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Abstract

In the past decades, concerns about the societal impact of machine learning have been
growing. Indeed, if machine learning has proven its usefulness in science, day-to-day
applications, and many other domains, its success is principally due to the availability
of large datasets. This raises two concerns, the first about the confidentiality of the
training data, and the second, about possible discrimination in a model’s predictions.
Trustworthy machine learning aims at providing technical answers to these concerns.

Unfortunately, guaranteeing the privacy of the training data and the fairness of the
predictions often decreases the utility of the learned model. This problem has drawn
significant interest in the past years, but most of existing methods (usually based
on stochastic gradient descent) tend to fail in some common scenarios, like training
of high-dimensional models. In this thesis, we study how structural properties of
machine learning problems can be exploited to improve the trade-off between privacy
and utility, and how this can impact the fairness of the predictions.

The first two contributions of this thesis are two new differentially private optimiza-
tion algorithms, that are both based on coordinate descent. They aim at exploiting
different structural properties of the problem at hand. The first algorithm is based on
stochastic coordinate descent, and can exploit imbalance in the scale of the gradient’s
coordinates by using large step sizes. This allows our algorithm to obtain useful mod-
els in difficult problems, where stochastic gradient descent quickly stalls. The second
algorithm is based on greedy coordinate descent. Its greedy updates allow to focus
on the most important coordinates of the problem, which can sometimes drastically
improve utility (e.g., when the solution of the problem is sparse).

The third contribution of this thesis studies the interplay of differential privacy and
fairness in machine learning. These two notions have rarely been studied simultane-
ously, and there are growing concerns that differential privacy may exacerbate unfair-
ness. We show that group fairness measures have interesting regularity properties,
provided that the predictions of the model are Lipschitz-continuous in its parame-
ters. This result allows to derive a bound on the difference in fairness levels between
a private model and its non-private counterpart.
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Résumé

Au cours des dernières décennies, les préoccupations quant à l’impact sociétal de
l’apprentissage automatique se sont multipliées. En effet, si l’apprentissage automa-
tique a prouvé son utilité dans la science, dans la vie quotidienne, ainsi que dans
de nombreux autres domaines, son succès est principalement dû à la disponibilité
de grands ensembles de données. Cela soulève deux préoccupations : la première
concerne la confidentialité des données d’entrâınement et la seconde, la possibilité
de discrimination dans les prédictions d’un modèle. Le domaine de l’apprentissage
automatique fiable vise à apporter des réponses techniques à ces préoccupations.

Malheureusement, garantir la confidentialité des données d’entrâınement, ainsi que
l’équité des prédictions, diminue souvent l’utilité du modèle appris. Ce problème
a suscité un grand intérêt au cours des dernières années. Cependant, la plupart
des méthodes existantes (généralement basées sur la descente de gradient stochas-
tique) ont tendance à échouer dans des scénarios courants, tels que l’entrâınement de
modèles en grande dimension. Dans cette thèse, nous étudions comment les propriétés
structurelles des problèmes d’apprentissage automatique peuvent être exploitées pour
améliorer le compromis entre la confidentialité et l’utilité, et comment cela peut af-
fecter l’équité des prédictions.

Les deux premières contributions de cette thèse sont deux nouveaux algorithmes
d’optimisation respectant la confidentialité différentielle, tous deux basés sur la de-
scente par coordonnées, visant à exploiter les propriétés structurelles du problème.
Le premier algorithme est basé sur la descente par coordonnées stochastique et est
en mesure d’exploiter le déséquilibre dans l’échelle des coordonnées du gradient en
utilisant des grands pas d’apprentissage. Cela lui permet de trouver des modèles per-
tinents dans des scénarios difficiles, où la descente de gradient stochastique échoue. Le
deuxième algorithme est basé sur la descente par coordonnées gloutonne. Les mises à
jour gloutonnes permettent de se concentrer sur les coordonnées les plus importantes
du problème, ce qui peut parfois améliorer considérablement l’utilité (par exemple,
lorsque la solution du problème est parcimonieuse).

La troisième contribution de cette thèse étudie les interactions entre confidentialité
différentielle et équité en apprentissage automatique. Ces deux notions ont rarement
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été étudiées simultanément, et il existe des inquiétudes croissantes selon lesquelles
la confidentialité différentielle pourrait nuire à l’équité des prédictions. Nous mon-
trons que quand les prédictions du modèle sont lipschitziennes (par rapport à ses
paramètres), les mesures d’équité de groupe présentent des propriétés de régularité
intéressantes, que nous caractérisons. Ce résultat permet d’obtenir une borne sur la
différence de niveaux d’équité entre un modèle privé et le modèle non-privé corre-
spondant.
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Merci Éric de m’avoir donné l’opportunité de travailler avec toi en post-doc. Je viens
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Chapter 1

Introduction

The past few decades have been marked by unprecedented advances in artificial intel-
ligence, driven by machine learning. This success is due to the remarkable alignment
of three factors: the development of more expressive model architectures, together
with a gigantic increase in computing power, and, most importantly, the availabil-
ity of voluminous data. This has led to the utilization of machine learning in many
domains. Machine learning has notably become the backbone of many industrial
products, ranging from recommendations in social networks to fraud detection or
self-driving cars. It is also at the core of many important scientific discoveries across
many fields of research like medicine, pharmacy, social sciences, and many others.

In most of these applications, there is a serious tension between the importance of the
possible discoveries, the privacy of individuals whose data is used for training models,
and the fairness of the predictions. Indeed, it is now well-known that machine learning
models trained on sensitive data tend to leak confidential information. Similarly, usual
model training procedures often transcribe and amplify underlying discrimination
in the data, and can even create new sources of discrimination. While machine
learning-enabled discoveries can be very profitable for humanity (e.g., discovery of
new drugs or risk management), failing to address these privacy and fairness issues
can have dramatic consequences on individuals (e.g., blackmailing, discrimination,
public shame, and, in extreme cases, fatality). The increased awareness of the risks
incurred by using sensitive data at such a large scale has given birth to the fields of
privacy-preserving and fair machine learning.

To preserve data privacy, new algorithms for training machine learning models have
emerged. These algorithms are designed to guarantee a robust notion of privacy,
that has now become standard: differential privacy. Yet, training models in this way
ineluctably results in more imprecise models. There is thus a trade-off between data
privacy and the models’ utility. This trade-off is harsh, and in many cases (e.g., for
high-dimensional models), existing algorithms have trouble learning useful models
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while guaranteeing meaningful privacy. Furthermore, there are growing concerns
that these differentially private training algorithms may result in disparate impact,
which could exacerbate discrimination even more.

In this thesis, we explore how structural properties of the problem at hand influence
the privacy-utility trade-off, and the impact of enforcing privacy on the fairness of pre-
dictions in machine learning. We propose new differentially private training methods
based on coordinate descent. These methods can improve the privacy-utility trade-off
beyond known lower bounds by exploiting structural properties like imbalance in the
model’s parameters or sparsity of the solution. We then study the impact of privacy
on fairness and derive upper bounds on the difference in fairness between private and
non-private models.

1.1 Context on Supervised Learning

In this thesis, we focus on supervised learning. In this paradigm of machine learning,
we aim at predicting a label based on some features. This is a very general framework,
as labels can take many different forms. It includes many different tasks, such as:

• classification: categorical labels (e.g., identifying fractured bones on an X-ray),

• regression: continuous labels (e.g., predicting the price of a house),

and some other problems, notably in computer vision (e.g., image segmentation),
that we do not consider in this thesis.

To make this prediction, we train a model on a set of training data. This data
contains labeled records (i.e., pair of features and label), that all describe the same
unknown underlying phenomenon. We assess the soundness of a model’s prediction
on a training record with a loss function. This function measures how close the
model’s predicted label is to the true label: it is small if the predicted label is right,
and high otherwise. For instance, in regression tasks, this can simply be the square
of the difference between these two labels.

To measure the fitness of a model on a training dataset, we use the average value
of the loss function over each record. This value is called the empirical risk, and it
gives a measure of utility of the model: a small empirical risk means that the model’s
predictions on the training data are, on average, good.

Empirical Risk Minimization. Learning a model amounts to finding a model
that has a small empirical risk. Typically, we define an hypothesis class, that is a set
of models (e.g., linear models), and search for the one whose empirical risk is minimal.
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This process is called empirical risk minimization. To solve this problem, we generally
chose a parametric hypothesis class, and we optimize over the parameters of this class.
Since we minimize the empirical risk, it may happen that learned models overfit the
data (i.e., they memorize training data, but have poor performance on unseen data).
A common practice to avoid overfitting is to add a regularization term to the empirical
risk and minimize this regularized version. This also allows for enforcing desirable
structural properties (e.g., sparsity) on the learned model.

The regularized empirical risk minimization formulation encompasses many different
problems. It can notably be instantiated to Ridge regression, LASSO, (dual) SVM,
or deep neural networks.

Minimizing the (Regularized) Empirical Risk. The regularized empirical risk
minimization is a composite optimization problem with two terms: the empirical risk,
and the regularizer. These two terms have different regularity properties. The former
is differentiable, and the latter is simple enough so that it can be dealt with proximal
(projection-like) tools. The most widely used algorithm for solving this problem is
surely (proximal) gradient descent, and its stochastic variant. This algorithm starts
with a random model from the hypothesis class and iteratively refines it by updating
its parameters. At each iteration, it computes the gradient of the loss (or a stochastic
estimate) at the current iterate and uses it to improve the model.

Some problem have particular structure, that can be leveraged. Parts of the models
may be more important than others, or have a different scale.Unfortunately, gradient
descent is indifferent to these structural properties. As such, updating the model
part by part may help to grasp its structural properties more finely. This has sparked
interest in coordinate descent methods, that are capable of exploiting this structure.
These methods are indeed extremely efficient on problems where coordinates have
different scales, where gradient descent often struggles to make any progress.

These coordinate descent methods are the center of this thesis. In particular, we will
show that their aforementioned properties can help to find better solutions when the
privacy of data matters.

1.2 The Challenge of Privacy-Preserving

Machine Learning

Privacy issues did not start with machine learning. They inevitably arise when col-
lecting and processing personal data. Quantifying the information leakage incurred
by releasing the result of a computation on a database has thus been at the core
of a multitude of works. One of these proposed differential privacy, which is now
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well-adopted, and generally recognized as a very robust measure of privacy.

Differential Privacy. Differential privacy emerged from the idea that releasing
the result of a computation on a database should not reveal too precisely whether a
specific individual was part of the database or not. The privacy leakage is measured by
looking at how the probability of observing a given output is impacted when a record
of the database is replaced by another. Differential privacy requires such replacement
not to affect this probability by more than a constant multiplicative factor, that is
parameterized by a value called the privacy budget.

Given the above intuition, we see that any (non-trivial) data-dependent deterministic
algorithm cannot achieve any differential privacy guarantee. Therefore, to satisfy dif-
ferential privacy, randomness must be incorporated into the algorithm. This ensures
that an external observer cannot know too confidently if what they observe is due to
this randomness, or to the content of the database. Of course, this process reduces
the quality of the answer. While an observer will indeed not be able to reconstruct the
sensitive information, the result will be imprecise. This highlights the fundamental
tension between privacy and utility1: this is generally referred to as the privacy-utility
trade-off. This trade-off can be seen as the answer to the following question: under a
fixed privacy budget, what is the best utility that can be achieved?

Differentially Private Empirical Risk Minimization. Training a machine learn-
ing model on a dataset is typically done using optimization algorithms that iteratively
query a database, and use the result of these queries to find a good model. As such,
machine learning suffers from the curse described above: to release a useful model,
sensitive information must be leaked.

In our supervised learning setting, differentially private optimization algorithms have
been proposed for solving the empirical risk minimization problem. Notably, the
differentially private variant of (stochastic) gradient descent is widely used in practice.
This algorithm works similarly to the (stochastic) gradient descent algorithm, except
that, at each iteration, it adds noise to the gradient before performing the gradient
step. This guarantees that the algorithm is differentially private. Of course, this has
an impact on its utility, and, as for any data-dependent computation, finding the
exact result with a differentially private algorithm is not possible.

Privacy-Utility Trade-Off in Machine Learning. The privacy-utility trade-
off of differentially private empirical risk minimization has been extensively studied.
Tight lower bounds have been derived for the best possible utility (measured as the

1There, the term “utility” is a generic measure of the precision of the result. Depending on the
applications, there exist different ways of measuring it.
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excess empirical risk) under a given privacy budget. Therefore, for any differentially
private algorithm solving the empirical risk minimization problem, there exists a
problem for which the utility of the algorithm necessarily decreases polynomially in
the number of parameters of the model, but improves as the number of training
records increases. Notably, the utility achieved by differentially private (stochastic)
gradient descent matches these lower bounds.

However, these lower bounds are worst-case bounds and hold under very general
assumptions. It may therefore be possible to achieve better utility on some problems
that satisfy additional assumptions. In a sense, and similarly to how choosing the
right method for the right problem is important for computational efficiency, choosing
the right method for the right problem is also crucial for using the privacy budget
efficiently. This observation is at the core of the methods we explore in this thesis.

Interplay between Privacy and Fairness. In additional to privacy issues, con-
cerns about fairness of machine learning have risen in the past decade. Fairness of a
model’s prediction can be measured in different ways, depending on the nature of the
task. One category of fairness notions is group fairness, that measure discrepancies
in a model’s performance (for some metric) on different groups of the population.

Multiple factors can cause unfair predictions, from discrimination in the data collec-
tion process, to inappropriate algorithm design. Training models under differential
privacy affects the predictions of the model, and may thus be one of these factors.
This is often called the disparate impact of differential privacy. To this day, it is still
unclear whether this disparate impact is fundamental in differentially private machine
learning, or if it is due to the design of current differentially private training methods.

1.3 Contributions

This thesis explores new optimization algorithms, that can be used for training ma-
chine learning problems in a differentially private way. While existing algorithms can,
in theory, learn differentially private models optimally (in terms of the privacy-utility
trade-off), there are still many problems where learning a non-trivial model privately
is difficult. We argue that some problems have a particular structure, that can be
exploited to obtain better private models under the same privacy budget.

As concerns about the disparate impact of differential privacy are growing, we also
investigate the impact of differential privacy on fairness. In particular, we derive an
upper bound on this impact, and show that, depending on the problem structure,
this upper bound can give meaningful guarantees.

This thesis is thus dedicated to the study of differentially private machine learning,
where we aim at exploring what can be done when more is known about the problem
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than the usual, very general, assumptions. In short, we aim at answering the following
question:

How can structural properties of machine learning problems can be ex-
ploited to improve the privacy-utility trade-off, and how do they impact
the fairness of the resulting model?

To answer this question, we start by designing and analyzing two new differentially
private algorithms for solving the empirical risk minimization problem. These two
algorithms are variants of the coordinate descent algorithm, with two different rules
for selecting the coordinate to update: random selection, and greedy selection. We
show that these algorithms can improve utility by exploiting structural properties of
the problem like imbalancedness of the gradient coordinates or sparsity of the solution.
We then turn to study the fairness of privately learned models. To this end, we show
that many group fairness notions are pointwise Lipschitz, and use this property to
derive guarantees on the difference between fairness between private models and their
non-private counterparts.

1.4 Outline of the Thesis

The first two chapters introduce the mathematical background that we use throughout
the thesis.

• In Chapter 2 we introduce the empirical risk minimization problem. We de-
scribe the convexity and (coordinate-wise) smoothness assumptions, and de-
scribe proximal (stochastic) gradient descent and proximal coordinate descent.
We discuss the convergence properties of these algorithms for composite prob-
lems, and explain how coordinate descent is able to exploit coordinate-wise
smoothness to converge faster than gradient descent.

• Then, Chapter 3 turns to the differentially private variant of empirical risk
minimization. We present differential privacy, and show how a differentially
private variant of stochastic gradient descent can be used to solve empirical
risk minimization privately. We describe existing lower bounds on the privacy-
utility trade-off of differentially private empirical risk minimization, and show
that, under the usual assumptions, it is notably matched by the differentially
private stochastic gradient descent algorithm.

The next three chapters of this thesis describe our three contributions. Chapters 4
and 5 are dedicated to differentially private coordinate descent methods, and Chap-
ter 6 studies the interplay of differential privacy with fairness.
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• Chapter 4 introduces differentially private proximal coordinate descent. At
each iteration, one coordinate is randomly selected and updated with a noisy
proximal gradient step. These noisy updates allow the algorithm to satisfy
differential privacy. The utility of this algorithm is analyzed, and we show that
it can adapt to the coordinate-wise smoothness of the objective function to
outperform differentially private stochastic gradient descent.

• Chapter 5 studies differentially privacy greedy coordinate descent. At each it-
eration, one coordinate is selected greedily as the (noisy) largest entry of the
gradient. We analyze its utility on smooth objective, and show that this se-
lection rule allows to reduce the dependence of utility on the dimension from
polynomial to logarithmic in unconstrained problems. This notably happens
when the structure of the problem is favorable (e.g., for problems with sparse
solutions, or imbalanced coordinates): the algorithm can exploit this structure
to beat the (general) lower bounds. Importantly, this phenomenon arises with-
out constraints on the problem, which shows that our algorithm automatically
adapts to the underlying structure of the problem.

• Chapter 6 is devoted to the interplay between differential privacy and fairness.
We show that the accuracy (on a part of the population) of a model is “point-
wise” Lipschitz, and that this property is inherited by multiple group fairness
notions. This allows to derive an upper bound on the difference of fairness be-
tween any pair of models. We then use this regularity property to show that
the fairness of private models necessarily stays in a bounded region around the
one of their non-private counterparts.

Finally, Chapter 7 concludes this work, summarizing our contributions as an answer
to the question stated in the previous section. We also describe some perspectives
that we find promising for future research.
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Chapter 2

Background on Convex
Optimization in Machine Learning

In supervised learning, models are often trained through empirical risk minimization.
The goal of this problem is to find a model that minimizes the average of a loss
function (i.e., a function that evaluates the error of a model) on given training dataset.
It is an optimization problem over a space of models, that we call the hypothesis class.
This hypothesis class is generally parameterized by a real-valued vector, reducing the
problem to finding the parameters of the best model. Therefore, we turn to the study
of algorithms that solve (composite) finite-sum problems of the following form:

min
w∈W

{
F (w) := f(w) + ψ(w)

}
, where f(w) =

1

n

n∑
i=1

fi(w) , (?)

where W ⊂ Rp is a set, and fi : W → R (for i ∈ [n]) and ψ : W → R are functions.
In machine learning applications, fi is the loss function on the i-th data record, and
ψ is a regularization term, that can be used to enforce some structure on the model.

In this chapter, we give an overview of the optimization algorithms that are generally
used for solving machine learning problems that fit in the framework of (?), under
the assumptions that W is closed and convex, each fi (for i ∈ [n]) is proper convex
and smooth, and ψ is convex (and not necessarily differentiable). We describe these
assumptions, as well as their most important properties, in Section 2.1. We then
give in Section 2.2 an overview of first order methods for solving (?) under these
assumptions. We choose to focus on first-order methods since these are the most
usual choice in machine learning applications, where at the number n of functions in
the finite sum f and the number p of parameters in the model are often large.

20
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2.1 Functions Regularity

The type of algorithms we use for solving problems like (?) primarily depends on the
properties of the functions themselves. In this thesis, we always assume that, for
i ∈ [n], fi is convex and smooth, and that ψ is convex. This gives us a diverse set of
tools that we can exploit to design and analyze efficient algorithms. This section is
devoted to the description of these tools and their uses.

2.1.1 Differentiability, Gradient and Jacobian

The first indispensable tool that we need is differentiability. This allows approximat-
ing the local behavior of a function with a linear function. Such functions can be
studied using their differential function, which we define in this section. We refer to
Fleming (2012) and Garling (2014) for more details on differentiable functions.

In all the following, p, k > 0 are two integers, and for all integers n > 0, we denote
e1, . . . , en the standard basis of Rn. We also denote W ⊆ Rp a subset of Rp. The
differential function df of a function f : Rp → Rk is defined as follows.

Definition 2.1.1 (Differentiable function). A function f :W → Rk is differentiable
at a point w ∈ W if there exists a linear function dfw :W → Rk such that

lim
h→0

‖f(w + h)− f(w)− dfw(h)‖
‖h‖ = 0 . (2.1.1)

When f is differentiable on all its domain W, we say that f is differentiable, and we
define its differential function as df : w → dfw.

For j ∈ [p], the partial derivative of f in the direction of ej is ∂f
∂xj

: w 7→ df(w)(ej).

These partial derivatives fully characterize the differential of f . In particular, when
a function f : Rp → R is real-valued, its differential function is a linear form. At any
point w ∈ W , df(w) can be expressed as a dot product with a specific vector. We
call this vector the gradient of f at w.

Definition 2.1.2 (Gradient). Let f :W → R be a differentiable real-valued function.
The gradient ∇f(w) of f at w ∈ W is the only vector such that, for all h ∈ Rp,
df(w)(h) = 〈∇f(w), h〉. The coefficients of ∇f(w) are the partial derivatives of f ,
and we denote ∇jf(w) = ∂f

∂wj
(w) the j-th coefficient of ∇f(w):

∇f(w) =

(
∂f

w1

(w), . . . ,
∂f

wp
(w)

)
∈ Rp . (2.1.2)

For vector-valued functions, the notion of gradient can be naturally extended by
constructing a matrix whose lines are the gradients of each coordinate of the function.
This matrix is called the Jacobian matrix.
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Definition 2.1.3 (Jacobian and Hessian Matrix). Let f : Rp → Rk be a differentiable
function, and, for i ∈ [k], we denote fi = e>i f the i-th coordinate of f . For all w ∈ Rp,
the Jacobian matrix Jf(w) of f is the matrix of the linear map df(w) in the standard
bases of Rp and Rk. Its coefficients are Ji,jf(w) = dfi(w)(ej) = ∂fi

∂xj
(w). Specifically,

Jf(w) =


∇f1(w)

...

∇fk(w)

 =


∂f1

∂x1

(w)
∂f1

∂x2

(w) . . .
∂f1

∂xp
(w)

...
...

. . .
...

∂fk
∂x1

(w)
∂fk
∂x2

(w) . . .
∂fk
∂xp

(w)

 ∈ Rk×p . (2.1.3)

When f is twice differentiable, we define the Hessian ∇2f of f as the transposed of
the Jacobian of ∇f : ∇2f = J(∇f)>.

Gradients lie at the core of first-order optimization algorithms. We will see in Sec-
tion 2.2 and throughout the thesis that they are a key component of gradient descent,
coordinate descent and their differentially private variants.

2.1.2 Mahalanobis Norms

Before jumping to convexity and smoothness, which are the two essential properties
that we will use throughout this thesis, we need to define a way of measuring the
ambient space. The most usual way of doing so is to use `q-norms:

‖w‖q =

( p∑
j=1

|wj|q
)1/q

, for all w ∈ Rp, and q ≥ 0 . (2.1.4)

The `1, `∞, and `2 norms will be at the core of the theory we develop in this thesis:
they will serve to measure functions’ regularity, and they will allow us to analyze
the convergence of all the algorithms we study. Note that these norms measure
each dimension of the space equally, but the functions we study may have different
properties along each of these dimensions. To capture this, we define the following
scaled norms, inspired by the work of Mahalanobis (1936).

Definition 2.1.4 (Mahalanobis Norms). Let M1, . . . ,Mp > 0 be positive real numbers
and M = diag(M1, . . . ,Mp) ∈ Rp×p be a diagonal matrix. For q ≥ 0, we define

‖w‖M,q = ‖M1/2w‖q , ‖w‖M−1,q = ‖M−1/2w‖q . (2.1.5)

These norms account for each dimension differently, depending on the value of the
Mj’s. We give examples of the balls of radius 1 for various norms in Figure 2.1.1.
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(a) `1-norm. (b) `2-norm.

Figure 2.1.1: `1 and `2 unit balls. In solid black lines, the usual unit ball (i.e., M = I2

in Definition 2.1.4). In dashed purple lines, the unit balls for M = diag(0.1, 10).

These norms are at the core of the analysis of coordinate descent algorithms, as we
will discuss in Section 2.2.3, Chapters 4 and 5.

Norms can be grouped by pairs, that we call conjugate (or dual) norms. The conjugate
norm of a norm ‖ · ‖ is defined as

‖w‖∗ = sup{〈w, x〉 | ‖x‖ ≤ 1} , (2.1.6)

where 〈·, ·〉 is usual euclidean dot product. An important special case is the (scaled)
`q-norms, whose conjugate norm is

‖ · ‖∗M,q = ‖ · ‖M−1,q′ , where q′ is such that 1
q

+ 1
q′

= 1 . (2.1.7)

Conjugate norms are related to the usual Euclidean dot product through Hölder’s
inequality, which is a direct consequence of their definition as (2.1.6):

〈w,w′〉 ≤ ‖w‖ · ‖w′‖∗ , for all w,w′ ∈ Rp . (2.1.8)

This inequality reduces to the Cauchy-Schwarz inequality when ‖·‖ = ‖·‖∗ = ‖·‖2. It
will be very useful in Section 2.2.4 and Chapter 5, where we study greedy coordinate
descent algorithms.

2.1.3 Convex Sets and Convex Functions

We now turn to the study of a first type of regularity: convexity. In the following,
(strong) convexity will play two major roles. First, it ensures that any extremal point
of a function is a minimum. Second, it provides global linear (or quadratic) lower
bounds on the function, which is a crucial property for the formal analysis of convex
optimization algorithms. In the rest of this section, we define convex sets and convex
functions, as well as the important properties that will be used throughout the thesis.

2.1.3 (a) Convex Sets

Let W ⊆ Rp be a subset of Rp. It is convex if all segments between any two points
of W is included in W . Formally, this means that for all w,w′ ∈ W and λ ∈ [0, 1],
(1− λ)w + λw′ ∈ W .
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Figure 2.1.2: Projection on a convex set. Black “+” are initial points, and purple “x”
are their projections. Pairs of projected points are always closer than the initial ones.

Whenever a point w ∈ Rp is not in W , it can be projected on W using the following
projection operator

ΠW(w) = arg min
z∈W

‖z − w‖2
2 , (2.1.9)

where ‖ · ‖2 is the usual `2-norm. By definition, for any w ∈ W , ΠW(w) returns
the element of W that is the closest to w, and this element is unique (see e.g., The-
orem 3.1.10 in Nesterov, 2004). These projection operators play a central role in
constrained convex optimization (i.e., W 6= Rp in (?)). Most of the algorithms we
will study indeed use a projection step to meet to constraint. The crucial property
of ΠW that makes these methods work, is its non-expansiveness.

Proposition 2.1.1 (Non-Expansiveness of Convex Projection). Let W ⊆ Rp be a
closed convex set, and w,w′ ∈ Rp, then

‖ΠW(w)− ΠW(w′)‖ ≤ ‖w − w′‖ .

We will prove this property when we introduce the proximity operator (see Sec-
tion 2.1.5), that can be seen as a generalization of the convex projection. We also
give several geometric examples of this property in Figure 2.1.2.

2.1.3 (b) Convex Functions

Let f : Rp → R ∪ {±∞} be a (extended-)real-valued function. The domain of f is

dom(f) = {w ∈ Rp | f(w) < +∞} .
When dom(f) is not empty and f does not take the value −∞, we say f is proper.
We are now ready to introduce the notion of convex functions.
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(a) Strongly-convex function
with one minimizer.

(b) Convex function
without minimizers.

(c) Convex function
with multiple minimizers.

Figure 2.1.3: Example of convex functions. The dotted purple line is a chord of f
and is always above f . The dashed black lines are lower bounds that follow from
(strong) convexity of f . In Figures 2.1.3b and 2.1.3c, the slope of these lower bounds
are elements of the subdifferential ∂f of f .

Definition 2.1.5 (Convex and strongly-convex function). Let µ ≥ 0, and ‖ ·‖ be any
norm. A function f : Rp → R is proper µ-strongly convex w.r.t. the norm ‖ · ‖ if f
is proper, dom(f) is convex, and for all w,w′ ∈ Rp and λ ∈ [0, 1],

f((1− λ)w + λw′) ≤ (1− λ)f(w) + λf(w′) + µ
2
λ(1− λ)‖w − w′‖2 , (2.1.10)

If f is differentiable, the above property is equivalent to

f(w′) ≥ f(w) + 〈∇f(w), w − w′〉+ µ
2
‖w − w′‖2 , (2.1.11)

If f is twice differentiable, it is also equivalent to

∇2f < µIp . (2.1.12)

When µ = 0, we simply say that f is convex.

We illustrate the first two definitions (2.1.10) and (2.1.11) in Figure 2.1.3. In Fig-
ure 2.1.3a, the function is twice differentiable and strongly-convex, and satisfies all
three definitions with µ > 0. In Figures 2.1.3b and 2.1.3c the functions are convex
(µ = 0) but not differentiable, and have respectively no minimums and an infinite
number of minimums.

In the following, we will essentially use inequality (2.1.11), which provides a linear
(or quadratic if µ 6= 0) lower bound on the value of f . Sadly, this requires f to be
differentiable, which will not always be the case (consider e.g., the `1-norm). We can
circumvent this limitation by defining a proxy for the gradient in (2.1.11) as follows.

Definition 2.1.6 (Subdifferential). Let f : Rp → R be a proper convex function. The
subdifferential of f at a point w ∈ dom(f) is

∂f(w) = {g ∈ Rp | f(w′) ≥ f(w) + 〈g, w′ − w〉 for all w′ ∈ Rp} .



Chapter 2. Background on Convex Optimization in Machine Learning 26

(a) Strongly-convex function
with one minimizer.

(b) Convex function
without minimizers.

(c) Convex function
with multiple minimizers.

Figure 2.1.4: Illustration of (2.1.15), where w is represented as a star and w′ as a
circle. When ∇f(w) is known, we can upper bound f(w) using the value of f at w′

and the tangent of f at w.

The subdifferential of a (µ-strongly) convex function f is a (strongly) monotone op-
erator: let x, y ∈ Rp and gx ∈ ∂f(x), gy ∈ ∂f(y), then

〈gx − gy, x− y〉 ≥ µ‖x− y‖2 . (2.1.13)

We give examples of elements of the subdifferential of f in Figures 2.1.3b and 2.1.3c
(see the slope of the dotted black lines). Even on points where f is not differentiable,
the subdifferential gives a linear lower bounds of f . This property will be extremely
useful when working with proximal operators for composite problems (i.e., when ψ
is not differentiable in (?)). We discuss this in more detail in Section 2.1.5.

More generally, convexity guarantees that whenever one finds a local extremum of f ,
it is guaranteed to be a global minimum of f .

Proposition 2.1.2 (Minimums are Global). Let f : W → R be a convex function.
Then the set arg min(f) of minimizers of f is convex, and any local minimum of f is
a global minimum. If f is strongly convex, then it has at most one minimum.

Moreover, when f is µ-strongly convex, and has a minimizer w∗ ∈ arg min(f), f is
uniformly lower bounded by

f(w) ≥ f(w∗) + µ
2
‖w − w∗‖2 , for all w ∈ Rp . (2.1.14)

Finally, we remark that convexity also allows deriving upper bounds on functions, by
reformulating (2.1.11) as follows, possibly with µ = 0,

f(w) ≤ f(w′) + 〈∇f(w), w′ − w〉 − µ
2
‖w − w′‖2 , for all w,w′ ∈ Rp . (2.1.15)

We give examples of the upper bounds we obtain in this way in Figure 2.1.5. Unfortu-
nately, using these upper bounds to bound f(w) for some w ∈ Rp requires computing
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∇f(w), which is generally not directly available. We will see in Section 2.1.5 that
this inequality can be used to analyze proximity operators computed on ψ, the non-
smooth part of (?). To analyze algorithms that work on the full composite problem,
we will need more assumptions on f , the differentiable part of (?).

2.1.4 Lipschitzness and Smoothness

2.1.4 (a) Lipschitzness and Sensitivity

A simple assumption to obtain an upper bound on a function f is to use linear upper
bounds. This is commonly called Lipschitzness and is defined as follows.

Definition 2.1.7 (Lipschitzness). A function f : Rp → Rk is L-Lipschitz with respect
to two norm ‖ · ‖ and ‖ · ‖f on Rp and Rk if for all w,w′ ∈ dom(f),

‖f(w)− f(w′)‖f ≤ L‖w − w′‖ . (2.1.16)

We can also measure the Lipschitzness of f along each of its parameters. We say f
is (L1, . . . , Lp)-coordinate-Lipschitz for L1, . . . , Lp > 0 if for all j ∈ [p], and w ∈ W,

|f(w + tej)− f(w)| ≤ Lj|t| . (2.1.17)

When the function f is differentiable, this Lipschitz property directly gives an upper
bound on the gradient of f .

Proposition 2.1.3 (Lemma 2.6 in Shalev-Shwartz, 2011). Let f :W ⊆ Rp → Rk be
a differentiable convex function. Then f is L-Lipschitz with respect to a norm ‖ · ‖ if
and only for all w ∈ W, ‖∇f(w)‖∗ ≤ L, where ‖ · ‖∗ is the dual norm of ‖ · ‖.
Similarly, if f is (L1, . . . , Lp)-coordinate-Lipschitz, then for w ∈ W, |∇jf(w)| ≤ Lj.

This upper bound will be particularly useful in the design of differentially private
optimization algorithms, that typically require a bound on the difference between
two gradients (see Section 3.1). Such a bound directly follows from the Lipschitz
property, since if f :W → Rk is L-Lipschitz w.r.t. ‖ · ‖, then for all w,w′ ∈ W ,

‖∇f(w)−∇f(w′)‖∗ ≤ ‖∇f(w)‖∗ + ‖∇f(w′)‖∗ ≤ 2L . (2.1.18)

2.1.4 (b) Smoothness and Coordinate-wise Smoothness

In general, the Lipschitz assumption is too restrictive and does not provide enough
information about the function. Instead of assuming the function f to be Lipschitz,
we may assume that its gradient is.
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(a) Quadratic smooth. (b) Convex smooth. (c) Non-convex smooth.

Figure 2.1.5: Example of convex functions together with the upper bounds (purple
dashed line) we obtain using (2.1.15) with w′ being the black dot.

Definition 2.1.8 (Smooth function). A differentiable function f : Rp → R is M-
smooth w.r.t. a norm ‖ · ‖ if its gradient is M-Lipschitz, i.e., for all w,w′ ∈ Rp,

‖∇f(w)−∇f(w′)‖ ≤M‖w − w′‖ . (2.1.19)

If f is twice differentiable, this is equivalent to ∇2f 4MIp.

The most useful consequence of this assumption is that it gives a quadratic upper
bound on the function f , that can be computed globally from the knowledge of the
gradient of f at one point and the smoothness constant.

Proposition 2.1.4 (Quadratic Upper Bound). Let f : Rp → R a M-smooth function.
Then for all w,w′ ∈ Rp,

f(w′) ≤ f(w) + 〈∇f(w), w′ − w〉+ M
2
‖w − w′‖2 . (2.1.20)

This property has a very important role in smooth first-order optimization. Indeed,
a natural idea for finding a minimum of f is to iteratively minimize this quadratic
upper bound: take a fixed w ∈ W , then the quadratic upper bound from (2.1.20) is
minimal when its gradient is zero, that is

∇f(w) +M(w′ − w) = 0 ,

which implies that this quadratic upper bound is minimal when w′ = w − 1
M
∇f(w).

This is exactly the gradient step that we will use in gradient descent for smooth
functions (see Section 2.2.1).

Interestingly, the smoothness of f can be captured more tightly by measuring it on
vectors that differ on only one coordinate.

Definition 2.1.9 (Coordinate-smooth function). Let M1, . . . ,Mp > 0 and define
M = diag(M1, . . . ,Mp) ∈ Rp×p. A differentiable function f : Rp → R is M-
coordinate-smooth, if for j ∈ [p], the j-th coordinate of its gradient is Mj-Lipschitz,
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meaning that for all w ∈ Rp and t ∈ R,

‖∇f(w)−∇f(w + tej)‖ ≤Mj|t| . (2.1.21)

Note that this assumption is in fact the same as smoothness, as Lipschitzness of
the gradient directly implies Lipschitzness of its coordinates. But the coordinate wise
constants Mj’s can be much smaller than the global one. Coordinate-wise smoothness
therefore simply measure the smoothness more finely along each of the coordinates
of f . This allows to refine the quadratic upper bound (2.1.20) to the following, for
w ∈ W and t ∈ R,

f(w + tej) ≤ f(w) +∇jf(wt) · t+
Mj

2
|t|2 . (2.1.22)

This upper bound will play a crucial role in the analysis of coordinate descent meth-
ods, as we will see in Section 2.2.3.

2.1.5 Proximal Operators

When the problem (?) has both a smooth part f and a non-smooth part ψ, the
inequality from (2.1.20) does not give an upper bound on f +ψ anymore. To fix this,
we may simply add ψ to each side of (2.1.20), which gives

f(w′) + ψ(w′) ≤ f(w) + 〈∇f(w), w′ − w〉+ L
2
‖w − w′‖2 + ψ(w′) .

Proceeding as above, we may want to minimize the right hand size of this inequality

in w′, which is minimal when w′ = arg minv∈Rp
{

1
2
‖v − (w − 1

L
∇f(w))‖2 + ψ(v)

}
.

This motivates the study of proximity operators.

Definition 2.1.10 (Proximity Operator). Let ψ : Rp → R be a closed proper convex
function. For all w ∈ Rp, the proximal operator of ψ is

proxψ(w) = arg min
v∈Rp

{
1
2
‖v − w‖2

2 + f(v)
}
. (2.1.23)

Two usual examples of proximal operators are

• ψ = ιW where W is a convex set and ιW its characteristic function. Then
proxιW = ΠW is the projection operator on the set W , as defined in (2.1.9).

• ψ = λ‖ · ‖1 for some λ > 0. Then proxλ‖·‖1 is the soft thresholding operator,

which, for each coordinate j, gives e>j proxλ‖·‖1(w) = sign(wj) ·max(0, |wj| −λ).
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Figure 2.1.6: Objective function and solution (black point) of the optimization prob-
lem defined by the proximity operator of the `1-norm. Purple point is the initial point.
Each coordinate of the point is shrinked, and is put to zero if it is small enough: this
is why the `1-norm regularizer promotes sparsity.

The projection operator is the same as illustrated in Figure 2.1.2, and we illustrate
the loss function solved by proxλ‖·‖1 in Figure 2.1.6. We refer to the Prox Repository1

for more examples of proximity operators.

We now state the mystical property of proximity operators: they do an implicit
gradient update, finding an element of the (sub)differential of a function at a point
we do not know yet. This property will be crucial in every analysis of proximal
algorithms, as it will allow using convexity to obtain upper bounds using (2.1.15).

Proposition 2.1.5 (Implicit gradient step). Let x ∈ Rp, and f : Rp → R a convex
function. There exists ξ ∈ ∂ψ(proxf (x)) such that

proxf (x) = x− ξ . (2.1.24)

Proof of Proposition 2.1.5. Let x ∈ Rp and g : w 7→ 1
2
‖x−w‖2 +f(w). Note that g is

strongly-convex, and has a unique minimizer proxf (x), which satisfies 0 ∈ proxαf (x)−
x + ∂f(proxf (x)). This guarantees the existence of a unique ξ ∈ ∂f(proxf (x)) such
that proxf (x) = x− ξ, which is the result.

Proposition 2.1.6 (Lemma 2.4 in Combettes and Wajs, 2005). Let x, y ∈ Rp, and
f : Rp → R a convex function. The proximal operator of f is firmly non-expansive,
meaning that

‖ proxf (x)− proxf (y)‖2 ≤ 〈proxf (x)− proxf (y), x− y〉 . (2.1.25)

Which implies the usual non-expansiveness property

‖ proxf (x)− proxf (y)‖2 ≤ ‖x− y‖2 . (2.1.26)

1See http://proximity-operator.net/.

http://proximity-operator.net/
http://proximity-operator.net/
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Proof of Proposition 2.1.6. By Proposition 2.1.5, we have that, for all x, y ∈ Rp,
x− proxf (x) ∈ ∂f(proxf (x)) and y − proxf (y) ∈ ∂f(proxf (y)). Since f is convex, it
is monotone, and (2.1.13) gives

〈(x− proxf (x))− (y − proxf (y)), proxf (x)− proxf (y)〉 ≥ 0 , (2.1.27)

which gives the first inequality. The second one follows from the Cauchy-Schwarz
inequality.

2.2 Convex Optimization

In this section, we describe the algorithms that are most widely used when solving
Problem (?) in machine learning applications. In these problems, datasets tend to be
large, and models to be high-dimensional. This has oriented the community towards
the use and study of first-order algorithms, and some of their variants. Recall that
we aim at studying problems of the following form

min
w∈W
{F (w) := f(w) + ψ(w)} , where f(w) =

1

n

n∑
i=1

fi(w) , (?)

When F is differentiable, the most iconic algorithm for solving this problem is gradient
descent, initially proposed by Cauchy (1847) and Hadamard (1908). This algorithm
iteratively refines an initial guess w0 ∈ Rp as follows

wt+1 = wt − γ∇F (wt) for t ≥ 0 , (GD)

where γ > 0 is a step size. The first analysis of this algorithm has been done by Curry
(1944), who showed that GD asymptotically converges to a stationary point of F . The
method has then been extensively studied (see for instance Himmelblau, 1972; Kan-
torovich and Akilov, 1982; Polyak, 1987). A prominent special case of this problem
is when W and F are convex. Numerous books have been dedicated to this special
case. The most classical ones date from late 20th or early 21st centuries (Rockafel-
lar, 1970; Nesterov and Nemirovskii, 1994; Nesterov, 2004; Boyd and Vandenberghe,
2004), and more recent ones (Bubeck, 2015; Nesterov, 2018; Beck, 2017; Wright and
Recht, 2022; Ryu and Yin, 2022).

In this thesis, we focus on these types of convex problems. We assume that:

(A1) The set W is closed and convex.

(A2) The function f is proper convex and smooth.

(A3) The function ψ is convex (and not necessarily differentiable).
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Note that we do not assume that ψ is differentiable: GD in itself is therefore not ap-
plicable. Fortunately, this can be dealt with proximity operators, that we introduced
in Section 2.1.5, using the proximal gradient descent algorithm. In the remainder of
this chapter, we will describe and analyze this algorithm, as well as two important
variants. The first one is a stochastic algorithm, where the gradient ∇f is estimated
approximately. Such variants are widely used when training models on very large
datasets. The second one is a coordinate-wise variant, where we compute only one
coordinate of the gradient at a time: these algorithms will be at the core of this thesis.

2.2.1 Proximal Gradient Descent

When the function ψ in (?) is not differentiable, using GD is naturally not possible.
To remedy this, it is tempting to replace the gradient with a subgradient of ψ at
the current point wt. This is known as the subgradient method, and was proposed by
Shor (1962) (see Polyak (1977) for more details). Unfortunately, this method generally
suffers from a slow convergence rate, and tends to lose the structural properties we aim
to enforce using the regularizer (like sparsity when ψ is the `1-norm of the parameters).

These rates can typically be improved if, instead of updating using a subgradient of
ψ at wt, we use a subgradient of ψ at the next point wt+1. While this certainly seems
crazy at first, this is what proximal gradient descent does! It does so by exploiting
the implicit gradient update property of proximity operators from Proposition 2.1.5.

The exact formulation of the proximal gradient algorithm builds on two ideas. The
first the use proximity operators for minimizing functions. This is the idea of the
proximal point algorithm, which was proposed by Martinet (1970) and Martinet
(1972), and studied by Rockafellar (1976). However, such methods may be obliv-
ious to the regularity of f . This has led Passty (1979) and Bruck (1977) to consider
forward-backward splitting schemes, that benefit from the best of both worlds. In
these methods, we do a gradient step, followed by an implicit update through a prox-
imity operator. This gives the PGD algorithm, that we list here as Algorithm 2.2.1.

Algorithm 2.2.1: PGD: Proximal Gradient Descent.

Input: initial point w0, step size γ.

For t = 0 to T − 1:

wt+1 = proxγψ
(
wt − γ∇f(wt)

)
Return: wT .
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Interestingly, PGD converges at a rate that is similar to GD on smooth functions. Beck
and Teboulle (2009) proved that PGD converges at a rate 1/t on convex problems, and
Schmidt et al. (2011) and Karimi et al. (2016) showed that under strong convexity,
PGD converges linearly. We state the results more precisely in Theorem 2.2.1.

Theorem 2.2.1. Assume f is M-smooth, and let w∗ be a minimizer of F . Let wt

be the iterates of Algorithm 2.2.1 with step size γ ≤ 1/M . Then, for general convex
objectives (see Theorem 3.1 in Beck and Teboulle, 2009):

F (wt)− F (w∗) ≤ ‖w
0 − w∗‖2

2γt
. (2.2.1)

If, additionally, F is strongly convex, then (see Proposition 3 in Schmidt et al., 2011;
or Theorem 3.5 in Garrigos and Gower, 2023)

‖wt − w∗‖2 ≤ (1− γµ
2

)t‖w0 − w∗‖2 . (2.2.2)

Proof. We start by expanding the norm

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 + 〈wt+1 − wt, wt − w∗〉+ ‖wt+1 − wt‖2

= ‖wt − w∗‖2 + 〈wt+1 − wt, wt+1 − w∗〉 − ‖wt+1 − wt‖2 . (2.2.3)

From Proposition 2.1.5, there exists ξt ∈ ∂ψ(wt+1) (where ∂ψ is the subdifferential
of ψ, see Definition 2.1.6) such that wt+1 = wt− γ(∇f(wt) + ξt). We replace wt+1 by
its value in (2.2.3) to obtain

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 − 2γ〈∇f(wt) + ξt, wt+1 − w∗〉 − ‖wt+1 − wt‖2 . (2.2.4)

Now, since f is smooth, Proposition 2.1.4 gives

−2γ〈∇f(wt), wt+1 − wt〉 ≤ −2γ(f(wt+1)− f(wt)) +Mγ‖wt+1 − wt‖2 . (2.2.5)

And by convexity of f and ψ, we have, from (2.1.11) and the definition of the subd-
ifferential (Definition 2.1.6),

−2γ〈∇f(wt), wt − w∗〉 ≤ −2γ(f(wt)− f(w∗)) , (2.2.6)

−2γ〈ξt, wt+1 − w∗〉 ≤ −2γ(ψ(wt+1)− ψ(w∗)) . (2.2.7)

Summing (2.2.5), (2.2.6) and (2.2.7), then replacing in (2.2.3), we obtain

‖wt+1 − w∗‖2 ≤ ‖wt − w∗‖2 − 2γ(F (wt+1)− F (w∗)) + (Mγ − 1)‖wt+1 − wt‖2

≤ ‖wt − w∗‖2 − 2γ(F (wt+1)− F (w∗)) , (2.2.8)

where the second inequality comes from γ ≤ 1/M . We now distinguish two cases:
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• F is convex, then we sum this inequality for t = 0 to t = T − 1 and sum the
telescoping sum to obtain

2γ
T∑
t=1

F (wt)− F (w∗) ≤ ‖w0 − w∗‖2 . (2.2.9)

Then, remark that F (wt) is a decreasing function of t (see e.g., the proof of
Theorem 3.1 in Beck and Teboulle (2009)), therefore F (wt) ≤ F (wT ) for all
t ≤ T , and the result follows.

