Euclidean metric on R3 via the embedding

(x, θ)→ (x, f(x) cos θ, f(x) sin θ).
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Recall also that we used a change of variable X(x) =
∫ x

0

√
1 + (f ′(t))2dt, x ∈ [−A,A].

The new variable satisfies X ∈ [−T, T ] for T =
∫ A

0

√
1 + (f ′(t))2 and we denoted

F (X) = f(x(X)). A direct computation shows that in (X, θ) coordinates metric has
the following form:

g(X,θ) =

Å
1 0

0 F 2(X)

ã
. (4.42)

The Lagrangian of the geodesic flow of g is given by

L(X, θ, vX , vθ) =
1

2

(
v2
X + F 2(X)v2

θ

)
.

while momenta are

pX =
∂L

∂vX
= vX and pθ =

∂L

∂vθ
= F 2(X)vθ.

We compute the Hamiltonian as a Legendre transform

H(X, θ, pX , pθ) = pXvX + pθvθ −
1

2

(
v2
X + F 2(X)v2

θ

)
=

1

2

Å
p2
X +

p2
θ

F 2(X)

ã
. (4.43)

Hamiltonian equations are 

Ẋ =
∂H

∂pX
= pX

θ̇ =
∂H

∂pθ
=

pθ
F 2(X)

ṗX = −∂H
∂X

=
F ′(X)

F 3(X)
p2
θ

ṗθ = −∂H
∂θ

= 0.

(4.44)

The above system is integrable with two integrals given by H and pθ. Let us analyze
the system on the energy level H = 1

2
(this corresponds to unit speed geodesics) and

let us assume that pθ =
√
C ≥ 0. The case pθ < 0 is treated similarly (note that

(pX , pθ) → (−pX ,−pθ) corresponds to changing the direction of a geodesic). Now,
(4.43) translates to

p2
X +

C

F 2(X)
= 1, (4.45)

while Hamiltonian equations become
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Ẋ = pX

θ̇ =

√
C

F 2(X)

ṗX = C
F ′(X)

F 3(X)

(4.46)

If C = 0, (4.45) and (4.46) imply that θ̇ = 0, Ẋ = pX = ±1. Hence, in this case
geodesics are given by θ(t) = const, X(t) = X(0)± t.

If C > 0, (4.45) implies that
√
C ≤ maxF and we distinguish four cases.

1◦
√
C = maxF :

In this case (4.45) implies that X = 0 and thus pX = 0, F ′(X) = 0. Now, (4.46)
gives Ẋ = 0, ṗX = 0, θ̇ = 1

maxF
and thus X(t) = 0, pX(t) = 0, θ(t) = θ(0) + t

maxF
.

This solution describes a closed geodesic γ̂, i.e. the parallel circle of radius maxF at
X = 0, and it’s iterations.

2◦ minF <
√
C < maxF :

In this case the dynamics is constrained to the interval where
√
C ≤ F (X), i.e.

on [−λC(F ), λC(F )] for F−1(
√
C) = {−λC(F ), λC(F )}. Moreover, on this interval it

holds pX = ±
»

1− C
F 2(X)

and the portrait of the system in (X, pX)-plane looks as in
Figure 4.17.

X

pX

λC(F )−λC(F )

Figure 4.17. (X, pX)-portrait when minF <
√
C < maxF

3◦
√
C = minF :

In this case λC(F ) = T and pX = ±
»

1− C
F 2(X)

. The behaviour of the flow at

X = ±T differs from the behaviour when X ∈ (−T, T ). Indeed, if X = ±T , we
have pX = F ′(X) = 0 and (4.46) becomes Ẋ = 0, ṗX = 0, θ̇ = 1

minF
. Thus, we

obtain a solution X(t) = ±T, pX(t) = 0, θ(t) = θ(0)+ t
minF

, which describes a closed
geodesic γ̌, i.e. the parallel circle of radius minF at X = ±T , and it’s iterations. In
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(X, pX)-plane solutions with X ∈ (−T, T ) trace two curves which connect points −T
and T and the portrait looks as in Figure 4.18.

−T T X

pX

γ̌ γ̌

Figure 4.18. (X, pX)-portrait when
√
C = minF

4◦
√
C < minF :

In this case 1− C
F 2(X)

> 0 for all X ∈ [−T, T ] and pX = ±
»

1− C
F 2(X)

. The portrait
looks as in Figure 4.19.

pX

X−T T

Figure 4.19. (X, pX)-portrait when
√
C < minF

Recall that α denotes the homotopy class of loops represented by a loop θ(t) =
t, t ∈ [0, 2π], X = const. Let us now focus on closed geodesics in homotopy class α.
As we saw above, there are always two closed geodesics in this class, namely γ̌ and
γ̂. Their properties are summarized by the following lemma.

Lemma 4.8.5. Assume that F ′′(T ) > 0 as well as that 0 < −F (0)F ′′(0) < 1. Then
γ̌ and γ̂ are non-degenerate closed geodesics and ind γ̌ = 0, ind γ̂ = 1.

Proof. First notice that F (0) = f(0), F (±T ) = f(±A), F ′(0) = f ′(0) = 0, F ′(±T ) =
f ′(±A) = 0 and F ′′(0) = f ′′(0), F ′′(±T ) = f ′′(±A). This immediately follows after

155



differentiating (twice) the expression f(x) = F (X(x)), using thatX ′(x) =
√

1 + (f ′(x))2

as well as that f ′(0) = f ′(±A) = 0. Hence, F ′′(±T ) > 0 implies f ′′(±A) > 0 and
thus γ̌ is non-degenerate and ind γ̌ = 0, as show in Subsection 4.6.1 (proof of Lemmas
4.5.3 and 4.5.7).

By Lemma 4.6.3, γ̂ is non-degenerate if and only if there are no periodic Jacobi
fields along γ̂, orthogonal to ˙̂γ. As in the case of γ̌, Jacobi fields are computed using
(4.24), however in this case K = −4π2f(0)f ′′(0) = −4π2F (0)F ′′(0) > 0. Orthogonal
Jacobi fields are of the form J(t) = (J1(t), 0, 0) and (4.24) translates to

J̈1(t) +K · J1(t) = 0. (4.47)

In other words, the space of orthogonal Jacobi fields is spanned by

Jsin(t) = (sin(
√
Kt), 0, 0) and Jcos(t) = (cos(

√
Kt), 0, 0).

By the assumption, 0 < −F (0)F ′′(0) < 1 and hence 0 <
√
K < 2π, which impies

that no orthogonal Jacobi field is periodic, i.e. γ̂ is non-degenerate.

Using that

(Jsin(t), J̇sin(t)) = ((sin(
√
Kt), 0, 0), (

√
K cos(

√
Kt), 0, 0))

and
(Jcos(t), J̇cos(t)) = ((cos(

√
Kt), 0, 0), (−

√
K sin(

√
Kt), 0, 0)),

we may express the linearized Poincare map P : (T γ̂(0))⊥ ⊕ (T γ̂(0))⊥ → (T γ̂(0))⊥ ⊕
(T γ̂(0))⊥ with respect to basis ((1, 0, 0), (0, 0, 0))T , ((0, 0, 0), (

√
K, 0, 0))T by the following

matrix

P =

Ç
cos
√
K sin

√
K

− sin
√
K cos

√
K

å
.

The eigenvalues of P are e±i
√
K and hence γ̂ is not hyperbolic. Finally, in order to

compute ind γ̂ we use Lemma 3.4.2. from [85]. This lemma states that if a closed
geodesic γ on an orientable surface is non-degenerate and not hyperbolic, then it’s
index is an odd number equal to either m or m+ 1, where m denotes the number of
points γ(t∗), 0 < t∗ < 1, conjugate10 to γ(0) along γ. Since every orthogonal Jacobi
field has the form

J(t) = (A cos(
√
Kt) +B sin(

√
Kt), 0, 0),

J(0) = (0, 0, 0) is equivalent to A = 0 and since 0 <
√
K < 2π there can be at most

one point conjugate to γ̂(0), namely γ̂( π√
K

). This means that m = 0 or m = 1 and
thus ind γ̂ = 1.

10Recall that a point γ(t∗) is called conjugate to γ(0) along γ if there exists a Jacobi field J along

γ such that J(0) = J(t∗) = 0. Since the space of Jacobi fields along γ is spanned by orthogonal

Jacobi fields and γ̇ and tγ̇, one readily sees that γ(t∗) is conjugate to γ(0) if and only if there exists

an orthogonal Jacobi field J along γ such that J(0) = J(t∗) = 0.
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The above analysis of the portrait in (X, pX)-plane shows that closed geodesics in
class α other than γ̌ and γ̂ can only appear when minF <

√
C < maxF. In this case,

for a fixed C, the flow is periodic in (X, pX)-plane. Denote by ΘF (C) the shift in
θ-coordinate made by a flow line γ̃ by the time it makes a single turn from (−λC , 0)
back to (−λC , 0) (we abbreviate λC = λC(F )).

Formally, let γ̃(t) = (X(t), θ(t), pX(t),
√
C) be a flow line of the Hamiltonian

system (4.46), assume without lost of generality that X(0) = −λC , pX(0) = 0 and let
t0 > 0 be the smallest time when X(t0) = −λC , pX(t0) = 0 again. Define

ΘF (C) = θ(t0)− θ(0).

As notation suggests, ΘF (C) only depends on F and C. Indeed, using (4.45), (4.46)
and the symmetry of F we calculate11

ΘF (C) =

∫ t0

0

θ̇(t)dt =

∫ t0

0

√
C

F 2(X(t))
dt = 2

∫ λC

−λC

√
C

F 2(X)

dX

Ẋ

= 2

∫ λC

−λC

√
C

F 2(X)

dX

pX
= 2
√
C

∫ λC

−λC

dX

F (X)
√
F 2(X)− C

.

