This thesis explores various partial di↵erential equation (PDE) models of the spatiotemporal and evolutionary dynamics of cell populations in di↵erent problems in cancer and development. In particular, these models are used to investigate: (i) the emergence of intratumour phenotypic heterogeneity and the development of chemotherapeutic resistance in vascularised tumours; (ii) the formation of endothelial progenitor cell clusters during the early stages of vasculogenesis; (iii) mechanical pattern formation under different linear viscoelasticity assumptions for the extracellular matrix. The mathematical models proposed for these problems are formulated as systems of nonlinear and nonlocal PDEs, which provide a mean-field representation of the underlying cellular dynamics and pose a series of interesting analytical and numerical challenges. These are tackled by means of formal asymptotic methods, linear stability analyses and appropriate numerical schemes preventing the emergence of spurious oscillations. Numerical simulations, relying on parameter values drawn from the extant literature, complement the analytical results and are employed for in silico investigations qualitatively testing the model assumptions against empirical observations. The obtained results help us shed light on the hidden mechanisms responsible for the emergence of the studied phenomena in biology and medicine, suggesting promising research perspectives. iii 8.2.2 Dispersion relations . . . . . . . .
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II Modelling evolutionary dynamics in vascularised tumours 

Mathematical modelling

Recent advances in many fields of biology and medicine, including cancer and development, have been driven by a synergistic approach involving not only empirical observations and experiments, but also mathematical modelling [START_REF] Servedio | Not just a theory-the utility of mathematical models in evolutionary biology[END_REF]. Experimental assays include in vitro and in vivo approaches, which can be used to obtain empirical data in controlled and realistic settings respectively. Experimental studies, however, can be expensive and time consuming. For this reason, mathematical models have been increasingly used as theoretical tools to investigate the mechanisms at the basis of a variety of problems in biology and medicine by means of in silico investigations. These models complement empirical research, serving as a proof of concept for newly developed theories, bridging the gap between in vitro and in vivo observations, and steering experimental investigations towards the most promising research perspectives [START_REF] Anderson | Integrative mathematical oncology[END_REF][START_REF] Anderson | Mathematical oncology[END_REF][START_REF] Tomlin | Biology by numbers: mathematical modelling in developmental biology[END_REF][START_REF] Servedio | Not just a theory-the utility of mathematical models in evolutionary biology[END_REF]. By integrating the model with empirical data, the model's applicability to empirical systems can be tested. This step is known as model validation as it provides a means for testing the biological relevance of the model assumptions. Nonetheless, much theoretical work can be conducted prior to the integration of empirical data to improve model design [START_REF] Vera | Mathematical modelling in biomedicine: A primer for the curious and the skeptic[END_REF]: analytical and numerical results of the mathematical models can be qualitatively compared with empirical observations for an initial selection of model assumptions. Altogether, this supports the creation of new modelling frameworks to address complex problems in biology and medicine, and improved mathematical methods leading to better characterisations of the solution's properties. This thesis is concerned with such theoretical work, together with the analytical and numerical challenges posed by these models.

Each part of this thesis focusses on a di↵erent problem in cancer and development and it is composed of three chapters: the first one provides relevant biological and modelling background to inform the reader on the empirical evidence and previous studies motivating the model assumptions; the second one is dedicated to the presentation of the mathematical model together with analytical and numerical results; the final chapter is dedicated to the discussion of the model and promising research perspectives, both in terms of applicability to empirical systems and mathematical tractability.

Modelling techniques

In this thesis we are interested in studying the spatiotemporal and adaptive (in Part II) dynamics of populations of cells of di↵erent types. Cellular processes exhibit multiscale properties, with relevant interactions occurring at di↵erent scales. In particular, intracellular processes such as mutations and signalling pathways occur at the molecular scale (nm-µm), extracellular interactions such as those with other cells or the extracellular matrix (ECM) occur at the microscopic scale (µm-mm), and tissue level processes occur at the macroscopic scale (mm-cm) [START_REF] Deisboeck | Multiscale cancer modeling[END_REF]. Note that these scales are sometimes referred to, respectively, as microscopic, mesoscopic and macroscopic instead (Scianna and Preziosi, 2013). The spatial scale at which the processes of interest occur, together with the relevant timescale, can be used as criteria to select the most appropriate modelling framework. Models of cell population spatiotemporal and adaptive dynamics can involve discrete, continuum and hybrid techniques [START_REF] Anderson | Integrative mathematical oncology[END_REF][START_REF] Durrett | The importance of being discrete (and spatial)[END_REF][START_REF] Preziosi | Multiphase and multiscale trends in cancer modelling[END_REF].

Discrete modelling. Discrete models rely on an explicit representation of individual cells in space and time, and are therefore known as individual-based (IB) models, or agent-based models (Anderson et al., 2007;[START_REF] Metzcar | A review of cell-based computational modeling in cancer biology[END_REF]Scianna and Preziosi, 2013). These may be o↵ lattice or on lattice, in which case cells are placed on a grid and either regarded as point particles which may (cellular automata) or may not (lattice gas cellular automata) share the same grid position with other cells, or each occupy multiple grid positions (cellular Potts). They are particularly suited to processes occurring at the microscopic scale and over short timescales (minutes-hours) involving populations of low cell numbers, particularly thanks to the possibility to easily incorporate the stochasticity of the dynamics observed in these regimes. At the same time, IB models are generally computationally expensive and less amenable to analytical investigations.

Continuum modelling. Continuum models give a macroscopic description of the system under study, as the terms in the model equations provide a mean-field representation of the underlying cellular dynamics [START_REF] Altrock | The mathematics of cancer: integrating quantitative models[END_REF][START_REF] Deisboeck | Multiscale cancer modeling[END_REF]. Continuum macroscopic descriptions are particularly suited for dynamics involving populations of large cell numbers, where the small scale stochastic e↵ects can be neglected. For this reason models formulated as systems of partial di↵erential equations (PDEs) are particularly popular for tissue level spatiotemporal and evolutionary dynamics over longer timescales (days-years). A range of asymptotic techniques have been developed and used to derive several PDE models from their stochastic discrete counterpart -see for instance [START_REF] Baker | A free boundary model of epithelial dynamics[END_REF][START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF][START_REF] Buttenschön | A space-jump derivation for nonlocal models of cell-cell adhesion and non-local chemotaxis[END_REF][START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF][START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models[END_REF][START_REF] Lorenzi | From individual-based mechanical models of multicellular systems to free-boundary problems[END_REF][START_REF] Chaplain | Bridging the gap between individualbased and continuum models of growing cell populations[END_REF][START_REF] Stevens | Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks[END_REF][START_REF] Stevens | The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems[END_REF] and references therein. Such derivations ensure that the model equations provide a faithful mean-field representation of the underlying cellular dynamics. Moreover, comparing the solution of a PDE model with that of the corresponding IB model, one may observe that stochastic e↵ects are significant at low cell numbers, while the solutions match well for high cell numbers -see for instance [START_REF] Bubba | From a discrete model of chemotaxis with volume-filling to a generalized Patlak-Keller-Segel model[END_REF][START_REF] Lorenzi | Discrete and continuum models for the evolutionary and spatial dynamics of cancer: a very short introduction through two case studies[END_REF][START_REF] Macfarlane | A hybrid discrete-continuum approach to model Turing pattern formation[END_REF][START_REF] Nardini | Learning di↵erential equation models from stochastic agent-based model simulations[END_REF][START_REF] Simpson | Corrected mean-field models for spatially dependent advection-di↵usion-reaction phenomena[END_REF]) and references therein. A wide range of methods and techniques from di↵erent areas of mathematics may be harnessed to overcome the analytical and numerical challenges posed by initial-boundary-value problems. For this reason, compared to IB models, PDE models are generally more amenable to analytical investigation and may be less computationally expensive, although their computational cost and analytical tractability do depend on the complexity of the model, as will be discussed throughout this thesis.

Hybrid modelling. Since many biological systems involve processes spanning di↵erent spatiotemporal scales, in the past twenty years many models combining discrete and continuum approaches have been proposed, known as hybrid or multiscale models [START_REF] Deisboeck | Multiscale cancer modeling[END_REF]Scianna and Preziosi, 2013). For example, hybrid models using a discrete stochastic approach for the cell dynamics, at low cell numbers, and a continuum deterministic one for the molecular concentration of abiotic factors, are particularly popular. Hybrid models, similarly to IB models, may still be computationally expensive and less amenable to analytical investigations.

The biological processes studied in this thesis are concerned with spatial sorting of cell populations at the tissue level, occur over longer timescales (days) and involve cell populations which are actively proliferating. For this reason the models presented henceforth are of the continuum deterministic type. These are formulated as systems of nonlinear, and at times nonlocal (Parts II and III), PDEs and they pose a series of analytical and numerical challenges, which make them interesting mathematical objects per se.

Thesis structure and topics

This thesis is composed of three main parts (II-IV), each dedicated to a di↵erent application in cancer and development, and a brief discussion of potential future directions (Part V). The contents of Parts II-IV have been published in Villa et al. (2021aVilla et al. ( ,b,c, 2022)).

Part II -Modelling evolutionary dynamics in vascularised tumours. Part II focusses on the emergence of intratumour phenotypic heterogeneity in vascularised tumours and its consequences for the development of chemotherapeutic resistance, which is often responsible for treatment failure and disease relapse. The problem is addressed in an eco-evolutionary perspective, and studied by means of a nonlocal PDE model of a spaceand phenotype-structured population of cancer cells. Equations of this type -i.e. nonlocal reaction-di↵usion equations of the Lotka-Volterra type -have attracted the attention of the mathematical community and we will see how under simplifying assumptions we can construct explicit solutions, while in more complex cases a formal Hamilton-Jacobi approach can be used to obtain weak solutions in appropriate asymptotic limits. The analytical results will be complemented with numerical simulations, based on an explicit finite di↵erence scheme, employed for in silico investigations testing eco-evolutionary hypotheses against empirical evidence. While it is known that in vascularised tumours new blood vessels may form, in this study we make the simplifying assumption of a fixed vascular distribution in order to focus on the cancer cell evolutionary dynamics. Mathematical modelling of neovascularisation processes, in fact, presents a series of challenges which make it an interesting problem to address on its own, as we do in Part III.

Part III -Modelling cluster formation in vasculogenesis. Part III focusses on a neovascularisation process referred to as cluster-based vasculogenesis, for which an underlying mechanism has recently been proposed. This is characterised by the formation of endothelial progenitor cell clusters during the early stages of the process, which allow for an extensive vascular network to form, not only in tumours but also in embryos and ischemic tissues. We theoretically investigate the determinants of cluster formation and size by means of a novel nonlocal PDE model. The nonlocal nature of the PDE system introduces significant analytical and numerical di culties. We thus conduct linear stability analysis of the system and a parametric analysis on the numerical simulations, obtained using an implicit finite volume scheme developed by Alf Gerisch (TU Darmstadt), to test modelling assumptions against experimental observations. In this study we ignore mechanical interactions, which are negligible during the early stages of vasculogenesis, but a series of mechanochemical models similar to that presented in Part IV have been proposed and might provide an initial framework for the late-stage dynamics.

Part IV -Modelling the extracellular matrix in mechanical pattern formation.

Part IV focusses on mechanochemical models of pattern formation in biological tissues, employed to study not only vasculogenesis but also a series of problems in development and physiology. In these models the ECM is generally regarded as a linear viscoelastic material and modelled using the Kelvin-Voigt model of linear viscoelasticity, but other constitutive models exist which might be better suited to represent the ECM. We thus present a study of the role that di↵erent constitutive equations have in the pattern formation potential of a generic mechanical model of this type, relying on a parametric analysis of the dispersion relations obtained from a LSA and numerical simulations. The sti↵ PDE system poses significant numerical challenges, and we construct numerical solutions with an implicit mixed finite volume and finite di↵erence scheme.

Part V -Potential future directions. Part V concludes this thesis by briefly presenting new modelling frameworks at the interface of adaptive dynamics and pattern formation, with promising research perspectives that would combine the strengths and complexities of the models presented in Parts II-IV.

List of acronyms

The following acronyms will be used in this document Part II

Modelling evolutionary dynamics in vascularised tumours

This part focusses on the evolutionary dynamics of cancer cells in vascularised tumours, before and during chemotherapeutic treatment. Tumour vascularisation constitutes a critical stage of cancer progression, supporting further tumour growth and metastasis. Moreover, intratumoural vasculature supports the emergence of intratumour-phenotypic heterogeneity and the development of therapeutic resistance, often responsible for treatment failure and relapse. Previous empirical and theoretical works indicate that the nonlinear interaction between abiotic factors and tumour cells can lead to the creation of di↵erent ecological niches in which cells with di↵erent phenotypic characteristic can be selected. Mathematical models of adaptive dynamics have been increasingly used in the study of phenotypic evolution in cancer, with particular attention being given to nonlocal PDE models of phenotype-structured populations. Despite the many insights provided by works in the extant literature, we are still far from a complete and systematic understanding of the evolutionary processes at the basis of the aforementioned phenomena. We here present a mathematical study of the evolutionary dynamics of tumour cells in vascularised tumours under chemotherapy. The model comprises a system of coupled spatially explicit nonlocal PDEs for the phenotypic distribution of tumour cells, including terms modelling spontaneous phenotypic changes and spatial movement, the concentration of oxygen and the concentration of a chemotherapeutic agent, which undergo nonlinear interactions with the tumour cells and are released from the intratumoural vascular network. The study is based on both asymptotic analysis and numerical simulations of the system, where a detailed quantitative characterisation of the long-time asymptotic behaviour of the solutions is given. The results obtained provide a theoretical basis for empirical evidence indicating that the phenotypic properties of tumour cells in vascularised tumours vary with the distance from the blood vessels and establish a relation between the degree of tumour tissue vascularisation and the level of pre-treatment intratumour phenotypic heterogeneity. Moreover, we demonstrate that lower oxygen levels may correlate with higher levels of phenotypic variability, which suggests that the presence of hypoxic regions supports intratumour phenotypic heterogeneity. The results of the analysis put on a solid mathematical basis the idea that hypoxia favours the selection for chemoresistant phenotypic variants prior to treatment, facilitating the development of resistance following chemotherapy. The results of this study are in agreement with previous empirical and theoretical works and lead to various promising research perspectives.

Part II is organised as follows: in Chapter 1 the related biological background is presented, along with an overview of nonlocal PDE models of adaptive dynamics in the current literature; in Chapter 2 a nonlocal PDE model of cancer cell evolutionary dynamics in vascularised tumours is presented together with its analytical and numerical results; in Chapter 3 these results are discussed, together with promising research perspectives.

The contents of Part II are based on the papers Villa et al. (2021b,c).

Chapter 1

Biological and modelling background

1.1 Intratumour phenotypic heterogeneity in vascularised tumours

First, a brief overview of cancer biology is given in Section 1.1.1. This is followed by a description of popular therapeutic strategies for tumours at di↵erent stages of cancer progression and the associated development of resistance often responsible for treatment failure in Section 1.1.2. Finally, in Section 1.1.3 evidence of the emergence of metabolic phenotypic heterogeneity in tumours, deemed to be correlated with higher therapeutic resistance, is presented along with open problems associated with heterogeneity in vascularised tumours.

