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1 A Brief Overview of Uncertainty in
Graphs

We discuss in this manuscript some research problems which are situated at the intersection
between graphs as a data model and uncertainty. Uncertainty on graphs can occur either when
data of the model is error-prone or incomplete, or when the model that generates behavior is
not a deterministic one.

Indeed, graphs have emerged as one of the most intuitive ways of representing data, especially
for application domains that are more and more prevalent in recent years; their properties are
the basis of network science research [Easley and Kleinberg, 2010, Barabási and Pósfai, 2016].
Some – non exhaustive – examples include:

• Online social networks [Domingos and Richardson, 2001]: nodes in such graphs represent
humans or online application users and the edges are their relationships – also potentially
having di�erent semantics.

• Infrastructure networks [Añez et al., 1996]: graphs encode physical connections – road
networks, power-line networks – where nodes can be physical features and the edges are
infrastructure links between them .

• IoT networks [Ghosh et al., 2007]: for example, cellular connections between mobile de-
vices.

• Biological networks [Asthana et al., 2004]: in biological networks, how proteins interact
with each other can be represented as a graph where nodes are proteins and the edges
are interactions .

The principal task on graph data is to query it, where the input can be either a node, a pair of
nodes or even graph motifs. E�ciency is a major challenge and various algorithms have been
studied in the last few decades, e.g.: reachability analysis [Cohen et al., 2003], shortest path com-
putation [Dijkstra, 1959], frequent subgraph mining [Kuramochi and Karypis, 2001], or graph
pattern mining [Barceló et al., 2014]. Importantly, a large subset of queries allowing to match
regular expressions over graphs can be solved in polynomial data complexity [Barceló, 2013].

Other tasks on graphs can be classi�ed as combinatorial. Usually, this means selecting
a subset of nodes or edges in the graph in order to optimize some function on the graph.
Classical examples include vertex cover, spanning trees, or maximum cut; in this manuscript
we will consider the problem where a subset of nodes has to be chosen so as to maximize
a submodular function over those nodes – the particular instance we consider is in�uence
maximization [Kempe et al., 2003]. Most interesting combinatorial problems on graphs are
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1 A Brief Overview of Uncertainty in Graphs
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Figure 1.1: Diagram illustrating the context of the research presented in this manuscript.

NP-hard, some allowing polynomial approximation (e.g., the in�uence maximization prob-
lem allows one, via the greedy algorithm). Another avenue is to exploit the structure of the
graphs. Generally, problems are easier on trees than on general graphs. The notion of treewidth
[Robertson and Seymour, 1984] captures how “close” a graph is to a tree, and the most impor-
tant result is that some hard problems become linear on graphs having bounded treewidth
[Arnborg and Proskurowski, 1989]. We will discuss later whether real-world graphs have a
reasonably low treewidth and how to best exploit their structure.

An orthogonal issue in graph data in the real world is how reliable they are. For instance,
data uncertainty is inherent in the applications described above. Viral marketing techniques
[Liben-Nowell and Kleinberg, 2007] study the purchase behavior of users in a social network.
An edge between two users encodes the probability that one’s purchasing behavior is in�uenced
by the other – generally, this is not a deterministic behavior. In IoT networks, the connections
between any two devices may or may not be established, as factors such as signal interference
and antenna power may a�ect it. Determining whether a protein has interacted with another is
usually done via several scienti�c studies, that do not always give the same result. In transport
networks, traversal time is not constant, and is a�ected by deviations due to tra�c patterns
and unforeseen events [Hua and Pei, 2010]. Another example of uncertainty can be inherent to
the process or the function to be optimized. For instance, in the in�uence maximization task,
the in�uence process is not a deterministic one: in�uence may succeed at some time, and fail
at another. This is an example where, for a combinatorial task on a graph, the function to be
optimized is uncertain. Hence, solving tasks on such graphs without considering the above
uncertainty issues can lead to incorrect answers.

We will now introduce the research challenges for the two types of uncertainty on graphs.

This manuscript is intended to show the main strands of the research I have worked on
since my PhD graduation in 2012. It is intended to give a high-level view of the research and
collaborations that have occurred since then. The main technical details such as proofs and
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1.1 Data Uncertainty on Graphs: Probabilistic Graphs

extensive experiments are skipped, and can be referred to in their corresponding references.
A general overview of my research is presented in Figure 1.1. Two main directions are

visible, corresponding to the main two chapters of the manuscript. The �rst is my research
on probabilistic graphs indexes and evaluation of treewidth and partial tree decomposition
in real-world graphs. The second is the general area of online in�uence maximization
in which I mainly discuss solutions based on the multi-armed bandit framework. These
correspond to the light blue boxes in the above �gure. White boxes represents research
that is linked, but has not been presented in detail here.

The current manuscript mainly covers contributions resulting from the following research
collaborations and supervisions:

• Siyu Ray Lei, MSc student at the University of Hong Kong in 2013–2014, under my
and Reynold Cheng’s supervision.

• Paul Lagrée, PhD student at Univ. Paris-Saclay in 2015–2018, under Olivier Cappé and
Bogdan Cautis’supervision. I collaborated intensively with Paul on one of his papers.

• Alexandra Iacob, PhD student at Univ. Paris-Saclay since 2019, under my and Bogdan
Cautis’ supervision.

• Yann Ramusat, PhD student at École Normale Supérieure since 2018, under my and
Pierre Senellart’s supervision.

• Stratis Ioannidis, associate professor at Northeastern University, visiting Université
Paris-Saclay in summer of 2019.

In order to keep this manuscript relatively coherent in terms of research interests, it does
not cover an important part of my research since 2012: the subject of dimensionality
reduction for classi�ers on data streams, with Maroua Bahri, PhD student at Télécom Paris
in 2017–2020, under my and Albert Bifet’s supervision. An overview survey of her research
can be found in [Bahri et al., 2020].

1.1 Data Uncertainty on Graphs: Probabilistic Graphs

The following subsection is an adaptation of the introduction in [Maniu et al., 2017], dealing
with indexes on probabilistic graphs.

A natural way to capture data uncertainty in graphs is to represent them as probabilistic (or
uncertain) graphs [Valiant, 1979, Ball, 1986, Fishman, 1986, Jin et al., 2011, Hua and Pei, 2010],
where each edge is annotated with some uncertainty value. There exist two main repre-
sentations of edge uncertainty in probabilistic graphs. In the edge-existential model, each
edge is augmented with a probability value, which indicates the chance that the edge ex-
ists (Fig. 1.2a). This model captures reliability and failure in computer network connec-
tions [Fishman, 1986, Jin et al., 2011], and it can also represent uncertainty in social and bi-
ological networks. In the weight-distribution model, each edge is associated with a probability
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1 A Brief Overview of Uncertainty in Graphs
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Figure 1.2: Illustrating (a) a probabilistic graph and (b) a possible world. [Maniu et al., 2017]

distribution of weight values [Hua and Pei, 2010]. For example, the traveling time between two
vertices in a road network can be represented by a normal distribution.

The problem of evaluating queries on large probabilistic graphs has been studied for a variety
of tasks: reliability estimation [Fishman, 1986, Jin et al., 2011], searching nearest neighbors
[Potamias et al., 2010], and mining frequent subgraphs [Zou et al., 2010]. Here, we study the
evaluation of an important query class, known as the source-to-target queries, or ST-queries,
which are de�ned over a source vertex B and a target vertex C in a probabilistic graph. Example
ST-queries include reachability queries (RQ) and shortest distance queries (SDQ). These queries,
when posed on probabilistic graphs, provide answers having probabilistic interpretations. For
example, the answer of a reachability query tells us the chance that B can reach C ; the shortest
distance query returns the probability distribution of the distance between B and C .

Evaluating a probabilistic source-to-target query is computationally expensive. This is because
probabilistic graphs have possible world semantics [Dalvi and Suciu, 2007]. Conceptually, G
encodes a distribution of possible worlds, each of which is a de�nite (non-probabilistic) graph
itself, as the example below explains.

Example 1.1. Fig. 1.2b shows a possible world of the probabilistic graph in Fig. 1.2a. Each possible
world is given a probability of existence derived from edge probabilities. For example, the graph
in Fig. 1.2b exists only if edges 0 → 4, 2 → 0, 2 → 6, and 6 → 4 exist, with a probability of
approximately 0.1, which is the product of the probabilities that edges in Fig. 1.2b exist, and the
probabilities that other edges do not, i.e., 1 × 0.75 × 0.75 × 0.75 × (1 − 0.5) × (1 − 0.25) × (1 −
0.75) × (1 − 0.5) × (1 − 0.5).

Evaluating a query @ (e.g., an SDQ) on G amounts to running the deterministic version of @
(e.g., computing the shortest distance between two vertices) on every possible world. This
approach is intractable, due to the exponential number of possible worlds; and indeed the
problem has been proved to be #P-hard [Valiant, 1979, Ball, 1986, Dalvi and Suciu, 2007].

To improve ST-query e�ciency, sampling is usually employed [Fishman, 1986, Jin et al., 2011,
Potamias et al., 2010, Zou et al., 2010], where possible worlds with high existential probabilities
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1.2 Process Uncertainty on Graphs: Online Social In�uence

are sampled and the algorithm of choice is used on each resulting graph. These algorithms, which
examine fewer possible worlds than the possible world semantics, are more e�cient. However,
they su�er from two major downsides, which can hamper query e�ciency signi�cantly:

Issue 1 A possible world can be very large. Some of the probabilistic graphs used in our
experiments, for example, have millions of vertices and edges. If we want to run an SDQ
on a probabilistic graph, a shortest path algorithm needs to be executed once for each
sampled possible world. Since a possible world can be a very big graph, query e�ciency
can be a�ected.

Issue 2 To achieve high accuracy, a large number of possible world samples may need to
be generated. In our experiments, around 1,000 samples are required to converge to
acceptable approximate values.

We discuss in Chapter 2 our main contribution in this area: tree decompositions for source-
to-target queries on probabilistic graphs. The main idea of using tree decompositions on
graphs is to e�ciently create a tree-shaped index on the graph. This index can then be
used to extract – for a given query parameter, e.g., a pair of nodes – an equivalent graph. In
case where this equivalent graph is much smaller than the original graph, any sampling
algorithm can also function much more e�ciently. As we will also discuss in Chapter 2,
tree decompositions are linked directly to the notion of having a low treewidth; we study
how realistic this assumption of low treewidth is in real-world graphs.

We will also brie�y discuss two other contributions. The �rst is the extension of decom-
positions to :NN queries. The second is acknowledging that probabilistic queries are a
particular case of provenance on graphs.

1.2 Process Uncertainty on Graphs: Online Social Influence

The following subsection is an adaptation of the introduction in [Lagrée et al., 2019] (an
extension to [Lagrée et al., 2017]), which discusses the problem of online social in�uence
maximization.

Viral advertising based on word-of-mouth di�usion in social media has become very important
in the digital marketing landscape. Nowadays, social value and social in�uence are some of
the most used concepts in the area of Web advertising and most companies that advertise in
the Web space must have a “social” strategy. For example, on widely used platforms such as
Facebook or Twitter, promoted posts are interleaved with normal posts on user feeds. Users
interact with these posts by actions such as “likes” (adoption), “shares” or “reposts” (network
di�usion) [Watts, 2003, Watts and Dodds, 2007].

Motivated by the need for e�ective viral social strategies, in�uence estimation and in�uence
maximization (IM) have become important research problems, at the intersection of data mining
and social sciences [Easley and Kleinberg, 2010]. In short, IM is the problem of selecting a set
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1 A Brief Overview of Uncertainty in Graphs

of nodes from a given di�usion graph, maximizing the expected spread under an underlying dif-
fusion model. This problem was introduced in 2003 by the seminal work of [Kempe et al., 2003],
through two stochastic, discrete-time di�usion models, Linear Threshold (LT) and Independent
Cascade (IC). These models rely on di�usion graphs whose edges are weighted by a score of
in�uence. Both models above are stochastic processes: the process occurs on a graph whose
edges are annotated with in�uence probabilities, i.e., a probabilistic graph. They proceed in
time-discrete steps, where at each step an attempt is made to in�uence (in the IC model) or
be in�uenced by (in the LT model) the neighbor nodes, depending on their edge in�uence
probabilities. Moreover the IM problem of [Kempe et al., 2003] – selecting a set of nodes to
maximize the expected spread – is NP-hard for both models. The greedy algorithm is proven
to give a constant-factor approximation due to the sub-modularity property of the in�uence
spread, but does not scale to large graphs.

A rich literature followed, focusing on computationally e�cient and scalable algorithms to
solve IM. The benchmarking study of [Arora et al., 2017] summarizes state-of-the-art techniques
and also debunks many IM myths. In particular, it shows that, depending on the underlying
di�usion model and the choice of parameters, each algorithm’s behavior can vary signi�cantly,
from very e�cient to prohibitively slow.

Importantly, all the IM studies discussed in [Arora et al., 2017] have as starting point a speci�c
model (IC or LT), whose graph topology and parameters – basically the edge weights – are
known. However, this assumption is unrealistic, and, recently, we have witnessed a trend
towards bridging the gap between theory and practical relevance in the IM framework, along
several dimensions.

In particular, one such dimension is the one of o�ine, model-speci�c methods, which can
infer the di�usion parameters or the underlying graph structure (if unknown, or, as often the
case, implicitly overlaying the existing social graph), or both, starting from observed informa-
tion cascades [Saito et al., 2008, Goyal et al., 2010, Du et al., 2013, Gomez-Rodriguez et al., 2011,
Gomez-Rodriguez et al., 2012, Gomez-Rodriguez et al., 2013]. In short, information cascades
are time-ordered sequences of records indicating when a speci�c user adopted a speci�c item.

