Oscillations of Laplace eigenfunctions

Let M be a compact, orientable, surface, possibly with boundary, equipped with a Riemannian metric g. Denote by ∆ the positive definite Laplace-Beltrami operator and by • the L 2 -norm induced by g. Let f : M → R be a Morse function, which we * :
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Another way to define this product is by exploiting the fact that HF t * (1) pt = QH t * (M ), where HF t * (1) pt is understood in the sense of Remark 3.3.1 and QH t * (M ) is made into a persistence module by defining structure maps on it to be the obvious inclusions. Now the product map
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Chapter 1 Introduction 1.1 Summary of the thesis

The subject of this thesis are applications of persistence modules and barcodes to geometry and dynamics. More precisely, we present applications to symplectic topology following [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF][START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] and to topological function theory 1 and spectral geometry following [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF].

The theory of persistence modules and barcodes emerged inside topological data analysis community in the early 2000s, see [START_REF] Edelsbrunner | Topological persistence and simplification[END_REF][START_REF] Zomorodian | Computing persistent homology[END_REF], with certain precursors, most notably in the work of Barannikov [START_REF] Barannikov | The framed Morse complex and its invariants[END_REF]. Since then it witnessed a rapid expansion and development both inside and outside topological data analysis, see [START_REF] Edelsbrunner | Persistent homology-a survey[END_REF][START_REF] Ghrist | Barcodes: the persistent topology of data[END_REF][START_REF] Carlsson | Topology and data[END_REF][START_REF] Weinberger | What is... persistent homology?[END_REF][START_REF] Bauer | Induced matchings of barcodes and the algebraic stability of persistence[END_REF][START_REF] Bauer | Induced matchings and the algebraic stability of persistence barcodes[END_REF] for surveys, [START_REF] Edelsbrunner | A short course in computational geometry and topology[END_REF][START_REF] Oudot | Persistence theory: from quiver representations to data analysis[END_REF][START_REF] Chazal | The structure and stability of persistence modules[END_REF] for detailed treatments of the theory and [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] for an exposition focused on applications to pure mathematics. Recently, the technique of persistence modules and barcodes has been successfully used in symplectic and contact topology. For instance, [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF], [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF], [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF], [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF], [START_REF] Stevenson | A quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer's metric[END_REF], [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF] and [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF] used persistence modules constructed from Floer homology to study questions in Hamiltonian dynamics, while [START_REF] Buhovsky | The action spectrum and C 0 symplectic topology[END_REF], [START_REF] Le Roux | Barcodes and area-preserving homeomorphisms[END_REF], [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF], [START_REF] Kawamoto | On C 0 -continuity of the spectral norm on non-symplectically aspherical manifolds[END_REF] and [START_REF] Shelukhin | Symplectic cohomology and a conjecture of Viterbo[END_REF] applied persistence techniques in the framework of C 0 -symplectic topology. On the other hand, in [START_REF] Fraser | Contact spectral invariants and persistence[END_REF], persistence modules defined using generating function homology were considered, while [START_REF] Dimitroglou Rizell | The persistence of the Chekanov-Eliashberg algebra[END_REF] used barcodes to deduce displacement energy bounds for Legendrian submanifolds. Persistence modules coming from filtered symplectic homology were considered in [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] and [START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF].

There exist different definitions of a persistence module in the literature, depending on the level of generality. For us, a persistence module over a filed K will be given by a family of finite-dimensional K-vector spaces V t , dim K V t < ∞, indexed by a real parameter t ∈ R, together with a family of linear structure maps π s,t : V s → V t for all s ≤ t. Moreover we ask that π t,t = 1 V t and π s,t • π r,s = π r,t for all r ≤ s ≤ t.

A typical example of a persistence module is given using a Morse function f on a closed manifold M. We define V t k (f ) = H k ({f < t}; K), structure maps π s,t being induced by inclusions {f < s} ⊂ {f < t}. Informally, this persistence module encodes how topology of the sublevel set {f < t} changes as we vary parameter t. Other examples of interest for us will be given by filtered Floer homology, filtered symplectic homology and filtered Morse-Bott homology. In these examples, M is replaced by the free loop space of a symplectic or Riemannian manifold, while the role of f is played by symplectic action functional or Riemannian energy functional, see Chapters 2, 3 and 4 for details.

A barcode is a collection of intervals in R, called bars, each bar appearing finitely many times, possibly more than once. As such, barcode is a combinatorial object. However, the structure theorem for persistence modules, Theorem 2.1.8, tells us that to each isomorphism class of persistence modules corresponds a unique barcode. In order to get the intuition about this correspondence, it is instructive to consider the above mentioned example of a persistence module associated to a Morse function. Each bar in the corresponding barcode represents a lifespan of a homology class of the sublevel set as level parameter increases. A left endpoint of a bar represents a "birth" of a homology class, i.e., the value of a function at which the homology class first appears in the sublevel set. Similarly, a right endpoint of a bar represents a "death" of a homology class, i.e., the value of a function at which the homology class disappears 2 . Since topology of the sublevel set changes only upon passing through a critical value, all endpoints of all bars are critical values of the function.

One may define a distance on the space of all barcodes, called the bottleneck distance and denoted by d bottle . Informally, d bottle measures the minimal value ε we need in order to bijectively match the bars in the two barcodes with error at most ε at the endpoints. One of the major results of the theory of persistence modules and barcodes is the stability theorem of Cohen-Steiner, Edelsbrunner and Harer proven in [START_REF] Cohen-Steiner | Stability of persistence diagrams[END_REF]. It states that for two Morse functions f and g on a closed manifold M and any integer k it holds

d bottle (B k (f ), B k (g)) ≤ d C 0 (f, g), (1.1) 
where B k (•) denotes the barcode of the persistence module V k (•) and d C 0 (f, g) = |f -g| C 0 = max x∈M |f (x) -g(x)|. One may interpret (1.1) as saying that barcodes behave in a stable way with respect to C 0 -perturbations of functions. Moreover, the stability theorem tells us that barcode can be used as an invariant to quantitatively study the space of functions equipped with the C 0 -distance.

The stability theorem has a far-reaching, abstract generalization called the isometry theorem. Namely, one may define, in purely algebraic terms, a distance between two persistence modules, called the interleaving distance and denoted by d inter . The isometry theorem states that for any two persistence modules V and W with corresponding barcodes B(V ) and B(W ) it holds d bottle (B(V ), B(W )) = d inter (V, W ).

(1.2)

In order to deduce (1.1) from (1.2) it is enough to show that d inter (V k (f ), V k (g)) ≤ d C 0 (f, g). This can be done in a straightforward manner using functorial properties of homology, see Section 2.1 for details. Due to the abstract nature of the isometry theorem, the same idea may be applied in different contexts and stability results similar to (1.1) can be proven systematically. Indeed, an important ingredient in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] and in our paper [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF] (which builds on [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]) is a stability result similar to (1.1), with d C 0 replaced by Hofer's metric and with barcodes coming from filtered Floer homology. On the other hand, in [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] we use a stability result analogous to (1.1) with d C 0 replaced by the recently defined symplectic Banach-Mazur distance and with barcodes coming from filtered symplectic homology. These results allow us to quantitatively study Hofer's metric and symplectic Banach-Mazur distance using barcodes. Let us now briefly describe the content of [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF][START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF][START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF].

Morse and Floer homology carry product structures given by the intersection product and the pair-of-pants product respectively. In [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF] we made a first step towards integrating these products in the framework of persistence modules. To this end, we introduced the notion of a persistence module with an operator and extended certain elements of persistence theory to this framework. As an application, we generalized the main result of Polterovich and Shelukhin from [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] about Hofer's distance to full p-th powers of Hamiltonian diffeomorphisms. As another illustration of our technique we provided an example of two Morse functions which can not be distinguished using standard persistence modules, but can be distinguished using persistence modules with operators. Along the way we also proved a version of the Künneth formula for persistence modules.

In [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] we studied the recently defined symplectic Banach-Mazur distance using persistence techniques. In general, symplectic Banach-Mazur distance, denoted by d SBM , is a distance on the space of Liouville domains. Roughly speaking, it measures how much we need to rescale the domains so that we can symplectically embed them into one another. In [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] we restricted ourselves to fiberwise star-shaped domains in the cotangent bundle of a fixed closed manifold M. Denote the space of all such domains by C M , (C M , d SBM ) being a pseudo-metric space. Our main result states that if M is a closed, orientable surface of positive genus, then (C M , d SBM ) is large in the sense that there exists a quasi-isometric embedding from (R n , | • | ∞ ) to (C M , d SBM ) for all n ∈ N. The proof of this statement relies on a stability result analogous to (1.1) with d SBM playing the role of d C 0 and barcodes coming from filtered symplectic homology. In order to construct the quasi-isometric embeddings, we analyse closed geodesics on certain surfaces of revolution, which gives us information about the relevant barcodes. The domains from C M realizing the embedding are then given as unit codisc bundles of these metrics of revolution. As another application, using similar methods, we obtained a result about stability of closed geodesics on a general closed Riemannian manifold with respect to perturbations of the Riemannian metric.

The main object we studied in [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF] is a functional, Φ 1 , on the space of Morse functions on a fixed manifold M , given by Φ 1 (f ) = max f -min f + total length of all finite bars in B(f ). This functional can be thought of as a measure of total oscillation of a function. We proved that when M is a compact, orientable surface with a Riemannian metric, Φ 1 (f ) admits an upper bound in terms of the L 2 -norms of derivatives of f up to order two. The proof relies on a similar estimate for the integral of the Banach indicatrix due to Polterovich and Sodin - [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF] and some elementary topological considerations. We should note that this result of Polterovich and Sodin is a part of a classical subject of estimating the integral of the Banach indicatrix, see [START_REF] Kronrod | On functions of two variables[END_REF][START_REF] Vitushkin | On higher-dimensional variations[END_REF][START_REF] Yomdin | Global bounds for the Betti numbers of regular fibers of differentiable mappings[END_REF]. As a direct corollary of the bound on Φ 1 , we obtained an upper bound on the number of "significant" critical values of a Morse function. Other corollaries include an inverse result about C 0 -approximations of a function, possibly after a change of variables, by a linear combination of Laplace-Beltrami eigenfunctions, as well as an upper bound on the average length of a finite bar in B(f ), f being a Morse function on a 2-dimensional torus.

Organization of the thesis: In the rest of the chapter we present the main results of the thesis in greater detail. Precisely, the results of [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF], [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] and [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF] are described in Sections 1.2, 1.3, and 1.4 respectively. Chapter 2 is divided in two sections. The first one contains necessary background about persistence modules and barcodes, while the second one gives a brief overview of symplectic topology and Floer theory. Chapters that follow, namely Chapters 3, 4 and 5, are based on [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF], [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] and [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF] respectively. They provide a detailed treatment of the results announced in Sections 1.2, 1.3 and 1.4, as well as some additional results. The following question was considered by Polterovich and Shelukhin in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF].

Hofer's geometry and distance to powers

Question: Is it true that powers p (M ) = +∞?

In other words, we are asking if there exist Hamiltonian diffeomorphisms arbitrary far away in Hofer's metric from the set of p-th powers. There are many different motivations to ask this question. For example, the set of autonomous Hamiltonian diffeomorphisms is contained in Powers p (M ) and thus a positive answer to the above question would imply that there exist Hamiltonian diffeomorphisms arbitrarily far away from the autonomous ones. Even for M = S 2 , the question of existence of such Hamiltonian diffeomorphisms is a well-known open problem posed in 2006 by Kapovich and Polterovich, see [START_REF] Mcduff | Introduction to symplectic topology[END_REF]Chapter 14,Problems 21 and 22]. For other motivations and more context surrounding this question we refer the reader to [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. The main result of [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] is the following. Theorem 1.2.1 ( [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]). Let (Σ, σ) be a closed oriented surface of genus at least 4, endowed with an area form, and let (N, ω N ) be either a point, or a closed symplectically aspherical symplectic manifold. Then for each p ∈ Z, p ≥ 2 there exists a sequence φ j ∈ Ham(Σ, σ) such that

d(φ j × 1 N , Powers p (Σ × N )) j→∞ ---→ ∞.
In particular powers p (Σ × N ) = +∞.

In order to prove Theorem 1.2.1, Polterovich and Shelukhin decribed a general framework for tackling the above question. Namely, on a symplectically aspherical manifold, they considered filtered Hamiltonian Floer homology as a persistence module, called Floer persistence module, and denoted by HF t * (H) α . More precisely, for a homotopy class of free loops α and a non-degenerate Hamiltonian H, HF t * (H) α is the homology of a Floer chain complex of H, generated by closed orbits in class α of index * with action less than t. As explained in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF], when (M, ω) is symplectically aspherical, HF t * (H) α is a persistence module which depends only on the time-one diffeomorphism generated by the Hamiltonian flow of H. In other words, Floer persistence module HF t * (φ) α is well defined for a non-degenerate φ ∈ Ham(M ). The first thing which was noticed in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] is that the stability of barcodes holds for Floer persistence modules, i.e.

d(B(HF

k (φ) α ), B(HF k (θ) α )) ≤ d(φ, θ),
for every degree k, every homotopy class α and all non-degenerate φ, θ ∈ Ham(M ). This inequality follows from the isometry theorem for persistence modules combined with standard action estimates for continuation maps in Floer theory. We give it's proof in Subsection 2.2.8.

The second thing noticed in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] is that Floer persistence module HF * (φ p ) α can be endowed with a Z p -action by acting with φ on all the elements in the construction of the Floer chain complex. Moreover, if φ ∈ Powers p (M ), this action can be upgraded to a Z p 2 -action. Using these algebraic structures, Polterovich and Shelukhin defined an invariant, called multiplicity-sensitive spread, which can be used to distinguish a Hamiltonian diffeomorphism from Powers p (M ) in a Hofer-robust way.

Finally, to prove Theorem 1.2.1, a sequence of Hamiltonian diffeomorphisms φ j was constructed as time-one maps of the family of egg-beater flows. The properties of the egg-beater flows were analysed directly, which allowed for the estimate of the multiplicity-sensitive spread.

Our work [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF] can be seen, to a large extend, as a continuation of [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. In [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF], we worked with symplectically monotone manifolds and aimed to include the product structure, given by the pair-of-pants or quantum product, in the framework of Floer persistence modules. To this end, we introduced the notion of a persistence module with an operator. This notion encompasses the previously considered Z p -action as well as intersection, pair-of-pants or quantum product with a fixed class in the ambient homology. Algebraic considerations of these structures yield a refinement of Theorem 1.2.1, which is the main result of [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF]. Let us formulate this result precisely.

Let p ≥ 2 be an integer, (N, ω), dim N = 2n, a monotone symplectic manifold, i.e. ω| π 2 (N ) = κc 1 | π 2 (N ) with κ > 0, and denote by c N the minimal Chern number3 of N. Let K be a field whose characteristic does not divide p and which contains all p-th roots of unity, i.e. x p -1 ∈ K[x] splits over K. Moreover, assume that for a primitive p-th root of unity ζ p and an integer k, the equation x p -(ζ p ) k = 0 has no solutions in K unless p|k. An example of such a field is the splitting field

Q p of x p -1 over Q. Let Λ K = ß i∈Z a i q i a i ∈ K, (∃i 0 ∈ N) a i = 0 for i ≥ i 0 ™ ,
be the field of bounded from above Laurent series in a formal variable q with coefficients in K. Denote by QH(N ) = H(N ; K) ⊗ K Λ K , the quantum homology of N , Λ K serving as a Novikov field. QH(N ) is given a Zgrading by declaring that deg q = 2c N . Fixing a homogenous element e ∈ QH(M ), quantum product yields a K-linear map e * : QH r (N ) → QH r-2n+deg e (N ) (1.3) for every r ∈ Z. We define the r-th Betti number associated to e as b r (e) = dim K (im(e * )), where e * has domain QH r (N ) as in 1.3. These Betti numbers satisfy b r (e) = b r+2c N (e) for every r ∈ Z because multiplication by q induces an isomorphism q : QH r (N ) → QH r+2c N (N ), which commutes with e * . Thus, there are at most 2c N different ones, namely b 0 (e), . . . , b 2c N -1 (e). The following theorem is the main result of [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF].

Theorem 1.2.2 (Theorem 3.1.2). Let (Σ, σ) be a closed oriented surface of genus at least 4, endowed with an area form and (N, ω N ) a closed symplectically monotone manifold. If there exists a homogenous e ∈ QH(N ) such that p b r (e) for some r ∈ {0, . . . , 2c N -1} then powers p (Σ × N ) = +∞.

A symplectically aspherical manifold can be considered to be symplectically monotone with c N = +∞. Theorem 1.2.2 also applies to symplectically aspherical manifolds, in which case quantum homology is replaced by the usual homology and quantum product is replaced by the intersection product. Since the fundamental class [N ] is the unit for the intersection product, it follows that b k ([N ]) = dim K (H k (N ; K)) for all degrees k. Taking k = 0 we get b 0 ([N ]) = 1 and hence Theorem 1.2.2 implies Theorem 1.2.1. Other concrete examples to which Theorem 1.2.2 applies are discussed in Subsection 3.1.2.

Remark 1.2.3. Another generalization of Theorem 1.2.1 was obtained in [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF], see Subsection 3.1.2 for the formulation of the result and comparison with Theorem 1.2.2. Theorem 1.2.2 is the main application of the framework of persistence modules with operators introduced in [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF]. In order to prove it, we analysed persistence modules coming from tensor products of pairs of filtered Floer chain complexes. To this end, we also proved a Künneth type formula for persistence modules, see Subsection 3.2.2. To further illustrate the utility of our method, we provided an example of two Morse functions on a surface of genus two, whose associated barcodes and spectral invariants are equal, but which can be distinguished using operators coming from the intersection product. This example is discussed in Subsection 3.2.4.

Symplectic Banach-Mazur distance

Let M be a closed, orientable manifold, T * M it's cotangent bundle, λ can the canonical Liouville 1-form on T * M and ω can = dλ can the canonical symplectic form on T * M. The Liouville vector field X is given by ω can (X, •) = λ can and is expressed as X = dim M i=1 p i ∂ ∂p i in Darboux coordinates (q, p), p = ( ∂ ∂q ) * . We call U ⊂ T * M an admissible domain if it is a smooth, fiberwise star-shaped 4 , domain with boundary such that X ∂U. This condition renders (∂U, λ can | ∂U ) into a contact manifold and is necessary in order for our method of filtered symplectic homology to work, see Section 4.3 for more details. Admissible domains of particular importance for us are unit codisc bundles U * g M ⊂ T * M of Riemannian metrics g on M. Denote by C M the set of all admissible domains in T * M. We wish to define a distance on C M and study it's large-scale geometry. To this end, we must first introduce a couple of notions. Let U, V ∈ C M . A π1 -trivial Liouville embedding φ : U → V is an exact symplectic embedding, i.e. an embedding such that φ * λ can -λ can is exact, which acts as identity on free homotopy classes of loops in T * M. Assume that U ⊂ V and φ : U → V is a π1 -trivial Liouville embedding. We call φ strongly unknotted if there exists a homotopy between φ and the inclusion i : U → V which goes through exact symplectic embeddings of U to V. It can be easily shown that such a homotopy can be generated by a Hamiltonian flow, i.e. φ(U ) is a Hamiltonian deformation of U. We denote by U φ -→ V the π1 -trivial Liouville embedding φ : U → V.

For U φ -→ V and C > 0 define φ(C) : CU → CV as φ(C)(•) = Cφ( 1 C •) where multiplication is fiberwise C(q, p) = (q, Cp). It is easy to check that φ(C) is also a π1 -trivial Liouville embedding. Definition 1.3.1. Let U, V ∈ C M . Define symplectic Banach-Mazur distance between U and V as

d SBM (U, V ) = inf ln C ∃ 1 C U φ - → V ψ - → CU (and hence 1 C V ψ(C -1 ) ----→ U φ(C)
--→ CV ) s.t. ψ • φ and φ(C) • ψ(C -1 ) are strongly unknotted As we already mentioned, we are interested in the large-scale geometry of (C M , d SBM ). Since symplectic maps preserve volume, we immediatly see that the diameter of (C M , d SBM ) is infinite if there are no restrictions on the volume of domains. Hence, we denote

CM = U ∈ C M Vol(U ) = U (ω can ) ∧n n! = 1 ,
and focus on the large-scale geometry of ( CM , d SBM ). Recall that a map Φ : (X 1 , d 1 ) → (X 2 , d 2 ) between pseudo-metric spaces is called a quasi-isometric embedding if there exist A ≥ 1, B ≥ 0 such that 1 A d 1 (x, y) -B ≤ d 2 (Φ(x), Φ(y)) ≤ Ad 1 (x, y) + B, for all x, y ∈ X 1 . The main result of [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] is the following.

Theorem 1.3.2 (Corollary 4. 1.14). If M = Σ is a closed, orientable surface whose genus is at least 1 then for every N ∈ N there exists a quasi-isometric embedding

Φ : (R N , | • | ∞ ) → ( CM , d SBM ).
If M = S 2 , then there exists a quasi-isometric embedding

Φ : ([0, ∞), | • |) → ( CM , d SBM ).
Intuitively, Theorem 1.3.2 states that for any N ∈ N there exist N linearly independent unbounded directions inside ( CΣ , d SBM ) and there exists an unbounded ray inside ( CS 2 , d SBM ). The proof of this theorem can, rougly speaking, be divided in two parts. The first part consists of proving stability of barcodes coming from filtered symplectic homology with respect to d SBM . This is a genereal result which holds for any base manifold M. We should note that the definition of d SBM as well as this stability result were first suggested by [START_REF] Polterovich | Peristence modules in symplectic topology[END_REF][START_REF] Ostrover | [END_REF]. The importance of unknottedness-condition was noticed by Gutt and Usher in [START_REF] Gutt | Symplectically knotted codimension-zero embeddings of domains in R 4[END_REF]. Finally, precise statements and proofs of stability appeared, in various contexts, around the same time in [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF][START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF][START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF].

The second part of the proof consists of constructing domains which realize the quasi-isometric embeddings in Theorem 1.3.2. For x ∈ R N we construct a domain Φ( x) as the unit codisc bundle of a Riemannian metrics g x , which roughly looks as in Figure 1.1. On the cut-out cylindrical part the metrics are metrics of revolution To make this precise we use the above mentioned stability result, together with the fact that filtered symplectic homology of U * g M is isomorphic, as a persistence module, to the homology of the free loop space L(M ) filtered by energy, see Section 4.4. More precisely, computing the barcode of filtered symplectic homology of U * g M is equivalent to computing the barcode of V t = H * ({E g ≤ t}) where 2 2 dτ.

E g : L(M ) → R, E g (γ) = 1 0 γ(τ )
Critical points of E g are closed geodesics on (M, g) and hence the endpoints of bars in the barcode of H * ({E g ≤ t}) are energies of certain closed geodesics. So, in order to describe the barcode of H * ({E g ≤ t}), we need to analyse closed geodesics on (M, g). This is possible in the example shown in the figure, due to the fact that geodesic flow on a surface of revolution is an integrable system, see Section 4.6 for details.

Remark 1.3.3. In [START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF], Usher proved a result analogous to Theorem 1.3.2 in the case of star-shaped domains in R 2n . Roughly speaking, in a similar fashion as above, one defines the space of admissible star-shaped domains in R 2n , denoted by S 2n , as well as symplectic Banach-Mazur distance, d SBM , on this space. Usher proved that for n ≥ 2 and any N ∈ N there exists a quasi-isometric embedding from (R N , | • | ∞ ) to (S 2n , d SBM ). While the formulations of the two results are similar, the constructions of the quasi-isometric embeddings are rather different.

In a somewhat different direction, we exploit the fact that energies of closed geodesics correspond to the endpoints of bars in the barcode of H * ({E g ≤ t}) in order to study stability of closed geodesics with respect to perturbations of a metric. Given two Riemannian metrics g 1 and g 2 on M , we use g 1 g 2 to denote the fact that v g 1 ≤ v g 2 for every v ∈ T M. In [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF] we proved the following theorem.

Theorem 1.3.4 (Theorem 4. 1.19). Let g 1 , g 2 be two bumpy metrics on a closed, orientable manifold M such that 1 C 1 g 1 g 2 C 2 g 1 . If there exists a bar [x, y) in the barcode of H * ({E g 1 ≤ t}) such that y

x > C 1 C 2 then there exist closed geodesics γ 1 and γ 2 of (M, g 2 ), whose energies satisfy

1 C 1 x ≤ E g 2 (γ 1 ) ≤ C 2 x, 1 C 1 y ≤ E g 2 (γ 2 ) ≤ C 2 y,
and the barcode of H * ({E g 2 ≤ t}) contains the bar [E g 2 (γ 1 ), E g 2 (γ 2 )). In the case of an infinite bar [x, +∞), there exists a closed geodesic γ 1 of (M, g 2 ) such that

1 C 1 x ≤ E g 2 (γ 1 ) ≤ C 2 x,
and the barcode of H * ({E g 2 ≤ t}) contains the bar [E g 2 (γ 1 ), +∞).

The statement about infinite bars can be considered a reformulation of the following result which can be traced back to Birkhoff. If g 2 g 1 then l(g 2 ) ≤ l(g 1 ), where l(g) denotes the length of the shortest non-constant and "homologically visible" closed geodesic of g. Indeed, endpoints of infinite bars correspond to energies of "homologically visible" closed geodesic and the mentioned result is a statement about the smallest endpoint of an infinite bar, see Corollary 4.1.21 for more details. On the other hand, finite bars in the barcode of H * ({E g ≤ t}) belong to the realm of Gromov's quantitative homotopy theory, as noticed by Weinberger, see Remark 4.1.20. In order to illustrate the appearance of finite bars, in Example 4.1.23 we computed the full barcode of a specific metric of revolution on T 2 . assume to vanish on ∂M if ∂M = ∅. Denote by B (f ) the multiset of all finite bars 5 in the barcode of the persistence module V t * (f ) = H * ({f < t}; R). Let u : R → [0, +∞) be a continuous function. Define

Φ u (f ) =                max f min f u(t) dt + I∈B (f ) I u(t) dt if ∂M = ∅, 0 min f u(t) dt + I∈B (f ) I u(t) dt if ∂M = ∅.
(1.4)

The main result of [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF] is the following.

Theorem 1.4.1 (Theorem 5.1.7 6 ). In the above setup it holds

Φ u (f ) ≤ κ g ( f + ∆f ) • u • f ,
where κ g is a constant which depends only on (M, g).

Remark 1.4.2. By slightly abusing the notation, we denote all constants which depend only on (M, g) by κ g .

Let us explain the intuition and give some context behind Theorem 1.4.1. We focus on the case u ≡ 1, since Φ 1 has a relatively transparent meaning. Φ u for arbitrary u can be considered a u-weighted version of Φ 1 . Related functionals have been earlier considered in [START_REF] Cohen-Steiner | Lipschitz functions have L p -stable persistence[END_REF] and certain upper bounds in the spirit of Theorem 1.4.1 were proven, see Remark 5.1.19 and a discussion in [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF].

Firstly, note that Φ 1 (f ) can be defined on an arbitrary manifold using the same expression (1.4) and that it equals the sum of lengths of all the finite bars in the barcode of f and the length of the range of f (or min f if ∂M = ∅). Now, assume that M = S 1 . A Morse function on S 1 has the same number, denote it by N , of local minima x 1 , . . . , x N and local maxima y 1 , . . . , y N and they appear in an alternating order on S 1 as follows x 1 , y 1 , . . . , x N , y N , x 1 .

Basic properties of barcodes (see Lemma 2.1.10) now imply that

Φ 1 (f ) = N i=1 (f (y i ) -f (x i )) = 1 2 Var(f ),
where Var(f ) denotes the total variation of f , see Example 5.1.15 for more details. Thus, we might consider Φ 1 (f ) to be a measure of the total variation of f. To give further evidence in support of this claim, let us consider what happens in higher dimensions. To this end, denote by β(t, f ) the number of connected components of f -1 (t). Function β(t, f ) is called the Banach indicatrix of f. It is easy to see that

I(f ) := +∞ -∞ β(t, f )dt = Var(f ),
for a Morse function f on a closed interval. In fact the analogous statement, known as the Banach indicatrix theorem, was proven by Banach for every continuous function on a closed interval. Based on this fact, the integral of the Banach indicatrix I(f ) was considered a measure of the total variation of f in higher dimensions, see [START_REF] Vitushkin | On higher-dimensional variations[END_REF]. We showed in [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF], see Proposition 5.3.1, that on a compact orientable surface, possibly with boundary, it holds

Φ 1 (f ) ≤ I(f ). (1.5)
Moreover, on the sphere (1.5) becomes an equality. Thus, Theorem 1.4.1 can be interpreted as an upper bound on the total variation of f in terms of it's W 2,2 -Sobolev norm. We should note that bounding I(f ) from above by various norms of f is a classical topic in analysis, see [START_REF] Kronrod | On functions of two variables[END_REF][START_REF] Vitushkin | On higher-dimensional variations[END_REF][START_REF] Yomdin | Global bounds for the Betti numbers of regular fibers of differentiable mappings[END_REF]. Due to (1.5), any such bound yields an upper bound for Φ 1 (f ). In particular, Theorem 1.4.1 follows from a u-weighted version of (1.5) and an upper bound for a u-weighted version of I(f ) due to Polterovich and Sodin - [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF].

Remark 1.4.3. Proposition 5.3.1 which asserts (1.5) actually gives a similar estimate in arbitrary dimension. However, the results of [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF] hold only in dimension two.

We now present certain applications, obtained in [START_REF] Polterovich | Persistence barcodes and Laplace eigenfunctions on surfaces[END_REF], of Theorem 1.4.1 to the study of linear combinations of eigenfunction of ∆. From now on we always assume that M is a compact orientable surface, possibly with boundary.

For λ > 0, let F λ = {f ∈ C ∞ (M ) | f = 1, ∆f ≤ λ}. This set contains normalized linear combinations of eigenfunction of ∆ with eigenvalue ≤ λ. It follows from Theorem 1.4.1 that if f ∈ F λ is Morse then Φ 1 (f ) ≤ κ g (λ + 1). (1.6)
We call a critical value of f δ-significant if it is an endpoint of a bar of length ≥ δ.

Denote by N δ (f ) the total number of δ-significant critical values of f (counted with multiplicities if there are multiple bars with this endpoint). The following is a direct corollary of (1.6).

Corollary 1.4.4 (Corollary 5.1.11). If f ∈ F λ is a Morse function, then N δ (f ) ≤ κ g δ (λ + 1).
It is easy to see that the above inequality does not hold if δ-significant condition is dropped, see Example 5.1.12.

Another application of (1.6) is to C 0 -approximation theory. Denote by

approx λ (f ) = inf ϕ∈Diff(M ) d C 0 (f • ϕ, F λ ).
This quantity measures how well can a function f be approximated by functions from F λ , after a change of variables. C 0 -approximation of a function after a change of variables is a classical topic in Fourier analysis, see [START_REF] Salem | On a theorem of Bohr and Pál[END_REF][START_REF] Olevskii | Modifications of functions and Fourier series[END_REF][START_REF] Goffman | Homeomorphisms in analysis[END_REF]. Since barcodes of f and f • φ coincide for every φ ∈ Diff(M ), invariants coming from barcodes, such as Φ 1 are naturally adapted to these kind of questions. In particular we may prove the following.

Proposition 1.4.5 (Proposition 5.2.1). For every Morse function f : M → R, vanishing on the boundary, the following inequality holds

approx λ (f ) ≥        1 2•(|B (f )|+1) Å Φ 1 (f ) -κ g (λ + 1) ã for ∂M = ∅ 1 2|B (f )|+1 Å Φ 1 (f ) -κ g (λ + 1) ã for ∂M = ∅ (1.7)
where |B (f )| denotes the number of finite bars.

The lower bound in Proposition 1.4.5 becomes negative as λ → +∞. This means that this proposition is not of asymptotic nature, i.e. it concerns fixed, possibly large, values of λ. We refer the reader to Subsection 5.2.1 for further discussion.

Finally, we want to mention that, in the case of a flat torus M = R 2 /(2πZ) 2 , Proposition 1.4.5 becomes an inverse statement about C 0 -approximation of a function by trigonometric polynomials. Juxtaposition of this result with a direct result due to , yields an upper bound on the average length of a finite bar in the barcode of a function on T 2 in terms of it's modulus of continuity, see Subsection 5.2.2.

Chapter 2 Background

This chapter covers some basic aspects of the theory of persistence modules and barcodes, symplectic topology and Floer theory. It's purpose is to provide a background on these subjects needed in the rest of the thesis.

Persistence modules and barcodes

In this section we briefly review the theory of persistence modules and barcodes. For detailed treatments of the theory we refer the reader to [START_REF] Edelsbrunner | A short course in computational geometry and topology[END_REF][START_REF] Oudot | Persistence theory: from quiver representations to data analysis[END_REF][START_REF] Chazal | The structure and stability of persistence modules[END_REF][START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF]. During the exposition we assume that the reader is familiar with basic Morse theory. A brief survey of Morse homology can be found in Subsection 2.2.1.

Basics and the structure theorem

Let K be a field. Definition 2.1.1. A persistence module (V, π) over K consists of a family of finitedimensional K-vector spaces V t , indexed by a real parameter t ∈ R, together with linear structure maps π s,t : V s → V t for all s ≤ t which satisfy

1. For all t ∈ R, π t,t = 1 V t ; 2. For any r, s, t ∈ R such that r ≤ s ≤ t it holds π s,t • π r,s = π r,t .
We sometimes abbreviate and write V for the persistence module (V, π).

Remark 2.1.2. The object defined by Definition 2.1.1 is sometimes referred to as a "pointwise finite-dimensional persistence module indexed over R". This comes from the fact that one may consider similar object, by allowing some V t to have infinite dimension or by taking t in a different partially ordered set. We should note that not all of the theory presented here carries over to these, more general, setups. All persistence modules we consider in this thesis fit in the framework od Definition 2.1.1.

Example 2.1.3. Let M be a closed manifold and f : M → R a Morse function. For k ∈ Z define a persistence module (V k (f ), π) by

V t k (f ) = H k ({f < t}; K) for t ∈ R, structure maps π s,t : V s k (f ) → V t k (f ) being induced by inclusions of sublevel sets {f < s} ⊂ {f < t} for s ≤ t.
Since topology of sublevel sets only changes upon passing through a critical value, one readily sees that π s,t is an isomorphism if [s, t] contains no critical values of f . We denote by V (f ) = ⊕ k V k (f ) the persistence module coming from total homology. V (f ) is a persistence module of Z-graded vector spaces.

Definition 2.1.4. Let (V, π V ), (W, π W ) be two persistence modules over K. A morphism of persistence modules or persistence module morphism f :

(V, π V ) → (W, π W ) is a family of linear maps f t : V t → W t for each t ∈ R which satisfy π W s,t • f s = f t • π V s,t for all s ≤ t.
One defines ker f and im f as persistence modules given by

(ker f ) t = ker f t ⊂ V t , (im f ) t = im f t ⊂ W t ,
structure maps π ker f and π im f being the restrictions of π V and π W to ker f and im f. Direct sum (V ⊕ W, π V ⊕W ) of persistence modules is given by

(V ⊕ W ) t = V t ⊕ W t , π V ⊕W s,t = π V s,t ⊕ π W s,t .
Given these definitions, persistence modules form an abelian category.

Remark 2.1.5. Let (R, ≤) be a poset category, i.e. a category whose objects are real numbers and which has a unique morphisms between s and t whenever s ≤ t.

A persistence module may be defined in more categorical terms as a functor from the poset category (R, ≤) to the category of finite-dimensional vector spaces. In this language, a morphism of persistence modules is a natural transformation of functors. As mentioned in Section 1.1, the structure theorem for persistence modules tells us that to each isomorphism class of persistence modules corresponds a unique barcode. To formulate this theorem precisely we will need the following abstract example of a persistence module associated to and interval.

Example 2.1.7. Let K be a field and I ⊂ R an interval. Define an interval persistence module K I by

K t I = K, for t ∈ I 0, otherwise , π K I s,t = 1 K , for s, t ∈ I 0, otherwise .
Interval modules are building blocks for all persistence modules, i.e. the following holds.

Theorem 2.1.8 (The structure theorem). To every persistence module (V, π) over K corresponds a barcode B(V ), unique up to isomorphisms of persistence modules, such that

(V, π) ∼ = (I,m I )∈B(V ) ((K I , π K I )) m I .
The term barcode was first used in [START_REF] Zomorodian | Computing persistent homology[END_REF] and a version of Theorem 2.1.8 for persistence modules indexed over N was proven. Analogous objects in the framework of filtered chain complexes were previously considered in [START_REF] Barannikov | The framed Morse complex and its invariants[END_REF] and a theorem analogous to Theorem 2.1.8 was proven. Theorem 2.1.8, in the level of generality as stated here, was proven in [START_REF] Crawley-Boevey | Decomposition of pointwise finite-dimensional persistence modules[END_REF].

Let us now elaborate on the persistence module-to-barcode correspondence in the case of persistence modules coming from Morse functions, introduced in Example 2.1.3. For a Morse function f , denote by B k (f ) = B(V k (f )) the degree k barcode of f and by B(f ) = B(V (f )) = ∪ k B k (f ) the full barcode of f. We start by a concrete example of a Morse function on S 1 .

Example 2.1.9. Let f : S 1 → R be a height function on a deformed circle (see Figure 2.1). Critical values of f are a, b, c and d, and for t ∈ R, the sublevel sets f -1 ((-∞, t)) are homeomorphic to: Firstly, we notice that all the bars in Example 2.1.9 have the form (a, b] or (a, +∞) for a, b ∈ R. This is true for any Morse function f . Indeed, notice that when t ≤ min f , {f < t} = ∅ and hence V t (f ) = 02 . Thus, all bars in B(f ) are left-bounded. The fact that they have left endpoints open and right endpoints closed comes from the choice of strict inequality in the definition of sublevel sets {f < t}. If we would consider {f ≤ t} instead, the situation would be exactly the oposite, i.e. the left endpoints of bars would be closed and right endpoints would be open.

f -1 ((-∞, t)) =                  ∅, for t ≤ a I, for a < t ≤ b I I, for b < t ≤ c I, for c < t ≤ d
Secondly, notice that the number of infinite bars, i.e. rays of the form (a, +∞), in B k (f ) equals dim H k (M ; K). Again, this is true for Morse functions in general. To see this, note that when t > max f , {f < t} = M and thus V t k (f ) stabilizes, meaning that π s,t are isomorphisms for s, t > max f . Now, for t > max f , dim V t k (f ) is on the one hand equal to the number of infinite bars in B k (f ) and on the other hand equal to dim

H k ({f < t}; K) = dim H k (M ; K).
Finally, we notice that endpoints of bars in B(f ) correspond to critical values of f. As we already mentioned in Example 2.1.3, homology of sublevel sets only changes upon passing through a critical value, hence the endpoints of bars in B(f ) must be equal to critical values of f. Moreover, we claim that each critical point of f of index k and with critical value c either starts a bar in B k (f ) at c or ends a bar in B k-1 (f ) at c. More formally, the following holds. Proof. All considerations work for homology over an arbitrary field K, so we omit K from the notation. For t ∈ R denote by M t = {f < t}. Assume that there are m critical points of f of index k at critical level f -1 (c) and assume that ε > 0 is such that [c -ε, c + ε] contains no critical values other than c. It is a standard fact of Morse theory that in this case dim

H k (M c+ε , M c-ε ) = m.
Consider the following part of the long exact sequence of the pair (M c+ε , M c-ε ) :

H k (M c-ε ) i - → H k (M c+ε ) p - → H k (M c+ε , M c-ε ) ∂ - → H k-1 (M c-ε ) j - → H k-1 (M c+ε ).
The number of bars in B k (f ) starting at c is equal to dim H k (M c+ε )-dim(im i), while the number of bars in B k-1 (f ) ending at c is equal to dim(ker j). From the exactness of the above sequence we have

dim H k (M c+ε ) -dim(im i) = dim H k (M c+ε ) -dim(ker p) = dim(im p) = dim(ker ∂),
as well as dim(ker j) = dim(im ∂).

Since dim(ker

∂) + dim(im ∂) = dim H k (M c+ε , M c-ε ) = m the claim follows.
A couple of remarks are in order. Firstly, we wish to point out that Lemma 2.1.10 does not hold for non-Morse functions, as can be seen from an example of a function on S 1 with three critical points.

Secondly, the proof of Lemma 2.1.10 does not construct a canonical bijection between critical points of f and endpoints of bars in B(f ). In general, there is no reason to expect the existence of a canonical bijection between these two sets. However, one may construct a different basis of the Morse chain complex, in which the boundary operator has a particularly simple form and for which there is a canonical bijection between basis vectors and the endpoints of bars. The existence of such a basis was used in [START_REF] Barannikov | The framed Morse complex and its invariants[END_REF] to prove a theorem analogous to Theorem 2.1.8 in the case of filtered chain complexes. For more details on this approach see [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] and references therein.

Lastly, we want to point out that barcodes of f and f • φ coincide for any diffeomorphism φ ∈ Diff(M ). Indeed for every t ∈ R restricting φ to {f • φ < t} gives a homeomorphism φ : {f • φ < t} → {f < t}, which for every k ∈ Z induces an isomorphism

φ * : H k ({f • φ < t}; K) → H k ({f < t}; K).
It is easy to see that this is an isomorphism of persistence modules V k (f ) and

V k (f •φ) and hence B k (f ) = B k (f • φ) for every k ∈ Z.

Stability and isometry theorems

In this subsection we introduce a quantitative perspective on persistence modules and barcodes. To this end, we define the distance on the space of all barcodes, called the bottleneck distance as well as it's algebraic counterpart, the interleaving distance on the space of all persistence modules. The highlight of the discussion are the stability theorem, Theorem 2.1.17, and the isometry theorem, Theorem 2.1.21. For a detailed treatment of the isometry theorem, see [START_REF] Bauer | Induced matchings of barcodes and the algebraic stability of persistence[END_REF][START_REF] Bauer | Induced matchings and the algebraic stability of persistence barcodes[END_REF] and references therein.

Definition 2.1.11. A matching σ, between multisets X and Y is a bijection between subsets of X and Y called, respectively, the coimage and the image of σ and denoted by coim σ and im σ. In other words

σ : coim σ bijection -----→ im σ, for some coim σ ⊂ X, im σ ⊂ Y.
Remark 2.1.12. In Definition 2.1.11, the terms subset and bijection refer to a subset and a bijection in the sense of multisets. This means that coim σ and im σ are multisets whose elements have multiplicities not greater than their original multiplicities in X and Y. Similarly, a bijection σ must match each copy of an element from coim σ with (a copy of) an element in im σ. In particular, the total multiplicities of all elements in coim σ and im σ are equal. 

B 2 , is called an ε-matching if 1) B 2ε 1 ⊂ coim σ, B 2ε 2 ⊂ im σ; 2) If σ( a, b ) = c, d then |a -c| ≤ ε and |b -d| ≤ ε.
We say that B 1 and B 2 are ε-matched if there exists an ε-matching between them.

Remark 2.1.14. In property 2) of Definition 2.1.13 some endpoints may be infinite.

In this case we take

| -∞ -(-∞)| = | + ∞ -(+∞)| = 0, i.
e. infinite endpoints have to match exactly. In particular, in order to have an ε-matching between B 1 and B 2 , we need the numbers of left-infinite rays, right-infinite rays and bars (-∞, +∞) in B 1 and B 2 to be equal.

If σ is an ε-matching, B 1 \ coim σ and B 2 \ im σ only contain bars of length < 2ε. Informally, we may think of these bars as being erased, or matched with empty intervals. Thus, an ε-matching may be thought of as a bijection up to an error of ε at the endpoints of bars. 

d bottle (B 1 , B 2 ) = inf{ε | B 1 and B 2 are ε-matched}.
If there exists no ε-matching between B 1 and B 2 for any 0 ≤ ε < +∞, we set

d bottle (B 1 , B 2 ) = +∞.
One readily checks that the bottleneck distance satisfies all axioms for a genuine metric except that two different barcodes may be at bottleneck distance zero. Indeed, for a, b ∈ R, a < b each two of the following barcodes

B 1 = {(a, b)}, B 2 = {[a, b)}, B 3 = {(a, b]}, B 4 = {[a, b]},
are on bottleneck distance zero. Since bottleneck distance can also be equal to +∞, it is an extended pseudo-metric.

Example 2.1.16. Barcodes B 1 = {(0, 2], [0, 1]}, B 2 = {(0, 2)}, B 3 = ∅, B 4 = {[-100, +∞)} satisfy d bottle (B 1 , B 2 ) = 1 2 , d bottle (B 1 , B 3 ) = d bottle (B 2 , B 3 ) = 1, d bottle (B i , B 4 ) = +∞ for i = 1, 2 , 3. 
In [START_REF] Cohen-Steiner | Stability of persistence diagrams[END_REF], Cohen-Steiner, Edelsbrunner and Harer proved that barcodes associated to Morse functions behave in a stable way with respect to C 0 -perturbations of a function. Namely, let M be a closed manifold. For two functions f and g on M

denote d C 0 (f, g) = |f -g| C 0 = max x∈M |f (x) -g(x)| and recall from Example 2.1.3 that B k (f ) denotes the barcode associated to V t k (f ) = H k ({f < t}; K).
Theorem 2.1.17 (The stability theorem - [START_REF] Cohen-Steiner | Stability of persistence diagrams[END_REF]). Let M be a closed manifold and f and g two Morse functions on M. For every k ∈ Z it holds

d bottle (B k (f ), B k (g)) ≤ d C 0 (f, g).
In particular, it also hold

d bottle (B(f ), B(g)) ≤ max k d bottle (B k (f ), B k (g)) ≤ d C 0 (f, g).
As we mentioned in Subsection 1.1, stability results in the spirit of Theorem 2.1.17 will be crucial for our applications of barcodes to symplectic topology. In order to prove results of this sort, we will use an abstract generalization of Theorem 2.1.17 called the isometry theorem. Let us now formulate this theorem.

Definition 2.1.18. Let (V, π V ) be a persistence module. For δ ∈ R define a δ-shifted module (V [δ], π V [δ] ) by (V [δ]) t = V t+δ , π V [δ] s,t = π V s+δ,t+δ . If f : V → W is a morphism of persistence modules, we denote by f [δ] : V [δ] → W [δ] the induced morphism given by f [δ] t = f t+δ . Remark 2.1.19. The barcode B(V [δ]
) is equal to the barcode B(V ) translated by -δ.

Definition 2.1.20. Let δ ≥ 0. We say that persistence modules (V, π V ) and (W, π W ) are δ-interleaved if there exists a pair of morphisms of persistence modules

f : V → W [δ], g : W → V [δ],
such that for all t ∈ R it holds

(g[δ] • f ) t = π V t,t+2δ , (f [δ] • g) t = π W t,t+2δ
. A pair of morphisms f and g as above is called a δ-interleaving between V and W . The interleaving distance between V and W is defined as

d inter (V, W ) = inf{δ | V and W are δ-interleaved}.
Similarly to d bottle on barcodes, d inter defines an extended pseudo-metric on the space of persistence modules. An interested reader may check that the interleaving distance between any two of the following interval modules equals to zero:

K (a,b) , K [a,b) , K (a,b] , K [a,b] , for a, b ∈ R, a < b.
Theorem 2.1.21 (The isometry theorem - [START_REF] Cohen-Steiner | Stability of persistence diagrams[END_REF][START_REF] Chazal | Proximity of persistence modules and their diagrams[END_REF][START_REF] Lesnick | The theory of the interleaving distance on multidimensional persistence modules[END_REF]). For any two persistence modules V and W it holds

d inter (V, W ) = d bottle (B(V ), B(W )).
We refer the reader to [START_REF] Bauer | Induced matchings of barcodes and the algebraic stability of persistence[END_REF][START_REF] Bauer | Induced matchings and the algebraic stability of persistence barcodes[END_REF] for a detailed historical account of the isometry theorem. Let us now show how Theorem 2.1.21 implies Theorem 2.1.17.

Proof of Theorem 2.1.17. Denote by δ = d C 0 (f, g). From the definition of d C 0 it follows that for each t ∈ R it holds {f < t} ⊂ {g < t + δ} and {g < t} ⊂ {f < t + δ}.

For each k ∈ Z, these inclusions induce maps in k-th homology

H k ({f < t}; K) → H k ({g < t + δ}; K) and H k ({g < t}; K) → H k ({f < t + δ}; K),
and one readily checks that these maps constitute a δ-interleaving between V k (f ) and V k (g). Thus

d inter (V k (f ), V k (g)) ≤ δ = d C 0 (f, g),
and Theorem 2.1.21 implies that

d bottle (B k (f ), B k (g)) ≤ d C 0 (f, g).
We shall see in Chapters 3 and 4 how the idea of the proof of Theorem 2.1.17 can be applied to obtain different stability results in the spirit of Theorem 2.1.17. Our motto in these chapters will be to construct interleavings using functorial properties of Floer and symplectic homology and then analyze barcodes in a more combinatorial fashion.

Persistence modules of finite and locally finite type

The theory presented in Subsections 2.1.1 and 2.1.2 applies to a wide class of persistence modules given by Definition 2.1.1. However, for many applications (in particular for purposes of this thesis) it is enough to consider a smaller class of persistence modules called persistence modules of finite or locally finite type. We give a quick review of these persistence modules and refer the reader to [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] for a more detailed study. Definition 2.1.22. A persistence module (V, π) is said to be of finite type if it satisfies the following properties:

1) For all but a finite number of points r ∈ R, there is a neighbourhood U r such that π s,t are isomorphisms for all s < t with s, t ∈ U ;

2) There exists t -such that V t = 0 for t < t -;

3) For every t ∈ R there exists ε > 0 such that π s,t are isomorphisms for all t -ε < s ≤ t.

Exceptional points in 1), i.e. points r ∈ R for which there does not exist a neighbourhood U r such that π s,t are isomorphisms for all s, t ∈ U , are called spectral and the set of all such points is called the spectrum of (V, π) and denoted by S(V ). One readily checks that if [s, t] ∩ S(V ) = ∅ then π s,t is an isomorphism. In other words, V t only changes upon passing through a spectral point.

In terms of the barcode, S(V ) is the set of all endpoints of bars in B(V ) and 1) is equivalent to saying that B(V ) is finite. Property 2) is equivalent to saying that all the bars in B(V ) are left-bounded. Example 2.1.23. Persistence module V (f ) from Example 2.1.3, associated to a Morse function f on a closed manifold M , is of finite type. Indeed, as we discussed at the end of Subsection 2.1.1, S(V (f )) consists of critical values of f. Since f is Morse it's critical points are isolated and since M is compact there are only finitely many of them which proves 1). To verify 2) it is enough to take t -= min f. Finally, 3) comes from the choice of a strict inequality in {f < t}.

Remark 2.1.24. Let (V, π) be a persistence module of finite type. Since it's spectrum is finite, there exists t + such that π s,t are isomorphisms for all t + ≤ s ≤ t. Thus, for t large enough, all V t are canonically isomorphic to V ∞ := lim -→ V t . Let f be a Morse function on a closed manifold and for k ∈ Z let V k (f ) = H k ({f < t}; K) be a persistence module considered in Examples 2.1.3 and 2.1.23. In this case, there exists a natural isomorphism Ψ :

V ∞ k (f ) → H k (M ; K) and given a ∈ H k (M ; K), a = 0, we can define a number c(a, f ) := inf{t ∈ R | Ψ -1 (a) ∈ im(V t k (f ) → V ∞ k (f ))}.
This number is called a spectral invariant associated to f and a, and has many remarkable properties. One can prove that for each a = 0, c(a, f ) is a starting point of an infinite bar in the barcode of V * (f ), and each such starting point can be obtained in this way.

