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Introduction

This habilitation thesis is intended to be an overview of the problems I have been studying since
2012, immediately after defending my Ph.D. thesis, and the results I have obtained in those
directions.

The manuscript is composed of three main parts:

(I) the study of linear hyperbolic operators with low regularity coefficients;

(II) the investigation of the well-posedness of some non-linear models describing the dynamics
of non-homogeneous fluids;

(III) the asymptotic analysis of singular perturbation problems arising in geophysics.

Each part contains three chapters. The first one is an introductory chapter, which aims
at giving an overview of the problems we inted to study in that specific part and the related
literature; there, we also give other general information, like e.g. a flavour of the expected results
and the techniques which are employed, the delicate points of the analysis, the differences between
various approaches. . . In the other two chapters, we focus on some specific problems and present
the results we have obtained in those directions. Those two chapters end with a list of some open
problems and questions which capture our interest and which we would like to consider in the
future.

The content at a glance

The general theme of this manuscript is the study of some evolutionary partial differential equa-
tions, with a particular emphasis on those describing models of fluid mechanics, presenting some
sort of heterogeneity.

Heterogeneity

Heterogeneity here has to be understood in a broad sense. From a general perspective, at the
mathematical level heterogeneity often translates in the presence of variable coefficients in the
differential operator describing the dynamics. A natural question is then to understand how the
qualitative properties of the solutions are affected by the regularity of those variable coefficients.
The case of hyperbolic operators looks especially interesting, as no regularising effect can be
expected in the dynamics and then the regularity of the solution is dictated only by the smooth-
ness/oscillation properties of the coefficients. It turns out that the study of this problem presents
non-trivial aspects already at the linear level. This is why, in the Part I of this work, we devote
attention to the study of the well-posedness of the Cauchy problem for linear hyperbolic operators
having variable, low regularity coefficients.

Having fluid mechanics models in mind, however, heterogeneity may come into play at various
levels. The first situation we can think about is when variations occur in the inner properties of
the fluid: this may concern the density and temperature of the fluid, or a self-induced magnetic
field in the case of an electrically conducting fluid. . . In some models arising in the theory of
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2 Introduction

turbulence, small-scale quantities (like the mean turbulent kinetic energy, for instance) are treated
as independent variables, which interact with the (large-scale) mean motion: this is, roughly
speaking, the essence of the eddy viscosity assumption by Boussinesq and, later, Prandtl. All this
results, of course, in a strong non-linear coupling of the equations describing the various models.
Thus, in Part II we turn our attention to the study of the well-posedness of several non-linear
systems describing models of non-homogeneous fluids.

On the other hand, heterogeneity can be related also to anisotropy. In this respect, a proto-
typical example comes from the context of geophysical flows, like currents in the oceans and in
the atmosphere. As a matter of fact, the dynamics of geophysical flows is characterised by the
action of both the Coriolis force and gravity, which are highly anisotropic forces. In addition,
anisotropy appears also at the level of the physical domain where the dynamics takes place, inas-
much as, for oceanic or atmospheric flows, the aspect ratio between horizontal dimensions and
vertical dimensions (depth) is very large. In Part III we focus precisely on the study of models for
geophysical fluid dynamics; in particular, the main goal of that part is the derivation of reduced
models through asymptotic analysis and singular limit problems.

To conclude this discussion, we mention that heterogeneities can be induced also by boundary
effects: think e.g. to boundary layer phenomena (like the ones which appear for geophysical flows),
interactions with the exterior through non-homogeneous boundary conditions. . . While most of
the study will be performed in simple geometries, where Fourier analysis tools are available (as
a matter of fact, our approach will be mostly based on their use), in some specific situations,
appearing in Parts II and III, we will also deal with non-trivial boundary effects.

Low regularity

The leitmotif of this manuscript is to carry out the analysis in a low regularity framework. This
means that we deal either with weak solutions, or with strong solutions having somehow critical
regularity, where “critical” means with respect to the constraints imposed by the problem under
study (for instance the scaling, the hyperbolic nature of the system. . . ). There are several reasons
for that, apart from the mathematical sake of generality.

First of all, we move from the principle that “propagating regularity costs”. This can be seen
in the very simple example of a linear transport equation: consider the problem{

∂tf + v · ∇f = g

f|t=0 = f0

on R+ × Rd, and assume for simplicity that v and g have all the required smoothness and inte-
grability on R+ × Rd. We also suppose that the divergence-free condition div v = 0 on v holds.
Then, for any p ∈ [1,+∞] one has

‖f(t)‖Lp . ‖f0‖Lp +

∫ t

0
‖g(τ)‖Lp dτ ,

but, if we want to propagate even a small amount of regularity, an exponential growth appears in
the Lipschitz norm of the transport field v: working in Hs(Rd) for simplicity, with 0 < s < 1, we
have

(1) ‖f(t)‖Hs .

(
‖f0‖Hs +

∫ t

0
‖g(τ)‖Hs dτ

)
exp

(
C

∫ t

0
‖∇v(τ)‖L∞

)
,

Nonetheless, we observe that, whenever we want to estimate f in a Besov norm of index of
regularity 0, namely ‖f‖B0

p,r
, then we get very close to the Lp framework and the exponential

factor has to be replaced by a factor which is instead linear in the Lipschitz norm of v (see
[217, 153]).
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Of course, the exponential growth in (1) looks catastrophic for studying non-linear problems,
at least if one aims at obtaining global well-posedness results. It is fair to point out that, in
general, for non-linear equations one disposes of continuation criteria ensuring that the lifespan
of the solutions does not depend on the considered level of regularity. Despite this, our first
attempt will be always to solve the systems in low regularity spaces, in order to put in evidence
the right quantities which need to be controlled in view of proving global results. Besides, in
certain situations this will enable us to get improved lower bounds for the lifespan of the solutions
(more details about this will be given in the next section).

Considering solutions at low regularity is also needed for the description of some real life
phenomena, where irregularities are tied to the presence of heterogeneities in the flow. Indeed, in
many situations some hydrodynamical quantities present jump discontinuities across an interface:
this is the case, for instance, of multi-phase flows, or of flows in which fluids with very different
densities cohexist (like in oil-water mixtures). It is clear that the theory of strong solutions cannot
capture those phenomena, while the weak solutions theory is often poor of qualitative information
and does not allow for a description of the dynamics of the interface. This motivates the necessity
for a theory of solutions at (low) critical regularity.

Finally, the kind of problems we face often imposes constraints on the regularity of the so-
lutions. For instance, in linear hyperbolic problems, the limited smoothness of the variable co-
efficients imposes constraints on the regularity of the solutions which can be propagated in the
dynamics; thus, having a smooth initial datum does not allow to deduce any better information
on the corresponding solution. Another example appears in singular limit problems: it turns out
that, in certain situations, the singular perturbation operator is skew-symmetric with respect to
the L2 scalar product, but ceases to be skew-symmetric whenever one considers the Hs scalar
product, for s > 0; then, working with finite energy weak solutions to the model under consider-
ation becomes necessary and one has no other available choices. We will be more specific about
all this in the text, whenever encoutering similar difficulties.

Zoom on the specific topics

We now explore a bit more in detail the contents of the thesis. We divide our discussion into
three sections, corresponding to the three parts of the manuscript identified above.

Part I: linear hyperbolic problems

Part I is devoted to the analysis of linear hyperbolic operators with low regularity coefficients.
We are mainly interested in well-posedness questions, but observability and controllability will be
also matter of study at some point.

Here, “low regularity” means non-Lipschitz with respect to the time variable. Lipschitz conti-
nuity in time of the coefficients (L∞ in space is enough for wave operators, while W 1,∞ is needed
for hyperbolic systems) is a necessary and sufficient condition in order to obtain well-posedness
and observability properties for the corresponding hyperbolic operator. Of course, this may be
improved in the case of some special structure of the operator, like in the case of the transport
equation, but here we want to keep our discussion as general as possible. Whenever the Lipschitz
condition fails to hold, in general one obtains weaker results, which involve a loss of derivatives
in the energy and observability estimates. Then, minimal regularity conditions also in the space
variable may be considered.

However, quite surprisingly, it turns out that the so-called Zygmund-type conditions escape
from that classification. Zygmund regularities are second order conditions; given some function
a = a(t), this type of conditions writes as follows:

∀ τ ∈ ]0, 1[ ,
∣∣a(t+ τ) + a(t− τ) − 2 a(t)

∣∣ . σ(τ) ,
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for some modulus of continuity σ : [0, 1] −→ R+. Thus, Zygmund regularities are weaker than
the corresponding first order conditions, written in terms of the difference

∣∣a(t + τ) − a(t)
∣∣.

Nonetheless, by using a lower order corrector in the definition of the energy (an idea which goes
back to Tarama [215]), it is possible to improve the well-posedness results (with and without loss
of derivatives) by passing from Lipschitz-type to Zygmund-type regularity assumptions on the
coefficients.

Part I will elaborate on Zygmund-type conditions in time and their interplay with the space
regularity of the coefficients which is needed to recover well-posedness and observability results.
After Chapter 1, which is an extended introduction on the subject, we will develop this approach
in Chapters 2 and 3.

More precisely, in Chapter 2 we start by considering the case of wave operators with variable
coefficients. In Section 2.1 we review the literature on the subject, by giving details on the interplay
between time and space regularities of the coefficients and on the Zygmund-type conditions. In
the next two sections, we expose our main results in this direction.

In Section 2.2 we show a well-posedness result with no loss of derivatives for coefficients which
are isotropically Zygmund continuous (namely, Zygmund both in time and space variables). Notice
that this is a weaker condition than the Lipschitz one both in time and space. However, the result
without loss holds true only in the space H1/2 ×H−1/2, as it relies on very special cancellations
which occur (only at this level of regularity) in symbolic calculus, both for the principal and
subprincipal symbols of some bad remainder which appears in the computations. This result was
obtained in [54] in collaboration with F. Colombini, D. Del Santo and G. Métivier.

Section 2.3, on the other hand, considers the analogous problem from the angle of control and
observability properties of the corresponding operator. After reviewing the specific literature on
this subject, we present some results on observability estimates for 1-D wave operators with non-
Lipschitz coefficients, with and without loss of derivatives; in addition, by constructing suitable
counterexamples, we are able to give a full characterisation on the dependence of observability
estimates on the regularity of the coefficients. These results correspond to paper [120] and were
obtained in collaboration with E. Zuazua. The technique which is employed there, however, is
purely one-dimensional and the extension to higher dimensions is not clear at present.

In Chapter 3, we turn our attention to the well-posedness issue for first-order hyperbolic
systems. Again, the first section of this chapter presents an overview of the literature devoted
to this specific problem. In addition, there we introduce the fundamental notion of microlocal
symmetrizability, due to Ivr̆ı and Petkov [162] and, later, Métivier [193]. The rest of the chapter
contains two main sections, corresponding to results obtained in collaboration with F. Colombini,
D. Del Santo and G. Métivier.

In Section 3.2, corresponding to the outcomes of paper [57], we dismiss Zygmund-type condi-
tions for a while and consider instead the case of coefficients which are log-Lipschitz continuous
both in time and space variables. The goal is to extend the study of previous works [61, 62] for
the wave equations to the case of first-order systems. The first main result of this part is the
attainment of an energy estimate with time-dependent loss of derivatives in R+×Rd. The second
important point of the analysis is the study of local in space well-posedness questions associated
to the hyperbolic operator, which turns out to be delicate in such a low regularity framework.

In Section 3.3, instead, we consider the case of Zygmund and log-Zygmund in time coefficients;
no dependence on the space variable is assumed. We show estimates, respectively, with no loss
of derivatives and with a finite, time dependent loss. This study corresponds to the content of
[56]. Dealing with such weak regularity conditions requires to introduce suitable correctors in the
definition of the energy, in the spirit of Tarama’s work [215]. As a consequence, the main point of
the analysis is the construction of a suitable symmetrizer for the operator under study. Because of
that, we have to dismiss here the assumption of microlocal symmetrizability and place ourselves,
instead, in the context of hyperbolic operators with constant multiplicities. As a matter of fact,
in this situation a classical procedure makes it possible to construct a microlocal symmetrizer. It
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is important to notice that this classical procedure has to be deeply revisited in our framework,
in order to find an ad hoc symmetrizer which yields the sought energy estimates.

Part II: well-posedness of non-linear problems

Part II is devoted to the study of the well-posedness of some non-linear models describing the
dynamics of fluid flows. The underlying themes of this part are various.

First of all, all the considered systems of equations present some sort of non-homogeneity. In
most of the cases, the effects of the non-homogeneity are encoded by variations of the density
function or of other inner properties of the fluid; in some specific cases, instead, they are given
by the presence of non-homogeneous boundary conditions.

Next, as already mentioned above, we look for solutions having critical regularity. We work in
either the class of weak solutions, or of strong solutions but under minimal regularity requirements.
Sometimes, this allows us to capture special configurations (like density functions presenting
jump discontinuities), some other times this enables us to deduce improved lower bounds for the
lifespan of the solutions, implying an “asymptotically global” well-posedness result (in a sense to
be specified below).

Another aspect of this part is the relation of the proposed study with turbulence theory. This
relation appears either in the specific models we consider, or in the proposed approach (based on
the notion of statistical solutions).

Chapter 4, which is an introductory chapter, aims at clarifying all those points and gives
some unified overview of this part, which remains quite vast and heterogeneous with respect to
the considered models and proposed studies. We decided to divide the rest of the material of this
part into two main chapters, corresponding to viscous models (treated in Chapter 5) and inviscid
ones (considered in Chapter 6).

Thus, in Chapter 5 we deal with models for viscous non-homogeneous fluids. The key player
of this chapter is the barotropic Navier-Stokes system. In Section 5.1, we recall the existing
theories of weak solutions with finite energy for this system, namely the Lions-Feireisl theory
for large data (analogous, in spirit, to the Leray solutions for the incompressible Navier-Stokes
equations) and the Hoff theory for shock data (these are weak solutions corresponding to initial
data having small energy).

In Section 5.2 we present a well-posedness result for densities being discontinuous across a
hypersurface. This result generalises Hoff’s theory, inasmuch as it holds true for general pres-
sure laws, it gives a precise description of the evolution of the discontinuity region in any space
dimension and it also guarantees uniqueness of solutions. This result was obtained in [84] in
collaboration with R. Danchin and M. Paicu. The key point of the analysis is to combine an
elementary approach based on maximal regularity estimates for the heat equation with tangential
regularity à la Chemin to describe the evolution of the discontinuity region and to prove Lipschitz
continuity of the velocity field.

In Section 5.3, instead, we move from the Lions-Feireisl theory to develop a theory of statis-
tical solutions for the barotropic Navier-Stokes equations, in presence of general in-flow/out-flow
boundary conditions. In a first time, by using a semiflow selection procedure, we introduce a new
notion (with respect to the previous literature on the incompressible Navier-Stokes equations) of
statistical solutions, defined as push-forward measures of the measure initially fixed on the space
of data. In particular, the constructed statistical solutions extend the notion of finite energy weak
solutions, enjoy a sort of semigroup property and satisfy a certain continuity property if they
are supported on the set of regular data. Of course, the selection beeing not unique, statistical
solutions suffer from the same lack of uniqueness as weak solutions do. This part corresponds to
the study of [111], done in collaboration with E. Feireisl. After that, we focus on the special class
of statistical solutions which are stationary, with the aim of shading some light on the validity of
the so-called ergodic hypothesis in turbulence theory. We adopt a dynamical system approach on
the space of global trajectories with globally bounded energy and define the dynamics as given by
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time shifts. Our result in this direction is only partial and shows that the validity of the ergodic
hypothesis for one trajectory is strictly connected with the structure of its ω-limit set. This was
done in collaboration with E. Feireisl and M. Hofmanová in [112].

In Section 5.4 we continue our investigation of questions linked to turbulence, this time by
directly studying the well-posedness of a system proposed by Kolmogorov to describe a fully-
developed turbulent flow, which is now known under the name of Kolmogorov two-equation model
of turbulence. Actually, we focus our attention on a one-dimensional reduction of it and consider
the special (degenerate) case in which the initial mean turbulent kinetic energy is supposed to
vanish in some point of the domain. Under suitable assumptions, we prove that a unique local
in time solution exists, but in general solutions blow up in finite time. We show two different
blow-up mechanisms, one of Burgers type, the other one based on the blow-up of the curvature of
the turbulent kinetic energy (actually, the second type of blow-up is shown only for a toy-model,
and not for the original system of equations). This part of the manuscript corresponds to the
results obtained in [114, 115] in collaboration with R. Granero-Belinchón.

Chapter 6 is devoted instead to the study of the well-posedness for some inviscid models.
The first section of this chapter aims at recalling some basic (and well-known) facts about the
incompressible Euler equation, both in its homogeneous and non-homogeneous versions. Our
main focus here is the global in time well-posedness of the homogeneous system in the case of
space dimension d = 2, as this results completely breaks down for any kind of non-homogeneous
perturbation of the (homogeneous) incompressible Euler equations.

In Sections 6.2 and 6.3 (corresponding, respectively, to the results obtained in [118, 117] with
X. Liao and in [50] with D. Cobb), we investigate the well-posedness of two systems of this kind,
namely a quasi-incompressible Euler system in the former section and the ideal MHD system in
the latter one. In both cases, the final goal is to show an “asymptotically global” well-posedness
result, in the following sense: we obtain an explicit lower bound of the lifespan of the solution
in terms of the norms of the initial datum, showing that, for small size of the non-homogeneity
(the density in the quasi-incompressible system, the magnetic field in the case of the ideal MHD
system), the lifespan tends to be larger and larger. While previous results of this kind required
to work in endpoint critical spaces, the argument of Section 6.3 shows that this is not strictly
necessary: what one really needs for obtaining such a result is a solid well-posedness theory in
high regularity spaces, plus a continuation criterion in terms of minimal regularity norms (minimal
here means that those norms are controlled by some B0

p,r regularity, for which one can use the
improved transport estimates of [217, 153]).

After that, in Section 6.4 we investigate the well-posedness of a system for incompressible
fluids with variable density, exhibiting viscosity effects which are non-dissipative. Because of this,
the corresponding system of equations behaves much more like a hyperbolic system rather than
a parabolic one. As a matter of fact, any kind of smoothing effect is completely absent here; on
the contrary, the odd viscosity term (namely, the term encoding the non-dissipative nature of
the viscous stress tensor) consumes derivatives of the solutions, making any attempt of finding
well-posedness results inconclusive, at first sight. However, by resorting to suitable good unknowns
for the system, we show that the system is indeed well-posed, locally in time, in high regularity
Sobolev spaces. The role of the good unknowns is to put in evidence an underlying hyperbolic
structure: more precisely, the good unknowns satisfy mere transport equations, although with
complicated forcing terms. This hyperbolic structure is crucial to propagate regularity without
losing derivatives; actually, persistence of regularity for the good unknowns allows to highlight a
sort of smoothing effect on the density function. On the other hand, the analysis of the pressure is
particularly involved; for accomplishing it, the key remark is that there is a sort of “effective viscous
flux” effect hidden in the system: a particular quantity, linking the pressure and the vorticity
functions, is more regular than those two quantities separately. Using this piece of information in
the vorticity equation shows that the vorticity is in fact transported not by the velocity field u,
but by an effective velocity, depending both on u and on the density ρ; taking advantage of this
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transport structure, one can close the estimates for the vorticity function. This part corresponds
to work [116], written in collaboration with R. Granero-Belinchón and S. Scrobogna.

Part III: singular perturbation problems

In the last part of the manuscript, Part III, we focus on the derivation of reduced models for
geophysical flows through asymptotic analysis, and more precisely through the study of singular
limit problems.

There exists a number of models which are pertinent to describe the dynamics of geophysical
flows, depending on the physical characters of the phenomenon one would like to study. For
instance, one may want to focus on the description of atmospheric currents, in which case a
compressible model is well-suited, or instead of oceanic currents, for which an incompressible
model looks to be more adapted. There may be, however, other features which affect the choice
of the system of equations to focus on. In addition to that, there are several physical parameters
which come into play in the physical process. For geophysical flows, the most important ones
are the Mach number, linked with the property of (weak) compressibility of the fluid, the Rossby
number, linked to the influence of the Earth rotation, and the Froude number, which measures
the importance of gravity. The values of those parameters, and more importantly their relative
orders of magnitude, are not fixed a priori and in fact vary depending on the specific phenomenon
one looks at. From the mathematical point of view, it is desirable to have robust methods which
allow to compute reduced models for a large variety of choices of the orders of magnitude of those
parameters.

All this results in a very rich zoology of models and studies. In the first chapter of this
part, Chapter 7, we review those aspects in detail. An important part of that chapter is the
discussion of the main differences which appear when considering the singular limit problem for
compressible and incompressible (yet non-homogeneous) flows. The following two chapters are
devoted, respectively, to treat the problem in those settings.

Thus, in Chapter 8 we consider the fast rotation limit (low Rossby number) for compressible
fluid flows, in the regime of low Mach number and (often) of low Froude number. In Section
8.1, which is an introductory section, we explain the asymptotic study in a model case, namely
for fluids in quasi-geostrophic balance (in absence of gravity). Then, we discuss the multiscale
problem, where all the three physical parameters are present at different orders of magnitudes:
we review some previous results and show the main ideas used so far to deal with the presence of
multiple scales in the system. The rest of the chapter is devoted to multiscale limits for various
models: let us present them in detail.

In Section 8.2 we show a convergence result for a Navier-Stokes-Korteweg system, in which the
Mach and Rossby numbers are penalised, together with the so-called Weber number (the physical
adimensional parameter appearing in front of the Korteweg term in the equations); the latter may
be penalised with different orders of magnitudes. This study corresponds to the outcome of works
[106, 109]. The key to treat the multiscale problems reduces to three main keywords: dispersion
(which is linked with the use of the RAGE theorem from scattering theory to get some strong
convergence property), symmetrization (in the spirit of microlocal symmetrizability of Métivier)
and perturbation (in order to treat terms “out of scaling”, which would appear as large external
forces in the wave system, and absorbe them as small perturbations of the singular perturbation
operator).

In Section 8.3 we consider the multiscale limit problem for the Navier-Stokes-Fourier system
with centrifugal force term. By resorting to compensated compactness arguments, we are able
to perform the limit for a large (somehow sharp) choice of the parameters. Nonetheless, some
restrictions still appear on the orders of magnitude which can be considered for the various
parameters. The first one is linked with the presence of the centrifugal force: roughly speaking,
for the full Navier-Stokes-Fourier system one needs the incompressible limit to act at a higher
order than the rotation, so that the centrifugal force term remains small enough in the limit. The
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second one is linked with gravity and prevents us from taking a strong stratification regime in
presence of the fast rotation. The results of this section correspond to the studies performed in
[98, 99] in collaboration with D. Del Santo, G. Sbaiz and A. Wróblewska-Kamińska.

So far, all the results concerned the case in which the Mach number was either of higher order
than the Rossby nymber, or of order equal to the Rossby number. In Section 8.4, we focus on
the case in which the Mach number is of lower order than the Rossby number, a case which was
treated in paper [110]. As, in this kind of problems, one needs the rotation to be compensated by
a gradient term in order to get a non-trivial information in the limit, we imposed a penalisation on
the bulk viscosity coefficient. The proof of the convergence uses again compensated compactness,
but the anisotropy of scaling creates some complications also in this context. In particular, one is
not able to avoid, in this kind of argument, the appearing of a non-linear term, which is of order
O(1). Thus, in order to prove its convergence, one needs some compactness properties on suitable
quantities. The idea to get compactness is to resort to sharp decay estimates for solutions of
the heat equation with a penalised viscosity coefficient, in order to prove that the potential part
of the velocity goes to 0 fast enough; in turn, this property enables us to prove compactness of
the vorticities, and this piece of information allows to compute the limit in the above mentioned
non-linear term.

In Chapter 9, we deal with the study of the fast rotation limit for non-homogeneous in-
compressible flows. In Section 9.1 we set the problem in the framework of weak solutions. We
also discuss the fact that, in the incompressible case, two different regimes can be considered:
the quasi-homogeneous one, where the initial densities are assumed to be small perturbations of
a constant state (a property which is transported by the flow), and the fully non-homogeneous
one, in which the densities are small perturbations of a generic non-constant state (now, a priori
this property is not transported anymore by the flow). We conclude this section by presenting
the difficulties linked with the study of the fully non-homogeneous case in a three-dimensional
framework.

After that, in Section 9.2 we specialise on the two-dimensional setting and we perform the
limit in both regimes, the quasi-homogeneous and the fully non-homogeneous cases. The proof
(quite easy in the former instance, rather involved in the latter one) relies again on the use of
compensated compactness techniques. In particular, the study of the wave system allows us
to infer fundamental quantitative smallness results for the density perturbations, which would
otherwise be out of reach in the fully non-homogeneous case, and which turn out to be the key
to compute the limit. We point out that our argument is able to treat the possible presence of
vacuum on the initial density: in order to perform the asymptotic study, one essentially needs the
same conditions required for the theory of existence of finite energy weak solutions. It is worth
to point out that, in the fully non-homogeneous regime, the target system is underdetermined.
Indeed, the information one disposes in order to pass to the limit is so poor that we miss an
equation for the target density variation function (say) r, whereas we are able to pass to the
limit in the vorticity formulation of the momentum equation; yet, the resulting equation turns
out to mix both the target vorticity and the target density variation r and, besides, involves the
presence of an additional Lagrangian multiplier (which is yet another unknown of the system).
The study presented here corresponds to papers [113], in collaboration with I. Gallagher, and [47],
in collaboration with D. Cobb.

In Section 9.3, we discuss a result obtained in [18] in collaboration with M. Bravin, where we
extend the previous study to thin domains, and more precisely to thin infinite slabs. Although the
general fast rotation asymptotics in 3-D remains unclear at present, considering a thin domain
imposes a geometric rigidity to the problem, inasmuch as we force the flow to become purely
planar in the limit. We thus recover a fundamental information on the target dynamics, which
seems to be missing in the general 3-D situation. This is why we are able to perform the study
of the fast rotation limit in this context. More importantly, in our study we impose Navier-slip
conditions at the bottom boundary and at the top boundary of the infinite slabs: by choosing the
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friction parameters in a suitable way (depending on the thickness of the slabs), a boundary term
remains in the limit equation. It turns out that this boundary term is a damping term, which
encodes the well-known physical phenomenon known as Ekman pumping effect. Of course, in this
way we completely miss the (quite complicated) analysis of the Ekman boundary layers, but the
advantage of this approach is that it is nonetheless able to capture relevant boundary effects in the
limit. In addition, this approach looks very flexible, as it does not require any anisotropy of the
viscous stress tensor, which would be otherwise demanded by the study of the Ekman boundary
layers. In this respect, we remark that, when imposed on the system of compressible flows, the
anisotropy of the viscous stress tensor is dramatic for the theory of existence of weak solutions
(see [177, 123], but also recent improvements in [25]); thus, our approach based on thin domains
with Navier-slip boundary conditions allows one to rigorously derive a Navier-Stokes system with
Ekman pumping term also from a compressible Navier-Stokes system.
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Chapter 1

Overview of Part I

Part I of this manuscript focuses on the analysis of linear hyperbolic problems with variable low
regularity coefficients. This kind of operators appears in several contexts: for instance, when
looking at propagation of waves in highly heterogeneous media, or when linearising non-linear
equations or systems around special non-constant solutions.

Here we will be concerned with wave-type operators, namely second-order scalar hyperbolic
operators with variable coefficients (treated in Chapter 2), and with first-order hyperbolic systems
(considered in Chapter 3). We will mainly study questions linked to the well-posedness of the
related Cauchy problem. More precisely, the theme of those chapters is the following: finding
minimal regularity assumptions on the coefficients of the operator such that the Cauchy problem
is well-posed in the scale of Sobolev spaces Hs(Rd), with d ≥ 1 and for suitable values of s ∈ R,
possibly admitting a finite loss of regularity (in a sense which we are going to specify) in the
dynamics. Related issues will also be investigated: for instance, we will address local questions
(the local Cauchy problem, finite propagation speed. . . ) as well, and consider consequences of the
low regularity of the coefficients on observability and controllability properties for the operator
under study.

The expression “low regularity” typically refers to non-Lipschitz regularity. The Lipschitz
condition represents indeed the minimal smoothness threshold for propagating the regularity of
the initial datum. If the coefficients have less regularity than Lipschitz, then it is possible to
see that the solution starts to lose smoothness in the time evolution, giving rise to the so-called
phenomenon of the loss of derivatives. To the best of our knowledge, the first work in this direction
was [51] by Colombini, De Giorgi and Spagnolo, who highlighted such loss of regularity in the
context of wave equations with only time dependent coefficients.

As a matter of fact, it is worth emphasising that the problem relies above all on the time
regularity of the coefficients. In other words, in general if the coefficients are smooth (even
constant) with respect to the space variable, but non-Lipschitz with respect to time, then the
solution loses derivatives (i.e. regularity) during time. This fact is in sharp contrast with what
happens in the context of transport equations, where a L1

T (Lipx) condition on the velocity field is
enough for proving persistence of (not too high) regularity of the solution, and the loss is produced
whenever Lipschitz regularity fails with respect to the space variable (about this issue, see e.g.
[7, 80] and, more recently, [5, 3, 69]). However, one has to remark that transport operators are a
very special type of hyperbolic operators, where the coefficient matrices are not only symmetric,
but even diagonal and equal to a multiple of the identity matrix. In particular, (as it is well-known)
characteristics do not depend on the frequency.

The previous considerations allow us to introduce another crucial notion in all this business,
namely the one of symmetrizability. In particular, we will always consider scalar wave operators

Wu := ∂2
t u −

d∑
j,k=1

∂j
(
ajk(t, x) ∂ku

)
13
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whose coefficient matrix A =
(
ajk
)
j,k

has real entries and is symmetric, i.e. satisfies the condition

(1.1) ajk(t, x) = akj(t, x) for all 1 ≤ j, k ≤ d .

In the case of first-order systems, most of the time1 we will deal with hyperbolic systems which
are microlocally symmetrizable in the sense of Métivier [193]. This notion generalises the classical
notion of Friederich’s symmetrizable hyperbolic systems, inasmuch as the symmetriser is now
allowed to depend also on the frequency variable.

Symmetrizability is somehow the “right” assumption to be made when studying well-posedness
issues for first-order hyperbolic systems (see e.g. [193, 204] for additional explanations). If this
assertion may appear not completely clear at first sight, the corresponding assumption (1.1) for
second-order scalar operators looks absolutely natural, if one considers W as a generalisation of
the classical wave operator ∂2

t − ∆. However, one should aways retain that this is a structural
assumption on our operator, which is at the basis of several well-posedness results (actually, very
little is known whenever this assumption is dismissed).

In order to catch the flavour of the problems we are going to encounter in Part I, and the type
of results we can hope for, let us report on one special result obtained in [51]. So, consider the
following one-dimensional wave equation with the coefficient depending only on time and with no
external force:

(1.2) ∂2
t u − a(t) ∂2

xu = 0 .

We want to find a priori estimates for solutions of the previous equation in some time interval
[0, T ], with T > 0, where the coefficient a is defined. Up to extending a out of [0, T ] by constant
values, we can assume that a belongs to L∞

(
R
)
. We now suppose that a satisfies the following

log-Lipschitz continuity assumption: there exists a constant C0 > 0 such that

(1.3) ∀ τ > 0 , sup
t∈R
|a(t+ τ) − a(t)| ≤ C0 τ log

(
1 +

1

τ

)
.

Finally, we assume that the operator in (1.2) is strictly hyperbolic, namely one has

(1.4) 0 < a∗ ≤ a(t) ≤ a∗ for all t ∈ [0, T ] .

We are now going to perform some formal computations, which however can be rigorously
justified. First of all, we denote by F the Fourier transform with respect to the space variable;
when convenient, we also write Fu = û. Then, applying F to both sides of (1.2), we get a
second-order ODE for û, depending on the parameter ξ:

(1.5) ∂2
t û(t, ξ) + a(t) |ξ|2 û(t, ξ) = 0 .

Next, we want to introduce the energy associated to the solution. Yet, performing energy estimates
requires to deal with smooth functions. Therefore, first of all we smooth out the coefficient a, for
instance by a convolution with a standard mollification kernel

(
ρε
)
ε>0

. Skipping the details, we
find a family of C∞(R) coefficients

(
aε
)
ε>0

such that

∀ ε > 0 , ∀ t ∈ R , a∗ ≤ aε(t) ≤ a∗ ,(1.6)

∀ ε > 0 , ∀ t ∈ R , |aε(t) − a(t)| ≤ C0C ε log

(
1 +

1

ε

)
,

∀ ε > 0 , ∀ t ∈ R , |∂taε(t)| ≤ C0C log

(
1 +

1

ε

)
,

1In Chapter 3 we will be faced to a special situation, for which the microlocal symmetrizability assumption will
not be very pertinent, or at least not sufficient.
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for a suitable constant C > 0 related to the W 1,1 norm of ρ1. Notice that, as a consequence of
the fact that the coefficient a is not Lipschitz, the first-order derivatives of the functions aε are
not uniformly bounded in ε > 0.

This having been done, for any ε > 0 and any t ≥ 0, we can introduce the approximate energy

Eε(t, ξ) = |∂tû(t, ξ)|2 + aε(t) |ξ|2 |û(t, ξ)|2 + |û(t, ξ)|2 .

It is easy to get convinced that the energy thus defined is equivalent (after integration with respect
to the frequency ξ) to the classical norm ‖∂tu(t)‖2L2 + ‖u(t)‖2H1 . Now, a simple computation yields

d

dt
Eε(t, ξ) = 2 Re

(
∂tû ·

(
aε(t) − a(t)

)
|ξ|2 û

)
+ a′ε(t) |ξ|2 |û(t, ξ)|2 + 2 Re

(
∂tû · û

)
.

where we have used equation (1.5). Notice that the symmetry of the operator is hidden here by
the fact that we are working in one space dimension, but, in the general case, it enters in a crucial
way in the previous computations. Notice also that the right-hand side of the previous equality
is bounded by αε(t, ξ)Eε(t), where we have defined

αε(t, ξ) := 1 +
a′ε(t)

aε(t)
+

∣∣aε(t) − a(t)
∣∣

aε(t)
|ξ| .

Therefore, an application of Grönwall’s lemma gives

Eε(t, ξ) ≤ Eε(0, ξ) exp

(∫ t

0
αε(τ, ξ) dτ

)
.

To close the estimates, we have to find a bound for αε(τ, ξ). By using the strict hyperbolicity
condition (1.4) and the properties of the approximate coefficients

(
aε
)
ε
, we infer that, for any

t ∈ [0, T ], any ε > 0 and any ξ ∈ R, one has

(1.7) αε(t, ξ) ≤ C

(
1 + log

(
1 +

1

ε

)
+ ε |ξ| log

(
1 +

1

ε

))
,

where the constant C depends on a∗ and on C0. At this point, the key idea of [51] was to
link the approximation parameter ε > 0 with the size of the dual variable |ξ|: this corresponds
to performing different approximations of the coefficient in different regions of the phase space.
Notice that the way of making this link is forced by the expression appearing on the right-hand
side of (1.7) above. Thus, after setting

(1.8) ε :=
1

|ξ|
,

for all ξ 6= 0 we get αε(t, ξ) ≤ β log
(
1 + |ξ|

)
, whence

Eε(t, ξ) ≤ Eε(0, ξ)
(
1 + |ξ|

)β t
.

