A Brief Overview of Uncertainty in Graphs

We discuss in this manuscript some research problems which are situated at the intersection between graphs as a data model and uncertainty. Uncertainty on graphs can occur either when data of the model is error-prone or incomplete, or when the model that generates behavior is not a deterministic one. Indeed, graphs have emerged as one of the most intuitive ways of representing data, especially for application domains that are more and more prevalent in recent years; their properties are the basis of network science research [START_REF] Easley | [END_REF]Kleinberg, 2010, Barabási andPósfai, 2016]. Some -non exhaustive -examples include:

• Online social networks [START_REF] Domingos | Mining the network value of customers[END_REF]: nodes in such graphs represent humans or online application users and the edges are their relationships -also potentially having di erent semantics.

• Infrastructure networks [START_REF] Añez | Dual graph representation of transport networks[END_REF]: graphs encode physical connections -road networks, power-line networks -where nodes can be physical features and the edges are infrastructure links between them .

• IoT networks [START_REF] Ghosh | On a routing problem within probabilistic graphs and its application to intermittently connected networks[END_REF]: for example, cellular connections between mobile devices.

• Biological networks [START_REF] Asthana | Predicting protein complex membership using probabilistic network reliability[END_REF]: in biological networks, how proteins interact with each other can be represented as a graph where nodes are proteins and the edges are interactions .

The principal task on graph data is to query it, where the input can be either a node, a pair of nodes or even graph motifs. E ciency is a major challenge and various algorithms have been studied in the last few decades, e.g.: reachability analysis [START_REF] Cohen | Reachability and distance queries via 2-hop labels[END_REF], shortest path computation [Dijkstra, 1959], frequent subgraph mining [START_REF] Kuramochi | Frequent subgraph discovery[END_REF], or graph pattern mining [START_REF] Barceló | Querying regular graph patterns[END_REF]. Importantly, a large subset of queries allowing to match regular expressions over graphs can be solved in polynomial data complexity [Barceló, 2013].

Other tasks on graphs can be classi ed as combinatorial. Usually, this means selecting a subset of nodes or edges in the graph in order to optimize some function on the graph. Classical examples include vertex cover, spanning trees, or maximum cut; in this manuscript we will consider the problem where a subset of nodes has to be chosen so as to maximize a submodular function over those nodes -the particular instance we consider is in uence maximization [START_REF] Kempe | Maximizing the spread of in uence through a social network[END_REF]. Most interesting combinatorial problems on graphs are 1 A Brief Overview of Uncertainty in Graphs graphs probabilistic graph indexes [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] tree decompositions treewidth [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] graph provenance [START_REF] Ramusat | Semiring provenance over graph databases[END_REF] [ [START_REF] Ramusat | Provenance-based algorithms for rich queries over graph databases[END_REF] uncertain data and models online in uence maximization uncertain model [Lei et al., 2015] model-free [START_REF] Lagrée | Algorithms for online in uencer marketing[END_REF] contextual model-free [START_REF] Iacob | Contextual bandits for advertising campaigns: A di usion-model independent approach[END_REF] Figure 1.1: Diagram illustrating the context of the research presented in this manuscript.

NP-hard, some allowing polynomial approximation (e.g., the in uence maximization problem allows one, via the greedy algorithm). Another avenue is to exploit the structure of the graphs. Generally, problems are easier on trees than on general graphs. The notion of treewidth [START_REF] Robertson | Graph minors. III. Planar tree-width[END_REF] captures how "close" a graph is to a tree, and the most important result is that some hard problems become linear on graphs having bounded treewidth [START_REF] Arnborg | Linear time algorithms for np-hard problems restricted to partial k-trees[END_REF]]. We will discuss later whether real-world graphs have a reasonably low treewidth and how to best exploit their structure.

An orthogonal issue in graph data in the real world is how reliable they are. For instance, data uncertainty is inherent in the applications described above. Viral marketing techniques [START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF] study the purchase behavior of users in a social network. An edge between two users encodes the probability that one's purchasing behavior is in uenced by the other -generally, this is not a deterministic behavior. In IoT networks, the connections between any two devices may or may not be established, as factors such as signal interference and antenna power may a ect it. Determining whether a protein has interacted with another is usually done via several scienti c studies, that do not always give the same result. In transport networks, traversal time is not constant, and is a ected by deviations due to tra c patterns and unforeseen events [START_REF] Hua | Probabilistic path queries in road networks: tra c uncertainty aware path selection[END_REF]. Another example of uncertainty can be inherent to the process or the function to be optimized. For instance, in the in uence maximization task, the in uence process is not a deterministic one: in uence may succeed at some time, and fail at another. This is an example where, for a combinatorial task on a graph, the function to be optimized is uncertain. Hence, solving tasks on such graphs without considering the above uncertainty issues can lead to incorrect answers.

We will now introduce the research challenges for the two types of uncertainty on graphs.

This manuscript is intended to show the main strands of the research I have worked on since my PhD graduation in 2012. It is intended to give a high-level view of the research and collaborations that have occurred since then. The main technical details such as proofs and

1.1 Data Uncertainty on Graphs: Probabilistic Graphs extensive experiments are skipped, and can be referred to in their corresponding references.

A general overview of my research is presented in Figure 1.1. Two main directions are visible, corresponding to the main two chapters of the manuscript. The rst is my research on probabilistic graphs indexes and evaluation of treewidth and partial tree decomposition in real-world graphs. The second is the general area of online in uence maximization in which I mainly discuss solutions based on the multi-armed bandit framework. These correspond to the light blue boxes in the above gure. White boxes represents research that is linked, but has not been presented in detail here.

The current manuscript mainly covers contributions resulting from the following research collaborations and supervisions:

• Siyu Ray Lei, MSc student at the University of Hong Kong in 2013-2014, under my and Reynold Cheng's supervision.

• Paul Lagrée, PhD student at Univ. Paris-Saclay in 2015-2018, under Olivier Cappé and Bogdan Cautis'supervision. I collaborated intensively with Paul on one of his papers.

• Alexandra Iacob, PhD student at Univ. Paris-Saclay since 2019, under my and Bogdan Cautis' supervision.

• Yann Ramusat, PhD student at École Normale Supérieure since 2018, under my and Pierre Senellart's supervision.

• Stratis Ioannidis, associate professor at Northeastern University, visiting Université Paris-Saclay in summer of 2019.

In order to keep this manuscript relatively coherent in terms of research interests, it does not cover an important part of my research since 2012: the subject of dimensionality reduction for classi ers on data streams, with Maroua Bahri, PhD student at Télécom Paris in 2017-2020, under my and Albert Bifet's supervision. An overview survey of her research can be found in [START_REF] Bahri | Survey on feature transformation techniques for data streams[END_REF].

Data Uncertainty on Graphs: Probabilistic Graphs

The following subsection is an adaptation of the introduction in [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF], dealing with indexes on probabilistic graphs.

A natural way to capture data uncertainty in graphs is to represent them as probabilistic (or uncertain) graphs [Valiant, 1979, Ball, 1986, Fishman, 1986, Jin et al., 2011, Hua and Pei, 2010], where each edge is annotated with some uncertainty value. There exist two main representations of edge uncertainty in probabilistic graphs. In the edge-existential model, each edge is augmented with a probability value, which indicates the chance that the edge exists (Fig. 1.2a). This model captures reliability and failure in computer network connections [Fishman, 1986, Jin et al., 2011], and it can also represent uncertainty in social and biological networks. In the weight-distribution model, each edge is associated with a probability 1 A Brief Overview of Uncertainty in Graphs [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] distribution of weight values [START_REF] Hua | Probabilistic path queries in road networks: tra c uncertainty aware path selection[END_REF]. For example, the traveling time between two vertices in a road network can be represented by a normal distribution.

The problem of evaluating queries on large probabilistic graphs has been studied for a variety of tasks: reliability estimation [Fishman, 1986, Jin et al., 2011], searching nearest neighbors [START_REF] Potamias | k-nearest neighbors in uncertain graphs[END_REF], and mining frequent subgraphs [START_REF] Zou | Discovering frequent subgraphs over uncertain graph databases under probabilistic semantics[END_REF]. Here, we study the evaluation of an important query class, known as the source-to-target queries, or ST-queries, which are de ned over a source vertex and a target vertex in a probabilistic graph. Example ST-queries include reachability queries (RQ) and shortest distance queries (SDQ). These queries, when posed on probabilistic graphs, provide answers having probabilistic interpretations. For example, the answer of a reachability query tells us the chance that can reach ; the shortest distance query returns the probability distribution of the distance between and .

Evaluating a probabilistic source-to-target query is computationally expensive. This is because probabilistic graphs have possible world semantics [START_REF] Dalvi | E cient query evaluation on probabilistic databases[END_REF]. Conceptually, G encodes a distribution of possible worlds, each of which is a de nite (non-probabilistic) graph itself, as the example below explains.

Example 1.1. Fig. 1.2b shows a possible world of the probabilistic graph in Fig. 1.2a. Each possible world is given a probability of existence derived from edge probabilities. For example, the graph in Fig. 1.2b exists only if edges 0 → 4, 2 → 0, 2 → 6, and 6 → 4 exist, with a probability of approximately 0.1, which is the product of the probabilities that edges in Fig. 1.2b exist, and the probabilities that other edges do not, i.e., 1 × 0.75 × 0.75 × 0.75

× (1 -0.5) × (1 -0.25) × (1 - 0.75) × (1 -0.5) × (1 -0.5).
Evaluating a query (e.g., an SDQ) on G amounts to running the deterministic version of (e.g., computing the shortest distance between two vertices) on every possible world. This approach is intractable, due to the exponential number of possible worlds; and indeed the problem has been proved to be #P-hard [Valiant, 1979, Ball, 1986, Dalvi and Suciu, 2007].

To improve ST-query e ciency, sampling is usually employed [Fishman, 1986, Jin et al., 2011, Potamias et al., 2010, Zou et al., 2010], where possible worlds with high existential probabilities 1.2 Process Uncertainty on Graphs: Online Social In uence are sampled and the algorithm of choice is used on each resulting graph. These algorithms, which examine fewer possible worlds than the possible world semantics, are more e cient. However, they su er from two major downsides, which can hamper query e ciency signi cantly:

Issue 1 A possible world can be very large. Some of the probabilistic graphs used in our experiments, for example, have millions of vertices and edges. If we want to run an SDQ on a probabilistic graph, a shortest path algorithm needs to be executed once for each sampled possible world. Since a possible world can be a very big graph, query e ciency can be a ected.

Issue 2 To achieve high accuracy, a large number of possible world samples may need to be generated. In our experiments, around 1,000 samples are required to converge to acceptable approximate values.

We discuss in Chapter 2 our main contribution in this area: tree decompositions for sourceto-target queries on probabilistic graphs. The main idea of using tree decompositions on graphs is to e ciently create a tree-shaped index on the graph. This index can then be used to extract -for a given query parameter, e.g., a pair of nodes -an equivalent graph. In case where this equivalent graph is much smaller than the original graph, any sampling algorithm can also function much more e ciently. As we will also discuss in Chapter 2, tree decompositions are linked directly to the notion of having a low treewidth; we study how realistic this assumption of low treewidth is in real-world graphs.

We will also brie y discuss two other contributions. The rst is the extension of decompositions to NN queries. The second is acknowledging that probabilistic queries are a particular case of provenance on graphs.

Process Uncertainty on Graphs: Online Social Influence

The following subsection is an adaptation of the introduction in [START_REF] Lagrée | Algorithms for online in uencer marketing[END_REF] (an extension to [START_REF] Lagrée | E ective large-scale online in uence maximization[END_REF]), which discusses the problem of online social in uence maximization.

Viral advertising based on word-of-mouth di usion in social media has become very important in the digital marketing landscape. Nowadays, social value and social in uence are some of the most used concepts in the area of Web advertising and most companies that advertise in the Web space must have a "social" strategy. For example, on widely used platforms such as Facebook or Twitter, promoted posts are interleaved with normal posts on user feeds. Users interact with these posts by actions such as "likes" (adoption), "shares" or "reposts" (network di usion) [Watts, 2003, Watts and[START_REF] Watts | [END_REF].

Motivated by the need for e ective viral social strategies, in uence estimation and in uence maximization (IM) have become important research problems, at the intersection of data mining and social sciences [START_REF] Easley | Networks, Crowds, and Markets -Reasoning About a Highly Connected World[END_REF]. In short, IM is the problem of selecting a set 1 A Brief Overview of Uncertainty in Graphs of nodes from a given di usion graph, maximizing the expected spread under an underlying diffusion model. This problem was introduced in 2003 by the seminal work of [START_REF] Kempe | Maximizing the spread of in uence through a social network[END_REF], through two stochastic, discrete-time di usion models, Linear Threshold (LT) and Independent Cascade (IC). These models rely on di usion graphs whose edges are weighted by a score of in uence. Both models above are stochastic processes: the process occurs on a graph whose edges are annotated with in uence probabilities, i.e., a probabilistic graph. They proceed in time-discrete steps, where at each step an attempt is made to in uence (in the IC model) or be in uenced by (in the LT model) the neighbor nodes, depending on their edge in uence probabilities. Moreover the IM problem of [START_REF] Kempe | Maximizing the spread of in uence through a social network[END_REF] -selecting a set of nodes to maximize the expected spread -is NP-hard for both models. The greedy algorithm is proven to give a constant-factor approximation due to the sub-modularity property of the in uence spread, but does not scale to large graphs.