(4.48)

We will define Fε, described in Lemma 4.1.24, for which ΘFε(C) > 2π for all minFε <√
C < maxFε. Since from (4.46) we have that θ̇ > 0, θ(t) is increasing and hence

ΘFε(C) > 2π implies that any closed geodesic γ must make at least two full turns in
θ-direction, i.e. it can not lie in the homotopy class α.

Everything we have done so far applies to any F satisfying the necessary conditions.
Let us now focus on concrete examples and prove Lemma 4.1.24.

Proof. (Proof of Lemma 4.1.24) First, we note that F is implicitly defined by f and
hence, it is not a priori clear that we may choose F freely. However, one can show that
if F : [−T, T ] → (0,+∞) satisfies |F ′(X)| < 1 for all X ∈ [−T, T ] then there exists
f : [−A,A] → (0,+∞), for some A, such that F (X) = f(x(X)). Indeed, by setting
x(X) =

∫ X
0

√
1− (F ′(τ))2dτ, A =

∫ T
0

√
1− (F ′(τ))2dτ and f(x(X)) = F (X), one

checks by a direct computation that f defines F. Moreover, since |F ′(X)| < 1 for all
X ∈ [−T, T ], x(X) is a smooth function and dx

dX
> 0 on [−T, T ]. Thus, f is smooth

if and only if F is smooth.

Fix 0 <
√
k < m and let us take T = 1, F0 : [−1, 1] → (0,+∞) given by

F0(X) = 1√
kX2+m

. One readily checks that |F ′(X)| < 1 for all X ∈ [−1, 1]. For small
enough ε > 0, Fε will be a smoothing of F0 near the points ±1. We start by analysing
F0.

Denote by λ0
C = λC(F0) =

√
1
C
−m
k

and let γ̃(t) = (X(t), θ(t), pX(t),
√
C), X(0) =

−λ0
C , pX(0) = 0 be a solution of the Hamiltonian system (4.45), (4.46) associated to

11Compare to Proposition 2 in [7].
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F0. From (4.46) we have

Ẍ = ˙pX =
F ′(X)

F 3(X)
C = −CkX,

and hence X(t) = a cos(
√
CKt) + b sin(

√
CKt). Initial conditions X(0) = −λ0

C and
Ẋ(0) = pX(0) = 0 give us that a = −λ0

C and b = 0, i.e.

X(t) = −

 
1
C
−m
k

cos(
√
CKt). (4.49)

Using (4.46) and (4.49), a direct computation shows that

ΘF0(C) =

∫ 2π√
Ck

0

θ̇(t)dt =

∫ 2π√
Ck

0

√
C

F 2(X(t))
dt =

∫ 2π√
Ck

0

√
C

1
kX2(t)+m

dt

=
√
C

∫ 2π√
Ck

0

ÅÅ
1

C
−m

ã
cos2(

√
Ckt) +m

ã
dt =

π√
k

Å
1

C
+m

ã
.

From
√
C < maxF0 = 1√

m
we have that 1

C
> m and thus ΘF0(C) > 2π m√

k
. Since

m >
√
k it follows that ΘF0(C) > 2π for all minF0 <

√
C < maxF0.

Finally, let us show that for ε > 0 we may smoothen F0 on intervals [−1,−1 + ε]
and [1 − ε, 1] in such a way that newly obtained Fε also satisfies ΘFε(C) > 2π
for all minFε <

√
C < maxFε. To this end, let Fε be such that Fε|[−1+ε,1−ε] =

F0|[−1+ε,1−ε], Fε ≥ F0 elsewhere, |F ′ε(X)| ≤ |F ′0(X)| < 1 for all X ∈ [−1, 1], Fε

extends 2-periodically to a smooth function on R and Fε
C0

−→ F0 as ε → 0. Denote
F−1
ε (
√
C) = {−λC , λC}, λC > 0. Since Fε ≥ F0 we have that λ0

C ≤ λC . Now, note
that if λ0

C ≤ 1− ε, it holds λC = λ0
C as well as ΘFε(C) = ΘF0(C) > 2π, because two

function coincide on [−1 + ε, 1− ε]. If however 1− ε < λ0
C ≤ λC < 1, from (4.48) we

obtain

ΘFε(C) = 2
√
C

∫ λC

−λC

dX

Fε(X)
√
F 2
ε (X)− C

> 2
√
C

∫ λC−ε

−λC+ε

dX

Fε(X)
√
F 2
ε (X)− C

.

Since λ0
C ≤ λC we have

2
√
C

∫ λC−ε

−λC+ε

dX

Fε(X)
√
F 2
ε (X)− C

≥ 2
√
C

∫ λ0C−ε

−λ0C+ε

dX

Fε(X)
√
F 2
ε (X)− C

=

= 2
√
C

∫ λ0C−ε

−λ0C+ε

dX

F0(X)
√
F 2

0 (X)− C
.
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Same change of variables used in (4.48) gives us

ΘFε(C) > 2
√
C

∫ λ0C−ε

−λ0C+ε

dX

F0(X)
√
F 2

0 (X)− C

= 2
√
C

∫ X−1(λ0C−ε)

X−1(−λ0C+ε)

dt

F 2
0 (X(t))

= 2
√
C

arccos

(
−1+ ε

λ0
C

)
√
Ck∫

arccos

(
1− ε

λ0
C

)
√
Ck

(kX2(t) +m)dt

>
2m√
k

Å
arccos

Å
−1 +

ε

λ0
C

ã
− arccos

Å
1− ε

λ0
C

ãã
.

Since λ0
C ≥ 1 − ε, it follows that ε

λ0C
≤ ε

1−ε → 0 when ε → 0, independently of C.

Moreover, by the assumption
√
k < m, so for small enough ε we have that ΘFε(C) >

2π for all minFε <
√
C < maxFε. As explained above, this implies that the only

closed geodesics in class α of a metric induced by Fε are γ̌ and γ̂ which together with
Lemma 4.8.5 concludes the proof.
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Chapter 5

Persistence barcodes and Laplace

eigenfunctions on surfaces

5.1 Introduction and main results

5.1.1 Laplace-Beltrami eigenfunctions

The past fifteen years have witnessed a number of fascinating applications of the
spectral theory of the Laplace-Beltrami operator to data analysis, such as dimensionality
reduction and data representation [22,40] or shape segmentation in computer graphics
[141, 124]. In the present chapter we focus on this interaction the other way around
and study persistence barcodes, a fundamental notion originated in topological data
analysis, of the Laplace-Beltrami eigenfunctions and their linear combinations. Our
main finding is a constraint on such barcodes in terms of the corresponding eigenvalues.
This result turns out to have applications to approximation theory.

Let M be a compact n-dimensional Riemannian manifold, possibly with nonempty
boundary. Let ∆ be the (positive definite) Laplace-Beltrami operator on M ; if
∂M 6= ∅ we assume that the Dirichlet condition is imposed on the boundary. The
spectrum of the Laplace-Beltrami operator on a compact Riemannian manifold is
discrete, and the eigenvalues form a sequence 0 ≤ λ1 ≤ λ2 ≤ · · · ↗ ∞, where each
eigenvalue is repeated according to its multiplicity. The corresponding eigenfunctions
fk, ∆fk = λkfk, form an orthonormal basis in L2(M). The properties of Laplace-
Beltrami eigenfunctions have fascinated researchers for more than two centuries,
starting with the celebrated Chladni’s experiments with vibrating plates. We refer
to [79,164,165] for a modern overview of the subject. As the examples of trigonometric
polynomials and spherical harmonics indicate, the shapes of the eigenfunctions are
expected to have an increasingly complex structure as λ goes to infinity. At the same
time, various restrictions on the behaviour of eigenfunctions can be formulated in
terms of the corresponding eigenvalue. One of the basic facts about eigenfunctions
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is Courant’s nodal domain theorem, stating that the number of nodal domains of
an eigenfunction fk is at most k (see [43]). There exist also bounds on the (n − 1)-
dimensional measure of the zero set of eigenfunctions (see [93–95] for most recent
developments on this topic), on the distribution of nodal extrema ( [123,112]), on the
growth of Lp-norms ( [142]), and other related results.

In the present chapter we focus on topological properties of the sublevel sets of
Laplace-Beltrami eigenfunctions, and, more generally, of the linear combinations of
eigenfunctions with eigenvalues ≤ λ. There has been a number of important recent
advances in the study of topological properties of random linear combinations of
Laplace eigenfunctions, with an emphasis on the nodal and critical sets (see, for
instance, [99, 100, 68, 69, 133, 29]). Our approach is deterministic and is based on
the study of persistence barcodes. In the probabilistic setting, some steps in this
direction have been discussed in [28, Section 1.4.3], see also [108]. Roughly speaking,
a persistence barcode is a collection of intervals in R which encodes oscillation of a
function (see Section 2.1 for a detailed overview). Our main result (Theorem 5.1.7)
implies that the quantity Φ1(f), the total length of the barcode of any such linear
combination f with unit L2-norm, satisfies an upper bound O(λ). This inequality is
inspired by the ideas introduced in [123], where a similar bound was proved for the
Banach indicatrix of f , another measure of oscillation which goes back to the works of
Kronrod [87] and Yomdin [162]. Our central observation (see Proposition 5.3.1 below)
is that the length of the barcode admits an upper bound via the Banach indicatrix,
which together with [123] yields the main result.

We believe that discussing eigenfunctions and their linear combinations in the
language of barcodes, which originated in topological data analysis, has a number of
merits. First, there exists a well developed metric theory of barcodes which highlights
their robustness with respect to perturbations of functions in the uniform norm. Some
features of this robustness are inherited by the above-mentioned functional Φ1. This,
in turn, paves the way for applications to the following question of approximation
theory (see Section 5.2): given a function with unit L2-norm, how well one can
approximate it by a linear combination of Laplace eigenfunctions with eigenvalues
≤ λ? In particular, we show that a highly oscillating function does not admit a
good uniform approximation of this kind unless λ is large enough, see Corollary 5.2.4.
Second, our approximation results remain valid if a given function is composed with a
diffeomorphism of the surface, see Proposition 5.2.1. Our approach yields it essentially
for free, given that the barcodes are invariant with respect to compositions with
diffeomorphisms. Note that the effect of a change of variables on analytic properties
of functions is a classical theme in Fourier analysis, cf. the celebrated Bohr-Pál
theorem [132]. Third, we conjecture that barcodes provide a right framework for a
potential extension of our results to higher dimensions, see Conjecture 5.1.14 below.