Cancer overview

Cancer is a disease, or collection of diseases, caused by uncontrolled division of abnormal cells in a part of the body. Cancer research has been continuously expanding over the years, particularly motivated by the high incidence and diversity of cancer [START_REF] Sung | Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[END_REF]. While it was once thought to be a disease of genes, it is now recognised to be an evolutionary disease (Chisholm et al., 2016a;[START_REF] Greaves | Clonal evolution in cancer[END_REF]. In particular, tumours are seen as organ-like ecosystems, dynamically interacting with elements of their surrounding microenvironment and capable of acquiring new malignant properties that favour their survival and invasion of the host organism [START_REF] Egeblad | Tumors as organs: complex tissues that interface with the entire organism[END_REF].

The Hallmarks of cancer. [START_REF] Hanahan | The hallmarks of cancer[END_REF] identified six characteristics, known as the 'Hallmarks of cancer' (see Figure 1.1), that cancer cells can acquire in order to progress through the di↵erent stages of cancer. These include the ability to sustain proliferative signalling, evade growth suppressors, resist cell death, enable replicative immortality, induce angiogenesis, and invade the local tissue or other parts of the host (metastasis). [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF] later recognised four additional hallmarks, including the cells' ability to avoid immune destruction, recruit immune cells to cause tumour-promoting inflammation, mutate and alter their metabolic processes to avoid the need for oxygen. The authors particularly highlight the crucial role played by the tumour microenvironment in the acquisition of these hallmarks and, therefore, its impact on tumour progression and development of malignancy. Weinberg, Hallmarks of Cancer: The Next Generation, 646-674, Copyright (2011), with permission from Elsevier [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF], Figure 6).

The stages of cancer. Tumours form from the uncontrolled proliferation of abnormal cells due to the accumulation of mutations [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF][START_REF] Weinberg | The biology of cancer[END_REF]. They initially grow as multicellular spheroids up to a size of approximately 1-2 mm 3 above which their metabolic demands are restricted due to the di↵usion limit of oxygen and nutrients [START_REF] Hillen | Tumour vascularization: sprouting angiogenesis and beyond[END_REF]. Hypoxia, i.e. decreased oxygen availability, is one of the first environmental stresses that cancer cells experience, and it leads to a variety of cellular changes and biological processes initiated by the cells in response to such stress. Among the cellular changes caused by hypoxia and by other environmental clues are a series of phenotypic changes based on metabolic reprogramming (see Section 1.1.3) and what is known as epithelial-to-mesenchymal 1 transition (EMT) allowing the cancer cells to invade the local tissue [START_REF] Friedl | Tumour-cell invasion and migration: diversity and escape mechanisms[END_REF]. We note that the term 'cancer' refers to malignant rather than benign tumours, where malignancy is determined by the tumour cells' potential to spread to other parts of the body. Moreover, among the processes induced by hypoxia is the formation of new vasculature [START_REF] Hillen | Tumour vascularization: sprouting angiogenesis and beyond[END_REF] from pre-existing vessels (angiogenesis) or by recruiting endothelial progenitor cells (see Chapter 4 for a more detailed overview of neovascularisation processes), responsible for the development of vascularised tumours. Due to the new oxygen supply, vascularised tumours can grow further and, because of the abnormal structure of the new blood vessels [START_REF] Magnussen | Vascular normalisation as the stepping stone into tumour microenvironment transformation[END_REF] as well as EMT, cancer cells can intravasate and leave the original site. If they manage to survive within the circulatory system, they may eventually extravasate into a new site, undergo mesenchymal-to-epithelial transition and begin to proliferate uncontrollably again [START_REF] Lambert | Emerging biological principles of metastasis[END_REF]. This last step is known as metastatic spread and constitutes the culmination of tumour malignancy. Moreover, cancer cells in metastatic sites may intravasate and create new metastases or may travel back to the primary site and contribute to the further growth of the primary tumour, a phenomenon known as secondary self-seeding [START_REF] Leung | Tumor self-seeding: bidirectional flow of tumor cells[END_REF].

Therapeutic issues associated with cancer

As cancer progresses, acquiring more malignant traits and spreading to di↵erent parts of the host body, it starts to disrupt the essential bodily processes performed by the a↵ected organs. Various therapeutic strategies have been developed over the years, particularly diversified to tackle tumours at di↵erent stages.

Therapeutic strategies. Benign tumours are generally treated locally via surgery or radiotherapy 2 [START_REF] Chu | Cancer chemotherapy[END_REF] or, if they appear stable, they might even be left untouched and simply monitored via regular check ups. On the other hand, malignant tumours are generally treated with a combination of di↵erent therapeutic strategies,
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Epithelial-like cells are characterised by high E-cadherin expression which translates into static cells collectively embedded via cell-cell adhesion bonds. Mesenchymal-like cells are characterised by a downregulation of membrane E-cadherin expression, associated with more motile and invasive behaviours.
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Radiotherapy is a cancer treatment based on the use of high doses of radiation which damages the DNA of cancerous cells leading to cell death.

the most common one being chemotherapy. This treatment is based on the use of cytotoxic drugs which particularly damage highly proliferative cells by interfering with mitosis [START_REF] Chu | Cancer chemotherapy[END_REF][START_REF] Corrie | Cytotoxic chemotherapy: clinical aspects[END_REF]. None of these treatments, however, are without drawbacks: surgery can involve highly invasive procedures, radiotherapy may damage healthy cells surrounding the targeted tumour, and chemotherapy tends to damage healthy tissues throughout the whole body leading to many side e↵ects [START_REF] Corrie | Cytotoxic chemotherapy: clinical aspects[END_REF]. New targeted therapies are increasingly being tested, aimed at damaging cancer cells while leaving healthy ones una↵ected [START_REF] Tsimberidou | Targeted therapy in cancer[END_REF][START_REF] Wu | Targeted therapy for cancer[END_REF]. Immunotherapy, which aims at contrasting the cancer cell's ability to avoid immune destruction by training the immune system, is becoming more and more popular [START_REF] Mellman | Cancer immunotherapy comes of age[END_REF]. Various other therapies have been developed to specifically target each hallmark of cancer [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF], as summarised in Figure 1.1. Moreover, in vascularised tumours, vascular normalisation may be essential for optimal drug delivery or immune response [START_REF] Magnussen | Vascular normalisation as the stepping stone into tumour microenvironment transformation[END_REF]. However, as previously mentioned, these less aggressive therapeutic strategies are generally used in combination with more aggressive ones.

Development of resistance. Despite the progress made in the formulation of therapeutic strategies for cancer, treatment failure still occurs, particularly due to the development of drug resistance by the surviving cancer cell population. In particular, while various types of therapeutic resistance may be encountered [START_REF] Lavi | The dynamics of drug resistance: a mathematical perspective[END_REF], we here focus on drug-induced resistance that may be acquired during treatment. This therapeutic issue is common in most cancers during both chemotherapy and radiotherapy, and even in targeted therapies (Chisholm et al., 2016a;[START_REF] Corrie | Cytotoxic chemotherapy: clinical aspects[END_REF][START_REF] Barker | The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[END_REF][START_REF] Gillies | Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[END_REF]. During chemotherapy, for instance, less susceptible cells may still experience DNA damage, yet to a lesser extent than highly susceptible cells and may therefore develop an increased capability to repair DNA lesions (e.g. via reduced drug uptake or up-regulation of DNA repairing enzymes) [START_REF] Chu | Cancer chemotherapy[END_REF][START_REF] Corrie | Cytotoxic chemotherapy: clinical aspects[END_REF]. After treatment, the surviving cells, possibly owing their survival to the newly acquired resistance capabilities, will resume proliferation and potentially lead to a resistant population. Treatment failure is particularly common in metastatic cancer, not only because of the need to treat multiple tumours at di↵erent locations or because of the repopulating e↵ects of secondary self-seeding, but also because therapeutic resistance capabilities acquired by cells in a primary site may spread to metastatic sites [START_REF] Lambert | Emerging biological principles of metastasis[END_REF]. The development of resistance in tumours is particularly favoured by pre-treatment intratumour phenotypic heterogeneity.

Intratumour phenotypic heterogeneity

A phenotype is the set of observable characteristics of an individual, in this case a cancer cell, resulting from the interaction of its genotype with the surrounding environment. In this work, we focus on the metabolic phenotype of cancer cells as it plays an important role in the development of resistance to chemotherapy.

Tumour metabolism. In order to proliferate, as well as to grow and maintain cell homeostasis 3 , cells require energy which they can obtain via the fundamental process of metabolism, during which they convert nutrients into adenosine triphosphate (ATP), the energy-storing molecule. Several metabolic pathways exploiting di↵erent energy sources exist, but the primary nutrients converted by cells are oxygen and glucose [START_REF] Romero-Garcia | Tumor cell metabolism: an integral view[END_REF]. Cells first convert glucose into a chemical compound known as pyruvate via glycolysis, producing two ATP molecules and a proton. In anaerobic conditions, that is in the absence of oxygen, pyruvate is turned into lactate and the cells rely only on the energy stored in the ATP produced via anaerobic glycolysis. In aerobic conditions, on the other hand, glycolysis is followed by oxidative phosphorylation, during which oxygen and pyruvate transported to the mitochondria 4 are converted into CO 2 , H 2 O and ATP. This aerobic energy pathway leads to a net production of about 36 ATP molecules per one glucose and five oxygen molecules [START_REF] Vander Heiden | Understanding the Warburg e↵ect: the metabolic requirements of cell proliferation[END_REF], thus cells can rely on much more energy than with anaerobic gycolysis to boost proliferation. In normal tissues, hypoxia induces a higher expression of hypoxia-inducible factors 5 , such as HIF-1, which favours a shift towards anaerobic energy pathways6 [START_REF] Lee | Hypoxia-inducible factor (hif-1) ↵: its protein stability and biological functions[END_REF] and inhibits cell proliferation (Huang, 2013a). In tumours, the presence of hypoxic regions also induces a shift towards a glycolytic metabolic phenotype [START_REF] Denko | Hypoxia, HIF1 and glucose metabolism in the solid tumour[END_REF][START_REF] Semenza | HIF-1: upstream and downstream of cancer metabolism[END_REF] and cancer cells eventually switch to gycolysis even in aerobic conditions, a phenomenon known as the Warburg e↵ect [START_REF] Vander Heiden | Understanding the Warburg e↵ect: the metabolic requirements of cell proliferation[END_REF]. Although this is an ine cient way to produce energy, it is associated with better cancer cell survival and higher malignancy, particularly because lactate production increases acidity levels in the local environment promoting more aggressive phenotypes [START_REF] Robertson-Tessi | Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes[END_REF][START_REF] Krtolica | Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is una↵ected[END_REF]. Nevertheless, heterogeneity with respect to oxidative phosphorylation, aerobic and anaerobic glycolysis is generally found in cancer cell popu-3 Homeostasis is the state of steady internal, physical, and chemical conditions necessary for survival of living systems.
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In normoxic conditions, HIF-1 is synthesised and made inactive due to the action of an oxygendependent enzyme known as pVHL; in hypoxic conditions, HIF-1 levels increase within minutes as pVHL cannot synthesise it.

lations (Chisholm et al., 2016a;[START_REF] Denko | Hypoxia, HIF1 and glucose metabolism in the solid tumour[END_REF]. Hypoxia and anaerobic glycolysis -and, more generally, metabolic heterogeneity -in tumours are particularly associated with higher resistance to therapy [START_REF] Denko | Hypoxia, HIF1 and glucose metabolism in the solid tumour[END_REF][START_REF] Shannon | Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies[END_REF][START_REF] Strese | E↵ects of hypoxia on human cancer cell line chemosensitivity[END_REF][START_REF] Zhao | Targeting cellular metabolism to improve cancer therapeutics[END_REF]. Given that they are associated with inhibition of cell proliferation [START_REF] Krtolica | Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is una↵ected[END_REF][START_REF] Tannock | The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour[END_REF], this is consistent with the notion that slowly proliferating cells are less susceptible to chemotherapy and thus more likely to develop resistance, as outlined in Section 1.1.2.

Spontaneous phenotypic changes.

A shift in the metabolic phenotype of cancer cells can be induced by environmental stress factors such as hypoxia, which can upregulate the transcription of genes like HIF-1 and induce a glycolytic switch in the span of a few days [START_REF] Baumann | Hypoxic upregulation of glucose transporters in bewo choriocarcinoma cells is mediated by hypoxia-inducible factor-1[END_REF]. However, phenotypic changes may also occur spontaneously due to genetic and non-genetic instability. The former is associated with mutations, which may occur on long timescales [START_REF] Beerenwinkel | Genetic progression and the waiting time to cancer[END_REF] and result in irreversible changes in the genome thus a↵ecting the cell phenotype. Nevertheless, even in genetically homogeneous cell populations, great heterogeneity in gene expression levels is observed (Chisholm et al., 2016a). Non-genetic instability is generally associated with noise in gene expression particularly due to epimutations [START_REF] Levine | Phenotypic Switching: Implications in Biology and Medicine[END_REF]. These are heritable and reversible phenotypic changes occurring over the lifespan of a tumour cell due to, for instance, DNA methylation 7 and histone 8 modification [START_REF] Hansen | Increased methylation variation in epigenetic domains across cancer types[END_REF][START_REF] Sandoval | Cancer epigenomics: beyond genomics[END_REF], which are responsible for changes in gene transcription mechanisms (e.g. gene silencing) and are not induced by any selective pressure (Huang, 2013b). It has been hypothesised that epigenetic modifications alone can be responsible for the emergence of phenotypic diversity and drug resistance [START_REF] Brown | Poised epigenetic states and acquired drug resistance in cancer[END_REF]Chisholm et al., 2016a).

Intratumour phenotypic heterogeneity.