A rich literature followed, focusing on computationally e cient and scalable algorithms to solve IM. The benchmarking study of [START_REF] Arora | Debunking the myths of in uence maximization: An in-depth benchmarking study[END_REF] summarizes state-of-the-art techniques and also debunks many IM myths. In particular, it shows that, depending on the underlying di usion model and the choice of parameters, each algorithm's behavior can vary signi cantly, from very e cient to prohibitively slow.

Importantly, all the IM studies discussed in [START_REF] Arora | Debunking the myths of in uence maximization: An in-depth benchmarking study[END_REF] have as starting point a speci c model (IC or LT), whose graph topology and parameters -basically the edge weights -are known. However, this assumption is unrealistic, and, recently, we have witnessed a trend towards bridging the gap between theory and practical relevance in the IM framework, along several dimensions.

In particular, one such dimension is the one of o ine, model-speci c methods, which can infer the di usion parameters or the underlying graph structure (if unknown, or, as often the case, implicitly overlaying the existing social graph), or both, starting from observed information cascades [START_REF] Saito | Prediction of information di usion probabilities for independent cascade model[END_REF], Goyal et al., 2010, Du et al., 2013, Gomez-Rodriguez et al., 2011, Gomez-Rodriguez et al., 2012, Gomez-Rodriguez et al., 2013]. In short, information cascades are time-ordered sequences of records indicating when a speci c user adopted a speci c item.

There are however many situations where it is unreasonable or counter-productive to assume the existence of relevant historical data in the form of cascades. For such settings, online approaches, which can learn the underlying di usion parameters while running di usion campaigns, have been proposed. Bridging IM and inference, this is done by balancing between exploration steps (of yet uncertain model aspects) and exploitation ones (of the best solution so far), usually by multi-armed bandits techniques, where an agent interacts with the network to infer in uence probabilities [START_REF] Vaswani | In uence maximization with bandits[END_REF], Chen et al., 2016, Wen et al., 2016]. The learning agent sequentially selects seeds from which di usion processes are initiated in the network; the obtained feedback is used to update the agent's knowledge of the model.

Nevertheless, all these studies on inferring di usion networks, whether o ine or online, rely on parametric di usion models, i.e., assume that the actual di usion dynamics are well captured by such a model (e.g., IC). This is still a signi cant limitation for practical purposes. First, the more complex the model, the harder to learn, especially in campaigns that have a relatively short timespan, making model inference and parameter estimation very challenging within a small horizon (typically tens or hundreds of spreads). Second, it is commonly agreed that the 1.2 Process Uncertainty on Graphs: Online Social In uence aforementioned di usion models represent elegant yet coarse interpretations of a reality that is much more complex and often hard to observe fully.

Chapter 3 presents my contributions in the general area of online in uence maximization (OIM). I present rst an overview of the initial paper about the OIM problem, in which the assumption was that the process (IM in this case) and graph topology are known, but the in uence probabilities had to be learned. The second contribution is the most recent article on the subject, in which the assumption that the process and the graph topology are known is signi cantly relaxed and in which a form of persistence is assumed. Both articles use the multi-armed bandit approach.

Other contributions that are discussed are work in progress to extend the online in uence maximization to the contextual case, and how in uence can be used to improve social recommendation algorithms.

Tree Decompositions for Probabilistic Graphs

In this chapter, we discuss some algorithmic challenges when dealing with uncertainty of graph edges. We focus on source-to-target queries in probabilistic graphs, and we discuss how tree indexes can be used e ciently for query answering. We also establish the link between our tree indexes and the notion of treewidth on graphs.

Probabilistic Graphs, eries, and Indexing Systems

The following section is adapted from [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF], work published in ACM Transactions on Database Systems.

We present in this section the notion of probabilistic graphs and indexing systems. These notions will be useful for discussing the ProbTree, a tree-based indexing system for source-to-target queries in probabilistic graphs.

Probabilistic Graphs and eries

We start by de ning probabilistic graphs, by extending standard graphs with a probability function on their edges:

De nition 2.1 (Probabilistic graph). A probabilistic graph is a triple G = ( , , ) where: (i) is a set of vertices;

(ii) ⊆ × is a set of edges;

(iii) : → 2 ℚ + ×(0,1] is a function that assigns to each edge a nite probability distribution of edge weights, i.e., each edge is associated with a partial mapping ( ) : ℚ + → (0, 1] with nite support supp( ( )) such that ∈supp( ( )) ( ) ( ) ≤ 1. We denote (G), (G), G the vertex set, the edge set, and the probability assignment function of G respectively.

Note that the probability that an edge does not exist in G is 1 -∈supp( ( )) ( ) ( ). De nition 2.1 is essentially the weight-distribution model [START_REF] Hua | Probabilistic path queries in road networks: tra c uncertainty aware path selection[END_REF], where each edge is associated with a nite probability distribution of weights. This de nition also captures the edge-existential model [Fishman, 1986, Jin et al., 2011], where an edge with existential probability can be represented as a weight distribution {(1, )}. Likewise, we assume that the probability distributions on di erent edges are independent.

De nition 2.2 (Possible world). Let G = ( , , ) be a probabilistic graph. The (weighted) graph = ( , , ) with ⊆ × and : → ℚ + is a possible world of G if ⊆ and for every edge ∈ , ( ) ∈ supp( ( )). We write G. The probability of the possible world is: Source-to-target queries In the following, we focus on source-to-target distance queries (or ST-queries), a common query class for probabilistic graphs. This kind of query requires two inputs: source vertex and target vertex , where , ∈ . Typical example ST-queries include:

Pr( ) ∈ ( ) ( ( )) × ∈ \ 1 - ∈supp( ( )) ( ) ( ) .
Reachability (RQ) [START_REF] Cohen | Reachability and distance queries via 2-hop labels[END_REF] Probability that is reachable from .

Distance-constraint reachability ( -RQ) [START_REF] Jin | Distance-constraint reachability computation in uncertain graphs[END_REF] Probability that is reachable from within distance .

Expected shortest distance (SDQ) [Ball, 1986] The expected value of the distance distribution ( → ) between and . Formally, ( → ) is a set of tuples ( , ), where is the probability that the shortest distance between and is .

To evaluate these queries, we generally need to obtain ( → ), from which the result of any of these queries can be derived. This type of queries are hard to evaluate, as stated multiple times in the literature: Valiant, 1979, Ball, 1986]). Evaluating RQ, -RQ (for ≥ 2), and SDQ is #Pcomplete.

Theorem 2.4 ([
Without loss of generality, in the following we assume that the answer of an ST-query is ( → ), where any ST-query is answered from it. In fact, our solution can deal with any ST-query that depends only on ( → ).

Graph Indexing Frameworks

We now propose an indexing framework for probabilistic graphs. First, we de ne the notion of transformation system. De nition 2.5 (Transformation system). A probabilistic graph transformation system is a pair (index, retrieve) where:

2.1 Probabilistic Graphs, Queries, and Indexing Systems Figure 2.1: Illustrating two equivalent probabilistic graphs for the graphs in Figure 1.2, for two ST-queries. [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] • index is a function that takes as input a probabilistic graph G and outputs an object I = index(G) called an index;

• retrieve is an operator that, given an ST-query ( , ) in G, and the index I, produces a probabilistic graph G( ) = retrieve (I), such that { , } ⊆ (G( )).

Essentially, a transformation encodes a probabilistic graph G into an index structure, which can generate another probabilistic graph G( ) for a given pair of vertices ( , ), representing the query . Since and can be found in G( ), ( , ) can be evaluated on G( ). Two examples for the graph in Figure 1.2 are given in Figure 2.1.

We consider two important properties for queries evaluated on the transformed graph G( ):

(i) the loss -the di erence between the result of evaluated on G( ) and G; and

(ii) the e ciency -the cost of evaluating on G( ).

There are multiple de nitions possible for loss; one of the most used ones is the mean squared loss -the square of the di erence between real and estimated query results. If this loss is zero we call the transformation lossless; lossy otherwise.

A transformation system is called an indexing system, if it is e cient for answering a given kind of query:

De nition 2.6 (Indexing system). A transformation system (index, retrieve) is said to be an indexing system for query class Q if the following hold:

(i) index is a polynomial-time function;

(ii) for every probabilistic graph G, |index(G)| = O(|G|) (i.e., the space occupied by the index is bounded by a linear function of the space occupied by the original graph);

(iii) for every query ∈ Q, retrieve is linear-time computable.

2 Tree Decompositions for Probabilistic Graphs Let us give an example transformation system that is not an indexing system. Given query class Q, consider a system that pre-computes all pairwise results, i.e., the index operator. This system satis es Property (iii), since retrieve builds a trivial two-vertex graph. Evaluating over the resulting graph is very e cient, since it just involves looking up the distance probability distribution on the edges of this graph, in O (1) time. However, neither Property (i) nor (ii) holds, since indexing is intractable unless #P is tractable (which would imply P = NP), and since the index is at least quadratic in size.

We aim for indexing systems that allow e cient query evaluation (for a query class Q) on the transformed graph: for every probabilistic graph G and query ∈ Q, the running time of retrieve on index(G), together with the running time of on G( ), should be less than evaluating on G.

Independent subgraphs Can we obtain an e cient index for probabilistic graphs, with zero or limited loss? We show that we can do this via a tree decomposition of the probabilistic graph G, where independent subgraphs of G are identi ed and reduced.

Recall that each edge in a probabilistic graph, along with its associated probability distribution, is independent of probability distributions of the other edges. Thus, one way to derive a lossless indexing system is to collapse larger subgraphs to edges, such that independence is maintained:

De nition 2.7 (Independent subgraph). We de ne an independent subgraph of a probabilistic graph G as a (weakly) connected induced subgraph ⊆ G with arbitrarily many internal vertices and at most two endpoint vertices 1 , 2 such that each internal vertex has edges only to/from other internal vertices of , or to/from the endpoint vertices.

We can use these independent subgraphs to reduce the graph to an equivalent subgraph by replacing with edges 1 → 2 and 2 → 1 , with corresponding probability distributions ( 1 → 2 ) and ( 2 → 1 ) computed from . We obtained a fundamental (and non-trivial) result: in the case of undirected graphs, independent subgraphs are exactly those that can be removed from the graph while preserving joint distance probability distributions for non-removed vertices.

Theorem 2.8. [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] Let G = ( , , ) be a probabilistic graph with ( , ) ∈ ⇔ ( , ) ∈ and a non-empty subset of vertices of that are connected in G. We assume for each ∈ , ∈supp( ( )) ( ) ( ) < 1. There exists a probabilistic graph G = ( \ , , ) such that the joint distance distributions for \ is the same in G as in G if and only if is the set of internal vertices of an independent subgraph of G.

In other words, Theorem 2.8 states that the independent subgraph approach is the unique manner in which a lossless indexing system can be obtained for a probabilistic graph, at least for undirected graphs1 .

2.1 Probabilistic Graphs, Queries, and Indexing Systems ProbTree Our de nition of independent subgraphs relies on vertices in the graphs which separate the graph into two independent components. We can decompose the graphs into the corresponding independent subgraphs in a recursive way, by repeatedly identifying endpoints and sub-dividing the subgraphs until it is not longer possible to do so. It is easy to verify that such a recursive decomposition -our desired index I = index(G) -results in a tree where nodes are independent subgraphs and edges appear between subgraphs having common endpoints. We call such a tree decomposition a ProbTree:

De nition 2.9 (ProbTree). Let G = ( , , ) be a probabilistic graph. A ProbTree for is a pair (T , B) where T is a tree (i.e., a connected, acyclic, undirected graph) and B is a function mapping each node of T to a probabilistic graph (called the internal graph or bag of ) with vertex set a subset of . We further require that for every subtree T of T , the set of vertices in bags of nodes of T induces an independent subgraph of G.

A rst method for indexing probabilistic graphs into a ProbTree are SPQR trees. For a graph , a vertex set ⊆ ( ) is called a separator for if the graph induced by ( )\ is disconnected. Given an integer , a graph is called k-connected if ( )\ is connected for all ⊆ ( ), | | < , i.e., there exists no separator for of size less than . 0-connected graphs are connected graphs in the usual sense, 1-connected graphs contain cut vertices which disconnect the graph into biconnected components, and 2-connected graphs have separation pairs of vertices which separate the graph into triconnected components. These de nitions link directly to our desired properties for independent subgraphs. Connected, biconnected, and triconnected components are exactly independent subgraphs of 0, 1 and 2 endpoints, and we 2 Tree Decompositions for Probabilistic Graphs aim to decompose the graph into a tree containing them.

Tutte [Tutte, 1966] studied the structure of the triconnected components of a graph, and Hopcroft and Tarjan [Hopcroft and[START_REF] Hopcroft | E cient algorithms for graph manipulation [h] (algorithm 447)[END_REF]Tarjan, 1973a] gave optimal algorithms for decomposition. They showed that the triconnected components of a graph are unique:

Theorem 2.10. [Tutte, 1966[START_REF] Hopcroft | E cient algorithms for graph manipulation [h] (algorithm 447)[END_REF], Hopcroft and Tarjan, 1973a] The biconnected and triconnected components of a graph are unique and the inclusion relationships among them forms a tree.