In a different direction, we present an application to the problem of sorting finite
bars of persistence barcodes. This task arises on a number of occasions in topology and
data analysis. Our results allow to improve an estimate on the optimal running time
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of a sorting algorithm for barcodes of linear combinations of Laplace eigenfunctions
with eigenvalues ≤ λ, see subsection 5.1.4.

5.1.2 A family of functionals on the space of barcodes

From now on, we assume that M is an orientable surface, possibly with boundary.
Let us define, for every positive function u ∈ C(R), a positive, lower semi-continuous
functional Φu on the space of Morse functions on M . Let f be a Morse function,
vanishing on the boundary if ∂M 6= ∅. Recall from Section 2.1 that V t

k (f) = Hk({f <
t};R) was a persistence module associated to f in degree k, Bk(f) it’s barcode, called
the degree k barcode of f , and B(f) = ∪kBk(f) the full barcode of f . Under our
assumptions B(f) is finite, i.e. it consists of finitely many distinct intervals with finite
multiplicities. Denote by B′(f) ⊂ B(f) the multiset of all finite bars in the barcode
B(f) and by |B′(f)| the total number of finite bars in B(f). Recall from Section 1.4
that a positive functional Φu on the set FMorse of all Morse functions (vanishing on
the boundary) is defined by

Φu(f) =



max f∫
min f

u(t) dt+
∑

I∈B′(f)

∫
I

u(t) dt if ∂M = ∅,

0∫
min f

u(t) dt+
∑

I∈B′(f)

∫
I

u(t) dt if ∂M 6= ∅.

(5.1)

In particular, Φ1(f) is the sum of the lengths of all the finite bars in the barcode of
f and the length of the range of f . A related functional has been earlier considered
in [39], see Remark 5.1.19.

Lemma 5.1.1. Let

C(u, f) = 2 · (|B′(f)|+ 1) · max
[min f,max f ]

u

in the case ∂M = ∅, or

C(u, f) = (2|B′(f)|+ 1) · max
[min f,max f ]

u

in the case ∂M 6= ∅. Then

Φu(f)− Φu(h) ≤ C(u, f) · dbottle(B(f),B(h)). (5.2)

Remark 5.1.2. If M has no boundary, then

2 · (|B′(f)|+ 1) = |Crit(f)| − b1(M), (5.3)

where |Crit(f)| stands for the number of critical points of f and b1 = dimH1(M ;R).
Morally speaking, each critical point of index i produces either a left endpoint of
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a bar in degree i or a right endpoint of a bar in degree i − 1. This can be made
precise in a number of ways (see Lemma 2.1.10 and the discussion surrounding it).
Therefore, taking into account the critical points corresponding to infinite bars, we
get |Crit(f)| = 2|B′(f)| + b0(M) + b1(M) + b2(M), which implies (5.3). The same
reasoning applies to general manifolds without boundary, where we have

|Crit(f)| = 2|B′(f)|+
dimM∑
i=0

bi(M).

We prove Lemma 5.1.1 in subsection 5.4.1. Combining (5.2) with Theorem 2.1.17
yields

Φu(f)− Φu(h) ≤ C(u, f) · dC0(f, h), (5.4)

where dC0(f, h) = |f − h|C0 .

Proposition 5.1.3. The functional Φu is lower semi-continuous both as a functional
Φu : (B, dbottle) → R and as a functional Φu : (FMorse, dC0) → R. Here B stands for
the set of all barcodes corresponding to functions in FMorse.

Remark 5.1.4. We slightly abuse the notation here by looking at Φu(f) = Φu(B(f))
as the function of barcode B(f). However, it is obvious that Φu depends only on B(f)
and not on f itself. In the same spirit min f and max f should be replaced by the
smallest and the largest endpoint of a bar in B(f).

Proof. Recall that a functional Φ defined on a metric space X is called lower semi-
continuous at a point f ∈ X if lim infh→f Φ(h) ≥ Φ(f). This relation easily follows
from the inequalities (5.2) and (5.4) for the functional Φu defined on the metric spaces
(B, dbottle) and (FMorse, dC0), respectively.

The inequality (5.4) could be further strengthened. Let Diff(M) denote the group
of all smooth diffeomorphisms of the surface M (throughout this chapter, the term
“smooth” stands for C∞–smooth).

Corollary 5.1.5. We have

Φu(f)− Φu(h) ≤ C(u, f) · dC0(f ◦ ϕ, h ◦ ψ), (5.5)

for any two diffeomorphisms ϕ, ψ ∈ Diff(M).

In particular, taking ϕ = ψ = 1M gives (5.4).

Proof. Indeed, for any diffeomorphism ϕ : M →M , the barcodes B(f) and B(f ◦ ϕ)
are the same. Since Φu depends only on the barcode and not on the function itself,
putting f ◦ ϕ and h ◦ ψ in (5.2) yields (5.5).
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Let us now extend the functional Φu from FMorse to C0(M). First, we introduce
a “cut-off version” of Φu. Define

Φu,k(f) =



max f∫
min f

u(t) dt+
k∑
i=1

∫
Ii

u(t) dt if ∂M = ∅,

0∫
min f

u(t) dt+
k∑
i=1

∫
Ii

u(t) dt if ∂M 6= ∅.

(5.6)

where Ii ∈ B′(f) are finite intervals ordered by integral of u, i.e. we have∫
I1

u(t) dt ≥
∫
I2

u(t) dt ≥ . . .

Lemma 5.1.6. For every bounded function u the functional Φu,k is Lipschitz on
FMorse with respect to dbottle with Lipschitz constant (2k + 2) · maxu if ∂M = ∅ or
with Lipschitz constant (2k + 1) ·maxu if ∂M 6= ∅.

The proof of Lemma 5.1.6 is given in subsection 5.4.2.

Assume now that f ∈ C0(M) is an abritrary continuous function on M . Let
fn ∈ FMorse such that dC0(f, fn)→ 0 as n→∞. Set

Φu(f) := lim
k→∞

lim
n→∞

Φu,k(fn) (5.7)

Note that Φu(fn) only depends on u|[min fn,max fn] and, since for sufficiently large n
it holds [min fn,max fn] ⊂ [min f − 1,max f + 1], we may restrict ourselves to this
interval and argue as if u was bounded. Thus due to Lemma 5.1.6 and Theorem
2.1.17, the double limit on the right-hand side of (5.7) (which could be equal to
+∞) does not depend on the choice of the approximating sequence fn. Therefore,
the functional Φu(f) is well defined by (5.7). Moreover, it is easy to check that the
right-hand sides of (5.7) and (5.1) coincide for f ∈ FMorse, and therefore (5.7) indeed
defines an extension of (5.1) to C0(M).

5.1.3 Main results

As before, M is an orientable surface, possibly with boundary, equipped with a
Riemannian metric g. Denote by ‖ · ‖ the L2-norm with respect to Riemannian
area σ and by ∆ the Laplace-Beltrami operator with respect to g. Slightly abusing
the notation, throughout this chapter κg will denote various constants depending only
on the Riemannian metric g.

Following4 [123], denote by Fλ the set of all smooth functions on M (vanishing on
the boundary if ∂M 6= 0) which satisfy ‖f‖ = 1 and ‖∆f‖ ≤ λ. One may check that

4Our definition is slightly different from the one in [123] since we do not assume that
∫
M
f σ = 0

if M has no boundary. However, this assumption is not needed for any of the results of [123] which

we use.
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Fλ contains normalized linear combinations of eigenfunctions of ∆ with eigenvalues
λi ≤ λ. If ∂M 6= 0, Fλ contains also normalized eigenfunctions of the biharmonic
clamped plate boundary value problem on M (see [123, Example 1.2]). Our main
result is the following theorem.

Theorem 5.1.7 (Theorem 1.4.1). Let λ > 0 be any positive real number, u ∈ C(R)
be a non-negative function and f ∈ Fλ be a function on an orientable surface (M, g).
Then there exists a constant κg > 0 such that

Φu(f) ≤ κg(λ+ 1)‖u ◦ f‖. (5.8)

In order to prove this theorem we compare both sides of inequality (5.8) with an
intermediate quantity. Let β(t, f) be the number of connected components of f−1(t).
Function β(t, f) is called the Banach indicatrix of f (see [87, 162]). In [123] it was
proved that

∫ +∞
−∞ u(t)β(t, f)dt ≤ κg(λ+ 1)‖u ◦ f‖ for f ∈ Fλ. On the other hand, we

show that Φu(f) ≤
∫ +∞
−∞ u(t)β(t, f)dt, see Proposition 5.3.1. This proposition, which

is of topological nature, constitutes the main technical result of this chapter.

Now, notice that taking u ≡ 1 in (5.8) we get the following corollary:

Corollary 5.1.8. Let (M, g) be an orientable surface without boundary and let f ∈ Fλ
be a Morse function on M . Denote by li the lengths of the finite bars of the barcode
associated with f . Then

max f −min f +
∑
i

li ≤ κg(λ+ 1). (5.9)

Example 5.1.9. The order of λ in inequality (5.9) is sharp. Indeed, consider the
flat square torus T2 = R2/(2π ·Z)2. We have a sequence fn(x, y) = 1

π
sin(nx) cos(ny),

n ∈ N of eigenfunctions of ∆ with eigenvalues 2n2. By analysing critical points of
f1 = sinx cosx and using periodicity, one can compute that the full barcode of fn
contains

� An infinite bar (− 1
π
,+∞) and 2n2 − 1 copies of finite bar (− 1

π
, 0] in degree 0;

� Two copies of infinite bar (0,+∞) and 2n2 − 1 copies of finite bar (0, 1
π
] in

degree 1;

� An infinite bar ( 1
π
,+∞) in degree 2.