• F is µ-strongly convex w.r.t., ‖ · ‖2, then by (2.1.14), we have −2γ(F (wt+1)−
F (w∗)) ≤ −γµ‖wt+1 − w∗‖2. This gives the inequality

(1 + γµ)‖wt+1 − w∗‖2 ≤ ‖wt − w∗‖2 . (2.2.10)

The result follows from 1
1+γµ

≤ 1− γµ
2

, which holds since γµ ≤ 1.

Theorem 2.2.1 suggests that, both for convex and strongly-convex functions, setting
the step size to 1/M is the best strategy. When the objective function is µ-strongly-
convex, the convergence speed of PGD is governed by the ratio

κ =
M

µ
, (2.2.11)

which is called the condition number of the problem: PGD converges fast on problems
with small condition number, and slow on problems with large condition number.

2.2.2 Proximal Stochastic Gradient Descent

In many applications, computing the gradient of f is expensive. This is notably the
case in machine learning applications, where f depends on a large dataset. In such
cases, it may be sufficient to compute a stochastic estimate of the gradient, for instance
by using only the gradient of fi for some i ∈ [n] instead of the gradient of f . This
is the idea of stochastic gradient descent (SGD), as introduced by Robbins and Monro
(1951). On smooth functions, the non-asymptotic convergence of SGD was studied by
Bach and Moulines (2011). They notably discuss rules for choosing adapting step sizes
over the iteration of SGD to guarantee the convergence of its iterates. Their analysis
was refined by Needell et al. (2016) and Gower et al. (2019), improving convergence
rate and relaxing assumptions on the objective function. When the objective function
is composite (i.e., ψ 6= 0 in (?)), we can consider a proximal variant of SGD, that we
describe in Algorithm 2.2.1.
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Algorithm 2.2.2: Proximal SGD: Proximal Stochastic Gradient Descent.

Input: initial point w0, step size γ.

For t = 0 to T − 1:

Sample one index i uniformly randomly in [n]

Update wt+1 = proxγψ
(
wt − γ∇fi(wt)

)
Return: wT .

The Proximal SGD algorithm and its variants have notably been studied by Nitanda
(2014), Atchadé et al. (2017), Rosasco et al. (2020), Cevher and Vũ (2019), and
Gorbunov et al. (2020), The convergence of Proximal SGD with constant step size
can be described in two different phases: (i) a convergence phase, where the iterates
get closer to a solution, and (ii) an oscillation phase, where iterates oscillate around
a solution due to the variance in the estimation of the gradient. This is what we
describe in the next theorem.

Theorem 2.2.2 (Convergence of Proximal SGD). Assume f is M-smooth, and let
w∗ be a minimizer of F . Let wt be the iterates of Algorithm 2.2.2 with step size
γ ≤ 1/8M . We denote σ2

∗ = Es(‖gs(w∗)‖2) the variance of the gradient estimate at
the optimum. Then, for general convex objectives (see Corollary 11.6 in Garrigos and
Gower, 2023, based the general results of Khaled et al., 2020)

E(F (w̄t)− F (w∗)) ≤ ‖w
0 − w∗‖2 + 2γ(F (w0)− F (w∗))

γt
+ 4γσ2

∗ , (2.2.12)

where w̄t =
∑t

k=1w
k. If f is µ-strongly convex, then (see Corollary A.1 in Gorbunov

et al., 2020)

E(‖wt − w∗‖2) ≤ (1− γµ)t‖w0 − w∗‖2 +
2γσ2

∗
µ

. (2.2.13)

In both results of Theorem 2.2.2, a variance term remains. This is due to the oscil-
lation phase, where the noise in the estimation of the gradient dominates, and the
iterates remain in a ball around the optimum. The radius of this ball is determined
by the variance at the optimum σ2

∗, and the step size. Therefore, setting smaller step
sizes allows finding better solutions, but slows down the convergence of Proximal SGD.

We illustrate this phenomenon in Figure 2.2.1: Proximal SGD eventually reaches a
plateau, where it does not progress towards the optimum anymore. The distance



Chapter 2. Background on Convex Optimization in Machine Learning 36

0 5 10
Passes on data

10 1

101

Su
bo

pt
im

ali
ty

 f
−
f
∗

0 20 40 60
Passes on data

10 2

100

102

Su
bo

pt
im

ali
ty

 f
−
f
∗

GD
SGD - large step
SGD - small step
SGD - tiny step

Figure 2.2.1: Evolution of the suboptimality gap for PGD and Proximal SGD with
different step sizes. When step sizes are large, Proximal SGD converges faster than
GD in its first iterations, but quickly reaches a plateau. With smaller step sizes,
it converges slower, but is able to find better solutions. For both algorithms, the
condition number κ = M/µ (defined in (2.2.11)) determines the convergence rate.

from this optimum is determined by the step size, and as in PGD, the convergence
speed is determined by the condition number κ = M/µ.

We note that this oscillating phenomenon can be compensated for by using variance
reduction schemes. Many schemes have been proposed over the ten past years (see
for instance Johnson and Zhang, 2013; Defazio et al., 2014; Xiao and Zhang, 2014,
and many many others). We refer to Gower et al. (2020), Gorbunov et al. (2020),
and Khaled et al. (2020) for overviews and unified analyses of such methods.

In the following of this thesis, we will study differentially private variants of these
algorithms (see Section 3.2). In this setting, the variance in the estimation of f ’s
gradient is due to the privacy constraints, and variance reduction does not allow us
to get rid of this additive term. We, therefore, do not discuss them further.

2.2.3 Proximal Coordinate Descent

In some problems, it may be interesting to update iterates only one coordinate at a
time. This is the idea of coordinate descent. It has two important advantages:

• In high-dimensional problems, computing one coordinate of the gradient is much
cheaper than computing the full gradient, which can make the method very fast.

• Updating coordinates one at a time can allow the use of larger step sizes.

Coordinate descent methods have encountered large success due to their simplicity
and effectiveness (Liu et al., 2009; Friedman et al., 2010; Chang et al., 2008; Sardy et
al., 2000), and have seen a surge of practical and theoretical interest in the last decade
(Wright, 2015; Shi et al., 2017; Richtárik and Takáč, 2014; Fercoq and Richtárik,
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2014; Tappenden et al., 2016; Hanzely et al., 2020; Nutini et al., 2015; Karimireddy
et al., 2019). This theoretical study started with the works of Luo and Tseng (1992),
Tseng (2001), and Tseng and Yun (2009), who studied coordinate descent for non-
smooth optimization problems. Then, Nesterov (2010) analyzed coordinate descent
with random selection of the updated coordinate for smooth problems. They derived
convergence results in expectation, showing that coordinate descent algorithms can
be extremely efficient on large scale problems. In general, we refer to Wright (2015)
and Shi et al. (2017) for a general overview of results on coordinate descent methods.

To design proximal variants of coordinate descent, we need to assume that the non-
smooth part ψ of (?) is separable:

ψ(w) =

p∑
j=1

ψj(wj) . (2.2.14)

This assumption means that each the function can be split in an ensemble of functions,
that each depend on only one of the coordinates. This is notably the case of the `1-
norm and of the characteristic function of a box-set.

The separability assumption allows to do coordinate-wise proximal updates. This
gives the following proximal stochastic coordinate descent algorithm.

Algorithm 2.2.3: PCD: Proximal Coordinate Descent.

Input: initial point w0, step sizes γ1, . . . , γp.

For t = 0 to T − 1:

Sample index j uniformly randomly in [p]

Set wt+1 = wt

Update wt+1
j = proxγjψj

(
wtj − γj∇jf(wt)

)
Return: wT .

The theoretical convergence properties of this algorithm were notably studied by
Richtárik and Takáč (2014), Fercoq and Richtárik (2014), and Karimi et al. (2016).
We study the convergence rate of PCD in the following theorem.

Theorem 2.2.3 (Convergence of PCD). Assume f is M-coordinate-smooth, where
M = diag(M1, . . . ,Mp) ∈ Rp×p for M1, . . . ,Mp > 0, and let w∗ be a minimizer of F .
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(a) High condition number κ ≈ 37.6. (b) Low condition number κ ≈ 2.7.

Figure 2.2.2: Trajectory of coordinate descent (purple +) and gradient descent
(black x) for two quadratic problems f = w>Aw with different condition numbers
κ = M/µ (as defined in (2.2.11)), where M and µ are the largest and smallest eigen-
values of the Hessian of f . CD is much less sensitive to bad conditioning than GD: on
both problems, it finds good solutions fast, while GD stalls after a few iterations.

Let wt be the iterates of Algorithm 2.2.3 with step size γj = 1/Mj for j ∈ [p]. Then
for convex objectives (see Richtárik and Takáč (2014), Theorem 5)

F (wt)− F (w∗) ≤ 2pmax
(
F (w0)− F (w∗), ‖w0 − w∗‖2

M

)
t

. (2.2.15)

If additionally F is µM -strongly convex w.r.t., ‖ · ‖M , then (see Richtárik and Takáč
(2014), Theorem 7)

F (wt)− F (w∗) ≤
(

1− µM
p

)t
(F (w0)− F (w∗)) . (2.2.16)

Theorem 2.2.3 shows that the convergence rate of PCD is determined by ‖w0 −w∗‖2
M

and µM , for convex and strongly-convex objectives respectively. These values scale
with the coordinate-wise smoothness of the objective function. As such, if f is β-
smooth and M -coordinate-smooth, ‖w0 − w∗‖2

M can be much smaller than β‖w0 −
w∗‖2

2, and µM can be much larger than µ/β. Therefore, PCD is less sensitive to poor
conditioning of the problem at hand than PGD and Proximal SGD. This is due to its
ability to make much larger step sizes on coordinates with small smoothness constants.
We illustrate this phenomenon in Figure 2.2.2. We will show in Chapter 4 that this
property can be used to improve the privacy-utility trade-off in differentially private
optimization.



Chapter 2. Background on Convex Optimization in Machine Learning 39

2.2.4 Greedy Coordinate Descent

In some problems, it may be interesting not to choose the updated coordinate uni-
formly randomly. One possibility is to choose it as the one with the largest gradient
entry. This strategy is sometimes named the Gauss-Southwell rule, and the corre-
sponding algorithm is called greedy coordinate descent. This algorithm was notably
discussed by Luo and Tseng (1992), Tseng and Yun (2009), and Dhillon et al. (2011).
It can also be seen as a special case of the steepest descent method (see Section 9.4.3
in Boyd and Vandenberghe, 2004). We describe this algorithm for optimizing the
smooth variant of (?) (with ψ = 0) in Algorithm 2.2.4.

The first theoretical analyses of greedy coordinate descent’s convergence did not show
improvement over the stochastic greedy coordinate descent we described in the previ-
ous section. These results therefore suggest that it is no use to select the coordinate
greedily rather than randomly. But greedy updates do help in many cases. This
is what Dhillon et al. (2011) and Nutini et al. (2015) showed by proposing refined
convergence results for convex and strongly-convex objectives, that we state in the
following theorem.

Algorithm 2.2.4: GCD: Greedy Coordinate Descent.

Input: initial point w0, step sizes γ1, . . . , γp > 0.

For t = 0 to T − 1:

Compute j = arg maxj∈[p]

{
1
Mj
|∇jf(wt)|2

}
Set wt+1 = wt

Update wt+1
j = wtj − γj∇jf(wt)

Return: wT .

Theorem 2.2.4 (Convergence of GCD). Assume f is M-coordinate-smooth with M =
diag(M1, . . . ,MP ) ∈ Rp×p for some M1, . . . ,Mp > 0, and let w∗ be a minimizer
of F . Let wt be the iterates of Algorithm 2.2.4 with step size γj = 1/Mj. Then, let
RM,1 = max

w∈Rp
min
w∗∈W∗

{
‖w − w∗‖M,1 | f(w) ≤ f(w0)

}
. For general convex objectives (see

Lemma 1 in Dhillon et al., 2011, or Theorem 3 in Karimireddy et al., 2019)

f(wt)− f(w0) ≤ R2
M,1

2t
. (2.2.17)
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If, additionally, F is µM,1-strongly convex w.r.t., the norm ‖ · ‖M,1, then (see Nutini
et al., 2015, Section 4)

f(wt)− f(w∗) ≤
(

1− µM,1

)t
(F (w0)− F (w∗)) . (2.2.18)

In these results, RM,1 and µM,1 are defined using the (scaled) `1-norm. This allows
to get rid of the explicit dependence on the dimension that appears in the analysis of
stochastic coordinate descent (see Theorem 2.2.3). Importantly, since for any vector
w ∈ Rp, ‖w‖2 ≤ ‖w‖1 ≤ √p‖w‖2, these result imply that greedy coordinate descent
is always better than stochastic coordinate descent. Most interestingly, in the best
case, greedy coordinate descent enjoys the same rate as gradient descent.2 This will be
at the core of Chapter 5, where we propose a differentially private greedy coordinate
descent method and formally analyze its privacy-utility trade-off.

Sometimes, it may still be interesting, theoretically, to use greedy coordinate descent
rather than gradient descent. Indeed, in some specific settings, it is possible to ap-
proximate the greedy update rule in sublinear time. This can notably be done using
fast nearest-neighbor schemes when fitting (generalized) linear models (Dhillon et al.,
2011; Nutini et al., 2015; Karimireddy et al., 2019). In practice, however, greedy co-
ordinate descent methods are often slower (in wall-clock time) than their randomized
or cyclic counterparts (Massias et al., 2017). We will see in Chapter 5 that the private
variant of this algorithm can obtain near-dimension independent utility, which may
be worth the high computational cost.

Note that the analysis of proximal extensions of greedy coordinate descent for com-
posite problems is challenging. Karimireddy et al. (2019) proved convergence rates
for `1-regularized and box-constrained problems, using a modified greedy coordinate
algorithm. Nonetheless, we remark that proximal variants of greedy coordinate (see
e.g., Section 2.3.3 in Shi et al., 2017) seem to work well in practice, even without
such tricks.

2We refer to the supplementary of Nutini et al. (2015) for examples of problems where gradient
descent and greedy coordinate descent perform similarly.



Chapter 3

Background on Differential Privacy
in Machine Learning

Privacy is now commonly recognized as a human right. The term “privacy” was
first used by Warren and Brandeis (1890), who described it as a right that should be
protected by law. Their point of view on privacy stems from the following observation:

“ Instantaneous photographs and newspaper enterprise have invaded the
sacred precincts of private and domestic life; and numerous mechanical
devices threaten to make good the prediction that ‘what is whispered in the
closet shall be proclaimed from the house-top’. ”

— Warren and Brandeis (1890).

At that time, the concern was that, due to new technology (like photographs and
newspapers), parts of people’s private life could be publicly exposed. This led Warren
and Brandeis (1890) to the definition of a right to privacy. Simply put, they describe
it as “the right to be let alone”. Nowadays, technology has evolved far beyond the
printed press, and privacy concerns are more important than ever. Indeed, as you
are reading these lines, massive data is being collected, everywhere. This data holds
information about virtually everyone. And this information is personal, thus sensitive.

Describing and protecting the personal nature of this data is nowadays what privacy
is all about. Modern definitions of privacy have changed accordingly: they are now
centered around personal information and surveillance. One such definition is:

Freedom from damaging publicity, public scrutiny, surveillance, and dis-
closure of personal information, usually by a government or a private
organization.

— from the Wiktionary1.
1Available online: https://en.wiktionary.org/wiki/privacy.
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This definition is aligned with a general societal reflection on the role of personal data
and the importance of privacy. Such ideas have recently made their way into the law
through the GDPR (2016) in Europe, and similar privacy laws in some countries.
These laws provide a general framework for the protection of individuals’ right to
privacy. But this framework is not usable as-is: we need a more rigorous notion of
privacy, that can be used as a foundation to privacy-preserving algorithms.

In this chapter, we introduce differential privacy (Dwork, 2006) and differentially
private machine learning (Chaudhuri et al., 2011). We start in Section 3.1 with an
overview of a few notions of privacy that preceded differential privacy, and discuss
their limitations. Then, we formally define differential privacy and describe a few
basic mechanisms, that can be used to enforce it. We also show how to combine
these mechanisms to build complex differentially private algorithms. In Section 3.2,
we discuss the problem of training machine learning models in a differentially private
way. We describe two algorithms that can be used to solve this problem: output
perturbation and differentially private stochastic gradient descent. We prove that
they satisfy differential privacy, and discuss their utility.

3.1 Differential Privacy

To formalize what privacy means, we study what happens when we release the result
of a computation done on a database. In the remainder of this thesis, we refer to
such computations as queries2. Differential privacy is a way of measuring how much
information the output of a query leaks about an individual. It is built on the idea
that if the presence (or the absence) of a specific individual in the database does not
have “too much” influence on the output of the query, then it should be difficult for
an external observer to guess anything about them.

Before introducing differential privacy formally, we discuss in Section 3.1.1 two other
attempts at mathematically defining privacy: k-anonymity and perfect secrecy. We
discuss their limitations, that laid the foundations of differential privacy (and some
of its variants). We then define differential privacy in Section 3.1.2, and discuss its
important properties. In particular, we explain why differential privacy is consid-
ered a robust notion of privacy. Sections 3.1.3 and 3.1.4 then describe how to build
useful differentially private algorithms: we start by describing an ensemble of basic
mechanisms, then explain how they can be combined into more complex algorithms.

2In general, in the differential privacy literature, the term “query” is broader than its usual
database sense. It refers to any function that takes data as input. This can, for instance, be an
algorithm that uses data to train a machine learning model.



Chapter 3. Background on Differential Privacy in Machine Learning 43

3.1.1 Towards a Mathematical Definition of Privacy

Several approaches have been proposed to define privacy. The most usual idea is data
anonymization, that intends to remove personally identifiable information from the
data. Ideally, this allows to release entire datasets without compromising individu-
als’ privacy. However, proper anonymization is hard to obtain in practice. Indeed,
individuals can often be re-identified even after their personal information has been
redacted. Fortunately, there are many situations where releasing the full database
is not useful, since we are only interested in some aggregated values (e.g., general
statistics). This observation has motivated the study of information theoretic notions
of privacy, that characterize how much information may leak from releasing the value
of a function computed using data.

In Section 3.1.1 (a), we discuss why pseudonymization (i.e., replacing personal identi-
fiers by pseudonyms) is generally not sufficient to preserve the privacy of individuals.
We then describe k-anonymity (and some of its variants) in Section 3.1.1 (b), which
tries to define a rigorous framework to address the limitations of pseudonymization.
This approach also suffers from important caveats: essentially, it is difficult to ob-
tain a meaningful privacy without destroying all the relevant information from the
database. This encourages to study the problem from another point of view, based
on information theory, that we describe in Section 3.1.1 (c).

3.1.1 (a) Heuristic: Data Pseudonymization

Pseudonymization is the act of replacing identifying information (e.g., names, social
security number) by randomly generated pseudonyms. We illustrate this procedure
on an example database in Figure 3.1.2.

Name Birth date ZIP Diagnosis

Jacques 09/1929 48202 Healthy
Madeleine 05/1937 48137 Cancer
Mathilde 11/1982 21090 Diabetes

Guillaume 08/2000 21202 Diabetes

Name Birth date ZIP Diagnosis

uXzg 09/1929 48202 Healthy
Hayd 05/1937 48137 Cancer
xZs5 11/1982 21090 Diabetes
9zsW 08/2000 21202 Diabetes

Figure 3.1.1: Pseudonymization: names have been replaced by pseudonyms.

In the collective imagination, this is generally seen as a reasonable anonymization
strategy. It does indeed prevent the honest observer from inferring information about
individuals whose names have been redacted. But a less-honest person could exploit
the fact that most people can be re-identified from combining multiple features. In-
deed, the specific combination of a set of features’ values often allows to re-identify
people: we call such a set of features quasi-identifiers. A glaring example of this is
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that, as demonstrated by Sweeney (2000), 87% of Americans are uniquely identified
from just birth date, gender and ZIP code. Similarly, about 90% of web browsers
have a unique fingerprint3 (Eckersley, 2010; Laperdrix et al., 2016).

   
ZIP

Gender

Birth date

Name

Date 
registered

Party 
affiliation

Diagnosis

Date of
visit

Regular
doctor

Dataset 1:
Anonymized
medical record

Dataset 2:
Public voter
list

Figure 3.1.2: Linkage Attacks: anonymized dataset (without names) can be joined
with a public dataset (with names) based on a few attributes. Sweeney (2000) esti-
mated that age, zip code and birth date suffice to uniquely identify 87% of Americans.

This possibility of uniquely identifying individuals in the database makes the data
sensitive to linkage attacks. These attacks exploit the fact that individuals are often
part of multiple databases. This gives some side knowledge (i.e., knowledge that is not
part of the database itself), that can be used to reconstruct pseudonymized informa-
tion. This is done by exploiting the uniqueness of individuals to join an anonymized
dataset with a public dataset using a subset of shared attributes as keys. When spe-
cific combinations of these attributes are unique, the join operation succeeds. This
enables the reconstruction of private information that was stripped from the original
dataset by the anonymization procedure. We illustrate this operation in Figure 3.1.2,
where the set of variables {age, ZIP and birth date} are used as keys. Using this
method, Hawes (2021) was able to re-identify between 50 and 180 million Americans
from linking the 2010 US Census data with commercially available data. Similarly,
Narayanan and Shmatikov (2007) claimed that most of the users in the Netflix Prize
Dataset could be re-identified by linkage with IMDb’s data.

3.1.1 (b) Hiding among the Others: k-anonymity

To prevent linkage attacks, Sweeney (2002) proposed k-anonymity. Given a set of
quasi-identifiers (i.e., features that may allow re-identification), a dataset satisfies
k-anonymity if every record shares the same combination of quasi-identifiers with at
least k − 1 others. This effectively prevents linkage attacks: as the quasi-identifiers
have the same value for k different individuals, one cannot re-identify a specific person
uniquely based on their values.

3To know whether you are unique, visit https://www.amiunique.org/. I, unfortunately, am.

https://www.amiunique.org/
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To transform a database to fit k-anonymity (w.r.t. a set of quasi-identifiers), one
generally removes some attributes, and categorize others into a set of bins. These bins
are defined so that multiple users fall in each bin. With properly chosen bins, it is
possible to satisfy k-anonymity. We give an example of this procedure in Figure 3.1.3.

Name Birth date ZIP Diagnosis

Jacques 09/1929 13741 Healthy
Madeleine 05/1937 13440 Cancer
Mathilde 11/1982 21090 Diabetes

Guillaume 08/2000 21202 Diabetes

Name Birth date ZIP Diagnosis

xxx Before 1949 48xxx Healthy
xxx Before 1949 48xxx Cancer
xxx After 1950 21xxx Diabetes
xxx After 1950 21xxx Diabetes

Figure 3.1.3: Preventing linkage attacks: names are removed, birth dates are bina-
rized, and ZIP codes are reduced to the first two digits. The resulting dataset satisfies
2-anonymity for the set of attributes (Names, Birth date, ZIP).

Although k-anonymity prevents linkage attacks that use the specified quasi-identifiers,
it still suffers from several serious drawbacks. First, choosing the set of quasi-
identifiers is difficult. If this set is too narrow, it may not prevent linkage attacks
against adversaries that have background knowledge on the other attributes. Con-
versely, if it is too large, too much information may have been removed. For in-
stance, in Figure 3.1.3’s data, guaranteeing 4-anonymity would force all records to
be the same, which destroys utility. This phenomenon is especially common in high-
dimensional sparse datasets (e.g., the Netflix database), where very few records share
the same value for a given feature. A second caveat of k-anonymity is homogene-
ity attacks : if all k records have the same value for a sensitive attribute, this still
allows the attacker to infer it. For instance, the last two records in Figure 3.1.3’s
anonymized dataset share the same name, birth date and ZIP code: it is thus impos-
sible to determine whether the modified record is about Guillaume or Mathilde. But
all individuals from the group have diabetes, which is sufficient for the attacker to
complete its attack successfully, which constitutes a serious privacy leak.

Remark 3.1.1. Multiple refinements of k-anonymity have been proposed. Notably,
`-diversity (Machanavajjhala et al., 2007) prevents homogeneity attacks by promot-
ing diversity in groups that share the same quasi-identifiers; and t-closeness (Li et
al., 2007) further imposes that some attributes have similar distribution in a specific
group and in the complete dataset. These can improve privacy guarantees, although
at the cost of destroying even more information, which sometimes makes the resulting
dataset useless.
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3.1.1 (c) Information Theoretic Privacy: Perfect Secrecy

The methods we presented in Section 3.1.1 (b) all suffer from the same problem: either
the privacy guarantee is rather weak, or the useful information is completely removed
from the data. This is due to the fact that they aim at guaranteeing the privacy of
the complete database. Generally, we are more interested in the output of a query4

than on the data itself. Queries typically reveal only part of the information present
in the data, which allows to give more precise answers while preserving privacy.

Ideally, a query that preserves privacy should reveal no information on the data it
used in its computations. Such queries satisfy perfect secrecy, which was introduced
by Shannon (1949). Perfect secrecy ensures that all outputs of a query (on a database)
arise with the same probability, no matter what this database is. Formally, let D be
a set of datasets and E an arbitrary set. A (randomized) query A : D → E satisfies
perfect secrecy if

P(A(D) ⊆ S) = P(A(D′) ⊆ S) , for all S ⊆ E , and all D,D′ ∈ D . (3.1.1)

Intuitively, this means that anyone who observes the output of A does not gain
any knowledge on its input (as all input are as likely to have produced this result).
This gives a very strong notion of privacy, and is typically achieved by cryptographic
protocols. Examples of schemes that achieve this goal (in various settings) are one
time pads (Miller, 1882), Shamir’s secret sharing (Shamir, 1979) or symmetric (Pub,
FIPS, 1999) and asymmetric key algorithms (Diffie and Hellman, 2022). In these
protocols, an authorized party (who does not aim at publishing the message) knows
the randomness of A, and can thus inverse it to find the initial message.

As is, perfect secrecy provides an extremely strong notion of privacy, but is not
suitable for controlling how much information may leak upon publication of the result.
Indeed, if nothing is learned from the data, it does not seem very reasonable to use
the data in the first place. Therefore, we need to relax the constraint (3.1.1) imposed
by perfect secrecy: this is the goal of differential privacy.

3.1.2 Definition of Differential Privacy

We now introduce differential privacy, as proposed by Dwork (2006). Similar to
perfect secrecy (see Section 3.1.1 (c)), differential privacy is a property of a query
that takes a database as input. Informally, we can describe differential privacy as
follows.

A query is differentially private if observing its output does not allow to
tell too confidently whether an individual was part of the database or not.

4Recall here that the term query refers to any functions computed on a dataset.
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As we will see later, differential privacy has multiple strengths. First, it allows us
to give a precise meaning to the words “too confidently”. As such, it quantifies the
information leakage that is induced by the release of a query’s output. Second, the
differential privacy guarantee holds regardless of the knowledge of the adversary.

In the remainder of this section, we formally introduce the notion of differential
privacy. To this end, we start by defining divergences, that appear as natural tools
to relax the condition (3.1.1) from perfect secrecy. We then use these divergences to
define several flavors of differential privacy.

3.1.2 (a) Divergences

To define differential privacy, we need to compare probability distributions. This
will allow to relax the definition of perfect secrecy from (3.1.1), that required two
probability distributions to be perfectly equal. A very powerful tool for this kind of
comparison is the family of Rényi divergences (van Erven and Harremos, 2014).

Definition 3.1.1 (Rényi Divergences, Equation (9) in van Erven and Harremos,
2014). Let α > 1 and P,Q be two probability distributions over the same set X . The
α-Rényi divergence between P and Q is defined as

Divα(P‖Q) =
1

α− 1
log

∫
X

P (x)α

Q(x)α
dQ(x) , (3.1.2)

with the conventions that 0/0 = 0 and x/0 = +∞ for x > 0.

Rényi divergences measure the dissimilarity of two probability distributions. They
are based on the moments of the variable P (X)

Q(X)
, where X follows the distribution Q.

They interpolate between the two following divergences:

• The Kullback-Leibler divergence (α→ 1): DivKL(P‖Q) =
∫
X log P (x)

Q(x)
dP (x).

• The max divergence (α→ +∞): Div∞(P‖Q) = supS⊆X log P (S)
Q(S)

.

In the first case (α → 1), the Rényi divergence only controls the moment of order 1
(i.e., the mean) of P (X)/Q(X). In the second one (α→∞), it controls its moment of
order ∞ (i.e., its maximal value). In short, the parameter α controls the importance

of the tail of P (X)
Q(X)

in the value of the divergence Divα. This property of Rényi
divergences can be linked to the following divergence, which we call the “hockey-
stick” divergence5 (Dwork and Roth, 2014; Sason and Verdú, 2016), for δ ∈ [0, 1]:

Divδ∞(P‖Q) = sup
S⊆X | P (S)≥δ

log
P (S)− δ
Q(S)

. (3.1.3)

5The name comes from the hockey stick shape of the ReLU function x 7→ max(0, x).
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Intuitively, this divergence “ignores” the sets S that are too unlikely to arise in P . It
can be shown, for α > 1, that

Divδ∞(P‖Q) ≤ Divα(P‖Q) +
log(1/δ)

α− 1
. (3.1.4)

This result follows from the probability preservation property stated in Lemma 4.1
of Langlois et al. (2014), using the derivations from Proposition 3 of Mironov (2017).

3.1.2 (b) Differential Privacy

We now introduce the notion of (approximate) differential privacy (Dwork, 2006) and
its Rényi differential privacy variant (Mironov et al., 2019). Let D be a set of datasets.
We say that D,D′ ∈ D are neighboring (and denote D ∼ D′) whenever they have
the same size and differ on at most one element. In the following, E is a set, and
A : D → E is a randomized algorithm that takes a dataset as input and outputs some
(random) value.

Definition 3.1.2 (Differential Privacy). Let A : D → E be a randomized algorithm.
For ε ≥ 0, the algorithm A is ε-Div-differentially private if for all datasets D,D′ ∈ D
that differ on at most one element,

Div(A(D)‖A(D′)) ≤ ε . (3.1.5)

Depending on the divergence, we obtain different flavors of differential privacy:

• Div = Div∞: pure ε-differential privacy (Dwork, 2006):

P(A(D) ⊆ S) ≤ exp(ε)P(A(D′) ⊆ S) , for all S ⊆ E .

• Div = Divδ∞ (δ ∈ [0, 1]): approximate (ε, δ)-differential privacy (Dwork, 2006):

P(A(D) ⊆ S) ≤ exp(ε)P(A(D′) ⊆ S) + δ , for all S ⊆ E .

• Div = Divα (α > 1): (α, ε)-Rényi differential privacy (Mironov et al., 2019).

In general, the lower ε and δ are, and the higher α is, the stronger the privacy
guarantees become. Typically, when ε → 0 and δ = 0 or α = ∞, Definition 3.1.2
boils down to perfect secrecy (see Section 3.1.1 (c)).

Differential privacy, and its approximate variant, mean that for two neighboring
dataset D ∼ D′ ∈ D, a given output of A run on D is not more than exp(ε) more
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likely6 (up to some slack δ) to be observed than the same output if A was run on
D′. This is also the case for Rényi differential privacy, that can be converted back to
(approximate) differential privacy using the following proposition.

Proposition 3.1.1 (Proposition 3 in Mironov, 2017). Let A : D → E be a (α, ε)-
Rényi differentially private mechanism. Then, it follows from Equation (3.1.3) that

A is (ε+ log(1/δ)
α−1

, δ)-differentially private.

The main strength of differential privacy is that it is robust to prior knowledge of the
adversary. Informally, an adversary learns little from the output of a query, regardless
of their knowledge of the data. This is very different from the notions presented above.
For instance, with k-anonymity, an adversary with external knowledge was still able
to do homogeneity attacks (see discussions in Section 3.1.1 (b)), therefore learning
more than an adversary without any knowledge of the data. This idea has been
formalized by Kasiviswanathan and Smith (2014), who proposed a bayesian view on
the maximal knowledge an adversary can gain from a differentially private query.

The second important ingredient to the robustness of differential privacy is its post-
processing property. It states that the differential privacy guarantee of an algorithm
cannot be diminished by further processing its output, as long as this processing is
independent on the data and on the initial algorithm.

Proposition 3.1.2 (Post-Processing Dwork and Roth, 2014). Let E ,F be two sets,
and D the set of possible datasets. Let ε > 0 and Div be a divergence. If A : D → E
is ε-Div-differentially private, and f : E → F is a function that is independent from
the data and the randomness of A, then f ◦ A is also ε-Div-differentially private.

Proposition 3.1.2 is a consequence of the data processing inequality (see e.g., Beaudry
and Renner, 2012). Seeing A(D) as a noisy signal produced from a dataset D ∈
D, this means that the signal due to D present in A cannot be amplified by post-
processing. This property is fundamental to the robustness of differential privacy, as
it ensures that once a value is released, it cannot get less private by any means.

3.1.3 Basic Building Blocks for Differential Privacy

In practice, it is common to compute deterministic queries on the data. Being de-
terministic, such queries do not satisfy differential privacy. Therefore, we need to
incorporate some kind of randomness before releasing the query’s output. This al-
lows to transform the query into a differentially private one, but reduces the utility
of the result. To choose the right amount of noise, one can use an ensemble of basic

6For small value, note that expε ≈ 1 + ε. Small values of ε therefore really mean that the two
probabilities are very close.
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differentially private mechanisms. These mechanisms allow releasing the value of a
query on a database under a fixed privacy budget. We will see in the next section
that these mechanisms can then be combined to create more complex algorithms. We
describe four of these basic mechanisms in this section.

3.1.3 (a) Randomized Response

The most basic (and historic!) differentially private mechanism is the randomized
response mechanism. This mechanism was initially proposed by Warner (1965), 41
years before differential privacy (Dwork, 2006). In this mechanism, the query is a
closed-ended question7. We describe it for binary questions, but variants of this
mechanism have been proposed when it is not the case (Kairouz et al., 2014).

In randomized response, respondents flip a coin before answering, then:

(i) if it comes up heads, they answer truthfully,

(ii) if it comes up tails, they answer Yes or No uniformly randomly.

We describe the complete procedure in Algorithm 3.1.1.

Algorithm 3.1.1: RRp: Randomized Response Mechanism.

Input: probability p of answering randomly.

Sample θ ∼ B(p) from a Bernoulli distribution.

If θ = 0: set r to the true answer.

Else: set r to Yes or No uniformly randomly.

Return: randomized response r.

The proportion of “Yes” in the output of Algorithm 3.1.1 is qpriv = pqtrue + 1
2
(1− p),

where qtrue is the underlying probability of answering “Yes”. We can therefore build
an estimator of qtrue from the output of the RRp mechanism as follows

qestimated = 1
2p

(2r − 1 + p) ,

where r is the output of the RRp mechanism. Additionally, the RRp satisfies differen-
tial privacy. Depending on the probability that the coin comes up heads (or tails),

7In the historical context of the cold war, an example of such a question would be “Are you a
member of the Communist party?”.
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different levels of privacy can be obtained. We state the privacy guarantees of Al-
gorithm 3.1.1 in the following theorem (see e.g., Dwork and Roth, 2014; Erlingsson
et al., 2014).

Theorem 3.1.1 (Differential privacy guarantees for RRp). Let ε > 0. Then, the RRp
mechanism with p = 2

1+exp(ε)
is ε-differentially private.

Proof. Let R, T be two random variables, respectively representing the response and
the truth of a respondent. We can compute

P(R = Yes | T = Yes) = 1− p+ 1
2
p = 1− 1

2
p ,

P(R = Yes | T = No) = 1
2
p .

Consequently, P(R=Yes|T=Yes)
P(R=Yes|T=No)

= 1−p/2
p/2

. Setting p = 2
1+exp(ε)

gives the result.

The proof of this theorem is very simple, but highlights one key asset of these mecha-
nisms: they can guarantee privacy without assumptions on the specific distribution of
the data. There, no matter the true probability of answering “Yes”, the mechanism
will still guarantee differential privacy.

3.1.3 (b) Sensitivity of a Query

When queries are not closed-ended questions, we will need to assess how much a
query can change between two datasets. The maximal change in the value of a query
is called the sensitivity of the query.

Definition 3.1.3 (Sensitivity of a Query). Let f : D → E be a query and ‖ · ‖ be an
arbitrary norm on E. We define the sensitivity of f associated to the norm ‖ · ‖ as

∆‖·‖(f) = max
D∼D′∈D

‖f(D)− f(D′)‖ , (3.1.6)

where the maximum is computed over neighboring datasets. When E = Rp, we denote
∆1(f) = ∆‖·‖1(f) and ∆2(f) = ∆‖·‖2(f) the `1 and `2 sensitivities of f .

This sensitivity plays in a key role in the design of mechanisms that release a dif-
ferentially private estimate of the query f . It will be used to calibrate the noise to
release this value under a fixed privacy budget. We discuss that in Section 3.1.3 (c).

A fundamental query is the averaging query. These types of queries will notably
arise in the design of optimization algorithms (see Section 3.2.3 (b)). Indeed, in these
algorithms, the gradient of the empirical risk is the average of the gradient of the loss
across the dataset. This query is also central in the derivation of utility lower bounds
in Section 3.2.4. We now define this query and give its sensitivity.
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Example 3.1.1 (Average). Let D ⊆ {0, 1}n, and for D = {d1, . . . , dn} ∈ D, the
averaging query be f(D) = 1

n

∑n
i=1 di. The sensitivity of f is

∆(f) = sup
D∼D′∈D

∣∣∣∣ 1
n

n∑
i=1

di − 1
n

n∑
i=1

d′i

∣∣∣∣ = 1
n

∣∣di∗ − d′i∗∣∣ ≤ 1
n
, (3.1.7)

where the supremum is over neighboring datasets. In the second equality, we denoted
i∗ the index on which D,D′ differ.

Remark that the sensitivity decreases as the number of records in the data increases.
This is due to the fact that, when datasets are big, each individual has a smaller
contribution to the result. This observation is essential when using differential privacy
in practice, as it allows to compute aggregated values both privately and accurately
when the dataset is large enough.

3.1.3 (c) Laplace and Gaussian Mechanism

When a query f : D → Rp has a bounded sensitivity, it is possible to release its
(approximate) value in a differentially private way. The two most commonly used
mechanisms to do so are the Laplace and Gaussian mechanisms. These mechanisms
rely on the addition of Laplace or Gaussian noise, which will allow to conceal indi-
viduals’ contribution to the value of the query.

We first describe the Laplace mechanism. This mechanism is based on the centered
Laplace distribution, which has a probability density function given by

Lap(x|λ) =
1

2λ
exp

(
− |x|

λ

)
, for x ∈ R . (3.1.8)

We will use the notation X ∼ Lap(λ)p to denote a random variable X taking its values
in Rp whose coordinates are independently sampled from the Laplace distribution with
parameter λ. The Laplace mechanism is defined as follows.

Algorithm 3.1.2: LMλ: Laplace Mechanism.

Input: query f : D → Rp, dataset D, noise scale λ > 0.

Return: f(D) + Lap (0, λ)p.

This mechanism provides an unbiased estimate of the function f with bounded vari-
ance. We can show that the Laplace mechanism satisfies pure differential privacy.

Theorem 3.1.2 (Theorem 3.6 in Dwork and Roth, 2014). Let ε ≥ 0 and f : D → Rp

be a query with `1-sensitivity ∆1(f). The Laplace mechanism LMλ with parameter

λ = ∆1(f)
ε

is ε-differentially private.
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Proof. Let D ∼ D′ ∈ D be two datasets differing on one element. Let gD and gD′ be
the density functions of the output of LMλ(f ;D) and LMλ(f ;D′). For z ∈ Rp,

gD(z)

gD′(z)
=

p∏
j=1

exp
(
− ε|f(D)j−zj |

∆1(f)

)
exp

(
− ε|f(D′)j−zj |

∆1(f)

) =

p∏
j=1

exp

(
ε|f(D′)j − zj| − ε|f(D)j − zj|

∆1(f)

)
,

where f(D)j is the j-th coordinate of f(D), and similarly for f(D′). By the triangle
inequality and the properties of the exponential function we obtain

gD(z)

gD′(z)
≤

p∏
j=1

exp

(
ε|f(D)j − f(D)j|

∆1(f)

)
= exp

(
ε‖f(D)− f(D)‖1

∆1(f)

)
≤ exp(ε) ,

which proves that LMλ satisfies ε-differential privacy.

Note the importance of the sensitivity: to achieve a fixed ε-differential privacy guar-
antee, the noise has to be proportional to the `1 sensitivity of the query.

For vector-valued queries, the `1-sensitivity can be quite large. Such queries often
have a much smaller `2-sensitivity: being able to calibrate the noise to this sensitivity
could thus greatly reduce the overall variance of the noise. To do this, we need
to change the distribution of the noise from Laplace to Gaussian. The Gaussian
distribution has the following density function

N (x|σ2) =
1

σ
√

2π
exp

(
−|x|

2

2σ2

)
, for x ∈ R . (3.1.9)

We will denote X ∼ N (σ2)p a random variable taking its values in Rp whose coordi-
nates are independently sampled from the Gaussian distribution with parameter σ2.
This leads to defining the Gaussian mechanism as follows.

Algorithm 3.1.3: GMσ: Gaussian Mechanism.

Input: query f : D → Rp, dataset D, noise scale σ2 > 0.

Return: f(D) +N (0, σ2)
p
.

Like the Laplace mechanism, this mechanism gives an unbiased estimator of f with
bounded variance. The Gaussian mechanism also satisfies differential privacy.

Theorem 3.1.3 (Corollary 3 in Mironov, 2017). Let α > 1, ε > 0, and f : D → Rp

be a query with `2-sensitivity ∆2(f). The Gaussian mechanism GMσ with parameter

σ2 = α∆2(f)2

2ε
is (α, ε)-Rényi differentially private.
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Remark 3.1.2 (From Theorem 3.22 in Dwork and Roth (2014)). We can also di-
rectly give approximate differential privacy for the Gaussian mechanism. It is (ε, δ)-

differentially private as long as σ2 ≥ 2 log(1.25/δ)∆2(f)2

ε2
.

This theorem follows from Proposition 7 of Mironov (2017). Note that the vari-
ance of the noise scales with α: this highlights that the Gaussian mechanism cannot
guarantee pure differential privacy (as this would require taking α → +∞, see Sec-
tion 3.1.2 (b)). However, this limitation is compensated by the fact that the variance
of the noise in the Gaussian mechanism depends on the `2-sensitivity of the query.
This sensitivity can be up to

√
p times lower than the `1-sensitivity. It is therefore

natural to use this mechanism to design differentially private mechanisms.We will see
in Section 3.2.3 that the Gaussian mechanism is an important building block in the
design of differentially private optimization algorithms.

3.1.3 (d) Report Noisy Max

Sometimes, we do not need to release the complete sensitive query. A notable example
is when we aim at computing the index of the maximal element of a sensitive vector.
In this case, we can use the Report Noisy Max mechanism (Dwork and Roth, 2014).
This mechanism adds Laplace noise to each coordinate of the vector, and release the
maximum of the noisy values.

Algorithm 3.1.4: RNMλ: Report Noisy Max.

Input: queries fk : D → R for k ∈ [K], dataset D, noise scales λk > 0.

For k = 0 to K:

Compute uk = fk(D) + Lap(λ).

Return: arg max
k∈[K]

uk.

This mechanism preserves pure differential privacy.

Theorem 3.1.4 (Privacy of the Report Noisy Max Mechanism). Let ε > 0. For
k ∈ [K], let fk : D → R be a query with sensitivity ∆(fk) (note that since fk is scalar,
its `1 and `2 sensitivities coincide). The Report Noisy Max Mechanism RNMλ with

parameter λ ∈ Rp such that λk = ∆(fk)
ε

is ε-differentially private.

The proof can be found in Claim 3.9 from Dwork and Roth (2014). There, the funda-
mental observation is that the noise we add in each fk only depends on its sensitivity,
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rather than on the complete `1-sensitivity of the query D 7→ (f1(D), . . . , fK(D)),
which would be much larger. This mechanism will be at the core of the differential
privacy greedy coordinate descent algorithm, which will be the object of Chapter 5.

3.1.4 Building More Complex Mechanisms

The basic mechanisms that we described above can be used to build more complex
mechanisms. This is at the root of all differentially private optimization algorithms.
The two essential ideas are that (i) releasing the output of multiple differentially
private algorithms on the same dataset still guarantee differential privacy (although
with looser guarantees), and (ii) sampling a fraction of the dataset and running a
differentially private algorithm on this sub-sample amplifies privacy guarantees.

3.1.4 (a) Composition

Each time a database is queried, more information gets leaked. This can be ac-
counted for by tracking the evolution of the privacy budget as the same database
gets queried. We aim at quantifying the differential privacy guarantees of K > 0
algorithms A1, . . . ,AK on the same dataset. Importantly, we also allow the output of
each mechanism to depend on the output of the previous ones. Formally, we aim at
quantifying the differential privacy guarantee satisfied by the mechanism recursively
defined by,

A(k)
comp : D 7→ AK(D; a1, . . . , ak−1) , for k ∈ [K] , (3.1.10)

where, for i ≤ k, ai is the output of the i-th mechanism A(i)
comp(D). We first state

the following theorem, that gives the privacy guarantees of the composition of (ε, δ)-
differentially private algorithms.