In Chapter 3, we will ne need the following lemma whose proof is straightforward.

Lemma 2.1.25. Let V 1 , . . . , V l and W 1 , . . . , W l be persistence modules of finite type. Then

S(

l r=1 V r ) = l r=1 S(V r ), B( l r=1 V r ) = l r=1 B(V r ), and 
d bottle Å B( l r=1 V r ), B( l r=1 W r ) ã ≤ max r d bottle (B(V r ), B(W r )).
Here Σ denotes multiset sum, that is, union of elements, adding up multiplicities.

All persistence modules we will consider in Chapters 3 and 5 will be of finite type. For purposes of Chapter 4, a slightly more general framework is necessary. According to [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF], a persistence module is said to be of locally finite type if it satisfies property 3) from Definition 2.1.22, as well as a modified property 1), namely the following: 1') The set of exceptional points S(V ), as defined in 1), is a closed, discrete, bounded from below subset of R.

Persistence modules of locally finite type are not required to satisfy 2), even though from 1') it follows that π s,t are isomorphisms for s, t small enough. 

1 = R/Z → M as E g (γ) = 1 0 γ(τ ) 2 g 2 dτ.
For a generic metric g, E g is a Morse-Bott function on the (appropriately chosen) free loop space and it's critical points are closed geodesics. In this case, persistence module given by

V t k = H k ({E g < t}; Z 2 ), π s,t being induced by inclusions {E g < s} ⊂ {E g < t},
is of locally finite type and endpoints of bars in the barcode B(V t k ) are energies of certain closed geodesics.

By switching from {E g < t} to {E g ≤ t} in the above example one obtains a persistence module with opposite conventions on the endpoints of bars in the barcode, as discussed in Remark 2.1.26. In Chapter 4 we use this persistence module to compute filtered symplectic homology of unit codisc bundles, as well as to study the existence and stability of closed geodesics with respect to perturbations of a Riemannian metric.

Basics of Floer theory

In this section we discuss (Hamiltonian) Floer theory and Floer persistence modules. These are the main technical tools used in our work in symplectic topology - [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF][START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF].

Morse homology on closed manifolds

Floer theory is an infinite-dimensional version of Morse theory on the loops space of a symplectic manifold. We start our exposition of Floer theory by presenting an approach to Morse homology on a closed, finite-dimensional, manifold which mimics the construction of Floer homology. The material covered in this subsection should be considered a toy-model whose purpose is to provide intuition about the infinitedimensional (Floer) case. To this end, we try to keep the exposition brief and technically non-demanding and omit most of the details of proofs. These details are standard and can be found in various places in the literature, see [START_REF] Schwarz | Morse homology[END_REF][START_REF] Audin | Morse theory and Floer homology[END_REF][START_REF] Ritter | Lecture notes on Morse homology[END_REF].

Let us recall basic notions of Morse theory. Let N be a smooth manifold and f : N → R a smooth function. For a critical point x of f define the Hessian of f at x as a bilinear form

Hess f (x) : T x N × T x N → R given by Hess f (x)(X x , Y x ) = X x (Y (f )),
where X and Y are vector fields defined in a neighborhood of x. Since df (x) = 0, we have that

X x (Y (f )) -Y x (X(f )) = df (x)([X, Y ]) = 0,
and hence X x (Y (f )) = Y x (X(f )). From here one concludes that Hess f (x) only depends on X x and Y x and not on their extensions to the neighborhood of x, as well as that it is a symmetric bilinear form. In local coordinates the Hessian is expressed by a matrix of second derivatives of f. Denote by Crit(f ) the set of all critical points of f. 

f (x 1 , . . . , x n ) = c - k i=1 x 2 i + n i=k+1 x 2 i .
We have that

df (x 1 , . . . , x n ) = -2 k i=1 x i dx i + 2 n i=k+1
x i dx i , and hence 0 is the only critical point of f. With respect to the basis ∂ ∂x 1 , . . . , ∂ ∂xn , Hess f (0) is given by the matrix of second derivatives

Hess f (x) = ∂ 2 f ∂x i ∂x j i,j=1,...,n = Å -21 k 0 0 21 n-k ã .
We conclude that f is Morse and that ind(0) = k. In other words Crit(f ) = Crit k (f ) = {0}.

The above example describes the local form of any function near a non-degenerate critical point. Namely, if N is any smooth manifold and x ∈ Crit(f ) a non-degenerate critical point of index k then there exist local coordinates (x 1 , . . . , x n ) in a neighborhood of x s.t.

f (x 1 , . . . , x n ) = f (x) - k i=1 x 2 i + n i=k+1 x 2 i .
This statement is called Morse lemma. It implies, in particular, that non-degenerate critical points are isolated. Thus, if f is a Morse function on a closed manifold, it has only finitely many critical points.

We assume from now on that N is a closed manifold of dimension n and f : N → R a Morse function. Let g be a Riemannian metric on N. We are interested in the flow φ t : N → N of the negative gradient vector filed

d dt φ t (x) = -∇f (φ t (x)).
Since N is compact, this flow is defined for all times t ∈ R and the negative gradient trajectory or negative gradient flow line is a curve γ : R → N s.t.

γ(t) = -∇f (γ(t)). (2.1)
One shows that lim t→±∞ γ(t) exist and are critical points of f. This means that each negative gradient trajectory connects two critical points. For x, y ∈ Crit(f ) define the space of connecting trajectories

M(x, y) = {γ : R → N | γ(t) = -∇f (γ(t)), γ(-∞) = x, γ(+∞) = y}.
Theorem 2.2.3. Let N be a closed manifold and f : N → R a Morse function. For a generic Rimenannian metric g the following holds. For every two x, y ∈ Crit(f ), M(x, y) has a structure of a smooth manifold of dimension ind(x) -ind(y).

Let us comment on the formulation and the proof of this theorem. Firstly, we notice that M(x, y) can be identified with the following subset of

N W (x, y) = {q ∈ N | lim t→-∞ φ t (q) = x, lim t→+∞ φ t (q) = y}. Indeed, mapping M(x, y) γ → γ(0) ∈ W (x, y)
is a bijection due to the existence and uniqueness of solutions of the ordinary differential equation (2.1). Secondly, we see that

W (x, y) = W u (x) ∩ W s (y),
where

W u (x) = {q ∈ N | lim t→-∞ φ t (q) = x}, W s (y) = {q ∈ N | lim t→+∞ φ t (q) = y}
are the stable manifold of x and the unstable manifold of y. One may show that these sets are indeed manifolds whose dimensions are dim W u (x) = ind(x), dim W s (y) = n -ind(y).

Metric g in Theorem 2.2.3 should be chosen so that stable and unstable manifolds of every two critical points intersect transversally. This condition is satisfied for a generic Riemannian metric. It implies that W (x, y), and hence also M(x, y), is a smooth manifold of dimension ind(x)-ind(y) as a transverse intersection of W u (x) and W s (y). Now notice that for every γ ∈ M(x, y) and t 0 ∈ R the curve t 0 • γ given by (t 0 • γ)(•) = γ(t 0 + •) also belongs to M(x, y). Assuming x = y, this gives us a free R-action on M(x, y) and we denote by M(x, y) = M(x, y)/R the space of unparametrized trejectories. This space is a smooth manifold of dimension ind(x) -ind(y) -1. When ind(x) = ind(y) + 1, M(x, y) is 0-dimensional and it turns out that it is also compact, i.e. it consists of finitely many points.

We now have all ingredients necessary to define Morse homology with Z 2 -coefficients. Let f : N → R be a Morse function and (f, g) a generic pair in the sense of Theorem 2.2.3. For k ∈ Z, define Morse chain complex of (f, g) in degree k as

CM k (f, g) = Span Z 2 (Crit k (f )). The differential ∂ : CM k (f, g) → CM k-1 (f, g) is a Z 2 -linear map given on x ∈ Crit k (f ) by ∂x = y∈Crit k-1 (f ) # 2 M(x, y)y, # 2 denoting cardinality modulo two. Theorem 2.2.4. It holds ∂ 2 = 0. Sketch of a proof. Let x ∈ Crit k (f ), z ∈ Crit k-2 (f ).
In this case M(x, z) is a 1dimensional manifold which can be compactified to a 1-dimensional manifold with boundary M(x, z) such that

∂ M(x, z) = y∈Crit k-1 (f ) M(x, y) × M(y, z).
Intuitively, elements of y∈Crit k-1 (f ) M(x, y) × M(y, z) are "broken" unparametrized negative gradient trajectories connecting x and y. In other words failure of compactness of M(x, y) can be described by a "breaking mechanism" which we illustrate in Example 2.2.7. Now, we compute

∂(∂x) = ∂ y∈Crit k-1 (f ) # 2 M(x, y)y = y∈Crit k-1 (f ) # 2 M(x, y)∂y = y∈Crit k-1 (f ) # 2 M(x, y) z∈Crit k-2 (f ) # 2 M(y, z)z = z∈Crit k-2 (f ) y∈Crit k-1 (f ) (# 2 M(x, y) • # 2 M(y, z))z = z∈Crit k-2 (f ) # 2 ∂ M(x, z)z = 0.
The last equality follows because # 2 ∂ M(x, z) = 0 since compact 1-dimensional manifolds have an even number of boundary components.

Theorem 2.2.4 implies that (CM * (f, g), ∂) is a chain complex. The homology of this chain complex is called Morse homology of (f, g) and is denoted by HM * (f, g). It turns out that Morse homologies of different generic pairs (f, g) are isomorphic and are moreover isomorphic to singular homology of N with Z 2 -coefficients.

Example 2.2.5. Let f : S 1 → R be a height function (y-coordinate) on the unit circle in the plane. More precisely, S 1 = R/Z embeds in R 2 via t → (cos 2πt, sin 2πt) and f (t) = sin 2πt. This function has two critical points, x = 1 4 , y = 3 4 which are it's maximum and minimum, see Figure 2.2.

x y γ(t) = -∇f (γ(t)) The Hessian is given by

Hess f (x) = f 1 4 = -4π 2 , Hess f (y) = f 3 4 = 4π 2
and hence x and y are non-degenerate, i.e. f is Morse, and ind(x) = 1, ind(y) = 0.

Let g be a metric on S 1 induced from the standard flat metric on R 2 . One readily computes that there are two negative gradient trajectories connecting x to y and hence M(x, y) consists of two points, as shown in Figure 2.2. We may now compute Morse homology of (f, g). We have that

CM 0 (f, g) = Z 2 • y, CM 1 (f, g) = Z 2 • x, ∂(y) = 0, ∂(x) = # 2 M(x, y)y = 0.
Thus

HM k (f, g) = Z 2 , for k = 0, 1 0, otherwise ,
as we already could predict from the isomorphism with singular homology.

Example 2.2.6. For n ≥ 2, define a height function on the n-dimensional sphere

f : S n = {(x 1 , . . . , x n+1 ) ∈ R n+1 | x 2 1 + . . . x 2 n+1 = 1} → R as f (x 1 , . . . , x n+1 ) = x n+1 .
A direct computation shows that f has two critical points, a maximum x = (0, . . . , 0, 1) and a minimum y = (0, . . . , 0, -1), both of them are non-degenerate and ind(x) = n, ind(y) = 0. Thus

CM 0 (f, g) = Z 2 • y, CM n (f, g) = Z 2 • x,
and since the index difference between x and y is greater than one it follows that ∂x = ∂y = 0. Hence

HM k (f, g) = Z 2 , for k = 0, n 0, otherwise .
Example 2.2.7 (Example 10.2.3 in [START_REF] Polterovich | Function theory on symplectic manifolds[END_REF]). Let

T 2 = R 2 /(2π • Z) 2 and f : T 2 → R given by f (s, t) = sin s + sin t, (s, t) ∈ R 2 . Critical points of f are x = π 2 , π 2 , y = - π 2 , π 2 , z = π 2 , - π 2 , w = - π 2 , - π 2 . 
The Hessian is given by the matrix of second derivatives Hess f (s, t) = Å -sin s 0 0 -sin t ã and hence we see that x, y, z, w are all non-degenerate and ind(x) = 2, ind(y) = ind(z) = 1, ind(w) = 0. Let g = ds 2 + dt 2 be the flat metric on T 2 . It follows that -∇f (s, t) = (-cos s, -cos t) and we may draw the negative gradient trajectories as in It follows that each of the spaces M(x, y), M(x, z), M(y, w), M(z, w) contains exactly two points and hence all coefficients of the Morse differential are zero. This gives us that ∂ = 0 and hence

CM k (f, g) = HM k (f, g) =      Z 2 , for k = 0, 2 Z 2 ⊕ Z 2 , for k = 1 0, otherwise .
Finally, notice that the breaking mechanism described in the proof of Theorem 2.2.4 can be clearly seen on Figure 2.3. Indeed, M(x, w) consists of four 1-dimensional families of unparametrized trajectories, one in each of the four squares. As we approach y, these trajectories break into two concatenated trajectories, one from x to y, the other from y to w. These concatenated trajectories belong to ∂ M(x, w). Similar breaking is seen as we approach z.

Remark 2.2.8. We defined Morse homology only with Z 2 -coefficients. Similar construction can be carried for arbitrary coefficients. The main difference is that we would have to count trajectories with appropriate signs which requires additional considerations regarding orientations.

Basics of Symplectic topology

In this subsection we introduce basic notions of symplectic topology.

A differential 2-form ω on a smooth manifold M is called a symplectic form if it is non-degenerate and closed. By non-degenerate we mean that for every x ∈ M and v ∈ T x M there exists w ∈ T x M such that ω(v, w) = 0. A smooth manifold equipped with a symplectic form is called a symplectic manifold. A linear algebra argument implies that, due to non-degeneracy of ω, the dimension of a symplectic manifold M has to be even. Denoting dim M = 2n, non-degeneracy of ω is equivalent to ω ∧n being a volume form on M. In particular, symplectic manifolds are orientable.

Example 2.2.9. Let (x 1 , . . . , x n , y 1 , . . . , y n ) be standard coordinates on R 2n . Define a 2-form

ω 0 = n i=1 dx i ∧ dy i .
It is easy to see that ω 0 is non-degenerate and closed, i.e. (R 2n , ω 0 ) is a symplectic manifold. This form is called the standard symplectic form on R 2n . In the case of R 2 , ω 0 is the standard area form. Example 2.2.9 gives a local model for all symplectic manifolds. Namely, the famous Darboux's theorem states that every point on a symplectic manifold has a neighborhood and local coordinates in this neighborhood in which symplectic form equals to ω 0 . These coordinates are called Darboux coordinates and local charts ϕ : (U, ω) → (R 2n , ω 0 ) for which ϕ * ω 0 = ω are called Darboux charts.

Example 2.2.10. Using Example 2.2.9 we may define a symplectic form on the 2ndimensional torus T 2n . Indeed, define ω = ω 0 in the local coordinates inherited from the quotient T 2n = R 2n /(2πZ) 2n . These coordinates are clearly Darboux coordinates in a neighborhood of every point on T 2n . Example 2.2.11. A closed, orientable, surface with an area form (Σ, σ) is a symplectic manifold. Indeed, σ is non-degenerate as an area form and closed because dim Σ = 2.

Example 2.2.12. Let (M 1 , ω 1 ), (M 2 , ω 2 ) be two symplectic manifolds. The product (M 1 × M 2 , ω 1 ⊕ ω 2 ) is also a symplectic manifold. This construction gives another way to define a symplectic form on T 2n by viewing T 2n = (T 2 ) n and using Example 2.2.11.

Example 2.2.13. Let N be any smooth manifold and denote by T * N the cotangent bundle of N. Denote by π : T * N → N the canonical projection. Every point p ∈ T * N is a covector on the tangent space T π(p) N. Define a canonical 1-form λ can on T * N , called the canonical Liouville form, by

λ can (p)(ξ p ) = p(π * (p)(ξ p )),
where ξ p ∈ T p T * N is any tangent vector and π * (p) : T p T * N → T π(p) N is the differential of π at p. Canonical Liouville form can also be characterized as a unique 1-form on T * N such that for every 1-form α on N it holds α * λ can = α. Here α plays both the role of a 1-form on N and of a section of T * N over N.

We claim that ω can = dλ can is a symplectic form on T * N. To prove this, we describe local Darboux coordinates for ω can on T * N as follows. Let (q 1 , . . . , q n ) be any local coordinates on N and denote by (( Example 2.2.9 can be seen as a special case of Example 2.2.13, after identifying R 2n = T * R n . In both of these examples the symplectic form ω has a primitive 1form λ, ω = dλ, which means that ω is not only closed, but also exact. Symplectic manifolds with an exact symplectic form are called exact. Since ω ∧n is a volume form one readily sees that closed symplectic manifolds can not be exact, i.e. an exact symplectic manifold has to be non-compact. 

A smooth map φ : (M 1 , ω 1 ) → (M 2 , ω 2 ) between symplectic manifolds is called symplectic if φ * ω 2 = ω 1 . In case the manifolds are exact, ω 1 = dλ 1 , ω 2 = dλ 2 condition φ * ω 2 = ω 1 is equivalent to φ * λ 2 -λ 1 being closed. If
(2n) = {A ∈ GL(2n, R) | A * ω 0 = ω 0 }.
Multiplication by a symplectic matrix is a linear symplectomorphism. Denote by

J 0 = Å 0 -1
1 0 ã the matrix representing the standard complex structure on R 2n (we identify R 2n with C n by z j = x j + iy j ). The standard scalar product •, • , J 0 and ω 0 are related in the following way

(∀v, w ∈ R 2n ) v, w = ω 0 (v, J 0 w). (2.2)
Using (2.2) one checks that the condition A * ω 0 = ω 0 is equivalent to A T J 0 A = J 0 . It is also not difficult to prove that after identifying C n with (R 2n , J 0 ) it holds U(n) ⊂ Sp(2n), see [START_REF] Mcduff | Introduction to symplectic topology[END_REF].

Example A class of symplectomorphisms of particular interest for us can be constructed using flows of Hamiltonian systems. The construction goes as follows. First note that non-degeneracy of ω implies that a map I ω : T M → T * M given by I ω (v) = ω(v, •) is an isomorphism of vector bundles. This means that for every 1-form α there exists a unique vector field X = (I ω ) -1 (α) such that ω(X, •) = α(•). Definition 2.2.17. A function H : M × [0, 1] → R is called a time-dependent Hamiltonian function on M . A time-dependent vector field X Ht given by ω(X Ht , •) = -dH t (•), for all t ∈ [0, 1], is called a Hamiltonian vector field. Integrating X Ht we obtain the Hamiltonian flow of H, denoted by φ H t . In other words, φ H t : M → M is a family of diffeomorphisms given as a solution of the ordinary differential equation

d dt (φ H t (x)) = X Ht (φ H t (x)), φ H 0 = 1 M .
Time-one map φ H 1 of this flow is called a Hamiltonian diffeomorphism. We will sometimes abbreviate X Ht to X H . Using Cartan's formula we get that Using the complex coordinates z j = x j + iy j we get that X H (z) = iz and hence

d dt ((φ H t ) * ω) = (φ H t ) * (d(i X H t ω) + i X H t dω) = (φ H t ) * (-ddH t ) =
φ H t (z) = e it z.
Restricting the flow to the level H -1 ( 1 2 ) = S 2n+1 , we get a free S 1 -action on S 2n+1 , which foliates S 2n+1 into invariant circles. Now, for every z ∈ S 2n+1 , the symplectic complement

(T z S 2n+1 ) ω = {v ∈ R 2n+2 | ω(v, w) = 0 for all w ∈ T z S 2n+1 }
is spanned by X H (z). Indeed, by a linear algebra argument we can show that (T z S 2n+1 ) ω is 1-dimensional and for every v ∈ T z S 2n+1 it holds

ω 0 (X H , v) = -ω 0 (v, X H ) = ω 0 (v, J 0 J 0 X H ) = v, J 0 X H = 0, because J 0 X H = iX H ⊥ S 2n+1
. Thus, ω induces a symplectic form on the quotient S 2n+1 /S 1 = CP n . This form is called the Fubini-Study form 4 and is denoted by ω F S . The method of defining a symplectic form on a quotient which we used can be applied in more general contexts and is called symplectic or Marsden-Weinstein reduction.

Remark 2.2.19. As explained in Arnol'd's [START_REF] Arnol | Mathematical methods of classical mechanics[END_REF], an important invariant formulation of the equations of motion of classical mechanics involves a symplectic manifold (M, ω), the phase space, and a smooth, possibly time-dependent, Hamiltonian function H : [0, 1] × M → R on M, the total energy of the system. The dynamics on the symplectic manifold is then described by the Hamiltonian flow of H. In this language, the fact that level sets of an autonomous Hamiltonian are invariant with respect to the Hamiltonian flow corresponds to the law of conservation of energy.

Denote by Ham(M, ω) the set of all Hamiltonian diffeomorphisms of M. It turns out that Ham(M, ω) is actually a group with respect to the composition. To prove this one first proves (by a straightforward computation) the following formula for the symplectic change of coordinates: ,ω) is closed with respect to compositions. One proves, in a similar fashion, that if φ ∈ Ham(M, ω) then φ -1 ∈ Ham(M, ω) and hence Ham(M, ω) is a group. We leave the details of these computations to an interested reader.

φ * X Ht = X Ht•φ -1 , (2.3 
Remark 2.2.20. It follows from the definitions that for any smooth function a : [0, 1] → [0, 1] with a(0) = 0, Hamiltonian a (t)H a(t) generates the flow φ H a(t) . In particular, by taking a(t) = ct, c ∈ [0, 1] we see that for each t ∈ [0, 1], φ H t is a Hamiltonian diffeomorphism. On the other hand, by taking a = 0 in a neighborhood of 0 and a = 1 in a neighborhood of 1, we conclude that every Hamiltonian diffeomorphism can be generated by a 1-periodic Hamiltonian function.

Hofer's metric

We now wish to introduce a quantitative perspective on the group of Hamiltonian diffeomorphisms. In order to do this, we will define a bi-invariant metric on Ham(M, ω) called Hofer's metric. The existence and non-degeneracy of Hofer's metric were major discoveries in symplectic topology in the 1990s. Today, the study of Hofer's metric and notions derived from it are some of the classical topics in symplectic topology, see [START_REF] Polterovich | The geometry of the group of symplectic diffeomorphisms[END_REF][START_REF] Polterovich | Function theory on symplectic manifolds[END_REF][START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] and references therein for a detailed treatment of the subject. We will use stability of barcodes coming from Floer homology with respect to Hofer's metric to study the Hofer geometry of Ham(M, ω).

Let (M, ω) be a closed 5 symplectic manifold. In order to define Hofer's metric, we wish to consider Ham(M, ω) as an infinite-dimensional Lie group. The procedure we use is formal and applies to any Lie group. It goes as follows. Firstly, we define a norm on the Lie algebra. This norm can be extended to a Finsler metric on the Lie group in two ways, using either left or right translations. If, however, the norm on the Lie algebra was invariant with respect to the adjoint action of the group, these two Finsler metrics coincide. In this case we define lengths of curves on the group using this Finsler metric and then define the distance between two elements of the group as the infimum of lengths of curves connecting them. The distance on the group defined in this way will automatically be bi-invariant.

Following this procedure, we start by describing the Lie algebra of Ham(M, ω). Let h t , t ∈ [0, ε), h 0 = 1 M be a smooth path in Ham(M, ω). By a result of , it follow that h t is generated by a time-dependent Hamiltonian function, i.e. h t = φ H t for some H. By pointwise differentiation we conclude that d dt | t=0 h t can be identified with X H 0 . In other words, the Lie algebra of Ham(M, ω) consist of Hamiltonian vector fields X H 0 given as solutions of ω(X H 0 , •) = -dH 0 (•).

(2.4)

Since dH 0 determines H 0 up to a constant, X H 0 also determines H 0 up to a constant. We say that a Hamiltonian H :

M × [0, 1] → R is normalized if M H t ω ∧n = 0 for all t ∈ [0, 1]
. Now, solutions of (2.4) bijectively correspond to normalized (timeindependent!) function on M. In other words, the Lie algebra of Ham(M, ω) is given by

ham(M, ω) = F : M → R M F ω ∧n = 0 .
Let F ∈ ham(M, ω) and denote by f t the Hamiltonian flow of F. Using the formula for symplectic change of coordinates (2.3), we see that for every φ ∈ Ham(M, ω) the adjoint action is given by

Ad φ (F ) = d dt t=0 φ • f t • φ -1 = X F •φ -1 ,
which after identification of vector fields and functions gives

Ad φ (F ) = F • φ -1 .
So, in order to obtain a bi-invariant metric on Ham(M, ω), we need a norm on ham(M, ω), i.e. on normalized functions, such that F = F • φ -1 for every φ ∈ Ham(M, ω). 

E(F -G) = 1 0 Å max x∈M (F t (x) -G t (x)) -min x∈M (F t (x) -G t (x)) ã dt.
Hofer's metric on Ham(M, ω) is given by

d(f, g) = inf E(F -G),
where the infimum runs over all the F, G such that φ F 1 = f, φ G 1 = g. Hofer's pseudometric on the universal cover fi Ham(M, ω) of Ham(M, ω) is defined as

d( f , g) = inf E(F -G),
where the infimum runs over all the F, G such that [{φ

F t }] = f , [{φ G t }] = g in fi Ham(M, ω).
We should note that all axioms for the definition of a metric immediately follow from the construction, except for non-degeneracy. Proving non-degeneracy of Hofer's metric turned out to be a difficult problem which was solved by a combined work of different researchers - [START_REF] Hofer | On the topological properties of symplectic maps[END_REF][START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF][START_REF] Polterovich | Symplectic displacement energy for Lagrangian submanifolds[END_REF][START_REF] Lalonde | The geometry of symplectic energy[END_REF]. To this day there exists no elementary proof of this fact. While significant progress in understanding Hofer's geometry of Ham(M, ω) has been made, many questions still remain open. For example, it is not known whether the Hofer-diameter of Ham(M, ω) is infinite in general (even thought it has been proven to be infinite in many cases). We discussed certain questions about Hofer's geometry in Section 1.2 and will deal with them in more detail in Chapter 3.

Almost complex structures

An almost complex structure J on a smooth manifold M is a smooth family of linear maps J x : T x M → T x M such that J 2

x = -1 TxM for all x ∈ M. Assume now that (M, ω) is symplectic. We call an almost complex structure J compatible with ω if g(v, w) := ω(v, Jw) is a Riemannian metric on M.

Example 2.2.22. Recall from Examples 2.2.9 and 2.2.14 that the standard symplectic form ω 0 , the standard complex structure J 0 and the standard scalar product , on R 2n satisfy (∀v, w ∈ R 2n ) v, w = ω 0 (v, J 0 w).

This means that J 0 is compatible with ω 0 .

Example 2.2.23. If M is a complex manifold, it's tangent bundle is a complex vector bundle and multiplication by i induces an almost complex structure on M. If (M, ω) is also symplectic and this almost complex structure is compatible with ω, M is called Kähler. As explained in Example 2.2.10 the standard symplectic form ω 0 on R 2n induces a symplectic form on the torus T 2n = R 2n /(2πZ) 2n . Similarly, J 0 induces a complex structure on T 2n which is compatible with the symplectic form, as in Example 2.2.22. Thus, T 2n is a Kähler manifold. Another example of a Kähler manifold is the complex projective space with Fubini-Study form (CP n , ω F S ) introduced in Example 2.2.18. Indeed, ω F S and the complex structure on CP n are inherited from ω 0 and J 0 via symplectic reduction and since J 0 is compatible with ω 0 , (CP n , ω F S ) is Kähler.

One might show that on every symplectic manifold (M, ω) there exists an almost complex structure compatible with ω. Moreover, the space of all compatible almost complex structures, denoted by J (M, ω), is contractible, see [START_REF] Mcduff | Introduction to symplectic topology[END_REF]. Due to this fact, we may define the first Chern class of (M, ω), c 1 (M, ω) ∈ H 2 (M ; Z), as the first Chern class of (T M, J) for any J ∈ J (M, ω) and the definition will not depend on a choice of J. First Chern class of (M, ω) plays an important role in Floer theory, especially in the definition of grading in Floer homology. We will now define two classes of symplectic manifolds, called symplectically aspherical and symplectically monotone, for which the definition of Floer homology is the simplest possible. Nevertheless, these two cases are sufficient for all results presented in this thesis.

Using Hurewicz homomorphism h * : π 2 (M ) → H 2 (M ; Z) we consider ω and c 1 to be maps from π 2 (M ) to R. Definition 2.2.24. Symplectic manifold (M, ω) is called symplectically aspherical if ω = c 1 = 0 as maps from π 2 (M ).

Example 2.2.25. Every symplectic manifold for which π 2 (M ) = 0 is symplectically aspherical. This includes (R 2n , ω 0 ), surfaces of positive genus with a volume form and products of these.

Example 2.2.26. Cotangent bundle of a closed manifold with the canonical symplectic form (T * M, ω can = dλ can ) is symplectically aspherical. Since

ω can = dλ can it follows from Stokes' theorem that ω can | π 2 (M ) = 0. The proof that c 1 | π 2 (M ) = 0 is more technical and we omit it here. Definition 2.2.27. Symplectic manifold (M, ω) is called monotone or symplectically monotone if ω| π 2 (M ) = κc 1 | π 2 (M ) for some κ > 0. κ is called the monotonicity constant.
Example 2.2.28. Complex projective space with the Fubini-Study form is a monotone symplectic manifold. To prove this, first notice that im(h * :

π 2 (M ) → H 2 (M ; Z)) = H 2 (M ; Z) = Z • [CP 1 ],
where [CP 1 ] is the homology class of a submanifold

{[z 0 : z 1 : 0 : . . . : 0] | z 0 , z 1 ∈ C} ⊂ CP n . Since ω F S ([CP 1 ]) > 0 it is enough to show that c 1 ([CP 1 ]) > 0. Indeed, it holds c 1 ([CP 1 ]) = n + 1.
This can be shown by decomposing

T CP n ⊕ C ∼ = (γ 1,n ) * ⊕ . . . ⊕ (γ 1,n ) * n+1 times
, where C is a trivial complex line bundle and (γ 1,n ) * is the dual of the tautological line bundle over CP n .

Compatible almost complex structures were used by Gromov in his revolutionary work - [START_REF] Gromov | Pseudo holomorphic curves in symplectic manifolds[END_REF] in order to develop a theory of holomorphic curves on symplectic manifolds. Let Σ be a complex curve (real dimension two) and j : T Σ → T Σ, j 2 = -1 induced from multiplication by i. Given a symplectic manifold (M, ω) with a compatible almost complex structure J, a map u : Σ → M which satisfies du • j = J • du is called a J-holomorphic or pseudo-holomorphic curve. The study of pseudo-holomorphic curves and their moduli spaces lead to a discovery of striking rigidity phenomena in symplectic topology. Even though we do not explicitly discuss Gromov's theory in this thesis, it is present in the background of our discussion of Floer theory. For an extensive treatment of the subject we refer the reader to [START_REF] Mcduff | J-holomorphic curves and symplectic topology[END_REF].

The Arnol'd conjecture and Floer homology

Before we begin a detailed presentation of Floer theory we give a short historic outlook on Arnold's conjecture and briefly describe Floer's work and it's relation to Arnol'd's conjecture in the simplest setting of symplectically aspherical manifolds.

Fixed points of the Hamiltonian diffeomorphism

φ = φ H 1 correspond to 1-periodic orbits of the flow {φ H t } t∈[0,1] .
In the 1960's Arnol'd has proposed a famous conjecture [START_REF] Arnol | Sur une propriété topologique des applications globalement canoniques de la mécanique classique[END_REF][START_REF] Arnol'd | A stability problem and ergodic properties of classical dynamical systems[END_REF] which states that, essentially, the number of fixed points of φ ∈ Ham(M, ω) should satisfy the same lower bounds as the number of critical points of a smooth function f on M. The most common interpretation of this conjecture states that under the nondegeneracy6 assumption on H, the number of fixed points of φ H 1 is bounded from below by the sum of the rational Betti numbers of M . This conjecture has been a major driving force for the development of the field of symplectic topology. It was first proven in dimension 2 by Eliashberg [START_REF] Eliashberg | Estimates on the number of fixed points of area preserving transformations[END_REF], for tori of arbitrary dimension by Conley and Zehnder [START_REF] Conley | The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol[END_REF], and on complex projective spaces by Fortune and Weinstein [START_REF] Fortune | A symplectic fixed point theorem for CP n[END_REF][START_REF] Fortune | A symplectic fixed point theorem for complex projective spaces[END_REF]. The decisive breakthrough on this question was achieved by Floer [START_REF] Floer | Proof of the Arnol'd conjecture for surfaces and generalizations to certain Kähler manifolds[END_REF][START_REF] Floer | Morse theory for fixed points of symplectic diffeomorphisms[END_REF][START_REF] Floer | Symplectic fixed points and holomorphic spheres[END_REF], who combined the variational methods of Conley-Zehnder and Gromov's then-recent discovery of the theory of pseudo-holomorphic curves on symplectic manifolds [START_REF] Gromov | Pseudo holomorphic curves in symplectic manifolds[END_REF], to construct a homology theory on the loop space of M which parallels the more classical Morse homology (in turn originating in Witten's interpretation of Morse theory [START_REF] Witten | Supersymmetry and Morse theory[END_REF]; cf. [START_REF] Schwarz | Morse homology[END_REF]). Floer's idea for proving Arnold's conjecture goes as follows.

Assuming that M is symplectically aspherical, that is,

ω| π 2 (M ) = 0, c 1 (M, ω)| π 2 (M ) = 0, one can define the action functional A H on the space L [pt] M of contractible loops on M by setting A H (z) = 1 0 H t (z(t)) dt - D 2 z * ω,
where z : [0, 1] → M , z(0) = z(1) and z : D 2 → M , z(e 2πit ) = z(t). Indeed by the asphericity assumption this value depends only on z, and not on z.

Periodic orbits of the Hamiltonian flow coincide with critical points of the action functional A H , which serves as a Morse function in the construction of Floer homology. Since critical points are generators of Morse chain complexes, in analogy to Morse homology, if H is non-degenerate, Floer chain complex CF * (H) is generated by contractible periodic orbits of H. Floer homology turns out to be isomorphic to singular homology of M with rational coefficients, and hence there must be at least

dim CF * (H) ≥ dim HF * (H) = k dim H k (M ; Q),
such periodic orbits in M. This solves the rational homological version of the Arnol'd conjecture. The detailed construction of Floer homology is rather involved and it has been developed in increasing generality over the years by a combined work of many people (cf. [START_REF] Fukaya | Arnold conjecture and Gromov-Witten invariant[END_REF][START_REF] Fukaya | Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds[END_REF][START_REF] Piunikhin | Symplectic Floer-Donaldson theory and quantum cohomology[END_REF][START_REF] Liu | Floer homology and Arnold conjecture[END_REF][START_REF] Ruan | Virtual neighborhoods and pseudo-holomorphic curves[END_REF][START_REF] Pardon | An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves[END_REF]), in particular proving the above statement for general M (without assumptions on π 2 (M )). However, various other interpretations of the conjecture are still open in general, with only partial results currently achieved (see for example [START_REF] Floer | Symplectic fixed points and holomorphic spheres[END_REF][START_REF] Rudyak | On the Lusternik-Schnirelmann category of symplectic manifolds and the Arnold conjecture[END_REF][START_REF] Floer | Cuplength estimates on Lagrangian intersections[END_REF][START_REF] Hofer | Lusternik-Schnirelman-theory for Lagrangian intersections[END_REF][START_REF] Dimitroglou Rizell | The number of Hamiltonian fixed points on symplectically aspherical manifolds[END_REF][START_REF] Ono | On the fixed points of a Hamiltonian diffeomorphism in presence of fundamental group[END_REF][START_REF] Barraud | A Floer fundamental group[END_REF]).

In the rest of this section we will focus on explaining the construction of Floer homology with Z 2 -coefficients on symplectically aspherical and monotone symplectic manifolds, as well as how it fits in the framework of persistence modules.

Conley-Zehnder index

We now briefly discuss Conley-Zehnder index of a path of symplectic matrices. In Floer theory, this index (up to constants and signs) plays the role of the Morse index and is used to define grading on Floer homology. For a detailed exposition of the subject, see [START_REF] Conley | The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol[END_REF][START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF][START_REF] Robbin | The Maslov index for paths[END_REF].

Definition 2.2.29. Let A : [0, 1] → Sp(2n) be a path of symplectic matrices such that A(0) = 1, det(A(1) -1) = 0. t * ∈ [0, 1] is called a crossing if det(A(t * ) -1) = 0. Crossing form Γ(A, t * ) : ker(A(t * ) -1) → R is a quadratic form given by Γ(A, t * )v = ω 0 (v, Ȧ(t * )v).
(2.5)

Crossing t * is called regular if Γ(A, t * ) is non-degenerate and A is a regular path if all it's crossings are regular.
Crossing form is symmetric and we may compute it's matrix in the following way. Recall from Example 2.2.14 that since A(t) ∈ Sp(2n) it holds A T (t)J 0 A(t) = J 0 . Differentiating this expression with respect to t implies that S(t) = -J 0 Ȧ(t)A -1 (t) is symmetric for every t ∈ [0, 1] and hence

Ȧ(t) = J 0 S(t)A(t), (2.6) 
where S is a path of symmetric matrices. Using this equality we have that for v ∈

ker(A(t * ) -1) it holds Γ(A, t * )v = ω 0 (v, Ȧ(t * )v) = ω 0 (v, J 0 S(t * )A(t * )v) = ω 0 (v, J 0 S(t * )v) = v, S(t * )v ,
and hence S(t * ) is the symmetric matrix which represents the crossing form Γ(A, t * ).

One proves that regular crossing are isolated and hence a regular path has only finitely many crossings. Thus, we may give the following definition. Definition 2.2.30. The Conley-Zehnder index of a regular path A :

[0, 1] → Sp(2n) is defined as ind CZ (A) = 1 2 sgn Γ(A, 0) + t * -crossing sgn Γ(A, t * ).
Here sgn Γ(A, t) = sgn S(t) denotes the signature of a symmetric form, i.e. the difference between the number of positive and negative eigenvalues.

Example 2.2.31. Let a ∈ R \ 2πZ. Identify R 2n ∼ = C n , z j = x j + iy j and define A : [0, 1] → Sp(2n) by A(t)v = e ait v, for every v ∈ R 2n .
We see that ker(A(t) -1) = 0 when at ∈ 2πZ and hence the crossings of A are

2π a Z ∩ [0, 1]. For every crossing t * ∈ 2π a Z ∩ [0, 1] we have that A(t * ) = 1 and hence ker(A(t * ) -1) = R 2n . Since S(t * ) = -J 0 Ȧ(t * )A -1 (t * ) and Ȧ(t * ) = a • J 0 A(t * ), it follows that S(t * ) = a • 1. Thus, for every crossing t * it holds sgn Γ(A, t * ) = sgn(a • 1) = 2n • sign(a).

This finally gives us ind

CZ (A) = sign(a) n + 2n |a| 2π ,
where |a| 2π denotes the largest integer not greater than |a| 2π . Example 2.2.32. Previous example naturally appears when considering the following autonomous Hamiltonian H : R 2n → R :

H(z) = a • z 2 , a ∈ R \ πZ.

By definition, the Hamiltonian vector field

X H is computed from ω 0 (X H , •) = -dH to be X H (x, y) = 2a -y ∂ ∂x + x ∂ ∂y .
In complex coordinates X H (z) = 2aiz and the Hamiltonian flow of H is given by

φ H t (z) = e 2ait z.
The origin is a critical point of H and hence also a fixed point of φ H t . By identifying

T 0 R 2n ∼ = R 2n we obtain dφ H t (0) : R 2n → R 2n , dφ H t (0)v = e 2ait v.
The previous example gives us

ind CZ (dφ H t (0)) = sign(a) n + 2n |a| π . Now, if |a| < π it follows that ind CZ (dφ H t (0)) = n • sign(a) = n -ind(0),
where ind(0) denotes the Morse index of 0 as a critical point of H. 1) and det(A(1) -1) = det(B(1) -1) = 0. One may show that if A and B are homotopic relative to the endpoints then ind CZ (A) = ind CZ (B). Moreover, every path 1) -1) = 0 is homotopic relative to the endpoints to a regular path and hence the definition of the Conley-Zehnder index extends to all such paths. This and many other properties of the Conley-Zehnder index, as well as generalizations and relations to other indices (such as the Maslov index) are discussed in detail in [START_REF] Conley | The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol[END_REF][START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF][START_REF] Robbin | The Maslov index for paths[END_REF]. Here, we only state one such property in the lemma that follows, in order to clarify our definition of grading in Floer homology in the next subsection. Lemma 2.2.33. Let (M, ω) be a closed symplectic manifold and H : M → R a C 2 -small function, which is non-degenerate as a Hamiltonian (this implies that H is Morse). For every z ∈ Crit(H) it holds

Let A, B : [0, 1] → Sp(2n) be two regular paths, A(0) = B(0) = 1, A(1) = B(
C : [0, 1] → Sp(2n) s.t. C(0) = 1, det(C(
ind(z) = n -ind CZ (dφ H t (z)),
where ind(z) denotes the Morse index of z and ind CZ is computed with respect to a symplectic trivialization

(T z M, ω) → (R 2n , ω 0 ).
Example 2.2.32 is a special case of this lemma. Indeed, the statement of the lemma clearly localizes to neighborhoods of critical points, i.e. the global structure of M plays no role in the lemma.

Floer homology in the symplectically aspherical case

We will now present the construction of Floer homology with Z 2 -coefficients on a closed symplectically aspherical manifold. Even though this is the simplest case, the details of the construction are still technically involved and greatly surpass the scope of this thesis. Our treatment will focus on describing the structure and properties of Floer homology, having persistence perspective in mind. Hence, most of the proofs will be omitted and some statements will be taken as "black boxes". We refer the reader to [START_REF] Mcduff | J-holomorphic curves and symplectic topology[END_REF][START_REF] Audin | Morse theory and Floer homology[END_REF][START_REF] Salamon | Lectures on Floer homology. Symplectic geometry and topology[END_REF] for detailed treatments of the theory. Expositions more similar to ours and well suited to our context can be found in [START_REF] Polterovich | Function theory on symplectic manifolds[END_REF][START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF].

Let (M, ω) be a 2n-dimensional, closed, symplectically apsherical manifold and H : M × [0, 1] → R a time-dependent Hamiltonian. We will assume that H t+1 = H t , i.e. H : M × S 1 → R, which is inessential due to Remark 2.2.20. As before, denote by φ H t the Hamiltonian flow and by φ H 1 the Hamiltonian diffeomorphism generated by H. Periodic orbits7 of the Hamiltonian flow 

z : S 1 → M, ż(t) = φ H t (z(0)), correspond bijectively to fixed points of φ H 1 via z → z(0). We call a periodic orbit z and a fixed point z(0) non-degenerate if dφ H 1 : T z(0) M → T z(0) M does not
-degenerate if graph(φ H 1 ) ⊂ M × M is transversal to the diagonal ∆ ⊂ M × M.
From compactness of M it follows that the Hamiltonian flow of a non-degenerate H has only finitely many periodic orbits.

Denote by L [pt]

M the space of contractible loops in M and define the action functional

A H : L [pt] M → R, A H (z) = 1 0 H t (z(t))dt - D 2 z * ω, where z : D 2 → M, z| S 1 = z is a capping disc of z. Since ω| π 2 (M ) = 0 it
follows that the value of A H (z) does not depend on the choice of a capping disc. Action functional plays the role of a Morse function in our construction. Let us formally calculate the differential of A H . A curve u : (-ε, ε) → L [pt] M can be thought of as a map u : (-ε, ε) × S 1 → M. We always denote the parameter of u as a path in L [pt] M by s, s ∈ (-ε, ε) and the loop parameter by t, t ∈ S 1 . Now, if z(t) = u(0, t), we have that ∂u ∂s (0, t) ∈ T z(t) M is a vector field along z and we identify T z (L [pt] M ) with the space of vector fields along z. Let ξ ∈ T z (L [pt] M ) and take u such that ∂u ∂s (0, t) = ξ(t). We compute

dA H (z)(ξ) = d ds s=0 A H (u) = 1 0 d ds s=0 H t (u(s, t))dt - D 2 d ds s=0 ū * s ω,
where ūs denotes a capping disc of u(s, •). A short computation using Cartan's formula and Stokes' theorem shows that

D 2 d ds s=0 ū * s ω = 1 0 ω(ξ(t), ż(t))dt.
From the definition of the Hamiltonian vector field X H , we get

dA H (z)(ξ) = 1 0 ω(ξ(t), X H (z(t)) -ż(t))dt. (2.7)
Since ω is non-degenerate, it follows from (2.7) that dA H (z) = 0 if and only if ż(t) = X H (z(t)). In other words, critical points of A H are periodic orbits of the flow of H and we denote the set of these orbits by Crit(A H ). As in the Morse case, elements of Crit(A H ) will be generators of the Floer chain complex. Let us now define the analogue of the Morse index in Floer theory.

Let z ∈ Crit(A H ) and let z :

D 2 → M be a capping disc of z. Let Ψ : (z * T M, z * ω) → D 2 × (R 2n , ω 0 ),
be a symplectic trivialization, which exists since D 2 is contractible. Denoting by Ψ t the restriction of Ψ to T z(t) M, we obtain a path of symplectic matrices

A : [0, 1] → Sp(2n), A(t) = Ψ t • dφ H t • Ψ -1 0 .
It follows from properties of the Conley-Zehnder index that ind CZ (A) does not depend on the choice of a trivialization Ψ. Hence, we may define ind CZ (z) as well as

ind(z) = n -ind CZ (z).
To see that ind(z) only depends on the orbit z and not on the capping, we use the following relation between the Conley-Zehnder index and the first Chern class, see [START_REF] Mcduff | Introduction to symplectic topology[END_REF]. Let z and z be two discs capping z. It holds

ind CZ (z) -ind CZ (z ) = 2c 1 (z#(-z )), (2.8) 
where # denotes gluing of discs along the boundary. Since our manifold is symplectically aspherical, c 1 (z#(-z )) = 0 and we may define ind CZ (z) as well as ind(z) = n -ind CZ (z). Now, we wish to consider negative gradient flow lines of A H . To this end, let {J t } t∈S 1 be an S 1 -family of almost complex structures compatible with ω.

For z ∈ L [pt] M define a bilinear form on T z L [pt] M by ξ(t), η(t) = 1 0 ω(ξ(t), J t η(t))dt, ξ, η ∈ T z L [pt] M.
This bilinear form will play the role of a Riemannian metric on

L [pt] M. The gradient of A H is defined by dA H (z)(ξ) = ξ, ∇A H
and using (2.7) we obtain

∇A H (z(t)) = J t ( ż(t) -X H (z(t))).
(2.9)

By looking at u : R → L [pt] M as a map u : R × S 1 → M , the negative gradient flow equation of A H becomes the following first-order PDE ∂u ∂s

+ J t ∂u ∂t -X H (u(s, t)) = 0. (2.10)
This equation is called Floer equation. In general, the flow of Floer equation on L [pt] M fails to be defined even for short times, see [START_REF] Polterovich | Function theory on symplectic manifolds[END_REF] for an explicit example. This prevents us from directly applying Morse-theoretic techniques to A H . However, a revolutionary idea, due to Floer, is to consider the solutions of the following boundary value problem

u : R × S 1 → M , u(-∞, t) = z -(t), u(+∞, t) = z + (t), u satisfies (2.10), (2.11)
where z -, z + ∈ Crit(A H ) and u(±∞, •) denotes the uniform limit. Define the space of Floer trajectories

M(z -, z + ) = {u : R × S 1 → M | u solves (2.11)}.
The following theorem is one of the first major results of Floer theory.

Theorem 2.2.34. Let (M, ω) be a closed, symplectically aspherical manifold and

H : M × S 1 → R a non-degenerate Hamiltonian. For a generic choice of {J t ∈ J (M, ω)} t∈S 1 the following holds. For any z -, z + ∈ Crit(A H ) the space M(z -, z + ) has a structure of a smooth manifold of dimension ind(z -) -ind(z + ).
Remark 2.2.35. Let us comment on our use of the word "generic" and the definition of a smooth manifold structure on M(z -, z + ). Both of these come from the use of Sard-Smale transversality theorem for Fredholm maps of Banach manifolds. Namely, M(z -, z + ) arise as inverse images of zero 8 under the map

u → ∂u ∂s + J t ∂u ∂t -X H (u(s, t)) ,
while J (M, ω) serves as a space of parameters used to achieve transversality.

Note that if u ∈ M(z -, z + ) and s 0 ∈ R then s 0 • u = u(s 0 + •, •) also belongs to M(z -, z + ) since Floer equation is invariant under translations of the s-parameter. If z -= z + , these translations define a free R-action on M(z -, z + ) and we denote by M(z -, z + ) = M(z -, z + )/R. This space is a smooth manifold of dimension ind(z -)ind(z + ) -1. Following the analogy with the Morse case, the differential should count (modulo two) the elements of M(z -, z + ) for ind(z -) = ind(z + ) + 1. In order for this to make sense, M(z -, z + ) should be a finite set. Since it is a 0-dimensional manifold, this is equivalent to it being compact. This turns out to be true, see Remark 2.2.36. We are now in a position to define Floer homology.

For k ∈ Z denote by Crit k (A H ) = {z ∈ Crit(A H ) | ind(z) = k} and by CF k (H, J) = Span Z 2 (Crit k (A H )). Define the differential ∂ : CF k (H, J) → CF k-1 (H, J) as a Z 2 -linear map whose value on a generator z -∈ Crit k (A H ) is given by ∂(z -) = z + ∈Crit k-1 (A H ) # 2 M(z -, z + )z + ,
8 More precisely of the zero section of a certain Banach bundle.

where # 2 denotes cardinality modulo 2. One may prove that ∂ 2 = 0, see Remark 2.2.36, and hence (CF (H, J), ∂) is a chain complex over Z 2 , called Floer chain complex. The homology of this complex is called Floer homology of (H, J) and is denoted by HF * (H, J). A generic pair (H, J) for which the presented construction of HF * (H, J) works is called regular. It turns out that HF * (H, J) do not depend on a choice of a regular pair (H, J). Moreover, it holds

HF * (H, J) ∼ = H * (M ; Z 2 ),
where H * denotes singular homology. Let us sketch the construction of these isomorphisms.

Isomorphisms between Floer homologies of different pairs (H, J) are constructed as follows. Let F, G : M ×S 1 → R be two non-degenerate Hamiltonians and J (1) , J (2) : S 1 → J (M, ω) such that pairs (F, J (1) ), (G, J (2) ) are regular. Let H : R×S 1 ×M → R and J : R × S 1 → J (M, ω) be homotopies between F, G and J (1) , J (2) respectively, i.e.

H(s, t, x) = F (t, x), for s ≤ -1 G(t, x), for s ≥ 1 J s,t = J (1) t , for s ≤ -1 J (2) t , for s ≥ 1 .
Consider the parametric version of the Floer equation given as follows

∂u ∂s + J s,t ∂u ∂t -X Hs (u(s, t)) = 0. (2.12) Let z -∈ Crit(A F ), z + ∈ Crit(A G
) and consider the following boundary value problem

u : R × S 1 → M , u(-∞, t) = z -(t), u(+∞, t) = z + (t), u satisfies (2.