There are however many situations where it is unreasonable or counter-productive to as-
sume the existence of relevant historical data in the form of cascades. For such settings, online
approaches, which can learn the underlying di�usion parameters while running di�usion cam-
paigns, have been proposed. Bridging IM and inference, this is done by balancing between
exploration steps (of yet uncertain model aspects) and exploitation ones (of the best solution
so far), usually by multi-armed bandits techniques, where an agent interacts with the network
to infer in�uence probabilities [Vaswani et al., 2015, Chen et al., 2016, Wen et al., 2016]. The
learning agent sequentially selects seeds from which di�usion processes are initiated in the
network; the obtained feedback is used to update the agent’s knowledge of the model.

Nevertheless, all these studies on inferring di�usion networks, whether o�ine or online, rely
on parametric di�usion models, i.e., assume that the actual di�usion dynamics are well captured
by such a model (e.g., IC). This is still a signi�cant limitation for practical purposes. First, the
more complex the model, the harder to learn, especially in campaigns that have a relatively
short timespan, making model inference and parameter estimation very challenging within a
small horizon (typically tens or hundreds of spreads). Second, it is commonly agreed that the
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1.2 Process Uncertainty on Graphs: Online Social In�uence

aforementioned di�usion models represent elegant yet coarse interpretations of a reality that is
much more complex and often hard to observe fully.

Chapter 3 presents my contributions in the general area of online in�uence maximization
(OIM). I present �rst an overview of the initial paper about the OIM problem, in which
the assumption was that the process (IM in this case) and graph topology are known, but
the in�uence probabilities had to be learned. The second contribution is the most recent
article on the subject, in which the assumption that the process and the graph topology are
known is signi�cantly relaxed and in which a form of persistence is assumed. Both articles
use the multi-armed bandit approach.

Other contributions that are discussed are work in progress to extend the online in�uence
maximization to the contextual case, and how in�uence can be used to improve social
recommendation algorithms.
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2 Tree Decompositions for Probabilistic
Graphs

In this chapter, we discuss some algorithmic challenges when dealing with uncertainty of graph
edges. We focus on source-to-target queries in probabilistic graphs, and we discuss how tree
indexes can be used e�ciently for query answering. We also establish the link between our tree
indexes and the notion of treewidth on graphs.

2.1 Probabilistic Graphs, �eries, and Indexing Systems

The following section is adapted from [Maniu et al., 2017], work published in ACM Trans-
actions on Database Systems.

We present in this section the notion of probabilistic graphs and indexing systems. These notions
will be useful for discussing the ProbTree, a tree-based indexing system for source-to-target
queries in probabilistic graphs.

2.1.1 Probabilistic Graphs and �eries

We start by de�ning probabilistic graphs, by extending standard graphs with a probability
function on their edges:
De�nition 2.1 (Probabilistic graph). A probabilistic graph is a triple G = (+ , �, ?) where:

(i) + is a set of vertices;

(ii) � ⊆ + ×+ is a set of edges;

(iii) ? : � → 2ℚ+×(0,1] is a function that assigns to each edge a �nite probability distribution of
edge weights, i.e., each edge 4 is associated with a partial mapping ? (4) : ℚ+ → (0, 1] with
�nite support supp(? (4)) such that

∑
F∈supp(? (4)) ? (4) (F) ≤ 1.

We denote + (G), � (G), ?G the vertex set, the edge set, and the probability assignment function of
G respectively.

Note that the probability that an edge 4 does not exist in G is 1 − ∑
F∈supp(? (4)) ? (4) (F).

De�nition 2.1 is essentially the weight-distribution model [Hua and Pei, 2010], where each edge
is associated with a �nite probability distribution of weights. This de�nition also captures
the edge-existential model [Fishman, 1986, Jin et al., 2011], where an edge with existential
probability ? can be represented as a weight distribution {(1, ?)}. Likewise, we assume that the
probability distributions on di�erent edges are independent.

13



2 Tree Decompositions for Probabilistic Graphs

De�nition 2.2 (Possible world). Let G = (+ , �, ?) be a probabilistic graph. The (weighted) graph
� = (+ , �� , l) with �� ⊆ + ×+ and l : �� → ℚ+ is a possible world of G if �� ⊆ � and for
every edge 4 ∈ �� , l (4) ∈ supp(? (4)). We write � v G. The probability of the possible world �
is:

Pr(�) B
∏
4∈��

? (4) (l (4)) ×
∏

4∈�\��

©­«1 −
∑

F′∈supp(? (4))
? (4) (F ′)ª®¬ .

Figure 1.2 shows a probabilistic graph and a possible world.
A probabilistic graph has an exponentially large number of possible worlds:

Proposition 2.3. Let G be a probabilistic graph. Let PW(G) denote the set of non-zero probability
possible worlds of G = (+ , �, ?); formally, PW(G) = {� | � v G, Pr(�) > 0 }.

Then
∏
4∈� |supp(? (4)) | ≤ |PW(G)| ≤ ∏

4∈� ( |supp(? (4)) | + 1), and
∑
� ∈PW(G) Pr[�] = 1.

Source-to-target queries In the following, we focus on source-to-target distance queries (or
ST-queries), a common query class for probabilistic graphs. This kind of query requires two
inputs: source vertex B and target vertex C , where B, C ∈ + . Typical example ST-queries include:

Reachability (RQ) [Cohen et al., 2003] Probability that C is reachable from B .

Distance-constraint reachability (3-RQ) [Jin et al., 2011] Probability that C is reachable
from B within distance 3 .

Expected shortest distance (SDQ) [Ball, 1986] The expected value of the distance distribu-
tion ? (B → C) between B and C . Formally, ? (B → C) is a set of tuples (38 , ?8), where ?8 is
the probability that the shortest distance between B and C is 38 .

To evaluate these queries, we generally need to obtain ? (B → C), from which the result of any
of these queries can be derived. This type of queries are hard to evaluate, as stated multiple
times in the literature:

Theorem 2.4 ([Valiant, 1979, Ball, 1986]). Evaluating RQ, 3-RQ (for 3 ≥ 2), and SDQ is #P-
complete.

Without loss of generality, in the following we assume that the answer of an ST-query is
? (B → C), where any ST-query is answered from it. In fact, our solution can deal with any
ST-query that depends only on ? (B → C).

2.1.2 Graph Indexing Frameworks

We now propose an indexing framework for probabilistic graphs. First, we de�ne the notion of
transformation system.

De�nition 2.5 (Transformation system). A probabilistic graph transformation system is a pair
(index, retrieve) where:

14



2.1 Probabilistic Graphs, Queries, and Indexing Systems
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Figure 2.1: Illustrating two equivalent probabilistic graphs for the graphs in Figure 1.2, for two
ST-queries. [Maniu et al., 2017]

• index is a function that takes as input a probabilistic graph G and outputs an object I =
index(G) called an index;

• retrieve is an operator that, given an ST-query @(B, C) in G, and the index I, produces a
probabilistic graph G(@) = retrieve@ (I), such that {B, C} ⊆ + (G(@)).

Essentially, a transformation encodes a probabilistic graph G into an index structure, which
can generate another probabilistic graph G(@) for a given pair of vertices (B, C), representing
the query @. Since B and C can be found in G(@), @(B, C) can be evaluated on G(@). Two examples
for the graph in Figure 1.2 are given in Figure 2.1.

We consider two important properties for queries evaluated on the transformed graph G(@):

(i) the loss – the di�erence between the result of @ evaluated on G(@) and G; and

(ii) the e�ciency – the cost of evaluating @ on G(@).

There are multiple de�nitions possible for loss; one of the most used ones is the mean squared
loss – the square of the di�erence between real and estimated query results. If this loss is zero
we call the transformation lossless; lossy otherwise.

A transformation system is called an indexing system, if it is e�cient for answering a given
kind of query:

De�nition 2.6 (Indexing system). A transformation system (index, retrieve) is said to be an
indexing system for query class Q if the following hold:

(i) index is a polynomial-time function;

(ii) for every probabilistic graph G, |index(G)| = O( |G|) (i.e., the space occupied by the index is
bounded by a linear function of the space occupied by the original graph);

(iii) for every query @ ∈ Q, retrieve@ is linear-time computable.

15



2 Tree Decompositions for Probabilistic Graphs

Let us give an example transformation system that is not an indexing system. Given query
class Q, consider a system that pre-computes all pairwise results, i.e., the index operator. This
system satis�es Property (iii), since retrieve@ builds a trivial two-vertex graph. Evaluating @ over
the resulting graph is very e�cient, since it just involves looking up the distance probability
distribution on the edges of this graph, in O(1) time. However, neither Property (i) nor (ii)
holds, since indexing is intractable unless #P is tractable (which would imply P = NP), and since
the index is at least quadratic in size.

We aim for indexing systems that allow e�cient query evaluation (for a query class Q) on
the transformed graph: for every probabilistic graph G and query @ ∈ Q, the running time
of retrieve@ on index(G), together with the running time of @ on G(@), should be less than
evaluating @ on G.

Independent subgraphs Can we obtain an e�cient index for probabilistic graphs, with zero
or limited loss? We show that we can do this via a tree decomposition of the probabilistic graph
G, where independent subgraphs of G are identi�ed and reduced.

Recall that each edge in a probabilistic graph, along with its associated probability distribution,
is independent of probability distributions of the other edges. Thus, one way to derive a lossless
indexing system is to collapse larger subgraphs to edges, such that independence is maintained:

De�nition 2.7 (Independent subgraph). We de�ne an independent subgraph of a probabilistic
graph G as a (weakly) connected induced subgraph ( ⊆ G with arbitrarily many internal vertices
and at most two endpoint vertices E1, E2 such that each internal vertex has edges only to/from
other internal vertices of ( , or to/from the endpoint vertices.

We can use these independent subgraphs to reduce the graph to an equivalent subgraph
by replacing ( with edges E1 → E2 and E2 → E1, with corresponding probability distributions
? (E1 → E2) and ? (E2 → E1) computed from ( . We obtained a fundamental (and non-trivial)
result: in the case of undirected graphs, independent subgraphs are exactly those that can be
removed from the graph while preserving joint distance probability distributions for non-removed
vertices.

Theorem 2.8. [Maniu et al., 2017] Let G = (+ , �, ?) be a probabilistic graph with (D, E) ∈ � ⇔
(E,D) ∈ � and + ′ a non-empty subset of vertices of + that are connected in G. We assume for each
4 ∈ �,

∑
F∈supp(? (4)) ? (4) (F) < 1.

There exists a probabilistic graph G′ = (+ \+ ′, � ′, ? ′) such that the joint distance distributions
for+ \+ ′ is the same in G′ as in G if and only if+ ′ is the set of internal vertices of an independent
subgraph of G.

In other words, Theorem 2.8 states that the independent subgraph approach is the unique
manner in which a lossless indexing system can be obtained for a probabilistic graph, at least
for undirected graphs1.

1The case of directed graphs is more complex; the tools that we use (in particular, tree decompositions) are more
robust and better understood in the setting of undirected graphs [Robertson and Seymour, 1984] than in that of
directed ones [Safari, 2005]
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Figure 2.2: Decomposition into independent graphs of the graph in Fig. 1.2. [Maniu et al., 2017]

ProbTree Our de�nition of independent subgraphs relies on vertices in the graphs which
separate the graph into two independent components. We can decompose the graphs into the
corresponding independent subgraphs in a recursive way, by repeatedly identifying endpoints
and sub-dividing the subgraphs until it is not longer possible to do so. It is easy to verify that
such a recursive decomposition – our desired indexI = index(G) – results in a tree where nodes
are independent subgraphs and edges appear between subgraphs having common endpoints.
We call such a tree decomposition a ProbTree:

De�nition 2.9 (ProbTree). Let G = (+ , �, ?) be a probabilistic graph. A ProbTree for + is a pair
(T ,B) where T is a tree (i.e., a connected, acyclic, undirected graph) and B is a function mapping
each node of T to a probabilistic graph (called the internal graph or bag of =) with vertex set a
subset of + . We further require that for every subtree T ′ of T , the set of vertices in bags of nodes
of T ′ induces an independent subgraph of G.

A �rst method for indexing probabilistic graphs into a ProbTree are SPQR trees. For a
graph � , a vertex set ( ⊆ + (�) is called a separator for � if the graph induced by + (�)\(
is disconnected. Given an integer : , a graph � is called k-connected if + (�)\( is connected
for all ( ⊆ + (�), |( | < : , i.e., there exists no separator for � of size less than : . 0-connected
graphs are connected graphs in the usual sense, 1-connected graphs contain cut vertices which
disconnect the graph into biconnected components, and 2-connected graphs have separation
pairs of vertices which separate the graph into triconnected components. These de�nitions link
directly to our desired properties for independent subgraphs. Connected, biconnected, and
triconnected components are exactly independent subgraphs of 0, 1 and 2 endpoints, and we
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aim to decompose the graph into a tree containing them.
Tutte [Tutte, 1966] studied the structure of the triconnected components of a graph, and

Hopcroft and Tarjan [Hopcroft and Tarjan, 1973b, Hopcroft and Tarjan, 1973a] gave optimal
algorithms for decomposition. They showed that the triconnected components of a graph are
unique:

Theorem 2.10. [Tutte, 1966, Hopcroft and Tarjan, 1973b, Hopcroft and Tarjan, 1973a] The bicon-
nected and triconnected components of a graph� are unique and the inclusion relationships among
them forms a tree.

Using Theorem 2.8 and Theorem 2.10, we can derive the corollary that decomposing the
graph into its biconnected and triconnected components is the unique manner in which we
can obtain a lossless indexing of a probabilistic (undirected) graph – since biconnected and
triconnected components are independent subgraphs and they are unique.

Hopcroft and Tarjan’s algorithms were re�ned, via SPQR trees [Di Battista and Tamassia, 1990]
and [Gutwenger and Mutzel, 2000]’s linear implementation. Our approach was to use these
algorithms initially to obtain the decomposition; however, their practical performance was not
su�cient.

Example 2.11. To understand what a ProbTree looks like, consider the tree depicted in Fig. 2.2
which is a ProbTree for the graph of Fig. 1.2 (it is more precisely an SPQR tree). The tree T is
de�ned by the black lines between bags; a Greek letter identi�er is given on the right of each bag.
The vertices in bags of any subtree of T induce an independent subgraph in the original graph:
for example, the subtree rooted at node (X) contains vertices 1, 2, 5, and 6, which indeed form an
independent subgraph with endpoints 2 and 6. The nodes in white represent the endpoints of the
independent subgraphs induced by the bag’s respective subtree: here, for node (X), these are 2 and 6.