Theorem 3.1.5 (Theorem 3.20 and Corollary 3.21 in Dwork and Roth, 2014). Let ε >
0, δ, δ0 ∈ [0, 1], and A1 : D → E1, A2 : D×E1 → E2, . . . , AK : D×E1×· · ·×EK−1 → EK
be a sequence of (ε, δ)-differentially private algorithms. Then the algorithm A(K)

comp as
defined in (3.1.10) satisfies (ε′, δ′)-differential privacy with

ε′ =
√

2K log(1/δ0)ε+Kε(exp(ε− 1)) < , and δ′ = kδ + δ0 . (3.1.11)

When the target ε′ is smaller than 1, and δ′ > 0, we can simplify this expression as
ε′ =

√
2K log(1/δ0)ε+Kε2. Consequently, it suffices to set ε = ε′√

8K log(1/δ0)
to obtain

the desired target value for ε′.

This theorem is particularly helpful when composing pure ε-differentially private
mechanisms, where it yields reasonably tight guarantees. We will notably use this
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result to compose Laplace LMλ and Report Noisy Max RNMλ mechanisms in Chapter 5
when designing our differentially private greedy coordinate descent algorithm.

When composing approximate (ε, δ)-differentially private mechanisms (e.g., the Gaus-
sian mechanism GMσ), it is often tighter to use the composition theorem of Rényi
differential privacy. The result can then be converted back to the usual differential
privacy using Proposition 3.1.1. These mechanisms can be composed as follows.

Theorem 3.1.6 (Proposition 1 in Mironov, 2017). Let α > 1 and A1 : D → E1,
A2 : D×E1 → E2, . . . , AK : D×E1×· · ·×EK−1 → EK be a sequence of (α, εk)-Rényi

differentially private algorithms. Then the algorithm A(K)
comp as defined in (3.1.10)

satisfies (α, ε)-Rényi differentially private with parameter ε =
∑K

k=1 εk.

3.1.4 (b) Privacy Amplification by Sampling

The last building block that we need is a privacy amplification result. This allows to
characterize the privacy guarantees achieved when a differentially private algorithm is
run on a random sub-sample of dataset. Formally, we define the Sampleq mechanism,
for q ∈ [0, 1], as follows.

Algorithm 3.1.5: Sampleq: sampling mechanism.

Input: dataset D of n records, fraction of the samples q.

Return: sample of bqnc records uniformly sampled from D.

Composing the Sampleq mechanism with a database query can greatly affect its sen-
sitivity. For instance, consider the averaging query from Example 3.1.1, composed
with Sampleq. It returns f ◦ Sampleq(D) = 1

qn

∑
i∈Sq di, where Sq is the subset of size

qn sampled by Sampleq. The sensitivity of the composed mechanism is increased by
a factor 1/q, that is ∆2(f ◦ Sampleq) = 1

qn
.

Fortunately, when releasing f ◦ Sampleq privately, the mere fact of sampling a subset
of the dataset improves privacy guarantees. This phenomenon was notably studied
by Li et al. (2012), Balle et al. (2018), Balle et al. (2020), and Steinke (2022) who
proved the following theorem.

Theorem 3.1.7 (Theorem 9, Balle et al., 2020). Let q ∈ [0, 1], ε ≥ 0, δ ∈ [0, 1], and
A : D → E be a (ε, δ)-differentially private algorithm Then A ◦ Sampleq is (ε′, qδ)-
differentially private with ε′ = log(1 + q(exp(ε)− 1)).

For small values of ε, we have ε′ = log(1 + q(exp(ε) − 1)) ≈ qε. Therefore, Theo-
rem 3.1.7 essentially means that privacy guarantees are amplified by a factor q. In
practice, this compensates for the increase in sensitivity mentioned above.
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Similar results exist for Rényi differential privacy (Mironov et al., 2019; Wang et al.,
2019a). For the sampled Gaussian mechanism, one can derive the following amplifi-
cation result, that follows from the instantiation of the results of Bun et al. (2018) to
the Gaussian mechanism.

Theorem 3.1.8 (Table 1 in Mironov et al., 2019, adapted from Bun et al., 2018).
Let q ∈ [0, 1/10], σ >

√
5 and 1 < α ≤ 1

2
σ2 log(1/q). Then the sampled Gaussian

mechanism GMσ ◦ Sampleq with parameter σ2 is (α, 6q2α
σ2 )-Rényi differentially private.

Note that Mironov et al. (2019) and Wang et al. (2019a) also give tighter results with-
out conditions on α, σ, although without a closed form expression. In Section 3.2.3 (b)
these results will allow us to assess the privacy guarantees of the differentially private
stochastic gradient descent algorithm.

3.2 Differentially Private Machine Learning

One may think that, as machine learning works with aggregated quantities on possibly
large datasets, it does not contain confidential information. However, as any compu-
tation done on a set of data, they are subject to the rule stated in Section 3.1.2: any
useful computation done on a dataset leaks information on this dataset. Therefore,
special care has to be taken to train these models while preserving data privacy.

In this section, we give in Section 3.2.1 a quick tour of existing attacks on machine
learning models. These attacks highlight the reality of privacy leaks, and thus, the
necessity of addressing them. To this end, we introduce the differentially private
empirical risk minimization problem (DP-ERM) (Chaudhuri et al., 2011), which aims
at training machine learning models under differential privacy. Then, we describe
some classical approaches for solving it in Section 3.2.3, and discuss their usability in
practice. Finally, we describe utility lower bounds in Section 3.2.4. Under the usual
assumptions on the objective, these worst-case lower bounds are nearly matched by
the methods proposed in Section 3.2.3. Nonetheless, we will see in Chapter 4 that
these lower bounds can be refined when regularity is measured in a coordinate-wise
manner.

3.2.1 Privacy Leaks in Machine Learning

Although trained machine learning models aim at finding general patterns that apply
to the complete population, they still tend to leak some information on their training
data. This has been demonstrated in practice through inference attacks, that try to
reconstruct (part of) the training data. We now describe two types of such attacks:
membership inference attacks, and reconstruction attacks.
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Membership Inference Attacks. Membership inference attacks aim at inferring,
from the result of a query, whether an individual was present in the data or not.
These attacks correspond to the point of view of the attacker that differential privacy
tries to protect against. They were introduced by Shokri et al. (2017), who proposed
to attack a model as a black box. In this setting, the adversary has a black-box access
to the model (i.e., they can query the model with arbitrary, and obtain the values
predicted by the model). Their attack works in three steps: (i) generate synthetic
data that is somewhat similar to the training data, then (ii) train multiple models
on parts of this data, and (iii) train another classifier on the prediction of the models
from previous step, using as label the membership of the record in the training data
of the model. The resulting model is expected to be able to distinguish between a
point used in training a model and another one. This kind of approach have then
notably been studied by Yeom et al. (2018), Truex et al. (2019), and Ye et al. (2022).
Other settings, where adversary can do more than simply querying the model have
also been studied (Nasr et al., 2019; Sablayrolles et al., 2019; Melis et al., 2019).

We note that most of the aforementioned works assume that the attacker possesses
a set of candidate records that contains a large fraction of true training records.
This setting is in line with the guarantees of differential privacy (where the adversary
may know all records but one and still be unable to re-identify anyone), but may
not be overly realistic. The works of Jayaraman et al. (2021) and Carlini et al.
(2021a) studied a harder (but more realistic) setting where few of the records from
the candidate set are actual training records.

We refer to Hu et al. (2022a) for a detailed overview of membership inference attacks.

Reconstruction Attacks. Attribute inference attacks aim to reconstruct (part
of) the training data from a trained model or from intermediate computations like
gradients. This threatens individuals’ privacy since all their personal information
(present in a private dataset) could be reconstructed by malicious parties.

Multiple works have shown that such attacks are possible from gradients. For in-
stance, consider the federated learning setting, where multiple agents learn a model
collectively using FedAvg with one local step (McMahan et al., 2017). The server
asks an agent to compute a gradient ∇f(w; d), for some function f that depends on
the agent’s local data d and some parameters w ∈ Rp. In such setting, Phong et al.
(2017), Wang et al. (2019b), and Zhu et al. (2019) showed that one can reconstruct
the data by solving a problem similar to this:

min
d′
‖∇f(w; d′)− g‖2 , where g = ∇f(w; d) .

This can notably be done by the server that orchestrates the training, who knows ev-
erything but the data record. These approaches were extended to mini-batch FedAvg
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by Geiping et al. (2020) and Wen et al. (2022). Similarly, Fowl et al. (2022) proposed
to modify models during training so that the data is obtained completely without
having to solve such a problem.

Finally, some works have studied reconstruction attacks from trained models. This
was notably studied by Guo et al. (2022) and Balle et al. (2022) in a general setting.
More specific works considered high-dimensional linear models (Paige et al., 2021),
generative models (Wang et al., 2009; Carlini et al., 2023) and language models Carlini
et al. (2019) and Carlini et al. (2021b).

In the remainder of this Chapter, we give an overview of the methods that can be set
up to limit the possibility for an adversary to perform the attacks we just described.

3.2.2 Differentially Private Empirical Risk Minimization

A general method for training machine learning models in a differentially private
way is differentially private empirical risk minimization (Chaudhuri et al., 2011). Let
X be a feature space and Y a label space. Suppose that a trusted data curator
has access to a data set D = {d1, . . . , dn} ⊆ (X × Y)n of n records. To train a
model privately, one aims at designing an (ε, δ)-differentially private algorithm that
computes an approximation wpriv of

w∗ ∈ arg min
w∈W

{
F (w) := f(w) + ψ(w)

}
, with f(w) =

1

n

n∑
i=1

`(w; di) , (?′)

which is a special instance of (?) with fi(w) = `(w; di), for some loss function ` :
W ×X × Y → R. We assume that W ⊆ Rp is a closed convex set, `(·; d) is smooth
and proper convex for all d ∈ D, and ψ is proper convex. The function f is the only
function that depends on the data, and ψ is a regularizer that controls the model’s
complexity and structure. In the following, we call utility the expected suboptimality
gap. Specifically, if an algorithm outputs wpriv, we measure its utility as E(F (wpriv))−
F (w∗), where the expectation is over the randomness of the algorithm.

3.2.3 Solving Differentially Private Empirical Risk
Minimization

Multiple approaches have been proposed for solving (?′) using differentially private
algorithms. In this section, we describe two these methods: output perturbation
and differentially private stochastic gradient descent (DP-SGD). We then discuss some
practical considerations that are essential for the real-world use of these mechanisms.
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3.2.3 (a) Output Perturbation

One very simple way of finding an (ε, δ)-differentially private solution to (?′) is to com-
pute a solution w∗ and release it using the Gaussian mechanism (see Section 3.1.3 (c)).
This approach coined output perturbation was studied by Chaudhuri and Monteleoni
(2008) and Chaudhuri et al. (2011) and later by Lowy and Razaviyayn (2021).

Algorithm 3.2.1: Output Pertubation.

Input: dataset D, noise scale σ > 0.

Compute w∗ ∈ arg minw∈W
{
F (w)

}
.

Return: wpriv = w∗ +N (0, σ2)p.

To assess the privacy guarantees of this mechanism, we need to compute the sensitivity
of the function that maps a dataset to a solution of (?′). To do so, we need the solution
to be unique, and to derive a bound on how much it can change when one element of
the dataset changes.

Theorem 3.2.1. Let ε ≥ 0, δ ∈ [0, 1]. Assume f is differentiable, L-Lipschitz,
µ-strongly convex, and has a finite minimum. Then, Algorithm 3.2.1 with σ2 =
2 log(1.25/δ)L2

µ2n2ε2
is (ε, δ)-differentially private.

Proof. To prove this theorem, we study the sensitivity of the function

g : D 7→ arg min
w∈W

F (w) .

First, since F is µ-strongly convex and has a finite minimum, it has a unique mini-
mizer, and g is well-defined. We now let D and D′ be two datasets differing on their
first element. Let w∗1 and w∗2 be the minimizers of F (·;D) and F (·;D′) respectively.
Since f is differentiable and strongly convex, we can use (2.1.15) to obtain

F (w∗1;D) ≤ F (w∗2;D)− µ
2
‖w∗1 − w∗2‖2 (3.2.1)

F (w∗2;D) ≤ F (w∗1;D) + 〈∇F (w∗2;D), w∗2 − w∗1〉 − µ
2
‖w∗1 − w∗2‖2 . (3.2.2)

Now we remark that F (w∗2;D) = F (w∗2;D′)+ 1
n
(`(w∗2; d′1)− `(w∗2; d′2). Therefore, since

w∗1 and w∗2 are the minimum of F (·;D) and F (·;D′), we have ∇F (w∗2;D′) = 0 and

∇F (w∗2;D) = 1
n
(∇`(w∗2; d′1)−∇`(w∗2; d′2)) . (3.2.3)

Summing (3.2.1) and (3.2.2) and replacing the value of ∇F (w∗2;D), we obtain

µ‖w∗1 − w∗2‖2 ≤ 1
n
〈∇`(w∗2; d′1)−∇`(w∗2; d1), w∗2 − w∗1〉 ≤ 2L

n
‖w∗2 − w∗1‖ , (3.2.4)
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which implies that the sensitivity of g is ∆2(g) ≤ 2L
µn

. The theorem follows from the
differential privacy guarantees of the Gaussian mechanism stated in Remark 3.1.2.

Theorem 3.2.1 proves that the output perturbation mechanism is differentially private.
Nonetheless, we stress that for the theorem to hold, the computation of the minimizer
of the (?′) problem has to be computed exactly. In general, it may be difficult to
guarantee the exactitude of this computation. In the next section, we discuss an
algorithm that directly computes a differentially private value without relying on the
exact computation of the solution.

Remark 3.2.1. A very related method is objective perturbation (Chaudhuri et al.,
2011). Instead of finding the true value, then perturbing it, the objective is augmented
with an additive noise term, which guarantees the privacy of the solution. These type
of algorithms have been studied by Kifer et al. (2012) on sparse problems, and Neel
et al. (2020) studied it under various sets of assumptions.

3.2.3 (b) Differentially Private Stochastic Gradient Descent

In this section, we describe the most widely used algorithm for solving the ?′ problem:
differentially private stochastic gradient (DP-SGD). DP-SGD is a variant of the SGD

algorithm that we described in Section 2.2.2. Contrary to output perturbation, it can
solve (?′) even on non-strongly-convex losses.

DP-SGD was initially proposed by Song et al. (2013) and Jain et al. (2012). Then,
Bassily et al. (2014b) proved the optimality of DP-SGD’s utility, and Wang et al.
(2017) studied variance-reduced variants of DP-SGD to improve the efficiency of the
algorithm (although for the same utility). DP-SGD has also been widely studied as a
minimizer of the population risk, see Duchi et al. (2013), Bassily et al. (2019), and
Feldman et al. (2020). We describe the proximal variant of this algorithm, that can
handle non-smooth regularizers.

Algorithm 3.2.2: DP-SGD: Differentially Private Proximal SGD.

Input: initial point w0, step sizes γ0, . . . , γT > 0, noise scale σ > 0.

For t = 0 to T − 1:

Sample index i uniformly at random in [n]

Update wt+1 = proxγtψ
(
wt − γt(∇fi(wt) + ηt

)
, where ηt ∼ N (0, σ2).

Return: wT .
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At each iteration of DP-SGD, we sample some record from the data, and add Gaussian
noise. This allows to give differential privacy guarantees for DP-SGD.

Theorem 3.2.2 (Adapted from Theorem II.2 in Bassily et al. (2014b)). Let ε ≥ 0

and δ ∈ [0, 1]. There exist a value of σ2 = O(TL
2 log(1/δ)
n2ε2

), that can easily be computed
numerically, such that DP-SGD with parameter σ2 is (ε, δ)-differentially private.

Proof. To prove the theorem, we study the Rényi differential privacy of DP-SGD,
and convert them back to the usual differential privacy. Let α > 0. From Theo-
rem 3.1.3, each iteration of DP-SGD is (α, αL

2

2σ2 )-Rényi differentially private. Since each
iteration operates on a sample of size 1

n
of the data, this guarantee is amplified by

a factor O(1/n2) (see Theorem 3.1.8). Using the composition result from (3.1.10),
we obtain that DP-SGD is (α, αTL

2

2n2σ2 )-Rényi differentially private. Converting back to
(ε, δ)-differential privacy using Proposition 3.1.1 gives the result.

Remark 3.2.2. In Theorem 3.2.2, we write σ2 = O(TL
2 log(1/δ)
n2ε2

) uniquely to give an
intuition on the scale of the noise required for DP-SGD to satisfy differential privacy.
In practice, this value is computed numerically by tuning the parameter α of Rényi
differential privacy properly.

The utility of DP-SGD has first been formally studied by Bassily et al. (2014b) under
the assumption that f is differentiable (and not necessarily smooth), L-Lipschitz and
convex. They use an indicator function, ψ = ιW , so that the iterates are projected
on the convex set W at each iteration.

Theorem 3.2.3 (Theorem II.4 in Bassily et al., 2014b). Let f be differentiable, L-
Lipschitz and convex, and take ψ = ιW so that proxγtψ is the projection on the set W.
Define w∗ ∈ arg minw∈W a minimizer of f , and denote ‖W‖2 the diameter of W. Set

the number of iterations to T = n2, and σ2 = O(L
2T log(1/δ)
n2ε2

).

• If F is convex, set the step size γt = ‖W‖2√
t(n2L2+pσ2)

. Then the output of DP-SGD

achieves the utility

E(F (wpriv))− F (w∗) = O

(
L‖W‖2

√
p log(1/δ)

nε

)
.

• If F is µ-strongly-convex with respect to the `2-norm, set γt = 1
µnt

. Then the
output of DP-SGD achieves the utility

E(F (wpriv))− F (w∗) = O

(
L2p log(1/δ)

µn2ε2

)
.
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Proof. The proof relies on the following bounds on the gradients expected square
norm, for any w ∈ W , and i ∼ U([n]),

E(‖∇`(w; di) + ηt‖2) = E(‖∇`(w; di)‖2) + 2E(〈∇`(w; di), η
t〉) + E(‖ηt‖2)

≤ L2 + pσ2 ,

where the inequality comes from the uniform bound ‖∇`(w; di)‖2 ≤ L, the fact that
E(ηt) = 0 and the fact that σ2 is the variance of each coordinate of ηt.

The bounds then follow from the analysis of projected SGD from Shamir and Zhang
(2013), that relies on the availability of a bound on the squared norm of stochastic
gradients. With our choice of step sizes, their results state that, for convex functions
(see their Theorem 2 with c = ‖W‖2ε/L

√
p log(1/δ)), that

E(F (wT )− F (w∗)) ≤ 8
√
p log(1/δ)L‖W‖2 log(T )

ε
√
T

+
4
√
pε‖W‖2σ2 log(T )

L
√
T

=
8
√
p log(1/δ)L‖W‖2 log(T )

ε
√
T

+O

(
4
√
pT log(1/δ)L‖W‖2 log(T )

n2ε

)
,

and for µ-strongly-convex functions (see their Theorem 1), that

E(F (wT )− F (w∗)) ≤ 34L2 log(T )
λT

+ 34pσ2 log(T )
µT

= 34L2 log(T )
λT

+O
(
L2p log(T )
µn2ε2

)
.

The result follows from setting T = n2 in these two inequalities, which balances the
two terms.

This theorem gives a theoretical guarantee on the utility of DP-SGD. The proof of
these utility results highlights the tension between the optimization error, which de-
creases with the number of iterations, and the noise due to privacy, which increases
with the number of iterations. We stress that the latter increases, not because of
noise accumulation, but because of the composition of multiple queries over the same
database: this requires increasing the variance of the noise to keep a constant privacy
budget. We will observe the same phenomenon in the utility analyses we carry in
Chapters 4 and 5 for the DP-CD and DP-GCD algorithms.

We note that these utility upper bounds grow polynomially with the dimension. This
is due because, at each iteration, we add noise on each of the gradient’s coordinates.
We will see in Chapter 5 that, in some cases, doing coordinate-wise updates on prop-
erly chosen coordinates can reduce this dependence from polynomial to logarithmic.
Nonetheless, under the general assumptions of Theorem 3.2.3, it is not possible to
achieve better utility (see Section 3.2.4). Therefore, under the assumptions of Theo-
rem 3.2.3, DP-SGD optimally solves the ?′ problem.
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Remark 3.2.3. A result similar to Theorem 3.2.3 can be obtained for DP-SGD with
general ψ and fixed step size, based on the convergence result of Proximal SGD from
Khaled et al. (2020). This requires special attention, but the arguments are the same
as in the proof of Theorem 3.2.3.

3.2.3 (c) Differentially Private Machine Learning in Practice

When trying to train a model privately, several practical challenges arise. First, the
sensitivity estimated from the Lipschitz constant of the loss typically overestimate
the actual norm of the gradient, preventing algorithms like DP-SGD from finding a
meaningful model. Second, optimization algorithms often crucially depend on the
choice of their hyperparameters, which can be difficult to choose privately. We give a
brief overview of methods that have been proposed to address these issues in practice.

Gradient Clipping. In gradient-based algorithms like DP-SGD, we compute a dif-
ferentially private approximation of the gradient using, for instance, the Gaussian
mechanism. To do so, we need a bound on the sensitivity of this gradient, which can
be obtained through the Lipschitz assumption, as we discussed in Section 2.1.4 (a)).
Since this bound needs to hold uniformly for all gradients of the loss, on all data
records, it can be very high compared to the actual value of the gradients. In some
problems (e.g., deep neural networks), it may also be difficult to compute this con-
stant tightly to begin with. To mitigate these issues, practical implementations of
DP-SGD often use gradient clipping, as described by Abadi et al. (2016a). We set a
threshold C > 0, and clip the gradients whose norm is higher than this threshold as
follows:

clip(∇`(w; d);C) = min

(
1,

C

‖∇`(w; d)‖

)
∇`(w; d). (3.2.5)

This guarantees that the clipped gradient is bounded by C. This has two important
consequences in terms of privacy: (i) it guarantees that for any record, the gradient
will be bounded by C (even if it has an unexpectedly high value), and (ii) it reduces
the sensitivity of the gradient from 2L to 2C, which can be much lower.

In practice, clipping is indispensable to obtain reasonable utility while guaranteeing
privacy. It is notably used in all implementations of DP-SGD (see e.g., PyTorch Opacus
(Yousefpour et al., 2022), and TensorFlow Privacy (Abadi et al., 2016b)).

Unfortunately, clipping introduces bias in the gradient, as not all individual gradients
are clipped the same. This can be interpreted as a bias-variance trade-off (Amin et
al., 2019): low clipping induces large bias, but small variance, whereas high clipping
induces little to no bias, but large variance. Nonetheless, this bias is not always a
problem. For instance, Chen et al. (2020) highlighted that when gradients follow a



Chapter 3. Background on Differential Privacy in Machine Learning 65

symmetric distribution, clipping does not introduce that much bias. It may also be
possible to reduce this bias by setting the clipping threshold adaptively (Pichapati
et al., 2019; Andrew et al., 2021), although this is difficult to do using only private
information on the gradients. Finally, we note that the recent work of Yang et al.
(2022) and Koloskova et al. (2023) analyzed clipping in DP-SGD under a relative
smoothness assumption, highlighting the fact that the choice of the threshold C indeed
introduces bias.

Hyperparameter Tuning. The utility of differentially private optimization al-
gorithms like DP-SGD is highly dependent on the choice of their hyperparameters.
Classical methods for hyperparameter tuning (e.g., grid-search) require running the
algorithm multiple times. Adapting them to the differentially private setting is thus
a challenging task. A naive solution is to run the algorithm with different sets of
hyperparameters, and use composition results to guarantee privacy of the complete
procedure. While this preserves differential privacy, it generally destroys utility.

In general, when selecting hyperparameters, we are only interested in finding the best
ones: it should thus be possible to improve the naive solution by not releasing the
outputs of runs that gave poor results. This idea was first explored by Chaudhuri
and Vinterbo (2013), who used a stability assumption to reduce the overall budget
of the tuning. Later on, Liu and Talwar (2019) proposed a more general method
(i.e., without the stability assumption), based on private selection methods, that are
similar to the report noisy max mechanism (see Section 3.1.3 (d)). Their work was
further extended to Rényi differential privacy by Papernot and Steinke (2022). Other
approaches have also been proposed, based on adaptive algorithms (Mohapatra et
al., 2022; Priyanshu et al., 2021), or on running algorithms on subsets of the data to
reduce the privacy loss (Koskela and Kulkarni, 2023).

3.2.4 Utility Lower Bounds

For a given privacy budget the problem (?′) can not be solved up to arbitrary precision.
This is due to the fact that solving a problem too precisely could allow to infer the
presence of some individuals in the training data. For (ε, δ)-differential privacy, the
following theorem states lower bounds on utility.

Theorem 3.2.4 (Utility Lower Bounds for DP-ERM, see Theorems V.3 and V.5
in Bassily et al., 2014b). Let n, p > 0, ε > 0 and δ = o(1/n), and assume that W
is bounded with diameter ‖W‖2. For every (ε, δ)-differentially private algorithm A,
there exists a dataset D such that:
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If F is convex, with probability at least 1/2,

F (A(D))− F (w∗) = Ω

(
L‖W‖2 min

(
1,

√
p

nε

))
. (3.2.6)

If F is µ-strongly convex (w.r.t., `2-norm), with probability at least 1/3,

F (A(D))− F (w∗) = Ω

(
L2

µ
min

(
1,

p

n2ε2

))
. (3.2.7)

These results are based on the results of Bun et al. (2014), who studied counting
queries under (ε, δ)-differential privacy. Their results are based on the work of Boneh
and Shaw (1998) and Tardos (2008) about fingerprinting codes. These codes were
originally designed to protect against piracy on proprietary software: each copy is
equipped with a hidden serial number, and pirates aim at making up fake serial
numbers. Since pirates do not know the location of all digits of this serial number,
they can only change some of them: examining the fake number, they could trace
it back to the original copies of the pirates. The idea behind Bun et al. (2014)’s
lower bounds is that counting queries can be used as a way of finding back these
pirates (leading to reidentification). Bassily et al. (2014b) then further reduced the
DP-ERM problem to computing counting queries. In Section 4.4, we provide a refined
version of these lower bounds, where Lipschitzness of the objective is measured in a
coordinate-wise manner rather than on the full function.

Note that Bassily et al. (2014b) give similar results for pure ε-differential privacy,
based on the work of Hardt and Talwar (2010). We do not state these results since
all our results will be stated in terms of approximate differential privacy.

Finally, we note that Talwar et al. (2016) proved that the lower bound from The-
orem 3.2.4 on convex objective function does not hold when the `1 diameter of W ,
‖W‖1 is independent of the dimension. In this case, the lower bound can be refined to
F (wpriv)−F (w∗) = Ω( 1

n2/3 ). Notably, this lower bound is matched (up to logarithmic
factors) by differentially private variants of the Frank-Wolfe algorithm (Jaggi, 2013;
Frank and Wolfe, 1956). In Chapter 5, we propose an algorithm that nearly matches
this lower bound even when W is unbounded (or has a `1-diameter that depends on
the dimension).



Chapter 4

Private Randomized Coordinate
Descent

Chapter Abstract

We propose differentially private proximal coordinate descent (DP-CD),
a new differentially private method to solve composite empirical risk min-
imization (DP-ERM). We derive utility guarantees through a novel the-
oretical analysis of inexact coordinate descent. Our results show that,
thanks to larger step sizes, DP-CD can exploit imbalance in gradient co-
ordinates to outperform DP-SGD. We also prove new lower bounds for
composite DP-ERM under coordinate-wise regularity assumptions, that
are nearly matched by DP-CD. For practical implementations, we propose
to clip gradients using coordinate-wise thresholds that emerge from our
theory, avoiding costly hyperparameter tuning.

This Chapter is mostly based on the paper: “Differentially Private Coordinate De-
scent for Composite Empirical Risk Minimization” (Mangold, Bellet, Salmon, and
Tommasi, 2022), published at ICML 2022.

The code corresponding to this Chapter is available at https://gitlab.inria.fr/

pmangold1/private-coordinate-descent/.

4.1 Introduction

In this Chapter, we propose the differentially private proximal coordinate descent al-
gorithm (DP-CD). This algorithm is based on the proximal coordinate descent method,
that we described in Section 2.2.3. Like DP-SGD (see Section 3.2.3 (b)), DP-CD pre-
serves differential privacy by performing updates based on perturbed gradients. At
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each iteration, it does a proximal coordinate update using a coordinate-wise gradient,
that was computed under differential privacy using the Gaussian mechanism.

We propose DP-CD and analyze its theoretical and empirical convergence properties as
a differentially private solver for the composite empirical risk minimization problem.
Let X be a feature space and Y a label space, and suppose that we have a dataset
D = {d1, . . . , dn} ⊆ (X × Y)n of n records. We study the following unconstrained
composite problem:

w∗ ∈ arg min
w∈Rp

{
F (w) := f(w) + ψ(w)

}
, with f(w) =

1

n

n∑
i=1

`(w; di) , (?′)

where ` : Rp × X × Y → R is a loss function which is convex and coordinate-wise
smooth in its first parameter, and ψ : Rp → R is a separable convex regularizer
(i.e., ψ(w) =

∑p
j=1 ψj(wj)) that is typically nonsmooth (e.g., `1-norm).

We start by showing that the proposed algorithm satisfies differential privacy. Im-
portantly, we note that the coordinates of the gradient generally have a much lower
sensitivity than the full gradient. This allows DP-CD to compensate its larger number
of iterations (which induces larger noise) with smaller sensitivity.1 We then theo-
retically analyze the properties of DP-CD by developing a novel analysis of proximal
coordinate descent with perturbed (but unbiased) gradients. This allows to derive
upper bounds on the privacy-utility trade-off achieved by DP-CD. To this end, we
prove a recursion on distances of DP-CD’s iterates to an optimal point. Our analysis
keeps track of coordinate-wise regularity constants all along, which tightly captures
the importance of using large constant step sizes to obtain high utility. Our results
highlight the fact that DP-CD can exploit imbalanced gradient coordinates to out-
perform DP-SGD. We assess the optimality of DP-CD by deriving lower bounds that
capture coordinate-wise Lipschitz regularity measures, and show that DP-CD matches
those bounds up to logarithmic factors. Our lower bounds also suggest interesting
perspectives for future work on DP-CD algorithms.

Our theoretical results also have important consequences for practical implementa-
tions, which heavily rely on gradient clipping to achieve good utility. In contrast to
DP-SGD, DP-CD requires to set coordinate-wise clipping thresholds, which can lead to
impractical coordinate-wise hyperparameter tuning. We instead propose a simple rule
for adapting these thresholds from a single hyperparameter. We also show how the
coordinate-wise smoothness constants used by DP-CD can be estimated privately. We
validate our theory with numerical experiments on real and synthetic datasets. These
experiments further show that even in balanced problems, DP-CD can still improve

1Contrarily to DP-SGD, DP-CD does not rely on privacy amplification by sampling (see Sec-
tion 3.1.4 (b)), which is not applicable in this setting.
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over DP-SGD, confirming the relevance of DP-CD for DP-ERM.

The main contributions of this Chapter can be summarized as follows:

1. We propose the first differentially private proximal coordinate descent method
for composite DP-ERM, formally prove its utility, and highlight regimes where
it outperforms DP-SGD.

2. We show matching lower bounds under coordinate-wise regularity assumptions.

3. We give practical guidelines to use DP-CD, and show its relevance through nu-
merical experiments.

The rest of this Chapter is organized as follows. We briefly describe some related
work in Section 4.2. In Section 4.3, we present our DP-CD algorithm, show that it sat-
isfies differential privacy, establish utility guarantees, and compare these guarantees
with those of DP-SGD. In Section 4.4, we derive lower bounds under coordinate-wise
regularity assumptions, and show that DP-CD can match them. Section 4.5 discusses
practical questions related to gradient clipping and the private estimation of smooth-
ness constants. Section 4.6 presents our numerical experiments, comparing DP-CD

and DP-SGD on LASSO and `2-regularized logistic regression problems.

4.2 Related Work

Prior to our work, only few works have mentioned the idea of a differentially private
coordinate descent method. Damaskinos et al. (2021) introduced a coordinate descent
method to privately solve the dual problem associated with generalized linear models
with `2 regularization. Dual coordinate descent is tightly related to SGD, as each
coordinate in the dual is associated with one data point. The authors briefly mention
the possibility of performing primal coordinate descent but discard it on account of
the seemingly large sensitivity of its updates. We show that primal DP-CD is in fact
quite effective, and can be used to solve more general problems than considered by
Damaskinos et al. (2021).

Primal coordinate descent was also successfully used by Bellet et al. (2018) to privately
learn personalized models from decentralized datasets. For the smooth objective they
consider, each coordinate depends only on a subset of the full dataset, which directly
yields low coordinate-wise sensitivity updates. In contrast, we introduce a general
algorithm for composite DP-ERM, for which a novel utility analysis is required.

For a general overview of related work on non-private coordinate descent, we refer to
the discussions in Section 2.2.3.



Chapter 4. Private Randomized Coordinate Descent 70

4.3 Differentially Private Coordinate Descent

In this section, we introduce the differentially private proximal coordinate descent
(DP-CD) algorithm to solve problem (?′) under (ε, δ)-differential privacy constraints.
We first describe our algorithm, show how to parameterize it to satisfy the desired
privacy constraint, and prove corresponding utility results. Finally, we compare these
utility guarantees with DP-SGD.

4.3.1 Private Proximal Coordinate Descent

Let D = {d1, . . . , dn} ∈ X n be a dataset. We denote by f(w) = 1
n

∑n
i=1 `(w; di)

the M -coordinate-smooth part of (?′), by ψ(w) =
∑p

j=1 ψj(wj) its separable part,
and let F (w) = f(w) + ψ(w). Proximal coordinate descent methods Richtárik and
Takáč, 2014 solve problem (?′) through iterative proximal gradient steps along each
coordinate of F . Formally, given w ∈ Rp and j ∈ [p], the j-th coordinate of w is
updated as follows:

w+
j = proxγjψj

(
wj − γj∇jf(wt)

)
, (4.3.1)

where γj > 0 is the step size and proxγjψj(w) = arg minv∈Rp
{

1
2
‖v − w‖2

2 + γjψj(v)
}

is the proximal operator associated with ψj (Parikh and Boyd, 2014).

Algorithm 4.3.1: DP-CD: Differentially Private Proximal Coordinate Gra-
dient Descent.

Input: initial point w0, noise scales σ1, . . . , σp > 0, step sizes γ1, . . . , γp > 0,
number of iteration T,K > 0.

For t = 0 to T − 1:

Set θ0 = wt

For k = 0 to K − 1:

Pick j ∼ U([p])

Set θk+1 = θk

Update θk+1
j = proxγjψj(θ

k
j − γj(∇jf(θk) + ηtj)), with ηtj ∼ N (0, σ2

j )

Set wt+1 = 1
K

∑K
k=1 θ

k

Return: wT .
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Update (4.3.1) only requires the computation of the j-th entry of the gradient. To
satisfy differential privacy, we perturb this gradient entry with additive Gaussian
noise of variance σ2

j . The complete DP-CD procedure is shown in Algorithm 4.3.1.
At each iteration, we pick a coordinate uniformly at random and update according
to (4.3.1), albeit with noise addition. For technical reasons related to our analysis,
we use a periodic averaging scheme. This scheme is similar to DP-SVRG (Johnson
and Zhang, 2013), although no variance reduction is required since DP-CD computes
coordinate gradients over the whole dataset.

4.3.2 Privacy Guarantees

For Algorithm 4.3.1 to satisfy (ε, δ)-differential privacy, the noise scales σ = (σ1, . . . , σp)
can be calibrated as given in Theorem 4.3.1.

Theorem 4.3.1. Assume `(·; d) is L-coordinate-Lipschitz ∀d ∈ X . Let ε ≤ 1 and

δ < 1/3. If σ2
j =

12L2
jTK log(1/δ)

n2ε2
for all j ∈ [p], then Algorithm 4.3.1 satisfies (ε, δ)-

differential privacy.

Proof Sketch. (Complete proof in Appendix A.2)

We track the privacy loss using Rényi differential privacy. The j-th entry of ∇f
has sensitivity ∆(∇jf) = ∆(∇j`)/n ≤ 2Lj/n. By the Gaussian mechanism each

iteration of DP-CD is (α,
2L2

jα

n2σ2
j
)-Rényi differential privacy for all α > 1. The com-

position theorem for Rényi differential privacy gives a global guarantee for DP-CD,
that we convert to (ε, δ)-differential privacy using Proposition 3 of Mironov (2017).

Choosing α carefully finally proves the result. �

The dependence of the noise scales on ε, δ, n and TK (the number of updates) in
Theorem 4.3.1 is standard in DP-ERM. However, the noise is calibrated to the loss
function’s coordinate-Lipschitz constants. These can be much lower their global coun-
terpart, the latter being used to calibrate the noise in DP-SGD algorithms. This will
be crucial for DP-CD to achieve better utility than DP-SGD in some regimes. We also
note that, unlike DP-SGD, DP-CD does not rely on privacy amplification by subsam-
pling (Balle et al., 2018; Mironov et al., 2019), and thereby avoids the approximations
required by these schemes to bound the privacy loss.

Remark 4.3.1. Theorem 4.3.1 assumes ε ∈ (0, 1] to give a simple closed form for
the noise scales. In practice we compute tighter values numerically using Rényi dif-
ferential privacy formulas directly (see Eq. A.2.5 in Appendix A.2), removing this
assumption.
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4.3.3 Utility Guarantees

We now state our central result on the utility of DP-CD for the composite DP-ERM
problem. As done in previous work, we use the asymptotic notation Õ to hide non-
significant logarithmic factors. Non-asymptotic utility bounds can be found in Ap-
pendix B.2.

Theorem 4.3.2. Let `(·; d) be a convex and L-coordinate-Lipschitz loss function for
all d ∈ X , and f be convex and M-coordinate-smooth. Let ψ : Rp → R be a convex and
separable function. Let ε ≤ 1, δ < 1/3 be the privacy budget. Let w∗ be a minimizer
of F and F ∗ = F (w∗). Let wpriv ∈ Rp be the output of Algorithm 4.3.1 with step
sizes γj = 1/Mj, and noise scales σ1, . . . , σp set as in Theorem 4.3.1 (with T and K
chosen below) to ensure (ε, δ)-differential privacy. Then, the following holds:

1. For F convex, K = O
(
RM
√
pnε

‖L‖M−1

)
, and T = 1, then:

E[F (wpriv)− F ∗] = Õ

(√
p log(1/δ)

nε
‖L‖M−1RM

)
,

where RM = max(
√
F (w0)− F (w∗), ‖w0 − w∗‖M) and more simply RM = ‖w0 −

w∗‖M when ψ = 0.

2. For F µM -strongly convex w.r.t. ‖ · ‖M , K = O (p/µM), and T = O
(

log( nεµM
p‖L‖M−1

)
)

,

then:

E[F (wpriv)− F ∗] = Õ

(
p log(1/δ)

n2ε2
‖L‖2

M−1

µM

)
.

Expectations are over the randomness of the algorithm.

Proof Sketch. (Complete proof in Appendix B.2)

Existing analyses of CD fail to track the noise tightly across coordinates when
adapted to the private setting. Contrary to these classical analyses, we prove a
recursion on E‖θk − w∗‖2

M , rather than on E
[
F (θk)− F (w∗)

]
. Our key technical

result is a descent lemma (Lemma A.3.2) allowing us to obtain

E
[
F (θk+1)− F ∗

]
− p−1

p
E
[
F (θk)− F ∗

]
≤ E‖θk − w∗‖2

M − E‖θk+1 − w∗‖2
M + 1

p
‖σ‖2

M . (4.3.2)

The above inequality shows that coordinate-wise updates leave a fraction p−1
p

of the

function “unchanged”, while the remaining part decreases (up to additive noise).
Importantly, all quantities are measured in M -norm. When summing (4.3.2) for
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k = 0, . . . , K − 1, its left hand side simplifies and its right hand side is simplified
as a telescoping sum:

1
p

K∑
k=1

E
[
F (θk)− F ∗

]
≤ E

[
F (wt)− F ∗

]
+ E‖wt − w∗‖2

M + K
p
‖σ‖2

M−1 ,

where wt comes from θ0 = wt. As wt+1 = 1
K

∑K
k=1 θ

k and F is convex, we have

F (wt+1)− F ∗ ≤ 1
K

K∑
k=1

F (θk)− F ∗ .

This proves the sub-linear convergence (up to an additive noise term) of the in-
ner loop. The result in the convex case follows directly (since T = 1, only one
inner loop is run). For strongly convex F , it further holds that E‖wt − w∗‖2

M ≤
2
µM

E[F (wt)− F (w∗)]. Replacing in (4.5.1) with large enough K gives

E
[
F (wt+1)− F ∗

]
≤ 1

2
E
[
F (wt)− F ∗

]
+ ‖σ‖2

M−1 ,

and linear convergence (up to an additive noise term) follows. Finally, K and T
are chosen to balance the “optimization” and the “privacy” errors. �

Remark 4.3.2. Our novel convergence proof of CD is also useful in the non-private
setting. In particular, we improve upon known convergence rates for inexact CD meth-
ods with additive error (Tappenden et al., 2016), under the additional assumptions
that gradients are unbiased. In their formalism, we have α = 0 and β = ‖σ‖2

M−1/p.
With our analysis, the algorithm requires 2pR2

M/(ξ − pβ) (resp. 4p/µM log((F (w0)−
F ∗)/(ξ−pβ))) iterations to achieve expected precision ξ > pβ when F is convex (resp.
µM -strongly-convex w.r.t., ‖ · ‖M), improving upon Tappenden et al. (2016)’s results
by a factor

√
pβ/2R2

M (resp. µM/2). See Appendix A.3.3 for details. Moreover,
unlike this prior work, our analysis does not require the objective to decrease at each
iteration, which is essential to guarantee differential privacy.

Our utility guarantees stated in Theorem 4.3.2 directly depend on precise coordinate-
wise regularity measures of the objective function. In particular, the initial distance
to optimal, the strong convexity parameter and the overall sensitivity of the loss
function are measured in the norms ‖ · ‖M and ‖ · ‖M−1 (i.e., weighted by coordinate-
wise smoothness constants or their inverse). In the remainder of this section, we
thoroughly compare our utility results with existing ones for DP-SGD. We will show
the optimality of our utility guarantees in Section 4.4.
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Table 4.1: Utility guarantees for DP-CD, DP-SGD, and DP-SVRG for L-coordinate-
Lipschitz, Λ-Lipschitz loss.

Convex Strongly-convex

DP-CD Õ

(√
p log(1/δ)

nε
‖L‖M−1RM

)
Õ

(
p log(1/δ)

n2ε2
‖L‖2

M−1

µM

)
DP-SGD

DP-SVRG
Õ

(√
p log(1/δ)

nε
ΛRI

)
Õ

(
p log(1/δ)

n2ε2
Λ2

µI

)

4.3.4 Comparison with DP-SGD and DP-SVRG

We now compare DP-CD with DP-SGD and DP-SVRG, for which Bassily et al. (2014b) and
Wang et al. (2017) proved utility guarantees. In this section, we assume that the loss
function ` satisfies the hypotheses of Theorem 4.3.2, and is Λ-Lipschitz. We denote by
µI the strong convexity parameter of `(·, d) w.r.t., ‖ · ‖2 and RI the equivalent of RM

when M is the identity matrix I. As can be seen from Table 4.1, comparing DP-CD

and DP-SGD boils down to comparing ‖L‖M−1RM with ΛRI for convex functions and
‖L‖2

M−1/µM with Λ2/µI for strongly-convex functions. We compare these terms in
two scenarios, depending on the distribution of coordinate-wise smoothness constants.
To ease the comparison, we assume that RM = ‖w0 − w∗‖M and RI = ‖w0 − w∗‖I
(which is notably the case when ψ = 0), and that F has a unique minimizer w∗.

4.3.4 (a) Balanced Setting

When the smoothness constants M are all equal, we have ‖L‖M−1RM = ‖L‖2RI , and
‖L‖2

M−1/µM = ‖L‖2
2/µI . This boils down to comparing ‖L‖2 to Λ. As Λ ≤ ‖L‖2 ≤√

pΛ, DP-CD can be up to p times worse than DP-SGD. This can only happen when
features are extremely correlated, which is generally not the case in machine learning.
We show empirically in Section 4.6.2 that, even in balanced regimes, DP-CD can still
significantly outperform DP-SGD.

4.3.4 (b) Unbalanced Setting

More favorable regimes exist when smoothness constants are imbalanced. To illustrate
this, consider the case where the first coordinate of the loss function ` dominates
others. There, Mmax =M1�Mmin =Mj and Lmax =L1�Lmin =Lj for all j 6= 1, so
that L2

1/M1 dominates the other terms of ‖L‖2
M−1 . This yields ‖L‖2

M−1 ≈ L2
1/M1 ≈

Λ/Mmax, and µM = µIMmin. Moreover, if the first coordinate of w∗ is already well
estimated by w0 (which is common for sparse models), then RM ≈ MminRI . We

obtain that ‖L‖M−1RM ≈
√
Mmin/MmaxΛRI for convex losses and

‖L‖M−1

µM
≈ Mmin

Mmax

Λ2

µI
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for strongly-convex ones. In both cases, DP-CD can perform arbitrarily better than
DP-SGD, depending on the ratio between the smallest and largest coordinate-wise
smoothness constants of the loss function. This is due to the inability of DP-SGD to
adapt its step size to each coordinate. DP-CD thus converges quicker than DP-SGD on
coordinates with smaller-scale gradients, requiring fewer accesses to the dataset, and
in turn less noise addition. We give more details on this comparison in Appendix A.4,
and complement it with an empirical evaluation on synthetic and real-world data in
Section 4.6.

4.4 Lower Bounds

We now prove a new lower bound on the error achievable for composite DP-ERM with
L-coordinate-Lipschitz loss functions. While our proof borrows some ideas from the
lower bounds known for constrained DP-ERM with Λ-Lipschitz losses (Bassily et al.,
2014b), deriving our lower bounds requires to address a number of specific challenges.
First, we cannot use an `2 norm constraint as in Bassily et al. (2014b) in the design of
the worst-case problem instances: we can only rely on separable regularizers. Second,
imbalanced coordinate-wise Lipschitz constants prevent lower-bounding the distance
between an arbitrary point and the solution. This leads us to revisit the construction
of a “reidentifiable dataset” from Bun et al. (2014) so that we have L-coordinate-
Lipschitzness while the sum of each column is large enough, which is crucial in our
proof. The full proof is given in Appendix A.5.