Using Theorem 2.8 and Theorem 2.10, we can derive the corollary that decomposing the graph into its biconnected and triconnected components is the unique manner in which we can obtain a lossless indexing of a probabilistic (undirected) graph -since biconnected and triconnected components are independent subgraphs and they are unique.

Hopcroft and Tarjan's algorithms were re ned, via SPQR trees [Di Battista and Tamassia, 1990] and [START_REF] Gutwenger | A linear time implementation of spqr-trees[END_REF]'s linear implementation. Our approach was to use these algorithms initially to obtain the decomposition; however, their practical performance was not su cient.

Example 2.11. To understand what a ProbTree looks like, consider the tree depicted in Fig. 2.2 which is a ProbTree for the graph of Fig. 1.2 (it is more precisely an SPQR tree). The tree T is de ned by the black lines between bags; a Greek letter identi er is given on the right of each bag. The vertices in bags of any subtree of T induce an independent subgraph in the original graph: for example, the subtree rooted at node ( ) contains vertices 1, 2, 5, and 6, which indeed form an independent subgraph with endpoints 2 and 6. The nodes in white represent the endpoints of the independent subgraphs induced by the bag's respective subtree: here, for node ( ), these are 2 and 6.

Our best performing ProbTree variant is not the SPQR one, but one which performs a partial decomposition. Before we can present it, we need to take a detour to discuss tree decompositions, their link to the notion of treewidth, and the notion of partial tree decomposition.

Tree Decompositions and Treewidth

The following section is adapted from [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF], work presented at ICDT. Following the original de nitions in [START_REF] Robertson | Graph minors. III. Planar tree-width[END_REF], we rst de ne a tree decomposition:

De nition 2.12 (Tree Decomposition). Given an undirected graph = ( , ), where represents the set of vertices (or nodes) and ⊆ × the set of edges, a tree decomposition is a pair ( , ) where = ( , ) is a tree and : → 2 is a labeling of the nodes of by subsets of (called bags), with the following properties: [ [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF]]

(i) ∈ ( ) = ;
(ii) ∀( , ) ∈ , ∃ ∈ s.t. { , } ⊆ ( ); and (iii) ∀ ∈ , { ∈ | ∈ ( )} induces a subtree of .
Intuitively, a tree decomposition groups the vertices of a graph into bags so that they form a tree-like structure, where a link between bags is established when there exists common vertices in both bags.

Example 2.13. Figure 2.3 illustrates such a decomposition. The resulting decomposition is formed of 4 bags, each containing a subset of the nodes in the graph. The bags containing node 3 (in bold) form a connected subtree of the tree decomposition.

Based on the number of vertices in a bag, we can de ne the concept of treewidth:

De nition 2.14 (Treewidth). Given a graph = ( , ) the width of a tree decomposition ( , ) is equal to max ∈ (| ( )| -1). The treewidth of , ( ), is equal to the minimal width of all tree decompositions of .

It is easy to see that an isolated point has treewidth 0, a tree treewidth 1, a cycle treewidth 2, and a ( + 1)-clique (a complete graph of nodes) treewidth .

Example 2.15. The width of the decomposition in Figure 2.3 is 3. This tells us the graph has a treewidth of at most 3. The treewidth of this graph is actually exactly 3: indeed, the 4-clique, which has treewidth 3, is a minor of the graph in Figure 2.3 (it is obtained by removing nodes 1 and 7, and by contracting the edges between 3 and 6 and 5 and 6), and treewidth never increases when taking a minor (see, for instance, [Harvey, 2014]).

Intuitively, a tree decomposition groups the vertices of a graph into bags so that they form a tree-like structure, where a link between bags is established when there exists common vertices in both bags -in other words, exactly what we need for our ProbTree. However, note that algorithms which solve hard problems in linear time when restricted to graphs of bounded treewidth -including -terminal reliability -have been proposed by [START_REF] Arnborg | Linear time algorithms for np-hard problems restricted to partial k-trees[END_REF]. They have two main disadvantages:

(i) they use bottom-up dynamic programming for the computation of optimal values, but they retain an exponential dependence on the treewidth ; and (right). [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] (ii) the practical appeal is limited, as the computation of the query answers is made at the same time as the construction of the decompositions.

Moreover, given a width, a tree decomposition can be constructed in linear time [Bodlaender, 1996]. However, determining the treewidth of a given graph is NP-complete [START_REF] Arnborg | Complexity of nding embeddings in a k-tree[END_REF]. This means that determining if a graph has a bounded treewidth, and thus being able to create its tree decomposition, cannot be reasonably performed on large-scale graphs.

It is possible, nevertheless, to obtain estimations of treewidth -along with their associated decompositions -via estimations of the range of possible treewidths, between a lower bound and an upper bound. We refer the reader to [START_REF] Bodlaender | Treewidth computations I. Upper bounds[END_REF] and [START_REF] Bodlaender | Treewidth computations II. Lower bounds[END_REF], respectively, for a more complete survey of treewidth upper and lower bound estimation algorithms on synthetic data, and we cover here only the subset of methods that t our requirements.

Treewidth Upper Bounds The treewidth is the smallest width among all possible tree decompositions. In other words, the width of any decomposition of a graph is an upper bound of the actual treewidth of that graph. A treewidth upper bound estimation algorithm can thus be seen as an algorithm to nd a decomposition whose width is as close as possible to the treewidth of the graph. To understand how one can do that, we need to introduce the classical concept of elimination ordering and to explain its connection to treewidth.

We start by introducing triangulations of graphs, which transform a graph into a graph Δ that is chordal: De nition 2.16 (Chordal graph, Triangulation). A chordal graph is a graph such that every cycle in of at least four vertices has a chord -an edge between two non-successive vertices in the cycle.

A triangulation (or chordal completion) of a graph is a minimal chordal supergraph Δ of : a graph obtained from by adding a minimal set of edges to obtain a chordal graph.

Example 2.17. The graph in Figure 2.3 is not chordal, since, for example, the cycle 3-4-5-6-3 does not have a chord. If one adds an edge between 3 and 5, as in Figure 2.4 (left), one can verify that the resulting graph is chordal, and thus a triangulation of the graph of Figure 2.3.

One way to obtain triangulations of graphs is elimination orderings. An elimination ordering of a graph = ( , ) of nodes is an ordering of the vertices of , i.e., it can be seen as a
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bijection from onto {1, . . . , }. From this ordering, one obtains a triangulation by applying sequentially the following elimination procedure for each vertex : rst, edges are added between remaining neighbors of as needed so that they form a clique, then is eliminated (removed) from the graph. For every elimination ordering , along with all edges added to in the elimination procedure forms a graph, denoted Δ . This graph is chordal (indeed, we know that the two neighbors of the rst node of any cycle we encounter in the elimination ordering have been connected by a chord by the elimination procedure). It is also a supergraph of , and it can be shown it is a minimal chordal supergraph, i.e., a triangulation of .

Example 2.18. (ii) has a triangulation Δ , such that the maximum clique in Δ has size + 1.

(iii) There exists an elimination ordering such that the maximum clique size in Δ is + 1.

Obtaining the treewidth of the graph is thus equivalent to nding an optimal elimination ordering. Moreover, constructing a tree decomposition from an elimination ordering is a natural process: each time a vertex is processed, a new bag is created containing the vertex and its neighbors. Note that, in practice, we do not need to compute the full elimination ordering: we can simply stop when we know that the number of remaining vertices is lower that the largest clique found thus far.

Example 2.20. In the triangulation of Figure 2.4 (left), corresponding to the elimination ordering on the right, the maximum clique has size 4: it is induced by the vertices 2, 3, 4, 5. This proves the existence of a tree decomposition of width 3. Indeed, it is exactly the tree decomposition in Figure 2.3 (right): bag d is constructed when 7 is eliminated, bag a when 1 is eliminated, bag c when 6 is eliminated, and nally bag b when 3 is eliminated.

Finding a "good" upper bound on the treewidth can thus be done by nding a "good" elimination ordering. This is still an intractable problem, naturally, but there are various heuristics for generating elimination orderings leading to good treewidth upper bounds. One important class of such elimination ordering heuristics are the greedy heuristics. Intuitively, the elimination ordering is generated in an incremental manner: each time a new node has to be chosen in the elimination procedure, it is chosen using a criterion based on its neighborhood. We have implemented2 the following greedy criteria (with ties broken arbitrarily):

• D

. The node with the minimum degree is chosen. [Markowitz, 1957, Berry et al., 2003] • F I . The node with the minimum needed " ll-in" (i.e., the minimum number of missing edges for its neighbors to form a clique) is chosen. [START_REF] Bodlaender | Treewidth computations I. Upper bounds[END_REF] • D +F I . The node with the minimum sum of degree and ll-in is chosen.

Example 2.21. The elimination ordering of Figure 2.4 (right) is an example of the use of D +F I . Indeed, 7 is rst chosen, with value 1, then 1 with value 2, then 6 with value 2 + 1 = 3. After that, the order is arbitrary since 2, 3, 4, and 5 form a clique (and thus have initial value 3).

Previous studies [van Dijk et al., 2006, Koller and Friedman, 2009, Bodlaender and Koster, 2010] have found these greedy criteria give the closest estimations of the real treewidth. An alternative way of generating an elimination ordering is based on maximum cardinality search [START_REF] Koller | [END_REF]Friedman, 2009, Bodlaender andKoster, 2010]; however, it is both less precise than the greedy algorithms -due to its reliance on how the rst node in the ordering is chosenand slower to run.

In contrast to upper bounds, obtaining treewidth lower bounds is not constructive. In other words, lower bounds do not generate decompositions; instead, the estimation of a lower bound is made by computing other measures on a graph, that are a proxy for treewidth.

How high is the treewidth of real graphs? We want to answer the following question: are tree decompositions based on treewidth estimations feasible in practice?

Figure 2.5 shows the results of our estimation algorithms over 25 datasets from 4 domains:

• infrastructure: road networks of states (C , P , T ) and cities (B , H K , P

), the Parisian tranport network S , and the US PowerGrid;

• social (E , F , W T ) and Web (G , G ) networks;

• knowledge graphs (Y and D P );

• hierarchical networks (R trees, M generalogies).

Lower values mean better treewidth estimations. Focusing on the upper bounds only (red circular points), we notice that, in general, F I does give the smallest upper bound of treewidth, in line with previous ndings [START_REF] Bodlaender | Treewidth computations II. Lower bounds[END_REF]. Interestingly, the D heuristic is quite competitive with the other heuristics. This fact, coupled with its lower running time, means that it can be used more reliably in large graphs. Indeed, as can be seen in the gure, on some large graphs only the D heuristic actually nished at all; this means that, as a general rule, D seems the best t for a quick and relatively reliable estimation of treewidth. We plot both the absolute values of the estimations in Figure 2.5a, but also their relative values (in Figure 2.5b, representing the ratio of the estimation over the number of nodes in the graph), to allow for an easier comparison between networks. The absolute value, while interesting, does not yield an intuition on how the bounds can di er between network types. If we look at the relative values of treewidth, it becomes clear that infrastructure networks have a treewidth that is much lower than other networks; in general they seem to be consistently under one thousandth of the original size of the graph. This suggests that, indeed, this type of [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] network may have properties that make them have a lower treewidth. For the other types of networks, the estimations can vary considerably: they can go from one hundredth (e.g., M ) to one tenth (e.g., W T -the network of interactions on Wikipedia talk pages) of the size of the graph.

These results show us that, unfortunately, estimating a tree decomposition of the graphs leads to treewidth that is too high. The exponential dependency on the treewidth of the algorithms means that they are not usable in practice. Even so, there exists another possibility: stopping the decomposition early and hence obtaining a partial tree decomposition.

Partial Tree Decompositions

The manner in which treewidth decomposition can be used starts from a simple observation made in studies on complex graphs, that is, that they tend to exhibit a tree-like fringe and a densely connected core [START_REF] Newman | Random graphs with arbitrary degree distributions and their applications[END_REF], Newman et al., 2002]. The tree-like fringe precisely corresponds to bounded-treewidth parts of the network. This yields an easy adaptation of the 2 Tree Decompositions for Probabilistic Graphs upper bound algorithms based on node ordering: given a parameter representing the highest treewidth the fringe can be, we can run any greedy decomposition algorithm (D , F I , D F I ) until we only nd nodes of degree + 1, at which point the algorithm stops. At termination, we obtain a data structure formed of a set of treewidth elements ( -trees) interfacing through cliques that have size at most + 1 with a core graph. The core graph contains all the nodes not removed in the bag creation process, and has unknown treewidth. [ [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] The resulting structure can be thought of as a partial decomposition (or relaxed decomposition), a concept introduced in [Wei, 2010, Akiba et al., 2012] in the context of answering shortest path queries -we will also show in the next section how to use them for probabilistic queries. A partial decomposition can be extremely useful: the tree-like fringe can be used to quickly precompute answers to partial queries (e.g., precompute distances in the graph). Once the precomputation is done, these (partial) answers are added to the core graph, where queries can be answered directly. If the resulting core graph is much smaller than the original graph, the gains in running time can be considerable, as shown in [Wei, 2010, Akiba et al., 2012] and here.