Putting these values in inequality (5.9) gives us

4

π
n2 ≤ κg(2n

2 + 1),

which proves that the order of λ in (5.9) is sharp.
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In order to present another application of Theorem 5.1.7 we need the following
definition.

Definition 5.1.10. Let f : M → R be a Morse function on a differentiable manifold
M and let δ > 0. We say that a critical value α ∈ R of the function f is a δ-significant
critical value of multiplicity m if the barcode of f contains m bars of length at least
δ having α as one of the endpoints.

Given δ > 0 and a Morse function f , let Nδ(f) be the number of δ-significant
critical values counted with multiplicities. Theorem 5.1.7 then immediately implies:

Corollary 5.1.11 (Corollary 1.4.4). Let (M, g) be an orientable surface, possibly with
boundary, and let f ∈ Fλ be a Morse function on M . Then

Nδ(f) ≤ κg,δ(λ+ 1) (5.10)

for any δ > 0.

The following example shows that the δ-significance condition for some δ > 0 is
essential in Corollary 5.1.11. For simplicity, we present it in one dimension, but it
could be easily generalized to any dimension.

Example 5.1.12. Let M = S1 be a unit circle and let Ni be any sequence of natural
numbers tending to infinity. Consider a sequence of functions on M :

fi(x) =
1»

π(2 +N−4
i )

Å
1 +

1

N2
i

sin(Nix)

ã
.

It is easy to check that ||fi||L2(M) = 1 and fi ∈ Fλ, λ ≤ 1√
2
, for all i = 1, 2, . . . . At the

same time, the number of critical points, and hence of critical values (counted with
multiplicities) is equal to Ni, which goes to infinity and hence can not be controlled
by λ. Note, however, that for any δ > 0, the number of δ-significant critical values is
bounded as i→∞.

Estimate (5.10) could be also compared to [100, Theorem 1.1], which shows that
the expected value of the number of critical points of a random linear combination of
Laplace eigenfunctions f1, . . . , fm on a Riemannian manifold satisfies an asymptotic
expansion with the leading term of order m. Due to Weyl’s law, for surfaces this
is equivalent to having the number of critical points of order λm, which agrees with
inequality (5.10). Inspired in part by this observation, we propose the following
generalization of (5.10) to Riemannian manifolds of arbitrary dimension:

Conjecture 5.1.13. Let (M, g) be a Riemannian manifold of dimension n, possibly
with boundary, and let f be a L2-normalized linear combination of eigenfunctions of
∆ with eigenvalues λi ≤ λ. In addition, assume that f is Morse. Then

Nδ(f) ≤ κg,δ(λ+ 1)
n
2 (5.11)

for any δ > 0.
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Furthermore, for n-dimensional Riemannian manifolds, consider the following
generalization of the functional Φu: it is defined for Morse functions by an analogue
of (5.1), the sum being taken over all finite bars in B(f) in all degrees. Similarly to
(5.7) it also could be extended to arbitrary functions in C0(M).

Conjecture 5.1.14. Let u ∈ C(R) be a non-negative function and f a L2-normalized
linear combination of eigenfunctions of ∆ with eigenvalues λi ≤ λ on a Riemannian
manifold (M, g). Then there exists a constant κg > 0 such that for any λ > 0,

Φu(f) ≤ κg(λ+ 1)
n
2 ‖u ◦ f‖. (5.12)

A possible approach to proving this conjecture is discussed in Remark 5.3.5.

Example 5.1.15. In order to provide intuition about Conjecture 5.1.14, let us
examine what happens in dimension one (cf. [39, p. 137]). In this case, the notions
coming from the barcode, such as the number or the total length of finite bars, have
transparent meanings. Assume that (M, g) = (S1, g0) = (R/(2π · Z), g0) is the circle
with the metric inherited from the standard length on R, and f : S1 → R is a Morse
function. Since f is Morse, all critical points of f are either local minima or local
maxima and they are located on S1 in an alternating fashion. More precisely, if there
are N local minima x1, . . . , xN , there are also N local maxima y1, . . . , yN , and we may
label them so that they are cyclically ordered as follows:

x1, y1, x2, y2, . . . , xN , yN , x1.

Taking u ≡ 1, we have that Φ1(f) = max f −min f + the total length of finite bars.
All the finite bars appear in degree 0, and thus by Remark 5.1.2 we have N finite bars
whose left endpoints are f(x1), . . . , f(xN) and whose right endpoints are f(y1), . . . , f(yN).
From here it follows that

Φ1(f) =
N∑
i=1

(f(yi)− f(xi)).

On the other hand, the total variation of f satisfies

Var(f) = 2
N∑
i=1

(f(yi)− f(xi)) = 2Φ1(f).

Furthermore, using Hölder’s inequality and partial integration we have

Var(f) =

∫ 2π

0

|f ′(t)|dt ≤
√

2π

Å∫ 2π

0

(f ′(t))2dt

ã 1
2

=
√

2π

∣∣∣∣ ∫ 2π

0

f ′′(t)f(t)dt

∣∣∣∣ 12 .
From Cauchy-Schwarz inequality it follows

Var(f) ≤
√

2π‖f‖
1
2‖f ′′‖

1
2 .
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Finally, if f ∈ Fλ, we have ‖f‖ 1
2 = 1 and ‖f ′′‖ 1

2 ≤ λ
1
2 which gives

1

2
Var(f) = Φ1(f) ≤

…
π

2
λ

1
2 , (5.13)

as claimed by Conjecture 5.1.14. In order to extend the result to a general (not
necessarily Morse) f ∈ Fλ, observe that for every ε > 0 there exists a sequence of
Morse functions fn ∈ Fλ+ε, such that dC0(f, fn) → 0 when n → ∞. For all k, n ≥ 1
it holds

Φ1,k(fn) ≤ Φ1(fn) ≤
…
π

2
(λ+ ε)

1
2 .

Taking limits for k, n → ∞ as in (5.7) and using the fact that ε > 0 is arbitrary, we
obtain the inequality (5.13) for any f ∈ Fλ.

Example 5.1.16. The following example shows that the order of λ predicted by
Conjecture 5.1.14 is sharp. Let Tn = Rn/(2π·Z)n be the n-dimensional torus equipped
with a Euclidean metric ds2 =

∑
dx2

i . Define a sequence of functions

fl(x1, . . . , xn) =

√
2

n(2π)
n
2

(sin lx1 + . . .+ sin lxn), l ∈ N.

It is easy to check that ‖fl‖ = 1 and ∆fl = l2fl. Thus fl ∈ Fλ for λ = l2.

Proposition 5.1.17. There exist constants An and Bn such that

Φ1(fl) = Anλ
n
2 +Bn.

The proof of Proposition 5.1.17 uses the Künneth formula for persistence modules
proven in Section 3.2.2 (originally from [122]), see subsection 5.4.3 for details.

Finally, we wish to emphasise that Conjecture 5.1.14 does not hold for functions
in Fλ in dimensions greater than two. This is illustrated by the following example
due to Lev Buhovsky [25].

Example 5.1.18 (Buhovsky’s example). For each n ≥ 3, we provide a sequence of
functions Fk : Tn → R on n-dimensional flat torus Tn = Rn/(2π ·Z)n such that ‖Fk‖
and ‖∆Fk‖ are uniformly bounded away from zero and infinity for all k, while Φ1(Fk)
grows as kn−2. Such sequence violates inequality (5.12).

We define Fk as periodic functions on the cube [−π, π]n as follows. Let h :
[−1, 1]n → [0, 1] be a bump function. Divide [−1, 1]n into kn smaller cubes by
dividing each interval [−1, 1] into k equal parts. Now h(kx) is a bump function
supported in [− 1

k
, 1
k
]n and we define auxiliary functions fk to be equal to a copy of

1
k2
h(kx) inside each small cube. Since supports of different copies of 1

k2
h(kx) are

disjoint, L2-orthogonality implies

‖fk‖2 = kn
∥∥∥∥ 1

k2
h(kx)

∥∥∥∥2

= k−4‖h‖2,
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as well as that ‖∆fk‖ is bounded uniformly in k.

Finally, let1 Fk = fk + 1. This way we obtain a sequence of functions with ‖Fk‖
and ‖∆Fk‖ bounded away from zero and infinity. At the same time for t ∈ (1, 1 + 1

k2
)

the topology of sublevel sets F−1
k ((−∞, t)) does not change and each sublevel set

is homeomorphic to Tn with kn holes. This generates ∼ kn bars of length 1
k2

in
degree n− 1 and hence Φ1(Fk)� kn−2, which contradicts (5.12) when n ≥ 3 because
Fk
‖Fk‖
∈ Fλ with bounded λ, but Φ1

Ä
Fk
‖Fk‖

ä
grows as kn−2. A slight modification of this

example also yields a counterexample to (5.11) in dimensions n ≥ 5.

Remark 5.1.19. An example similar to Example 5.1.18 has been discussed in [39,
Section 5]. In this paper, Lp-versions of functional Φ1, where the sum is taken over
p-th powers of the lengths of bars, were considered. The results yield an upper bound
for these Lp-functionals in terms of the Lipschitz constant of a function. However,
for these bounds to hold, it is essential that p is at least the dimension of the base
manifold, which can be seen from Example 5.1.18. As a consequence, while the results
of [39] imply some spectral restrictions on the barcodes of Laplace eigenfunctions, they
appear to be essentially different from the bounds on Φ1 obtained in Theorem 5.1.7
and conjectured in Conjecture 5.1.14.