From the previous bound, it is easy to find the following estimate: there exists a constant C > 0,
depending only on a∗, a∗, C0 and T , such that for any t ∈ [0, T ], one has

‖∂tu(t)‖H−βt + ‖u(t)‖H1−βt ≤ C (‖∂tu(0)‖L2 + ‖u(0)‖H1) .

It is apparent that the previous estimate exhibits a loss of derivatives of the solution with respect
to the initial data; in other words, the solution loses the initial regularity in the time evolution. It
is apparent from the computations that this fact is a consequence of the log-Lipschitz regularity
assumption on a.
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Before concluding this introductory part, two additional remarks are in order. First of all,
we point out that our computations above are just a (rough) summary of what is done in the
pioneering work [51]. Notice that, in that work, the log-Lipschitz regularity of the coefficient
is measured in L1, and not by taking the (stronger) sup norm as in our condition (1.3). This
is a generic fact for hyperbolic problems with coefficients depending only on time: the weaker
L1-type condition sufficies in general, whereas the pointwise assumption is usually made when
dealing with coefficients which depend also on the space variables (the obstruction to considering
L1 conditions in that case looks technical, but not removable at present). However, notice that
the pointwise condition leads to a more precise estimate, since it entails a loss of regularity βt
which is linearly increasing in time, in contrast with the loss one would have obtained under an
integral condition (specifically, the loss δ > 0 would have been fixed: the best one can say is that
the solution immediately loses δ derivatives, no matter how close to the initial time we are).

The second remark concerns the case when the coefficients depend also on the space variable.
In order to fix ideas, let us focus on the case of the wave operator W , defined above. Because
of the loss of regularity of the solution, one has to require conditions on the regularity of the
coefficients (this time, with respect to the space variable x) in order for the product with ∂ku to
be well-defined: if ∂ku ∈ Hs, for some s ∈ R, one has to require that also ajk(t, x) ∂ku belongs
to the same space Hs. The consequence of this is twofold: on the one hand, the regularity of
ajk (again, with respect to x) cannot be too weak, otherwise the product would not belong to
the desired space; on the other hand, requiring the coefficients to possess high smoothness in
x does not help either, as it can be easily seen by paraproduct decomposition. Therefore, the
second part of the game consists in finding minimal regularity assumptions for the coefficients also
with respect to the space variable, in order for the Cauchy problem to be well-posed in suitable
Sobolev classes. Notice that the origin of all those issues is the low regularity in time: when the
coefficients are Lipschitz with respect to time, boundedness in x of the ajk’s is enough to recover
well-posedness in the energy space H1(Rd)× L2(Rd) (see [160]).

This part consists of two chapters: Chapter 2 deals with the case of scalar wave-type equations,
Chapter 3 with the case of first-order microlocally symmetrizable hyperbolic systems. It is impor-
tant to stress the fact that those two cases are different, namely one cannot always reformulate
(apart from very special cases) a wave equation as a first-order system, or viceversa.

The main focus of each chapter is to deal with the Cauchy problem, and highlight the previ-
ously mentioned loss of regularity of the solutions in those different contexts. However, the last
part of Chapter 2 will be devoted to applications to control and observability problems.



Chapter 2

Wave equations with low-regularity
coefficients

In this chapter we focus our attention on wave-type operators whose coefficients depend both on
time and space variables. More precisely, we consider second order scalar hyperbolic operators W
defined on [0, T ]× Rd, for some T > 0, having the form

(2.1) Wu := ∂2
t u −

d∑
j,k=1

∂j
(
ajk(t, x) ∂ku

)
,

under the symmetry condition

(2.2) ajk(t, x) = akj(t, x) for all 1 ≤ j, k ≤ d .

We assume also that W is strictly hyperbolic with bounded coefficients: there exist two constants
0 < λ ≤ Λ such that

(2.3) ∀ (t, x, ξ) ∈ [0, T ]× Rd × Rd , λ |ξ|2 ≤
d∑

j,k=1

ajk(t, x) ξj ξk ≤ Λ |ξ|2 .

In addition, we will formulate low regularity assumptions on the coefficients of the operatorW . As
already pointed out in the introductory part, low regularity means here non-Lipschitz regularity.
However, under our hypotheses, the coefficients turn out to be continuous over [0, T ] × Rd, so
imposing condition (2.3) pointwise makes sense.
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Not mentioned, but in this context

(S.5) F. Colombini, D. Del Santo, F. Fanelli: Well-posedness results for hyperbolic operators with
coefficients rapidly oscillating in time. Submitted (2023).

2.1 Introduction

It is well-known, since the work [160] by Hurd and Sattinger, that the Cauchy problem for second-
order strictly hyperbolic operators like W in (2.1) are well-posed in the energy space H1 × L2

as soon as the coefficients
(
aj,k
)
j,k

are Lipschitz continuous in time and (merely) bounded with
respect to the space variable: namely, the solution u verifies (u, ∂tu) ∈ H1 × L2, if the initial
datum, say, (u0, u1) belongs to that space.

In the pioneering paper [51], Colombini, De Giorgi and Spagnolo put in evidence, for the first
time, the phenomenon of the loss of derivatives of the solution, in the case when the coefficients of
the operator are of less regular than Lipschitz. Specifically, they considered coefficients depending
on the time variable only, ajk = ajk(t), and they proved the following facts:

(i) if the coefficients are log-Lipschitz, then the solution loses a finite number of derivatives in
the time evolution;

(ii) if the coefficients belong to a Hölder class, then the solution loses an infinite number of
derivatives.

In case (i), the Cauchy problem is well-posed in H∞ :=
⋂
s∈RH

s with a finite loss of derivatives;
in case (ii), instead, in order to absorbe the infinite loss, one is obliged to work in suitable Gevrey
spaces.

In addition, the authors also exhibited explicit counterexamples, showing the sharpness of their
results. Refinements of those counterexamples [64, 45] entail in particular that, if the coefficients
are less regular than log-Lipschitz, then an infinite loss of derivatives occur, and well-posedness
in Sobolev spaces in general fails. Similar pathologies related to the regularity of the coefficients
arise also when studying uniqueness of solutions, see e.g. [60].

Throughout all this chapter, we will focus on the Cauchy problem for operator (2.1) in the
framework of Sobolev spaces.

2.1.1 Space regularity of the coefficients

As already remarked, the result of [51] holds for coefficients depending only on time. The general
situation where the coefficients depend also on the space variable stayed open for a long time,
until work [61] by Colombini and Lerner.

The reason for this is that, when dependence of the coefficients on x is permitted, the problem
becomes much more involved. First of all, owing to the loss of regularity of the solution, solving
in the space H1 × L2 as in [160] is out of reach; it seems then reasonable to solve in spaces
Hs×Hs−1, where the Sobolev exponent s = s(t) < 1 satisfies in addition s′(t) < 0 (this condition
exactly means that the regularity of the solution deteriorates with time). On the other hand, a
necessary condition for solving in the previous class of spaces Hs×Hs−1 is that, for all t ∈ [0, T ],
the multiplication operator by the coefficients ajk(t, ·) maps Hs−1 (this is the space regularity
of the terms ∂ku in (2.1) above) into itself. Now, if the coefficients are Lipschitz-continuous in
space, then they obviously map Hσ into itself, for any |σ| ≤ 1. However, as already remarked,
the case |σ| = 1 is not very pertinent, due to the lack of regularity of the solution; thus, one can
hope for considering coefficients which enjoy even less regularity than the Lipschitz one. This is
indeed the case: as proved in [61] by resorting to Bony’s paraproduct decomposition, if a = a(x)
is a log-Lipschitz function over Rd, then the multiplication operator by a is a continuous self-map
of Hσ, for all |σ| < 1.



2.1. Introduction 19

Thus, in [61], the following isotropic log-Lipschitz assumption was formulated (up to extending
the coefficients by constant value out of [0, T ], we can assume them to be defined on the whole
R1+d = Rt × Rdx): there exists a constant C0 > 0 such that, for all 1 ≤ j, k ≤ d and all z ∈ R1+d

with |z| < 1, one has

(2.4) sup
y∈R1+d

∣∣∣ajk(y + z)− ajk(y)
∣∣∣ ≤ C0 |z| log

(
1 +

1

|z|

)
.

Under the previous assumption, one can prove the following result (see [61]; see also [62] for
refinements and the study of local in space questions).

Theorem 2.1. Let W be the wave operator defined in (2.1). Assume that conditions (2.2), (2.3)
and (2.4) are satisfied. Take θ ∈ ]0, 1[ .

Then there exist β > 0, T ∗ > 0 and C > 0 such that, for all u ∈ C2
(
[0, T ∗];H∞(Rd)

)
and all

t ∈ [0, T ∗[ , one has

sup
τ∈[0,t]

∥∥∂tu(τ)
∥∥
H−θ−βτ

+ sup
τ∈[0,t]

∥∥u(τ)
∥∥
H1−θ−βτ

≤ C

(∥∥∂tu(0)
∥∥
H−θ

+
∥∥u(0)

∥∥
H1−θ +

∫ t

0

∥∥(Wu
)
(τ)
∥∥
H−θ−βτ

dτ

)
.

In the previous inequality, β depends only on λ from (2.3) and on C0 from (2.4); also, one has
T ∗ := (1− θ)/β.

Before going on, several remarks are in order.

Remark 2.2. (i) The previous result is only local in time. Indeed, due to the loss of regularity
and the product rules mentioned above, one has to make sure that −θ − βt > −1.

(ii) The original result from [61] is stated for operators having also first-order and zeroth-order
coefficients. For first-order coefficients, one usually requires Hölder regularity in space (and
boundedness in time), for the zeroth-order coefficient uniform boundedness both in t and x
is a sufficient condition (see also [59]). The Hölder regularity of the first-order terms imposes
an additional constraint on the admissible Sobolev indices θ which can be considered (see
[59, 55] for more details).

(iii) From Theorem 2.1, it is standard to deduce, for coefficients which are smooth in x, a well-
posedness statement in the space H∞(Rd), with a finite loss of derivatives.

To conlude this part, let us give the basic ideas standing at the basis of the proof of Theorem
2.1. We will enter more into the details in Subsection 2.1.3, where we will use a similar approach
to treat the case of coefficients satisfying Zygmund-type conditions in time.

The main difficulty here is to handle the low regularity of the coefficients both in time and
space. The discussion of the introductory chapter suggests to resort to approximate energies
Eε(t), defined in terms of approximate coefficients ajk,ε, which are smooth with respect to time.
Those approximate energies are, for any t ∈ [0, T ] and any ε > 0, equivalent to the Sobolev norms
of the solutions which we want to estimate. However, owing to the dependence of the coefficients
on the space variable, we can no more pass in Fourier variables in the equation and perform
simple computations. At this point, the main idea of [61] is to use Littlewood-Paley theory and
paradifferential calculus to handle the rough dependence of the ajk with respect to x.

More precisely, the first step is to use the Littlewood-Paley characterisation of Sobolev spaces
Hσ as the Besov spaces Bσ

2,2: every tempered distribution u in Hσ can be decomposed into

u =
∑
ν≥−1

∆νu , with ‖u‖Hσ ∼
∥∥∥∥(2νσ ‖∆νu‖L2

)
ν≥−1

∥∥∥∥
`2
.
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We recall that, for any ν ≥ 0 the dyadic blocks ∆νu are spectrally localised in dyadic annuli,
where the size of the frequency ξ is proportional to 2ν . On the other hand, ∆−1u is the spectral
localisation on a ball of center 0. We refer to [8] for more details.

Then, one looks at the growth of the localised energy eν,ε(t), namely the approximate energy
related to each dyadic block ∆νu. Notice that the parameter ε > 0 appears because of the
regularisation of the coefficients in time. A weighted sum allows to reconstruct the total eneryg
Eε(t), which is equivalent to the H−θ−βt norm that one wants to control. The strategy one follows
for bounding eν,ε is standard, but requires an equation for ∆νu: therefore, one has to localise
relation (2.1) by applying the operator ∆ν . Of course, this procedure creates commutator terms;
their study is based on Schur’s lemma. Both parts of the analysis, namely the estimate of eν,ε
and the bounds for the commutator terms, are based on a fine study of the properties of log-
Lipschitz functions a and of their spectral localisations ∆νa, which relies on Bony’s paraproduct
decomposition and paradifferential calculus (see again [8]).

2.1.2 Second order conditions in time

Another breakthrough result in this context was achieved in [215] by Tarama, who proved that
second-order regularity conditions, also called Zygmund conditions, on the coefficients are well
adapted to the study of this kind of problems. Contrary to first-order conditions (namely, Lipschitz
or Hölder type regularity assumptions), Zygmund conditions are conditions which rest on the
second-order (or symmetric) difference of the coefficients.

To be more precise and fix ideas, let us consider the case, presented in Chapter 1, of space
dimension d = 1 and coefficient a = a(t). Tarama’s assumptions on a then reads: either

(2.5) ∀ τ ∈ ]0, 1[ , sup
t∈R
|a(t+ τ) + a(t− τ) − 2 a(t)| ≤ C0 τ ,

in which case a is said to belong to the Zygmund regularity class, or

(2.6) ∀ τ ∈ ]0, 1[ , sup
t∈R
|a(t+ τ) + a(t− τ) − 2 a(t)| ≤ C0 τ log

(
1 +

1

τ

)
,

which corresponds to the case of a having log-Zygmund regularity.
Observe that the previous conditions are weaker than the corresponding ones based on first-

order diffence: in particular, we have

(2.7) Lip =⇒ Zyg =⇒ log-Lip =⇒ log-Zyg .

Indeed, the first and last implications are obvious by definition. The second one, instead, is
slightly more tricky and is based on Littlewood-Paley decomposition: see for instance [8]. As a
matter of fact, it turns out that one can give a characterisation of the Zygmund class

Z(R) :=
{
a ∈ L∞(R)

∣∣∣ a satisfies (2.5)
}

as the Besov space B1
∞,∞(R): one has Z ≡ B1

∞,∞, and this is true in any dimension and also for
logarithmic regularity, provided one passes to consider logarithmic Besov spaces. We refer to the
Ph.D. dissertation [D.2] (see the section List of Publications at the beginning of the manuscript)
and to [120, 56] for more details.

Now, if we introduce a smooth approximation
(
aε
)
ε>0
⊂ C∞(R) of the coefficient a, as done

in Chapter 1, we get, besides (1.6), the inequalities

∀ ε > 0 , ∀ t ∈ R , |aε(t) − a(t)| ≤ C0C ε logγ
(

1 +
1

ε

)
,

∀ ε > 0 , ∀ t ∈ R , |∂taε(t)| ≤ C0C log1+γ

(
1 +

1

ε

)
,
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∀ ε > 0 , ∀ t ∈ R ,
∣∣∂2
t aε(t)

∣∣ ≤ C0C
1

ε
logγ

(
1 +

1

ε

)
,

for a suitable universal constant C > 0, where γ = 0 if a satisfies (2.5), γ = 1 if a satisfies (2.6).
To fix ideas, take a Zygmund continuous, and then γ = 0 in the bounds above: we observe that

the estimate for the first-order derivative of aε loses one logarithmic factor, whereas the second
order derivative start to “behave well” again, as it would do if a was Lipschitz continuous.

This remark prompted Tarama to define, in [215], a new energy, equivalent to the usualH1×L2

(or Hs ×Hs−1) one, but in which a lower order corrector appeared. We will give more details in
Section 2.2 about the precise form of the corrected energy. For the time being, we limit ourselves
to point out that the role of this corrector was to erase bad terms appearing in the time derivative
of the energy function, so to obtain terms in which ∂tu was multiplied only by aε or by ∂2

t aε: the
treatement of those terms looks easier since one loses no logarithmic factors with respect to the
classical case.

In the end, in the log-Zygmund case (2.6), one obtains an energy estimate with an increasing
loss in time, as the one presented in Theorem 2.1 above, whereas for a Zygmund coefficient (2.5),
one gets an energy estimate with no loss, hence well-posedness in H1 × L2. In particular, this
improves the classical result for Lipschitz regularity. We observe that, in fact, as the coefficient
is independent of the space variable, the energy estimates hold true in any space Hs ×Hs−1, for
any s ∈ R, and are global in time.

2.1.3 Extensions of Tarama’s result

After Tarama’s work [215], it was natural to try to generalise his previous well-posedness results
to the case of coefficients depending also on the space variable.

In a first time, studies focused on the case of loss of derivatives, namely of log-Zygmund in
time regularity assumptions on the coefficients of the operator W . The question was than to
reduce as much as possible the space regularity assumptions, in order to keep a well-posedness
result in Sobolev classes with finite loss of derivatives.

In light of the results of [61], log-Lipschitz regularity assumptions arose as a natural condition
to impose. More precisely, one would like to consider coefficients which are log-Zygmund continu-
ous in the time variable t, uniformly with respect to x, and log-Lipschitz continuous in the space
variables, uniformly with respect to t. This hypothesis can be formulated in the following way:
there exists a constant K0 such that, for all 1 ≤ j, k ≤ d, all τ > 0 and all y ∈ Rd \ {0}, one has

sup
(t,x)
|ajk(t+ τ, x) + ajk(t− τ, x)− 2ajk(t, x)| ≤ K0 τ log

(
1 +

1

τ

)
(2.8)

sup
(t,x)
|ajk(t, x+ y)− ajk(t, x)| ≤ K0 |y| log

(
1 +

1

|y|

)
.(2.9)

A first result in this direction was the one of Colombini and Del Santo in [52] (see also [59]),
who dealt with the one dimensional case d = 1 and proved, under hypotheses (2.8) and (2.9)
on the coefficients, a statement analogous to Theorem 2.1 above. The basic idea was to define
localised energies eν.ε(t), where however, for each ν ≥ −1, the function eν,ε had the shape of
Tarama’s modified energy, in order to reproduce the special cancellation in the energy estimates
which allows to deal with Zygmund-type regularity of the coefficients.

The key point was that, when d = 1, Tarama’s energy admits a straightforward generalisation
to the case of coefficients a(t, x) depending also on the space variable. This is no more true in the
general case d ≥ 2. Indeed, when d ≥ 2 the natural generalisation of the functions used by Tarama
to define the modified energy consists in using symbols (say) α = α(t, x, ξ), which are smooth
with respect to ξ, but have low regularity with respect to t and x. For the time variable, one then
uses convolution as in the case of

(
aε
)
ε
discussed above, whereas for the space variables one has
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to resort to paradifferential calculus (see e.g. [4, 8, 193]). In fact, one has to use paradifferential
calculus with parameters, as developed by Métivier (see for instance [192, 195]), in order to recover
positivity of certain operators used to define the energy. In the end, by employing the previous
ingredients, the generalisation of [52] to the multi-dimensional case d ≥ 1 was reached in [53, 55].
The result is of course the same, and the main ideas behind it too, but, as explained in the
discussion above, the result is technically and conceptually more involved.

2.2 Isotropic Zygmund condition: estimates with no loss

At this point, a natural question arised as whether it is possible or not to assume Zygmund-type
regularity conditions on the coefficients also with respect to the space variable, in order to recover
well-posedness with no loss of derivatives of the related Cauchy problem.

As a matter of fact, the behaviour of the Zygmund class in somehow “ambiguous” in this
context, in the following sense. On the one hand, noticing the embeddings (2.7) and keeping
the counterexamples of [45] in mind, one expect that having coefficients ajk which are Zygmund
continuous in time would entail a finite loss of regularity (arbitrarily small, but non-zero) in the
dynamics. On the other hand, we notice that, given any Zygmund function a = a(x), for any
s ∈ ]0, 1[ one has that

∀u ∈ Hs(Rd) , ∂j
(
a ∂ku

)
− ∂jTa∂ku ∈ Hs−1 ,

where Ta denotes the paradifferential operator associated to the symbol a (as a = a(x), the
paradifferential operator actually coincides with the classical paraproduct operator). Combining
this fact with Tarama’s result [215] prompts us to think that the derivative loss may not appear
in presence of coefficients which are isotropically Zygmund continuous, i.e. which are Zygmund
continuous with respect to (t, x).

In [54], we considered exactly this situation: we assumed the coefficientsajk to be isotropically
Zygmund continuous, uniformly over [0, T ]×Rd. This assumptions writes as follows: there exists
a constant K0 such that, fixed any 1 ≤ i, j ≤ d, for all τ ≥ 0 and all y ∈ Rd, one has

(2.10) sup
(t,x)

∣∣∣∣aij(t+ τ, x+ y) + aij(t− τ, x− y) − 2 aij(t, x)

∣∣∣∣ ≤ K0

(
τ + |y|

)
.

We were able to prove the following statement.

Theorem 2.3. Let W be the wave operator defined by (2.1). Assume that assumptions (2.2) of
symmetry and (2.3) of strict hyperbolicity are in force. Moreover, suppose the coefficients aij to
fulfill condition (2.10).

Then there exist constants C > 0 and γ > 0 such that the inequality

sup
0≤t≤T

(
‖u(t)‖H1/2 + ‖∂tu(t)‖H−1/2

)
≤

≤ C eγT
(
‖u(0)‖H1/2 + ‖∂tu(0)‖H−1/2 +

∫ T

0
e−γt ‖(Wu)(t)‖H−1/2 dt

)
holds true for all u ∈ C2

(
[0, T ];H∞(Rd)

)
.

The proof of the previous result relies, as for [53, 55], on the use of Tarama’s energy together
with paradifferential calculus with parameters. However, the key point of the argument is a
crucial cancellation which arises at the level of symbolic calculus, when replacing operator W by
its paralinearisation: such a cancellation occurs not only at the level of the principal symbol, but
also at the level of the sub-principal symbol of certain operators involved in the computations.
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The effect of those cancellations is crucial: the sub-principal symbol in question would bring a
contribution of order log, producing in this way a loss of derivatives in the energy estimates.

It is important to notice that the above mentioned fundamental cancellation only occurs at
the H1/2 level of the energy estimates. This is the reason why the result is stated in that specific
functional class. It is not clear at all whether of not the previous well-posedness result without
loss should hold true also in Hs ×Hs−1, for other values of s ∈ ]0, 1[ .

2.3 Application to observability and control in 1-D

In this section we briefly mention, without entering into the details, that the previous well-
posedness results and techniques were applied also to the problem of the control of wave operators
with rough coefficients. The physical motivation for such a study is clear: trying to control waves
which propagate in highly heterogeneous media, whose local properties are highly irregular.

As the property of control is intimately related (by Hilbert Uniqueness Method [175, 221]) to
the one of observability, in order to simplify the presentation in what follows we will always speak
about observability properties of the operator W .

It is well-known that, in general, the (both internal and boundary) observability properties
of W are satisfied if and only if the observability region (the subset Ωob ⊂ Ω where one wants
to observe the waves, with Ω denoting the full spacial domain where the dynamics takes place)
satisfy the so-called Geometric Control Condition (GCC in brief), see [9, 28]. The proof of
such a fundamental result is based on tracing the rays of geometric optics, so it requires the
bicharacteristic flow to be well-defined. In particular, this argument requires the coefficients ofW
to be smooth. On the other hand, dependence of the observability properties on the regularity of
the coefficients have already been observed in e.g. [6], in the context of homogeneisation, and [34],
where it was proven that observability and control may fail for Hölder continuous coefficients.

The one-dimensional case plays a special role in all this matter, as in 1-D waves can only travel
sidewise, so the GCC is always satisfied. Without loss of generality, we can restrict our attention
to the wave operator

W1u := ω(x) ∂2
t u − ∂2

xu in Ω = [0, 1] ,

where ω satisfies 0 < ω∗ ≤ ω(x) ≤ ω∗ for all x ∈ Ω. For simplicity, let us focus on homogeneous
boundary conditions

(2.11) u(t, 0) = u(t, 1) = 0 for all t ∈ [0, T ] ,

where the observability time T > 0 has to be chosen large enough, namely

T > 2Tω , with Tω :=

∫
Ω

√
ω(x) dx .

In [138], Fernández-Cara and Zuazua proved that the condition

(2.12) ω ∈ BV (Ω) ,

where BV (Ω) is the space of functions of bounded variation on Ω = [0, 1], is sufficient for guaran-
teeing the observability inequality (see the inequality stated in Theorem 2.4 below for a precise
form) to hold. The counterexamples of [34] for Hölder coefficients seemed to show that condition
(2.12) is in fact sharp.

However, in [120] we were able to improve the result of [138] in two aspects. First of all, for
observability estimtes to hold, it is in fact sufficient that the coefficient ω satisfies the integral
Zygmund condition

(2.13) ∀h ∈
]
0,

1

2

[
,

∫ 1−h

h

(
ω(x+ h) + ω(x− h) − 2ω(x)

)
dx ≤ K h .

This result can be roughly stated as follows.
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Theorem 2.4. Let the coefficient ω satisfy condition (2.13) and let T > 2Tω. Let us set |ω|Z to
be the minimal constant K > 0 for which (2.13) is satisfied.

Then, there exists a constanct C > 0, only depending on ω∗, ω∗ and |ω|Z , such that the
boundary observability inequality

‖u(0)‖2H1
0 (Ω) + ‖∂tu(0)‖2L2(Ω) ≤ C

∫ T

0
|∂xu(t, 0)|2 dt

holds true for any u satisfying W1u = 0 in Ω, together with the boundary conditions (2.11).

Remark 2.5. Notice that Theorem 2.4 improves the result of [138], by extending the functions
ω for which observability holds. Roughly speaking, this extension corresponds to filling the gap
between B1

1,1 to B1
1,∞.

Secondly, we considered less regular coefficients, namely functions ω satisfying an integral
log-Lipschitz or log-Zygmund assumption. This latter condition means that, in relation (2.13)
above, an additional logarithmic factor appears in the right-hand side. For such functions, we
were able to prove observability estimates with a finite loss of derivatives. The statement can be
roughly formulated in the following form. Notice the presence of the semi-norm |ω|LZ , which can
be defined analogously to |ω|Z above.

Theorem 2.6. Let the coefficient ω satisfy an integral log-Zygmund condition and let T > 2Tω.
Then, there exist a constanct C > 0 and an index m ∈ N, only depending on ω∗, ω∗ and |ω|LZ ,

such that the boundary observability inequality

‖u(0)‖2H1
0 (Ω) + ‖∂tu(0)‖2L2(Ω) ≤ C

∫ T

0
|∂mt ∂xu(t, 0)|2 dt

holds true for any u satisfying W1u = 0 in Ω, together with the boundary conditions (2.11) and
some additional technical requirement on the initial data u(0) and ∂tu(0).

Finally, let us mention that, following some basic ideas of [61, 45], we were able to improve
the counterexample exhibited in [34] and give a full characterisation on how observability and
controllability properties depend on the modulus of continuity of the coefficients. In particular,
we proved the following two facts:

(i) any modulus of continuity which is slightly worse than log-Lipschitz produces an infinite loss
of derivatives in the observability estimates, which then fail;

(ii) for any modulus of continuity which is strictly between the Lipschitz and log-Lipschitz ones,
observability estimates hold, but in general with a finite, but non-zero, loss of derivatives.

It is important to notice that all these results hold true only in the case of one space dimension.
As a matter of fact, their proof relies in an essential way on the technique of sidewise energy
estimates (see e.g. [66]), which consists in exchanging the role of the time and space variables, a
fact which of course holds true only in dimension 1.

In higher space dimension, the problem of proving observability estimates for coefficients which
have low regularity remains open. As a matter of fact, the microlocal analysis tools linked with
the GCC condition requires the coefficients to be at least C2(Ω). On the other hand, important
improvements have been obtained in the last years. For instance, by using refined Carleman
estimates for hyperbolic operators with potential, in [103] Duyckaerts, Zhang and Zuazua were
able to weaken the regularity conditions to C1(Ω). More recently, Dehman and Ervedoza [97] were
able to prove observability estimates for coefficients which are merely C0(Ω), under the additional
geometric assumption

∃α ∈ ]0, 2] such that x · ∇ω(x) + (2− α)ω(x) ≥ 0 in the sense of D′(Ω1) ,
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where Ω1 is a smooth domain such that Ω ⊂ Ω1. This is a geometric condition imposed on ω
along the direction of the multiplier x, which is stronger than the GCC (in fact, the core of the
proof of [97] consists in showing that, even without tracing rays, the previous condition implies
GCC, so observability), but does not involve any additional regularity for ω.

Finally, we mention the very recent series of works [31, 29, 30] about observability properties
for wave operators on Riemannian manifolds with and without boundary, for C1 metrics andW 1,∞

perturbations of them.

2.4 Some open questions and perspectives

I list below some open problems in the context of hyperbolic operators with low regularity coeffi-
cients, in the two directions mentioned above.

Well-posedness

On the side of well-posedness, it is interesting to understand better the role of assumptions of
Zygmund type on the regularity of the coefficients with respect to the space variable. The result
of [54] hints that they may be relevant.

The primary question in this direction is to generalise the well-posedness result without loss for
isotropic Zygmund coefficients (2.10) toHs spaces, for values of s different from 1/2. Motivated by
simple algebraic considerations, it seems reasonable to trying to introduce weighted paraproduct
operators, where weights have to be introduced depending on the size of the frequencies one is
localising at.

Then, one may wonder whether or not it is possible to prove well-posedness with finite loss of
regularity for coefficients which are log-Zygmund both in time and space.

Finally, we mention that there exists another “category” of well-posedness results, obtained
under assumptions on the fast oscillations of the coefficients in one point (say, at t = 0) instead
of the assumptions discussed here on the regularity of the coefficients. We refer e.g. to [58, 205,
219] for results in this direction. However, the proofs therein required high technicalities and
high regularity of the coefficients in space (namely, C∞). In could be interesting to reinterpret
those results in terms of the modified energy of Tarama and see whether it is possible or not to
obtain well-posedness with a simpler proof, and requiring less stringent assumptions on the space
regularity of the coefficients.

Observability and control

On the side of the control and observability problem, the first important question is to tackle
the higher dimensional case d ≥ 2. The recent results of [31, 29, 30] have filled the gap between
C2 and Lipschitz regularity conditions, although in the case of small perturbations of C1 metrics.
Thus, they look as a good starting point to begin the study for less regular coefficients.

On the other hand, questions linked with observability estimates with loss of derivatives have
not been tackled for transport equations with low regularity transport fields. It is well-known, see
e.g. [7], that the solution to such linear equations loses regularity in the evolution, similarly to
what happens for solutions to the wave equations. Whether those results have or not a counterpart
in control theory seems to us an interesting question.





Chapter 3

First-order hyperbolic systems

In this chapter we continue the analysis of the Cauchy problem for hyperbolic operators with low
regularity coefficients. Here, we focus on m×m first-order hyperbolic systems

(3.1) Lu := ∂tu +

d∑
j=1

Aj(t, x) ∂ju ,

where, as in the previous chapter, (t, x) ∈ [0, T ]× Rd, for some T > 0, while now the coefficients
Aj are m×m real-valued matrices.

We immediately introduce the principal symbol associated with the operator L: for all
(t, x, ξ) ∈ [0, T ]× Rd × Rd, we set

(3.2) A(t, x, ξ) :=
d∑
j=1

ξj Aj(t, x) .

Let us also note by
(
λk(t, x, ξ)

)
1≤k≤m ⊂ C the set of its eigenvalues. Recall that the operator L

is said to be hyperbolic if all the λk(t, x, ξ) are real.
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3.1 Introduction

As already disclosed in Chapter 1, a very relevant notion in the context of well-posedness of the
Cauchy problem for the operator L is the one of microlocal symmetrizability. Roughly speaking,
this means that there exists a scalar product, defined microlocally, with respect to which the
symbol matrix A is symmetric. The precise definition is the following one.

Definition 3.1. System (3.1) is uniformly microlocally symmetrizable if there exists a m × m
matrix S(t, x, ξ), homogeneous of degree 0 in ξ, such that:

• ξ 7→ S(t, x, ξ) is C∞ for ξ 6= 0;

• for any point (t, x, ξ), the matrix S(t, x, ξ) is self-adjoint;

• there exist constants 0 < λ ≤ Λ such that λ Id ≤ S(t, x, ξ) ≤ Λ Id for any (t, x, ξ);

• for any point (t, x, ξ), the matrix S(t, x, ξ)A(t, x, ξ) is self-adjoint.

The matrix valued function S is called a (bounded) microlocal symmetrizer for system (3.1).

Notice that, in the previous definition, the word “uniformly” refers to uniformity with respect
to (t, x) ∈ [0, T ]× Rd.

The notion of microlocal symmetrizability extends the previous one of symmetrizability of
system (3.1) in the sense of Friedrichs, which consists in assuming that the symmetrizer S =
S(t, x) does not depend on the frequency parameter ξ. A very special case is the one of symmetric
systems, in which all the matrices Aj are symmetric (in which case, a microlocal symmetrizer is
simply the identity matrix Id ).

We also remark that the existence of a bounded microlocal symmetrizer for L has been proved
[194] by Métivier to be equivalent to the strong hyperbolicity of operator L.

The relevance of Definition 3.1 in the study of the well-posedness of the Cauchy problem
was highlighted in work [162] by Ivr̆ı and Petkov, who proved that the existence of a bounded
microlocal symmetrizer S(t, x, ξ) is necessary for the well-posedness of L in L2(Rd) to hold. How-
ever, this condition is far from being sufficient, even for C∞(Rd) well-posedness, see e.g. the
counterexamples in [214, 194, 63].

On the other hand, for hyperbolic systems (3.1) such that, for all j, one has Aj = tAj , L2

well-posedness can be recovered straightforwardly by assuming Lipschitz continuity of all the Aj ’s
over [0, T ] × Rd. For this, it is enough to defined the energy of the solution as the L2 norm of
the solution and perform an estimate on its time derivative. The result can be easily extended to
hyperbolic systems which are symmetric in the sense of Friedrichs [143, 144]; this means that there
exists a symmetrizer S = S(t, x) with respect to which every Aj becomes self-adjoint. Under a
Lipschitz regularity assumption on both the coefficient matrices Aj and on the symmetrizer S,
energy estimates with no loss, thus L2 well-posedness, can be obtained by working on the modified
energy

(3.3) E(t) :=
∥∥(Su)(t)∥∥2

L2 .

The well-posedness result was later improved by Métivier [193], who was able to consider mi-
crolocally symmetrizable systems, still under the assumption that both coefficients and the sym-
metrizer S(t, x, ξ) are Lipschitz with respect to (t, x) ∈ [0, T ] × Rd. We refer also to [194] for
further developments in this context.