An interesting aspect of greedy upper bound algorithms is that they generate at any point a partial decomposition, with width equal to the highest degree encountered in the greedy ordering so far. The algorithm can then be stopped at any width, and the size of the resulting partial decomposition can be measured.

Hence, the objective of our experimental study is to check how feasible partial decompositions are. The measure of interest is how large the core (or root) bag is. Indeed, the smaller this core is, the faster any algorithm used on this decomposition is.

Figure 2.7 shows the relative size of the core in partial decompositions up to a width of 25, for a selection of graphs (the full results are available in [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF]). Immediately apparent [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] is the fact that the minimal size of the core graph occurs at very low widths: in almost all cases, it occurs around a width between 5 and 10. This is low enough that running algorithms even doubly exponential in the width on the resulting fringe graphs can be performed. In terms of actual size, it can vary greatly. In road networks (P ), it even reaches 10%, compared to around 50% for other graphs. The exception to this are denser networks -C H (a physics citation network) where almost no bene t is visible for partial decompositions of small width, and G (the network of URLs crawled by Google) where the minimal size occurs much later ( = 20).

We show next that the fact that we can create a fringe of very small treewidth and, at the same time, have a very small core can be exploited e ciently for queries on probabilistic graphs.

2 Tree Decompositions for Probabilistic Graphs

Tree Decompositions for Probabilistic Graphs: ProbTree

The following section is adapted from [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF], work published in ACM TODS.

In the following -supported by our main result in Theorem 2.8 -we study the suitability of partial decompositions for indexing probabilistic graphs3 We will present the principle of the index and retrieve operators, and we show a selection of the experimental results on ProbTree.

Indexing and Retrieval

The principle behind the ProbTree is to rst generate a partial tree decomposition for index, where the parameter is the maximum width of the non-root bags in the tree, . The decomposition is then used to generate equivalent graphs using retrieve.

Indexing We now present in Algorithm 1 the index operator. It consists of three stages: the main decomposition, the building of the ProbTree and the pre-computation of probability distributions.

The rst stage of Algorithm 1 (lines 1-14) is the adaptation of the algorithms in [Wei, 2010, Akiba et al., 2012], which build the decomposition tree by essentially applying the D heuristic presented in Section 2.2. At each step, a vertex having a degree at most is chosen, marked as covered, and its neighbors are added into the bag, along with the probabilistic edges from G. Then, the covered vertex is removed from the undirected graph and a clique between the neighbors is created. This process repeats until there are no such vertices left. Finally, the rest of the uncovered vertices and the remaining edges are copied in the root graph R.

The second stage is the creation of the tree T . We visit in creation order each bag and de ne as their parent the bag whose vertex set contains all uncovered vertices of the visited bag. If no such bag exists, the parent of the bag will be the root graph.

Finally, in each bag , and for each pair ( 1 , 2 ), we need to compute ( 1 → 2 ) by using the information about the link con guration between 1 , 2 and the covered vertex . These can be computed exactly by a composition of min-(for parallel paths) and sum-convolutions (for paths that are sequential) of distance distributions -denoted as and ⊕ here and illustrated in Figure 2.8. For more details on the computation of convolutions of probability distributions, we refer the reader to [START_REF] Ash | Probability & Measure Theory[END_REF].

More precisely, the probability distribution can be computed as:

( 1 → 2 ) = ( 1 → 2 ) ( ( 1 → ) ⊕ ( → 2 ))
. This is followed by the bottom-up propagation of computed probabilities: at each step pairwise probabilities are computed among the vertices which are not the covered vertex of the respective bag -in precompute-propagate. In order to compute these probabilities, for each bag , the rst step is to "collect" the computed edges from 's children and combine them using the operator. Then, for each pair ( 1 , 2 ) we compute distances using the ⊕ operator between the edges 1 → and → 2 . Finally, the direct edge 1 → 2
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Algorithm 1 index(G)

Require: a probabilistic graph G, width parameter ⊲ decompose the graph into bags of size ≤

1:

← undirected, unweighted graph of G 2: S = ∅, T = ∅ 3: for ← 1 to do 4:

while there exists a vertex with degree in do 5:

create new bag 6:

( ) ← and all its neighbors 7:

for all unmarked edge in G between vertices of ( ) do 8: Figure 2.8: Probability compositions of simple paths. [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] is combined to get the nal probability distribution. At the nal level -the root bag R -the computed pairwise distance distributions are simply copied to the edge set of R. Note that we do not compute the distance distributions by using other possible paths between endpoints, and we restrict the computations only between the direct endpoint edge and the unique path going through the covered node. We do this to allow tractability of the convolution computations and allow the same semantics of the edges in R, i.e., each resulting edge between endpoints can be independently sampled.

( ) ← ( ) ∪ { }
2 Tree Decompositions for Probabilistic Graphs 

(α) (β) (γ) (ε) (δ) (ζ)
Figure 2.9: The = 2 decomposition of the example graph. Vertices in white are the vertices covered by each bag, and dashed red edges are edges which are computed from children. Each edge has a distribution of distance probabilities associated to it. [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] Note that we cannot compute bi-directional edges, at least for > 2. Hence, only a single bottom-up propagation is made, from the leaves to R.

Example 2.22. We give in Fig. 2.9 the result of applying Algorithm 1 on the graph in Fig. 1.2, for = 2. The resulting decomposition consists of ve bags in B and a root graph of two vertices, 6 and 0. Originally, the root graph does not contain any original edges, but it will have computed edges resulting from the bottom-up propagation. In the gure, the dashed red edges represent the edges which have been computed from the children.

On the left-hand side of the tree, bags ( ) and ( ) do not propagate any edges up the tree, as they either do not have 2 endpoints, as is the case of bag ( ), or there exist no paths between the endpoints, as for ( ). On the right-hand side, bag ( ) will provide a 6 → 1 edge to bag ( ). Bag ( ) also propagates edges 6 → 2 and 2 → 6 to bag ( ). Finally, bag ( ) propagates edge 6 → 0 to the root bag ( ).

In terms of time complexity, we know that computing the tree decomposition itself is linear in the number of vertices in the graph [Wei, 2010, Akiba et al., 2012]. The computation of pairwise probability distributions, for each bag, is quadratic in :

Proposition 2.23. The complexity of precompute-propagate is O ( 2 ), where is the maximum distance having non-zero probability in the graph.

While it is conceivable that a possible world exists in which a shortest distance path between two vertices visits all edges in a graph thus having = Ω(| |), this does not occur in practice. Moreover, for 2 (a case which we will explore in more detail), there are only two pairs to
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Algorithm 2 retrieve(T , B, , )

Require: ProbTree (T , B), source , target 1: root the tree at one of the bags containing ⊲ propagate edges up the new tree 2: for ℎ ← heightT ) to 0 do generate, and each bag is visited only once by Algorithm 1. Hence, in this setting, the complexity of propagating computations is linear in the number of vertices in the graph.

Retrieval When answering ( , ) queries on the ProbTree we have two main cases. First, when both and are present in the root node, we only need to query the root bag with no need to look in the decomposition. The second case is the most interesting one: when at least one of , are not in the root, but are vertices in the decomposition bags. In this case, the query vertices need to be propagated to the root node.

The original edges in ancestors of the bags containing the query vertices are propagated up, all the way to the root, in a bottom-up manner. The previous pre-computations of edges in areas of the graphs not containing the query vertices and in the subtree of the bags containing the query vertices are not a ected by this change. Recomputing the edges on these parts of the tree is not necessary, and this ensures that only a fraction of the bags in the tree is a ected by the retrieval. Algorithm 2 details this operation.

Each retrieve will output a graph that is at most as big as the original graph, and hence the standard shortest-path algorithms [Dijkstra, 1959] would execute in less time for each sample. Moreover, the retrieval is linear in the number of tree bags, which is itself linear in the size of G, verifying Property (iii).

Analysis for

≤ 2 In this special case, the computations performed by precomputepropagate are correct: Proposition 2.24. precompute-propagate computes correct probability distributions, i.e., does not induce any error, for decompositions of 2.

In addition, for 2 the decomposition de nes a tree of independent subgraphs, i.e., a ProbTree. It follows that every computed edge in the root graph R corresponds to an independent subgraph: Proposition 2.25. Let (T , B) be a tree decomposition ProbTree of 2. Then every bag in B (T ) de nes an independent subgraph, having as endpoints its uncovered vertices and as internal vertices all covered vertices in the subtree of T rooted at .

Combining the previous results with the complexity bounds on the index and retrieve operators established in the previous section, we obtain that, for ≤ 2, (index, retrieve) is a lossless indexing system. On the other hand, since few datasets have treewidth 2, it is generally not an optimal decomposition into independent subgraphs. This lossless indexing system provide gains in e ciency close to those of the lossy SPQR indexes. In some cases -such as denser networks -their e ciency is still not fully satisfactory.

Analysis for > 2 Unfortunately, decompositions for > 2 are not lossless, due to the correlations induced by pre-computing the distributions in bags, as witnessed by the following counter-example. Imagine a bag resulting from a > 2 decomposition with covered vertex and neighbor vertices 1 , 2 , 3 , . . . , and the following edges: 1 → and → 2 , . . . , → . In this case, the computable edges would be 1 → 2 , . . . , 1 → . For every 1 < ,

( 1 → ) = ( 1 → ) ⊕ ( → ).
( 1 → ) appears in all equations, meaning that the computed edges would not be maintaining their independence, hence leading to lossy indexing. No guarantees can be obtained for them either, unlike in the case of SPQR.

As we show in the next section, we can use the decomposition with > 2 as a starting point to design an index structure that is lossless and improves on query time e ciency w.r.t. one having ≤ 2, at the cost of an increase in space requirements, by representing explicitly the correlations introduced with higher treewidths.

Lineage Trees

For > 2, directly sampling the pre-computed edges is error-prone. Hence, sampling the pre-computed distance distributions directly from R or the graph returned by retrieve is not advisable.

Instead, we can compute the full lineage of the distance distributions between endpoints at pre-processing, and leave the handling of the correlations at query time. For this, we compute the lineage at tree decomposition time and build a lineage tree, i.e., a parse tree of the path between endpoints.

De nition 2.26 (Lineage tree).

A lineage tree of a probabilistic graph G is a binary tree whose leaves are labeled with pairs of nodes of G and whose internal nodes are labeled with either or ⊕.

The distance distribution represented by a lineage tree is de ned inductively given a distribution of distances on leaf nodes: the distributions of -and ⊕-labeled internal nodes are given by minor sum-convolutions of probability distributions of children, following Fig. 2.8. Such lineage trees, that will represent the actual distance distribution between two given nodes in a tree, can be e ciently computed at decomposition time by adding tree nodes "on top" of existing tree pointers, coming from previous bags. To enable e cient evaluation of edges which introduce correlations -hereby named dependency edges -we annotate each tree node with a little information: [ [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] (i) the set of dependency edges dependent( ), i.e., the edges which introduce correlations in the entire subtree ;

(ii) the pre-computed distance distribution, . , i.e., the distance distribution computed as if dependent( ) = ∅; and

(iii) the edge being pre-computed, . . Both . and . can be computed directly at decomposition time, just as in the previous decompositions, SPQR and FWD.

The dependent( ) computation goes on as follows. We rst compute with the dependency annotations. For each subtree that originates from a previous bag in the tree decompositions, we union its dependent( ) to the current dependent( ). Then, for each bag processed in precompute-propagate and for each distance distribution between endpoints, we keep the set of its lineage edges only from the current bag, linedges( ). Finally, for each pair of computed endpoint trees 1 and 2 , we compute linedges( 1 ) ∩ linedges( 2 ) and add it to both dependent( 1 ) and dependent( 2 ), by set union. This ensures that each subtree will contain the correct set of dependency edges.
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Example 2.27. Let us take the FWD decomposition, with = 3, in Fig. 2.10a, composed of two bags and .

We wish to precompute the edges 3 → 4 and 3 → 5 in . For that, we start at and precompute 1 → 5 and its associated lineage tree, (1 → 5), in Fig. 2.10b. It contains only one convolution node, 1 , and does not have any dependent edges because it belongs to a leaf bag of width 2.

This lineage tree will be propagated to and will help in the computation of 3 → 4 and 3 → 5 and their associated lineage trees, (3 → 4) and (3 → 5). (1 → 5) is involved in the computation of (3 → 5), as a pointer node that is a child of the convolution node 2 .

The edge 3 → 1 introduces a dependency between 3 → 4 and 3 → 5 because it appears in the pre-computation of several edges in the same bag, and hence the dependent edge annotation of (3 → 4) and (3 → 5) is {3 → 1}.

The lineage trees described above can be added to computed edges of any partial tree decomposition. Instead of applying the convolution operators in lines 2, 8, and 9, we construct the lineage tree by adding the and ⊕ gates as needed. Hence, each edge for bags of > 2 will be associated to a lineage tree. Then, at sampling time, each time a such an edge is encountered we evaluate the corresponding lineage tree, as detailed below.