A growing body of experimental and clinical studies demonstrate that tumour cells with di↵erent phenotypic properties occupy tumour regions which are characterised by di↵erent oxygen levels. In particular, hypoxic parts of the tumour (i.e the inner areas -excluding the necrotic core -in avascular tumours and the regions far from blood vessels in vascularised tumours) are mainly populated by slow-dividing cells, which display higher levels of hypoxia-inducible factors, such as HIF-1 [START_REF] Carmona-Fontaine | Metabolic origins of spatial organization in the tumor microenvironment[END_REF][START_REF] Eales | Hypoxia and metabolic adaptation of cancer cells[END_REF][START_REF] Giatromanolaki | Relation of hypoxia inducible factor 1 ↵ and 2 ↵ in operable nonsmall cell lung cancer to angiogenic/molecular profile of tumours and survival[END_REF][START_REF] Padhani | Imaging oxygenation of human tumours[END_REF][START_REF] Semenza | Targeting HIF-1 for cancer therapy[END_REF][START_REF] Strese | E↵ects of hypoxia on human cancer cell line chemosensitivity[END_REF][START_REF] Tannock | The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour[END_REF]. On the other hand, fast-dividing cells with lower levels of expression of hypoxia-inducible 7 DNA methylation is a biological process by which methyl groups are added to the DNA molecule, shutting o↵ some genes and activating others.
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A histone is a protein providing structural support to a chromosome. In the nucleus, long DNA molecules are wrapped around complexes of histone proteins factors, which typically correlate with higher levels of resistance to chemotherapy, are primarily detected in well-oxygenated parts of the tumour tissue (i.e the tumour border in avascular tumours and the regions in the vicinity of blood vessels in vascularised tumours) [START_REF] Carmona-Fontaine | Metabolic origins of spatial organization in the tumor microenvironment[END_REF][START_REF] Eales | Hypoxia and metabolic adaptation of cancer cells[END_REF][START_REF] Dewhirst | Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response[END_REF][START_REF] Giatromanolaki | Relation of hypoxia inducible factor 1 ↵ and 2 ↵ in operable nonsmall cell lung cancer to angiogenic/molecular profile of tumours and survival[END_REF][START_REF] Semenza | Targeting HIF-1 for cancer therapy[END_REF][START_REF] Tannock | The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour[END_REF]. This evidence, illustrated in Figure 1.2B, indicates that spatial variability in the intratumoural concentration of oxygen plays a pivotal role in the emergence and development of phenotypic heterogeneity among tumour cells [START_REF] Alfarouk | Riparian ecosystems in human cancers[END_REF][START_REF] Axelson | Hypoxia-induced dedi↵erentiation of tumor cells -a mechanism behind heterogeneity and aggressiveness of solid tumors[END_REF][START_REF] Gillies | Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[END_REF][START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF][START_REF] Molavian | Fingerprint of cell metabolism in the experimentally observed interstitial ph and po2 in solid tumors[END_REF][START_REF] Sun | Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment[END_REF]. This impinges on anti-cancer treatment by making it impossible for single biopsies to exhaustively portray the phenotypic composition of the whole tumour tissue [START_REF] Burrell | Tumour heterogeneity and the evolution of polyclonal drug resistance[END_REF][START_REF] Poleszczuk | Evolution and phenotypic selection of cancer stem cells[END_REF][START_REF] Yap | Intratumor heterogeneity: seeing the wood for the trees[END_REF]. This is particularly the case in vascularised tumours, where the chaotic and abnormal vasculature leads to significant spatial gradients in the oxygen distribution. While continuously improving non-invasive imaging techniques allow for a clear mapping of the blood vessel distribution in vascularised tumours [START_REF] Upputuri | Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine[END_REF][START_REF] Schuh | Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology[END_REF], this information is still insu cient to inform treatment design as no precise connection between blood vessel distribution and intratumour phenotypic heterogeneity has yet been established. In fact, despite the progress made in cancer research, we are still far from a systematic understanding of the processes responsible for the emergence of intratumour phenotypic heterogeneity and of the role this has in the development of chemotherapeutic resistance. Mathematical modelling can provide a theoretical framework in which to investigate these open problems in biology and medicine [START_REF] Lavi | The dynamics of drug resistance: a mathematical perspective[END_REF].

Mathematical models of phenotypic evolution in cancer

Evolutionary principles at the basis of the theoretical study of intratumour phenotypic heterogeneity and therapeutic resistance are presented in Section 1.2.1. An overview of mathematical models of cancer phenotypic evolution in the current literature is given in Section 1.2.2, followed by a detailed review of nonlocal PDE models of phenotypestructured cancer cell population dynamics in Sections 1.2.3 and 1.2.4.

The ecological argument and evolutionary principles

Since first proposed by [START_REF] Nowell | The clonal evolution of tumor cell populations[END_REF], the study of cancer as an eco-evolutionary process has been widely accepted [START_REF] Aktipis | Evolutionary foundations for cancer biology[END_REF][START_REF] Basanta | Exploiting ecological principles to better understand cancer progression and treatment[END_REF][START_REF] Crespi | Evolutionary biology of cancer[END_REF][START_REF] Dujon | Identifying key questions in the ecology and evolution of cancer[END_REF][START_REF] Gatenby | A microenvironmental model of carcinogenesis[END_REF][START_REF] Gatenby | Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer[END_REF][START_REF] Merlo | Cancer as an evolutionary and ecological process[END_REF]. In particular, the tumour microenvironment can be viewed as an ecological landscape in which cells evolve in response to the selective pressure of the local environmental conditions. In the case of vascularised tumours, an analogy can be drawn between cancer cells surrounding a blood vessel and riparian habitats within desert landscapes, illustrated in Figure 1.2, as presented by [START_REF] Alfarouk | Riparian ecosystems in human cancers[END_REF] who proposed the vascular network as a common and primary source of intratumour heterogeneity. Rivers in deserts or semi-arid landscapes bring nutrients and resources to plants and carry away toxic and waste products. Near the stream, the high water and nutrient availability supports the growth of thick vegetation consisting of tall trees and mesic 9 shrubs, which results in intense competitive interactions between plants for space and resources, i.e. a biotically harsh environment. Away from the stream, the level and availability of ground water declines and, together with a rise in minerals and salts, results in the selection of sparse xeric 10 grasses, shrubs and cacti, which are able to survive the harsher abiotic environment whilst experiencing little biotic competition. Analogously, in vascularised tumours, it has been hypothesised that the nonlinear interplay between impaired oxygen delivery caused by structural abnormalities present in the tumour vasculature [START_REF] Dewhirst | Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response[END_REF][START_REF] Fukumura | Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models[END_REF][START_REF] Jain | Determinants of tumor blood flow: a review[END_REF][START_REF] Jordan | Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy1[END_REF][START_REF] Padhani | Imaging oxygenation of human tumours[END_REF][START_REF] Vartanian | GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity[END_REF][START_REF] Vaupel | Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review[END_REF], limited oxygen di↵usion and oxygen consumption by tumour cells may lead to the creation of distinct ecological niches in the tumour landscape, whereby tumour cells with di↵erent phenotypic characteristics can be selected [START_REF] Alfarouk | Riparian ecosystems in human cancers[END_REF][START_REF] Casciari | Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH[END_REF]Gatenby et al., 2007;[START_REF] Hockel | Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[END_REF][START_REF] Ibrahim-Hashim | Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution[END_REF][START_REF] Lloyd | Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces[END_REF]. This hypothesis is supported by the growing body of experimental and clinical studies summarised in Section 1.1.3, and it agrees with further empirical and theoretical work also suggesting that spatial variation in oxygen levels can foster the emergence of intratumour phenotypic heterogeneity [START_REF] Gallaher | Evolution of intratumoral phenotypic heterogeneity: the role of trait inheritance[END_REF][START_REF] Gay | Tumour cell heterogeneity[END_REF][START_REF] Gillies | Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[END_REF][START_REF] Kotler | Cancer community ecology[END_REF][START_REF] Loeb | A mutator phenotype in cancer[END_REF][START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF][START_REF] Molavian | Fingerprint of cell metabolism in the experimentally observed interstitial ph and po2 in solid tumors[END_REF][START_REF] Sun | Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment[END_REF].

Evolutionary principles of adaptive dynamics. The ecological analogy described above relies on the principles of Darwinian selection of the fittest to local environmental conditions following competition for space and resources. In this theoretic framework, new phenotypic traits are generally assumed to emerge due to phenotypic stochasticity, i.e. spontaneous and random phenotypic changes (e.g. in cancer due to mutations and epimutations). We note that this is di↵erent to the concept of phenotypic plasticity, that is the ability of an individual to undergo phenotypic changes in response to environ-
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A mesic habitat (or plant) is characterised by (or requiring) a moderate amount of moisture. mental stimuli (e.g. in cancer hypoxia-induced up-regulation of HIF-1 and subsequent signalling cascade resulting in a metabolic switch) [START_REF] Levine | Phenotypic Switching: Implications in Biology and Medicine[END_REF]. The role of phenotypic stochasticity in cellular and organismal phenotypic evolution was first illustrated by Waddington's well-known epigenetic landscape (Waddington, 1957), reported in Figure 1.3a. In this metaphor, the cell is represented by a ball rolling down a landscape, the shape of which is determined by the complex interaction between the cell's genes and its environment. The resulting landscape, however, is characterised by many bifurcations so that the final trajectory of the ball will be determined by stochastic fluctuations in gene expression (i.e. epimutations). illustrate how the epigenetic landscape of cancer cells might be expected to vary following treatment (Chisholm et al., 2016a). While evolutionary theories have continuously progressed since then [START_REF] Levine | Phenotypic Switching: Implications in Biology and Medicine[END_REF], the notion that phenotypic fluctuations can lead to the emergence of new traits, which are then subjected to Darwinian competition, has been particularly popular in mathematical models of cancer evolutionary dynamics. Spontaneous phenotypic variation and dispersal, i.e. spatial movement, have been proposed to support phenotypic heterogeneity and thus identified as bet-hedging, i.e. risk-spreading, strategies that allow species to survive temporal changes in their environment [START_REF] Villa Martín | Bet-hedging strategies in expanding populations[END_REF]. On top of this, spatial heterogeneity in environmental conditions and habit selection are indicated as one of the largest sources of biodiversity [START_REF] Kotler | Cancer community ecology[END_REF]. 

Modelling the evolutionary dynamics of cancer

Various stochastic and deterministic approaches have been used to model phenotypic evolution in cancer and development (Chisholm et al., 2016a).

Stochastic approaches. Probabilistic approaches in cancer include branching processes, which capture evolution towards irreversible malignancy [START_REF] Altrock | The mathematics of cancer: integrating quantitative models[END_REF][START_REF] Gardner | Modeling multi-drug chemotherapy: tailoring treatment to individuals[END_REF][START_REF] Komarova | Drug resistance in cancer: principles of emergence and prevention[END_REF], IB or hybrid models, where the phenotypic evolution of each single cell is tracked allowing for reversible phenotypic changes. In the latter a finite range of phenotypic states, and therefore of resistance levels, is generally represented (Chisholm et al., 2016b;[START_REF] Stace | Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy[END_REF], although models representing heritable traits with continuous variables have also been proposed [START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF][START_REF] Robertson-Tessi | Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes[END_REF]. These works particularly focus on the emergence of metabolic phenotypic heterogeneity and its impact on treatment outcomes, yielding analogous results to the models discussed in the next sections.

Evolutionary game theory. Another popular framework in which to study cancer evolutionary dynamics is that of evolutionary game theory models, in which evolutionary stable strategies are identified and employed in the study of the development of malignancy and resistance [START_REF] Wölfl | The contribution of evolutionary game theory to understanding and treating cancer[END_REF]. Various works, such as those of Basanta and coworkers [START_REF] Basanta | Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion[END_REF](Basanta et al., , 2012a,b),b), track di↵erent populations each characterised by an intrinsic phenotypic state, thus only a finite number of states can be represented, as in deterministic ODE models with similar applications [START_REF] Page | Unifying evolutionary dynamics[END_REF][START_REF] Stiehl | Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains di↵erent proliferation patterns at diagnosis and relapse[END_REF]. On the other hand, many studies consider the evolution in time of sensitive and resistant populations, the latter depending on a continuous variable modelling what is referred to as resistance strategy which satisfies its own evolution equation [START_REF] Brown | Aggregation e↵ects and populationbased dynamics as a source of therapy resistance in cancer[END_REF]Gatenby and Vincent, 2003b,a;[START_REF] Gatenby | A microenvironmental model of carcinogenesis[END_REF][START_REF] Pressley | Evolutionary dynamics of treatment-induced resistance in cancer informs understanding of rapid evolution in natural systems[END_REF][START_REF] Zhang | Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer[END_REF]. These frameworks have been used to investigate di↵erent strategies in adaptive and evolutionary therapy, taking into account the cost of resistance, using optimal control methods [START_REF] Cunningham | Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer[END_REF][START_REF] Cunningham | Optimal control to reach eco-evolutionary stability in metastatic castrateresistant prostate cancer[END_REF][START_REF] Staňková | Optimizing cancer treatment using game theory: A review[END_REF].

The structured-population approach. [START_REF] Bürger | The mathematical theory of selection, recombination, and mutation[END_REF] first proposed a nonlocal PDE model of mutation-selection dynamics of populations in which the phenotypic state of each individual is described by a continuous structuring variable under fixed environmental conditions, the more complex problems of which can be analysed using the Hamilton-Jacobi formalism advocated by [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF]. In this framework, an evolution equation of the fittest phenotypic state can be analytically derived, rather than be imposed as in evolutionary game theory models. These works started a new branch of adaptive dynamics investigating nonlocal PDE models of the evolutionary dynamics of phenotype-structured populations, that has attracted the attention of the mathematical community, as demonstrated by the reviews in Sections 1.2.3 and 1.2.4, for well-mixed and spatially-structured populations, respectively. The possibility to capture phenotypic variants on a continuum, together with the mathematical progress made in characterising the solutions to these equations, have made these models particularly suited for the study of cancer phenotypic evolution and the development of therapeutic resistance (Chisholm et al., 2016a;[START_REF] Clairambault | A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer[END_REF][START_REF] Kuznetsov | Improving cancer treatments via dynamical biophysical models[END_REF].

Nonlocal PDE models of well-mixed phenotype-structured populations

These models consider well-mixed populations n(t, y), where t 0 indicates time, structured by some continuous trait y 2 R d (d 2 N). The evolutionary dynamics of a population with phenotypic distribution n(t, y) can be modelled by a nonlocal version of the classic Lotka-Volterra equation 11 (cf. [START_REF] Clairambault | A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer[END_REF] and references therein), where the growth dynamics of individuals in each subpopulation depend on their phenotypic state y and their death is determined by nonlocal interactions. In the field of adaptive dynamics, particular attention has been given to di↵usive nonlocal Lotka-Volterra equations [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Perthame | Dirac concentrations in lotka-volterra parabolic pdes[END_REF] in the form 8 > > > < > > > :

@ t n y n = R(y, ⇢(t))n y 2 R d , t 0 
⇢(t) = R R d (y) n(t, y) dy n(0, y) = n 0 (y) 2 L 1 (R d ) , n 0 0 (1.1)
where the function (y) can be seen, in analogy with the classic Lotka-Volterra equation, as the 'predation' of individuals of trait y (Perthame and [START_REF] Perthame | Dirac concentrations in lotka-volterra parabolic pdes[END_REF], although it is often set to (y) ⌘ 1 to capture death due to intrapopulation competition for space and resources within the fitness function R. The di↵usion term models spontaneous phenotypic variation at a rate > 0, although more complex terms have been considered for alternative forms of phenotypic changes -e.g. nonlocal terms modelling mutations at birth [START_REF] Carrillo | Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF][START_REF] Jabin | A hybrid model of the role of VEGF binding in endothelial cell migration and capillary formation[END_REF][START_REF] Perthame | Transport equations in biology[END_REF], and advection terms modelling stress-induced epimutations [START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF](Chisholm et al., , 2016c,b),b). These initial-value problems are often dealt with by introducing an " parameterisation and time scaling. In the case of system (1.1), this 11

The classic Lotka-Volterra equations, also known as predator-prey equations, model the evolution of population n 1 (t) (prey) and n 2 (t) (predator) as

( ṅ1 = (r 1 d 1 n 2 )n 1 ṅ2 = (r 1 n 1 d 1 )n 2 .
When considering infinitely many subpopulations, each characterised by a trait y 2 Y ⇢ R, the dynamics of n(t, y) will mirror those of the prey n 1 , where death can be induced by interactions with all other supopulations, resulting in a nonlocal term. The equation may, for instance, be given by

@ t n = r(y) d(y) R Y n dy n ,
although it may take many alternative forms.