Our best performing ProbTree variant is not the SPQR one, but one which performs a partial
decomposition. Before we can present it, we need to take a detour to discuss tree decompositions,
their link to the notion of treewidth, and the notion of partial tree decomposition.

2.2 Tree Decompositions and Treewidth

The following section is adapted from [Maniu et al., 2019], work presented at ICDT.

Following the original de�nitions in [Robertson and Seymour, 1984], we �rst de�ne a tree
decomposition:

De�nition 2.12 (Tree Decomposition). Given an undirected graph � = (+ , �), where + repre-
sents the set of vertices (or nodes) and � ⊆ + ×+ the set of edges, a tree decomposition is a pair
(), �) where ) = (� , � ) is a tree and � : � → 2+ is a labeling of the nodes of ) by subsets of +
(called bags), with the following properties:

(i)
⋃
8∈� �(8) = + ;
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Figure 2.3: Example undirected, unlabeled, graph (left) and decomposition of width 3 (right).
[Maniu et al., 2019]

(ii) ∀(D, E) ∈ �, ∃8 ∈ � s.t. {D, E} ⊆ �(8); and

(iii) ∀E ∈ + , {8 ∈ � | E ∈ �(8)} induces a subtree of ) .

Intuitively, a tree decomposition groups the vertices of a graph into bags so that they form a
tree-like structure, where a link between bags is established when there exists common vertices
in both bags.

Example 2.13. Figure 2.3 illustrates such a decomposition. The resulting decomposition is formed
of 4 bags, each containing a subset of the nodes in the graph. The bags containing node 3 (in bold)
form a connected subtree of the tree decomposition.

Based on the number of vertices in a bag, we can de�ne the concept of treewidth:

De�nition 2.14 (Treewidth). Given a graph� = (+ , �) the width of a tree decomposition (), �)
is equal to max8∈� ( |�(8) | − 1). The treewidth of� ,F (�), is equal to the minimal width of all tree
decompositions of � .

It is easy to see that an isolated point has treewidth 0, a tree treewidth 1, a cycle treewidth 2,
and a (: + 1)-clique (a complete graph of : nodes) treewidth : .

Example 2.15. The width of the decomposition in Figure 2.3 is 3. This tells us the graph has a
treewidth of at most 3. The treewidth of this graph is actually exactly 3: indeed, the 4-clique, which
has treewidth 3, is a minor of the graph in Figure 2.3 (it is obtained by removing nodes 1 and 7,
and by contracting the edges between 3 and 6 and 5 and 6), and treewidth never increases when
taking a minor (see, for instance, [Harvey, 2014]).

Intuitively, a tree decomposition groups the vertices of a graph into bags so that they form a
tree-like structure, where a link between bags is established when there exists common vertices
in both bags – in other words, exactly what we need for our ProbTree. However, note that algo-
rithms which solve hard problems in linear time when restricted to graphs of bounded treewidth
– including :-terminal reliability – have been proposed by [Arnborg and Proskurowski, 1989].
They have two main disadvantages:

(i) they use bottom-up dynamic programming for the computation of optimal values, but
they retain an exponential dependence on the treewidthF ; and
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Figure 2.4: Graph triangulation for the graph of Figure 2.3 (left) and its elimination ordering
(right). [Maniu et al., 2019]

(ii) the practical appeal is limited, as the computation of the query answers is made at the
same time as the construction of the decompositions.

Moreover, given a width, a tree decomposition can be constructed in linear time [Bodlaender, 1996].
However, determining the treewidth of a given graph is NP-complete [Arnborg et al., 1987].
This means that determining if a graph has a bounded treewidth, and thus being able to create
its tree decomposition, cannot be reasonably performed on large-scale graphs.

It is possible, nevertheless, to obtain estimations of treewidth – along with their associated de-
compositions – via estimations of the range of possible treewidths, between a lower bound and an
upper bound. We refer the reader to [Bodlaender and Koster, 2010] and [Bodlaender and Koster, 2011],
respectively, for a more complete survey of treewidth upper and lower bound estimation algo-
rithms on synthetic data, and we cover here only the subset of methods that �t our requirements.

Treewidth Upper Bounds The treewidth is the smallest width among all possible tree
decompositions. In other words, the width of any decomposition of a graph is an upper bound
of the actual treewidth of that graph. A treewidth upper bound estimation algorithm can thus
be seen as an algorithm to �nd a decomposition whose width is as close as possible to the
treewidth of the graph. To understand how one can do that, we need to introduce the classical
concept of elimination ordering and to explain its connection to treewidth.

We start by introducing triangulations of graphs, which transform a graph� into a graph�Δ

that is chordal:

De�nition 2.16 (Chordal graph, Triangulation). A chordal graph is a graph � such that every
cycle in� of at least four vertices has a chord – an edge between two non-successive vertices in the
cycle.

A triangulation (or chordal completion) of a graph� is a minimal chordal supergraph�Δ of� :
a graph obtained from � by adding a minimal set of edges to obtain a chordal graph.

Example 2.17. The graph in Figure 2.3 is not chordal, since, for example, the cycle 3–4–5–6–3
does not have a chord. If one adds an edge between 3 and 5, as in Figure 2.4 (left), one can verify
that the resulting graph is chordal, and thus a triangulation of the graph of Figure 2.3.

One way to obtain triangulations of graphs is elimination orderings. An elimination ordering
l of a graph � = (+ , �) of = nodes is an ordering of the vertices of � , i.e., it can be seen as a
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bijection from + onto {1, . . . , =}. From this ordering, one obtains a triangulation by applying
sequentially the following elimination procedure for each vertex E : �rst, edges are added between
remaining neighbors of E as needed so that they form a clique, then E is eliminated (removed)
from the graph. For every elimination ordering l , � along with all edges added to � in the
elimination procedure forms a graph, denoted �Δ

l . This graph is chordal (indeed, we know that
the two neighbors of the �rst node of any cycle we encounter in the elimination ordering have
been connected by a chord by the elimination procedure). It is also a supergraph of � , and it
can be shown it is a minimal chordal supergraph, i.e., a triangulation of � .

Example 2.18. Figure 2.4 (right) shows a possible elimination ordering (7, 1, 6, 3, 5, 2, 4) of the
graph of Figure 2.3. The elimination procedure adds a single edge, when processing node 6, between
nodes 3 and 5. The resulting triangulation is the graph on the left of Figure 2.4.

Elimination orderings are connected to treewidth by the following result:

Theorem 2.19. [Bodlaender and Koster, 2010] Let� = (+ , �) a graph, and: ≤ =. The following
are equivalent:

(i) � has treewidth : .

(ii) � has a triangulation �Δ, such that the maximum clique in �Δ has size : + 1.

(iii) There exists an elimination ordering l such that the maximum clique size in �Δ
l is : + 1.

Obtaining the treewidth of the graph is thus equivalent to �nding an optimal elimination
ordering. Moreover, constructing a tree decomposition from an elimination ordering is a natural
process: each time a vertex is processed, a new bag is created containing the vertex and its
neighbors. Note that, in practice, we do not need to compute the full elimination ordering: we
can simply stop when we know that the number of remaining vertices is lower that the largest
clique found thus far.

Example 2.20. In the triangulation of Figure 2.4 (left), corresponding to the elimination ordering
on the right, the maximum clique has size 4: it is induced by the vertices 2, 3, 4, 5. This proves the
existence of a tree decomposition of width 3. Indeed, it is exactly the tree decomposition in Figure 2.3
(right): bag d is constructed when 7 is eliminated, bag a when 1 is eliminated, bag c when 6 is
eliminated, and �nally bag b when 3 is eliminated.

Finding a “good” upper bound on the treewidth can thus be done by �nding a “good” elimina-
tion ordering. This is still an intractable problem, naturally, but there are various heuristics for
generating elimination orderings leading to good treewidth upper bounds. One important class
of such elimination ordering heuristics are the greedy heuristics. Intuitively, the elimination
ordering is generated in an incremental manner: each time a new node has to be chosen in
the elimination procedure, it is chosen using a criterion based on its neighborhood. We have
implemented2 the following greedy criteria (with ties broken arbitrarily):

• Degree. The node with the minimum degree is chosen. [Markowitz, 1957, Berry et al., 2003]
2https://github.com/smaniu/treewidth
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2 Tree Decompositions for Probabilistic Graphs

• FillIn. The node with the minimum needed “�ll-in” (i.e., the minimum number of missing
edges for its neighbors to form a clique) is chosen. [Bodlaender and Koster, 2010]

• Degree+FillIn. The node with the minimum sum of degree and �ll-in is chosen.

Example 2.21. The elimination ordering of Figure 2.4 (right) is an example of the use of De-
gree+FillIn. Indeed, 7 is �rst chosen, with value 1, then 1 with value 2, then 6 with value 2 + 1 = 3.
After that, the order is arbitrary since 2, 3, 4, and 5 form a clique (and thus have initial value 3).

Previous studies [van Dijk et al., 2006, Koller and Friedman, 2009, Bodlaender and Koster, 2010]
have found these greedy criteria give the closest estimations of the real treewidth. An alter-
native way of generating an elimination ordering is based on maximum cardinality search
[Koller and Friedman, 2009, Bodlaender and Koster, 2010]; however, it is both less precise than
the greedy algorithms – due to its reliance on how the �rst node in the ordering is chosen –
and slower to run.

In contrast to upper bounds, obtaining treewidth lower bounds is not constructive. In other
words, lower bounds do not generate decompositions; instead, the estimation of a lower bound
is made by computing other measures on a graph, that are a proxy for treewidth.

How high is the treewidth of real graphs? We want to answer the following question:
are tree decompositions based on treewidth estimations feasible in practice?

Figure 2.5 shows the results of our estimation algorithms over 25 datasets from 4 domains:

• infrastructure: road networks of states (Ca, Pa, Tx) and cities (Bucharest, HongKong,
Paris), the Parisian tranport network Stif, and the US PowerGrid;

• social (Enron, Facebook, WikiTalk) and Web (Gnutella, Google) networks;

• knowledge graphs (Yago and DbPedia);

• hierarchical networks (Royal trees, Math generalogies).

Lower values mean better treewidth estimations. Focusing on the upper bounds only (red circular
points), we notice that, in general, FillIn does give the smallest upper bound of treewidth, in
line with previous �ndings [Bodlaender and Koster, 2011]. Interestingly, the Degree heuristic
is quite competitive with the other heuristics. This fact, coupled with its lower running time,
means that it can be used more reliably in large graphs. Indeed, as can be seen in the �gure, on
some large graphs only the Degree heuristic actually �nished at all; this means that, as a general
rule, Degree seems the best �t for a quick and relatively reliable estimation of treewidth.

We plot both the absolute values of the estimations in Figure 2.5a, but also their relative
values (in Figure 2.5b, representing the ratio of the estimation over the number of nodes in
the graph), to allow for an easier comparison between networks. The absolute value, while
interesting, does not yield an intuition on how the bounds can di�er between network types. If
we look at the relative values of treewidth, it becomes clear that infrastructure networks have
a treewidth that is much lower than other networks; in general they seem to be consistently
under one thousandth of the original size of the graph. This suggests that, indeed, this type of
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Figure 2.5: Treewidth estimation of di�erent algorithms (logarithmic scale). [Maniu et al., 2019]

network may have properties that make them have a lower treewidth. For the other types of
networks, the estimations can vary considerably: they can go from one hundredth (e.g., Math)
to one tenth (e.g., WikiTalk – the network of interactions on Wikipedia talk pages) of the size
of the graph.

These results show us that, unfortunately, estimating a tree decomposition of the graphs leads
to treewidth that is too high. The exponential dependency on the treewidth of the algorithms
means that they are not usable in practice. Even so, there exists another possibility: stopping
the decomposition early and hence obtaining a partial tree decomposition.

2.2.1 Partial Tree Decompositions

The manner in which treewidth decomposition can be used starts from a simple observation
made in studies on complex graphs, that is, that they tend to exhibit a tree-like fringe and a
densely connected core [Newman et al., 2001, Newman et al., 2002]. The tree-like fringe precisely
corresponds to bounded-treewidth parts of the network. This yields an easy adaptation of the
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upper bound algorithms based on node ordering: given a parameterF representing the highest
treewidth the fringe can be, we can run any greedy decomposition algorithm (Degree, FillIn,
DegreeFillIn) until we only �nd nodes of degree F + 1, at which point the algorithm stops.
At termination, we obtain a data structure formed of a set of treewidthF elements (F-trees)
interfacing through cliques that have size at most F + 1 with a core graph. The core graph
contains all the nodes not removed in the bag creation process, and has unknown treewidth.
Figure 2.6 illustrates the notion of partial decompositions.

core

w-tree (w=3)
w-tree (w=4)

w-
tre

e 
(w

=1
)

fringe

Figure 2.6: An abstract view of partial decompositions. Partial decompositions are formed
of a core graph, which interfaces with F-trees through F-cliques (the fringe).
[Maniu et al., 2019]

The resulting structure can be thought of as a partial decomposition (or relaxed decomposition),
a concept introduced in [Wei, 2010, Akiba et al., 2012] in the context of answering shortest
path queries – we will also show in the next section how to use them for probabilistic queries.
A partial decomposition can be extremely useful: the tree-like fringe can be used to quickly
precompute answers to partial queries (e.g., precompute distances in the graph). Once the
precomputation is done, these (partial) answers are added to the core graph, where queries can
be answered directly. If the resulting core graph is much smaller than the original graph, the
gains in running time can be considerable, as shown in [Wei, 2010, Akiba et al., 2012] and here.

An interesting aspect of greedy upper bound algorithms is that they generate at any point
a partial decomposition, with width equal to the highest degree encountered in the greedy
ordering so far. The algorithm can then be stopped at any width, and the size of the resulting
partial decomposition can be measured.