Theorem 4.4.1. Let n, p > 0, ε > 0, δ = o( 1
n
), L1, . . . , Lp > 0, such that for

all J ⊆ [p] of size at least d p
75
e, ∑j∈J L

2
j = Ω(‖L‖2

2). Let X =
∏p

j=1{±Lj} and

consider any (ε, δ)-differentially private algorithm that outputs wpriv. In each of the
two following cases there exists a dataset D ∈ X n, a L-coordinate-Lipschitz loss `(·, d)
for all d ∈ D and a regularizer ψ so that, with F the objective of (?′) minimal at
w∗ ∈ Rp:

1. If F is convex:

E
[
F (wpriv;D)− F (w∗)

]
= Ω

(√
p‖L‖2‖w∗‖2

nε

)
.

2. If F is µI-strongly-convex w.r.t., ‖ · ‖2:

E
[
F (wpriv;D)− F (w∗)

]
= Ω

(
p‖L‖2

2

µIn2ε2

)
.

We recover the lower bounds of Bassily et al. (2014b) for Λ-Lipschitz losses as a
special case of ours by setting L1 = · · · = Lp = Λ/

√
p. In this case, the loss function
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used in our proof is indeed (
∑p

j=1 L
2
j)

1/2 = Λ-Lipschitz. To relate these lower bounds
to the performance of DP-CD, consider a suboptimal version of our algorithm where
the step sizes are set to γ1 = · · · = γp = (maxjMj)

−1. In this setting, results from
Theorem 4.3.2 still hold, and match the lower bounds from Theorem 4.4.1 up to
logarithmic factors. We leave open the question of the optimality of DP-CD under the
additional hypothesis of smoothness.

We note that the assumption on the sum of the Lj’s over a set of indices J in
Theorem 4.4.1 can be eliminated at the cost of an additional factor of Lmin/Lmax for
convex losses and (Lmin/Lmax)2 for strongly-convex losses, making the bound looser.
Although the aforementioned assumption may seem solely technical, we conjecture
that better utility is possible when a few coordinate-wise Lipschitz constants dominate
the others. We discuss this further in Section 5.5.

4.5 DP-CD in Practice

We now discuss practical questions related to DP-CD. First, we show how to implement
coordinate-wise gradient clipping using a single hyperparameter. Second, we explain
how to privately estimate the smoothness constants. Finally, we discuss the possibility
of standardizing the features and how this relates to estimating smoothness constants
for the important problem of fitting generalized linear models.

4.5.1 Coordinate-wise Gradient Clipping

To bound the sensitivity of coordinate-wise gradients, our analysis of Section 4.3 re-
lies on the knowledge of Lipschitz constants for the loss function `(·; d) that must
hold for all possible data points d ∈ X . This is classic in the analysis of DP opti-
mization algorithms (see e.g., Bassily et al., 2014b; Wang et al., 2017). In practice
however, these Lipschitz constants can be difficult to bound tightly and often give
largely pessimistic estimates of sensitivities, thereby making gradients overly noisy.
To overcome this problem, the common practice in concrete deployments of DP-SGD

algorithms is to clip per-sample gradients so that their norm does not exceed a fixed
threshold parameter C > 0 (Abadi et al., 2016a):

clip(∇`(w), C) = min
(

1,
C

‖∇`(w)‖2

)
∇`(w) . (4.5.1)

This effectively ensures that the sensitivity ∆(clip(∇`, C)) of the clipped gradient is
bounded by 2C.

In DP-CD, gradients are released one coordinate at a time and should thus be clipped
in a coordinate-wise fashion. Using the same threshold for each coordinate would ruin
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the ability of DP-CD to account for imbalance across gradient coordinates, whereas
tuning coordinate-wise thresholds as p individual hyperparameters {Cj}pj=1 is imprac-
tical.

Instead, we leverage the results of Theorem 4.3.2 to adapt them from a single hy-
perparameter. We first remark that our utility guarantees are invariant to the scale
of the matrix M . After rescaling M to M̃ = p

tr(M)
M so that tr(M̃) = tr(I) = p, as

proposed by Richtárik and Takáč (2014), the key quantity ‖L‖M−1 in our our utility
bounds is replaced by ‖L‖M̃−1 . This suggests to parameterize the j-th threshold as

Cj =
√
Mj/tr(M)C for some C > 0, ensuring that ‖{Cj}pj=1‖M̃−1 ≤ 2C. The pa-

rameter C thus controls the overall sensitivity, allowing clipped DP-CD to perform p
iterations for the same privacy budget as one iteration of clipped DP-SGD.

4.5.2 Private Smoothness Constants

DP-CD requires the knowledge of the coordinate-wise smoothness constantsM1, . . . ,Mp

of f to set appropriate step sizes (see Theorem 4.3.2) and clipping thresholds (see
above).2 In most problems, the Mj’s depend on the dataset D and must thus be
estimated privately using a fraction ε′ of the overall privacy budget ε. Recall that f
is the average loss over the dataset D (see the definition of (?′)). We can thus denote

by M
(i)
j the j-th coordinate-smoothness constant of `(·, di), where di is the i-th point

in D. The j-th smoothness constant of the function f is thus the average of all these
constants: Mj = 1

n

∑n
i=1 M

(i)
j .

Assuming that the practitioner knows an approximate upper bound bj over the M
(i)
j ’s,

they can enforce it by clipping M
(i)
j to bj for each i ∈ [n]. The sensitivity of the average

of the clipped M
(i)
j ’s is thus 2bj/n. One can then compute an estimate of M1, . . . ,Mp

under ε-DP using the Laplace mechanism as follows:

Mpriv
j =

1

n

n∑
i=1

clip(M
(i)
j , bj) + Lap

(
2bjp

nε′

)
, for each j ∈ [p] , (4.5.2)

where the factor p in noise scale comes from using the simple composition theorem
Dwork and Roth, 2014, and Lap(λ) is a sample drawn in a Laplace distribution
of mean zero and scale λ. The computed constant can then directly be used in
DP-CD, allocating the remaining budget ε−ε′ to the optimization procedure. We show
numerically in Section 4.6 that dedicating 10% of the total budget ε to this strategy
allows DP-CD to effectively exploit the imbalance across gradients’ coordinates.

2In fact, only Mj/
∑
j′ Mj′ is needed, as we tune the clipping threshold and scaling factor for

the step sizes. See Section 4.6.
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Figure 4.5.1: Relative error to non-private optimal for DP-CD (blue), DP-CD with
privately estimated coordinate-wise smoothness constants (green), DP-SGD (orange)
and DP-SCD (red, only applicable to the smooth case) on two imbalanced problems.
The number of passes is tuned separately for each algorithm to achieve lowest error.
We report min/mean/max values over 10 runs.

4.5.3 Feature Standardization

CD algorithms are very popular to solve generalized linear models (Friedman et al.,
2010) and their regularized version (e.g., LASSO, logistic regression). For these prob-
lems, the coordinate-wise smoothness constants are Mj ∝ 1

n
‖X:,j‖2

2, where X:,j ∈ Rn

is the vector containing the value of the j-th feature. Therefore, standardizing the
features to have zero mean and unit variance (a standard preprocessing step) makes
coordinate-wise smoothness constants equal. However, this requires to compute the
mean and variance of each feature in D, which is more costly than the smoothness
constants to estimate privately.3 Moreover, while our theory suggests that DP-CD may
not be superior to DP-SGD when smoothness constants are all equal (see Section 4.3.4),
the numerical results of Section 4.6 show that DP-CD often outperforms DP-SGD even
when features are standardized.

Finally, we emphasize that standardization is not always possible. This notably
happens when solving the problem at hand is a subroutine of another algorithm.
For instance, the Iteratively Reweighted Least Squares (IRLS) algorithm (Holland
and Welsch, 1977) finds the maximum likelihood estimate of a generalized linear
model by solving a sequence of linear regression problems with reweighted features,
proscribing standardization. Similar situations happen when using reweighted `1

methods for non-convex sparse regression (Candès et al., 2008), relying on convex
(LASSO) solvers for the inner loop. DP-CD is thus a method of choice to serve as
subroutine in private versions of these algorithms.

3We note that the privacy cost of standardization is rarely accounted for in practical evaluations.
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4.6 Numerical Experiments

In this section, we assess the practical performance of DP-CD against (proximal)
DP-SGD on LASSO4 and `2-regularized logistic regression5. On the latter problem,
we also consider the dual private coordinate descent algorithm of Damaskinos et al.
(2021) (DP-SCD). For LASSO, we use the California dataset (Kelley Pace and Barry,
1997), with n = 20, 640 records and p = 8 features as well as a synthetic dataset
(coined “Sparse LASSO”) with n = 1, 000 records and p = 1, 000 independent fea-
tures that follow a standard normal distribution. The labels are then computed as
a noisy sparse linear combination of a subset of 10 active features. For logistic re-
gression, we consider the Electricity dataset (Electricity Dataset 2022) with 45, 312
records and 8 features. On California and Electricity, we set ε = 1 and δ = 1/n2,
which is generally seen as a rather high privacy regime. The Sparse LASSO dataset
corresponds to a challenging setting for privacy (n = p), so we consider a low privacy
regime with ε = 10, δ = 1/n2. Privacy accounting for DP-SGD is done by numer-
ically evaluating the Rényi DP formula given by the sampled Gaussian mechanism
(Mironov et al., 2019). Similarly for DP-CD, we do not use the closed-form formula of
Theorem 4.3.1 but rather numerically evaluate the tighter Rényi DP formula given
in Appendix A.2.

For DP-SGD, we use constant step sizes and standard gradient clipping. For DP-CD, we
adapt the coordinate-wise clipping thresholds from one hyperparameter, as described
in Section 4.5.1. Similarly, coordinate-wise step sizes are set to γj = γ/Mj, where γ is
a hyperparameter. When the coordinate-wise smoothness constants are not all equal,
we also consider DP-CD with privately computed Mj’s, as described in Section 4.5.2.
For each dataset and each algorithm, we simultaneously tune the clipping threshold,
the number of passes over the dataset and, for DP-CD and DP-SGD, the step sizes. After
tuning these parameters, we report the relative error to the (non-private) optimal
objective value. The complete tuning procedure is described in Appendix D.1.1,
where we also give the best error for various numbers of passes for each algorithm
and dataset. The code used to obtain all our results is available in a public repository6

and in the supplementary material.

4.6.1 Imbalanced Datasets

In the Electricity and California datasets, features are naturally imbalanced. DP-CD

can exploit this through the use of coordinate-wise smoothness constants. We also
consider a variant of DP-CD (DP-CD-P) which dedicates 10% of the privacy budget ε to
estimate these constants (see Section 4.5.2) from a crude upper bound on each feature

4i.e., `(w, (x, y)) = (w>x− y)2, ψ(w) = λ‖w‖1.
5i.e., `(w, (x, y)) = log(1 + exp(−yw>x)), ψ(w) = λ

2‖w‖22.
6https://gitlab.inria.fr/pmangold1/private-coordinate-descent/

https://gitlab.inria.fr/pmangold1/private-coordinate-descent/
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Figure 4.6.1: Relative error to non-private optimal for DP-CD (blue), DP-SGD (orange)
and DP-SCD (red, only applicable to the smooth case) on three balanced problems.
The number of passes is tuned separately for each algorithm to achieve lowest error.
We report min/mean/max values over 10 runs.

(twice their maximal absolute value). It then uses the resulting private smoothness
constants in step sizes and clipping thresholds. Figure 4.5.1 shows that DP-CD out-
performs DP-SGD and DP-SCD by an order of magnitude on both datasets, even when
the smoothness constants are estimated privately.

4.6.2 Balanced Datasets

To assess the performance of DP-CD when coordinate-wise smoothness constants are
balanced, we standardize the Electricity and California datasets (see Section 4.5.3).
As standardization is done for all algorithms, we do not account for it in the pri-
vacy budget. On standardized datasets, coordinate-wise smoothness constants are
all equal, removing the need of estimating them privately. We report the results in
Figure 4.6.1. Although our theory suggests that DP-CD may do worse than DP-SGD

in balanced regimes, we observe that it still improves over DP-SGD (and DP-SCD) in
practice. Similar observations hold in our challenging Sparse LASSO problem, where
DP-SGD is barely able to make any progress. We believe these results are in part
due to the beneficial effect of clipping in DP-CD, and the fact that DP-SGD relies on
amplification by subsampling, for which privacy accounting is not perfectly tight.
Additionally, CD methods are known to perform well on fitting linear models: our
results show that this transfers well to private optimization.

4.6.3 Running Time

The results above showed that DP-CD yields better utility than DP-SGD. We also
observe that DP-CD tends to reach these results in up to 10 times fewer passes on
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the data than DP-SGD (see Appendix D.1.1 for detailed results). Additionally, when
accounting for running time, DP-CD significantly outperforms DP-SGD: we refer to
Appendix D.1.2 for the counterparts of Figure 4.5.1 and 4.6.1 as a function of the
running time instead of the number of passes.

4.7 Conclusion and Discussion

In this Chapter, we presented the first differentially private proximal coordinate de-
scent algorithm for composite DP-ERM. We derived optimal upper bounds on the
privacy-utility trade-off achieved by DP-CD. We also proved new lower bounds under a
coordinate-Lipschitzness assumption, and showed that DP-CD matches these bounds.
Our results demonstrate that DP-CD strongly outperforms DP-SGD when gradients’
coordinates are imbalanced, and numerical experiments show that DP-CD can also
perform very well in balanced regimes. The choice of coordinate-wise clipping thresh-
olds is crucial for DP-CD to achieve good utility in practice, and we provided a simple
rule of thumb for setting them.

Although DP-CD already achieves good utility when most coordinates have small sen-
sitivity, our lower bounds suggest that even better utility could be achieved by dy-
namically allocating more privacy budget to coordinates with largest sensitivities. A
promising direction is to design DP-CD algorithms that leverage active set methods
(Yuan et al., 2010; Lewis and Wright, 2016; Nutini et al., 2017; De Santis et al., 2016;
Massias et al., 2018), which could provide practical alternatives to recent DP-SGD

approaches that use a subspace assumption (Zhou et al., 2021; Kairouz et al., 2021).
We also believe that adaptive clipping techniques (Pichapati et al., 2019; Andrew
et al., 2021) may help to further improve the practical performance of DP-CD when
coordinate-wise smoothness constants are more balanced. Finally, we remark that
utility could also be improved further by changing the way coordinates are selected
for updates. In the next Chapter, we study another variant of differentially private
coordinate descent, where coordinates are chosen using a greedy selection rule.



Chapter 5

Differentially Private Greedy
Coordinate Descent

Chapter Abstract

In high dimension, it is common for some model’s parameters to carry
more information than others. To exploit this, we propose a differentially
private greedy coordinate descent (DP-GCD) algorithm. At each iteration,
DP-GCD privately performs a coordinate-wise gradient step along the gra-
dients’ (approximately) greatest entry. We show theoretically that DP-GCD
can achieve a logarithmic dependence on the dimension for a wide range
of problems by naturally exploiting their structural properties (such as
quasi-sparse solutions). We illustrate this behavior numerically, both on
synthetic and real datasets.

This Chapter is mostly based on the paper: “High-Dimensional Private Empirical
Risk Minimization by Greedy Coordinate Descent” (Mangold, Bellet, Salmon, and
Tommasi, 2023a), published at AISTATS 2023.

The code corresponding to this Chapter is available at https://gitlab.inria.fr/

pmangold1/greedy-coordinate-descent.

5.1 Introduction

In this Chapter, we propose the differentially private greedy coordinate descent al-
gorithm (DP-GCD). This algorithm extends the GCD algorithm that we presented in
Section 2.2.4 to the differentially private setting. Similarly to DP-CD, DP-GCD updates
one coordinate at a time, but instead of choosing the coordinate randomly, it chooses
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https://gitlab.inria.fr/pmangold1/greedy-coordinate-descent
https://gitlab.inria.fr/pmangold1/greedy-coordinate-descent
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the one with the largest gradient entry. We describe DP-GCD and analyze it both the-
oretically and empirically as a solver of the unconstrained smooth DP-ERM problem.
We recall that X denotes a feature space and Y a label space, and that we have a
dataset D = {d1, . . . , dn} ⊆ (X × Y)n of n records. We aim at solving the following
smooth empirical risk minimization problem:

w∗ ∈ arg min
w∈Rp

{
f(w)

}
, with f(w) =

1

n

n∑
i=1

`(w; di) , (?′)

where p can be large, ` : W × X × Y → R is a loss function which is convex and
coordinate-wise smooth in its first parameter.

As we discussed in Chapter 3, solving (?′) using a differentially private algorithm nec-
essarily decreases the utility of the trained model. Specifically, existing lower bounds
on utility for a fixed privacy budget (see Section 3.2.4) show that utility decreases
polynomially with the dimension p. Since machine learning models are often high-
dimensional (e.g., n ≈ p or even n� p), this is a massive drawback for the practical
use of differentially private empirical risk minimization. To go beyond this negative
result, one can leverage the fact that high-dimensional problems often exhibit some
structure. In particular, some parameters are typically more significant than others:
it is notably (but not only) the case when models are sparse, which is often desired
in high dimension (Tibshirani, 1996). Private learning algorithms could thus be de-
signed to exploit this by focusing on the most significant parameters of the problem.
Several works have tried to exploit such high-dimensional problems’ structure to re-
duce the dependence on the dimension, e.g., from polynomial to logarithmic. Talwar
et al. (2015), Bassily et al. (2021), and Asi et al. (2021) proposed a DP Frank-Wolfe
algorithm (DP-FW) that exploits the solution’s sparsity. However, their algorithm only
works on `1-constrained DP-ERM, restricting its range of application. For sparse lin-
ear regression, Kifer et al. (2012) proposed to first identify some support and then
solve the DP-ERM problem on the restricted support. Unfortunately, their approach
requires implicit knowledge of the solution’s sparsity. Finally, Kairouz et al. (2021)
and Zhou et al. (2021) used public data to estimate lower-dimensional subspaces,
where the gradient can be computed at a reduced privacy cost. A key limitation is
that such public data set, from the same domain as the private data, is typically not
available in learning scenarios involving sensitive data.

The differentially private greedy coordinate descent algorithm (DP-GCD), that we pro-
pose in this Chapter, does not have these pitfalls. At each iteration, DP-GCD privately
determines the gradient’s greatest coordinate, and performs a gradient step in its
direction. It can thus focus on the most useful parameters, avoiding to waste privacy
budget on updating non-significant ones. Formally, we show that DP-GCD reduces
the dependence on the dimension from polynomial to logarithmic for a wide range
of unconstrained problems. This is the first algorithm to obtain such gains without
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relying on `1 or `0 constraints. In fact, DP-GCD’s utility naturally depends on `1-norm
quantities (i.e., distance from initialization to optimal or strong-convexity parameter)
and spans two different regimes. When these `1-norm quantities are O(1) as assumed
in DP-FW, DP-GCD attains O(log(p)/n2/3ε2/3) and O(log(p)/n2ε2) utility on convex
and strongly-convex problems respectively, outperforming existing DP-FW algorithms
without solving a constrained problem. In the second regime, when the `2-norm coun-
terpart of the above quantities are O(1) as assumed for DP-SGD and its variants, we
show that DP-GCD adapts to the problem’s underlying structure. Specifically, it is able
to interpolate between logarithmic and polynomial dependence on the dimension. In
addition to these general utility results, we prove that for strongly convex problems
with quasi-sparse solutions (including but not limited to sparse problems), DP-GCD
converges to a good approximate solution in few iterations. This improves utility in
the `2-norm setting, replacing the polynomial dependence on the ambient space’s di-
mension by the quasi-sparsity level of the solution. We evaluate both our algorithms
numerically on real and synthetic datasets, validating our theoretical observations.

The contributions of this Chapter can be summarized as follows:

1. We propose differentially private greedy coordinate descent (DP-GCD), a method
that performs updates along the (approximately) greatest entry of the gradient.
We formally establish its privacy guarantees, and derive high probability utility
upper bounds.

2. We prove that DP-GCD exploits structural properties of the problem (e.g., quasi-
sparse solutions) to improve utility. Importantly, DP-GCD does not require prior
knowledge of this structure to exploit it.

3. We empirically validate our theoretical results on a variety of synthetic and
real datasets, showing that DP-GCD outperforms existing private algorithms on
high-dimensional problems with quasi-sparse solutions.

The rest of the Chapter is organized as follows. First, we discuss related work in more
details in Section 5.2. Section 5.3 then introduces DP-GCD, and formally analyzes its
privacy and utility. We validate our theoretical results numerically in Section 5.4.
Finally, we conclude and discuss the limitations of our results in Section 5.5.

5.2 Related Work

Differentially Private Machine Learning in High Dimension. Several ap-
proaches have been explored to reduce the dependence on the dimension. One option
is to consider `1-constrained problems. For DP-ERM, Talwar et al. (2015) and Tal-
war et al. (2016) used a differentially private Frank-Wolfe algorithm (DP-FW) (Frank
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and Wolfe, 1956; Jaggi, 2013) to achieve utility that scales logarithmically with the
dimension. Asi et al. (2021) and Bassily et al. (2021) proposed stochastic DP-FW algo-
rithms. For more general domains (e.g., polytopes), Kasiviswanathan and Jin (2016)
randomly project the data on a smaller-dimensional space, and lift the result back
onto the original space. The dependence in the dimension is encoded by the Gaussian
width of the domain, again leading to O(log p) error for the `1 ball or the simplex.
Wang et al. (2017) derived a faster mirror descent algorithm for DP-ERM whose
utility also depends on the Gaussian width of the domain. Our approach matches
the O(log p) dependence of the above methods when key quantities are bounded in
`1 norm, but can also achieve such gains for more general problems, e.g., when the
problem has a quasi-sparse solution. Kifer et al. (2012) previously leveraged the so-
lution sparsity for the specific problem of sparse linear regression: they first identify
some support, and then solve DP-ERM on this restricted support. Similarly, Wang
and Gu (2019) and Hu et al. (2022b) proposed hard thresholding-based algorithms for
DP-ERM under sparsity (`0 norm) constraints. Both approaches achieve an error of
O(log p) but rely either on prior knowledge on the solution’s sparsity, or on the tuning
of an additional hyperparameter. In contrast, our approach automatically adapts to
the sparsity and works also when solutions are only quasi-sparse. Finally, Kairouz
et al. (2021) and Zhou et al. (2021) estimate lower-dimensional gradient subspaces
using public data. This reduces noise addition, but in practice, public data is only
rarely available.

Private Coordinate Descent. In the previous Chapter, we proposed differentially
private coordinate descent (DP-CD), analyzed its utility and derived corresponding
lower bounds. We showed that DP-CD can exploit coordinate-wise regularity assump-
tions to use larger step-sizes, outperforming DP-SGD when gradient coordinates are
imbalanced. Interestingly, DP-GCD also shares this property. Other work on differen-
tially private coordinate descent, that we already discussed in Section 4.2, all rely on
random selection of the updated coordinate. This rule fails to exploit key problem’s
properties such as sparsity of the solution, and thus suffer a polynomial dependence
on the dimension p. In contrast, our private greedy selection rule focuses on the most
useful coordinates, thereby reducing the dependence on p to only logarithmic in such
settings.

5.3 Private Greedy Coordinate Descent

In this section, we present the contribution of this Chapter: the differentially private
greedy coordinate descent algorithm (DP-GCD). As described in Section 5.3.1, DP-GCD
updates only one coordinate per iteration, which is selected greedily as the (approxi-
mately) largest entry of the gradient so as to maximize the improvement in utility at
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each iteration. We establish privacy (Section 6.5) and utility (Section 5.3.3) guaran-
tees for DP-GCD. We further show in Section 5.3.4 that DP-GCD enjoys improved utility
for high-dimensional problems with a quasi-sparse solution (i.e., with a fraction of the
parameters dominating the others). We then provide a proximal extension of DP-GCD
to non-smooth problems (Section 5.3.5) and conclude with a discussion of DP-GCD’s
computational complexity in Section 5.3.6.

5.3.1 The Algorithm

At each iteration, DP-GCD (Algorithm 5.3.1) updates the parameter with the greatest
gradient value (rescaled by the inverse square root of the coordinate-wise smoothness
constant). This corresponds to the Gauss-Southwell-Lipschitz rule (Nutini et al.,
2015). We describe this algorithm in Algorithm 5.3.1.

Algorithm 5.3.1: DP-GCD: Differentially Private Greedy Coordinate De-
scent.

Input: initial point w0, noise scales λ1, . . . , λp, > 0, λ′1, . . . , λ
′
p, > 0, step

sizes γ1, . . . , γp > 0, number of iteration T > 0.

For t = 0 to T − 1:

Select j = arg max
j′∈[p]

|∇j′f(wt)+χt
j′ |√

Mj′
, with χtj′ ∼ Lap(λ′j′)

Set wt+1 = wt

Update wt+1
j = wtj − γj(∇jf(wt) + ηtj), with ηtj ∼ Lap(λj)

Return: wT .

To guarantee privacy, this selection is done using the report-noisy-max mechanism
(Dwork and Roth, 2014) with noise scales λ′j along j-th entry (j ∈ [p]). DP-GCD then
performs a gradient step with step size γj > 0 along this direction. The gradient is
privatized using the Laplace mechanism (Dwork and Roth, 2014) with scale λj.

Remark 5.3.1 (Sparsity of iterates). When initialized at w0 = 0, DP-GCD generates
sparse iterates. Since it chooses its updates greedily, this gives a screening ability to
the algorithm (Fang et al., 2020). We discuss the implications of this property in
Section 5.3.4, where we show that DP-GCD’s utility is improved when the problem’s
solution is (quasi-)sparse.
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5.3.2 Privacy Guarantees

The privacy guarantees of DP-GCD depends on the noise scales λj and λ′j. In Theo-
rem 5.3.1, we describe how to set these values so as to ensure that DP-GCD is (ε, δ)-
differentially private.

Theorem 5.3.1. Let ε, δ ∈ (0, 1]. Algorithm 5.3.1 with λj = λ′j =
8Lj
nε

√
T log(1/δ) is

(ε, δ)-differentially private.

Proof Sketch. (Detailed proof in Appendix B.1) Let ε′ = ε/
√

16T log(1/δ). At an
iteration t, data is accessed twice. First, to compute the index j of the coordinate
to update. It is obtained as the index of the largest noisy entry of f ’s gradient,
with noise Lap(λ′j). By the report-noisy-argmax mechanism, j is ε′-DP. Second, to
compute the gradient’s j’s entry, which is released with noise Lap(λj).The Laplace
mechanism ensures that this computation is also ε′-DP. Algorithm 5.3.1 is thus
the 2T -fold composition of ε′-DP mechanisms, and the result follows from DP’s
advanced composition theorem (Dwork and Roth, 2014). �

Remark 5.3.2. The assumption ε ∈ (0, 1] is only used to give a closed-form ex-
pression for the noise scales λ, λ’s. In practice, we tune them numerically to obtain
the desired value of ε > 0 by the advanced composition theorem (see eq. (B.1.1) in
Appendix B.1), removing the assumption ε ≤ 1.

Computing the greedy update requires injecting Laplace noise that scales with the
coordinate-wise Lipschitz constants L1, . . . , Lp of the loss. These constants are typ-
ically smaller than their global counterpart. This allows DP-GCD to inject less noise
on smaller-scaled coordinates.

5.3.3 Utility Guarantees

We now prove utility upper bounds for DP-GCD. We show that in favorable settings
(see discussion below), DP-GCD decreases the dependence on the dimension from poly-

nomial to logarithmic. Theorem 5.3.2 gives asymptotic utility upper bounds, where Õ
ignores non-significant logarithmic terms. Complete non-asymptotic results can be
found in Appendix B.2.

Theorem 5.3.2. Let ε, δ ∈ (0, 1]. Assume `(·; d) is a convex and L-coordinate-
Lipschitz loss function for all d ∈ X , and f is M-coordinate-smooth. Define W∗ the
set of minimizers of f , and f ∗ the minimum of f . Let wpriv ∈ Rp be the output of
Algorithm 5.3.1 with step sizes γj = 1/Mj, and noise scales λ1, . . . , λp, λ

′
1, . . . , λ

′
p set

as in Theorem 5.3.1 (with T chosen below) to ensure (ε, δ)-DP. Then, the following
holds for any ζ ∈ (0, 1]:
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1. When f is convex, let RM,1 = maxw∈Rp maxw∗∈W∗{‖w − w∗‖M,1 |f(w) ≤ f(w0)}.
Assume the initial optimality gap is f(w0)− f ∗ ≥ 16Lmax

√
T log(1/δ) log(2Tp/ζ)

Mminnε
, and set

T = O(n2/3ε2/3R
2/3
M,1M

1/3
min/L

2/3
max log(1/δ)1/3). Then with probability at least 1− ζ,

f(wpriv)− f ∗ = Õ

(
R

4/3
M,1L

2/3
max log(1/δ) log(p/ζ)

n2/3ε2/3M
1/3
min

)
.

2. When f is µM,1-strongly convex w.r.t. ‖ · ‖M,1, set the number of iterations to

T = O
(

1
µM,1

log(
MminµM,1nε(f(w0)−f(w∗))

Lmax log(1/δ) log(2p/ζ)
)
)

. Then with probability at least 1− ζ,

f(wpriv)− f ∗ = Õ

(
L2

max log(1/δ) log(2p/µMζ)

Mminµ2
M,1n

2ε2

)
.

Proof Sketch. (Detailed proof in Appendix B.2). We start by proving a noisy
“descent lemma”. Since f is smooth, we have f(wt+1) ≤ f(wt) − 1

2Mj
∇jf(wt)2 +

1
2Mj

(ηtj)
2. The greedy selection of j gives that − 1

Mj
(∇jf(wt)+χj)

2 ≤ −‖∇f(wt)+

χ‖2
M−1,∞. We then use the inequality (a+b)2 ≤ 2a2+2b2 for a, b ∈ R, and convexity

arguments to prove the lemma. When f is convex, we have

f(wt+1)− f(w∗) ≤ f(wt)− f(w∗)

− (f(wt)− f(w∗))2

8‖wt − w∗‖2
M,1

+
|ηtj|2
2Mj

+
|χtj|2
2Mj

+
|χtj∗|2
4Mj∗

.

There, we observe that, at each iteration, either (i) wt is far enough from the
optimum, and the value of the objective decreases with high probability, either
(ii) wt is close to the optimum, then all future iterates remain in a ball whose
radius depends on the scale of the noise. We prove this key property rigorously in
Appendix B.2.3 (b).

When f is µM,1-strongly-convex w.r.t., ‖ · ‖M,1, we obtain

f(wt+1)− f(w∗) ≤
(

1− µM,1

4

)
(f(wt)− f(w∗))

+
|ηtj|2
2Mj

+
|χtj|2
2Mj

+
|χtj∗ |2
4Mj∗

,

and the result follows by induction. In both settings, we use Chernoff bounds to
obtain a high-probability result. �

Remark 5.3.3. The lower bound on f(w0) − f ∗ in Theorem 5.3.2 is a standard
assumption in the analysis of inexact coordinate descent methods: it ensures that
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sufficient decrease is possible despite the noise. A similar assumption is made by
Tappenden et al. (2016), see Theorem 5.1 therein.

Discussion of the utility bounds One of the key properties of DP-GCD is that
its utility is dictated by `1-norm quantities (RM,1 and µM,1). Remarkably, this arises
without enforcing any `1 constraint in the problem, which is in stark contrast with
private Frank-Wolfe algorithms (DP-FW) that require such constraints (Talwar et al.,
2015; Asi et al., 2021; Bassily et al., 2021). To better grasp the implications of this,
we discuss our results in two regimes considered in previous work (see Section 5.2): (i)
when these `1-norm quantities are bounded (similarly to DP-FW algorithms), and (ii)
when their `2-norm counterparts are bounded (similarly to DP-SGD-style algorithms).

Bounded in `1-norm. When RM,1 and µM,1 are O(1), as assumed in prior work on
DP-FW (Talwar et al., 2015; Asi et al., 2021; Bassily et al., 2021), DP-GCD’s dependence
on the dimension is logarithmic. For convex objectives, its utility isO(log(p)/n2/3ε2/3),
matching that of DP-FW and known lower bounds (Talwar et al., 2015). For strongly-
convex problems, DP-GCD is the first algorithm to achieve a O(log(p)/n2ε2) utility.
Indeed, the only competing result in this setting, due to Asi et al. (2021), obtains
a worse utility of O(log(p)4/3/n4/3ε4/3) by using an impractical reduction of DP-FW

to the convex case. DP-GCD outperforms this prior result without suffering the extra
complexity due to the reduction.

Bounded in `2-norm. Consider RM,2 and µM,2, the `2-norm counterparts of RM,1 and
µM,1. Assume that RM,2 and µM,2 are both O(1), as considered in DP-SGD and its
variants (Bassily et al., 2014a; Wang et al., 2017). We compare these quantities using
the following inequalities (see Stich et al., 2017; Nutini et al., 2015):

R2
M,2 ≤ R2

M,1 ≤ pR2
M,2 , 1

p
µM,2 ≤ µM,1 ≤ µM,2 .

In the best case of these inequalities, the O(log p) utility bounds of the bounded `1

norm regime are preserved in the bounded `2 scenario. In the worst case, the utility
of DP-GCD becomes Õ(p2/3/n2/3ε2/3) and Õ(p2/n2ε2) for convex and strongly-convex
objectives respectively. These worst-case results match DP-FW’s utility in the convex
setting (see e.g., Asi et al. (2021)), but they do not match DP-SGD’s utility. However,
this sheds light on an interesting phenomenon: DP-GCD interpolates between `1- and
`2-norm regimes. Indeed, it lies somewhere between the two extreme cases we just
described, depending on how the `1- and `2-norm constants compare. Most inter-
estingly, it does so without a priori knowledge of the problem or explicit constraint
on the domain. Whether there exists an algorithm that yields optimal utility in all
regimes is an interesting open question.

Coordinate-wise regularity Due to its use of coordinate-wise step sizes, DP-GCD
can adapt to coordinate-wise imbalance of the objective in the same way as its
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randomized counterpart, DP-CD, where coordinates are chosen uniformly at random
(Mangold et al., 2021). This adaptivity notably appears in Theorem 5.3.2 through
the measurement of RM,1 and µM,1 relatively to the scaled norm ‖ · ‖M,1 (as defined
in Section 6.3). We refer to (Mangold et al., 2021) for detailed discussion of these
quantities and the associated gains compared to full gradient methods like DP-SGD.

5.3.4 Better Utility on Quasi-Sparse Problems

In addition to the general utility results presented above, we now exhibit a specific set-
ting where DP-GCD performs especially well, namely strongly-convex problems whose
solutions are dominated by a few parameters. We call such vectors quasi-sparse.

Definition 5.3.1 ((α, τ)-quasi-sparsity). A vector w ∈ Rp is (α, τ)-quasi-sparse if it
has at most τ entries superior to α (in modulus). When α = 0, the vector is called
τ -sparse.

Note that any vector in Rp is (0, p)-quasi-sparse, and for any τ there exists α > 0
such that the vector is (α, τ)-quasi-sparse. In fact, α and τ are linked, and τ(α)
can be seen as a function of α. Of course, quasi-sparsity will only yield meaningful
improvements when α and τ are small simultaneously.

We now state the main result of this section, which shows that DP-GCD (initialized
with w0 = 0) converges to a good approximate solution in few iterations for problems
with quasi-sparse solutions.

Theorem 5.3.3 (Proof in Appendix B.2.4 (c)). Consider f satisfying the hypotheses
of Theorem 5.3.2, with Algorithm 5.3.1 initialized at w0 = 0. We denote its output
wT , and assume that its iterates remain s-sparse for some s ≤ p. Assume that f is
µM,2-strongly-convex w.r.t., ‖ · ‖M,2, and that the (unique) solution of problem (?′) is
(α, τ)-quasi-sparse for some α, τ ≥ 0. Let 0 ≤ T ≤ p − τ and ζ ∈ [0, 1]. Then with
probability at least 1− ζ:

f(wT )− f ∗ ≤
T∏
t=1

(
1− µM,2

4(τ+min(t,s))

)
(f(w0)− f ∗)

+ Õ
(

(T + τ)(p− τ)α2 + L2
maxT (T+τ)

MminµM,2n2ε2

)
.

We assume that α2 = O
(
L2

max(s+ τ)/Mminµ
2
M,2pn

2ε2
)
, and set the number of iter-

ations to T = s+τ
µM,2

log((f(w0) − f ∗)MminµM,2n
2ε2/L2). Then, we have that, with

probability at least 1− ζ,

f(wT )− f ∗ = Õ

(
L2

max

Mmin

(s+ τ)2 log(2p/ζ)

µM,2n2ε2

)
.
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Here, strong convexity is measured in `2 norm but the dependence on the dimension
is reduced from p, the ambient space dimension, to (s + τ)2, the effective dimension
of the space where the optimization actually takes place. For high-dimensional sparse
problems, the latter is typically much smaller and yields a large improvement in
utility. Note that it is not necessary for the solution to be perfectly sparse: it suffices
that most of its mass is concentrated in a fraction of the coordinates. Notably, when
α2 = O(L2

maxT/MminµM,2pn
2ε2), the lack of sparsity is smaller than the noise, and

does not affect the rate. It generalizes the results by Fang et al. (2020) for non-private
and sparse settings, that we recover when α = 0 and ε→ +∞.

In practice, the assumption over the iterates’ sparsity is often met with s� p. In the
non-private setting, greedy coordinate descent is known to focus on coordinates that
are non-zero in the solution (Massias et al., 2017): this keeps iterates’ sparsity close
to the one of the solution. Furthermore, due to privacy constraints, DP-GCD will often
run for T � p iterations. This is especially true in high-dimensional problems, where
the amount of noise required to guarantee privacy does not allow many iterations
(cf. experiments in Section 5.4).

5.3.5 Proximal DP-GCD

In Section 5.3.4, we proved that DP-GCD’s utility is improved when problem’s solution
is (quasi-)sparse. This motivates us to consider problems with sparsity-inducing reg-
ularization (i.e., when ψ 6= 0 in (?′)), such as the `1 norm of w (Tibshirani, 1996). To
tackle such non-smooth terms, we propose a proximal version of DP-GCD (for which
the same privacy guarantees hold), building upon the multiple greedy rules that have
been proposed for the nonsmooth setting (see e.g., Tseng and Yun, 2009; Nutini
et al., 2015). We describe this algorithm in Algorithm 5.3.2.

Algorithm 5.3.2: Proximal DP-GCD: Differentially Private Proximal Greedy
Coordinate Descent.

Input: initial point w0, noise scales λ1, . . . , λp, > 0, λ′1, . . . , λ
′
p, > 0, step

sizes γ1, . . . , γp > 0, number of iteration T > 0.

For t = 0 to T − 1:

Select j by the noisy GS-s, GS-r or GS-q rule with noise scales λ′1, . . . λ
′
p

Set wt+1 = wt

Update wt+1
j = prox γjψj(w

t − γj(∇jf(wt) + ηtj)), with ηtj ∼ Lap(λj)

Return: wT .
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The same privacy guarantees as for the smooth DP-GCD algorithm hold since, privacy-
wise, the proximal step is a post-processing step. We also adapt the greedy selection
rule to incorporate the non-smooth term. We can use one of the following three rules

j = arg max
j∈[p]

min
ξj∈∂ψj(wj)

1√
Mj

|∇jf(wt) + ηtj + ξj| , (GS-s)

j = arg max
j∈[p]

√
Mj| prox 1

Mj
ψj

(wtj −
1

Mj

(∇jf(wt) + ηtj)− wtj| , (GS-r)

j = arg max
j∈[p]

min
α∈R
∇jf(wt)α +

Mj

2
α2 + ψj(w

t
j + α)− ψj(wtj) . (GS-q)

These rules are commonly considered in the non-private GCD literature (see e.g.,
Tseng and Yun, 2009; Shi et al., 2017; Karimireddy et al., 2019), except for the noise
ηtj and the rescaling in the GS-s and GS-r rules.

5.3.6 Computational Cost

Each iteration of DP-GCD requires computing a full gradient, but only uses one of its
coordinates. In non-private optimization, one would generally be better off performing
the full update to avoid wasting computation. This is not the case when gradients are
private. Indeed, using the full gradient requires privatizing p coordinates, even when
only a few of them may be needed. Conversely, the report noisy max mechanism
(Dwork and Roth, 2014) allows to select these entries without paying the full privacy
cost of dimension. Hence, the greedy updates of DP-GCD reduce the noise needed at
the cost of more computation.

In practice, the higher computational cost of each iteration may not always translate
in a significantly larger cost overall: as shown by our theoretical results, DP-GCD is
able to exploit the quasi-sparsity of the solution to progress fast and only a handful of
iterations may be needed to reach a good private solution. In contrast, most updates
of classic private optimization algorithms (like DP-SGD) may not be worth doing, and
lead to unnecessary injection of noise. We illustrate this phenomenon numerically in
Section 5.4.

5.4 Experiments

In this section, we evaluate the practical performance of DP-GCD on linear models
using the logistic and squared loss with `1 and `2 regularization. We compare DP-GCD

to two competitors: differentially private stochastic gradient descent (DP-SGD) with
batch size 1 (Bassily et al., 2014a; Abadi et al., 2016a), and differentially private
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Table 5.1: Number of records and features in each dataset.

log1, log2 square mtp dorothea california madelon

Records 1, 000 1, 000 4, 450 800 20, 640 2, 600
Features 100 1, 000 202 88, 119 8 501

randomized coordinate descent (DP-CD) (Mangold et al., 2021). The code is available
online1 and in the supplementary.

Datasets. The first two datasets, coined log1 and log2, are synthetic. We generate
a design matrix X ∈ R1,000×100 with unit-variance, normally-distributed columns.
Labels are computed as y = Xw(true) + ε, where ε is normally-distributed noise and
w(true) is drawn from a log-normal distribution of parameters µ = 0 and σ = 1 or
2 respectively. This makes w(true) quasi-sparse. The square dataset is generated
similarly, with X ∈ R1,000×1,000 and w(true) having only 10 non-zero values. The
california dataset can be downloaded from scikit-learn (Pedregosa et al., 2011)
while mtp, madelon and dorothea are available in the OpenML repository (Vanschoren
et al., 2014); see summary in Table 5.1. We discuss the levels of (quasi)-sparsity of
each problem’s solution in Appendix D.2.

Algorithmic setup. (Privacy.) For each algorithm, the tightest noise scales are
computed numerically to guarantee a suitable privacy level of (1, 1/n2)-DP, where
n is the number of records in the dataset. For DP-CD and DP-SGD, we privatize the
gradients with the Gaussian mechanism (Dwork and Roth, 2014), and account for
privacy tightly using Rényi differential privacy (RDP) (Mironov, 2017). For DP-SGD,
we use RDP amplification for the subsampled Gaussian mechanism (Mironov et al.,
2019).

(Hyperparameters.) For DP-SGD, we use constant step sizes and standard gradient clip-
ping (Abadi et al., 2016a). For DP-GCD and DP-CD, we set the step sizes to ηj = γ

Mj
, and

adapt the coordinate-wise clipping thresholds from one hyperparameter, as proposed
by Mangold et al. (2021). For each algorithm, we thus tune two hyperparameters:
one step-size and one clipping threshold; see also Appendix D.2.

(Plots.) In all experiments, we plot the relative error to the non-private optimal
objective value for the best set of hyperparameters (averaged over 5 runs), as a
function of the number of passes on the data. Each pass corresponds to p iterations
of DP-CD, n iterations of DP-SGD and 1 iteration of DP-GCD. This guarantees the same
amount of computation for each algorithm, for each x-axis tick.

1https://gitlab.inria.fr/pmangold1/greedy-coordinate-descent

https://gitlab.inria.fr/pmangold1/greedy-coordinate-descent
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Figure 5.4.1: Relative error (min/mean/max over 5 runs) to non-private optimal for
DP-GCD (our approach) versus DP-CD and DP-SGD. On the x-axis, 1 tick represents
a full access to the data: p iterations of DP-CD, n iterations of DP-SGD and 1
iteration of DP-GCD. Number of iterations, clipping thresholds and step sizes are
tuned simultaneously for each algorithm.

DP-GCD exploits problem structure. In the higher-dimensional datasets square

and dorothea, where p ≥ n, DP-GCD is the only algorithm that manages to do multiple
iterations and to decrease the objective value (see Figures 5.4.1e and 5.4.1g). In
both problems, solutions are sparse due to the `1 regularization. This shows that
DP-GCD’s greedy selection of updates can exploit this property to find relevant non-
zero coefficients (see Table D.4 in Appendix D.2), even when this selection is noisy.
The lower-dimensional datasets log1, log2 and madelon (where p < n) are still
too high dimensional (relatively to n) for DP-SGD and DP-CD to make significant
progress. In contrast, DP-GCD exploits the fact that solutions are quasi-sparse to find
good approximate solutions quickly (see Figures 5.4.1a, 5.4.1b, 5.4.1d, 5.4.1e, 5.4.1g
and 5.4.1h). On the low-dimensional dataset california, DP-GCD is roughly on par
with DP-SGD and DP-CD (see Figure 5.4.1f). This is due to the additional noise term
introduced by the greedy selection rule: in such setting, the lower number of iterations
does not compensate for this as much as in higher-dimensional problems. A similar
phenomenon arise in mtp (Figure 5.4.1c), whose solution is not imbalanced enough
for DP-GCD to be superior to its competitors.
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Computational complexity. As discussed in Section 5.3.6, one iteration of DP-GCD
requires a full pass on the data. This is as costly as p iterations of DP-CD or n itera-
tions of DP-SGD. Nonetheless, on many problems, DP-GCD requires just as many passes
on the data as DP-CD and DP-SGD (Figures 5.4.1a and 5.4.1c to 5.4.1f). When more
computation is required, it also provides significantly better solutions than DP-CD and
DP-SGD (Figure 5.4.1b). This is in line with our theoretical results from Section 5.3.4.