results in

8 > > > < > > > : "@ t n " " 2 y n " = R(y, ⇢ " (t))n " y 2 R d , t 0 ⇢ " (t) = R R d (y) n " (t, y) dy n " (0, y) = n 0 " (y) 2 L 1 (R d ) , n 0 " 0 (1.2)
which takes a form which allows the study of the asymptotic behaviour of the solution in the limit of rare phenotypic variation and long times, generally ideal to study evolution, as " ! 0. In such limit one may obtain weak-⇤ convergence 1.3) in the sense of measures 12 , where ȳ(t) and ⇢(t) are obtained from a constrained Hamilton-Jacobi equation [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Perthame | Dirac concentrations in lotka-volterra parabolic pdes[END_REF]. The monomorphism result exemplified by (1.3) is dependent on the assumption of a unique maximum of R such that R(ȳ(t), ⇢(t)) = 0 for ⇢(t) in ( 1.3), and R < 0 otherwise, while polymorphism results may be obtained under alternative assumptions. Similar results can be obtained in the absence of di↵usion, although in this case a uniform strict positivity assumption on n 0 " is required otherwise extinction might occur [START_REF] Clairambault | A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-di↵erential system modelling healthy and cancer cells exposed to chemotherapy[END_REF]. On the other hand, exact solutions to problems considering non-trivial di↵usion, i.e. problems in the form (1.1), have also been constructed and take the form of Gaussian-like functions [START_REF] Alfaro | Explicit solutions for replicator-mutator equations: extinction versus acceleration[END_REF][START_REF] Alfaro | Evolutionary branching via replicator-mutator equations[END_REF]Chisholm et al., 2016b;[START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF]. These models can be obtained in the continuum limit of stochastic IB models -see for instance [START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models[END_REF][START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF]; [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF]. Nonlocal PDE models of well-mixed phenotype-structured populations of cancer cells have been used to elucidate a series of evolutionary mechanisms responsible for the emergence of intratumour phenotypic heterogeneity and the development of therapeutic resistance.

n " (t, y) ⇤ * "!0 ⇢(t) y ȳ(t) , ( 
Insights into the emergence of intratumour phenotypic heterogeneity. The work of [START_REF] Lavi | The role of cell density and intratumoral heterogeneity in multidrug resistance[END_REF] indicates that levels of intratumour phenotypic heterogeneity increase under higher rates of phenotypic variation (e.g. epimutations), suggesting that reducing the alteration rate as a first step in treatment may improve targeted therapy. This motivated further studies which confirmed the correlation between intratumour phenotypic heterogeneity levels and phenotypic variation rates (Cho and Levy, 2018b;[START_REF] Greene | The impact of cell density and mutations in a model of multidrug resistance in solid tumors[END_REF][START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF][START_REF] Lorenzi | Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations[END_REF][START_REF] Lorenzi | Discrete and continuum models for the evolutionary and spatial dynamics of cancer: a very short introduction through two case studies[END_REF], further indicating that phenotypic 12 Consider n(y) 2 L 1 (Y) as a sequence of functions n " (y) 2 L 1 (Y), and these as elements of the bigger space of Radon measures M 1 ( Ȳ). Then n is the weak-

⇤ limit of n " if R Y n " '(y)dy ! "!0 R Y n'(y)dy 8'(y) 2 C( Ȳ) .
heterogeneity levels decrease under stronger environmental selective pressures. Moreover, harsher environments may lead the population to extinction, while in the case of survival, in constant environments, the cell population size at equilibrium depends on the maximum fitness and rate of death due to intrapopulation competition. On the other hand, in temporally fluctuating environments, e.g. cycling hypoxia, we observe temporal oscillations in the population size (Ardaševa et al., 2020b,c;[START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF]. In the framework of competing populations characterised by di↵erent rates of spontaneous phenotypic variation, higher rates of phenotypic variation have been shown to provide a competitive advantage in periodically fluctuating environments, while lower rates are favourable in constant environments (Ardaševa et al., 2020b,c;[START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-di↵erential system modelling healthy and cancer cells exposed to chemotherapy[END_REF]. Ardaševa et al. (2020c) highlight this might be particularly significant in vascularised tumours, where the environment transitions from normoxia to cycling and chronic hypoxia as the distance from blood vessels increases.

Insights into the development of therapeutic resistance. The first works modelling the evolutionary dynamics of cancer cells under therapy using a continuous variable to capture the level of therapeutic resistance of the cells indicate that treatment acts as a selective process and phenotypic variation as a di↵usive one [START_REF] Greene | The impact of cell density and mutations in a model of multidrug resistance in solid tumors[END_REF][START_REF] Lavi | The role of cell density and intratumoral heterogeneity in multidrug resistance[END_REF][START_REF] Lorz | Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies[END_REF]. In particular it has been shown, under constant concentrations of cytotoxic drugs until equilibrium, that higher doses of cytotoxic drugs promote a selective sweep towards weakly proliferating cells characterised by higher therapeutic resistance, lowering the level of intratumoural phenotypic heterogeneity [START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF][START_REF] Lorenzi | Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations[END_REF]. However, harsher environments in combination with higher rates of phenotypic variability may lead to population extinction and more effective chemotherapy [START_REF] Lorenzi | Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations[END_REF][START_REF] Stace | Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy[END_REF]. [START_REF] Stace | Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy[END_REF], in particular, employ this result in the study of a combination therapeutic strategy relying on chemotherapy and epigenetic treatment. Previous works, on the other hand, theoretically assess the e cacy of di↵erent therapeutic strategies, considering various multidrug approaches and drug delivery schedules [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured mode[END_REF]Cho and Levy, 2018b;[START_REF] Lorenzi | Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations[END_REF][START_REF] Lorz | Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies[END_REF][START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-di↵erential system modelling healthy and cancer cells exposed to chemotherapy[END_REF]) -e.g. cytotoxic and cytostatic combination therapy, or continuous vs. on/o↵ drug delivery -some even including healthy cells as a competing population to consider chemotherapeutic damage to healthy tissue [START_REF] Lorz | Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies[END_REF][START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-di↵erential system modelling healthy and cancer cells exposed to chemotherapy[END_REF]. Optimal therapeutic control strategies can be designed by applying optimal control methods to nonlocal PDEs of adaptive dynamics, and used to predict the qualitative behaviour of cancer cell populations under di↵erent strategies (Chisholm et al., 2016a;[START_REF] Clairambault | A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer[END_REF][START_REF] Kuznetsov | Improving cancer treatments via dynamical biophysical models[END_REF]. In this regard, the work of [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured mode[END_REF] indicates that continuous administration of a relatively low dose of the chemotherapy performs more closely to the optimal dosing regimen to minimise the average number of tumour cells during the course of treatment. [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], and die due to competition for space and resources against all other individuals present at their position resulting in a nonlocal reaction term similarly to the nonlocal Fisher-KPP model [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF].

Heterogeneous motility and homogeneous reaction terms. Particular attention has been given to models in which the structuring variable indicates individual mobility in order to investigate the mechanisms underlying the spatial spread and phenotypic evolution of populations with heterogeneous motility [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF][START_REF] Benichou | Front acceleration by dynamic selection in fisher population waves[END_REF][START_REF] Bouin | Travelling waves for the cane toads equation with bounded traits[END_REF][START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF], such as cane toad populations. These models comprise variations of nonlocal Fisher-KKP equations where the di↵usion coe cient is given as a function of the structuring variable, and phenotypic changes are modelled via di↵erential or integral operators. Analytical investigations of these models -which at times rely on an " parameterisation and appropriate asymptotic limithave led to travelling front solutions, with the most motile individuals selected at the edge of the invasion front in the case of bounded motility, and front acceleration in the case of unbounded motility. Similar results have been obtained in the case of a nonlocal advection-reaction-di↵usion equation where, instead of Fickian di↵usion, random movement towards less crowded regions results in a nonlocal advection term with velocity 13

The classic 1D Fisher equation models the reaction-di↵usion dynamics of a population of density n(t, x) as

@ t n D@ 2 xx n = rn(1 n) ,
and it is also known as the Fisher-KPP equation since the KPP equation, published in the same year by mathematicians Kolmogorov, Petrovsky and Piskunov, takes a similar form with a more generic reaction term F (n). In the case of a population n(t, x, y), structured also by a phenotypic variable y 2 Y, we retrieve the nonlocal Fisher-KPP equation

@ t n D@ 2 xx n = rn 1 R Y ndy .
field given as a function of the local number density of individuals [START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF].

The study of [START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF] also considers a heterogeneous reaction term, usually included in models with homogeneous motility.

Homogeneous motility and heterogeneous reaction terms. Models with a constant spatial di↵usion coe cient and more complex reaction terms, defined as functions of the spatial and phenotypic variables, have also been considered. Alfaro and coworkers constructed travelling wave solutions under specific assumptions on the reaction term modelling an environmental cline, in order to study species adaptation to climate change [START_REF] Alfaro | Travelling waves in a nonlocal reaction-di↵usion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF][START_REF] Alfaro | The e↵ect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF]. [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF] generalised the method developed for well-mixed populations [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Perthame | Dirac concentrations in lotka-volterra parabolic pdes[END_REF] by considering the asymptotic limit of small spatial di↵usion and rare phenotypic changes of a spatially explicit di↵usive nonlocal Lotka-Volterra equation, retrieving population monomorphism under strict concavity assumptions of the reaction term. Existence of solutions in the case of non-trivial spatial di↵usion and mutations, modelled nonlocally, has been shown by [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF] whose numerical solutions indicate population polymorphism can arise for high enough spatial di↵usion. The role spatial movement plays in the emergence of a polymorphic population has also been demonstrated by the work of Mirrahimi who studied the evolutionary dynamics of well-mixed populations in separate sites undergoing habitat-specific selection and transition between the sites, both in the rare phenotypic variation limit [START_REF] Mirrahimi | A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments[END_REF] and under nontrivial phenotypic variation [START_REF] Mirrahimi | Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration[END_REF]. Other nonlocal PDE models of space-and phenotype-structured populations have been proposed in the study of cell migration incorporating bound and available membrane receptor densities as structuring variables [START_REF] Domschke | Structured models of cell migration incorporating molecular binding processes[END_REF][START_REF] Hodgkinson | Signal propagation in sensing and reciprocating cellular systems with spatial and structural heterogeneity[END_REF].

Nonlocal PDE models of space-and phenotype-structured cancer cell populations. [START_REF] Lorz | Modeling the e↵ects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors[END_REF] proposed the first spatially explicit nonlocal PDE model of cancer phenotypic evolution with continuous phenotypic structure. Their model comprises a nonlocal Lotka-Volterra equation similar to previous non-di↵usive ones proposed for well-mixed populations [START_REF] Clairambault | A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-di↵erential system modelling healthy and cancer cells exposed to chemotherapy[END_REF], coupled with elliptic equations describing the dynamics of abiotic factors. While their work solely relied on numerical solutions, it inspired further analytical works in which the balance equation for the phenotypic distribution n is coupled, through the reaction term, with elliptic equations describing the dynamics of abiotic factors [START_REF] Jabin | A hybrid model of the role of VEGF binding in endothelial cell migration and capillary formation[END_REF][START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF]. The abiotic factors, taken at the quasi-stationary equilibrium, are assumed to undergo di↵usion and consumption by the cells at rates dictated by the cell phenotypic state. [START_REF] Cho | Modeling the dynamics of heterogeneity of solid tumors in response to chemotherapy[END_REF] further included cell density-dependent drug permeability. Moreover, Cho and Levy (2018a) include cell density-dependent pressure-driven movement of cells and consider asymmetric tumour growth in a heterogeneous environment under combination therapy, including competition with healthy cells in a later study [START_REF] Cho | The impact of competition between cancer cells and healthy cells on optimal drug delivery[END_REF].

On the other hand, [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF] included an influx term in the abiotic factor concentration equation in order to model nutrient and drug inflow from either the boundary of an avascular tumour or from the blood vessels of a vascularised one. In particular, [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF] perform numerical simulations on the 3D geometry of an in vivo human hepatic tumour imaged using computerised tomography, on which they subsequently construct artificial blood vessels.

These works indicate that the presence of spatial gradients in the concentration of abiotic factors, which can result from the nonlinear interplay with cancer cells, leads to the selection of cells in di↵erent phenotypic states in di↵erent parts of the spatial domain. This fosters the emergence of intratumour phenotypic heterogeneity, and it supports the presence of resistant cells prior to treatment. Moreover, numerical simulations point towards the advantage of combination therapy (Cho andLevy, 2017, 2020;[START_REF] Lorz | Modeling the e↵ects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors[END_REF], in agreement with studies conducted for well-mixed populations. The work presented in Chapter 2 builds on the model of [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF] including spatial di↵usion and phenotypic variation in the PDE describing cell evolutionary dynamics, and systematically assessing the impact of tissue vascularisation on the level of intratumour phenotypic heterogeneity. Fiandaca et al. (2021b) extended our modelling framework to numerically investigate the emergence of resistance to both hypoxia and acidity at various distances from a blood vessel, by including two phenotypic traits and multiple abiotic factors, i.e. oxygen, glucose and lactate. Their work indicates, coherently with empirical evidence, that cancer resistance to hypoxia may be developed first and resistance to acidity later.

Chapter 2

A space-and phenotype-structured PDE model of the emergence of intratumour phenotypic heterogeneity in vascularised tumours

The empirical and theoretical work presented in Section 1.1 points towards a key role played by spatial variability in the intratumoural concentration of oxygen in the emergence of intratumour metabolic phenotypic heterogeneity. This a↵ects anti-cancer therapy, on one hand because it supports the emergence of chemotherapeutic resistant phenotypes, and on the other by making it impossible to exhaustively portray the phenotypic composition of the whole tumour tissue from single biopsies. This issue is particularly crucial in vascularised tumours, where the presence of intratumoural blood vessels results in highly heterogeneous oxygen distributions. Moreover, it has been proposed that intratumour phenotypic heterogeneity is fostered by higher rates of phenotypic variation, e.g. due to non-genetic instability, and spatial dispersal.