Given a lineage tree on an edge, evaluating the distance distribution from a tree pointer is at sample time for a tree pointer . If the tree pointed by does not contain any dependency edges, then we simply return the distance distribution . . If, on the other hand, the pointer points to a leaf of the tree -which points to a graph edge -and this edge is a dependency edge, we need to sample it in this possible world. To ensure that we keep the correlation in all other possible trees which have this edge as a dependency edge, we need to ensure that the sampled distance is the same in all trees. For this we keep a map sampled which contains the sampled edges in the current possible world, ensuring no sampling of a dependency edge is repeated. If the edge is not a dependency edge, we can return its distance distribution. Finally, for intermediary tree nodes, we recursively evaluate the left and right branches and then compute the convolution indicated by the node, either ⊕ or . The returned distance distribution can be sampled by our sampler of choice.

Example 2.28. Let us return to the tree (3 → 5) in Fig. 2.10b. At sampling time, edge 3 → 1 needs to be sampled because it is a dependency edge, i.e., it introduces a correlation with tree (3 → 4). When (3 → 4) needs to be evaluated, we need to use this, previously sampled, distance for 3 → 1. Edge 3 → 5 and (1 → 5) can use their distributions without sampling, as they do not have correlations anywhere else in the decomposition.

The problem with this lineage-based method is that it is not generally space-e cient. On each bag of width , we only potentially remove 2 edges -two for each endpoint covered node pair -, while we can introduce ( -1) edges to the graph -one edge for all possible pairs of the endpoints. For > 2, this can add edges to the graph. We thus obtain a quadratic theoretical upper bound on the size of the resulting structure, though, as we will show, the blow-up is not nearly as bad in practice. Consequently, LIN does not satisfy our de nition of an indexing system (De nition 2.6). Moreover, the number of computed edges added to R has a direct in uence on query evaluation.

Tree Decompositions for Probabilistic Graphs: ProbTree

An Indexing Framework for eries on Probabilistic Graphs 1:29 LIN decompositions of the road networks, where the distance propagation can take a few hours, due to the computation of the lineage trees. e space overhead of I (Fig. 8) is also reasonable. Generally, the ProbTree for FWD F 6 2 and SPQR only incurs between 10% (W) and double (N) space overhead compared to the space cost of the original graph. As expected, the LIN decompositions for the road networks increase signicantly in size compared to their original graph size, even reaching a few gigabytes in the case of C and E, and up to 10 times in the size of the original graph in the case of E. Since the higher widths of the tree decompositions no longer retain the linear size increase property, i.e., can be quadratic in the original size, this is not surprising. Nevertheless, the query time savings of the lossless decompositions of E, N and C are very important, as we shall see next.

Running time. For evaluating the execution time, we used the following experimental setup. For each dataset, a randomly generated query workload of 1,000 vertex pairs from the original graphs were generated. For a workload of 1,000 queries, the standard error for the running time and a 95% condence interval is ±3%; this signicance level is reached for every comparison between the running time of the baseline algorithm and the running time on the dierent decompositions we used.

For each query workload, we generated the ground truth probabilities via 10,000 rounds of sampling. Please note that for each query pair we generated the actual distance distribution between the vertices, by applying Dijkstra's shortest path algorithm from the source vertex, on each sampling round. For testing, we executed the workloads for a number of samples between 10 and 1,000.

As Fig. 9 shows, the eciency gains are important when queries are executed on ProbTree indexes. e gains on the lossless decompositions are up to 2-3 times in the case of N. In most cases, SPQR is more ecient that the lossless FWDs, but only marginally so. Denser networks, ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Figure 2.11: Relative error vs. time (log-log axis). [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] 

Experimental Results

Are the tree decomposition approaches better overall than sampling algorithms? That is, is the error vs. time trade-o enough to justify using our algorithms, and not simply use more sampling rounds?

We present in this section partial experimental results for the ProbTree variants: SPQR, the xed-width tree decomposition (denoted as FWD), and the lineage approach (denoted as LIN). The full experimental results are available in [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF].

We have plotted the running time of applying sampling on ProbTree versus its errorexpressed in terms of the mean squared error as compared to the ground truth results. For brevity, we only track the results for the reachability -or 2-terminal reliability -queries. As query answers are derived directly from the distance distribution, results for other types of queries have similar relative error results. Fig. 2.11 (log-log axes) presents the results for the W graph -the social network of Wikipedia collaborations. The black dots represent the results on sampling the original graph, for a number of sample rounds between 10 (top left) and 1,000 (bottom right). Intuitively, we want the points corresponding to ProbTree variants (drawn for the same amount of samples) to lie "below" the line induced by the black points, meaning that they yield a better time-accuracy trade-o . As seen before, the gains in execution time when using the decompositions are important. The results also show that the relative error can even be slightly improved when using ProbTree. For instance, note that the FWD and LIN errors in the W graph are slightly lower than the corresponding black dots, i.e., the original graph, suggesting an increase in accuracy.

2 Tree Decompositions for Probabilistic Graphs Interestingly, for the road graphs (E, N and C) and LIN, the corresponding roots contain very few original edges and are almost entirely composed of computed edges. We conjecture that this is due to the relative sparsity of the road network datasets as compared to the other datasets. Other possible explanations may come from the near-planar character of the road networks -although this has no bearing on whether the treewidth is bounded -and their low highway dimension [3].

Fig. 7e-f shows the preprocessing execution time of ProbTree. As can be noticed, the index operation is very ecient, running in the order of seconds even on large graphs, except the LIN computation of the dense W graph, which takes around 2 minutes. e same observations hold for the pre-computation and propagation of distance distributions for the xed-width decompositions. However, due to the overhead of sampling the R-bags, the SPQR pre-computation takes signicant more time than FWD, but still under an hour. e exception to this behaviour are the ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Figure 2.12: Independent graph size (white) versus sampled edges (black). [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] To understand more about the di erence in running time savings of the decomposition, we plot, in Fig. 2.12, the size of the equivalent graph G( ) resulting from applying retrieve for each type of decomposition (white bars), along with the proportion of actual sampled edges in these graphs (black bars). The sizes represent average sizes over all 1,000 queries in the query load. In the case of W , we observe that the G( ) graphs are relatively close in size to the original graphs. Generally, the proportion of actually sampled edges in the graph remains constant (around 40% in the case of W , and lower in the case of N -the road network of the US state of New Hampshire); this means that, indeed, reducing the number of edges in the equivalent graphs can reduce query times. The large decrease in the query times for the transport networks -such as the illustrated N -can be directly attributed to their e cient decompositions, resulting in relatively more independent graphs, which in turn result in much smaller equivalent graphs.

Follow-up Contributions

We showed that tree decomposition can work well in evaluating source-to-target queries on probabilistic graphs. Interestingly, they also have high potential for other types of queries; we illustrate here NN queries.

In general, probabilities on graphs can be thought of as a form of provenance on graphs. Depending on what type of provenance we use, the e ciency of source-to-target algorithms varies.

Tree Decompositions for Probabilistic NN eries

The following is a brief outline of [START_REF] Li | Scalable evaluation of k-nn queries on large uncertain graphs[END_REF] presented at EDBT.

Source-to-target graph queries are important; they are however not the only types of queries that could bene t from decomposition approaches. Finding the -nearest neighbors from a source node in a graph is a query that has multiple applications: e.g., link prediction, community

Follow-up Contributions

detection, centrality analysis. For probabilistic graph, this distance is computed in expectation over the distance distribution.

The same decomposition process can be used for -NN queries: decompose the graph into a tree and then extract an equivalent graph. Naturally, the decompositions that were presented in the previous section work with this approach -along with other decomposition approaches, such as ones based on core decompositions [START_REF] Bonchi | Core decomposition of uncertain graphs[END_REF] and truss decomposition [START_REF] Huang | Truss decomposition of probabilistic graphs: Semantics and algorithms[END_REF]. However, there are some particularities for NN queries. First of all, there will be no clearly de ned root of the decomposition, as it depends directly on the choice of the query source node. As a consequence, all the pairwise distances have to be computed in both directions, i.e., bottom-up and top-down. The U-Tree presented in [START_REF] Li | Scalable evaluation of k-nn queries on large uncertain graphs[END_REF] ful lls the two criteria. In conjunction with some implementation optimization -such as pruning of un-needed bags in the decomposition -the U-Tree can exhibit high e ciency gains in query processing.

Semiring Provenance for Graph eries

The following is a brief outline of [START_REF] Ramusat | Semiring provenance over graph databases[END_REF], Ramusat et al., 2021] presented at TaPP and EDBT.

Tracking where and how query results are computed -the concept known as data provenanceis important for query analysis, conditioning, and explainability. Provenance can be tracked by annotating data tuples with the elements of an algebraic structure. In relational databases, the most used structure is the semiring, represented by ( , ⊕, ⊗, , ), where is some set, ⊕ and ⊗ are binary operators over , and (annihilator element) and (identity) are elements of , satisfying some axioms. Important examples of semiring are the tropical semiring (ℝ, min, +, ∞, 0), the counting semiring (ℕ, +, ×, 0, 1), and the Boolean semiring ({⊥, }, ∨, ∧, ⊥, ). In relational databases and the SPUJ fragment of SQL, the ⊕ operation allows to aggregate annotations on tuples for projections, selections and unions, while ⊗ allows to aggregate annotations resulting from joins [START_REF] Green | Provenance semirings[END_REF]. In ProbTree's implementation, one important subtask is the pre-computation of probability distribution at the interface between bags in the decomposition. For this, two operations were introduced: the SUM-convolution over sequential paths, and the MIN-convolution over parallel paths.

The above operations are a particular case of the operations that must be performed when answering any source-to-target query in graphs: the answer to a query is the aggregation over all alternative paths. Our results in [START_REF] Ramusat | Semiring provenance over graph databases[END_REF], Ramusat et al., 2021] show that this is precisely what we can do with semiring provenance. Formally, in a graph = ( , ), where each edge ∈ has a weight [ ] -represented as an element of a semiring -, the provenance of a source-to-target query is the (possibly in nite) sum over the set of all paths between and in , ( ):

prov ( ) ( , ) ( ) = ∈ ( ) [ ] = ∈ ( ) ∈ [ ].
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Depending on the semiring chosen, the semantics of the above sum change. In the tropical semiring, this is exactly the shortest distance between nodes and in ; in the counting semiring, it represents the number of paths between and . Finally, in the Boolean semiring, it encodes the truth value representing whether is reachable from , depending on the truth annotations on edges.

The type of semiring has a direct impact on what query processing algorithm one can use and, importantly, on their complexity. Our ndings show that:

• The well known Dijkstra's algorithm, linear in the size of the graph, [Dijkstra, 1959] can be directly used with any semiring that is 0-closed and induces a total order over its elements. Intuitively, 0-closed semirings are those for which the above sum does not need to account for cycles in the graph.

• For 0-closed semirings for which elements form a distributive lattice, Dijkstra's algorithm can be used in parallel over the antichains in the lattice (our algorithm M D ). The algorithm remains linear, but also depends on the dimension of the lattice.

• For -closed semirings (cycles need to aggregated up to times), an adaptation of Dikstra's algorithm, presented in [Mohri, 2002], can be used. The algorithm is exponential in the worst case, but much faster in practice.

• For all other semirings for which the above sum is nite, we presented the N E algorithm, which is cubic in the size of the graph in the worst case. The main cycle of the algorithm eliminate nodes in the graph and compute the provenance over their neighbors, until only the and nodes remain. Interestingly, the order in which the nodes are chosen has a direct link with the treewidth of the graph, and hence its performance.

The practical interest of our ndings is to allow a generic graph processing system for rich queries, where, depending on the chosen provenance over a graph, the best algorithm can be chosen.

Maximizing Influence in Low Information

Se ings

We discuss in this chapter the problem of in uence maximization when not all information about the in uence graph is known. We start by considering the case of knowing the in uence graph, but not the actual in uence probabilities on edges. Then we relax the need to know the graph topology, by assuming that only the important nodes (in uencers) are known. The solution to both approaches is to use the explore-exploit paradigm, and speci cally multi-armed bandit algorithms.

Influence Maximization

The following two subsections are an adaption of [Lei et al., 2015], presented at KDD. Let = ( , , ) be an in uence graph, where ∈ are users or nodes, and ∈ are the links or edges between them. Each edge = ( , ) between users and is associated with an in uence probability ∈ [0, 1]. This value represents the probability that user is activated by user at time + 1, given that user is activated at time . We also suppose that time ows in discrete, equal steps. In the IM literature, is given for every and . Generally, obtaining requires the use of action logs [START_REF] Goyal | Learning in uence probabilities in social networks[END_REF], which may not always be available.

In the independent cascade model, at a given timestamp , every node is in either active (in uenced) or inactive state, and the state of each node can be changed from inactive to active, but not vice-versa. When a node becomes active in step , the in uence is independently propagated at + 1 from node to its currently inactive neighbors with probability . Node is given one chance to activate its inactive neighbor. The process terminates when no more activations are possible. A node can be independently activated by any of its (active) incoming neighbors. Suppose that the activation process started from a set of nodes. We call the expected number of activated nodes of the expected in uence spread, denoted ( ). Formally: De nition 3.1 (In uence). Given a weighted graph = ( , , ), let in be the immediate in uence operator, which is the random process that extends a set of nodes ⊆ into a set of immediately in uenced nodes in ( ), as follows:

Pr( ∈ in ( )) =        1 if ∈ ; 1 -( , ) ∈ ∈ (1 - ) otherwise.
3 Maximizing In uence in Low Information Settings Given a seed set ⊆ , we de ne the set of in uenced nodes ( ) ⊆ as the random variable that is the xpoint ∞ ( ) of the following in ationary random process:

         0 ( ) = ∅; 1 ( ) = ; +2 ( ) = +1 ( ) ∪ in ( +1 ( )\ ( )) for ≥ 0. The in uence spread ( ) is [| ( )|].
Based on the above de nition, [START_REF] Kempe | Maximizing the spread of in uence through a social network[END_REF] de nes the in uence maximization problem (IM) as follows.