Hence, the objective of our experimental study is to check how feasible partial decompositions
are. The measure of interest is how large the core (or root) bag is. Indeed, the smaller this core
is, the faster any algorithm used on this decomposition is.

Figure 2.7 shows the relative size of the core in partial decompositions up to a width of 25, for
a selection of graphs (the full results are available in [Maniu et al., 2019]). Immediately apparent
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Figure 2.7: Zoomed view of decompositions up to width 25. [Maniu et al., 2019]

is the fact that the minimal size of the core graph occurs at very low widths: in almost all cases,
it occurs around a width between 5 and 10. This is low enough that running algorithms even
doubly exponential in the width on the resulting fringe graphs can be performed. In terms
of actual size, it can vary greatly. In road networks (Paris), it even reaches 10%, compared to
around 50% for other graphs. The exception to this are denser networks – CitHeph (a physics
citation network) where almost no bene�t is visible for partial decompositions of small width,
and Google (the network of URLs crawled by Google) where the minimal size occurs much
later (F = 20).

We show next that the fact that we can create a fringe of very small treewidth and, at the
same time, have a very small core can be exploited e�ciently for queries on probabilistic graphs.
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2.3 Tree Decompositions for Probabilistic Graphs: ProbTree

The following section is adapted from [Maniu et al., 2017], work published in ACM TODS.

In the following – supported by our main result in Theorem 2.8 – we study the suitability of
partial decompositions for indexing probabilistic graphs3 We will present the principle of the
index and retrieve operators, and we show a selection of the experimental results on ProbTree.

2.3.1 Indexing and Retrieval

The principle behind the ProbTree is to �rst generate a partial tree decomposition for index,
where the parameter is the maximum width of the non-root bags in the tree,F . The decomposi-
tion is then used to generate equivalent graphs using retrieve.

Indexing We now present in Algorithm 1 the index operator. It consists of three stages:
the main decomposition, the building of the ProbTree and the pre-computation of probability
distributions.

The �rst stage of Algorithm 1 (lines 1–14) is the adaptation of the algorithms in [Wei, 2010,
Akiba et al., 2012], which build the decomposition tree by essentially applying the Degree
heuristic presented in Section 2.2. At each step, a vertex having a degree at mostF is chosen,
marked as covered, and its neighbors are added into the bag, along with the probabilistic edges
from G. Then, the covered vertex is removed from the undirected graph� and a clique between
the neighbors is created. This process repeats until there are no such vertices left. Finally, the
rest of the uncovered vertices and the remaining edges are copied in the root graph R.

The second stage is the creation of the tree T . We visit in creation order each bag and de�ne
as their parent the bag whose vertex set contains all uncovered vertices of the visited bag. If no
such bag exists, the parent of the bag will be the root graph.

Finally, in each bag �, and for each pair (E1, E2), we need to compute ? (E1 → E2) by using the
information about the link con�guration between E1, E2 and the covered vertex E . These can
be computed exactly by a composition of min- (for parallel paths) and sum-convolutions (for
paths that are sequential) of distance distributions – denoted as � and ⊕ here and illustrated in
Figure 2.8. For more details on the computation of convolutions of probability distributions, we
refer the reader to [Ash and Doléans, 1999].

More precisely, the probability distribution can be computed as: ? (E1 → E2) = ? (E1 →
E2) � (? (E1 → E) ⊕ ? (E → E2)) . This is followed by the bottom-up propagation of computed
probabilities: at each step pairwise probabilities are computed among the vertices which are not
the covered vertex E of the respective bag – in precompute-propagate. In order to compute these
probabilities, for each bag �, the �rst step is to “collect” the computed edges from �’s children
and combine them using the � operator. Then, for each pair (E1, E2) we compute distances
using the ⊕ operator between the edges E1 → E and E → E2. Finally, the direct edge E1 → E2

3Partial decompositions were called �xed-width decompositions in [Maniu et al., 2017]. There is no functional
di�erence.
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Algorithm 1 index(G)
Require: a probabilistic graph G, width parameter F

⊲ decompose the graph into bags of size ≤ F
1: � ← undirected, unweighted graph of G
2: S = ∅, T = ∅
3: for 3 ← 1 to F do
4: while there exists a vertex E with degree 3 in� do
5: create new bag �
6: + (�) ← E and all its neighbors
7: for all unmarked edge 4 in G between vertices of+ (�) do
8: � (�) ← � (�) ∪ {4 } and mark 4
9: end for

10: covered(�) ← {E }
11: remove E from� and add to� a (3 − 1)-clique between E’s neighbors
12: S ← S ∪ {� }
13: end while
14: end for

⊲ create the root graph and the bag tree
15: + (R) ← all vertices in G not in covered(B)
16: � (R) ← all unmarked edges in G
17: for bag � in S do
18: mark �
19: if ∃ an unmarked bag �′ s.t.+ (�)\covered(�) ⊆ �′ then
20: update (T, B) so that �′ is parent of �
21: else
22: update (T, B) so that R is parent of �
23: end if
24: end for

⊲ compute edges between uncovered vertices and propagate up
25: for ℎ ← height(T) to 0 do
26: for bag � s.t. level(�) = ℎ do
27: precompute − propagate(�)
28: end for
29: end for
30: root T at R

return (T, B)

A BX

A B

A B

A B

⊕

⊙

p(first) p(second) p(combined)

p(combined)

p(direct)''

p(direct)'

SUM p(first),p(second)

MIN p(direct)',p(direct)''

Figure 2.8: Probability compositions of simple paths. [Maniu et al., 2017]

is combined to get the �nal probability distribution. At the �nal level – the root bag R – the
computed pairwise distance distributions are simply copied to the edge set of R. Note that we
do not compute the distance distributions by using other possible paths between endpoints, and
we restrict the computations only between the direct endpoint edge and the unique path going
through the covered node. We do this to allow tractability of the convolution computations and
allow the same semantics of the edges in R, i.e., each resulting edge between endpoints can be
independently sampled.
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Figure 2.9: TheF = 2 decomposition of the example graph. Vertices in white are the vertices
covered by each bag, and dashed red edges are edges which are computed from
children. Each edge has a distribution of distance probabilities associated to it.
[Maniu et al., 2017]

Note that we cannot compute bi-directional edges, at least forF > 2. Hence, only a single
bottom-up propagation is made, from the leaves to R.

Example 2.22. We give in Fig. 2.9 the result of applying Algorithm 1 on the graph in Fig. 1.2, for
F = 2. The resulting decomposition consists of �ve bags in B and a root graph of two vertices, 6
and 0. Originally, the root graph does not contain any original edges, but it will have computed
edges resulting from the bottom-up propagation. In the �gure, the dashed red edges represent the
edges which have been computed from the children.

On the left-hand side of the tree, bags (W) and (n) do not propagate any edges up the tree, as
they either do not have 2 endpoints, as is the case of bag (n), or there exist no paths between the
endpoints, as for (W). On the right-hand side, bag (Z ) will provide a 6→ 1 edge to bag (X). Bag (X)
also propagates edges 6→ 2 and 2→ 6 to bag (V). Finally, bag (V) propagates edge 6→ 0 to the
root bag (U).

In terms of time complexity, we know that computing the tree decomposition itself is linear in
the number of vertices in the graph [Wei, 2010, Akiba et al., 2012]. The computation of pairwise
probability distributions, for each bag, is quadratic inF :

Proposition 2.23. The complexity of precompute-propagate is O(F23), where 3 is the maximum
distance having non-zero probability in the graph.

While it is conceivable that a possible world exists in which a shortest distance path between
two vertices visits all edges in a graph thus having 3 = Ω( |� |), this does not occur in practice.
Moreover, forF 6 2 (a case which we will explore in more detail), there are only two pairs to
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Algorithm 2 retrieve(T ,B, B, C)
Require: ProbTree (T ,B), source B , target C

1: root the tree at one of the bags containing C
⊲ propagate edges up the new tree

2: for ℎ ← heightT) to 0 do
3: for node = of T s.t. level(=) = ℎ do
4: � ← B(=)
5: if + (�) ∩ {B} ≠ ∅ then
6: delete ?2 in parent(�) resulting from �
7: � (parent(�)) ← � (parent(�)) ∪ � (�)
8: + (parent(�)) ← + (parent(�)) ∪+ (�)
9: end if

10: end for
11: end for

return B(root(T ))

generate, and each bag is visited only once by Algorithm 1. Hence, in this setting, the complexity
of propagating computations is linear in the number of vertices in the graph.

Retrieval When answering (B, C) queries on the ProbTree we have two main cases. First,
when both B and C are present in the root node, we only need to query the root bag with no
need to look in the decomposition. The second case is the most interesting one: when at least
one of B , C are not in the root, but are vertices in the decomposition bags. In this case, the query
vertices need to be propagated to the root node.

The original edges in ancestors of the bags containing the query vertices are propagated up,
all the way to the root, in a bottom-up manner. The previous pre-computations of edges in
areas of the graphs not containing the query vertices and in the subtree of the bags containing
the query vertices are not a�ected by this change. Recomputing the edges on these parts of the
tree is not necessary, and this ensures that only a fraction of the bags in the tree is a�ected by
the retrieval. Algorithm 2 details this operation.

Each retrieve will output a graph that is at most as big as the original graph, and hence the
standard shortest-path algorithms [Dijkstra, 1959] would execute in less time for each sample.
Moreover, the retrieval is linear in the number of tree bags, which is itself linear in the size of G,
verifying Property (iii).

Analysis for F ≤ 2 In this special case, the computations performed by precompute-
propagate are correct:

Proposition 2.24. precompute-propagate computes correct probability distributions, i.e., does not
induce any error, for decompositions ofF 6 2.

In addition, for F 6 2 the decomposition de�nes a tree of independent subgraphs, i.e., a
ProbTree. It follows that every computed edge in the root graphR corresponds to an independent
subgraph:
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Proposition 2.25. Let (T ,B) be a tree decomposition ProbTree of F 6 2. Then every bag � in
B(T ) de�nes an independent subgraph, having as endpoints its uncovered vertices and as internal
vertices all covered vertices in the subtree of T rooted at �.

Combining the previous results with the complexity bounds on the index and retrieve opera-
tors established in the previous section, we obtain that, forF ≤ 2, (index, retrieve) is a lossless
indexing system. On the other hand, since few datasets have treewidth 6 2, it is generally not
an optimal decomposition into independent subgraphs.

This lossless indexing system provide gains in e�ciency close to those of the lossy SPQR
indexes. In some cases – such as denser networks – their e�ciency is still not fully satisfactory.

Analysis for F > 2 Unfortunately, decompositions for F > 2 are not lossless, due to the
correlations induced by pre-computing the distributions in bags, as witnessed by the following
counter-example. Imagine a bag resulting from aF > 2 decomposition with covered vertex E
and neighbor vertices E1, E2, E3, . . . , EF and the following edges: E1 → E and E → E2, . . . , E → EF .
In this case, the computable edges would be E1 → E2, . . . , E1 → EF . For every 1 < 8 6 F ,
? (E1 → E8) = ? (E1 → E) ⊕ ? (E → E8). ? (E1 → E) appears in all equations, meaning that the
computed edges would not be maintaining their independence, hence leading to lossy indexing.
No guarantees can be obtained for them either, unlike in the case of SPQR.

As we show in the next section, we can use the decomposition withF > 2 as a starting point
to design an index structure that is lossless and improves on query time e�ciency w.r.t. one
havingF ≤ 2, at the cost of an increase in space requirements, by representing explicitly the
correlations introduced with higher treewidths.

2.3.2 Lineage Trees

For F > 2, directly sampling the pre-computed edges is error-prone. Hence, sampling the
pre-computed distance distributions directly from R or the graph returned by retrieve is not
advisable.

Instead, we can compute the full lineage of the distance distributions between endpoints at
pre-processing, and leave the handling of the correlations at query time. For this, we compute
the lineage at tree decomposition time and build a lineage tree, i.e., a parse tree of the path
between endpoints.

De�nition 2.26 (Lineage tree). A lineage tree of a probabilistic graph G is a binary tree whose
leaves are labeled with pairs of nodes of G and whose internal nodes are labeled with either � or ⊕.

The distance distribution represented by a lineage tree is de�ned inductively given a distribution
of distances on leaf nodes: the distributions of �- and ⊕-labeled internal nodes are given by min-
or sum-convolutions of probability distributions of children, following Fig. 2.8.

Such lineage trees, that will represent the actual distance distribution between two given
nodes in a tree, can be e�ciently computed at decomposition time by adding tree nodes “on top”
of existing tree pointers, coming from previous bags. To enable e�cient evaluation of edges
which introduce correlations – hereby named dependency edges – we annotate each tree node )
with a little information:
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Figure 2.10: Example of dependent path lineages and annotated lineage trees.
[Maniu et al., 2017]

(i) the set of dependency edges dependent() ), i.e., the edges which introduce correlations in
the entire subtree ) ;

(ii) the pre-computed distance distribution, ) .3BC , i.e., the distance distribution computed as if
dependent() ) = ∅; and

(iii) the edge being pre-computed, ) .4364 .

Both ) .4364 and ) .3BC can be computed directly at decomposition time, just as in the previous
decompositions, SPQR and FWD.

The dependent() ) computation goes on as follows. We �rst compute) with the dependency
annotations. For each subtree C that originates from a previous bag in the tree decomposi-
tions, we union its dependent(C) to the current dependent() ). Then, for each bag processed in
precompute-propagate and for each distance distribution between endpoints, we keep the set of
its lineage edges only from the current bag, linedges() ). Finally, for each pair of computed end-
point trees)1 and)2, we compute linedges()1) ∩ linedges()2) and add it to both dependent()1)
and dependent()2), by set union. This ensures that each subtree will contain the correct set of
dependency edges.
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Example 2.27. Let us take the FWD decomposition, withF = 3, in Fig. 2.10a, composed of two
bags U and V .