In this chapter, we use a spatially explicit phenotype-structured model to elucidate the eco-evolutionary dynamics that underpin the emergence of phenotypic heterogeneity in vascularised tumours, and the development of resistance to chemotherapeutic agents. Building upon the modelling framework developed by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF] and [START_REF] Lorz | Modeling the e↵ects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors[END_REF], the model comprises a nonlocal PDE that governs the local phenotypic distribution of cells within the tumour tissue, similar to equations that have received increasing attention from the mathematical community as seen in Section 1.2. This equation is coupled with a parabolic PDE that governs the local concentration of oxygen and one for the chemotherapeutic agent, whereby a spatially heterogeneous source term captures the presence of intratumoural blood vessels which bring oxygen and the drug into the tumour tissue. Compared to previous related studies [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF][START_REF] Lorz | Modeling the e↵ects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors[END_REF], the main novelties of the work here presented are the following:

• The model takes into account the e↵ect of movement and phenotypic variation of tumour cells and, in addition, it does not rely on a quasi-stationary equilibrium assumption for the oxygen concentration;

• In the first instance, in the absence of spatial movement, no smallness assumptions are imposed on the rate at which phenotypic changes occur. In this more general scenario, building upon a method of proof presented for well-mixed populations [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured mode[END_REF]Ardaševa et al., 2020b;Chisholm et al., 2016b;[START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF], an analytical study of evolutionary dynamics is carried out. In particular, explicit solutions to the equation for the phenotypic distribution of tumour cells are constructed and, considering the case where the concentrations of oxygen and chemotherapeutic agent are stationary, a detailed quantitative characterisation of the long-time asymptotic behaviour of such solutions is given;

• Next, the model including both phenotypic variation and spatial movement is addressed. Building upon previous asymptotic methods proposed for simpler models [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Jabin | A hybrid model of the role of VEGF binding in endothelial cell migration and capillary formation[END_REF][START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF], a formal asymptotic analysis is conducted on the equation for the phenotypic distribution of tumour cells, in the asymptotic limit of rare phenotypic changes, low di↵usion and many cell generations, considering again the case where the concentrations of oxygen and chemotherapeutic agent are stationary, and the solutions are compared with those obtained in the previous case;

• While previous studies are mainly focused on avascular tumours, in this chapter we consider vascularised tumours. The analytical results obtained are integrated with numerical simulations of a calibrated version of the model based on biologically consistent parameter values, in order to further assess the impact of the dynamics of oxygen and chemotherapeutic agent on the phenotypic evolution of tumour cells in vascularied tumours;

• Di↵erent possible definitions of the source term in the PDEs governing the abiotic factors are considered, including definitions that are derived from clinical images obtained using dynamic optical coherence tomography (D-OCT) [START_REF] Schuh | Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology[END_REF] -i.e. a non-invasive imaging technique that enables the visualisation of cutaneous microvasculature in 2D tissue sections with a width of, and at a depth of, up to several millimetres [START_REF] Olsen | Advances in optical coherence tomography in dermatology -a review[END_REF];

• The numerical solutions are employed to systematically assess the impact of the degree of tumour tissue vascularisation on the level of pre-treatment phenotypic heterogeneity of tumour cells, which is mathematically quantified through suitable diversity indices. Taken together, these elements of novelty widen considerably the range of application of the results of this study, as will be discussed in Chapter 3, and support a more in-depth theoretical understanding of the eco-evolutionary process which leads to the emergence of phenotypic heterogeneity and the development of chemotherapeutic resistance in vascularised tumours. This chapter is organised as follows. In Section 2.1, the equations of the model and the underlying modelling assumptions are introduced. In Section 2.2, the analytical results of the study of evolutionary dynamics in the absence of spatial di↵usion are presented, followed by those of the formal asymptotic analysis. In Section 2.3, numerical solutions that confirm and extend the analytical results obtained are reported. A discussion of these results, together with possible research perspectives, is given in Chapter 3.

The mathematical model

We model the evolution of tumour cells within a region of a vascularised tumour along with the dynamical interactions that occur between tumour cells and both oxygen and a chemotherapeutic agent, which are released from the intratumoural vascular network.

The tumour region is approximated as a bounded set ⌦ ⇢ R d , with smooth boundary @⌦, where d = 1, 2, 3 depending on the biological scenario under study. The spatial position of tumour cells is described by a vector x 2 ⌦ and the phenotypic state of every cell is modelled by a scalar variable y 2 R, which represents the rescaled level of a hypoxiainducible factor. Building upon the ideas presented in [START_REF] Lorenzi | Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations[END_REF] and [START_REF] Pisco | Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: 'what does not kill me strengthens me[END_REF], we assume that there is a su ciently high level of expression of the hypoxiainducible factor y H conferring both the highest rate of cellular division via anaerobic energy pathways and the highest level of resistance to chemotherapy, while there is a su ciently low level of expression of the hypoxia-inducible factor y L < y H providing the highest rate of cellular division via aerobic energy pathways. Without loss of generality, we define y H := 1 and y L := 0, so that values of y ! 1 correspond to phenotypic variants with higher rates of cellular division via anaerobic energy pathways and higher levels of chemoresistance (i.e. anaerobic and chemoresistant phenotypic variants), whereas values of y ! 0 correspond to phenotypic variants with higher rates of cellular division via aerobic energy pathways (i.e. aerobic phenotypic variants) -see Figure 2.1.

The phenotypic distribution of tumour cells at time t 0 and position x is described by the function n(t, x, y), while the functions s(t, x) and c(t, x) describe, respectively, the oxygen concentration and the concentration of the chemotherapeutic agent at time t and position x. Moreover, at each time t, we define the density of tumour cells at position x the local mean phenotypic state as

µ(t, x) := 1 ⇢(t, x) Z R y n(t, x, y) dy (2.2)
and the related variance as

2 (t, x) := 1 ⇢(t, x) Z R y 2 n(t, x, y) dy µ 2 (t, x).
(2.3)

We additionally define the total cell mass 1 and the fraction of cells in the phenotypic state y within the tumour, respectively, as

N (t) := Z ⌦ ⇢(t, x) dx and F (t, y) := 1 N (t) Z ⌦ n(t, x, y) dx.
(2.4)

Dynamics of tumour cells

Tumour cells divide, die, move randomly (i.e. undergo undirected, spontaneous migration) and undergo spontaneous phenotypic changes, that is, heritable phenotypic changes that occur randomly due to non-genetic instability and are not induced by any selective pressure (Huang, 2013b). The dynamic of the local cell phenotypic distribution of tumour cells n(t, x, y) is governed by the following boundary value problem subject to a suitable 1

In the proposed framework, the cell mass N (t) is given in units of 'cells' so that it may be understood as an approximate total cell number.

initial condition

8 > > > > > > > > > > < > > > > > > > > > > : @ t n @ 2 yy n D n x n = R y, ⇢(t, x), s(t, x), c(t, x) n in ⌦, ⇢(t, x) := Z R n(t, x, y) dy , r x n • û = 0 on @⌦ , (2.5)
where û is the unit normal to @⌦ that points outward from ⌦. The first di↵usion term on the left-hand side of the nonlocal parabolic equation (2.5) describes the e↵ect of heritable spontaneous phenotypic changes that occur randomly due to non-genetic instability and are not induced by any selective pressure, which occur at rate > 0. The second di↵usion term models the e↵ect of cell random movement and the parameter D n 0 represents the cell motility. The function R y, ⇢(t, x), s(t, x), c(t, x) represents the fitness of tumour cells in the phenotypic state y at position x and time t under the local environmental conditions given by the cell density ⇢(t, x), the oxygen concentration s(t, x) and the concentration of chemotherapeutic agent c(t, x) (i.e. the phenotypic fitness landscape of the tumour at position x and time t). In particular, we consider R y, ⇢, s, c := p(y, s) ⇣ ⇢ k(y, c)

( 2 . 6 ) with p(y, s) := f (y) + g(y, s).

(2.7)

Here, f (y) is a C 2 -function such that arg max y2R f (y) = 1, f(1) > 0, @ 2 yy f < 0, (2.8)
g(y, s) is a C 2 -function of y and a C 1 -function of s that satisfies the following assumptions arg max y2R g(y, s) = 0, g(0, s) > 0, @ 2 yy g(•, s) < 0 8 s 2 (0, 1)

and lim

s!1 g(0, s) > f(1) ,
(2.9)

g(•, 0) = 0, @ s |g(•, s)| 0 8 s 2 (0, 1), (2.10)
and k(y, c) is a C 2 -function of y and a C 1 -function of c that satisfies the following assumptions

arg min y2R k(y, c) = 1, k(1, c) = 0, @ 2 yy k(•, c) > 0 8 c 2 (0, 1), (2.11) k(•, 0) = 0, @ c k(•, c) 0 8 c 2 (0, 1).
(2.12) Definition (2.6) along with assumptions (2.11) and (2.12) models a biological scenario whereby the background fitness of tumour cells in the phenotypic state y at position x and time t is given by a function p(y, s(t, x)), the value of which is reduced:

• Due to competition for limited space, by a certain amount which is the same for all phenotypic variants and is proportional to ⇢(t, x), with a proportionality constant ⇣ > 0 that is related to the local carrying capacity of the tumour; • Due to the cytotoxic action of the chemotherapeutic agent, by a certain amount k(y, c) which increases monotonically with the concentration of the chemotherapeutic agent c and is smaller for phenotypic variants with y ! 1, which are characterised by higher levels of chemoresistance, and is null for the phenotypic variant corresponding to y = 1, since such a phenotypic variant is assumed to be completely resistant to the chemotherapeutic agent. Definition (2.7) corresponds to the case where the background fitness p(y, s) is defined as a linear combination of the background fitness associated with anaerobic energy pathways f (y) and that associated with aerobic energy pathways g(y, s). In particular, assumptions (2.8)-(2.10) translate into mathematical terms the following biological ideas:

• The state y = 1 corresponds to the phenotypic variant with the maximal background fitness associated with anaerobic energy pathways, whereas the state y = 0 corresponds to the phenotypic variant with the maximal background fitness associated with aerobic energy pathways.

• Due to the fact that less fit phenotypic variants are driven to extinction by natural selection, the background fitness associated with anaerobic (or aerobic) energy pathways can be negative for phenotypic variants with values of y su ciently far from 1 (or 0).

• Because of the fitness cost associated with a less e cient anaerobic metabolism [START_REF] Basanta | Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion[END_REF], the maximal background fitness of aerobic phenotypic variants in well-oxygenated environments is larger than the maximal background fitness of anaerobic phenotypic variants.

• The larger is the oxygen concentration, the stronger is the impact of the background fitness associated with aerobic energy pathways g(y, s) on the background fitness p(y, s). In particular, following the modelling strategies presented by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], here we use the definitions

f (y) := ' h 1 (1 y) 2 i , g(y, s) := s s ↵ s + s 1 y 2 (2.13) and k(y, c) := c c ↵ c + c (1 y) 2 , (2.14)
where ' > 0 is the maximal background fitness of anaerobic phenotypic variants, s > ' is the maximal background fitness of aerobic phenotypic variants, ↵ s > 0 and ↵ c > 0 are the Michaelis-Menten constants of oxygen and of chemotherapeutic agent respectively, and c > 0 is the maximal reduction of the background fitness due to the cytotoxic action of the chemotherapeutic agent. Definitions (2.13) and (2.14) satisfy assumptions (2.8)-(2.12), ensure analytical tractability of the model and lead to a fitness function R y, ⇢, s, c that is close to the approximate fitness landscapes which can be inferred from experimental data through regression techniques -see, for instance, equation [START_REF]reported a VEGF secretion rate of 0.068 molecules cell 1 s 1 , which in combination with Avogadro[END_REF] in [START_REF] Otwinowski | Inferring fitness landscapes by regression produces biased estimates of epistasis[END_REF]. In fact, with these definitions, after a little algebra, the di↵erence p(y, s) k(y, c) in (2.6) can be rewritten as (2.18)

p(y, s) k(y, c) = a(s, c) b(s, c) (y h(s, c)) 2 (2.15) where a(s, c) := s s ↵ s + s c c ↵ c + c + ✓ ' + c c ↵ c + c ◆ 2 ' + s s ↵ s + s + c c ↵ c + c , (2.16) b(s, c) := ' + s s ↵ s + s + c c ↵ c + c (2.
Here, a(s, c) is the maximum fitness, h(s, c) is the fittest phenotypic state and b(s, c) is the selection gradient under the environmental conditions corresponding to the oxygen concentration s(t, x) and the concentration of chemotherapeutic agent c(t, x). We remark that b(s, c) is a selection gradient in that it provides a measure of the strength of the selective pressure exerted on tumour cells by oxygen and the chemotherapeutic agent [START_REF] Lande | The measurement of selection on correlated characters[END_REF]. Notice that,

h : [0, 1) ⇥ [0, 1) ! [0, 1], lim s!0 h(s, •) = 1, lim s!1 h(s, 0) = 1 1 + s ' , and 
lim c!1 h(s, c) = 1 1 + s ' + c s ↵ s + s 8s 2 [0, 1).
Hence, consistent with our modelling assumptions,

• For any concentrations of oxygen and chemotherapeutic agent, the fittest phenotypic state is between y = 0 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via aerobic energy pathways) and y = 1 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via anaerobic energy pathways and the highest level of resistance to chemotherapy);

• In hypoxic conditions (i.e. when s ! 0), the fittest phenotypic state is y = 1;

• When there is no chemotherapeutic agent (i.e. when c ⌘ 0), in well-oxygenated environments (i.e. when s ! 1) the larger is the ratio between the maximal background fitness of aerobic phenotypic variants s and the maximal background fitness of anaerobic phenotypic variants ', the closer the fittest phenotypic state will be to y = 0;

• Under high-dose chemotherapy, the smaller is the ratio between the maximal background fitness of aerobic phenotypic variants s and the maximal reduction of the background fitness of aerobic phenotypic variants due to the cytotoxic action of the chemotherapeutic agent c , the closer the fittest phenotypic state will be to y = 1.

Dynamics of abiotic factors

We let the oxygen and the chemotherapeutic agent enter the tumour through intratumoural blood vessels, di↵use in space, decay over time and be consumed by tumour cells which divide via aerobic pathways. In this scenario, the dynamic of the oxygen concentration s(t, x) is governed by the following boundary value problem 8 > > > > < > > > > :

@ t s D s x s = Z R r s (y, s) n(t, x, y) dy s s + q s (t, x) in ⌦, r x s • û = 0 on @⌦ , (2.19)
while the dynamic of the chemotherapeutic agent concentration c(t, x) is governed by the boundary value problem 8 > > > > < > > > > :

@ t c D c x c = Z R r c (y, c) n(t, x, y) dy c c + q c (t, x) in ⌦, r x c • û = 0 on @⌦ , (2.20)
both subject to a suitable initial condition and coupled to the nonlocal parabolic equation (2.5). In (2.19) 1 and (2.20) 1 , the parameters D s > 0 and D c > 0 are the di↵usion coe cients of oxygen and of chemotherapeutic agent, the functions r s (y, s) and r c (y, c) are the consumption rates of oxygen and of chemotherapeutic agent by tumour cells in the phenotypic state y, the parameters s > 0 and c > 0 are the natural decay rates of oxygen and of chemotherapeutic agent, and the source terms q s (t, x) and q c (t, x) model the influx of oxygen and of chemotherapeutic agent from the intratumoural blood vessels at position x 2 ⌦ and at time t.

We assume that oxygen is consumed only by phenotypic variants corresponding to values of y for which the fitness associated with aerobic energy pathways g(y, s) is positive and we let oxygen consumption occur at a rate proportional to g(y, s). Moreover, we assume that the chemotherapeutic agent is consumed by phenotypic variants corresponding to di↵erent y at di↵erent rates proportional to the amount k(y, c) by which their background fitness is reduced due to the cytotoxic action of the chemotherapeutic agent. In accordance with these assumptions, we use the following definitions r s (y, s) := ⌘ s (g(y, s)) + and r c (y, s)

:= ⌘ c k(y, c), (2.21)
where ⌘ s > 0 and ⌘ c > 0 are constants of proportionality and (•) + denotes the positive part of (•). We let ! ⇢ ⌦ be the set of points within the tumour tissue which are occupied by blood vessels and, since we do not consider the formation of new blood vessels, we assume ! to be given and remain constant in time. Therefore, we define the source terms q s and q c as q s (t, x) := i s (t, x) 1 ! (x) and q c (t, x)

:= i c (t, x) 1 ! (x), (2.22) 
where 1 ! is the indicator function of the set !, and i s (t, x) and i c (t, x) are the rates of inflow of oxygen and of chemotherapeutic agent through intratumoural blood vessels at position x 2 ! and time t. In particular, we assume the rate of inflow of oxygen and chemotherapeutic agent through intratumour blood vessels be constant in time and the same for all vessels, i.e. we define the functions i s (t, x) and i c (t, x) in (2.22) as i s (t, x) ⌘ I s and i c (t, x) ⌘ I c , (2.23) for given inflow rates I s > 0 and I c > 0.