5.5 Conclusion and Discussion

We proposed DP-GCD, a greedy coordinate descent algorithm for DP-ERM. In favor-
able settings, DP-GCD achieves utility guarantees of O( log(p)

n2/3ε2/3
) and O( log(p)

n2ε2
) for convex

and strongly-convex objectives. It is the first algorithm to achieve such rates with-
out solving an `1-constrained problem. Instead, we show that DP-GCD depends on
`1-norm quantities and automatically adapts to the structure of the problem. Specif-
ically, DP-GCD interpolates between logarithmic and polynomial dependence on the
dimension, depending on the problem. Thus, DP-GCD constitutes a step towards the
design of an algorithm that adjusts to the appropriate `p structure of a problem (see
Bassily et al., 2021; Asi et al., 2021).

We also showed that DP-GCD adapts to the quasi-sparsity of the problem, without
requiring a priori knowledge about it. In such problems, it converges to a good ap-
proximate solution in few iterations. This improves utility, and reduces the polyno-
mial dependence on the dimension to a polynomial dependence on the (much smaller)
quasi-sparsity level of the solution.

We also proposed and evaluated a proximal variant of DP-GCD, allowing non-smooth,
sparsity-inducing regularization. While it is not covered by our utility guarantees,
we note that the only existing analysis of such variants in the non-private setting is
the one of Karimireddy et al. (2019) for `1 and box constraints. Their proof relies
on an alternation between good (that provably progress) and bad steps (that do not
increase the objective), which does not transfer to the private setting. Extending
such results to DP-ERM is an exciting direction for future work.



Chapter 6

Quantifying the Impact of Privacy
on Fairness and Accuracy

Chapter Abstract

We theoretically study the impact of differential privacy on fairness
in classification. We prove that, given a class of models, popular group
fairness measures are pointwise Lipschitz-continuous with respect to the
parameters of the model. This result is a consequence of a more gen-
eral statement on accuracy conditioned on an arbitrary event (such as
membership to a sensitive group), which may be of independent interest.
We use this Lipschitz property to prove a non-asymptotic bound showing
that, as the number of samples increases, the fairness level of private mod-
els gets closer to the one of their non-private counterparts. This bound
also highlights the importance of the confidence margin of a model on the
disparate impact of differential privacy.

This Chapter is mostly based on the paper: “Differential Privacy Has Bounded Im-
pact on Fairness in Classification” (Mangold, Perrot, Bellet, and Tommasi, 2023b),
published at ICML 2023.

The code corresponding to this Chapter is available at https://github.com/pmangold/
fairness-privacy.

6.1 Introduction

Until now, we have mostly discussed the privacy issues linked with the training of
machine learning models. But other ethical concerns, like fairness of the model’s
predictions, have also attracted a lot of interest in the past few years. Fairness requires
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models not to unjustly discriminate against specific individuals or subgroups of the
population, while privacy preserves individual-level information about the training
data from being inferred from the model. These two notions have been extensively
studied in isolation: there exists numerous approaches to learn fair models (Caton
and Haas, 2020; Mehrabi et al., 2021), or to preserve privacy (Dwork and Roth, 2014;
Liu et al., 2021). However, only few works studied the interplay between privacy and
fairness. In this Chapter, we take a step forward in this direction, proposing a new
theoretical bound on the relative impact of privacy on fairness in classification.

Fairness takes various forms (depending on the task and context), and several defi-
nitions exist. On the one hand, the goal may be to ensure that similar individuals
are treated similarly. This is captured by individual fairness (Dwork et al., 2012)
and counterfactual fairness (Kusner et al., 2017). On the other hand, group fairness
requires that decisions made by machine learning models do not unjustly discrimi-
nate against subgroups of the population. In this thesis, we focus on group fairness
and consider four popular definitions, namely Equalized Odds (Hardt et al., 2016),
Equality of Opportunity (Hardt et al., 2016), Accuracy Parity (Zafar et al., 2017),
and Demographic Parity (Calders et al., 2009).

In this Chapter, we study the interplay between differential privacy and fairness in
machine learning. We quantify the difference in fairness levels between private and
non-private models in multi-class classification. We derive high probability bounds
showing that this difference shrinks at a rate of Õ(

√
p/n). To obtain this result, we first

prove that the accuracy of a model conditioned on an arbitrary event (such as mem-
bership to a sensitive group), is pointwise Lipschitz continuous with respect to the
model parameters. This property is inherited by many popular group fairness notions,
such as Equalized Odds, Equality of Opportunity, Accuracy Parity and Demographic
Parity. Consequently, two sufficiently close models will have similar fairness levels.
We then upper-bound the distance between the optimal non-private model and the
private models obtained with privacy preserving mechanisms like output perturba-
tion (Chaudhuri et al., 2011; Lowy and Razaviyayn, 2021) or DP-SGD (Song et al.,
2013; Bassily et al., 2014b). These bounds hold for strongly convex empirical risk
minimization formulations, potentially allowing explicit fairness-promoting convex
regularization terms (Bechavod and Ligett, 2018; Huang and Vishnoi, 2019; Lohaus
et al., 2020; Tran et al., 2021a). Combining these two results, we derive high prob-
ability bounds on the fairness loss due to privacy. They show that, with enough
training examples, (i) given an optimal non-private model, enforcing privacy will not
harm fairness too much, and (ii) given a private model, the corresponding (unknown)
non-private optimal model cannot be vastly fairer. Our results also highlight the role
of the confidence margin of models in the disparate impact of differential privacy:
notably, if the non-private model has high per-group confidence, then our bound on
the loss in fairness due to privacy will be smaller.
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The contributions of this Chapter can be summarized as follows:

1. We prove that group fairness is pointwise Lipschitz, with a smaller constant for
models with large margins.

2. We bound the distance between private and optimal models, and show that the
difference in their fairness levels decreases in Õ(

√
p/n).

3. We show that this bound can be computed even when the optimal model is
unknown, and numerically demonstrate that we obtain non-trivial guarantees.

6.2 Related work

The joint study of fairness and privacy in machine learning only goes back a few years,
and has been the focus of a recent survey Fioretto et al., 2022. One may identify
three main research directions. First, it has been empirically observed that privacy
can exacerbate unfairness (Bagdasaryan et al., 2019; Pujol et al., 2020; Farrand et al.,
2020; Uniyal et al., 2022) and, conversely, that enforcing fairness can lead to more
privacy leakage for the unprivileged group (Chang and Shokri, 2021). These empirical
results suggest that some properties of the dataset (such as group sizes and groupwise
input norms) and the choice of the private training method may affect the extent
of these disparate impacts. Unfortunately, these observations are not supported by
theoretical results, and it is not clear why and when disparate impact occurs. Second,
a few approaches have been proposed to learn models that are both fair and privacy
preserving. However, these works either have limited theoretical guarantees on their
performance (Kilbertus et al., 2018; Xu et al., 2019; Xu et al., 2020; Tran et al.,
2021b), or learn stochastic models which might not be usable in contexts where
deterministic decisions are expected (Jagielski et al., 2019; Mozannar et al., 2020).
Finally, a few works have shown that fairness and privacy are incompatible in some
settings, in the sense that there exists data distributions where enforcing one prevents
the other from being satisfied (Sanyal et al., 2022), or where enforcing both implies
trivial utility (Cummings et al., 2019; Agarwal, 2020). While appealing at first glance,
these results usually consider unrealistic cases that are hardly encountered in practice.
In this Chapter, e also study fairness and privacy jointly but rather than studying
whether they may be achieved simultaneously, we investigate the relative difference
in fairness level between private and non-private models.

To the best of our knowledge, the work closest to ours is the one of Tran et al. (2021a).
They analyze the impact of privacy on fairness in Empirical Risk Minimization, where
their notion of fairness is defined as the difference between the excess risk computed
on the overall population and the excess risk computed on a subgroup of the popu-
lation. They study the expected behavior over the possible private models while our
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results are model-specific. In line with the results of this Chapter, their results suggest
that the distance to the decision boundary plays a key role in the disparate impact
of differential privacy. However, the quantity appearing in their result is based on a
second-order Taylor approximations which is loose for popular classification loss func-
tions. In contrast, the quantity appearing in our bounds is precisely the confidence
margin considered in prior work on multi-class margin-based classification (Cortes
et al., 2013). Finally and most importantly, loss-based fairness does not necessarily
imply that the actual decisions taken by the model are fair with respect to standard
group-fairness notions (Lohaus et al., 2020). In contrast, we provide guarantees in
terms of these widely-accepted group fairness definitions.

6.3 Preliminaries

6.3.1 Classification

We consider a multi-class classification setting with a feature space X , a finite set of
labels Y , and a finite set S of values for the sensitive attribute. Let D be a distribution
over X ×S×Y , and D = {(x1, s1, y1), . . . , (xn, sn, yn)} be a training set of n examples
drawn i.i.d. fromD. LetH be a space of real-valued functions h : X×Y → R equipped
with a norm ‖ · ‖H. For an example x ∈ X , the predicted label is the one with the
highest value, that is H(x) = arg maxy∈Y h(x, y). In case of a tie, a random label
among the most likely ones is predicted. The confidence margin of a model h for an
example-label pair (x, y) is defined as ρ(h, x, y) = h(x, y) − maxy′ 6=y h(x, y′) (Cortes
et al., 2013). This confidence margin is positive when the example x is classified as y
by h and negative otherwise. We assume that the margin is Lipschitz-continuous in
the model h.

Assumption 6.3.1 (Lipschitzness of the margin). We assume that ρ is Lipschitz-
continuous in its first argument, that is for all h, h′ ∈ H and (x, y) ∈ X × Y,

|ρ(h, x, y)− ρ(h′, x, y)| ≤ Lx,y‖h− h′‖H ,

where Lx,y < +∞ may depend on the example (x, y).

This assumption is not very restrictive. Typically, it is satisfied by any class of dif-
ferentiable model with bounded gradients. As an illustration, consider linear models
of the form h(x, y) = W T

y x where W is a real-valued matrix where each line is a
vector Wy of label-specific parameters. Define ‖h−h′‖H = ‖W −W ′‖2.Then, we have
Lx,y = 2‖x‖2 since |ρ(h, x, y) − ρ(h′, x, y)| ≤ |h(x, y) − h′(x, y)| + maxy′ 6=y |h(x, y′) −
h′(x, y′)| ≤ 2‖x‖2‖h− h′‖H.

The goal of a learning algorithm A : (X × S × Y)n → H is to find the best pos-
sible model to solve the task. In this work, the quality of a model h is evaluated
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through its accuracy Acc(h) = P (H(X) = Y ) but also its fairness level (as defined
in Section 6.3.2). Furthermore, given a non-private algorithm A, our goal will be
to compare the quality of its output to that of a private version Apriv of A that
guarantees differential privacy.

6.3.2 Fairness

We focus on group fairness. These definitions are based on the idea that a group
of individuals should not be discriminated against, compared to the overall popula-
tion. Usually, these groups are defined by the sensitive attribute from S. However,
in some cases, it is necessary to consider more fine grained partitions. This is for
example the case in Equalized Odds (Hardt et al., 2016), where a model is fair if its
performance is the same on the overall population and on subgroups of individuals
that share the same sensitive group and the same label. Thus, for the sake of gen-
erality, we assume that the data can be partitioned into K disjoint groups denoted
by D1, . . . , Dk, . . . , DK . As in Maheshwari and Perrot (2022), we consider fairness
definitions that, for each group k, can be written as:

Fk(h,D) = C0
k +

K∑
k′=1

Ck′

k P (H(X) = Y | Dk′) , (6.3.1)

where the Ck′

k ’s are group specific values independent of h, that typically depend on
the size of the groups. In Appendix C.1, we show that usual group fairness notions
such as Demographic Parity (with binary labels) (Calders et al., 2009), Equality of
Opportunity (Hardt et al., 2016), Equalized Odds (Hardt et al., 2016), and Accuracy
Parity (Zafar et al., 2017) can all be expressed in the form of (6.3.1). By convention,
we consider that Fk(h,D) > 0 when the group k is advantaged by h compared to the
overall population, Fk(h,D) < 0 when the group is disadvantaged and Fk(h,D) = 0
when h is fair for group k.

In some cases, rather than measuring fairness for each group k independently, it is
interesting to summarize the information with an aggregate value. For example, we
will use the mean of the absolute fairness level of each group:

Fair(h,D) =
1

K

K∑
k=1

|Fk(h,D)| , (6.3.2)

which is 0 when h is fair and positive when it is unfair.

6.4 Pointwise Lipschitzness and Group Fairness

Here, we show that several group fairness notions are pointwise Lipschitz with respect
to the model. To this end, we first prove a more general result on the pointwise
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Lipschitzness of accuracy conditionally on an arbitrary event.

6.4.1 Pointwise Lipschitzness of Conditional Accuracy

We first relate the difference of conditional accuracy of two models to the distance
that separates them. This is summarized in the next theorem.

Theorem 6.4.1 (Pointwise Lipschitzness of Conditional Accuracy). Let H be a set of
real-valued functions with LX,Y the Lipschitz constants defined in Assumption 6.3.1.
Let h, h′ ∈ H be two models, (X, Y, S) be a triple of random variables with distribution
D, and E be an arbitrary event. Assume that E (LX,Y/|ρ(h′, X, Y )| | E) < +∞, then

|P(H(X) = Y | E)− P(H ′(X) = Y | E)| ≤ E
(

LX,Y
|ρ(h,X,Y )| | E

)
‖h− h′‖H . (Lip)

Proof. (Sketch) The proof of this theorem is in two steps. First, we use the Lipschitz-
ness of the margin (Assumption 6.3.1), the triangle inequality, and the union bound
to show that

|P (H(X) = Y | E)− P (H ′(X) = Y | E) | ≤ P
(

LX,Y
|ρ(h,X,Y )| ≥ 1

‖h−h′‖H

∣∣∣ E) .
Then, applying Markov’s inequality gives the desired result. The complete proof can
be found in Appendix C.2.

Theorem 6.4.1 shows the pointwise lipschitzness of h 7→ P (H(X) = Y | E). Further-
more, it underlies the importance of having a large confidence margin ρ(h, x, y) for a
model h predicting label y for an example x. Hence, Lx,y/|ρ(h, x, y)| is small when the
model h is confident in its prediction for the true label y. This implies that, when

the probability (given E) that a point has a small margin is small, E
(

LX,Y
|ρ(h,X,Y )|

∣∣∣ E)
is also small. This is notably the case for large margin classifiers.

It is worth noting that the bound presented Theorem 6.4.1 can be tightened (at the
expense of readability) without affecting the quantities that need to be controlled,
that is the margin |ρ(h, x, y)| and the distance ‖h − h′‖H. Hence, note that given
(x, y) ∈ X ×Y , if |ρ(h, x, y)| ≥ Lx,y‖h− h′‖H, then it means that h’s margin is large
enough to ensure that h and h′ have the same prediction on x. The corresponding
term in the expectation may then be accounted for as zero, improving the upper
bound (Remark C.2.2). Interestingly, if all the examples are classified with such a
large margin, our bound becomes 0, further hinting toward the importance of large
margin classifiers. This result may be further tightened by using a Chernoff bound
instead of Markov’s inequality (remark C.2.1), yielding |P(H(X)=Y |E)−P(H ′(X)=
Y |E)| ≤ βX,Y (h), with

βX,Y (h) = inf
t≥0

{
et‖h−h

′‖H E
(
e
− t|ρ(h,X,Y )|

LX,Y

∣∣∣E)} .
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In the subsequent theoretical developments, we use the bound derived in Theo-
rem 6.4.1 for the sake of readability. In the numerical experiments (Section 6.6),
we use the version of the bound that yields the tightest results by combining both of
the aforementioned techniques.

6.4.2 Pointwise Lipschitzness of Group Fairness Notions

We now use Theorem 6.4.1’s general result to relate the fairness levels of two classifiers,
based on their distance. In Theorem 6.4.2, we show that fairness notions in the form
of (6.3.1) are pointwise Lipschitz.

Theorem 6.4.2 (Pointwise Lipschitzness of Fairness). Let h, h′ ∈ H, and LX,Y de-
fined as in Assumption 6.3.1. For any fairness notion of the form of (6.3.1), we have,
for all k ∈ [K],

|Fk(h,D)− Fk(h′, D)| ≤ χk(h,D)‖h− h′‖H .

with χk(h,D) =
∑K

k′=1 |Ck′

k |E
(

LX,Y
|ρ(h,X,Y )|

∣∣∣ Dk′

)
. Similarly, for the aggregate measure

of fairness defined in (6.3.2),

|Fair(h,D)−Fair(h′, D)|≤ 1

K

K∑
k=1

χk(h,D)‖h− h′‖H .

Proof. (Sketch) To prove the first claim, we use the triangle inequality to show that,
for each group, the absolute difference in fairness is bounded by a combination of abso-
lute differences between conditional probabilities. We can then apply Theorem 6.4.1.
The second claim follows by applying the first one to each group independently. The
complete proof is provided in Appendix C.3.

Theorem 6.4.2 implies that classifiers that are sufficiently close have similar fairness
levels. This has two major consequences when studying a given model. On the one
hand, we have an upper bound on the harm that can be done to fairness: small
variations of the model cannot make it much more unfair. On the other hand, we
have a lower bound on the distance needed to make a model fair: making the model
significantly more fair requires to substantially alter it. In the next corollary, we
instantiate Theorem 6.4.2 for various popular group fairness notions, and for accuracy.

Corollary 6.4.1. Let h, h′ ∈ H, and LX,Y defined as in Assumption 6.3.1. The
difference in fairness or accuracy between h and h′ can be bounded as follows.
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Equalized Odds (Hardt et al., 2016): the data is divided into K = |Y × S|
groups such that for all (y, r) ∈ Y × S,

χ(y,r)(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ Y = y

)
+ E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ Y = y, S = r

)
.

Equality of Opportunity (Hardt et al., 2016): we let Y ′ ⊆ Y the set of desirable
outcomes. The data is divided into K = |Y × S| such that for all (y, r) ∈ Y × S,

χ(y,r)(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ Y = y, S = r

)
+ E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ Y = y

)
,

if y is a desired outcome, and χ(y,r)(h,D) = 0 otherwise.

Accuracy Parity (Zafar et al., 2017): the data is divided into K = |S| groups
such that for all r ∈ S,

χ(r)(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

)
+ E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ S = r

)
.

Demographic Parity (Binary Labels) (Calders et al., 2009): the data is
divided into K = |Y × S| groups such that for all (y, r) ∈ Y × S,

χ(y,r)(h,D)=E
(

LX,Y
|ρ(h,X, Y )|

)
+E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ S = r

)
.

Accuracy: the data is in a single group, such that

χ(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

)
.

Proof. This corollary follows from Theorem 6.4.2 by replacing the Ck′

k ’s by their
appropriate values (depending on the considered notion). See Appendix C.1 for more
details.

Corollary 6.4.1 shows that our results are applicable to several group fairness notions,
but also to accuracy. Note that the pointwise Lipschitz constant χk(h,D) depends
on the considered notion. In Section 6.5, we use these results to quantify the relative
fairness level between private and non-private models.

6.5 Bounding the Relative Fairness of Private

Models

In this section, we quantify the difference of fairness between a private model and its
non-private counterpart. Let ` : H × X × S × Y → R be a loss function. Assume `
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is Λ-Lipschitz, and µ-strongly-convex with respect to its first variable. Assume the
norm ‖ · ‖H is Euclidean, and that H is convex. We define the optimal model h∗ ∈ H
as

h∗ = arg min
h∈H

f(h) =
1

n

n∑
i=1

`(h;xi, si, yi) . (6.5.1)

Two mechanisms are commonly used to find a differentially private approximation
hpriv of h∗: output perturbation (Chaudhuri et al., 2011; Lowy and Razaviyayn, 2021),
and DP-SGD (Bassily et al., 2014b; Abadi et al., 2016a). For both mechanisms, the
distance ‖hpriv−h∗‖H can be upper bounded with high probability. In this section, we
recall these two mechanisms and the corresponding high probability upper bounds.
We then plug these bounds in Theorem 6.4.2 to bound the fairness level of the private
solution hpriv relatively to the one of the true solution h∗.

6.5.1 Bounding the Distance between Private and Optimal
Classifiers

Output perturbation. Output perturbation computes the non-private solution h∗

of (6.5.1), and releases a private estimate by the Gaussian mechanism:

hpriv = πH(h∗ +N (σ2Ip)) ,

where πH is the projection on H. Let ∆ be the sensitivity of the function D 7→
arg minw∈H f(w;D). In our setting, we have ∆ = 2Λ/µn. Then, given 0 < ε, δ < 1, hpriv

is (ε, δ)-differentially private as long as σ2 ≥ 2∆2 log(1.25/δ)/ε2. We bound the distance
between hpriv and h∗ with high probability in Lemma 6.5.1 (proved in Appendix C.4).

Lemma 6.5.1. Let hpriv be the vector released by output perturbation with noise
σ2 = 8Λ2 log(1.25/δ)/µ2n2ε2, and 0 < ζ < 1, then with probability at least 1− ζ,

‖hpriv − h∗‖2
2 ≤

32pΛ2 log(1.25/δ) log(2/ζ)

µ2n2ε2
.

DP-SGD. DP-SGD starts from some h0 ∈ H and updates it using stochastic gradients.
That is, with γ > 0, i ∼ U([n]), and ηt ∼ N (0, σ2Ip), we iteratively update

ht+1 = πH(ht − γ(∇`(ht;xi, yi) + ηt)) .

After T > 0 iterations, we release hpriv = hT . Given 0 < ε, δ < 1, hpriv is (ε, δ)-
differentially private when σ2 ≥ 64Λ2T 2 log(3T/δ) log(2/δ)/n2ε2. Assuming the loss function
is smooth in its first parameter, we bound the distance between hpriv and h∗ with
high probability in Lemma 6.5.2 (proved in Appendix C.5).
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Lemma 6.5.2. Let hpriv be output of DP-SGD with σ2 = 64Λ2T 2 log(3T/δ) log(2/δ)
n2ε2

. Assume
that σ2

∗ = Ei∼[n] ‖∇`(h∗;xi, yi)‖2 ≤ σ2. Let 0 < ζ < 1, then with probability at least
1− ζ,

‖hpriv − h∗‖2
2 = Õ

(
pΛ2 log(1/δ)2

ζµ2n2ε2

)
,

where Õ ignores logarithmic terms in n (the number of examples) and p (the number
of model parameters).

Remark 6.5.1. For clarity of exposition in Lemma 6.5.2, we did not use minimal
assumptions and used the simplest variant of DP-SGD. Notably, the assumption on σ∗
can be removed by using variance reduction schemes, and tighter bounds on σ can
also be obtained using Rényi Differential Privacy (Mironov, 2017). Similarly, the
assumption ε < 1 is only used to give simple closed-form bounds. Strong convexity
and smoothness assumptions can be relaxed as well.

Table 6.1: Upper bound, with 99% probability, on the difference of fairness between
private and non-private models for different fairness measures and accuracy. Privacy
budget is ε = 1 and δ = 1/n2 where n is the number of samples in the training data.

Dataset
Equality

of Opportunity
Equalized

Odds
Demographic

Parity
Accuracy

Parity
Accuracy

celebA (n = 182, 339) 0.1044 0.0975 0.0975 0.0975 0.0487
folktables (n = 1, 498, 050) 0.0017 0.0026 0.0026 0.0026 0.0013

6.5.2 Bounding the Fairness of Private Models

We now state our central result (Theorem 6.5.1), where we bound the fairness of hpriv

relatively to the one of h∗.

Theorem 6.5.1. Let h∗ be the solution of (6.5.1), and hpriv its private estimate
obtained by output perturbation. Let href ∈ {hpriv, h∗}, and 0 < ζ < 1. Then, the
difference of fairness of group k ∈ [K] satisfies, with probability at least 1− ζ,

|Fk(hpriv, D)− Fk(h∗, D)| ≤ χk(h
ref , D)LΛ

√
32p log(1.25/δ) log(2/ζ)

µnε
.

Similarly, if hpriv is estimated through DP-SGD, we have that, with probability at least
1− ζ,

|Fk(hpriv, D)− Fk(h∗, D)| ≤ Õ

(
χk(h

ref , D)LΛ
√
p log(1/δ)√

ζµnε

)
,
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where Õ ignores logarithmic terms in n (the number of examples) and p (the number
of model parameters).

Proof. By Lemma 6.5.1 or Lemma 6.5.2, we control the distance ‖hpriv−h∗‖. Plugging
this bound in Theorem 6.4.2 gives the result.

This result shows that, when learning a private model, the unfairness due to privacy
vanishes at a Õ(

√
p/n) rate. To the best of our knowledge, our result is the first to

quantify this rate. Importantly, it highlights the role of the confidence margin of the
classifier on the impact of differential privacy on fairness. This is in line with previous
empirical and theoretical work that identified the groupwise distances to the decision
boundary as an important factor (Tran et al., 2021a; Tran et al., 2021b). However,
our bounds are the first to quantify this impact through a classic notion of confidence
margin studied in learning theory (Cortes et al., 2013).

Our result may be interpreted and used in various ways. A first example is the case
where the private model is known but its optimal non-private counterpart is not.
There, our result guarantees that, given enough examples, the fairness level of the
private model is close to the one of the optimal non-private model. This allows the
practitioner to give guarantees on the model, that the end user can trust. A second
example is the case where the true model h∗ is owned by someone who cannot share
it, due to privacy concerns. Imagine that the model needs to be audited for fairness.
Then, the model owner can compute a private estimate of their model, and send it
to the (honest but curious) auditing company. The bound allows to obtain fairness
bounds for the true model from the inspection of the private one, and thus acts as a
certificate of correctness of the audit done on the private version of the model.

Remark 6.5.2. The fairness guarantee for the private model given by Theorem 6.5.1
is relative to the fairness of the optimal model h∗, which may itself be quite unfair.
A standard approach to promote fair models is to use convex relaxations of fairness
as regularizers to the ERM problem (Bechavod and Ligett, 2018; Huang and Vish-
noi, 2019; Lohaus et al., 2020). Interestingly, to be able to use output perturbation,
we only require the objective function of (6.5.1) to be strongly convex and Lipschitz
over h ∈ H, which is the case for these relaxations when they are combined with a
squared `2-norm. For binary classification with two sensitive groups, Lohaus et al.
(2020) proved that, with a proper choice of regularization parameters, this approach
can yield a fair h∗ (see their Theorem 1 for more details). Combined with our results,
this paves the way for the design of algorithms that learn provably private and fair
classifiers. However, several crucial challenges remain to make this approach work
in practice, such as (i) finding the appropriate regularization parameters privately,
and (ii) providing guarantees on the resulting classifiers’ accuracy. We leave this for
future work.
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6.6 Numerical Experiments

In this section, we numerically illustrate the upper bounds from Section 6.5.2. We
use the celebA (Liu et al., 2015) and folktables (Ding et al., 2021) datasets, which
respectively contain 202, 599 and 1, 664, 500 samples, with 39 and 10 features (in-
cluding one sensitive attribute, sex, that is not not used for prediction), and binary
labels. For each dataset, we use 90% of the records for training, and the remaining
10% for empirical evaluation of the bounds. We train `2-regularized logistic regres-
sion models, ensuring that the underlying optimization problem is 1-strongly-convex.
This allows learning private models by output perturbation, for which the bound from
Theorem 6.5.1 holds.

In Section 6.6.1, we show that we obtain non-trivial guarantees on the private model’s
fairness and accuracy. Then, we study the influence of the number of training samples
and of the privacy budget ε in Section 6.6.2, and discuss the tightness of our result
in Section 6.6.3.

6.6.1 Value of the Upper Bounds

In Table 6.1, we compute the value of Theorem 6.5.1’s bounds. We learn a non-private
`2-regularized logistic regression model, and use it to compute the bounds (averaged
over the two groups) for multiple fairness and accuracy measures on two datasets.
In all cases, our results give non-trivial guarantees on the difference of fairness: it is
bounded by at most 0.105 for celebA and 0.0026 for folktables. This means that
any (1, 1/n2)-DP model learned by output perturbation will, with high probability,
achieve a fairness level within this margin of that of the non-private model.

6.6.2 Influence of the Training Set Size and Privacy Budget

We now verify numerically the rate at which fairness and accuracy levels decrease
when increasing the number of training records or privacy budget. In Figure 6.6.1,
we plot the optimal model’s equality of opportunity and accuracy, as a function of (i)
in the first line, the number of samples n used for training, or (ii) in the second line,
the privacy budget ε (see Appendix D.3 for results with other fairness measures). For
each value of n and ε, we plot Theorem 6.5.1’s theoretical guarantees (solid blue line).
With ε = 1, our bounds give meaningful guarantees for n ≥ 100, 000 records on both
celebA and folktables datasets (Figures 6.6.1a to 6.6.1d). When using all records,
we obtain meaningful bounds for ε ≥ 1 for celebA and ε ≥ 0.1 for folktables

(Figures 6.6.1e to 6.6.1h). Additionally, note that we obtain both upper and lower
bounds on fairness and accuracy, confirming remarks from Section 6.4.2.

We also report the fairness and accuracy levels of 100 private models computed by
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Figure 6.6.1: Equality of opportunity (Equal. Opp.) and Accuracy levels for optimal
non-private model and random private ones as a function of the number of training
records n (first line, with ε = 1 and δ = 1/n2) and of the privacy budget ε (second
line, using all available training records). For each value of n and ε, we sample 100
private models and take their minimum and maximum fairness/accuracy values to
mark the area of attainable values. The solid blue line gives the theoretical guarantees
from Theorem 6.5.1, while the dashed and dotted line give finer bounds when more
information is available (see Section 6.6.3 for details).

output perturbation (in green in Figure 6.6.1). As predicted by our theory, their
fairness and accuracy converges towards the ones of their non-private counterparts as
n and ε increase. Interestingly, our bounds seem to follow the same tendency as what
we observe empirically (albeit with a larger multiplicative constant), suggesting that
they capture the correct dependence in n and ε. We further discuss the tightness of
our results in next section.

6.6.3 Tightness of the Bound

We now argue that the two major factors of looseness in our results are (i) the
upper bound on ‖hpriv − h∗‖ and (ii) the looseness of Assumption 6.3.1. While these
cannot be improved in general, specific knowledge of hpriv and h∗ (that is typically
not available due to privacy) can lead to tighter bounds. First, when the distance
‖hpriv − h∗‖ is known, we can use its actual value rather than the upper bounds of
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Section 6.5.1 (see dashed blue line in Figure 6.6.1). Second, when both hpriv and h∗ are
known, Assumption 6.3.1 can be substantially refined (see details in Appendix D.3.3).
We evaluate this bound for the private model that is the farthest away from the non-
private one (see dotted blue line in Figure 6.6.1). The resulting bound appears to
be tight up to a small multiplicative constant. These two observations suggest that
our bounds cannot be significantly tightened, unless one can obtain such knowledge
through either private computation or additional assumptions on the data.

6.7 Conclusion

We proved that the fairness (and accuracy) costs induced by privacy in differentially

private classification vanishes at a Õ(
√
p/n) rate, where n is the number of training

records, and p the number of parameters. This rate follows from a general state-
ment on group fairness measures’ regularity, that we prove to be pointwise Lipschitz
with respect to the model. The pointwise Lipschitz constant explicitly depends on
the confidence margin of the model. Importantly, our bounds does not require the
knowledge of the optimal (non-private) model: they can thus be used in practical
privacy-preserving scenarios. We numerically evaluate our bounds on real datasets,
and highlight practical settings where non-trivial guarantees can be obtained.

Our results could help build more trustworthy machine learning models, by guarantee-
ing that their fairness and accuracy approximately match the one of the non-private
model. We believe that our results are applicable to privacy-preserving methods be-
yond output perturbation and DP-SGD. Indeed, deriving high-probability bounds on
the distance between the private and the non-private model is sufficient to apply them.
Note however that our bounds crucially rely on the uniqueness of problem (6.5.1)’s
solution, which is guaranteed by strong convexity. Relaxing this hypothesis is chal-
lenging, but would greatly broaden the scope of our results.

We stress that our results do not provide fairness guarantees per se, but only bound
the difference of fairness between models. It is nonetheless a first step towards a more
complete understanding of the interplay between privacy, fairness, and accuracy. We
believe that our results can guide the design of fairer privacy-preserving machine
learning algorithms. A first promising direction in this regard is to combine our
bounds with fairness-promoting convex regularizers, as discussed in Remark 6.5.2.
Another direction is the design of methods to privately learn models with large-
margin guarantees, as recently considered by Bassily et al. (2022a). Our results,
which explicitly depend on the confidence margin of the model, suggest that better
fairness guarantees could be obtained for these methods.



Chapter 7

Conclusion and Perspectives

7.1 Conclusion

In this thesis, we investigated the role of problem structure in differentially private
machine learning. We proposed two new differentially private optimization algorithms
for empirical risk minimization. These algorithms can exploit structural properties
of the problem to provably achieve a better privacy-utility trade-off than existing
algorithms .We also studied how differential privacy impacts fairness in classification
problems, and highlighted the role of the confidence of the model across sub-groups
of the population.

We proposed in Chapter 4 a differentially private stochastic coordinate descent al-
gorithm. At each iteration of this algorithm, one coordinate is sampled uniformly
at random. This coordinate is then updated with a noisy proximal gradient step.
Noise addition allows to guarantee differential privacy, but does not prevent from us-
ing large coordinate-wise step sizes (like in non-private proximal coordinate descent).
Our differentially private coordinate descent algorithm can therefore adapt to the im-
balance in gradient’s coordinates scales, outperforming existing algorithms in terms
of privacy-utility trade-off when the problem at hand is imbalanced. We showed this
through a careful analysis of its convergence properties and derived corresponding
lower bounds.

We then proposed in Chapter 5 a greedy variant of the differentially private coor-
dinate descent algorithm. This algorithm can further improve utility by choosing
the updated coordinates greedily using the report noisy max mechanism. Thanks to
these greedy updates, the algorithm can naturally exploit structural properties like
the sparsity of the solution. Under favorable structural assumptions, we proved that
the dependence of our algorithm’s utility on the dimension is reduced from polyno-
mial to logarithmic. We demonstrated that this algorithm can find good (and sparse)
parameters in very few iterations, even when the dimension is large.

110
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Finally we investigated in Chapter 6, for classification tasks, the impact of differential
privacy on the level of fairness of the learned model. To this end, we derived a bound
on the difference of fairness between a private model and its non-private counterpart.
This bound follows from the fact that many group fairness notions are pointwise
Lipschitz when the decision function is Lipschitz in its parameters. Our results high-
light the key role of the confidence margin in this problem, and in particular of its
distribution among the different sub-groups of the population.

7.2 Perspectives

Non-uniform Sampling of Coordinates. In Chapter 4, we studied differentially
private coordinate descent with uniform sampling of the coordinates. In some prob-
lems, it may be relevant to sample them non-uniformly (e.g., proportionally to the
coordinate-wise smoothness constants, or adaptively). This was studied by Nesterov
(2010), Richtárik and Takáč (2014), and Richtárik and Takáč (2016) in the non-
private setting. In particular, sampling coordinates with large smoothness constants
more often can help find an approximate solution faster (although the algorithm tends
to stall after a certain number of iterations). This could be beneficial in differentially
private optimization. Due to privacy, we are necessarily finding an approximate so-
lution, yet performing fewer iterations helps reducing the amount of injected noise,
possibly improving the precision of this approximation.

Clipping. In practice, the differentially private coordinate descent algorithms we
proposed heavily rely on the use of gradient clipping. However, this is not covered by
our theory, which makes it difficult to choose the value of this threshold. Recently,
Koloskova et al. (2023) proposed a theoretical study of clipped (stochastic) gradient
descent under an (L0, L1)-smoothness assumption. Using a coordinate-wise variant
of this assumption could lead to improve theoretical understanding of these clipped
coordinate descent algorithms. Such theoretical analysis could help in defining rules
of thumb for setting these clipping thresholds.

Adaptive strategies have also been proposed for setting the clipping thresholds in
an adaptive way (Pichapati et al., 2019; Andrew et al., 2021). Developing adaptive
clipping strategies for differentially private coordinate methods could also help to
alleviate the difficulty of setting the value of these thresholds appropriately.

Hyperparameter-Free Methods. Most of the existing differentially private op-
timization algorithms heavily rely on one or more hyperparameters (e.g., number of
iterations, step size, clipping thresholds, etc.). In particular, the differentially private
coordinate descent algorithms we developed in this thesis use multiple parameters
per coordinate. Although we have proposed methods to adapt these from one global
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hyperparameter (some procedures exist for tuning them privately) it would be more
practical to avoid setting them all together. Recently, hyperparameter-free opti-
mization algorithms have regained in popularity, for instance through the works of
Defazio and Mishchenko (2023), Mishchenko and Defazio (2023), and Khaled et al.
(2023). Extending these ideas to the differentially private setting could yield impor-
tant improvements in the performance and practical usability of differentially private
optimization algorithms.

Screening and Support Recovery. Practical solvers for sparse learning problems
are often based on coordinate descent, combined with screening methods (Fercoq et
al., 2015; Massias et al., 2017; Massias et al., 2018; Bertrand et al., 2022). These
methods aim at identifying coordinates that have already converged, and stop updat-
ing them to accelerate the convergence. In some sparse problems, this can result in
massive performance gains, which could translate into better utility in differentially
private settings.

More generally, (greedy) coordinate descent tend to identify the support of the model
fast in the non-private setting (Klopfenstein et al., 2020; Fang et al., 2020). The
algorithms developed in this thesis could thus be a promising starting point towards
defining differentially private algorithms that can identify the support of a model.

Vertical Federated Learning. In federated learning, multiple agents aim at col-
laboratively training a model without sharing their data. The vertical flavor of feder-
ated learning covers the case where each agent holds a subset of the features. These
problems have not been studied very extensively (contrary to other federated learn-
ing settings), but some approaches are based on coordinate descent methods (Liu
et al., 2020). Differentially private vertical federated learning could therefore be an
interesting application of the results we developed in this thesis.

Efficient Greedy Updates. In Chapter 5, we proposed a differentially private
greedy coordinate descent algorithm. Although this algorithm can reduce the de-
pendence on the dimension from polynomial to logarithmic, its iterations have an
important computational cost. In non-private settings, multiple approaches have
been proposed for reducing this cost (Dhillon et al., 2011; Karimireddy et al., 2019).
Their approaches cast the greedy selection rule as a nearest neighbors search, and use
methods like locality-sensitive hashing to compute an approximation of the greedy
rule, reducing the computation cost. In the differentially private greedy coordinate
descent algorithm, the greedy rule is always computed approximately (due to the pri-
vacy requirement). Therefore, using these approximate greedy selection rules could
lead to reducing significantly the computational cost of our algorithm, possibly with-
out altering its convergence properties too much. A promising perspective to solve
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this problem is to use the differentially private locality-sensitive methods that were
developed by Fernandes et al. (2021).

Proximal greedy coordinate descent. We proposed a proximal variant of dif-
ferentially private greedy coordinate descent in Section 5.3.5, which achieves good
empirical performance. Unfortunately, theoretically analyzing the convergence of
this algorithm is very difficult. In the non-private setting, Karimireddy et al. (2019)
proposed a modified variant of proximal greedy coordinate descent for `1-regularized
and box-constrained problems, but their approach does not seem to be applicable in
the differentially private setting. Developing a proper theory for this algorithm is a
challenging open problem.

Logarithmic dependence on dimension: non-greedy algorithms. All differ-
entially private algorithms whose utility can depend logarithmically on the dimension
are based on greedy algorithms (i.e., differentially private Frank-Wolfe Talwar et al.
(2015), Bassily et al. (2021), and Asi et al. (2021) and our differentially private greedy
coordinate descent algorithm). These algorithms all leverage the report noisy max
mechanism. They require computing full gradients but only use one coordinate in the
final update. To this date, it is not clear whether it is possible to achieve such utility
without relying on greedy updates with the report noisy max mechanism.

More generally, developing algorithms that can adapt to the structure of the problem
(like differentially private greedy coordinate descent does) without relying on greedy
updates is an important research problem. Such algorithms would be interesting to
achieve the best possible utility on the problem at hand, without requiring too much
computation when greedy updates fail to exploit the structure of the problem.

Achieving fairness and privacy. The theoretical study we proposed in Chapter 6
shows that, in classification problems, differential privacy has a bounded impact on
fairness. It does not, however, guarantee that the learned model is fair. This could be
achieved by using fairness-promoting regularization strategies like the one proposed
by Lohaus et al. (2020). In general, our results provide some insights on the study of
fairness, that could guide further developments of differentially private mechanisms
that foster fairness. One possible direction would be to guarantee differential privacy
with non-uniform noise addition. If done properly, this could bias the models learned
this way toward fairer ones.

Large margin classifiers. Our results from Chapter 6 also highlight the key role
of the confidence margin on the fairness of the learned models. Therefore, adapting
training methods, so that trained models have larger margins, could help in finding
more fairness models. Note that large-margin models also tend to achieve better
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privacy-utility trade-offs, although few results exist on this question (Bassily et al.,
2022a; Bassily et al., 2022b). Nonetheless, this suggests that this direction is promis-
ing for training models that achieve good fairness, utility and privacy all at once.
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Ippolito, and E. Wallace (Jan. 2023). Extracting Training Data from Diffusion
Models .
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Appendix A

Proofs of Chapter 4

A.1 Lemmas on Sensitivity

In this section, we let X be the universe where the data is drawn from. To upper
bound the sensitivities of a function’s gradient, we start by recalling in Lemma A.1.1
that (coordinate) gradients are bounded by (coordinate-wise-)Lipschitz constants. We
then link this upper bound with gradients’ sensitivities in Lemma A.1.2.

Lemma A.1.1. Let ` : Rp×X → R be convex and differentiable in its first argument,
Λ > 0 and L1, . . . , Lp > 0.

1. If `(·; d) is Λ-Lipschitz for all d ∈ X , then ‖∇`(w; d)‖2 ≤ Λ for all w ∈ Rp and
d ∈ X .

2. If `(·; d) is L-coordinate-Lipschitz for all d ∈ X , then |∇j`(w; d)| ≤ Lj for all
w ∈ Rp, d ∈ X and j ∈ [p].

Proof. Let d ∈ X . We start by proving the first statement. First, if ∇`(w; d) = 0,
‖∇`(w; d)‖2 = 0 ≤ Λ and the result holds. Second, we focus on the case where
∇`(w; d) 6= 0. The convexity of ` gives, for w ∈ Rp, d ∈ X :

`(w +∇`(w; d); d) ≥ `(w; d) + 〈∇`(w; d),∇`(w; d)〉
= `(w; d) + ‖∇`(w; d)‖2

2 , (A.1.1)

then, reorganizing the terms and using Λ-Lipschitzness of ` yields

‖∇`(w; d)‖2
2 ≤ `(w +∇`(w; d); d)− `(w; d)

≤ |`(w +∇`(w; d); d)− `(w; d)|
≤ Λ‖∇`(w; d)‖2 , (A.1.2)

136
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and the result follows after dividing by ‖∇`(w; d)‖2. To prove the second statement,
we set j ∈ [p], and w ∈ Rp, and remark that if ∇j`(w; d) = 0, then |∇j`(w; d)| ≤ Lj.
When ∇j`(w; d) 6= 0, the convexity of ` yields

`(w +∇j`(w; d)ej; d) ≥ `(w; d) + 〈∇`(w; d),∇j`(w; d)ej〉
= `(w; d) +∇j`(w; d)2 . (A.1.3)

Reorganizing the terms and using L-coordinate-Lipschitzness of ` gives

∇j`(w; d)2 ≤ `(w +∇j`(w; d)ej; d)− `(w; d)

≤ |`(w +∇j`(w; d)ej; d)− `(w; d)|
≤ Lj|∇j`(w; d)| , (A.1.4)

and we get the result after dividing by |∇j`(w; d)|.

Lemma A.1.2. Let ` : Rp×X → R be convex and differentiable in its 1st argument,
Λ > 0 and L1, . . . , Lp > 0.

1. If `(·; d) is Λ-Lipschitz for all d ∈ X , then ∆(∇`) ≤ 2Λ.

2. If `(·; d) is L-coordinate-Lipschitz for all d ∈ X , then ∆(∇j`) ≤ Lj for all
j ∈ [p].

Proof. We start by proving the first statement. Let w,w′ ∈ Rp, d, d′ ∈ X . From the
triangle inequality and Lemma A.1.1, we get the following upper bounds:

‖∇`(w; d)−∇`(w′; d′)‖2 ≤ |∇`(w; d)|+ |∇`(w′; d′)| ≤ 2Λ , (A.1.5)

which is the claim of the first statement. To prove the second statement, we proceed
similarly: the triangle inequality and Lemma A.1.1 give the following upper bounds:

|∇j`(w; d)−∇j`(w
′; d′)| ≤ |∇j`(w; d)|+ |∇j`(w

′; d′)| ≤ 2Lj , (A.1.6)

which is the desired result.

We can therefore obtain a bound on the sum of the sensitivities of the functions
d 7→ 1/Mj∇j`(w; d)2 for j ∈ [p], w ∈ Rp. We denote this sum ∆M−1(∇`)2.

Corollary A.1.1. Let L1, . . . , Lp > 0. Let `(·; d) : Rp → R be a convex, L-coordinate-
Lipschitz function for all d ∈ X . Then

∆M−1(∇`) =
( p∑
j=1

1

Mj

∆(∇j`)
2
) 1

2 ≤
( p∑
j=1

4

Mj

L2
j

) 1
2

= 2‖L‖M−1 . (A.1.7)
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A.2 Proof of Theorem 4.3.1

To track the privacy loss of an adaptive composition of K Gaussian mechanisms, we
use Rényi Differential Privacy (Mironov, 2017, RDP). We note that similar results
are obtained with zero Concentrated Differential Privacy (Bun and Steinke, 2016).
This flavor of differential privacy, gives tighter privacy guarantees in that setting, as
it reduces the noise variance by a multiplicative factor of log(K/δ) in comparison to
the usual advanced composition theorem of differential privacy (Dwork et al., 2006).
Importantly, RDP can be translated back to differential privacy.

In this section, we recall the definition and main properties of zCDP. We denote by
D the set of all datasets over a universe X and by F the set of possible outcomes of
the randomized algorithms we consider.

A.2.1 Rényi Differential Privacy

We will use the Rényi divergence (Definition A.2.1), which gives a distribution-
oriented vision of privacy.