We wish to precompute the edges 3→ 4 and 3→ 5 in U . For that, we start at V and precompute
1 → 5 and its associated lineage tree, ) (1 → 5), in Fig. 2.10b. It contains only one convolution
node, C1, and does not have any dependent edges because it belongs to a leaf bag of width 6 2.

This lineage tree will be propagated to U and will help in the computation of 3 → 4 and
3→ 5 and their associated lineage trees, ) (3→ 4) and ) (3→ 5). ) (1→ 5) is involved in the
computation of ) (3→ 5), as a pointer node that is a child of the convolution node C2.

The edge 3→ 1 introduces a dependency between 3→ 4 and 3→ 5 because it appears in the
pre-computation of several edges in the same bag, and hence the dependent edge annotation of
) (3→ 4) and ) (3→ 5) is {3→ 1}.

The lineage trees described above can be added to computed edges of any partial tree decom-
position. Instead of applying the convolution operators in lines 2, 8, and 9, we construct the
lineage tree by adding the � and ⊕ gates as needed. Hence, each edge for bags ofF > 2 will be
associated to a lineage tree. Then, at sampling time, each time a such an edge is encountered
we evaluate the corresponding lineage tree, as detailed below.

Given a lineage tree on an edge, evaluating the distance distribution from a tree pointer) is at
sample time for a tree pointer) . If the tree pointed by) does not contain any dependency edges,
then we simply return the distance distribution) .3BC . If, on the other hand, the pointer points to
a leaf of the tree – which points to a graph edge – and this edge is a dependency edge, we need
to sample it in this possible world. To ensure that we keep the correlation in all other possible
trees which have this edge as a dependency edge, we need to ensure that the sampled distance
is the same in all trees. For this we keep a map sampled which contains the sampled edges in
the current possible world, ensuring no sampling of a dependency edge is repeated. If the edge
is not a dependency edge, we can return its distance distribution. Finally, for intermediary tree
nodes, we recursively evaluate the left and right branches and then compute the convolution
indicated by the node, either ⊕ or �. The returned distance distribution 3 can be sampled by
our sampler of choice.

Example 2.28. Let us return to the tree ) (3→ 5) in Fig. 2.10b. At sampling time, edge 3→ 1
needs to be sampled because it is a dependency edge, i.e., it introduces a correlation with tree
) (3→ 4). When) (3→ 4) needs to be evaluated, we need to use this, previously sampled, distance
for 3→ 1. Edge 3→ 5 and ) (1→ 5) can use their distributions without sampling, as they do not
have correlations anywhere else in the decomposition.

The problem with this lineage-based method is that it is not generally space-e�cient. On
each bag of width F , we only potentially remove 2F edges – two for each endpoint covered
node pair –, while we can introduce F (F − 1) edges to the graph – one edge for all possible
pairs of theF endpoints. ForF > 2, this can add edges to the graph. We thus obtain a quadratic
theoretical upper bound on the size of the resulting structure, though, as we will show, the
blow-up is not nearly as bad in practice. Consequently, LIN does not satisfy our de�nition of an
indexing system (De�nition 2.6). Moreover, the number of computed edges added to R has a
direct in�uence on query evaluation.
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LIN decompositions of the road networks, where the distance propagation can take a few hours,
due to the computation of the lineage trees.

�e space overhead of I (Fig. 8) is also reasonable. Generally, the ProbTree for FWDF 6 2 and
SPQR only incurs between 10% (W���) and double (N�) space overhead compared to the space
cost of the original graph. As expected, the LIN decompositions for the road networks increase
signi�cantly in size compared to their original graph size, even reaching a few gigabytes in the
case of C� and E�, and up to 10 times in the size of the original graph in the case of E�. Since the
higher widths of the tree decompositions no longer retain the linear size increase property, i.e., can
be quadratic in the original size, this is not surprising. Nevertheless, the query time savings of the
lossless decompositions of E�, N� and C� are very important, as we shall see next.

Running time. For evaluating the execution time, we used the following experimental setup. For
each dataset, a randomly generated query workload of 1,000 vertex pairs from the original graphs
were generated. For a workload of 1,000 queries, the standard error for the running time and a 95%
con�dence interval is ±3%; this signi�cance level is reached for every comparison between the
running time of the baseline algorithm and the running time on the di�erent decompositions we
used.

For each query workload, we generated the ground truth probabilities via 10,000 rounds of
sampling. Please note that for each query pair we generated the actual distance distribution
between the vertices, by applying Dijkstra’s shortest path algorithm from the source vertex, on
each sampling round. For testing, we executed the workloads for a number of samples between 10
and 1,000.

As Fig. 9 shows, the e�ciency gains are important when queries are executed on ProbTree
indexes. �e gains on the lossless decompositions are up to 2–3 times in the case of N�. In most
cases, SPQR is more e�cient that the lossless FWDs, but only marginally so. Denser networks,

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Figure 2.11: Relative error vs. time (log-log axis). [Maniu et al., 2017]

2.3.3 Experimental Results

Are the tree decomposition approaches better overall than sampling algorithms? That is, is
the error vs. time trade-o� enough to justify using our algorithms, and not simply use more
sampling rounds?

We present in this section partial experimental results for the ProbTree variants: SPQR, the
�xed-width tree decomposition (denoted as FWD), and the lineage approach (denoted as LIN).
The full experimental results are available in [Maniu et al., 2017].

We have plotted the running time of applying sampling on ProbTree versus its error –
expressed in terms of the mean squared error as compared to the ground truth results. For
brevity, we only track the results for the reachability – or 2-terminal reliability – queries. As
query answers are derived directly from the distance distribution, results for other types of
queries have similar relative error results.

Fig. 2.11 (log-log axes) presents the results for the Wiki graph – the social network of
Wikipedia collaborations. The black dots represent the results on sampling the original graph,
for a number of sample rounds between 10 (top left) and 1,000 (bottom right). Intuitively, we
want the points corresponding to ProbTree variants (drawn for the same amount of samples) to
lie “below” the line induced by the black points, meaning that they yield a better time-accuracy
trade-o�. As seen before, the gains in execution time when using the decompositions are
important. The results also show that the relative error can even be slightly improved when
using ProbTree. For instance, note that the FWD and LIN errors in the Wiki graph are slightly
lower than the corresponding black dots, i.e., the original graph, suggesting an increase in
accuracy.
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Interestingly, for the road graphs (E�, N� and C�) and LIN, the corresponding roots contain very
few original edges and are almost entirely composed of computed edges. We conjecture that this is
due to the relative sparsity of the road network datasets as compared to the other datasets. Other
possible explanations may come from the near-planar character of the road networks – although
this has no bearing on whether the treewidth is bounded – and their low highway dimension [3].

Fig. 7e-f shows the preprocessing execution time of ProbTree. As can be noticed, the index
operation is very e�cient, running in the order of seconds even on large graphs, except the LIN
computation of the dense W��� graph, which takes around 2 minutes. �e same observations hold
for the pre-computation and propagation of distance distributions for the �xed-width decompo-
sitions. However, due to the overhead of sampling the R-bags, the SPQR pre-computation takes
signi�cant more time than FWD, but still under an hour. �e exception to this behaviour are the

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Figure 2.12: Independent graph size (white) versus sampled edges (black).[Maniu et al., 2017]

To understand more about the di�erence in running time savings of the decomposition, we
plot, in Fig. 2.12, the size of the equivalent graph G(@) resulting from applying retrieve for
each type of decomposition (white bars), along with the proportion of actual sampled edges
in these graphs (black bars). The sizes represent average sizes over all 1,000 queries in the
query load. In the case of Wiki, we observe that the G(@) graphs are relatively close in size to
the original graphs. Generally, the proportion of actually sampled edges in the graph remains
constant (around 40% in the case of Wiki, and lower in the case of Nh – the road network
of the US state of New Hampshire); this means that, indeed, reducing the number of edges in
the equivalent graphs can reduce query times. The large decrease in the query times for the
transport networks – such as the illustrated Nh – can be directly attributed to their e�cient
decompositions, resulting in relatively more independent graphs, which in turn result in much
smaller equivalent graphs.

2.4 Follow-up Contributions

We showed that tree decomposition can work well in evaluating source-to-target queries on
probabilistic graphs. Interestingly, they also have high potential for other types of queries; we
illustrate here :NN queries.

In general, probabilities on graphs can be thought of as a form of provenance on graphs.
Depending on what type of provenance we use, the e�ciency of source-to-target algorithms
varies.

2.4.1 Tree Decompositions for Probabilistic :NN �eries

The following is a brief outline of [Li et al., 2018] presented at EDBT.

Source-to-target graph queries are important; they are however not the only types of queries
that could bene�t from decomposition approaches. Finding the :-nearest neighbors from a
source node in a graph is a query that has multiple applications: e.g., link prediction, community
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detection, centrality analysis. For probabilistic graph, this distance is computed in expectation
over the distance distribution.

The same decomposition process can be used for :-NN queries: decompose the graph into
a tree and then extract an equivalent graph. Naturally, the decompositions that were pre-
sented in the previous section work with this approach – along with other decomposition
approaches, such as ones based on core decompositions [Bonchi et al., 2014] and truss decompo-
sition [Huang et al., 2016]. However, there are some particularities for :NN queries. First of all,
there will be no clearly de�ned root of the decomposition, as it depends directly on the choice
of the query source node. As a consequence, all the pairwise distances have to be computed in
both directions, i.e., bottom-up and top-down. The U-Tree presented in [Li et al., 2018] ful�lls
the two criteria. In conjunction with some implementation optimization – such as pruning of
un-needed bags in the decomposition — the U-Tree can exhibit high e�ciency gains in query
processing.

2.4.2 Semiring Provenance for Graph �eries

The following is a brief outline of [Ramusat et al., 2018, Ramusat et al., 2021] presented at
TaPP and EDBT.

Tracking where and how query results are computed – the concept known as data provenance –
is important for query analysis, conditioning, and explainability. Provenance can be tracked by
annotating data tuples with the elements of an algebraic structure. In relational databases, the
most used structure is the semiring, represented by (K, ⊕, ⊗, 0, 1), where K is some set, ⊕ and ⊗
are binary operators over K, and 0 (annihilator element) and 1 (identity) are elements of K, sat-
isfying some axioms. Important examples of semiring are the tropical semiring (ℝ,min, +,∞, 0),
the counting semiring (ℕ, +,×, 0, 1), and the Boolean semiring ({⊥,>},∨,∧,⊥,>). In relational
databases and the SPUJ fragment of SQL, the ⊕ operation allows to aggregate annotations on
tuples for projections, selections and unions, while ⊗ allows to aggregate annotations resulting
from joins [Green et al., 2007].

In ProbTree’s implementation, one important subtask is the pre-computation of probability
distribution at the interface between bags in the decomposition. For this, two operations were
introduced: the SUM-convolution over sequential paths, and the MIN-convolution over parallel
paths.

The above operations are a particular case of the operations that must be performed when
answering any source-to-target query in graphs: the answer to a query is the aggregation over
all alternative paths. Our results in [Ramusat et al., 2018, Ramusat et al., 2021] show that this
is precisely what we can do with semiring provenance. Formally, in a graph � = (+ , �), where
each edge 48 ∈ � has a weightF [48] – represented as an element of a semiring –, the provenance
of a source-to-target query is the (possibly in�nite) sum over the set of all paths between G and
~ in � , %G~ (�):

provK (�) (G,~) B F
[
%G~ (�)

]
=

⊕
c ∈%G~ (�)

F [c] =
⊕

c ∈%G~ (�)

⊗
48 ∈c

F [48] .
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Depending on the semiring chosen, the semantics of the above sum change. In the tropical
semiring, this is exactly the shortest distance between nodes G and ~ in � ; in the counting
semiring, it represents the number of paths between G and ~. Finally, in the Boolean semiring, it
encodes the truth value representing whether ~ is reachable from G , depending on the truth
annotations on edges.

The type of semiring has a direct impact on what query processing algorithm one can use
and, importantly, on their complexity. Our �ndings show that:

• The well known Dijkstra’s algorithm, linear in the size of the graph, [Dijkstra, 1959] can
be directly used with any semiring that is 0-closed and induces a total order over its
elements. Intuitively, 0-closed semirings are those for which the above sum does not need
to account for cycles in the graph.

• For 0-closed semirings for which elements form a distributive lattice, Dijkstra’s algorithm
can be used in parallel over the antichains in the lattice (our algorithm MultiDijkstra).
The algorithm remains linear, but also depends on the dimension of the lattice.

• For :-closed semirings (cycles need to aggregated up to : times), an adaptation of Dikstra’s
algorithm, presented in [Mohri, 2002], can be used. The algorithm is exponential in the
worst case, but much faster in practice.

• For all other semirings for which the above sum is �nite, we presented the NodeElimi-
nation algorithm, which is cubic in the size of the graph in the worst case. The main
cycle of the algorithm eliminate nodes in the graph and compute the provenance over
their neighbors, until only the G and ~ nodes remain. Interestingly, the order in which
the nodes are chosen has a direct link with the treewidth of the graph, and hence its
performance.

The practical interest of our �ndings is to allow a generic graph processing system for rich
queries, where, depending on the chosen provenance over a graph, the best algorithm can be
chosen.
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3 Maximizing Influence in Low Information
Se�ings

We discuss in this chapter the problem of in�uence maximization when not all information
about the in�uence graph is known. We start by considering the case of knowing the in�uence
graph, but not the actual in�uence probabilities on edges. Then we relax the need to know
the graph topology, by assuming that only the important nodes (in�uencers) are known. The
solution to both approaches is to use the explore–exploit paradigm, and speci�cally multi-armed
bandit algorithms.

3.1 Influence Maximization

The following two subsections are an adaption of [Lei et al., 2015], presented at KDD.

Let � = (+ , �, ?) be an in�uence graph, where E ∈ + are users or nodes, and 4 ∈ � are the
links or edges between them. Each edge 4 = (8, 9) between users 8 and 9 is associated with an
in�uence probability ?8 9 ∈ [0, 1]. This value represents the probability that user 9 is activated
by user 8 at time C + 1, given that user 8 is activated at time C . We also suppose that time �ows in
discrete, equal steps. In the IM literature, ?8 9 is given for every 8 and 9 . Generally, obtaining ?8 9
requires the use of action logs [Goyal et al., 2010], which may not always be available.