12). (2.13)

Similarly to Theorem 2.2.34, for a generic homotopy (H, J) each of the spaces

M par (z -, z + ) = {u : R × S 1 → M | u solves (2.13)}
can be given a structure of a smooth manifold of dimension ind(z -) -ind(z + ). Since (2.12) is not invariant under the translations of the s-parameter, there is no R-action on M par as in the case of M. However, if we take ind(z -) = ind(z + ), M par (z -, z + ) is compact, i.e. it consists of finitely many points. Thus, for every k ∈ Z, we may define a Z 2 -linear map

C chain : CF k (F, J (1) ) → CF k (G, J (2) ) given on z -∈ Crit k (A F ) by C chain (z -) = z + ∈Crit k (A G ) # 2 Mpar (z -, z + )z + .
This is a chain map and hence it induces a map on HF , called continuation map, which we denote by C(F, G). Continuation maps do not depend on a generic choice of a homotopy (H, J), but rather on the regular pairs (F, J (1) ), (G, J (2) ), see Remark 2.2.36. Now, if (F, J (1) ) = (G, J (2) ) then C(F, G) = 1, which can be proven by taking a constant homotopy. Moreover, for any three regular pairs (H (i) , J (i) ) i=1,2,3 the following diagram commutes HF * (H (1) , J (1) )

C(H (1) ,H (2) )

) )

C(H (1) ,H (3) )

/ / HF * (H (3) , J (3) )

HF * (H (2) , J (2) )

C(H (2) ,H (3) ) 5 5

(2.14)

By taking (H (1) , J (1) ) = (H (3) , J (3) ) we conclude that continuation maps are isomorphisms and hence Floer homologies of different regular pairs are isomorphic. In other words, we may define HF * (M, ω).

Finally, to see that HF * (M, ω) ∼ = H * (M ; Z 2 ) one should choose H to be a C 2small function and J t ≡ J not dependent on t. One proves that in this case the only fixed points of φ H 1 are critical points of H, non-degeneracy of H as a Hamiltonian is equivalent to it being Morse and the above defined index coincides with the Morse index (see Lemma 2.2.33). Now, CF * (H, J) essentially degenerates into the Morse complex CM * (H, ω(•, J•)) and since Morse homology is isomorphic to singular homology, the claim follows. The precise statements and details of the proof can be found in [START_REF] Audin | Morse theory and Floer homology[END_REF].

Remark 2.2.36. Statements that M(z -, z + ), Mpar (z -, z + ) are compact when they are 0-dimensional, that ∂ 2 = 0, as well as that C chain is a chain map and that C is independent of the choice of a homotopy are similar in nature. Namely, their proofs follow from analysing compactifications of spaces of Floer trajectories such as M and M par (we already used this idea to prove that ∂ 2 = 0 in the Morse case, see the proof of Theorem 2.2.4). Assuming that (M, ω) is symplectically aspherical, the compactifications appearing in the proofs of these statements can be given structures of manifolds with boundaries. If non-empty, their boundaries consist of the so-called "broken Floer trajectories". The main technical ingredients used to construct these compactifications are Gromov's compactness theorem and Floer's gluing technique. In general, the boundary of a space of Floer trajectories might be much more complicated due to the possible appearance of pseudo-holomorphic bubbles. This is excluded in our case by the asphericity assumption. For a detailed discussion, we refer the reader to [START_REF] Mcduff | J-holomorphic curves and symplectic topology[END_REF] and references therein.

Remark 2.2.37. The construction of Floer homology described here can be applied to some non-compact symplectically aspherical manifolds, such as cotangent bundles. In this case, we assume that, outside of a compact set, H is linear and J has a particularly simple form. This guarantees that all Hamiltonian periodic orbits, as well as all Floer trajectories remain inside a compact set and the construction of HF * follows as in the closed case. We should note that in this setup HF * (H, J) depends on the slope of H at infinity. In order to define invariants independent of (H, J) one usually takes a limit of HF * over a certain set of Hamiltonians. An invariant defined in this way, called symplectic homology, plays a crucial role in our work [START_REF] Stojisavljević | Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics[END_REF], presented in Chapter 4. In Chapter 4, we elaborate on the definition of Floer homology of cotangent bundles and describe construction and properties of (filtered) symplectic homology.

Morse and Floer persistence modules

In this subsection we will define Morse and Floer persistence modules and prove stability of respective barcodes with respect to d C 0 and Hofer's metric. Let us start by recalling the example of a persistence module considered in Section 2.1.1. Let N be a closed manifold and f : N → R a Morse function. For each k ∈ Z we defined a persistence module V k (f ) as

V t k (f ) = H k ({f < t}; K), π s,t induced by inclusions {f < s} ⊂ {f < t} for s ≤ t.
We can give an alternative definition of V t k (f ), using the Morse chain complex of f , as follows. Let K = Z 2 and let g be a Riemannian metric such that (f, g) is a regular pair. For t ∈ R, define the filtered Morse complex in degree k

CM t k (f, g) = Span Z 2 ({x ∈ Crit k (f ) | f (x) < t}).
Now, notice that f decreases along the negative gradient flow lines. Indeed, if x, y ∈ Crit(f ), γ ∈ M(x, y), we have that

d dt (f (γ(t))) = df (γ(t))( γ(t)) = -∇f (γ(t)) 2 g ≤ 0,
which after integration yields

f (x) -f (y) = +∞ -∞ ∇f (γ(t)) 2 g dt ≤ 0. (2.15)
This implies that ∂ maps CM t k (f, g) to CM t k-1 (f, g) and we define filtered Morse homology HM t * (f, g) as homology of the chain complex (CM t * (f, g), ∂). Notice that for s ≤ t it holds CM s * (f, g) ⊂ CM t * (f, g) and these inclusion induce maps on homology

π HM s,t : HM s * (f, g) → HM t * (f, g).
Together with these maps filtered Morse homology is a persistence module called Morse persistence module of (f, g). It is a standard result of Morse theory that (V k (f ), π) and (HM k (f, g), π HM ) are isomorphic persistence modules for every degree k ∈ Z. Thus, Theorem 2.1.17 implies that

d bottle (B(HM k (f 1 , g 1 )), B(HM k (f 2 , g 2 ))) ≤ d C 0 (f 1 , f 2 ),
for any two regular pairs (f 1 , g 1 ), (f 2 , g 2 ) and any degree k.

Remark 2.2.38. From the definition of Morse persistence module it immediately follows that the endpoints of bars in B(HM * (f, g)) are equal to certain critical values of f. Since HM * (f, g) ∼ = V * (f ), we know from Lemma 2.1.10 that in fact every critical value appears as an endpoint of a bar. One can also prove this fact by applying the same arguments as in the proof of Lemma 2.1.10 to the Morse chain complex, without relaying on an isomorphism with V * (f ).

The construction of Morse persistence module translates to Floer homology in a straightforward manner. Let (M, ω) be a closed, symplectically aspherical manifold, H : M × S 1 → R a non-degenerate Hamiltonian and {J t } t∈S 1 a family of compatible almost complex structure such that (H, J) is regular. For k ∈ Z, t ∈ R define filtered Floer complex in degree k

CF t k (H, J) = Span Z 2 ({z ∈ Crit k (A H ) | A H (z) < t}).
A computation similar to the one in the Morse case shows that for z -, z

+ ∈ Crit(A H ), u ∈ M(z -, z + ), it holds A H (z -) -A H (z + ) = +∞ -∞ 1 0 ∂u ∂s (s, t) 2 Jt dtds, (2.16) 
where • Jt denotes the norm induced by the metric ω(•, J t •). Again, as in the Morse case, (2.16) implies that

∂ : CF t k (H, J) → CF t k-1 (H, J),
and we define filtered Floer homology HF t * (H, J) as the homology of the chain complex (CF t * (H, J), ∂). Inclusions CF s * (H, J) ⊂ CF t * (H, J) for s ≤ t induce maps on homology π s,t : HF s * (H, J) → HF t * (H, J).

Taking these maps as structure maps we obtain Floer persistence module of (H, J), (HF * (H, J), π).

Remark 2.2.39. As in the Morse case, one readily sees that the endpoints of bars in B(HF * (H, J)) are equal to A H (z) for some z ∈ Crit(A H ). Moreover, by adapting, in a straightforward manner, the proof of Lemma 2.1.10 one proves an analogous statement for Floer persistence modules.

Let us now focus on proving the stability of Floer persistence modules with respect to Hofer's metric. Recall from Subsection 2.2.3 that for two Hamiltonians F, G :

M × S 1 → R E(F -G) = 1 0 Å max x∈M (F t (x) -G t (x)) -min x∈M (F t (x) -G t (x)) ã dt.
and that Hofer's metric between f = φ F 1 and g = φ G 1 is given by

d(f, g) = inf E(F -G),
where infimum runs over all Hamiltonians F, G which generate f, g. Note that adding a constant c ∈ R to the Hamiltonian F does not change the flow φ F t nor the value of E(F -G). However, the action functional A F shifts by c, which results in a shift by c of the Floer persistence module. In order to deal with this ambiguity, we will consider normalized Hamiltonians. Recall from Subsection 2.2.3 that a Hamiltonian H is called normalized if M H t ω ∧n = 0 for all t ∈ S 1 . In order to prove stability of barcodes with respect to d, we will need the following lemma, which is a parametric version of (2.16). It's proof is similar to the proofs of (2.15) and (2.16).

Lemma 2.2.40. Let (F, J (1) ), (G, J (2) ) be two regular pair and (H, J) a homotopy between them. For

z -∈ Crit(A F ), z + ∈ Crit(A G ) and u ∈ M par (z -, z + ) it holds A F (z -) -A G (z + ) = +∞ -∞ 1 0 ∂u ∂s (s, t) 2 Jt dtds - +∞ -∞ 1 0 ∂H ∂s (u(s, t))dtds.
To prove stability, we use continuation maps as interleavings between Floer persistence modules. Lemma 2.2.40 gives an estimate of the size of such an interleaving. More precisely, we have two following corollary.

Corollary 2.2.41. Let F and G be two non-degenerate, normalized Hamiltonians and J (1) , J (2) such that (F, J (1) ), (G, J (2) ) are regular. For every k ∈ Z, Floer persistence modules HF k (F, J (1) ) and HF k (G, J (2) ) are E(F -G)-interleaved.

Proof. Since +∞ -∞ 1 0 ∂u ∂s (s, t) 2 Jt
≥ 0, Lemma 2.2.40 implies that for any homotopy (H, J) between (F, J (1) ) and (G, J (2) ), z -∈ Crit(A F ), z + ∈ Crit(A G ) and u ∈ M par (z -, z + ), it holds

A G (z + ) ≤ A F (z -) + +∞ -∞ 1 0 ∂H ∂s (u(s, t))dtds.
(2.17)

Let β : R → [0, 1] be a smooth function such that β| (-∞,-1] ≡ 0, β| [1.+∞) ≡ 1 and β is increasing on [-1, 1]. Now consider a homotopy H s,t (x) = (1 -β(s))F t (x) + β(s)G t (x).
We have that

∂H ∂s (x) = β (s)(G t (x)-F t (x)) ≤ β (s) max x∈M (G t (x)-F t (x)) = -β (s) min x∈M (F t (x)-G t (x)),
which together with (2.17) implies

A G (z + ) ≤ A F (z -) - 1 0 min x∈M (F t (x) -G t (x))dt. (2.18)
Since F and G are normalized we have that max x∈M (G t (x) -F t (x)) ≥ 0, which together with (2.18) gives us

A G (z + ) ≤ A F (z -) + E(F -G).
Now, as in the case of continuation maps, after choosing a generic J, one defines for every t ∈ R a map

C chain : CF t * (F, J (1) ) → CF t+E(F -G) * (H, J (2) )
by counting, modulo two, the solutions of the equation (2.12). Adapting the arguments in the definition of continuation maps to the filtered setting yields

C(F, G) : HF t * (F, J (1) ) → HF t+E(F -G) *
(H, J (2) ).

Since C chain clearly commutes with inclusions of subcomplexes CF s ⊂ CF t for s ≤ t, it follows that C(F, G) is a morphism of the following persistence modules

C(F, G) : HF * (F, J (1) ) → HF * (H, J (2) )[E(F -G)].
Similarly we define

C(G, F ) : HF * (G, J (2) ) → HF * (F, J (1) )[E(F -G)].
A filtered version of the diagram (2.14) implies that these maps define an E(F -G)interleaving which finishes the proof.

A priori, Floer persistence module depends on a choice of a regular pair (F, J (1) ). However, one might prove that if F and G generate the same Hamiltonian diffeomorphism φ, φ = φ F 1 = φ G 1 , then Floer persistence modules HF * (F, J (1) ) and HF * (G, J (2) ) are isomorphic. This is a non-trivial fact which relies on the assumption that (M, ω) is symplectically apsherical, see a discussion in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. In other words, if (M, ω) is a closed, symplectically aspherical manifold and φ ∈ Ham(M, ω) a Hamiltonian diffeomorphism whose fixed points are non-degenerate, we may define Floer persistence module of φ, denoted by HF * (φ). The following theorem was proven in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF].

Theorem 2.2.42. Let (M, ω) be a closed, symplectically aspherical manifold and φ, ψ ∈ Ham(M, ω) such that all their fixed points are non-degenerate. Then for every k ∈ Z it holds

d bottle (B(HF k (φ)), B(HF k (ψ))) ≤ d(φ, ψ).
Proof. It follows from Corollary 2.2.41 that for every F and G such that

φ = φ F 1 , ψ = φ G 1 it holds d inter (HF k (φ), HF k (ψ)) ≤ E(F -G).
After taking the infimum over F and G we get that

d inter (HF k (φ), HF k (ψ)) ≤ d(φ, ψ).
Now, the isometry theorem, Theorem It is also possible to extend the definition of HF t * (H, J), t ∈ R to all Hamiltonians H via a limit procedure, see a discussion in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. However, the object obtained in this way is not necessarily a persistence module in the sense of Definition 2.1.1.

Remark 2.2.44. Instead of relaying on an isomorphism with V * (f ), we could also prove stability of Morse persistence modules with respect to C 0 -distance using the same method we used for Floer persistence modules, i.e. via continuation maps.

Remark 2.2.45. In this chapter we only considered Floer persistence modules defined using contractible loops in M. One may define, in an analogous way, Floer chain complex generated by periodic orbits in a fixed, not necessarily trivial, free homotopy class α. Using this chain complex we may again define the Floer persistence module of (H, J) in class α, denoted by HF t * (H, J) α , and stability given by Theorem 2.2.42 continues to hold, see [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] for details. Unfiltered Floer homology in a non-trivial class α is equal to zero, as can be seen by taking a C 2 -small autonomous Morse Hamiltonian which has no non-constant periodic orbits.

Floer theory in the monotone case

As the last piece of background we explain how to extend the definitions of Floer homology and Floer persistence module to monotone symplectic manifolds.

Recall that a symplectic manifold is called monotone if ω| π 2 (M ) = κc 1 | π 2 (M ) for some κ > 0. Let (M, ω) be a closed, monotone symplectic manifold, which we assume not to be symplectically aspherical 9 , i.e. c 1 | π 2 (M ) = 0. The first issue we run into when defining Floer homology in the monotone case is that the value of the action functional

A H (z) = 1 0 H t (z(t))dt - D 2
z * ω depends on the capping disc z. Thus, in order to define A H we need to keep track of cappings of orbits. To this end, denote by π2 (M ) := π 2 (M )/ ker(ω) = π 2 (M )/ ker(c 1 ), the last equality following from monotonicity. Let ‡

L [pt] M = {(z, u) | z ∈ L [pt] M, u : D 2 → M, u| ∂D 2 = z}/ ∼
where ∼ is the equivalence relation given by 9 We exclude symplectically aspherical manifolds in order to avoid ambiguity in some definitions and statements. Symplectically aspherical case is simpler and has been discussed in Subsections 2.2.7 and 2.2.8.

(z 1 , u 1 ) ∼ (z 2 , u 2 ) ⇔ z 1 = z 2 , [u 1 #(-u 2 )] = 0 ∈ π2 (M ),
# denoting gluing of discs along the boundary. Now, we may define

A H : ‡ L [pt] M → R by A H ([z, u]) = 1 0 H t (z(t))dt - D 2 u * ω.
By the definition of π2 (M ) the value of A H only depends on the equivalence class [z, u] of (z, u). The same calculation as in the symplectically aspherical case shows that Crit(A

H ) = {[z, u] | z is a periodic orbit of φ H t }.
Assuming H is non-degenerate, the definition of index of an element of Crit(A H ) directly carries over to the monotone setting. Indeed, for [z, u] ∈ Crit(A H ) we may compute the Conley-Zehnder index of dφ H t (z(0)) using any symplectic trivialization of (u * T M, u * ω). The result will only depend on the equivalence class of [z, u] due to the relation between the first Chern class and the Conley-Zehnder index given by formula (2.8). As before, we define

ind([z, u]) = n -ind CZ ([z, u]).
Denote by Crit k (A H ) ⊂ Crit(A H ) the subset of critical points of index k. We claim that this set is finite. Indeed, the non-degeneracy assumption on H implies that there are only finitely many 1-periodic orbits

z of φ H t . Furthermore, if [z, u 1 ] = [z, u 2 ] we have that c 1 (u 1 #(-u 2 )) = 0 and formula (2.8) implies that ind([z, u 1 ]) = ind([z, u 2 ]). Thus, for a fixed k, to each periodic orbit z corresponds at most one class [z, u] ∈ Crit(A H ) such that ind([z, u]) = k.
We modify the definition of the space of Floer trajectories M(z -, z + ) as follows

M([z -, u -], [z + , u + ]) = {u : R × S 1 → M | u solves (2.11), [u -#u#(-u + )] = 0}, where [u -#u#(-u + )] = 0 ∈ π2 (M ). The analogue of Theorem 2.2.34 holds, i.e. M([z -, u -], [z + , u + ]) is a smooth manifold of dimension ind([z -, u -]) -ind([z + , u + ])
for a (generic) regular pair (H, J). The space M([z -, u -], [z + , u + ]) is defined as in the symplectically aspherical case and satisfies the same properties. The rest of the construction is analogous to the one in the aspherical case. Namely, we define for k ∈ Z the Floer chain complex in degree k as

CF k (H, J) = Span Z 2 (Crit k (A H )). Since Crit k (A H ) is finite, this is a finite-dimensional Z 2 -vector space. As before, the differential ∂ : CF k (H, J) → CF k-1 (H, J)
is a Z 2 -linear map given by

∂(x) = y∈Crit k-1 (A H ) # 2 M(x, y)y, for x = [z, u] ∈ Crit k (A H ).
It again follows that ∂ 2 = 0 and we define Floer homology HF * (H, J) as the homology of the Floer chain complex. The theory of continuation maps verbatim translates to the monotone case by modifying the definition of M par in the same way we modified the definition of M. In other words, we may define HF * (M, ω).

Remark 2.2.46. The arguments used while constructing compactifications of spaces of trajectories (see Remark 2.2.36) are slightly different in the monotone and in the symplectically aspherical case. Namely, the appearance of pseudo-holomorphic bubbles in the monotone case is excluded via index considerations.

In the symplectically aspherical case each periodic orbit z gave rise to exactly one generator of CF * (H, J) and, since there were finitely many of them, CF * (H, J) was finite dimensional. In the monotone case, each periodic orbit gives rise to a countable set of generators, obtained from different cappings of the orbit, which all have different indices. Thus, while for each k ∈ Z, HF k (H, J) is finite dimensional, there might be infinitely many k for which HF k (H, J) = 0. This is indeed the case and moreover HF * (H, J) are periodic in degree. Namely, if

c 1 (π 2 (M )) = c M • Z, c M > 0 being the minimal Chern number, we claim that for every k ∈ Z HF k (H, J) ∼ = HF k+2c M (H, J).
Let us explain the origin of this periodicity. Notice that π2 (M ) acts on the Floer chain complex as follows. For v :

S 2 → M , [v] ∈ π2 (M ) define [v] • [z, u] = [z, u#(-v)]
and extend this action to CF * (H, J) by Z 2 -linearity. Formula (2.8) implies that

ind([v] • [z, u]) = ind([z, u]) + 2c 1 ([v]).
(

2.19)

Now c 1 : π2 (M ) → c M •Z is by definition an isomorphism and we denote by Q ∈ π2 (M ) the generator such that c 1 (Q) = c M . It follows from (2.19) that, for every k ∈ Z, the action of Q is an isomorphism

Q : CF k (H, J) → CF k+2c M (H, J).
Moreover, for every x, y ∈ Crit(A H ), it holds M(x, y) = M(Q(x), Q(y)) and hence

Q • ∂ = ∂ • Q.
This implies that, for every k ∈ Z, Q induces an isomorphism of Floer homologies (which we denote again by Q):

Q : HF k (H, J) → HF k+2c M (H, J).
Now recall that in symplectically aspherical case HF * (H, J) was isomorphic to singular homology H * (M ; Z 2 ). In the monotone case Floer homology is isomorphic to another invariant, called quantum homology, which is defined as follows. Let

Λ Z 2 = ß i∈Z a i q i a i ∈ Z 2 , (∃i 0 ∈ N) a i = 0 for i ≥ i 0 ™ ,
be the Z 2 -vector space of Laurent series in a formal variable q with Z 2 -coefficients. One readily checks that Λ Z 2 is also a field with respect to usual addition and multiplication of power series, which we call the Novikov field. Quantum homology with Z 2 -coefficients is a finite-dimensional Λ Z 2 -vector space

QH(M ) = H(M ; Z) ⊗ Z 2 Λ Z 2 .
We may define grading on QH(M ) by declaring that deg q = 2c M . This gives us, for each k ∈ Z, a finite dimensional Z 2 -vector space QH k (M ). Moreover, multiplication by q defines an isomorphism

q• : QH k (M ) → QH k+2c M (M ).
On the other hand, by defining q 

• x = Q(x)
HF * (M, ω) ∼ = QH * (M, ω)
both as graded Z 2 -vector spaces and as Λ Z 2 -vector spaces.

Finally, we wish to say that by fixing a degree k, one defines Floer persistence module (HF k (H, J), π) in the same way as in the symplectically aspherical case. In contrast to the symplectically aspherical case, in the monotone case (HF k (H, J), π) depends on the class of the path [φ H t ] ∈ fi Ham(M, ω) in the universal cover of Ham(M, ω). The same proof as the proof of Theorem 2.2.42 shows that for every k ∈ Z it holds

d bottle (B(HF k ( φ)), B(HF k ( ψ))) ≤ d( φ, ψ)
where φ, ψ ∈ fi Ham(M, ω) and diffeomorphisms φ 1 , ψ 1 ∈ Ham(M, ω) are non-degenerate. The same remains true for Floer persistence modules in a non-trivial free homotopy class α, see Remark 2.2.45.
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Chapter 3

Persistence modules with operators in Morse and Floer theory

Introduction

In a recent paper [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] (extended in [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF]) it was observed that the arithmetical properties of barcodes are pertinent to such questions on Hofer's geometry as the study of the minimal Hofer's norm of a perturbation of a given Hamiltonian diffeomorphism necessary to make it autonomous, or more generally -to admit a root of order p ≥ 2. In this chapter, we introduce and discuss the notion of persistence modules with operators, which allows us to use operators of intersection with cycles in the ambient (quantum) homology to further control the multiplicities of bars in the barcode. This provides new results on Hofer's geometry, and can be shown to provide strictly new information, as compared with traditional persistent homology (including spectral invariants), about the C 0 -geometry of Morse functions.

Persistence modules with operators

As before, denote the C 0 -distance between two smooth functions f and g on a compact manifold by

d C 0 (f, g) = |f -g| C 0 = max x∈X |f (x) -g(x)|,
and Hofer's distance between Hamiltonians F t and G t , t ∈ [0, 1] on (M, ω) by

E(F -G) = 1 0 Å max x∈M (F t (x) -G t (x)) -min x∈M (F t (x) -G t (x)) ã dt.
Recall from Subsection 2.2.3 that the Hofer's metric on Ham(M, ω) is given by

d(f, g) = inf E(F -G),
where the infimum runs over all the F, G such that φ F 1 = f, φ G 1 = g. Similarly, Hofer's pseudo-metric on the universal cover fi Ham(M, ω) of Ham(M, ω) is defined as

d( f , g) = inf E(F -G),
where the infimum runs over all the F, G such that [{φ

F t }] = f , [{φ G t }] = g in fi Ham(M, ω).
As explained in Chapter 2, barcodes coming from Morse and Floer persistence modules are stable with respect to d C 0 , d and d. Stability of Floer barcodes with respect to d was a crucial property used in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF].

In this chapter we primarily investigate an additional structure on Morse and Floer persistence modules coming from the ambient homology. Our main observation is that the ambient homology acts on the persistence module by intersecting cycles in the sublevel sets of functions (and a similar picture holds in the Floer case). We consider this action as a particular case of the notion of a persistence module with an operator. Namely, we consider pairs (V, A) where A : V t → V t+c A is a persistence module morphism, as main objects of interest and define morphisms between these objects to be usual persistence module morphisms which commute with the corresponding operators. We may now define operator interleaving as an interleaving in this new category, i.e., an interleaving which commutes with the operators. The fact that (V, A) and (W, B) are c-operator interleaved will immediately imply that im A and im B (as well as ker A and ker B) are c-interleaved (see Section 3.2.3 for a discussion of persitence modules with operators).

In the Morse and the Floer case, fixing a (quantum) homology class a, we obtain an operator a * induced by intersection (or quantum) product. Continuation maps commute with this operator, hence constitute morphisms of persistence modules with operators and induce operator interleavings. Finally, they provide both im(a * ) and ker(a * ) for two functions f and g or two Hamiltonians F and G, with c-interleavings, for c = |f -g| C 0 or c = E(F -G) respectively. This means that we may bound these values from below by using barcodes associated to im(a * ) or ker(a * ). Following this line of reasoning, we show that there exists a pair f, g of Morse function on a manifold (even of dimension 2) such that all their spectral invariants, as well as their barcodes coincide, and yet the corresponding im(a * ) modules are at a positive (computable) interleaving distance c. We conclude that the two functions must be at C 0 -distance at least c (see Section 3.2.4 for an example).

Finally, we present an application to Hofer's geometry, by proving new cases of the conjecture that on any closed symplectic manifold and for any integer p ≥ 2, there exist Hamiltonian diffeomorphisms which are arbitrarily far away, in Hofer's metric, from having a root of order p. First results of this kind were obtained in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF], and were then extended to certain other cases in [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF] (for p a sufficiently large prime number). In our situation, the multiplication with classes in ambient homology allows to adjust multiplicities of certain long bars, the number theoretic properties of which are crucial to the argument, and allows to extend the class of p's for which the result holds, yielding Theorem 3.1.2 (see Section 3.1.2).

Hofer's distance to p-th powers

We will now introduce some of the notations used in the rest of the chapter and recall Theorem 1.2.2 from Section 1.2, see Theorem 3.1.2 below. We will also give concrete examples to which this result applies.

Let p ≥ 2 be any integer. As in Section 1.2, in this chapter we shall assume that the ground field K has characteristic which does not divide p, char(K) p, K contains all p-th roots of unity1 , and fixing a primitive p-th root of unity ζ p and an integer q, the equation x p -(ζ p ) q = 0 has no solutions in K unless p|q. An example of such a field is the splitting field Let (Σ, σ) be a closed oriented surface of genus at least 4 equipped with a volume form. In [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF], Polterovich and Shelukhin solved a special case of Conjecture 3.1.1, when M = Σ × N , N being a symplectically aspherical manifold, see Theorem 1.2.1. Theorem 1.2.2, announced in the introduction, covers some instances of Conjecture 3.1.1 not covered by Theorem 1.2.1. For completeness, we will now formulate Theorem 1.2.2 again, see Theorem 3.1.2 below. This theorem is the main result of this chapter.

Q p over Q of x p -1 ∈ Q[x] (see Lemma 3.2.17
Assume that N is a monotone symplectic manifold, fix an integer p ≥ 2 and denote by Λ K the field of Laurent series in a formal variable q with coefficients in K,

Λ K = ß i∈Z a i q i a i ∈ K, (∃i 0 ∈ N) a i = 0 for i ≥ i 0 ™ .
The quantum homology of N with K-coefficients is the vector space H * (N ; K) ⊗ K Λ K over Λ K , which we denote by QH(N ). Assuming that deg q = 2c N , where c N is the minimal Chern number of N , QH(N ) has a natural Z-grading, that is, we can define QH r (N ) for r ∈ Z, which will be vector spaces over the base field K. We also have that QH r+2c N (N ) ∼ = QH r (N ) for every r ∈ Z, where the isomorphism is given by multiplication by q. Let e ∈ QH(N ) be a homogeneous element and define a map where * denotes the quantum product. This map is a linear morphism between vector spaces over Λ K which restricts to a linear morphism between vector spaces over K after fixing the grading: To prove this result we describe the Floer theoretical setup that fits into our algebraic framework of equivariant persistence modules with operators, and then make a concrete computation in the case of the egg-beater flow, which yields the result. and by [N ] the fundamental class. These four classes form a basis of QH(N ) over Λ K and multiplication is completely described by the relations

A * B = P, A 2 = B 2 = q -1 [N ].
We calculate

(A + B) * A = (A + B) * B = P + q -1 [N ] ∈ QH 0 (N ),
as well as

(A + B) * [N ] = A + B ∈ QH 2 (N ), (A + B) * P = q -1 (A + B) ∈ QH -2 (N ),
and hence b 0

(A + B) = b 2 (A + B) = 1. This implies that powers p (Σ × N ) = +∞, for all p.
Note that in this example it is crucial that A + B is not invertible. Otherwise, multiplication would be an isomorphism of QH(N ) and all the Betti numbers would be equal to 2, so we would have to assume p ≥ 3.

Remark 3.1.6. A different extension of [121, Theorem 1.3], using different methods, was obtained recently by Zhang in [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF]. In the setup of that paper p is assumed to be a prime number. The result refers to a more general manifold, namely the product Σ × N , where N is any symplectic manifold (not necessarily monotone or aspherical) and gives a condition on p in terms of quantum Betti numbers for powers p (Σ × N ) to be infinite. The k-th quantum Betti number is defined as

qb k (N ) = s∈Z b k+2c N •s (N ),
where b i (N ) are classical Betti numbers. The main theorem of [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF] states that if

p qb p (N ) + 2qb 0 (N ) + qb -p (N ), then powers p (Σ × N ) = +∞.
One immediately sees that when N is monotone,

qb k (N ) = b k ([N ]
), thus in this case our theorem implies Zhang's result. The above examples of N = CP n and N = S 2 × S 2 show that our criterion covers some new cases of N and p, e.g., when p = 2.

Persistence modules 3.2.1 Conventions

In this chapter we will always work with persistence modules of finite type assuming conventions which guarantee that all bars in the barcode are of the form (a, b] or (a, +∞) for a, b ∈ R, a < b. Precisely, we require that our persistence modules (V, π) also satisfy 1) For all but a finite number of points r ∈ R, there is a neighbourhood U r such that π s,t are isomorphisms for all s < t with s, t ∈ U ;

2) There exists t -such that V t = 0 for t < t -;

3) For every t ∈ R there exists ε > 0 such that π s,t are isomorphisms for all t -ε < s ≤ t.

The category of all such persistence modules will be denoted by pmod and we will simply refer to them as persistence modules.

Künneth formula for persistence modules

As we mentioned before, pmod is an abelian category, and we wish to define a monoidal structure ⊗ and its derived functors in this category in a similar fashion to the situation which we have for Z modules (similar constructions, yet with different aims and applications, appeared in [START_REF] Carlsson | The theory of multidimensional persistence[END_REF][START_REF] Carlsson | The theory of multidimensional persistence[END_REF][START_REF] Curry | Sheaves, cosheaves and applications[END_REF][START_REF] Vongmasa | Generalized persistence modules and some of their invariants[END_REF][START_REF] Vongmasa | Exterior Critical Series of Persistence Modules[END_REF]). Let (V s , π V ) and (W t , π W ) be two persistence modules and define vector spaces

X r = t+s=r V s ⊗ W t , and Y r ⊂ X r for every r ∈ R,
given by

Y r = ≠ß (π V α,s 1 v α ) ⊗ (π W β,t 1 w β ) -(π V α,s 2 v α ) ⊗ (π W β,t 2 w β ) ™∑ ,
where S stands for vector space over K generated by the set S and indices s 1 , s 2 , t 1 , t 2 , α and β satisfy s

1 + t 1 = s 2 + t 2 = r, α ≤ min{s 1 , s 2 }, β ≤ min{t 1 , t 2 }. We may now define (V ⊗ W ) r = X r /Y r and maps π V ⊗ π W on X r induce maps π V ⊗W on V ⊗ W ,
which give this space the structure of persistence module. We call this module the tensor product of persistence modules (V, π V ) and (W, π W ). Another way to think of V ⊗ W is that (V ⊗ W ) r is the colimit in the category of (finite-dimensional, as is easy to see) vector spaces over our ground field of the diagram with objects {V s ⊗W t } s+t≤r and maps

π s 1 ,s 2 ⊗ π t 1 ,t 2 : V s 1 ⊗ W t 1 → V s 2 ⊗ W t 2 for s 1 ≤ s 2 and t 1 ≤ t 2 (we use the convention that π t,t = 1 V t ).
It is easy to see that we can also define the tensor product f ⊗ g :

V ⊗ W → V ⊗ W of persistence module morphisms f : V → V and g : W → W by setting f ⊗ g([v α ⊗ w β ]) = [f (v α ) ⊗ g(w β )].
Fixing a persistence module W we get a functor ⊗W : pmod → pmod which acts on objects and morphisms by

⊗W (V ) = V ⊗ W, ⊗ W (f ) = f ⊗ 1 W .
One can check that ⊗W is a right exact functor and in order to define its derived functors we need to construct a projective resolution of every persistence module V . In the simplest case when V is an interval module K (a,b] we have the following projective resolution of V of length two:

0 → K (b,+∞) → K (a,+∞) → K (a,b] → 0,
where arrows denote obvious maps. Note that we used the fact that K (a,+∞) is projective object for every a ∈ R. One may also check that in fact a persistence module V is projective if and only if its barcode contains no finite bars. Using this fact together with Theorem 2.1.8 we may construct a projective resolution of length two of every persistence module V in the same manner as we did for the interval module. Recall that (classical) derived functors of ⊗W applied to V are computed as homologies of the sequence

. . . → P 2 ⊗ W f 2 ⊗1 ---→ P 1 ⊗ W f 1 ⊗1 ---→ P 0 ⊗ W → 0, where . . . → P 2 f 2 -→ P 1 f 1 -→ P 0 f 0 -→ V → 0 is
a projective resolution of V . Since every persistence module has a projective resolution of length two, there is only one non-trivial derived functor of ⊗W , which we denote by T or(•, W ). Both ⊗ and T or are symmetric in the sense that V ⊗ W ∼ = W ⊗ V and T or(V, W ) ∼ = T or(W, V ) and it immediately follows that if either

V or W is projective T or(V, W ) = 0. Example 3.2.1. Let V = K (a,b] , W = K (c,d] be two interval persistence modules. It follows directly from the definition of ⊗ that V ⊗ W = K (a,b] ⊗ K (c,d] = K (a+c,min{a+d,b+c}] .
In order to compute T or(K (a,b] , K (c,d] ), let us take the following projective resolution of

K (a,b] : 0 → K (b,+∞) → K (a,+∞) → K (a,b] → 0.
After applying ⊗K (c,d] to this resolution we get 0 → K (b+c,b+d] → K (a+c,a+d] → K (a+c,min{a+d,b+c}] → 0, and hence after calculating homology we get

T or(K (a,b] , K (c,d] ) = K (max{a+d,b+c},b+d] .
Our goal is to establish a Künneth type formula for filtered homology groups using ⊗ and T or. Let us first recall the following definition.

Definition 3.2.2. We say that chain complex

(C k , ∂ k ), ∂ k : C k → C k-1 , k ∈ Z of finite-dimensional vector spaces over a field K is filtered by function ν if ν : C * → R ∪ {-∞} and 1) ν(x) = -∞ if and only if x = 0;
2) For all λ ∈ K, λ = 0 it holds ν(λx) = ν(x);

3) For all x, y ∈ C * it holds ν(x + y) ≤ max{ν(x), ν(y)};

4) For all x ∈ C * it holds ν(∂ * x) ≤ ν(x).
Remark 3.2.3. This definition of a chain complex filtered by a function is the special case of the definition of a Floer-type complex over the Novikov field Λ K,Γ given in [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF] in case of Γ = {0} and trivial valuation on K. 

C 1 0 = x , C 1 1 = y , ∂ 1 x = 0, ∂ 1 y = x, ν 1 (x) = a, ν 1 (y) = b, and 
C 2 0 = z , C 2 1 = w , ∂ 1 z = 0, ∂ 1 w = z, ν 2 (z) = c, ν 2 (w) = d. We have that H t 0 (C 1 ) = K t (a,b] , H t 0 (C 2 ) = K t (c,d] , H t * (C 1 ) = H t * (C 2 ) = 0 for * = 0. The product complex (C 1 ⊗ C 2 , ∂, ν = ν 1 + ν 2 ) (with usual product differential) is given by (C 1 ⊗ C 2 ) 0 = x ⊗ z , (C 1 ⊗ C 2 ) 1 = {x ⊗ w, y ⊗ z} , (C 1 ⊗ C 2 ) 2 = y ⊗ w , ∂(x ⊗ z) = 0, ∂(x ⊗ w) = ∂(y ⊗ z) = x ⊗ z, ∂(y ⊗ w) = x ⊗ w -y ⊗ z, with filtration ν(x ⊗ w) = a + d, ν(y ⊗ z) = b + c, ν(x ⊗ z) = a + c, ν(y ⊗ w) = b + d.
It readily follows that

H t 0 (C 1 ⊗ C 2 ) = K t (a+b,min{a+d,b+c}] = (H 0 (C 1 ) ⊗ H 0 (C 2 )) t , H t 1 (C 1 ⊗ C 2 ) = K t (max{a+d,b+c},b+d] = (T or(H 0 (C 1 ), H 0 (C 2 )) t , and 
H t 2 = 0.
Remark 3.2.5. Note that the T or functor naturally appears even in the simplest case of product of interval modules. As already mentioned, in this case torsion comes from finite bars in the barcode and hence is unavoidable even when we work with fields and vector spaces. This becomes more transparent if one adopts the definition of persistence modules as modules over the polynomial ring K[t] (see [START_REF] Zomorodian | Computing persistent homology[END_REF]). In this case the action of structure maps comes from multiplication by formal variable t and thus finite bars correspond to homology classes x for which t n • x = 0 for some n ∈ N, which are torsion elements. It seems likely that, by carefully analysing how the two approaches correspond to one another, one may obtain the results of this subsection from the universal coefficient theorem for complexes of modules over K[t].

We may now formulate the full statement. 2Proposition 3.2.6 (Künneth formula for filtered homology). Let (C 1 , ∂ 1 , ν 1 ) and (C 2 , ∂ 2 , ν 2 ) be two filtered chain complexes and let (C 1 ⊗ C 2 , ∂, ν = ν 1 + ν 2 ) be their product complex. Then for every k ∈ Z there exists a short exact sequence of persistence modules

0 → i+j=k (H i (C 1 ) ⊗ H j (C 2 )) t K -→ H t k (C 1 ⊗ C 2 ) → → i+j=k-1 (T or(H i (C 1 ), H j (C 2 ))) t → 0,
which splits. Here, K denotes the canonical map given by

K([ i λ i x i ] ⊗ [ j µ j y j ]) = [ i,j λ i µ j x i ⊗ y j ].
Sketch of the proof. We already saw in Example 3.2.4 that the statement holds when C 1 and C 2 have the following form

. . . → 0 → y → x → 0 → . . . .
It readily follows that the statement is also true if we allow C 1 and C 2 to be of the following form . . . → 0 → x → 0 → . . . . By Remark 3.2.3 we may look at our complexes as a special case of the definition given in [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF] and we may use the existence of singular value decomposition of operator ∂ proven there. This theorem essentially states that every filtered chain complex decomposes into a direct sum of the simple complexes which have one of the two forms described above. Now, the general case follows by reduction to the two simple ones and considerations about interval modules.

Remark 3.2.7. Essentially the same computation of the product of chain complexes as one presented in Example 3.2.4 and in the proof of Proposition 3.2.6 appears in [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF]. The context is, however, slightly different, since we eventually work on the level of homology, while the author of [START_REF] Zhang | p-cyclic persistent homology and Hofer distance[END_REF] works on chain level. One may also try to prove Proposition 3.2.6 directly, without referring to much more general machinery developed in [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF].

Persistence modules with operators

The methods we use, which are of independent interest, have to do with persistence modules endowed with an additional structure, and their equivariant version.

Consider the category pmod-op with objects pairs (V, A) with V ∈ pmod, and

A : V → V [c A ], for certain c A ∈ R, a morphism of persistence modules. Morphisms between (V, A) and (W, B), when c A = c B consist of morphisms F : V → W of persistence modules such that F [c A ] • A = B • F, and if c A = c B , only of the zero morpishm V → W.

Examples

Example 3.2.8. (Shift operator) For each δ ≥ 0, each V ∈ pmod comes with a canonical shift operator sh(δ) : V → V [δ]. For δ = 0, this is simply the identity operator. For δ > 0, sh(δ) t : V t → V t+δ is defined as the persistence structure map π t,t+δ of V. Hence (V, sh(δ)) is an object of pmod-op .

Example 3.2.9. (Z p -action) Fix an integer p ≥ 2. Given a Z p = Z/pZ-representation in pmod, the action of the cyclic generator 1 ∈ Z p gives an operator A : V → V, with c A = 0 (that satisfies A p = 1 V ).

Example 3.2.10. (Product map) Consider a Morse function f : X → R on a closed finite-dimensional manifold X of dimension dim X = m. It defines a Z-graded persistence module by V * (f ) s = H * ({f ≤ s}; K) = H * ({f < s}; K), for s a regular value of f. Let p s : H * (X) → H * (X, {f ≥ s}) = H * ({f ≤ s}, {f = s}) be the natural map. Taking a class a ∈ H r (X), the intersection product with p s (a), (p s (a)∩) : V * (f ) s → V * +r-m (f ) s defines an operator (a∩) : V * (f ) → V * (f ), with c a∩ = 0, that shifts the grading by r -m.

Key estimate

For two objects (V, A) and (W, B) of pmod-op with c A = c B , and δ ≥ 0, define an operator-δ-interleaving between them to be a δ-interleaving f :

V → W [δ], g : W → V [δ]
that commutes with the operators A and B, that is

f [c A ] • A = B[δ] • f, g[c B ] • B = A[δ] • g.
Define the operator-interleaving distance between them by

d op-inter ((V, A), (W, B)) = inf{δ ≥ 0| there exists a δ-operator-interleaving}. Proposition 3.2.11. For all (V, A), (W, B) in pmod-op with c A = c B , d inter (im(A), im(B)) ≤ d op-inter ((V, A), (W, B)). Put c := c A = c B .
The proof is an immediate diagram chase in the following diagram (and its analogue with f, g interchanged):

V t f - → W [δ] t g[δ] --→ V [2δ] t At↓ Bt[δ]↓ At[2δ]↓ V [c] t f [c] --→ W [c + δ] t g[c+δ] ---→ V [c + 2δ] t (3.1) 

Discussion

While Proposition 3.2.11 is elementary, it turns out to be useful already in the more basic examples.

Example 3.2.12. (Shift operator) Proposition 3.2.11 applied to the example of persistence shift maps, reduces to the following statement. If V, W are δ-interleaved, then V = im sh(c) V , W = im sh(c) W are δ-interleaved for every c ∈ R. The reason is that with respect to shift operators, operator-δ-interleaving is the same as δ-interleaving, so V, W being δ-interleaved implies that they are also operator-δinterleaved.

Example 3.2.13. (Intersection product) In Section 3.2.4 we give examples of two Morse functions f, g on a surface Σ 2 of genus 2 with identical barcodes, and identical spectral invariants, the images of whose persistence modules under the intersection product with a class in H 1 (Σ 2 ; K) are, however, at a positive interleaving distance c > 0. We conclude, by Proposition 3.2.11, that any two functions in the respective orbits of f, g under the identity component of the diffeomorphism group are at C 0 -distance c > 0. Indeed for such a diffeomorphism ψ ∈ Diff 0 (Σ 2 ), (V (f • ψ), a∩) and (V (f ), a∩) are isomorphic objects in pmod-op, and d op-inter ((V (f ), a∩), (V (g), a∩)) ≤ |f -g| C 0 .

Example of a Morse function on T 2 T 2

We present an example in Morse homology illustrating the effect of a product on the Floer persistence module which we will define later and we also justify claims of Example 3.2.13.

Adopting the setup of Example 2.1.3 and Example 3.2.10, to a Morse function f on a closed manifold X of dimension m we associate a persistence module (V t * (f ), π) by taking V t * (f ) = H * ({f < t}; K), the structure maps π s,t being induced by inclusion of sublevel sets. Alternatively, we may consider the Morse chain complex induced by the critical points whose critical value is less than t. Now, a ∈ H * (M ) acts on V t * (M ) by intersecting cycles (or by counting Y-shaped configurations of gradient flow lines in the Morse picture) and we get a map:

a∩ : V t * (f ) → V t * +deg a-m (f )
. Let Σ 2 be a surface of genus 2. We construct two Morse functions on Σ 2 which have same barcodes and same spectral invariants associated to every homology class, but their intersection barcodes with a fixed class differ by a finite bar. First, observe that Σ 2 = T 2 T 2 and hence

H 1 (Σ 2 ) ∼ = H 1 (T 2 ) ⊕ H 1 (T 2 )
, where generators are given by standard generators of T 2 = S 1 × S 1 , namely two circles. We consider a Morse function f : Σ 2 → R given by the height function on the following picture:

f d c b a + ε a 0 ε
We observe that H 1 (Σ 2 ) is generated by four homology classes represented by embedded circles, two of which have spectral invariants associated to f equal to ε and the other two with spectral invariants equal to b.

The other function we consider is the height function g on the same picture with left and right reversed. More precisely, g = f • ϕ, where ϕ : Σ 2 → Σ 2 is a diffeomorphism which interchanges two copies of T 2 \ D 2 which we glue together to form Σ 2 . Since g = f • ϕ, the barcodes of f and g are the same and they look as follows:

0 ε a a + ε c 0 0 b d 0 1 1 1 1 1 2
One also readily checks that for every z ∈ H * (M ), c(z, f ) = c(z, g), where c(z, f ), c(z, g) are spectral invariants associated to functions f and g and a homology class z (see Remark 2. 1.24). This means that standard methods, namely barcodes and spectral invariants fail to distinguish between f and g. However, after intersecting with one of the two big circles (for example the one on the left in the above picture), which corresponds to the homology class e with spectral invariants c(e, f ) = c(e, g) = b, we get the following intersection barcodes:

0 ε a a + ε c b d 0 0 1 e ∩ HM (f ) 0 ε a a + ε c b d 0 1 e ∩ HM (g)
These barcodes differ by a finite bar (ε, a]. Thus, by using the product structure in homology and analysing its effect on the barcode we are able to make a distinction between f and g. Note also that the bar (ε, a] did not exist in the original barcode.

It would be interesting to find a general formula for the image persistence module of the intersection by homology class a. Examples show that this is not a trivial question.

Equivariant version

In order to study the question of Hofer's distance to autonomous Hamiltonian diffeomorphisms and more generally to full p-th powers in Ham, persistence modules with additional Z p = Z/pZ action were used in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. A Z p persistence module (V, π, T ) is a persistence module (V, π) together with an automorphism T : (V, π) → (V, π) which satisfies T p = 1. This definition immediately implies that T t : V t → V t is a linear operator whose eigenvalues are p-th roots of unity. Hence, for ζ p = 1, π s,t maps a ζ-eigenspace of T s to ζ-eigenspace of T t and we can define a ζ-eigenspace of T to be a persistence module obtained by restricting π to ζ-eigenspaces of each T t .

We require the following immediate statement. Lemma 3.2.14. Let (V r , T r ), r ∈ 1, . . . , l be Z p persistence modules, (V, T ) = ( Interleavings between Z p persistence modules which commute with the Z p action are called equivariant. Again, taking infimum over all δ > 0 such that V and W are eqivariantly δ-interleaved gives us an equivariant interleaving distance, which we denote by d inter (V, W ). It immediately follows that

d inter (V, W ) ≥ d inter (V, W ) and d inter (V, W ) ≥ d inter (L ζ , K ζ ), (3.2) 
where L ζ and K ζ are the ζ-eigenspaces of T V and T W respectively.

Applying our new method to the equivariant situation is tantamount to studying Z p persistence modules with an operator A : V → V [c A ], which moreover commutes with the Z p -action. Examples of such operators will come from a version of the pair-of-pants product in Floer homology.

Definition 3.2.15. A Z p persistence module with an operator is a pair (V, A) where V is a Z p persistence module and A : V → V [c A ] is a morphism of persistence modules that commutes with the Z p -action.

Let (V, A) and (W, B) be two Z p persistence modules with operators with c = c A = c B , and suppose that f : V → W [δ] and g : W → V [δ] is an equivariant δinterleaving. We say that this interleaving is op-equivariant if it respects the operator actions, that is,

B(δ) • f = f (c) • A, A(δ) • g = g(c) • B.
Taking infimum over all δ such that V and W are op-equivariantly δ-interleaved gives us a new distance, which we denote d op-inter (V, W ). Since A and B are Z p persistence module morphisms we have that im(A) ⊂ V a and im(B) ⊂ W a are Z p persistence submodules of V a and W a . Every op-equivariant interleaving between V and W induces an equivariant interleaving between im(A) and im(B), which in particular implies d op-inter ((V, A), (W, B)) ≥ d inter (im(A), im(B)).

(3.3) Note however that in general this may not be an equality.

Remark 3.2.16. The situation we encounter when working with singular, Morse or Floer homology is not exactly the same as described above since our product map may change the degree and not just the filtration. One can overcome this ambiguity by giving a slightly more general definition analogous to the one given above, where A : V t → V t+a for different persistence modules V and V or by considering graded vector spaces.

In order to tackle the problem of Hofer's distance to full powers in Ham a numerical invariant µ p (W ) called multiplicity-sensitive spread was defined in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. We recall the definitions and properties of µ p and an auxiliary invariant µ p,ζ , which we use later (see [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] for proofs). We have that

|µ p (B(L ζ )) -µ p (B(K ζ ))| = |µ p,ζ (V ) -µ p,ζ (W )| ≤ d bottle (B(L ζ ), B(K ζ )), (3.4) 
where L ζ and K ζ are the ζ-eigenspaces of T V and T W respectively.

A Z p persistence module (W, T ) is called a full p-th power if T = S p for some morphism S : W → W .

From now on we impose the same assumption on the ground field K as in Section 3.1.2. An important property of µ p for such a ground field K is that µ p (W ) = 0 given that W is a full p-th power. The proof of this fact is the same as in the case when p is a prime number and has been carried out in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. However, the proof of the fact that splitting field Q p of x p -1 over Q satisfies the required assumptions is slightly different and we present it here for completeness. The following lemma is the substitution for Lemma 4.14 in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. Lemma 3.2.17. Let p ≥ 2 be any integer, ζ p ∈ Q p a primitive p-th root of unity and assume that equation

x p -(ζ p ) q = 0, has a solution in Q p for some integer q. Then p|q.