Problem 3.2 (IM). Given a weighted graph = ( , , ) and a number 1

≤ ≤ | |, the in uence maximization (IM) problem nds a set ⊆ such that ( ) is maximal subject to | | = .
As discussed in [START_REF] Kempe | Maximizing the spread of in uence through a social network[END_REF], evaluating the in uence spread is di cult. Even when the spread values are known, obtaining an exact solution for the IM problem is computationally intractable. Next we outline the existing IM algorithms for this problem.

Influence maximization algorithms A typical IM algorithm evaluates the score of a node based on some metric, and inserts the best nodes, which have the highest scores, into . For example, the degree discount (DD) heuristic [START_REF] Chen | E cient in uence maximization in social networks[END_REF] selects the nodes with highest degree as . Another classical example is greedy: at each step, the next best node, or the one that provides the largest marginal increase for , is inserted into . This is repeated until | | = . The greedy algorithm provides an (1 -1/ )-approximate solution for the IM problem. To compute the in uence spread e ciently, sampling-based algorithms with theoretical guarantees were developed. For example, CELF [START_REF] Leskovec | Cost-e ective outbreak detection in networks[END_REF] evaluates the expected spread of nodes with the seed nodes, and select the nodes with the largest marginal spread; TIM [START_REF] Tang | In uence maximization: Near-optimal time complexity meets practical e ciency[END_REF] counts the frequencies of the nodes appearing in the reversed reachable sets, and chooses the nodes with the highest frequencies; TIM+ [START_REF] Tang | In uence maximization: Near-optimal time complexity meets practical e ciency[END_REF] is an extension of TIM for large in uence graphs.

We say that the above IM algorithms are o ine, since they are executed on the in uence graph once, assuming knowledge of for every and . If these values are not known, these algorithms cannot be executed. This problem can be addressed by online IM algorithms, as we will discuss next.

Online Influence Maximization

The goal of online in uence maximization (or OIM) is to perform IM without knowing in uence probabilities in advance. Given a number of advertising campaigns (or trials), and an advertising budget of units per trial, we would like to select up to seed nodes in each trial. These chosen nodes are then advertised or activated, and their feedback is used to decide the seed nodes in the next trial: The IM problem is a special case of the OIM problem (by setting = 1 and assuming the probabilities are known). Since solving the IM problem is computationally di cult, so is nding a solution for the OIM problem. We propose a solution that consists of multiple trials. In each trial, a selection (for choosing appropriate seed nodes) and an action (for activating the seed nodes chosen) is performed (Figure 3.1). The seed selection makes use of one of the o ine IM algorithms.

Online In uence Maximization

The Uncertain Influence Graph We assume that a social network, which describes the relationships among social network users, is given. However, the exact in uence probability on each edge is not known. We model this by using an uncertain in uence graph, in which the in uence probabilities of each edge are captured by probability density functions, or pdf. The pdf can be re ned based on the feedback returned from a trial. Since in uence activations are binary random variable, we capture the uncertainty over the in uence as a Beta distribution. Speci cally, the random variable of the in uence probability from node to node , is modeled as a Beta distribution having probability density function:

( ) = -1 (1 -) -1 ( , ) , 
where B( , ) is the Beta function, acting as a normalization constant to ensure that the total probability mass is 1, and and are the distribution parameters. For the Beta distribution,

[ ] = + and 2 [ ] = ( + ) 2 ( + +1
) . An advantage of using the Beta distribution is that it is a conjugate prior for Bernoulli distributions, or more generally, binomial distributions. This allows us to compute the posterior distributions easily when new evidence is provided.

At the time of the rst trial, we assume no prior information about the in uence graph, except global and parameters, shared by all edges, i.e., ∼ B( , ) ∀( , ) ∈ . These global and 3 Maximizing In uence in Low Information Settings parameters represent our global prior belief of the uncertain in uence graph. In the absence of any better prior, we can set = = 1, with (1, 1) being the uniform distribution.

Our model can be extended to handle various prior information about the in uence graph. For example, if we have individual prior knowledge ( , ) about an edge, we can set as ∼ B( , ). When we have access to only the mean and variance of the in uence of an edge, we can derive and from the formulas of [ ] and 2 [ ] given above. For the situation in which some action logs involving the social network users are available, algorithms for learning the in uence probabilities from these logs [START_REF] Goyal | Learning in uence probabilities in social networks[END_REF], Goyal et al., 2011] can be rst applied, and the estimated in uence probabilities can then be used as prior knowledge for the graph. Online Influence Maximization Framework Algorithm 3 depicts the solution framework of the OIM problem. In this algorithm, trials are executed. Each trial involves selecting seed nodes, activating them, and consolidating feedback from them. In each trial (where = 1, . . . , ), the following operations are performed on the uncertain in uence graph :

1. Choose (Line 3): A seed set is chosen from , by using an o ine IM algorithm, and strategies for handling the uncertainty of .

2. RealWorld (Lines 4-5): The selected seeds set is tested in the real world (e.g., sending advertisement messages to selected users in the social network). The feedback information from these users is then obtained. This is a tuple ( , ) comprised of: (i) the set of activated nodes , and (ii) the set of edge activation attempts , which is a list of edges having either a successful or an unsuccessful activation.

3. Update (Line 6): We refresh based on ( , ).

One could also choose not to update , and instead only run an o ine IM based on the prior knowledge.

Algorithms for OIM The above framework lends itself naturally to the explore-exploit paradigm. When exploring the objective is to try di erent seeds so that the estimation of
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the in uence probability distributions is further re ned. The exploit branch simply apply IM algorithms to the current expectation of the probabilities [ ].

In this paradigm, several solutions are possible. The simplest one is the -greedy approach: with probability one chooses the exploit branch, and with 1-the explore branch is chosen and random seeds are selected. In the current multi-armed bandit literature [Lattimore and Szepesvári, 2020], however, the exploration and exploitation are integrated into a single parameter, the con dence bound. Assuming that each edge in the graph is considered a bandit with distribution , then the con dence bound approach estimates as:

= [ ] + .

How is chosen varies: from simple heuristics estimating the bound, to the UCB-like approaches using the optimism in the face of uncertainty principle: assuming that the edge distributions are always underestimated and hence > 0. As the edge ( , )'s estimation is improved, gets closer to zero. UCB algorithms in the bandit literature establish how to set the bound in relation to the number of rounds, to achieve regret that is sub-linear in the number of rounds. In [Lei et al., 2015], we used the classical E G (EG) algorithm to update the values.

As discussed before, the issue with this approach is that one assumes that the graph topology is available and represents the actual di usion graph. Moreover, estimating each edge means one has to estimate too many variables.

We discuss now an approach in which the graph topology is not necessary, and the estimation is made at the seed (or in uencer) level.

Online Influence Maximization with Persistence

The following subsection is an adaptation of [START_REF] Lagrée | Algorithms for online in uencer marketing[END_REF], published in ACM Transactions on Knowledge Discovery from Data.

In this approach, in contrast to [Lei et al., 2015], we do not try to estimate edge probabilities in a di usion graph, but, instead, we assume the existence of a known set of spread seed candidates -in the following referred to as the in uencers -who are the only access to the medium of di usion. Formally, we let [ ] := {1, . . . , } be a set of in uencers up for selection; each in uencer is connected to an unknown and potentially large base (the in uencer's support) of basic nodes, each with an unknown activation probability. For illustration, we give in Figure 3.2 an example of this setting, with 3 in uencers connected to 4, 5, and 4 basic nodes, respectively. Let ⊆ , for = 1, . . . , , denote the sets of basic nodes such that each in uencer ∈ [ ] is connected to each node in . We further denote by ( ) the probability for in uencer to activate the child node ∈ . In this context, the di usion process can be abstracted as follow:

De nition 3.4 (In uence process). When an in uencer ∈ [ ] is selected, each basic node ∈ is sampled for activation, according to its probability ( ). The feedback for 's selection consists of all the activated nodes, while the associated reward consists only of the newly activated ones. Limiting the in uence maximization method to working with a small subset of the nodes allows to accurately estimate their value more rapidly, even in a highly uncertain environment, hence the algorithmic interest. At the same time, this is directly motivated by marketing scenarios involving marketers who only have access to a few in uencers who can di use information. Moreover, despite the fact that we model the social reach of each in uencer by 1-hop links to the to-be-in uenced nodes, these edges are just an abstraction of the activation probability, and may represent in reality longer paths in an underlying unknown in uence graph. Importantly, this approach assumes a form of persistence: each in uencer can be activated multiple times, and the in uence process can occur over the same nodes; however, only new nodes are to be counted.

We are now ready to de ne the online in uencer marketing with persistence problem:

Problem 3.5 (OIMP). Given a set of in uencers [ ] := {1, . . . , }, a budget of trials, and a number 1 ≤ ≤ of in uencers to be activated at each trial, the objective of the online in uencer marketing with persistence (OIMP) is to solve the following optimization problem:

arg max ⊆ [ ], | |= ,∀1 1 
( ) .
As noticed before, the o ine in uence maximization can be seen as a special instance of the online one, where the budget is = 1 (single-trial campaigns).

Lemma 3.6. The OIMP problem is NP-hard.

Note that, in contrast to persistence-free online in uence maximization -considered in [START_REF] Vaswani | Di usion independent semi-bandit in uence maximization[END_REF], Wen et al., 2017] -the performance criterion used in OIMP displays the so-called diminishing returns property: the expected number of nodes activated by successive selections of a given seed is decreasing, due to the fact that nodes that have already been activated are discounted. We refer to the expected number of nodes remaining to be activated as the remaining potential of a seed. The diminishing returns property implies that there is no static best set of seeds to be selected, but that the algorithm must follow an adaptive policy, which can detect that the remaining potential of a seed is small and switch to another seed that has been less exploited. Our solution to this problem has to overcome challenges on two fronts:

(1) it needs to estimate the potential of nodes at each round, without knowing the di usion
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model nor the activation probabilities, and (2) it needs to identify the currently best in uencers, according to their estimated potentials.

In this approach, we work with parameters on nodes, instead of edges. More speci cally, these parameters represent the potentials of remaining spreads from each of the in uencer nodes. This way, we can go around the dependencies on speci c di usion models, and furthermore, we can address settings in which one does not have access to a detailed graph topology.

Remaining Potential and Good-Turing Estimator

A good algorithm for OIMP should aim at selecting the in uencer with the largest remaining potential for in uencing its children . However, the true potential value of an in uencer is a priori unknown to the decision maker.

In the following, we index trials by when referring to the time of the algorithm, and we index trials by when referring to the number of selections of the in uencer. For example, the -th spread initiated by the algorithm is noted ( ) whereas the -th spread of in uencer is noted , .

De nition 3.7 (Remaining potential ( )). Consider an in uencer ∈ [ ] connected to basic nodes. Let (1), . . . , ( ) be the set of nodes that were activated during the rst trials by the seeded in uencers. The remaining potential ( ) is the expected number of new nodes that would be activated upon starting the + 1-th cascade from :

( ) := ∈ 1 ∉ =1 ( ) ( ),
where 1{•} denotes the indicator function.

De nition 3.7 provides a formal way to obtain the remaining potential of an in uencer at a given time. The optimal policy would simply select the in uencer with the largest remaining potential at each time step. The di culty is, however, that the probabilities ( ) are unknown. Hence, we have to design a remaining potential estimator ˆ ( ) instead. It is important to stress that the remaining potential is a random quantity, because of the dependency on the spreads (1), . . . , ( ). Furthermore, due to the diminishing returns property, the sequence ( , ) ≥1 is stochastically decreasing.

Following ideas from [Good, 1953, Bubeck et al., 2013], we now introduce a version of the Good-Turing statistic, tailored to our problem of rapidly estimating the remaining potential. Denoting by ( ) the number of times in uencer has been selected after trials, we let ,1 , . . . , , ( ) be the ( ) cascades sampled independently from in uencer . We denote by ( , ) the binary function whose value is 1 if node has been activated exactly once by in uencer -such occurrences are called hapaxes in linguistics -and ( , ) the binary function whose value is 1 if node has never been activated by in uencer . The principle of the Good-Turing estimator is to estimate the remaining potential as the proportion of hapaxes within the ( ) sampled cascades: , ).

ˆ ( ) := 1 ( ) ∈ ( , ) ≠ ( 
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Albeit simple, this estimator turns out to be quite e ective in practice. If an in uencer is connected to a combination of both nodes having high activation probabilities and nodes having low activation probabilities, then successive traces sampled from this in uencer will result in multiple activations of the high-probability nodes and few of the low-probability ones. Hence, after observing a few spreads, the in uencer's potential will be low, a fact that will be captured by the low proportion of hapaxes. In contrast, estimators that try to estimate each activation probability independently will require a much larger number of trials to properly estimate the in uencer's potential. This assumption was veri ed by an analysis of the empirical activation probabilities from a Twitter dataset [START_REF] Lagrée | Algorithms for online in uencer marketing[END_REF].