The fact that the regularity of the symmetrizer S is the same as the one of the coefficients
Aj is quite natural and is a consequence of standard perturbation theory for linear operators, as
S can be constructed in terms of the eigenvalues and eigenprojectors of the matrix A(t, x, ξ) (see
e.g. [194, 204]). Notice however that some conditions could be relaxed, if one wants to keep the
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regularity of the coefficients of L separated from the one of the symmetrizer [108]. This is relevant
in the context of transport equations and, more generally, of symmetric hyperbolic systems.

To conclude this introduction, we come back to the counterexamples of [63]. Analogously to
what happens for the wave operator W from the previous chapter, those couterexamples show
that the Cauchy problem for the operator L, assumed to possess smooth coefficients Aj = Aj(t),
is in general ill-posed in L2 whenever the symmetrizer S = S(t) is ω-continuous for some modulus
of continuity ω which is worse than Lipschitz, ill-posed in C∞ whenever ω is less regular than
log-Lipschitz.

3.2 Isotropic log-Lipschitz regularity

In light of the results of [61, 62, 215, 53] for the wave operator W , it seems reasonable to try to
fill the gap between the L2 well-posedness result under a Lipschitz regularity assumption [193]
and the C∞ ill-posedness for regularities worse than log-Lipsschitz [63].

In [57], we considered the case in which system (3.1) is microlocally symmetrizable, under the
isotropic log-Lipschitz regularity condition (2.4) with respect to (t, x) ∈ [0, T ] × Rd on both the
coefficients Aj and the symmetrizer S. Under those assumptions, we proved an energy estimate
with time-dependent loss of derivatives, analogous to Theorem 2.1 above.

Theorem 3.2. Let us consider the first-order system (3.1), and assume it to be microlocally sym-
metrizable, in the sense of Definition 3.1. Suppose moreover that the coefficients

(
Aj
)

1≤j≤d and
the symmetrizer S are bounded matrices which are moreover isotropically log-Lipschitz continuous.

Then, for all s ∈ ]0, 1[ , there exist positive constants C1 and C2, a β > 0 and a time T∗ ∈ ]0, T ],
with β T∗ < s, such that the estimate

(3.4) sup
t∈[0,T∗]

‖u(t)‖Hs−βt ≤ C1 e
C2 T

(
‖u(0)‖Hs +

∫ T∗

0

∥∥Lu(τ)
∥∥
Hs−βτ dτ

)
holds true for any tempered distribution u ∈ L2

(
[0, T ];H1(Rd;Rm)

)
∩ H1

(
[0, T ];L2(Rd;Rm)

)
.

An analogous estimate holds true also for the adjoint operator L̃.

From Theorem 3.2 it is a routine matter to derive C∞ well-posedness for L with a finite loss
of derivatives.

The proof of the previous theorem follows the main guidelines of the corresponding one for
the wave operator W , as explained in Chapter 2. However, we observe that, owing to the possible
singularity of the symmetrizer S(t, x, ξ) at ξ = 0, dealing with low frequencies requires a special
treatement.

As already noticed, at this stage the regularity conditions on the coefficients Aj could be
somehow relaxed. We refer to Remark 4.8 of [57] for more details in this respect. However, the
isotropic log-Lipschitz condition looks particularly convenient to perform a local analysis.

Thus, inspired by the study carried out in [62] for wave equations, in [57] we studied the
local-in-space Cauchy problem. More precisely, given a smooth open bounded domain Ω ⊂ R1+d,
we considered the operator

P (z, ∂z)u :=
d∑
j=0

Aj(z) ∂zju ,

form×m real-valued matrices Aj defined on Ω, log-Lipschitz continuous on Ω. We fixed a smooth
hypersurface Σ ⊂ Ω, with parametrisation Σ =

{
ϕ(z) = 0

}
, and a point z0 ∈ Σ. We studied

local existence and uniqueness of solutions to the Cauchy problem

(CP )

{
Pu = f

u|Σ = u0 ,
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where u0 ∈ Hs(ω0), with ω0 being a neighbourhood of z0 in Σ, and f ∈ Hs(Ω0 ∩ {ϕ > 0}), with
Ω0 being a neighbourhood of z0 in Ω. Here, s ∈ ]0, 1[ as in the global Cauchy problem.

As a matter of fact, our regularity assumptions and the hypothesis of microlocal symmetriz-
ability are invariant under smooth change of variables. So, the local statements can in fact be
reconducted to the global ones, after performing a suitable change of frame and after an applica-
tion of the extension operator. Hence, one can prove the existence of a s0 ∈ ]0, s[ and of a unique
solution u ∈ Hs0(Ω0 ∩ {ϕ > 0}) to (CP ).

To conlude this part, we observe that, in our low regularity framework, the sense of the local
Cauchy problem is not so clear a priori: for instance, it is not clear that we can give sense to the
trace u|Σ of a local solution u belonging merely to Hs0 . Hence, the first part of the analysis was
devoted to give sense to the formulation of (CP ). We also explicitly point out that no assumption
on the manifold Σ have to be made: the fact that the Cauchy problem is non-characteristic with
respect to Σ is guaranteed by the assumption of uniform strong hyperbolicity [194] on P .

3.3 Zygmund-type conditions

Let us come back to the global-in-space Cauchy problem, hence to operator L defined in (3.1).
Keeping in mind the result of Tarama [215] as well as the following extensions for the case of scalar
wave operators, one may think that Zygmund-type assumptions are suitable also in the context of
hyperbolic system, leading to substantial improvements of the results of [193] (i.e. well-posedness
in L2 for Lipschitz coefficients and symmetrizer) and of [57] (less regular coefficients in time could
be considered, without qualitative changes in the statement of the previous Theorem 3.2).

Nonetheless, there is an intrinsic difficulty in such an argument. Pushing the parallel with
Tarama’s result further, we see that we need to include a lower order corrector in the definition
of the energy; in turn, owing to (3.3), this boils down to performing suitable modifications in the
definition of the symmetrizer, and more precisely to finding a symmetrizer which behaves “in the
correct way” when performing energy estimates. How to do that in full generality seems to be out
of reach; one has rather to work case by case on the specific form of the operator L, in order to
find a suitable symmetrizer for it, where “suitable’ of course refers to the capability of producing
good cancellations in the energy estimates.

In [56], we considered operator (3.1) in the special case in which its coefficients only depend
on the time variable. Namely, we focused our attention on the operator

(3.5) Lu := ∂tu +
d∑
j=1

Aj(t) ∂ju ,

and we formulated Zygmund-type regularity assumptions on the Aj ’s. In order to keep the
discussion simple, we only consider the pure Zygmund case, which reads as follows: there exist
p ∈ [1,+∞] and K > 0 such that, for all 1 ≤ j ≤ d and all 0 ≤ τ ≤ T/2, one has

‖Aj( · + τ) + Aj( · − τ) − 2Aj( · )‖Lp([τ,T−τ ];Mm(R)) ≤ K τ ,

whereMm(R) denotes the space of m×m real-valued matrices, endowed with the classical sup-
norm. The case of log-Zygmund coefficients could be considered as well, at the price of having a
more elaborated (and of course qualitatively different, as a regularity loss is produced) statement.

In light of the discussion above, we dismessed the assumption of microlocal symmetrizability
of L. We supposed instead that L is hyperbolic with constant multiplicities. This means that
the eigenvalues λj(t, ξ), for 1 ≤ j ≤ m, of the matrix A = A(t, ξ) defined in (3.2) are all real,
semi-simple and have constant multiplicities in t and ξ. In particular, the more classical strictly
hyperbolic case, in which λj(t, ξ) 6= λk(t, ξ) for all j 6= k and any (t, ξ) ∈ [0, T ]× Rd, is included
as a special case.

Under the previous assumptions, in [56] we proved an energy estimate with no loss of regularity.
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Theorem 3.3. Let us consider the first-order system (3.5), and let us assume it to be hyperbolic
with constant multiplicities. Suppose moreover that the coefficients

(
Aj
)

1≤j≤n satisfy the Zygmund
condition formulated above, for some p ∈ ]1,+∞].

Then, for all s ∈ R, there exist positive constants C1, C2 (just depending on s and on K) such
that the estimate

sup
t∈[0,T ]

‖u(t)‖Hs ≤ C1 e
C2 T

(
‖u(0)‖Hs +

∫ T

0

∥∥Lu(τ)
∥∥
Hs dτ

)
holds true for any u ∈ C1

(
[0, T ];H∞(Rd;Rm)

)
.

A statement in the same spirit can be proved also for log-Zygmund regularity assumptions.
We refer to [56] for the precise result. We refer to that work also for comments on the assumption
p > 1 in the previous statement, as well as for a parallel with 1-D wave equations with Zygmund
coefficients.

Let us comment a bit on the proof of the previous theorem.
It is well-known [193, 204] that, in the smooth case, hyperbolic systems with constant multi-

plicities are smoothly diagonalizable, so in particular microlocally symmetrizable. As a matter of
fact, if we denote by Πj the projection operators onto the eigenspaces Ej of the matrix A(t, ξ),
then a symmetrizer for system (3.5) is defined as

S :=
∑
j

Π∗j Πj .

So, the assumptions of Theorem 3.3 put ourselves in a context where it is possible to construct
a microlocal symmetrizer for system (3.5). However, here the challange is to find a suitable
symmetrizer, which is able to produce the sought cancellations (in the same spirit of Tarama’s
work [215]) in the energy estimates and, in the end, to give us an estimate without loss of
derivatives.

Our idea was to look for an approximate symmetrizer of the form

Sε(t, ξ) = S0
ε (t, ξ) + |ξ|−1 S1

ε (t, ξ) ,

where both S0
ε and S1

ε are self-adjoint and bounded, S0
ε being positive definite. The first term

represents the principal part of Sε, while the second term is a lower order corrector, whose role
is to kill the terms out of control arising from the time derivative of S0

ε . Finally, ε > 0 is an
approximation parameter, which is fixed afterwards according to the classical choice (1.8).

Let us omit the regularisation parameter ε > 0 from the rest of the argument. Contrarily to
the classical situation, this time, roughly speaking, we construct S0 and S1 of the following form:

S0 =
∑
j

Π∗j Σ0
j Πj and S1 =

∑
j

∑
k 6=j

Π∗j Σ1
jkΠk ,

where Σ0
j is a self-adjoint (diagonal, in fact) operator acting on the eigenspace Ej , whereas Σ1

jk :
Ek −→ Ej has the role of bringing to the eigenspace Ej suitable corrections coming from the
eigespace Ek, in order to produce the sought cancellations. In fact, Σ1

jk can be recovered, from
algebraic relations, in terms of Σ0 and of the eigenprojectors, so the key point is to find Σ0. Now,
the construction of Σ0 is reconducted to solving an ODE system in Zygmund classes, at least in an
approximate way (smooth remainders will appear when cutting out the low frequencies in time).
In goes without saying that, also in this context, the use of Littlewood-Paley theory (in particular
to characterise Zygmund and log-Zygmund spaces as special Besov spaces) and paradifferential
calculus with parameters came into play in a fundamental way.
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As a last comment of this part, we mention that, in [108], we devoted attention to local
in space questions (finite speed of propagation, local existence and uniqueness) for operator L
defined in (3.5), for even less regular coefficients Aj(t) (essentially, L1 in time condition). The
study is based on an analysis of the operator in the phase-space and on a suitable application of
the Paley-Wiener theorem.

3.4 Some perspectives

We conclude this chapter by mentioning some questions which catch our attention and which we
would like to consider in the future.

The primary question in this context is to extend the results of [56] to the case of coefficients
also depending on the space variable, in the same spirit of [53] and [54] for the scalar wave
equations. The problem looks quite hard to solve, as the ODE system used to identify the matrix
Σ0 is expected to be replaced, in this case, by a transport equation, which does not allow to
retrive the initial Zygmund regularity of the coefficients (there is no elliptic effect in the transpot
equation).

Also, it seems interesting to us to explore effects of the low regularity coefficients in the control
and optimal control problems for operator (3.1), extending in this way the study of [11, 12],
devoted to the regular case (actually, for the very special case of transport equations).

Finally, it could be interesting to apply the results about linear operators with low regularity
coefficients to the study of non-linear problems (in the vein of [88], for instance) and to the study
of propagation of oscillations in singular perturbation problems (see more about that in Part III).
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Well-posedness of non-linear
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Chapter 4

Overview of Part II

In Part II we start considering non-linear equations and systems, in particular those coming from
fluid mechanics models.

Before entering into the core of the discussion, we should point out that the content of this
part is widely heterogeneous. As a matter of fact, the general goal is to investigate well-posedness
questions, but this will be done for a large variety of models. In what follows, we have decided to
divide the material into two parts, the one concerning viscous models (see Chapter 5) and the one
concerning inviscid models (see Chapter 6). However, in Chapter 6 we will encounter situations
in which the fluid is viscous, but the viscosity tensor only presents a skew-symmetric component;
as a consequence, the viscosity term does not contribute to the energy balance. Thus, a different
classification of the material could be “dissipative vs non-dissipative models”1, or alternatively
“parabolic models vs hyperbolic models”2. Despite this rough classification, each chapter in it-
self will be heterogeneous, both concerning the systems of equations we will treat (for instance,
compressible, quasi-incompressible and incompressible equations, models from turbulence theory,
fluids with odd viscosity. . . ) and the kind of solutions (regular, strong, weak, statistical) we will
be interested in.

In this introductory chapter, we will try to make some order in all this material and put in
evidence the common features and the main points which deserve attention. We refer to Chapters
5 and 6 for more details on the specific problems under consideration.

As already said, in Part II we are interested in well-posedness questions linked to various
models from fluid mechanics. Thus, we will investigate existence and uniqueness of solutions and
their lifespan; sometimes, we will also be interested in describing some qualitative properties of
solutions.

The keyword here will be non-homogeneity, inasmuch as we will always consider flows of non-
homogeneous fluids. This is the case, for instance, for (compressible or incompressible) fluids
presenting density variations, or more generally variations of some of their inner properties. With
this last expression, we refer in particular to models for turbulent flows, like the well-known k-ε
models, in which the small-scale quantities (typically, the turbulent kinetic energy and the energy
dissipation rate) are treated as independent unknowns of the system. We also have in mind
electrically conducting fluids, which are characterised by the presence of a non-trivial magnetic
field, which is self-induced by the fluid through its own motion. Sometimes we will consider
situations where the heterogeneity is introduced by the interaction with the exterior (this is the
case of open systems): at the mathematical level, this interaction is encoded by non-trivial in-
flow/out-flow boundary conditions.

The leitmotif of the whole part will be low regularity, in the sense that we will perform our
1This classification is not completely satisfactory either, as it remains ambiguous about the dissipation mecha-

nism which acts on the system.
2This classification, instead, is not completely correct, as hyperbolicity does not always hold strictu senso;

indeed, many of the considered models are incompressible, thus non-local effects are also involved.
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studies in a framework demanding minimal regularity assumptions on the initial data. So, in
the viscous case, we will mainly work in the framework of weak solutions having finite energy,
reminiscent in spirit of Leray’s solutions to the incompressible Navier-Stokes system. We will also
base our construction of statistical solutions on that class of solutions. In other cases, we will
consider strong solutions, but having minimal regularity; we point out that, in general, we will
not be at critical regularity in the sense of the scaling invariance of the equations, but slightly
subcritical. This is the case in particular when dealing with hyperbolic models or degenerate
parabolic models: as it is well-known, in those cases one typically needs to work in (subcritical)
spaces which are embedded in the space W 1,∞ of globally Lipschitz functions.

We point out that working with solutions having minimal regularity has not only a mathemat-
ical flavour, but is also important for describing special classes of solutions. A typical situation
which catches our attention is the case of discontinuities in the density functions: in the case
of two-phase flows, the density function experiences a jump at the interface separating the two
phases; a similar situation appears when considering the prensence of two immiscible fluids (like
oil-water, for instance) in the same region of space. Both for theoretical reasons and in view of
applications, it is then important to capture, at the mathematical level, solutions which possess
that structure and to understand their evolution. In order to describe such configurations, it is
clear that one cannot rely on the theory of strong solutions, which are typically regular and do
not allow for any kind of discontinuity of the unknowns. On the other hand, the notion of weak
solutions (for instance, the ones having finite energy) is too weak, as one often misses uniqueness
and any qualitative information on the solutions. In particular, a description of the evolution
of the discontinuity interface seems out of reach in the weak solutions framework. Therefore,
one needs a setting able to guarantee that the considered weak solutions possess some additional
structure. In this respect, two settings come to our mind.

The first setting which is able to consider weak solutions with some additional qualitative
properties is the Hoff theory [155, 156, 157, 158] of shock data for the compressible Navier-
Stokes system: this is a theory of global in time finite energy weak solutions having small energy.
The smallness of the energy allows Hoff to point out additional regularity properties for certain
quantities, which are smoothed out in the dynamics: these are the vorticity of the fluid and the
so-called effective viscous flux (see also the work [212] by Serre about the one-dimensional case).
We refer to Section 5.2 below for more details about this, and to [159, 202] for extensions of Hoff’s
theory to the case of discontinuity regions of the density presenting corner-type singularities.

The second idea we will pursue here goes back to the pioneering works of Chemin [37, 38] about
the vortex patches problem for the 2-D incompressible Euler equations. The point is to resort
to some tangential regularity assumption over the initial density function and/or the velocity or
vorticity of the fluid: even though those quantities present jumps at some interface (for instance,
coming back to one of the examples discussed above, the density is discontinuous at the interface
separating oil and water), so they are irregular in the normal direction, they are instead more
regular in the tangential directions; sometimes, this information is all that one needs in order
to deal with non-linear models. In order to make this discussion more clear and concrete, let us
consider the 2-D Euler equations written in vorticity formulation:

(4.1)

{
∂tω + u · ∇ω = 0

u = −∇⊥ (−∆)−1 ω ,

where u ∈ R2 is the velocity field of the fluid and ω := curl (u) = ∂1u
2 − ∂2u

1 the (scalar)
vorticity associated to u. The first equation appearing above says that ω is purely transported by
u, which can in turn be recovered from ω by solving the second equation appearing in (6.2), called
Biot-Savart law. For any 2-D vector v ∈ R2, v = (v1, v2), we have denoted by v⊥ = (−v2, v1) its
rotation of angle π/2; so, in particular we have set∇⊥ = (−∂2, ∂1) in the Biot-Savart law. Assume
to have initially a vortex patch, namely that the initial vorticity ω0 = 1D0 is the characteristic
function of a bounded domain D0 of class (say) C1,ε. Then, Yudovich’s theory ensures that a
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global in time weak solutions ω ∈ L∞
(
R+;L1(R2) ∩ L∞(R2)

)
to (6.2) exists. Moreover, as the

velocity field u is log-Lipschitz in space in this case, one can propagate the vortex patch structure
by its flow: for any t ≥ 0, one has ω(t) = 1D(t), where the domain D(t) = ψt(D0) is the image
of D0 by the flow ψt associated to u. Remark that, in the previous situation, the vorticity ω
presents a jump discontinuity in the direction which is normal to the boundary ∂D(t) of the
domain D(t), but is regular in the tangential direction (the tangential derivative is actually 0).
The fundamental idea of Chemin was to use tangential regularity to show that, under the previous
assumption D0 ∈ C1,ε for some ε ∈ ]0, 1[ , u is in fact Lipschitz and then D(t) ∈ C1,ε for any later
time t ≥ 0. In order to understand the key role played by the tangential regularity of ω at the
boundary ∂D(t) of the domain, let us give a sketch of the proof in the flat case, namely in the
situation where ω is more regular (say) in the x1-direction. So, assume that

div u = 0 , ω ∈ L1(R2) ∩ L∞(R2) , ∂1ω ∈ Cε−1 ,

where the negative Hölder space Cε−1 is defined as the Besov space Bε−1
∞,∞. Notice that the last

assumption above means that ω has ε-regularity more than expected in the x1-direction. Our
goal is to prove that ∇u ∈ L∞(R2): as a matter of fact, with this property at hand, propagating
the regularity of the domain easily follows. Now, a direct computation shows that ∂1ω = ∆u2, so
that ∇u2 = −∇(−∆)−1∂1ω is easily seen to belong to L∞ (notice that, here, one not only has to
use the assumption on ∂1ω, but also to cut ∇u2 into low and high frequencies and estimate the low
frequencies using the Bernstein inequalities). Next, by using the divergence-free condition over u
one immediately gets that ∂1u

1 is also bounded over R2. Finally, one may write ∂2u
1 = ∂1u

2−ω,
so that also this component belongs to L∞, as claimed. The core of Chemin’s proof [37, 38] consists
in generalising this argument to the non-flat situation. We also observe that the underlying idea,
namely tangential regularity of the vorticity, generalises very well also to other situations in
which there is no hope to transport patches structures, for instance to viscous fluids and to higher
dimensions. We refer to Chapter 7 of [8] for further results and references for homogeneous
fluids; we also refer to [105, 152, 154, 151, 172, 146, 90, 89, 147, 174, 87, 173, 148] for some
implementations of that idea in the context of non-homogeneous fluids.

We will see in Section 5.2 below how Hoff’s theory and Chemin’s idea combines in the study
of the compressible Navier-Stokes equations. For the time being, let us stop here the discussion
about low regularity issues and move forward in the presentation of the material of Part II.

Another question which occupies a central role in Part II is the study of the lifespan of solutions
to the various models under consideration. In fact, we will always deal with local in time well-
posedness results. The only exception to this will be when constructing statistical solutions for
the barotropic Navier-Stokes equations: as a matter of fact, as already mentioned above, that
construction is based on the notion of finite energy weak solutions, which are known to exist
globally in time [177, 123]. Thus, apart from the latter case, questions about the lifespan of
solutions arise. For instance, we will often be interested in providing lower bounds for the time
of existence of solutions in terms of the norms of the initial data, as well as in deriving blow-
up/continuation criteria similar in spirit to the Beale-Kato-Majda continuation criterion for the
incompressible Euler equations. Sometimes, instead, we will be able to formulate assumptions on
the initial data to guarantee that the corresponding solutions must blow up in finite time.

To conclude this introductory chapter, we mention also that an underlying common theme
of Part II is the study of some questions related to turbulence theory. First of all, the notion of
statistical solution is strictly linked to turbulence theory, as the rough idea is to take averages
over flows and look at how the fluid behaves statistically; besides, we will use statistical solutions
to investigate the validity of the so-called ergodic hypothesis from physics and engineering in the
context of energetically open systems. In addition, we will be interested in studying well-posedness
of systems of equations used to model a turbulent motion of a fluid: in the next chapter we will
consider the 1-D counterpart of a special k-ε model, also known as Kolmogorov’s two-equation
model of turbulence, whereas in Chapter 6 we will deal with a system for non-homogeneous fluids
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having odd viscosity; such an odd viscosity term is sometimes used in the description of a turbulent
flow as a coherent collection of various systems of vortices at different scales.

Part II unfolds in the following way. In Chapter 5 we will consider systems of viscous flows,
where viscosity here has to be interpreted in the classical sense, as a dissipative mechanism acting
during the motion. In that chapter, we will mainly work in the context of compressible flows. In
Chapter 6, instead, we will study systems describing the dynamics of inviscid fluids, or better of
fluids whose motion does not present any dissipative effect. In that part, the flows will mainly be
(quasi-)incompressible.



Chapter 5

Well-posedness for some viscous models

This chapter is devoted to the study of well-posedness questions related to various viscous models
for non-homogeneous fluids.

The main system we consider is the compressible barotropic Navier-Stokes system. In Section
5.2 we will revise Hoff theory of weak solutions for shock data and see how to generalise those
results by using a tangential regularity approach. In Section 5.3, instead, we will use the classical
weak solutions theory by Lions-Feireisl in order to build up a theory of statistical solutions for
energetically open systems. Besides, this approach will enable us to investigate the validity of the
so-called ergodic hypothesis from turbulence theory in this context.

We point out that, in this part, we avoid any discussion on strictly related models, like the
Navier-Stokes-Fourier system (see e.g. [131] for a comprehensive study) or systems presenting
density-dependent degenerate viscosity coefficients (see [24, 22, 190, 216] and references therein,
for instance). As a matter of fact those systems present their own specificities, thus driving us
very far from the scopes of our presentation.

In the last part of the chapter, see Section 5.4, we will consider instead a one-dimensional
reduction of the Kolmogorov two-equation model of turbulence. We will show a local in time
well-posedness result, together with finite time blow-up for special classes of initial data.

Because of the importance played by the notion of weak solutions to the compressible Navier-
Stokes system in this chapter, let us start with an introductory section about it.

Works presented in the chapter

(P.17) R. Danchin, F. Fanelli, M. Paicu: A well-posedness result for viscous compressible fluids
with only bounded density. Anal. PDE, 13 (2020), n. 1, 275-316.

(P.19) F. Fanelli, E. Feireisl: Statistical solutions to the barotropic Navier–Stokes system. J. Stat.
Phys., 181 (2020), n. 1, 212-245.

(P.24) F. Fanelli, E. Feireisl, M. Hofmanová: Ergodic theory for energetically open compressible
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39



40 Chapter 5. Well-posedness for viscous models

5.1 Compressible Navier-Stokes: weak solutions theories

Let Ω be a smooth domain of Rd, with d ≥ 2. We left aside the case d = 1, as it is in some sense
special and, by now, quite well understood [155]. Througout this chapter, we will consider either
the case Ω = Rd or the case in which Ω is bounded, supplemented with suitable (non-homogeneous,
Dirichlet-type) boundary conditions.

For (t, x) ∈ R+ × Ω, we describe the motion of a viscous fluid of density ρ = ρ(t, x) ≥ 0 and
velocity field u = u(t, x) ∈ Rd by the barotropic Navier-Stokes sytem

(5.1)

 ∂tρ + div
(
ρ u
)

= 0

∂t
(
ρ u
)

+ div
(
ρ u⊗ u

)
+ ∇P (ρ) − µ∆u − λ∇u = 0 ,

where P = P (ρ) is the pressure field, while µ and λ are, respectively, the shear viscosity and the
bulk viscosity coefficients, which we assume to be strictly positive constants here.

Throughout this part, we assume that the pressure function satisfies

(5.2) P ∈ C1
(
[0,+∞[

)
, P ′(z) > 0 for z > 0 , P ′(z)≈ zγ−1 for z → +∞ ,

for a certain γ > 1. The prototypical example of pressure function is given by the Boyle law
P (ρ) = Aργ , for some constant A > 0, but more general functions can be considered, according
to the previous hypothesis. More restrictions about the value of γ will appear in a while. For
the time being, let us remark that the monotonicity assumption P ′(z) > 0 on the pressure is
fundamental to set down a weak solution theory, although some results exist in the case when
this assumption does not hold, see e.g. [122, 25].

5.1.1 Energy inequality

The barotropic Navier-Stokes system (5.1) possesses an energy balance law. Before presenting it,
a few definitions are in order. First of all, we introduce the pressure potential H = H(z), defined
through the ODE

∀ z > 0 , z H ′(z) − H(z) = P (z) .

This in particular implies that H ′′(z) = P ′(z)/z, so H is a convex function on [0,+∞[ owing to
the assumptions formulated on the pressure law. From now on, we fix the choice

(5.3) H(z) = z

∫ z

1

P (s)

s2
ds .

Next, we define, for z ≥ 0 and z > 0, the functional

(5.4) H
(
z
∣∣ z) := H(z) − H(z) − H ′(z)

(
z − z

)
as the Bregman divergence associated to the convex function H.

Finally, we define the energy associated to a couple of functions
(
ρ, u
)
, representing the density

and the velocity field of a fluid respectively, as the sum of the kinetic and internal energies. More
concretely, in the case of Ω bounded, we define the function

(5.5) E
(
ρ, u
)

:=

∫
Ω

(
1

2
ρ |u|2 + H(ρ)

)
dx .

In the case in which Ω is unbounded, instead, it is better to measure the variations of the density
with respect to a reference state, which, without loss of generality, we can assume to be 11. Then,
we set

(5.6) E
(
ρ, u
)

:=

∫
Ω

(
1

2
ρ |u|2 + H

(
ρ
∣∣ 1)) dx .

1Notice that the couple (1, 0) is a static state of equations (5.1). More general static states can be considered,
in different situations; see Chapter 8 below, for instance.
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Then, performing an energy estimate on the momentum equation, for any solution
(
ρ, u
)
to

system (5.1), we (formally) obtain the following energy inequality: for any t ≥ 0, one has

(5.7) E
(
ρ, u
)
(t) +

∫ t

0

∫
Ω

(
µ |∇u|2 + λ |div u|2

)
dx dt ≤ E

(
ρ0, u0

)
,

where we have set E
(
ρ, u
)
(t) = E

(
ρ(t), u(t)

)
and where we have assumed that we have fixed the

initial datum
(
ρ0, u0

)
for the problem (5.1). Of course, we assume that the initial datum has been

chosen of finite energy, i.e. so that E
(
ρ0, u0

)
< +∞.

Notice that, proceeding formally, one would rather get an equality, instead of the previous
relation; however, at the level of the theory of weak solutions (where an approximation procedure
is needed to solve the equations), one can rigorously prove that only the inequality (5.7) is satisfied.

We also remark that the previous estimate is valid as soon as there is no contribution from
the boundary of the domain Ω. Thus, the energy inequality (5.7) holds in the whole space case
Ω = Rd (or even in the d-dimensional torus Ω = Td), or whenever Ω has smooth boundary ∂Ω,
provided the equations are supplemented with homogeneous (no-slip or complete-slip) boundary
conditions. We will see in Section 5.3 how the previous relation has to be modified in case some
contribution from the boundary terms would appear.

5.1.2 Lions-Feireisl theory of weak solutions

Based on the energy inequality (5.7), in the late 90’s Lions [177] (with subsequent improvements
by Feireisl and collaborators [135, 123]) was able to set down a theory of weak (distributional)
solutions at the level of regularity imposed by that relation. These are called finite energy weak
solutions, and they are known to be globally defined in time. This theory plays the same role of
the Leray solutions for the incompressible (homogeneous) Navier-Stokes system.

In this subsection, let us briefly highlight some delicate points of the analysis.
First of all, we remark that, from the energy inequality (5.7), one can only deduce that ρ (or

ρ− 1, in the case we consider an unbounded domain Ω) belongs to L∞
(
R+;L2(Ω) +Lγ(Ω)

)
. The

L2 part comes from the region in which ρ ≈ 1 (the so-called “essential part”), whereas the growth
of the pressure function (5.2) at +∞ yields only a bound in Lγ in the complementary region (the
so-called “residual part” of the domain). In particular, one does not dispose of any L∞ bound
for the density at the level of regularity of the finite energy weak solutions. Nonetheless, one
can deduce bounds for the velocity field u alone in L2

loc

(
R+;H1(Ω)

)
from viscosity and Sobolev

embeddings.
As a consequence of the previous bound on the density function, the pressure P (ρ) ≈ ργ is

seen to be only L∞
(
R+;L1(Ω)

)
, and this is of course a problem in the proof of existence of weak

solutions, which consists, as previously hinted to, in constructing smooth approximate solutions
and passing to the limit in the approximation parameters by a compactness argument. Then,
it is not clear that limit of the pressure function applied to the approximate densities is in fact
the pressure function computed at the limit density. The first point to solve this issue is to
get additional integrability for the density functions: this follows from a delicate and intricate
argument, based on the use of harmonic analysis tools (in the whole space case) and of Bogovskii
operator (for bounded Ω). Next, in order to guarantee that the limit of the pressure functions
is indeed the pressure function related to the limit density, one needs some strong convergence
properties of the approximate densities. For this, one uses properties related to the effective
viscous flux (see what said in Chapter 4; more details will be given in the next subsection),
together with a convexity argument: with these ingredients at disposal, one can thus control the
oscillations in the density functions and prove in fact that, if there are no oscillations at initial
time, then they must be zero also at later times.

We remark that carrying out the previous argument for obtaining the strong convergence of
the densities requires the fundamental restriction γ > d/2 on the index appearing in (5.2). In
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addition, we stress the fact that the use of the effective viscous flux is based on the isotropy of
the viscous stress tensor, meaning that the viscosity coefficients µ and λ are uniform in all the
three space directions. Some improvements in this direction have recently been obtained in [25],
but the general picture is still unclear. Isotropy of the viscous stress tensor will play a role in
the study of singular limit problems for rotating fluids, see in particular the paragraph related
to Ekman boundary layers in Section 8.5. Finally, we point out that the Lions-Feireisl theory
of global in time finite energy weak solutions suffers of the same pathologies as Leray’s theory
of weak solutions for the incompressible Navier-Stokes sytem: their uniqueness and regularity,
together with the validity of the energy equality, are outstanding open questions.

5.1.3 Hoff theory for shock data

It is clear that the weak solutions theory exposed above lacks of enough properties to give any
kind of qualitative information on the solutions. Strong solutions theory does allow for a more
precise description of the dynamics, but it imposes limitations on the kind of phenomena one can
describe: for instance, considering densities which have discontinuities at an interface (a situation
which frequently occurs in nature, and so is highly desirable to capture theoretically) is out of
reach in that framework.

It turns out that, in parallel to the weak solutions theory by Lions-Feireisl, Hoff [155, 156]
developed a theory for the so-called “shock data” (namely, initial data for which the initial density
is discontinuous) and constructed global in time finite energy weak solutions emanating from finite
energy initial data having sufficiently small energy. The smallness of the initial energy here is
crucial; this assumption marks the difference with what exposed in Subsection 5.1.2 about the
other class of finite energy weak solutions to system (5.1). Let us immediately point out that,
in work [156] devoted to the multi-dimensional case, Hoff missed the compactness arguments of
Lions-Feireisl (and in fact, the existence result in that paper is stated only for linear pressure laws
P (ρ) = Aρ), but the existence theory for large data [177, 123] uses in a fundamental way ideas
which go back to Hoff theory (and in turn rely on some observations of Serre [212] in 1-D).

The key observation of Hoff was that, although the density ρ and div u may present disconti-
nuities, the quantity

F := div u − 1

ν

(
P (ρ) − P (1)

)
(with ν := µ+ λ) ,

called effective viscous flux, remains continuous in the dynamics. This property, together with
the smallness of the initial energy, allowed Hoff to derive, under suitable assumptions, additional
regularity also for other quantities, namely the vorticity ω := ∇×u of the fluid and the advective
derivative u̇ := ∂tu + u · ∇u. Thus, for almost any time t > 0, ω(t) and F (t) are proved to be
H1(Rd), with moreover F (t) Hölder continuous over Rd, although they are not so at time t = 0;
as a matter of fact, the proof relies on energy estimates with time weights. In addition, this
argument yields a global L∞ bound for the density variations ρ(t)− 1.