In the independent cascade model, at a given timestamp C , every node is in either active
(in�uenced) or inactive state, and the state of each node can be changed from inactive to active,
but not vice-versa. When a node 8 becomes active in step C , the in�uence is independently
propagated at C + 1 from node 8 to its currently inactive neighbors with probability ?8 9 . Node 8
is given one chance to activate its inactive neighbor. The process terminates when no more
activations are possible. A node can be independently activated by any of its (active) incoming
neighbors. Suppose that the activation process started from a set ( of nodes. We call the
expected number of activated nodes of ( the expected in�uence spread, denoted f ((). Formally:

De�nition 3.1 (In�uence). Given a weighted graph � = (+ , �, ?), let in� be the immediate
in�uence operator, which is the random process that extends a set of nodes - ⊆ + into a set of
immediately in�uenced nodes in�(- ), as follows:

Pr(E ∈ in�(- )) =


1 if E ∈ - ;
1 −∏

(D,E) ∈�
D∈-

(1 − ?DE) otherwise.
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3 Maximizing In�uence in Low Information Settings

Given a seed set ( ⊆ + , we de�ne the set of in�uenced nodes � (() ⊆ + as the random variable
that is the �xpoint �∞(() of the following in�ationary random process:

� 0(() = ∅;
� 1(() = ( ;

�=+2(() = �=+1(() ∪ in�(�=+1(()\�= (()) for = ≥ 0.

The in�uence spread f (() is E[|� (() |].

Based on the above de�nition, [Kempe et al., 2003] de�nes the in�uence maximization problem
(IM) as follows.

Problem 3.2 (IM). Given a weighted graph� = (+ , �, ?) and a number 1 ≤ : ≤ |+ |, the in�uence
maximization (IM) problem �nds a set ( ⊆ + such that f (() is maximal subject to |( | = : .

As discussed in [Kempe et al., 2003], evaluating the in�uence spread is di�cult. Even when
the spread values are known, obtaining an exact solution for the IM problem is computationally
intractable. Next we outline the existing IM algorithms for this problem.

Influence maximization algorithms A typical IM algorithm evaluates the score of a node
based on some metric, and inserts the : best nodes, which have the highest scores, into ( .
For example, the degree discount (DD) heuristic [Chen et al., 2009] selects the nodes with
highest degree as ( . Another classical example is greedy: at each step, the next best node, or
the one that provides the largest marginal increase for f , is inserted into ( . This is repeated
until |( | = : . The greedy algorithm provides an (1 − 1/4)-approximate solution for the IM
problem. To compute the in�uence spread e�ciently, sampling-based algorithms with theoretical
guarantees were developed. For example, CELF [Leskovec et al., 2007] evaluates the expected
spread of nodes with the seed nodes, and select the nodes with the largest marginal spread;
TIM [Tang et al., 2014] counts the frequencies of the nodes appearing in the reversed reachable
sets, and chooses the nodes with the highest frequencies; TIM+ [Tang et al., 2014] is an extension
of TIM for large in�uence graphs.

We say that the above IM algorithms are o�ine, since they are executed on the in�uence
graph once, assuming knowledge of ?8 9 for every 8 and 9 . If these values are not known, these
algorithms cannot be executed. This problem can be addressed by online IM algorithms, as we
will discuss next.

3.2 Online Influence Maximization

The goal of online in�uence maximization (or OIM) is to perform IM without knowing in�u-
ence probabilities in advance. Given a number # of advertising campaigns (or trials), and an
advertising budget of ! units per trial, we would like to select up to ! seed nodes in each trial.
These chosen nodes are then advertised or activated, and their feedback is used to decide the
seed nodes in the next trial:
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Figure 3.1: The OIM framework.

Problem 3.3 (OIM). Given a weighted graph � = (+ , �, ?) with unknown probabilities ?DE , and
a budget consisting of # trials with 1 ≤ ! ≤ |+ | activated nodes per trial, the online in�uence
maximization (OIM) problem is to �nd for each 1 ≤ = ≤ # a set (= of nodes, with |(= | ≤ !, such
that E

[��⋃1≤=≤# � ((=)
��] is maximal.

The IM problem is a special case of the OIM problem (by setting # = 1 and assuming the
probabilities are known). Since solving the IM problem is computationally di�cult, so is �nding
a solution for the OIM problem. We propose a solution that consists of multiple trials. In each
trial, a selection (for choosing appropriate seed nodes) and an action (for activating the seed
nodes chosen) is performed (Figure 3.1). The seed selection makes use of one of the o�ine IM
algorithms.

The Uncertain Influence Graph We assume that a social network, which describes the
relationships among social network users, is given. However, the exact in�uence probability
on each edge is not known. We model this by using an uncertain in�uence graph, in which the
in�uence probabilities of each edge are captured by probability density functions, or pdf. The
pdf can be re�ned based on the feedback returned from a trial. Since in�uence activations are
binary random variable, we capture the uncertainty over the in�uence as a Beta distribution.
Speci�cally, the random variable of the in�uence probability from node 8 to node 9 , %8 9 is
modeled as a Beta distribution having probability density function:

5%8 9 (G) =
GU8 9−1(1 − G)V8 9−1

�(U8 9 , V8 9 ) ,

where B(U8 9 , V8 9 ) is the Beta function, acting as a normalization constant to ensure that the total
probability mass is 1, and U8 9 and V8 9 are the distribution parameters. For the Beta distribution,
E[%8 9 ] = U8 9

U8 9+V8 9 and f2 [%8 9 ] = U8 9V8 9

(U8 9+V8 9 )2 (U8 9+V8 9+1) . An advantage of using the Beta distribution is
that it is a conjugate prior for Bernoulli distributions, or more generally, binomial distributions.
This allows us to compute the posterior distributions easily when new evidence is provided.

At the time of the �rst trial, we assume no prior information about the in�uence graph, except
global U and V parameters, shared by all edges, i.e., %8 9 ∼ B(U, V) ∀(8, 9) ∈ �. These global U and
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3 Maximizing In�uence in Low Information Settings

V parameters represent our global prior belief of the uncertain in�uence graph. In the absence
of any better prior, we can set U = V = 1, with �(1, 1) being the uniform distribution.

Our model can be extended to handle various prior information about the in�uence graph.
For example, if we have individual prior knowledge (U8 9 , V8 9 ) about an edge, we can set %8 9 as
%8 9 ∼ B(U8 9 , V8 9 ). When we have access to only the mean and variance of the in�uence of an
edge, we can derive U8 9 and V8 9 from the formulas of E[%8 9 ] and f2 [%8 9 ] given above. For the
situation in which some action logs involving the social network users are available, algorithms
for learning the in�uence probabilities from these logs [Goyal et al., 2010, Goyal et al., 2011] can
be �rst applied, and the estimated in�uence probabilities can then be used as prior knowledge
for the graph.

Algorithm 3 Framework(�,:, # )
Require: number trials # , budget : , uncertain in�uence graph �

1: �← ∅
2: for = = 1 to # do
3: (= ← Choose(�,:)
4: (�=, �=) ← RealWorld((=)
5: �← � ∪�=
6: Update(�, �=)
7: end for

return {(= |= = 1 . . . # }, �

Online Influence Maximization Framework Algorithm 3 depicts the solution framework
of the OIM problem. In this algorithm, # trials are executed. Each trial involves selecting
seed nodes, activating them, and consolidating feedback from them. In each trial = (where
= = 1, . . . , # ), the following operations are performed on the uncertain in�uence graph � :

1. Choose (Line 3): A seed set (= is chosen from � , by using an o�ine IM algorithm, and
strategies for handling the uncertainty of � .

2. RealWorld (Lines 4–5): The selected seeds set is tested in the real world (e.g., sending
advertisement messages to selected users in the social network). The feedback information
from these users is then obtained. This is a tuple (�=, �=) comprised of: (i) the set of
activated nodes �= , and (ii) the set of edge activation attempts �=, which is a list of edges
having either a successful or an unsuccessful activation.

3. Update (Line 6): We refresh � based on (�=, �=).

One could also choose not to update � , and instead only run an o�ine IM based on the prior
knowledge.

Algorithms for OIM The above framework lends itself naturally to the explore-exploit
paradigm. When exploring the objective is to try di�erent seeds so that the estimation of
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3.3 Online In�uence Maximization with Persistence

the in�uence probability distributions %8 9 is further re�ned. The exploit branch simply apply IM
algorithms to the current expectation of the probabilities E[%8 9 ].

In this paradigm, several solutions are possible. The simplest one is the n-greedy approach:
with probability n one chooses the exploit branch, and with 1−n the explore branch is chosen and
random seeds are selected. In the current multi-armed bandit literature [Lattimore and Szepesvári, 2020],
however, the exploration and exploitation are integrated into a single parameter, the con�dence
bound. Assuming that each edge in the graph is considered a bandit with distribution %8 9 , then
the con�dence bound approach estimates ?8 9 as:

?8 9 = E[%8 9 ] + \8 9 .
How \8 9 is chosen varies: from simple heuristics estimating the bound, to the UCB-like ap-
proaches using the optimism in the face of uncertainty principle: assuming that the edge distri-
butions are always underestimated and hence \ > 0. As the edge (8, 9)’s estimation is improved,
\ gets closer to zero. UCB algorithms in the bandit literature establish how to set the bound in
relation to the number of rounds, to achieve regret that is sub-linear in the number of rounds.
In [Lei et al., 2015], we used the classical ExponentiatedGradient (EG) algorithm to update
the \ values.

As discussed before, the issue with this approach is that one assumes that the graph topology
is available and represents the actual di�usion graph. Moreover, estimating each edge means
one has to estimate too many variables.

We discuss now an approach in which the graph topology is not necessary, and the estimation
is made at the seed (or in�uencer) level.

3.3 Online Influence Maximization with Persistence

The following subsection is an adaptation of [Lagrée et al., 2019], published in ACM Trans-
actions on Knowledge Discovery from Data.

In this approach, in contrast to [Lei et al., 2015], we do not try to estimate edge probabilities in a
di�usion graph, but, instead, we assume the existence of a known set of spread seed candidates
– in the following referred to as the in�uencers – who are the only access to the medium of
di�usion. Formally, we let [ ] := {1, . . . ,  } be a set of in�uencers up for selection; each
in�uencer is connected to an unknown and potentially large base (the in�uencer’s support) of
basic nodes, each with an unknown activation probability. For illustration, we give in Figure 3.2
an example of this setting, with 3 in�uencers connected to 4, 5, and 4 basic nodes, respectively.
Let �: ⊆ + , for : = 1, . . . ,  , denote the sets of basic nodes such that each in�uencer : ∈ [ ] is
connected to each node in �: . We further denote by ?: (D) the probability for in�uencer : to
activate the child node D ∈ �: . In this context, the di�usion process can be abstracted as follow:

De�nition 3.4 (In�uence process). When an in�uencer : ∈ [ ] is selected, each basic node
D ∈ �: is sampled for activation, according to its probability ?: (D). The feedback for :’s selection
consists of all the activated nodes, while the associated reward consists only of the newly activated
ones.
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Figure 3.2: Three in�uencers with associated activation probabilities ?: (D).

Limiting the in�uence maximization method to working with a small subset of the nodes
allows to accurately estimate their value more rapidly, even in a highly uncertain environment,
hence the algorithmic interest. At the same time, this is directly motivated by marketing
scenarios involving marketers who only have access to a few in�uencers who can di�use
information. Moreover, despite the fact that we model the social reach of each in�uencer by
1-hop links to the to-be-in�uenced nodes, these edges are just an abstraction of the activation
probability, and may represent in reality longer paths in an underlying unknown in�uence
graph. Importantly, this approach assumes a form of persistence: each in�uencer can be activated
multiple times, and the in�uence process can occur over the same nodes; however, only new
nodes are to be counted.

We are now ready to de�ne the online in�uencer marketing with persistence problem:

Problem 3.5 (OIMP). Given a set of in�uencers [ ] := {1, . . . ,  }, a budget of # trials, and a
number 1 ≤ ! ≤  of in�uencers to be activated at each trial, the objective of the online in�uencer
marketing with persistence (OIMP) is to solve the following optimization problem:

arg max
�=⊆[ ], |�= |=!,∀16=6#

E

����� ⋃
16=6#

( (�=)
����� .

As noticed before, the o�ine in�uence maximization can be seen as a special instance of the
online one, where the budget is # = 1 (single-trial campaigns).

Lemma 3.6. The OIMP problem is NP-hard.

Note that, in contrast to persistence-free online in�uence maximization – considered in
[Vaswani et al., 2017, Wen et al., 2017] – the performance criterion used in OIMP displays the
so-called diminishing returns property: the expected number of nodes activated by successive
selections of a given seed is decreasing, due to the fact that nodes that have already been
activated are discounted. We refer to the expected number of nodes remaining to be activated
as the remaining potential of a seed. The diminishing returns property implies that there is no
static best set of seeds to be selected, but that the algorithm must follow an adaptive policy,
which can detect that the remaining potential of a seed is small and switch to another seed that
has been less exploited. Our solution to this problem has to overcome challenges on two fronts:
(1) it needs to estimate the potential of nodes at each round, without knowing the di�usion
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3.3 Online In�uence Maximization with Persistence

model nor the activation probabilities, and (2) it needs to identify the currently best in�uencers,
according to their estimated potentials.

In this approach, we work with parameters on nodes, instead of edges. More speci�cally, these
parameters represent the potentials of remaining spreads from each of the in�uencer nodes.
This way, we can go around the dependencies on speci�c di�usion models, and furthermore,
we can address settings in which one does not have access to a detailed graph topology.

3.3.1 Remaining Potential and Good-Turing Estimator

A good algorithm for OIMP should aim at selecting the in�uencer : with the largest remaining
potential for in�uencing its children �: . However, the true potential value of an in�uencer is a
priori unknown to the decision maker.