While bearing similarities with the traditional missing mass concept in the bandit literature, we highlight one fundamental di erence between the remaining potential and the traditional missing mass studied in [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], which impacts both the algorithmic solution and the analysis. Since at each step, every node connected to the selected in uencer is sampled, the algorithm receives a larger feedback than in [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], whose feedback is in {0, 1}. However, contrary to [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF], the hapaxes of an in uencer ( ( , )) ∈ are independent. Interestingly, the quantity := ∈ ( ), which corresponds to the expected number of basic nodes a in uencer activates in a cascade, will prove to be a crucial ingredient for our problem.

Upper confidence bounds Following principles from the bandit literature, the GT UCB algorithm relies on optimism in the face of uncertainty. At each step (trial) , the algorithm selects the highest upper-con dence bound on the remaining potential -denoted by ( )and activates (plays) the corresponding in uencer . This algorithm achieves robustness against the stochastic nature of the cascades, by ensuring that in uencers who "underperformed" with respect to their potential in previous trials may still be selected later on. Consequently, GT UCB aims to maintain a degree of exploration of in uencers, in addition to the exploitation of the best in uencers as per the feedback gathered so far. Play in uencer ( ) and observe spread ( )

6:
Update statistics of in uencer ( ): ( ) ( + 1) = ( ) ( ) + 1 and , ( ) = ( ). 7: end for return Algorithm 4 presents the main components of GT UCB for the case = 1, that is, when a single in uencer is chosen at each step.

The algorithm starts by activating each in uencer ∈ [ ] once, in order to initialize its Good-Turing estimator. The main loop of GT UCB occurs at lines 2-7. Let ( ) be the observed spread at trial , and let , be the result of the -th di usion initiated at in uencer . At every
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other di usion scenarios to the set of experiments. First, we included the tri-valency model (TV), which associates randomly a probability from {0.1, 0.01, 0.001} to every edge and follows the IC propagation model. We also conducted experiments under the Linear Threshold (LT) model, where the edge probabilities are set like in the WC case and where thresholds on nodes are sampled uniformly from [0, 1].

Algorithms We compare GT UCB to several other algorithms. R chooses a random in uencer at each round. M D selects the node with the largest degree at each step , where the degree does not include previously activated nodes. Finally, EG corresponds to the con dence-bound explore-exploit method with exponentiated gradient update from [Lei et al., 2015]. We use EG on WC and TV weighted graphs; note that EG learns parameters for the IC model, and hence is not applicable for LT. These baselines are compared to an O that knows beforehand the di usion model together with probabilities. At each round, it runs an in uence maximization approximated algorithm -PMC for IC propagation, SSA for LT. Note that previously activated nodes are not counted when estimating the value of a node with PMC or SSA, thus, making O an adaptive strategy. All experiments are done by xing the trial horizon = 500, a setting that is in line with many real-world marketing campaigns, which are fairly short and do not aim to reach the entire population.

In Figure 3.3, we show the growth of the spread for the various approaches. For each experiment, GT UCB uses = 50 if = 1 and = 100 if = 10. First, we can see that M D is quite a strong baseline in many cases, especially for WC and LT. GT UCB results in good quality spreads across every combination of network and di usion model. Interestingly, on the smaller graph HepPh, we observe an increase in the slope of spread after initialization, particularly visible at = 50 with WC and LT. This corresponds to the step when GT UCB starts to select in uencers maximizing ( ) in the main loop. It shows that our strategy adapts well to the previous activations, and chooses good in uencers at each iteration. Interestingly, R performs surprisingly well in many cases, especially under TV weight assignment. However, when certain in uencers are signi cantly better than others, R cannot adapt to this diversity to select the best in uencers, unlike GT UCB. EG performs well on HepPh, especially under TV weight assignment. However, it fails to provide competitive cumulative spreads on DBLP. We believe that EG tries to estimate too many parameters for a horizon = 500. After reaching this time step, less than 10% of all nodes for WC, and 20% for TV, are activated. This implies that we have hardly any information regarding the majority of edge probabilities, as most nodes are located in parts of the graph that have never been explored.

Using real influence traces: Twi er The interest of this experiment is to observe actual spreads, instead of simulated ones, over data that does not provide an explicit in uence graph.

From the retweeting logs, for each active user -a user who posted more than 10 tweetswe select users having retweeted at least one of 's tweets. By doing so, we obtain the set of potentially in uenceable users associated to active users. We then apply the greedy algorithm to select the users maximizing the corresponding set cover. These are the in uencers of GT UCB and R . M D is given the entire reconstructed network, that is, the network 

Follow-up Contributions

Follow-up Contributions

Considering in uence dynamics in an online explore-exploit setting allows us to revisit some algorithms from the bandit literature. We considered two scenarios: when in uence maximization depends on the context of the message, and how to design online recommender systems while taking into account user pro le in uence dynamics.

Contextual Online Influence Maximization

The following is a brief outline of [START_REF] Iacob | Contextual bandits for advertising campaigns: A di usion-model independent approach[END_REF], to be presented at SDM. Within an in uence maximization campaign, the manner in which the information may be formulated, presented, or di used may vary from round to round, and the context variations will lead to di erent propagation dynamics. For example the focus of a campaign may be political, and individual messages may take di erent contexts (news, data analysis, multimedia content).

Adapting the online in uence maximization problem to contexts directs us to the contextual multi-armed bandits, and speci cally their linear formulation. In the contextual multi-armed bandit formulation, at each round , a context is ∈ ℝ received (adversarially). The reward is then a linear combination between the context and some unknown pro le vector ∈ ℝ , plus some noise: = , , + .

In the literature, UCB-like approaches use linear regression to estimate the pro le vector ˆ , , and the upper con dence bound depends on the covariance matrix. The algorithms that are generally used in the literature are some variation of LinUCB (Linear Upper Con dence Bound) [START_REF] Chu | Contextual bandits with linear payo functions[END_REF]. The setting can be extended to generalized linear models [START_REF] Li | Provably optimal algorithms for generalized linear contextual bandits[END_REF].

Applying to our case, each in uencer will change the base probabilities of each basic node by a function , depending on , , and the number of selections of in uencer , , :

Follow-up Contributions

• B is an arbitrary convex subset of ℝ , e.g., the unit ball ≡ {v ∈ ℝ : v 2 ≤ 1}.

We show that, in all cases, the aggregated expected reward (i.e., the sum of ratings over time) depends linearly on the matrix of initial user pro les 0 . This motivated our exploration of the classic linear bandit optimization problem, such as LinREL [START_REF] Dani | Stochastic linear optimization under bandit feedback[END_REF], Thompson Sampling [START_REF] Agrawal | Thompson sampling for contextual bandits with linear payo s[END_REF] and LinUCB. Approaches such as LinREL are similar to bandit approaches, with the di erence that, instead of having a uni-dimensional con dence bound, the actual bound is obtained by an optimization on a 1 or 2 constraint ellipsoid around the estimation. Thompson Sampling samples u ( ) from their posterior distributions, updated after the feedback has been obtained -in that sense, the exploration is inherent in the uncertainty of the distribution.

For LinREL and Thompson sampling we obtained the same regret bounds that the ones obtained in the static case, depending on the number of rounds : a Õ ( √ ) regret bound for LinREL, and the same Õ ( √ ) bound on the Bayesian regret for Thompson Sampling.

In the general case, the optimization around the con dence ball is computationally expensive. Importantly, we show that we can obtain e cient polynomial algorithms2 when the optimization is on 1 constraints and B is in one of the two above cases ( nite set and convex set). Unfortunately, while applying the classical LinUCB is a possibility, the resulting optimization is non-convex; SDP relaxations can be used, but without any theoretical guarantee.

Research Perspectives

We presented in this manuscript algorithms for tree decomposition for answering queries on probabilistic graphs, and multi-armed bandit approaches to solve the in uence maximization problems in the case where little is known about the underlying process and social network topology. The inherent uncertainty in the settings of both problems renders the classical algorithms unusable, as we have shown in the previous chapters. It is not the last word on the matter: there is exciting potential in extending decompositions to generic query processing on graphs and -in the in uence maximization case -when using more powerful sequential learning approaches such as reinforcement learning coupled with representation learning.

Leveraging structure for graph problems We now know that the structure of data matters, at least when it comes to graphs. We noticed this rst in our research on source-to-target reachability in uncertain graphs [START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF]. There, we devised an index that allows faster (approximate) query answering of probabilistic reachability queries, by creating a tree decomposition of the data. How e cient such an index is is directly related to the treewidth of the graph -informally, a quantity measuring how "close" a graph is to a tree. Treewidth is a very important theoretical tool to establish xed-parameter tractability: many problems that are non-polynomial become linear when data is of bounded treewidth [Courcelle, 1992].

In practice, however, data is not as well-behaved as we would like. As we saw before [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF], only some graphs have (relatively) low treewith -among them, transport graphs. But, for low-treewidth graphs, even polynomial algorithms can be considerably faster. For instance, all-pairs shortest paths algorithms become much faster in low-treewidth graphs [START_REF] Planken | Computing all-pairs shortest paths by leveraging low treewidth[END_REF], and using tree decompositions and exploiting on low treewith areas in part of the graphs can signi cantly increase single-source shortest path computations [START_REF] Akiba | Shortest-path queries for complex networks: Exploiting low tree-width outside the core[END_REF]. Recently, a promising research direction has started to gain traction, called "FPT within P" -which aims for polynomial algorithms that become linear-time and have a polynomial dependency in a graph parameter [START_REF] Giannopoulou | Polynomial xed-parameter algorithms: A case study for longest path on interval graphs[END_REF]: some examples of such algorithms are Gaussian elimination [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF] and diameter and radius calculation [START_REF] Abboud | Approximation and xed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF]. Treewidth is not the only graph parameter that may be of interest -for denser graphs, clique-width upper bounds are also established via decompositions [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF] and hence have potential to be applied here; note that however, for queries on probabilistic data, only treewidth is the measure of interest. This direction is extremely promising in today's massive data environment, where most algorithms that cost more than linear time become prohibitive. Moreover, no such research has started for the generic, semiring-based provenance.

To realize this promise, an important step in the short term is to reproduce the same experimental study as in [START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] -namely, decompositions for cliquewidth upper-bounds.

As in the case of treewidth, such decompositions would allow for more succinct representations of graphs, and the hope is that they allow processing of other types of queries and on denser graphs. Hence our more long term objective is to study the types of queries possible under other graph measures, such as cliquewidth.

Going beyond bandits for influence maximization On the other hand, in in uence maximization we have established that good results on in uence maximization can be obtained even when the structure is not known. In the bandit setting, however, the assumption is that previous actions do not have a consequence on future ones -put otherwise, bandits are without state. As we have seen previously, spread in online in uence maximization have a tendency to decrease with the number and size of previous activations -the diminishing returns property. Adding this information to the decision process leads naturally into the domain of reinforcement learning [Szepesvári, 2010].

When the state space includes a potentially in nitely countable number of contexts, in uencers, and activations usual tabular approaches do not work. Instead, when the state space is potentially very large the state transitions and rewards are approximated using function approximation. When assuming linear functions, linear Markov Decision Processes can use upper con dence bounds to minimize regret [START_REF] Yang | Sample-Optimal Parametric Q-Learning Using Linearly Additive Features[END_REF]. Designing the state space can still be challenging, but it can be aided by recent advances in graph representation learning when applied to combinatorial optimization over graphs -of which in uence maximization is a particular case [START_REF] Dai | Learning combinatorial optimization algorithms over graphs[END_REF], Lattimore et al., 2020, Cappart et al., 2021]. Designing e cient and e ective reinforcement learning approaches for the contextual in uence maximization setting is still a sparse research topic with exciting potential.

In this context, we are currently working of extending the regret analysis of contextual online in uence maximization, presented in [START_REF] Iacob | Contextual bandits for advertising campaigns: A di usion-model independent approach[END_REF], to upper-con dence bounds for function approximation in linear Markov Decision Processes, especially as it pertains to algorithms based on Least Squares Value Iteration [START_REF] Jin | Provably e cient reinforcement learning with linear function approximation[END_REF] and posterior sampling approaches [START_REF] Osband | Generalization and exploration via randomized value functions[END_REF]. In the more long term, we aim to investigate how graph representations such as vectorial representations (embeddings) can be merged with regret minimizing algorithms.

The research presented in this manuscript -along with the perspectives described above -can be thought of as being a particular case of online optimization problems over graphs with uncertain or incomplete information. Some examples of this kind of optimization where online feedback can be integrated include link recommendations, minimization of undesired information ow, or network vaccination. The two threads -succinct representations of graphs and sequential optimization -can be thought as complementary. For example, indexes on graph data may allow smaller models for sequential learning processes to converge quicker, while online feedback loops -sometimes with human-in-the-mix approaches -can help with learning heuristics for indexing graphs.