Proof. For an integer k ≥ 2, we denote by ζ k a fixed k-th primitive root of unity and by

Q k = Q(ζ k ) the cyclotomic extension of Q by ζ k . We may embed Q p ⊂ Q p 2 ⊂ Q,
where Q is the algebraic closure of Q and we may also assume that (

ζ p 2 ) p = ζ p . Now if x is a solution of the above equation, for some m ∈ Z it holds that x = (ζ p 2 ) q • (ζ p ) m inside Q and hence if x is in Q p so is (ζ p 2 ) q .
If p does not divide q, we have that gcd(p, q) = d < p and p = nd for some natural number n. Taking u, v ∈ Z such that uq + vp = d, we get that

(ζ p 2 ) d = (ζ p 2 ) uq • (ζ p 2 ) vp ∈ Q p .
However, (ζ p 2 ) d = ζ pn and hence Q p = Q pn , which is only possible when p is odd and n = 2 (see [START_REF] Marcus | Number fields[END_REF]Corollary 3]). This cannot happen because n|p.

3.3 Floer theory and Hofer's geometry

Product map on Floer persistence module

Let (M, ω) be a closed symplectic manifold, and denote by c 1 (T M ) the first Chern class of the tangent bundle, equipped with any ω-compatible almost complex structure. Take a homotopy class of free loops α ∈ π 0 (LM ) and denote by L α M all loops in class α. We say that (M, ω) is α-toroidally monotone if there exists κ > 0 such that

[ω], A = κ • c 1 (T M ), A ,
for all A ∈ Im(Ψ), where Ψ :

π 1 (L α M ) → H 2 (M ; Z) sends a loop β ∈ π 1 (L α M ), regarded as a map β : T 2 → M , to β * ([T 2 ]
). It readily follows that M is also spherically monotone with same monotonicity constant κ, that is,

[ω] = κ • c 1 (T M ),
where both [ω] and c 1 (T M ) are regarded as functionals on π 2 (M ). Assuming M is α-toroidally monotone3 , to every element f ∈ fi Ham(M ) of the universal cover of Ham(M ) that is non-degenerate in class α, we associate a Floer persistence module HF t * ( f ) α with parameter t (see [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF][START_REF] Usher | Hofer's metrics and boundary depth[END_REF]). Remark 3.3.1. Here, and later on in Section 3.3.2, we deal with degenerate Hamiltonian diffeomorphisms 1 ∈ Ham(M ) and φ × 1 ∈ Ham(Σ × N ) (for Σ a closed symplectic surface of higher genus, and N a monotone symplectic manifold), which, however, are of Morse-Bott degeneracy in the appropriate classes of orbits. Associating a persistence module to this situation can be done in two different ways. First, we may perturb 1 and obtain a persistence module as a limit when perturbations tend to zero. More precisely, we fix a Morse function h, replace 1 with the flow of δ • h, and look at the appropriate persistence modules as δ → 0. Using standard action estimates, one sees that these modules converge in interleaving distance to a welldefined genuine persistence module (which is uniquely determined up to isomorphism by this property). In our cases, the spectrum of this persistence module is discrete, since the set of the critical values of the action functional of the zero Hamiltonian is discrete. This approach is essentially the same as the one described in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]Definition 2.8]. The second way to proceed is by using Frauenfelder's approach of cascades [START_REF] Frauenfelder | The Arnold-Givental conjecture and moment Floer homology[END_REF] to the Morse-Bott case, which readily yields a persistence module by the same procedure as in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF][START_REF] Usher | Hofer's metrics and boundary depth[END_REF].

Let us now describe the product structure which we will be using. First note that the Novikov field Λ K admits a non-Archimedean valuation

ν : Λ K → R ∪ {-∞}, n∈Z a n q n → max{n • (κc N )| a n = 0}.
This valuation naturally extends to QH(M ), by declaring that ν(x) = 0 for all nonzero x ∈ H * (M ; K)⊗1. Now, in a fixed degree r ∈ Z, QH t r (M ) is defined as

QH t r (M ) = {x ∈ QH r (M )| ν(x) < t}. The product map * : HF t * (1) pt ⊗ HF s * ( f ) α → HF t+s * ( f ) α (3.5)
has a different description depending on which of the two definitions of HF t * (1) pt we adopt. In the perturbative setting, it is defined by counting pairs of pants on the chain level and the action estimates follow from [135, Section 4.1], [START_REF] Entov | Hofer metric and geometry of conjugacy classes in Lie groups[END_REF], [102, Section 6.2], while in the Morse-Bott setting, the product takes the form of counting "spiked cylinders", quite similar to the definition of the PSS map [START_REF] Piunikhin | Symplectic Floer-Donaldson theory and quantum cohomology[END_REF] (see for example [START_REF] Charette | A geometric refinement of a theorem of Chekanov[END_REF] and references therein for details on the more complicated, Lagrangian, version).

Let us examine some of the properties of this product.

Denote by d the Hofer's pseudo-distance on fi

Ham(M ) and by d the Hofer's distance on Ham(M ). We write f ∈ fi Ham(M ) for a homotopy class of paths relative endpoints in Ham(M ) and f ∈ Ham(M ) for its endpoint. Let ν : QH(M ) → R be the natural valuation. Fixing homogeneous a ∈ QH(M ) we obtain a map a * :

HF t r ( f ) α → HF t+ν(a) r-2n+deg a ( f ) α .
The map a * is a persistence module morphism between

V t r = HF t r ( f ) α and ‹ V t r = HF t+ν(a)
r-2n+deg a ( f ) α . Moreover, it follows from standard considerations in Floer theory that a * commutes with continuation maps

C(F, G) : HF t r (F ) α → HF t+E + (G-F ) r (G) α ,
where

E + (G -F ) = 1 0 max M (G t -F t )dt.
Now, let g ∈ Ham(M ) and define a map

P (g) : HF t * ( f ) α → HF t * ( g • f • g -1 ) α ,
by acting with g on all the objects appearing in the construction of Floer chain complex. More precisely, on the chain level P (g) defines an isomorphism of filtered chain complexes

P (g) : (CF (H, J) α , A H ) → ((CF (H • g -1 , g * (J)) α , A H•g -1 )),
by sending a periodic orbit z(t) of H to a periodic orbit g(z(t)) of H • g -1 . This map is called the push-forward map (see [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] for a detailed treatment of push-forward maps). One can check that P (g) and a * commute. 

HF t r (F (p) ) α C(F (p) ,G (p) ) -------→ HF t+p•E + (G-F ) r (G (p) ) α ,
and 

HF t+p•E + (G-F ) r (G (p) ) α C(G (p) ,F (p) ) -------→ HF t+p•(E + (G-F )-E -(G-F )) r (F (p) ) α , induce a p • (E + (G -F ) -E -(G -F )) op-
|µ p (W t r (a, f p ))| = |µ p (W t r (a, f p )) -µ p (W t r (a, gp ))| ≤ d bottle (B(L ζ ), B(K ζ )),
where L ζ and K ζ denote ζ-eigenspaces of P (f ) and P (g) inside W t r (a, f p ) and W t r (a, gp ) respectively. Now, combining (3.2) with the isometry theorem yields

|µ p (W t r (a, f p ))| ≤ d bottle (B(L ζ ), B(K ζ )) ≤ d inter (W t r (a, f p ), W t r (a, gp )),
which together with (3.6) gives us

|µ p (W t r (a, f p ))| ≤ d inter (W t r (a, f p ), W t r (a, gp )) ≤ p • d( f , g).
Finally, we have

d(f, Powers p (M )) = d( f , • Powers p (M )) ≥ 1 p • |µ p (W t r (a, f p ))|. (3.7)

Stabilization and the egg-beater example

We now turn to a manifold M of the form M = Σ × N , where Σ is surface of genus at least 4 and N is a spherically monotone symplectic manifold with monotonicity constant κ. The element ψλ ∈ fi Ham(M ) which we consider is

ψλ = φp λ × 1, φλ ∈ fi Ham(Σ), 1 ∈ fi Ham(N ),
where φλ is given by the egg-beater flow on Σ, with mixing parameter λ. Construction and detailed analysis of the egg-beater flow are carried out in [START_REF] Alvarez-Gavela | Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms[END_REF][START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. What we will use is that there exists a family of Hamiltonian flows φλ on Σ, depending on an unbounded increasing real parameter λ, along with a family of classes of free loops α λ on Σ which satisfy:

1) ϕ p λ has exactly 2 2p p-tuples of fixed points with same indices and actions {z, ϕ λ (z), . . . , ϕ p-1 λ (z)}, for sufficiently large λ;

2) If z 1 and z 2 belong to different p-tuples their action differences satisfy

|A(z 1 ) -A(z 2 )| ≥ c 0 λ + O(1);
3) The indices of all fixed points are bounded by a constant which does not depend on λ.

The class α λ ∈ π 0 (LM ) which we consider is a product of classes

α λ = α λ × pt, α λ ∈ π 0 (LΣ),
Σ being symplectically α λ -atoroidal. Our manifold M will be α λ -toroidally monotone with same monotonicity constant κ. We will leave out these classes from the notation and write HF 

µ p (W t k ([Σ] ⊗ e, φp λ × 1)) ≥ cλ + O(1),
for some c > 0, when λ → +∞.

Here [Σ] ⊗ e ∈ QH(M ) = QH(Σ × N ).
Proof. Let α 1 , α 2 be two toroidally monotone classes of free loops in symplectic manifolds M 1 and M 2 , with the same monotonicity constant κ (we may also take one of both of them to be atoroidal) and let φ ∈ fi Ham(M 1 ), ψ ∈ fi Ham(M 2 ). The manifold M 1 × M 2 is symplectic and the class α 1 × α 2 is toroidally monotone with the same monotonicity constant κ. Now, we apply Proposition 3.2.6 for general filtered homologies to Floer chain complexes filtered by the action functional and Floer persistence modules to get the short exact sequence:

0 → i+j=k (HF i ( φ) α 1 ⊗ HF j ( ψ) α 2 ) t K -→ HF t k ( φ × ψ) α 1 ×α 2 → → i+j=k-1 (T or(HF i ( φ) α 1 , HF j ( ψ) α 2 )) t → 0, for K([ i λ i x i ] ⊗ [ j µ j y j ]) = [ i,j λ i µ j x i ⊗ y j ].
In our case φ = φp

λ , α 1 = α λ , ψ = 1 ∈ fi
Ham(N ),α 2 = {pt} and we have

HF t * (1) {pt} = QH t * (N ), where QH t * (N ) = {x ∈ QH * (N )| ν(x)
< t} is a persistence module with trivial structure maps given by π s,t (

x) = x since QH s * (N ) ⊂ QH t * (N ) for s ≤ t.
This readily gives us that the barcode of QH t * (N ) has only infinite bars and thus QH t * (N ) is a projective persistence module and T or(HF i ( φp λ ), QH j (N )) = 0 for all j ∈ Z, which implies that

K : i+j=k (HF i ( φp λ ) ⊗ QH j (N )) t → HF t k ( φp λ × 1),
is an isomorphism. Moreover, it holds that P (ϕ λ × 1)

• K = K • (P (ϕ λ ) ⊗ 1)
(see [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] for a proof in the atoroidal case, the proof in the toroidally monotone case is the same) and thus K is also an isomorphism of Z p persistence modules. 

W t k = W t k ([Σ] ⊗ e, φp λ × 1) = r∈I k (HF k-r ( φp λ ) ⊗ (e * )(QH r (N ))) t ,
where I k is the set of all r such that there exists a fixed point of ϕ p λ of index k -r and im(e * ) t = (e * )(QH t r (N )) ⊂ QH We may also look at E r as a persistence submodule of the shifted module E t r ⊂ QH t r-2n+deg e (N )[ν(e)] and (e * ) : QH t r (N ) → E t r is a persistence module morphism. Since the structure maps on E t r are restrictions of structure maps on QH r-2n+deg e (N )[ν(e)],

we again have that they act as 1 under the inclusions to the full quantum homology group QH r-2n+deg e (N ) and the same holds for im(e * ) t . This implies that the barcode of im(e * ) t contains no finite bars. Now, if we denote a r = min{ν(x)|x ∈ QH r (N )} and A r = max{ν(x)|x ∈ QH r (N )}, it follows that (e * )(QH t r (N )) = 0 for t ≤ a r and (e * )(QH t r (N )) = E r for t > A r and thus the barcode of im(e * ) t consists of bars (c r,1 , +∞), . . . , (c r,br(e) , +∞) where a r ≤ c r,1 ≤ . . . ≤ c r,br(e) ≤ A r . Moreover, since the Z p action on QH t r (N ) is trivial for all r we have that im(e * ) 

µ p (W t k ) ≥ µ p,ζ (W t k ) = µ p Å r∈I k br(e) i=1 L t-c r,i k-r,ζ ã ≥ µ p Å r∈I k (L t k-r,ζ ) br(e) ã -C.
Assume now that p b r 0 (e) and that the index of a fixed point z 0 of ϕ p λ with minimal action A = A(z 0 ) in class α λ is d 0 . Taking k = d 0 + r 0 we have that

r∈I k (L t k-r,ζ ) br(e) = (L t d 0 ,ζ ) br 0 (e) ⊕ r =r 0 (L t k-r,ζ ) br(e) .
If z is a fixed point of ϕ p λ with action A(z) = A it follows that A(z) ≥ B = A + c 0 λ + O(1) and we have that

m Å B Å r∈I k (L t k-r,ζ ) br(e) ã , (A, B] ã = b r 0 (e) .
Now, p b r 0 (e) and thus In fact the estimate µ p (φ) ≤ µ p (φ × 1) cannot be expected to hold, as can be seen by elementary examples. The error in the proof of Theorem 4.24 is contained in the implication "Thus we are left with i = 0..." because the barcodes B r-i (φ) ζ for i > 0 can have I and I 2c with different multiplicities, thus affecting the value of

µ p Å B Å r∈I k (L t k-r,ζ ) br(e) ãã ≥ c 0 4 λ + O(
µ p,ζ (r, φ × 1 N ). Denote γ p,ζ (r, φ) = 1 2 max i>0 β(B r-i (φ) ζ ).
By [START_REF] Buhovsky | The action spectrum and C 0 symplectic topology[END_REF], and the remarks on the Künneth formula in the proof of Theorem 4.24, it is immediate that

µ p,ζ (r, φ × 1 N ) ≥ µ p,ζ (r, φ) -γ p,ζ (r, φ).
Indeed The sentence "Further, among the 2 2p p-tuples of fixed points of φ p λ in the class α λ choose the p-tuple, say {z, φ λ (z), . . . , (φ λ ) p-1 (z)} with the minimal action. Let r be the index of z." should be corrected to "Further, among the 2 2p p-tuples of fixed points of φ p λ in the class α λ choose the p-tuple, say {z, φ λ (z), . . . , (φ λ ) p-1 (z)} with the minimal index r, and minimal action among p-tuples of this index."

d bottle (B r (φ) ζ , B r (φ × 1 N ) ζ ) ≤ γ p,ζ (r, φ),
The passage "By the definition of the multiplicity-sensitive spread, we conclude that µ p (φ λ ) ≥ λ(c -2ε)/4" should read "By the definition of the multiplicity-sensitive spread and the observation that γ p,ζ (r, φ λ ) = 0, we conclude that µ reduced In this chapter, we will consider persistence modules coming from filtered symplectic homology in order to study fiberwise star-shaped domains in the cotangent bundle of a fixed manifold in a quantitative fashion.

The metrical set-up

The quantitative perspective which we wish to adopt has its roots in the concept of Banach-Mazur distance, initially appearing in functional analysis with the aim of comparing convex bodies. Let M be a closed, orientable manifold of dimension n. Its cotangent bundle T * M is equipped with a canonical symplectic form ω can = dλ can , where λ can is the Liouville form, and a canonical vector field X given by i X (ω can ) = λ can called Liouville vector field. We call a domain U ⊂ T * M admissible if it is a compact, fiberwise star-shaped domain, centered at the zero section 0 M ⊂ U ⊂ T * M, whose boundary ∂U is smooth and such that X ∂U. Restriction of the Liouville form to the boundary of an admissible domain is a contact form, i.e. (∂U, λ can | ∂U ) is a contact manifold. Denote

C M = {admissible domains U in T * M }.
For two admissible domains U, V ∈ C M , an embedding φ : U → V satisfying φ * λ can -λ can = df for some smooth function f : U → R is called a Liouville embedding. Denote the set of homotopy classes of free loops in M by π1 (M ). Notice that any U ∈ C M deformation retracts to the zero section 0 M of T * M, and the projection π : T * M → M restricted to U induces a homotopy equivalence π| U : U → M. Thus, any Liouville embedding φ : U → V between two admissible domains in T * M induces a map φ * on π1 (M ). Majority of maps which we will consider in this chapter will be a special type of Liouville embeddings which are defined as follows.

Definition 4.1.1. Given two admissible domains U, V ∈ C M , a Liouville embedding φ : U → V is π1 -trivial if φ * α = α for all α ∈ π1 (M ). We adopt the notation U φ -→ V for a π1 -trivial Liouville embedding φ : U → V .

One readily checks that the composition of two π1 -trivial Liouville embeddings is again a π1 -trivial Liouville embedding. The following definition modifies a key definition from [START_REF] Gutt | Symplectically knotted codimension-zero embeddings of domains in R 4[END_REF]. Definition 4.1.2. Let U ⊂ V be two admissible domains in T * M and φ : U → V a Liouville embedding. We call φ strongly unknotted if there exists an isotopy {φ t } t∈[0,1] such that each φ t : U → V is a Liouville embedding and

φ 0 = i U , φ 1 = φ, i U being the inclusion i U : U → V.
Let us illustrate these concepts on an example coming from Riemannian geometry. This example is also going to be the main example considered in this chapter.

Example 4.1.3. Let (M, g) be a closed, orientable Riemannian manifold with induced norm • g : T M → R and denote the unit ball at a point q by B 1 (g) q = {x ∈ T q M | x g ≤ 1}. The dual norm • g * on T * M is given by ξ q g * = max{ξ q (x) | x ∈ B 1 (g) q } and the unit coball B * 1 (g * ) q = {p ∈ T * q M | p g * ≤ 1} defines a convex set in T * q M. Denoting the unit codisc bundle (union of unit coballs over all points of the manifold) by U * g M, we have that U * g M is an admissible domain in T * M. The boundary ∂U * g M is the unit cosphere bundle and the Reeb flow on (∂U * g M, λ can | ∂U * g M ) is the cogeodesic flow of g. Now, if for every q ∈ M and every x ∈ T q M , it holds ||x|| g 1 ≤ ||x|| g 2 , we have that U * g 1 M ⊂ U * g 2 M and inclusion i : U * g 1 M → U * g 2 M is a π1 -trivial Liouville embedding. Obviously, this embedding is also strongly unknotted.

We will now define the distance which we wish to consider. 

d SBM (U, V ) = inf ln C ∃ 1 C U φ - → V ψ - → CU (and hence 1 C V ψ(C -1 ) ----→ U φ(C) --→ CV ) s.t. ψ • φ and φ(C) • ψ(C -1 ) are strongly unknotted
Here multiplication CU applies on the covector component, i.e. for any (q, p) ∈ U , C(q, p) = (q, Cp). Moreover, φ(C) is defined as φ(C)(q, p) = Cφ(q, p/C), for (q, p) ∈ U , where again multiplication acts on the covector component and ψ(C -1 ) is defined similarly.

In order to study unit codisc bundles of different Riemannian metrics with respect to d SBM , we will need an auxiliary distance defined on the space of Riemannian metrics on M. Denote by

G M = {Riemannian metrics g on M }.
Similarly to d SBM on C M , we have Definition 4.1.5. For g 1 , g 2 ∈ G M , we define Riemannian Banach-Mazur distance denoted by d RBM (g 1 , g 2 ) as follows,

d RBM (g 1 , g 2 ) = inf ß ln C ∈ [0, ∞) ∃φ ∈ Diff 0 (M ) s.t. 1 C g 1 φ * g 2 Cg 1 ™ ,
where g 1 g 2 means that for any q ∈ M and any x ∈ T q M , ||x|| 

d bottle (B * ,α (U ), B * ,α (V )) ≤ d SBM (U, V ).
In particular, when U = U * g 1 M and V = U * g 2 M , it follows from (4.1) that

2 • d bottle (B * ,α (U ), B * ,α (V )) ≤ d RBM (g 1 , g 2 ).
Precise definitions and a proof of this theorem are given in Section 4.3. Different versions of Theorem 4.1.7 for star-shaped domains in R 2n can be found in [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] and [START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF]. 

ρ(U, V ) = inf ® ln C ∈ [0, ∞) ∃ 1 C U φ - → V ψ - → CU s.t. ψ • φ is strongly unknotted ´. We define d SBM (U, V ) = max{ρ(U, V ), ρ(V, U )}.
One may prove that d SBM defines a pseudo-metric on C M in a similar way to the proof of Proposition 4.2.1. However, in order to prove the stability of d bottle with respect to d SBM , i.e. an analogue of Theorem 4.1.7, one needs a stronger version of the classical isometry theorem for barcodes which was communicated to us by M. Usher, [149]. Quantities ρ and d SBM can be considered analogous to δ f and d f defined in [START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF], as explained in Subsection 1.2 of [START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF].

Remark 4.1.10. Throughout this chapter, we assume that the base manifold M is orientable. This is done in order to simplify considerations regarding the grading in symplectic homology, see Subsection 4.3.1. It seems likely that, using the results from [START_REF] Weber | Perturbed closed geodesics are periodic orbits: index and transversality[END_REF], one may apply similar arguments and obtain analogous results in the non-orientable case.

Remark 4.1.11. All the persistence modules considered in this chapter are defined using conventions which guarantee that all the intervals in the corresponding barcodes have left endpoints closed and right endpoints open. In other words, all the bars are either equal to (-∞, +∞) or of the form [a, b) for a < b ≤ +∞ with finite a. Moreover, we sometimes use the set of parameters t ∈ R + = (0, +∞) instead of t ∈ R in the definition of our persistence modules. This difference is non-essential because the two sets of parameters can be related by an order-preserving bijection, for example ln : R + → R.

Large-scale geometry of the space of Riemannian metrics

Recall that a map Φ : (X 1 , d 1 ) → (X 2 , d 2 ) between two (pseudo-)metric spaces is called quasi-isometric embedding if there exist constants A ≥ 1, B ≥ 0 s.t.

1 A d 1 (x, y) -B ≤ d 2 (Φ(x), Φ(y)) ≤ Ad 1 (x, y) + B,
for all x, y ∈ X 1 .

From a general perspective, given a (pseudo-)metric space (X, d), we wish to ask the following questions with the flavor of large-scale geometry.

(A) What is the diameter of (X, d)?

(B) If diam (X, d) = +∞, how many unbounded linearly independent directions are there in X? More precisely, for which N does there exist a quasi-isometric embedding of R N into (X, d)?

Our goal is to give partial answer to these questions for the space of admissible domains in T * M , i.e. when (X, d) = (C M , d SBM ). In the case of Hofer's metric, i.e. (X, d) = (Ham(M, ω), d Hofer ), these questions have been studied and partially answered using advanced tools from symplectic topology (see, for instance, [START_REF] Polterovich | Hofer's diameter and Lagrangian intersections[END_REF] and [START_REF] Usher | Hofer's metrics and boundary depth[END_REF]).

Before we state the main results we wish to point out that without imposing additional assumptions on spaces (C M , d SBM ) and (G M , d SBM ) it is easy to see that both of their diameters are infinite. This follows from the fact that d SBM satisfies d SBM (U, CU ) = ln C for any U ∈ C M and C ≥ 1. Indeed, for any C ≥ 1 it readily follows that d SBM (U, CU ) ≤ ln C simply by taking φ and ψ in the definition of d SBM to be inclusions. On the other hand, if there would exist some C < C such that U/C → CU → C U , the second embedding would contradict preservation of volume and hence d SBM (U, CU ) = ln C. Thus, in order to make question (A) meaningful we must introduce certain normalizations. To this end we define

CM = {admissible domains U in T * M s.t. Vol(U ) = V n } , where Vol(U ) = U (dλcan) ∧n n! = U (ωcan) ∧n n!
and V n denotes the volume of the n-dimensional unit ball. Similarly, we define ḠM = {Riemannian metrics g on M s.t. Vol g (M ) = 1 and diam(M, g) ≤ 100}.

Note that when U = U * g M , one has Vol(U ) = V n • Vol g (M ) and hence we may include ḠM in CM via the map g → U * g M. Slightly abusing the notation we write ḠM ⊂ CM .

Remark 4.1.12. We also wish to explain the restriction that we put on the diameter of (M, g). Assume that g 2 C 2 g 1 , for a constant C ≥ 1. Now, for every smooth curve γ in M it holds that L g 2 (γ) ≤ C•L g 1 (γ), L g i denoting the length with respect to g i , and thus diam(M, g 2 ) ≤ C • diam(M, g 1 ). If diam(M, g 1 ) is fixed and diam(M, g 2 ) → +∞, we see that C → +∞ and since diam(M, g 2 ) = diam(M, φ * g 2 ) for all diffeomorphisms φ, we have that d RBM (g 1 , g 2 ) → +∞. This means that if there was no restriction on the diameter of (M, g), the space (G M , d RBM ) would trivially have infinite diameter even if we fix the volume of M .

The following theorem is the main result of the chapter.

Theorem 4.1.13. If M = S 2 , then there exists a quasi-isometric embedding

Φ : ([0, ∞), | • |) → ( ḠM , d SBM ).
If M = Σ is a closed, orientable surface whose genus is at least 1, then for every N ∈ N there exists a quasi-isometric embedding

Φ : (R N , | • | ∞ ) → ( ḠM , d SBM ).
Both statements remain true if we replace d SBM by d RBM .

Since ḠM ⊂ CM we immediately obtain the following. If M = Σ is a closed, orientable surface whose genus is at least 1 then for every N ∈ N there exists a quasi-isometric embedding

Φ : (R N , | • | ∞ ) → ( CM , d SBM ).
Corollary 4.1.14 readily implies that if M is any closed, orientable surface it holds diam( CM , d SBM ) = +∞, which answers question (A). However, regarding question (B), we observe a sharp contrast between cases of a sphere and of higher genus surfaces. Indeed, when M = Σ is a closed, orientable surface of positive genus, Corollary 4.1.14 proves the existence of many unbounded directions inside ( CM , d SBM ), namely there exist N unbounded directions inside ( CM , d SBM ) for any N ∈ N. On the other hand when M = S 2 it provides only one unbounded direction. This contrast ultimately comes from the fact that π 1 (S 2 ) = 0 while π 1 (Σ) = 0. Nevertheless, we pose the following conjecture. 

Φ : (R N , | • | ∞ ) → ( CS 2 , d SBM ).
We break down the proof of Theorem 4.1.13 into the following two propositions. Proposition 4.1.16. For any ε > 0, there exists a map Φ : [0, ∞) → ḠS 2 such that for any x, y

∈ [0, ∞), |x -y| -ε ≤ 2d SBM (U * Φ(x) M, U * Φ(y) M ) ≤ d RBM (Φ(x), Φ(y)) ≤ 2|x -y| + ε. (4.2)
Proposition 4.1.17. Let Σ be a closed, orientable surface of genus at least 1. Then for any N ∈ N and any ε > 0, there exists a map Φ : R N → ḠΣ such that for all x, y ∈ R N

1 4 • | x -y| ∞ -ε ≤ 2d SBM (U * Φ( x) M, U * Φ( y) M ) ≤ d RBM (Φ( x), Φ( y)) ≤ 4N • | x -y| ∞ + ε.
The lower bounds are the most significant parts of Propositions 4.1.16 and 4.1.17. Their proofs use the technique of barcodes and occupy the entire Section 4.5. The upper bounds in both theorems are proven simultaneously in Subsection 4.6.3.

In order to construct quasi-isometric embeddings Φ as above, we consider geometric models which we call bulked spheres and multi-bulked surfaces. A bulked sphere is a surfaces of revolution. Roughly speaking, it is obtained as a connected sum of two spheres through a very narrow "neck" as shown in Figure 4.8. We analyze closed geodesics on a bulked sphere in Section 4.6. More precisely, in Subsection 4.6.1 we analyze the shortest non-constant closed geodesic, coming from the connecting neck, and its iterates, while in Subsection 4.6.2 we analyze the rest of the closed geodesics. By shrinking the neck we produce the desired direction going to infinity in terms of d SBM . On the other hand, a multi-bulked surface is a closed, orientable surface of genus at least one which has a part that looks like a connected sum of N + 1 spheres through N "narrow necks", see Figure 4.10. By shrinking different necks, we obtain different unbounded directions. The behaviour of closed geodesics in a multi-bulked surface is also discussed in Subsections 4.6.1 and 4.6.2. Finally, in order to exclude multiple covers of the same loop from our considerations, we work with symplectic homology in the non-trivial class of loops α. This explains the significance of the condition on the genus of Σ, since every loop in S 2 is contractible. Remark 4.1.18. A theorem similar to Theorem 4.1.13 was proven by M. Usher in [START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF] in the context of star-shaped domains in C n . Even though the general setup is similar, the constructions of the quasi-isometric embeddings as well as the arguments used in the proofs of these two results are fundamentally different.

Applications to the study of closed geodesics

If g is bumpy, homologies H * (L λ α (M ); Z 2 ) form a persistence module with parameter λ ∈ R, which we denote by H * ,α (M, g) (here the homology of the empty set is taken to be zero). Structure maps

ι λ,η : H * (L λ α (M ); Z 2 ) → H * (L η α (M ); Z 2 )
for λ ≤ η are given by the inclusions x > C 1 C 2 then there exist closed geodesics γ 1 and γ 2 of (M, g 2 ) in homotopy class α, whose energies satisfy

{γ | E g (γ) ≤ λ} ⊂ {γ | E g (γ) ≤ η}. Now,
1 C 1 x ≤ E g 2 (γ 1 ) ≤ C 2 x, 1 C 1 y ≤ E g 2 (γ 2 ) ≤ C 2 y,
and furthermore

[E g 2 (γ 1 ), E g 2 (γ 2 )) ∈ B(H * ,α (M, g 2 )).
In the case of an infinite bar [x, +∞) ∈ B(H * ,α (M, g 1 )), there exists a closed geodesic γ 1 of g 2 such that

1 C 1 x ≤ E g 2 (γ 1 ) ≤ C 2 x,
and we have that [E g 2 (γ 1 ), +∞) ∈ B(H * ,α (M, g 2 )). 

(M ); Z 2 ) → H * (L α (M ); Z 2 )
). On the other hand, finite bars in B(H * ,α (M, g)) are a meaningful invariant from the viewpoint of Gromov's quantitative homotopy theory, see [START_REF] Gromov | Quantitative homotopy theory[END_REF]. Namely, Gromov considered the following question:

For l > 0 define f (l) as the minimal L such that every closed contractible curve of length ≤ l can be contracted to a point by a homotopy passing through closed curves of length ≤ L. Can one estimate f (l)?

The same question can be posed by replacing the length by the Lipschitz constant or the energy. A connection between this question and the barcode of H 0,[pt] (M, g) was, to the best of our knowledge, first observed in [START_REF] Weinberger | What is... persistent homology?[END_REF], see also [START_REF] Weinberger | Interpolation, the rudimentary geometry of Lipschitz function spaces, and geometric complexity[END_REF]Section 4]. As noted in [START_REF] Weinberger | What is... persistent homology?[END_REF][START_REF] Weinberger | Interpolation, the rudimentary geometry of Lipschitz function spaces, and geometric complexity[END_REF], a bar [x, y) ∈ B(H 0,[pt] (M, g)) signifies the fact that there exists a closed geodesic of energy x such that every homotopy connecting this geodesic to a curve of energy less than x must pass through a curve of energy at least y. For a detailed study of similar ideas see [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Weinberger | Computers, rigidity, and moduli[END_REF][START_REF] Weinberger | Interpolation, the rudimentary geometry of Lipschitz function spaces, and geometric complexity[END_REF] and references therein.

In [START_REF] Uljarevic | Viterbo's transfer morphism for symplectomorphism[END_REF], for a fixed Finsler metric F, the quantity l(F ) was introduced as the length of the shortest non-constant and "homologically visible" closed geodesic γ 0 . Assume that F comes from a Riemannian bumpy metric g and denote by L g the length with respect to g. Since γ 0 has constant speed we have

E g (γ 0 ) = Lg(γ 0 ) 2 2 = (l(F )) 2 2
. In the is equal to the smallest non-zero endpoint of an infinite bar in B(H * ,α (M, g)), where smallest means smallest among all such endpoints for all α. Now Theorem 4.1.19 implies the following. Corollary 4.1.21 (Theorem 1.10 in [START_REF] Uljarevic | Viterbo's transfer morphism for symplectomorphism[END_REF] -Bumpy metric case 1 ). Let g 1 , g 2 be two bumpy metrics on a closed, orientable manifold M such that g 2 g 1 . Then l(g 2 ) ≤ l(g 1 ) and in particular there exists a non-constant "homologically visible" closed geodesic γ of g 2 such that L g 2 (γ) ≤ l(g 1 ).

Proof. Since M is compact, there exists C 1 such that [START_REF] Uljarevic | Viterbo's transfer morphism for symplectomorphism[END_REF] (in the case of bumpy metrics on an orientable manifold). Indeed, it provides estimates for the energies (or equivalently lengths) of the closed geodesics in terms of constants C 1 and C 2 which are used to measure the discrepancy between g 1 and g 2 . Another benefit of our method is that it allows us to study "homologically invisible" closed geodesics, i.e. finite bars in B(H * ,α (M, g)).

Let us illustrate the appearance of finite bars in B(H * ,α (M, g)) on a concrete example of metrics of revolution on T 2 . Example 4.1.23. Let A > 0, f : [-A, A] → (0, +∞) a smooth, even function, strictly increasing on [-A, 0] and hence strictly decreasing on [0, A] with unique maximum at 0 and two minima at ±A. Moreover, assume that f extends 2A-periodically to a smooth function on R and let g be a Riemannian metric on T 2 = R/2AZ × R/2πZ induced by an embedding into R 3 given by (x, θ) → (x, f (x) cos θ, f (x) sin θ).

Define a change of variable

X(x) = x 0 1 + (f (t)) 2 dt, x ∈ [-A, A] and denote by T = A 0 1 + (f (t)) 2 , so that X ∈ [-T, T ]. In X variable we denote F (X) = f (x(X)).
In Subsection 4.8.3 we give a detailed analysis of the geodesic flow of g. In particular, this analysis shows that parallel circles X = ±T and X = 0 (i.e. x = ±A Let α be the homotopy class of loops γ and γ oriented in the direction in which θcoordinate increases. The function F which we wish to consider is defined2 on [-1, 1] as a C 0 -small smoothing of

1 √ kX 2 +m for k, m > 0, √ k < m.
Namely in Subsection 4.8.3 we prove the following:

Lemma 4.1.24. Let k, m > 0, √ k < m.
For small enough ε > 0 there exists

F ε : [-1, 1] → (0, +∞) as above such that F ε (X) = 1 √ kX 2 +m for X ∈ [-1 + ε, 1 -ε]
and there are no closed geodesics of metric g induced by F in class α other than γ and γ. Moreover, γ and γ are non-degenerate and ind γ = 0, ind γ = 1. Furthermore,

F ε C 0 -→ 1 √ kX 2 +m as ε → 0.
Using Lemma 4.1.24 we may compute the whole barcode B(H * ,α (T 2 , g)). To this end, first note that

H * (L α (T 2 ); Z 2 ) =            Z 2 , * = 0, 2 Z 2 ⊕ Z 2 , * = 1 0, otherwise (4.3)
Indeed, using the group action of T 2 on L(T 2 ) one proves that L(T 2 ) ∼ = T 2 ×ΩT 2 , ΩT 2 being the based loop space of T 2 , and hence L α (T 2 ) T 2 . For another computation of H * (L α (T 2 ); Z 2 ), using symplectic homology, see Section 5 in [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF] .

In order to compute B(H * ,α (T 2 , g)) we use filtered (by λ ∈ R) Morse-Bott chain complex3 CM B λ * ,α (E g ), described in detail in Subsection 4.4.1. Since γ is nondegenerate, it contributes two generators to CM B λ * ,α (E g ), one in degree ind γ = 0, the other in degree ind γ + 1 = 1, both on filtration level E min = E g (γ) = 2π 2 k+m + o(ε). Similarly, γ contributes two generators to CM B λ * ,α (E g ), one in degree 1, the other in degree 2, both on filtration level E max = E g (γ) = 2π 2 m . The general rules for computing the barcode of HM B λ * ,α (E g ) = H * (L λ α (M ); Z 2 ) are the following (see Lemma 2.1.10 for the case of Morse functions or [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF] for a much more general version of this procedure):

Each generator corresponds to an endpoint of a bar equal to it's filtration level. Moreover, the generator in degree d corresponds either to a left endpoint of a bar in B(H d,α (M, g)) or to a right endpoint of a bar in B(H d-1,α (M, g)). All infinite bars are of the form [•, +∞) and they correspond to linearly independent homology classes in H * (L α (M ); Z 2 ). Hence, the number of infinite bars is equal to the total dimension of H * (L α (M ); Z 2 ).

In our case, in particular, there are 4 infinite bars in B(H * ,α (T 2 , g)) by (4.3). Since there are only 4 generators of CM B λ * ,α (E g ) each of them contributes an infinite bar or in other words we have Same analysis as in the proof of Lemma 4.1.24 shows that γi , γi , i = 1, . . . , n are the only closed geodesics of g n in class α as well as that they are non-degenerate and ind γi = 0, ind γi = 1 for all i. Similarly to the previous situation, we conclude that in filtered Morse-Bott chain complex CM B λ * ,α (E gn ) on filtration level E min there are n generators in degree 0 and n generators in degree 1 coming from γi . On the other hand, on filtration level E max there are n generators in degree 1 and n generators in degree 2 coming from γi . From (4.3) we know that one of degree-0 generators contributes a bar [E min , +∞), one of degree-2 generators contributes a bar [E max , +∞), and there are two more infinite bars coming from degree-1 generators. Hence, the remaining 4n -4 generators correspond to endpoints of finite bars, i.e. there are 2n -2 finite bars in B(H * ,α (T 2 , g n )) , n-1 of them in B(H 0,α (T 2 , g n )) and n-1 of them in B(H 1,α (T 2 , g n )). Since differential ∂ CM B strictly lowers filtration, there are no degenerate bars, meaning bars of length zero, in B(H * ,α (T 2 , g n )). Thus all finite bars are equal to [E min , E max ) and it readily follows that

B(H * ,α (T 2 , g)) =            {[E min , +∞)}, * = 0 {[E min , +∞), [E max , +∞)}, * = 1 {[E max , +∞)}, * = 2
B(H * ,α (T 2 , g n )) =            {[E min , +∞), [E min , E max ) × (n -1)}, * = 0 {[E min , +∞), [E max , +∞), [E min , E max ) × (n -1)}, * = 1 {[E max , +∞)}, * = 2 (4.5)
Remark 4.1.25. One may define a "non-symmetric" version of d RBM in the following way. We say that g 1 , g

2 are (C 1 , C 2 )-equivalent if there exists a diffeomorphism φ ∈ Diff 0 (M ) such that C 1 g 1 φ * g 2 C 2 g 1 . Define equivalence-distance d EQ on G M by d EQ (g 1 , g 2 ) = inf ß ln C 2 C 1 there exist C 2 ≥ C 1 > 0 such that (g 1 , g 2 ) are (C 1 , C 2 )-equivalent ™ .
One readily checks that d EQ (g 1 , g 2 ) ≥ 0, d EQ (g 1 , g 2 ) = d EQ (g 2 , g 1 ) and d EQ (g 1 , g 2 ) + d EQ (g 2 , g 3 ) ≥ d EQ (g 1 , g 3 ). On the other hand, if for some φ ∈ Diff 0 (M ) it holds φ * g 2 = Cg 1 then d EQ (g 1 , g 2 ) = 0. It follows from the definitions that

d EQ (g 1 , g 2 ) ≤ 2d RBM (g 1 , g 2 ).
Finally, we wish to mention that by taking C 1 = C 2 in Theorem 4.1.19, we obtain Corollary 4.1.26 given below. This corollary also has a direct proof using stability of barcodes, i.e. Theorem 4.1.7, which we present in Section 4.7.

Corollary 4.1.26. Let M be a closed, orientable manifold, α a homotopy class of free loops in M , g 1 a bumpy metric on M and suppose that [a 2 /2, b 2 /2) ∈ B(H * ,α (M, g 1 )) for some 0 < a < b. For any bumpy metric g 2 on M , such that 0 ≤ d RBM (g 1 , g 2 ) < ln(b/a), there exist non-constant closed geodesics γ 1 , γ 2 of g 2 in homotopy class α such that

max ß ln Å E g 2 (γ 1 ) a 2 /2 ã , ln Å E g 2 (γ 2 ) b 2 /2 ã ™ ≤ d RBM (g 1 , g 2 ).
In the case of an infinite bar [a 2 /2, +∞) ∈ B(H * ,α (M, g 1 )), there exists a "homologically visible" closed geodesic γ 1 of g 2 which satisfies

ln Å E g 2 (γ 1 ) a 2 /2 ã ≤ d RBM (g 1 , g 2 ).
4.2 Basic properties of d SBM and d RBM

Symplectic Banach-Mazur distance

Symplectic Banach-Mazur distance d SBM is defined in [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] in the setting of general Liouville manifolds and it is proven to be a pseudo-metric. Our case of admissible domains in the cotangent bundle is a special case of this situation. For completeness, we include the proof of the following proposition Proposition 4.2.1. d SBM defines a pseudo-metric on C M .

We start the proof with a lemma.

Lemma 4.2.2. Let 1 C U φ - → V ψ - → CU , U, V ∈ C M , C > 1 be π1 -trivial
Liouville embeddings such that ψ •φ is strongly unknotted. Then for any D > 1 and embeddings

1 CD U φ(D -1 ) ----→ V ψ(D) --→ CDU, ψ(D) • φ(D -1
) is strongly unknotted Proof. For t ∈ [0, 1] consider the following maps

1 C(1 + (D -1)t) U φ((1+(D-1)t) -1 ) ----------→ V ψ(1+(D-1)t) -------→ C(1 + (D -1)t)U. (4.6) Since D -1 > 0 we have that C(1 + (D -1)t) ≥ C and hence 1 CD U ⊂ 1 C(1 + (D -1)t) U, C(1 + (D -1)t)U ⊂ CDU.
Composing (4.6) with these inclusions, we get

1 CD U ψ(1+(D-1)t)•φ((1+(D-1)t) -1 )
------------------→ CDU, Denoting

β t = ψ(1 + (D -1)t) • φ((1 + (D -1)t) -1 ), β t : 1 CD U → CDU, we get β 0 = ψ • φ| 1 CD U , β 1 = ψ(D) • φ(D -1 ). Since ψ • φ is strongly unknotted, there exists α t : 1 C U → CU such that α 0 = i 1 C U , α 1 = ψ • φ. Restricting α t to 1 CD U and composing with the inclusion CU i - → CDU, we get that α t = i • (α t | 1 CD U ) satisfies α 0 = i 1 CD U , α 1 = β 0 .
Concatenation of α and β gives the desired isotopy.

Proof. (Proof of Proposition 4.2.1) It readily follows that d SBM (U, U ) = 0 by taking

C = 1, φ = ψ = 1 U in the definition of d SBM .
To prove symmetry and triangle inequality we need the following two properties which can be proven by direct calculations.

If U φ - → V ψ - → W and C, D > 0 then ( * ) (φ • ψ)(C) = φ(C) • ψ(C), ( * * ) (φ(C))(D) = φ(CD). Now, if U/C φ - → V ψ - → CU, V /C ψ(C -1 ) ----→ U φ(C)
--→ CV, are such that ψ • φ and φ(C) • ψ(C -1 ) are strongly unknotted, ( * ) implies that so are

1 C V ψ(C -1 ) ----→ U φ(C) --→ CV, 1 C U φ(C)(C -1 ) ------→ V ψ(C -1 )(C) ------→ CU. This proves that d SBM (U, V ) = d SBM (V, U ).
Thus, we are left to prove the triangle inequality.

Given U/C φ - → V ψ - → CU and V /D θ - → W ξ - →
DV with strongly unknotted compositions, we claim that the composition of the following maps

1 CD U φ(D -1 ) ----→ 1 D V θ - → W ξ - → DV ψ(D)
--→ CDU is also strongly unknotted. Indeed, denote by α t : 1 D V → DV the isotopy such that

α 0 = i 1 D V , α 1 = ξ • θ,
given by the unknottedness of ξ • θ and by

β t : 1 CD U → CDU the isotopy such that β 0 = i 1 CD U , β 1 = ψ(D) • φ(D -1
), given by the unknottedness of ψ • φ and Lemma 4.2.2. Now, the isotopy γ t : 1 CD U → CDU given by

γ t = ß β 2t for 0 ≤ t ≤ 1/2 ψ(D) • α 2t-1 • φ(D -1 ) for 1/2 ≤ t ≤ 1 satisfies γ 0 = i 1 CD U , γ 1 = ψ(D) • ξ • θ • ψ(D -1
) which proves the claim. This way, we proved that the composition of maps

1 CD U θ•φ(D -1 ) -----→ W ψ(D)•ξ ----→ CDU is strongly unknotted. What is left is to prove that the composition of maps 1 CD W (ψ(D)•ξ)((CD) -1 ) ----------→ U (θ•φ(D -1 ))(CD) ---------→ CDW (4.7)
is strongly unknotted. Using ( * ) and ( * * ), we reformulate (4.7) as

1 CD W (ξ(D -1 ))(C -1 ) --------→ 1 C V ψ(C -1 ) ----→ U φ(C) --→ CV (θ(D))(C) -----→ CDW.
Now the same construction of the isotopy as the one we used for γ applies, only

starting from W/D ξ(D -1 ) ----→ V θ(D) --→ DW and W/C ψ(C -1 ) ----→ V φ(C) --→ CW.
Remark 4.2.3. Note that d SBM is not a genuine metric. Indeed if U, V ∈ C M are exactly symplectomorphic via a π1 -trivial map, i.e. there exists a diffeomorphism φ : U → V such that 1-form φ * λ can -λ can is exact and φ * = 1 π1 (M ) , we have

U φ - → V φ -1 --→ U and V φ -1 --→ U φ - → V
and thus d SBM (U, V ) = 0. This is, for example, the case when V = φ(U ) and φ ∈ Ham c (T * M ). 

Riemannian Banach-Mazur distance

We begin with the following statement This implies d RBM (g 1 , g 2 ) = d RBM (g 2 , g 1 ).

Finally, for φ 1 , φ 2 ∈ Diff 0 (M ) and C, D ≥ 1, the relations

(1/C)g 1 φ * 1 g 2 Cg 1 and (1/D)g 2 φ * 2 g 3 Dg 2 imply 1 CD g 1 1 D (φ * 1 g 2 ) φ * 1 (φ * 2 g 3 ) D(φ * 1 g 2 ) CDg 1 . Setting φ = φ 2 • φ 1 gives d RBM (g 1 , g 3 ) ≤ ln C + ln D and thus taking infimum over C and D gives d RBM (g 1 , g 3 ) ≤ d RBM (g 1 , g 2 ) + d RBM (g 2 , g 3 ).
Remark 4.2.6. Similarly to d SBM , d RBM is also not a genuine metric. Indeed, if there exists some φ ∈ Diff 0 (M ) such that g 1 = φ * g 2 , taking C = 1 we have

g 1 φ * g 2 = g 1 g 1 .
This implies d RBM (g 1 , g 2 ) = 0. 

∈ G M . Then 2 • d SBM (U * g 1 M, U * g 2 M ) ≤ d RBM (g 1 , g 2 ).
Proof. For any ε > 0, there exists some

C 2 > 1 and φ ∈ Diff 0 (M ) such that ln(C 2 ) ≤ d RBM (g 1 , g 2 ) + ε and (1/C 2 )g 1 φ * g 2 C 2 g 1 . Since B 1 (g 2 ) ⊂ B 1 (g 1 ) if g 1 g 2 we have that U * 1 C 2 g 1 M ⊂ U * φ * g 2 M ⊂ U * C 2 g 1 M. (4.8)
One also readily checks that

U * 1 C 2 g 1 M = 1 C U * g 1 M and U * C 2 g 1 M = CU * g 1 M .
On the other hand, φ ∈ Diff 0 (M ) lifts to a symplectomorphism φ # of T * M , given by φ # (p, ξ) = (φ(p), (φ -1 φ(p) ) * ξ). Since φ is isotopic to 1 M , the lift φ # is isotopic to 1 T * M and in particular, φ # acts trivially on π1 (M ). Moreover, one may check that φ # is exact as well as that φ # (U * φ * g M ) = U * g M. Therefore (4.8) can be rewritten as

1 C U * g 1 M ⊂ (φ -1 ) # (U * g 2 M ) ⊂ CU * g 1 M which implies 1 C U * g 1 M (φ # )| 1 C U * g 1 M -------→ U * g 2 M (φ -1 ) # | U * g 2 M -------→ CU * g 1 M.
The above maps are π1 -trivial Liouville embeddings and their composition is the inclusion, thus strongly unknotted. We are left to check that the composition

1 C U * g 2 M (φ -1 ) # | U * g 2 M (C -1 ) -----------→ U * g 1 M (φ # )| 1 C U * g 1 M (C) ---------→ CU * g 2 M.
is strongly unknotted. This follows from the fact that φ # (C) = φ # for all φ ∈ Diff 0 (M ) and all C ≥ 1.

Therefore, by the definition of d SBM , we obtain

d SBM (U * g 1 M, U * g 2 M ) ≤ ln C ≤ 1 2 d RBM (g 1 , g 2 ) + ε 2 .
Since the inequality holds for every ε > 0, the conclusion follows.

Remark 4.2.9. Recall that, for

C ≥ 1, a homeomorphism φ : (X, d X ) → (Y, d Y ) between two metric spaces is called C-bi-Lipschitz if it holds 1 C d X (x, y) ≤ d Y (φ(x), φ(y)) ≤ Cd X (x, y),
for every two x, y ∈ X. The Lipschitz distance (see [START_REF] Burago | A course in metric geometry[END_REF]) between two bi-Lipschitz homeomorphic metric spaces (X, d X ) and (Y, d Y ) is defined as

d Lip (X, Y ) = inf{ln C ∈ [0, +∞) | ∃φ : (X, d X ) → (Y, d Y ), φ is C-bi-Lipschitz}.
The following lemma shows a connection between d RBM and d Lip .

Lemma 4.2.10. Let g 1 , g 2 be two Riemannian metrics on a closed manifold M and let φ ∈ Diff(M ). Then

1 C 2 g 2 φ * g 2 C 2 g 1 ⇔ φ : (M, g 1 ) → (M, g 2 ) is C-bi-Lipschitz.
Proof. We will prove the two directions separately. ⇒: Let x, y ∈ M and let γ : [0, 1] → M be a curve s.t. γ(0) = x, γ(1) = y. We estimate

L g 2 (φ • γ) = 1 0 γ(t) φ * g 2 dt ≤ C 1 0 γ(t) g 1 dt = CL g 1 (γ).
Taking infimum over γ yields d g 2 (φ(x), φ(y)) ≤ Cd g 1 (x, y).