5.1.4 Sorting the finite bars of functions in Fλ

Given a barcode B, write the lengths of its finite bars in the descending order, β1 ≥
β2 ≥ . . . . The functions βi(B), which are Lipschitz with respect to the bottleneck
distance, are important invariants of barcodes. For instance, β1, which was introduced
by Usher in [146], is called the boundary depth and has various applications in Morse
theory and symplectic topology. The functions βi with i ≥ 2 are sometimes used in
order to distinguish barcodes, see e.g. [23]. Fix ε > 0 and discard all bars of length
< ε, i.e., introduce the modified invariant

β
(ε)
i (B) := max(βi(B), ε) .

Question 5.1.20. Assume that the barcode B contains N finite bars. What is the
optimal (worst-case scenario) running time T of an algorithm which calculates the

ordered sequence {β(ε)
i (B)}, i ≥ 1?

Since the sharp lower bound on the running time of any comparison sorting
algorithm for an array of N real numbers is O(N logN) (see [42]), the answer to the
above question for a general barcode is O(N logN). Interestingly enough, in some
cases Corollary 5.1.8 enables one to reduce this running time when B is a barcode of
a function from Fλ. More precisely, there exists a constant c > 0 such that for every
ε > 0, λ > 0 and any function f ∈ Fλ whose barcode contains exactly N finite bars,

1Formally speaking, Fk should be a small perturbation of fk + 1 in order to make it Morse, but

we will ignore this detail for the sake of clarity.
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one can find a sorting algorithm for all bars from B(f) of length ≥ ε whose running
time satisfies

T ≤ N + c · κg(λ+ 1)

ε
· log

κg(λ+ 1)

ε
. (5.14)

Indeed, consider the following algorithm. First compare the length of each bar with
ε and pick only those bars whose length is ≥ ε. This takes time N . Denote by K
the number of chosen bars. Next, perform the optimal sorting algorithm for these K
bars. This takes time O(K logK). Finally, notice that by Corollary 5.1.8,

K ≤ κg(λ+ 1)

ε
,

which proves (5.14). In certain regimes, the running time (5.14) is shorter than the
generic bound O(N logN). For instance, if λ and ε are fixed and N → ∞, we have
T = O(N).

Theorem 5.1.7 also has applications to questions regarding C0-approximations by
functions from Fλ , which is the subject of the next section.

5.2 Applications to approximations by eigenfunctions

5.2.1 An obstruction to C0-approximations

As before, let M be an orientable surface, possibly with boundary, endowed with the
Riemannian metric g, denote by Diff(M) the set of all diffeomorphisms of M and
assume that f : M → R is a Morse function (vanishing on ∂M). We are interested
in the question of how well can f be approximated by functions from Fλ in C0-sense.
More precisely, we wish to find a lower bound for the quantity

dC0(f,Fλ) = inf{dC0(f, h) | h ∈ Fλ},

where dC0(f, h) = max
x
|f(x)− h(x)| as before. In fact, we will study a more general

question, namely we will give a lower bound for

approxλ(f) = inf
ϕ∈Diff(M)

dC0(f ◦ ϕ,Fλ).

Taking ϕ = 1M one immediately sees that

dC0(f,Fλ) ≥ approxλ(f).

We estimate approxλ(f) from below using the information coming from the barcode
B(f). Recall that the functional Φ1 : FMorse → R defined by (5.1) for u ≡ 1 gives the
sum of the lengths of all finite bars in B(f).
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Proposition 5.2.1 (Proposition 1.4.5). For every Morse function f : M → R,
vanishing on the boundary, the following inequality holds

approxλ(f) ≥


1

2·(|B′(f)|+1)

Å
Φ1(f)− κg(λ+ 1)

ã
for ∂M = ∅

1
2|B′(f)|+1

Å
Φ1(f)− κg(λ+ 1)

ã
for ∂M 6= ∅

(5.15)

Proof. From (5.5) and (5.8), with ψ = 1M we obtain

κg(λ+ 1) · ‖u ◦ h‖ ≥ Φu(f)− C(u, f) · dC0(f ◦ ϕ, h),

for all Morse h ∈ Fλ and all diffeomorphisms ϕ ∈ Diff(M), with constant C(u, f)
being equal to 2 · (|B′(f)|+ 1) · (max[min f,max f ] u) or (2|B′(f)|+ 1) · (max[min f,max f ] u)
depending on whether M has a boundary. Putting u ≡ 1 we have

dC0(f ◦ ϕ, h) ≥ 1

2 · (|B′(f)|+ 1)

Å
Φ1(f)− κg(λ+ 1)

ã
,

if ∂M = ∅, or

dC0(f ◦ ϕ, h) ≥ 1

2|B′(f)|+ 1

Å
Φ1(f)− κg(λ+ 1)

ã
,

if ∂M 6= ∅. Finally, taking infimum over all h and ϕ and using the fact that Morse
functions in Fλ are C0-dense in Fλ, finishes the proof.

Remark 5.2.2. The inequality analogous to (5.15) can be proved for functions on
the circle S1 = R/(2π ·Z) without referring to the language of barcodes. Taking into
account (5.3) and (5.13), we can restate (5.15) as

approxλ(f) ≥ 1

|Crit(f)|

Å
1

2
Var(f)−

…
π

2
λ

1
2

ã
. (5.16)

In order to prove (5.16) we proceed as in the proof of Proposition 5.2.1. One readily
checks that

1

2
Var(f)− 1

2
Var(h) ≤ |Crit(f)|dC0(f, h). (5.17)

Indeed, as in Example 5.1.15, if x1, . . . , xN are local minima and y1, . . . , yN are local
maxima of f , we have that

1

2
Var(f) =

N∑
i=1

(f(yi)− f(xi)).

On the other hand,

1

2
Var(h) ≥

N∑
i=1

(h(yi)− h(xi)).
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Subtracting the latter expression from the former yields (5.17), which together with
(5.13) gives

1

|Crit(f)|

Å
1

2
Var(f)−

…
π

2
λ

1
2

ã
≤ dC0(f,Fλ).

Since |Crit(f)| and Var(f) do not change when f is composed with a diffeomorphism,
(5.16) follows.

Remark 5.2.3. The following analogue of Proposition 5.2.1 holds for any function
f ∈ C0(M). For any k = 1, 2, . . . , we have

approxλ(f) ≥


1

2k+2

Å
Φ1,k(f)− κg(λ+ 1)

ã
for ∂M = ∅

1
2k+1

Å
Φ1,k(f)− κg(λ+ 1)

ã
for ∂M 6= ∅

(5.18)

The proof is the same, with the constant C(u, f) replaced by the Lipschitz constant
from Lemma 5.1.6.

Corollary 5.2.4. Let M be a surface without boundary and f : M → R be a Morse
function. Suppose that approxλ(f) ≤ ε for some ε > 0, and the barcode B(f) contains
N finite bars of length at least L+ 2ε each, for some L > 0. Then

λ ≥ 1

κg
(N + 1)L− 1. (5.19)

Proof. Indeed, it follows from the assumptions on the barcode of f that Φ1,N(f) ≥
(N + 1)(L+ 2ε), which together with Remark 5.2.3 yields

ε ≥ 1

2(N + 1)

Å
(N + 1)(L+ 2ε)− κg(λ+ 1)

ã
.

Rearranging this inequality we obtain (5.19).

Remark 5.2.5. From (5.19) we see how λ, which is needed to uniformly approximate
f by functions from Fλ, grows withN and L. Informally speaking, one may think ofN
as a measure of how much f oscillates, while L gives a lower bound on the amplitude
of these oscilations. The above inequality should then be understood as a quantitative
version of the informal principle that the more the function oscillates and the bigger
the oscillations, the larger eigenvalues of the Laplacian are needed to approximate it
with a normalized linear combination of the corresponding eigenfunctions. We refer
to [160] for other applications of persistence to approximation theory.

5.2.2 Modulus of continuity and average length of bars on T2

Proposition 5.2.1 gives an obstruction to approximating functions by functions from
Fλ.As we mentioned before, Fλ contains normalized linear combinations of eigenfunctions
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of ∆ with eigenvalues not greater than λ. In the case of flat torus T2 = R2/(2π ·
Z)2 these eigenfunctions are trigonometric polynomials and Proposition 5.2.1 may
be interpreted as an inverse statement about C0-approximations by trigonometric
polynomials. A direct theorem about C0-approximations by trigonometric polynomials
on n-dimensional flat torus was proved in [163] (theorems of this type are sometimes
referred to as Jackson’s theorems, see [110] for a survey), consequently giving an
upper bound for approxλ(f) in terms of moduli of continuity and smoothness of f.
We combine this result with Proposition 5.2.1 to obtain a relation between the average
length of a bar in a barcode of a Morse function on T2 and its modulus of continuity
which is defined below.

Assume M = T2 = R2/(2π · Z)2, let f : M → R be a continuous function, δ > 0
a real number and denote by

ω1(f, δ) = sup
|t|≤δ

max
x
|f(x+ t)− f(x)|,

the modulus of continuity of f and by

ω2(f, δ) = sup
|t|≤δ

max
x
|f(x− t)− 2f(x) + f(x+ t)|,

the modulus of smoothness of f. One readily checks that

ω2(f, δ) ≤ 2ω1(f, δ). (5.20)

Let

Tλ =

≠
sin(v1x+ v2y), cos(v1x+ v2y)

∣∣∣∣ v2
1 + v2

2 ≤ λ

∑
R
,

be the space of trigonometric polynomials on M whose eigenvalues (as eigenfunctions
of ∆) are bounded by λ. The following porposition was proved in [163]:

Proposition 5.2.6. For every continuous function f : M → R it holds

dC0(f, Tλ) ≤ 2ω2

Å
f,
C0√
λ

ã
, (5.21)

where C0 > 0 is a constant.

By (5.20) we also have that

dC0(f, Tλ) ≤ 4ω1

Å
f,
C0√
λ

ã
. (5.22)

Remark 5.2.7. Constant C0 is computed in [163] to be C0 =
»
µ1(D2(1

2
)), where

µ1(D2(1
2
)) is the first Dirichlet eigenvalue of ∆ inside the 2-dimensional disk D2(1

2
)

of radius 1
2
.