In a subsequent paper [157], Hoff gave a description of the propagation of discontinuities of
the density in 2-D, for all times. Thus, if the initial density is piecewise α-Hölder continuous
for some α ∈ ]0, 1[ , but it has a sufficiently small jump across a Jordan curve K0 of class C1+α,
then (under a smallness condition on the initial datum and under a slightly better regularity
assumption on the initial velocity) one can prove that the gradient of the velocity field u satisfies
∇u ∈ L1

loc

(
R+;L∞(Rd)

)
and that both ρ(t) − 1 and div u(t) are piecewise α-Hölder continuous,

presenting a jump discontinuity across the C1+α Jordan curve Kt, which is simply the initial curve
K0 transported by the flow of the solution. In particular, discontinuities on the density function
are not smoothed out by the effect of the viscosity, but they instead persist for all times (although
the size of the jump decreases exponentially in time).

The advantage of the previous result is that it gives a rather precise description of the evolution
of the density discontinuities for all times. On the other hand, it only holds true in the two-
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dimensional case and under the very severe assumption of linear pressure laws P (ρ) = Aρ, i.e.
γ = 1. Another limitation is that both results of [156, 157] only give existence of solutions, but
they are not able to guarantee uniqueness.

Uniqueness of solutions in this framework was tackled by Hoff afterwards, in paper [158].
The result was obtained through stability estimates in L2

(
[0, T ] × Rd

)
for the velocity u and

in L∞
(
[0, T ];H−1(Rd)

)
for the density ρ. In order to carry out the stability estimates, Hoff

formulated a series of assumptions which had to be verified by the solutions
(
ρj , uj

)
j=1,2

, and
then he checked that almost all those assumptions were verified by the solutions he constructed
in his previous works. As a matter of fact, a couple of assumptions were elusive and remained as
true hypotheses in the uniqueness result. The first one reads ∇uj ∈ L1

(
[0, T ];L∞(Rd)

)
; it was

necessary in order to pass to Lagrangian coordinates and avoid, in this way, the loss of derivatives
caused from the (hyperbolic) equation satisfied by the density function. Of course, the solutions
constructed in paper [157] satisfied that assumption, but (as declared by Hoff in his paper, see page
1743 of [158]) a precise characterisation of initial data which generate solutions possessing that
property was unclear. The second condition was imposed on the pressure function: for passing
from a H−1 control on the pressure P (ρ) to a H−1 control on ρ, he asked either for (roughly)
a Lp bound for the gradient of the density (an assumption which is not well-suited in order to
describe densities having jump discontinuities) or for the pressure law to be linear, hence again
P (ρ) = Aρ. This allowed him to close the stability estimates.

5.2 Compressible Navier-Stokes: beyond Hoff’s theory

In paper [84], we generalised Hoff’s theory, obtaining a description of the evolution of the density
discontinuities together with uniqueness for general pressure laws (in fact, they do not even need
to be monotonically increasing) and in any space dimension d ≥ 1. In order to explain the result
in this direction, some preliminary notation is needed.

First of all, we assume that the pressure function satisfied

P (ρ) ∈ W 1,∞
loc (R+) , with P (1) = 0 .

Observe that the last condition is certainly not restrictive. In addition, we define the two quantities

(5.8) σ := ρ− 1 and v := −1

ν
∇(−∆)−1P (ρ) .

Recall that we have set ν := µ+λ to be the sum of the two viscosity coefficients. As a matter of
fact, the vector field v is defined in [84] as v := −∇(Id −ν∆)−1P (ρ), as the operator (Id −ν∆)−1

is better behaved for low frequencies than (−∆)−1. However, for the scopes of this presentation
it is enough to consider the previous definition. Then, we introduce the effective velocity

w := u − v .

Observe that divw = F is the effective viscous flux of Hoff. The point is that, from the momentum
equation, we find that w satisfies the following equation:

(5.9) ∂tw + Lw = G ,

where we have defined the Lamé operator L by the formula Lw = −µ∆w − λ∇divw and the
forcing term G by

(5.10) G = − (1 + σ)(w + v) · ∇(w + v) − σ ∂tw +
1

ν
(1 + σ)∇(−∆)−1∂tP (1 + σ) .

The point is that Lv +∇P (ρ) = 0, and this cancellation allows us to avoid the presence of the
term ∇P (ρ) (which would demand a control on one derivative of the density) in the right-hand
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side of equation (5.9). Observe that, owing to the low frequency corrector (Id − ν∆)−1, in [84]
this relation is not exactly zero, but the result is however more regular than P (ρ).

Now, the idea is to apply maximal regularity estimates to the parabolic problem (5.9), an
approach which only requires integrability of the right-hand side G, but no regularity. First
of all, we observe that dealing with the convective term, namely the first term appearing in
(5.10), requires to develop a maximal regularity type estimates also for first order and zero-th
order derivatives of w. We point out that, from the maximal regularity approach, we are able
to retrieve the information divw ∈ L1

T (L∞). Thus, if initially σ0 is small, say ‖σ0‖L∞ ≤ ε for
a small enough ε > 0, then we can propagate this information by the mass equation and say
that σ remains small, at least locally in time. Thus, the ∂tw term appearing in the definition
of G becomes just a remainder, to be absorbed into the left-hand side in the maximal regularity
estimates. Finally, one more use of the mass equation guarantees us that the last term on the
right of (5.10) is of lower order.

In the end, we are able to close the estimates in some finite time interval [0, T ]. The statement
can be roughly stated as follows.

Theorem 5.1. Let d < p < +∞ and 1 < r < r∗ = r∗(d, p). Assume that σ0 ∈ Lp(Rd) ∩ L∞(Rd)
satisfies ‖σ0‖L∞ ≤ ε, for some small ε > 0. Assume also that the initial velocity u0 is such
that w0 := u0 − v0, with v0 = − 1

ν ∇(−∆)−1P (1 + σ0), belongs to the homogeneous Besov space
Ḃ

2−2/r
p,r (Rd).
Then there exist a time T > 0 and a solution

(
ρ, u
)
of the barotropic Navier-Stokes system

(5.1) on [0, T ]× Rd such that:

• σ := ρ−1 verifies ‖σ‖L∞([0,T ]×Rd) ≤ 4ε, together with σ ∈ C0
(
[0, T ];Lq

)
for all p ≤ q < +∞;

• u = v+w, where v is defined as in (5.8), so in particular σ ∈ C0
(
[0, T ];W 1,q

)
and w satisfies

w ∈ C0
(
[0, T ]; Ḃ2−2/r

p,r

)
∩ Lr0

(
[0, T ];L∞

)
,

∇w ∈ Lr1
(
[0, T ];Lp

)
, ∂tw , ∇2w ∈ Lr

(
[0, T ];Lp

)
,

for two suitable indices r0 and r1.

Remark that the functional framework is slightly subcritical here. As a matter of fact, in
order to be critical one sould have 2 − 2

r = −1 + d
p , whereas here there holds 2

r + d
p < 3 under

our assumptions.
Next, let us comment on uniqueness. Instructed by the work of Hoff [158] and more re-

cent works by Danchin [82, 44], the key point in order to avoid the hyperbolicity of the mass
equation (which would cause a loss of derivatives, thus requiring a higher order regularity con-
dition on the density function) is to pass to Lagrangian coordinates. For doing so, having
∇u ∈ L1

T (L∞) = L1
(
[0, T ];L∞(Rd)

)
seems to be a minimal requirement. Now, owing to maximal

regularity estimates and Sobolev embeddings, the condition p > d ensures that ∇w ∈ L1
T (L∞).

On the other hand, one has

∇v = − 1

ν
∇2(−∆)−1P (1 + σ) ,

with P (1 + σ) ∈ L∞([0, T ]× Rd). However, except in the case d = 1 (for which then uniqueness
holds true), the operator ∇2(−∆)−1 is a singular integral operator, so it does not map L∞ into
itself. On the other hand, one can easily see that div v = P (1+σ) ∈ L1

T (L∞) and curl v = 0 owing
to the gradient structure of v. Thus, we are in a quite similar (dual, to some extent) situation
as when dealing with the regularity of vortex patches solutions for the 2-D incompressible Euler
equations.

Based on this analogy, we follow the pioneering ideas by Chemin [37, 38, 39] and resort to
the notion of tangential regularity (also often referred to as “striated regularity”). In practice,
one fixes a non-degenerate family X0 of vector fields which are tangent to the hypersurface of
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discontinuity (say) Σ0 of the density function. In this context, “non-degenerate” means that, at
any point x ∈ Σ0 of the hypersurface, one has d− 1 vector fields of the family which generate the
whole tangent space TxΣ0 of Σ0 at x, so that one can control all the directions on the tangent
space via the vector fields of the family. Then, one looks at the derivatives ∂Xf of a function
f ∈ L∞ along those directions X ∈ X0, and at their time evolution.

As it was the case for the 2-D incompressible Euler equations, having striated regularity for
σ is enough to deduce that ∇v belongs to L1

T (L∞), so in particular ∇u also belongs to the same
space and then one can prove uniqueness (still, the proof is not direct and requires some efforts,
see more details below). Roughly speaking, the uniqueness statement can be formulated in the
following way.

Theorem 5.2. Let the assumptions of Theorem 5.1 be in force. Let X0 be a non-degenerate family
of vector fields belonging to L∞, with gradient in Lp. Assume that, for any X0 ∈ X0, one has
∂X0σ ∈ Lp.

Then there exists a unique (local in time) solution
(
ρ, u
)
to system (5.1) satisfying the same

properties as in Theorem 5.1. In addition, ∇u ∈ L1
T (L∞) and one can transport the family X0

through the flow of u, getting a new family Xt. Then the vector fields of the family Xt still belong
to L∞ and have gradient in Lp, and the tangential regularity of σ is propagated in time: for any
t ∈ [0, T ] and any vector field Xt ∈ Xt, one has ∂Xtσ(t) ∈ Lp.

Notice however that, despite the similarity with the Euler case, the proof of the propagation
of the striated regularity here is much more involved. One of the main reasons is that the velocity
field u is no more of free divergence, and this affects very much the transport estimates for
propagating the integrabilities of the vector fields X ∈ Xt and the one of ∂Xσ. In particular, at
some point of the proof one has to establish the property ∂X∇u ∈ L1

T (Lp): getting it is based
on a very delicate commutator process, combined with the use of the Hardy-Littlewood maximal
function.

Last but not least, we point out that, despite the property ∇u ∈ L1
T (L∞) holds in this

framework, the proof of uniqueness also required some extra work. The main reason for this is
that passing in Lagrangian coordinates introduces some variable coefficients in the Lamé operator,
making the use of the previous approach (based on maximal regularity estimates) inconclusive;
on the other hand, a perturbative argument around the constant coefficients case would involve
a dangerous loss of derivatives, which would in turn require more smoothness for the density
functions. Thus, the idea is rather to work with the true velocity field u of the fluid and proceed
to stability estimates in L2 norms.

5.3 Compressible flows: statistics and turbulence

In [111, 112], we built up a theory of statistical solutions for the barotropic Navier-Stokes system
(5.1). In this section, we briefly report on those studies.

Statistical solutions were first introduced in the pioneering works of Foiaş and Prodi [139] on
the incompressible Navier-Stokes equations. More works in that context are [218, 65, 140] and,
more recently, [141, 142]. The basic idea behind statistical solutions is to fix a measure on the set
of all initial data for the system, and to look at how this measure evolves under the flow2 of the
equations. This can be seen as a new attempt to restore uniqueness of solutions, based on the
principle that one does not know whether the problem admits or not a unique solution for any
reasonable (finite energy) initial datum, but what one really sees is expected to be, “in average”,
always the same.

2Of course, here the word “flow” is not really appropriate, as the problem is not know to be well-posed for low
regularity initial data; however, we allow ourselves such a terminology, which we consider quite illustrative.
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5.3.1 A semiflow selection approach

In [111], we implemented the previous idea for the problem (5.1), set on a smooth bounded domain
Ω ⊂ Rd (d = 2 or 3) and supplemented with non-homogeneous boundary conditions:

(5.11) u|∂Ω = uB and ρ|Γin
= ρB ,

where we have defined

Γin :=
{
x ∈ ∂Ω

∣∣∣ uB(x) · n(x) < 0
}

and Γout :=
{
x ∈ ∂Ω

∣∣∣ uB(x) · n(x) ≥ 0
}
,

where n(x) is the exterior normal to ∂Ω at x, so that ∂Ω = Γin ∪ Γout. Here above, uB and
ρB are given profiles; without loss of generality, we can assume them to be defined on the whole
closure Ω. We assume in addition that ρB ≥ ρ∗ > 0.

The notion of statistical solutions developed in [111] is based on the theory of global in time
finite energy weak solutions, as presented in Section 5.1 above, and in fact it can be seen as an
extension of it, see more details below. We immediately point out that, in this context, the energy
inequality (5.7) becomes

d

dt

∫
Ω

(
1

2
ρ |u− uB|2 + H(ρ)

)
dx +

∫
Ω

(
µ |∇u|2 + λ |div u|2

)
dx(5.12)

+

∫
Γout

H(ρ)uB · n dSx +

∫
Γin

H(ρB)uB · n dSx

≤ −
∫

Ω

(
ρu⊗ u + P (ρ) Id

)
: ∇u dx +

1

2

∫
Ω
ρ u · ∇ |uB|2 dx

+

∫
Ω

(µ∇u + λ div u Id ) : (∇uB + div uB Id ) dx +

∫
Ω
ρ g · (u− uB) dx ,

where we assume that an external force ρ g appears now in the right-hand side of the momentum
equation in (5.1). We refer e.g. to [36] for an adaptation of the theory exposed in Subsection
5.1.2 to the case of open systems (see also [134]).

As a matter of fact, weak solutions can be seen as a special class of the statistical solutions
constructed in [111], for initial measures which are Dirac masses sitting in the data space. This
is possible by implementing a semiflow selection procedure in the spirit of Krylov [166], see also
[33, 20, 21, 19, 13] for more recent applications. More precisely, define the data space

D :=
{[
ρ0, u0, d

] ∣∣∣ d =
[
ρB, uB, g

]
, ρ0 ∈ Lγ(Ω) , u0 ∈ L2(Ω)

}
,

and look at it as a Borel subset of the Polish space

XD := W−k,2(Ω) × W−k,2(Ω;Rd) × C0(∂Ω) × C1(Ω;Rd) × C0(Ω;Rd) .

Here, we fix some k ≥ 1 + d/2. As a matter of fact, one should rather work with the momentum
m = ρ u rather than with the velocity field u; in addition, one should include the energy functional

(5.13) E
(
ρ, u

∣∣uB) :=

∫
Ω

(
1

2
ρ |u − uB|2 + H(ρ)

)
dx

in the definition of the data space D. However, for the sake of clarity, we skip those details in this
(rather informal) discussion. Using the above mentioned semiflow selection, for any t ≥ 0 one is
able to define a Borel-measurable map U(t) on D such that

U(t) :
[
ρ0, u0, d

]
7→
[
ρ(t, ·), u(t, ·), d

]
where the couple

(
ρ, u
)
is a finite energy weak solution to the Navier-Stokes system (5.1) with non-

homogeneous boundary conditions (5.11) and external force ρ g, associated to the initial datum
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(
ρ0, u0

)
. The map U selects a unique finite energy weak solution emanating from the initial

datum: it turns out that, for any t ≥ 0 and almost any τ > 0, one has

U(t+ τ) = U(t) ◦ U(τ) ,

where the “almost any” property depends on the triplet of data
[
ρ0, u0, d

]
∈ D fixed.

Thus, given an initial measure V0 on the data space D, one can use the family of operators(
U(t)

)
t≥0

to define the evolution of V0 at time t as the push-forward measure by the operator
U(t). In particular, one can construct a family of (Markov) operators

{
Mt

}
t≥0

on the space of
positive probability measures on D, which exactly represents the new notion of statistical solutions
introduced in [111].

To be more precise and formulate some statement in a more rigorous way, let us introduce the
set

P[D] :=
{
complete Borel probability measure ν on XD such that Supp (ν) ⊂ D

}
.

Then one has the following definition.

Definition 5.3. A statistical solution to the problem (5.1)-(5.11) is a family of (Markov) operators(
Mt

)
t≥0

on P[D] which enjoys the following properties:

• M0 = Id , namely M0(ν) = ν for any ν ∈ P[D];

• each Mt is linear on convex combinations: for any t ≥ 0, for any
(
νj
)
j∈{1...N} ⊂ P[D] and

any α ∈ RN , with αj ≥ 0 for all j and
∑

j αj = 1, one has

Mt

 N∑
j=1

αj νj

 =

N∑
j=1

αjMt(νj) ;

•
(
Mt

)
t≥0

possesses the following “almost semigroup” property: for any ν ∈ P[D], there exists
a set of full measure Rν ⊂ [0,+∞[ , with 0 ∈ Rν , such that, for all t ≥ 0 and all τ ∈ Rν ,
one has

Mt+τ = Mt ◦ Mτ ;

• for any ν ∈ P[D] and any t ≥ 0, one has

Mt(ν) =

∫
D
δ[
ρ(t,·),u(t,·),d

] dν(ρ0, u0, d) ,

where
(
ρ, u
)
is a global in time finite energy weak solution to (5.1)-(5.11) supplemented

with initial datum
(
ρ0, u0

)
.

In particular, the last property of the previous definition implies that, if ν0 is “deterministic”
(namely, a Dirac delta sitting on some initial datum), then its evolution Mt(ν0) is also determin-
istic (namely, it is a Dirac delta sitting in the corresponding finite energy weak solution). In this
sense, we can claim that the notion of statistical solution introduced in Definition 5.3 represents
a suitable extension of the theory of weak solutions.

Now, using the semiflow selection operators
(
U(t)

)
t≥0

introduced above, one has the following
theorem

Theorem 5.4. Let γ > d/2 in (5.2). Then, there exists a statistical solution
(
Mt

)
t≥0

to problem
(5.1)-(5.11), defined by the following procedure.
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Let V0 ∈ P[D]. For any t ≥ 0, defined the probability measure Vt as the push-forward measure
of V0 by the operator U(t) introduced above: for any t ≥ 0 and any bounded continuous function
Φ on XD, define∫

XD

Φ(ρ, u, d) dVt(ρ, u, d) :=

∫
D

Φ ◦U(t)[ρ0, u0, d] dV0(ρ0, u0, d) .

Then, for any t ≥ 0 define Mt(V0) := Vt.

We conclude this part with a series of comments. First of all, we want to point out that, as an
immediate consequence of our construction, we have that the measures Vt constructed in Theorem
5.4 satisfy an averaged version of the equations of conservation of mass and momentum and of
the energy inequality. In addition, by use of the relative energy inequality, one can establish some
continuity properties for statistical solutions which are supported on the set of regular data. On
the other hand, we notice that, as the weak solutions associated to some datum are not know to
be unique and our construction strongly depends on the performed semiflow selection

(
U(t)

)
t≥0

,
statistical solutions are (not known to be) unique.

Finally, the improvement of our approach, based on the the use of the semiflow selection
principle, with respect to previous results on statistical solutions for the incompressible Navier-
Stokes equations, consists essentially of two main factors: the “almost semigroup” property and
the consistency with the notion of finite energy weak solutions, namely the fact that the image of
a Dirac delta remains a Dirac delta at any later time.

5.3.2 Stationary statistical solutions

In [112], we used a statistical solutions approach to investigate the validity of the so-called ergodic
hypothesis from turbulence theory in the context of open fluid systems, namely of fluid systems
verifying the non-homogeneous boundary conditions (5.11). The ergodic hypothesis postulates
that, for large enough times the system approaches a statistical equilibrium, hence the statistics
of a (turbulent) flow can be completely described by means of a single invariant measure. To be
a little bit more precise, given a dynamical system on some state space X, say

U : R+ ×X −→ X ,

the ergodic hypothesis postulates the existence of a µ ∈ P[X] :=
{
probability measures on X

}
such that, for µ-almost any x0 ∈ X and for any (say smooth) function F on X, one has

(5.14) when T → +∞ ,
1

T

∫ T

0
F
(
U(t, x0)

)
dt −→

∫
X
F dµ .

It turns out that such probability measure µ must be invariant for the dynamics. Such a µ, if
it exists, completely describes the long-time behaviour of the system, as time-averages, for large
enough times, approach the ensemble average with respect to that measure.

As the fluid equations are not known to be well-posed in general, the notion of invariant
measure has to be replaced in this context by the one of stationary statistical solution. Before
going on, let us immediately stress the importance of considering non-homogeneous boundary
conditions (5.11) from the modeling point of view. As a matter of fact, according to the Clausius
principle (i.e. the second law of thermodynamics), for energetically closed systems the dynamics
must approach the state with maximal entropy, which is necessarily an equilibrium (static state)
of the system; we refer to e.g. [136] for results in this spirit for compressible fluid flows. In this
case, the ergodic hypothesis is satisfied, the invariant measure µ being the Dirac mass sitting on
that equilibrium; however, the support of µ is trivial, so the piece of information encoded by the
ergodic hypothesis is quite poor. Accordingly, genuine turbulence can persist in the long run only
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for energetically open systems, in which the effects of energy dissipation are counterbalanced by
the injection of mass and energy through interaction with the exterior at the boundary.

For the sake of coinciseness of the presentation, we avoid to enter into details of the study of
[112] and keep the discussion quite unformal, limiting ourselves to convey the basic ideas, without
nonetheless making them completely rigorous.

Following [211, 181], we adopted a dynamical system approach, which consists in considering
a whole (entire, defined for all t ∈ R) trajectory as initial datum and in looking at the dynamics
generated by time-shift operators: given an entire trajectory [ρ, u] which is a (weak) solution of
the Navier-Stokes system, we define the shifted trajectory Sτ [ρ, u] by the formula

∀ t ∈ R , Sτ [ρ, u](t, ·) := [ρ, u](t+ τ, ·) .

In this context, the ω-limit sets ω[ρ, u] associated to entire trajectories
(
ρ, u
)
are the right objects

to study the long-time behaviour of the system.
Next, pushing forward the point of view of [111], we defined a statistical solution as a stochastic

process with continuous paths ranging in the space of entire trajectories and supported by solutions
of the problem. This corresponds to lifting the arguments exposed in Subsection 5.3.1 to the
space of (entire) trajectories, something which is always possible to do (notice however that,
in this new approach, one misses the possibility of performing a semiflow selection). In this
sense, statistical solutions of our deterministic problem can be seen as special solutions of the
corresponding stochastic PDE with stochastic forcing term and random initial data, in which the
stochastic forcing term vanishes. A stationary statistical solution is then a stationary process
which is supported by entire (weak) solutions of the problem.

The first problem to face in order to study the validity of the ergodic hypothesis was to show
existence of suitable conditions on the boundary data

(
ρB, uB

)
and the external force g able to

guarantee that the total energy of the solutions remains bounded for all times t ∈ R. As a matter
of fact, owing to the non-homogeneous boundary conditions (5.11), some energy is injected in the
system; however, from a statistical point of view very few can be said on the long-time behaviour
of the system, if the total energy becomes unbounded. One has the following result.

Proposition 5.5. Let the external force g = g(x) be potential, i.e. g = ∇G for some G ∈ C1(Ω),
and assume that

DuB ≥ 0 , with div ub ≥ α > 0 .

Let
(
ρ, u
)
be a finite energy weak solutions of (5.1)-(5.11) on ]τ,+∞[ , for some τ ≥ −∞. Then,

there exists a constant E depending only on the data of the problem, such that

lim sup
t→+∞

E
(
ρ(t), u(t)

∣∣uB) ≤ E ,

where the function E
(
ρ, u

∣∣uB) has been defined in (5.13).

We observe that the assumption on the external force g could be relaxed, so that g needs not
be potential, at the price of imposing some more stringent condition on the velocity profile uB.

Therefore, given some energy level E > 0, one can define the set

U
[
E
]

:=
{(
ρ, u
)

entire finite energy weak solutions
∣∣∣ sup

t∈R
E
(
ρ(t), u(t)

∣∣uB) ≤ E
}
.

Owing to Proposition 5.5, one has that U
[
E
]
6= ∅. Moreover, one can establish the following

fundamental property.

Proposition 5.6. The set U
[
E
]
is a compact shift-invariant subset of the trajectory space T :=

C0
(
R; D̃

)
, where we have defined D̃ := L1(Ω)×W−k,2(Ω).
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The proof of Proposition 5.6 relies on the property of asymptotic compactness of bounded
trajectories. This fundamental property is derived from the study of a differential inequality for
the density oscillation defect D = D(t), defined as in the classical theory [177, 123] by the formula

D(t) :=

∫
Ω

(
ρ log ρ − ρ log ρ

)
dx ≥ 0 .

The main point is that the differential inequality, which reads

d

dt
D + Ψ(D) ≤ 0 , with Ψ ∈ C0(R), Ψ(z)z ≥ 0 ∀ z 6= 0 ,

is the only information at one’s disposal (as the notion of initial datum, in this approach, is
apparently missing). It turns out that the previous relation is however enough to establish that
D ≡ 0 must vanish identically, providing the sought asymptotic compactness of entire bounded
trajectories.

Finally, one can focus on the study of the structure of the ω-limit set ω[ρ̃, ũ] associated to an
entire bounded trajectory

(
ρ̃, ũ
)
, which is also a compact shift-invariant subset of the trajectory

space T . An implementation of the Krylov-Bogoliubov argument thus yields the existence of a
stationary statistical solution [ρ, u] ranging on ω[ρ̃, ũ], or in other words a measure µ on T which
is shift-invariant and whose support is contained in ω[ρ̃, ũ].

Theorem 5.7. For any
(
ρ̃, ũ
)
∈ U

[
E
]
, there exists a stationary statistical solution [ρ, u] such

that [ρ, u] ∈ ω[ρ̃, ũ] almost surely.

At this point, the Birkhoff-Khinchin ergodic theorem implies that, µ-a.s. on ω[ρ̃, ũ], one has
convergence of the time-averages

(5.15)
1

T

∫ T

0
F
(
ρ(t), u(t)

)
dt −→ F for T → +∞ ,

for any (say bounded continuous) function F defined on the space of data. It would be tempting
to compare this convergence result with the validity of the ergodic hypothesis (5.14). The problem
is that the limit quantity F is only an observable, and not necessarily an ensemble average as
predicted by the ergodic hypothesis.

In fact, it turns out that the function F appearing in (5.15) is a conditional expectation with
respect to the σ-algebra of shift invariant sets in T . Thus, F is a true espectation (ensemble
average) if the stationary statistical solution µ is ergodic, that is, for any shift invariant borel set
B ⊂ T , one has µ(B) = 0 or 1. By Krein-Milman theorem, such an ergodic stationary statistical
solution always exists, but there may exist more than one statistical solution sitting on a given
ω-limit set, so there is no reason, in general, for the measure µ given by Krylov-Bogoliubov to be
ergodic.

All in all, the conclusion of our study about the validity of the ergodic hypothesis for energet-
ically open systems can be stated in the following form.

Theorem 5.8. Let
(
ρ, u
)
∈ U

[
E
]
. If there exists a unique invariant measure µ sitting on ω[ρ, u],

then the ergodic hypothesis holds true for that trajectory
(
ρ, u
)
and for any other trajectory

(
r, v
)

in the support of µ: for any bounded continuous function F on D̃, one has

lim
T→+∞

1

T

∫ T

0
F
(
ρ(t), u(t)

)
dt =

∫
D̃
F dν0 ,

where ν0 := ν ◦π−1
0 is the push-forward measure on D̃ related to π0 : T −→ D̃, the projection of

any trajectory at time t = 0.

We conclude this section by mentioning that further developments in the theory of statistical
solutions for compressible fluid systems can be found in [124, 137, 130], for instance.
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5.4 Kolmogorov two-equation model of turbulence

In this section, we are still interested in some questions related to turbulence theory. This time,
we will study directly a system of equations derived to describe a fully developed turbulent flow.
This is the so-called Kolmogorov two-equation model of turbulence [213], which was introduced
by Kolmogorov in 1942 to describe a fluid in a fully developed turbulent regime. The equations
read as

(5.16)



∂tu + (u · ∇)u + ∇π − ν div

(
k

ω
Du
)

= 0

∂tω + u · ∇ω − α1 div

(
k

ω
∇ω
)

= −α2 ω
2

∂tk + u · ∇k − α3 div

(
k

ω
∇k
)

= − k ω + α4
k

ω

∣∣Du∣∣2
div u = 0 .

Here, as usual, u is the velocity field of the fluid and π its pressure, while ω and k are microscopic
quantities representing, respectively, the mean frequency of the turbulent fluctuations and the
mean turbulent kinetic energy. In particular, one must have ω ≥ 0 and k ≥ 0. The symbol Du
represents the symmetric part of the Jacobian matrix of u. Finally, the various parameters ν and
α1,2,3,4 are positive constants; they can be set all equal to 1 for the sake of the present discussion.

Equations (5.16) were introduced by Kolmogorov with not so many explanations. As it appears
for other k-ε models in turbulence theory, the equation for k may be justified after derinving
the equations for the so-called Reynolds stress and applying the eddy viscosity assumption by
Boussinesq and Prandtl; on the contrary, the equation for ω is rather phenomenological and no
rigorous theoreticla grounds are given for it, see e.g. [93]. However, it is clear that system (5.16)
captures very well the mechanism of turbulence by which the energy which is dissipated at large
scales by viscosity (the ν-term in the first equation) is transferred, through an energy cascade, to
small scales and feeds up (via the α4-term) the turbulent motion.

5.4.1 Previous results on the Kolmogorov two-equation model

Despite the Kolmogorov two-equation model of turbulence (5.16) belongs, to some extent, to the
class of k-ε models, broadly studied in the literature (see for instance [199]), its analysis is quite
recent. We summarise here the main results obtained about its well-posedness.

In [198], Mielke and Naumann established the existence of global in time “finite energy” weak
solutions to (5.16) in the three-dimensional torus T3. These are solutions analogous, in spirit,
to the ones discussed in Section 5.1 for the barotropic Navier-Stokes sytem: they are based on a
natural energy inequality for equations (5.16), which in particular implies

u , ω ∈ L∞
(
R+;L2(T3)

)
∩ L2

(
R+; Ḣ1(T3)

)
.

However, the basic observation is that, at the level of the energy estimates, the function k looks
to be not better than L∞

(
R+;L1(T3)

)
. In fact, some gain of integrability for both k and its

gradient can be deduced by fine parabolic estimates with source term in L1, see [198], but we will
not enter into the details of that. Here, we want only to comment that the low integrability of k is
the main reason for writing “finite energy” between quotation marks above. Related to this issue,
one notices in [198] the appearing of a defect measure in the weak formulation of the equation for
the mean turbulent kinetic energy k.

Skipping the details, we point out that the analysis of [198] was strongly based on the parabolic
effect of the equations, which allows to gain some suitable information on the space gradients ∇u,
∇ω and ∇k. For this, it was fundamental for the analysis to find conditions which ensured
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the non-vanishing of the “viscosity coefficient” k/ω. Thus, the authors formulated the following
assumption: there exists positive constants 0 < ω∗ ≤ ω∗ and k∗ > 0 such that

(5.17) ω∗ ≤ ω0 ≤ ω∗ and k0 ≥ k∗ .

Now, an ODE structure (or, in other words, the parabolic maximum principle) hidden in system
(5.16) allows to propagate those L∞ bounds also at later times, even at the level of weak solutions:
for any t ≥ 0, one (formally) has

ω∗(t) ≤ ω(t) ≤ ω∗(t) and k0 ≥ k∗(t) ,

for suitable functions ω∗(t), ω∗(t) and k∗(t) which are decreasing in time, but are, for any t ≥ 0
fixed, strictly positive. Thus, parabolicity of the system is ensured, together with space compact-
ness for the unknowns u, ω and k.

The same assumption (5.17) played a key role in the strong solutions theory, as developed by
Kosewski and Kubica (see [165] for a local in time result, [164] for a global in time result under
a smallness condition of the initial datum), still in the domain T3. However, it should be noticed
that, from a physical standpoint, while the bounds appearing in (5.17) for ω0 look reasonable, the
lower bound for k0 seems to be highly questionable.

The only work dealing with the possible vanishing of k0 was paper [27] by Bulíček and Málek.
There, the authors constructed global in time finite energy weak solutions to system (5.16), with
however some important differences with respect to the study of [198]. First of all, Bulíček and
Málek introduced a reformulation of the Kolmogorov system, obtained by looking at the total
energy function E := 1

2 |u|
2 + k as a new unknown, to be used in place of k. As a matter of fact,

the key remark was that E satisfies a better equation than k. When coming back to the original
unknowns

(
u, ω, k

)
, however, they only recovered suitable weak solutions of (5.16), in accordance

with the result of [198]. Secondly, the solved the equations in a smooth bounded domain Ω ⊂ R3,
supplemented with suitable non-trivial boundary conditions; thus, their study was able to capture
boundary-induced turbulent phenomena. Finally, another novelty of the analysis of [27] was the
relaxation of the assumption (5.17) concerning the initial turbulent kinetic energy k0, which was
supposed to satisfy k0 > 0 in Ω, together with log k0 ∈ L1(Ω).

5.4.2 A one-dimensional reduction

In [114], we focused on a one-dimensional reduction of the Kolmogorov system (5.16): we dismessed
the divergence-free condition over u and, correspondingly, we suppressed the pressure term ap-
pearing in the momentum equation. The equations reduced then to

(5.18)



∂tu + u ∂xu − ν ∂x

(
k

ω
∂xu

)
= 0

∂tω + u ∂xω − α1 ∂x

(
k

ω
∂xω

)
= −α2 ω

2

∂tk + u ∂xk − α3 ∂x

(
k

ω
∂xk

)
= − k ω + α4

k

ω

∣∣∂xu∣∣2 .
Our goal was to investigate more in depth well-posedness questions in the case of vanishing mean
turbulent kinetic energy k0. As our focus was not on boundary phenomena, but rather on effects
which are produced in the bulk, we set the previous equations on the simple one-dimensional
domain T = T1.

Our main result can be stated as follows.

Theorem 5.9. System (5.18) is well-posed, locally in time, in the space Hm(T), for any m ≥ 2.
However, there exist smooth initial data such that the corresponding solutions blow up in finite
time.
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Concerning the well-posedness statement, we point out that, as the system is now degenerate
parabolic, it is absolutely natural to work at Sobolev regularities which are well-suited for hy-
perbolic equations (namely, m ≥ 2 > 1 + d/2 for d = 1). On the other hand, the proof of the
well-posedness contains some subtle points, linked with the degeneracy of the system for k ≈ 0,
which we would like to highlight in what follows. We want also to give more details on the blow-up
phenomenon.

It turns out that all the essential points of the analysis can be seen on the following toy-model:

(5.19)

{
∂tu + u ∂xu − ∂x

(
ξ ∂xu

)
= 0

∂tξ + u ∂xξ − α∂x
(
ξ ∂xk

)
= ξ

∣∣∂xu∣∣2 .
In the previous system, the unknown u plays the same role as u in (5.18), while the unknown ξ
plays the role of the quantity k/ω. In the equation for ξ, we have kept the main terms appearing
in the third equation of (5.18), namely the transport, the diffusion with degenerate diffusion
coefficient for ξ ≈ 0 and the energy transfer term ξ |∂xu|2 on the right-hand side. We have also
kept the presence of the viscosity coefficient α > 0 in the second equation of (5.19), as it will play
a role later on.