Inequality 1 C d g 1 (x, y) ≤ d g 2 (φ(x), φ(y)
) is proven similarly. ⇐: Take any x ∈ M and v ∈ T x M. Let U x be a convex normal neighborhood of x with respect to g 1 and V φ(x) a convex normal neighborhood of φ(x) with respect to g 2 . Let γ : (-ε, ε) → U be a curve such that γ(0) = x, γ(0) = v and im(φ • γ) ⊂ V. Since U and V are convex and normal it holds

d g 1 (x, γ(t)) = (exp g 1 x ) -1 (γ(t)) g 1 ,
as well as

d g 2 (φ(x), φ • γ(t)) = (exp g 2 φ(x) ) -1 (φ • γ(t)) g 2 .
Thus, from the bi-Lipschitz condition we have that

1 C (exp g 1 x ) -1 (γ(t)) g 1 ≤ (exp g 2 φ(x) ) -1 (φ • γ(t)) g 2 ≤ C (exp g 1 x ) -1 (γ(t)) g 1 .
Restricting to t > 0 and dividing all inequalities by t gives us

1 C (exp g 1 x ) -1 (γ(t)) t g 1 ≤ (exp g 2 φ(x) ) -1 (φ • γ(t)) t g 2 ≤ C (exp g 1 x ) -1 (γ(t)) t g 1 .
Taking lim t→0 + we get that

1 C d dt t=0 (exp g 1 x ) -1 (γ(t)) g 1 ≤ d dt t=0 (exp g 2 φ(x) ) -1 (φ • γ(t)) g 2 ≤ C d dt t=0 (exp g 1 x ) -1 (γ(t)) g 1 . Since exp * (0) = 1 it follows that 1 C γ(0) g 1 ≤ φ * ( γ(0)) g 2 ≤ C γ(0) g 1 , i.e. 1 C v g 1 ≤ v φ * g 2 ≤ C v g 1 ,
which completes the proof.

One might modify the definition of the Lipschitz distance by considering only bi-Lipschitz homeomrphisms which are homotopic to the identity. Denote the distance defined in this way by d Lip 0 . In light of the above lemma, the definitions of d RBM (g 1 , g 2 ) resembles that of d Lip 0 ((M, g 1 ), (M, g 2 )) (up to a factor of two), the difference being in the choice of diffeomorphisms versus bi-Lipschitz homeomorphisms. It would be interesting to compare d RBM and d Lip 0 .

Symplectic homology as a persistence module 4.3.1 Background on symplectic homology

Symplectic homology has been developed in the 90's by the work of many people, see [START_REF] Floer | Symplectic homology I Open sets in C n[END_REF][START_REF] Floer | Applications of symplectic homology I[END_REF][START_REF] Cieliebak | Symplectic homology II A general construction[END_REF][START_REF] Cieliebak | Applications of symplectic homology II: Stability of the action spectrum[END_REF][START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF]. There exist different versions of the theory, depending on the class of manifolds and admissible Hamiltonians which are considered. We will use the version developed in [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF] and [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] (with different signs from [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF]).

Throughout this chapter, all Floer homologies as well as symplectic homology are taken with Z 2 -coefficients. As a result all persistence modules will also be persistence modules over Z 2 .

We start by briefly recalling the setup of [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF] and [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF]. For a fixed homotopy class α of free loops in M , consider the following space

L α (T * M ) = ¶ z : S 1 → T * M | z = (x, y), x : S 1 → M s.t. [x] = α and y(t) ∈ T * x(t) M © .
Recall that (T * M, ω can = dλ can ) is a symplectic manifold and given a Hamiltonian function H : R/Z × T * M → R we may define its Hamiltonian vector field X H by i X H ω can = -dH. The collection of all Hamiltonian 1-periodic orbits of H in L α (T * M ) is denoted by P(H; α). Recall also that the symplectic action functional A H is given by

A H (z) = 1 0 H t (z(t))dt - S 1 z * λ can ,
for any loop z :

S 1 = R/Z → T * M. The action spectrum of H in class α is Spec(H; α) = {A H (z) | z ∈ P(H; α)}.
Since T * M is not compact, in order to define Floer homology, we need to impose certain restrictions on the Hamiltonian H. The standard assumption in this situation is that H is linear4 outside a compact subset of T * M. For simplicity, in this section we only consider compactly supported Hamiltonians, i.e. linear outside of a compact set with slope equal to zero, as this class of Hamiltonians suffices to define symplectic homology. However, in the proof of Theorem 4.4.6 we will need to work with non-zero slopes and we will review the relevant setup in Subsection 4.4. (H) α . This is homology of a Floer chain complex generated by elements of P(H; α) with action in [a, b) (see [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF][START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] for details).

Grading on Floer chain complex is defined using the Lagrangian distribution of vertical subspaces T v T * M ⊂ T T * M given by T v

x T * M = ker dπ(x) where π : T * M → M is projection. Namely, let z ∈ P(H; α) and let Φ :

S 1 × R 2n → z * (T T * M ) be a symplectic trivialization such that Φ t (0×R n ) = T v z(t) T * M for all t ∈ S 1 .
The existence of such a trivialization follows from orientability of z * (T v T * M ) (which follows from orientability of M ), see, for example, Lemma 1.2 in [START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF]. Now, if φ H t is the Hamiltonian flow of H, φ H t (z(0)) = z(t), we have a path of symplectic matrices

P (t) = Φ -1 t • dφ H t (z(0)) • Φ 0 , t ∈ [0, 1],
and we define ind HF (z) = ind CZ (P ), where ind CZ stands for the Conley-Zehnder index. It is easy to check that ind HF (z) does not depend on the choice of Φ as above, see Lemma 1.3 in [START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF]. Moreover, our conventions for the Conley-Zehnder index are chosen in such a way that isomorphism in Theorem 4.4.6 preserves grading, see [START_REF] Weber | Perturbed closed geodesics are periodic orbits: index and transversality[END_REF][START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF] and references therein. We now focus on defining symplectic homology of an admissible domain U ∈ C M . Denote by H U the set of all functions on S 1 ×T * M compactly supported in S 1 ×Int(U ). Given a < b (with a, b possibly being ±∞), let 

H U,a,b = {H ∈ H U | a, b / ∈ Spec(H; α) and 0 / ∈ [a, b] if α = [pt]} If b = +∞,
σ 12 : HF [a,b) * (H 1 ) α → HF [a,b) * (H 2 ) α .
Moreover, the map σ 12 does not depend on the choice of the monotone homotopy. In general, σ 12 may not be an isomorphism. However if there exists a monotone homotopy τ → H τ such that H τ ∈ H U,a,b for every τ , then σ 12 is an isomorphism, see Proposition 4.5.1 in [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF]. Such a monotone homotopy is called action-regular. For a detailed treatment of maps induced by monotone homotopies, see [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF][START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] and references therein. We will need the following statement (see, for example, Lemma 2.7 in [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF]). 

[a,b) * (H 1 ) α → HF [a,b) * (H 2 ) α for H 1 H 2 ,
define an inverse system of Z 2 -vector spaces over (H U,a,b , ). Thus we can take the inverse limit of such an inverse system, which leads to the definition of symplectic homology. For a general background on inverse system and inverse limit, see subsection 4.6 in [START_REF] Biran | Propagation in Hamiltonian dynamics and relative symplectic homology[END_REF].

As we mentioned in the introduction, if U ∈ C M then (∂U, λ can | ∂U ) is a contact manifold. We denote by Spec(∂U ) the set of periods of all periodic Reeb orbits of (∂U, λ can | ∂U ). Recall that U is called non-degenerate if all periodic Reeb orbits of (∂U, λ can | ∂U ) are non-degenerate. In this case for every T > 0 there are finitely many Reeb orbits of period less than T and in particular Spec(∂U ) is discrete. We are mainly interested in the functorial properties of filtered symplectic homology, which are expressed by the following proposition. (1) If U φ -→ V (recall that this means there exists a π1 -trivial Liouville embedding from U to V ), then there exists a persistence module morphism

h φ : SH * ,α (V ) → SH * ,α (U ). Moreover, if U φ - → V ψ - → W , the following diagram commutes SH * ,α (W ) h ψ / / h ψ•φ 4 4 SH * ,α (V ) h φ / / SH * ,α (U )
. 5 Here we think of a Floer chain complex CF [a,+∞) 

* (H, α) as a quotient CF [a,+∞) * (H, α) = CF (-∞,+∞) * (H, α)/CF (-∞,a) * (H, α).
(2) For C, a > 0, there exists a canonical persistence module isomorphism r C : SH a * (U ; α) -→ SH Ca * (CU ; α). These ismorphisms satisfy (r C ) -1 = r is the structure map of the persistence module SH * ,α (U ).

Similarly, for C ≤ 1, we have the commutative diagram

SH Ca * (CU ; α) SH a * (U ; α) r C o o SH Ca * (U ; α) h Ca i h h ι SH * ,α(U ) Ca,a 7 
7
where h Ca i is the persistence module morphism induced by inclusion

CU i - → U and ι SH * ,α(U ) Ca,a
is the structure map of the persistence module SH * ,α (U ).

(3) If φ : U → V is a π1 -trivial Liouville embedding, then for any positive C and a,

it holds h Ca φ(C) • r C = r C • h a φ .
In other words, the following diagram commutes:

SH a * (V ; α) h a φ / / r C SH a * (U ; α) r C SH Ca * (CV ; α) h Ca φ(C)
/ / SH Ca * (CU ; α) (4) Let U ⊂ V and suppose a Liouville embedding φ : U → V is isotopic to inclusion i U through Liouville embeddings, i.e. strongly unknotted. Then h φ = h i U .

The proof of Proposition 4.3.4 can be derived from Definition 4.3.3 and is left to an interested reader. The proof is analogous to the proof in the case of star-shaped domains which is treated in [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF]. The main difference between the two cases is in the way the grading is defined. Indeed, in the case of star-shaped domains this is done using a symplectic trivialization of the tangent bundle over a disc capping the orbit, while, as explained above, we use the vertical Lagrangian distribution. Hence, we should prove that in our case h f preserves grading. We do this in the lemma that follows.

Lemma 4.3.5. Let M be a closed, orientable manifold, U, V ∈ C M non-degenerate domains and let f : U → V be a π1 -trivial Liouville embedding. Then h f preserves grading.

Proof. For H ∈ H U , denote by f * H ∈ H V the extension by zero of H • f -1 . Recall from [START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF] that h f is induced by the map f * between Floer chain complexes of H and f * H. This map sends a periodic orbit z ∈ P(H; α) to a periodic orbit f • z ∈ P(f * H; α). Hence, we need to prove that ind HF (z) = ind HF (f • z) where both indices are calculated using the vertical Lagrangian distribution. To this end, let Φ :

S 1 × R 2n → z * (T T * M ), Ψ : S 1 × R 2n → (f • z) * (T T * M ) be symplectic trivializations such that for all t ∈ S 1 it holds Φ t (0 × R n ) = T v z(t) T * M, Ψ t (0 × R n ) = T v f (z(t)) T * M. By definition ind HF (z) = ind CZ (Φ -1 t • dφ H t (z(0)) • Φ 0 ), as well as ind HF (f • z) = ind CZ (Ψ -1 t • dφ f * H t (f (z(0))) • Ψ 0 ).
Since f is a symplectic embedding, we have that

dφ H t = (df ) -1 • dφ f * H t • df and thus ind HF (z) = ind CZ (Φ -1 t • (df ) -1 • dφ f * H t • df • Φ 0 ) = ind CZ (Φ -1 t • (df ) -1 • Ψ t • Ψ -1 t • dφ f * H t • Ψ 0 • Ψ -1 0 • df • Φ 0 ) = ind CZ (θ(t) • Φ -1 0 • (df ) -1 • Ψ 0 • Ψ -1 t • dφ f * H t • Ψ 0 • Ψ -1 0 • df • Φ 0 ), where θ(t) = Φ -1 t • (df ) -1 • Ψ t • Ψ -1 0 • df • Φ 0 is a loop of symplectic matrices. One
readily checks that θ(0) = θ(1) = 1 and hence, using loop and naturality properties of the Conley-Zehnder index, we have that

ind HF (z) = ind CZ (Φ -1 0 • (df ) -1 • Ψ 0 • Ψ -1 t • dφ f * H t • Ψ 0 • Ψ -1 0 • df • Φ 0 ) + 2µ(θ) = ind CZ (Ψ -1 t • dφ f * H t • Ψ 0 ) + 2µ(θ) = ind HF (f • z) + 2µ(θ),
where µ denotes the Maslov index. Thus, our goal is to show that µ(θ) = 0.

Fix a Lagrangian subspace V 0 ⊂ R 2n given by V 0 = Φ -1 0 ((df ) -1 (T v f (z(0)) T * M )). Loop θ induces a loop of Lagrangian subspaces Λ(t) = θ(t)V 0 and from properties of Φ and Ψ it follows that Λ

(t) = Φ -1 t ((df ) -1 (T v f (z(t)) T * M )). Let G : [0, 1] × S 1 → U be a homotopy such that G 0 (t) = z(t), G 1 (t) = z(t) for z : S 1 → M ⊂ U (such G exists because U is fiberwise star-shaped). Let Φ : [0, 1] × S 1 × R 2n → G * (T T * M ) be a symplectic trivialization such that for all t ∈ S 1 , Φ 0,t = Φ t and for all s ∈ [0, 1], t ∈ S 1 it holds 6 Φ s,t (0 × R n ) = T v G(s,t) T * M. Denote by Φt = Φ 1,t : S 1 × R 2n → z * (T T * M ). Now, Φ -1 s,t ((df ) -1 (T v f (G(s,t)) T * M
)) provides a homotopy between loops Λ(t) and Λ(t

) := Φ-1 t ((df ) -1 (T v f (z(t)) T * M )) of Lagrangian subsapaces of R 2n . Thus, µ(θ) = µ(Λ) = µ( Λ) = µ( Φ-1 t ((df ) -1 (T v f (z(t)) T * M )), 0 × R n ) = µ( Φ-1 t ((df ) -1 (T v f (z(t)) T * M )), Φ-1 t (T v z(t) T * M )),
where µ(•, •) denotes the relative Maslov index for the pair of Lagrangian paths, see [START_REF] Robbin | The Maslov index for paths[END_REF]. Now, notice that (df ) -1 (T v T * M ) and T v T * M are Lagrangian subbundles of the symplectic vector bundle T T * M over M and we may define their Maslov class, µ T v T * M,(df ) -1 (T v T * M ) ∈ H 1 (M ; Z), see [START_REF]Holomorphic curves in symplectic geometry[END_REF] for the definition and properties of the Maslov class of a pair of Lagrangian subbundles. Moreover, it holds

µ( Φ-1 t ((df ) -1 (T v f (z(t)) T * M )), Φ-1 t (T v z(t) T * M )) = µ T v T * M,(df ) -1 (T v T * M ) ([z]). (4.10)
Since, T v T * M and T M are fiberwise transversal Lagrangian subbundels of T T * M , we have that µ(T M, T v T * M ) = 0 and hence

µ T v T * M,(df ) -1 (T v T * M ) = µ T M,T v T * M + µ T v T * M,(df ) -1 (T v T * M ) = µ T M,(df ) -1 (T v T * M ) . (4.11) 
Usind df to identify T T * M and f * (T T * M ) as symplectic vector bundles over M, we have that µ T M,(df

) -1 (T v T * M ) = µ T M,f * (T v T * M ) = µ f , (4.12) 
where µ f denotes the Maslov classs of a Lagrangian immersion f : M → T * M. Since f is actually an exact Lagrangian embedding, it follows from [86, Appendix E] that µ f = 0 and we have µ

(θ) = µ f ([z]) = 0, which proves that ind HF (z) = inf HF (f • z).
As explained in the introduction, in order to use standard (additive) parametrization of persistence modules, we also consider a logarithmic version of SH * ,α (U ). Proof. The second inequality directly follows from the first one and Proposition 4.2.8. Thus we will prove the first inequality. By Definition 4.1.4, for any ε > 0, there exists

C ≥ 1 with ln C ≤ d SBM (U, V ) + ε such that ( * ) U/C φ - → V ψ - → CU and ψ • φ is strongly unknotted; ( * * ) V /C ψ(C -1 ) ----→ U φ(C) --→ CV and φ(C) • ψ(C -1
) is strongly unknotted.

Then, (1) and ( 4) in Proposition 4.3.4 together with ( * ) imply for any positive a, 

h a φ • h a ψ = h a ψ•φ = h a i where i is the inclusion i : U/C → CU. Moreover, (2) in 
h a ψ / / h a i $ $ h a i 4 4 SH a * (V ; α) h a φ / / SH a * (U/C; α) r C SH a C * (U ; α) ι SH * ,α(U ) a/C,a / / r C O O SH a * (U ; α) ι SH * ,α(U ) a,Ca / / h a i : : SH Ca * (U ; α) (4.13) 
where h i is induced by the inclusion i : U → CU and h i is induced by the inclusion i : U/C → U . Now set

Ψ := h ψ • r C where Ψ a/C = h a ψ • r C : SH a C * (U ; α) → SH a * (V ; α); Φ := r C • h φ where Φ a = r C • h a φ : SH a * (V ; α) → SH Ca (U ; α).
For any positive a, (4.13) implies

Φ a • Ψ a/C = (r C • h a φ ) • (h a ψ • r C ) = r C • h a i • h a i • r C = ι SH * ,α(U ) a,Ca • ι SH * ,α(U ) a/C,a = ι SH * ,α(U ) a/C,Ca .
Similarly to (4.13) , ( 1), ( 2) and ( 4) in Proposition 4.3.4 together with ( * * ) give a commutative diagram SH a * (CV ; α)

h a φ(C) / / h a j $ $ h a j 4 4 SH a * (U ; α) h a ψ(C -1 ) / / SH a * (V /C; α) r C SH a C * (V ; α) ι SH * ,α(V ) a/C,a / / r C O O SH a * (V ; α) ι SH * ,α(V ) a,Ca / / h a j : : SH Ca * (V ; α) (4.14) 
where h j , h j and h j are induced by the inclusions j : V /C → CV , j : V → CV and j : V /C → V respectively. Moreover, applied to Ψ and Φ which we defined above, (3) in Proposition 4.3.4 gives

Φ a/C = r C • h a/C φ = h a φ(C) • r C and Ψ a = h Ca ψ • r C = r C • h a ψ(C -1 ) . Then commutative diagram (4.14) implies Ψ a • Φ a/C = (h Ca ψ • r C ) • (r C • h a/C φ ) = r C • h a ψ(C -1 ) • h a φ(C) • r C = r C • h a j • h a j • r C = ι SH * ,α(V ) a,Ca • ι SH * ,α(V ) a/C,a = ι SH * ,α(V ) a/C,Ca .
Therefore, passing to the logarithmic version of symplectic persistence modules defined in Definition 4.3.6, the existence of the pair (Φ, Ψ) implies that S * ,α (U ) and S * ,α (V ) are (ln C)-interleaved. Hence, by the isometry theorem (Theorem 2.1.21),

d bottle (B * ,α (U ), B * ,α (V )) = d inter (S * ,α (U ), S * ,α (V )) ≤ ln C ≤ d SBM (U, V ) + ε.
We draw the conclusion by letting ε → 0.

Filtered homology of the free loop space

In this section we review basic notions about the homology of the free loop space filtered by energy and show how this filtered homology relates to symplectic homology of the unit codisc bundle.

Morse-Bott perspective

Let (M, g) be a closed, orientable, Riemannian manifold, α a homotopy class of free loops in M and L α (M ) the space of smooth loops in M in class α. Recall that the energy functional

E g : L α (M ) → R is defined as E g (γ) = 1 0 || γ|| 2 g 2 dt for any γ ∈ L α (M )
. This functional is never Morse, but rather Morse-Bott in a generic situation. In this subsection we briefly review some basic notions of Morse-Bott homology in the context of E g . Our exposition mostly follows Section 4 in [START_REF] Abbondandolo | Estimates and computations in Rabinowitz-Floer homology[END_REF], which is based on [START_REF] Abbondandolo | Lectures on the Morse complex for infinitedimensional manifolds[END_REF] and [START_REF] Frauenfelder | The Arnold-Givental conjecture and moment Floer homology[END_REF]. For other treatments of this topic, see [START_REF] Klingenberg | Lectures on closed geodesics[END_REF][START_REF] Oancea | Morse theory, closed geodesics, and the homology of free loop spaces. Free Loop Spaces in Geometry and Topology[END_REF].

Let f : W → R be a smooth function on a Hilbert manifold W and assume that Crit(f ) consists of a disjoint union of closed submanifolds of W. Hessian, Hess(f ) p , at a point p ∈ Crit(f ) is a bilinear form on T p W , and we have that T p Crit(f ) ⊂ ker(Hess(f ) p ). Let N ⊂ Crit(f ) be a connected component and p ∈ N a critical point.

We define nullity of p to be equal to dim(ker(Hess(f ) p )) -1 and index of p to be the maximal dimension of a subspace of T p W on which Hess(f ) p is negative definite. Both index and nullity are constant along N and hence we may define index and nullity of N as index and nullity of any point in N. N is said to be a non-degenerate critical submanifold of f if ker(Hess(f ) p ) = T p Crit(f ) for all p ∈ N or equivalently if nullity of N equals dim N -1.

We consider E g as a functional on the space W 1,2 (S 1 , M ) ⊃ L α (M ) which is a Hilbert manifold. Critical points of E g are closed geodesics (this includes constant loops too). By a closed geodesic, we mean a closed curve γ : S 1 → M such that ∇ γ γ = 0. In particular, || γ|| 2 g = constant. Constant geodesics form a critical submanifold diffeomorphic to M. This critical submanifold is always non-degenerate and has index equal to 0 (see Proposition 2.4.6 in [START_REF] Klingenberg | Lectures on closed geodesics[END_REF]). On the other hand, any non-constant closed geodesic appears in an S 1 -family corresponding to reparameterizations. More precisely, if γ is a non-constant closed geodesic of constant speed, so is s • γ, s ∈ S 1 given by (s • γ)(t) = γ(t + s). We say that a non-constant closed geodesic γ is nondegenerate if S 1 • γ is a non-degenerate critical submanifold, i.e. nullity of S 1 • γ is zero.

Definition 4.4.1 ( [6]

). A metric g is called bumpy if all of its closed geodesics are non-degenerate. One may check that this definition is equivalent to (U * g M, λ can ) being a non-degenerate domain.

Remark 4.4.2. A generic Riemannian metric is bumpy, see [START_REF] Abraham | Bumpy metrics[END_REF][START_REF] Anosov | On generic properties of closed geodesics[END_REF] for a precise statement.

Remark 4.4.3. In certain cases index and nullity of a closed geodesic γ can be computed in a more direct way by analyzing Poincare return map and Jacobi vector fields along γ. We will make this precise in Section 4.6 and use it to carry out calculations for the bulked spheres and multi-bulked surfaces.

If Crit(E g ) consists only of non-degenerate critical submanifolds E g is called Morse-Bott. For a bumpy g, E g is Morse-Bott and one may use it to define Morse-Bott homology. There are different approaches to constructing Morse-Bott homology (see [START_REF] Hurtubise | Three approaches to Morse-Bott homology[END_REF] and references therein for finite dimensional cases) and we focus on the one described in [START_REF] Frauenfelder | The Arnold-Givental conjecture and moment Floer homology[END_REF] which uses moduli spaces of flow lines with cascades. Let g by a bumpy metric and pick an auxiliary Morse function h on Crit(E g ), meaning Morse on each connected component of Crit(E g ). If x ∈ Crit(h), it follows that x ∈ N, where N ⊂ Crit(E g ) is a connected critical submanifold of E g and we define total index of x as ind Eg,h (x) = ind Eg (N ) + ind h (x), where ind Eg (N ) denotes the index of N as a critical submanifold and ind h (x) denotes the standard Morse index. Slightly abusing the notation, throughout this chapter we will write just ind when it is clear what is the index in question. Morse-Bott k-th chain group in homotopy class α is defined as

CM B k,α (E g , h) = Span Z 2 {x ∈ Crit(h) | [x] = α, ind Eg,h (x) = k} .
In order to define the differential, we introduce moduli spaces of flow lines with cascades. Fix two regular metrics7 , one on W 1,2 (S 1 , M ), the other one on Crit(E g ) and denote by ∇E g and ∇h the gradient vector fields corresponding to these metrics. For x, y ∈ Crit(h) let

M cas 0 (x, y) = {u : R → W 1,2 (S 1 , M ) | u = -∇h(u), u(-∞) = x, u(+∞) = y}.
Note that M cas 0 (x, y) can only be non-empty if x and y belong to the same connected component of Crit(E g ). For k ≥ 1 define M cas k (x, y) as the set of pairs (u, t) where u = (u 1 , . . . , u k ) is a k-tuple of negative gradient flow lines u i : R → W 1,2 (S 1 , M ), ui = -∇E g (u i ), and t = (t 1 , . . . , t k-1 ) a (k -1)-tuple of non-negative numbers t i ≥ 0 such that 1. u 1 (-∞) ∈ W u (x), u k (+∞) ∈ W s (y), where W u (x) and W s (y) denote respectively unstable and stable manifolds of x and y with respect to the flow of -∇h.

2.

For every 1 ≤ i ≤ k -1 there exists a negative gradient flow line v i : R → Crit(E g ), vi = -∇h(v i ) such that

v i (0) = u i (+∞), v i (t i ) = u i+1 (-∞).
Now, R acts freely on each of u i by translations and thus R k acts freely on M cas k (x, y) and we denote

Mcas k (x, y) = M cas k (x, y)/R k and Mcas (x, y) = k≥0 Mcas k (x, y).
Regularity of the choice of metrics implies that Mcas (x, y) is a smooth manifold of dimension ind Eg,h (x) -ind Eg,h (y) -1. When ind Eg,h (x) = ind Eg,h (y) + 1 this manifold is zero-dimensional and compact, i.e. it is a finite set of points, and we denote by n(x, y) the number of points in Mcas (x, y) modulo 2. The Morse-Bott differential

∂ : CM B k,α (E g , h) → CM B k-1,α (E g , h), is given by ∂x = y,ind y=k-1 n(x, y)y. 
It satisfies ∂ 2 = 0 and the resulting Morse-Bott homology does not depend on the regular choices of two metrics, h or E g . In fact, we have that

HM B k,α (E g , h) ∼ = H k (L α (M ); Z 2 ).
For our purposes it is essential to consider Morse-Bott chain complex together with the filtration by energy, i.e., we define

CM B λ k,α (E g , h) = Span Z 2 {x ∈ Crit(h) | [x] = α, ind Eg,h (x) = k, E g (x) ≤ λ} .
Since E g decreases along the flow lines of -∇E g , ∂ restricts to CM B λ k,α (E g , h) and we may define filtered Morse-Bott homology HM B λ k,α (E g , h). In this case it holds

HM B λ k,α (E g , h) ∼ = H k (L λ α (M ); Z 2 ), (4.15) 
and this isomorphism commutes with the maps induced from inclusions of sublevel sets {E g ≤ λ}.

If g is bumpy, then for all λ ≥ 0 there are finitely many critical submanifolds in the sublevel {E g ≤ λ} and hence CM B λ k,α (E g , h) is finitely generated (see Theorem 3.5 in [START_REF] Oancea | Morse theory, closed geodesics, and the homology of free loop spaces. Free Loop Spaces in Geometry and Topology[END_REF] and references therein). This, together with (4.15) implies that the collection of data

H * ,α (M, g) = ß {H * (L λ α (M, g); Z 2 )} λ∈R >0 ; {ι λ,η : H * (L λ α (M, g); Z 2 ) → H * (L η α (M ); Z 2 )} λ≤η ™ (4.16)
forms a persistence module with Z 2 -coefficients, where ι λ,η are induced by inclusion L λ α (M, g) → L η α (M, g) when λ ≤ η. Moreover, since the endpoints of bars in the barcode B(H * ,α (M, g)) come from generators of CM B λ k,α (E g , h), the barcode B(H * ,α (M, g)) has only finitely many endpoints of bars below every fixed λ ≥ 0. These endpoints are equal to the energies of certain closed geodesics. Remark 4.4.4. For isomorphism (4.15) to hold it is enough that all closed geodesics of energy not greater than λ are non-degenerate. Indeed, one may apply the same considerations as above directly to L λ α (M ).

Let us sum up the important features of the above construction. Firstly, every non-constant, non-degenerate closed geodesic gives rise to a critical submanifold of E g diffeomorphic to S 1 . There exists a function on S 1 which has exactly 2 critical points of Morse index 0 and 1 (for example the standard height function). By picking the auxiliary function h to be equal to such a function on each of the S 1 -critical submanifolds, we obtain that to each non-constant, non-degenerate closed geodesic γ correspond two critical points of h whose total indices are equal to ind γ and ind γ +1. In other words, γ produces two generators of the chain complex CM B * ,α (E g , h), one in degree ind γ and the other one in degree ind γ + 1. On the other hand, critical submanifold of constant geodesics is diffeomorphic to M and has index equal to 0. Hence it gives rise to critical points of h whose total indices are equal to their Morse indices with respect to h. In other words, if we view h as a function on M, each critical points of Morse index k produces a generator of CM B k,pt (E g , h). Finally the differential counts certain broken trajectories in L α M. Each broken trajectory can be viewed as a tuple of maps from a cylinder to M connecting different closed geodesics.

The isomorphism with symplectic homology

In this subsection, we will elaborate a result which enables us to transfer computations from symplectic homology to the homology of the loop space. It states that, under certain parametrizations, filtered versions of these homologies are isomorphic as persistence modules, see Theorem 4.4.6. We will use this result to describe the barcode of the symplectic persistence module associated to the unit cotangent bundle of metrics coming from our main geometric constructions, see Sections 4.5 and 4.6.

The isomorphism between symplectic homology or Floer homology of the cotangent bundle and the homology of the loop space first appeared in [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF]. Other versions of this isomorphism, constructed using different methods, have appeared in [START_REF] Salamon | Floer homology and the heat flow[END_REF][START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF][START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF][START_REF] Abbondandolo | Corrigendum: On the Floer homology of cotangent bundles[END_REF][START_REF] Abouzaid | Symplectic cohomology and Viterbo's theorem[END_REF]. The version which fits our conventions is the one from [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] and we give a short exposition of it below. Let us recall some notions first.

Given a closed, orientable, Riemannian manifold (M, g) and a homotopy class α of free loops, denote the loop space of M in class α by L α (M ). We define the length spectrum of g in class α, denoted by Λ α , to be the set of lengths of all closed geodesics in class α. Recall that if g is bumpy there are finitely many closed geodesics below any fixed energy level and hence Λ α is discrete. Remark 4.4.5. One may check that all the endpoints of all bars in B(SH * (U * g M ; α)) belong to Λ α . Indeed, it is enough to check that

ι a,b : SH a * (U * g M ; α) → SH b * (U * g M ; α) is an isomorphism if 0 < a ≤ b are such that [a, b] ∩ Λ α = ∅.
To prove this one considers a radially symmetric Hamiltonian H(ξ) = h( ξ g * ) for h : [0, +∞) → R.

If h is a decreasing function such that h| [0,1-ε] = C, and h| [1,+∞) = 0, taking C large enough (namely C > b) and ε small enough one sees that there are no periodic orbits of H in the action window [a, b]. This implies that

ι a,b : HF [a,∞) * (H) α → HF [b,∞) * (H) α
is an isomorphism and by taking C → +∞, ε → 0 we get the desired conclusion. For more details see [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF].

Recall that

L λ α (M, g) = {γ ∈ L α (M ) | E g (γ)
≤ λ}. We have expained in (4.16), that if g is a bumpy metric then {H * (L λ α (M, g); Z 2 )} λ∈R >0 form a persistence module H * ,α (M, g) such that B(H * ,α (M, g)) has finitely many endpoints of bars below every fixed λ. Moreover the endpoints of bars in B(H * ,α (M, g)) are equal to energies of certain closed geodesics. We are now ready to state the result. Theorem 4.4.6. ( [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF][START_REF] Salamon | Floer homology and the heat flow[END_REF][START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF][START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF][START_REF] Abbondandolo | Corrigendum: On the Floer homology of cotangent bundles[END_REF][START_REF] Abouzaid | Symplectic cohomology and Viterbo's theorem[END_REF]) Let (M, g) be a closed, orientable, Riemannian manifold with bumpy metric g and α a homotopy class of free loops in M . There exists a family of isomorphisms

Φ a : SH a * (U * g M ; α) → H * (L a 2 /2 α (M ); Z 2 ),
for a > 0, which commute with structure maps. In other words, under suitable parameterizations, Φ is a persistence module isomorphism.

For every a ∈ R >0 \Λ α , the isomorphism Φ a as in Theorem 4.4.6 has been constructed in Theorem 3.1 in [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF]. Our goal is to show that this Φ commutes with structure maps and then to extend it to a persistence module isomorphism for all a ∈ R >0 . For reader's convenience, let us review the construction of Φ a from [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] first.

According to Definition 4.3.3, in order to study symplectic homology, we need to understand the associated Hamiltonian Floer homologies. In Subsection 4.3.1 we explained how to associate Floer homology HF 

K U * g M = {H : S 1 ×T * M → R | ∃β > 0, β ∈ R s.t. H t (ξ) = -β ξ g * +β for ξ g * ≥ 1},
and

K U * g M,a,b = {H ∈ K U * g M | a, b / ∈ Spec(H; α) and either β / ∈ Λ α or β / ∈ [a, b]}.
Hamiltonians compactly supported inside U * g M constitute the case β = β = 0 and thus

H U * g M,a,b ⊂ K U * g M,a,b .
As in the compactly supported case if H 1 H 2 one may define a continuation map associated to a monotone homotopy (manifestly if H 1 H 2 slopes satisfy -β H 1 ≥ -β H 2 ). Analogously, a monotone homotopy H τ such that H τ ∈ K U * g M,a,b for every τ is called action-regular. Continuation maps will have the same properties as before, in particular the existence of an action-regular monotone homotopy will imply that the corresponding continuation map is an isomorphism, see [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] for more details.

We are now ready to define Φ a . Fix a ∈ R >0 \Λ α and take a radially symmetric two points r 1 , r 2 ∈ [0, 1] for which h (r i ) = -a for i = 1, 2. If we label them by r 1 ≤ r 2 then h(r 1 ) ≈ C and h(r 2 ) ≈ 0. Up to a small smoothing at ξ g * = r 2 , Hamiltonian Ha is equal to H for ξ g * ∈ [0, r 2 ] and is linear with slope -a for ξ g * ∈ [r 2 , +∞).

Hamiltonian H ∈ H U * g M , H(ξ) = h( ξ g * ) with h : [0, +∞) → R such that h| [0,1-ε) = C > a,
The monotone homotopy from H to Ha gives the isomorphism

c a : HF [a,∞) * (H) α -→ HF [a,∞) * ( Ha ) α (4.17) 
because no Hamiltonian 1-periodic orbit with action in the action window [a, ∞) appears during the homotopy, i.e. it is action-regular.

Moreover, we construct the third Hamiltonian, denoted by H a , in the similar fashion to the construction of Ha . Namely, up to a small smoothing at ξ g * = r 1 , H a coincides with H on the set ξ g * ∈ [0, r 1 ] and is linear with slope -a for ξ g * ∈ [r 1 , +∞). Now, there exists another action-regular monotone homotopy from H a to Ha , see Figure 4.4, which provides another isomorphism Following [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF], for a radially symmetric Hamiltonian function

s a : HF [a,∞) * (H a ) α -→ HF [a,∞) * ( Ha ) α . ( 4 
H = h(r), r = ||ξ|| g * with h (r) ≤ 0, define for any λ ∈ R ≥0 , C(H, λ) = λr * + h(r * ) where h (r * ) = -λ, (4.19) 
if such r * exists. Observe that C(H, λ) is the y-intercept of the line passing through point (r * , h(r * )) with slope -λ. Since the Hamiltonian function H a in Figure 4.4 is concave with respect to r, value C(H a , λ) is well-defined for all λ ∈ [0, a]. Now, the advantage of considering Hamiltonian H a is that it does not have any Hamiltonian 1-periodic orbit of action less than a. On the other hand, the maximal action of the Hamiltonian 1-periodic orbit of H a is less than C(H a , a). Therefore, one gets the following isomorphisms

HF (-∞,C(Ha,a)) * (H a ) α i a Ha --→ HF (-∞,∞) * (H a ) α π a Ha --→ HF [a,∞) * (H a ) α (4.20) 
from the equality on the chain level. For more details regarding all the constructions see Section 3 in [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF].

Finally, Theorem 2.9 in [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] claims that there exists an isomorphism

ψ a Ha : HF (-∞,C(Ha,a)) * (H a ) α -→ H * (L a 2 /2 α (M ); Z 2 ). (4.21) 
Map ψ a Ha essentially comes from the main result in [START_REF] Salamon | Floer homology and the heat flow[END_REF] which compares the symplectic action functional with a certain energy functional on the loop space. Combining all the above defined isomorphisms together, one obtains the following isomorphism,

Φ H,a : HF [a,∞) * (H) α → H * (L a 2 /2 α (M ); Z 2 ) (4.22)
where

Φ H,a = ψ a Ha • (i a Ha ) -1 • (π a Ha ) -1 • s -1 a • c a . The desired isomorphism Φ a is then given by Φ a = lim ← -H∈H U * g M Φ H,a .
Proof. (Proof of Theorem 4.4.6) It follows from the definitions that both persistence modules SH * ,α (U * g M ) and H * ,α (M, g) are such that all the bars in their barcodes have left endpoints closed and right endpoints open. Moreover, by Remark 4.4.5, the endpoints of bars in the barcode of SH * ,α (U * g M ) belong to Λ α and since g is bumpy, for every fixed λ > 0, Λ α ∩ [0, λ] is finite. Thus, it is enough to prove Theorem 4.4.6 for a ∈ R >0 \Λ α and afterwards extend Φ a to a ∈ Λ α by continuity.

From the definition of symplectic homology, it readily follows that for any a < b, there exists a single

H ∈ H U * g M,{a,b} such that ι SH a,b : SH a * (U * g M ; α) → SH b * (U * g M ; α) can be seen as ι HF a,b : HF [a,∞) * (H) α → HF [b,∞) * (H) α .
The example of such H which we consider is a radially symmetric Hamiltonian, shown in Figure 4.5, such that max H ≥ b (thus also max H ≥ a), H is equal to max H for ξ g * = r ≤ 1 -ε with some small ε > 0 and is decreasing in r. 

r = ||ξ|| g * 1 1 -ε H b a

HF

[a,∞) * (H) α ca v v c b ι HF a,b / / HF [b,∞) * (H) α c b HF [a,∞) * ( Ha ) α c / / s -1 a HF [a,∞) * ( Hb ) α inc * / / HF [b,∞) * ( Hb ) α s -1 b HF [a,∞) * (H a ) α sa O O c / / HF [a,∞) * (H b ) α inc * / / s b O O HF [b,∞) * (H b ) α s b O O
Commutativity comes from the following arguments: In the lower-left rectangle, s b is induced from a monotone homotopy from H b to Hb and c is induced from a monotone homotopy from H a to H b . Because H a Ha Hb and H a H b Hb , from (4.9) we get c

Ha Hb slope is -b slope is -a a b H a H b slope is -b slope is -a b a
• s a = s b • c, which implies c = s b • c • s -1
a where s -1 a is the inverse of s a (s a is an isomorphism by (4.18)).

The upper-right rectangle trivially commutes because we may take monotone homotopy inducing c b to be the same as the monotone homotopy inducing c b and hence the maps count the same Floer trajectories.

The lower-right rectangle trivially commutes by the same reason as above, which

implies inc * = s -1 b • inc * • s b .
Finally, we also claim that the following diagram commutes.

HF [a,∞) * (H a ) α c / / (π a Ha ) -1 HF [a,∞) * (H b ) α inc * / / HF [b,∞) * (H b ) α (π b H b ) -1 HF (-∞,∞) * (H a ) α c / / π a Ha O O (i a Ha ) -1 HF (-∞,∞) * (H b ) α 1 / / π a H b O O HF (-∞,∞) * (H b ) α π b H b O O (i b H b ) -1 HF (-∞,C(Ha,a)) * (H a ) α c / / i a Ha O O ψ a Ha * * HF (-∞,C(H b ,a)) * (H b ) α inc * / / i a H b O O ψ a H b HF (-∞,C(H b ,b)) * (H b ) α i b H b O O ψ b H b H * (L a 2 /2 α (M )) ι H a 2 /2,b 2 /2 / / H * (L b 2 /2 α (M ))
The only non-trivial commutativity is of the lower-left triangle and the lower-right rectangle. The former comes from the second proposition of Theorem 2.9 in [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF] while the latter comes from the third proposition of Theorem 2.9 in [START_REF] Weber | Noncontractible periodic orbits in cotangent bundles and Floer homology[END_REF]. Notice that maps π a Ha , i 

A combinatorial lemma

The following combinatorial lemma says that a particular shape of barcodes can help us get a lower bound on the bottleneck distance. The proof of Lemma 4.5.3 comes from a direct computation which we carry out in Subsection 4.6.1. The following proposition is crucial for our proof of Proposition 4.1.16 (lower bound). Proposition 4.5.4. Given any 0 < ε 0 < 1, there exists a positive δ 0 << 1 such that for every x ∈ [0, ∞), there exists a bulked sphere metric g x ∈ G S 2 satisfying the following properties.

(1) Closed geodesic γ 0 has energy E gx (γ 0 ) =

δ 2 0 2 e -2x .
(2) Any closed geodesic γ of (S 2 , g x ) different from γ ±m 0 , m ∈ N has energy E gx (γ) > (3) There exists a constant R x ∈ î»

1 1+ε 0 , » 1 1-ε 0 ó such that R x • g x ∈ ḠS 2 .
123 Part (2) of Proposition 4.5.4 is proven in Subsection 4.6.2. Roughly speaking, it comes from a fact that every closed geodesic γ different from γ ±m 0 has to exit the "narrow neck" and enter the two "spherical regions", i.e. regions where l / ∈ [-a, a]. By making these regions sufficiently large we get that the length of γ must be large compared to the length of γ 0 . Finally, in order to prove (1) and (3) in Proposition 4.5.4, we need an explicit parametrization of S, see Subsection 4.8.1 in the Appendix. Remark 4.5.5. Metrics g x in Proposition 4.5.4 are not bumpy 8 due to the existence of a rotational symmetry. However, they can be perturbed, by a C ∞ -small perturbation, to a bumpy metric which still satisfies all the properties from Lemma 4.5.3 and Proposition 4.5.4 (up to a small difference in logarithms of energies), see [START_REF] Anosov | On generic properties of closed geodesics[END_REF]. Since C ∞ -small perturbations create small differences in d SBM , we ignore this point in the proof that follows, for the sake of clarity.

We are now ready to give a proof of the lower bound in Proposition 4.1.16.

Proof. (Proof of Proposition 4.1.16 (lower bound)) Define Φ : [0, ∞) → G S 2 as Φ(x) = g x where g x is the metric given by Propostion 4.5.4.

Recall that

L λ pt (S 2 , g x ) = {γ ∈ L pt (S 2 ) | E gx (γ) ≤ λ}. and also that H * ,pt (S 2 , g x ) denotes the persistence module given by H λ * ,pt (S 2 , g x ) = H * (L λ pt (S 2 , g x ); Z 2 ), structure maps being induced by inclusions of sublevel sets. Our goal is to describe the barcode B(H * ,pt (S 2 , g x )). By Proposition 4.5.4 all closed geodesics of energy ≤ As explained in Subsection 4.4.1, constant geodesics will produce two generators p 0 ∈ CM B 0,pt (E g , h) and p 2 ∈ CM B 2,pt (E g , h) corresponding to two critical points of a height function on S 2 . On the other hand, by Lemma 4.5.3, every γ ±m 0 satisfies Ind(γ ±m 0 ) = 0 and hence every γ ±m 0 produces two generators p 0 ±m ∈ CM B 0,pt (E g , h) and p 1 ±m ∈ CM B 1,pt (E g , h). These two generators correspond to minimum and maximum of a height function on S 1 -critical submanifold

S 1 • γ ±m 0 . Furthermore E gx (p 0 ) = E gx (p 2 ) = 0 while E gx (p 0 ±m ) = E gx (p 1 ±m ) = mE gx (γ 0 ) = m • δ 2 0 2 e -2x .
The boundary operator does not increase energy and thus we have that

∂p 1 1 = n(p 1 1 , p 0 )p 0 + n(p 1 1 , p 0 1 )p 0 1 + n(p 1 1 , p 0 -1 )p 0 -1 ,
where n(p 1 1 , p 0 ) equals the number of flow lines with cascades connecting p 1 1 to p 0 , and same for n(p 1 1 , p 0 1 ), n(p 1 1 , p 0 -1 ), see Subsection 4.4.1. Since p 1 1 and p 0 1 belong to 8 They may be thought of as "bumpy below energy level

δ 2 0 2 ".
124 the same S 1 -critical submanifold we have that n(p 1 1 , p 0 1 ) = 2 = 0 mod 2. On the other hand, p 1 1 and p 0 -1 have the same energy, but belong to different S 1 -critical submanifolds, which implies that there are no flow lines with cascades connecting them, i.e. n(p 1 1 , p 0 -1 ) = 0. Finally, as the global minimum, p 0 represents the homology class of a point which is not zero, i.e. ∂p 1 1 = p 0 and we conclude that ∂p 1 1 = 0. The same argument shows that ∂p 1 -1 = 0. Thus, we may schematically present boundary relations with the following diagram. 

index 1 p 1 -1 , p 1 1 N OT x x N OT p 1 -2 , p 1 2 . . . index 0 p 0 p 0 -1 , p 0 1 p 0 -2 , p 0 2 . . . energy λ 0 = 0 λ 1 = δ 2 0 2 e -2x λ 2 = δ 2 0 e -
Φ : [0, ∞) → ḠS 2 by Φ(x) = R x • Φ(x) = R x • g x ,
where R x is the rescaling factor given by (3) in Proposition 4.5.4. From Remark 4.2.4 it follows that

d SBM (U * Φ(x) S 2 , U * Φ(y) S 2 ) = d SBM ( R x U * gx S 2 , R y U * gy S 2 ) = d SBM ( » R x /R y U * gx S 2 , U * gy S 2 ) ≥ d SBM (U * gx S 2 , U * gy S 2 ) -d SBM (U * gx S 2 , » R x /R y U * gx S 2 ) = d SBM (U * gx S 2 , U * gy S 2 ) - 1 2 | ln R x -ln R y | ≥ 1 2 |x -y| - 1 2 | ln R x -ln R y |.
For any ε > 0, take ε 0 = e 2ε -1 e 2ε +1 in Proposition 4.5.4. Then the range of R x given by (3) in Proposition 4.5.4 implies | ln R x -ln R y | ∈ [0, ε]. Thus, we get the desired lower bound.

Proof of Proposition 4.1.17

Let us give the definition of a multi-bulked surface first. Let Σ be a closed, orientable surface of genus at least 1.

We call a subset of R 3 a cylindrical segment if it can be obtained as an open surface of revolution with a constant profile function r : (L -, L + ) → R on some interval (L -, L + ). Lengths of ∆ i(i+1) satisfy L g (∆ 12 ) = ... = L g (∆ (N -1)N ).

Energies of γ i satisfy E g (γ 1 ) ≤ ... ≤ E g (γ N ).

For any N ∈ N, let

T (N ) = x = (x 1 , ..., x N ) ∈ [0, ∞) N | x 1 ≤ x 2 ≤ ... ≤ x N .
Similarly to Lemma 4.5.3, we have the following result. Proposition 4.5.8. Let Σ be a closed, orientable surface of genus at least 1. For any N ∈ N and 0 < ε 0 < 1, there exists a positive δ 0 << 1 such that for any x = (x 1 , ..., x N ) ∈ T (N ), there exists an N -bulked metric g x ∈ G Σ satisfying the following properties.

(1) Each closed geodesic γ i has energy E g x (γ i ) = δ 2 0 2 e -2x i for i ∈ {1, ..., N }.

(2) Any closed geodesic γ on (Σ, g x ) different from γ 1 , ..., γ N and their iterates has energy E g x (γ) > (4) There exists some constant

R x ∈ î» 1 1+ε 0 , » 1 1-ε 0 ó such that R x • g x ∈ ḠΣ .
Properties (1), ( 2) and ( 3) in Proposition 4.5.8 can be confirmed by the same argument as (1), ( 2) and ( 4) in Proposition 4.5.4. Property (3) in Proposition 4.5.8 essentially comes from the fact that curves ∆ i(i+1) are very long compared to γ j .

The quasi-isometric embedding of (R N , | • | ∞ ) into ḠΣ which we construct to prove Proposition 4.1.17 will be realized as a composition of two quasi-isometric embeddings according to the following scheme

(R N , | • | ∞ ) Q -→ (T (2N ), | • | ∞ ) Ψ -→ ḠΣ .
To this end, in Subsection 4.8.2 we prove the following lemma. Lemma 4.5.9. Fix N ∈ N. There exists a map Q :

(R N , | • | ∞ ) → (T (2N ), | • | ∞ ) such that for any x, y ∈ (R N , | • | ∞ ), 1 4 | x -y| ∞ ≤ |Q( x) -Q( y)| ∞ ≤ (2N ) • | x -y| ∞ .
Remark 4.5.10. Similarly to metrics g x in Proposition 4.5.4, metrics g x in Proposition 4.5.8 may not be bumpy. As exaplained in Remark 4.5.5, they can be perturbed by a d SBM -small perturbation to a bumpy metric which still satisfies all the properties from Lemma 4.5.7 and Proposition 4.5.8 (up to a small difference in logarithms of energies). Again, we ignore this point in the proof that follows, for the sake of clarity.

We are now in a position to give a proof of the lower bound in Proposition 4.1.17. As in the proof of Proposition 4.1.16 each γ i , i = 1, . . . , 2N produces two generators of the Morse-Bott chain complex, p 0 i ∈ CM B 0,α (E g x , h) and p 1 i ∈ CM B 1,α (E g x , h). Moreover these these are the only generators of CM B λ * ,α (E g x , h) for λ ≤ δ 0 2 . In terms of the boundary operator we have that for all i = 1, . . . , 2N it holds ∂p 0 i = 0 as well as n(p 1 i , p 0 i ) = 0 because p 1 i and p 0 i belong to the same S 1 -critical submanifold. We claim that also n(p 1 i , p 0 j ) = 0 when i = j. Indeed, assume that there exists a flow line with cascades (u 1 , . . . , u k , t 1 , . . . , t k-1 ) connecting p 1 i and p 0 j . Since γ i = γ j , we must have k ≥ 1 and one of the flow lines u l would have to start at a critical submanifold S 1 • γ i 1 and end at a critical submanifold S 1 • γ i 2 with i 1 = i 2 . However, this would mean that im u l ⊂ Σ defines a cylinder which connects γ i 1 and γ i 2 and which passes only through loops of energy no greater than λ ≤ δ 2 0 2 . Existence of such a cylinder is ruled out by (3) in Proposition 4.5.8 and hence n(p 1 i , p 0 j ) = 0 for all i, j. This means that for λ ≤

δ 2 0 2 , ∂ = 0 on CBM λ * ,α (E g x , h). Using (4.15) we conclude that B(H 1,α (Σ, g x )) contains bars [E g x (γ i ), C i ( x)) for i = 1, . . . , 2N , with C i ( x) ≥ δ 2 0 2 (possibly C i ( x) = ∞). Moreover, E g x (γ i ) are the 2N smallest left endpoints of bars in B(H 1,α (Σ, g x )).
Recall that B 1,α (U * g x Σ) denotes the barcode of a symplectic persistence module with logarithmic parametrization in degree one and homotopy class α. Theorem 4.4.6 implies that, for any i ∈ {1, ..., 2N },

ln » 2E g x (γ i ), ln » 2C i ( x) = ln δ 0 -x i , ln » 2C i ( x) ∈ B 1,α (U g * x Σ).
Similar conclusion holds for any y ∈ T (2N ). Moreover, ln 2C i ( x) ≥ ln δ 0 -y j for any y j ∈ [0, ∞). Hence, Lemma 4.5.1 implies

1 2 | x -y| ∞ ≤ d bottle (B 1,α (U * g x Σ), B 1,α (U * g y Σ)). Theorem 4.1.7 then yields 1 2 | x -y| ∞ ≤ d SBM (U * g x Σ, U * g y Σ)
. Now Lemma 4.5.9 provides an embedding Φ := Ψ • Q : R N → G Σ , which satisfies

1 8 | x -y| ∞ ≤ 1 2 |Q( x) -Q( y)| ∞ ≤ d SBM (U * Φ( x) Σ, U * Φ( y) Σ),
for any x, y ∈ R N .