In the following, we index trials by C when referring to the time of the algorithm, and we
index trials by = when referring to the number of selections of the in�uencer. For example, the
C-th spread initiated by the algorithm is noted ( (C) whereas the =-th spread of in�uencer : is
noted (:,= .

De�nition 3.7 (Remaining potential ': (C)). Consider an in�uencer : ∈ [ ] connected to �:
basic nodes. Let ( (1), . . . , ( (C) be the set of nodes that were activated during the �rst C trials by
the seeded in�uencers. The remaining potential ': (C) is the expected number of new nodes that
would be activated upon starting the C + 1-th cascade from : :

': (C) :=
∑
D∈�:

1

{
D ∉

C⋃
8=1

( (8)
}
?: (D),

where 1{·} denotes the indicator function.

De�nition 3.7 provides a formal way to obtain the remaining potential of an in�uencer : at a
given time. The optimal policy would simply select the in�uencer with the largest remaining
potential at each time step. The di�culty is, however, that the probabilities ?: (D) are unknown.
Hence, we have to design a remaining potential estimator '̂: (C) instead. It is important to stress
that the remaining potential is a random quantity, because of the dependency on the spreads
( (1), . . . , ( (C). Furthermore, due to the diminishing returns property, the sequence ((:,=)=≥1 is
stochastically decreasing.

Following ideas from [Good, 1953, Bubeck et al., 2013], we now introduce a version of the
Good-Turing statistic, tailored to our problem of rapidly estimating the remaining potential.
Denoting by =: (C) the number of times in�uencer : has been selected after C trials, we let
(:,1, . . . , (:,=: (C ) be the =: (C) cascades sampled independently from in�uencer : . We denote
by *: (D, C) the binary function whose value is 1 if node D has been activated exactly once
by in�uencer : – such occurrences are called hapaxes in linguistics – and /: (D, C) the binary
function whose value is 1 if node D has never been activated by in�uencer : . The principle of
the Good-Turing estimator is to estimate the remaining potential as the proportion of hapaxes
within the =: (C) sampled cascades:

'̂: (C) := 1
=: (C)

∑
D∈�:

*: (D, C)
∏
;≠:

/; (D, C) .
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Albeit simple, this estimator turns out to be quite e�ective in practice. If an in�uencer is
connected to a combination of both nodes having high activation probabilities and nodes having
low activation probabilities, then successive traces sampled from this in�uencer will result in
multiple activations of the high-probability nodes and few of the low-probability ones. Hence,
after observing a few spreads, the in�uencer’s potential will be low, a fact that will be captured
by the low proportion of hapaxes. In contrast, estimators that try to estimate each activation
probability independently will require a much larger number of trials to properly estimate the
in�uencer’s potential. This assumption was veri�ed by an analysis of the empirical activation
probabilities from a Twitter dataset [Lagrée et al., 2019].

While bearing similarities with the traditional missing mass concept in the bandit literature,
we highlight one fundamental di�erence between the remaining potential and the traditional
missing mass studied in [Bubeck et al., 2013], which impacts both the algorithmic solution and
the analysis. Since at each step, every node connected to the selected in�uencer is sampled, the
algorithm receives a larger feedback than in [Bubeck et al., 2013], whose feedback is in {0, 1}.
However, contrary to [Bubeck et al., 2013], the hapaxes of an in�uencer (*: (D, C))D∈�: are
independent. Interestingly, the quantity _: :=

∑
D∈�: ? (D), which corresponds to the expected

number of basic nodes a in�uencer : activates in a cascade, will prove to be a crucial ingredient
for our problem.

Upper confidence bounds Following principles from the bandit literature, the GT-UCB
algorithm relies on optimism in the face of uncertainty. At each step (trial) C , the algorithm
selects the highest upper-con�dence bound on the remaining potential – denoted by 1: (C) –
and activates (plays) the corresponding in�uencer : . This algorithm achieves robustness against
the stochastic nature of the cascades, by ensuring that in�uencers who “underperformed” with
respect to their potential in previous trials may still be selected later on. Consequently, GT-UCB
aims to maintain a degree of exploration of in�uencers, in addition to the exploitation of the
best in�uencers as per the feedback gathered so far.

Algorithm 4 – GT-UCB (! = 1)
Require: Set of in�uencers [ ], time budget #

1: initialization play each in�uencer : ∈ [ ] once, observe the spread (:,1, set =: = 1
2: for C =  + 1, . . . , # do
3: Compute 1: (C) for every in�uencer :
4: Choose : (C) = arg max:∈[ ] 1: (C)
5: Play in�uencer : (C) and observe spread ( (C)
6: Update statistics of in�uencer : (C): =: (C ) (C + 1) = =: (C ) (C) + 1 and (:,=: (C ) = ( (C).
7: end for

return,

Algorithm 4 presents the main components of GT-UCB for the case ! = 1, that is, when a
single in�uencer is chosen at each step.

The algorithm starts by activating each in�uencer : ∈ [ ] once, in order to initialize its
Good-Turing estimator. The main loop of GT-UCB occurs at lines 2-7. Let ( (C) be the observed
spread at trial C , and let (:,B be the result of the B-th di�usion initiated at in�uencer : . At every
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step C >  , we recompute for each in�uencer : ∈ [ ] its index 1: (C), representing the upper
con�dence bound on the expected reward in the next trial. The computation of this index
uses the previous samples (:,1, . . . , (:,=: (C ) and the number of times each in�uencer : has been
activated up to trial C , =: (C). Based on the result of Theorem 3.9, the upper con�dence bound is
set as:

1: (C) = '̂: (C) +
(
1 +
√

2
) √

_̂: (C) log(4C)
=: (C)

+ log(4C)
3=: (C)

, (3.1)

where '̂: (C) is the Good-Turing estimator and _̂: (C) :=
∑=: (C )
B=1

|(:,B |
=: (C ) is an estimator for the

expected spread from in�uencer : .
Then, in line 4, GT-UCB selects the in�uencer : (C) with the largest index, and initiates a

cascade from this node, yielding ( (C). We stress again that ( (C) provides only the Ids of the
nodes that were activated, with no information on how this di�usion happened in the hidden
di�usion medium. Finally, the statistics associated to the chosen in�uencer : (C) are updated.

Extensions for the case ! > 1 Algorithm 4 can be easily adapted to select ! > 1 in�uencers
at each round. Instead of choosing the in�uencer maximizing the Good-Turing UCB in line 4, we
can select those having the ! largest indices. Note that : (C) then becomes a set of ! in�uencers.
In the beginning, the algorithm can select in some prede�ned (random) order ! in�uencers
at each round, for initialization. It is required that all in�uencers be activated at least once
for initialization – before entering the main loop of the GT-UCB algorithm – in order for the
estimators '̂: (C) to be well de�ned. How this initial stage is done is not essential and may depend
on the speci�c application scenario. At each round, a di�usion is initiated from the associated
nodes and, at termination, all activations are observed. Similarly to [Vaswani et al., 2017], the
algorithm requires feedback to include the in�uencer responsible for the activation of each
node, in order to update the corresponding statistics accordingly.

3.3.2 Theoretical Analysis

In the following, to simplify the analysis and to allow for a comparison with the oracle strategy,
we assume that the in�uencers have non intersecting support. This means that each in�uencer’s
remaining potential and corresponding Good-Turing estimator does not dependent on other
in�uencers. Hence, for notational e�ciency, we also omit the subscript denoting the in�uencer
: . After selecting the in�uencer = times, the Good-Turing estimator is simply written '̂= =∑
D∈�

*= (D)
=

. We note that the non-intersecting assumption is for theoretical purposes only –
our experiments are done with in�uencers that can have intersecting supports.

The classic Good-Turing estimator is known to be slightly biased (see for example Theorem
1 in [McAllester and Schapire, 2000]). We show in Lemma 3.8 that our remaining potential
estimator adds an additional factor _ =

∑
D∈� ? (D) to this bias:

Lemma 3.8. The bias of the remaining potential estimator is

E['=] − E['̂=] ∈
[
−_
=
, 0

]
.
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Since _ is typically very small compared to |�|, in expectation, the estimation should be
relatively accurate. However, in order to understand what may happen in the worst-case, we
need to characterize the deviation of the Good-Turing estimator:

Theorem 3.9. With probability at least 1−X , for _ =
∑
D∈� ? (D) and V= :=

(
1 + √2

) √
_ log(4/X)

=
+

1
3= log 4

X
, the following holds:

−V= − _
=
≤ '= − '̂= ≤ V= .

Note that the additional term appearing in the left deviation corresponds to the bias of our
estimator, which leads to a non-symmetrical interval.

We can now provide an analysis of the waiting time (de�ned below) of GT-UCB, by comparing
it to the waiting time of an oracle policy, following ideas from [Bubeck et al., 2013]. Let ': (C)
be the remaining potential of in�uencer : at trial number C . This di�ers from ':,= , which is the
remaining potential of in�uencer : once it has been played = times.

De�nition 3.10 (Waiting time). Let _: =
∑
D∈�: ? (D) denote the expected number of activations

obtained by the �rst call to in�uencer : . For U ∈ (0, 1), the waiting time )*�� (U) of GT-UCB
represents the round at which the remaining potential of each in�uencer : is smaller than U_: .
Formally,

)*�� (U) := min{C : ∀: ∈ [ ], ': (C) ≤ U_: }.

The above de�nition can be applied to any strategy for in�uencer selection and, in particular,
to an oracle one that knows beforehand the U value that is targeted, the spreads ((:,B):∈[ ],1≤B≤C
sampled up to the current time, and the individual activation probabilities ?: (D), D ∈ �: . A
policy having access to all these aspects will perform the fewest possible activations on each
in�uencer. We denote by) ∗(U) the waiting time of the oracle policy. We are now ready to state
the main theoretical property of the GT-UCB algorithm.

Theorem 3.11 (Waiting time). Let _min := min:∈[ ] _: and let _max := max:∈[ ] _: . Assuming

that _min ≥ 13, for any U ∈ [ 13
_min , 1

]
, if we de�ne g∗ := ) ∗

(
U − 13

_min

)
, with probability at least

1 − 2 
_max the following holds:

)UCB(U) ≤ g∗ +  _max log(4g∗ + 11 _max) + 2 .

3.3.3 Experimental Results

We conducted experiments on two types of datasets: (i.) two graphs, widely-used in the in�uence
maximization literature, and (ii.) a crawled dataset from Twitter, consisting of tweets occurring
during August 2012. All methods are implemented in C++ 1

In [Lei et al., 2015] we compared the solutions on the Weighted Cascade (WC) instance of IC,
where the in�uence probabilities on incoming edges sum up to 1. More precisely, every edge
(D, E) has weight 1/3E where 3E is the in-degree of node E . In [Lagrée et al., 2019] we added two

1The code is available at https://github.com/smaniu/oim.
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other di�usion scenarios to the set of experiments. First, we included the tri-valency model
(TV), which associates randomly a probability from {0.1, 0.01, 0.001} to every edge and follows
the IC propagation model. We also conducted experiments under the Linear Threshold (LT)
model, where the edge probabilities are set like in the WC case and where thresholds on nodes
are sampled uniformly from [0, 1].

Algorithms We compare GT-UCB to several other algorithms. Random chooses a random
in�uencer at each round. MaxDegree selects the node with the largest degree at each step
8 , where the degree does not include previously activated nodes. Finally, EG corresponds
to the con�dence-bound explore-exploit method with exponentiated gradient update from
[Lei et al., 2015]. We use EG on WC and TV weighted graphs; note that EG learns parameters
for the IC model, and hence is not applicable for LT. These baselines are compared to an Oracle
that knows beforehand the di�usion model together with probabilities. At each round, it runs
an in�uence maximization approximated algorithm – PMC for IC propagation, SSA for LT. Note
that previously activated nodes are not counted when estimating the value of a node with PMC
or SSA, thus, making Oracle an adaptive strategy.

All experiments are done by �xing the trial horizon # = 500, a setting that is in line with
many real-world marketing campaigns, which are fairly short and do not aim to reach the entire
population.

In Figure 3.3, we show the growth of the spread for the various approaches. For each experi-
ment, GT-UCB uses  = 50 if ! = 1 and  = 100 if ! = 10. First, we can see that MaxDegree is
quite a strong baseline in many cases, especially for WC and LT. GT-UCB results in good quality
spreads across every combination of network and di�usion model. Interestingly, on the smaller
graph HepPh, we observe an increase in the slope of spread after initialization, particularly
visible at C = 50 with WC and LT. This corresponds to the step when GT-UCB starts to select
in�uencers maximizing 1: (C) in the main loop. It shows that our strategy adapts well to the
previous activations, and chooses good in�uencers at each iteration. Interestingly, Random
performs surprisingly well in many cases, especially under TV weight assignment. However,
when certain in�uencers are signi�cantly better than others, Random cannot adapt to this
diversity to select the best in�uencers, unlike GT-UCB. EG performs well on HepPh, especially
under TV weight assignment. However, it fails to provide competitive cumulative spreads on
DBLP. We believe that EG tries to estimate too many parameters for a horizon ) = 500. After
reaching this time step, less than 10% of all nodes for WC, and 20% for TV, are activated. This
implies that we have hardly any information regarding the majority of edge probabilities, as
most nodes are located in parts of the graph that have never been explored.

Using real influence traces: Twi�er The interest of this experiment is to observe actual
spreads, instead of simulated ones, over data that does not provide an explicit in�uence graph.

From the retweeting logs, for each active user D – a user who posted more than 10 tweets –
we select users having retweeted at least one of D’s tweets. By doing so, we obtain the set of
potentially in�uenceable users associated to active users. We then apply the greedy algorithm to
select the users maximizing the corresponding set cover. These are the in�uencers of GT-UCB
and Random. MaxDegree is given the entire reconstructed network, that is, the network
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Figure 3.3: Growth of spreads against the number of rounds.

connecting active users to re-tweeters.