Our goal is to prove the following result which shows that the average bar length
of a Morse function f on a flat torus M could be uniformly controlled by the L2-norm
of f and the modulus of continuity of f on the scale 1/

√
|B′(f)|.
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Theorem 5.2.8. There exist constants C0, C1 > 0 such that for any f ∈ FMorse on a
flat torus M = T2,

Φ1(f)

|B′(f)|+ 1
≤ C1‖f‖+ 8ω1

Ç
f,

C0√
|B′(f)|

å
. (5.23)

Proof. Inspecting the proof of Proposition 5.2.6 in [163], we observe that it relies on
an explicit construction of a function h, depending on f and λ, which satisfies

dC0(f, h) ≤ 2ω2

Å
f,
C0√
λ

ã
. (5.24)

Our goal is to estimate dC0(f, h) from below using Proposition 5.2.1. However, a
priori we do not have any information about the L2-norm of h and Proposition 5.2.1
relates to distance from functions in Fλ whose L2-norm is equal to one. In order to
overcome this issue, we present the construction of the approximation-function h and
prove that ‖h‖ ≤ ‖f‖.

For a vector v ∈ Z2 let

cv(f) =
1

(2π)2

∫
T2

f(x)e−i〈v,x〉dx,

be the corresponding Fourier coefficient of f. Take U to be the first Dirichlet eigenfunction
of ∆ inside the disk D2(1

2
) of radius 1

2
, normalized by ‖U‖L2(D2( 1

2
)) = 1, and V its

extension by zero to the whole plane, i.e.

V (x) =

{
U(x), if x ∈ D2(1

2
)

0, otherwise.

If we denote by W = V ∗V the convolution of V with itself, the desired approximation
is given by the formula

h(x) =
∑
v∈Z2

|v|≤
√
λ

cv(f) ·W
Å
v√
λ

ã
ei〈v,x〉, (5.25)

where |v| stands for the standard Euclidean norm on R2. The function h defined by
(5.25) is called the multidimensional Korovkin’s mean. It satisfies (5.24), as proved
in [163], and since

∑
v∈Z2 cv(f)ei〈v,x〉 is the Fourier expansion of f , we have that

‖h‖ ≤ (max
x∈R2
|W (x)|) · ‖f‖.

By using the Cauchy-Schwarz inequality we obtain

|W (x)| ≤
∫
R2

|V (t)| · |V (x− t)|dt ≤
 ∫

R2

|V (t)|2dt ·
 ∫

R2

|V (x− t)|2dt = ‖V ‖2 = 1,
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which yields ‖h‖ ≤ ‖f‖.

We now proceed with analysing (5.24). First note that

‖h‖ · dC0

Å
f

‖h‖
,Fλ

ã
≤ ‖h‖ · dC0

Å
f

‖h‖
,
h

‖h‖

ã
≤ 2ω2

Å
f,
C0√
λ

ã
,

because h
‖h‖ ∈ Fλ. The last inequality together with Proposition 5.2.1 gives

‖h‖
2 · (|B′( f

‖h‖)|+ 1)

Å
Φ1

Å
f

‖h‖

ã
− κ0(λ+ 1)

ã
≤ 2ω2

Å
f,
C0√
λ

ã
. (5.26)

Here κ0 = κg for g being the flat metric on M . Multiplying the function by a positive
constant results in multiplying the endpoints of each bar in the barcode by the same
constant. Thus, the total number of bars does not change after multiplication, while
the lengths of finite bars scale with the same constant. In other words, we have

that

∣∣∣∣B′Å f
‖h‖

ã∣∣∣∣ = |B′(f)| and ‖h‖ ·Φ1

Å
f
‖h‖

ã
= Φ1(f). Substituting these equalities in

(5.26) and using ‖h‖ ≤ ‖f‖ we obtain

1

4 · (|B′(f)|+ 1)

Å
Φ1(f)− κ0(λ+ 1)‖f‖

ã
≤ ω2

Å
f,
C0√
λ

ã
, (5.27)

and by (5.20) also

1

8 · (|B′(f)|+ 1)

Å
Φ1(f)− κ0(λ+ 1)‖f‖

ã
≤ ω1

Å
f,
C0√
λ

ã
.

Setting λ = |B′(f)| and C1 = κ0 in the last inequality completes the proof of the
theorem.

Remark 5.2.9. As follows from Remark 5.2.3 and the proof of Theorem 5.2.8 above,
for any k ≥ 1 and any f ∈ C0(M) we have:

Φ1,k(f)

k + 1
≤ C1‖f‖+ 8ω1

Å
f,
C0√
k

ã
. (5.28)

The left-hand side of (5.28) could be interpreted as the average length of a bar among
the k longest bars in the barcode of f .

Remark 5.2.10. Note that formula (5.27) implies

Φ1(f)

|B′(f)|+ 1
≤ C1‖f‖+ 4ω2

Ç
f,

C0√
|B′(f)|

å
. (5.29)

In fact, Theorem 5.2.8 admits the following generalization. Given a smooth function
f on a flat torus M = T2, define its modulus of smoothness of order m by

ωm(f, δ) = sup
|t|≤δ

max
x

∣∣∣∣∣∣
m∑
j=0

(−1)(m−j)

Ç
m

j

å
f(x+ jt)

∣∣∣∣∣∣ .
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From the results of [67], it can be deduced that

dC0(f, Tλ) ≤ C2(k)ω2k

Å
f,
C0(k)√

λ

ã
for some positive constants C0(k), C2(k) which depend on k. Similarly to the proof of
Theorem 5.2.8, one then obtains

Φ1(f)

|B′(f)|+ 1
≤ C1(k)‖f‖+ 2C2(k)ω2k

Ç
f,

C0(k)√
|B′(f)|

å
.

Constants C0(k), C1(k), C2(k) could be computed explicitly.

Example 5.2.11. The following example shows that the choice of the scale in the
modulus of continuity on the right-hand side of (5.28) is optimal. Take a unit disk B1

inside the torus M and let χ be a smooth cut-off function supported in B and equal
to one in B 1

2
. Let gn(x, y) = χ(x, y) sinnx cosny, n ∈ N be a sequence of functions

on the torus. For any 0 < s < 1, set gn,s(x, y) = g(x
s
, y
s
). Let α ≥ 1 be some real

number. Choose k = n2 and s = n
1−α
2 . It suffices to verify that the inequality

Φ1,n2(gn,s)

n2 + 1
≤ C1‖gn,s‖+ 8ω1

Å
gn,s,

C0

nα

ã
. (5.30)

holds for all n only for α = 1. Indeed, take any α > 1. Note that the left-hand side of
(5.30) is bounded away from zero as n→∞, since the number of bars of unit length
in the barcode of gn,s((x, y)) is of order n2. At the same time, ‖gn,s‖ = s‖gn‖ → 0

as n→∞, since s = n
1−α
2 → 0. Moreover, estimating the derivatives of gn,s one can

easily check that

ω1

Å
gn,s,

C0

nα

ã
= O(n−α)O(n · n

α−1
2 ) = O

Ä
n

1−α
2

ä
= o(1)

for any α > 1. Therefore, inequality (5.30) is violated for α > 1 for n large, and
hence the choice α = 1 is optimal.

Note that, while the functions gn,s(x, y) are compactly supported and hence not
Morse, they could be made Morse by adding a small perturbation. A similar argument
would then yield optimality of the 1/

√
|B′(f)| scale in the modulus of continuity on

the right-hand side of inequality (5.23).

Remark 5.2.12. It would be interesting to generalize Theorem 5.2.8 to an arbitrary
Riemannian surface. In order to do that we need an analogue of Proposition 5.2.6. For
a different version of Jackson type approximation theorems on Riemannian manifolds
see [109, Lemma 4.1] and [54, Lemma 9.1].
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5.3 Barcodes and the Banach indicatrix

5.3.1 A topological bound on the Banach indicatrix

We proceed with some general topological considerations. Let M be a Riemannian
manifold and assume that f |∂M = 0 if ∂M 6= ∅, 0 being a regular value. Let t 6=
0 be another regular value of f and denote by M t = f−1((−∞, t]). M t ⊂ M is
a submanifold with boundary ∂M t = f−1(t) for t < 0 or ∂M t = f−1(t) t ∂M
for t > 0. Recall that Banach indicatrix β(t, f) denotes the number of connected
components of f−1(t). By description of ∂M t, one sees that β(t, f) essentially counts
the number of the boundary components of M t (up to the boundary components of
the whole manifold M). We will exploit this fact to estimate β(t, f) from below using
information coming from barcode B(f). If we denote by χI the characteristic function
of the interval I, the following proposition holds.

Proposition 5.3.1. Let f ∈ FMorse on a Riemannian manifold M of dimension n.
Denote by (x

(k)
i , y

(k)
i ] ∈ Bk(f) the finite bars in the degree k barcode of f and let t 6= 0

be a regular value. If ∂M = ∅ it holds

χ(min f,max f ](t) +
∑
i

χ
(x

(0)
i ,y

(0)
i ]

(t) +
∑
j

χ
(x

(n−1)
j ,y

(n−1)
j ]

(t) ≤ β(t, f), (5.31)

and if ∂M 6= ∅ it holds

χ(min f,0](t) +
∑
i

χ
(x

(0)
i ,y

(0)
i ]

(t) +
∑
j

χ
(x

(n−1)
j ,y

(n−1)
j ]

(t) ≤ β(t, f). (5.32)

We defer proving Proposition 5.3.1 and first deduce Theorem 5.1.7 using it.

Remark 5.3.2. One may easily check that if M = S2 the inequality (5.31) becomes
an equality.