Finally, Φ : R N → ḠΣ is defined by setting Φ

( x) = R Q( x) • Φ( x) = R Q( x) • g Q( x)
, where R Q( x) is the rescaling factor given by (4) in Proposition 4.5.8, associated to vector Q( x) ∈ T (2N ). The same argument as in the proof of Proposition 4.1.16 (lower bound) implies

1 8 | x -y| ∞ - 1 2 | ln R Q( x) -ln R Q( y) | ≤ d SBM (U * Φ( x) Σ, U * Φ( y) Σ).
For any ε > 0, take ε 0 = e 2ε -1 e 2ε +1 in Proposition 4.5.8. Then (4) in Proposition 4.5.8 implies the desired lower bound.

4.6 Bulked sphere and multi-bulked surface

Analyzing short geodesics

The goal of this subsection is to prove Lemmas 4.5.3 and 4.5.7. All considerations in this subsection are local and hence apply equally to both propositions. Let us focus on γ 0 on a bulked sphere S. Lemma 4.6.1. The geodesic γ 0 on a bulked sphere is hyperbolic.

We start with some necessary background. Let (M, g) be an n-dimensional Riemannian manifold. Recall that a vector field J along the geodesic path γ : [0, 1] → M is called Jacobi field if it satisfies the Jacobi equation

∇ γ ∇ γ J + R(J, γ) γ = 0, (4.23) 
where R(•, •) stands for the curvature tensor associated to g. Jacobi fields are tangent to the space of geodesic paths with free endpoints. When γ is a closed geodesic, they can be used to calculate index and nullity of γ. To this end, first notice that Jacobi field is uniquely determined by two initial conditions J(0) and ∇ γ J(0). Moreover, we may choose these two vectors freely, which means that the space of Jacobi fields is 2n-dimensional. The two initial conditions J 0 (0) = γ(0), ∇ γ J 0 (0) = 0 and J0 (0) = 0, ∇ γ J0 (0) = γ(0) yield Jacobi fields J 0 (t) = γ(t) and J0 (t) = t γ(t) which are tangent to γ. Let

E(t) = (T γ(t)) ⊥ ⊕ (T γ(t)) ⊥ ⊂ T γ(t) M ⊕ T γ(t) M
be the (2n -2)-dimensional vector bundle along γ, where (T γ(t)) ⊥ denotes the orthogonal space to γ(t) inside T γ(t) M. It is easy to check that if J(0) ⊥ γ(0) and ∇ γ(0) J(0) ⊥ γ(0) then J(t) ⊥ γ(t) and ∇ γ(t) J(t) ⊥ γ(t) for all t ∈ [0, 1]. This means that we may define a family of maps

P (t) : E(0) → E(t)
by P (t)(v, w) = (J(t), ∇ γ J(t)) where J is the Jacobi field with the initial condition (J(0), ∇ γ J(0)) = (v, w). In particula if γ is closed, i.e. γ(t + 1) = γ(t), we have that

P (1) : E(0) → E(0)
and this map is called the linearized Poincare map.

as well as

∇ γ0 ∇ γ0 J(t) = ( J1 (t), 0, 0), (4.26) 
and (4.24) becomes a second order equations

J1 (t) + K • J 1 (t) = 0. (4.27)
Two solutions of this equation are vector fields J + (t) = (e √ -Kt , 0, 0) and J -(t) = (e - √ -Kt , 0, 0). Moreover, initial vectors (J + (0), (∇ γ0 J + )(0)) = ((1, 0, 0), ( √ -K, 0, 0)) and (J -(0), (∇ γ0 J -)(0)) = ((1, 0, 0), (-√ -K, 0, 0)) are linearly independent and hence generate E(0) = (T γ 0 (0)) ⊥ ⊕ (T γ 0 (0)) ⊥ . In order to compute the eigenvalues of the linearized Poincare map P : E(0) → E(1) it is enough to notice that from (4.25) we have

(J + (1), (∇ γ0 J + )(1)) = ((e √ -K , 0, 0), ( √ -Ke √ -K , 0, 0))
as well as

(J -(1), (∇ γ0 J -)(1)) = ((e - √ -K , 0, 0), (- √ -Ke - √ -K , 0, 0)).
Thus ((1, 0, 0), ( √ -K, 0, 0)) and ((1, 0, 0), (-√ -K, 0, 0)) are eigenvectors of P with eigenvalues λ 1 = e √ -K and λ 2 = e - √ -K . Since K = 0, neither one of these has norm one, which means that γ 0 is hyperbolic by definition.

Recall that a closed geodesics is non-degenerate if its nullity is zero. The following lemma is a direct consequence of the second variation formula, see, for example, Corollary 2.5.6 in [START_REF] Klingenberg | Riemannian geometry[END_REF].

Lemma 4.6.3. Nullity of a closed geodesic γ is equal to the dimension of the space of periodic Jacobi fields along γ minus one. In particular, γ is non-degenerate, that is nullity of γ is 0, if and only if there are no periodic Jacobi fields along γ which are orthogonal to γ.

Note that "minus one" in Lemma 4.6.3 comes from the need to exclude the tangent Jacobi field J 0 (t) = γ(t).

When a closed geodesic is hyperbolic, its index as well as the indices of all its iterations are particularly easy to compute. Let us recall some related formulas. When γ is hyperbolic, we have a splitting

E = E s ⊕ E u
such that P (t)| Es is contracting and P (t)| Eu is expanding as t goes from 0 to 1. Now, for each t * ∈ [0, 1], define a number ι(t * ) to be the dimension of the subspace of Jacobi fields J(t) along γ such that (J(t), (∇ γ J(t))) ∈ E s (t), for all t ∈ [0, 1] and J(t * ) = 0. The number of points t * for which ι(t * ) > 0 is finite and the following holds.

Assume that our bulked sphere S ⊂ R 3 is obtained by rotating a profile function r around an axis l as described in Subsection 4.5.2. For a point p ∈ S we denote by l(p) he coordinate of p on the l-axis and by r(p) the value of the profile funtction at l(p), i.e. r(p) is the distance from p to the axis l.

Firstly, we notice that parallel circles given by l = const are geodesics if and only if r (l) = 0. This means that γ -, γ 0 and γ + are the only geodesic parallel circles. In order to describe geodesics which are not parrallel circles we evoke the well-known Clairaut's relation, see, for example, Proposition 4.4 in [START_REF] Shifrin | DIFFERENTIAL GEOMETRY: A first Course in Curves and Surfaces[END_REF].

Theorem 4.6.7. Suppose that S(r) is a surface of revolution obtained by rotating a profile function r around a fixed axis. Then any geodesic on S(r) satisfies the equation

r cos(φ) = constant (4. 28 
)
where φ is the angle between the geodesic and the parallel circles. Conversely, any constant speed curve satisfying (4.28) which is not a parallel circle is a geodesic.

Using notations from Subsection 4.5.2, we call the part of the bulked sphere S where l ∈ (-a, a) the neck of S and the part where |l| ≥ a the spherical regions of S. The next lemma claims that a closed geodesic different from γ ±m 0 , m ∈ N, can not be entirely contained in the neck. Lemma 4.6.8. Assume that γ : R/Z → S is a closed geodesics different form γ ±m 0 , m ∈ N such that l(γ t 0 ) ∈ (-a, a) for some t 0 ∈ R/Z. Then γ intersects either γ -or γ + .

Proof. Since γ = γ ±m 0 , we have that γ is not a parallel circle and thus for some T ∈ R/Z, γ(T ) is transverse to the parallel circle P = {p ∈ S | l(p) = a 0 } for some 0 ≤ a 0 < a. We may assume that T = 0 as well as that γ(0) points away from γ 0 and towards γ + . We can make this assumption because if γ(0) points towards γ 0 we may look at γ -1 (t) = γ(-t) which defines the same curve as γ only with reversed direction. We may also assume that the angle φ(γ(0)) between the parallel circle P and γ(0) satisfies φ(γ(0)) ∈ (0, π 2 ), see Figure 4.11, the case φ(γ(0)) ∈ ( π 2 , π) is treated in the same manner.

Clairaut's relation implies that r(γ(t)) cos(φ(γ(t))) = C 0 > 0. For a small ε > 0 it holds l(γ(-ε)) < a 0 , l(γ(ε)) > a 0 and since γ is closed, we have that for some τ > 0, l(γ(τ )) < a 0 . This means that γ eventually exits the region {l > a} and hence it must intersect P with a negative angle -φ(γ(0)). Formally, there exists τ 1 > 0 such that γ(τ 1 ) ∈ P and φ(γ(τ 1 )) = -φ(γ(0)) < 0. It follows that there exists 0 < τ 0 < τ 1 such that φ(τ 0 ) = 0, and Clairaut's relation implies

C 0 = r(γ(0)) cos(φ(γ(0))) = r(γ(τ 0 )) cos(φ(γ(τ 0 ))) = r(γ(τ 0 )).
Thus r(γ(τ 0 )) < r(γ(0)) and since r increases on the interval [0, a] we have that l(γ(τ 0 )) > a, which proves the claim.

The exact same reasoning applies if we assume that im(u) intersects ∆ 01 at some point p , in which case we get that L g x (u s 0 ) ≥ 2ρ , where ρ is smaller than the injectivity radius at p . Note also that our metric g x has S 1 -symmetry near each ∆ k(k+1) , 0 ≤ k ≤ N because it was defined as an induced metric on a surface of revolution. This means that ρ and ρ may be chosen to be the same for all p ∈ ∆ i(i+1) and all p ∈ ∆ 01 . Moreover, the neighbourhoods of ∆ k(k+1) for 1 ≤ k ≤ N -1 are all isometric and hence ρ and ρ can be chosen independently of i and j. By taking δ0 = min{ρ, ρ }, we have that L g x (u s 0 ) ≥ δ0 . Finally Cauchy-Schwarz inequality yields

E g x (u s 0 ) ≥ L g x (u s 0 ) 2 2 ≥ δ2 0 2 ,
which gives a lower bound as in [START_REF] Abbondandolo | Estimates and computations in Rabinowitz-Floer homology[END_REF].

In order to give a lower bound as in [START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF], first notice that by Lemma 4.6.9 every closed geodesics γ in class α, different than γ 1 , . . . , γ N , either intersects ∆ i(i+1) for some i = 0, . . . , N or it is entirely contained in S \ O(N ). In the first case we get a lower bound

E g x (γ) ≥ δ2 0 2 ,
with the same δ0 as above by applying the exact same argument to γ that we applied to u s 0 .

In the second case we have that γ is also a closed geodesic on im φ ⊂ R 3 , where φ : Σ → R 3 is the embedding we fixed in order to define a multi-bulked surface. This means that E g x (γ) ≥ E min , with E min being the minimal energy of a closed geodesic in class α on im φ. Finally, taking δ 0 < min{ δ0 , √ 2E min } finishes the proof.

4.6.3 Upper bounds in Proposition 4.1.16 and Proposition 4.1.17

In this subsection, we will explain how to prove the upper bounds in Propositions 4.1.16 and 4.1.17.

Recall that metrics g x , x ∈ [0, ∞) which we used to prove lower bound in Proposition 4.1.16 come from bulked spheres which are surfaces of revolution, see Proposition 4.5.4. On the other hand, metrics g x , x ∈ T (N ) which we used to prove lower bound in Proposition 4.1.17, come from multi-bulked surfaces, which contain O(N )part which is a surface of revolution, see Proposition 4.5.8. Moreover, for different x ∈ T (N ), metric g x only differ in the O(N )-part. Thus in order to compare different (multi)-bulked metrics, we will first explain how to compare metrics which come from surfaces of revolution in general.

Let I ⊂ R be an interval and r : I → [0, ∞) a smooth function. Using r as a profile function, we define a surface of revolution S(r) ⊂ R 3 and, by pulling back the standard metric from R 3 , we define a metric g r on I × S 1 . We claim the following. Lemma 4.6.11. Let r 1 , r 2 : I → [0, ∞) be two profile functions and fix C > 0. Then g r 1 Cg r 2 if and only if

(r 1 (l)) 2 ≤ C(r 2 (l)) 2 , 1 + (r 1 (l)) 2 ≤ C(1 + (r 2 (l)) 2 )
for all l ∈ I.

Proof. Introduce local coordinates (l, θ) ∈ I × S 1 . If r : I → [0, ∞) is a smooth profile function, a simple computation shows that the matrix of g r expressed in coordinates (∂ l , ∂ θ ) satisfies

[g r ] (l,θ) = Å 1 + (r (l)) 2 0 0 (r(l)) 2 ã .
By definition g r 1 Cg r 2 is equivalent to • g r 1 ≤ • Cg r 2 at all points (l, θ) ∈ I × S 1 , and hence the claim follows.

From Lemma 4.6.11 we obtain the following corollary.

Corollary 4.6.12. Let r 1 , r 2 : I → [0, ∞) be two profile functions and denote by 9

C = max l∈I max ß r 1 (l) r 2 (l) , r 2 (l) r 1 (l) , r 1 (l) r 2 (l) , r 2 (l) r 1 (l)
™ .

If g r 1 , g r 2 are the induced Riemannian metrics on I × S 1 it holds

1 C 2 g r 1 g r 2 C 2 g r 1 .
Proof. By Lemma 4.6.11 g r 2 C 2 g r 1 is equivalent to

(r 1 (l)) 2 ≤ C 2 (r 2 (l)) 2 , 1 + (r 1 (l)) 2 ≤ C 2 (1 + (r 2 (l)) 2 ).
The first inequality follows directly from the definition of C. Since C ≥ 1, the second inequality follows from

1 + (r 1 (l)) 2 ≤ 1 + C 2 (r 2 (l)) 2 ≤ C 2 + C 2 (r 2 (l)) 2 .
Inequality 1 C 2 g r 1 g r 2 is proven by the same argument.

Finally, we have the following proposition. 9 Here we use the convention that 0 0 = 1.

To prove the upper bound in Proposition 4.1.17, recall that g x is the multi-bulked metric given by Proposition 4.5.8. Moreover, metrics g x for different x ∈ T (N ) only differ in the O(N )-part. Hence, Corollary 4.6.12 and Proposition 4.6.13 imply e -2| x-y|∞ g x g y e 2| x-y|∞ g x , for any x, y ∈ T (N ). Taking φ = 1 M in the definition of d RBM gives d RBM (g x , g y ) ≤ 2| x -y| ∞ .

(4.29)

Map Φ : R N → ḠM in the proof of Proposition 4.1.17 is defined by Φ

( x) = R Q( x) • g Q( x)
where Q : R N → T (2N ) is the quasi-isometric embedding given by Lemma 4.5.9 and R Q( x) is the rescaling factor from (4) in Proposition 4.5.8. The same argument as above together with Lemma 4.5.9 implies, for any x, y ∈ R N ,

d RBM (Φ( x), Φ( y)) ≤ | ln R Q( x) -ln R Q( y) | + 4N • | x -y| ∞ .
For any ε > 0, using (4) in Proposition 4.5.8 with ε 0 = e 2ε -1 e 2ε +1 yields the desired upper bound in Proposition 4.1.17.

Quantitative existence of closed geodesics

The goal of this section is to prove Theorem 4. 

d bottle (B * ,α (U * g 1 M ), B * ,α (U * g 2 M )) ≤ 1 2 d RBM (g 1 , g 2 ) < 1 2 (ln b -ln a). (4.30) Denoting D = d bottle (B * ,α (U * g 1 M ), B * ,α (U * g 2 M )) we have that for every 0 < ε < 1 2 (ln b- ln a) -D there exists a (D + ε)-matching between B * ,α (U * g 1 M ) and B * ,α (U * g 2 M ). Since D + ε < 1 2 (ln b -ln a), the bar [ln a, ln b) ∈ B * ,α (U * g 1 M ) is not erased in this matching but rather has a genuine match [c ε , d ε ) ∈ B * ,α (U * g 2 M ) such that max {|ln a -c ε | , |ln b -d ε |} ≤ D + ε.
Since S * ,α (U * g 2 M ) is pointwise finite dimensional, the fact that a bar [c ε , d ε ) as above exists for all 0 < ε < (U * g 2 M ; α) is not finite dimensional. Finally, by Remark 4.4.5 we know that there exist closed geodesics γ 1 , γ 2 of g 2 such that c 0 = ln 2E g 2 (γ 1 ), d 0 = ln 2E g 2 (γ 2 ) and the proof follows.

In the rest of the section, we focus on proving Theorem 4.1.19.

Lemmas about persistence modules

In order to prove Theorem 4.1.19, we will use a lemma about general persistence modules, see Lemma 4.7.2 below. We start with an auxiliary statement first. 

f = {f t } t∈R : K [a,b) → K [c,d) exists if and only if c ≤ a ≤ d ≤ b. Similarly for b = d = +∞ a non zero persistence module morphism f = {f t } t∈R : K [a,+∞) → K [c,+∞)
exists if and only if c ≤ a.

Proof. Firstly, note that if c ≤ a ≤ d ≤ b there exists a non-zero persistence module morphism f given by f 

t (1 K ) = 1 K for t ∈ [a,
+ ε < d. Now, if f t (1 K ) = 0 for some t ∈ [a, b
), on the one hand we have

f b+ε (ι t,b+ε (1 K )) = f b+ε (0) = 0,
while on the other hand

f b+ε (ι t,b+ε (1 K )) = ι t,b+ε (f t (1 K )) = f t (1 K ) = 0 which gives a contradiction. Recall that if V is a persistence module, for A > 0, shifted module V[A] is defined by V[A] t = V t+A with structure maps ι V[A] s,t = ι V s+A,t+A . Barcode B(V[A]) is a shift of B(V) by A to the left, i.e. [x, y) ∈ B(V[A]) if and only if [x + A, y + A) ∈ B(V).
The following lemma is the main combinatorial ingredient of the proof of Theorem 4.1.19. Lemma 4.7.2. Let V, W be two persistence modules, A, B ≥ 0 non-negative constants and f :

V → W[A], g : W[A] → V[A + B]
persistence module morphisms such that the following diagram commutes

V ι V t,t+A+B / / f ! ! V[A + B]. W[A] g 9 9
If there exists a bar [a, b) ∈ B(V) such that b -a > A + B then there exists a bar

[c, d) ∈ B(W) such that a -B ≤ c ≤ a + A, b -B ≤ d ≤ b + A.
Proof. Fix a decomposition of V given by the structure theorem (Theorem 2.1.8),

V = I∈B(V) K I (4.32) and let V[A + B] = I∈B(V) K I [A + B] (4.33) 
be the induced decomposition of V

[A + B]. Since [a, b) ∈ B(V), K [a,b) is a summand in (4.32) and K [a,b) [A + B] = K [a-A-B,b-A-B) is a summand in (4.33). Denote by π [a-A-B,b-A-B) : V[A + B] → K [a-A-B,b-A-B)
the projection with respect to (4.33). By restricting f to K [a,b) we obtain the following commutative diagram for all t ∈ R :

K t [a,b) ι t,t+A+B / / f t # # K t [a-A-B,b-A-B) W[A] t (π [a-A-B,b-A-B) •g) t 7 7 Condition A + B < b -a implies that [a, b) ∩ [a -A -B, b -A -B) = ∅ and hence ι t,t+A+B : K t [a,b) → K t [a-A-B,b-A-B)
is non-zero and is given by the obvious map equal to

1 K when t ∈ [a, b -A -B) and zero otherwise. Let us fix t 0 ∈ (a, b -A -B) and 1 t 0 ∈ K t 0 [a,b) . By previous, It holds ι t 0 ,t 0 +A+B (1 t 0 ) = 0. Fix a decomposition of W[A], W[A] = I∈B(W[A]) K I (4.34)
and assume that

f t 0 (1 t 0 ) = N i=1 λ i 1 t 0 I i ,
where λ i ∈ K, λ i = 0 and 1 t 0

I i ∈ K t 0 I i for I i ∈ B(W[A]). Since (π [a-A-B,b-A-B) • g) t 0 • f t 0 = ι t 0 ,t 0 +A+B and ι t 0 ,t 0 +A+B (1 t 0 ) = 0, we have that (π [a-A-B,b-A-B) •g) t 0 ( N i=1 λ i 1 t 0 I i ) = 0 and hence there exists some i 0 ∈ {1, ..., N } such that (π [a-A-B,b-A-B) •g) t 0 (λ i 0 1 t 0 I i 0 ) = 0, see Figure 4.13. a b a -A -B b -A -B
x y the projection with respect to (4.34). This projection is a morphism of persistence modules and we have that Proof. (Proof of Theorem 4.1.19) We will prove only the case of a finite bar [x, y) ∈ B(H * ,α (M, g 1 )), the other case is proved in the same manner. 

I i 0 = [x, y) t 0 1 t 0 λ i 0 1 t 0 I i 0 (π [a-A-B,b-A-B) • g) t 0 (λ i 0 1 t 0 I i 0 )
π I i 0 • f : K [a,b) → K I i 0 is a non-zero persistence module morphism because (π I i 0 • f ) t 0 (1 t 0 ) = λ i 0 1 t 0 I i 0 = 0. Thus, Lemma 4.7.1 imples that x ≤ a and y ≤ b. Similarly, restricting g to K I i 0 gives π [a-A-B,b-A-B) • g : K I i 0 → K [a-A-B,b-A-B) . This morphism is non-zero because (π [a-A-B,b-A-B) • g) t 0 (λ i 0 1 t I i 0 ) =

It follows from the definition that U

* Cg M = √ CU * g M. From the assumption 1 C 1 g 1 g 2 C 2 g 1 , one concludes that U * 1 C 1 g 1 M ⊂ U * g 2 M ⊂ U * C 2 g 1 M, which is equivalent to 1 √ C 1 U * g 1 M ⊂ U * g 2 M ⊂ C 2 U * g 1 M. ( 4 
√ C 2 U * g 1 M ; α) h inc / / h inc ) ) SH a * ( 1 √ C 1 U * g 1 M ; α) SH a * (U * g 2 M ; α) h inc 5 5
where h inc denote maps induced by the respective inclusions. Applying (2) in Proposition 4.3.4 with

C = 1 √ C 1 C 2 ≤ 1 to the horizontal arrow gives us SH a * ( √ C 2 U * g 1 M ; α) ι a, √ C 1 C 2 a / / h inc ) ) SH √ C 1 C 2 a * ( √ C 2 U * g 1 M ; α) SH a * (U * g 2 M ; α) (r 1 √ C 1 C 2 ) -1 •h inc 5 5
where ι a, √ C 1 C 2 a denotes the persistence structure map of the symplectic persistence module SH

* ,α ( √ C 2 U * g 1 M ) and r 1 √ C 1 C 2
is the isomorphism given by (2) in Proposition 4.3.4. In terms of the logarithmic version of symplectic persistence modules, setting t = ln a gives us 

S t * ( √ C 2 U * g 1 M ; α) ι t,t+ln √ C 1 +ln √ C 2 / / h inc ( ( S t+ln √ C 1 +ln √ C 2 * ( √ C 2 U * g 1 M ; α). S t * (U * g 2 M ; α) (r 1 √ C 1 C 2 ) -1 •h inc 4 4 Since [x, y) ∈ B(H * ,α (M, g 1 )), [ln √ 2x, ln √ 
E g 2 (γ 1 ) = 1 2 e 2c , E g 2 (γ 2 ) = 1 2 e 2d .
This finishes the proof.

Appendix

Precise parameterizations

In this subsection, we will give precise parameterizations of bulked spheres and multibulked surfaces announced in Sections 4.5 and 4.6. The metrics which we are going to define will satisfy all the properties that we used in these sections, namely we will prove (1) and (3) in Proposition 4.5.4, (1) and (4) in Proposition 4.5.8 as well as Proposition 4.6.13.

Parameterizations of bulked spheres

Let S be a union of two spheres with radius A = » 1 8π touching at point. The area of S is equal to 1 and S can be obtained as a (singular) surface of revolution. The graph of the profile function r which defines S is the union of two semicircles of radius A centered at -A and A, see Figure 4.14.

Let n ∈ N and B = 10 -n A. We consider n to be a free parameter which will eventually be chosen large. The profile functions r x , x ∈ [0, ∞), which define bulked sphere metrics g x , will all be even on [-2A, 2A] and they will coincide with r on [-2A, -B] ∪ [B, 2A]. On [-B, B], each r x will interpolate between two semicircles and will have a local minimum at 0. Let Graphs of profile functions r x will connect (B , h) to (B, A 2 -(A -B) 2 ) on a semicircle. To this end, let

δ 0 = … π 8 • 1 2 • 10 n + 1 • 3 -10 -2n √ 2 • 10 n -1 . ( 4 
s x := r x (B ) = 2(h -h x ) B and K = A -B √ 2AB -B 2 . For x ∈ [0, ∞) we have s x ∈ [ 2δ 0 πB , 3δ 0 
πB ) and we denote s min = s 0 = 2δ 0 πB . On the other hand K is the derivative at B of the function y = A 2 -(A -l) 2 , which defines a semicircle.

We now define r x by giving its derivative on [B , B]. Let

q x = s min (B -B ) + KB -s x B B -B .
On [B , 2B ], the derivative r x is by definition equal to a linear function whose graph connects (B , s x ) and (2B , q x ). On [2B , B], r x is equal to another linear function, whose graph connects (2B , q x ) and (B, K). It is easy to check that r 0 is linear on [B , B], i.e. (B , s min ), (2B , q 0 ) and (B, K) are on the same line, as well as that K < q x ≤ q 0 for all x ∈ [0, ∞), see Figure 4.15 (b). Explicitly r x is given by

r x (l) = ® qx-sx B (l -B ) + s x l ∈ [B , 2B ] K-qx B-2B (l -B) + K l ∈ [2B , B] . (4.38) 
Straightforward calculation shows that

r x (B) = h + B B r x (l) dl = » A 2 -(A -B) 2 ,
and thus by setting r x (l) = A 2 -(A -l) The second inequality comes from the fact that for any k ∈ {1, ..., n},

|a 1 + ... + a k | ≤ |a 1 | + ... + |a k | ≤ k • max{|a 1 |, ..., |a k |} ≤ n • max{|a 1 |, ..., |a n |}.
For the first inequality, consider the two-term case first, that is

max{|a 1 |, |a 1 + a 2 |} ≥ 1 2 max{|a 1 |, |a 2 |}. (4.41) If |a 1 | ≥ |a 2 |, the inequality is obvious. If on the other hand, |a 1 | ≤ |a 2 |, then 2 max{|a 1 |, |a 1 + a 2 |} = 2 max{|a 1 |, |a 1 -(-a 2 )|} ≥ 2 max{|a 1 |, ||a 1 | -|a 2 ||} = 2 max{|a 1 |, |a 2 | -|a 1 |} ≥ |a 1 | + |a 2 | -|a 1 | = |a 2 | = max{|a 1 |, |a 2 |}.
This proves (4.41).

For the general case, assume that max{|a

1 |, |a 2 |, ..., |a n |} = |a k |. If k = 1, the inequality if obvious. If k ≥ 2 then (4.41) implies that max{|a 1 + ... + a k-1 |, |a 1 + ... + a k |} ≥ 1 2 max{|a 1 + ... + a k-1 |, |a k |} ≥ 1 2 |a k |,
and the claim follows.

Proof. (Proof of Lemma 4.5.9) Set Q = A • L and we get the conclusion.

Geodesic flow on a torus of revolution

We give a detailed analysis of the geodesic flow of the metric of revolution on T 2 and in particular prove Lemma 4.1.24.

Recall from Example 4.1.23 that f : [-A, A] → (0, +∞) was a smooth, even function, which extends 2A-periodically to a smooth function on R. Moreover, f was strictly increasing on [-A, 0] and hence strictly decreasing on [0, A] with a unique maximum at 0 and two minima at ±A. Using f as a profile function, we defined a metric of revolution g on T 2 = R/2AZ × R/2πZ. In other words, g is a pull back of the Euclidean metric on R 3 via the embedding (x, θ) → (x, f (x) cos θ, f (x) sin θ).

Recall also that we used a change of variable X(x) 2 and we denoted F (X) = f (x(X)). A direct computation shows that in (X, θ) coordinates metric has the following form:

= x 0 1 + (f (t)) 2 dt, x ∈ [-A, A]. The new variable satisfies X ∈ [-T, T ] for T = A 0 1 + (f (t))
g (X,θ) = Å 1 0 0 F 2 (X) ã . (4.42)
The Lagrangian of the geodesic flow of g is given by

L(X, θ, v X , v θ ) = 1 2 v 2 X + F 2 (X)v 2 θ .
while momenta are

p X = ∂L ∂v X = v X and p θ = ∂L ∂v θ = F 2 (X)v θ .
We compute the Hamiltonian as a Legendre transform

H(X, θ, p X , p θ ) = p X v X + p θ v θ - 1 2 v 2 X + F 2 (X)v 2 θ = 1 2 Å p 2 X + p 2 θ F 2 (X) ã . (4.43) 
Hamiltonian equations are

                                 Ẋ = ∂H ∂p X = p X θ = ∂H ∂p θ = p θ F 2 (X) ṗX = - ∂H ∂X = F (X) F 3 (X) p 2 θ ṗθ = - ∂H ∂θ = 0.
(4.44)

The above system is integrable with two integrals given by H and p θ . Let us analyze the system on the energy level H = 1 2 (this corresponds to unit speed geodesics) and let us assume that p θ = √ C ≥ 0. The case p θ < 0 is treated similarly (note that (p X , p θ ) → (-p X , -p θ ) corresponds to changing the direction of a geodesic). Now, (4.43) translates to

p 2 X + C F 2 (X) = 1, (4.45) 
while Hamiltonian equations become

                   Ẋ = p X θ = √ C F 2 (X) ṗX = C F (X) F 3 (X) (4.46) 
If C = 0, (4.45) and (4.46) imply that θ = 0, Ẋ = p X = ±1. Hence, in this case geodesics are given by θ(t) = const, X(t) = X(0) ± t.

If C > 0, (4.45) implies that √ C ≤ max F and we distinguish four cases.

1 • √ C = max F : In this case (4.45) implies that X = 0 and thus p X = 0, F (X) = 0. Now, (4.46) gives Ẋ = 0, ṗX = 0, θ = 1 max F and thus X(t) = 0, p X (t) = 0, θ(t) = θ(0) + t max F . This solution describes a closed geodesic γ, i.e. the parallel circle of radius max F at X = 0, and it's iterations.

2 • min F < √ C < max F : In this case the dynamics is constrained to the interval where √ C ≤ F (X), i.e. on [-λ C (F ), λ C (F )] for F -1 ( √ C) = {-λ C (F ), λ C (F )}. Moreover, on this interval it holds p X = ± » 1 -C F 2 (X)
and the portrait of the system in (X, p X )-plane looks as in Figure 4.17.

X p

X λ C (F ) -λ C (F ) Figure 4.17. (X, p X )-portrait when min F < √ C < max F 3 • √ C = min F : In this case λ C (F ) = T and p X = ± » 1 -C F 2 (X)
. The behaviour of the flow at X = ±T differs from the behaviour when X ∈ (-T, T ). Indeed, if X = ±T , we have p X = F (X) = 0 and (4.46) becomes Ẋ = 0, ṗX = 0, θ = 1 min F . Thus, we obtain a solution X(t) = ±T, p X (t) = 0, θ(t) = θ(0) + t min F , which describes a closed geodesic γ, i.e. the parallel circle of radius min F at X = ±T , and it's iterations. In (X, p X )-plane solutions with X ∈ (-T, T ) trace two curves which connect points -T and T and the portrait looks as in Figure 4.18.

-T T X p X γ γ Figure 4.18. (X, p X )-portrait when √ C = min F 4 • √ C < min F : In this case 1 -C F 2 (X) > 0 for all X ∈ [-T, T ] and p X = ± » 1 -C F 2 (X)
. The portrait looks as in Figure 4.19. Lemma 4.8.5. Assume that F (T ) > 0 as well as that 0 < -F (0)F (0) < 1. Then γ and γ are non-degenerate closed geodesics and ind γ = 0, ind γ = 1.

Proof. First notice that F (0) = f (0), F (±T ) = f (±A), F (0) = f (0) = 0, F (±T ) = f (±A) = 0 and F (0) = f (0), F (±T ) = f (±A).

This immediately follows after

The above analysis of the portrait in (X, p X )-plane shows that closed geodesics in class α other than γ and γ can only appear when min F < √ C < max F. In this case, for a fixed C, the flow is periodic in (X, p X )-plane. Denote by Θ F (C) the shift in θ-coordinate made by a flow line γ by the time it makes a single turn from (-λ C , 0) back to (-λ C , 0) (we abbreviate λ C = λ C (F )).

Formally, let γ(t) = (X(t), θ(t), p X (t), √ C) be a flow line of the Hamiltonian system (4.46), assume without lost of generality that X(0) = -λ C , p X (0) = 0 and let t 0 > 0 be the smallest time when X(t 0 ) = -λ C , p X (t 0 ) = 0 again. Define Θ F (C) = θ(t 0 ) -θ(0).

As notation suggests, Θ F (C) only depends on F and C. Indeed, using (4.45), (4.46) and the symmetry of F we calculate 11

Θ F (C) = t 0 0 θ(t)dt = t 0 0 √ C F 2 (X(t)) dt = 2 λ C -λ C √ C F 2 (X) dX Ẋ = 2 λ C -λ C √ C F 2 (X) dX p X = 2 √ C λ C -λ C dX F (X) F 2 (X) -C . (4.48) 
We will define F ε , described in Lemma 4.1.24, for which Θ Fε (C) > 2π for all min F ε < √ C < max F ε . Since from (4.46) we have that θ > 0, θ(t) is increasing and hence Θ Fε (C) > 2π implies that any closed geodesic γ must make at least two full turns in θ-direction, i.e. it can not lie in the homotopy class α.

Everything we have done so far applies to any F satisfying the necessary conditions. Let us now focus on concrete examples and prove Lemma 4.1.24.

Proof. (Proof of Lemma 4.1.24) First, we note that F is implicitly defined by f and hence, it is not a priori clear that we may choose F freely. However, one can show that if F : [-T, T ] → (0, +∞) satisfies |F (X)| < 1 for all X ∈ [-T, T ] then there exists f : [-A, A] → (0, +∞), for some A, such that F (X) = f (x(X)). Indeed, by setting x

(X) = X 0 1 -(F (τ )) 2 dτ, A = T 0 1 -(F (τ )) 2 dτ and f (x(X)) = F (X), one checks by a direct computation that f defines F. Moreover, since |F (X)| < 1 for all X ∈ [-T, T ], x(X) is a smooth function and dx dX > 0 on [-T, T ]. Thus, f is smooth if and only if F is smooth. Fix 0 < √ k < m and let us take T = 1, F 0 : [-1, 1] → (0, +∞) given by F 0 (X) = 1 √ kX 2 +m . One readily checks that |F (X)| < 1 for all X ∈ [-1, 1].
For small enough ε > 0, F ε will be a smoothing of F 0 near the points ±1. We start by analysing F 0 .

Denote by λ

0 C = λ C (F 0 ) = 1 C -m k and let γ(t) = (X(t), θ(t), p X (t), √ C), X(0) = -λ 0
C , p X (0) = 0 be a solution of the Hamiltonian system (4.45), (4.46) associated to 11 Compare to Proposition 2 in [START_REF] Alexander | Closed geodesics on certain surfaces of revolution[END_REF].

F 0 . From (4.46) we have

Ẍ = ṗ X = F (X) F 3 (X) C = -CkX,
and hence X(t) = a cos( √ CKt) + b sin( √ CKt). Initial conditions X(0) = -λ 0 C and Ẋ(0) = p X (0) = 0 give us that a = -λ 0 C and b = 0, i.e. 

X(t) = - 1 C -m k cos( √ CKt). ( 4 
Θ F 0 (C) = 2π √ Ck 0 θ(t)dt = 2π √ Ck 0 √ C F 2 (X(t)) dt = 2π √ Ck 0 √ C 1 kX 2 (t)+m dt = √ C 2π √ Ck 0 ÅÅ 1 C -m ã cos 2 ( √ Ckt) + m ã dt = π √ k Å 1 C + m ã . From √ C < max F 0 = 1 √ m we have that 1 C > m and thus Θ F 0 (C) > 2π m √ k . Since m > √ k it follows that Θ F 0 (C) > 2π for all min F 0 < √ C < max F 0 .
Finally, let us show that for ε > 0 we may smoothen F 0 on intervals [-1, -1 + ε] and [1 -ε, 1] in such a way that newly obtained F ε also satisfies Θ Fε (C) > 2π for all min F ε < √ C < max F ε . To this end, let F ε be such that

F ε | [-1+ε,1-ε] = F 0 | [-1+ε,1-ε] , F ε ≥ F 0 elsewhere, |F ε (X)| ≤ |F 0 (X)| < 1 for all X ∈ [-1, 1], F ε extends 2-periodically to a smooth function on R and F ε C 0 -→ F 0 as ε → 0. Denote F -1 ε ( √ C) = {-λ C , λ C }, λ C > 0. Since F ε ≥ F 0 we have that λ 0 C ≤ λ C . Now, note that if λ 0 C ≤ 1 -ε, it holds λ C = λ 0 C as well as Θ Fε (C) = Θ F 0 (C) > 2π, because two function coincide on [-1 + ε, 1 -ε]. If however 1 -ε < λ 0 C ≤ λ C < 1, from (4.48) we obtain Θ Fε (C) = 2 √ C λ C -λ C dX F ε (X) F 2 ε (X) -C > 2 √ C λ C -ε -λ C +ε dX F ε (X) F 2 ε (X) -C . Since λ 0 C ≤ λ C we have 2 √ C λ C -ε -λ C +ε dX F ε (X) F 2 ε (X) -C ≥ 2 √ C λ 0 C -ε -λ 0 C +ε dX F ε (X) F 2 ε (X) -C = = 2 √ C λ 0 C -ε -λ 0 C +ε dX F 0 (X) F 2 0 (X) -C .
Same change of variables used in (4.48) gives us

Θ Fε (C) > 2 √ C λ 0 C -ε -λ 0 C +ε dX F 0 (X) F 2 0 (X) -C = 2 √ C X -1 (λ 0 C -ε) X -1 (-λ 0 C +ε) dt F 2 0 (X(t)) = 2 √ C arccos -1+ ε λ 0 C √ Ck arccos 1-ε λ 0 C √ Ck (kX 2 (t) + m)dt > 2m √ k Å arccos Å -1 + ε λ 0 C ã -arccos Å 1 - ε λ 0 C ãã . Since λ 0 C ≥ 1 -ε, it follows that ε λ 0 C ≤ ε 1-ε → 0 when ε → 0, independently of C.
Moreover, by the assumption √ k < m, so for small enough ε we have that Θ Fε (C) > 2π for all min F ε < √ C < max F ε . As explained above, this implies that the only closed geodesics in class α of a metric induced by F ε are γ and γ which together with Lemma 4.8.5 concludes the proof. is Courant's nodal domain theorem, stating that the number of nodal domains of an eigenfunction f k is at most k (see [START_REF] Courant | Methods of mathematical physics[END_REF]). There exist also bounds on the (n -1)dimensional measure of the zero set of eigenfunctions (see [START_REF] Logunov | Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure[END_REF][START_REF] Logunov | Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower bound in Yau's conjecture[END_REF][START_REF] Logunov | Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three[END_REF] for most recent developments on this topic), on the distribution of nodal extrema ( [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF][START_REF] Poliquin | Superlevel sets and nodal extrema of Laplace-Beltrami eigenfunctions[END_REF]), on the growth of L p -norms ( [START_REF] Sogge | Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds[END_REF]), and other related results.

In the present chapter we focus on topological properties of the sublevel sets of Laplace-Beltrami eigenfunctions, and, more generally, of the linear combinations of eigenfunctions with eigenvalues ≤ λ. There has been a number of important recent advances in the study of topological properties of random linear combinations of Laplace eigenfunctions, with an emphasis on the nodal and critical sets (see, for instance, [START_REF] Nazarov | On the number of nodal domains of random spherical harmonics[END_REF][START_REF] Nicolaescu | Critical sets of random smooth functions on compact manifolds[END_REF][START_REF] Gayet | Universal components of random nodal sets[END_REF][START_REF] Gayet | Betti numbers of random nodal sets of elliptic pseudo-differential operators[END_REF][START_REF] Sarnak | Topologies of nodal sets of random band limited functions[END_REF][START_REF] Canzani | Topology and nesting of the zero set components of monochromatic random waves[END_REF]). Our approach is deterministic and is based on the study of persistence barcodes. In the probabilistic setting, some steps in this direction have been discussed in [START_REF] Cammarota | On the distribution of the critical values of random spherical harmonics[END_REF]Section 1.4.3], see also [START_REF] Pausinger | On the distribution of local extrema in Quantum Chaos[END_REF]. Roughly speaking, a persistence barcode is a collection of intervals in R which encodes oscillation of a function (see Section 2.1 for a detailed overview). Our main result (Theorem 5.1.7) implies that the quantity Φ 1 (f ), the total length of the barcode of any such linear combination f with unit L 2 -norm, satisfies an upper bound O(λ). This inequality is inspired by the ideas introduced in [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF], where a similar bound was proved for the Banach indicatrix of f , another measure of oscillation which goes back to the works of Kronrod [START_REF] Kronrod | On functions of two variables[END_REF] and Yomdin [START_REF] Yomdin | Global bounds for the Betti numbers of regular fibers of differentiable mappings[END_REF]. Our central observation (see Proposition 5.3.1 below) is that the length of the barcode admits an upper bound via the Banach indicatrix, which together with [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF] yields the main result.

We believe that discussing eigenfunctions and their linear combinations in the language of barcodes, which originated in topological data analysis, has a number of merits. First, there exists a well developed metric theory of barcodes which highlights their robustness with respect to perturbations of functions in the uniform norm. Some features of this robustness are inherited by the above-mentioned functional Φ 1 . This, in turn, paves the way for applications to the following question of approximation theory (see Section 5.2): given a function with unit L 2 -norm, how well one can approximate it by a linear combination of Laplace eigenfunctions with eigenvalues ≤ λ? In particular, we show that a highly oscillating function does not admit a good uniform approximation of this kind unless λ is large enough, see Corollary 5.2.4. Second, our approximation results remain valid if a given function is composed with a diffeomorphism of the surface, see Proposition 5.2.1. Our approach yields it essentially for free, given that the barcodes are invariant with respect to compositions with diffeomorphisms. Note that the effect of a change of variables on analytic properties of functions is a classical theme in Fourier analysis, cf. the celebrated Bohr-Pál theorem [START_REF] Salem | On a theorem of Bohr and Pál[END_REF]. Third, we conjecture that barcodes provide a right framework for a potential extension of our results to higher dimensions, see Conjecture 5.1.14 below.

In a different direction, we present an application to the problem of sorting finite bars of persistence barcodes. This task arises on a number of occasions in topology and data analysis. Our results allow to improve an estimate on the optimal running time a bar in degree i or a right endpoint of a bar in degree i -1. This can be made precise in a number of ways (see Lemma 2.1.10 and the discussion surrounding it). Therefore, taking into account the critical points corresponding to infinite bars, we get | Crit(f )| = 2|B (f )| + b 0 (M ) + b 1 (M ) + b 2 (M ), which implies (5.3). The same reasoning applies to general manifolds without boundary, where we have

| Crit(f )| = 2|B (f )| + dim M i=0 b i (M ).
We prove Lemma 5.1.1 in subsection 5.4.1. Combining (5.2) with Theorem 2.1.17

yields Φ u (f ) -Φ u (h) ≤ C(u, f ) • d C 0 (f, h), (5.4) 
where 

d C 0 (f, h) = |f -h| C 0 . Proposition 
(f ) = Φ u (B(f ))
as the function of barcode B(f ). However, it is obvious that Φ u depends only on B(f ) and not on f itself. In the same spirit min f and max f should be replaced by the smallest and the largest endpoint of a bar in B(f ).

Proof. Recall that a functional Φ defined on a metric space X is called lower semicontinuous at a point f ∈ X if lim inf h→f Φ(h) ≥ Φ(f ). This relation easily follows from the inequalities (5.2) and (5.4) for the functional Φ u defined on the metric spaces (B, d bottle ) and (F M orse , d C 0 ), respectively.

The inequality (5.4) could be further strengthened. Let Diff(M ) denote the group of all smooth diffeomorphisms of the surface M (throughout this chapter, the term "smooth" stands for C ∞ -smooth).

Corollary 5.1.5. We have

Φ u (f ) -Φ u (h) ≤ C(u, f ) • d C 0 (f • ϕ, h • ψ), (5.5) 
for any two diffeomorphisms ϕ, ψ ∈ Diff(M ).

In particular, taking ϕ = ψ = 1 M gives (5.4).

Proof. Indeed, for any diffeomorphism ϕ : M → M , the barcodes B(f ) and B(f • ϕ) are the same. Since Φ u depends only on the barcode and not on the function itself, putting f • ϕ and h • ψ in (5.2) yields (5.5).

Let us now extend the functional Φ u from F M orse to C 0 (M ). First, we introduce a "cut-off version" of Φ u . Define Note that Φ u (f n ) only depends on u| [min fn,max fn] and, since for sufficiently large n it holds [min f n , max f n ] ⊂ [min f -1, max f + 1], we may restrict ourselves to this interval and argue as if u was bounded. Thus due to Lemma 5.1.6 and Theorem 2.1.17, the double limit on the right-hand side of (5.7) (which could be equal to +∞) does not depend on the choice of the approximating sequence f n . Therefore, the functional Φ u (f ) is well defined by (5.7). Moreover, it is easy to check that the right-hand sides of (5.7) and (5.1) coincide for f ∈ F M orse , and therefore (5.7) indeed defines an extension of (5.1) to C 0 (M ).

Φ u,k (f ) =              max f min f u(t) dt + k i=1 I i u(t) dt if ∂M = ∅,

Main results

As before, M is an orientable surface, possibly with boundary, equipped with a Riemannian metric g. Denote by • the L 2 -norm with respect to Riemannian area σ and by ∆ the Laplace-Beltrami operator with respect to g. Slightly abusing the notation, throughout this chapter κ g will denote various constants depending only on the Riemannian metric g.

Following4 [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF], denote by F λ the set of all smooth functions on M (vanishing on the boundary if ∂M = 0) which satisfy f = 1 and ∆f ≤ λ. One may check that F λ contains normalized linear combinations of eigenfunctions of ∆ with eigenvalues λ i ≤ λ. If ∂M = 0, F λ contains also normalized eigenfunctions of the biharmonic clamped plate boundary value problem on M (see [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF]Example 1.2]). Our main result is the following theorem.

Theorem 5.1.7 (Theorem 1.4.1). Let λ > 0 be any positive real number, u ∈ C(R) be a non-negative function and f ∈ F λ be a function on an orientable surface (M, g). Then there exists a constant κ g > 0 such that Φ u (f ) ≤ κ g (λ + 1) u • f .

(5.8)

In order to prove this theorem we compare both sides of inequality (5.8) with an intermediate quantity. Let β(t, f ) be the number of connected components of f -1 (t). Function β(t, f ) is called the Banach indicatrix of f (see [START_REF] Kronrod | On functions of two variables[END_REF][START_REF] Yomdin | Global bounds for the Betti numbers of regular fibers of differentiable mappings[END_REF]). In [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF] it was proved that +∞ -∞ u(t)β(t, f )dt ≤ κ g (λ + 1) u • f for f ∈ F λ . On the other hand, we show that Φ u (f ) ≤ (5.9)

Example 5.1.9. The order of λ in inequality (5.9) is sharp. Indeed, consider the flat square torus T 2 = R 2 /(2π • Z) 2 . We have a sequence f n (x, y) = 1 π sin(nx) cos(ny), n ∈ N of eigenfunctions of ∆ with eigenvalues 2n 2 . By analysing critical points of f 1 = sin x cos x and using periodicity, one can compute that the full barcode of f n contains An infinite bar (-1 π , +∞) and 2n 2 -1 copies of finite bar (-1 π , 0] in degree 0; Two copies of infinite bar (0, +∞) and 2n 2 -1 copies of finite bar (0, 1 π ] in degree 1;

An infinite bar ( 1 π , +∞) in degree 2.

Putting these values in inequality (5.9) gives us 4 π n 2 ≤ κ g (2n 2 + 1), which proves that the order of λ in (5.9) is sharp.

Furthermore, for n-dimensional Riemannian manifolds, consider the following generalization of the functional Φ u : it is defined for Morse functions by an analogue of (5.1), the sum being taken over all finite bars in B(f ) in all degrees. Similarly to (5.7) it also could be extended to arbitrary functions in C 0 (M ). Conjecture 5.1.14. Let u ∈ C(R) be a non-negative function and f a L 2 -normalized linear combination of eigenfunctions of ∆ with eigenvalues λ i ≤ λ on a Riemannian manifold (M, g). Then there exists a constant κ g > 0 such that for any λ > 0, Φ u (f ) ≤ κ g (λ + 1) n 2 u • f .

(5.12)

A possible approach to proving this conjecture is discussed in Remark 5.3.5.

Example 5.1.15. In order to provide intuition about Conjecture 5.1.14, let us examine what happens in dimension one (cf. [39, p. 137]). In this case, the notions coming from the barcode, such as the number or the total length of finite bars, have transparent meanings. Assume that (M, g) = (S 1 , g 0 ) = (R/(2π • Z), g 0 ) is the circle with the metric inherited from the standard length on R, and f : S 1 → R is a Morse function. Since f is Morse, all critical points of f are either local minima or local maxima and they are located on S 1 in an alternating fashion. More precisely, if there are N local minima x 1 , . . . , x N , there are also N local maxima y 1 , . . . , y N , and we may label them so that they are cyclically ordered as follows:

x 1 , y 1 , x 2 , y 2 , . . . , x N , y N , x 1 .

Taking u ≡ 1, we have that Φ 1 (f ) = max f -min f + the total length of finite bars. All the finite bars appear in degree 0, and thus by Remark 5.1.2 we have N finite bars whose left endpoints are f (x 1 ), . . . , f (x N ) and whose right endpoints are f (y 1 ), . . . , f (y N ).

From here it follows that

Φ 1 (f ) = N i=1 (f (y i ) -f (x i )).
On the other hand, the total variation of f satisfies

Var(f ) = 2 N i=1 (f (y i ) -f (x i )) = 2Φ 1 (f ).
Furthermore, using Hölder's inequality and partial integration we have as claimed by Conjecture 5.1.14. In order to extend the result to a general (not necessarily Morse) f ∈ F λ , observe that for every > 0 there exists a sequence of Morse functions f n ∈ F λ+ , such that d C 0 (f, f n ) → 0 when n → ∞. For all k, n ≥ 1 it holds

Φ 1,k (f n ) ≤ Φ 1 (f n ) ≤ … π 2 (λ + ) 1 2 
.