Definition A.2.1 (Rényi divergence, van Erven and Harremos 2014). For two ran-
dom variables Y and Z with values in the same domain C, the Rényi divergence is,
for α > 1,

Dα(Y ||Z) =
1

α− 1
log

∫
C
PY = zα PZ = z1−αdz . (A.2.1)

We now define RDP in Definition A.2.2. RDP provides a strong privacy guaran-
tee that can be converted to classical differential privacy (Lemma A.2.1 and Corol-
lary A.2.1).

Definition A.2.2 (Rényi Differential Privacy, Mironov 2017). A randomized algo-
rithm A : D → F is (α, ε)-Rényi-differentially private (RDP) if, for all all datasets
D,D′ ∈ D differing on at most one element,

Dα(A(D)||A(D′)) ≤ ε . (A.2.2)

Lemma A.2.1 (Mironov 2017, Proposition 3). If a randomized algorithm A : D → F
is (α, ε)-RDP, then it is (ε+ log(1/δ)

α−1
, δ)-differentially private for all 0 < δ < 1.

Remark A.2.1. The above (α, ε)-RDP guarantees hold for multiple values of α, ε.
As such, ε = ε(α) can be seen as a function of α, and Lemma A.2.1 ensures that the
algorithm is (ε′, δ)-DP for

ε′ = min
α>1

{
ε(α) +

log(1/δ)

α− 1

}
. (A.2.3)
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We can now restate in Theorem A.2.1 the composition theorem of RDP, which is key
in designing private iterative algorithms.

Theorem A.2.1 (Mironov 2017, Proposition 1). Let A1, . . . ,AK : D → F be K > 0
randomized algorithms, such that for 1 ≤ k ≤ K, Ak is (α, εk(α))-RDP, where these
algorithms can be chosen adaptively (i.e., Ak can use to the output of Ak′ for all
k′ < k). Let A : D → FK such that for D ∈ D, A(D) = (A1(D), . . . ,AK(D)). Then

A is
(
α,
∑K

k=1 εk(α)
)

-RDP.

Finally, we define the Gaussian mechanism (Definition A.2.3), as used in Algo-
rithm 4.3.1, and restate in Lemma A.2.2 the privacy guarantees that it satisfies in
terms of RDP.

Definition A.2.3 (Gaussian mechanism). Let f : D → Rp, σ > 0, and D ∈ D. The
Gaussian mechanism for answering the query f is defined as:

MGauss
f (D;σ) = f(D) +N

(
0, σ2Ip

)
. (A.2.4)

Lemma A.2.2 (Mironov 2017, Corollary 3). The Gaussian mechanism with noise σ2

is (α, ∆(f)2α
2σ2 )-RDP, where ∆(f) = supD,D′ ‖f(D) − f(D′)‖2 (for neighboring D,D′)

is the sensitivity of f .

Proof. The function h = f
∆(f)

has sensitivity 1, thus for any s > 0, the Gaussian

mechanismMGauss
h (·; s) is (α, α

2σ2 )-RDP (Mironov, 2017, Corollary 1). As f = ∆(f)×
h, we haveMGauss

f (·;σ) = ∆(f)×MGauss
h (·; σ

∆(f)
). This mechanism is thus (α, ∆(f)2α

2σ2 )-
RDP.

Corollary A.2.1. Let 0 < ε ≤ 1, 0 < δ < 1
3
. If a randomized algorithm A : D → F

is (α, γα
2σ2 )-RDP with γ > 0 and σ =

√
3γ log(1/δ)

ε
for all α > 1, it is also (ε, δ)-DP.

Proof. From Remark A.2.1 it holds that A is (ε′, δ)-DP with

ε′ = min
α>1

{
γα

2σ2
+

log(1/δ)

α− 1

}
.

This minimum is attained when the derivative of the objective is zero, which is the

case when γ
2σ2 = log(1/δ)

(α−1)2
, resulting in α = 1 +

√
2 log(1/δ)σ2

γ
. A is thus (ε′, δ)-DP with

ε′ =
γ

2σ2
+

√
γ log(1/δ)√

2σ
+

√
γ log(1/δ)√

2σ
=

γ

2σ2
+

√
2γ log(1/δ)

σ
. (A.2.5)
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Choosing σ =

√
3γ log(1/δ)

ε
now gives

ε′ =
ε2

6 log(1/δ)
+
√

2/3ε ≤ (1/6 +
√

2/3)ε ≤ ε , (A.2.6)

where the first inequality comes from ε ≤ 1, thus ε2 ≤ ε and δ < 1/3 thus 1
log(1/δ)

≤ 1.

The second inequality follows from 1/6 +
√

2/3 ≈ 0.983 < 1.

A.2.2 Proof of Theorem 4.3.1

We are now ready to prove Theorem 4.3.1. From the privacy perspective, Algo-
rithm 4.3.1 adaptively releases and post-processes a series of gradient coordinates
protected by the Gaussian mechanism. We thus start by proving Lemma A.2.3,
which gives an (ε, δ)-differential privacy guarantee for the adaptive composition of K
Gaussian mechanisms.

Lemma A.2.3. Let 0 < ε ≤ 1, δ < 1/3, K > 0, p > 0, and {fk : Rp → R}k=K
k=1

a family of K functions. The adaptive composition of K Gaussian mechanisms,

with the k-th mechanism releasing fk with noise scale σk =
∆(fk)
√

3K log(1/δ)

ε
is (ε, δ)-

differentially private.

Proof. Let σ > 0. Lemma A.2.2 guarantees that the k-th Gaussian mechanism with
noise scale σk = ∆(fk)σ > 0 is (α, α

2σ2 )-RDP. Then, the composition of these K
mechanisms is, according to Theorem A.2.1, (α, kα

2σ2 )-RDP. This can be converted

to (ε, δ)-DP via Corollary A.2.1 with γ = K, which gives σk =
∆(fk)
√

3k log(1/δ)

ε
for

k ∈ [K].

We now restate Theorem 4.3.1 and prove it.

Theorem A.2.2. 4.3.1 Assume `(·; d) is L-coordinate-Lipschitz ∀d ∈ X . Let ε < 1

and δ < 1/3. If σ2
j =

12L2
jTK log(1/δ)

n2ε2
for all j ∈ [p], then Algorithm 4.3.1 satisfies

(ε, δ)-DP.

Proof. For j ∈ [1, p],∇jf in Algorithm 4.3.1 is released using the Gaussian mechanism

with noise variance σ2
j . The sensitivity of ∇jf is ∆(∇jf) =

∆(∇j`)
n
≤ 2Lj

n
. Note that

TK gradients are released, and

σ2
j =

12L2
jTK log(1/δ)

n2ε2
for j ∈ [1, p] ,

thus by Lemma A.2.3 and the post-processing property of DP, Algorithm 4.3.1 is
(ε, δ)-differentially private.



Appendix A. Proofs of Chapter 4 141

A.3 Proof of Utility (Theorem 4.3.2)

A.3.1 Problem Statement

Let D ∈ X n be a dataset of n elements drawn from a universe X . Recall that we
consider the following composite empirical risk minimization problem:

w∗ ∈ arg min
w∈Rp

{
F (w;D) =

1

n

n∑
i=1

`(w; di)︸ ︷︷ ︸
=:f(w;D)

+ψ(w)

}
, (A.3.1)

where `(·, d) is convex, L-coordinate-Lipschitz, and M -coordinate-smooth for all d ∈
X , and ψ(w) =

∑p
j=1 ψj(wj) is convex and separable. We denote by F the complete

objective function, and by f its smooth part. For readability, we omit the dependence
on their second argument (i.e., the data) in the rest of this section.

A.3.2 Proof of Theorem 4.3.2

In this section, we prove our central theorem that guarantees the utility of the DP-
CD algorithm. To this end, we start by proving a lemma that upper bounds the
expected value of F (θk+1) in Algorithm 4.3.1. Using this lemma, we prove sub-linear
convergence for the inner loop of DP-CD. This gives the sub-linear convergence of
our algorithm for convex losses. Under the additional hypothesis that F is strongly
convex, we show that iterates of the outer loop of DP-CD converge linearly towards
the (unique) minimum of F .

We recall that in Algorithm 4.3.1, iterates of the inner loop are denoted by θ1, . . . , θK ,
and those of the outer loop by w̄1, . . . , w̄T , with w̄t = 1

K

∑K
k=1 θ

k for t > 0. Algo-
rithm 4.3.1 is randomized in two ways: when choosing the coordinate to update and
when drawing noise. For convenience, we denote by Ej[·] the expectation w.r.t., the
choice of coordinate, by Eη[·] the one w.r.t., the noise, and by Ej,η[·] the expectation
w.r.t., both. When no subscript is used, the expectation is taken over all random
variables. We will also use the notation Ej,η[·|θk] for the conditional expectation of a
random variable, given a realization of θk.

A.3.2 (a) Descent Lemma

We begin by proving Lemma A.3.1, which decomposes the change of a function F
when updating its argument θ ∈ Rp, in relation to a vector w ∈ Rp, into two parts:
one that remains fixed, corresponding to the unchanged entries of θ, and a second
part corresponding to the objective decrease due to the update. At this point, the
vector w is arbitrary, but we will later choose w to be a minimizer of F , that is a
solution to (A.3.1).
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Lemma A.3.1. Let `, f, ψ, and F be defined as in Section A.3.1. Take a random
variable θ ∈ Rp and two arbitrary vectors w, g ∈ Rp. Let a random variable j, taking
its values uniformly randomly in [p], Choose γ1, . . . , γp > 0 and Γ = diag(γ1, . . . , γp).
It holds that

Ej[F (θ − γjgjej)− F (w)|θ]− p− 1

p
(F (θ)− F (w))

≤ 1

p

(
f(θ)− f(w) + 〈∇f(θ),−Γg〉+

1

2
‖Γg‖2

M + ψ(θ − Γg)− ψ(w)

)
. (A.3.2)

Remark A.3.1. To avoid notational clutter, we will write γjgj instead of γjgjej
throughout this section.

Proof. We start the proof by finding an upper bound on Ej[F (θ − γjgjej)− F (w)|θ],
using the M-coordinate-smoothness of f :

Ej[F (θ − γjgjej)− F (w)|θ] =

p∑
j=1

1

p
(F (θ − γjgj)− F (w))

F=f+ψ
=

1

p

p∑
j=1

f(θ − γjgj)− f(w) + ψ(θ − γjgj)− ψ(w)

f smooth

≤ 1

p

p∑
j=1

(
f(θ) + 〈∇f(θ),−γjgj〉+

1

2
‖γjgj‖2

M − f(w) + ψ(θ − γjgj)− ψ(w)

)

= f(θ)− f(w) +
1

p

p∑
j=1

(
〈∇f(θ),−γjgj〉+

1

2
‖γjgj‖2

M + (ψ(θ − γjgj)− ψ(w))

)

= f(θ)− f(w) +
1

p
〈∇f(θ),−Γg〉+

1

2p
‖Γg‖2

M +
1

p

p∑
j=1

(ψ(θ − γjgj)− ψ(w)) .

(A.3.3)

The regularization terms can now be reorganized using the separability of ψ, as done
by Richtárik and Takáč, 2014. Indeed, we notice that

p∑
j=1

(ψ(θ − γjgj)− ψ(w)) =

p∑
j=1

(
ψj(θj − γjgj)− ψj(wj) +

∑
j′ 6=j

ψj′(θj′)− ψ(wj′)
)

= ψ(θ − Γg)− ψ(w) + (p− 1)(ψ(θ)− ψ(w)) . (A.3.4)
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Plugging (A.3.4) in (A.3.3) results in the following:

Ej[F (θ − γjgjej)− F (w)|θ]

≤ f(θ)− f(w) +
1

p
〈∇f(θ),−Γg〉+

1

2p
‖Γg‖2

M

+
1

p
(ψ(θ − Γg)− ψ(w)) +

p− 1

p
(ψ(θ)− ψ(w))

=
1

p

(
f(θ)− f(w) + 〈∇f(θ),−Γg〉+

1

2
‖Γg‖2

M + ψ(θ − Γg)− ψ(w)

)
+
p− 1

p
(f(θ) + ψ(θ)− f(w)− ψ(w)) , (A.3.5)

which gives the lemma since F = f + ψ.

To exploit this result, we need to upper bound the right hand side of (A.3.2) for the
realizations of θk in Algorithm 4.3.1. This is where our proof differs from classical
convergence proofs for coordinate descent methods. Namely, we rewrite the right
hand side of (A.3.2) so as to obtain telescopic terms plus a bias term resulting from
the addition of noise, as shown in Lemma A.3.2.

Lemma A.3.2. Let `, f, ψ, and F defined as in Section A.3.1. For k > 0, let
θk and θk+1 be two consecutive iterates of the inner loop of Algorithm 4.3.1, γ1 =

1
M1
, . . . , γp = 1

Mp
> 0 the coordinate-wise step sizes (where Mj are the coordinate-wise

smoothness constants of f), and gj = 1
γj

(θk+1
j − θkj ). Let w ∈ Rp an arbitrary vector

and σ1, . . . , σp > 0 the coordinate-wise noise scales given as input to Algorithm 4.3.1.
It holds that

Ej,η
[
F (θk+1)− F (w)

∣∣θk]− p− 1

p
(F (θk)− F (w))

≤ 1
2
‖θk − w‖2

Γ−1 − 1
2
Ej,η
[
‖θk+1 − w‖2

Γ−1

∣∣θk]+ 1
p
‖σ‖2

Γ , (A.3.6)

where ‖σ‖2
Γ =

∑p
j=1 γjσ

2
j and the expectations are taken over the random choice of j

and η, conditioned upon the realization of θk.

Proof. We define g the vector (g1, . . . , gp) ∈ Rp with gj = 1
γj

(θk+1
j − θkj ) when coor-

dinate j is chosen in Algorithm 4.3.1. We also denote by Γ = diag(γ1, . . . , γp) the
diagonal matrix having the step sizes as its coefficients.

From Lemma A.3.1 with θ = θk, w = w and g = g as defined above we obtain

Ej
[
F (θk − γjgjej)− F (w)

∣∣θk]− p− 1

p
(F (θk)− F (w))

≤ 1

p

(
f(θk)− f(w) + 〈∇f(θk),−Γg〉+

1

2
‖Γg‖2

M + ψ(θk − Γg)− ψ(w)

)
. (A.3.7)
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We can upper bound the right hand term of (A.3.7) using the convexity of f and ψ:

f(θk)− f(w) + 〈∇f(θk),−Γg〉+
1

2
‖Γg‖2

M + ψ(θk − Γg)− ψ(w)

≤ 〈∇f(θk), θk − w〉+ 〈∇f(θk),−Γg〉+
1

2
‖Γg‖2

M + 〈∂ψ(θk − Γg), θk − Γg − w〉

= 〈∇f(θk) + ∂ψ(θk − Γg), θk − Γg − w〉+
1

2
‖Γg‖2

M , (A.3.8)

where we use the slight abuse of notation ∂ψ(θk − Γg) to denote any vector in the
subdifferential of ψ at the point θk − Γg. We now rewrite the dot product:

〈∇f(θk) + ∂ψ(θk − Γg), θk − Γg − w〉+
1

2
‖Γg‖2

M

= 〈g, θk − Γg − w〉+
1

2
‖Γg‖2

M + 〈∇f(θk) + ∂ψ(θk − Γg)− g, θk − Γg − w〉

= 〈g, θk − w〉 − ‖g‖2
Γ +

1

2
‖g‖2

Γ2M︸ ︷︷ ︸
“descent” term

+ 〈∇f(θk) + ∂ψ(θk − Γg)− g, θk − Γg − w〉︸ ︷︷ ︸
“noise” term

,

(A.3.9)

where the second equality follows from 〈g,−Γg〉 = −‖g‖2
Γ and ‖Γg‖2

M = ‖g‖2
Γ2M . We

split (A.3.9) into two terms: a “descent” term and a “noise” term.

Rewriting the “descent” term. We first focus on the “descent” term. As γj = 1
Mj

for all j ∈ [p], it holds that γ2
jMj = γj which gives −‖g‖2

Γ + 1
2
‖g‖2

Γ2M = −‖g‖2
Γ +

1
2
‖g‖2

Γ = −1
2
‖g‖2

Γ. We can now rewrite the “descent” term as a difference of two
norms, materializing the distance to w, weighted by the inverse of the step sizes Γ−1:

“descent” term = 〈g, θk − w〉 − 1

2
‖g‖2

Γ

= 〈Γg, θk − w〉Γ−1 − 1

2
‖Γg‖2

Γ−1

=
1

2
‖θk − w‖2

Γ−1 − 1

2
‖θk − w‖2

Γ−1 + 〈Γg, θk − w〉Γ−1 − 1

2
‖Γg‖2

Γ−1

=
1

2
‖θk − w‖2

Γ−1 − 1

2
‖θk − Γg − w‖2

Γ−1 , (A.3.10)

where we factorized the norm to obtain the last inequality. We can rewrite (A.3.10)
as an expectation over the random choice of the coordinate j (drawn uniformly in
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[p]), given the realizations of θk and of the noise η (which determines g):

1

2
‖θk − w‖2

Γ−1 − 1

2
‖θk − Γg − w‖2

Γ−1

=
p

2
×
(

1

p

p∑
j=1

γ−1
j |θkj − wj|2 − γ−1

j |θkj − γjgj − wj|2
)

(A.3.11)

=
p

2
× Ej

[
γ−1
j |θkj − wj|2 − γ−1

j |θkj − γjgj − wj|2
∣∣θk, η] . (A.3.12)

Finally, we remark that γ−1
j |θkj − wj|2 − γ−1

j |θkj − γjgj − wj|2 = ‖θk − w‖2
Γ−1 − ‖θk −

γjgj−w‖2
Γ−1 , as only one coordinate changes between the two vectors, and the squared

norm ‖ · ‖2
Γ−1 is separable. We thus obtain

“descent” term = Ej
[p

2
‖θk − w‖2

Γ−1 − p

2
‖θk − γjgj − w‖2

Γ−1

∣∣∣θk, η] (A.3.13)

=
p

2
‖θk − w‖2

Γ−1 − p

2
Ej
[
‖θk+1 − w‖2

Γ−1

∣∣θk, η] . (A.3.14)

Upper bounding the “noise” term. We now upper bound the “noise” term
in (A.3.9). We first recall the definition of the noisy proximal update gj and define
its non-noisy counterpart g̃j:

gj = γ−1
j

(
proxγjψj(θ

k
j − γj(∇jf(θk) + ηj))− θkj

)
(A.3.15)

g̃j = γ−1
j

(
proxγjψj(θ

k
j − γj(∇jf(θk))− θkj

)
. (A.3.16)

For an update of the coordinate j ∈ [p], the optimality condition of the proximal
operator gives, for ηj the realization of the noise drawn at the current iteration when
coordinate j is chosen:

0 ∈ θk+1
j − θkj + γj(∇jf(θk) + ηj)) +

1

Mj

∂ψj(θ
k
j − γjgj) (A.3.17)

= γj ×
(

1

γj
(θk+1
j − θkj ) +∇jf(θk) + ηj + ∂ψj(θ

k
j − γjgj)

)
. (A.3.18)

As such, there exists a real number vj ∈ ∂ψj(θkj−γjgj) such that gj = − 1
γj

(θk+1
j −θkj ) =

∇jf(θk) + ηj + vj. We denote by v ∈ Rp the vector having this vj as j-th coordinate.
Recall that ψ is separable, therefore v ∈ ∂ψ(θk − Γg). The “noise” term of (A.3.9)
can be thus be rewritten using v:

“noise” term = 〈∇f(θk) + v − g, θk − Γg − w〉
= 〈η, θk − Γg − w〉 , (A.3.19)
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and we now separate this term in two using g̃:

“noise” term =

p∑
j=1

ηj(θ
k
j − γjgj − wj)

=

p∑
j=1

ηj(θ
k
j − γj g̃j − wj) +

p∑
j=1

ηj(γj g̃j − γjgj) . (A.3.20)

It is now time to consider the expectation with respect to the noise of these terms.
First, as g̃j is not dependent on the noise anymore, it simply holds that

Eη
[ p∑
j=1

ηj(θ
k
j − γj g̃j − wj) | θk

]
=

p∑
j=1

Eη[ηj] (θkj − γj g̃j − wj) = 0 . (A.3.21)

The last step of our proof now takes care of the following term:

Eη
[ p∑
j=1

ηj(γj g̃j − γjgj) | θk
]
≤ Eη

[
γj

∣∣∣ p∑
j=1

ηj(g̃j − gj)
∣∣∣ | θk]

≤
p∑
j=1

γjEη
[
|ηj||g̃j − gj|

∣∣ θk] , (A.3.22)

where each inequality comes from the triangle inequality. The non-expansiveness
property of the proximal operator (see Parikh and Boyd (2014), Section 2.3) is now
key to our result, as it yields

|g̃j − gj| = γ−1
j | proxγjψj(θ

k
j − γj(∇jf(θk)))− proxγjψj(θ

k
j − γj(∇jf(θk) + ηj))|

≤ |ηj| , (A.3.23)

which directly gives, as Eη
[
η2
j

]
= σ2

j (and ‖σ‖2
Γ =

∑p
j=1 γjσ

2
j ),

p∑
j=1

γjEη
[
|ηj||g̃j − gj|

∣∣θk] ≤ p∑
j=1

γjEη[|ηj||ηj|] =

p∑
j=1

γjEη
[
η2
j

]
= ‖σ‖2

Γ . (A.3.24)

We now have everything to prove the lemma by plugging (A.3.24) and (A.3.21) into
expected value of (A.3.20), and then (A.3.20) and (A.3.10) back into (A.3.9) to obtain,
after using the Tower property of conditional expectations:

1

p
Ej,η
[
f(θk)− f(w) + 〈∇f(θk),−Γg〉+

1

2
‖Γg‖2

M + ψ(θk − Γg)− ψ(w)

∣∣∣∣θk] (A.3.25)

≤ 1

p
(“descent” term + “noise” term) (A.3.26)

≤ 1

2
‖θk − w‖2

Γ−1 − 1

2
Ej,η
[
‖θk+1 − w‖2

Γ−1

∣∣θk]+
1

p
‖σ‖2

Γ , (A.3.27)

which is the result of the lemma.



Appendix A. Proofs of Chapter 4 147

A.3.2 (b) Convergence Lemma

Lemma A.3.2 allows us to prove a result on the mean ofK consecutive noisy coordinate-
wise gradient updates, by simply summing it and rewriting the terms. This gives
Lemma A.3.3, which is the key lemma of our proof.

Lemma A.3.3. Assume `(·, d) is convex, L-coordinate-Lipschitz and M-coordinate-
smooth for all d ∈ X , ψ is convex and separable, such that F = f + ψ and w∗ is a
minimizer of F . For t ∈ [T ], consider the K successive iterates θ1, . . . , θK computed
from the inner loop of Algorithm 4.3.1 starting from the point w̄t, with step sizes
γj = 1

Mj
and noise scales σj. Letting w̄t+1 = 1

K

∑K
k=1 θ

k, it holds that

E
[
F (w̄t+1)− F (w∗)

]
≤ p(‖w̄t − w∗‖2

M + 2(F (w̄t)− F (w∗)))

2K
+ ‖σ‖2

M−1 . (A.3.28)

Remark A.3.2. The term F (w̄t) − F (w∗) essentially remains in the inequality due
to the composite nature of F . When ψ = 0, M-coordinate-smoothness of f(·; d) (for
d ∈ X ) gives

f(w̄t) ≤ f(w∗) + 〈∇f(w∗), w̄t − w∗〉+
1

2
‖w̄t − w∗‖2

M = f(w∗) +
1

2
‖w̄t − w∗‖2

M ,

(A.3.29)

and the result of Lemma A.3.3 further simplifies as:

E
[
F (w̄t+1)− F (w∗)

]
≤ p‖w̄t − w∗‖2

M

K
+ ‖σ‖2

M−1 . (A.3.30)

Proof. Summing Lemma A.3.2 for k = 0 to k = K and w = w∗, taking expecta-
tion with respect to all choices of coordinate and random noise and using the tower
property gives:

K−1∑
k=0

E
[
F (θk+1)− F (w∗)

]
− p− 1

p

K−1∑
k=0

E
[
(F (θk)− F (w∗))

]
≤

K−1∑
k=0

1

2
E
[
‖θk − w∗‖2

Γ−1

]
− 1

2
E
[
‖θk+1 − w∗‖2

Γ−1

]
+

1

p
‖σ‖2

Γ (A.3.31)

=
1

2
E
[
‖w̄0 − w∗‖2

Γ−1

]
− 1

2
E
[
‖θK − w∗‖2

Γ−1

]
+
K

p
‖σ‖2

Γ . (A.3.32)

Remark that
∑K−1

k=0 E
[
F (θk)− F (w∗)

]
=
∑K

k=1 E
[
F (θk)− F (w∗)

]
+(F (w̄0)−F (w∗))−

E
[
F (θK)− F (w∗)

]
, then as E

[
F (θK)− F (w∗)

]
≥ 0, we obtain a lower bound on the
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left hand side of (A.3.32):

K−1∑
k=0

E
[
F (θk+1)− F (w∗)

]
− p−1

p

K−1∑
k=0

E
[
(F (θk)− F (w∗))

]
≥ 1

p

K∑
k=1

E
[
F (θk)− F (w∗)

]
− (F (w̄0)− F (w∗)) . (A.3.33)

As w̄t+1 = 1
K

∑K
k=1 θ

k, the convexity of F gives F (w̄t+1) ≤ 1
K

∑K
k=1 F (θk) − F (w∗).

Plugging this inequality into (A.3.33) and combining the result with (A.3.32) gives

F (w̄t+1)− F (w∗) ≤ p(1
2
‖w̄0 − w∗‖2

Γ−1 + F (w̄0)− F (w∗))

K
+ ‖σ‖2

Γ . (A.3.34)

We conclude the proof by using the fact that Γj = M−1
j for all j ∈ [p], thus ‖ · ‖Γ =

‖ · ‖M−1 and ‖ · ‖Γ−1 = ‖ · ‖M .

A.3.2 (c) Convex Case

Theorem A.3.1. 4.3.2[Convex case] Let w∗ be a minimizer of F and R2
M = max(‖w̄0−

w∗‖2
M , F (w̄0)−F (w∗)). The output wpriv of DP-CD (Algorithm 4.3.1), starting from

w̄0 ∈ Rp with T = 1, K > 0 and the σj’s as in Theorem 4.3.1, satisfies:

F (wpriv)− F (w∗) ≤ 3pR2
M

2K
+

12‖L‖2
M−1K log(1/δ)

n2ε2
. (A.3.35)

Setting K =
RM
√
pnε

‖L‖M−1

√
8 log(1/δ)

yields:

F (wpriv)− F (w∗) ≤ 9
√
p‖L‖M−1RM

√
log(1/δ)

nε
= Õ

(√
pRM‖L‖M−1

nε

)
. (A.3.36)

Proof. In the convex case, we iterate only once in the inner loop (since T = 1). As
such, wpriv = w̄1, and applying Lemma A.3.3 with w̄t+1 = w̄1, wt = w̄0 and σj chosen

as in Theorem 4.3.1 gives the result. Taking K =
RM
√
pnε

‖L‖M−1

√
8 log(1/δ)

then gives

F (w̄t+1
1 )− F (w∗) ≤ 2

√
8p log(1/δ)‖L‖M−1RM

nε
+

12
√
p log(1/δ)‖L‖M−1RM√

8nε
,

(A.3.37)

and the result follows from 2
√

8 + 12√
8
≈ 8.48 < 9.
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A.3.2 (d) Strongly Convex Case

Theorem A.3.2. 4.3.2[Strongly-convex case] Let F be µM -strongly convex w.r.t.
‖ · ‖M and w∗ be the minimizer of F . The output wpriv of DP-CD (Algorithm 4.3.1),
starting from w̄0 ∈ Rp with T > 0, K = 2p(1 + 1/µM) and the σj’s as in Theo-
rem 4.3.1, satisfies:

F (wpriv)− F (w∗) ≤ F (w̄0)− F (w∗)

2T
+

24p(1 + 1/µM)T‖L‖2
M−1 log(1/δ)

n2ε2
.

(A.3.38)

Setting T = log2

(
32n2ε2(F (w̄0)−F (w∗))

p(1+1/µM )‖L‖2
M−1 log(1/δ)

)
yields:

E
[
F (wpriv)− F (w∗)

]
≤
(

1 + log2

(
(F (w̄0)−F (w∗))n2ε2

24p(1+1/µM )‖L‖2
M−1 log(1/δ)

))
24p(1+1/µM )‖L‖2

M−1 log(1/δ)

n2ε2

= O
(
p‖L‖2

M−1 log(1/δ)

µMn2ε2
log2

(
(F (w̄0)−F (w∗))nεµM
p‖L‖M−1 log(1/δ)

))
. (A.3.39)

Proof. As F is µM -strongly-convex with respect to norm ‖·‖M , we obtain for any w ∈
Rp, that F (w) ≥ F (w∗)+ µM

2
‖w−w∗‖2

M . Therefore, F (w̄0)−F (w∗) ≥ 2
µM
‖w̄0−w∗‖2

M

and Lemma A.3.3 gives, for 1 ≤ t ≤ T − 1,

F (w̄t+1)− F (w∗) ≤ (1 + 1/µM)p(F (w̄t)− F (w∗))

K
+ ‖σ‖2

M . (A.3.40)

It remains to set K = 2p(1 + 1/µM) to obtain

F (w̄t+1)− F (w∗) ≤ F (w̄t)− F (w∗)

2
+ ‖σ‖2

M . (A.3.41)

Recursive application of this inequality gives

E
[
F (w̄T )− F (w∗)

]
≤ F (w̄0)− F (w∗)

2T
+

T−1∑
t=0

1

2t
‖σ‖2

M

≤ F (w̄0)− F (w∗)

2T
+ 2‖σ‖2

M , (A.3.42)

where we upper bound the sum by the value of the complete series. It remains to re-

place ‖σ‖2
M by its value to obtain the result. Taking T = log2

(
(F (w̄0)−F (w∗))n2ε2

24p(1+1/µM )‖L‖2
M−1 log(1/δ)

)
then gives

E
[
F (w̄T )− F (w∗)

]
≤
(

1 + log2

(
(F (w̄0)−F (w∗))n2ε2

24p(1+1/µM )‖L‖2
M−1 log(1/δ)

))
24p(1+1/µM )‖L‖2

M−1 log(1/δ)

n2ε2

= O
(
p‖L‖2

M−1 log(1/δ)

µMn2ε2
log2

(
(F (w̄0)−F (w∗))nεµM
p‖L‖M−1 log(1/δ)

))
, (A.3.43)

which is the result of our theorem.
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A.3.3 Proof of Remark 1

We recall the notations of Tappenden et al. (2016). For θ ∈ Rp, t ∈ R and j ∈ [p], let

Vj(θ, t) = ∇j(θ)t+
Mj

2
|t|2 +ψj(θ

k
j + t). For η ∈ R, we also define its noisy counterpart,

V η
j (θ, t) = (∇j(θ) + η)t+

Mj

2
|t|2 + ψj(θ

k
j + t). We aim at finding δj such that for any

θk ∈ Rp used in the inner loop of Algorithm 4.3.1:

Eηj
[
Vj(θ

k,−γjgj)
]
≤ min

g̃∈R
Vj(θ

k,−γj g̃) + δj , (A.3.44)

where the expectation is taken over the random noise ηj, and −γjgj = proxγjψj(θ
k
j −

γj(∇jf(θk) + ηj))− θkj as defined in the analysis of Algorithm 4.3.1. We need to link
the proximal operator we use in DP-CD with the quantity V

ηj
j that we just defined:

proxγjψj(θ
k
j − γj(∇jf(θk) + ηj))

= arg min
v∈R

1

2
‖v − θkj + γj(∇jf(θk) + ηj)‖2

2

= arg min
v∈R

〈γj(∇jf(θkj ) + ηj), v − θkj 〉+
1

2
‖v − θkj ‖2

2 + γjψj(v)

= arg min
v∈R

〈∇jf(θk) + ηj, v − θkj 〉+
Mj

2
‖v − θkj ‖2

2 + ψj(v)

= θkj + arg min
t∈R

〈∇jf(θk) + ηj, t〉+
Mj

2
‖t‖2

2 + ψj(θ
k
j + t) . (A.3.45)

Which means that−γjgj = proxγjψj(θ
k
j−γj(∇jf(θk)+ηj))−θkj ∈ arg mint∈R V

ηj
j (θk, t).

Let −γjg∗j = proxγjψj(θ
k
j−γj∇j(θ

k))−θkj be the non-noisy counterpart of −γjgj. Since

−γjgj is a minimizer of V
ηj
j (θk, ·), it holds that

V
ηj
j (θk,−γjgj) ≤ 〈∇jf(θk) + ηj,−γjg∗j 〉+

Mj

2
‖ − γjg∗j‖2

2 + ψj(θ
k
j +−γjg∗j ) (A.3.46)

= min
t
Vj(θ

k, t) + 〈ηj,−γjg∗j 〉 , (A.3.47)

which can be rewritten as Vj(θ
k,−γjgj) ≤ mint Vj(θ

k, t) + 〈ηj, γj(gj − g∗j )〉. Taking
the expectation yields

Eηj
[
Vj(θ

k,−γjgj)
]
≤ min

t
Vj(θ

k, t) + Eηj
[
〈ηj, γj(gj − g∗j )〉

]
. (A.3.48)

Finally, we remark that |gj − g∗j | ≤ |γjηj| and the non-expansiveness of the proximal
operator gives

Eηj
[
Vj(θ

k,−γjgj)
]
≤ min

t
Vj(θ

k, t) + γjσ
2
j , (A.3.49)

which implies an upper bound on the expectation of δj: Ej,ηj[δj] = 1
p

∑p
j=1 Eηj[δj] ≤

1
p

∑p
j=1 γjσ

2
j = 1

p

∑p
j=1 σ

2
j/Mj, when γj = 1/Mj. In the formalism of Tappenden et al.

(2016), this amounts to setting α = 0 and β = 1
p
‖σ‖2

M−1 .
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Convex functions. When the objective function F is convex, we use Lemma A.3.3
to obtain, since ‖σ‖2

M−1 = βp,

F (w1)− F (w∗) ≤ 2pR2
M

K
+ ‖σ‖2

M−1 =
2pR2

M

K
+ βp . (A.3.50)

Therefore, when F is convex, we get F (w1) − F (w∗) ≤ ξ, for ξ > βp, as long as
2pR2

M

K
≤ ξ − βp, that is K ≥ 2pR2

M

ξ−βp .

In comparison, Tappenden et al. (2016, Theorem 5.1 therein) gives convergence to

ξ >
√

2pR2
Mβ when K ≥ 2pR2

M

ξ−
√

2pR2
Mβ

. We thus gain a factor
√
βp/2R2

M in utility.

Importantly, our utility upper bound does not depend on initialization in that setting,
whereas the one of Tappenden et al. (2016) does.

Strongly-convex functions. When the objective function F is µM -strongly-convex
w.r.t., to ‖ · ‖M , then from (A.3.42) we obtain, as long as K ≥ 4/µM , that

E
[
F (wT )− F (w∗)

]
≤ F (w0)− F (w∗)

2T
+ 2βp . (A.3.51)

This proves that E
[
F (wT )− F (w∗)

]
≤ ξ for ξ > 2βp when F (w0)−F (w∗)

2T
≤ ξ − 2βp

that is T ≥ log F (w0)−F (w∗)
ξ−2βp

and TK ≥ 4p
µM

log F (w0)−F (w∗)
ξ−2βp

. In comparison, Tap-

penden et al. (2016, Theorem 5.2 therein) shows convergence to ξ > βp
µM

for K ≥
p
µM

log
F (w0)−F (w∗)− βp

µM

ξ− βp
µM

. We thus gain a factor µM/2 in utility.

A.4 Comparison with DP-SGD

In this section, we provide more details on the arguments of Section 4.3.4, where we
suppose that ` is L-coordinate-Lipschitz and Λ-Lipschitz. To ease the comparison,
we assume that RM = ‖w0 − w∗‖M , which is notably the case in the smooth setting
with ψ = 0 (see Remark A.3.1).

Balanced. We start by the scenario where coordinate-wise smoothness constants
are balanced and all equal to M = M1 = · · · = Mp. We observe that

‖L‖M−1 =

√√√√ p∑
j=1

1

Mj

L2
j =

√√√√ 1

M

p∑
j=1

L2
j =

1√
M
‖L‖2 . (A.4.1)

We then consider the convex and strongly-convex functions separately:
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• Convex functions: it holds that RM =
√
MRI , which yields the equality

‖L‖M−1RM = ‖L‖2RI .

• Strongly convex functions: if f is µM -strongly-convex with respect to ‖ · ‖M ,
then for any x, y ∈ Rp,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µM
2
‖y − x‖2

M

= f(x) + 〈∇f(x), y − x〉+
MµM

2
‖y − x‖2

2 , (A.4.2)

which means that f is MµM -strongly-convex with respect to ‖ · ‖2. This gives
‖L‖2

M−1

µM
=
‖L‖22/M
µI/M

=
‖L‖22
µI

.

In light of the results summarized in Table 4.1, it remains to compare ‖L‖2 =√∑p
j=1 L

2
j with Λ, for which it holds that Λ ≤

√∑p
j=1 L

2
j ≤

√
pΛ, which is our

result.

Unbalanced. When smoothness constants are disparate, we discuss the case where

• one coordinate of the gradient dominates the others: we assume without loss
of generality that the dominating coordinate is the first one. It holds that
M1 =: Mmax �Mmin =: Mj, for all j 6= 1 and L1 =: Lmax � Lmin =: Lj, for all

j 6= 1 such that
L2
1

M1
�∑

j 6=1

L2
j

Mj
. As L1 dominates the other coordinate-Lipschitz

constants, most of the variation of the loss comes from its first coordinate. This
implies that L1 is close to the global Lipschitz constant Λ of `. As such, it holds
that

‖L‖2
M−1 =

p∑
j=1

L2
j

Mj

≈ L2
1

M1

≈ Λ2

Mmax

. (A.4.3)

• the first coordinate of w̄0 is already very close to its optimal value so that
M1|w̄0

1 − w∗1| �
∑

j 6=1Mj|w̄0
j − w∗j |. Under this hypothesis,

R2
M ≈

∑
j 6=1

Mj|w0
j − w∗j |2 = Mmin

∑
j 6=1

|w0
j − w∗j |2 ≈MminR

2
I . (A.4.4)

We can now easily compare DP-CD with DP-SGD in this scenario. First, if ` is convex,

then ‖L‖M−1RM ≈
√

Mmin

Mmax
ΛRI . Second, when ` is strongly-convex, we observe that
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for x, y ∈ Rp,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µM
2
‖y − x‖2

M

≥ f(x) + 〈∇f(x), y − x〉+
MminµM

2
‖y − x‖2

2 , (A.4.5)

which implies that when f is µM strongly-convex with respect to ‖ · ‖M , it is MminµM

strongly-convex with respect to ‖ · ‖2. This yields, under our hypotheses,
‖L‖2

M−1

µM
≈

Λ2/Mmax

µI/Mmin
= Mmin

Mmax

Λ2

µI
. In both cases, DP-CD can get arbitrarily better than DP-SGD,

and gets better as the ratio Mmax/Mmin increases.

The two hypotheses we describe above are of course very restrictive. However, it gives
some insight about when and why DP-CD can outperform DP-SGD. Our numerical
experiments in Section 4.6 confirm this analysis, even in less favorable cases.

A.5 Proof of Lower Bounds

To prove lower bounds on the utility of L-coordinate-Lipschitz functions, we extend
the proof of Bassily et al. (2014b) to our setting (that is, L-coordinate-Lipschitz func-
tions and unconstrained composite optimization). There are three main difficulties
in adapting their proof:

• First, the optimization problem stated in Equation (?′) is not constrained. We
stress that while convex constraints can be enforced using the regularizer ψ
(using the characteristic function of a convex set), its separable nature only
allows box constraints. In contrast, Bassily et al. (2014b) rely on an `2-norm
constraint to obtain their lower bounds.

• Second, Lemma 5.1 of Bassily et al. (2014b) must be extended to our L-
coordinate-Lipschitz setting. To do so, we consider datasets with points in∏p

j=1{−Lj, Lj} rather than {−1/
√
p, 1/
√
p}p, and carefully adapt the construc-

tion of the dataset D so that ‖∑n
i=1 di‖2 = Ω(min(n‖L‖2,

√
p‖L‖2/ε)), which

is essential to prove our lower bounds.

• Third, the lower bounds of Bassily et al. (2014b) rely on fingerprinting codes,
and in particular on the result of Bun et al. (2014) which uses such codes to
prove that (when n is smaller than some n∗ we describe later) differential privacy
is incompatible with precisely and simultaneously estimating all p counting
queries defined over the columns of the dataset D. In our construction, since
all columns of D now have different scales, we need an additional hypothesis on
the repartition of the Lj’s, (i.e., that

∑
j∈J L

2
j = Ω(‖L‖2) for all J ⊆ [p] of a
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given size), which is not required in existing lower bounds (where all columns
have equal scale).

A.5.1 Counting Queries and Accuracy

We start our proof by recalling and extending to our setting the notions of counting
queries (Definition A.5.1) and accuracy (Definition A.5.2), as described by Bun et al.
(2014). The main feature of our definitions is that we allow the set X to have different
scales for each of its coordinates, and that we account for this scale in the definition
of accuracy. We denote by conv(X ) the convex hull of a set X .

Definition A.5.1 (Counting query). Let n > 0. A counting query on X is a function
q : X n → conv(X ) defined using a predicate q : X → X . The evaluation of the query
q over a dataset D ∈ X n is defined as the arithmetic mean of q on D:

q(D) =
1

n

n∑
i=1

q(di) . (A.5.1)

Definition A.5.2 (Accuracy). Let n, p ∈ N, α, β ∈ [0, 1], L1, . . . , Lp > 0, and X =∏p
j=1{−Lj;Lj} or X = {0, Lj}p. Let Q = {q1, . . . , qp} be a set of p counting queries

on X and D ∈ X n a dataset of n elements. A sequence of answers a = (a1, . . . , ap) is
said (α, β)-accurate for Q if |qj(D)−aj| ≤ Ljα for at least a 1−β fraction of indices
j ∈ [p]. A randomized algorithm A : X n → RcardQ is said (α, β)-accurate for Q on
X if for every D ∈ X n,

PA(D) is (α, β)-accurate for Q ≥ 2/3 . (A.5.2)

In our proof, we will use a specific class of queries: one-way marginals (Defini-
tion A.5.3), that compute the arithmetic mean of a dataset along one of its column.

Definition A.5.3 (One-way marginals). Let X =
∏p

j=1{−Lj;Lj} or X = {0, Lj}p.
The family of one-way marginals on X is defined by queries with predicates qj(x) = xj
for x ∈ X . For a dataset D ∈ X n of size n, we thus have qj(D) = 1

n

∑n
i=1 di,j.

A.5.2 Lower Bound for One-Way Marginals

We can now restate a key result from Bun et al. (2014), which shows that there
exists a minimal number n∗ of records needed in a dataset to allow achieving both
accuracy and privacy on the estimation of one-way marginals on X = ({0, 1}p)n. This
lemma relies on the construction of re-identifiable distribution (see Bun et al. 2014,
Definition 2.10). One can then use this distribution to find a dataset on which a
private algorithm can not be accurate (see Bun et al. 2014, Lemma 2.11).
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Lemma A.5.1 (Bun et al. 2014, Corollary 3.6). For ε > 0 and p > 0, there exists a

number n∗ = Ω(
√
p

ε
) such that for all n ≤ n∗, there exists no algorithm that is both

(1/3, 1/75)-accurate and (ε, o
(

1
n

)
)-differentially private for the estimation of one-way

marginals on ({0, 1}p)n.

To leverage this result in our setting of private empirical risk minimization, we start
by extending it to queries on X =

∏p
j=1{−Lj;Lj}. Before stating the main theorem

of this section (Theorem A.5.1), we describe a procedure χL : ({0, 1}p)n → X 3n

(with L1, . . . , Lp > 0), that takes as input a dataset D ∈ ({0, 1}p)n and outputs an
augmented and rescaled version. This procedure is crucial to our proof and is defined
as follows. First, it adds 2n rows filled with 1’s to D, which ensures that the sum of
each column ofD is Θ(n) (which gives the lower bound onM in Theorem A.5.1). Then
it rescales each of these columns by subtracting 1/2 to each coefficient and multiplying
the j-th column of D (j ∈ [p]) by 2Lj. The resulting dataset Daug

L = χL(D) is a set of
3n points with values in X =

∏p
j=1{−Lj, Lj}, with the property that, for all j ∈ [p],

3nLj ≥
∑n

i=1(Daug
L )i,j ≥ nLj. For D ∈ ({0, 1}p)n, we show how to reconstruct

qj(χL(D)) from qj(D) in Lemma A.5.2.

Lemma A.5.2. Let n ∈ N, j ∈ [p], Lj > 0 and qj the j-th one-way marginal on
datasets D with p columns such that for di ∈ D, qj(di) = di,j. Let Daug

L = χL(D). It
holds that

qj(D
aug
L ) =

2Lj
3
qj(D) +

Lj
3

, (A.5.3)

where we use the slight abuse of notation by denoting the one-way marginals qj :
X 3n → conv(X ) and qj : ({0, 1}p)n → [0, 1]p in the same way.

Proof. Let D ∈ ({0, 1}p)n, and let Daug ∈ ({0, 1}p)3n constructed by adding 2n rows
of 1’s at the end of D. Let Daug

L = χL(D). We remark that

qj(D
aug) =

1

3n

3n∑
i=1

Daug
i,j

=
1

3

(
1

n

n∑
i=1

Daug
i,j

)
+

1

3n

3n∑
i=n+1

1

=
1

3
qj(D) +

2

3
∈ [0, 1] . (A.5.4)
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Then, we link qj(D
aug) with qj(D

aug
L ):

qj(D
aug
L ) =

1

3n

3n∑
i=1

(Daug
L )i,j

=
1

3n

3n∑
i=1

2Lj((D
aug)i,j − 1/2)

= 2Lj(qj(D
aug)− 1/2) ∈ [−Lj, Lj] , (A.5.5)

combining (A.5.4) and (A.5.5) gives the result.