In passing, we notice that the toy-model (5.19) shares similarities with the Prandtl model of
turbulence and other one-equation models of turbulence, which have been studied e.g. in [35, 171]
(see also references therein).

We also remark that system (5.19) behaves quite closely to the original 1-D model (5.18) only
for higher order norms, or in other terms for high frequencies; if one would like to preserve also
the basic energy estimates, one should add a term −ξ on the right-hand side of the equation for
ξ.

This having been said, here let us focus on propagation of higher norms only, and more precisely
of H2 regularity; higher regularity can be treated by the same token. We start by differentiating
twice the equation for u, getting an evolution equation for ∂2

xu:

∂t∂
2
xu + u ∂x∂

2
xu − ∂x

(
ξ ∂x∂

2
xu
)

=
[
u, ∂2

x

]
∂xu + ∂x

([
ξ, ∂2

x

]
∂xu

)
,

where the first commutator term on the right is the classical commutator coming fom the transport
term, whereas the second one is produced by the presence of the variable viscosity coefficient ξ.
Now, we compute

∂x
([
ξ, ∂2

x

]
∂xu

)
= ∂x

(
∂2
xξ ∂xu + 2 ∂xξ ∂

2
xu
)
.

Then, we observe that, in an energy estimate (simply test the relation for ∂2
xu by ∂2

xu itself), there
is no chance to control the terms coming from this commutator without using the viscosity, which
is however degenerate here. On the other hand, we remark that we can write∫

T
∂x

(
∂xξ ∂

2
xu
)
∂2
xu dx = −

∫
T
∂xξ ∂

2
xu ∂

3
xu dx = − 2

∫
T
∂x
√
ξ ∂2

xu
√
ξ ∂3

xu dx ,

which now can be controlled by using the (yet degenerate) parabolic effect of the equations. This
simple computation suggests to work with the unknown

√
ξ rather than ξ. As a matter of fact,

it can be seen that formulating the system in terms of
(
u,
√
ξ
)
yields better properties on the

commutator term ∂x
([
ξ, ∂2

x

]
∂xu

)
, which becomes now under control.

Therefore, propagation of higher order regularity norms is obtained by working with
√
ξ instead

of ξ. The well-posedness part of Theorem 5.9 has to be ment in this sense: Hm regularity is
formulated on

√
ξ (which implies, in particular, that also ξ belongs to Hm).

Next, let us formulate a more precise blow-up result.

Theorem 5.10. Let
(
u0,
√
ξ0

)
∈ Hm(T)×Hm(T), with m ≥ 3, be such that:

• u0 is odd with respect to the origin and ξ0 even;



54 Chapter 5. Well-posedness for viscous models

• ξ0(0) = 0;

• ∂xu0 < 0.

Then, there exists a time T > 0 such that, if the corresponding solution
(
u, ξ
)
of system (5.19)

has not blown up before at a different place, then

lim
t→T−

∂xu(t, 0) = −∞ .

We observe that the previous blow-up result is very similar to the blow-up which occurs for
the Burgers equation, and in fact one may object that, the equations (5.19) being local, the same
phenomenon has to produce also in this context. Nonetheless, let us remark that here we are really
at the boundary of Burgers theory. As a matter of fact, the function ξ0 may vanish even only at
one point, namely at x = 0, whereas it is easy to see that, if it is strictly positive everywhere,
then global existence of smooth solutions holds. In addition, as ξ0 may vanish at the origin only,
there is no apparent reason for which the viscosity (which acts in any other point of the domain)
should not work in order to smooth everything out and prevent the blow-up.

Inspired by the previous considerations, in [115] we were able to improve the previous blow-up
result for the toy-model (5.19), and actually for a broader class of systems (see also [197] in this
respect). More precisely, in a situation where the slope of u remains bounded (opposite then to
the Burgers situation of Theorem 5.10), we proved blow-up of the curvature of the function ξ.
The statement can be roughly formulated as follows.

Theorem 5.11. Let
(
u0,
√
ξ0

)
∈ Hm(T)×Hm(T), with m ≥ 5, be such that:

• u0 is odd with respect to the origin and ξ0 even;

• ξ0(0) = 0, with 3α∂2
xξ0(0) > 1;

• ∂xu0 ≥ 0.

Then, there exists a time T > 0 such that, if the corresponding solution
(
u, ξ
)
of system (5.19)

has not blown up before at a different place, then

lim
t→T−

∂2
xξ(t, 0) = +∞ .

5.5 Some open questions and perspectives

We conclude the chapter with a list of some questions which drive our attention and which we
plan to address in the near future.

Theory of compressible flows with shock data

Our first concern is to complete the well-posedness theory for viscous compressible fluids in pres-
ence of discontinuities of the density function.

To begin with, let us remark that the analysis of [84], explained in Section 5.2, holds only
locally in time. This is in stark contrast with Hoff’s theory [156, 157, 158], which instead holds
true globally in time. Therefore, the first question which deserves attention in this context is
whether or not it is possible to extend the results from [84] globally in time. The use of time-
weighted energy estimates, like in Hoff, seems to be necessary. Yet, it is not clear how to reach a
critical functional framework in our context, as the condition 2

r + d
p < 3 seemed to be necessary

in our approach.
A second main question concerns the case of heat-conducting fluids, whose dynamics is de-

scribed by the full Navier-Stokes-Fourier system. In this direction, one would like to extend the
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result of [84] to fluids which present also temperature variations. Owing to the diffusive nature of
the temperature equation, we expect that an approach based on maximal regularity would work
also in this context, giving parabolic smoothing also for the temperature variable. However, it
would be important to be able to get estimates independent of the diffusivity coefficient, in order
to capture also the limiting case in which the temperature is simply advected by the velocity field.
This limiting case seems particularly interesting because of its relations with two-fluid models and
because it occurs in some approximated model for geophysical flows, see e.g. [128].

Well-posedness of turbulence models

The results exposed in Section 5.4, concerning well-posedness and singularity formation for the
Kolmogorov two-equation model of turbulence, have some limitations from the theoretical view-
point, inasmuch as the 1-D reduction (5.18) is, of course, not really physical. In particular,
because of the absence of the incompressibility condition and of the pressure term, the model
misses non-local effects, which encode the long-range interactions appearing in physics theories.

In this context, some questions then arise. First of all, one could extend the well-posedness
and ill-posedness investigations to a non-local (yet one-dimensional) model, obtained by projecting
the equation through the Hilbert transform H (which plays the same role as the Leray-Helmoltz
projector in 1-D, as it is the only singular integral operator in one space dimension). One may
hope for blow-up results in the same spirit of the celebrate work [200] by Montgomery-Smith
about a 1-D reduction of the incompressible Navier-Stokes equations.

On the other hand, it would be highly desirable to extend the investigation to the full model
(5.16) in any space dimension d ≥ 2, and for sharp Sobolev (or critical Besov) regularities. The
well-posedness results are like to hold, although the proof looks rather intricate, essentially because
integration by parts have now to be replaced by a careful commutator process. Ill-posedness results
are instead much less clear, because the arguments used in [114, 115] are essentially 1-D, even
though the result of Theorem 5.11 looks much more flexible. In this respect, however, it is worth
to point out that Theorem 5.11 holds true only for the toy-model (5.19) and it has not been
proved yet for the Kolmogorov system, not even for its 1-D reduction.





Chapter 6

Well-posedness for inviscid fluid flows

In this chapter, we turn our attention to some inviscid fluid systems. We will discuss several
models, putting in evidence common features and, at the same time, properties pertinent to the
specific structure of each of them. We are mainly interested in developing a well-posedness theory
in critical Besov spaces. As we will see, owing to the hyperbolic nature of the equations, the
critical regularity for this kind of problems is dictated by the embedding

(6.1) Bs
p,r = Bs

p,r(Rd) ↪→ W 1,∞(Rd) .

Because of the quasi-linear hyperbolic nature of the equations (with no additional structure given,
for instance, by the linearisation around a special equilibrium [14, 15, 104]), all our results will be
only local in time. However, sometimes we will investigate lower bounds for the lifespan of the
solutions, especially in two space dimensions. In particular, by taking advantage of the (formal)
proximity of the system under study to the incompressible Euler system, we will derive bounds
able to say that, in the regime of small heterogeneity (the density, or the magnetic field. . . ), say
of size ε > 0, the lifespan Tε of the corresponding solution tends to be larger and larger, namely
Tε −→ +∞ when ε→ 0+.

This chapter unfolds as follows. After a brief introduction, we will specialise on various models,
namely a quasi-incompressible Euler system (see Section 6.2), the ideal magnetohydrodynamics
(MHD in short, see Section 6.3) and finally a system for incompressible non-homogeneous fluids
with odd viscosity (treated in Section 6.4).

We immediately point out that, strictly speaking, fluids with odd viscosity do present a viscous
effect. However, only the skew-symmetric part of the viscous stress tensor appears, so this term
does not dissipate energy (and in fact the odd viscosity term does not contribute to the energy
balance at all). In particular, the system exhibits a hyperbolic-type behaviour, rather than
parabolic. This is why we discuss this system in the present chapter.
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6.1 Introduction

One of the main examples, if not the most emblematic example, of inviscid fluid equations is with
no doubts the incompressible Euler equations

(6.2)

{
∂tu + u · ∇u + ∇Π = 0

div u = 0 ,

where, as usual, u represents the velocity field of the fluid and Π its (scalar) pressure field.
Throughout this chapter, we assume that the fluid occupies the whole space Rd, with d ≥ 2, so
that the previous system is set on (t, x) ∈ R+ × Rd.

We refer to e.g. [182, 39, 180], or to Chapter 7 of [8] for an extensive study of the incompressible
Euler equations. Here, we limit ourselves to recall that, owing to the quasi-linear hyperbolic
structure given by the transport term

(
∂t + u · ∇

)
u, it is natural to solve equations (6.2) in

spaces1 Bs
p,r for which the embedding property (6.1) holds true, namely for indices (s, p, r) ∈

R× [1,+∞]× [1,+∞] such that

(6.3) s > 1 +
d

p
and r ∈ [1,+∞] , or s = 1 +

d

p
and r = 1 .

As a matter of fact, the Euler system (6.2) is well-posed in these spaces, in general only locally
in time. We point out that, in the endpoint case p = +∞, an integrability condition (typically,
L2) for the velocity field is needed in the analysis.

As is well-known, the two-dimensional case plays a special role in the context of the incom-
pressible Euler equations. As a matter of fact, one can introduce the vorticity of the fluid, defined
as twice the skew-symmetric part of the Jacobian matrix of u. In 2-D, the vorticity can be simply
identified with the scalar function

ω := curlu = ∂1u
2 − ∂2u

1 ,

from which the velocity field u can be computed (at least formally) via the Biot-Savart law

u = −∇⊥(−∆)−1ω .

Passing to the vorticity formulation of equations (6.2) erases the pressure term, which is a
quadratic quantity2, from the equations; however, in general it creates different bad (quadratic)
terms, like the vortex stretching term. The advantage of working in 2-D is that those quadratic

1Here, we focus on the large class of non-homogeneous Besov spaces, which in particular includes the classical
Sobolev and Hölder classes as special cases.

2We recall that, by taking the divergence of (6.2), one finds that Π satisfies

−∆Π = div
(
u · ∇u

)
,

so that ∇Π = ∇(−∆)−1div
(
u · ∇u

)
.
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terms identically vanish, thanks to the special structure of the convective term and the divergence-
free condition on u. All in all, as already mentioned in Chapter 4, in 2-D the vorticity satisfies
the simple transport equation

(6.4) ∂tω + u · ∇ω = 0 .

Owing to the fact that div u = 0, this relation endows (at least formally) the system of an infinite
number of conservation laws, namely

∀ p ∈ [1,+∞] , ∀ t ≥ 0 , ‖ω(t)‖Lp = ‖ω0‖Lp .

This property plays a key role in the theory and allows to prove that, in 2-D, the Euler system
is globally in time well-posed. The simple equation (6.8) stands also at the basis of several low
regularity theories for the incompressible Euler equations, like the Yudovich theory of vortex
patches and the Delort theory of vortex sheets (see again [182, 39, 180]); we will not enter into
the details of those topics here.

In this discussion, we want to insist rather on the global in time well-posedness of the Euler
system in two space dimensions. As a matter of fact, this property seems to be lost, in general,
whenever one perturbes the incompressible Euler equations with any kind of heterogeneity.

The probably simplest perturbation one may think of is the case when the fluid presents
variations of density. In this case, according to the principle of conservation of mass and the
Newton law, system (6.2) becomes

(6.5)


∂tρ + u · ∇ρ = 0

ρ
(
∂tu + u · ∇u

)
+ ∇Π = 0

div u = 0 .

We observe that, at least in absence of vacumm, i.e. for initial densities satisfying

(6.6) 0 < ρ∗ ≤ ρ0 ≤ ρ∗ ,

a property which is preserved by the flow (as u is incompressible), namely

∀ t ≥ 0 , ρ∗ ≤ ρ(t) ≤ ρ∗ ,

at least for smooth enough solutions, we observe that we can divide the momentum equation in
(6.5) by ρ and recast the system as, again, a coupling of transport equations. So, one can expect
to solve (6.5) in the same functional classes for which system (6.2) is well-posed, namely in Besov
spaces Bs

p,r satisfying (6.1), or equivalently (6.3). This turns out to be indeed the case, see e.g.
[81, 83] and references therein.

However, in stark contrast with the state-of-the-art mentioned above about the classical Euler
equations, all the results known so far for system (6.5) are only local in time. This is an effect
purely due to the non-homogeneity, namely the presence of a variable density ρ. As a matter of
fact, the presence of the variable density entails two fundamental differences with respect to the
homogeneous case. The first one concerns the analysis of the pressure, which now satisfies an
elliptic equation with variable coefficients:

(6.7) − div

(
1

ρ
∇Π

)
= div

(
u · ∇u

)
.

This equation, however, implicates some difficulties only at the technical level, in the analysis of
the regularity of the pressure gradient. The second main difference with the homogeneous case
is instead much deeper and concerns the vorticity. Let us restrict to the case d = 2; dividing
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the momentum equation by ρ and computing the curl of the obtained relation, we find that, this
time, the vorticity function ω satisfies

(6.8) ∂tω + u · ∇ω + ∇⊥
(

1

ρ

)
· ∇Π = 0 .

Namely, an additional term appears with respect to the case ρ ≡ 1; this additional term depends
both on the density and on the pressure gradient and is responsible for production of vorticity in
the dynamics. Keeping into account that ∇Π is a quadratic quantity and that the higher order
norm of the density grows exponentially in the velocity field (owing to the transport equation for
ρ), it is clear that the presence of this additional term is responsible for the local in time nature
of the existence results available so far for the density-dependent Euler system (6.5).

Despite this, in [83] we were able to prove, in 2-D, an “asymptotically global” result in the
regime of small non-homogeneities, in the following sense: if the size of the initial density variation
ρ0−1 is of size ε > 0, then the lifespan Tε > 0 behaves like log

∣∣ log ε
∣∣. More precisely, the lifespan

T of a solution corresponding to an initial datum
(
ρ0, u0

)
∈ B1

∞,1×
(
B1
∞,1 ∩L2

)
can be bounded

from below as

(6.9) T ≥ C

‖u0‖L2∩B1
∞,1

log

(
1 + C log

(
1 +

1

‖∇ρ0‖B0
∞,1

))
.

It is worth to observe that the classical bound coming from quasi-linear hyperbolic theory would
instead be of the form

T ≥ C

‖u0‖L2∩B1
∞,1

+ ‖ρ0 − 1‖B1
∞,1

,

which does not imply at all the “asymptotically global” well-posedness (in the sense specified
above) of system (6.5). We also point out here the importance of working at critical regularity
B1
∞,1. Indeed, at that level of regularity, one can estimate the vorticity ω in the space B0

∞,1: now,
for Besov spaces having regularity index s = 0, one can dispose of improved transport estimates
by Vishik [217] and, later, Hmidi and Keraani [153], which provides a growth of the Besov norm
of the solution which is linear in the Lipschitz norm of the transport field. This linear growth is
crucial in order to prove a lower bound like (6.9). On the other hand, a continuation criterion,
analogous in spirit to the Beale-Kato-Majda criterion for the 3-D (homogeneous) Euler equations,
guarantees us that the lifespan of a smooth solution does not depend on the regularity: the
lifespan of a Bs

p,r solution, with (s, p, r) satisfying (6.3) and s� 1, is the same as the lifespan of
the solution considered at regularity B1

∞,1.
In fact, we will see in Section 6.3 that, for the previous argument to work, is not really

necessary to work at critical regularity. All what one really needs in order to implement the
previous procedure is a solid well-posedness theory in some high regularity space, supplemented
with a continuation criterion in terms of low regularity norms, and more precisely of norms which
can be controlled by the critical B0

p,r regularity.

6.2 A quasi-incompressible Euler system

In papers [118, 117], we extended the analysis of [81, 83] to the case of the following quasi-
incompressible Euler system:

∂tρ + div
(
ρ v
)

= 0

∂t
(
ρ v
)

+ div
(
ρ v ⊗ v

)
+ ∇Π = 0

div v + div

(
κ(ρ)

ρ
∇ρ
)

= 0 ,
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where κ(ρ) is a smooth scalar function of the density ρ. This system was rigorously derived by
Alazard [1, 2] from the full compressible heat-conducting Euler system, in the regime of low Mach
numbers, for large entropy variations.

We refer to this system as “quasi-incompressible”, because the divergence of the velocity field
v, although different from 0, is prescribed; in addition, when κ ≡ 0 one exactly recovers the
density-dependent incompressible Euler system (6.5).

By the change of unknown

u = v − ∇b , b = b(ρ) such that b′(ρ) := − κ(ρ)

ρ
,

and assuming absence of vacuum as in (6.6), the previous equations can be recasted in the form
of an incompressible fluid system:

(6.10)


∂tρ + u · ∇ρ − div

(
κ(ρ)∇ρ

)
= 0

∂tu + (u+∇b) · ∇u + λ(ρ)∇π = h(ρ, u)

div u = 0 ,

where we have set λ(ρ) = ρ−1, the function π is a new pressure function (different from the
hydrodynamic pressure Π) and the forcing term h is defined by

h(ρ, u) := −u · ∇∇b + ρ
(
u · ∇λ

)
∇b + ρ

(
∇b · ∇λ

)
∇b − div

(
∇b⊗∇b

)
.

About system (6.10), we remark the parabolic effect on the density functions (see the first
equation) and the fact that the velocity field u is transported by an effective velocity u + ∇b,
which is not divergence-free; however, we expect its divergence to be smooth enough, owing to
the parabolic smoothing for the density (recall that b = b(ρ)). On the other hand, we also notice
that the forcing term consumes two derivatives of the density, hence the global well-posedness of
this system is not clear and in fact remains as an open problem.

In [118] we proved local in time well-posedness of system (6.10) in Besov spaces verifying
the Lipschitz embedding (6.1). However, owing to the analysis of the pressure, which satisfies
an equation very similar to (6.7), we needed to restrict the integrability index p to the interval
p ∈ [2, 4]. As a matter of fact, this condition allows for a L2 control of the quantity inside the
divergence in the right-hand side of (6.7), so for a L2 bound (hence, low frequency bound) for the
pressure ∇π independently of the coefficient λ(ρ) = ρ−1. In addition, we point out that, because
of the parabolic nature of the density equation, the use of Chemin-Lerner spaces [42] was needed,
making the analysis somehow more involved.

In the subsequent work [117], instead, we considered the endpoint functional framework Bs
∞,r,

corresponding to the choice p = +∞, under conditions (6.3) on the indices s ∈ R and r ∈ [1,+∞].
For reasons linked with the analysis of the pressure again, we supplemented this assumption with
a finite energy (i.e. L2) condition on both ρ0 − 1 and u0. Besides a local in time well-posedness
result also in this new setting, we were also able to prove a lower bound for the lifespan of the
solution in dimension d = 2, implying the same “asymptotically global” well-posedness result
mentioned in the previous section. The bound looks more complicated than (6.9), essentially due
to the presence of h(ρ, u) on the right-hand side of the momentum equation; however, it is still
enough to deduce that, when ρ0 − 1 is of size ε > 0 small (in a suitable norm), then the lifespan
Tε of the corresponding solution diverges to +∞ when ε→ 0+.

Theorem 6.1. Let d = 2. Fix an initial datum
(
ρ0, u0

)
such that (6.6) is verified, div u0 = 0

and both ρ0 − 1 and u0 belong to the space B1
∞,1 ∩ L2. Assume moreover that ‖ρ0 − 1‖B1

∞,1
≤ 1.

Then, there exists a constant c > 0, depending only on ρ∗ and ρ∗, such that the lifespan of the
corresponding solution

(
ρ, u
)
to system (6.10) satisfies the lower bound

T ≥ c

Γ0
log

(
1 +

c

Γ2
0

log

(
1 +

c

‖ρ0 − 1‖B1
∞,1

))
,
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where we have defined Γ0 := 1 + ‖ρ0 − 1‖2L2 + ‖u0‖L2∩B1
∞,1

.

The key points of the analysis of [117] are essentially two. The first main ingredient is the proof
of new a priori estimates in endpoint Chemin-Lerner spaces L̃qT (Bs

∞,r) for parabolic equations with
variable coefficients in divergence form, where the variable coefficients may have large oscillations
(namely, they are not assumed to be close to a constant).

Proposition 6.2. Consider the parabolic problem

∂tρ − div
(
κ∇ρ

)
= f , ρ|t=0 = ρ0 ,

with κ = κ(t, x) such that 0 < κ∗ ≤ κ ≤ κ∗ and ρ0 verifying (6.6). Let s > 0 and r ∈ [1,+∞].
For any ε > 0 fixed, there exists a positive constant C, depending only on the set of data(

d, s, r, ρ∗, ρ
∗, κ∗, κ

∗, ε
)
, such that the following a priori estimate holds true:

‖ρ‖
L̃∞T (Bs∞,r)∩L̃1

T (Bs+2
∞,r)

≤ C

(
1 + ‖κ‖

2
ε(1−ε)
L∞T (Cε)

)(
‖ρ0‖Bs∞,r + ‖f‖

L̃1
T (Bs∞,r)

+

∫ T

0
ζ(t) dt

)
,

where we have defined

ζ(t) :=

(
1 + ‖κ‖

2
1+ε

L∞T (C1+ε)

)
‖ρ(t)‖Bs∞,r + ‖∇κ(t)‖L∞ ‖∇ρ(t)‖Bs∞,r + ‖∇κ(t)‖Bs∞,r ‖∇ρ(t)‖L∞ .

Those estimates are proved by a microlocal analysis argument, consisting of a decomposition
of the solution ρ both in the physical space and in the frequency space. They come into play in
an essential way first of all in the analysis of the forcing term h(ρ, u), which requires a control on
∇2ρ, and also in the proof of the improved (with respect to hyperbolic theory) lower bound on
the lifespan of the solutions, providing enough regularity for the divergence of the transport field
u+∇b, where b = b(ρ).

As a matter of fact, the second important point of the analysis is the extension of the improved
transport estimates by Vishik [217] and Hmidi and Keraani [153] to the case of transport fields
which are not necessarily of null divergence.

Proposition 6.3. Consider the linear problem

∂tf + w · ∇f = g , f|t=0 = f0 .

Then, for any θ > 0, there exists a constant C = C(d, θ) > 0 such that the following a priori
estimate holds true:

‖f(t)‖B0
∞,1
≤ C

(
‖f0‖B0

∞,1
+ ‖g(τ)‖L1

T (B0
∞,1)

) (
1 +

∫ t

0

(
‖∇w‖L∞ + ‖divw‖Bθ∞,∞

)
dτ

)
.

Notice that the previous result now yields that the Besov norm B0
∞,1 of the transported

quantity grows linearly with respect to the Lipschitz norm of the transport velocity w, plus a
suitable Hölder norm of the divergence of w. At this point, as the vorticity ω associated to
equations (6.10) is transported by w = u + ∇b(ρ) and div u = 0, the suitable Hölder regularity
for divw = ∆b(ρ) is provided by the parabolic estimates of Proposition 6.2.

6.3 On the ideal magnetohydrodynamics

In a series of works [48, 50, 49], we devoted attention to a different system, which describes the
evolution of a conducting fluid which is slightly non-homogeneous. This model was rigorously
derived in [48] and turns out to be a slight variant of the well-known ideal MHD system, on which
we focus from now on for the sake of simplicity.
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Denote by u the velocity field of the fluid and by b the self-generated magnetic field3. The
ideal MHD equations in dimension d = 2, 3 read

(6.11)


∂tu + u · ∇u + ∇π = b · ∇b
∂tb + u · ∇b = b · ∇u
div u = div b = 0 ,

where the scalar function π is the MHD pressure, given as the sum

π = Π +
1

2
|b|2

of the classical hydrodynamic pressure Π and the magnetic pressure |b|2/2.
In the present section, after briefly reviewing some old and recent results on equations (6.11),

we will specialise on the two-dimensional situation. As a matter of fact, remark that system
(6.11) can be viewed as yet another non-homogeneous perturbation of the incompressible Euler
equations (6.2) in the regime b → 0 in some sense. Hence, our goal is to obtain results in the
same spirit as the one mentioned above also for system (6.11).

6.3.1 Generalities about the ideal MHD

At a first glance, forgetting about the MHD pressure term ∇π, we see that the terms on the right-
hand side of the equations may be responsible for a loss of derivatives in the a priori estimates.
On the other hand, performing a basic energy estimate on the system, we find out that those
terms are of opposite sign, so they cancel out; this fact gives rise to the energy conservation

d

dt

(
‖u‖2L2 + ‖b‖2L2

)
= 0 .

Of course, the same cancellation occurs also for higher order estimates, with the price of lower
order commutator terms to handle. Thus, still forgetting about the pressure term, we see that
system (6.11) has the structure of a quasi-linear symmetric hyperbolic system, so it is natural to
solve it, locally in time, in energy-based spaces Hs(Rd), with s > 1 + d/2 (in accordance with
conditions (6.3) above). This was indeed done in [208].

However, as already observed in [208], it turns out that the structure of the non-linear terms
in (6.11) is even richer. As a matter of fact, introducing the change of unknowns

α := u + b and β := u − b ,

also known as Elsässer variables, system (6.11) can be recasted as a coupling of transport equa-
tions:

(6.12)


∂tα + β · ∇α + ∇π1 = 0

∂tβ + α · ∇β + ∇π2 = 0

divα = div β = 0 ,

where the two pressure terms∇π1 and∇π2 can be viewed as the Lagrangian multipliers associated
to the two (independent) divergence-free conditions on α and β. This transport structure allows,
exactly as it happens for the Euler system, for propagation of Lp norms, thus for local in time
well-posedness results in general spaces Bs

p,r, of course under condition (6.3). This was obtained
in [210, 196]. The use of Elsässer variables revealed to also be fundamental in many other works
related to the ideal MHD system: we refer e.g. to [32, 43, 16, 121] for further investigations
around equations (6.11) in various directions.

3Pay attention, here b takes a different meaning than it had in the previous Section 6.2.
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6.3.2 On the lifespan of planar solutions

We point out that previous studies focused, besides, on continuation criteria [32, 43] and sheding
some light on the global well-posedness issue [10]. However, it seems that no better lower bounds
on the lifespan of the solutions were obtained than the one given by hyperbolic theory, namely
T & 1/

∥∥(u0, b0
)∥∥
X
, where we denote by X the favourite functional framework where one solves

the equations.
Our goal in [50] was thus to take advantage on the one hand of the proximity of the ideal MHD

equations to the incompressible Euler equations, on the other hand of the Elsässer formulation
for solving the system in critical Besov spaces, in order to show, in the specific case of dimension
d = 2, an improved lower bound on the lifespan of the solutions, implying an “asymptotically
global” well-posedness result in the same spirit of the ones mentioned in Sections 6.1, 6.2.

In particular, this required to work with data and solutions atB1
∞,1 level of regularity. Now, the

question of the equivalence between the original MHD system (6.11) and the Elsässer formulation
(6.12), as well as their equivalence with the respective projected systems obtained by using the
Leray-Helmholtz projector P, becomes subtle in the framework of solutions which are merely
bounded4. As a matter of fact, the core of the problem is common to all those equivalence issues:
in order to ensure the equivalence between the two formulations (either between original MHD
and Elsässer, or between the original MHD and its projected version, or between the Elsässer
formulation and its projected version), one has to solve a Laplace equation, so time-dependent
constant-in-space solutions (which belong to the kernel of the operator −∆) may appear in the
L∞ framework. We refer to [46] and references therein for an in-depth analysis of this kind of
problems in incompressible fluid mechanics.

It is evident that the problem can be removed by imposing suitable “boundary conditions” at
infinity for the Laplace equations. In this sense, it is not surprising that, in [50], we rigorously
established the equivalence of the two systems under an additional L2 condition on the initial
velocity field and magnetic field (in fact, our result holds for a large class of weak solutions
satisfying a Lp integrability condition, for some 1 ≤ p < +∞). The integrability condition
exactly provides a good boundary condition at infinity, as it completely kills solutions which are
constant in space.

Then, we showed the well-posedness of system (6.11) in L2 ∩ Bs
∞,r functional classes, under

condition (6.3), together with a continuation criterion involving only the L1
T (L∞) norms of the

gradients ∇u and ∇b.

Theorem 6.4. Let d ≥ 2 and (s, r) ∈ R× [1,+∞] satisfying conditions (6.3) with p = +∞. Then
system (6.11) is well-posed, locally in time, in the space

Xsr :=
{(
u, b
)
∈
(
L2 ∩Bs

∞,r
)2 ∣∣∣ div u = div b = 0

}
.

Moreover, let
(
u, b
)
is a solution on [0, T [×Rd, with

(
u(t), b(t)

)
∈ Xsr for any t ∈ [0, T [ . If

T < +∞ and ∫ T

0

(
‖∇u(t)‖L∞ + ‖∇b(t)‖L∞

)
dt < +∞ ,

then
(
u, b
)
can be continued beyond T into a Xsr solution.

The latterpart of Theorem 6.4, namely the continuation criterion, is particularly important, as
it tells us that the lifespan of a solution does not depend on the level of regularity. In particular,
this enabled us to prove an improved lower bound on the lifespan of planar solutions, implying
the sought “asymptotically global” well-posedness result.

4In passing, in this respect we point out that the well-posedness result of [196] in Bs∞,r spaces does not seem
complete to us.
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Theorem 6.5. Let d = 2 and take an initial datum
(
u0, b0

)
∈ X2

1. Then, the lifespan T of the
corresponding X2

1 solution is bounded from below as follows:

(6.13) T &
1∥∥(u0, b0
)∥∥
L2∩B2

∞,1

log3

1 + C

∥∥(u0, b0
)∥∥
L2∩B1

∞,1

‖b0‖B1
∞,1

 .

We point out here a delicate point of the analysis of [50]: while working with Elsässer variables
in B1

∞,1, in order to get (6.13) one needs to come back to the original unknowns
(
u, b
)
at some

point, thus to bound b in B1
∞,1. This fact entails a loss of derivatives in the estimates, as it

requires a B2
∞,1 bound for u. Now, one may immediately come back to the Elsässer variables in

order to recover the symmetry and propagate the B2
∞,1 regularity, but the loss of derivatives does

not disappear. In order to circumvent this problem and close the estimates leading to (6.13), one
can use the basic principle behind the continuation criterion, telling us that having a bound for
suitable lower order norms of the solution prevents the blow-up of the higher order norms. Making
this principle quantitative allows one to estimate the B2

∞,1 norm in terms of the lower order B1
∞,1,

thus getting the result (with the price of an additional logarithmic factor, with respect to the
bounds obtained in [83, 117]).

Because of the reasons we have just expressed, Theorem 6.5 requires an additional B2
∞,1

regularity on both u0 and b0, in order to close the estimates and get (6.13). This can be however
improved (as done in [49]), by using proximity of (6.11) to Euler in a better way, namely by
passing directly to “modified” Elsässer variables: this approach allows one to avoid the higher
regularity assumption on b0, which thus needs to be B1

∞,1 ∩ L2 only.

To conclude this part, we remark our argument shows in fact that, for getting an improved
lower bound for the lifespan of the solutions, it is not really necessary to work in critical spaces.
What one really needs is a well-posedness theory in some (high regularity) functional framework,
complemented with a continuation criterion in terms of norms which can be controlled by B0

∞,1
regularity. For instance, in the case discussed here, we notice that ‖∇u‖L∞ . ‖u‖L2 + ‖ω‖B0

∞,1

(and similarly for b), and one can use energy conservation and the transport-like equation for
the vorticity in Elsässer variables in order to control the B0

∞,1 norm through the estimates of
[217, 153].

6.4 Fluids with odd viscosity

In this section, we get interested in a model for fluids which display non-dissipative viscosity
effects. Examples of such fluids arise both in quantum and classical hydrodynamics and there
is an increasing amount of physical literature about them. We refer to the introduction of [116]
for precise references. Many of those references focus on the case of incompressible homogeneous
fluids and study questions linked to the free-surface problem; we refer to [150] for a mathematical
investigation of that problem.

In this kind of studies, the two-dimensional setting occupies a special place, as odd viscosity,
namely the non-dissipative response of the viscous tensor to stesses, is not incompatible with
isotropy. Thus, we focused on fluids which occupy the whole plane Ω = R2, although a similar
analysis can be performed also in the periodic case Ω = T2.

In [116], we assumed the fluid to be incompressible, but to present also density variations.
The system of equations we studied writes as follows:

(6.14)


∂tρ + u · ∇ρ = 0

ρ ∂tu + ρ u · ∇u + ∇Π + ν0 div
(
ρ∇u⊥

)
= 0

div u = 0 ,
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where the notation v⊥ has been introduced in Chapter 4 and ν0 ∈ R is the (kinematic) odd
viscosity coefficient. Actually, it turns out that nor its value, nor its sign are important in our
analysis; for this reason, we immediately set ν0 = 1. Finally, as the odd viscosity tensor appearing
in the previous equations is not symmetric, we point out that we have set

div
(
ρ∇u⊥

)
=
∑
j=1,2

∂j
(
ρ ∂ju

⊥) .
As we are going to see in a while, this model behaves much more as a hyperbolic system rather

than a parabolic one.

6.4.1 Well-posedness

In [116], we investigated questions linked to the well-posedness of equations (6.14) in a critical
regularity framework. Inspired by [83, 105] about the Euler system (6.5), to which equations
(6.14) reduce when ν0 = 0, we assumed absence of vacuum, represented by condition (6.6) on the
initial density; this condition of course implies, for regular enough solutions, absence of vacuum
also at any later time. Moreover, owing to the absence of any parabolic effect on the veclity field,
we looked for well-posedness in Sobolev spaces Hs ≡ Bs

2,2 satisfying condition (6.3), namely s > 2
as d = 2 here.