Taking limits for k, n → ∞ as in (5.7) and using the fact that > 0 is arbitrary, we obtain the inequality (5.13) for any f ∈ F λ . It is easy to check that f l = 1 and ∆f l = l 2 f l . Thus f l ∈ F λ for λ = l 2 . Proposition 5.1.17. There exist constants A n and B n such that

Φ 1 (f l ) = A n λ n 2 + B n .
The proof of Proposition 5.1.17 uses the Künneth formula for persistence modules proven in Section 3.2.2 (originally from [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF]), see subsection 5.4.3 for details.

Finally, we wish to emphasise that Conjecture 5.1.14 does not hold for functions in F λ in dimensions greater than two. This is illustrated by the following example due to Lev Buhovsky [25].

Example 5.1.18 (Buhovsky's example). For each n ≥ 3, we provide a sequence of functions F k : T n → R on n-dimensional flat torus T n = R n /(2π • Z) n such that F k and ∆F k are uniformly bounded away from zero and infinity for all k, while Φ 1 (F k ) grows as k n-2 . Such sequence violates inequality (5.12).

We define F k as periodic functions on the cube [-π, π] n as follows. Let h : [-1, 1] n → [0, 1] be a bump function. Divide [-1, 1] n into k n smaller cubes by dividing each interval [-1, 1] into k equal parts. Now h(kx) is a bump function supported in [-1 k , 1 k ] n and we define auxiliary functions f k to be equal to a copy of 1 k 2 h(kx) inside each small cube. Since supports of different copies of 1 k 2 h(kx) are disjoint, L 2 -orthogonality implies

f k 2 = k n 1 k 2 h(kx) 2 = k -4 h 2 ,
as well as that ∆f k is bounded uniformly in k.

Finally, let1 F k = f k + 1. This way we obtain a sequence of functions with F k and ∆F k bounded away from zero and infinity. At the same time for t ∈ (1, 1 + 1 k 2 ) the topology of sublevel sets F -1 k ((-∞, t)) does not change and each sublevel set is homeomorphic to T n with k n holes. This generates ∼ k n bars of length 1 k 2 in degree n -1 and hence Φ 1 (F k ) k n-2 , which contradicts (5.12) when n ≥ 3 because

F k F k ∈ F λ with bounded λ, but Φ 1 Ä F k F k ä grows as k n-2 .
A slight modification of this example also yields a counterexample to (5.11) in dimensions n ≥ 5.

Remark 5.1.19. An example similar to Example 5.1.18 has been discussed in [START_REF] Cohen-Steiner | Lipschitz functions have L p -stable persistence[END_REF]Section 5]. In this paper, L p -versions of functional Φ 1 , where the sum is taken over p-th powers of the lengths of bars, were considered. The results yield an upper bound for these L p -functionals in terms of the Lipschitz constant of a function. However, for these bounds to hold, it is essential that p is at least the dimension of the base manifold, which can be seen from Example 5.1.18. As a consequence, while the results of [START_REF] Cohen-Steiner | Lipschitz functions have L p -stable persistence[END_REF] imply some spectral restrictions on the barcodes of Laplace eigenfunctions, they appear to be essentially different from the bounds on Φ 1 obtained in Theorem 5.1.7 and conjectured in Conjecture 5.1.14.

Sorting the finite bars of functions in F λ

Given a barcode B, write the lengths of its finite bars in the descending order, β 1 ≥ β 2 ≥ . . . . The functions β i (B), which are Lipschitz with respect to the bottleneck distance, are important invariants of barcodes. For instance, β 1 , which was introduced by Usher in [START_REF] Usher | Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds[END_REF], is called the boundary depth and has various applications in Morse theory and symplectic topology. The functions β i with i ≥ 2 are sometimes used in order to distinguish barcodes, see e.g. [START_REF] Bendich | Persistent homology analysis of brain artery trees[END_REF]. Fix > 0 and discard all bars of length < , i.e., introduce the modified invariant Since the sharp lower bound on the running time of any comparison sorting algorithm for an array of N real numbers is O(N log N ) (see [START_REF] Cormen | Introduction to algorithms[END_REF]), the answer to the above question for a general barcode is O(N log N ). Interestingly enough, in some cases Corollary 5.1.8 enables one to reduce this running time when B is a barcode of a function from F λ . More precisely, there exists a constant c > 0 such that for every > 0, λ > 0 and any function f ∈ F λ whose barcode contains exactly N finite bars, one can find a sorting algorithm for all bars from B(f ) of length ≥ whose running time satisfies T ≤ N + c • κ g (λ + 1) • log κ g (λ + 1) .

(5.14) Indeed, consider the following algorithm. First compare the length of each bar with and pick only those bars whose length is ≥ . This takes time N . Denote by K the number of chosen bars. Next, perform the optimal sorting algorithm for these K bars. This takes time O(K log K). Finally, notice that by Corollary 5.1.8, K ≤ κ g (λ + 1) , which proves (5.14). In certain regimes, the running time (5.14) is shorter than the generic bound O(N log N ). For instance, if λ and are fixed and N → ∞, we have T = O(N ).

Theorem 5.1.7 also has applications to questions regarding C 0 -approximations by functions from F λ , which is the subject of the next section.

Applications to approximations by eigenfunctions

An obstruction to C 0 -approximations

As before, let M be an orientable surface, possibly with boundary, endowed with the Riemannian metric g, denote by Diff(M ) the set of all diffeomorphisms of M and assume that f : M → R is a Morse function (vanishing on ∂M ). We are interested in the question of how well can f be approximated by functions from F λ in C 0 -sense. More precisely, we wish to find a lower bound for the quantity

d C 0 (f, F λ ) = inf{d C 0 (f, h) | h ∈ F λ },
where d C 0 (f, h) = max x |f (x) -h(x)| as before. In fact, we will study a more general question, namely we will give a lower bound for

approx λ (f ) = inf ϕ∈Diff(M ) d C 0 (f • ϕ, F λ ).
Taking ϕ = 1 M one immediately sees that d C 0 (f, F λ ) ≥ approx λ (f ).

We estimate approx λ (f ) from below using the information coming from the barcode B(f ). Recall that the functional Φ 1 : F Morse → R defined by (5.1) for u ≡ 1 gives the sum of the lengths of all finite bars in B(f ).

Subtracting the latter expression from the former yields (5.17 Proof. Indeed, it follows from the assumptions on the barcode of f that Φ 1,N (f ) ≥ (N + 1)(L + 2ε), which together with Remark 5.2.3 yields ε ≥ 1 2(N + 1)

Å

(N + 1)(L + 2ε) -κ g (λ + 1)

ã .

Rearranging this inequality we obtain (5.19).

Remark 5.2.5. From (5.19) we see how λ, which is needed to uniformly approximate f by functions from F λ , grows with N and L. Informally speaking, one may think of N as a measure of how much f oscillates, while L gives a lower bound on the amplitude of these oscilations. The above inequality should then be understood as a quantitative version of the informal principle that the more the function oscillates and the bigger the oscillations, the larger eigenvalues of the Laplacian are needed to approximate it with a normalized linear combination of the corresponding eigenfunctions. We refer to [START_REF] Weinberger | Interpolation, the rudimentary geometry of Lipschitz function spaces, and geometric complexity[END_REF] for other applications of persistence to approximation theory.

Modulus of continuity and average length of bars on T 2

Proposition 5.2.1 gives an obstruction to approximating functions by functions from F λ . As we mentioned before, F λ contains normalized linear combinations of eigenfunctions of ∆ with eigenvalues not greater than λ. In the case of flat torus T 2 = R 2 /(2π • Z) 2 these eigenfunctions are trigonometric polynomials and Proposition 5.2.1 may be interpreted as an inverse statement about C 0 -approximations by trigonometric polynomials. A direct theorem about C 0 -approximations by trigonometric polynomials on n-dimensional flat torus was proved in [START_REF] Yudin | A multidimensional Jackson theorem[END_REF] (theorems of this type are sometimes referred to as Jackson's theorems, see [START_REF] Pinkus | Negative theorems in approximation theory[END_REF] for a survey), consequently giving an upper bound for approx λ (f ) in terms of moduli of continuity and smoothness of f. We combine this result with Proposition 5. (5.20)

Let

T λ = ≠ sin(v 1 x + v 2 y), cos(v 1 x + v 2 y) v 2 1 + v 2 2 ≤ λ ∑ R ,
be the space of trigonometric polynomials on M whose eigenvalues (as eigenfunctions of ∆) are bounded by λ. The following porposition was proved in [START_REF] Yudin | A multidimensional Jackson theorem[END_REF]:

Proposition 5.2.6. For every continuous function f : M → R it holds

d C 0 (f, T λ ) ≤ 2ω 2 Å f, C 0 √ λ ã , (5.21) 
where C 0 > 0 is a constant.

By (5.20) we also have that

d C 0 (f, T λ ) ≤ 4ω 1 Å f, C 0 √ λ ã .
(5.22)

Remark 5.2.7. Constant C 0 is computed in [START_REF] Yudin | A multidimensional Jackson theorem[END_REF] to be

C 0 = » µ 1 (D 2 ( 1 2 
)), where µ 1 (D 2 ( 1 2 )) is the first Dirichlet eigenvalue of ∆ inside the 2-dimensional disk D 2 ( 1 2 ) of radius 1 2 . Our goal is to prove the following result which shows that the average bar length of a Morse function f on a flat torus M could be uniformly controlled by the L 2 -norm of f and the modulus of continuity of f on the scale 1/ |B (f )|.

Theorem 5.2.8. There exist constants C 0 , C 1 > 0 such that for any f ∈ F Morse on a flat torus M = T 2 ,

Φ 1 (f ) |B (f )| + 1 ≤ C 1 f + 8ω 1 Ç f, C 0 |B (f )| å .
(5.23)

Proof. Inspecting the proof of Proposition 5.2.6 in [START_REF] Yudin | A multidimensional Jackson theorem[END_REF], we observe that it relies on an explicit construction of a function h, depending on f and λ, which satisfies

d C 0 (f, h) ≤ 2ω 2 Å f, C 0 √ λ ã .
(5.24)

Our goal is to estimate d C 0 (f, h) from below using Proposition 5.2.1. However, a priori we do not have any information about the L 2 -norm of h and Proposition 5.2.1 relates to distance from functions in F λ whose L 2 -norm is equal to one. In order to overcome this issue, we present the construction of the approximation-function h and prove that h ≤ f .

For a vector v ∈ Z 2 let c v (f ) = 1 (2π) 2 T 2
f (x)e -i v,x dx, be the corresponding Fourier coefficient of f. Take U to be the first Dirichlet eigenfunction of ∆ inside the disk D 2 ( 1 2 ) of radius 1 2 , normalized by U L 2 (D 2 ( 1 2 )) = 1, and V its extension by zero to the whole plane, i.e.

V (x) =

U (x), if x ∈ D 2 ( 1 2 ) 0, otherwise.

If we denote by W = V * V the convolution of V with itself, the desired approximation is given by the formula

h(x) = v∈Z 2 |v|≤ √ λ c v (f ) • W Å v √ λ ã e i v,x , (5.25) 
where |v| stands for the standard Euclidean norm on R 2 . The function h defined by (5.25) is called the multidimensional Korovkin's mean. It satisfies (5.24), as proved in [START_REF] Yudin | A multidimensional Jackson theorem[END_REF], and since v∈Z 2 c v (f )e i v,x is the Fourier expansion of f , we have that h ≤ (max

x∈R 2 |W (x)|) • f .
By using the Cauchy-Schwarz inequality we obtain

|W (x)| ≤ R 2 |V (t)| • |V (x -t)|dt ≤ R 2 |V (t)| 2 dt • R 2 |V (x -t)| 2 dt = V 2 = 1,
which yields h ≤ f .

We now proceed with analysing (5.24). First note that

h • d C 0 Å f h , F λ ã ≤ h • d C 0 Å f h , h h ã ≤ 2ω 2 Å f, C 0 √ λ ã ,
because h h ∈ F λ . The last inequality together with Proposition 5.2.1 gives 

h 2 • (|B ( f h )| + 1) Å Φ 1 Å f h ã -κ 0 (λ + 1) ã ≤ 2ω 2 Å f, C 0 √ λ ã . ( 5 
Å Φ 1 (f ) -κ 0 (λ + 1) f ã ≤ ω 2 Å f, C 0 √ λ ã , (5.27) 
and by (5.20) also

1 8 • (|B (f )| + 1) Å Φ 1 (f ) -κ 0 (λ + 1) f ã ≤ ω 1 Å f, C 0 √ λ ã .
Setting λ = |B (f )| and C 1 = κ 0 in the last inequality completes the proof of the theorem.

Remark 5.2.9. As follows from Remark 5.2.3 and the proof of Theorem 5.2.8 above, for any k ≥ 1 and any f ∈ C 0 (M ) we have:

Φ 1,k (f ) k + 1 ≤ C 1 f + 8ω 1 Å f, C 0 √ k ã .
(5.28)

The left-hand side of (5.28) could be interpreted as the average length of a bar among the k longest bars in the barcode of f . Remark 5.2.10. Note that formula (5.27) implies From the results of [START_REF] Ganzburg | Multidimensional Jackson theorems[END_REF], it can be deduced that

Φ 1 (f ) |B (f )| + 1 ≤ C 1 f + 4ω 2 Ç f, C 0 |B (f )| å . ( 5 
d C 0 (f, T λ ) ≤ C 2 (k) ω 2k Å f, C 0 (k) √ λ ã
for some positive constants C 0 (k), C 2 (k) which depend on k. Similarly to the proof of Theorem 5.2.8, one then obtains

Φ 1 (f ) |B (f )| + 1 ≤ C 1 (k) f + 2C 2 (k) ω 2k Ç f, C 0 (k) |B (f )| å .
Constants C 0 (k), C 1 (k), C 2 (k) could be computed explicitly.

Example 5.2.11. The following example shows that the choice of the scale in the modulus of continuity on the right-hand side of (5.28) is optimal. Take a unit disk B 1 inside the torus M and let χ be a smooth cut-off function supported in B and equal to one in B1

2

. Let g n (x, y) = χ(x, y) sin nx cos ny, n ∈ N be a sequence of functions on the torus. For any 0 < s < 1, set g n,s (x, y) = g( x s , y s ). Let α ≥ 1 be some real number. Choose k = n 2 and s = n 1-α 2 . It suffices to verify that the inequality Φ 1,n 2 (g n,s )

n 2 + 1 ≤ C 1 g n,s + 8ω 1 Å g n,s , C 0 n α ã . (5.30) 
holds for all n only for α = 1. Indeed, take any α > 1. Note that the left-hand side of (5.30) is bounded away from zero as n → ∞, since the number of bars of unit length in the barcode of g n,s ((x, y)) is of order n 2 . At the same time, g n,s = s g n → 0 as n → ∞, since s = n 1-α 2 → 0. Moreover, estimating the derivatives of g n,s one can easily check that

ω 1 Å g n,s , C 0 n α ã = O(n -α ) O(n • n α-1 2 ) = O Ä n 1-α 2 ä = o(1)
for any α > 1. Therefore, inequality (5.30) is violated for α > 1 for n large, and hence the choice α = 1 is optimal.

Note that, while the functions g n,s (x, y) are compactly supported and hence not Morse, they could be made Morse by adding a small perturbation. A similar argument would then yield optimality of the 1/ |B (f )| scale in the modulus of continuity on the right-hand side of inequality (5.23).

Remark 5.2.12. It would be interesting to generalize Theorem 5.2.8 to an arbitrary Riemannian surface. In order to do that we need an analogue of Proposition 5.2.6. For a different version of Jackson type approximation theorems on Riemannian manifolds see [START_REF] Pesenson | Approximations in L p -norms and Besov spaces on compact manifolds[END_REF]Lemma 4.1] and [START_REF] Feichtinger | Geometric space-frequency analysis on manifolds[END_REF]Lemma 9.1].

that it suffices to verify inequality (5.8) for Morse functions. Indeed, suppose that the inequality is proved for Morse functions in F λ for all λ > 0 and let f ∈ F λ be arbitrary. One can easily check that for any > 0 there exists a sequence of Morse functions f n ∈ F λ+ such that d C 0 (f, f n ) → 0 as n → ∞. For all k, n ≥ 1 we have

Φ u,k (f n ) ≤ Φ u (f n ) ≤ κ g (λ + 1 + ) u • f n ,
where the first inequality follows from the definition (5.6) of the functional Φ u,k and the second inequality holds by the assumption that (5.8) is true for Morse functions. Taking the limits as k and n go to infinity in definition (5.7) and using the fact that > 0 is arbitrary, we obtain that (5.8) holds for the function f . It remains to prove inequality (5.8) when f ∈ F λ is Morse. Denote by • the L 2 -norm with respect to Riemannian area σ and by ∆ the Laplace-Beltrami operator with respect to g. The analytical tool that we are going to use is [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF]Theorem 1.5] which gives us that for any continuous function u ∈ C(R) and any smooth function f on M (which is assumed to be equal to zero on the boundary if ∂M = ∅), the following inequality holds

+∞ -∞ u(t)β(t, f ) dt ≤ κ g ( f + ∆f ) • u • f , (5.33) 
where κ g depends on the Riemannian metric g.

If we assume that f ∈ F λ in (5.33), we immediately get 

Φ u (f ) ≤ +∞ -∞ n-2 i=0 b i (f -1 (t)) u(t)dt,
where b i is the i-th Betti number. As follows from [START_REF] Yomdin | Global bounds for the Betti numbers of regular fibers of differentiable mappings[END_REF], the quantity on the righthand side could be bounded from above using the uniform norm of the derivatives of f (see also [START_REF] Lin | On the Betti numbers of level sets of solutions to elliptic equations[END_REF] for related recent developments). In order to establish Conjecture 5.1.14, one would need to prove a higher-dimensional analogue of [START_REF] Polterovich | Nodal inequalities on surfaces[END_REF]Theorem 1.5], allowing to replace the uniform estimates by L 2 -bounds.

of M t is ∂M t = f -1 (t) Σ 1 . . . Σ l . We may divide connected components of M t into two groups, one of which consists of all the components whose boundary lies entirely in f -1 (t) and the other one consists of all the components whose boundary contains at least one Σ i (i.e. the boundary of these components is a mix of parts of ∂M and f -1 (t)). Denote by k the number of connected components of M t whose boundary contains at least one Σ i . Now, since dim H n (M t , f -1 (t) ∂M ) = b 0 (t),

we have that dim H n (M t , f -1 (t)) = b 0 (t) -k, and thus by (5.35)

β(t, f ) = b 0 (t) -1 + dim(j * (H n-1 (f -1 (t)))) -(k -1). Since M is connected b 0 (t) -1 = i χ (x (0) i ,y (0) 
i ] (t), and hence we need to prove that j χ (x (n-1) j ,y

(n-1) j ] (t) ≤ dim(j * (H n-1 (f -1 (t)))) -(k -1).

Using (5.36) we transform the statement into dim(ker i * ) + k -1 ≤ dim(j * (H n-1 (f -1 (t)))).

In order to prove this inequality, we will find k -1 linearly independent vectors in the quotient space j * (H n-1 (f -1 (t)))/ ker i * (note that by (5.37) we have that ker i * = j * (ker j * ) ⊂ j * (H n-1 (f -1 (t)))). Assume that k ≥ 2 (because otherwise the statement is trivial) and denote by M t 1 , . . . , M t k the connected components of M t whose boundary contains some Σ i . We know that for 1 ≤ i ≤ k, homology class 0 = [∂M t i ] ∈ H n-1 (M t ) decomposes as 0 = [∂M 

  Let (M, ω) be a closed symplectic manifold, Ham(M ) the group of Hamiltonian diffeomorphisms of M and d the Hofer's metric on Ham(M ). For an integer p ≥ 2, denote by Powers p (M ) = {φ ∈ Ham(M ) | ∃ψ ∈ Ham(M ), φ = ψ p }, the set of all p-th powers of Hamiltonian diffeomorphisms and let powers p (M ) = sup φ∈Ham(M ) d(φ, Powers p (M )).

γ 1 γ 2 γ2NFigure 1 . 1 .

 211 Figure 1.1. Riemannian metric g x
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 216 A barcode B = {(I, m I )} is a multiset 1 of intervals I ⊂ R, called bars, with finite multiplicities m I .
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 121 Figure 2.1. Height function on a deformed circle.
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 2110 Let f be a Morse function on a closed manifold M and c its critical value. The number of critical points of f with critical value c and index k is equal to the combined number of bars in B k (f ) starting at c and bars in B k-1 (f ) ending at c.

For a barcode B

  and ε ≥ 0, denote by B ε ⊂ B the subset of all bars of length ≥ ε. We use notation a, b to denote any of the intervals (a, b), [a, b), (a, b] or [a, b]. Definition 2.1.13. Let B 1 , B 2 be two barcodes and let ε ≥ 0. A matching σ, between B 1 and

  Property 3) forces bars to have left endpoints open and right endpoints closed, i.e. to be of the form (a, b] or (a, +∞) for a, b ∈ R.

Figure 2 . 2 .

 22 Figure 2.2. Negative gradient trajectories of f
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 2 

Figure 2 . 3 .

 23 Figure 2.3. Negative gradient trajectories on T 2

  below). Let (M, ω) be a closed symplectic manifold, and denote by Powers p (M, ω) ⊂ Ham(M, ω), where p is an integer, the set of all diffeomorphisms in Ham(M, ω), admitting a root of order p (in the same group). Denote by powers p (M ) the supremum of the Hofer's distance to p-th powers in Ham(M ). That is, for each φ ∈ Ham(M ) let d(φ, Powers p (M )) = inf θ∈Powersp(M ) d(φ, θ) and define powers p (M ) := sup φ∈Ham(M ) d(φ, Powers p (M )). Conjecture 3.1.1. For every closed symplectic manifold M and every integer p ≥ 2 it holds powers p (M ) = +∞.

  e * : QH(N ) → QH(N ), (e * )a = e * a,

  e * : QH r (N ) → QH r-2n+deg e (N ), for r ∈ Z. Now E := e * (QH(N )) ⊂ QH(N ) is a vector space over Λ K and E r := e * (QH r (N )) ⊂ QH r-2n+deg e (N ), are vector spaces over K which satisfy E r ∼ = E r+2c N , the isomorphism being induced by multiplication by q. These spaces give us 2c N Betti numbers associated to a homogeneous element e ∈ QH(N ), which we define as b r (e) = dim K E r , r = 0, . . . , 2c N -1. Now, we can state the result regarding Hofer's geometry. Theorem 3.1.2 (Theorem 1.2.2). If there exists e ∈ QH(N ) such that p b r (e) for some r ∈ {0, . . . , 2c N -1} then powers p (Σ × N ) = +∞.

Example 3 . 1 . 3 .

 313 Taking N to be any monotone or symplectically aspherical manifold and e ∈ QH(N ), r ∈ {0, . . . , 2c N -1} such that b r (e) = 0 (for example r = 0 and e = [N ] the fundamental class), we have p b r (e) for large enough p. This means that for large enough p powers p (Σ × N ) = +∞. Since autonomous Hamiltonian diffeomorphisms have p-th roots for all p, we in particular have that Hofer's distance to autonomous flows in Ham(Σ×N ) is unbounded. Example 3.1.4. Let N be connected, dim N = 2n and assume c N ≥ n + 1. We now have that b 0 ([N ]) = b 0 (N ) = 1, where [N ] is the fundamental class and b 0 (N ) classical Betti number, and hence powers p (Σ × N ) = +∞, for all p. This is for example the case for N = CP n . Connected symplectically aspherical N fall in this class of manifolds, with c N = +∞. Example 3.1.5. Let N = S 2 ×S 2 and denote by P = [pt], A = [S 2 ×pt], B = [pt×S 2 ]

  and denote by L ζ , ζ-eigenspace of T , where ζ p = 1, ζ = 1. Then ζ are ζ-eigenspaces of V r .

For

  an interval I = (a, b] or I = (a, +∞) and c ∈ R let I c = (a + c, b -c], when b -a > 2c, or I c = (a + c, +∞). Let B be a barcode, I an interval and denote by m(B, I) the number of bars in B containing I (counted with multiplicities). We will write µ p (B) for a supremum of those c ≥ 0 for which there exists an interval I of length greater than 4c such that m(B, I) = m(B, I 2c ) = l with l not divisible by p. Using this notation we define µ p,ζ as µ p,ζ (W ) = µ p (B(L ζ )), where L ζ is ζ-eigenspace of T . Now µ p is defined as µ p (W ) = max ζ µ p,ζ (W ).

  t r-2n+deg e (N )[ν(e)]. Let us describe the barcode of im(e * ) t explicitly. First, note that we have inclusions of all QH t r (N ) into the full quantum homology QH r (N ) = QH +∞ r (N ) and moreover for s ≤ t, QH s r (N ) ⊂ QH t r (N ) ⊂ QH r (N ) and structure maps act as 1 under these inclusions. Now, E r = e * (QH r (N )) ⊂ QH r-2n+deg e (N ) is the image of the full quantum homology group QH r (N ) and by definition dim K E r = b r (e).

  which can be seen by erasing all intervals corresponding to (b i (N )-copies of) the barcode B r-i (φ) ζ (recall that β(B) is the maximal length of a finite bar in the barcode B).Thus denotingµ reduced p,ζ (r, φ) = µ p,ζ (r, φ) -γ p,ζ (r, φ), 4.24 by the following. Theorem E1. For φ ∈ Ham(M ), α ∈ π 0 (LM ), and any closed connected symplectically aspherical manifold N, consider the stabilization φ × 1 ∈ Ham(M × N ) of φ. Then we have µ reduced p (φ) ≤ µ p (φ × 1 N ) ≤ µ p (φ), the value µ p (φ × 1 N ) being computed in the class α × pt N in π 0 (L(M × N )). Now we turn to Section 5.1 and show how to adapt the proof of Theorem 1.3 in view of the corrected Theorem E1 above. The necessary changes are:

p

  (φ λ ) ≥ λ(c -2ε)/4

Definition 4 . 1 . 4 .

 414 (Ostrover, Polterovich, Gutt, Usher [117,[START_REF] Polterovich | Peristence modules in symplectic topology[END_REF][START_REF] Ostrover | [END_REF][START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF][START_REF] Gutt | Symplectically knotted codimension-zero embeddings of domains in R 4[END_REF][START_REF] Usher | Symplectic Banach-Mazur distances between subsets of C n . to appear[END_REF]) For U, V ∈ C M , we define symplectic Banach-Mazur distance d SBM (U, V ) by

Theorem 4 . 1 . 7 .

 417 For U, V ∈ C M non-degenerate, denote the barcodes of S * ,α (U ) and S * ,α (V ) by B * ,α (U ) and B * ,α (V ) respectively. Then

Remark 4 . 1 . 8 .

 418 (Alternative definition) One may give a definition of symplectic Banach-Mazur distance different from Definition 4.1.4 as follows. Definition 4.1.9. Let U, V ∈ C M and

Corollary 4 . 1 . 14 (

 4114 Theorem 1.3.2). If M = S 2 , then there exists a quasi-isometric embedding Φ : ([0, ∞), | • |) → ( CM , d SBM ).

Conjecture 4 . 1 . 15 .

 4115 For every N ∈ N, there exists a quasi-isometric embedding

Remark 4 . 1 . 20 .

 4120 Infinite rays in B(H * ,α (M, g)), i.e. bars of the form [x, +∞), have transparent meaning. Indeed, the total number of left endpoints of such bars below any λ ∈ R equals to rank(H * (L λ α

Figure 4 . 1 .

 41 Figure 4.1. Metric of revolution on T 2

(4. 4 )

 4 Let us now define for each n ∈ N a metric of revolution g n , on T 2 = R/2nZ×R/2πZ by stacking n copies of a profile function F next to each other, see Figure4.2.

Figure 4 . 2 .

 42 Figure 4.2. Metric of revolution g n on T 2

Remark 4 . 2 . 4 .

 424 Using ( * ) and ( * * ) one easily checks that for all C > 0 and all U, V ∈ C M it holds d SBM (CU, CV ) = d SBM (U, V ) as well as d SBM (U, CU ) = ln C.

Proposition 4 . 2 . 5 .

 425 d RBM defines a pseudo-metric on G M . Proof. By taking C = 1 and φ = 1 M one readily concludes that d RBM (g, g) = 0. On the other hand, for φ ∈ Diff 0 (M ) and C ≥ 1, we have that (1/C)g 1 φ * g 2 Cg 1 if and only if 1 C g 2 (φ -1 ) * g 1 Cg 2 .

2 .

 2 Now, to a given compactly supported Hamiltonian H : R/Z × T * M → R, a class α of free loops in M and real numbers a < b not belonging to Spec(H; α) (and also 0 / ∈ [a, b] if α = [pt]) we associate Hamiltonian Floer homology in action window [a, b) denoted by HF [a,b) *

Remark 4 . 3 . 1 .

 431 The definition of Floer homology also includes an auxiliary choice of an almost complex structure. Since HF [a,b) * (H) α does not depend on this choice, we omit it from the notation. We should also mention that one first defines HF [a,b) * (H) α for Hamiltonians H whose periodic orbits are non-degenerate. Floer homology of a general Hamiltonian H as above is then defined, roughly speaking, as HF [a,b) * (H ) α , where H is a C ∞ -small perturbation of H whose periodic orbits are non-degenerate.

Lemma

  

Definition 4 . 3 . 3 .

 433 For a homotopy class α of free loops in M , U ∈ C M non-degenerate and a > 0, a / ∈ Spec(∂U ) define the filtered symplectic homology of U by SH a * (U ; α) = lim ← -H∈H U,a HF [a,∞) * (H) α .The symplectic persistence module of U in class α is given by the collection of dataSH * ,α (U ) = {SH a * (U ; α)} a∈R >0 ; {ι a,b : SH a * (U ; α) → SH b * (U ; α)} a≤b }with ι a,b being induced from corresponding filtered Hamiltonian Floer homologies.There are two points which we wish to clarify regarding Definition 4.3.3. Firstly, if 0 < a ≤ b and H ∈ H U,a ∩ H U,b the map ι H a,b : HF [a,+∞) * (H) α → HF [b,+∞) * (H) α is inducedby the inclusion of Floer chain complexes 5 . This map commutes with continuation maps and hence induces a map ι a,b : SH a * (U ; α) → SH b * (U ; α) for a, b / ∈ Spec(∂U ). Secondly, we only defined SH a * (U ; α) for a / ∈ Spec(∂U ). However, due to nondegeneracy of U we may extend the definition of SH a * (U ; α) to all a > 0 by asking for all the bars in the barcode of SH * ,α (U ) to have left endpoints closed and right endpoints open. Indeed, one may show that for each b > 0, b / ∈ Spec(∂U ), SH b * (U ; α) is a finite dimensional Z 2 -vector space as well as that if [b, c]∩Spec(∂U ) = ∅ then ι b,c is an isomorphism, see Remark 4.4.5 for the case of unit codisc bundles. Since Spec(∂U ) is discrete, for every a ∈ Spec(∂U ) there exists ε > 0 such that [a -ε, a + ε] contains no other points from Spec(∂U ). Now, we define SH a * (U ; α) by asking for ι a,a+ε to be an isomorphism, or, more formally, by setting SH a * (U ; α) = lim ← -t∈(a,a+ε] (SH t * (U ; α), ι). An interested reader may check that all the bars in the barcode of a symplectic persistence module defined this way have endpoints in Spec(∂U ), each point in Spec(∂U ) is an endpoint of finitely many bars and all bars have left endpoints closed and right endpoints open.

Proposition 4 . 3 . 4 .

 434 Let U, V, W ∈ C M be non-degenerate.

Definition 4 . 3 . 6 .

 436 For t ∈ R, let S t * (U ; α) = SH e t * (U ; α). Define a logarithmic version of the symplectic persistence module associated to U ∈ C M as S * ,α (U ) = {S t * ,α (U )} t∈R ; {ι s,t = ι SH e s ,e t : S s * (U ; α) → S t * (U ; α)} s≤t . 4.3.2 Proof of Theorem 4.1.7

Proposition 4 . 3 .

 43 4 implies that the following diagram commutes SH a * (CU ; α)

  α to H ∈ H U,a,b . In an analogous fashion, instead of considering compactly supported Hamiltonians, one may look at the sets

Figure 4 . 3 .

 43 Figure 4.3. Monotone homotopy 1

Figure 4 . 4 .

 44 Figure 4.4. Monotone homotopy 2

Figure 4 . 5 .

 45 Figure 4.5. A radially symmetric Hamiltonian which computes symplectic homology

Figure 4 . 6 .

 46 Figure 4.6. New Hamiltonian functions coming from monotone homotopies

Lemma 4 . 5 . 1 .

 451 Let B 1 and B 2 be two barcodes. Let a 1 ≥ ... ≥ a n be the n smallest left endpoints of bars in B 1 and denote by [a 1 , C a 1 ), ..., [a n , C an ) ∈ B 1 the corresponding bars. Similarly let b 1 ≥ ... ≥ b n be the n smallest left endpoints of bars in B 2 with corresponding bars [b 1, C b 1 ), ..., [b n , C bn ) ∈ B 2 . Assume that min{C a 1 , ..., C an , C b 1 , ..., C bn } > max{a 1 , b 1 }. Then it holds 1 2 | a -b| ∞ ≤ d bottle (B 1 , B 2 ),where a = (a 1 , ..., a n ) and b = (b 1 , ..., b n ). The statement remains true if some of the C a i or C b j are equal to +∞.r(l) is a smooth even function on (-L, L) and r(l) = 0 exactly at l = L and -L.r(l) has only three critical points at l = -a, 0, a and r attains global maximum at l = a, -a and local minimum at l = 0. r (0) > 0.

Figure 4 .Figure 4 . 8 .

 448 Figure 4.8 shows a general picture of a bulked sphere. A bulked sphere metric g is a metric on S 2 induced from the standard metric on R 3 . γ - γ +

Lemma 4 . 5 . 3 .

 453 For m ∈ N, denote by γ m 0 the m-times iteration of a closed geodesic γ 0 and by γ -m 0 the m-times iteration of γ 0 in the opposite direction. For every m ∈ N, γ ±m 0 are non-degenerate and Ind(γ ±m 0 ) = 0.

δ 2 02

 2 are iterations of γ 0 and they are all non-degenerate. Thus, we may use Morse-Bott techniques described in Subsection 4.4.1, namely the identity (4.15), see alsoRemark 4.4.4. 

For N ≥ 1

 1 an open chain of N -1 spheres, denoted by O(N ), is an open surface of revolution with a smooth profile function r : (L -, L + ) → R which satisfies the following properties: r( ) has N local minima a 1 , . . . , a N and N -1 local maxima b 1 , . . . , b N -1 . r (a i ) > 0 for all i = 1, . . . , N. Profile function of an open chain of N -1 spheres is illustrated in Figure 4.9.

Figure 4 . 9 .Definition 4 . 5 . 6 .

 49456 Figure 4.9. Profile function of an open chain of N -1 spheres

Figure 4 .

 4 Figure 4.10. A general picture of a multi-bulked surface

Lemma 4 . 5 . 7 .

 457 Each closed geodesic γ i is non-degenerate and Ind(γ i ) = 0 for i ∈ {1, ..., N }. Lemma 4.5.7 is proven in Subsection 4.6.1. Similarly to Proposition 4.5.4, we have the following result.

3 )

 3 Every cylinder connecting γ i and γ j for i = j must pass through a loop with energy greater than

Proof. ( 1 i 2 02

 (12 Proof of Proposition 4.1.17 (lower bound)) Define a map Ψ : T (2N ) → G Σ as Ψ( x) = g x , where x = (x 1 , ..., x 2N ) ∈ T (2N ) and g x is a 2N -bulked metric given by Proposition 4.5.8. The short geodesics in the O(2N ) part are labelled from the longest to the shortest by γ 1 , . . . , γ 2N . Denote the homotopy class of these geodesics by α = [γ 1 ] = ... = [γ 2N ].For this α, reversed loops γ -as well as iterations γ ±m i for m ≥ 2 are all not in α. Constant loops are also not in α and thus (3) in Proposition 4.5.8 implies that the only closed geodesics in class α with energy less or equal to δ are γ i , i = 1, . . . , 2N. Lemma 4.5.7 guarantees that all γ i are non-degenerate and thus we may use Morse-Bott techniques introduced in Subsection 4.4.1, namely the identity (4.15), see alsoRemark 4.4.4. 

  1.19 and Corollary 4.1.26. Since Corollary 4.1.26 immediately follows from Theorem 4.1.7, we give its proof first. Proof. (Proof of Corollary 4.1.26) We will prove the claim in the case of a finite bar [a 2 /2, b 2 /2), the case of an infinite ray is treated in the same fashion. Using the isomorphism of persistence modules provided by Theorem 4.4.6, we conclude that the barcode B * ,α (U * g 1 M ) of S * ,α (U * g 1 M ), contains the bar [ln a, ln b). Theorem 4.1.7 and the assumptions give

1 2 (

 2 ln b -ln a) -D implies that there exists [c 0 , d 0 ) ∈ B * ,α (U * g 2 M ) such that max {|ln a -c 0 | , |ln b -d 0 |} ≤ D. (4.31) Indeed, if this was not the case, by shrinking ε we would get infinitely many bars [c ε , d ε ) ∈ B * ,α (U * g 2 M ) which all contain the middle ln a+ln b 2 of the interval [ln a, ln b).This would imply that S ln a+ln b 2 *

Lemma 4 . 7 . 1 .

 471 Let K [a,b) and K [c,d) be two interval modules over field K. Then a non-zero persistence module morphism

  d) and f t = 0 otherwise. This proves one direction of the equivalence. For the other direction one readily sees that b > c and d > a since otherwise [a, b) and [c, d) do not intersect. The rest of the proof follows from a case analysis in terms of the order of endpoints a, b, c, d. We will analyze one case, the other cases are treated in the same way. Assume, for example, that c ≤ a ≤ b < d and let ε > 0 be such that b < b

Figure 4 . 13 .

 413 Figure 4.13. Morphisms at a point t 0 .

  0 and hence Lemma 4.7.1 implies that a -A -B ≤ x and b -A -B ≤ y. To finish the proof notice that [x, y) ∈ B(W[A]) and hence [x + A, y + A) ∈ B(W). For this bar it holds a -B ≤ x + A ≤ a + A and b -B ≤ y + A ≤ b + A and we may take [c, d) = [x + A, y + A).

4. 7 . 2

 72 Proof of Theorem 4.1.19

Figure 4 . 15 .

 415 Figure 4.15. Parameterization of r x in the region [0, B]

Figure 4 .

 4 Figure 4.19. (X, p X )-portrait when √ C < min F

1 u 2 u

 12 ) dt if ∂M = ∅.(5.6) where I i ∈ B (f ) are finite intervals ordered by integral of u, i.e. we haveI (t) dt ≥ I (t) dt ≥ . . . Lemma 5.1.6. For every bounded function u the functional Φ u,k is Lipschitz on F Morse with respect to d bottle with Lipschitz constant (2k + 2) • max u if ∂M = ∅ or with Lipschitz constant (2k + 1) • max u if ∂M = ∅.The proof of Lemma 5.1.6 is given in subsection 5.4.2.Assume now that f ∈ C 0 (M ) is an abritrary continuous function on M . Letf n ∈ F M orse such that d C 0 (f, f n ) → 0 as n → ∞. Set Φ u (f ) := lim k→∞ lim n→∞ Φ u,k (f n ) (5.7)

  +∞-∞ u(t)β(t, f )dt, see Proposition 5.3.1. This proposition, which is of topological nature, constitutes the main technical result of this chapter. Now, notice that taking u ≡ 1 in (5.8) we get the following corollary: Corollary 5.1.8. Let (M, g) be an orientable surface without boundary and let f ∈ F λ be a Morse function on M . Denote by l i the lengths of the finite bars of the barcode associated with f . Then max f -min f + i l i ≤ κ g (λ + 1).

Var

  

Finally, if f ∈ F λ , we have f 1 2

 1 

Example 5 . 1 . 16 . 2 (

 51162 The following example shows that the order of λ predicted by Conjecture 5.1.14 is sharp. Let T n = R n /(2π•Z) n be the n-dimensional torus equipped with a Euclidean metric ds 2 = dx 2 i . Define a sequence of functionsf l (x 1 , . . . , x n ) = √ 2 n(2π) n sin lx 1 + . . . + sin lx n ), l ∈ N.

  ) := max(β i (B), ) . Question 5.1.20. Assume that the barcode B contains N finite bars. What is the optimal (worst-case scenario) running time T of an algorithm which calculates the ordered sequence {β ( ) i (B)}, i ≥ 1?

ãRemark 5 . 2 . 3 .

 523 ≤ d C 0 (f, F λ ).Since | Crit(f )| and Var(f ) do not change when f is composed with a diffeomorphism, (5.16) follows. The following analogue of Proposition 5.2.1 holds for any function f ∈ C 0 (M ). For any k = 1, 2, . . . , we haveapprox λ (f ) k (f ) -κ g (λ + 1) ã for ∂M = ∅ 1 2k+1 Å Φ 1,k (f ) -κ g (λ + 1) ã for ∂M = ∅ (5.18)The proof is the same, with the constant C(u, f ) replaced by the Lipschitz constant from Lemma 5.1.6.Corollary 5.2.4. Let M be a surface without boundary and f : M → R be a Morse function. Suppose that approx λ (f ) ≤ for some > 0, and the barcode B(f ) contains N finite bars of length at least L + 2ε each, for some L > 0. Then

2 . 1

 21 to obtain a relation between the average length of a bar in a barcode of a Morse function on T 2 and its modulus of continuity which is defined below.Assume M = T 2 = R 2 /(2π • Z)2 , let f : M → R be a continuous function, δ > 0 a real number and denote byω 1 (f, δ) = sup |t|≤δ max x |f (x + t) -f (x)|,the modulus of continuity of f and byω 2 (f, δ) = sup |t|≤δ max x |f (x -t) -2f (x) + f (x + t)|,the modulus of smoothness of f. One readily checks that ω 2 (f, δ) ≤ 2ω 1 (f, δ).

. 26 )

 26 Here κ 0 = κ g for g being the flat metric on M . Multiplying the function by a positive constant results in multiplying the endpoints of each bar in the barcode by the same constant. Thus, the total number of bars does not change after multiplication, while the lengths of finite bars scale with the same constant. In other words, we have that BÅ f h ã = |B (f )| and h • Φ 1 Å f h ã = Φ 1 (f ). Substituting these equalities in (5.26) and using h ≤ f we obtain1 4 • (|B (f )| + 1)

. 29 )(- 1 )

 291 In fact, Theorem 5.2.8 admits the following generalization. Given a smooth function f on a flat torus M = T 2 , define its modulus of smoothness of order m byω m (f, δ) = sup |t|≤δ max (m-j) Ç m j å f (x + jt) .

7 . 5 . 3 . 4 .

 7534 )β(t, f ) dt ≤ κ g (λ + 1) • u • f . (5.34) Since f is Morse we can apply Proposition 5.3.1. Combining this proposition with inequality (5.34) immediately yields Theorem 5.1.Remark It follows from the proof of Theorem 5.1.7 that inequality (5.8) holds for any function in the closure of F λ in C 0 -topology. Remark 5.3.5. The proof of Theorem 5.1.7 suggests the following approach to proving Conjecture 5.1.14. Recall that, by definition, the Banach indicatrix is given by β(t, f ) = b 0 (f -1 (t)). In view of Proposition 5.3.1, it is plausible that the following inequality holds in dimension n ≥ 3:

  Definition 2.1.15. Let B 1 , B 2 be two barcodes. The bottleneck distance between B 1 and B 2 is given by

  Remark 2.1.26. Morally speaking, persistence modules we consider in Chapter 4 are of locally finite type. However, there is a slight ambiguity, as persistence modules appearing in Chapter 4 satisfy property 1'), but not property 3). Namely, property 3) forces all bars in the barcode to have left endpoints open and right endpoints closed, while in Chapter 4 we use the opposite conventions, i.e., bars have left endpoints closed and right endpoints open. Since we are interested in metric properties of persistence modules and barcodes, this difference is rather superficial. Indeed, by modifying the endpoints of bars in a barcode in any way, one obtains a barcode whose bottleneck distance from the original one is zero. We leave it as an exercise to the reader to modify 3) to obtain conventiones we use in Chapter 4.

Example 2.1.27. Let (M, g) be a closed Riemannian manifold. Define the energy of a loop γ : S

  Definition 2.2.1. A critical point x ∈ Crit(f ) is called non-degenerate if Hess f (x)is a non-degenerate bilinear form. In this case, the number of negative eigenvalues of Hess f (x) is called the index or Morse index of x and is denoted by ind(x). If all critical points of f are non-degenerate f is called Morse. For a Morse function f , we denote by Crit k (f ) the set of all critical points of f of index k.

	Example 2.2.2. Let N = R

n , c ∈ R and f : R n → R be given by

  . A direct computation shows that in these coordinates λ can = n i=1 p i dq i and hence ω can = dλ can = n i=1 dp i ∧ dq i .

	∂ ∂q 1 ) * , . . . , ( ∂ ∂qn ) * ) the dual frame to ( ∂ ∂q 1 , . . . , ∂ ∂qn ),
	i.e. ( ∂ ∂q i ) * ( ∂ ∂q j ) = δ ij . Define coordinates (p 1 , . . . , p n ) on the fibers by expressing each covector p as p = n i=1 p i ( ∂ ∂q i )

* 

  moreover this form is exact, symplectic map φ is called exact. A symplectic diffeomorphism is called a symplectomorphism. Let us give a couple of examples of symplectomorphisms.

	Example 2.2.14. Let ω 0 be the standard symplectic form on R 2n defined in Example
	2.2.9. The group of symplectic matrices is defined as
	Sp

  N → T * N. A direct computation shows that (φ * ) * λ can = λ can where λ can is the canonical Liouville form on T * N defined in Example 2.2.13. This implies that φ * is a symplectomorphism which is moreover exact.

	2.2.15. By definition, every volume preserving diffeomorphism of a surface
	with a volume form is a symplectomorphism.
	Example 2.2.16. Let N be a smooth manifold. A diffeomorphism φ ∈ Diff(N )
	defines a map φ

* : T *

  j dx j + y j dy j ) and hence ω(X H , •) = -dH implies that X H (x 1 , . . . , x n+1 , y 1 , . . . , y n+1 ) = (-y 1 , . . . , -y n+1 , x 1 , . . . , x n+1 ).

	depend on t it is called autonomous. In this case X H also does not depend on t
	and hence φ H s • φ H t = φ H s+t , i.e. {φ H t } t∈R is a 1-parameter subgroup 3 of Hamiltonian
	diffeomorphisms. Hamiltonian flow and Hamiltonian diffeomorphism generated by an
	autonomous Hamiltonian are also called autonomous. Since for autonomous flows
	d dt	(H(φ H t (x))) = dH(X H (φ H t (x))) = -ω(X H , X H ) = 0,
	the level sets of H are invariant under the flow of φ H t .
	Example 2.2.18. Let H : R 2n+2 → R be given by H(z) = 1 2 z 2 . Now dH = n j=1 (x
		0,
	and hence (φ H t ) * ω = ω for all t ∈ [0, 1]. In particular (φ H 1 ) * ω = ω, which means
	that every Hamiltonian diffeomorphism is a symplectomorphism. If H does not

  have 1 as an eigenvalue. Hamiltonian H and diffeomorphism φ H 1 are called non-degenerate if all periodic orbits of the corresponding flow are non-degenerate. Equivalently, H is non

  Remark 2.2.43. One may use Theorem 2.2.42 to extend certain invariants derived from the barcode from non-degenerate Hamiltonian diffeomorphisms to all of Ham(M, ω).

2.1.21, yields the statement.

  for every x ∈ CF * (H, J) we turn HF * (H, J) into a finite dimensional Λ Z 2 -vector space. Due to (2.19), it holds deg q = 2c M in Floer homology as well. A similar argument as in the aspherical case (taking C 2 -small Morse Hamiltonian) implies that

  In order to obtain the Künneth formula for filtered homology, we must examine the product of two filtered chain complexes. Let us start with an example.

	Example 3.2.4. Let (C 1

The main examples of filtered chain complexes of interest to us are the Morse chain complex CM * (f ) for a Morse function f , where f also serves as a filtration function and the Floer chain complex CF * (H) α filtered by the action functional A H , where H is a Hamiltonian function and α is an atoroidal or toroidally monotone class of free loops (see Section 3.3.1 for details). Now if (C * , ∂ * , ν) is a chain complex with filtration function ν, we may define C t * = {x ∈ C * |ν(x) < t} for evert t ∈ R and by property 4) we have that ∂ * : C t * → C t * -1 . This implies that (C t * , ∂| C t * ) is a new chain complex and we denote its homology by H t * (C) and refer to it as filtered homology. Since C s ⊂ C t for s ≤ t, inclusions induce maps π s,t : H s * (C) → H t * (C), which render (H t * (C), π) into a persistence module. * , ∂ 1 * , ν 1 ) and (C 2 * , ∂ 2 * , ν 2 ) be two filtered chain complexes given by

  Our objects of interest are Floer persistence modules of the form HF t * ( f p ) α for f ∈ fi Ham(M ). In this case P (f ) : HF t * ( f p ) α → HF t * ( f p ) α defines a Z p action on HF t * ( f p ) α and we get a Z p Floer persistence module. Since P (f ) and a * commute, a * is a Z p persistence module morphism and we wish to treat it as an operator on HF t * ( f p ) α and apply considerations from Section 3.2.5. To do so, define a Z p persistence module = pG pt normalized 1-periodic Hamiltonians generating paths which represent f p and gp . Continuation maps

			W t r (a, f Ham(M ) respectively
	and by F	(p) t	(p) = pF pt and G t

p ) = im(a * ) = (a * )(HF t r ( f p ) α ) ⊂ HF t+ν(a) r-2n+deg a ( f p ) α ,

with Z p action given by P (f ). Denote by F t and G t normalized 1-periodic Hamiltonians generating paths in Ham(M ) which represent classes of f and g in fi

  Remark 3.3.2. Let f ∈ Ham(M ) and fix a lift f ∈ fi Ham(M ) of f . We can use W t r (a, f p ) to estimate Hofer's distance from f to p-th powers inside Ham(M ). Indeed, denote by Powers p (M ) ⊂ Ham(M ) the set of all p-th powers of Hamiltonian diffeomorphisms and by • Powers p (M ) ⊂ fi Ham(M ) the set of all lifts of elements from Powers p (M ). In other words •Powers -th power persistence module because g = φ p implies P (φ) p = P (g) and P (φ) restricts to W t r (a, gp ) because P (φ) and a * commute. It follows that µ p (W t r (a, gp )) = 0 and thus by(3.4) 

equivariant interleaving between HF t * ( f p ) α and HF t * (g p ) α , where E -(G -F ) = 1 0 min M (G t -F t )dt. Taking infimum over all F and G generating f , g ∈ fi Ham(M ) we get that p • d( f , g) ≥ d op-inter (HF t * ( f p ), HF t * (g p )), which together with (3.3) gives us p • d( f , g) ≥ d op-inter (HF t * ( f p ), HF t * (g p )) ≥ d inter (W t * (a, f p ), W t * (a, gp )). (3.6) p (M ) = π -1 (Powers p (M )) under the natural projection π : fi Ham(M ) → Ham(M ). For g ∈ • Powers p (M ), we have that W t r (a, gp ) is a full p

  × 1) α λ and HF t * ( φp λ ) α λ . Let us now work out the example which proves Theorem 3.1.2. Proposition 3.3.3. Let φλ be the egg-beater flow and assume e ∈ QH(N ) satisfies assumptions of Theorem 3.1.2. There exists k ∈ Z such that

t * ( φp λ × 1) and HF t * ( φp λ ) for HF t * ( φp λ

  ∈ Z. Our product map splits on the components of the product, i.e., it enters the following commutative diagram:

	consider multiplication by e as a persistence module morphism (e * ) : QH t r (N ) →
	QH r-2n+deg e (N ) between QH t t+ν(e) r (N ) and shifted module QH r-2n+deg e (N ) = QH t t+ν(e) r-2n+deg e (N )[ν(e)],
	for every r i+j=k	(HF i ( φp λ ) ⊗ QH j (N )) t	K	HF t k ( φp λ × 1)
		1⊗(e * )		([Σ]⊗e) *
	(HF i ( φp λ ) ⊗ QH j-2n+deg e (N )[ν(e)]) t	K	HF t k-2n+deg e ( φp λ × 1)[ν(e)]
	i+j=k			
	where each arrow represents a Z p persistence module morphism. Using this diagram
	we calculate			
				Now,

  The indices of fixed points of the egg-beater map are uniformly bounded (the bound does not depend on λ) and thus we have |r| < M for r ∈ I k for some constant M not depending on λ. This also gives us that there exists a constant C > 0 independent of λ such that |a r | < C and |A r | < C for all r ∈ I k and thus |c r,i | < C for all r ∈ I k , i = 1, . . . , b r (e). By Lemma 2.1.25 we have that

	the isomorphism being given by K. Elementary calculations on interval persistence
	modules now imply						
	(W t k , P (ϕ λ × 1)) ∼ =			br(e)	Å HF	t-c r,i k-r ( φp λ ) α λ , P (ϕ λ )	ã .
				r∈I k	i=1
	Denoting the ζ-eigenspace of (HF t k (ϕ p λ ) α λ , P (ϕ λ )) by L t k,ζ and ζ-eigenspace of (W t k , P (ϕ λ × 1)) by L t ζ we have by Lemma 3.2.14
						br(e)
			L t ζ	∼ =				L t-c r,i k-r,ζ .
					r∈I k	i=1
	d bottle	Å	B(L t ζ ), B	Å			(L t k-r,ζ ) br(e)	ãã	< C,
						r∈I k
					br(e)
							(K t (c r,i ,+∞) , 1),
						i=1	
	as Z p persistence modules, which together with the above diagram gives us
	(W t		ÅÅ HF k-r ( φp λ ) ⊗	br(e)	ã ,
		r∈I k				

t = k , P (ϕ λ × 1)) ∼ = i=1 K (c r,i ,+∞) ã t , P (ϕ λ ) ⊗ 1

and hence by Lipschitz property of µ p we have

  This erratum is written in order to correct a mistake in Theorem 4.24 in[START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. The main theorem (which this mistake could potentially affect),[START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] Theorem 1.3], holds still. See Theorem E1 and the update to the proof of[START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] Theorem 1.3] below.