Theorem A.5.1. Let n, p ∈ N, and L1, . . . , Lp > 0. Assume that for all subsets

J ⊆ [p] of size at least d p
75
e,
√∑

j∈J L
2
j = Ω(‖L‖2). Define X =

∏p
j=1{−Lj; +Lj},

and let qj : X → {−Lj, Lj} be the predicate of the j-th one-way marginal on X .

Take ε > 0 and δ = o( 1
n
). There exists a number M = Ω

(
min

(
n‖L‖2,

√
p‖L‖2
ε

))
such that for every (ε, δ)-differentially private algorithm A, there exists a dataset
D = {d1, . . . , dn} ∈ X n with ‖∑n

i=1 di‖2 ∈ [M − 1,M + 1] such that, with probability
at least 1/3 over the randomness of A:

‖A(D)− q(D)‖2 = Ω

(
min

(
‖L‖2,

√
p‖L‖2

nε

))
. (A.5.6)

Proof. Let M = Ω
(

min
(
n‖L‖2,

√
p‖L‖2
ε

))
, and define the set of queries Q composed

of p queries qj(D) = 1
n

∑n
i=1 di,j for j ∈ [p]. Let A be a (ε, δ)-differentially-private

randomized algorithm. Let α, β ∈ [0, 1]. We will show that there exists a dataset D
such that ‖∑n

i=1 di‖2 ∈ [M − 1,M + 1] for which A(D) is not (α, β)-accurate.

When n ≤ n∗. Assume, for the sake of contradiction, that A : X 3n → conv(X ) is
(1

3
α, β)-accurate for Q. Then, for each dataset D′ ∈ X 3n, we have

P
(
∃J ⊆ [p] with |J | ≥ (1− β)p and ∀j ∈ J , |Aj(D′)− qj(D′)| <

2Lj
3
α

)
≥ 2/3 .

(A.5.7)

Importantly, for all D ∈ ({0, 1})p)n, the randomized algorithm A satisfies (A.5.7) for

the dataset Daug
L = χL(D) ∈ X 3n. We now construct the mechanism Ã : ({0, 1}p)n →

[0, 1]p that takes a dataset D ∈ ({0, 1}p)n, constructs Daug
L = χL(D) and runs A on

it. It then outputs Ã(D) such that, for j ∈ [p], Ãj(D) = 3
2Lj
Aj(Daug

L ) − Lj
3

. Using



Appendix A. Proofs of Chapter 4 157

Lemma A.5.2, the results of Ã and be linked to the ones of A, as

|Ã(D)− qj(D)| = | 3

2Lj
Aj(Daug

L )− Lj
3
− 3

2Lj
qj(D

aug
L ) +

Lj
3
|

=
3

2Lj
|Aj(Daug

L )− qj(Daug
L )| . (A.5.8)

Therefore, if A satisfies (A.5.7) and (A.5.8), then Ã : ({0, 1}p)n → [0, 1]p satisfies, for
all D ∈ ({0, 1}p)n,

P
(
∃J ⊆ [p] with |J | ≥ (1− β)p and ∀j ∈ J , |Ãj(D)− qj(D)| < α

)
≥ 2/3 ,

(A.5.9)

which is exactly the definition of (α, β)-accuracy for Ã. Remark that since Ã is only a

post-processing of A, without additional access to the dataset itself, Ã is itself (ε, δ)-
differentially-private. We have thus constructed an algorithm that is both accurate
and private for n ≤ n∗, which contradicts the result of Lemma A.5.1 when β = 1

75
.

This proves the existence of a dataset D ∈ ({0, 1}p)n such that for Daug
L = χL(D),

A(Daug
L ) is not (1

3
α, β)-accurate on Q, which means that with probability at least

1/3, there exists a subset J ⊆ [p] of cardinal cardJ ≥ dβpe such that

‖A(Daug
L )− q(Daug

L )‖2

(A.5.7)

≥
√√√√∑

j∈J

4L2
j

9
≥ Ω(‖L‖2) , (A.5.10)

where the second inequality comes from the fact that cardJ ≥ dβpe = d p
75
e and our

hypothesis on
∑

j∈J L
2
j . Notice that when L1 = · · · = Lp = 1√

p
, we recover the result

of Bassily et al. (2014b), since ‖L‖2 = 1 it holds with probability at least 1/3 that

‖A(Daug
L )− q(Daug

L )‖2

(A.5.7)

≥
√√√√∑

j∈J

4L2
j

9
≥
√

4

9× 75
‖L‖2 ≥

2

27
, (A.5.11)

and in that case, since all Lj’s are equal, it indeed holds that
√∑

j∈J L
2
j = Ω(‖L‖2).

Finally, we remark that the sum of each column of Daug
L is

∑n
i=1 di,j ≥ nLj, and as

such, we have ‖∑n
i=1 di‖2 =

√∑p
j=1(

∑n
i=1 di,j)

2 ≥
√∑p

j=1 n
2L2

j = n‖L‖2.

When n > n∗. We get the result in that case by augmenting the dataset D∗

that we constructed in the first part of this proof. To do so, we follow the steps
described by Bassily et al. (2014b) in the proof of their Lemma 5.1. The construction
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consists in choosing a vector c ∈ X , and adding dn−n∗
2
e rows with c, and bn−n∗

2
c

rows with −c to the dataset D∗. This results in a dataset D′ such that ‖∑n
i=1 di‖ =

Ω(n∗‖L‖2) = Ω(
√
p‖L‖2
ε

), since the contributions of rows −c and c (almost) cancel
out. The theorem follows from observing that (n

∗

n
α, β)-accuracy on this augmented

dataset implies (α, β)-accuracy on the original dataset. As such, if an algorithm is
both private and (n

∗

n
α, β)-accurate on the dataset D′, we get a contradiction, which

gives the theorem as n∗

n
=
√
p

nε
.

Remark A.5.1. Without the assumption on the distribution of the Lj’s, we can still

get an inequality that resembles (A.5.10): ‖A(Daug
L )− q(Daug

L )‖2

(A.5.7)

≥
√∑

j∈J
4L2

j

9
≥

2
27

Lmin

Lmax
‖L‖2, with probability at least 1/3, and we get a result similar to Theorem A.5.1,

except with an additional multiplicative factor Lmin/Lmax.

A.5.3 Lower Bound for Convex Functions

To prove a lower bound for our problem in the convex case, we let L1, · · · , Lp > 0
and define a dataset D = {d1, . . . , dn} taking its values in a set X =

∏p
j=1{±Lj}.

For β > 0, we consider the problem (?′) with W = Rp, the convex, smooth and
L-coordinate-Lipschitz loss function `(w; d) = −〈w, d〉 and the convex, separable

regularizer ψ(w) =
‖
∑n
i=1 di‖2
βn

‖w‖2
2:

w∗ = arg min
w∈Rp

{
F (w;D) = − 1

n
〈w,∑n

i=1 di〉+
‖
∑n
i=1 di‖2
βn

‖w‖2
2

}
, (A.5.12)

To find the solution of (A.5.12), we look for w∗ so that the objective’s gradient is
zero, that is

w∗ =
β

‖∑n
i=1 di‖2

n∑
i=1

di , (A.5.13)

so that ‖w∗‖2 = β
‖
∑n
i=1 di‖2

‖∑n
i=1 di‖2 = β. To prove the lower bound, we remark that

F (w;D)− F (w∗;D) = − 1

n
〈w − w∗,∑n

i=1 di〉+
‖
∑n

i=1 di‖
2βn

(‖w‖2
2 − ‖w∗‖2

2)

= − 1

n
〈w − w∗, ‖

∑n
i=1 di‖
β

w∗〉+
‖∑n

i=1 di‖
2βn

(‖w‖2
2 − ‖w∗‖2

2)

=
‖∑n

i=1 di‖
βn

(
〈w∗ − w,w∗〉+

1

2
‖w‖2

2 −
1

2
‖w∗‖2

2

)
=
‖∑n

i=1 di‖
βn

(
−〈w,w∗〉+

1

2
‖w‖2

2 +
1

2
‖w∗‖2

2

)
=
‖∑n

i=1 di‖
2βn

‖w − w∗‖2
2 . (A.5.14)
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At this point, we can proceed similarly to Bassily et al. (2014b) to relate this quantity
to private estimation of one-way marginals. We let M = Ω(min(n‖L‖2, ‖L‖2

√
p/ε))

and A be an (ε, δ)-differentially private mechanism that outputs a private solution
wpriv to (A.5.12). Suppose, for the sake of contradiction, that for every dataset D
with ‖∑n

i=1 di‖2 ∈ [M − 1;M + 1], it holds with probability at least 2/3 that

‖wpriv − w∗‖ 6= Ω(β) . (A.5.15)

We now derive from A a mechanism Ã to estimate one-way marginals. To do this, Ã
runs A to obtain wpriv and outputs M

nβ
wpriv. We obtain that with probability at least

2/3,

‖Ã(D)− q(D)‖2 =
M

nβ
‖wpriv − β

M

∑n
i=1 di‖2

6= Ω

(
M

n

)
= Ω

(
min

(
‖L‖2,

‖L‖2
√
p

nε

))
. (A.5.16)

where q(D) = 1
n

∑n
i=1 di. This is in contradiction with Theorem A.5.1. We thus

proved that ‖wpriv − w∗‖ = Ω(β), with probability at least 1/3. As a consequence,
we now obtain that with probability at least 1/3,

F (wpriv;D)− F (w∗;D) =
‖∑n

i=1 di‖
2βn

‖wpriv − w∗‖2
2

= Ω

(
min

(
‖L‖2β,

β‖L‖2
√
p

nε

))
, (A.5.17)

which gives the desired result on the expectation of F (wpriv;D)− F (w∗;D).

Finally, if we do not make any hypothesis on the Lj’s distribution, we can di-
rectly use the non-augmented dataset constructed by Bun et al. (2014) to prove
Lemma A.5.1 (that is the dataset from Theorem A.5.1, rescaled but not augmented).
The `2-norm of the sum of this dataset is ‖∑n

i=1 dj‖2 = [M ′ − 1,M ′ + 1] with

M ′ = Ω
(

min
(
Lmin

Lmax
n‖L‖2,

Lmin

Lmax

√
p‖L‖2
ε

))
. This holds since four columns of this

dataset out of five have sum of ±nLj (for some j’s), but no lower bound on the sum of
the remaining columns can be derived. Thus, assuming (A.5.15) holds, then (A.5.16)
can be rewritten as

‖Ã(D)− q(D)‖2 =
M ′

nβ
‖wpriv − β

M

∑n
i=1 di‖2

6= Ω

(
M ′

n

)
= Ω

(
min

(
Lmin

Lmax

‖L‖2,
Lmin

Lmax

‖L‖2
√
p

nε

))
, (A.5.18)
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with probability at least 1/3, which is in contradiction with Remark A.5.1. We thus
get an additional factor of Lmin/Lmax in the lower bound:

F (wpriv;D)− F (w∗;D) =
‖∑n

i=1 di‖
2βn

‖wpriv − w∗‖2
2

= Ω

(
min

(
Lmin

Lmax

‖L‖2β,
Lmin

Lmax

β‖L‖2
√
p

nε

))
. (A.5.19)

A.5.4 Lower Bound for Strongly-Convex Functions

To prove a lower bound for strongly-convex functions, we let µI > 0, L1, . . . , Lp > 0,

W =
∏p

j=1[− Lj
2µI
,+

Lj
2µI

] and D = {d1, . . . , dn} ∈
∏p

j=1{±
Lj
2µI
}. We consider the

following problem, which fits in our setting:

w∗ = arg min
w∈Rp

{
F (w;D) =

µI
2n

n∑
i=1

‖w − di‖2
2 + iW(w)

}
. (A.5.20)

where iW is the (separable) characteristic function of the set W . Since ψ = iW is the
characteristic function of a box-set, the proximal operator is equal to the projection
onW and DP-CD iterates are thus guaranteed to remain inW . Therefore, regularity
assumptions on f only need to hold on W . The loss function `(w; di) = µI

2
‖w − di‖2

2

is L-coordinate-Lipschitz on W since, for w ∈ W and j ∈ [p], the triangle inequality
gives:

|∇j`(w; di)| ≤ µI(|wj|+ |di,j|) ≤ µI

(
Lj
2µI

+
Lj
2µI

)
≤ Lj . (A.5.21)

This loss is also µI-strongly convex w.r.t., `2-norm since for w,w′ ∈ W ,

`(w; di) =
µI
2
‖w − di‖2

2

=
µI
2
‖w′ − di + w − w′‖2

2

=
µI
2

(
‖w′ − di‖2

2 + 2〈w′ − di, w − w′〉+ ‖w − w′‖2
2

)
, (A.5.22)

which is exactly µI-strong convexity since `(w′; di) = µI
2
‖w′ − di‖2

2 and ∇`(w′; di) =
µI(w − di). The minimum of the objective function in (A.5.20) is attained at

w∗ =
1

n

n∑
i=1

di = q(D) ∈ W .



Appendix A. Proofs of Chapter 4 161

The excess risk of F is thus

F (w;D)− F (w∗) =
µI
2n

n∑
i=1

‖w − di‖2
2 − ‖w∗ − di‖2

2 (A.5.23)

=
µI
2n

n∑
i=1

‖w‖2 − ‖w∗‖2 + 2〈di, w∗ − w〉 (A.5.24)

=
µI
2
‖w‖2 − 1

2
‖w∗‖2 + 〈w∗, w∗ − w〉 (A.5.25)

=
µI
2
‖w − q(D)‖2

2 . (A.5.26)

It remains to apply Theorem A.5.1 to obtain that, with probability at least 1/3,

F (wpriv;D)− F (w∗) = Ω

(
min

(‖L‖2
2

µI
,
‖L‖2

2p

µIn2ε2

))
, (A.5.27)

which gives the lower bound on the expected value of F (wpriv;D) − F (w∗). Note
that without the additional assumption on the distribution of the Lj’s, Remark A.5.1
directly gives the result with an additional multiplicative factor (Lmin/Lmax)2:

F (wpriv;D)− F (w∗) = Ω

(
min

(
L2

min

L2
max

‖L‖2
2

µI
,
L2

min

L2
max

‖L‖2
2p

µIn2ε2

))
, (A.5.28)

with probability at least 1/3.



Appendix B

Proofs of Chapter 5

B.1 Proof of Privacy

Theorem B.1.1. 5.3.1 Let ε, δ ∈ (0, 1]. Algorithm 5.3.1 with noise scales λj = λ′j =
8Lj
nε

√
T log(1/δ) is (ε, δ)-differentially private.

Proof. In each iteration of Algorithm 5.3.1, the data is accessed twice: once to choose
the coordinate and once to compute the private gradient. In total, data is thus queried
2T times.

Let λj = λ′j =
2Lj
nε′

. For j ∈ [p], the gradient’s j-th entry has sensitivity 2Lj. Thus,
by the report noisy max mechanism (Dwork and Roth, 2014), the greedy choice
of j is ε′-DP. By the Laplace mechanism (Dwork and Roth, 2014), computing the
corresponding gradient coordinate is also ε′-DP.

The advanced composition theorem for differential privacy thus ensures that the 2T -
fold composition of these mechanisms is (ε, δ)-DP for δ > 0 and

ε =
√

4T log(1/δ)ε′ + 2Tε′(exp(ε′)− 1) , (B.1.1)

where we recall that ε′ =
2Lj
nλj

=
2Lj
nλ′j

for all j ∈ [p]. When ε ≤ 1, we can give a simpler

expression (see Corollary 3.21 of Dwork and Roth, 2014): with ε′ = ε/4
√
T log(1/δ),

Algorithm 5.3.1 is (ε, δ)-DP for λj = λ′j = 8Lj
√
T log(1/δ)/nε.

B.2 Proof of Utility

In this section, we prove Theorem 5.3.2 and Theorem 5.3.3, giving utility upper
bounds for DP-GCD. We obtain these high-probability results through a careful ex-
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amination of the properties of DP-GCD’s iterates, and obtain high-probability results
by using concentration inequalities (see Appendix B.2.1).

In Appendix B.2.2, we prove a general descent lemma, which implies that iterates
of DP-GCD converge (with high probability) to a neighborhood of the optimum.
This property is proven rigorously in Appendix B.2.3 (b), and we give the utility
results for general convex functions in Appendix B.2.3 (c). Under the additional
assumption that the objective is strongly convex, we prove better utility bounds in
Appendix B.2.4. These bounds follow from a key lemma (see Appendix B.2.4 (a)),
which implies linear convergence to a neighborhood of the optimum. We then use
this result in two settings, obtaining two different rates: first in a general setting
(in Appendix B.2.4 (b)), then under the additional assumption that the problem’s
solution is quasi-sparse (in Appendix B.2.4 (c)).

B.2.1 Concentration Lemma

To prove high-probability utility results, we first bound (in Lemma B.2.1) the prob-
ability for a sum of squared Laplacian variables to exceed a given threshold.

Lemma B.2.1. Let K > 0 and λ1, . . . , λK > 0. Define Xk ∼ Lap(λk) and λmax =
maxk∈[K] λk. For any β > 0, it holds that

P

(
K∑
k=1

X2
k ≥ β

)
≤ 2K exp

(
−
√
β

2λmax

)
. (B.2.1)

Proof. We first remark that (
∑K

k=1 |Xk|)2 =
∑K

k=1

∑K
k′=1 |Xk||Xk′| ≥

∑K
k=1X

2
k . There-

fore

P

(
K∑
k=1

X2
k ≥ a2

)
≤ P

(( K∑
k=1

|Xk|
)2

≥ a2

)
= P

(( K∑
k=1

|Xk|
)
≥ a

)
. (B.2.2)

Chernoff’s inequality now gives, for any γ > 0,

P

(
K∑
k=1

|Xk| ≥ a

)
≤ exp(−γa)E

[
exp(γ

K∑
k=1

|Xk|)
]
. (B.2.3)

By the properties of the exponential and the Xk’s independence, we can rewrite the
inequality as

P

(
K∑
k=1

|Xk| ≥ a

)
≤ exp(−γa)E

[
K∏
k=1

exp
(
γ|Xk|

)]

= exp(−γa)
K∏
k=1

E
[
exp

(
γ|Xk|

)]
. (B.2.4)
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We can now compute the expectation of exp(γ|Xk|) for k ∈ [K],

E
[
exp

(
γ|Xk|

)]
=

1

2λk

∫ +∞

−∞
exp(γ|x|) exp(−|x|

λk
)dx

=
1

λk

∫ +∞

0

exp
(

(γ − 1

λk
)x
)
dx . (B.2.5)

We choose γ = 1/2λmax, such that γ ≤ 1/2λk for all k ∈ [K] and obtain

E
[
exp

(
γ|Xk|

)]
=

1

λk

1
1
λk
− γ =

1

1− γλk
≤ 2 . (B.2.6)

Plugging everything together, we have proved that

P

(
K∑
k=1

X2
k ≥ a2

)
≤ P

(
K∑
k=1

|Xk| ≥ a

)
≤ 2K exp(− a

2λmax

) , (B.2.7)

and taking a =
√
β gives the result.

B.2.2 Descent Lemma

We now prove a noisy descent lemma for DP-GCD (Lemma B.2.2). This lemma
bounds the suboptimality f(wt+1)− f(w∗) at time t + 1 as a function of the subop-
timality f(wt)− f(w∗) at time t, of the gradient’s largest entry and of the noise. At
this point, we remark that when the gradient is large enough, it is very probable that
1
8
‖∇f(wt)‖2

M−1,∞ ≥ 1
2Mj
|ηtj|2 + 1

2Mj
|χtj|2 + 1

4Mj∗
|χtj∗ |2: this implies that the value of the

objective function decreases with high probability, even under the presence of noise.
This observation will be crucial for proving utility for general convex functions.

Lemma B.2.2. Let t ≥ 0 and wt, wt+1 ∈ Rp two consecutive iterates of Algo-
rithm 5.3.1, with γj = 1/Mj and λj, λ

′
j chosen as in Theorem 5.3.1 to ensure ε, δ-DP.

We denote by j ∈ [p] the coordinate chosen at this step t, and by

j∗ = arg max
j∈[p]

|∇jf(wt)|/
√
Mj

the coordinate that would have been chosen without noise. The following inequality
holds

f(wt+1)− f(w∗) ≤ f(wt)− f(w∗)− 1

8
‖∇f(wt)‖2

M−1,∞

+
1

2Mj

|ηtj|2 +
1

2Mj

|χtj|2 +
1

4Mj∗
|χtj∗|2 . (B.2.8)
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Proof. The smoothness of f gives a first inequality

f(wt+1) ≤ f(wt) + 〈∇f(wt), wt+1 − wt〉+
1

2
‖wt+1 − wt‖2

M (B.2.9)

= f(wt)− 1

Mj

∇jf(wt)(∇jf(wt) + ηtj) +
1

2Mj

(∇jf(wt) + ηtj)
2 (B.2.10)

= f(wt)− 1

Mj

∇jf(wt)2 − 1

Mj

∇jf(wt)ηtj +
1

2Mj

(∇jf(wt))2

+
1

Mj

∇jf(wt)ηtj +
1

2Mj

(ηtj)
2 (B.2.11)

= f(wt)− 1

2Mj

∇jf(wt)2 +
1

2Mj

(ηtj)
2 . (B.2.12)

We will make the noisy gradient appear, so as to use the noisy greedy rule. To do so,
we remark that the classical inequality (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R implies
that −a2 ≤ −1

2
(a+ b)2 + b2. Applied with a = ∇jf(wt)/

√
Mj and b = χtj/

√
Mj, this

results in

− 1

2Mj

∇jf(wt)2 ≤ − 1

4Mj

(∇jf(wt) + χtj)
2 +

1

2Mj

(χtj)
2 . (B.2.13)

And, by the noisy greedy rule, 1√
Mj∗
|∇j∗f(wt) + χtj∗| ≤ 1√

Mj
|∇jf(wt) + χtj|. We

replace in (B.2.13) and use the inequality −a2 ≤ −1
2
(a+b)2 +b2 with a = (∇j∗f(wt)+

χj∗)/
√
Mj∗ and b = −χj∗/

√
Mj∗ to obtain

− 1

2Mj

∇jf(wt)2 ≤ − 1

4Mj∗
(∇j∗f(wt) + χtj∗)

2 +
1

2Mj

(χtj)
2 (B.2.14)

≤ − 1

8Mj∗
(∇j∗f(wt))2 +

1

4Mj∗
(χtj∗)

2 +
1

2Mj

(χtj)
2 . (B.2.15)

The result follows from (B.2.12) and 1
Mj∗

(∇j∗f(wt))2 = ‖∇f(wt)‖2
M−1,∞.

B.2.3 Utility for General Convex Functions

In this section, we derive an upper bound on the utility of DP-GCD for convex ob-
jective functions. First, we use convexity of f to upper bound the decrease described
in Lemma B.2.2. This gives Lemma B.2.3 in Appendix B.2.3 (a), where the sub-
optimality gap f(wt+1) − f(w∗) at time t + 1 is upper bound by a function of the
suboptimality gap f(wt) − f(w∗) at time t and the noise injected in step t. The
novelty of our analysis lies in Lemma B.2.4, where examine the decrease of the ob-
jective. Specifically, we show that either (i) f(wt) is far from its minimum, and the
suboptimality gap decreases with high probability, either (ii) f(wt) is close to its
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minimum, then all future iterates of DP-GCD will remain in a ball whose radius is
determined by the variance of the noise. This observation is essential for proving the
utility results stated in Section 5.3.3.

B.2.3 (a) Descent Lemma for Convex Functions

Lemma B.2.3. Under the hypotheses of Lemma B.2.2, for a convex objective function
f , we have

f(wt+1)− f(w∗) ≤ f(wt)− f(w∗)− (f(wt)− f(w∗))2

8‖wt − w∗‖2
M,1

+
1

2Mj

|ηtj|2 +
1

2Mj

|χtj|2 +
1

4Mj∗
|χtj∗|2 . (B.2.16)

Proof. Since f is convex, it holds that

f(w∗) ≥ f(wt) + 〈∇f(wt), w∗ − wt〉 . (B.2.17)

After reorganizing the terms, we can upper bound them using Hölder’s inequality

f(wt)− f(w∗) ≤ 〈∇f(wt), wt − w∗〉 (B.2.18)

≤ ‖∇f(wt)‖M−1,∞‖wt − w∗‖M,1 , (B.2.19)

where the second inequality holds since ‖·‖M,1 and ‖·‖M−1,∞ are conjugate norms. We
now divide (B.2.19) by ‖wt−w∗‖M,1, square it and reorganize to get−‖∇f(wt)‖2

M−1,∞ ≤
− (f(wt)−f(w∗))2

‖wt−w∗‖2M,1
. Replacing in Lemma B.2.2 gives the result.

B.2.3 (b) Key Lemma on the Behavior of DP-GCD’s Iterates

Now that we have an inequality in the form of Lemma B.2.3, we prove that iterates of
DP-GCD converge to a vicinity of the optimum. In the general lemma below, think of
ξt as f(wt)−f(w∗) and of β as the variance of the term. This result will be combined
with Lemma B.2.1 to obtain high-probability bounds.

Lemma B.2.4. Let {ct}t≥0 and {ξt}t≥0 be two sequences of positive values that satisfy,
for all t ≥ 0,

ξt+1 ≤ ξt −
ξ2
t

ct
+ β, (B.2.20)

such that if ξt ≤ ξ0 then ct ≤ c0. Assume that β ≤ c0 and ξ0 ≥ 2
√
βc0. Then:

1. For all t > 0, ct ≤ c0, and there exists t∗ > 0 such that ξt+1 ≤ ξt if t < t∗ and
ξt ≤ 2

√
βc0 if t ≥ t∗.
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2. For all t ≥ 1, ξt ≤ c0
t

+ 2
√
βc0.

Proof. 1. Assume that for t ≥ 0,
√
βc0 ≤ ξt ≤ ξ0. Then,

ξt+1 ≤ ξt −
ξ2
t

ct
+ β ≤ ξt −

√
βc0

2

c0

+ β = ξt , (B.2.21)

where the second inequality comes from ξt ≥
√
βc0 and ξt ≤ ξ0 (which implies ct ≤ c0).

We now define the following value t∗, which defines the point of rupture between two
regimes for ξt:

t∗ = min
{
t ≥ 0

∣∣∣ ξt ≤√βc0

}
. (B.2.22)

Let t < t∗, assume that ξt ≤ ξ0, then (B.2.21) holds, that is ξt+1 ≤ ξt ≤ ξ0. By
induction, it follows that for all t < t∗, ξt+1 ≤ ξt ≤ ξ0 and ct ≤ c0.

Remark now that ξt∗ ≤
√
βc0, we prove by induction that ξt stays under 2

√
βc0 for

t ≥ t∗. Assume that for t ≥ t∗, ξt ≤ 2
√
βc0. Then, there are two possibilities. If

ξt ≤
√
βc0, then

ξt+1 ≤ ξt −
ξ2
t

ct
+ β ≤

√
βc0 + β ≤ 2

√
βc0 , (B.2.23)

and ξt+1 ≤ 2
√
βc0. Otherwise,

√
βc0 ≤ ξt ≤ 2

√
βc0 ≤ ξ0 and (B.2.21) holds, which

gives ξt+1 ≤ ξt ≤ 2
√
βc0. We proved that for t ≥ t∗, ξt ≤ 2

√
βc0, which concludes the

proof of the first part of the lemma.

2. We start by proving this statement for 0 < t < t∗−1. Define ω = 2u
c0

and u =
√
βc0.

The assumption on ξt implies, by the first part of the lemma, ξt+1 ≤ ξt − ξ2t
ct

+ β ≤
ξt − ξ2t

c0
+ β, which can be rewritten

ξt+1 − u ≤ (1− ω)(ξt − u)− (ξt − u)2

c0

, (B.2.24)

since (1−ω)(ξt−u)− (ξt−u)2

c0
= ξt−ωξt−u+ωu− ξ2t

c0
− 2ξtu

c0
− u2

c0
= ξt− ξ2t

c0
−u+ωu− u2

c0
,

and ωu − u2

c0
= u2

c0
= β. Since t < t∗ − 1, ξt+1 − u > 0 and ξt − u > 0, we can thus

divide (B.2.24) by (ξt+1 − u)(ξt − u) to obtain

1

ξt − u
≤ 1− ω
ξt+1 − u

− ξt − u
(ξt+1 − u)c0

≤ 1− ω
ξt+1 − u

− 1

c0

≤ 1

ξt+1 − u
− 1

c0

, (B.2.25)

where the second inequality comes from ξt+1 − u ≤ ξt − u from the first part of the
lemma. By applying this inequality recursively and taking the inverse of the result,
we obtain the desired resuld ξt ≤ c0

t
+
√
βc0 ≤ c0

t
+ 2
√
βc0 for all 0 < t < t∗.

For t ≥ t∗, we have already proved that ξt ≤ 2
√
βc0 ≤ c0

t
+ 2
√
βc0, which concludes

our proof.



Appendix B. Proofs of Chapter 5 168

B.2.3 (c) Convex Utility Result

Theorem B.2.1. 5.3.2 (Convex Case) Let ε, δ ∈ (0, 1]. Assume `(·; d) is a con-
vex and L-coordinate-Lipschitz loss function for all d ∈ X , and f is M-coordinate-
smooth. Define W∗ the set of minimizers of f , and f ∗ the minimum of f . Let
wpriv ∈ Rp be the output of Algorithm 5.3.1 with step sizes γj = 1/Mj, and noise
scales λ1, . . . , λp, λ

′
1, . . . , λ

′
p set as in Theorem 5.3.1 (with T chosen below) to ensure

(ε, δ)-DP. Then, the following holds for ζ ∈ (0, 1]:

f(wpriv)− f(w∗) ≤ 8R2
M

T
+
√

32R2
Mβ , (B.2.26)

where β = 2λ2max

Mmin
log(8Tp

ζ
)2, and RM = max

w∈Rp
min
w∗∈W∗

{
‖w − w∗‖M,1 | f(w) ≤ f(w0)

}
. If

we set T =
(

n2ε2R2
MMmin

27L2
max log(1/δ)

)1/3

, then with probability at least 1− ζ,

f(wT )− f(w0) = Õ
(R4/3

M L
2/3
max log(p/ζ)

M
1/3
minn

2/3ε2/3

)
. (B.2.27)

Proof. Let ξt = f(wt) − f(w∗). We upper bound the following probability by the
union bound, and the fact that for t ≥ 0, the events Et

j : “coordinate j is updated at
step t” for j ∈ [p] partition the probability space:

P

(
∃t, ξt+1 ≥ ξt −

ξ2
t

8‖wt − w∗‖2
M,1

+ β

)

≤
T−1∑
t=0

P

(
ξt+1 ≥ ξt −

ξ2
t

8‖wt − w∗‖2
M,1

+ β

)
(B.2.28)

=
T−1∑
t=0

p∑
j=1

P

(
ξt+1 ≥ ξt −

ξ2
t

8‖wt − w∗‖2
M,1

+ β ∧ Et
j

)
. (B.2.29)

Lemma B.2.3 gives ξt+1 ≤ ξt− ξ2t
8‖wt−w∗‖2M,1

+ 1
2Mj
|ηtj|2 + 1

2Mj
|χtj|2 + 1

4Mj∗
|χtj∗|2. We thus

have the following upper bound:

P
(
∃t, ξt+1 ≥ ξt − 1

8‖wt−w∗‖2M,1
ξ2
t + β

)
≤

T−1∑
t=0

p∑
j=1

P
(
|ηtj |2

2Mj
+
|χtj |2

2Mj
+
|χt
j∗ |

2

4Mj∗
≥ β

)
(B.2.30)

≤
T−1∑
t=0

p∑
j=1

P
(
|ηtj|2 + |χtj|2 + |χtj∗ |2 ≥ 2Mminβ

)
. (B.2.31)
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By Lemma B.2.1 with X1 = ηtj ∼ Lap(λj), X2 = χtj ∼ Lap(λ′j) and X3 = χtj∗ ∼
Lap(λ′j∗), it holds that

P
(
|ηtj|2 + |χtj|2 + |χtj∗|2 ≥ 2Mminβ

)
≤ 8 exp

(
−
√

2Mminβ

2λmax

)
=

ζ

Tp
, (B.2.32)

where the last equality comes from β = 2λ2max

Mmin
log(8Tp

ζ
)2. We have proved that

P

(
∃t, ξt+1 ≥ ξt −

ξ2
t

8‖wt − w∗‖2
M,1

+ β

)
≤

T−1∑
t=0

p∑
j=1

ζ

Tp
= ζ . (B.2.33)

We now use our Lemma B.2.4, with ξt = f(wt)− f(w∗); c0 = 8R2
M and ct = 8‖wt −

w∗‖2
M,1 for t > 0; and β = 2λ2max

Mmin
log(8Tp

ζ
)2. These values satisfies the assumptions of

Lemma B.2.4 since, by the definition of RM , it holds that ct ≤ c0 whenever ξt ≤ ξ0

(i.e., f(wt) − f(w∗) ≤ f(w0) − f(w∗)). Additionally, f(w0) − f(w∗) ≥
√

32R2
Mβ,

therefore f(w0)− f(w∗) ≥ 2
√
βc0, and β ≤ c0.

We obtain the result, with probability at least 1− ζ:

f(wt)− f(w0) ≤ c0

t
+ 2
√
βc0 =

8R2
M

t
+

64RMLmax log(8Tp/ζ)
√
T log(1/δ)√

Mminnε
.

(B.2.34)

For T =
R

2/3
M M

1/3
minn

2/3ε2/3

4L
2/3
max log(1/δ)1/3

, we obtain that, with probability at least 1− ζ,

f(wt)− f(w0) ≤ 64R
4/3
M L

2/3
max log(1/δ)1/3

M
1/3
minn

2/3ε2/3
log
(pR2/3

M M
1/3
minn

2/3ε2/3

4ζL
2/3
max log(1/δ)1/3

)
, (B.2.35)

which is the result of the theorem.

B.2.4 Utility for Strongly-Convex Functions

B.2.4 (a) A Key Inequality for Strongly-Convex Functions

We now prove a link between f ’s largest gradient entry and the suboptimality gap,
under the assumption that there exists a unique minimizer w∗ of f that is (α, τ)-
quasi-sparse. Note that this assumption is not restrictive in general as any vector
in Rp is (0, p)-quasi-sparse, and for any τ there exists α > 0 such that the vector
is (α, τ)-quasi-sparse. We will denote by Wτ,α ⊆ Rp the set of (α, τ)-quasi-sparse
vectors of Rp:

Wτ,α = {w ∈ Rp | |{j ∈ [p] | |wj| ≥ α}| ≤ τ} . (B.2.36)
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When α = 0, we simply write Wτ =Wτ,0, that is the set of τ -sparse vectors. We also
define the associated thresholding operator πα, that puts to 0 the coordinates that
are smaller than α, “projecting” vectors from Wτ,α to Wτ , i.e., for w ∈ Rp,

πα(w) =

{
0 if |wj| ≤ α ,

wj otherwise .
(B.2.37)

Importantly, restricting a function to τ -sparse vectors changes its strong-convexity
parameter. Let τ ≥ 0 and q ∈ {1, 2}, we say a function is µ

(τ)
M,q-strongly-convex when

restricted to τ -sparse vectors if for all τ -sparse vectors v, w ∈ Wτ ,

f(w) ≥ f(v) + 〈∇f(v), w − v〉+
µ

(τ)
M,q

2
‖w − v‖2

M,q . (B.2.38)

Remark that when τ ≥ p, we recover the usual strong-convexity parameters. The
parameters w.r.t., `1- and `2-norms can be compared using the following inequality
(Fang et al., 2020), for all τ ≥ 0,

1

τ
µ

(τ)
M,2 ≤ µ

(τ)
M,1 ≤ µ

(τ)
M,2 . (B.2.39)

We are ready to prove Lemma B.2.5.

Lemma B.2.5. Let f : Rp → R be a function that is M-coordinate-smooth, and
µ

(τ)
M,1-strongly-convex w.r.t., ‖ · ‖M,1 when restricted to τ -sparse vectors, for τ ≥ 0.

Assume that the unique minimizer w∗ of f is (τ, α)-quasi-sparse, for α, τ ≥ 0. Let
wt ∈ Rp be a t-sparse vector for some t ≥ 0. Then we have

−1

2
‖∇f(wt)‖M−1,∞ ≤ −µ(t+τ)

M,1 (f(wt)− f(w∗)) +
1

2
Mmaxµ

(t+τ)
M,1 (p− τ)α2 . (B.2.40)

Proof. Let wt ∈ Rp be a t-sparse vector. Remark that w∗ is (α, τ)-quasi-sparse,
meaning that πα(w∗) is τ -sparse. The union of wt and πα(w∗)’s supports (supp(wt)
and supp(πα(w∗))) thus satisfies | supp(w) ∪ supp(πα(w∗))| ≤ t + τ . As the function

f is µ
(t+τ)
M,1 -strongly-convex with respect to ‖ · ‖M,1 and t+ τ sparse vector,

f(πα(w)) ≥ f(wt) + 〈∇f(wt), πα(w)− wt〉+
µ

(t+τ)
M,1

2
‖πα(w)− wt‖2

M,1 . (B.2.41)

Since πα :Wτ,α →Wτ,0 is surjective, minimizing this equation for w ∈ Wτ,α on both
sides gives

inf
w∈Wτ

f(w) ≥ f(wt)− sup
w∈Wτ,α

{
〈−∇f(wt), wt − πα(w)〉 −

µ
(t+τ)
M,1

2
‖πα(w)− wt‖2

M,1

}

≥ f(wt)− sup
w∈Rp

{
〈−∇f(wt), wt − w〉 −

µ
(t+τ)
M,1

2
‖w − wt‖2

M,1

}
. (B.2.42)
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The second term corresponds to the conjugate of the function 1
2
‖ · ‖2

M,1, that is 1
2
‖ ·

‖2
M−1,∞ (Boyd and Vandenberghe, 2004). This gives

inf
w∈Wτ

f(w) ≥ f(wt)−
(
µ

(t+τ)
M,1

2
‖ · ‖2

1

)∗
(−∇f(w′)) (B.2.43)

= f(wt)− 1

2µ
(t+τ)
M,1

‖∇f(w′)‖2
M−1,∞ . (B.2.44)

Finally, w∗ is the minimizer of f (which is convex), thus∇f(w∗) = 0. The smoothness
of f gives, for any w ∈ Rp, f(w) ≤ f(w∗) + 1

2
‖w − w∗‖2

M,2. Hence

inf
w∈Wτ

f(w) ≤ f(w∗) + inf
w∈Wτ

1

2
‖w − w∗‖2

M,2. ≤ f(w∗) +
1

2
‖πα(w∗)− w∗‖2

M,2 ,

(B.2.45)

where the second inequality comes from πα(w∗) ∈ Wτ , since w∗ ∈ Wτ,α. It remains
to observe that ‖πα(w∗)− w∗‖2

M,2 ≤Mmax(p− τ)α2 to get the result.

Corollary B.2.1. For τ -sparse vectors, we have α = 0 and thus (p − τ)α = 0.
Lemma B.2.5 can thus be simplified as

−1

2
‖∇f(wt)‖2

M−1,∞ ≤ −µ(t+τ)
M,1 (f(wt)− f(w∗)) . (B.2.46)

When vectors are not sparse (τ = p), we recover the inequality −1
2
‖∇f(wt)‖2

M−1,∞ ≤
−µM,1(f(wt)− f(w∗)).

B.2.4 (b) General Strongly-Convex Utility Result

Theorem B.2.2. 5.3.2 (Strongly-Convex Case) Let ε, δ ∈ (0, 1]. Assume `(·; d) is
a µM,1-strongly-convex w.r.t., ‖ · ‖M,1 and L-coordinate-Lipschitz loss function for all
d ∈ X , and f is M-coordinate-smooth. Let W∗ be the set of minimizers of f , and f ∗

the minimum of f . Let wpriv ∈ Rp be the output of Algorithm 5.3.1 with step sizes
γj = 1/Mj, and noise scales λ1, . . . , λp, λ

′
1, . . . , λ

′
p set as in Theorem 5.3.1 (with T

chosen below) to ensure (ε, δ)-DP. Then, the following holds for ζ ∈ (0, 1]:

f(wT )− f(w∗) ≤ (1− µM,1

2
)T (f(w0)− f(w∗)) +

64TL2
max log(1/δ)

MminµM,1n2ε2
log(

2Tp

ζ
) .

(B.2.47)

If we set T = 2
µM,1

log(
MminµM,1n

2ε2(f(w0)−f(w∗)

32L2
max log(1/δ)

), then with probability at least 1− ζ,

f(wT )− f(w∗) = Õ
(L2

max log(p/ζ)

Mminµ2
M,1n

2ε2

)
. (B.2.48)
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Proof. When f is µM,1-strongly-convex w.r.t., the norm ‖ · ‖M,1, Corollary B.2.1 with
τ = p and α = 0 (which holds for any vector) yields

−1

2
‖∇f(wt)‖2

M−1,∞ ≤ −µM,1(f(wt)− f(w∗)) . (B.2.49)

We replace this in Lemma B.2.2 to obtain

f(wt+1)− f(w∗) ≤ (1− µM,1

4
)(f(wt)− f(w∗)) +

1

2Mj

|ηtj|2 +
1

2Mj

|χtj|2 +
1

4Mj∗
|χtj∗|2 .

(B.2.50)

Analogously to the proof of Theorem B.2.1, we define ξt = f(wt)−f(w∗) for all 0 ≤ t ≤
T , and show that P

(
∃t, ξt+1 ≥ (1− µM,1

4
)ξt + β

)
≤ ζ/Tp, with β = 2λ2max

Mmin
log(8Tp

ζ
)2.

This yields that, with probability at least 1− ζ,

f(wT )− f(w∗) ≤ (1− µM,1

4
)T (f(w0)− f(w∗)) +

T−1∑
t=0

(1− µM,1

4
)T−tβ (B.2.51)

≤ (1− µM,1

4
)T (f(w0)− f(w∗)) +

4

µM,1

32TL2
max log(1/δ)

Mminn2ε2
log
(8Tp

ζ

)2

, (B.2.52)

With T = 4
µM,1

log
(
µM,1Mminn

2ε2(f(w0)−f(w∗))

128L2
max log(1/δ) log(8p/ζ)

)
we have, with probability at least 1− ζ,

f(wT )− f(w∗) ≤ 128L2
max log(1/δ) log(8p/ζ)2

µM,1Mminn2ε2

+ 512L2
max log(1/δ) log(8Tp/ζ)2

µ2M,1Mminn2ε2
log
(
µM,1Mminn

2ε2(f(w0)−f(w∗))

128L2
max log(1/δ) log(8p/ζ)2

)
, (B.2.53)

which is the desired result.

B.2.4 (c) Better Utility for Quasi-Sparse Solutions

Theorem B.2.3. 5.3.3 Consider f satisfying the hypotheses of Theorem 5.3.2, with
Algorithm 5.3.1 initialized at w0 = 0. We denote its output wT , and assume that
its iterates remain s-sparse for some s ≤ p. Assume that, for all τ ′ ≥ 0, f is

µ
(τ ′)
M,1-strongly-convex w.r.t., ‖ · ‖M,1 for τ ′-sparse vectors and µM,2-strongly-convex

w.r.t., ‖·‖M,2, and that the (unique) solution of problem (?′) is (α, τ)-quasi-sparse for

some α, τ ≥ 0. Let T ≥ 0, ζ ∈ [0, 1], and β = 2λ2max

Mmin
log(TP/ζ)2. Then for all t ≤ T

we have that, with probability at least 1− ζ:

f(wT )− f(w∗)

≤
(

1− µ
(min(s,T )+τ)
M,1

4

)T
(f(w0)− f(w∗)) + 4(min(s,T )+τ)β

µM,2
+ min(s,T )+τ

8
(p− τ)α2 (B.2.54)

≤
(

1− µM,2
4(min(s,T )+τ)

)T
(f(w0)− f(w∗)) + 4(min(s,T )+τ)β

µM,2
+ min(s,T )+τ

8
(p− τ)α2. (B.2.55)
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Setting T = s+τ
µM,2

log(
(f(w0)−f∗)MminµM,2n

2ε2

L2 ), and assuming α2 = O
(

L2
max(s+τ)

Mminµ
2
M,2pn

2ε2

)
, we

obtain that with probability at least 1− ζ,

f(wT )− f ∗ = Õ

(
L2

max

Mmin

(s+ τ)2 log(2p/ζ)

µM,2n2ε2

)
. (B.2.56)

Proof. First, we remark that at each iteration, we change only one coordinate. There-
fore, after t iterations, the iterate wt is at most t-sparse. Since all iterates are also
s-sparse, it is min(s, t)-sparse. Additionally, we assumed that w∗ is (τ, α)-almost-
sparse. Therefore, Lemma B.2.5 yields

−1

2
‖∇f(wt)‖M−1,∞ ≤ −µ(min(s,t)+τ)

M,1 (f(wt)− f(w∗)) +
µ
(min(s,t)+τ)
M,1

2
(p− τ)α2 , (B.2.57)

and Lemma B.2.2 becomes

f(wt+1)− f(w∗) ≤ (1−
µ

(min(s,t)+τ)
M,1

4
)(f(wt)− f(w∗)) +

µ
(min(s,t)+τ)
M,1

8
(p− τ)α2

+
1

2Mj

|ηtj|2 +
1

2Mj

|χtj|2 +
1

4Mj∗
|χtj∗|2 . (B.2.58)

Then by Chernoff’s equality, we obtain (similarly to the proof of Theorem 5.3.2 for
the convex case) that with probability at least 1− ζ, for T ≥ 0,

f(wT )− f(w∗) ≤
T∏
t=0

(
1− µ

(min(s,t)+τ)
M,1

4

)
(f(w0)− f(w∗))

+
T−1∑
t=0

T∏
k=T−t

(
1− µ

(min(s,k)+τ)
M,1

4

)(
β +

µ
(min(s,t)+τ)
M,1

8
(p− τ)α2

)
.