Remark 1. In this chapter, we do not take into account the e↵ect of mechanical interactions between tumour cells and blood vessels and we do not allow tumour cells to extravasate. Therefore, focussing on the case of intratumoural blood vessels of small size, we implicitly make the following simplifying assumptions: (i) a point x can be simultaneously occupied by blood vessels and tumour cells; (ii) cell movement is not a↵ected by the presence of blood vessels. Therefore, we do not impose any condition on n(t, x, y) in !.

Analytical investigations

In order to disentangle and quantify the impact of di↵erent evolutionary parameters on the emergence and development of intratumour phenotypic heterogeneity, in Section 2.2.1 we construct explicit solutions of (2.5) in the absence of spatial di↵usion and study the long-time asymptotic behaviour of such solutions in the case where the concentrations of oxygen and of chemotherapeutic agent are stationary, i.e. when, instead of being solutions of (2.19) and (2.20), the functions s(t, x) and c(t, x) are given and satisfy the following assumptions s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x), (2.24)

with S(x) and C(x) being given functions such that

S 2 C(⌦) with S : ⌦ ! R 0 and C 2 C(⌦) with C : ⌦ ! R 0 .
(2.25)

In Section 2.2.2 we consider system (2.5) in the presence of spatial di↵usion and consider the following: typical values of the epimutation rate are one or two orders of magnitude larger than the rate of somatic DNA mutation (Doerfler and Böhm, 2006, p.45), which is about 10 12 s 1 [START_REF] Duesberg | Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy[END_REF], and typical values of the cell di↵usivity D n are about 10 12 cm 2 s 1 [START_REF] Smith | Measurement of cell migration on surface-bound fibronectin gradients[END_REF][START_REF] Wang | A mathematical model quantifies proliferation and motility e↵ects of TGFon cancer cells[END_REF]. Hence, spontaneous phenotypic changes and cell random movement occur on slower time scales compared to cell division and death. To capture this fact, in Section 2.2.2 we introduce a small parameter " > 0, assume both := " 2 and D n := " 2 , and formally analyse the long-time asymptotic behaviour of the solution to (2.5) in the asymptotic limit " ! 0, again in the case where the concentrations of oxygen and of chemotherapeutic agent are stationary, i.e. under assumptions (2.24) and (2.25).

Under assumptions (2.24) and (2.25), we introduce the abridged notation

a ⌘ a(S(x), C(x)), b ⌘ b(S(x), C(x)), h ⌘ h(S(x), C(x)).

Analytical results in the absence of spatial di↵usion

We first focus on the case without spatial di↵usion of cells, i.e. the case in which D n = 0. Note that in this case equation (2.5) 1 is posed on ⌦ and we do not require boundary conditions (2.5) 3 . Under these assumptions, the system (2.5) reduces to 8 > > > > < > > > > :

@ t n @ 2 yy n = R y, ⇢(t, x), s(t, x), c(t, x) n in ⌦, ⇢(t, x) := Z R n(t, x, y) dy .
(2.26)

In this scenario, under assumptions (2.24) and (2.25), we construct explicit solutions of (2.26) (cf. Proposition 1) and we study the asymptotic behaviour of such solutions for t ! 1 (cf. Theorem 1).

Initial conditions. In agreement with much of the previous work on the mathematical analysis of the evolutionary dynamics of continuously-structured populations [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Rice | Evolutionary theory: mathematical and conceptual foundations[END_REF], we consider the case where at time t = 0 the local phenotypic distribution of tumour cells is of the following Gaussian form

n(0, x, y) = ⇢ 0 (x) p 2⇡ 2 0 (x) exp  1 2 2 0 (x) (y µ 0 (x)) 2 , 8 x 2 ⌦ (2.27)
where

⇢ 0 2 C(⌦) with ⇢ 0 : ⌦ ! R >0 , 2 0 2 C(⌦) with 2 0 : ⌦ ! R >0 , µ 0 2 C(⌦) with µ 0 : ⌦ ! R.
(2.28) 

n(t, x, y) = ⇢(t, x) r v(t, x) 2⇡ exp  v(t, x) 2 (y µ(t, x)) 2 , 8 x 2 ⌦, (2.29) 
with ⇢(t, x), µ(t, x) and v(t, x) := 1/ 2 (t, x) being solutions of the Cauchy problem 

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : @ t v = 2 b v 2 , v ⌘ v(t, x), @ t µ = 2 b v (h µ) , µ ⌘ µ(t, x), @ t ⇢ = ✓ a b v b (µ h) 2 ◆ ⇣⇢ ⇢, ⇢ ⌘ ⇢(t, x), v(0, x) = 1/ 2 0 (x), µ(0, x) = µ 0 (x), ⇢(0, x) = ⇢ 0 (x), in ⌦. ( 2 
⇢(t, •) ! ⇢ 1 (S, C), µ(t, •) ! µ 1 (S, C), 2 (t, •) ! 2 1 (S, C) as t ! 1, (2.31) with ⇢ 1 (S, C) = max 0, a(S, C) p b(S, C) ⇣ ! , µ 1 (S, C) = h(S, C) , 2 1 (S, C) = s b(S, C)
.

(2.32)

Proof sketch. The proofs of Proposition 1 and Theorem 1 are reported in Appendix A.1 and Appendix A.2, respectively. Reported below are the key steps of these proofs.

• • Theorem 1: Under assumptions (2.24) and (2.25), equation (2.30) 1 can be solved for v(t, x) and the asymptotic limit v 1 (x) as t ! 1 can be obtained. Similarly, equations (2.30) 2 and (2.30) 3 can be respectively solved for µ(t, x) and ⇢(t, x), as functions of v(t, x), and the corresponding asymptotic limit as t ! 1 can be thus obtained exploiting v 1 (x). Using 2 1 (x) = 1/v 1 (x), we retrieve results (2.31) and (2.32). The asymptotic results established by Theorem 1 provide a mathematical formalisation of the idea that, when the concentrations of oxygen and of chemotherapeutic agent are stationary (i.e. s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x)), the tumour cell density ⇢(t, x), the local mean phenotypic state µ(t, x) and the related variance 2 (t, x) converge to some equilibrium values ⇢ 1 (x), µ 1 (x) and 2 1 (x), respectively, which are determined by the concentration of oxygen and the concentration of chemotherapeutic agent -i.e.

⇢ 1 (x) ⌘ ⇢ 1 (S(x), C(x)), µ 1 (x) ⌘ µ 1 (S(x), C(x)) and 2 1 (x) ⌘ 2 1 (S(x), C(x)
). The biological meaning behind the results of Theorem 1 are discussed in Section 2.2.3.

Remark 2. Under the assumptions of Theorem 1, in the case where (2.19)-(2.23) coupled with (2.26) admits classical solutions s(t, x) and c(t, x) that converge, respectively, to some limits s 1 (x) and c 1 (x) as t ! 1, we expect the long-time asymptotic limit of the local phenotypic distribution of tumour cells n(t, x, y) to be of the Gaussian form

n 1 (x, y) = ⇢ 1 (x) p 2⇡ 2 1 (x) exp " 1 2 2 1 (x) y µ 1 (x) 2 # (2.33)
where

⇢ 1 (x) ⌘ ⇢ 1 (s 1 (x), c 1 (x)) = max 0, a(s 1 (x), c 1 (x)) p b(s 1 (x), c 1 (x)) ⇣ ! , (2.34) µ 1 (x) ⌘ µ 1 (s 1 (x), c 1 (x)) = h(s 1 (x), c 1 (x))
(2.35)

and 2 1 (x) ⌘ 2 1 (s 1 (x), c 1 (x)) = s b(s 1 (x), c 1 (x))
.

(2.36)

2.2.2 Formal results in the limit of small spatial di↵usion and rare phenotypic changes

We now focus on the case with spatial di↵usion, under the simplifying assumptions introduced at the beginning of Section 2.2. That is, motivated by the small order of magnitude of parameter values estimated in the literature for and D n [START_REF] Doerfler | DNA methylation: development, genetic disease and cancer[END_REF][START_REF] Duesberg | Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy[END_REF][START_REF] Smith | Measurement of cell migration on surface-bound fibronectin gradients[END_REF][START_REF] Wang | A mathematical model quantifies proliferation and motility e↵ects of TGFon cancer cells[END_REF], we introduce a small parameter " > 0 and assume both := " 2 and D n := " 2 .

Following previous studies on the long-time behaviour of nonlocal PDEs and integro-di↵erential equations modelling the dynamics of continuously structured populations [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]Chisholm et al., 2016c;[START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF][START_REF] Jabin | A hybrid model of the role of VEGF binding in endothelial cell migration and capillary formation[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF][START_REF] Perthame | Dirac concentrations in lotka-volterra parabolic pdes[END_REF], we use the time scaling t 7 ! t " in the balance equation (2.5) 1 . This gives the following nonlocal PDE for the local cell phenotypic distribution n t " , x, y = n " (t, x, y)

8 > > > > > > > > > > < > > > > > > > > > > : " @ t n " " 2 @ 2 yy n " " 2 x n " = R y, ⇢ " (t, x), s(t, x), c(t, x) n " in ⌦, ⇢ " (t, x) := Z R n " (t, x, y) dy , r x n " • û = 0 on @⌦ ,
(2.37)

In this scenario, under assumptions (2.24) and (2.25), we formally derive weak solutions to (2.37) by considering the asymptotic regime " ! 0, which is equivalent to studying the behaviour of n " (t, x, y) over many cell generations and in the case where spontaneous phenotypic changes and random cell movement induce small changes in the local phenotypic distribution.

Initial conditions. In agreement with much of the previous work on the mathematical analysis of the evolutionary dynamics of continuously-structured populations [START_REF] Perthame | Transport equations in biology[END_REF], we consider the case where at time t = 0 tumour cells that occupy the same position are mainly in the same phenotypic state, that is, at every position x the initial local cell phenotypic distribution n " (0, x, y) is a sharp Gaussian-like function with mean value ȳ0 (x) 2 C(⌦), where ȳ0 : ⌦ ! R, and integral ⇢ " (0, x) 2 C(⌦), where ⇢ " (0, •) : ⌦ ! R >0 . Hence, we assume n " (0, x, y) = exp  u 0 " (x, y) "

(2.38) with u 0 " (x, y) being a smooth, uniformly concave function of y for every x 2 ⌦ such that 0 < ⇢ " (0, x) < 1 and exp

 u 0 " (x, y) " ⇤ * "!0 ⇢(0, x) y ȳ0 (x) for all x 2 ⌦ (2.39)
in the sense of measures, where y ȳ0 (x) is the Dirac delta distribution centred at ȳ0 (x). We assume the bounds on ⇢ " still hold in the limit " ! 0, i.e. we assume 0 < ⇢(0, x) < 1 .

(2.40)

Formal analysis results. Building upon the method presented by [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]; [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach[END_REF]; [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]; [START_REF] Perthame | Transport equations in biology[END_REF]; [START_REF] Perthame | Dirac concentrations in lotka-volterra parabolic pdes[END_REF], we make the real phase WKB 2 ansatz [START_REF] Barles | Wavefront propagation for reaction-di↵usion systems of PDE[END_REF][START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF][START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF] n " (t, x, y) = exp  u " (t, x, y) "

.

(2.41)

Formal calculations, reported in Appendix A.3, lead to the following constrained Hamilton-Jacobi equation for u(t, x, y), the leading order term of the asymptotic expansion of u " (t, x, y), in the asymptotic regime " ! 0 8 < :

@ t u = R(y, ⇢(t, x), S(x), C(x)) + (@ y u) 2 + |r x u| 2 x 2 ⌦ max y2R u(t, x, y) = 0 x 2 supp(⇢) ✓ ⌦ (2.42)
where ⇢(t, x) is the leading order term of the asymptotic expansion of ⇢ " (t, x). A canonical equation for the time evolution of a nondegenerate maximum point of u, i.e. a point ȳ(t, x) = arg max y2R u(t, x, y), can be obtained for x 2 supp(⇢). Studying the steady state solution of such equation, we obtain equilibrium values of ⇢ and ȳ, say ⇢ 1 (x) and ȳ1 (x).

2

The WKB ansatz takes its name from physicists Wentzel-Kramers-Brillouin and it is sometimes referred to as Hopf-Cole transformation.

Moreover, under definitions (2.6), (2.13) and (2.14) we have a unique solution for ȳ1 (x) at each x 2 ⌦.

Taken together, these formal results indicate that, in the framework of the assumptions considered in this section, we can expect the local cell phenotypic distribution at steadystate n 1 (x, y) to be of the form

n 1 (x, y) = ⇢ 1 (x) y ȳ1 (x) ,
(2.43)

with the local cell density ⇢ 1 (x) and the locally dominant phenotypic state ȳ1 (x) given by 8 > > < > > :

⇢ 1 (x) ⌘ ⇢ 1 (S, C) = max ✓ 0, a(S, C) ⇣ ◆ x 2 ⌦ , ȳ1 (x) ⌘ ȳ1 (S, C) = h(S, C)
x 2 supp(⇢ 1 ) .

(2.44)

This also implies that the local mean phenotypic state of the tumour cells at steady-state, say µ 1 (x), coincides with ȳ1 (x), that is,

µ 1 (x) := 1 ⇢ 1 (x) Z R y n 1 (x, y) dy = ȳ1 (x).
(2.45)

Remark 3. In analogy with Remark 2, under the assumptions introduced in Section 2.2.2, in the case where (2.19)-(2.23) coupled with (2.37) admits classical solutions s(t, x) and c(t, x) that converge to some limits s 1 (x) and c 1 (x) as t ! 1, we expect that, in the asymptotic limit of low motility, rare phenotypic changes and long times, the local phenotypic distribution of tumour cells n(t, x, y) will be of the weak form

n 1 (x, y) = ⇢ 1 (x) y µ 1 (x) , (2.46) 
where

⇢ 1 (x) ⌘ ⇢ 1 (s 1 (x), c 1 (x)) = max 0, a(s 1 (x), c 1 (x)) ⇣ ! , (2.47) 
and 

µ 1 (x) ⌘ µ 1 (s 1 (x), c 1 (x)) = h(s 1 (x), c 1 (x)). ( 2 

Biological interpretation of analytical results

The analytical results presented in Sections 2.2.1 and 2.2.2 allow us to extrapolate qualitative and quantitative information about the expected phenotypic distribution of tumour cells in the idealised biological scenario of a closed system, comprising tumour cells and abiotic factors such as oxygen and a chemotherapeutic agent, reaching an equilibrium. They provide a mathematical formalisation of the idea that, when the concentrations of oxygen and of chemotherapeutic agent are stationary, the local phenotypic distribution of tumour cells at equilibrium can be fully characterised by its moments, which are in turn determined by the local concentration of oxygen and chemotherapeutic agent, according to the specific scenario under study. In particular:

• In the absence of spatial movement, we expect the cell population at equilibrium to have a Gaussian-like phenotypic distribution at each point in space, with the most prevalent phenotypic state corresponding to the fittest one dictated by local environmental conditions (Section 2.2.1);

• In the case of low cell mobility and rare phenotypic changes, we expect the cell population at equilibrium to be monomorphic at each point in space, where the dominant phenotypic state is the fittest one dictated by local environmental conditions (Section 2.2.2). Let us now further consider the quantitative information that can be extrapolated from the analytical results presented in Section 2.2.1, i.e. the case in which the cells do not undergo spatial movement. Note that similar biological interpretations can be drawn from the formal results presented in Section 2.2.2, in view of the consistency of solutions highlighted in Remark 4.