To begin with, we observe that the previous system conserves the kinetic energy. As a matter
of fact, the odd viscosity term ρ∇u⊥ is ortoghonal to ∇u. Thus, by testing the momentum
equation against u and using the mass conservation equation, after suitable integration by parts
one formally obtains

∀ t ≥ 0 ,
1

2

∫
Ω
ρ(t)

∣∣u(t)
∣∣2 dx =

1

2

∫
Ω
ρ0

∣∣u0

∣∣2 dx .

On the other hand, thanks to the fact that the density ρ is transported by the divergence-free
vector field, one formally get that ‖ρ(t)− 1‖L2∩L∞ = ‖ρ0 − 1‖L2∩L∞ for any time t ≥ 0. However,
it is clear that those bounds are not sufficient to develop a well-posedness theory for system (6.14).
Therefore, we look for a priori estimates for ρ − 1 and u in Hs, for s > 2. In doing so, we see
that two main problems arise, both linked, of course, with the presence of the odd viscosity term
in the momentum equations. Let us explain those problems in detail.

Assume that u ∈ Hs. First of all, we see that the transport equation for ρ allows us to
propagate the Hs regularity of the initial datum, thus getting ρ − 1 ∈ Hs. Next, we consider
the equation for u: following [83, 105], we divide the momentum equation by ρ and perform Hs

estimates. At this point, by writing

(6.15)
1

ρ
div
(
ρ∇u⊥

)
= ∆u⊥ + ∇ log ρ · ∇u⊥ ,

we see that the first term on the right-hand side is skew-symmetric (thus it vanishes when perform-
ing the Hs estimate), whereas no cancellations occur for the second term. The point is that this
second term involves derivatives of ρ and u, in particular it only belongs to Hs−1; this precludes
our hope of closing the Hs estimates.

The second issue, instead, is linked with the regularity of the pressure term, and it looks
maybe even more serious than the previous one. In order to explain it, we restrict our attention
for a while to the simpler case in which the fluid is assumed to be homogeneous, i.e. ρ ≡ 1. Then,
equations (6.14) reduce to {

∂tu + u · ∇u + ∇Π + ∆u⊥ = 0

div u = 0 .
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Observing that, owing to the divergence-free condition, one has ∆u⊥ = ∇φ, one is finally recon-
ducted to solve an incompressible Euler equation

∂tu + u · ∇u + ∇Π̃ = 0 , with Π̃ := Π + φ .

As the system is set in two space dimensions, one can thus solve globally the previous equation
in Hs, for any s > 2. Recall that the key for that is to get rid of the pressure term by passing
in vorticity formulation. However, one can track the regularity of the pressure gradient and find
that ∇Π̃ ∈ Hs. This implies that the (original) hydrodynamic pressure ∇Π is only Hs−2. Now,
we have seen in Section 6.1 that, for non-homogeneous fluids, there is no chance to get rid of
the pressure gradient, exactly due to the variations of the density: for this reason, the property
∇Π ∈ Hs−2 looks very dangerous in view of proving well-posedness for equations (6.14).

Despite this loss of derivatives, which occurs at two different levels, in [116] we could establish
a local in time existence and uniqueness result.

Theorem 6.6. Let s > 2 and take an initial datum
(
ρ0, u0

)
such that ρ0−1 ∈ Hs+1 and u0 ∈ Hs.

Assume in addition that condition (6.6) holds true.
Then there exist a time T > 0 and a unique solution

(
ρ, u,∇Π

)
to system (6.14) on [0, T ]×R2

such that:

• ρ ∈ L∞
(
[0, T ]× R2

)
verifies the same bounds as in (6.6) and ρ− 1 ∈ C0

(
[0, T ];Hs+1

)
;

• u ∈ C0
(
[0, T ];Hs

)
;

• ∇Π ∈ C0
(
[0, T ];Hs−2

)
, but ∇

(
π−ρω

)
∈ C0

(
[0, T ];Hs−1

)
, where ω = curlu = ∂1u

2−∂2u
1

is the vorticity of the fluid.

In additon to the previous statement, one can establish also some continuation criteria, similar
in spirit (but more complicate in the statement) to the Beale-Kato-Majda criterion for the in-
compressible Euler equations. We skip the details about those continuation criteria in the present
discussion.

Here, we want rather to comment on the regularity of the pressure function, and more precisely
to highlight the fact that the difference ∇

(
π − ρω

)
, which belongs to C0

(
[0, T ];Hs−1

)
, is more

regular than ∇π and ∇ω alone, which are only C0
(
[0, T ];Hs−2

)
. To some extent, this fact is

reminiscent of what happens for the Hoff effective viscous flux, see Chapter 5. We will see that
this property plays a key role in our analysis.

6.4.2 A hidden hyperbolic structure

Let us briefly explain how the proof of Theorem 6.6 works. First of all, we want to explain how
to solve the above mentioned problems concerning a priori estimates, focusing on propagation of
higher regularity norms.

The crucial point of the analysis is the introduction of suitable good unknowns, which somehow
symmetrise the system and make an underlying hyperbolic structure appear. We claim that the
good unknowns for system (6.14) are

ω := curlu = ∂1u
2 − ∂2u

1 and θ := η − ∆ρ ,

where we have defined
η := curl (ρu) := ∂1

(
ρ u2

)
− ∂2

(
ρ u1

)
.

Let us explain why looking at those quantities to control the high regularity norms of the solution(
ρ, u
)
solves the issues mentioned in the previous subsection.
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To begin with, we compute an equation for the vorticity ω. For doing so, we divide the
momentum equation by ρ and take the curl of the resulting expression: similarly to (6.4), we find
the equation

(6.16) ∂tω + u · ∇ω + ∇⊥
(

1

ρ

)
· ∇Π + B

(
∇u,∇2 log ρ

)
= 0 ,

where the term B
(
∇u,∇2 log ρ

)
is a bilinear term whose precise expression is not important at

this level; it is enough to notice that it comes from the odd viscosity term and, because of the
identity (6.15) and of the fundamental cancellation curlu⊥ = div u = 0, it presents only one
derivative in u and two derivatives in ρ. In particular, if u ∈ Hs and ρ − 1 ∈ Hs+1, then
B
(
∇u,∇2 log ρ

)
∈ Hs−1, which is the expected regularity for ω.

However, we notice the property ρ− 1 ∈ Hs+1 seems to be out of reach here: ρ is transported
by the Hs vector field u, so at best one can hope to transport Hs norms only. Here, it comes into
play the second good unknown θ: for the time being, we are able to guarantee that ρ u belongs
to Hs, hence η ∈ Hs−1; if, for any reason, we can prove that θ ∈ Hs−1 as well, then we get
−∆ρ ∈ Hs−1, which impies (thanks to the control on the L2 norm for ρ− 1) that ρ− 1 ∈ Hs+1.

As a matter of fact, we notice that the following two idendities hold true:

ρ ∂tu + ρ u · ∇u = ∂t
(
ρ u
)

+ u · ∇
(
ρ u
)

div
(
ρ∇u⊥

)
= ∆

(
ρ u⊥

)
−
∑
j

∂j
(
∂jρ u

⊥)
= ∆

(
ρ u⊥

)
− ∇ρ · ∇u⊥ − ∆ρ u⊥ .

Then, applying the curl operator to the momentum equation in (6.14) in order to find an equation
for η, one naturally finds an equation for θ instead:

(6.17) ∂tθ + u · ∇θ =
1

2
∇⊥ρ · ∇|u|2 + B

(
∇u,∇2ρ

)
,

where we have again used the property curlu⊥ = div u = 0 and where the first term on the
right corresponds to the “stretching term” arising from the application of the curl operator to
the transport term u · ∇

(
ρu
)
. At this point, it is clear that, under the conditions ρ − 1 ∈ Hs+1

and u ∈ Hs, the right-hand side of equation (6.17) belongs to Hs−1, therefore one can infer the
property θ ∈ Hs−1, which in turn implies, as already announced above, that ρ− 1 ∈ Hs+1.

Nonetheless, the problem for closing the argument comes from the pressure term, which still
appears in equation (6.16). Notice that we have reduced the order of the problem, inasmuch as
a Hs−1 control is now sufficient (whereas we needed Hs regularity for ∇Π for propagating the
same norm of the velocity), but hoping for this regularity seems still too much, in light of the
discussion of Subsection 6.4.1. Nevertheless, let us give a closer look at the pressure term. On
the one hand, arguing as for getting (6.7), we see that ∇Π solves the elliptic equation

−div

(
1

ρ
∇Π

)
= div

(
u · ∇u + ∇ log ρ · ∇u⊥

)
− ∆ω ,

where we used identity (6.15) again. As the right-hand side of the previous relation is the divergnce
of some F ∈ L2, we can easily estimate the L2 norm of ∇Π by Lax-Milgram theorem. On the
other hand, expanding the derivatives on the left, we can compute an equation for ∆Π, with the
goal of bounding the high frequencies of the pressure gradient: we find

−∆Π = F̃ − ρ∆ω ,

for a suitable function F̃ which belongs to Hs−2. This implies in particular that

−∆
(
Π− ρω

)
= F̃ −

[
ρ,∆

]
ω =⇒ −∆

(
Π− ρω

)
∈ Hs−2 ,
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which in turn yields ∇
(
Π− ρω

)
∈ Hs−1. Now, we use this property in equation (6.16): we get

∇⊥
(

1

ρ

)
· ∇Π = ∇⊥

(
1

ρ

)
· ∇
(
Π− ρω

)
+ ∇⊥

(
1

ρ

)
· ∇
(
ρω
)

= ∇⊥
(

1

ρ

)
· ∇
(
Π− ρω

)
− ∇⊥ log ρ · ∇ω .

At this point, we observe that the first term on the right-hand side has Hs−1 regularity, so it
is a “good” forcing term in the equation for ω, and that the second term is instead a transport
term for ω. Thus, the vorticity ω results to be transported by the Hs divergence-free vector field
u − ∇⊥ log ρ, submitted to a Hs−1 forcing term; hence, one can propagate Hs−1 regularity for ω
and finally close the a priori estimates.

As a conclusion, we have seen that it is the hyperbolic structure of equations (6.16) and (6.17),
namely the coupling of those transport equations, which allows for the propagation of higher order
norms of the solution and for the well-posedness result to hold.

Actually, it is worth to point out that further complications arise in the proof of Theorem 6.6,
at the level of the proof of existence, the proof of uniqueness and the proof of the continuation
criterion. For the sake of brevity, we avoid to enter into those details here. We only point out
that, in our arguments, Littlewood-Paley theory enters into play in a crucial way, through sharp
estimates for transport-diffusion equations in Chemin-Lerner spaces (as a matter of fact, we prove
existence by viscous regularisation of the system) and paradifferential calculus (in order to avoid
a new loss of derivatives in the stability estimates leading to uniqueness).

6.5 Some open questions and perspectives

We conclude this chapter by mentioning some problems which capture our attention and which
we would like to consider in the future.

The first remark we want to make here is that all the results for models of non-homogeneous
(density-dependent) fluids have been obtained so far under the crucial assumption of absence of
vacuum, see e.g. [81, 83, 105, 118, 117, 116]. Then, we are interested in studying what happens in
case vacuum regions appear initially (and then they are transported by the flow). We expect that
an approach inspired by [114, 115], based on finding a suitable quantity, linked to the density,
to control close to vacuum, may be fruitful. We also expect that it may be possible to exploit
tangential regularity information in the vacuum regions.

On a different but related standpoint, we plan to address the question of well-posedness of
some models encoding transitions from compressible to incompressible, like in models for crowd
dynamics and granular media. To the best of our knowledge, existence for such models is known
only by a singular limit approach [179, 203, 96] from a suitably penalised compressible problem. A
direct well-posedness study on the target compressible-incompressible system seems to be missing,
although some studies exist based on optimal transport theory [189, 191, 170]. The description of
the dynamics of the saturated region (where the density reaches a maximal value) is also a very
interesting problem in this context, although some results are available in the one-dimensional
situation [73, 74]. Let us mention that similar questions arise also in the study of the interaction
of waves with an immersed object [169, 161, 26] and in some models from biology [91, 94, 92].

The global well-posedness issue for the kind of systems discussed in this chapter seems to be
a hard problem, difficult to get if one does not exploit any specific structure of the system around
well-chosen equilibria.

On the other hand, we plan to investigate some partially dissipative cases, similar in spirit to
recent results [67, 68] for symmetric hyperbolic systems.
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Finally, we focus on the odd viscosity system (6.14), for which it seems that the mathematical
literature is still poor. Several questions arise in this context.

As a direct continuation of work [116], the first one is to study the well-posedness of the system
in general Besov spaces Bs

p,r (still under condition (6.3), of course), for p 6= 2. In particular, we are
especially interested in the case p = +∞ and in recovering suitable lower bounds for the lifespan
of solutions, implying an “asymptotically global” well-posedness result also in this context. In
the same direction, we would like to investigate propagation of tangential regularity, in the same
spirit of [105] for the density-dependent incompressible Euler equations (6.5).

In addition, we plan to consider the case in which a (traditional) diffusive viscosity term cohex-
ists with the odd viscosity term. In this case, we are interested in obtaining global existence and
uniqueness of solutions. In a first approach, we may work under the Boussinesq approximation.

Furthermore, it seems interesting to consider similar problems in higher dimension, namely
for d = 3. The question of the well-posedness of the system arises even for homogeneous fluids
(i.e. with ρ ≡ 1) in this case, as now the odd viscosity term is anisotropic. One may expect to
find similar phenomena as the ones highlighted in the study of rotating fluids; yet, the loss of
derivatives due to the odd term has to be taken into account.

Finally, we mention that the case of (density-dependent) compressible flows looks interesting
and challanging. As a matter of fact, in the computations of Section 6.4 we have used several
times the incompressibility condition div u = 0 in order to get fundamental cancellations, which
avoided the presence of higher order derivatives on the velocity field. In the compressible case,
one cannot rely anymore on those cancellations, thus a further loss of derivatives appears, which
depends on div u. We may expect an interplay between potential part (which should disperse)
and incompressible part of the solution, yet it seems to us that some additional information has
to be extrapolated from the system, in order to avoid such a loss of derivatives.
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Chapter 7

Overview of Part III

Part III is devoted to the study of a particular class of singular perturbation problems in Fluid
Mechanics, which arise in the study of geophysical flows, like currents in the ocean and in the
atmosphere.

For an accurate description of the dynamics of geophysical flows, it is important to take into
account three main features:

(i) the almost incompressibility of the flow;

(ii) the effects due to stratification, namely variations in the density function caused by the
action of gravity;

(iii) the action of a strong Coriolis force, due to the fast1 rotation of the ambient system.

The relevance of these effects is measured by introducing, correspondingly, three physical adimen-
sional parameters (having positive value): the Mach number Ma, linked with incompressibility,
the Froude number Fr, linked with stratification, and the Rossby number Ro, related to fast
rotation. Saying that the previous attributes are predominant in the dynamics corresponds to
assuming that the values of those parameters are very small.

The complexity of the original system (often referred to as primitive system in the references
which will be quoted in the sequel2) prompts physicists to derive reduced models, more easy
to study and to handle for performing computations and numerical simulations. The conditio
sine qua non of this reduction process is that the reduced models must retain, in some sense, all
the main characteristics of the original system. Thus, advocating some sort of continuity of the
solutions of the original equations with respect to the parameters appearing therein, the reduced
models are obtained by formally setting the previously mentioned Ma, Fr and Ro to 0 in the
original equations. It is apparent that this process is only formal; its precise justification requires
a rigorous limit process, which nonetheless poses several mathematical difficulties. As a matter of
fact, in this limit process one is usually faced to a singular perturbation problem, in the following
sense. Firstly, some terms in the equations are penalised by the small parameters (in the sense that
factors like 1

Ma ,
1
Fr and 1

Ro appear in the equations) and, then, tend to explose when performing
the asymptotics for those parameters going to 0. In addition, in the limit process the nature of
the equations often changes (at the level of the type of PDEs involved, order of the differential
operators. . . ), a fact which is a source of additional difficulties in the analysis.

Thus, on the mathematical side, there are at least two main problems when facing the rigorous
study of the asymptotic limit Ma, Fr, Ro → 0: first of all, one has to find the right functional

1Fast, here, refers to the fact that the speed of rotation of the ambient system, e.g. the Earth, is much larger
than the characteristic velocity of the fluid. See for instance [70] for more details.

2This terminology has not to be confused with the system of primitive equations, used in geophysics to denote
the Navier-Stokes system with hydrostatic approximation. In order to avoid any confusion, we will try to resort to
a different name in this manuscript.
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framework in which giving a rigorous justification to the limit argument; moreover, one has to deal
with several technical issues related to the above mentioned change in the nature of the equations,
like possible vanishing of suitable quantities and loss of uniform bounds for other quantities, for
instance.

At this point, it is important to point out that those limit processes (Ma → 0, Fr → 0
and Ro → 0) do not commute. Therefore, what one usually does is to focus on a distinguished
limit, in which the relative orders of magnitude of Ma, Ro and Fr are fixed and interrelated,
depending on the physical regime one is interested in. Besides, this setting gives the possibility
of studying multiscale limits, in which precisely those physical parameters have different orders of
magnitude, thus translating a hierarchy of importance that the various considered effects have on
the dynamics. In our case, we will typically be in the situation in which the Rossby number Ro
is taken equal to a small parameter ε > 0, namely Ro = ε, whereas we will set the Mach number
Ma = εm, for some m ≥ 0 (in practice, m ≥ 1 almost all the time) and the Froude number
Fr = εn, for 0 ≤ n ≤ m (but in fact more restrictive upper bounds for n in terms of m appear in
the study).

In this part of the manuscript, we will see how to tackle the fast rotation limit Ro = ε→ 0+

for various fluid models. In Chapter 8 we will focus on the case of compressible flows and on the
multiscale analysis, while in Chapter 9 we will describe the situation for incompressibile fuids with
variable density. In particular, we will always deal with non-homogeneous flows, meaning that we
will take into account fluids having variable density ρ ≥ 0. While those cases (the compressible
and incompressible ones) retain some common features, deep differences arise in their study: let
us briefly comment on them.

To begin with, let us give the precise form of the Coriolis operator C = C(ρ, u) we adopt to
model the effects of the fast rotation on the dynamics of the flow. We consider a very simple form
of C, which is however well-justified, from the physical viewpoint, at mid-latitudes (see e.g. [41]
for details): if we denote by e3 = (0, 0, 1) the unit vector directed along the vertical axis and by
× the usual external product in R3, we have

(7.1) C(ρ, u) :=
1

Ro
e3 × ρ u =

1

Ro
ρ
(
− u2, u1, 0

)
.

This corresponds to identifying the rotation axis with the vertical axis.
Notice that the vector C(ρ, u) is pointwise orthogonal to the vector u, hence also with respect

to the L2 scalar product on R3. For later use, we remark that this remains true also in R2, if we
take the projections onto the first two components of the two vectors C(ρ, u) and u. Thus, the
Coriolis term gives zero contribution whenever we perform an energy estimate on the momentum
equation. Nonetheless, this is no more the case when, instead, we perform a Hs estimate, for
s > 0, as derivatives of ρ now appear; then, one should make sure of their smallness in order to
absorbe the prefactor 1

ε . Observe that this is a remarkable effect due to the heterogeneity of the
fluid. For this reason, we conduct the asymptotic study in the framework of global in time weak
solutions à la Leray (namely, weak solutions possessing finite energy, as discussed in Section 5.1)
for the various models under consideration.

Next, assume for a while that the fluid is compressible and barotropic, so the pressure function
P = P (ρ) is a known function of the density only (recall equation (5.1) above). In many physically
relevant situations, the (small) Mach numberMa is of the same order of magnitude as the Rossby
number Ro: in this instance, we can set Ma = Ro = ε (which means m = 1 in the discussion
above), for a small parameter ε > 0 which we want to send to 0. As a consequence of the physical
scaling, the two predominant effects of the dynamics are the incompressibility (associated to
the penalisation of the pressure term) and the fast rotation (coming from the penalisation of
the Coriolis operator C), and these effects are kept in balance in the limit process. Now, if the
densities are small perturbations of a constant state, say ρ ≈ 1 + εr, it is easy to see (at least
formally) that, from that “equilibrium” between pressure and rotation terms, in the limit ε→ 0+
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one recovers the so-called quasi-geostrophic balance relation:

(7.2) e3 × u + P ′(1)∇r = 0 .

This relation is a key point of the study, as it entails deep consequences. Indeed, from (7.2) one
recovers3 that r = r(t, xh) and uh = uh(t, xh). Using the mass equation, one in turn discovers
that the limit velocity field u only depends on (t, xh). This is exactly the celebrated Taylor-
Proudman theorem in Geophysics: in the limit of fast rotation, the fluid tends to have planar
behaviour and the dynamics essentially takes place in planes orthogonal to the rotation axis,
while remaining constant in the vertical direction (i.e. the direction parallel to the rotation
axis). Hence, the motion (at least, the mean motion in the bulk) is fully described once we know
uh = uh(t, xh). Now, relation (7.2) tells us that uh is a 2-D divergence-free vector field which
satisfies uh = P ′(1)∇⊥h r; in particular, r is a stream function for the 2-D limit velocity field uh,
so, in order to describe the limit dynamics, it is enough to exhibit an equation for r alone. As a
matter of fact, relation uh = P ′(1)∇⊥h r enters in the asymptotic study also at other levels, as
it is used several times in the computations, when rigorously proving convergence of the original
(ε-dependent) system to some reduced system.

Relation (7.2) marks a severe difference between the compressible fluid case and the incom-
pressible fluid case. As a matter of fact, in the incompressible situation, equation (7.2) will be
replaced by

e3 × ρ u + ∇Π = 0 ,

where this time we do not make the assumption that the limit density is necessarily constant,
ρlim ≡ 1, and where we have denoted by Π the (unknown) pressure of the fluid. Notice that, for
incompressible flows, it makes no more sense to speak about the Mach number. Indeed, in this
situation the pressure in only a Lagrangian multiplier associated to the divergence-free constraint
over u, and one disposes of no explicit formulas for it; in any case, Π cannot be expressed in
terms of the density function alone. In particular, one misses the explicit relation between the
limit velocity field and the limit density variation function, so also all the benefits which came
with it. As we will see, in this instance the proof of the convergence becomes much more involved
(in particular, for technical reasons we will have to restrict our attention to 2-D flows), and the
limit dynamics will be (at least in the case when the reference density state is non-constant)
underdetermined.

Before concluding this overview of Part III, let us make some additional comments, of more
technical flavour.

First of all, we will always deal with general ill-prepared initial data. This means that we will
assume only uniform bounds, in suitable norms, for the initial data, without requiring special
relations on them or on their limit points.

In addition, we will always neglect boundary effects. It is well-known that the Taylor-
Proudman theorem is somehow incompatible with the physical condition which wants the fluid to
stick at the boundary of the domain (think for instance to the bottom of the ocean). This illusory
contradiction finds its explanation in the presence of the so-called Ekman boundary layers, in
which the fluid is slowed down until it results to be at rest at the boundary. Ekman boundary
layers affect also the global dynamics (even in the interior of the domain), by what is known as
the Ekman pumping phenomenon. In our study, we will mainly neglect those boundary issues,
by imposing complete-slip boundary conditions in the compressible case and by working in two
dimensions of space in the incompressible case (as already mentioned, the reduction to 2-D flows
is actually imposed by other technical difficulties). We will make an exception to that in Section
9.3. In addition, we will also give more references about Ekman boundary layers and related
phenomena.

3Here, for a 3-D vector field v =
(
v1, v2, v3

)
, we have set vh =

(
v1, v2

)
.
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Finally, we point out that our study will be based on weak compactness techniques; in particu-
lar, our convergence results will be true, in general, only up to extraction of a suitable subsequence.
Notice that, in order to pass to the limit in the equations, one needs strong convergence of suitable
quantities to treat the non-linear terms. Nonetheless, this property cannot be simply derived as
in classical arguments: owing to the presence of the singular parameters in the equations, the
time derivatives of the solutions will not enjoy, in general, uniform boundedness of any type, pre-
cluding the possibility of application of classical arguments, like the Ascoli-Arzelà or Aubin-Lions
theorems. Instead, we will adopt (for most of the problems) a compensated compactness approach
first introduced by P.-L. Lions and Masmoudi [178] in the context of the incompressible limit of
the compressible Navier-Stokes equations, and then adapted by Gallagher and Saint-Raymond
[145] to the study of homogeneous incompressible fluids in fast rotation. This method is based
on making use, by purely algebraic computations, of the wave system, namely the system which
describes propagation of oscillations from the target configuration: by exploiting its structure, we
are able to find special cancellations and relations in the non-linear terms, which in turn allow us
to finally express them as a sum of terms which either are small, or converge in the limit ε→ 0+.
This is a very robust technique, which in principle requires almost no constraints on the orders
of magnitude of the small parameters coming into play. The drawback of this approach is that it
does not yield any quantitative convergence property. For this reason, sometimes (when possible)
we will use instead different techniques, yielding strong convergence (we will get it by applying the
celebrated RAGE theorm from scattering theory, see e.g. [71]), even with a precise rate (relative
entropy methods, see e.g. [127] and references therein).

In Chapter 8 we are going to tackle the singular limit problem and the multiscale analysis
for some compressible fluid models. In Chapter 9 we deal with a similar asymptotic study for
density-dependent incompressible fluid systems.



Chapter 8

Fast rotation limit: compressible models

The present chapter is devoted to the study of the fast rotation asymptotics for models of com-
pressible fluid flows.

As in Part II, we denote by the scalar function ρ ≥ 0 the density of the fluid, by u ∈ R3 its
velocity field and by P = P (ρ) the pressure of the fluid; for simplicity of presentation, we will
always assume P (ρ) = Aργ , for some A > 0 and γ > 3/2. As in the previous chapters, we will
denote by Du the Jacobian matrix of u and by ∇u = t(Du) its transpose matrix; then, we adopt
a shortened name to denote the viscous stress tensor

(8.1) S(Du) := µ

(
Du + ∇u − 2

3
div u Id

)
+ λ div u Id ,

where Id is the identity matrix and µ and λ are, respectively, the shear viscosity and the bulk
viscosity coefficients, which we assume to be positive here for simplicity. For the time being, we
also assume that µ and λ are fixed constant. Thus, this notation is consistent with the form of the
viscosity terms appearing in equations (5.1), up to a change in the definition of the coefficients
µ and λ there. The general form of the original system we will consider throughout this part is
given by the following rescaled barotropic Navier-Stokes system:

(8.2)


∂tρ + div

(
ρ u
)

= 0

∂t
(
ρ u
)

+ div
(
ρ u⊗ u

)
+

1

ε2m
∇P (ρ) +

1

ε
e3 × ρ u

−div S(Du) =
1

ε2n
ρ∇G +

1

ε2
ρ∇F ,

where m ≥ 0 and 0 ≤ n ≤ m, and the two external forces

G(x) = −x3 and F (x) =
∣∣xh∣∣2 = (x1)2 + (x2)2

denote respectively the gravity and the centrifugal force. However, results concerning related
systems (like the full Navier-Stokes-Fourier system, the Navier-Stokes-Korteweg equations. . . )
will be discussed as well.

We set system (8.2) in R+ × Ω, where Ω is the infinite slab

Ω := R2× ]0, 1[ .

The “horizontal domain” R2 could be replaced by the periodic box T2 with almost no changes in
the analysis. We supplement equations (8.2) with complete-slip boundary conditions

(8.3)
(
u · n

)
|∂Ω

=
(
u3
)
|∂Ω

= 0 and
((

S(Du)n
)
× n

)
|∂Ω

= 0 ,
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where n = ±e3 denotes the exterior normal to the boundary ∂Ω. Recall that the previous
conditions allow one to avoid the appearing of Ekman boundary layers. We also fix the initial
conditions

ρ|t=0 = ρ0,ε and u|t=0 = u0,ε .

More precise assumptions on the family of initial data
(
ρ0,ε, u0,ε

)
ε∈ ]0,1]

will be specified later on.
The important point, forced by the techniques we use to prove convergence (essentially, weak
compactness methods), which in turn allow us to consider ill-prepared initial data, is that the
initial densities need to be small perturbations around some static state ρ̃ (in fact, the static
states may themselves depend on ε > 0, and converge to some state ρ̃ when ε → 0+: this is a
typical situation in multiscale problems, see Subsection 8.1.2 below).
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8.1 Introduction

As already anticipated in Chapter 7, the goal of our study is the following: given, for any ε ∈ ]0, 1]
fixed, a global in time finite energy weak solution

(
ρε, uε

)
to system (8.2) related to the datum(

ρ0,ε, u0,ε

)
, recall the discussion in Section 5.1, we want to understand the asymptotic behaviour

of the family
(
ρε, uε

)
ε∈ ]0,1]

for ε → 0+. This means first of all to prove convergence of
(
ρε, uε

)
ε
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to some target state
(
ρlim, ulim

)
, and then to characterise the dynamics of that target state, i.e.

to find the equations satisfied by
(
ρlim, ulim

)
.

Before entering into the details of our presentation, let us mention that the corresponding study
for the classical incompressible Navier-Stokes (and Euler) equations, which somehow correspond to
take ρ ≡ 1 in (8.2), has been widely performed in the past and is by now quite well-understood. We
will avoid any discussion about it here; we refer the interested reader to [41] for a comprehensive
treatement of the subject. Similarly, we avoid any discussion about the incompressible limit
Ma → 0+ for compressible fluid systems, a topic which has been broadly studied so far and for
which there exists an extended litterature. We refer for instance to [131] for an overview of the
main results and for more references about the problem of the incompressible limit alone. In this
chapter, we will only review results about the combined effects of the incompressible and fast
rotation limits and focus on system (8.2).

8.1.1 Fluids in quasi-geostrophic balance

To begin with, let us focus on a simplified version of system (8.2), where we take F = G = 0 and
we consider only the value m = 1: the equations of motion then read

(8.4)


∂tρ + div

(
ρ u
)

= 0

∂t
(
ρ u
)

+ div
(
ρ u⊗ u

)
+

1

ε2
∇P (ρ) +

1

ε
e3 × ρ u− div S(Du) = 0 .

First attempts to understand the asymptotic behaviour of system (8.4) for ε → 0+ were
performed in [22, 23]. Those works mainly concerned 2-D flows and the case of well-prepared
initial data. Moreover, the investigation of the convergence was performed by relative entropy
methods. The general case of ill-prepared initial data and of 3-D domains was treated only
afterwards by Feireisl, Gallagher and Novotný in [126]. The authors considered initial data of the
following form1:

ρ0,ε = 1 + ε r0,ε , with
(
r0,ε

)
ε
b L2(Ω) ∩ L∞(Ω)

for the density functions and, for the velocity fields,(
u0,ε

)
b L2(Ω) .

Under these assumptions, Lions-Feireisl theory [177, 123] provides us with the existence of a
global in time finite energy weak solution

(
ρε, uε

)
, for any ε > 0 fixed. Next, consider the energy

inequality (5.7), which in this context becomes∫
Ω

(
1

2
ρε |uε|2 +

1

ε2
H
(
ρε
∣∣ 1)) dx +

∫ t

0

∫
Ω

(
µ |∇uε|2 + λ |div uε|2

)
dx dt(8.5)

≤
∫

Ω

(
1

2
ρ0,ε |u0,ε|2 +

1

ε2
H
(
ρ0,ε

∣∣ 1))
for all t ≥ 0, where the functional

H
(
ρ
∣∣ ρ̃) := H(ρ) − H(ρ̃) − H ′(ρ̃)

(
ρ− ρ̃

)
has been introduced in (5.4) and denotes the Bregman divergence of one density state ρ to the
reference state ρ̃, associated to the convex function H. Here, H stands for the classical pressure
potential, defined as usual as a solution to the ODE

ρH ′(ρ) − H(ρ) = P (ρ) .

Recall the discussion of Subsection 5.1.1.
1Given a normed space X and a sequence

(
fε
)
ε
⊂ X of elements of it, we use the notation

(
fε
)
ε
b X to

mean that the sequence is also bounded in X, i.e. one has ‖fε‖X ≤ C, for an absolute constant C > 0 which is
independent of ε > 0.
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Properties of the mean motion

The energy inequality (8.5) immediately implies that

ρε = 1 + ε rε , with
(
rε
)
ε
b L∞

(
R+;L2(Ω) + Lγ(Ω)

)
,

and that (
uε
)
ε
b L∞

(
R+;L2(Ω)

)
,

(
∇uε

)
ε
b L2

(
R+;L2(Ω)

)
.

As a consequence, one can take weak limits (up to suitable extractions) in the respective functional
spaces and obtain, for suitable limit-points r and u, the convergences

(8.6) rε
∗
⇀ r and uε

∗
⇀ u

in the weak-∗ topology of the respective spaces. In addition, one can rigorously justify the quasi-
geostrophic balance

1

ε2
∇P (ρε) ≈

1

ε
e3 × ρεuε

mentioned in Chapter 7, as in fact 1
ε2
∇P (ρε) ≈ 1

ε P
′(1)∇rε and 1

ε e3 × ρεuε ≈ 1
ε e3 × uε are of

the same order.
In turn, one can rigorously prove that the target state (r, u) satisfies the quasi-geostrophic

relation (7.2) of the previous chapter, together with all the consequences which derive from it, in
particular the Taylor-Proudman theorem. Moreover, from the mass equation one deduces that
the limit velocity profile u must be incompressible, namely

div u = 0 .

Combining all those properties with the complete-slip boundary conditions, one finally finds that

(8.7) u =
(
uh, 0

)
, with uh = ∇⊥h r , r = r(t, xh) .

Convergence to the limit dynamics

The next goal is to compute a dynamical equation for u, or equivalently for r. For this, one wants
to pass to the limit in the weak formulation of the momentum equation, when testing it against a
test function which belongs to the kernel of the singular perturbation operator. Thus, from now
on we fix some smooth

ψ =
(
∇⊥h ϕ, 0

)
, with ϕ = ϕ(t, xh) ∈ D

(
R+ × R2

)
,

and we use it as a test function in the momentum equation. Notice that ψ is divergence-free,
together with its horizontal component ψh = ∇⊥h ϕ, and only depends on the horizontal variables.

As is well-known, the convergence properties (8.6) are not enough to pass to the limit ε→ 0+,
essentially because of the non-linearities arising in the original (ε-dependent) system. In the
specific case of system (8.4), there are two main problems. The first one is the convergence of the
convective term ρεuε⊗uε, which is non-linear in the velocity field, so the smallness ρε− 1 = O(ε)
alone is not enough to compute its asymptotics. The second problem is the convergence of the
Coriolis term 1

ε e3 × ρεuε, which is singular when ε→ 0+. Of course, the story is different for the
other singular term, namely the pressure term, because it is a gradient, thus it vanishes whenever
one tests the momentum equation on ψ as fixed above.