(B.2.59)

Since for k ∈ [T ], µ
min(s,k)+τ
M,1 ≥ µ

min(s,T )+τ
M,1 , we can further upper bound µ

(min(s,t)+τ)
M,1 ≤

µ
(τ)
M,1, and 1− µ

(min(s,t)+τ)
M,1

4
≤ 1− µ

(min(s,T )+τ)
M,1

4
and

T−1∑
t=0

T∏
k=T−t

(
1−

µ
(min(s,k)+τ)
M,1

4

)
≤

T−1∑
t=0

(
1−

µ
(min(s,T )+τ)
M,1

4

)t
≤ 4

µ
(min(s,T )+τ)
M,1

, (B.2.60)
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which allows to simplify the above expression to

f(wT )− f(w∗)

≤
(

1− µ
(min(s,T )+τ)
M,1

4

)T
(f(w0)− f(w∗)) + 4

µ
(min(s,T )+τ)
M,1

(
β +

µ
(τ)
M,1

8
(p− τ)α2

)
(B.2.61)

≤
(

1− µM,2
4(min(s,T )+τ)

)T
(f(w0)− f(w∗)) + 4(min(s,T )+τ)

µM,2

(
β +

µM,2
8

(p− τ)α2
)

(B.2.62)

≤
(

1− µM,2
4(min(s,T )+τ)

)T
(f(w0)− f(w∗)) + 4(min(s,T )+τ)β

µM,2
+ min(s,T )+τ

8
(p− τ)α2 ,

(B.2.63)

where the second inequality follows from µ
(min(s,T )+τ)
M,1 ≥ µ

(min(s,T )+τ)
M,2

min(s,T )+τ
≥ µM,2

min(s,T )+τ
and

µ
(τ)
M,1 ≤ µM,2. We have proven inequalities (B.2.54) and (B.2.55) of the theorem.

When α2 = O
(
L2

max(s+ τ)/Mminµ
2
M,2pn

2ε2
)
, the two additive terms of (B.2.63) are

O((s + τ)β/µM,2). Since min(s, T ) + τ ≤ s + τ , we choose T = s+τ
µM,2

log((f(w0) −
f ∗)MminµM,2n

2ε2/L2) to balance all the terms and obtain the result.
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Proofs of Chapter 6

C.1 Fairness functions

In this section we recall several well known fairness functions and show that they can
be written in the form of Equation (6.3.1).

Example C.1.1 (Equalized Odds (Hardt et al., 2016)). A model h is fair for
Equalized Odds when the probability of predicting the correct label is independent of
the sensitive attribute, that is, ∀(y, r) ∈ Y × S

F(y,r)(h,D) = P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y) .

We can then write F(y,r)(h,D) in the form of (6.3.1) as

F(y,r)(h,D) = C0
(y,r) +

∑
(y′,r′)∈Y×S

C
(y′,r′)
(y,r) P (H(x) = Y |Y = y′, S = r′) , (C.1.1)

with

C0
(y,r) = 0 ,

C
(y,r)
(y,r) = 1− P (S = r | Y = y) ,

∀r′ 6= r, C
(y,r′)
(y,r) = − P (S = r′ | Y = y) ,

∀y′ 6= y, ∀r′ ∈ S, C
(y′,r′)
(y,r) = 0 .

Proof. We have that

F(y,r)(h,D) = P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y)

= P (H(X) = Y | Y = y, S = r)

−
∑
r′∈S

P (H(X) = Y | Y = y, S = r′)P (S = r′ | Y = y) ,
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which gives the result.

Example C.1.2 (Equality of Opportunity Hardt et al., 2016). A model h is
fair for Equality of Opportunity when the probability of predicting the correct label is
independent of the sensitive attribute for the set of desirable outcomes Y ′ ⊂ Y, that
is ∀(y, r) ∈ Y × S

F(y,r)(h,D) =

{
P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y) if y ∈ Y ′ ,
0 otherwise .

We can then write F(y,r)(h,D) in the form of (6.3.1) as

F(y,r)(h,D) = C0
(y,r) +

∑
(y′,r′)∈Y×S

C
(y′,r′)
(y,r) P (H(X) = Y |Y = y′, S = r′) (C.1.2)

with, if y ∈ Y ′,

C0
(y,r) = 0 ,

C
(y,r)
(y,r) = 1− P (S = r | Y = y) ,

∀r′ 6= r, C
(y,r′)
(y,r) = − P (S = r′ | Y = y) ,

∀y′ 6= y, ∀r′ ∈ S, C
(y′,r′)
(y,r) = 0 .

and, if y ∈ Y \ Y ′,

∀y′ ∈ Y, ∀r′ ∈ S, C
(y′,r′)
(y,r) = 0 .

Proof. We consider the two cases. On the one hand, when y ∈ Y \ Y ′, we have that

F(y,r)(h,D) = 0 ,

which gives the first part of the result. On the other hand, when y ∈ Y ′, then

F(y,r)(h,D) = P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y)

= P (H(X) = Y | Y = y, S = r)

−
∑
r′∈S

P (H(X) = Y | Y = y, S = r′)P (S = r′ | Y = y) ,

which gives the second part of the result.

Example C.1.3 (Accuracy Parity Zafar et al., 2017). A model h is fair for
Accuracy Parity when the probability of being correct is independent of the sensitive
attribute, that is, ∀(r) ∈ S

F(r)(h,D) = P (H(X) = Y | S = r)− P (H(X) = Y ) .
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We can then write F(r)(h,D) in the form of (6.3.1) as

F(r)(h,D) = C0
(r) +

∑
(r′)∈S

C
(r′)
(r) P (H(X) = Y |S = r′) (C.1.3)

with

C0
(r) = 0 ,

C
(r)
(r) = 1− P (S = r) ,

∀r′ 6= r, C
(r′)
(r) = − P (S = r′) .

Proof. We have that

F(r)(h,D) = P (H(X) = Y | S = r)− P (H(X) = Y )

= P (H(X) = Y | S = r)−
∑
r′∈S

P (H(X) = Y | S = r′)P (S = r′) ,

which gives the result.

Example C.1.4 (Demographic Parity (Binary Labels) Calders et al., 2009).
A model h is fair for Demographic Parity with binary labels when the probability of
predicting a label is independent of the sensitive attribute, that is, ∀(y, r) ∈ Y × S

F(y,r)(h,D) = P (H(X) = y | S = r)− P (H(X) = y) .

Assuming that given a label y, the second binary label is denoted ȳ, we can then write
F(y,r)(h,D) in the form of (6.3.1) as

F(y,r)(h,D) = C0
(y,r) +

∑
(y′,r′)∈Y×S

C
(y′,r′)
(y,r) P (H(X) = Y |Y = y′, S = r′) , (C.1.4)

with

C0
(y,r) = P (Y = y)− P (Y = y | S = r) ,

C
(y,r)
(y,r) = P (Y = y | S = r)− P (Y = y, S = r) ,

C
(ȳ,r)
(y,r) = P (Y = ȳ, S = r)− P (Y = ȳ | S = r) ,

∀r′ 6= r, C
(y,r′)
(y,r) = − P (Y = y, S = r′) ,

∀r′ 6= r, C
(ȳ,r′)
(y,r) = P (Y = ȳ, S = r′) .
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Proof. We have that

F(y,r)(h,D) = P (H(X) = y | S = r)− P (H(X) = y)

= P (H(X) = y | Y = y, S = r)P (Y = y | S = r)

+ P (H(X) = y | Y 6= y, S = r)P (Y 6= y | S = r)

−
∑
r′∈S

(
P (H(X) = y | Y = y, S = r′)P (Y = y, S = r′)

+ P (H(X) = y | Y 6= y, S = r′)P (Y 6= y, S = r′)
)

= P (H(X) = y | Y = y, S = r)P (Y = y | S = r)

+ 1− P (H(X) 6= y | Y 6= y, S = r)P (Y 6= y | S = r)

−
∑
r′∈S

(
P (H(X) = y | Y = y, S = r′)P (Y = y, S = r′)

+ 1− P (H(X) 6= y | Y 6= y, S = r′)P (Y 6= y, S = r′)
)
.

Here, we only consider binary labels, y and ȳ. Hence, H(X) 6= y ⇔ H(X) = ȳ and
Y 6= y ⇔ Y = ȳ. Thus, we obtain

F(y,r)(h,D)

= P (H(X) = y | Y = y, S = r)P (Y = y | S = r)

+ (1− P (H(X) = ȳ | Y = ȳ, S = r))P (Y = ȳ | S = r)

−
∑
r′∈S

(
P (H(X) = y | Y = y, S = r′)P (Y = y, S = r′)

+ (1− P (H(X) = ȳ | Y = ȳ, S = r′))P (Y = ȳ, S = r′)
)

= P (H(X) = y | Y = y, S = r) [P (Y = y | S = r)− P (Y = y, S = r)]

+ P (H(X) = ȳ | Y = ȳ, S = r) [P (Y = ȳ, S = r)− P (Y = ȳ | S = r)]

+
∑

r′∈S,r′ 6=r

P (H(X) = y | Y = y, S = r′) (−P (Y = y, S = r′))

+
∑

r′∈S,r′ 6=r

P (H(X) = ȳ | Y = ȳ, S = r′)P (Y = ȳ, S = r′)

+ P (Y = ȳ | S = r)− P (Y = ȳ)

= P (H(X) = Y | Y = y, S = r) [P (Y = y | S = r)− P (Y = y, S = r)]

+ P (H(X) = Y | Y = ȳ, S = r) [P (Y = ȳ, S = r)− P (Y = ȳ | S = r)]

+
∑

r′∈S,r′ 6=r

P (H(X) = Y | Y = y, S = r′) (−P (Y = y, S = r′))

+
∑

r′∈S,r′ 6=r

P (H(X) = Y | Y = ȳ, S = r′)P (Y = ȳ, S = r′)

+ P (Y = y)− P (Y = y | S = r) ,

which gives the result.
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C.2 Proof of Theorem 6.4.1

Theorem C.2.1 (Pointwise Lipschitzness of Conditional Negative Predictions). Let
H be a set of real vector-valued functions with LX,Y the Lipschitz constants defined
in Assumption 6.3.1. Let h, h′ ∈ H be two models, (X, Y, S) be a triple of ran-
dom variables having distribution D, and E be an arbitrary event. Assume that

E
(

LX,Y
|ρ(h,X,Y )| | E

)
< +∞, then

|P(H(X) = Y | E)− P(H ′(X) = Y | E)| ≤ E
(

LX,Y
|ρ(h,X, Y )| | E

)
‖h− h′‖H .

Proof. The proof of this theorem is in two steps. First, we use the Lipschitz continuity
property associated withH, the triangle inequality, and the union bound to show that

|P (H(X) = Y | E) − P (H ′(X) = Y | E) | ≤ P
(

LX,Y
|ρ(h,X,Y )| ≤ ‖h− h′‖H | E

)
. Then,

applying Markov’s inequality gives the desired result.

Bounding |P (H(X) = Y | E) − P (H ′(X) = Y | E) |. We have that Similarly, we
have that It implies that

|P (H(X) = Y | E)− P (H ′(X) = Y | E) | ≤ P
( |ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H | E

)

Bounding P
(
|ρ(h,X,Y )|
LX,Y

≤ ‖h− h′‖H | E
)
. We use the Markov’s Inequality and we

assume that E
(

LX,Y
|ρ(h,X,Y )| | E

)
< +∞. Hence, we have that It concludes the proof.

Remark C.2.1. In the last step of the proof of Theorem 6.4.1, we can also use the
Chernoff bound:

P
( |ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H | E

)
= P

(
exp

(
−t |ρ(h,X, Y )|

LX,Y

)
≥ exp (−t‖h− h′‖H) | E

)
≤ E

(
exp

(
−t |ρ(h,X, Y )|

LX,Y

)
| E
)

exp (t‖h− h′‖H) .

A correct choice of t would lead to potentially tighter bounds than the Markov’s in-
equality at the expense of readability.
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Remark C.2.2. Before using Markov’s inequality or Chernoff bound in Theorem 6.4.1,
we can modify the probability as

P
( |ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H | E

)
= P

([ |ρ(h,X, Y )|
LX,Y

]‖h−h′‖H
≤ ‖h− h′‖H | E

)
,

where [ |ρ(h,X, Y )|
LX,Y

]‖h−h′‖H
=

{
|ρ(h,X,Y )|
LX,Y

if |ρ(h,X, Y )| ≤ LX,Y ‖h− h′‖H ,

+∞ otherwise .

This essentially means that, whenever the model’s margin on a data record is large
enough, its precise value is no more meaningful, as its prediction will not change
whatsoever. The remaining of Theorem 6.4.1’s proof is unchanged, except that we

have
[
|ρ(h,X,Y )|
LX,Y

]‖h−h′‖H
instead of |ρ(h,X,Y )|

LX,Y
.

Note that this can lead to much tighter bounds. Notably, when distance ‖h − h′‖H
between h and h′ is small enough, the difference of fairness may even become zero.

C.3 Proof of Theorem 6.4.2

Theorem C.3.1 (Pointwise Lipschitzness of Fairness). Let h, h′ ∈ H, LX,Y be defined
as in Assumption 6.3.1, and (X,S, Y ) ∼ D. For any fairness notion of the form of
(6.3.1), we have:

∀k ∈ [K], |Fk(h,D)− Fk(h′, D)| ≤ χk(h,D)‖h− h′‖H ,

with χk(h,D) =
∑K

k′=1 |Ck′

k |E
(

1
|h(X)| | Dk′

)
. Similarly, for the aggregate measure of

fairness defined in (6.3.2), we have:

|Fair(h,D)− Fair(h′, D)| ≤ 1

K

K∑
k=1

χk(h,D)‖h− h′‖H .

Proof. The first part follows from the following derivation. For all k,

The second part is obtained thanks to the triangle inequality: which gives the claim
when combined with the first part of the theorem.
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C.4 Bound for Output Perturbation (Proof of

Lemma 6.5.1)

Lemma C.4.1. Let hpriv be the vector released by output perturbation with noise
σ2 = 8Λ2 log(1.25/δ)/µ2n2ε2, and 0 < ζ < 1, then with probability at least 1− ζ,

‖hpriv − h∗‖2
2 ≤

32pΛ2 log(1.25/δ) log(2/ζ)

µ2n2ε2
.

Proof. We prove this lemma in two steps. First, we show that for a given sensitivity,
the distance ‖hpriv − h∗‖ is bounded. Second, we estimate the sensitivity.

Bounding the Error. Let ∆ be the sensitivity of the functionD → arg minw∈C f(w;D).
Its value can be released under (ε, δ) differential privacy (Chaudhuri et al., 2011; Lowy
and Razaviyayn, 2021) as follows:

hpriv = h∗ +N (0, σ2Ip) , (C.4.1)

where σ2 = 2∆2 log(1.25/δ)
ε2

and h∗ = arg minh∈C f(h). Then, Chernoff’s bound gives, for
t, α > 0,

P(‖hpriv − h∗‖2 ≥ α) ≤ exp(−tα)E(exp(t‖hpriv − h∗‖2)) (C.4.2)

= exp(−tα)

p∏
j=1

E(exp(t(hprivj − h∗j)2)) , (C.4.3)

by independence of the noise’s p coordinates. Since hprivj − h∗j is a Gaussian random

variable of mean 0 and variance σ2, we can compute E(exp(t(hprivj − h∗j))) = (1 −
2tσ2)−1/2. We then obtain

P(‖hpriv − h∗‖2 ≥ α) ≤ exp(−tα)(1− 2tσ2)−p/2 . (C.4.4)

Let t = 1/4pσ2, then it holds that 1− 2tσ2 = 1− 1/2p ≤ 1 and

(1− 2tσ2)−p/2 = exp

(
−p

2
log(1− 1

2p
)

)
≤ exp

(
1

2(1− 1
p
)

)
≤ exp(1/2) ≤ 2 ,

(C.4.5)

since p
2

log(1− 1
2p

) ≥ p
2
−1/2p
1−1/2p

≥ −1
2
. Let 0 < ζ < 1, t = 1/4pσ2 and α = 4pσ2 log(2/ζ),

we have proven

P(‖hpriv − h∗‖2 ≥ α) ≤ 2 exp

(
− α

4pσ

)
≤ ζ . (C.4.6)
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The error obtained by output perturbation is thus upper bounded by ‖hpriv−h∗‖2 ≤
4pσ2 log(2/ζ) = 8p∆2 log(1.25/δ) log(2/ζ)

ε2
with probability at least 1− ζ.

Estimating the Sensitivity. Define g(h) = 1
n

∑n
i=1 `(w; d′i) with d′i ∈ X × Y such

that d′i = di for all i 6= 1. By strong convexity, the two following inequalities hold for
h, h′,

f(h) ≥ f(h′) + 〈∇f(h′), h− h′〉+
µ

2
‖h− h′‖2 , (C.4.7)

f(h′) ≥ f(h) + 〈∇f(h), h′ − h〉+
µ

2
‖h− h′‖2 . (C.4.8)

Summing these two inequalities give 〈∇f(h)−∇f(h′), h− h′〉 ≥ µ
2
‖h− h′‖2. Let h∗1

and h∗2 be the respective minimizers of f and g over C, taking h = h∗1 and h′ = h∗2
gives

µ

2
‖h∗1 − h∗2‖2 ≤ 〈∇f(h∗1)−∇f(h∗2), h∗1 − h∗2〉 ≤ ‖∇f(h∗1)−∇f(h∗2)‖ · ‖h∗1 − h∗2‖ .

(C.4.9)

Now, if C = Rp, optimality conditions give

∇f(h∗1) = 0 = ∇g(h∗2) = ∇f(h∗2)−∇F (h∗2; d1) + F (h∗2; d′1) , (C.4.10)

resulting in ‖∇f(h∗1)−∇f(h∗2)‖ = ‖ 1
n
∇(h∗2; d1)− 1

n
∇(h∗2; d′1)‖ ≤ 2Λ

n
. Combined with

(C.4.9), this shows that the sensitivity of arg minh∈C f(h) is ∆ = 2Λ
nµ

, which concludes
the proof.

C.5 Convergence of DP-SGD (Proof of

Lemma 6.5.2)

Lemma C.5.1. Let hpriv be the vector released by DP-SGD with noise scale σ2 =
64Λ2T 2 log(3T/δ) log(2/δ)

n2ε2
. Assume that σ2

∗ = Ei∼[n] ‖∇`(h∗;xi, yi)‖2 ≤ σ2. Let 0 < ζ < 1,
then with probability at least 1− ζ,

‖hpriv − h∗‖2
2 = Õ

(
pΛ2 log(1/δ)2

ζµ2n2ε2

)
,

where Õ ignores logarithmic terms in n (the number of examples) and p (the number
of model parameters).

Proof. We start by recalling that in DP-SGD,

ht+1 = πH(ht − γ(gt + ηt)) . (C.5.1)
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Since h∗ ∈ H, and H is convex, we have

‖ht+1 − h∗‖2 = ‖πH(ht − γ(gt + ηt))− h∗‖2 (C.5.2)

= ‖ht − h∗‖2 − 2γ〈gt + ηt, ht − h∗〉+ γ2‖gt + ηt‖2 (C.5.3)

≤ ‖ht − h∗‖2 − 2γ〈gt + ηt, ht − h∗〉+ 2γ2‖gt‖2 + 2γ2‖ηt‖2 , (C.5.4)

where we developed the square and used ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2 for a, b ∈ Rp. Taking
the expectation with respect to the stochastic gradient computation and noise, we
obtain

E ‖ht+1 − h∗‖2 ≤ ‖ht − h∗‖2 − 2γ〈∇f(ht), ht − h∗〉+ 2γ2 E ‖gt‖2 + 2γ2 E ‖ηt‖2 ,
(C.5.5)

since E(ηt) = 0 and E(gt) = ∇f(ht). Now recall that, by strong-convexity of f , we
have

f(h∗) ≥ f(ht) + 〈∇f(ht), h∗ − ht〉+
µ

2
‖ht − h∗‖2 . (C.5.6)

By reorganizing, we obtain −2γ〈∇f(ht), ht−h∗〉 ≤ −2γ(f(ht)−f(h∗))−γµ‖ht−h∗‖2,
which gives

E ‖ht+1 − h∗‖2 ≤ (1− γµ)‖ht − h∗‖2 − 2γ(f(ht)− f(h∗)) + 2γ2 E ‖gt‖2 + 2γ2 E ‖ηt‖2 .
(C.5.7)

Finally, remark that if f = 1
n

∑n
i=1 fi with each fi being β-smooth and E fi = f , we

have, for i ∼ [n],

E ‖∇fi(ht)‖2 = E ‖∇fi(ht)−∇fi(h∗) +∇fi(h∗)‖2 (C.5.8)

≤ E(2‖∇fi(ht)−∇fi(h∗)‖2 + 2‖∇fi(h∗)‖2) (C.5.9)

≤ E(4β(fi(h
t)− fi(h∗)− 〈∇fi(h∗), ht − h∗〉) + 2‖∇fi(h∗)‖2) (C.5.10)

= 4β(f(ht)− f(h∗)) + 2E ‖∇fi(h∗)‖2 , (C.5.11)

since fi is β-smooth, which implies, for all w, v ∈ Rp,

‖∇fi(w)−∇fi(v)‖2 ≤ 2β(fi(w)− fi(v)− 〈∇fi(v), w − v〉 , (C.5.12)

and E∇fi(h∗) = 0. Combined with the fact that E ‖∇fi(h∗)‖2 ≤ σ2
∗ and E ‖ηt‖2 =

pσ2, we obtained

E ‖ht+1 − h∗‖2 ≤ (1− γµ)‖ht − h∗‖2 + (4βγ2 − 2γ)(f(ht)− f(h∗)) + 2γ2(σ2
∗ + σ2)
(C.5.13)

≤ (1− γµ)‖ht − h∗‖2 + 4γ2σ2 , (C.5.14)
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since γ ≤ 1/2β, which implies 4βγ2 − 2γ ≤ 0 and σ∗ ≤ σ. By induction, we obtain
that, after T iterations,

E ‖hT − h∗‖2 ≤ (1− γµ)T‖h0 − h∗‖2 + 4γ2

T−1∑
t=0

(1− γµ)T−tσ2 (C.5.15)

≤ (1− γµ)T‖h0 − h∗‖2 +
4γσ2

µ
. (C.5.16)

Now, recall that DP-SGD is (ε, δ)-differentially private for σ2 = 64Λ2T log(3T/δ) log(2/δ)
n2ε2

(following from the Gaussian mechanism, advanced composition theorem and ampli-
fication by subsampling). Thus, taking γ = 1/2β, and setting T = 2β

µ
log(µβ‖h0 −

h∗‖2/2M2), where M2 = 64Λ2T log(2/δ)
n2ε2

, yields

E ‖hT − h∗‖2 ≤ 2(T log(3T/δ) + 1)M2

βµ

≤ 8M2

µ2
log
(µβ‖h0 − h∗‖2

2M2

)
log
(6β log(µβ‖h

0−h∗‖2
2M2 )

µδ

)
. (C.5.17)

Using Markov inequality, we obtain

P

(
‖hT − h∗‖2 ≥ 8M2

ζµ2
log
(µβ‖h0 − h∗‖2

2M2

)
log
(6β log(µβ‖h

0−h∗‖2
2M2 )

µδ

))
≤ ζ .

(C.5.18)

This results in the following upper bound, with probability at least 1− ζ,

‖hT − h∗‖2 ≤ 512Λ2 log(3T/δ) log(2/δ)

ζµ2n2ε2
log
(µβ‖h0 − h∗‖2

2M2

)
log
(6β log(µβ‖h

0−h∗‖2
2M2 )

µδ

)
= Õ

(
G2 log(1/δ)

ζµ2n2ε2

)
, (C.5.19)

which is the result of our lemma.
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Experimental Details

D.1 Experimental Details for Chapter 4

D.1.1 Hyperparameter Tuning

DP-SGD and DP-CD both depend on three hyperparameters: step size, clipping
threshold and number of passes on data. For DP-CD, step sizes are adapted from
a parameter as described in Section 4.6, and clipping thresholds as well (see Sec-
tion 4.5.1). For DP-SGD, the step size is given by γ/β, where γ is the hyperparameter
and β is the problem’s global smoothness constant (which we consider given), and
the clipping threshold is used directly to clip gradients along their `2-norm.

We simultaneously tune these three hyperparameters for each algorithm across the
following grid:

• step size: 10 logarithmically-spaced values between 10−6 and 1 for DP-SGD,
and between 10−2 and 10 for DP-CD.1

• clipping threshold: 100 logarithmically-spaced values, between 10−3 and 106.

• number of passes: 5 values (2, 5, 10, 20 and 50).

We run each algorithm on each dataset 5 times on each combination of hyperparam-
eter values. We then keep the set of hyperparameters that yield the lowest value of
the objective at the last iterate, averaged across the 5 runs.

In Table D.1, we report the best relative error (in comparison to optimal objective
value) at the last iterate, averaged over five runs, for each dataset, algorithm, and

1Recall that step sizes for CD algorithms are coordinate-wise, and thus larger than in SGD
algorithms. We empirically verify that the best step size always lies strictly inside the considered
interval for both DP-CD and DP-SGD.
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Table D.1: Relative error to non-private optimal value of the objective function for
different number of passes on the data. Results are reported for each dataset and for
DP-CD and DP-SGD, after tuning step size and clipping hyperparameters. A star
indicates the lowest error in each row. On each row, the first line is the utility of
DP-CD, the second the one of DP-SGD. Privacy budget is ε = 1, δ = 1/n2, except for
the Sparse Lasso where ε = 10.

Passes on data 2 5 10 20 50

Electricity 0.1458± 6e-04 0.0842± 1e-03 0.0436± 2e-03 0.0147± 2e-03 0.0020± 1e-03*
Imbalanced 0.2047± 2e-02 0.1804± 2e-02 0.1766± 2e-02 0.1644± 2e-02 0.1484± 1e-02*

Electricity 0.0186± 4e-04 0.0023± 4e-04 0.0013± 6e-04* 0.0013± 4e-04 0.0019± 8e-04
Balanced 0.0391± 1e-02 0.0189± 5e-03 0.0123± 4e-03 0.0106± 3e-03 0.0040± 2e-03*

California 0.1708± 7e-03 0.1232± 1e-02 0.0598± 1e-02 0.0287± 5e-03 0.0124± 7e-03*
Imbalanced 0.2799± 9e-02 0.1863± 2e-02 0.1476± 2e-02 0.1094± 2e-02 0.1068± 2e-02*

California 0.0007± 3e-04* 0.0011± 6e-04 0.0012± 5e-04 0.0010± 1e-04 0.0017± 1e-03
Balanced 0.0351± 2e-02 0.0226± 8e-03 0.0125± 3e-03 0.0087± 2e-03 0.0042± 1e-03*

Sparse Lasso 0.2498± 4e-02* 0.4702± 9e-02 0.5982± 4e-02 0.7160± 2e-02 0.7551± 0e+00
Balanced 0.7551± 0e+00 0.7551± 3e-09* 0.7551± 0e+00 0.7551± 0e+00 0.7551± 0e+00

total number of passes on the data. As such, each cell of this table corresponds to
the best value obtained after tuning the step size and clipping hyperparameters for a
given number of passes.

D.1.2 Running Time

In this section, we report the running times of DP-CD and DP-SGD. We implemented
DP-CD and DP-SGD in C++, with Python bindings. The design matrix and the
labels are kept in memory as dense matrices of the Eigen library. No special code
optimization nor tricks is applied to the algorithms, except for the update of residuals
at each iteration of DP-CD, which prevents from accessing the complete dataset at
each step. All experiments were run on a laptop with 16GB of RAM and an Intel(R)
Core(TM) i7-10610U CPU @ 1.80GHz.

Figure D.2.3 shows the same experiments as in Figure 4.5.1 and Figure 4.6.1, but as
a function of the running time. In our implementation, DP-CD runs about 4 times as
fast as DP-SGD for a given number of iterations (see Figure D.1.1a and Figure D.1.1b
for 50 iterations). On the three other plots, Figure D.1.1c, Figure D.1.1d and Fig-
ure D.1.1e, DP-CD yields better results in less iterations. DP-CD is thus particularly
valuable in these scenarios: combined with its faster running time, it provides accu-
rate results extremely fast. For completeness, we provide in Table D.2 the full table
of running time, corresponding to Table D.1 and Figure D.2.3. These results show
that, for a given number of passes on the data, DP-CD consistently runs about 5
times faster than DP-SGD.
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Figure D.1.1: Relative error to non-private optimal for DP-CD (blue, round marks),
DP-CD with privately estimated coordinate-wise smoothness constants (green, +
marks) and DP-SGD (orange, triangle marks) on five problems. We report average,
minimum and maximum values over 10 runs for each algorithm, as a function of the
algorithm running time (in seconds).

Table D.2: Time of execution (in seconds) for different number of passes on the data
(averaged over 10 runs). Results are reported for each dataset and for DP-CD and
DP-SGD, after tuning step size and clipping hyperparameters. On each row, the
first line is the utility of DP-CD, the second the one of DP-SGD. Privacy budget is
ε = 1, δ = 1/n2, except for the Sparse Lasso where ε = 10.

Passes on data 2 5 10 20 50

Electricity 0.0128± 1e-03 0.0274± 1e-03 0.0500± 1e-03 0.0980± 7e-04 0.2457± 2e-03
Imbalanced 0.0663± 2e-03 0.1722± 1e-02 0.3321± 1e-02 0.6729± 1e-02 1.8588± 2e-01

Electricity 0.0121± 7e-04 0.0281± 3e-03 0.0529± 2e-03 0.1062± 6e-03 0.2577± 2e-03
Balanced 0.0686± 4e-03 0.1768± 1e-02 0.3578± 2e-02 0.6787± 2e-02 1.6766± 2e-02

California 0.0029± 9e-05 0.0065± 8e-05 0.0130± 1e-04 0.0258± 1e-04 0.0647± 2e-04
Imbalanced 0.0269± 1e-03 0.0665± 1e-03 0.1318± 2e-03 0.2628± 3e-03 0.6476± 8e-03

California 0.0031± 2e-04 0.0065± 2e-04 0.0132± 1e-04 0.0262± 2e-04 0.0649± 3e-04
Balanced 0.0261± 7e-04 0.0641± 5e-04 0.1295± 2e-03 0.2592± 4e-03 0.6469± 7e-03

Sparse LASSO 0.0244± 6e-04 0.0760± 6e-04 0.1614± 4e-03 0.3213± 5e-04 0.6598± 1e-02
Balanced 0.0718± 3e-03 0.1788± 4e-03 0.3654± 7e-03 0.7292± 2e-02 1.8110± 3e-02
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D.2 Experimental Details for Chapter 5

In this section, we provide more information about the experiments, such as details
on implementation, datasets and the hyperparameter grid we use for each algorithm.
We then give the full results on our L1-regularized, non-smooth, problems, with the
three greedy rules (as opposed to Section 5.4 where we only plotted results for the
GS-r rule). Finally, we provide runtime plots.

Code and setup. The algorithms are implemented in C++ for efficiency, together
with a Python wrapper for simple use. It is provided as supplementary. Experiments
are run on a computer with a Intel (R) Xeon(R) Silver 4114 CPU @ 2.20GHz and
64GB of RAM, and took about 10 hours in total to run (this includes all hyperpa-
rameter tuning).

Datasets. The datasets we use are described in Table 5.1. In Figure D.2.1, we
plot the histograms of the absolute value of each problem solution’s parameters. The
purple line indicates the value of α that ensures that the parameters of the solution
are (α, 5)-quasi-sparse. Note the logarithmic scale on the y-axis. On the log1, log2,
madelon, square, california and dorothea datasets, the solutions are very imbal-
anced. In these problems, a very limited number of parameters stand out, and DP-
GCD is able to exploit this property. This illustrates the results from Section 5.3.4,
since DP-GCD can exploit this structure even in quasi-sparse problems, where α is
non zero. Conversely, the mtp solution is more balanced: the structural properties of
this dataset are not strong enough for DP-GCD to outperform its competitors.

Hyperparameters. On all datasets, we use the same hyperparameter grid. For
each algorithm, we choose between roughly the same number of hyperparameters.
The number of passes on data represents p iterations of DP-CD, n iterations of DP-
SGD, and 1 iteration of DP-GCD. The complete grid is described in Table D.3, and
the chosen hyperparameters for each problem and algorithm are given in Table D.5.

Recovery of the support. In Table D.4, we report the number of coordinates that
are correctly/incorrectly identified as non-zero on `1 regularized problems. Contrary
to DP-SGD and DP-CD, DP-GCD never incorrectly identifies a coordinate as non-
zero. Additionally, the suboptimality gap is lower for DP-GCD: its updates thus lead
to better solutions.

Additional experiments on proximal DP-GCD. In Figure D.2.2, we show the
results of the proximal DP-GCD algorithm, after tuning the hyperparameters with
the grid described above for each of the GS-s, GS-r and GS-q rules.
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Figure D.2.1: Histograms of the absolute value of each problem solution’s parameters.
Purple line indicates the α for which the plotted vector is (α, 5)-quasi-sparse. Y-axis
is logarithmic.

The three rules seem to behave qualitatively the same on square, dorothea and
madelon, our three high-dimensional non-smooth problems. There, most coordinates
are chosen about one time. Thus, as described by Karimireddy et al. (2019), all the
steps are “good” steps (along their terminology): and on such good steps, the three
rules coincide. On the lower-dimensional dataset california, coordinates can be
chosen more than one time, and “bad” steps are likely to happen. On these steps,
the three rules differ.

Runtime. Finally, we report the runtime of DP-GCD, in comparison with DP-CD
and DP-SGD in Figure D.2.3, that is the counterpart of Figure 5.4.1, except with
runtime on the x-axis. These results confirm the fact that DP-GCD can be efficient,
although its iterations are expensive to compute. Indeed, in imbalanced problems,
the small number of iterations of DP-GCD enables it to run faster than DP-SGD,
and in roughly the same time as DP-CD, while improving utility.
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Table D.3: Hyperparameter grid used in our experiments.

Algorithm Parameter Values

Passes on data [0.001, 0.01, 0.1, 1, 2, 3, 5, 10, 20]

DP-CD Step sizes np.logspace(-2, 1, 10)

Clipping threshold np.logspace(-4, 6, 50)

Passes on data [0.001, 0.01, 0.1, 1, 2, 3, 5, 10, 20]

DP-SGD Step sizes np.logspace(-6, 0, 10)

Clipping threshold np.logspace(-4, 6, 50)

Passes on data [1, 2, 4, 7, 10, 15, 20]

DP-GCD Step sizes np.logspace(-2, 1, 10)

Clipping threshold np.logspace(-4, 6, 50)

Table D.4: Coordinates correctly/incorrectly identified as non-zeros by each algo-
rithm, and relative suboptimality gap (f(wpriv)− f ∗)/f ∗ (averaged over 5 runs).

square california dorothea madelon

‖w∗‖0 7 3 72 3
DP-CD 0 / 0 (0.75) 3 / 2 (0.0024) 1 / 1 (0.77) 0 / 0 (0.0085)
DP-SGD 0 / 3 (0.75) 3 / 5 (0.020) 0 / 0 (0.78) 0 / 0 (0.012)
DP-GCD 2 / 0 (0.35) 2 / 0 (0.00056) 1 / 0 (0.64) 1 / 0 (0.0015)
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Figure D.2.2: Relative error to non-private optimal for DP-CD, proximal DP-GCD
(with GS-r, GS-s and GS-q rules) and DP-SGD on different problems. On the x-axis,
1 tick represents a full access to the data: p iterations of DP-CD, n iterations of
DP-SGD and 1 iteration of DP-GCD. Number of iterations, clipping thresholds and
step sizes are tuned simultaneously for each algorithm. We report min/mean/max
values over 5 runs.
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Table D.5: Selected hyperparameters for every dataset and algorithm.

Dataset Loss Algorithm Passes on data Clipping threshold Step size

california LeastSquares + L1 DP-CD 5.0 2.02e+01 1.00e+00
square LeastSquares + L1 DP-CD 0.01 9.10e+03 1.00e+01
mtp LeastSquares + L2 DP-CD 3.0 2.02e+01 2.15e-02
madelon Logistic + L1 DP-CD 0.1 7.91e+00 2.15e+00
log1 Logistic + L2 DP-CD 10.0 1.84e-01 1.00e+00
log2 Logistic + L2 DP-CD 1.0 7.54e-01 2.15e+00
madelon Logistic + L2 DP-CD 10.0 1.21e+00 1.00e-01
dorothea Logistic + L1 DP-CD 3.0 4.50e-02 4.64e+00
california LeastSquares + L1 DP-SGD 20.0 1.26e+01 2.15e-05
square LeastSquares + L1 DP-SGD 0.01 4.94e+00 1.00e-04
mtp LeastSquares + L2 DP-SGD 20.0 1.26e+01 2.15e-05
madelon Logistic + L1 DP-SGD 10.0 6.87e-03 1.00e+00
log1 Logistic + L2 DP-SGD 20.0 1.84e-01 4.64e-04
log2 Logistic + L2 DP-SGD 20.0 1.84e-01 4.64e-04
madelon Logistic + L2 DP-SGD 20.0 1.84e-01 1.00e-04
dorothea Logistic + L1 DP-SGD 0.001 1.00e-04 1.00e-06
california LeastSquares + L1 DP-GCD 4 5.18e+01 1.00e+00
square LeastSquares + L1 DP-GCD 2 1.46e+04 2.15e+00
mtp LeastSquares + L2 DP-GCD 7 2.02e+01 4.64e-01
madelon Logistic + L1 DP-GCD 1 7.91e+00 2.15e+00
log1 Logistic + L2 DP-GCD 10 3.09e+00 2.15e+00
log2 Logistic + L2 DP-GCD 20 1.93e+00 4.64e-01
madelon Logistic + L2 DP-GCD 10 7.91e+00 1.00e+00
dorothea Logistic + L1 DP-GCD 2 1.26e+01 2.15e+00
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Figure D.2.3: Relative error to non-private optimal for DP-CD, DP-GCD and DP-
SGD on different problems, as a function of running time. Number of iterations,
clipping thresholds and step sizes are tuned simultaneously for each algorithm. We
report min/mean/max values over 5 runs.



Appendix D. Experimental Details 193

D.3 Experimental Details for Chapter 6

D.3.1 Experimental Setup

The first dataset is the celebA dataset (Liu et al., 2015). It is a face attributes dataset,
that can be downloaded at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
The second dataset is the folktables dataset (Ding et al., 2021). It is derived
from US Census, and can be downloaded using a Python package available here
https://github.com/zykls/folktables.

On each dataset, for each value of n, we train a `2-regularized logistic regression model
using scikit-learn (Pedregosa et al., 2011). Private models are then learned using
the output perturbation mechanism as described in Section 6.5.1. We then compute
our bounds using the non-private model as reference, over a test set containing 10%
of the data, that has not been used for training (containing 20, 260 records for celebA
and 166, 450 records for folktables). The value of the bound is computed by mini-
mizing the experession given by the Chernoff bound using the golden section search
algorithm (Kiefer, 1953). The code is in the supplementary, and will be made public.

For the plots with different number of training records, we train 20 non-private mod-
els with a number of records logarithmically spaced between 10 and the number of
records in the complete training set (that is, 182, 339 for celebA and 1, 498, 050 for
folktables). For the plots with different privacy budgets, we use 20 values logarith-
mically spaced between 10−3 and 10 for both datasets.

D.3.2 Results for Other Fairness Measures

Our bounds also hold for accuracy parity, demographic parity and equalized odds.
The same plots as those presented in Figure 6.6.1 for these fairness notions are in
Figure D.3.1 and Figure D.3.2. The comments from Section 6.6 on equality of oppor-
tunity and accuracy also hold for these three notions of fairness.

D.3.3 Refined Bounds with Additional Knowledge of hpriv

and h∗

In Assumption 6.3.1, we use a uniform Lipschitz bound for all h, h′ ∈ H. Let’s consider
the class H of linear models, where, for h ∈ H, we denote by hy the parameters of h
associated with the label y, that is h(x, y) = hTy x. For linear models, we derived the
bound ‖ρ(h, x, y) − ρ(h′, x, y)‖H ≤ 2‖x‖2‖h − h′‖H, as derived in Section 6.3. Note
that this inequality can be very loose whenever x and hy − h′y (for y ∈ Y) are (close
to) orthogonal. When they are orthogonal, this bounds only gives 0 = (hy−h′y)Tx ≤

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/zykls/folktables
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Figure D.3.1: Fairness and accuracy levels for optimal non-private model and random
private ones as a function of the number n of training samples. For each value of n, we
sample 100 private models and take their minimum and maximum fairness/accuracy
values to mark the area of attainable values. The solid blue line and the dashed one
give our guarantees, respectively from Theorem 6.5.1 with Lemma 6.5.1’s bounds and
with an empirical evaluation of ‖hpriv − h∗‖.

‖hy − h′y‖2‖x‖2. We can thus improve the inequality by remarking that we have

|ρ(h, x, y)− ρ(h′, x, y)| ≤ |h(x, y)− h′(x, y)|+ max
y′ 6=y
|h(x, y′)− h′(x, y′)|

= |hTy x− h′Ty x|+ max
y′ 6=y
|hTy′x− h′y′x|

= |(hy − h′y)Tx|+ max
y′ 6=y
|(hy′ − h′y′)x|

= |(hy − h′y)Tphy−h′y(x)|+ max
y′ 6=y
|(hy′ − h′y′)phy−h′y(x)|

≤ 2 max
y′∈Y
‖phy−h′y(x)‖‖h− h′‖H ,

where phy−h′y(x) is the projection of x on the axis defined by hy − h′y. We can thus
define a variant of LX,Y which depends on h− h′

Lh−h
′

X,Y = 2 max
y∈Y
‖phy−h′y(x)‖ . (D.3.1)
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Figure D.3.2: Fairness and accuracy levels for optimal non-private model and random
private ones as a function of privacy budget ε. For each value of ε, we sample 100
private models and take their minimum and maximum fairness/accuracy values to
mark the area of attainable values. The solid blue line and the dashed one respectively
give our guarantees, respectively from Theorem 6.5.1 with Lemma 6.5.1’s bounds and
with an empirical evaluation of ‖hpriv − h∗‖.

Replacing Assumption 6.3.1 by this inequality in the proof of Theorem 6.4.1, we end
up with the inequality

|P (H(X) = Y | E)− P (H ′(X) = Y | E) | ≤ P

(
|ρ(h,X, Y )|

Lh−h
′

X,Y

≤ ‖h− h′‖H | E
)

,

where the probability is over (X,S, Y ) ∼ D. We obtained the same bound as The-
orem 6.4.1, except with Lh−h

′

X,Y instead of LX,Y . Note that even if this gives a much
tighter bound, this can generally not be computed, as one of h or h′ is typically not
known.


	Introduction
	Context on Supervised Learning
	The Challenge of Privacy-Preserving Machine Learning
	Contributions
	Outline of the Thesis
	List of Publications

	Background on Convex Optimization in Machine Learning
	Functions Regularity
	Differentiability, Gradient and Jacobian
	Mahalanobis Norms
	Convex Sets and Convex Functions
	Lipschitzness and Smoothness
	Proximal Operators

	Convex Optimization
	Proximal Gradient Descent
	Proximal Stochastic Gradient Descent
	Proximal Coordinate Descent
	Greedy Coordinate Descent


	Background on Differential Privacy in Machine Learning
	Differential Privacy
	Towards a Mathematical Definition of Privacy
	Definition of Differential Privacy
	Basic Building Blocks for Differential Privacy
	Building More Complex Mechanisms

	Differentially Private Machine Learning
	Privacy Leaks in Machine Learning
	Differentially Private Empirical Risk Minimization
	Solving Differentially Private Empirical Risk Minimization
	Utility Lower Bounds


	Private Randomized Coordinate Descent
	Introduction
	Related Work
	Differentially Private Coordinate Descent
	Private Proximal Coordinate Descent
	Privacy Guarantees
	Utility Guarantees
	Comparison with DP-SGD and DP-SVRG

	Lower Bounds
	DP-CD in Practice
	Coordinate-wise Gradient Clipping
	Private Smoothness Constants
	Feature Standardization

	Numerical Experiments
	Imbalanced Datasets
	Balanced Datasets
	Running Time

	Conclusion and Discussion

	Differentially Private Greedy Coordinate Descent
	Introduction
	Related Work
	Private Greedy Coordinate Descent
	The Algorithm
	Privacy Guarantees
	Utility Guarantees
	Better Utility on Quasi-Sparse Problems
	Proximal DP-GCD
	Computational Cost

	Experiments
	Conclusion and Discussion

	Quantifying the Impact of Privacy on Fairness and Accuracy
	Introduction
	Related work
	Preliminaries
	Classification
	Fairness

	Pointwise Lipschitzness and Group Fairness
	Pointwise Lipschitzness of Conditional Accuracy
	Pointwise Lipschitzness of Group Fairness Notions

	Bounding the Relative Fairness of Private Models
	Bounding the Distance between Private and Optimal Classifiers
	Bounding the Fairness of Private Models

	Numerical Experiments
	Value of the Upper Bounds
	Influence of the Training Set Size and Privacy Budget
	Tightness of the Bound

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Bibliography
	Proofs of Chapter 4
	Lemmas on Sensitivity
	Proof of thm:dp-cd-privacy
	Rényi Differential Privacy
	Proof of thm:dp-cd-privacy

	Proof of Utility (thm:cd-utility)
	Problem Statement
	Proof of thm:cd-utility
	Proof of Remark 1

	Comparison with DP-SGD
	Proof of Lower Bounds
	Counting Queries and Accuracy
	Lower Bound for One-Way Marginals
	Lower Bound for Convex Functions
	Lower Bound for Strongly-Convex Functions


	Proofs of Chapter 5
	Proof of Privacy
	Proof of Utility
	Concentration Lemma
	Descent Lemma
	Utility for General Convex Functions
	Utility for Strongly-Convex Functions


	Proofs of Chapter 6
	Fairness functions
	Proof of thm:bound-on-diff-proba
	Proof of thm:bound-on-diff-fairness
	Bound for Output Perturbation (Proof of lemma:sensitivity-output-perturbation)
	Convergence of DP-SGD (Proof of lemma:sensitivity-dp-sgd)

	Experimental Details
	Experimental Details for chap:dp-cd
	Hyperparameter Tuning
	Running Time

	Experimental Details for chap:greedy-cd
	Experimental Details for chap:fair-privacy
	Experimental Setup
	Results for Other Fairness Measures
	Refined Bounds with Additional Knowledge of hpriv and h*