The moments of n 1 . According to the asymptotic results established by Theorem 1, under stationary concentrations of oxygen S(x) and of chemotherapeutic agent C(x), we expect the equilibrium values of the tumour cell density ⇢ 1 (x), the local mean phenotypic state µ 1 (x) and the related variance 2 (t, x) to be determined by said stationary concentrations S(x) and C(x). This is illustrated by the heat maps in Figure 2.2, which show how, for the biologically consistent parameter values listed in Table 2.1 (D n = 0, = 10 6 ), the values of ⇢ 1 , µ 1 and 2 1 given by (2.34)-(2.36) vary as functions of S and C. Notice that the parameter values in Table 2.1 are such that ⇢ 1 > 0. 2.1 (D n = 0, = 10 6 ). The cell density is in units of 10 8 and the concentrations of oxygen and of chemotherapeutic agent are scaled by the reference values S 0 and C 0 given in Table 2.1, respectively.

These results demonstrate that spatial variation of the oxygen concentration determines spatial variation of the tumour cell density, of the local mean phenotypic state and of the related variance. Specifically, under the parameter values listed in Table 2.1 (D n = 0, = 10 6 ), the tumour cell density ⇢ 1 is an increasing function of the oxygen concentration. Moreover, the local mean phenotypic state µ 1 decreases from values close to y = 1 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via anaerobic energy pathways) to values close to y = 0 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via aerobic energy pathways) for increasing values of the oxygen concentration. This suggests that aerobic phenotypic variants are to be expected to colonise oxygenated regions of the tumour, while anaerobic phenotypic variants are likely to populate poorly-oxygenated regions. Finally, the local phenotypic variance 2 1 is a decreasing function of the oxygen concentration, which supports the idea that higher levels of phenotypic variability may occur in hypoxic regions of the tumour.

On the other hand, larger values of the concentration of chemotherapeutic agent bring about smaller values of the tumour cell density ⇢ 1 , a shift of the local mean phenotypic state µ 1 from values closer to y = 0 to values closer to y = 1 (i.e. the state corresponding to the anaerobic phenotypic variant with the highest level of resistance to chemotherapy), and smaller values of the local phenotypic variance 2

1 . This indicates that the selective pressure exerted by the chemotherapeutic agent causes a population bottleneck in tumour cells leading to a reduction in cell density coming along with the selection of more chemoresistant phenotypic variants and lower levels of phenotypic variability.

Numerical investigations

In this section we construct numerical solutions to the problem given by (2.5), (2.19) and (2.20), subject to suitable initial conditions. All simulations are carried out using the parameter values listed in Table 2.1, which are chosen to be consistent with the existing literature -see Appendix C.1 for details. In Section 2.3.1, we describe the set-up of numerical simulations and the methods employed to construct numerical solutions. In Section 2.3.2, we consider the case of a 1D spatial domain whereby the concentrations of oxygen and of chemotherapeutic agent are stationary. In Section 2.3.3, we focus on the case of a 2D spatial domain and let the dynamics of oxygen and of chemotherapeutic agent be governed by (2.19) and (2.20). In particular, in these two sections we consider the problem in the absence of spatial di↵usion and compare our results to the analytic ones reported in Section 2.2.1. In Section 2.3.4, we first consider the case where the blood vessel distribution is reconstructed from clinical images obtained via D-OCT, and then assess the impact of tissue vascularisation on intratumour phenotypic heterogeneity in the absence of a chemotherapeutic agent. There, we consider the problem under small values of spatial di↵usion and phenotypic variability, briefly verifying consistency with the results in Section 2.2.2. This choice was made in view of the monotonicity results in Section 2.2.2, in order to avoid the global level of phenotypic heterogeneity being a↵ected by local phenotypic variability.

Set-up of numerical simulations and numerical methods

Set-up of numerical simulations of Section 2.3.2. For the numerical simulations we present in Section 2.3.2, we define ⌦ := (0, 0.05) and assume that increasing values of x ⌘ x correspond to increasing values of the distance from a blood vessel located in x = 0.

Under the parameter values listed in Table 2.1 (D n = 0, = 10 6 ), the values of x are in units of cm. Coherently with assumptions (2.24) and (2.25), we let the concentrations of oxygen and of chemotherapeutic agent be stationary and given by s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x),

with the functions S(x) and C(x) defined as shown by the plots in Figure 2.3. Here, the oxygen concentration S(x) is defined in such a way as to match the experimental oxygen distribution presented in (Helmlinger et al., 1997, Fig. 3). Furthermore, the concentration of chemotherapeutic agent C(x) is defined in such a way as to have a behaviour qualitatively similar to that of S(x) and the value of C( 0) is chosen in agreement with experimental data presented by [START_REF] Helmlinger | Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation[END_REF]. We complement (2.26) with and C(x) at x = 0.007 (red), x = 0.015 (blue) and x = 0.035 (green). The space variable x is in units of cm, while both S(x) and C(x) are in units of g cm 3 . The oxygen concentration S(x) is defined in such a way as to match the experimental pO 2 profile presented in (Helmlinger et al., 1997, Fig. 3). The conversion from mmHg of pO 2 to g cm 3 of oxygen concentration was performed using the conversion factor 1 mmHg= 4.6 ⇥ 10 8 g cm 3 , which was estimated using the ideal gas law. The concentration of chemotherapeutic agent C(x) is defined in such a way as to have a behaviour which is qualitatively similar to that of S(x) and the value of C( 0) is chosen in agreement with experimental data presented in [START_REF] Helmlinger | Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation[END_REF].

the initial condition (2.27) and assume

2 (0, x) ⌘ 2 0 = 1 , µ(0, x) ⌘ µ 0 = 0.5 and ⇢(0, x) ⌘ ⇢ 0 ⇡ 10 8 . (2.49)
Assumptions (2.49) correspond to a biological scenario whereby at the initial time t = 0 tumour cells are uniformly distributed across the spatial domain ⌦ and are mainly found in the phenotypic state y = 0.5.

Set-up of numerical simulations of Section 2.3.3. For the numerical simulations we present in Section 2.3.3, we define ⌦ := (0, 0.5) ⇥ (0, 0.5) in order to model the crosssection of a vascularised tumour tissue. Under the parameter values listed in Table 2.1 (D n = 0, = 10 6 ), the values of x 2 ⌦ are in units of cm. We let the dynamics of oxygen and of chemotherapeutic agent be governed by ( 2 

s(0, x) = S 0 1 ! (x) and c(0, x) = C 0 1 ! (x), (2.50)
with the values of S 0 and C 0 being those given in Table 2.1. These initial conditions correspond to a biological scenario whereby at the initial time t = 0 tumour cells are uniformly distributed across the spatial domain ⌦ and are mainly found in the phenotypic state y = 0.5, while the oxygen and the chemotherapeutic agent are solely present in the blood vessels.

Set-up of numerical simulations of Section 2.3.4. For the numerical simulations we present in Section 2.3.4, we again consider ⌦ := (0, 0.5) ⇥ (0, 0.5) in order to model the cross-section of a vascularised tumour tissue. Under the parameter values listed in Table 2.1 (D n = = 10 13 ), the values of x 2 ⌦ are in units of cm. We let the dynamics of oxygen be governed by (2.19), together with definitions (2.21)-(2.23), and initial condition (2.50). On the other hand, we let the concentration of chemotherapeutic agent be stationary and given by c(t, x) ⌘ 0. We complement (2.5) with the initial condition (2.27) and assume

2 (0, x) ⌘ 2 0 = 0.05 , µ(0, x) ⌘ µ 0 = 0.5 and ⇢(0, x) ⌘ ⇢ 0 ⇡ 10 8 . (2.51)
Assumptions (2.51) are similar to (2.49), with the exception of 2 0 which is much smaller in (2.51). This choice is consistent with the initial conditions of Section 2.2.2 and helps to numerically portray the biological scenario in which at each point in space the population is monomorphic. For the numerical results presented in Section 2.3.4, we make use of the indices of intratumour phenotypic heterogeneity defined at the end of this section.

Numerical methods. Numerical solutions are constructed using a uniform discretisation of the interval [0, 0.05] or the square [0, 0.5] ⇥ [0, 0.5] as the computational domain of the independent variable x. Moreover, a uniform discretisation of the set [ L, L] is used as the computational domain of the independent variable y, with L = 7. We consider t 2 [0, T], with T > 0 being the final time of simulations. The final time T is chosen su ciently large so as to ensure that the numerical solutions are su ciently close to equilibrium at the end of simulations (the exact values of T are reported in the figure captions). We discretise the interval [0, T] with a uniform step. The method for solving (2.5) numerically, as well as (2.26), subject to the zero-flux boundary conditions

@ y n(•, •, L) = 0 and @ y n(•, •, L) = 0 , (2.52)
as well as equations (2.19) and (2.20), is based on an explicit finite di↵erence scheme using second order central di↵erence approximations for the second order derivatives, the composite trapezoidal rule for the nonlocal terms and first order forward di↵erence approximations for the time derivatives [START_REF] Leveque | Finite di↵erence methods for ordinary and partial di↵erential equations: steady-state and time-dependent problems[END_REF]. Finally, numerical solutions to the Cauchy problem (2.30) are constructed using the explicit Euler method. All numerical computations are performed in Matlab. Details of the numerical schemes are given in Appendix B.1.

Indices of intratumour phenotypic heterogeneity. In order to systematically assess the impact of tumour tissue vascularisation on the level of intratumour phenotypic heterogeneity in Section 2.3.4, we require a metric of vascular density and appropriate indices of intratumour phenotypic heterogeneity. We define the vascular density % as

% := |!| |⌦| . (2.53)
We quantify the level of intratumour phenotypic heterogeneity through the following continuum versions of the equitability index E(t) (defined as a rescaled Shannon diversity index) and the Simpson diversity index D(t) [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Simpson | Measurement of diversity[END_REF])

E(t) := Z R F (t, y) log F (t, y) log N (t) dy and D(t) := ✓Z R F 2 (t, y) dy ◆ 1 , (2.54)
where the total cell mass N (t) and the fraction F (t, y) of cells in the phenotypic state y within the tumour are defined according to (2.4).

1D numerical results under stationary concentrations of oxygen and chemotherapeutic agent

The sample of numerical results presented in Figure 2.4 refer to the case where the oxygen concentration s(t, x) ⌘ S(x) and the concentration of cytotoxic agent c(t, x) ⌘ 0, while the results presented in Moreover, in accordance with the asymptotic results established by Theorem 1, the cell density, the local mean phenotypic state and the related variance converge, respectively, to the equilibrium values ⇢ 1 (x), µ 1 (x) and 2 1 (x) given by (2.32).

Tumour cell dynamics in the absence of chemotherapeutic agent. The numerical results of Figure 2.4 show that, in the absence of chemotherapeutic agent, since the stationary oxygen concentration S(x) decreases monotonically with the distance from the blood vessel located at x = 0 (vid. Figure 2.3), the cell density ⇢(t, x) at equilibrium is maximal in the vicinity of the blood vessel (cf. red line), where the oxygen concentration is higher, and decreases monotonically as the distance from the vessel increases (cf. blue and green lines). Accordingly, the local mean phenotypic state at equilibrium increases from values closer to y = 0 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via aerobic energy pathways) to values closer to y = 1 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via anaerobic energy pathways) moving away from the blood vessel. Moreover, the local phenotypic variance 2 (t, x) at equilibrium is a monotonically increasing function of the distance from the blood vessel (i.e. local phenotypic variability increases with the distance from the blood vessel).

Tumour cell dynamics in the presence of chemotherapeutic agent. A comparison of the numerical results of Figure 2.4 and Figure 2.5 reveals that in the regions in close proximity of the blood vessel (cf. red lines), where its concentration is higher, the chemotherapeutic agent leads to the occurrence of a population bottleneck in tumour cells, which results in: a reduction of the equilibrium value of the cell density ⇢(t, x); a selective sweep toward more resistant phenotypic variants, as demonstrated by the fact ) with 2 (t, x), µ(t, x) and ⇢(t, x) given by numerical solutions of the Cauchy problem (2.30) complemented with (2.49). The bullets on the axis of abscissas highlight the value of the mean phenotypic state µ(t, x) at t = 5. The time variable t is in units of 10 4 s, the space variable x is in units of cm and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ).

that the equilibrium value of the local mean phenotypic state µ(t, x) shifts from values closer to y = 0 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via aerobic energy pathways) to values closer to y = 1 (i.e. the state corresponding to the anaerobic phenotypic variant with the highest level of resistance to chemotherapy); a reduction of the equilibrium value of the local phenotypic variance 2 (t, x). Moreover, moving away from the blood vessel, since its concentration decreases, the chemotherapeutic agent has a weaker impact on the dynamics of tumour cells (cf. blue lines). As a result, the evolution of tumour cells in regions distal to the blood vessel is hardly a↵ected by the chemotherapeutic agent (cf. green lines). ) with 2 (t, x), µ(t, x) and ⇢(t, x) given by numerical solutions of the Cauchy problem (2.30) complemented with (2.49). The filled bullets on the axis of abscissas highlight the value of the mean phenotypic state µ(t, x) at t = 5, while the empty bullets highlight the corresponding values obtained in the case where c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). The time variable t is in units of 10 4 s, the space variable x is in units of cm and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ).

Tumour cell dynamics for di↵erent delivered doses of chemotherapeutic agent.

The numerical results of 

C 1 (x) = 0.5 C(x) (dotted line), C 2 (x) = C(x) (dashed line) and C 3 (x) = 1.5 C(x) (solid line)
, where C(x) is the reference concentration of chemotherapeutic agent displayed in Figure 2.3. In the second, third and fourth panels, the local cell phenotypic distributions at t = T corresponding to C 1 (dotted lines), C 2 (dashed lines) and C 3 (solid lines) are displayed, and the markers on the axis of abscissas highlight the value of the mean phenotypic state µ(T, x) corresponding to C 1 (square), C 2 (bullet) and C 3 (diamond). The insets in the second and third panel display a close-up of the axis of abscissas. The space variable x is in units of cm, T = 10 6 s and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ).