	Alternatively, as noted in Example 3.1.4, [121, Theorem 1.3] holds as a special case
	of the main theorem, Theorem 3.1.2 of the current chapter, and its proof extends the
	proof of [121, Theorem 1.3].
	1),
	which gives us µ p (W t k ) ≥ cλ + O(1) as claimed.

The proof of Theorem 3.1.2 follows directly from Proposition 3.3.3 and Remark 3.3.2.

3.3.3

Erratum: behavior of µ p under stabilization in the aspherical case.

  g 1 ≤ ||x|| g 2 . Diff 0 (M ) stands for the identity component of Diff(M ). Riemannian Banach-Mazur distance can be considered a smooth isotopy version of the well-known Lipschitz distance, see Remark 4.2.9. As we saw in Example 4.1.3, every Riemannian metric g defines a domain U * g M ∈ C M and thus G M can be naturally identified with a subset of C M . With this in mind, d RBM and d SBM are two pseudo-metrics on G M which turn out to be comparable. More precisely, the following inequality is proven in Proposition 4.2.8 2 • d SBM (U can be viewed as a persistence module which we denote by SH * ,α (U ), see Subsection 4.3.1.Multiplying the domain by C > 0 results in the proportional scaling of the filtration, that is SH Ca The resulting persistence module is denoted by S * ,α (U ). We are able to estimate d RBM and d SBM from below using the associated barcodes, namely the following stability property holds.

	Remark 4.1.6. 1.4
	we introduce the logarithmic version of SH * (U ; α),
		S t * (U ; α) = SH e t * (U ; α), t ∈ R,
	which satisfies S t+ln C *	(CU ; α) = S t

* g 1 M, U * g 2 M ) ≤ d RBM (g 1 , g 2 ).

(4.1)

Recall that given a contact manifold (Y, µ) with Reeb flow ϕ µ t , a periodic Reeb orbit ϕ µ t (x),

ϕ µ T (x) = x of period T is called non-degenerate if det(dϕ µ T | ker µ(x) -1 ker µ(x) ) = 0. If

all periodic Reeb orbits are non-degenerate, contact manifold (Y, µ) is called non-degenerate. In the light of this definition an admissible domain U is called non-degenerate if (∂U, λ can | ∂U ) is a non-degenerate contact manifold. A classical tool used to study admissible domains is symplectic homology, denoted by SH * (U ; α), for U ∈ C M and α a homotopy class of free loops in M. Assuming U is non-degenerate, a filtered version of symplectic homology SH a * (U ; α), a > 0 * (CU ; α) = SH a * (U ; α) for all a > 0. In accordance with Definition 4.* (U ; α).

  Morse-Bott theory of E g implies that the endpoints of bars in the barcode B(H * ,α (M, g)) are equal to energies of certain closed geodesics. This allows us to use persistence modules to study closed geodesics, namely, in Subsection 4.7.2, we prove the following result.Theorem 4.1.19 (Theorem 1.3.4). Let g 1 , g 2 be two bumpy metrics on a closed, orientable manifold M such that 1C 1 g 1 g 2 C 2 g 1 .If there exists a bar [x, y) ∈ B(H * ,α (M, g 1 )) such that y

  Remark 4.2.7. One readily checks that it holds d RBM (Cg 1 , Cg 2 ) = d RBM (g 1 , g 2 ) as well as d RBM (g 1 , Cg 1 ) = ln C for all C > 0 and all g 1 , g 2 ∈ G M . As we saw in Example 4.1.3, G M can be identified with a subset of C M via inclusion g(∈ G M ) → U * g M (∈ C M ). Therefore, it makes sense to compare d SBM with d RBM on G M and we have Proposition 4.2.8. Let M be a closed, orientable manifold and g 1 , g 2

  we denote H U,a,+∞ by H U,a . Define a partial order on H U,a,b as follow. For H 1 , H 2 ∈ H U,a,b , H 1 H 2 if and only if H 1 (t, z) ≥ H 2 (t, z) for all (t, z) ∈ S 1 ×U. If H 1 H 2 then there exists a smooth homotopy τ → H τ from H 1 to H 2 such that ∂ τ H τ ≤ 0. We call such a homotopy monotone. Every monotone homotopy induces a Z 2 -linear continuation map

  4.3.2. Let U ∈ C M . For any three functions H 1 , H 2 and H 3 in H U,a,b with H 1 H 2 H 3 , the induced maps on Hamiltonian Floer homologies in action window [a, b) satisfy σ 13 = σ 23 • σ 12 . Note that Lemma 4.3.2 together with the fact that continuation map is independent of the choice of the monotone homotopy implies that if H 1 H 2 H 3 and H 1 H 4 H 3 , H i ∈ H U,a,b , the following diagram commutes for any H 2 , H 3 ∈ H U,a,b , there exists some H 1 ∈ H U,a,b such that H 1 H 2 and H 1 H 3 . Lemma 4.3.2 implies that Floer homologies HF

	HF	[a,b) * O O (H 2 ) α	σ 23 / / HF	[a,b) * O O (H 3 ) α	(4.9)
	HF σ 12 [a,b) *	(H 1 ) α σ 14	/ / HF	[a,b) σ 43
	We will use this in the proof of Theorem 4.4.6.
						[a,b) *	(H) α , H ∈ H U,a,b together with
	continuation maps σ 12 : HF				

*

(H 4 ) α . Now notice that (H U,a,b , ) is a downward directed partially ordered system, i.e.

  Moreover for C ≥ 1, we have a commutative diagram

	C > 0. SH Ca * (CU ; α)	o o	r C	SH a * (U ; α)	1 C	for all
		h Ca i	( ( SH Ca * (U ; α) w w ι SH * ,α(U ) a,Ca		
	where h Ca i SH * ,α(U ) is the persistence module morphism induced by inclusion U and ι a,Ca	i -→ CU

  a Ha and π b H b , i b H b are all isomorphisms by (4.20), but i a H b is not an isomorphism. Denote by ι H a 2 /2,b 2 /2 the persistence structure map from filtration level a 2 /2 to filtration level b 2 /2 of persistence module H * ,α (M, g). Using the definition of Φ H,a given by (4.22) and the two commutative diagrams above we obtain ι H a 2 /2,b 2 /2 •Φ H,a = Φ H,b •ι HF a,b , which finished the proof.In this section, we prove lower bounds in Propositions 4.1.16 and 4.1.17. To this end, we will describe two classes of Riemannian metrics which realize quasi-isometric embeddings in Propositions 4.1.16 and 4.1.17. The first class of metrics will be defined on S 2 and metrics in this class will be called bulked sphere metrics on S 2 . The other class will be defined on a closed, orientable surface Σ of genus at least 1, and metrics in this class will be called multi-bulked metrics on Σ. The way we construct these metrics enables us to precisely analyze closed geodesics and prove that they have various nice properties, see Propositions 4.5.4 and 4.5.8. Then, using Theorem 4.4.6, we are able to describe parts of the barcodes of the corresponding symplectic persistence modules. Finally, the lower bounds in both Proposition 4.1.16 and Proposition 4.1.17 comes from the stability property -Theorem 4.1.7 and a combinatorial result -Lemma 4.5.1, which we will now prove.

	4.5 Proofs of Proposition 4.1.16 and Proposition
	4.1.17 (lower bounds)

  2x . . . . In other words B(H 1,pt (S 2 , g x )) contains a bar [E gx (γ 0 ), C x ) with C x ≥ Moreover E gx (γ 0 ) is the smallest left endpoint in B(H 1,pt (S 2 , g x )).Recall that B 1,pt (U * gx S 2 ) denotes the barcode of a symplectic persistence module with logarithmic parametrization in degree one and homotopy class of a point.

	Since γ ±m 0 guarantees that [p 1 do not produce any critical points of index 2, (2) in Proposition 4.5.4 -1 ], [p 1 1 ] ∈ H 1 (L λ pt (S 2 , g x ); Z 2 ) are non-zero for all λ ≤ δ 2 0 2 . δ 2 0 2 (in fact it contains
	two such bars). Theorem
	4.4.6 implies that				
	ln	» 2E gx (γ 0 ), ln 2C x =	î	ln δ 0 -x, ln 2C x	ä	∈ B 1,pt (U * gx S 2 ).
	By (2) in Proposition 4.5.4 we also have that ln	√	2C x ≥ ln δ 0 -y for any y ≥ 0.
	Hence, for any x, y ∈ [0, ∞) Lemma 4.5.1 gives	
		1 2	|x -y| ≤ d bottle (B 1,pt (U * gx S 2 ), B 1,pt (U * gy S 2 )),
	which together with Theorem 4.1.7 implies 1 2 |x -y| ≤ d SBM (U * gx S 2 , U * gy S 2 ).
	Now define the desired embedding			

  Endpoints of bars in B(H * ,α (M, g 2 )) correspond to the energies of closed geodesics and thus there exist closed geodesics γ 1 , γ 2 of g 2 such that

	of this bar is ln y x and since ln y x > ln apply Lemma 4.7.2 with A = 0 and B = ln √ √ C 1 + ln C 1 + ln √ √ C 2 by the assumption, we can C 2 .
	It follows that there exists a bar (c, d] ∈ B * ,α (U * g 2 M ) such that
	ln	√	2x -ln C 1 ≤ c ≤ ln	√ 2x + ln C 2 ,
	and							
	ln 2y -ln C 1 ≤ d ≤ ln 2y + ln C 2 .
	By Theorem 4.4.6, bar [ 1 2 e 2c , 1 2 e 2d ) ∈ B(H * ,α (M, g 2 )) and its endpoints satisfy
	x C 1	≤	1 2	e 2c ≤ C 2 x,	y C 1	≤	1 2	e 2d ≤ C 2 y.
	2y) ∈ B * ,α (U * g 1 M ) by Theorem 4.4.6, where g 1 M ) denotes the barcode of persistence module S * ,α (U * B * ,α (U * g 1 M ). Now, Proposition 4.3.4 implies that [ln √ 2x + ln √ C 2 , ln √ 2y + ln √ C 2 ) ∈ B * ,α ( √ C 2 U * g 1 M ). The length

  Conclusion of Lemma 4.8.4 immediately follows from the following inequalities. For a 1 , ..., a n ∈ R, 1 2 max{|a 1 |, ..., |a n |} ≤ max{|a 1 |, |a 1 + a 2 |, ..., |a 1 + ... + a n |} ≤ n • max{|a 1 |, ..., |a n |}.
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for l ∈ [B, 2A], we obtain a C 1 -smooth function r x : [0, 2A] → [0, ∞). Another straightforward calculation shows that for Proof.

  5.1.3. The functional Φ u is lower semi-continuous both as a functional Φ u : (B, d bottle ) → R and as a functional Φ u : (F Morse , d C 0 ) → R. Here B stands for the set of all barcodes corresponding to functions in F Morse . Remark 5.1.4. We slightly abuse the notation here by looking at Φ u

  t i ] = d i + e i , where d i = [Σ i 1 ] + . . . + [Σ im i ] for some [Σ i 1 ], . . . , [Σ im i ] and e i ∈ j * (H n-1 (f -1 (t))). Moreover, since M t i are disjoint, we have that d 1 + . . . + d k = [Σ 1 ] + . . . + [Σ l ],andd 1 , . . . , d k partition the set {[Σ 1 ], . . . , [Σ l ]}. We have that d 1 , . . . , d k ∈ j * (H n-1 (f -1 (t))), because d i = -e i , and let [d 1 ], . . . , [d k ] ∈ j * (H n-1 (f -1 (t)))/ ker i * be the corresponding classes inside the quotient space. We claim that any k -1 of [d 1 ], . . . , [d k ] are linearly independent. Once we prove this, choosing and k -1 of these gives us the k -1 classes that we need.

The term "topological function" theory was taken from[START_REF] Polterovich | Topological persistence in geometry and analysis[END_REF]. It refers to the study of properties of functions which are invariant under the action of diffeomorphisms or homeomrphisms of the underlying space, such as the C 0 -norm.

This value might be equal to +∞ if the class never disappears, i.e., if it is a homology class of the underlying manifold.

Minimal Chern number is defined asc N > 0 s.t. c 1 (π 2 (N )) = c N • Z.

By star-shaped we mean star-shaped with center at 0. In particular 0 M ⊂ U.

By this we mean the union over all degrees k of all finite bar in the barcode of H k ({f < t}; R).

Strictly speaking, there is a slight difference between Theorem 1.4.1 and Theorem 5.1.7. However, the proof of Theorem 1.4.1 can be easily extracted from the proof of Theorem 5.1.7.

Recall that a multiset is a set in which elements may appear more than once. The number of times an element appears in the multiset is called the multiplicity of that element.

Here and in the rest of the thesis we use a convention that homology of the empty set is zero.

Hamiltonian diffeomorphisms form a group as we will explain at the end of this subsection.

A different normalizations might appear in the literature, i.e. the Fubini-Study form may be defined to be a multiple of the form we just defined.

Non-compact case is treated similarly. We will not discuss it, since all our results about Hofer's metric concern closed manifolds.

Meaning that det(1 -dφ H 1 (x)) = 0 for every fixed point x of φ H 1 , i.e., the graph of φ H 1 intersects the diagonal in M × M transversely.

By a periodic orbit we mean a 1-periodic orbit.

That is the polynomial x p -1 ∈ K[x], which is separable by the assumption char(K) p, splits over K.

Some form of this statement was already known to experts, in particular to Michael Usher and Jun Zhang.

All the considerations in this section also apply to α which is symplectically atoroidal, meaning ω = c 1 = 0 on π 1 (L α M ).

A version of this corollary can be traced back to Birkhoff.

In principal, one should define f in order to define g, however, in this case one may show that f is implicitly defined by F as explained in Subsection 4.8.3.

Here we omit the auxiliary height function h on S 1 from the notation.

Linearity of H in this context can be understood as H t (x, y) = β y g * + β for some β, β ∈ R and a fixed Riemannian metric g on M. More generally, if (U, λ) is a Liouville domain, linearity is understood as linearity with respect to the radial coordinate in the completion of (U, λ) and the previously described linearity corresponds to the case (U, λ) = (U * g M, λ can ).

The existence of such a trivialization Φ follows from an argument similar to the proof of Lemma 1.7 in[START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF]. In[START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF], Φ 1,t is predetermined and hence Φ s,t (0 × R n ) = T v G(s,t) T * M only holds for s = 0, 1. One may notice that this weaker condition would also be sufficient for our purposes.

Regular means such that transversality is achieved in the definition of all the moduli spaces which appear. Such choice of metrics is generic.

Recall that a point γ(t * ) is called conjugate to γ(0) along γ if there exists a Jacobi field J along γ such that J(0) = J(t * ) = 0. Since the space of Jacobi fields along γ is spanned by orthogonal Jacobi fields and γ and t γ, one readily sees that γ(t * ) is conjugate to γ(0) if and only if there exists an orthogonal Jacobi field J along γ such that J(0) = J(t * ) = 0.

Our definition is slightly different from the one in[START_REF] Polterovich | Nodal inequalities on surfaces[END_REF] since we do not assume that M f σ = 0 if M has no boundary. However, this assumption is not needed for any of the results of[START_REF] Polterovich | Nodal inequalities on surfaces[END_REF] which we use.

Formally speaking, F k should be a small perturbation of f k + 1 in order to make it Morse, but we will ignore this detail for the sake of clarity.
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Proof. Let k be such that | a -b| ∞ = |a k -b k | and assume without loss of generality that a k ≤ b k . Further assume that there exists a δ-matching σ : B 1 → B 2 . It is enough to prove that 2δ ≥ b k -a k = | a -b| ∞ . We split the proof in three cases.

• Case 1 -One of the bars [a k , C a k ), . . . , [a n , C an ) is erased.

Denote by l the index of the erased bar. Since a l ≤ a k and C a l > b 1 we have Let l, k ≤ l ≤ n be such that σ([a l , C a

and the proof is finished.

Proof of Proposition 4.1.16

We start with the definition of a bulked sphere. Taking advantage of the geometry of a bulked sphere, the proof of Lemma 4.6.1 comes from a direct computation of eigenvalues of the linearized Poincare map.

Proof. (Proof of Lemma 4.6.1) Suppose that our bulked sphere S comes from rotating a profile function r around the x-axis and denote the radius of the circle γ 0 (t) by r(0) := r. Then γ 0 (t) = (0, r cos(2πt), r sin(2πt)), t ∈ [0, 1] and its velocity is given by γ0 (t) = (0, -2πr sin(2πt), 2πr cos(2πt)).

Gaussian curvature K G along γ 0 (t) is constant and can be expressed using the formula for the Gaussian curvature of the surface of revolution. More precisely, we have

which is negative by the third property in the definition of a bulked sphere, namely r (0) > 0, see Definiton 4.5.2.

In order to calculate the linearized Poincare map, we are only interested in the Jacobi fields orthogonal to γ0 (t). Let J = J(t) be such a Jacobi field, J(t) ⊥ γ0 (t) for all t ∈ [0, 1]. Since dim S = 2, J(t) and γ0 (t) span the tangent planes T γ(t) S. On the other hand, the curvature tensor satisfies R(J, γ0 ) γ0 , γ0 = 0 and hence R(J(t), γ0 (t)) γ0 (t) is proportional to J(t). We calculate R(J(t), γ0 (t)) γ0 (t), J(t) = | γ0 (t)| 2 |J(t)| 2 R(e 2 , e 1 )e 1 , e 2 with {e 1 , e 2 } orthonormal

= -4π 2 rr (0) J(t), J(t) .

Denoting K = -4π 2 rr (0), (4.23) is simplified as

Note that K is always negative because r (0) > 0.

Now, since S is a surface of revolution with axis of rotation being the x-axis, and since r (0) = 0, the tangent space to S at γ 0 (t) is generated by γ0 (t) and (1, 0, 0). This means that a Jacobi field orthogonal to γ0 has the form J(t) = (J 1 (t), 0, 0). It follows that ∇ γ0 J(t) = ( J1 (t), 0, 0), (4.25)

Lemma 4.6.4 (Proposition 5, page 4 of [START_REF] Klingenberg | Riemannian manifolds with geodesic flow of Anosov type[END_REF]). If γ is hyperbolic, then

One may regard this lemma as an analogue of the well-known Morse index theorem for a geodesic segment. A general result about the index of a closed geodesic (not necessarily hyperbolic) is worked out in [START_REF] Klingenberg | The index theorem for closed geodesics[END_REF]. Finally, Lemma 4.6.5 (Corollary 3.2.15 in [START_REF] Klingenberg | Riemannian geometry[END_REF]). For a hyperbolic γ it holds:

We are now ready to give the desired proofs.

Proof. (Proof of Lemmas 4.5.3 and 4.5.7) From the computations in the proof of Lemma 4.6.1, we know that the space of Jacobi fields orthogonal to γ0 is generated by the fields J + (t) = (e √ -Kt , 0, 0) and J -(t) = (e - √ -Kt , 0, 0). Since e √ -Kt → +∞ and e - √ -Kt → 0 when t → +∞, no linear combination of J + and J -can be periodic. Thus, by Lemma 4.6.3, we know that γ m 0 are non-degenerate for all m ∈ N. On the other hand, by (4.25) we have that for t ∈ [0, 1]

as well as

In other words contracting and expanding spaces in the splitting E(t) = E s (t) ⊕ E u (t) are generated by (J -(t), (∇ γ0 J -)(t)) and (J + (t), (∇ γ0 J + )(t)) respectively. Since for all t ∈ [0, 1] it holds J -(t) = 0, Lemma 4.6.4 implies that Ind(γ 0 ) = 0 and thus by Lemma 4.6.5 Ind(γ m 0 ) = m • Ind(γ 0 ) = 0. Finally, note that the direction of γ 0 played no role in this subsection, i.e. all statements apply equally to γ -m 0 . This completes the proof of Lemma 4.5.3. Since all the considerations are local, the proof of Lemma 4.5.7 follows in the same fashion. Remark 4.6.6. One may also prove that Ind(γ m 0 ) = 0 by a direct computation using Lemma 4.6.4, without realying on Lemma 4.6.5.

Analyzing long geodesics

In this subsection, we will prove (2) in Proposition 4.5.4 as well as (2) and (3) in Proposition 4.5.8. To this end, let us describe closed geodesics on a bulked sphere and a multi-bulked surface. We start with a bulked sphere. Now, if S is a multi-bulked surface defined in Subsection 4.5.3, we call the part of S between ∆ (i-1)i and ∆ i(i+1) the neck of γ i . Using the same argument as in the proof of Lemma 4.6.8 we may prove the following. Lemma 4.6.9. Let γ be a closed geodesic on a multi-bulked surface S which enters the neck of γ i . Then γ intersects either ∆ (i-1)i or ∆ i(i+1) . Remark 4.6.10. One may also deduce Lemmas 4.6.8 and 4.6.9 form the analysis of the geodesic flow similar to the one presented in Subsection 4.8.3.

We are now in a position to give a proof of (2) in Proposition 4.5.4 as well as ( 2) and (3) in Proposition 4.5.8. However, before we proceed with the arguments, we wish to explain the general logic which these proofs follow.

In the case of a multi-bulked surface, firstly we fix the genus of the surface and the number of necks N (in the case of the bulked sphere these are automatically fixed).

Secondly, we fix an embedding φ : Σ → R 3 , of the surface and a cylindrical segment inside im φ which we wish to replace by an open chain of N -1 spheres O(N ) as described in Subsection 4.5.3. After inserting O(N ) we obtain the multibulked surface S ⊂ R 3 .

Finally the major part of S remains fixed as we vary g x , for x ∈ T (N ) (or g x , for x ∈ [0, ∞) in the bulked sphere case). In fact, for different x ∈ T (N ), metrics g x only differ in very small neighbourhoods of γ 1 , . . . , γ N (or in a small neighbourhood of γ 0 in the bulked sphere case). Moreover, we have the freedom to define g x in these neighbourhoods in such a way that the energies of γ 1 , . . . , γ N (or the energy of γ 0 ) are equal to any sufficiently small numbers, see Subsection 4.8.1. Now, proving the existence of δ 0 as in (2) in Proposition 4.5.4 and ( 2), (3) in Proposition 4.5.8 actually means providing δ 0 which only depends on the fixed part of S. In other words, δ 0 should not depend on the small change that we make in the neighbourhoods of short geodesics γ 1 , . . . , γ N (or γ 0 ). Given such δ 0 , we may define g x (or g x ) in the neighbourhoods of γ i in such a way that [START_REF] Abbondandolo | Lectures on the Morse complex for infinitedimensional manifolds[END_REF] Assume that a cylinder u : R × S 1 → M connects γ i and γ j for i < j, that is u(-∞, t) = γ i (t), u(+∞, t) = γ j (t). Since γ i and γ j belong to different connected components of Σ \ (∆ 01 ∪ ∆ i(i+1) ), we have that im(u) must intersect either ∆ 01 or ∆ i(i+1) . Assume first that it intersects ∆ i(i+1) and let s 0 ∈ R be such that curves u s 0 = u(s 0 , •) : S 1 → M and ∆ i(i+1) intersect. Take p = u(s 0 , t 0 ) ∈ u s 0 ∩ ∆ i(i+1) and let B(p; ρ) be a disc of radius ρ around p, with respect to the distance induced by g x . If we take ρ to be smaller than the injectivity radius at p, B(p; ρ) is embedded. Since curve u s 0 belongs to a non-trivial homotopy class α, it is not completely contained in B(p; ρ), i.e. there exists t 1 such that u(s 0 , t 1 ) / ∈ B(p; ρ). Hence, two arcs form t 0 to t 1 on S 1 are mapped into two paths u t0 t 1 and u t1 t 0 which connect the center p of the disc B(p; ρ) with the outside of the disc, see Figure 4.12. This implies that L g x (u s 0 ) ≥ 2ρ. Proposition 4.6.13. Bulked sphere metrics g x , x ∈ [0, ∞), whose existence is guaranteed by Proposition 4.5.4, can be defined in such a way that their profile functions satisfy

for all x, y ∈ [0, ∞). Similarly, multi-bulked metrics g x , x ∈ T (N ) in Proposition 4.5.8 can be defined in such a way that the profile functions of the corresponding O(N )-parts satisfy

for all x, y ∈ T (N ).

In order to prove Proposition 4.6.13 one must specify precisely the profile functions which are used to define bulked spheres and multi-bulked surfaces. This is done in Subsection 4.8.1.

We are now ready to give a proof of the upper bounds.

Proof. (Upper bounds in Propositions 4.1.16 and 4.1.17) We will only prove the upper bounds in terms of d RBM . The upper bounds in terms of d SBM then follow from Proposition 4.2.8.

For any x ∈ [0, ∞), let g x be the bulked sphere metric given by Proposition 4.5.4. In order to prove the upper bound in Proposition 4.1.16, notice that Corollary 4.6.12 and Proposition 4.6.13 imply that, for x, y ∈ [0, ∞), it holds e -2|x-y| g x g y e 2|x-y| g x .

Recall that the embedding Φ : [0, ∞) → ḠS 2 is defined by Φ(x) = R x • g x where R x is the rescaling factor from (3) in Proposition 4.5.4. Now, Remark 4.2.7 implies

For any given ε > 0, using (3) in Proposition 4.5.4 with ε 0 = e 2ε -1 e 2ε +1 yields the desired upper bound in Proposition 4.1.16.
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two semicircles with radius A 2 ), by picking large enough n, we can make δ 0 arbitrarily small. The following proposition holds. Proposition 4.8.1. Given any sufficiently small ε > 0, for all sufficiently large n and A, B, δ 0 as above, there exists a family of profile functions r x , x ∈ [0, ∞), each of which defines a bulked sphere metric g x such that

In (4), as before, we use convention that 0 0 = 1.

Proof. We ask for r x to be even on [-2A, 2A], and hence only give their definitions on [0, 2A]. Let B = 10 -2n A, h = 3δ 0 2π , h x = δ 0 2π e -x , and define

It immediatelly follows that r x (0) = h x = δ 0 2π e -x and hence (3) is satisfied. On the other hand, a simple computation shows that for all x, y ∈ [0, ∞)

Notice also that r x (B ) = h for all x ∈ [0, ∞), i.e., the graphs of all r x meet at the point (B , h), see Figure 4.15 (a).

x, y ∈ [0, ∞)

Moreover, by making a C 1 -small perturbation near the points B , 2B and B, we can make sure that r x are all smooth while (4.39) remains valid. Finally, we extend r x to [-2A, 2A] by setting r x (l) = r x (-l). It is clear from the construction that property (2) holds.

Combining (4.37) and (4.39) proves property [START_REF] Abbondandolo | Corrigendum: On the Floer homology of cotangent bundles[END_REF]. By taking large enough n we can guarantee that property (1) holds, which finishes the proof.

We can now give a proof of ( 1) and ( 3) in Proposition 4.5.4.

Proof. (Proof of ( 1) and ( 3) in Proposition 4.5.4) Denote by g x the metric induced from profile function r x given by Proposition 4.8.1. By (2) in Proposition 4.8.1 we get that L gx (γ 0 ) = 2πr x (0) = δ 0 e -x . Since γ 0 has constant speed

which proves (1) in Proposition 4.5.4.

as well as that

Thus R x • g x ∈ ḠS 2 , and taking small enough ε finishes the proof.

Parameterizations of multi-bulked surfaces

Recall that a cylindrical segment is a surface of revolution with constant profile function r : I → [0, ∞) on an open interval I. Let Σ be a closed, orientable surface of genus at least one and fix N ∈ N. Denote by g std the standard Riemannian metric on R 3 and let 0 < τ << 1 be a small number. We fix an embedding φ : Σ → R 3 such that Vol φ * g std (Σ) = 1, diam(Σ, φ * g std ) ≤ 99 and im φ contains a cylindrical segment C given by a profile function

We construct our N -bulked surface by replacing C with an open chain of N -1 spheres denoted by O(N ). Let A N = τ N and take a profile function r : (L -, L + ) → [0, ∞) whose graph consists of N -1 semicircles of radius A N and two connecting ends. More precisely, on [L -, L -+ A N ], r is strictly decreasing, and moreover on [L -+ A N 2 , L -+ A N ] its graph coincides with a part of a semicircle with radius A N centered at L -. Similarly, r is strictly increasing on [L + -A N , L + ] and on [L + -A N , L + -A N 2 ] its graph coincides with a semicircle with radius A N centered at L + , see Figure 4.16. Let g r be the (singular) metric on Σ obtained from the standard metric on R 3 after replacing C with the O(N ) given by the above profile function r. The area of O(N ) is of order τ 2 , while its diameter is of order τ. Thus, for any given 0 < ε < 1, by taking τ small enough, we have that

N , δ 0 being given by (4.36). Notice also that B N and δ 0 (N ) depend on a parameter n. By carrying out the same construction as in the bulked sphere case near each of the touching points L -+ A N , L -+ 3A N , . . . , L + -3A N , L + -A N , we obtain the following proposition. Proposition 4.8.2. Given any sufficiently small ε > 0, for all sufficiently large n and A N , B N , δ 0 (N ) as above, there exists a family of profile functions r x , x ∈ T (N ), each of which defines an N -bulked metric g x such that

(

In (4), as before, we use convention that 0 0 = 1.

We can now give a proof of ( 1) and ( 4) in Proposition 4.5.8.

Proof. (Proof of ( 1) and ( 4) in Proposition 4.5.8) Let g x be the N -bulked metric from Proposition 4.8.2. By (2) in Proposition 4.8.1 it follows

Since all γ i have constant speed, we have 

Reduction of parameterization space

Recall that T (2N ) is defined as

In this subsection, we will prove Lemma 4.5.9. It claims that for every N ∈ N there exists a quasi-isometric embedding Q :

We construct Q as a composition of two quasi-isometric embeddings A and L as follows

Construction of L

Consider a map L : R → [0, ∞) 2 , given by

If we realize [0, ∞) 2 as the first quadrant of R 2 , then map L gives an "L-shaped" embedding of R with corner at (1, 1). Now define a multi-dimensional version of L, that is L :

We claim the following.

Lemma 4.8.3. For any N ∈ N and x, y ∈ R N , it holds

Proof. First consider the case when N = 1. When both x, y are negative or both x, y are non-negative, it is easy to see |x -y| = |L(x) -L(y)| ∞ . When x < 0 and y ≥ 0,

On the other hand,

The same argument works for x ≥ 0 and y < 0. Therefore, we get a bi-Lipschitz relation

Then

Thus we get the conclusion.

Construction of A

Consider the following map

We have Lemma 4.8.4. For every N ∈ N and x, y ∈ [0, ∞) 2N , it holds

differentiating (twice) the expression f (x) = F (X(x)), using that X (x) = 1 + (f (x)) 2 as well as that f (0) = f (±A) = 0. Hence, F (±T ) > 0 implies f (±A) > 0 and thus γ is non-degenerate and ind γ = 0, as show in Subsection 4.6.1 (proof of Lemmas 4.5.3 and 4.5.7).

By Lemma 4.6.3, γ is non-degenerate if and only if there are no periodic Jacobi fields along γ, orthogonal to γ. As in the case of γ, Jacobi fields are computed using (4.24), however in this case K = -4π 2 f (0)f (0) = -4π 2 F (0)F (0) > 0. Orthogonal Jacobi fields are of the form J(t) = (J 1 (t), 0, 0) and (4.24) translates to

In other words, the space of orthogonal Jacobi fields is spanned by

By the assumption, 0 < -F (0)F (0) < 1 and hence 0 < √ K < 2π, which impies that no orthogonal Jacobi field is periodic, i.e. γ is non-degenerate.

Using that (J sin (t), Jsin (t)) = ((sin( √ Kt), 0, 0), (

and (J cos (t), Jcos (t)) = ((cos( √ Kt), 0, 0), (-

we may express the linearized Poincare map P : (T γ(0)) ⊥ ⊕ (T γ(0)) ⊥ → (T γ(0)) ⊥ ⊕ (T γ(0)) ⊥ with respect to basis ((1, 0, 0), (0, 0, 0)) T , ((0, 0, 0), ( √ K, 0, 0)) T by the following matrix

The eigenvalues of P are e ±i √ K and hence γ is not hyperbolic. Finally, in order to compute ind γ we use Lemma 3.4.2. from [START_REF] Klingenberg | Riemannian geometry[END_REF]. This lemma states that if a closed geodesic γ on an orientable surface is non-degenerate and not hyperbolic, then it's index is an odd number equal to either m or m + 1, where m denotes the number of points γ(t * ), 0 < t * < 1, conjugate 10 to γ(0) along γ. Since every orthogonal Jacobi field has the form

= (0, 0, 0) is equivalent to A = 0 and since 0 < √ K < 2π there can be at most one point conjugate to γ(0), namely γ( π √ K ). This means that m = 0 or m = 1 and thus ind γ = 1.

Chapter 5

Persistence barcodes and Laplace eigenfunctions on surfaces 5.1 Introduction and main results

Laplace-Beltrami eigenfunctions

The past fifteen years have witnessed a number of fascinating applications of the spectral theory of the Laplace-Beltrami operator to data analysis, such as dimensionality reduction and data representation [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF][START_REF] Coifman | Diffusion maps[END_REF] or shape segmentation in computer graphics [START_REF] Skraba | Persistence-based segmentation of deformable shapes[END_REF][START_REF] Reuter | Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions[END_REF]. In the present chapter we focus on this interaction the other way around and study persistence barcodes, a fundamental notion originated in topological data analysis, of the Laplace-Beltrami eigenfunctions and their linear combinations. Our main finding is a constraint on such barcodes in terms of the corresponding eigenvalues. This result turns out to have applications to approximation theory.

Let M be a compact n-dimensional Riemannian manifold, possibly with nonempty boundary. Let ∆ be the (positive definite) Laplace-Beltrami operator on M ; if ∂M = ∅ we assume that the Dirichlet condition is imposed on the boundary. The spectrum of the Laplace-Beltrami operator on a compact Riemannian manifold is discrete, and the eigenvalues form a sequence 0

where each eigenvalue is repeated according to its multiplicity. The corresponding eigenfunctions f k , ∆f k = λ k f k , form an orthonormal basis in L 2 (M ). The properties of Laplace-Beltrami eigenfunctions have fascinated researchers for more than two centuries, starting with the celebrated Chladni's experiments with vibrating plates. We refer to [START_REF] Jakobson | Geometric properties of eigenfunctions[END_REF][START_REF] Zelditch | Local and global properties of eigenfunctions[END_REF][START_REF] Zelditch | Eigenfunctions and nodal sets[END_REF] for a modern overview of the subject. As the examples of trigonometric polynomials and spherical harmonics indicate, the shapes of the eigenfunctions are expected to have an increasingly complex structure as λ goes to infinity. At the same time, various restrictions on the behaviour of eigenfunctions can be formulated in terms of the corresponding eigenvalue. One of the basic facts about eigenfunctions of a sorting algorithm for barcodes of linear combinations of Laplace eigenfunctions with eigenvalues ≤ λ, see subsection 5.1.4.

A family of functionals on the space of barcodes

From now on, we assume that M is an orientable surface, possibly with boundary. Let us define, for every positive function u ∈ C(R), a positive, lower semi-continuous functional Φ u on the space of Morse functions on M . Let f be a Morse function, vanishing on the boundary if ∂M = ∅. Recall from Section 2.1 that V t k (f ) = H k ({f < t}; R) was a persistence module associated to f in degree k, B k (f ) it's barcode, called the degree k barcode of f , and B(f 

In particular, Φ 1 (f ) is the sum of the lengths of all the finite bars in the barcode of f and the length of the range of f . A related functional has been earlier considered in [START_REF] Cohen-Steiner | Lipschitz functions have L p -stable persistence[END_REF], see Remark 5.1.19.

(5. for any δ > 0.

The following example shows that the δ-significance condition for some δ > 0 is essential in Corollary 5.1.11. For simplicity, we present it in one dimension, but it could be easily generalized to any dimension.

Example 5.1.12. Let M = S 1 be a unit circle and let N i be any sequence of natural numbers tending to infinity. Consider a sequence of functions on M :

It is easy to check that ||f i || L 2 (M ) = 1 and

, for all i = 1, 2, . . . . At the same time, the number of critical points, and hence of critical values (counted with multiplicities) is equal to N i , which goes to infinity and hence can not be controlled by λ. Note, however, that for any δ > 0, the number of δ-significant critical values is bounded as i → ∞. Estimate (5.10) could be also compared to [START_REF] Nicolaescu | Critical sets of random smooth functions on compact manifolds[END_REF]Theorem 1.1], which shows that the expected value of the number of critical points of a random linear combination of Laplace eigenfunctions f 1 , . . . , f m on a Riemannian manifold satisfies an asymptotic expansion with the leading term of order m. Due to Weyl's law, for surfaces this is equivalent to having the number of critical points of order λ m , which agrees with inequality (5.10). Inspired in part by this observation, we propose the following generalization of (5.10) to Riemannian manifolds of arbitrary dimension: Conjecture 5.1.13. Let (M, g) be a Riemannian manifold of dimension n, possibly with boundary, and let f be a L 2 -normalized linear combination of eigenfunctions of ∆ with eigenvalues λ i ≤ λ. In addition, assume that f is Morse. Then

for any δ > 0.

Proposition 5.2.1 (Proposition 1.4.5). For every Morse function f : M → R, vanishing on the boundary, the following inequality holds

Proof. From (5.5) and (5.8), with ψ = 1 M we obtain

for all Morse h ∈ F λ and all diffeomorphisms ϕ ∈ Diff(M ), with constant C(u, f ) being equal to 2

depending on whether M has a boundary. Putting u ≡ 1 we have

Finally, taking infimum over all h and ϕ and using the fact that Morse functions in F λ are C 0 -dense in F λ , finishes the proof.

Remark 5.2.2. The inequality analogous to (5.15) can be proved for functions on the circle S 1 = R/(2π • Z) without referring to the language of barcodes. Taking into account (5.3) and (5.13), we can restate (5.15) as

In order to prove (5.16) we proceed as in the proof of Proposition 5.2.1. One readily checks that

Indeed, as in Example 5.1.15, if x 1 , . . . , x N are local minima and y 1 , . . . , y N are local maxima of f , we have that

On the other hand,

Barcodes and the Banach indicatrix 5.3.1 A topological bound on the Banach indicatrix

We proceed with some general topological considerations. Let M be a Riemannian manifold and assume that f | ∂M = 0 if ∂M = ∅, 0 being a regular value. Let t = 0 be another regular value of f and denote by

Recall that Banach indicatrix β(t, f ) denotes the number of connected components of f -1 (t). By description of ∂M t , one sees that β(t, f ) essentially counts the number of the boundary components of M t (up to the boundary components of the whole manifold M ). We will exploit this fact to estimate β(t, f ) from below using information coming from barcode B(f ). If we denote by χ I the characteristic function of the interval I, the following proposition holds.

i ] ∈ B k (f ) the finite bars in the degree k barcode of f and let t = 0 be a regular value. If ∂M = ∅ it holds

and if ∂M = ∅ it holds

We defer proving Proposition 5.3.1 and first deduce Theorem 5.1.7 using it.

Remark 5.3.2. One may easily check that if M = S 2 the inequality (5.31) becomes an equality.

Remark 5.3.3. If dim M = 2, integrating inequalities in Proposition 5.3.1 gives an upper bound on the total length of the finite bars in the barcode of a function f in terms of the integral of its Banach indicatrix. The latter quantity admits an interpretation as the total length of the Reeb graph of a function f with respect to a natural metric incorporating the oscillations of f . It is likely that an analogue of the functional Φ u defined in this setting is robust with respect to the distance on Reeb graphs introduced in [START_REF] Bauer | Measuring distance between Reeb graphs[END_REF][START_REF] Bauer | Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs[END_REF], and that this way one could get applications to approximation theory similar to the ones obtained in Section 5.2. We plan to explore this route elsewhere.

Proof of Theorem 5.1.7

Let us now restrict to the two-dimensional case and assume that M is an orientable surface, possibly with boundary, equipped with Riemannian metric g. First note 5.3.3 Proof of Proposition 5.3.1

Recall the notation previously introduced. For t regular value of f , we denote

be the Betti numbers of M t . We assume that min f < t < max f , since otherwise the inequalities obviously hold (both sides are equal to zero). We will always work with homologies with coefficients in R and will omit the coefficients from the notation.

Let j : f -1 (t) → M t be the inclusion and denote by j * : H n-1 (f -1 (t)) → H n-1 (M t ) the induced map in homology. Since we work over R, j * (H n-1 (f -1 (t))) ⊂ H n-1 (M t ) is a vector subspace. First, we claim that

To prove this, we examine the following part of the long exact sequence of the pair (M t , f -1 (t)):

and by the Rank-nullity theorem

By the exactness dim(ker j * ) = dim(im ∂) and, because H n (M t ) = 0, ∂ is an inclusion, which means that dim(im ∂) = dim H n (M t , f -1 (t)) and (5.35) follows.

Second, we note that j χ (x (n-1) j ,y

(n-1) j ] (t) = dim(ker i * ), (5.36) where i : M t → M is the inclusion and i * : H n-1 (M t ) → H n-1 (M ) induced map on homology. This comes from the fact that finite bars in barcode of f correspond to homology classes which appear throughout filtration process, but do not exist in actual homology of M. Denote by

, and by j : f -1 (t) → M t and ĩ : M t → M the inclusions. We examine the following part of the Mayer-Vietoris sequence

From the exactness we have

while on the other hand im(j * , j * ) ∩ (H n-1 (M t ), 0) = {(j * (a), j * (a))|a ∈ H n-1 (f -1 (t)), j * (a) = 0} = = {(j * (a), 0)|a ∈ ker j * ⊂ H n-1 (f -1 (t))} ∼ = j * (ker j * ), and thus ker i * ∼ = j * (ker j * ).

However, since ĩ * • j * = i * • j * , we see that j * (ker j * ) ⊂ ker i * and thus ker i * = j * (ker j * ).

(5.37)

From now on, we distinguish two cases.

Case I -

This case covers the situation when ∂M = ∅ and when ∂M = ∅, but t < 0. The left-hand sides of the inequalities (5.31) and (5.32) are equal for t < 0 and thus we need to prove (5.31). By the case-assumption, we have that

and from the definition of barcode we know that

i ] (t).

Combining these equalities with (5.35) renders the statement into j χ (x (n-1) j ,y

(n-1) j ] (t) ≤ dim(j * (H n-1 (f -1 (t)))), which after substituting (5.36) and (5.37) becomes dim(j * (ker j * )) ≤ dim(j * (H n-1 (f -1 (t)))).

This inequality is obvious because ker j * ⊂ H n-1 (f -1 (t)).

Case II -∂M t = f -1 (t) ∂M, ∂M = ∅ This case covers the situation when ∂M = ∅ and t > 0. We need to prove (5.32), which for t > 0 becomes

i ] (t) + j χ (x (n-1) j ,y

(n-1) j ] (t) ≤ β(t, f ).

Denote by ∂M = Σ 1 . . . Σ l the boundary components of the whole manifold M , where Σ i are connected, orientable, (n-1)-dimensional manifolds. Now the boundary First, we observe that [Σ 1 ], . . . , [Σ l ] ∈ H n-1 (M t ) are linearly independent. In order to prove this, consider the following part of the long exact sequence of the pair (M t , ∂M ):

Note that H n (M t , ∂M ) = 0. Indeed, if H n (M t , ∂M ) = 0, then M t contains a connected component N , such that ∂N ⊂ ∂M. However, this implies that f -1 (t)∩N = ∅, or equivalently, N ⊂ f -1 ((-∞, t)). It is now easy to check that N ⊂ M is both an open and a closed subset, which contradicts the fact that M is connected. Therefore, H n (M t , ∂M ) = 0, and hence H n-1 (∂M ) → H n-1 (M t ) is an injection, i.e.

[Σ 1 ], . . . , [Σ l ] are linearly independent. This further implies that d 1 , . . . , d k are linearly independent.

Classes

By using the exactness of the following part of the long exact sequence of the pair

This readily implies the only relation which i * d 1 , . . . , i * d k satisfy is that their sum is zero, that is ker

Finally, combining the last equality with the fact that d 1 , . . . , d k are linearly independent immediately gives that any k -1 of [d 1 ], . . . , [d k ] are linearly independent. It follows directly from the definitions and non-negativity of u that

Miscellaneous proofs

which means that we are left to prove that

if ∂M = ∅ and

if ∂M = ∅. Let us prove (5.39). If min f ≥ min h the left-hand side of (5.39) is non-positive and hence the inequality trivially holds. If min f < min h we need to prove that

However, in every (d bottle (B(f ), B(h)) + ε)-matching the infinite bar (min f, +∞) ∈ B(f ) has to be matched with some infinite bar (a, +∞) ∈ B(h) and since min h is the smallest of all endpoints of all infinite bars in B(h), we have that

Since the above holds for all ε > 0 the inequality is proven. To prove (5.38) one proceeds in the similar fashion, by analysing cases depending on the relative position of min f, min h and max f, max h. This completes the proof of the lemma.

Proof of Lemma 5.1.6

We prove the statement in the case of M without boundary, the other case is treated the same way. Let B(f ) and B( f ) be two barcodes associated to two Morse functions and denote finite bars by I i ∈ B(f ), Ĩj ∈ B( f ) where intervals are sorted by integral of u as before. Assume that Φ u,k (B(f )) ≥ Φ u,k (B( f )) and µ : B(f ) → B( f ) is an ε-matching between these barcodes (we add bars of length 0 if needed and assume that µ is a genuine bijection). For every finite bar I ∈ B(f ) we have that the distance between endpoints of I and µ(I) ∈ B( f ) is less or equal than ε and hence

Using these estimates and the fact that the integrals of u over Ĩj decrease with j we get Taking infimum over all ε-matchings finishes the proof.

5.4.3 Proof of Proposition 5.1.17

The barcode B(f l ) of the function

(sin lx 1 + . . . + sin lx n ), l ∈ N. can be computed using the Künneth formula for persistence modules. Below we briefly explain how to apply this formula and refer the reader to Section 3.2.2 or to [START_REF] Polterovich | Persistence modules with operators in Morse and Floer theory[END_REF] for a more detailed treatment.

Given two Morse functions f : M 1 → R and h : M 2 → R we define another Morse function f ⊕ h : M 1 × M 2 → R by setting f ⊕ h(x 1 , x 2 ) = f (x 1 ) + h(x 2 ). Barcode B(f ⊕ h) may be computed from B(f ) and B(h) via the following procedure:

An infinite bar (a, +∞) ∈ B i (f ) and an infinite bar (c, +∞) ∈ B j (h) produce an infinite bar (a + c, +∞) ∈ B i+j (f ⊕ h).

An infinite bar (a, +∞) ∈ B i (f ) and a finite bar (c, d] ∈ B j (h) produce a finite bar (a + c, a + d] ∈ B i+j (f ⊕ h). The same bar is produced if (c, d] ∈ B i (f ) and (a, +∞) ∈ B j (h).

A finite bar (a, b] ∈ B i (f ) and a finite bar (c, d] ∈ B j (h) produce two finite bars (a+c, min{a+d, b+c}] ∈ B i+j (f ⊕h) and (max{a+d, b+c}, b+d] ∈ B i+j+1 (f ⊕h).

In order to compute B(f l ) it is enough to compute the barcode of sin lx 1 + . . . + sin lx n and rescale. In the light of the computational procedure described above we wish to look at sin lx : S 1 → R and use T n = (S 1 ) n . One readily checks that We claim that B(sin lx 1 + . . . + sin lx n ) contains 2 n infinite bars and 1 2 ((2l) n -2 n ) finite bars. To prove the claim we use induction in n. We have already checked that the statement holds for n = 1, 2. To complete the induction step note that, in general, if B(f ) contains k 1 infinite and m 1 finite bars, and B(h) contains k 2 infinite and m 2 finite bars, then B(f ⊕ h) contains k 1 k 2 infinite and k 1 m 2 + m 1 k 2 + 2m 1 m 2 finite bars. Taking k 1 = 2 n , m 1 = 1 2 ((2l) n -2 n ) and k 2 = 2, m 2 = l -1 yields the proof. Finally, notice that via the described procedure an infinite bar and a bar of length 2 produce a bar of length 2, as well as that two bars of length 2 produce two new bars of length 2. Since we start with B(sin lx) for which all finite bars have length 2, we conclude that all finite bars in B(sin lx 1 + . . . + sin lx n ) have length 2, and thus Φ 1 (sin lx 1 + . . . + sin lx n ) = 2n + (2l) n -2 n .

(5.40)

Rescaling (5.40) gives us

(5.41)

with the constants A n , B n given explicitly by (5.41). This completes the proof of Proposition 5.1.17. 

ב י ב