Now, the issue linked with the Coriolis term is easily solved thanks to the use of the mass
equation. Indeed, for ψ as above, one can write

1

ε

∫
R+×Ω

e3 × ρε uε · ψ dx dt =
1

ε

∫
R+×R2

〈ρε uhε 〉 · ∇hϕ dxh dt(8.8)
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=

∫
R2

〈r0,ε〉ϕ(0, ·) dxh +

∫
R2

〈rε〉 ∂tϕ dxh dt ,

where we have denoted by

〈f〉 = 〈f〉(t, xh) =

∫
]0,1[

f(t, xh, x3) dx3

the vertical average of a function f defined on R+ × Ω. In the previous relation (8.8), we notice
that the singularity 1

ε has disappeared, thanks to the use of the mass equation and the fact that
ρε− 1 = O(ε), a fact which in turn relies on the scaling assumption Ma = O(ε), recall (8.5). On
the other hand, this argument forces us to work with the quantity r, hence to take the curl of the
momentum equation. As it is clear, in this instance this makes no worries, as the target velocity
field u satisfies (8.7), so the limit dynamics can be completely described by an equation over r;
this will not be the case for incompressible flows, see Chapter 9.

It remains us to deal with the convective term. Its analysis is more involved, because the
presence of terms like ujε ukε demands to find some strong convergence uε −→ u of the velocity
fields in (say) L2

T (L2
loc). As already commented, in the above mentioned works [22, 23] this

property was obtained by the use of the relative entropy/relative energy method, but required
to have well-prepared initial data. In [126], the authors were able to prove dispersion properties
linked with the fast rotation limit, relying on the study of the wave system

(8.9)

{
ε ∂trε + div Vε = 0

ε ∂tVε + P ′(1)∇rε + e3 × Vε = ε fε ,

where rε has been defined above and we have set Vε := ρεuε, and on the use of the well-known
RAGE theorem from scattering theory [71]. The fact that fast rotation implies dispersion was
already put in evidence for incompressible (homogeneous) fluids, see [41] for details; Strichartz
estimates were also used for weakly compressible fluids, see [131] for an overview of this and
related results. The point is that such properties had not been used before in the combined case
of compressible fluids in fast rotation, because the more complicated structure of the wave system.
It is worth to point out that, differently from Strichartz estimates, the use of the RAGE theorem
gives only weak dispersion results, in the sense that it implies the desired strong convergence
uε −→ u in L2

T (L2
loc), which is enough to pass to the limit in the original system (8.4), but

without a precise rate of convergence.
All in all, one can rigorsouly prove the convergence of system (8.4) to a 2-D incompressible

Navier-Stokes system for the velocity field uh = ∇⊥h r. As already said, the treatement of the
Coriolis term imposes to work in vorticity formulation ω = curlhu

h = ∆hr. One thus write an
equation for the stream-function r, which is the so-called quasi-geostrophic equation:

(8.10) ∂t
(
r −∆hr

)
− ∇⊥h r · ∇h∆hr + µ∆2

hr = 0 ,

set in R+ × R2.

8.1.2 Multiscale analysis

After work [126], people has started to focus on the study of the more complex system (8.2). In
particular, because of the possible choice of the values of the parameters m and n, the analysis
of the multiscale limit problem has attracted a lot of interest.

In this subsection, we try to make a thorough panorama of the results available in the literature
and, at the same time, to highlight the difficulties linked with this kind of problems.
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A model case

The multiscale analysis of system (8.2) has begun with work [125] by Feireisl, Gallagher, Gérard-
Varet and Novotný. There, the authors took G = 0 and studied the limit ε → 0+ in presence of
the centrifugal force F (x) =

∣∣xh∣∣2. They considered two different regimes: they assumed either
m > 10 (anisotropic scaling, the incompressible limit is the predominant effect in the dynamics)
or m = 1 (isotropic scaling, the incompressible and fast rotation limits are act with the same
order of magnitude). Observe that, even when m = 1, the situation is different with respect to
the one described in Subsection 8.1.1, as the pressure and Coriolis terms are in balance with the
centrifugal force term now.

Before describing the corresponding results for the two cases, it is worth to point out that, F
being unbounded in Ω, the presence of the centrifugal force in the system is a source of technical
troubles and handling it requires a carefull process of localisation in space.

Let us now focus for a while on the anisotropic case m� 1. Notice that the energy inequality
(8.5) immediately gives ρε − 1 = O(εm) in this case (notice that the factor ε−2m appears in
front of the term H

(
ρε
∣∣ 1), in place of the factor ε−2). However, despite being a lower order

effect compared to the small Mach number limit, the fast rotation (small Rossby number) gives
also contributions to the target dynamics. Then, according to both the incompressible limit and
the Taylor-Proudman theorem, one can prove convergence to a 2-D incompressible Navier-Stokes
equation for the limit velocity field.

While, at the qualitative level, the target dynamics is essentially the same as the one derived in
[126] (see Subsection 8.1.1), the proofs actually differ very much one from the other. This is related
of course to the presence of a non-zero centrifugal force, but there are deeper complications than
the ones mentioned above, deriving from the unbondedness of F in Ω. Needless to say, the main
issue of the analysis was, once again, proving the convergence of the convective term ρεuε⊗uε. As
already observed, whenm > 1 the incompressible limit is predominant over the fast rotation limit;
thus, the idea implemented in [125] was to resort to Strichartz estimates [100] for the low Mach
number limit in order to prove local strong convergence of the velocity fields

(
uε
)
ε
. However,

when writing the wave system, we see that

(8.11)

{
εm ∂trε + div Vε = 0

εm ∂tVε + P ′(1)∇rε = ε fε − εm−1 e3 × Vε

(actually, the system reads a bit more complicated than that, because of the presence of the
centrifugal force). In contrast with (8.9), we see that the Coriolis term gives rise to a forcing term
which is large, namely, of order O(εm−1) instead of order O(εm). This complication is the main
reason for the constraint m > 10 appearing in [125].

In the case of isotropic scaling, i.e. m = 1, instead, we see that the fast rotation limit combines
with an anelastic limit. As a matter of fact, because of the balance of the pressure and centrifugal
force terms, one can consider densities which are small perturbations around a profile ρ̃(x) which
is no more constant (whereas before, for F = 0, we had ρ̃ ≡ 1) and, in the specific case of
F =

∣∣xh∣∣2, unbounded in Ω. Thus, passing to the limit ε → 0+ in the mass equation yields the
anelastic constraint div

(
ρ̃ u
)

= 0, where u is the target velocity profile. On the other hand, we
see that the three terms ∇P (ρε), e3× ρεuε and ρε∇F are in balance in the momentum equation,
giving rise to the relation uh = ∇⊥h

(P ′(ρ̃)
ρ̃ r

)
for the limit velocity field u and the limit r of

the density oscillations. Thus, the velocity fields
(
uε
)
ε
still convergence to a 2-D incompressible

profile, according to the Taylor-Proudman theorem, which is expected to satisfy an incompressible
Navier-Stokes equation with variable (static) density ρ̃. However, as a consequence of the fact
that the motion is more constrained than in the case ρ̃ ≡ 1 (the anelastic constraint appears as
an additional condition the target velocity u has to satisfy, with respect to the previous cases),
it turns out that passing to the limit in the convective term simply gives terms which stay in the
kernel of the singular perturbation operator, thus the contribution of the convective term in the
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limit ε → 0+ reduces to 0. Then, the target equation reads as a linear quasi-geostrophic type
equation with variable coefficients.

We remark that the presence of the variable reference density state ρ̃ appeared also in the
definition of the singular perturbation operator, as a variable coefficient in front of the various
differential operators involved. Hence, the study of propagation of waves became more involved,
as spectral methods (which Strichartz estimates, RAGE theorem. . . are based on) were out of use
in this context. The authors of [125] proved convergence (actually, vanishing) of the convective
term in the limit ε→ 0+ by use of a compensated compactness argument, following [178, 145].

More results on the multiscale limit: stratification effects

After [125], more papers appeared, dealing with the multiscale analysis of the ε-dependent system
(8.2), see [133, 132] by Feireisl and Novotný, see also [167, 168] by Kwon, Novotný and collabo-
rators for the case of the full Navier-Stokes-Fourier system. Without entering too much into the
details, let us point out some important points of those studies.

First of all, those works considered the effects of gravity, namely the case in which G(x) = −x3

is non-zero, with F = 0. However, the regime was always a (very) low stratification regime,
meaning that either n = 0, so the gravity term was not penalised, or one imposed the constraint

1 ≤ n <
m

2
.

In particular, the scaling n = m/2, which was somehow classical for the incompressible limit
problem (see [131]), was out of reach here, as well as the strong stratification regime n = m (and
in particular thecase of the isotropic scaling n = m = 1). In addition, all the range of values
1 ≤ m ≤ 2 could not be considered in those works.

On the other hand, the authors of those works were able to perform also a vanishing viscosity
(and heat diffusivity) limit, deriving in this way inviscid limit equations, still remaining in the
framework of ill-prepared initial data. This was possible thanks to a wise combination of the
relative entropy inequality together with dispersive-type estimates (Van Der Corput lemma and
similar arguments based on stationary phase) together with a decomposition of the initial data
into a part which lives in the kernel of the singular perturbation operator plus an oscillating
component.

As a last comment in this context, we want to mention that, as a consequence of the anisotropy
(recall that, in particular, one has m > 2), the Coriolis term generated also in this context large
forcing terms in the study of waves propagation, as in (8.11). Interestingly, in [132] the authors
changed the approach to improve the range of values of possible m for which proving convergence
(recall the previous constraint m > 10 appearing in [125]). The method consisted in seeing the
large forcing term εm−1 e3×Vε as a small perturbation of the singular perturbation operator: one
passes from the wave propagator

A :

(
r

V

)
7−→

(
div V

∇r

)
,

pertinent in system (8.11), to the family of perturbed wave propagators

Aσ :

(
r

V

)
7−→

(
div V

∇r + σ e3 × V

)
= A

(
r

V

)
+ σ

(
0

e3 × V

)
,

where σ = σ(ε) = εm−1. In terms of the family of operators Aσ, with σ = εm−1, the wave system
(8.11) can be recasted as

εm ∂tUε + Aσ
[
Uε
]

= εmFε ,
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where we have set Uε =
(
rε, Vε

)
and Fε =

(
0, fε

)
. The idea is then that, Aσ being a small

perturbation of the singular operator A for σ small, the dispersive estimates which old true for
the latter should hold also for the former operator, somehow independently of the perturbation
parameter σ = εm−1.

We will find again this point of view in a while, when speaking of works [106, 109]2.

In the next sections, we present the main outcomes of our researches about the singular limit
problem for fastly rotating fluids in presence of multiple scales. In the very last section of the
chapter we present some open problems.

8.2 The case of capillary fluids

At first, in [106, 107] we focused our attention to a Navier-Stokes-Korteweg system discussed in
[24] (see also more references therein), where we added a term C(ρ, u) as in (7.1) accounting for
the effects of a fast rotation of the ambient space.

As the Navier-Stokes-Korteweg system is often used for modelling capillary fluids, and more
in general for diffuse interface models, to take into account large variations of the fluid density
in small regions of space, the presence of the Coriolis force (which, on the contrary, is more
relevant at large space scales) is certainly questionable from the physical standpoint. However,
the mathematical problem (about which we are going to give more details in a while) looked
interesting to us and was already considered in some previous works, see e.g. [22] by Bresch and
Desjardins and [163] by Jüngel, Lin and Wu. We notice, however, that those works only treated
the 2-D case, in the regime of vanishing capillarity (more details here below) and for well-prepared
initial data (as a matter of fact, the convergence argument relied on a relative entropy method).

Let us now introduce the system of equations, which looks very similar to (8.4), with the
exception of two main differences appearing in the momentum equation: the presence of a higher
order capillary term −ρ∇∆ρ and the choice µ = µ(ρ) = ρ anbd λ = 0 in the definition of the
tensor S. In particular, notice that the viscosity coefficient µ = µ(ρ) is degenerate close to vacuum.
Specifically, the equations read as follows:

(8.12)


∂tρ + div

(
ρ u
)

= 0

∂t
(
ρ u
)

+ div
(
ρ u⊗ u

)
+

1

ε2
∇P (ρ) +

1

ε
e3 × ρ u

− ν div
(
ρDu

)
− 1

ε2(1−α)
ρ∇∆ρ = 0 ,

where ν > 0 is a positive (viscosity) coefficient, the symbol Du :=
(
Du + ∇u

)
/2 denotes the

symmetric part of the Jacobian matrix Du of u and α ∈ [0, 1] is a fixed parameter. Having
α > 0 means that we are in a vanishing capillarity regime, which then combines with the small
Mach number and small Rossby number regimes; the value α = 0 corresponds instead to the
constant capillarity case, in which the capillary term is in balance with the pressure term and
the Coriolis term. This terminology comes from the choice of the rescaling of the capillarity
coefficient, previous to the adimensionalisation of the equations.

From a mathematical standpoint, the capillarity term provides one with a control on the
higher order derivatives of the density, as it can be easily seen from an energy estimates. On
the other hand, the specific choice of the viscosity coefficients µ(ρ) = ρ and λ = 0 in S endows
system (8.12) with a very nice mathematical structure, which allows for a second energy inequality
known under the name of BD entropy estimate (after Bresch and Desjardins): we refer e.g. to
[24, 22], see also [190, 216, 201, 220] and references therein for more about the BD entropy
and generalisations. Thus, if we forget the Coriolis term for a while, from the capillarity term

2We point out that we were not aware of work [132] at the time [106] was written.
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− 1
ε2(1−α)

ρ∇∆ρ one derives the property 1
ε1−α∇ρ ∈ L∞

(
R+;L2(Ω)

)
by energy estimates, and the

property 1
ε1−α∆ρ ∈ L2

loc

(
R+;L2(Ω)

)
by the BD entropy structure.

Unfortunately, the presence of the singular Coriolis term seems to destroy the BD entropy
structure of the system, meaning that the obtained estimates look to be not uniform in the small
parameter ε ∈ ]0, 1]. The first contribution of [106] was to show that, in fact, the Coriolis term can
be controlled uniformly with respect to ε in the BD entropy estimates. By using that fundamental
property and the uniform buonds which derive from it, we were able to perform the asymptotic
limit ε → 0+ for all the range of the parameter α ∈ [0, 1], in the 3-D geometry Ω = R2× ]0, 1[
(supplemented with complete-slip boundary conditions (8.3) and Neumann boundary conditions
for the density gradient) and for general ill-prepared initial data, thus extending works [22, 163]
in all those directions.

Roughly speaking, assuming that the normalisation P ′(1) = 1 holds for the pressure function,
the main results obtained in [106] can be summarised in the following way.

Theorem 8.1. If α ∈ ]0, 1], the Navier-Stokes-Korteweg system (8.12) converges to the quasi-
geopstrophic equation (8.10).

If α = 0 instead, then system (8.12) converges to the higher order quasi-geostrophic equation

(8.13) ∂t
(
Id −∆h + ∆2

h

)
r − ∇⊥h

(
Id −∆h

)
r · ∇h∆2

hr +
ν

2
∆2
h

(
Id −∆h

)
r = 0 ,

set in R+ × R2.

Let us briefly comment on the proof of the results of [106]. The three keywords here are:

(i) dispersion;

(ii) symmetrisation;

(iii) perturbation.

To begin with, one has to remark that the case α = 1 is exactly the same as the one treated
in [126]: thus, an application of the RAGE theorem allows us to deduce the strong convergence
properties which are needed in order to pass to the limit in the weak formulation of equations
(8.12). This is dispersion.

The case α = 0 is also very similar. In this situation, the capillarity term is in balance
with the pressure gradient and the Coriolis term, giving a more complicated structure of the
quasi-geostrophic balance (7.2), namely

e3 × u + ∇
(
P ′(1)Id −∆

)
r = 0 .

Notice that now the singular perturbation operator, that is

B :

(
r

V

)
7−→

(
div V

∇
(
P ′(1)Id −∆

)
r + e3 × V

)
,

is no more skew-adjoint with respect to the L2 scalar product. However, a microlocal sym-
metrization argument in the spirit of the one discussed in Chapter 3 allows one to still apply
the RAGE theorem. This is symmetrisation. In turn, one gets convergence to the higher order
quasi-geostrophic type equation (8.13), whose mathematical study was performed in [95].

Finally, in the intermediate cases 0 < α < 1, the key idea is to look at the lower order
capillarity term as a perturbation of the original singular perturbation operator B0 (which is the
same as in [126] and which coincides, in the notation of Subsection 8.1.2, with the operator A1

obtained for σ = 1). Then, we proved [106, 109] a version of the RAGE theorem for perturbations
Bσ of a given symmetric operator B0, where again σ = σ(ε) = ε2α, in which however also the



86 Chapter 8. Compressible fluids in fast rotation

microlocal symmetrizers of the operators Bσ depend on σ. We stress the fact that, for obtaining
this perturbed version of the RAGE theorem, the operators Bσ needed to satisfy a fundamental
spectral gap condition, which allows to isolate the point spectrum σp(Bσ) from the continuous
part σc(Bσ) of the spectrum of Bσ in a somehow uniform way (uniform with respect to σ). Such
a spectral gap condition is naturally verified in the case of the penalised Navier-Stokes-Korteweg
system (8.12). Using that generalisation of the RAGE theorem we were able, in turn, to take the
limit ε→ 0+ and prove the convergence to the classical quasi-geostrophic equation (8.10) also in
the case 0 < α < 1.

8.3 Heat-conducting fluids

In [98], we devoted attention to the fast rotation limit of the full Navier-Stokes-Fourier system with
Coriolis force, in presence also of gravity and of the centrifugal force. The Navier-Stokes-Fourier
system describes the motion of a compressible fluid flow in which temperature variations are taken
into account. At the mathematical level, an entropy balance is added to system (8.2), following the
Feireisl-Novotný theory [131]; we avoid to give here the precise form of the original (ε-dependent)
system, which would require to introduce further notation and constitutive relations.

As already mentioned in Subsection 8.1.2, the study of the fast rotation limit for the full Navier-
Stokes-Fourier system was initiated in [167, 168], but under some restrictions on the various order
of magnitues of the Mach number and Froude number: in those works one had either n = 0 or
1 ≤ n < m/2, moreover the centrifugal force F was set equal to 0. Our goal was to drop those
restrictions, which looked of technical nature, rather than being natural contraints. In [98] we
proved convergence to suitable target systems in all the regimes

n =
m

2
and m ≥ 2 (m ≥ 1 if F = 0) .

For the sake of conciseness, we give a rough statement pertaining the anisotropic scaling m > 1
only, which already contains all the main ingredients of our analysis.

Theorem 8.2. Let either m ≥ 2 and F (x) =
∣∣xh∣∣2, or m > 1 and F = 0. Define the density and

temperature variations respectively as

rε :=
ρε − 1

εm
and Θε :=

θε − θ
εm

,

where θε are the temperature of the fluid at a given ε and θ is a (constant) positive temperature
reference state. Let r, u and Θ be weak limits (up to an extraction) of, respectively, the sequences(
rε
)
ε
,
(
uε
)
ε
and

(
Θε

)
ε
.

Then, according to the Taylor-Proudman theorem, one has u =
(
uh, 0

)
, with uh = uh(t, xh)

and divhuh = 0. In addition, the triplet
(
r, uh,Θ

)
solves the Oberbeck-Boussinesq system

∂tu
h + uh · ∇huh + ∇hΠ − ∆hu

h = δ2(m) 〈r〉∇hF
∂tΘ + uh · ∇hΘ − ∆Θ = δ2(m)uh · ∇hF
∇
(
r + Θ

)
= ∇G + δ2(m)∇F ,

supplemented with suitable initial conditions.

In the previous statement, all the physical constants appearing in the limit have been set
equal to 1. We have also defined δ2(m) to be the Kronecker delta, which has value 1 if m = 2, 0
otherwise. Moreover, following the notation introduced above, we have denoted by 〈f〉 the vertical
average of a function f .

Let us also observe that, in the case m = 1, one gets a similar statement, up to the fact that
one has to work with a suitable stream-function q of the velocity field u (which is now defined in
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terms of r and Θ) and a modified variable Υ in place of Θ for the temperature variations. Then,
the target system is identified as a coupling of a quasi-geopstrophic equation for q with a suitable
advection-diffusion equation for Υ.

Avoiding to enter further into the details, we want to highlight here a couple of facts about
Theorem 8.2, which look interesting to us. The first remark is that, owing to the last relation in the
target system, some (very mild) stratification effects remain in the limit: this is a consequence of
the choice n = m/2 in the scaling. Of course, no vertical variations enter into play in the equation
for u, but the density and temperature variations, R and Θ respectively, do present oscillations
in the third variable. The second point we want to stress is the fact that the previous statement
does not ask for any restriction about the values of the various scaling parameters, apart from
the constraint m ≥ 2 when F 6= 0; we notice however that this constraint looks now no more
technical, but structural. We prefer not to explain this point further here; on the contrary, let us
comment a bit more about the method of the proof of our results, which allows to drop (almost)
all the restrictions on the scaling parameters.

The improvement with respect to the previous studies was possible thanks to the use of a
compensated compactness argument, in the spirit of [145, 125]. For the time being, let us take
F = 0. The simple but fundamental remark was to observe that, for any m ≥ 1, the wave system
(8.11) (which remains similar also in the case of the Navier-Stokes-Fourier system) already encodes
all the compactness properties one needs to pass to the limit. Indeed, recalling that 〈f〉 denotes
the vertical average of a function f , from (8.11) one easily gets{

εm ∂t〈rε〉 + divh〈V h
ε 〉 = 0

εm ∂t〈Vε〉 + P ′(1)∇〈rε〉 + εm−1 e3 × 〈Vε〉 = ε 〈fε〉 .

Hence, applying the operator curlh to the orizontal components of the momentum equation yields{
εm ∂t〈rε〉 + divh〈V h

ε 〉 = 0

εm ∂tcurlh〈V h
ε 〉 + εm−1 divh〈V h

ε 〉 = ε curlh〈fhε 〉 ,

and taking the difference of the two equations immediately gives the compactness of the quantity

ζε := curlh〈V h
ε 〉 − εm−1 〈rε〉 .

In turn, this is the only information one needs in order to prove convergence of the vertical
averages appearing in the non-linear term (namely, theconvective term). As for the coupling of
the terms encoding the vertical oscillations, the argument is very similar to [125] and shows that
the interaction of the oscillating components is small and actually vanishes in the limit ε→ 0+.

Thus, we see that the previous argument does not require any constraint on the values of
the different parameters, at least for F = 0. As a matter of fact, if the centrifugal force F is
not 0, its presence complicates things, whence the constraint m ≥ 2 in order for the previous
argument to still apply. At this point, let us make a comparison with the multiscale situation
(namely, 0 ≤ α ≤ 1) treated in Section 8.2: the perturbative argument from [106] did not require
any constraint on the values of the parameters either; however, we did not find a way to apply
it in the context described in the present section, as now the (perturbed) family of singular
perturbation operators do not satisfy the uniform spectral gap condition mentioned above.

We refer to paper [98] for the discussion about other technical difficulties which arise in this
study (choice of the domain for the theory of weak solutions [131] to apply, localisation procedure
owing to the presence of the centrifugal force, study of the static states. . . ) and the way we dealt
with them.

To conclude this part, let us mention the study performed in [99], where we restricted our
attention to the barotropic system (8.4) with F = 0 for simplicity. In that paper, we were able
to weaken the restriction over the parameter n and to prove convergence for the range of values

m < 2n ≤ m+ 1 if m > 1 ,
1

2
< n < 1 when m = 1 .
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Observe that, under those assumptions, one still works in a regime of low stratification. The
proof was still based on a compensated compactness argument and deeply used the specific form
of the gravity, together with the constraints which the fast rotation imposes (in particular, the
Taylor-Proudman theorem).

8.4 The singular limit for large Mach numbers

To conclude this panoramic view on multiscale analysis, we mention the problem treated in [110].
In that paper, we considered the simplest case of the barotropic Navier-Stokes system (8.2), where
we took F = G = 0 and we devoted attention to the case in which the Mach number is large with
respect to the Rossby number, namely to the regime

0 ≤ m < 1 .

However, in order to obtain some non-trivial limit, we needed to compensate the strong Coriolis
force by a gradient term: so, we decided to penalise (in the same vein as [85, 86]) the bulk viscosity
coefficient λ which appears in the expression (8.1) of S(Du) and to take it equal to λ(ε) = ε−2β ,
for some β ≥ 1. It is worth to point out that the penalisation of the bulk viscosity already enforces
the incompressibility constraint at the limit. Taking into account this fact, it would be natural
to restrict the attention to the case m = 0: yet, our proof of convergence enables us to do that
only in space dimension d = 2.

A rough formulation of the main results of [110] is contained in the following statement.

Theorem 8.3. Let either d = 3 and 0 < m < 1, or d = 2 and 0 ≤ m < 1. For any ε ∈ ]0, 1],
define the quantity

σε :=
1

ε

(
ρε − 1

)
.

Then the sequence of vertical averages
(
〈σε〉

)
ε
is uniformly bounded in L2

loc

(
R+;H−kloc (Ω)

)
, for

some k ∈ N large enough.
In addition, denote by σ a weak-∗ limit of that sequence and by u a weak-∗ limit of the sequence

of the velocity fields. Then one has u =
(
uh, 0

)
, with uh = uh(t, xh) and divhu

h = 0, and the
couple

(
σ, ω

)
, with ω := curlhu

h, solves the equation

∂t
(
ω − σ

)
+ uh · ∇hω − µ∆hω = 0 ,

supplemented with suitable initial conditions.

The main ideas for proving the previous result go back to paper [113], which we will present in
detail in the next chapter. We also refer to that discussion for an better explanation of Theorem
8.3. Here, we limit ourselves to highlight some delicate points of the statement and of the analysis.

First of all, we want to stress the similarity of the previous equation for ω and σ with the
quasi-geostrophic equation (8.10). Nonetheless, here we miss a stream function relation linking
ω and σ, so the target dynamics looks underdetermined. This is a consequence of the very low
regularity space in which the uniform bounds for the family

(
〈σε〉

)
ε
are found.

On the other hand, we observe that the uniform boundedness of
(
〈σε〉

)
ε
is a key property of the

analysis, which may look however surprising at a first sight. As a matter of fact, keeping in mind
the energy inequality (8.5), one may expect to have rε :=

(
ρε − 1

)
/εm to be uniformly bounded

in some space (see also Theorem 8.2 in this respect), but here 0 ≤ m < 1. The improvement relies
on the crucial use of the structure of the wave system, in a similar fashion as explained in the
previous section when speaking about compactness of the functions

(
ζε
)
ε
. We refer to Chapter 9

for more details, where we will use a similar property in the incompressible framework.
Finally, let us comment a bit on the proof of Theorem 8.3. The main argument uses compen-

sated compactness again (as presented in Section 8.3 above) and the structure of the new wave
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system at hand. However, when dealing with the convective term, in this argument one cannot
avoid the presence of a bilinear expression, linking the averages of the third components of the
vorticities 〈ω3

ε〉 and of the velocity fields 〈uε〉. Some strong convergence property is thus needed
to compute the limit of that expression. At this point, the key observation is that the potential
part ∇Φε of the momenta Vε = ρεuε ≈ uε satisfies a heat equation with fast diffusion:

∂t〈Φε〉 −
1

ε2β
∆h〈Φε〉 = 〈Gε〉 ,

where the suitable forcing term Gε is not uniformly bounded in ε. However, steered byt the fact
that space derivatives of the solution to the heat equation decay faster in time than the solution
itself, one can prove sharp decay (in ε) estimates for the quantity (−∆h)s〈Φε〉, for a large enough
s ≥ s0 = s0(m,β). In turn, combining this property with the structure of the wave system again,
one is able to prove compactness of the vorticity components

(
〈ω3
ε〉
)
ε
in suitable norms, a fact

which finally enables us to compute the limit of the convective term and to prove the convergence
result.

8.5 Some open problems and perspectives

We list here a series of open questions which drive our attention and which we plan to consider
in the near future.

Strongly stratified fluids

The first main problem in this context, which remains open even for the simplest case of barotropic
fluids, consists in computing the fast rotation limit in presence of strong stratification effects. This
corresponds to the scaling n = m = 1 in the original system (8.2).

So far, the only result in this direction is [129] by Feireisl, Lu and Novotný, but the convergence
to the limit dynamics is proven only for well-prepared initial data, by mean of the relative entropy
method. We refer also to [17] for related results, in connection with the study of Ekman boundary
layers (more details below).

The main problem is that, in the strongly stratified case, the reference density state ρ̃ depends
on the vertical variable: one has ρ̃ = ρ̃(x3). First of all, the validity of the Taylor-Proudman
theorem is no more clear in this situation. Moreover, all the methods employed so far to deal
with ill-prepared initial data and propagation of waves (spectral methods, compensated compact-
ness. . . ) seem to break down in such situation. New ideas are then required.

Let us mention that the problem really pertains to the coexistence of a fast rotation term and
a strong stratification term. Indeed, the strong stratification limit for compressible fluids (even
in presence of temperature variations) without Coriolis term has been computed in a number of
situations, see e.g. [131] for an overview of the related literature (see also [184, 119] and references
therein).

Anelastic limits

The previous observation prompts us to consider, more in general, singular limits in presence of
an anelastic constraint. With this, we mean that we intend to devote attention to situations in
which the reference density state ρ̃ is non-constant; then, typically the mass equation enforces the
anelastic constraint div

(
ρ̃ u
)

= 0 in the limit.
Such limits are relevant not only in the framework of geophysical flows: they naturally arise

also in the context multi-component fluids or in the one of capillariy fluids governed by Var der
Waals (non-monotone) pressure laws, for instance. Let us focus on this latter case, namely on
Van der Waals pressure laws. Looking at the Navier-Stokes-Korteweg system (8.12), we see that,
in the constant capillarity regime (i.e. α = 0 in those equations), the non-monotone pressure
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term is in balance with the capillary term. This balance allows to consider static density states
ρ̃ which are non-constant. Computing the asymptotics ε → 0+ in this setting, however, seems
to be challanging, even in absence of the Coriolis term. As a matter of fact, complications come
from some commutator terms appearing in the wave system owing to the presence of a variable ρ̃
(notice that a regularisation-in-space procedure is often required), combined with the very poor
controls one disposes of on the higher order derivatives of the density variations. This contrasts
very much with the results which are available, for instance, for the incompressible limit (no
Coriolis force) for strongly stratified barotropic flows (see again e.g. [184, 131], or [119] for a
degenerate Navier-Stokes system). How to bypass that difficulty seems not clear at present.

Finally, in this context it is interesting to mention the study of [209] by Schochet and Xu. In
that paper, the authors are able to consider singular limits in presence of three different time scales
and to capture second order effects in the target dynamics. The study is performed on strong
solutions to some hyperbolic system and makes use of revisited filtering techniques in order to
deal with the multiple scales. Understanding this approach in the context of weak solutions for
the models discussed in this chapter may open new perspectives in the study of the multiscale
problem, which we would like to explore.

Ekman boundary layers and topography effects

The second main open problem in this context is to undestand the interactions of the acoustic-
Poincaré waves (which drive oscillations around the target profiles) with the boundary. In this
respect, there are two aspects to be considered.

The first question is to study Ekman boundary layers (which arise when imposing no-slip
boundary conditions) for weakly compressible fast rotating fluids.

The case of incompressible homogeneous fluids is by now quite well-understood. We refer to
e.g. [41] for an overview of the available results in that context. More recent studies have focused
the effects of a resonant forcing at the surface of the domain [76] (see also [77] for a somehow
related analysis) and on the stability of the Ekman boundary layers in the regime of vanishing
viscosity [206, 185].

The first work addressing the study of Ekman boundary layers for weakly compressible fast
rotating fluids is paper [23] by Bresch, Desjardins and Gérard-Varet. That study was recently
generalised by [17] to the case of more general pressure laws and of strongly stratified fluids
(following the analysis of [129]). However, those works only treated the framework of well-prepared
initial data; this is linked with the techniques of the proof, which relied on the use of the relative
entropy inequality. The description of the Ekman boundary layers for general ill-prepared initial
data thus remains open in the case of compressible flows in fast rotation.

In addition, we point out that some limitations appear in works [23, 17], in the sense that
the obtained convergence results are only conditional results. As a matter of fact, the presence
of Ekman layers forces one to consider small viscosity coefficients in the vertical direction, to
balance large vertical variations of the fluid in the small boundary layer. Now, the weak solutions
theory by Lions-Feireisl [177, 135, 123] relies in an essential way on an isotropy condition on
the viscous stress tensor S(Du), isotropy which enables one to derive a simple equation for the
effective viscous flux (recall the discussion of Section 5.1). Notice that some recent improvements
in the anisotropic case have been recently obtained, see [25] by Bresch and Jabin, but conditions
on the adiabatic exponent γ appearing (5.2) are still too restrictive for applications to the study
of geophysical flows. This observation shows that the investigation of existence of weak solutions
to the compressible Navier-Stokes system in presence of anisotropic viscosity coefficients is an
interesting and important open problem. However, strictly related to the question of the study
of Ekman boundary layers for compressible fluid flows, we point out that paper [18] offers an
alternative approach for a rigorous derivation of the target equations, even though it misses a
precise description of the structure of the solutions inside the boundary layers. We will give more
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details about this in the next Chapter, see in particular Section 9.3.
We avoid any discussion here about Munk boundary layers, namely boundary layers which

appear the the vertical boundaries of the domain, for which no works seem to be available for
weakly compressible flows. As a matter of fact, the situation is poorly understood even for
incompressible homogeneous flows, see [101, 23, 78] for studies in that direction.

The second question is related to topography effects. As a matter of fact, in this kind of studies
one usually formulates a flatness assumption on the boundary of the domain Ω = R2× ]0, 1[ . In
the homogeneous incompressible case, some generalisations have been made [183, 149] to the case
of rough boundaries, where however the roughness is small in ε and the structure is periodic in
space. Some recent studies [72, 75] have focused on the analysis of the well-posedness of the
stationary Navier-Stokes-Coriolis system in presence of a non-flat bottom of size O(1).

The general picture for domains with irregular boundary is still not understood, even for
incompressible homogeneous fluids, although progresses have been recently made [40] by Chemin
under a radial symmetry assumption, even in presence of emerging islands. Considering the
analogous problem for non-homogeneous fluids seems to be somehow subordinated to advances in
the incompressible case, together with progresses in the understanding of the strong stratification
regime.

In this context, it would be interesting to take advantage of suitable conormal regularity of
the flow at the boundary, following previous studies [186, 187] by Masmoudi and Rousset (see also
[188] for an application in the context of the low Mach number limit of the barotropic Navier-
Stokes system).





Chapter 9

Fast rotation limit: incompressible
models

In this chapter, we deal with the fast rotation limit for models of fluids which are incompressible
and, at the same time, present density variations. Despite the huge literature available in the
(classical) incompressible homogeneous case, this study has been initiated only very recently.