Titre: Graphes et incertitude Mots clés: fouille données graphe, données incertaines, bandit manchots Résumé: Dans de nombreux domaines, les graphes sont l'un des moyens les plus intuitifs de représenter les données, et de nombreuses tâches importantes peuvent être traduites en requêtes de graphes et en problèmes combinatoires sur les graphes. Dans la plupart des scénarios du monde réel, les données ou les modèles de graphes comportent une certaine incertitude.

Dans ce manuscrit, nous abordons deux aspects des défis qui se présentent lorsque les données ou les modèles de graphes sont incertains. Tout d'abord, nous discutons de la façon dont les requêtes sur le graphe changent lorsque les bords deviennent incertains ; pour cela, nous introduisons le concept de décompositions d'arbres pour le traitement des ces requêtes. De plus, nous faisons le lien entre l'efficacité des requêtes et le concept de largeur d'arbre. Dans la deuxième partie du manuscrit, nous discutons de la manière de résoudre un problème de graphe bien connu -la maximisation de l'influence sociale -dans le cas où l'on sait peu de choses sur le graphe sous-jacent sur lequel l'influence est exercée. Nous discutons de la manière dont des approches telles que les bandits manchots peuvent être appliquées.

Title: Graphs and Uncertainty Keywords: graph data mining, probabilistic data, multi-armed bandits Abstract: In many domains, graphs are one of the most intuitive ways of representing data, and many important tasks can be translated into graph queries and combinatorial problems on graphs. In most real-world scenarios, graph data or models have some uncertainty attached.

In this manuscript, we discuss two aspects of challenges that occur when graph data or models are uncertain. First, we discuss how querying the graph changes when edges become uncertain; for this, we introduce the concept of tree decompositions for query processing on uncertain graphs. Moreover, we make the link between query efficiency and the concept of treewidth. In the second part of the manuscript, we discuss how to solve a well-known graph problem -social influence maximization -in the case where little is known about the underlying graph over which influence is performed. We discuss how approaches such as multiarmed-bandits can be applied.
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 1 Figure 1.2: Illustrating (a) a probabilistic graph and (b) a possible world.[START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] 

Figure 1 .

 1 Figure 1.2 shows a probabilistic graph and a possible world. A probabilistic graph has an exponentially large number of possible worlds: Proposition 2.3. Let G be a probabilistic graph. Let PW(G) denote the set of non-zero probability possible worlds of G = ( , , ); formally, PW(G) = { | G, Pr( ) > 0 }. Then ∈ |supp( ( ))| ≤ |PW(G)| ≤ ∈ (|supp( ( ))| + 1), and ∈PW( G) Pr[ ] = 1.
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 22 Figure 2.2: Decomposition into independent graphs of the graph in Fig. 1.2.[START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] 

Figure 2 . 3 :

 23 Figure 2.3: Example undirected, unlabeled, graph (left) and decomposition of width 3 (right).[[START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] 

Figure 2

 2 Figure 2.4: Graph triangulation for the graph of Figure 2.3 (left) and its elimination ordering(right).[START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] 

  Figure 2.4 (right) shows a possible elimination ordering (7, 1, 6, 3, 5, 2, 4) of the graph of Figure 2.3. The elimination procedure adds a single edge, when processing node 6, between nodes 3 and 5. The resulting triangulation is the graph on the left of Figure 2.4. Elimination orderings are connected to treewidth by the following result: Theorem 2.19. [Bodlaender and Koster, 2010] Let = ( , ) a graph, and ≤ . The following are equivalent: (i) has treewidth .

  Figure2.5: Treewidth estimation of di erent algorithms (logarithmic scale).[START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] 

  Figure 2.6: An abstract view of partial decompositions. Partial decompositions are formed of a core graph, which interfaces with -trees through -cliques (the fringe).[[START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] 

  Figure2.7: Zoomed view of decompositions up to width 25.[START_REF] Maniu | An experimental study of the treewidth of real-world graph data[END_REF] 

  T s.t. level( ) = ℎ do

  Figure 2.10: Example of dependent path lineages and annotated lineage trees.[[START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF] 

  Fig. 12. Relative error vs. time (log-log axis)
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 1011 Fig. 10. Proportion of retrieve (black) out of the total query time (white) (log ~-axis scale)

Figure 3

 3 Figure 3.1: The OIM framework.

  return { | = 1 . . . },

  Figure 3.2: Three in uencers with associated activation probabilities ( ).

Algorithm 4 -

 4 GT UCB ( = 1)Require: Set of in uencers [ ], time budget 1: initialization play each in uencer ∈ [ ] once, observe the spread ,1 , set = 1 2: for = + 1, . . . , do

  Figure 3.4: Twitter spread against rounds: (left) = 1 (right) = 10.

The case of directed graphs is more complex; the tools that we use (in particular, tree decompositions) are more robust and better understood in the setting of undirected graphs[START_REF] Robertson | Graph minors. III. Planar tree-width[END_REF] than in that of directed ones[Safari, 

2005] 

https://github.com/smaniu/treewidth

Partial decompositions were called xed-width decompositions in[START_REF] Maniu | An indexing framework for queries on probabilistic graphs[END_REF]. There is no functional di erence.

, ( ) = ( , , , ) .

Implementation at https://github.com/neu-spiral/OnlineSocialRecommendations.

Online In uence Maximization with Persistence

step > , we recompute for each in uencer ∈ [ ] its index ( ), representing the upper con dence bound on the expected reward in the next trial. The computation of this index uses the previous samples ,1 , . . . , , ( ) and the number of times each in uencer has been activated up to trial , ( ). Based on the result of Theorem 3.9, the upper con dence bound is set as:

where ˆ ( ) is the Good-Turing estimator and ˆ ( ) :=

) is an estimator for the expected spread from in uencer .

Then, in line 4, GT UCB selects the in uencer ( ) with the largest index, and initiates a cascade from this node, yielding ( ). We stress again that ( ) provides only the Ids of the nodes that were activated, with no information on how this di usion happened in the hidden di usion medium. Finally, the statistics associated to the chosen in uencer ( ) are updated.

Extensions for the case > 1 Algorithm 4 can be easily adapted to select > 1 in uencers at each round. Instead of choosing the in uencer maximizing the Good-Turing UCB in line 4, we can select those having the largest indices. Note that ( ) then becomes a set of in uencers. In the beginning, the algorithm can select in some prede ned (random) order in uencers at each round, for initialization. It is required that all in uencers be activated at least once for initialization -before entering the main loop of the GT UCB algorithm -in order for the estimators ˆ ( ) to be well de ned. How this initial stage is done is not essential and may depend on the speci c application scenario. At each round, a di usion is initiated from the associated nodes and, at termination, all activations are observed. Similarly to [START_REF] Vaswani | Di usion independent semi-bandit in uence maximization[END_REF], the algorithm requires feedback to include the in uencer responsible for the activation of each node, in order to update the corresponding statistics accordingly.

Theoretical Analysis

In the following, to simplify the analysis and to allow for a comparison with the oracle strategy, we assume that the in uencers have non intersecting support. This means that each in uencer's remaining potential and corresponding Good-Turing estimator does not dependent on other in uencers. Hence, for notational e ciency, we also omit the subscript denoting the in uencer . After selecting the in uencer times, the Good-Turing estimator is simply written ˆ = ∈ ( ) . We note that the non-intersecting assumption is for theoretical purposes onlyour experiments are done with in uencers that can have intersecting supports.

The classic Good-Turing estimator is known to be slightly biased (see for example Theorem 1 in [START_REF] Mcallester | On the convergence rate of good-turing estimators[END_REF]). We show in Lemma 3.8 that our remaining potential estimator adds an additional factor = ∈ ( ) to this bias: Lemma 3.8. The bias of the remaining potential estimator is

Since is typically very small compared to | |, in expectation, the estimation should be relatively accurate. However, in order to understand what may happen in the worst-case, we need to characterize the deviation of the Good-Turing estimator: Theorem 3.9. With probability at least 1 -, for = ∈ ( ) and := 1 + √ 2 log(4/ ) + 1 3 log 4 , the following holds:

--≤ -ˆ ≤ .

Note that the additional term appearing in the left deviation corresponds to the bias of our estimator, which leads to a non-symmetrical interval.

We can now provide an analysis of the waiting time (de ned below) of GT UCB, by comparing it to the waiting time of an oracle policy, following ideas from [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: nite time analysis and macroscopic optimality[END_REF]. Let ( ) be the remaining potential of in uencer at trial number . This di ers from , , which is the remaining potential of in uencer once it has been played times.

De nition 3.10 (Waiting time). Let = ∈ ( ) denote the expected number of activations obtained by the rst call to in uencer . For ∈ (0, 1), the waiting time ( ) of GT UCB represents the round at which the remaining potential of each in uencer is smaller than . Formally,

The above de nition can be applied to any strategy for in uencer selection and, in particular, to an oracle one that knows beforehand the value that is targeted, the spreads ( , ) ∈ [ ],1≤ ≤ sampled up to the current time, and the individual activation probabilities ( ), ∈ . A policy having access to all these aspects will perform the fewest possible activations on each in uencer. We denote by * ( ) the waiting time of the oracle policy. We are now ready to state the main theoretical property of the GT UCB algorithm.

Theorem 3.11 (Waiting time). Let min := min ∈ [ ] and let max := max ∈ [ ] . Assuming that min ≥ 13, for any ∈ 13 min , 1 , if we de ne * := * -13 min , with probability at least 1 -2 max the following holds:

UCB ( ) ≤ * + max log(4 * + 11 max ) + 2 .

Experimental Results

We conducted experiments on two types of datasets: (i.) two graphs, widely-used in the in uence maximization literature, and (ii.) a crawled dataset from Twitter, consisting of tweets occurring during August 2012. All methods are implemented in C++ 1

In [Lei et al., 2015] we compared the solutions on the Weighted Cascade (WC) instance of IC, where the in uence probabilities on incoming edges sum up to 1. More precisely, every edge ( , ) has weight 1/ where is the in-degree of node . In [START_REF] Lagrée | Algorithms for online in uencer marketing[END_REF] we added two 1 The code is available at https://github.com/smaniu/oim. connecting active users to re-tweeters.

Maximizing In uence in Low Information Settings

To test realistic spreads, at each step, once an in uencer is selected by GT UCB, a random cascade initiated by that in uencer is chosen from the logs and we record its spread. This provides realistic, model-free spread samples to the compared algorithms. Since Twitter only contains successful activations (re-tweets) and not the failed ones, we could not test against EG, which needs both kinds of feedback.

In Fig. 3.4, we show the growth of the di usion spread of GT UCB against M D and R

. Again, GT UCB uses = 50 if = 1 and = 100 if = 10. We can see that GT UCB outperforms all the baselines, especially when a single in uencer is selected at each round. We can observe that M D performs surprisingly well in both experiments. We emphasize that M D relies on the knowledge of the entire network reconstructed from retweeting logs, whereas GT UCB is only given a set of (few) xed in uencers.

Maximizing In uence in Low Information Settings

The function is introduced to take into account the in uencer fatigue, i.e., the fact that, with each activation, the number of new nodes in uences tends to decrease.

In [START_REF] Iacob | Contextual bandits for advertising campaigns: A di usion-model independent approach[END_REF], we designed two linear bandit algorithms -performing better than both non-contextual and simple linear bandit algorithms -working on two di erent assumptions:

1. The rst is assuming that the logarithm of rewards is normally distributed -in other words, we are more interested in predicting the scale of the cascade rather than its size. The resulting algorithm, LogNorm-LinUCB, is an application of LinUCB on logarithms of rewards, and keeps the same regret ratio.

2. The second is an assumption that the distribution of each node's cumulative count of activations is Poisson with intensities =1 ∈ ( , , , ). We further assume that the remaining potential also follows a Poisson distribution with intensities ( , , ( )) ; in this case, the Good-Turing estimator can be adapted to account the distribution and used as an estimator into a generalized linear model (algorithm GLM-GT-UCB).

Using Influence for Item Recommendation

The following is a brief outline of [START_REF] Maniu | Bandits under the in uence[END_REF], presented at ICDM. The in uence mechanics between users can also be a proxy for modeling user preference dynamics, and can be part of recommender systems which learn interests to recommend items (documents, videos, etc.) to users [START_REF] Lu | Optimal recommendations under attraction, aversion, and social in uence[END_REF]. Sequential learning approaches, such as the multi-armed bandit setting brie y described above, are natural algorithmic toolboxes for this setting.

In this work, we modeled the rating users give as a linear relationship between their hidden interest and the item being recommended, in a time-discrete recommender system. At each ∈ ℕ, users ∈ [ ] have user pro les represented by -dimensional vectors u ( ) ∈ ℝ . Then, if v ( ) ∈ B (some subset of ℝ ) is the pro le of the item recommended to at time , ratings satisfy:

Importantly, at each time ∈ ℕ, user pro les evolve according to:

where (a) u 0 ∈ ℝ is user 's inherent (static) pro le, (b) ∈ [0, 1] captures the probability that users act based on their inherent pro les, and (c) ∈ [0, 1], , ∈ [ ], where = 1, capture the probability user is in uenced by the pro le of user .

Item suggestions v ( ), ∈ [ ] are selected from a set B ⊆ ℝ . We consider two possibilities:

• B is a nite subset of ℝ , i.e., it is a "catalog" of possible recommendations.