Remark 5.3.3. If dimM = 2, integrating inequalities in Proposition 5.3.1 gives
an upper bound on the total length of the finite bars in the barcode of a function
f in terms of the integral of its Banach indicatrix. The latter quantity admits an
interpretation as the total length of the Reeb graph of a function f with respect to
a natural metric incorporating the oscillations of f . It is likely that an analogue of
the functional Φu defined in this setting is robust with respect to the distance on
Reeb graphs introduced in [18, 21], and that this way one could get applications to
approximation theory similar to the ones obtained in Section 5.2. We plan to explore
this route elsewhere.

5.3.2 Proof of Theorem 5.1.7

Let us now restrict to the two-dimensional case and assume that M is an orientable
surface, possibly with boundary, equipped with Riemannian metric g. First note
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that it suffices to verify inequality (5.8) for Morse functions. Indeed, suppose that
the inequality is proved for Morse functions in Fλ for all λ > 0 and let f ∈ Fλ be
arbitrary. One can easily check that for any ε > 0 there exists a sequence of Morse
functions fn ∈ Fλ+ε such that dC0(f, fn)→ 0 as n→∞. For all k, n ≥ 1 we have

Φu,k(fn) ≤ Φu(fn) ≤ κg(λ+ 1 + ε)‖u ◦ fn‖,

where the first inequality follows from the definition (5.6) of the functional Φu,k and
the second inequality holds by the assumption that (5.8) is true for Morse functions.
Taking the limits as k and n go to infinity in definition (5.7) and using the fact that
ε > 0 is arbitrary, we obtain that (5.8) holds for the function f .

It remains to prove inequality (5.8) when f ∈ Fλ is Morse. Denote by ‖ · ‖ the
L2-norm with respect to Riemannian area σ and by ∆ the Laplace-Beltrami operator
with respect to g. The analytical tool that we are going to use is [123, Theorem 1.5]
which gives us that for any continuous function u ∈ C(R) and any smooth function
f on M (which is assumed to be equal to zero on the boundary if ∂M 6= ∅), the
following inequality holds

+∞∫
−∞

u(t)β(t, f) dt ≤ κg(‖f‖+ ‖∆f‖) · ‖u ◦ f‖, (5.33)

where κg depends on the Riemannian metric g.

If we assume that f ∈ Fλ in (5.33), we immediately get

+∞∫
−∞

u(t)β(t, f) dt ≤ κg(λ+ 1) · ‖u ◦ f‖. (5.34)

Since f is Morse we can apply Proposition 5.3.1. Combining this proposition with
inequality (5.34) immediately yields Theorem 5.1.7.

Remark 5.3.4. It follows from the proof of Theorem 5.1.7 that inequality (5.8) holds
for any function in the closure of Fλ in C0-topology.

Remark 5.3.5. The proof of Theorem 5.1.7 suggests the following approach to
proving Conjecture 5.1.14. Recall that, by definition, the Banach indicatrix is given
by β(t, f) = b0(f−1(t)). In view of Proposition 5.3.1, it is plausible that the following
inequality holds in dimension n ≥ 3:

Φu(f) ≤
∫ +∞

−∞

(
n−2∑
i=0

bi(f
−1(t))

)
u(t)dt,

where bi is the i-th Betti number. As follows from [162], the quantity on the right-
hand side could be bounded from above using the uniform norm of the derivatives
of f (see also [91] for related recent developments). In order to establish Conjecture
5.1.14, one would need to prove a higher-dimensional analogue of [123, Theorem 1.5],
allowing to replace the uniform estimates by L2-bounds.
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5.3.3 Proof of Proposition 5.3.1

Recall the notation previously introduced. For t regular value of f , we denote
M t = f−1((−∞, t]) ⊂ M . As mentioned before M t is a submanifold with boundary
∂M t = f−1(t) for t < 0 or ∂M t = f−1(t) t ∂M for t > 0. Let bk(t) = dimHk(M

t;R)
be the Betti numbers of M t. We assume that min f < t < max f , since otherwise
the inequalities obviously hold (both sides are equal to zero). We will always work
with homologies with coefficients in R and will omit the coefficients from the notation.

Let j : f−1(t) → M t be the inclusion and denote by j∗ : Hn−1(f−1(t)) → Hn−1(M t)
the induced map in homology. Since we work over R, j∗(Hn−1(f−1(t))) ⊂ Hn−1(M t)
is a vector subspace. First, we claim that

β(t, f) = dimHn(M t, f−1(t)) + dim(j∗(Hn−1(f−1(t)))). (5.35)

To prove this, we examine the following part of the long exact sequence of the pair
(M t, f−1(t)):

Hn(M t)→ Hn(M t, f−1(t))
∂−→ Hn−1(f−1(t))

j∗−→ Hn−1(M t).

Since f−1(t) is an (n−1)-dimensional orientable manifold, we have β(t, f) = dimHn−1(f−1(t)),
and by the Rank-nullity theorem

β(t, f) = dimHn−1(f−1(t)) = dim(ker j∗) + dim(j∗(Hn−1(f−1(t)))).

By the exactness dim(ker j∗) = dim(im ∂) and, because Hn(M t) = 0, ∂ is an inclusion,
which means that dim(im ∂) = dimHn(M t, f−1(t)) and (5.35) follows.

Second, we note that ∑
j

χ
(x

(n−1)
j ,y

(n−1)
j ]

(t) = dim(ker i∗), (5.36)

where i : M t → M is the inclusion and i∗ : Hn−1(M t) → Hn−1(M) induced map
on homology. This comes from the fact that finite bars in barcode of f correspond
to homology classes which appear throughout filtration process, but do not exist in
actual homology of M. Denote by M̃ t = f−1([t,+∞)), M̃ t ∩M t = f−1(t), and by

j̃ : f−1(t) → M̃ t and ĩ : M̃ t → M the inclusions. We examine the following part of
the Mayer-Vietoris sequence

Hn−1(f−1(t))
(j∗,j̃∗)−−−→ Hn−1(M t)⊕Hn−1(M̃ t)

i∗−ĩ∗−−−→ Hn−1(M).

From the exactness we have

ker i∗ ∼= ker(i∗ − ĩ∗) ∩ (Hn−1(M t), 0) = im(j∗, j̃∗) ∩ (Hn−1(M t), 0),

180



while on the other hand

im(j∗, j̃∗) ∩ (Hn−1(M t), 0) = {(j∗(a), j̃∗(a))|a ∈ Hn−1(f−1(t)), j̃∗(a) = 0} =

= {(j∗(a), 0)|a ∈ ker j̃∗ ⊂ Hn−1(f−1(t))} ∼= j∗(ker j̃∗),

and thus
ker i∗ ∼= j∗(ker j̃∗).

However, since ĩ∗ ◦ j̃∗ = i∗ ◦ j∗, we see that j∗(ker j̃∗) ⊂ ker i∗ and thus

ker i∗ = j∗(ker j̃∗). (5.37)

From now on, we distinguish two cases.

Case I - ∂M t = f−1(t)

This case covers the situation when ∂M = ∅ and when ∂M 6= ∅, but t < 0. The
left-hand sides of the inequalities (5.31) and (5.32) are equal for t < 0 and thus we
need to prove (5.31). By the case-assumption, we have that

dimHn(M t, f−1(t)) = b0(t),

and from the definition of barcode we know that

b0(t) = χ(min f,max f ](t) +
∑
i

χ
(x

(0)
i ,y

(0)
i ]

(t).

Combining these equalities with (5.35) renders the statement into∑
j

χ
(x

(n−1)
j ,y

(n−1)
j ]

(t) ≤ dim(j∗(Hn−1(f−1(t)))),

which after substituting (5.36) and (5.37) becomes

dim(j∗(ker j̃∗)) ≤ dim(j∗(Hn−1(f−1(t)))).

This inequality is obvious because ker j̃∗ ⊂ Hn−1(f−1(t)).

Case II - ∂M t = f−1(t) t ∂M, ∂M 6= ∅

This case covers the situation when ∂M 6= ∅ and t > 0. We need to prove (5.32),
which for t > 0 becomes∑

i

χ
(x

(0)
i ,y

(0)
i ]

(t) +
∑
j

χ
(x

(n−1)
j ,y

(n−1)
j ]

(t) ≤ β(t, f).

Denote by ∂M = Σ1 t . . . t Σl the boundary components of the whole manifold M ,
where Σi are connected, orientable, (n−1)-dimensional manifolds. Now the boundary
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of M t is ∂M t = f−1(t) t Σ1 t . . . t Σl. We may divide connected components of M t

into two groups, one of which consists of all the components whose boundary lies
entirely in f−1(t) and the other one consists of all the components whose boundary
contains at least one Σi (i.e. the boundary of these components is a mix of parts of
∂M and f−1(t)). Denote by k the number of connected components of M t whose
boundary contains at least one Σi. Now, since

dimHn(M t, f−1(t) t ∂M) = b0(t),

we have that
dimHn(M t, f−1(t)) = b0(t)− k,

and thus by (5.35)

β(t, f) = b0(t)− 1 + dim(j∗(Hn−1(f−1(t))))− (k − 1).

Since M is connected
b0(t)− 1 =

∑
i

χ
(x

(0)
i ,y

(0)
i ]

(t),

and hence we need to prove that∑
j

χ
(x

(n−1)
j ,y

(n−1)
j ]

(t) ≤ dim(j∗(Hn−1(f−1(t))))− (k − 1).

Using (5.36) we transform the statement into

dim(ker i∗) + k − 1 ≤ dim(j∗(Hn−1(f−1(t)))).