For simplicity of exposition, we will focus on the fast rotation limit for the density-dependent
incompressible Navier-Stokes system with Coriolis force, which reads

(9.1)


∂tρ + div

(
ρ u
)

= 0

∂t
(
ρ u
)

+ div
(
ρ u⊗ u

)
+

1

ε
∇Π +

1

ε
e3 × ρ u − div

(
ν(ρ)Du

)
= 0

div u = 0 .

In equations (9.1), as in the previous chapter, we have denoted by Du =
(
Du + ∇u

)
/2 the

symmetric part of the Jacobian matrix Du, where ∇u = t(Du); on the contrary, we have now
called Π the pressure function, to stress the fact that, now, the pressure is no more given, but is in
fact an unknown of the problem. The viscosity coefficient ν(ρ) is assumed to depend continuously
on the density function ρ and to be non-degenerate close to vacuum: we assume

ν ∈ C0(R+) such that ∀ ρ ≥ 0 , ν(ρ) ≥ ν∗ > 0 ,

for some positive constant ν∗ > 0. The previous assumption is particularly important, because we
will work under assumptions which allow for existence of vacuum regions (namely, regions where
ρ = 0).

However, notice that some variants of this model can be considered as well. We refer e.g. to
[47, 48] for related studies in the case of an incompressible MHD system and to [207] for a similar
investigation in the context of the density-dependent incompressible Euler system.

Works presented in the chapter

(P.16) F. Fanelli, I. Gallagher: Asymptotics of fast rotating density-dependent incompressible fluids
in two space dimensions. Rev. Mat. Iberoam., 35 (2019), n. 6, 1763-1807.

(P.23) D. Cobb, F. Fanelli: On the fast rotation asymptotics of a non-homogeneous incompressible
MHD system. Nonlinearity, 34 (2021), n. 4, 2483-2526.

(S.4) M. Bravin, F. Fanelli: Fast rotating non-homogeneous fluids in thin domains and the Ekman
pumping effect. Submitted (2022).
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Not mentioned, but in this context

(P.20) D. Cobb, F. Fanelli: Rigorous derivation and well-posedness of a quasi-homogeneous ideal
MHD system. Nonlinear Anal. Real World Appl., 60 (2021), Paper n. 103284.

9.1 Introduction

Analogously to what done in Chapter 8, the goal of this chapter is to perform the limit ε → 0+

for a family
(
ρε, uε,∇Πε

)
ε
of finite energy weak solutions to the original system (9.1). Again, for

suitable initial data (see more precise assumptions below), the existence of a finite energy weak
solution to (9.1) at any ε > 0 fixed is available thanks to the theory of P.-L. Lions [176] (see also
references therein for previous studies).

As, to the best of our knowledge, there are not so many results on this problem, this introduc-
tion will be mainly devoted to point out basic facts about system (9.1) which will appear in the
study below, as well as to underline analogies and differences with respect to the corresponding
study performed in Chapter 8 for compressible flows.

As already said, we will work in the framework of global in time finite energy weak solutions
to system (9.1), whose theory was set up by P.-L. Lions in [176]. These are weak solutions(
ρε, uε,∇Πε

)
which satisfy, for any t ≥ 0, the energy inequality related to system (9.1), namely

(9.2)
1

2

∫
Ω
ρε
∣∣uε∣∣2 dx +

∫ t

0

∫
Ω
ν(ρε) |Duε|2 dx dt ≤ 1

2

∫
Ω
ρ0,ε

∣∣u0,ε

∣∣2 dx ,

where we have used the L2 orthogonality the pressure and the Coriolis terms with uε. Notice
that, owing to the possible presence of vacuum, which we will assume here (see comments below),
the initial condition for the velocity field should rather be formulated in terms of the momentum
m0,ε (roughly speaking, m0,ε ≈ ρ0,ε u0,ε), however, for the sake of simplicity of presentation, we
omit here to enter into these technical details.

Next, we remark that, in Lions’s theory, bounds for the density functions ρε are derived from
properties of pure transport equations driven by divergence-free velocity fields. In particular, those
bounds consist on the (formal) preservation of all the Lp norms of the initial state ρ0,ε or (when
convenient) of ρ0,ε−ρ, for some constant state ρ (typically, we take ρ = 1 for simplicity). This will
become more clear in the discussion below, when introducing our precise working assumptions on
the initial density functions.

We also point out that, owing to the divergence-free constraint over u = uε in (9.1), the
momentum equation has to be tested on test functions ψ which are themselves divergence-free,
namely such that divψ = 0. Notice that, in this way, the pressure term completely disappears
from the weak form of the equations. As a matter of fact, in the incompressible framework the
term ∇Π = ∇Πε is simply a Lagrangian multiplier associated to the constraint div uε = 0. In
particular, in this context one does not speak anymore about the Mach number: the scaling
appearing in (9.1) is justified by the observation that, with this weak formulation, in the limit
ε→ 0+ the singular Coriolis term may be compensated only by a gradient.

Despite the pressure gradient ∇Πε disappears from the weak formulation of the equations,
its presence in the equations entails deep consequences at the level of our study. Notice that Π
(or Πε) is no more a simple (known) function of the density1. There are at least three major
consequences of this fact.

The first consequence has been pointed out in Chapter 7: in the fast rotation limit ε → 0+,
one will miss the quasi-geostrophic balance equation (7.2) and all its consequences. We will see

1As is well-known, the term ∇Π can be recovered from (ρ, u) by solving an elliptic equation with variable
coefficients, recall relation (6.7); in the viscous case, its regularity can be studied by resorting to properties of the
Stokes operator, see [176] again.
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later on that, as a by-product of the previous fact, the limit dynamics remains underdetermined
in general, similarly to what happened in Section 8.4.

We immediately point out that, for somehow related reasons, we are unable at present to
treat the asymptotic limit ε → 0+ for equations (9.1) in a 3-D domain (although something can
be said in the case of thin domains, see Section 9.3 for more details in this respect). Therefore,
unless otherwise specified, in all this chapter we will take a 2-D spatial domain with very simple
geometry, namely

Ω = R2 or Ω = T2 .

Then, in system (9.1), we will replace the Coriolis term e3 × ρu with its horizontal projection

(9.3) ρ u⊥ , where we have set u⊥ :=
(
− u2, u1

)
.

A second main effect of having ∇Π = ∇Πε as an unknown of the problem appears at the
level of the initial data. As a matter of fact, as explained at the beginning of Chapter 8, in this
kind of problems one naturally considers initial data

(
ρ0,ε, u0,ε

)
which are close to a static state(

ρ̃ε, 0
)
, which may itself depend on ε > 0. Now, setting u ≡ 0 in system (9.1) yields that

(9.4) ∂tρ̃ε ≡ 0 =⇒ ρ̃ε(t, x) = ρ̃(x) ,

with ρ̃ being independent of both time and ε > 0 (independence of ε also uses the momentum
equation, in fact), whereas the momentum equation simply reduces to ∇Π̃ = 0, which does not
look of any practical use for our scopes. In particular, equation (9.4) allows us to take initial
density states of the form

(9.5) ρ0,ε = ρ0 + ε r0,ε ,
(
r0,ε

)
ε
b L2(Ω) ∩ L∞(Ω) .

Now, differently from the case of compressible flows, see e.g. system (8.4), there is no reason
to take ρ0 constant. Therefore, in our study we will focus on two different cases: either the
quasi-homogeneous case, for which

ρ0 ≡ 1

and then ρε − 1 = O(ε) for all later times, or the fully non-homogeneous case, in which we take a
generic density profile ρ0 which, for structural and technical reasons, we assume to satisfy

ρ0 ∈ C2(Ω) , with 0 ≤ ρ0(x) ≤ ρ∗ ,

for a suitable constant ρ∗ > 0. Notice that we are able to consider the possible presence of vacuum,
i.e. regions where ρ0 may vanish (and so may do ρ0,ε), proving the convergence of equations (9.1)
(in 2-D or thin domains) for ε → 0+ in the same setting as Lions’s weak solutions theory2. In
fact, in order to perform the fast rotation limit ε→ 0+ in (9.1), one needs an additional technical
assumption on ρ0: this is a sort of non-degeneracy condition of its critical points and reads

∀ compact K ⊂ Ω , lim
δ→0+

meas
{
x ∈ K

∣∣∣ ∣∣∇ρ0(x)
∣∣ ≤ δ

}
= 0 .

The previous condition is somehow a weakened form of a similar requirement already appearing
in [145] (see also [107]). In the compressible case, this property can be often derived from the
properties of the static state under study (see e.g. [125]).

Finally, the third major consequence of not having an explicit direct relation linking ∇Π =
∇Πε to ρ = ρε appears at the level of energy estimates and is connected with the previous
decomposition (9.5). Let us explain this issue a bit more in detail. Observe that, from (9.5) and

2In the case Ω = R2, considering vacuum on the initial datum requires some conditions on the possible vanishing
of the initial density. As those conditions are transported by the flow [176], they will be automatically verified
uniformly in ε ∈ ]0, 1] also for our problem. We do not enter into the details here and rather refer to [176, 113, 47].
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the transport equation for ρε, assuming all the smoothness which is needed, we may follow the
flow ψεt (x) of uε and get that ρε = Rε + O(ε), where we have denoted by Rε = Rε(t, x) =
ρ0

(
(ψεt )

−1(x)
)
the transport of ρ0 along the flow of uε. Now, one has Rε → R in some sense

(in the weak-∗ topology of L∞, for instance), for a suitable density profile R. However, in the
fully non-homogeneous case it is not possible to say that the original densities ρε ≈ R are
quantitatively closed to the target profile, namely that ρε − R = O(ε). On the other side, such
a quantitative bound is needed in the convergence argument (recall the discussion in Subsection
8.1.1, for instance). The problem is that, differently from the compressible case, recall the energy
estimate (8.5) for instance, the pressure term ∇Πε does not give any bound for the densities ρε,
specifically it does not imply anymore the smallness of the density variations ρε(t)−R(t) = O(ε)
at later times. In other words, despite the equation for ρε looks very gentle, there is no reason for
the density functions ρε to be close to the target profile R, at least in the fully non-homogeneous
case. Of course, in the quasi-homogeneous setting, for which ρ0 ≡ 1, one has that Rε = R = 1,
so one does not see at all the problem we have just mentioned and the limit can be computed
easily; we refer to Subsection 9.2.1 for details about this case.

In what follows, we are going to see how to bypass the previous obstacles and prove a conver-
gence result for system (9.1), in the 2-D domain Ω = R2 or T2 (in Section 9.2) and in 3-D thin
domains (see Section 9.3, where we will also point out a new approach to the study of the Ekman
pumping effect).

9.2 Asymptotics in two space dimensions

In this section, let us focus on the two-dimensional case Ω = R2 or T2. In particular, we assume
that the Coriolis term in system (9.1) is replaced by its “horizontal” counterpart (9.3). We are
going to explain how to rigorously compute the limit ε → 0+ of system (9.1) in both the quasi-
homogeneous and fully non-homogeneous cases. This was done in [113] in the case of the viscosity
coefficient ν(ρ) ≡ 1, and then extended in [47] to the case of general functions ν satisfying the
assumptions fixed above (and in the context of an incompressible non-homogeneous MHD system).

9.2.1 The quasi-homogeneous case

To begin with, consider the quasi-homogeneous case ρ0 ≡ 1 in equation (9.5), so that the initial
density functions verify

ρ0,ε = 1 + ε r0,ε

for any ε > 0, where the family
(
r0,ε

)
ε
is bounded in L2(Ω) ∩ L∞(Ω). This case is particularly

favorable, as the simple transport equation verified by the densities allows us to deduce that

∀ ε ∈ ]0, 1] , ∀ t ≥ 0 , ρε(t) = 1 + ε rε(t) ,

together with the equation
∂trε + div

(
rε uε

)
= 0 .

From this, one easily deduces the uniform bounds(
rε
)
ε
b L∞

(
R+;L2(Ω)

)
∩ L∞

(
R+ × Ω

)
.

On the other hand, the energy inequality (9.2) implies

(9.6)
(
uε
)
ε
b L∞

(
R+;L2(Ω)

)
∩ L2

(
R+; Ḣ1(Ω)

)
.

Now, the space compactness of the velocity fields and the time compactness of the density
variations

(
rε
)
ε
allow one to prove that

rε uε −→ r u in D′
(
R+ × Ω

)
,
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where we have denoted r := lim rε and u := limuε. Of course, those limits are weak-∗ limits in
suitable topologies, and hold up to extraction of suitable subsequences.

Then, one can pass to the limit in all terms appearing in the equations, except the convective
term. As a matter of fact, the Coriolis term, which is the other problematic term in the momentum
equation in (9.1) owing to its singular nature, can be treated by writing

(9.7)
1

ε
ρε u

⊥
ε =

1

ε
u⊥ε + rε u

⊥
ε ,

where we see that the first term on the right-hand side simply disappears from the weak formula-
tion, because, owing to the divergence-free constraint over uε, the term u⊥ε is a perfect gradient.

Thus, let us focus on the convective term. Assuming to have enough space regularity of all
the quantities, following [145, 125] one writes

div
(
ρε uε ⊗ uε

)
≈ div

(
uε ⊗ uε

)
= uε · ∇uε = ωε u

⊥
ε +

1

2
∇
∣∣uε∣∣2 ,(9.8)

where we have defined ωε := curluε = ∂1u
2
ε − ∂2u

1
ε to be the vorticity of the velocity field

uε. At this point, arguing similarly to Section 8.3 (recall that here we are already in two space
dimensions), from the wave system

(9.9)

{
ε ∂trε + div Vε = 0

ε ∂tVε + ∇Πε + V ⊥ε = ε fε

is it possible to get compactness of ηε := curlVε in space-time, hence (as ρε = 1+O(ε)) compact-
ness of ωε. In view of (9.8), this latter property enables us to pass to the limit in the convective
term.

All in all, we have shown the following result.

Theorem 9.1. In the quasi-homogeneous regime, i.e. for ρ0 ≡ 1 in (9.5), in the limit ε → 0+

equations (9.1) converge to the following Navier-Stokes type system:
∂tr + div

(
r u
)

= 0

∂tu + div
(
u⊗ u

)
+ ∇Π − ν(1) ∆u + r u⊥ = 0

div u = 0 .

As a last comment, we point out that, in the quasi-homogeneous case, it is possible to prove
a similar result even in a 3-D framework, even though, strictly speaking, this has not been done
in [113, 47].

9.2.2 The fully non-homogeneous case

Let us now focus on the fully non-homogeneous case, when the densities are small perturbations
around a generic (non-constant) reference state ρ0. As already explained in Section 9.1, the fully
non-homogeneous case is much more involved.

As a matter of fact, while the uniform bounds (9.6) for the velocity fields still hold true, up to
some modifications because of the possible presence of vacuum regions. the analysis of the density
functions changes completely. By transport theory, we are able to say that the density functions
ρε converge (weakly-∗ in L∞

(
R+×Ω

)
, for instance) to some target profile ρ. However, obtaining

quantitative bounds on the difference ρε − ρ (in other terms, saying that a decomposition similar
to (9.5) holds also for later times) seems to be out of reach, at a first sight. On the other hand,
those quantitative bounds seem to be really necessary, at least for treating the Coriolis term, keep
in mind (9.7) for instance.
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Nonetheless, we remark that the original (ε-dependent) system already encodes some small-
ness/compactness property for the density functions, in a sense that we are going to explain now.
To begin with, we observe that, by balancing the Coriolis term by a gradient, in the limit ε→ 0+

we must have
ρ u⊥ = ∇φ ,

which immediately implies the property

div
(
ρ u
)

= 0 .

But it can be seen that ρε uε −→ ρ u in the sense of distributions (as it was the case in the
previous subsection for the product rε uε). Then, one in turn deduces that ∂tρ = 0, which implies
ρ(t) = ρ0 is the initial (non-constant) reference density state for any later time. Thus, one can
now write the ansatz

ρε = ρ0 + sε , with sε
∗
⇀ 0 .

However, we are still missing quantitative smallness properties for the family of functions
(
sε
)
ε
.

In order to deduce them, let us define rε := sε/ε and notice that the equations can be still
recasted in the form of the wave system (9.9). At this point, by taking the curl of the momentum
equation and then taking the difference of the obtained relation with the mass equation, one gets
a bound (in very negative Sobolev spaces with respect to x) for the quantity ηε − rε, so in turn
for the funtions rε. To be more precise and fix ideas, one gets

(9.10)
(
rε
)
ε
b L∞loc

(
R+;H−2−(Ω)

)
.

This is a very bad piece of information (inasmuch as uniform bounds are available in spaces of
very low regularity), but gives the sought quantitative smallness ρε − ρ0 = O(ε). In addition,
observe that an interpolation argument allows one to deduce the quantitative smallness ρε uε =
ρ0 uε + O(εκ) in the sense of D′, for a suitable 0 < κ < 1. Of course, it is not possible to take
κ = 1 here, because of the very low space regularity of the functions rε.

With those properties at hand, in order to compute the limit dynamics we can resort to similar
arguments as the ones used in Sections 8.1 and 8.3 for the compressible case. In particular, we
have already seen that the products ρε uε converge to ρ0 u. Next, we can use the mass equation
(thus passing to the vorticity formulation of the momentum equation) for treating the Coriolis
term. Finally, we consider the viscosity term: we notice that either it is linear in uε (if ν ≡ 1),
or, when it is variable ν = ν(ρε), one uses DiPerna-Lions theory [102] for transport equations to
deduce local strong convergence of the ρε, whence convergence of ν(ρε)Duε to ν(ρ0)Du.

In the end, once again the main difficulty lies in the study of the convergence of the convective
term. For this, and in order to be able to treat the possible vanishing of ρ0, similarly to (9.8) we
can write

div
(
ρε uε ⊗ uε

)
≈ div

(
ρ0 uε ⊗ uε

)
= ρ0∇φε + ρ0 ωε u

⊥
ε + uε · ∇ρ0 uε .

Now, the term ρ0∇φε can be shown to converge to some ρ0∇φ in the sense of D′. On the other
hand, using the interpolation argument mentioned above, and in particular the decomposition
ρε uε = ρ0 uε + O(εκ), one can compute

ρ0 ωε ≈ ηε − uε · ∇⊥ρ0 ,

where, as above, we have set ηε = curlVε. The point is that

uε · ∇ρ0 uε − uε · ∇⊥ρ0 u
⊥
ε = φ̃ε∇ρ0 = ∇

(
ρ0 φ̃ε

)
− ρ0∇φ̃ε ,

owing to special cancellations which occur in the computations. From the previous relation, we
finally deduce that

div
(
ρε uε ⊗ uε

)
≈ ρ0∇Φε + ∇Π̃ε + ηε u

⊥
ε ,
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for suitable quantities Φε and Π̃ε. To conclude, one must treat the last term on the right. The
key remark is that only the component along ∇⊥ρ0 is important, as the other component gives a
contribution of the same type as ρ0∇Φε. But, when projecting onto the ∇⊥ρ0 direction, we see
that u⊥ε · ∇⊥ρ0 = uε · ∇ρ0 ≈ div Vε, up to small remainders, so one can use the wave system
again (together with the space-time compactness of ηε − rε) to deduce that the resulting term is
also small, and in particular vanishes in the limit ε→ 0+.

We remark that this argument works for all smooth test functions ψ which are divergence-free,
without any other constraint; in particular, the proved convergence is a true convergence in D′,
without need to restricting to the subclass of test functions verifying in addition div

(
ρ0ψ

)
= 0.

Roughly speaking, those would be functions belonging to the kernel of the singular perturbation
operator; using them would allow to erase the term ρ0∇Φ appearing in the target equation (9.11)
below.

To sum up, in the fully non-homogeneous case one gets the following result. For simplicity of
presentation, assume ν ≡ 1 here.

Theorem 9.2. In the fully non-homogeneous regime, in the limit ε→ 0+ equations (9.1) converge
to the (underdetermined) linear scalar equation

(9.11) ∂t

(
curl

(
ρ0 u

)
− r

)
− ∆ω + curl

(
ρ0∇Φ

)
= 0 ,

where the vector field u satisfies in addition div u = div
(
ρ0 u

)
= 0, ω = curlu = ∂1u

2 − ∂2u
1

is the vorticity of u and Φ is a suitable scalar distribution, which is an additional unknown of the
system (together with u and r).

We conclude this part by formulating some comments about the previous statement.
First of all, we notice that the term ρ0∇Φ corresponds somehow to the Lagrangian multiplier

asociated with the divergence-free constraint div
(
ρ0 u

)
= 0, but of course (contrarily to the

classical pressure term) it does not vanish when taking the curl of the equations.
Secondly, we remark that, differently from the situation described in Chapter 8, one is no

more able to derive a stream-function relation analogous to (8.7), hence one is no more able to
prove that the vorticity ω equals ∆r. So, the previous equation, although presenting a similar
structure as the quasi-geostrophic equation (8.10), is indeed underdetermined, independently from
the presence or not of the Lagrangian multiplier ρ0∇Φ.

Again forgetting about the term ρ0∇Φ, we notice that the main reason for the underdeter-
mined nature of the limit system is the absence of an equation for the target density oscillation
function r. In turn, this is due to the weak bounds (9.10) available for rε, so for r, in very low
regularity spaces: such regularity does not allow us to get uniform bounds for the products rε uε
in spaces of distributions, so to pass to the limit in the mass equation and get a dynamical relation
also for the target function r.

Finally, we point out that in [113] we gave a conditional convergence result, which states that,
under suitable uniform bounds on the initial density perturbations r0,ε and, more importantly,
on the (solution!) velocity fields

(
uε
)
ε
both in time and space, one is able to recover a dynamical

equation for r in the limit, thus getting a fully determined target system (up to the presence of
“pressure terms” of the form ρ0∇Φ). The conditional convergence result can be roughly stated as
follows (again, we take ν(ρ) ≡ 1 here).

Theorem 9.3. In addition to the hypotheses fixed in Section 9.1, assume moreover that ρ0 ∈
W 3,∞(Ω) and that the following conditions hold true:

(i)
(
r0,ε

)
ε
⊂ H1+β(Ω), for some β ∈ ]0, 1[ ;

(ii)
(
uε
)
ε
⊂ L∞loc

(
R+;H1(Ω)

)
∩ L2

loc

(
R+;H2(Ω)

)
;

(iii)
(
uε
)
ε
⊂ C0,α

loc

(
R+;L2(Ω)

)
, for some α ∈ ]0, 1[ .
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Then there exist distributions Π, Γ0 and Γ1 over R+ × Ω such that the limit points r and u
identified above satisfy the system

∂tr + u · ∇r = curl
(
ρ0∇Γ1

)
ρ0 ∂tu + ∇Π + ρ0∇Γ0 + r u⊥ − ν∆u = 0

div u = div
(
ρ0 u

)
= 0 .

Interestingly, we notice that, in absence of vacuum, the additional conditions (ii) and (iii) of
the previous statement are met by weak solutions related to slightly more regular initial data (see
e.g. [176, 79]). However, the corresponding bounds are not (known to be) verified uniformly with
respect to the small Rossby number: this is the reason why the result of Theorem 9.3 remains
only conditional.

9.3 The case of thin domains and the Ekman pumping effect

In this part, we briefly discuss the extension of the results of [113, 47] to the case of a thin 3-D
domain. This corresponds to the study performed in [18].

Thus, in this section we consider the 3-D system of equations (9.1), where we set ν(ρ) ≡ 1 for
simplicity, in the thin infinite slab

Ωε := R2× ]− `ε, `ε[ ,

for a suitable decreasing sequence
(
`ε
)
ε
satisfying

∀ ε ∈ ]0, 1] , `ε > 0 and `ε ↘ 0 for ε→ 0+ .

Notice that, analogously to the situation considered in Chapter 8, the exterior normal nε to the
boundary ∂Ωε = R2 × {±`ε} is in fact independent of ε, as one has nε = n = ±e3. At the
boundary ∂Ωε, we impose Navier-slip boundary conditions, namely

(9.12)
(
uε · n

)
|∂Ωε

= 0 and
(
(Duε)n× n

)
|∂Ωε

= −αε
(
uε × n

)
|∂Ωε

,

for a suitable sequence
(
αε
)
ε
⊂ R+ of friction coefficients. We assume that

∃ lim
ε→0+

αε
`ε

= λ ∈ [0,+∞[ .

As a matter of fact, it turns out that, when λ = +∞, the limit problem is only the trivial one,
as one has u ≡ 0. When λ = 0, instead, we recover the two-dimensional result of Theorems
9.1 and 9.2 above: roughly speaking, the friction is so low that one is close to the complete slip
setting, for which any boundary effect vanishes in the limit ε→ 0+. Finally, whenever λ > 0, we
are going to see that an additional term appears in the equations with respect to that situation;
this is a consequence of the friction imposed at the boundary ∂Ωε. This additional term encodes
a well-known physical effect, which takes the name of Ekman pumping phenomenon (see more
details below).

For simplicity of presentation, in what follows we will focus on the quasi-homogeneous regime,
although corresponding results for the fully non-homogeneous case (in the same spirit of Theorem
9.2 above) can be obtained as well. We also take a constant viscosity coefficient ν(ρ) ≡ 1. The
result is the following one, where we reintroduce the indices h everywhere to stress the fact that,
although the original system is 3-D, the target dynamics is only two-dimensional, as already seen
in Chapter 8.



9.3. The case of thin domains and the Ekman pumping effect 101

Theorem 9.4. In the quasi-homogeneous setting ρ0 ≡ 1, system (9.1), set on Ωε and supple-
mented with Navier-slip boundary conditions (9.12), converges to the 2-D damped Navier-Stokes
type system 

∂tr + divh
(
r uh

)
= 0

∂tu
h + divh

(
uh ⊗ uh

)
+ ∇hΠ − ∆hu

h + r
(
uh
)⊥

+ 2λuh = 0

divhu
h = 0 .

Some comments about the previous statement are in order.
First of all, we notice the presence of the term 2λuh in the limit system. This is an addi-

tional term with respect to the situation treated in Theorem 9.1, for instance; it originates from
the friction condition (9.12) imposed at the boundary. This damping term (recall that, by our
assumptions, one has λ ≥ 0) exactly encodes the Ekman pumping phenomenon mentioned above.
We recall that, at the physical level, the Ekman pumping effect consists in the dissipation of
kinetic energy as a consequence of a global circulation phenomenon, called Ekman suction. The
Ekman suction process originates from the presence of the Ekman boundary layers, so in turn
from the friction of the fluid at the boundary (translated into the condition αε > 0 in (9.12)
above), but it involves also portions of the fluid in the interior of the domain (in this sense we
called it “global”). We refer e.g. to Part I of [41] and to [70] for a more detailed explanation.

Secondly, we remark that, in a thin domain framework, the only reasonable quantities to work
with are vertical averages. As a matter of fact, under our assumptions the energy balance for
system (9.1) reads

1

2 `ε

∫ `ε

−`ε

∫
R2

ρε(t) |uε(t)|2 dxh dx3 +
1

2 `ε

∫ `ε

−`ε

∫ t

0

∫
R2

|Duε|2 dxh dτ dx3

+
αε
`ε

∫ t

0

∫
R2×{−`ε,`ε}

∣∣uε∣∣2 dxh dτ ≤ 1

2`ε

∫ `ε

−`ε

∫
R2

ρ0,ε |u0,ε|2 dxh dx3 .

In particular, it is natural to formulate boundedness of suitable norms of vertical averages of the
initial data and to prove convergence of the vertical averages of the solutions

(
ρε, uε

)
ε
. We omit

to inter into the details here and rather refer to [18].
Finally, we comment a bit on the proof of the previous result and highlight the main points

of the analysis. To begin with, we observe that the previous energy inequality, combined with
the boundary condition

(
uε · n

)
|∂Ωε

= 0, gives that the vertical averages 〈u3
ε〉 of the vertical

component of uε must converge to 0. This is natural, if one thinks that considering the fast
rotation limit for thin domains is equivalent to study the limit in a fixed domain, but with
penalised vertical derivatives (see also [77] in this respect). Next, by using properties of the
(averaged) mass equation, one can see that the vertical averages of the densities 〈ρε〉 converge
strongly to the target profile, and so do the vertical averages of the oscillation functions 〈rε〉 (as
ρ0 = 1 in the situation considered here). At this point, another fundamental ingredient of the
proof is to derive Sobolev and Poincaré inequalities in thin domains. As a matter of fact, the
direct application of those inequalities (and the control on the gradients of the velocity fields)
allows us to “linearise” all the averages of some non-linear quantities, like the products ρε uε and
the convective term, for instance. By speaking about “linearisation” we mean that, in order to
understand the limit of the average of the non-linear quantities (typically products of densities
and velocity fields), it is enough to prove convergence of the non-linear quantity (products) of
the averages. After having obtained this reduction, similar arguments as the ones used for the
2-D problem apply, to show convergence of the vertical averages 〈rε〉 and 〈uhε 〉 towards suitable
quantities r and uh respectively, which satisfy the claimed target equations.

The proof of the correspoding result in the fully non-homogeneous case follows the same main
lines. As a matter of fact, the principal difficulties for treating that case appear already in the
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2-D problem and have already treated in Section 9.2. The statement can be roughly formulated
as follows.

Theorem 9.5. Assume to be in the fully non-homogeneous regime, with ρ0 = ρ0(xh) satisfying the
assumptions fixed in Section 9.1. Then, system (9.1), set on Ωε and supplemented with Navier-slip
boundary conditions (9.12), coverges to the equation

∂t

(
curlh

(
ρ0 u

h
)
− r

)
− ∆hω + curlh

(
ρ0∇hΦ

)
+ 2λω = 0 ,

where the vector field uh = uh(t, xh) satisfies in addition divhu
h = divh

(
ρ0 u

h
)

= 0 and where
we have set ω = curlhu

h = ∂1u
2 − ∂2u

1 to be the 2-D vorticity of uh. In the previous equation,
Φ is a suitable scalar distribution, which is an additional unknown of the system.

9.4 Some open questions and future perspectives

As usual, we conclude the present chapter with a list of open problems and questions which look
interesting to us and which we would like to tackle in the future.

As a matter of fact, many problems which arise in the compressible case (see Section 8.5)
are pertinent also in the context of incompressible non-homogeneous fluids in fast rotation. We
think, for instance, to the study of Ekman and Munk boundary layers, of topography effects, of
the interplay of a strong Coriolis force with gravity.

However, as it appears clear from the discussion above, the understanding of the fast rota-
tion limit for density-dependent incompressible flows is poorer, if compared to the compressible
instance. The main problem is that, in the general 3-D framework (9.1) and in the fully non-
homogeneous case, it is not clear to us that the Taylor-Proudman theorem should remain true in
the limit. In particular, we are not able to exclude that the target dynamics may present non-
trivial vertical components. At the mathematical level, this represents a major obstacle when
proving rigorous convergence results, as all the techniques (spectral methods, compensated com-
pactness) used so far in this kind of problems strongly rely on the validity of the Taylor-Proudman
theorem and on the fact of having a purely horizontal dynamics in the limit.

Therefore, it seems more important, actually essential for further developments on the subject,
to focus rather on basic problems first. We plan to address two points in particular. The first one
consists in finding some special classes of initial data, which would allow to spoil the target motion
from any vertical component, thus to recover the validity of the Taylor-Proudman in the limit. The
second direction is, in a first approximation, to focus on partial results, like proving convergence
of only the vertical averages of the solution, for instance. Tackling the general case of the full
convergence of the system seems to require the development of new approaches and/or techniques,
which would allow to handle, in the limit process, the presence of non-trivial dependence on the
vertical variable.
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Heterogeneity and low regularity issues in PDEs arising
from Fluid Mechanics

Abstract: This habilitation thesis is devoted to the study of some partial differential equations, with a
special emphasis on models arising in fluid mechanics. The general question we address here is about how
and to which extent the presence of some heterogeneity (variations in density or temperature of the fluid,
interaction with the boundary, anisotropy. . . ) affects the dynamics of the fluid. Motivated by physics, we
perform our study in a low regularity framework.
The manuscript is composed of three main parts. In the first one, we study linear hyperbolic operators
having variable, low regularity coefficients. We prove several well-posedness results with and without loss
of derivatives, for coefficients having lower regularity than the Lipschitz one. In the second part, we focus
on non-linear models related to fluid mechanics and address the question of their well-posedness. We deal
with weak solutions, strong solutions at critical regularity and statistical solutions. We are interested
in several questions, depending on the specific model under consideration: for instance, the description
of the dynamics of interfaces, or questions linked with turbulence theory, or the attainment of suitable
bounds on the lifespan of the solutions. In the third and last part, we continue the study of models from
fluid mechanics, but from the angle of singular perturbation problems. We focus on systems describing
the dynamics of geophysical flows: our aim is to rigorously derive, by tools from asymptotic analysis,
reduced models in some physically relevant regimes. We perform the low Rossby number (fast rotation)
limit for non-homogeneous (compressible and incompressible) fluid flows, for a wide range of the scaling
parameters.

Keywords: heterogeneity; low regularity; fluid mechanics; variable density; well-posedness; singular
limits.





Questions d’hétérogénéité et de faible régularité dans les EDP issues
de la Mécanique des Fluides

Résumé: Ce mémoire d’habilitation est consacré à l’étude de quelques équations aux dérivées partielles,
avec une attention particulière à des modèles issus de la mécanique des fluides. La question générale à
laquelle l’on s’intéresse concerne l’influence de la présence d’une certaine hétérogénéité (des variations de
la densité du fluide, l’interaction avec le bord, l’anisotropie. . . ) sur la dynamique du fluide. Motivés par
la physique, nous conduisons notre étude dans un cadre à faible régularité.
Le manuscrit se compose de trois parties principales. Dans la première partie, nous étudions des opérateurs
hyperboliques linéaires qui présentent des coefficients ayant une faible régularité. On montre plusieurs
résultats de caractère bien posé avec ou sans perte de dérivées, pour des coefficients qui satisfont une
condition de régularité plus faible que celle de Lipschitz. Dans la deuxième partie, nous nous intéressons
à des modèles non-linéaires en lien avec la mécanique des fluides et à la question de leur caractère bien
posé. Nous considérons le cadre des solutions faibles, des solutions fortes à régularité critique et des
solutions statistiques. Nous nous intéressons à plusieurs questions, selon le modèle spécifique traité: par
exemple, la description de la dynamique des interfaces, ou des questions liées à la théorie de la turbulence,
ou l’obtention de bornes inférieures sur le temps de vie des solutions. Dans la troisième et dernière
partie, on continue l’étude de modèles de la mécanique des fluides, mais du point de vue de l’analyse de
problèmes de perturbation singulière. Nous nous concentrons sur des systèmes décrivant la dynamique
de flots géophysiques: le but est la dérivation rigoureuse, par des outils d’analyse asymptotique, de
modèles réduits dans certains régimes physiquement pertinents. Nous étudions la limite à faible nombre
de Rossby (c’est-à-dire à rotation rapide) pour des systèmes de fluides non-homogènes (compressibles ou
incompressibles), pour un large spectre de valeurs des paramètres d’échelle.

Mots clés: hétérogénéité; faible régularité; mécanique des fluides; densité variable; caractère bien posé;
limites singulières.
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