To test realistic spreads, at each step, once an in�uencer is selected by GT-UCB, a random
cascade initiated by that in�uencer is chosen from the logs and we record its spread. This
provides realistic, model-free spread samples to the compared algorithms. Since Twitter only
contains successful activations (re-tweets) and not the failed ones, we could not test against EG,
which needs both kinds of feedback.

In Fig. 3.4, we show the growth of the di�usion spread of GT-UCB against MaxDegree and
Random. Again, GT-UCB uses  = 50 if ! = 1 and  = 100 if ! = 10. We can see that GT-UCB
outperforms all the baselines, especially when a single in�uencer is selected at each round. We
can observe that MaxDegree performs surprisingly well in both experiments. We emphasize
that MaxDegree relies on the knowledge of the entire network reconstructed from retweeting
logs, whereas GT-UCB is only given a set of (few) �xed in�uencers.
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Figure 3.4: Twitter spread against rounds: (left) ! = 1 (right) ! = 10.

3.4 Follow-up Contributions

Considering in�uence dynamics in an online explore-exploit setting allows us to revisit some
algorithms from the bandit literature. We considered two scenarios: when in�uence maximiza-
tion depends on the context of the message, and how to design online recommender systems
while taking into account user pro�le in�uence dynamics.

3.4.1 Contextual Online Influence Maximization

The following is a brief outline of [Iacob et al., 2022], to be presented at SDM.

Within an in�uence maximization campaign, the manner in which the information may be
formulated, presented, or di�used may vary from round to round, and the context variations will
lead to di�erent propagation dynamics. For example the focus of a campaign may be political,
and individual messages may take di�erent contexts (news, data analysis, multimedia content).

Adapting the online in�uence maximization problem to contexts directs us to the contextual
multi-armed bandits, and speci�cally their linear formulation. In the contextual multi-armed
bandit formulation, at each round C , a context is .C ∈ ℝ3 received (adversarially). The reward is
then a linear combination between the context and some unknown pro�le vector \: ∈ ℝ3 , plus
some noise:

AC = 〈\:,C , .C 〉 + n.
In the literature, UCB-like approaches use linear regression to estimate the pro�le vector \̂:,C ,
and the upper con�dence bound depends on the covariance matrix. The algorithms that are
generally used in the literature are some variation of LinUCB (Linear Upper Con�dence Bound)
[Chu et al., 2011]. The setting can be extended to generalized linear models [Li et al., 2017].

Applying to our case, each in�uencer : will change the base probabilities of each basic node
9 by a function U , depending on .C , \: , and the number of selections of in�uencer : , =:,C :

?:,9 (C) = U (〈\: , .C 〉, =:,C )? 9 .
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3 Maximizing In�uence in Low Information Settings

The function U is introduced to take into account the in�uencer fatigue, i.e., the fact that, with
each activation, the number of new nodes in�uences tends to decrease.

In [Iacob et al., 2022], we designed two linear bandit algorithms – performing better than both
non-contextual and simple linear bandit algorithms – working on two di�erent assumptions:

1. The �rst is assuming that the logarithm of rewards is normally distributed – in other words,
we are more interested in predicting the scale of the cascade rather than its size. The
resulting algorithm, LogNorm-LinUCB, is an application of LinUCB on logarithms of
rewards, and keeps the same regret ratio.

2. The second is an assumption that the distribution of each node’s cumulative count of
activations is Poisson with intensities _ 9

∑C
B=1

∑
:∈�B U (〈\: , .B〉, =:,B). We further as-

sume that the remaining potential also follows a Poisson distribution with intensities
U (〈\: , .C 〉, =: (C))_: ; in this case, the Good-Turing estimator can be adapted to account
the distribution and used as an estimator into a generalized linear model (algorithm
GLM-GT-UCB).

3.4.2 Using Influence for Item Recommendation

The following is a brief outline of [Maniu et al., 2020], presented at ICDM.

The in�uence mechanics between users can also be a proxy for modeling user preference
dynamics, and can be part of recommender systems which learn interests to recommend items
(documents, videos, etc.) to users [Lu et al., 2014]. Sequential learning approaches, such as the
multi-armed bandit setting brie�y described above, are natural algorithmic toolboxes for this
setting.

In this work, we modeled the rating users give as a linear relationship between their hidden
interest and the item being recommended, in a time-discrete recommender system. At each
C ∈ ℕ, users 8 ∈ [=] have user pro�les represented by 3-dimensional vectors u8 (C) ∈ ℝ3 . Then,
if v8 (C) ∈ B (some subset of ℝ3 ) is the pro�le of the item recommended to 8 at time C , ratings
satisfy:

A8 (C) = 〈u8 (C), v8 (C)〉 + Y.

Importantly, at each time C ∈ ℕ, user pro�les evolve according to:

u8 (C) = Uu0
8 + (1 − U)

∑
9 ∈[=] %8, 9u9 (C − 1), 8 ∈ [=],

where (a) u0
8 ∈ ℝ3 is user 8’s inherent (static) pro�le, (b) U ∈ [0, 1] captures the probability

that users act based on their inherent pro�les, and (c) %8 9 ∈ [0, 1], 8, 9 ∈ [=], where
∑
9 %8 9 = 1,

capture the probability user 8 is in�uenced by the pro�le of user 9 .
Item suggestions v8 (C), 8 ∈ [=] are selected from a set B ⊆ ℝ3 . We consider two possibilities:

• B is a �nite subset of ℝ3 , i.e., it is a “catalog” of possible recommendations.
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• B is an arbitrary convex subset of ℝ3 , e.g., the unit ball B ≡ {v ∈ ℝ3 : ‖v‖2 ≤ 1}.
We show that, in all cases, the aggregated expected reward (i.e., the sum of ratings over time)

depends linearly on the matrix of initial user pro�les * 0. This motivated our exploration of
the classic linear bandit optimization problem, such as LinREL [Dani et al., 2008], Thompson
Sampling [Agrawal and Goyal, 2014] and LinUCB. Approaches such as LinREL are similar to
bandit approaches, with the di�erence that, instead of having a uni-dimensional con�dence
bound, the actual bound is obtained by an optimization on a !1 or !2 constraint ellipsoid
around the estimation. Thompson Sampling samples u8 (C) from their posterior distributions,
updated after the feedback has been obtained – in that sense, the exploration is inherent in the
uncertainty of the distribution.

For LinREL and Thompson sampling we obtained the same regret bounds that the ones
obtained in the static case, depending on the number of rounds ) : a Õ(√) ) regret bound for
LinREL, and the same Õ(√) ) bound on the Bayesian regret for Thompson Sampling.

In the general case, the optimization around the con�dence ball is computationally expensive.
Importantly, we show that we can obtain e�cient polynomial algorithms2 when the optimiza-
tion is on !1 constraints and B is in one of the two above cases (�nite set and convex set).
Unfortunately, while applying the classical LinUCB is a possibility, the resulting optimization is
non-convex; SDP relaxations can be used, but without any theoretical guarantee.

2Implementation at https://github.com/neu-spiral/OnlineSocialRecommendations.
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4 Research Perspectives

We presented in this manuscript algorithms for tree decomposition for answering queries on
probabilistic graphs, and multi-armed bandit approaches to solve the in�uence maximization
problems in the case where little is known about the underlying process and social network
topology. The inherent uncertainty in the settings of both problems renders the classical
algorithms unusable, as we have shown in the previous chapters. It is not the last word on the
matter: there is exciting potential in extending decompositions to generic query processing
on graphs and – in the in�uence maximization case – when using more powerful sequential
learning approaches such as reinforcement learning coupled with representation learning.

Leveraging structure for graph problems We now know that the structure of data matters,
at least when it comes to graphs. We noticed this �rst in our research on source-to-target
reachability in uncertain graphs [Maniu et al., 2017]. There, we devised an index that allows
faster (approximate) query answering of probabilistic reachability queries, by creating a tree
decomposition of the data. How e�cient such an index is is directly related to the treewidth of
the graph – informally, a quantity measuring how “close” a graph is to a tree. Treewidth is a
very important theoretical tool to establish �xed-parameter tractability: many problems that
are non-polynomial become linear when data is of bounded treewidth [Courcelle, 1992].

In practice, however, data is not as well-behaved as we would like. As we saw before
[Maniu et al., 2019], only some graphs have (relatively) low treewith – among them, trans-
port graphs. But, for low-treewidth graphs, even polynomial algorithms can be considerably
faster. For instance, all-pairs shortest paths algorithms become much faster in low-treewidth
graphs [Planken et al., 2012], and using tree decompositions and exploiting on low treewith
areas in part of the graphs can signi�cantly increase single-source shortest path computa-
tions [Akiba et al., 2012]. Recently, a promising research direction has started to gain traction,
called “FPT within P” – which aims for polynomial algorithms that become linear-time and
have a polynomial dependency in a graph parameter [Giannopoulou et al., 2017]: some exam-
ples of such algorithms are Gaussian elimination [Fomin et al., 2018] and diameter and radius
calculation [Abboud et al., 2016]. Treewidth is not the only graph parameter that may be of
interest – for denser graphs, clique-width upper bounds are also established via decompositions
[Courcelle and Olariu, 2000] and hence have potential to be applied here; note that however,
for queries on probabilistic data, only treewidth is the measure of interest. This direction is
extremely promising in today’s massive data environment, where most algorithms that cost
more than linear time become prohibitive. Moreover, no such research has started for the
generic, semiring-based provenance.

To realize this promise, an important step in the short term is to reproduce the same experi-
mental study as in [Maniu et al., 2019] – namely, decompositions for cliquewidth upper-bounds.
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As in the case of treewidth, such decompositions would allow for more succinct representations
of graphs, and the hope is that they allow processing of other types of queries and on denser
graphs. Hence our more long term objective is to study the types of queries possible under other
graph measures, such as cliquewidth.

Going beyond bandits for influence maximization On the other hand, in in�uence max-
imization we have established that good results on in�uence maximization can be obtained
even when the structure is not known. In the bandit setting, however, the assumption is that
previous actions do not have a consequence on future ones – put otherwise, bandits are without
state. As we have seen previously, spread in online in�uence maximization have a tendency to
decrease with the number and size of previous activations – the diminishing returns property.
Adding this information to the decision process leads naturally into the domain of reinforcement
learning [Szepesvári, 2010].

When the state space includes a potentially in�nitely countable number of contexts, in�u-
encers, and activations usual tabular approaches do not work. Instead, when the state space
is potentially very large the state transitions and rewards are approximated using function
approximation. When assuming linear functions, linear Markov Decision Processes can use
upper con�dence bounds to minimize regret [Yang and Wang, 2019]. Designing the state space
can still be challenging, but it can be aided by recent advances in graph representation learning
when applied to combinatorial optimization over graphs – of which in�uence maximization is a
particular case [Dai et al., 2017, Lattimore et al., 2020, Cappart et al., 2021]. Designing e�cient
and e�ective reinforcement learning approaches for the contextual in�uence maximization
setting is still a sparse research topic with exciting potential.

In this context, we are currently working of extending the regret analysis of contextual
online in�uence maximization, presented in [Iacob et al., 2022], to upper-con�dence bounds
for function approximation in linear Markov Decision Processes, especially as it pertains to
algorithms based on Least Squares Value Iteration [Jin et al., 2020] and posterior sampling
approaches [Osband et al., 2016]. In the more long term, we aim to investigate how graph
representations such as vectorial representations (embeddings) can be merged with regret
minimizing algorithms.

The research presented in this manuscript – along with the perspectives described above
– can be thought of as being a particular case of online optimization problems over graphs
with uncertain or incomplete information. Some examples of this kind of optimization where
online feedback can be integrated include link recommendations, minimization of undesired
information �ow, or network vaccination. The two threads – succinct representations of graphs
and sequential optimization – can be thought as complementary. For example, indexes on graph
data may allow smaller models for sequential learning processes to converge quicker, while
online feedback loops – sometimes with human-in-the-mix approaches – can help with learning
heuristics for indexing graphs.
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Titre: Graphes et incertitude
Mots clés: fouille données graphe, données incertaines, bandit manchots

Résumé: Dans de nombreux domaines, les graphes
sont l’un des moyens les plus intuitifs de représenter les
données, et de nombreuses tâches importantes peuvent
être traduites en requêtes de graphes et en problèmes
combinatoires sur les graphes. Dans la plupart des scé-
narios du monde réel, les données ou les modèles de
graphes comportent une certaine incertitude.

Dans ce manuscrit, nous abordons deux aspects des
défis qui se présentent lorsque les données ou les mod-
èles de graphes sont incertains. Tout d’abord, nous
discutons de la façon dont les requêtes sur le graphe
changent lorsque les bords deviennent incertains ; pour

cela, nous introduisons le concept de décompositions
d’arbres pour le traitement des ces requêtes. De plus,
nous faisons le lien entre l’efficacité des requêtes et
le concept de largeur d’arbre. Dans la deuxième partie
du manuscrit, nous discutons de la manière de résoudre
un problème de graphe bien connu - la maximisation
de l’influence sociale - dans le cas où l’on sait peu de
choses sur le graphe sous-jacent sur lequel l’influence
est exercée. Nous discutons de la manière dont des ap-
proches telles que les bandits manchots peuvent être
appliquées.

Title: Graphs and Uncertainty
Keywords: graph data mining, probabilistic data, multi-armed bandits

Abstract: In many domains, graphs are one of the
most intuitive ways of representing data, and many im-
portant tasks can be translated into graph queries and
combinatorial problems on graphs. In most real-world
scenarios, graph data or models have some uncertainty
attached.

In this manuscript, we discuss two aspects of chal-
lenges that occur when graph data or models are uncer-
tain. First, we discuss how querying the graph changes
when edges become uncertain; for this, we introduce

the concept of tree decompositions for query process-
ing on uncertain graphs. Moreover, we make the link
between query efficiency and the concept of treewidth.
In the second part of the manuscript, we discuss how
to solve a well-known graph problem – social influ-
ence maximization – in the case where little is known
about the underlying graph over which influence is per-
formed. We discuss how approaches such as multi-
armed-bandits can be applied.
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