In order to prove this inequality, we will find k − 1 linearly independent vectors
in the quotient space j∗(Hn−1(f−1(t)))/ ker i∗ (note that by (5.37) we have that
ker i∗ = j∗(ker j̃∗) ⊂ j∗(Hn−1(f−1(t)))). Assume that k ≥ 2 (because otherwise
the statement is trivial) and denote by M t

1, . . . ,M
t
k the connected components of M t

whose boundary contains some Σi. We know that for 1 ≤ i ≤ k, homology class 0 =
[∂M t

i ] ∈ Hn−1(M t) decomposes as 0 = [∂M t
i ] = di + ei, where di = [Σi1 ] + . . .+ [Σimi

]
for some [Σi1 ], . . . , [Σimi

] and ei ∈ j∗(Hn−1(f−1(t))). Moreover, since M t
i are disjoint,

we have that
d1 + . . .+ dk = [Σ1] + . . .+ [Σl],

and d1, . . . , dk partition the set {[Σ1], . . . , [Σl]}. We have that

d1, . . . , dk ∈ j∗(Hn−1(f−1(t))),

because di = −ei, and let [d1], . . . , [dk] ∈ j∗(Hn−1(f−1(t)))/ ker i∗ be the corresponding
classes inside the quotient space. We claim that any k− 1 of [d1], . . . , [dk] are linearly
independent. Once we prove this, choosing and k−1 of these gives us the k−1 classes
that we need.
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First, we observe that [Σ1], . . . , [Σl] ∈ Hn−1(M t) are linearly independent. In order to
prove this, consider the following part of the long exact sequence of the pair (M t, ∂M):

Hn(M t, ∂M)→ Hn−1(∂M)→ Hn−1(M t).

Note that Hn(M t, ∂M) = 0. Indeed, if Hn(M t, ∂M) 6= 0, then M t contains a
connected componentN , such that ∂N ⊂ ∂M.However, this implies that f−1(t)∩N =
∅, or equivalently, N ⊂ f−1((−∞, t)). It is now easy to check that N ⊂ M is
both an open and a closed subset, which contradicts the fact that M is connected.
Therefore, Hn(M t, ∂M) = 0, and hence Hn−1(∂M) → Hn−1(M t) is an injection, i.e.
[Σ1], . . . , [Σl] are linearly independent. This further implies that d1, . . . , dk are linearly
independent.

Classes i∗d1, . . . , i∗dk ∈ Hn−1(M) satisfy

i∗d1 + . . .+ i∗dk = i∗[Σ1] + . . .+ i∗[Σl] = [∂M ] = 0.

By using the exactness of the following part of the long exact sequence of the pair
(M,∂M)

0 = Hn(M)→ Hn(M,∂M)→ Hn−1(∂M)→ Hn−1(M),

we conclude that

i∗[Σ1] + . . .+ i∗[Σl] = 0,

is the only relation which i∗[Σ1], . . . , i∗[Σl] satisfy. More formally, restriction of i∗ to
〈[Σ1], . . . , [Σl]〉R ⊂ Hn−1(M t) has the one-dimensional kernel given by

ker(i∗|〈[Σ1],...,[Σl]〉R) = 〈[Σ1] + . . .+ [Σl]〉R.

This readily implies the only relation which i∗d1, . . . , i∗dk satisfy is that their sum is
zero, that is

ker(i∗|〈d1,...,dk〉R) = 〈d1 + . . .+ dk〉R.

Finally, combining the last equality with the fact that d1, . . . , dk are linearly independent
immediately gives that any k − 1 of [d1], . . . , [dk] are linearly independent.

5.4 Miscellaneous proofs

5.4.1 Proof of Lemma 5.1.1

It follows directly from the definitions and non-negativity of u that∑
I∈B′(h)

∫
I

u(t) dt ≥
∑

Ĩ∈B′(f)

∫
Ĩ

u(t) dt− 2|B′(f)| · max
[min f,max f ]

u · dbottle(B(f),B(h)),

183



which means that we are left to prove that

max f∫
min f

u(t) dt−
maxh∫

minh

u(t) dt ≤ 2 · max
[min f,max f ]

u · dbottle(B(f),B(h)), (5.38)

if ∂M = ∅ and

0∫
min f

u(t) dt−
0∫

minh

u(t) dt ≤ max
[min f,max f ]

u · dbottle(B(f),B(h)), (5.39)

if ∂M 6= ∅. Let us prove (5.39). If min f ≥ minh the left-hand side of (5.39) is
non-positive and hence the inequality trivially holds. If min f < minh we need to
prove that

minh∫
min f

u(t) dt ≤ max
[min f,max f ]

u · dbottle(B(f),B(h)).

However, in every (dbottle(B(f),B(h)) + ε)-matching the infinite bar (min f,+∞) ∈
B(f) has to be matched with some infinite bar (a,+∞) ∈ B(h) and since minh is the
smallest of all endpoints of all infinite bars in B(h), we have that

minh−min f ≤ a−min f ≤ dbottle(B(f),B(h)) + ε.

Since the above holds for all ε > 0 the inequality is proven. To prove (5.38) one
proceeds in the similar fashion, by analysing cases depending on the relative position
of min f,minh and max f,maxh. This completes the proof of the lemma.

5.4.2 Proof of Lemma 5.1.6

We prove the statement in the case of M without boundary, the other case is treated
the same way. Let B(f) and B(f̃) be two barcodes associated to two Morse functions
and denote finite bars by Ii ∈ B(f), Ĩj ∈ B(f̃) where intervals are sorted by integral
of u as before. Assume that Φu,k(B(f)) ≥ Φu,k(B(f̃)) and µ : B(f) → B(f̃) is an
ε-matching between these barcodes (we add bars of length 0 if needed and assume
that µ is a genuine bijection). For every finite bar I ∈ B(f) we have that the distance
between endpoints of I and µ(I) ∈ B(f̃) is less or equal than ε and hence∣∣∣∣ ∫

I

u(t) dt−
∫
µ(I)

u(t) dt

∣∣∣∣ ≤ 2εmaxu.

Also |min f −min f̃ | ≤ ε and |max f −max f̃ | ≤ ε and hence

∣∣∣∣
max f∫

min f

u(t) dt−
max f̃∫

min f̃

u(t) dt

∣∣∣∣ ≤ 2εmaxu.
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Using these estimates and the fact that the integrals of u over Ĩj decrease with j we
get

0 ≤ Φu,k(B(f))− Φu,k(B(f̃)) =

max f∫
min f

u(t) dt−
max f̃∫

min f̃

u(t) dt+
k∑
i=1

∫
Ii

u(t) dt−

−
k∑
j=1

∫
Ĩj

u(t) dt ≤ 2εmaxu+
k∑
i=1

∫
Ii

u(t) dt−
k∑
i=1

∫
µ(Ii)

u(t) dt ≤ ε(2k + 2) maxu.

Taking infimum over all ε-matchings finishes the proof.

5.4.3 Proof of Proposition 5.1.17

The barcode B(fl) of the function

fl(x1, . . . , xn) =

√
2

n(2π)
n
2

(sin lx1 + . . .+ sin lxn), l ∈ N.

can be computed using the Künneth formula for persistence modules. Below we
briefly explain how to apply this formula and refer the reader to Section 3.2.2 or
to [122] for a more detailed treatment.

Given two Morse functions f : M1 → R and h : M2 → R we define another Morse
function f ⊕ h : M1 ×M2 → R by setting f ⊕ h(x1, x2) = f(x1) + h(x2). Barcode
B(f ⊕ h) may be computed from B(f) and B(h) via the following procedure:

� An infinite bar (a,+∞) ∈ Bi(f) and an infinite bar (c,+∞) ∈ Bj(h) produce
an infinite bar (a+ c,+∞) ∈ Bi+j(f ⊕ h).

� An infinite bar (a,+∞) ∈ Bi(f) and a finite bar (c, d] ∈ Bj(h) produce a finite
bar (a+ c, a+ d] ∈ Bi+j(f ⊕ h). The same bar is produced if (c, d] ∈ Bi(f) and
(a,+∞) ∈ Bj(h).

� A finite bar (a, b] ∈ Bi(f) and a finite bar (c, d] ∈ Bj(h) produce two finite bars
(a+c,min{a+d, b+c}] ∈ Bi+j(f⊕h) and (max{a+d, b+c}, b+d] ∈ Bi+j+1(f⊕h).

In order to compute B(fl) it is enough to compute the barcode of sin lx1 + . . .+sin lxn
and rescale. In the light of the computational procedure described above we wish to
look at sin lx : S1 → R and use Tn = (S1)n. One readily checks that

B0(sin lx) = {(−1,+∞), (−1, 1]× (l − 1)}, B1(sin lx) = {(1,+∞)}

and hence
B0(sin lx1 + sin lx2) = {(−2,+∞), (−2, 0]× (l2 − 1)},
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B1(sin lx1 + sin lx2) = {(0,+∞)× 2, (0, 2]× (l2 − 1)},

B2(sin lx1 + sin lx2) = {(2,+∞)}.

We claim that B(sin lx1 + . . . + sin lxn) contains 2n infinite bars and 1
2
((2l)n − 2n)

finite bars. To prove the claim we use induction in n. We have already checked that
the statement holds for n = 1, 2. To complete the induction step note that, in general,
if B(f) contains k1 infinite and m1 finite bars, and B(h) contains k2 infinite and m2

finite bars, then B(f ⊕h) contains k1k2 infinite and k1m2 +m1k2 +2m1m2 finite bars.
Taking k1 = 2n, m1 = 1

2
((2l)n − 2n) and k2 = 2, m2 = l − 1 yields the proof.

Finally, notice that via the described procedure an infinite bar and a bar of length
2 produce a bar of length 2, as well as that two bars of length 2 produce two new
bars of length 2. Since we start with B(sin lx) for which all finite bars have length 2,
we conclude that all finite bars in B(sin lx1 + . . .+ sin lxn) have length 2, and thus

Φ1(sin lx1 + . . .+ sin lxn) = 2n+ (2l)n − 2n. (5.40)

Rescaling (5.40) gives us

Φ1(fl) =

√
2

n(2π)
n
2

2nln +

√
2

n(2π)
n
2

(2n− 2n). (5.41)

Since l =
√
λ we have that

Φ1(fl) = Anλ
n
2 +Bn,

with the constants An, Bn given explicitly by (5.41). This completes the proof of
Proposition 5.1.17.
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