2D numerical results under dynamical concentrations of oxygen and chemotherapeutic agent

The sample of numerical results presented in Figure 2.7 and Figure 2.8 refer to the case where the oxygen concentration s(t, x) is governed by (2.19), subject to the initial condition (2.50), while the concentration of chemotherapeutic agent c(t, x) ⌘ 0. On the other hand, the results presented in Figure 2.9 and Figure 2.10 refer to the case where andc(t, x) are governed by (2.19) and(2.20), respectively, subject to the initial conditions (2.50). In both cases, the set of points within the tumour tissue which are occupied by blood vessels (i.e. the set !) is defined as illustrated by the plots in the first panels of Figure 2.7 and Figure 2.9.

s(t, x)
Agreement between analytical and numerical results. The sample of numerical results presented in Figure 2.7 and Figure 2.9 show that, in the case of constant influx from intratumoural blood vessels, the concentration of oxygen s(t, x) and the concentration of chemotherapeutic agent c(t, x) obtained by solving numerically (2.19) and (2.20), subject to the initial conditions (2.50), converge to some equilibria s 1 (x) and c 1 (x). As a result, in agreement with our expectation based on the results established by Theorem 1 (cf. Remark 2), the cell density ⇢(t, x) and the local mean phenotypic state µ(t, x) computed via numerical integration of the local cell phenotypic distribution n(t, x, y), which is obtained by solving numerically (2.5) subject to the initial condition defined via (2.27) and (2.49), converge to the equilibrium values ⇢ 1 (x) and µ 1 (x) given by (2.34) and (2.35). Moreover, the sample of numerical results presented in Figure 2.8 and Figure 2.10 show that the local phenotypic distribution of tumour cells n(t, x, y) converges to the equilibrium phenotypic distribution n 1 (x, y) given by (2.33).

Emergence of spatial gradients of oxygen and chemotherapeutic agent. The numerical results of Figure 2.7 and Figure 2.9 show that, as one would expect based on the experimental results presented by [START_REF] Helmlinger | Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation[END_REF], the equilibrium concentration of oxygen s(T, x) and the equilibrium concentration of chemotherapeutic agent c(T, x) are maximal in the vicinity of the blood vessels and decrease monotonically with the distance from the blood vessels. Moreover, these results demonstrate that the nonlinear interplay between the spatial distribution of the blood vessels, the reaction-di↵usion dynamics of oxygen and chemotherapeutic agent, and their consumption by tumour cells leads naturally to the emergence of spatial inhomogeneities in the equilibrium concentrations of such abiotic factors. The plot of the oxygen concentration s(T, x) is displayed in the first panel, where the white, dashed line highlights the 1D cross-section corresponding to x 2 = 0.4. The red lines in the third and fourth panels highlight ⇢ 1 (x 1 , 0.4) and µ 1 (x 1 , 0.4) computed through (2.34) and (2.35) with s 1 (x 1 , 0.4) := s(T, x 1 , 0.4) and c 1 ⌘ 0. Third row: Same as the second row but for x 2 = 0.2. The space variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ).

Tumour cell dynamics. The plots in Figures 2.7 ). When chemotherapy is administered, its e↵ect is more pronounced in the prox-imity of the blood vessels and consists in a reduction of the equilibrium value of ⇢(t, x), a shift of the equilibrium value of µ(t, x) toward y = 1 and a reduction of the equilibrium value of 2 (t, x) compared to the case where the chemotherapeutic agent is not present. Moreover, the evolutionary dynamics of tumour cells is weakly a↵ected by chemotherapy in regions far from the blood vessels, where the concentration of chemotherapeutic agent is lower (vid. In the second, third and fourth panels, the bullets on the axis of abscissas highlight the value of the local mean phenotypic state µ(T, x) and the black, dashed lines highlight the asymptotic limit (2.33) with ⇢ 1 (x), µ 1 (x) and 2 1 (x) computed through (2.34) and (2.35) with s 1 (x 1 , 0.4) := s(T, x 1 , 0.4) and c 1 ⌘ 0. The space variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ).

Numerical results assessing the impact of tumour tissue vascularisation on intratumour phenotypic heterogeneity

In this section, we first comment on the consistency of the numerical and analytical solutions at equilibrium in the case of D n = = 10 13 . Then, we illustrate how blood vessel distributions from clinical images may be used along with our modelling framework in order to recreate an in silico phenotypic landscape of a vascularised tumour. Finally, we systematically assess the impact of tumour tissue vascularisation on the level of intratumour phenotypic heterogeneity, with numerical simulations considering first increasing numbers of regularly distributed blood vessels, which correspond to increasing values of the vascular density % defined in (2.53), and then di↵erent random distributions ⇢ 1 (x 1 , 0.4) andµ 1 (x 1 , 0.4) computed through (2.34) and(2.35) with s 1 (x 1 , 0.4) := s(T, x 1 , 0.4) and c 1 (x 1 , 0.4) := c(T, x 1 , 0.4). Third row: Same as the second row but for x 2 = 0.2. The space variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ).

of blood vessels characterised by increasing levels of vessel clustering for a fixed vascular density. We quantify the level of intratumour phenotypic heterogeneity through the equitability index E(t) and the Simpson diversity index D(t) defined in (2.54). We ignore the chemotherapeutic agent to focus on the assessment of pre-treatment intratumour heterogeneity, thus in the following we always consider c(t, x) ⌘ 0. Agreement between analytical and numerical results. Solving numerically (2.5) and (2.19), subject to initial conditions (2.27), (2.49) and (2.50) under the parameter set reported in Table 2.1 (D n = = 10 13 ), for an arbitrary distribution of blood vessels, 2.20) imposing the initial conditions defined via (2.27), (2.49) and (2.50). The set ! in (2.22) consists of the parts of ⌦ highlighted in red in the first panel of Figure 2.9. The white, dashed lines in the first and second panels highlight the 1D cross-section corresponding to x 2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4). In the third, fourth and fifth panels, the filled bullets on the axis of abscissas highlight the value of the mean phenotypic state µ(T, x), while the empty bullets highlight the corresponding values obtained in the case where c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). Moreover, the black, dashed lines highlight the asymptotic limit (2.33) with ⇢ 1 (x), µ 1 (x) and 2 1 (x) computed through (2.34) and (2.35) with s 1 (x 1 , 0.4) := s(T, x 1 , 0.4) and c 1 (x 1 , 0.4) := c(T, x 1 , 0.4). The space variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table 2.1 (D n = 0, = 10 6 ). yields similar results to those displayed in Figure 2. 7 (vid. supplementary Figure D.1). This is in agreement with the analytic results of Section 2.2.2, in particular with the equilibrium solutions (2.47) and (2.48). Moreover, we verified that the mean phenotypic state µ(T, x) and of the maximum point of n(T, x, y) at equilibrium correspond, thus verifying numerically the results (2.44) and (2.45) of our formal analysis (cf. insets in the fourth panels of supplementary Figure D.1).

Reconstruction of blood vessel distributions from clinical images. The plots in Figure 2.11 demonstrate that the qualitative behaviour of the numerical results in Figure D.1 remains unchanged when spatial distributions of the intratumour blood vessels reconstructed from clinical images are considered. These are the plots of the oxygen concentration s(T, x), the cell density ⇢(T, x) and the mean phenotypic state µ(T, x) obtained by solving numerically the problem given by (2.5) and (2.19) subject to the initial conditions (2.27), (2.51) and (2.50), with ! defined according to the distributions of blood vessels provided by the clinical images displayed in the first column of the figure, which were obtained via D-OCT and correspond to three cross-sections of a malignant melanoma at a depth of 0.02 cm (top panel), 0.03 cm (central panel) and 0.04 cm (bottom panel) from the surface of the epidermis (Schuh et al., 2017, Fig. 5). These results also indicate that increasing levels of tumour vascularisation (from top to bottom panel in the first column) lead to a more homogeneous spatial distribution of oxygen (second column), which correlates with a more uniform cell density (third column) and a less diverse mean phenotypic state (fourth column). This suggests the existence of a relationship between the level of tumour tissue vascularisation and the level of intratumour phenotypic heterogeneity, which is systematically investigated in the next subsection.

The impact of blood vessel density. The results obtained varying the vascular density % are summarised by the plots in Figure 2.12, which display the equitability index and the Simpson diversity index at the end of numerical simulations as functions of %. Both diversity indices are relatively low for small values of the vascular density, increase and reach a maximum value for intermediate values of the vascular densitynotice that both E(T) and D(T) attain their maximum at the same value of % -and then decrease again for high values of the vascular density. This is due to the fact that, as shown by the insets in Figure 2.12: for low blood vessel densities the oxygen concentration s(T, x) is uniformly low throughout ⌦ and, therefore, the mean phenotypic state µ(T, x) is uniformly close to y = 1 (cf. the insets related to % = 0.4 ⇥ 10 3 ); for intermediate blood vessel densities the oxygen concentration is more heterogeneously distributed and, as a consequence, the mean phenotypic state is more diverse (cf. the insets related to % = 2.5 ⇥ 10 3 ); for high blood vessel densities the oxygen concentration is relatively high throughout the tumour tissue and the mean phenotypic state is on average close to y = 0 (cf. the insets related to % = 8.1 ⇥ 10 3 ).

The impact of blood vessel clusterisation. The results obtained varying the level of blood vessel clustering for a fixed vascular density % are summarised by the plots in Figure 2.13, which display the oxygen distribution s(T, x) and the mean phenotypic state µ(T, x), along with the corresponding fraction of cells in each phenotypic state F (T, y) and diversity indices E(T) and D(T). These results refer to an intermediate value of % that corresponds to the maximum of the equitability index and the Simpson diversity index displayed in Figure 2.12 (i.e. % = 25 ⇥ 10 4 ). Both diversity indices decrease as the level of blood vessel clustering increases (cf. the values of E(T) and D(T) in the insets of the panels in the third column of Figure 2.13). In fact, for lower levels of blood vessel clustering the oxygen concentration s(T, x) is more heterogeneously distributed and, as a consequence, the mean phenotypic state µ(T, x) is more diverse and the cell phenotypic distribution across ⌦ given by F (T, y) is rather uniform (cf. the plots in the first row of Figure 2.13). On the other hand, for higher levels of blood vessel clustering, the oxygen concentration is relatively high in the regions in close proximity to the clusters of blood vessels and relatively low throughout the rest of tumour tissue. As a result, the mean 5(df)). These images correspond to three cross sections of a malignant melanoma at a depth of 0.02 cm (first row), 0.03 cm (second row) and 0.04 cm (third row) from the surface of the epidermis. The oxygen concentration s(T, x) is in units of 10 7 g cm 2 , the cell density ⇢(T, x) is in units of 10 8 cells cm 2 , and the spatial variables x 1 and x 2 are in units of cm. The parameter values listed in Table 2.1 (D n = = 10 13 ) except for

⌘ s = 2 ⇥ 10 10 g cell 1 .
phenotypic state is mostly close to y = 1 with the exception of the regions near the clusters of blood vessels where it is close to y = 0, and the cell phenotypic distribution across the whole tumour is approximatively bimodal, with a high peak at y = 1 and a low peak at y = 0 (cf. the plots in the third row of Figure 2.13). Chapter 3

Discussion and research perspectives

Summary and discussion

The theoretical works and empirical data presented in Chapter 1 demonstrate how intratumour phenotypic heterogeneity supports the emergence of therapeutic resistance and therefore poses a major obstacle to anti-cancer therapy [START_REF] Burrell | Tumour heterogeneity and the evolution of polyclonal drug resistance[END_REF][START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF][START_REF] Gillies | Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[END_REF][START_REF] Lipinski | Cancer evolution and the limits of predictability in precision cancer medicine[END_REF][START_REF] Michor | The origins and implications of intratumor heterogeneity[END_REF][START_REF] Shah | Cell cycle-mediated drug resistance: an emerging concept in cancer therapy[END_REF]. It has been hypothesised that the emergence of phenotypic heterogeneity among cancer cells within malignant tumours is an eco-evolutionary process driven by spatial variability in the distribution of abiotic factors, which supports the creation of distinct ecological niches whereby cells with di↵erent phenotypic characteristics can be selected [START_REF] Alfarouk | Riparian ecosystems in human cancers[END_REF][START_REF] Kaznatcheev | Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature[END_REF][START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF][START_REF] Sun | Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment[END_REF]. In particular, oxygen is one of the key abiotic components of the tumour microenvironment that are implicated in the emergence of intratumour phenotypic heterogeneity [START_REF] Gillies | Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[END_REF][START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF][START_REF] Sun | Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment[END_REF].

In Chapter 2, we have undertaken a mathematical study of the eco-evolutionary dynamics of tumour cells within vascularised tumours both pre-treatment and under chemotherapy.

The study is based on analysis and numerical simulations of a nonlocal PDE model that describes the phenotypic evolution of tumour cells and their nonlinear dynamic interactions with the oxygen and chemotherapeutic drug, which are released from the intratumoural vascular network. In particular, following previous works in the growing literature of mathematical models of adaptive dynamics of populations structured by a continuous trait (cf. Chapter 1), the model relies on a nonlocal reaction-di↵usion equation describing the spatiotemporal evolution of a space-and phenotype-structured population. Under stationary concentrations of oxygen and chemotherapeutic agent and in the absence of spatial di↵usion, exact solutions to system (2.5) have been obtained and verified numerically. In the presence of spatial di↵usion, under analogous assumptions on the abiotic factor concentrations, formal asymptotic analysis has been employed to obtain weak solutions which are consistent with the exact solution obtained in the previous case.

The analytical and numerical results elucidate the adaptive processes that underpin the emergence of intratumour phenotypic heterogeneity and development of resistance to chemotherapeutic agents.

The emergence of intratumour phenotypic heterogeneity and the development of chemotherapeutic resistance

The results of the analysis of evolutionary dynamics recapitulate previous theoretical results [START_REF] Alfarouk | Riparian ecosystems in human cancers[END_REF][START_REF] Anderson | Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment[END_REF]Ardaševa et al., 2020c;[START_REF] Gallaher | Evolution of intratumoral phenotypic heterogeneity: the role of trait inheritance[END_REF][START_REF] Gillies | Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[END_REF][START_REF] Ibrahim-Hashim | Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution[END_REF][START_REF] Kaznatcheev | Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature[END_REF][START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF][START_REF] Lorz | Modeling the e↵ects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors[END_REF][START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF][START_REF] Sun | Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment[END_REF] and experimental data [START_REF] Padhani | Imaging oxygenation of human tumours[END_REF][START_REF] Semenza | Targeting HIF-1 for cancer therapy[END_REF][START_REF] Sun | Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment[END_REF][START_REF] Tannock | The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour[END_REF] by demonstrating that spatial inhomogeneities in the concentration of oxygen promote the selection of di↵erent phenotypic variants at di↵erent positions within the tumour. More specifically, the analytical results indicate that the tumour tissue in the vicinity of blood vessels is to be expected to be densely populated by aerobic phenotypic variants, while poorly oxygenated regions of the tumour are more likely to be sparsely populated by anaerobic phenotypic variants. Furthermore, the analytical results obtained in the absence of spatial di↵usion support the idea that higher levels of phenotypic variability may occur in hypoxic regions of the tumour, which provides a theoretical basis for experimental results such as those presented by [START_REF] Axelson | Hypoxia-induced dedi↵erentiation of tumor cells -a mechanism behind heterogeneity and aggressiveness of solid tumors[END_REF].

Coherently with observations made in previous theoretical and experimental studies [START_REF] Adamski | Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of hif-1alpha[END_REF][START_REF] Brown | The unique physiology of solid tumors: opportunities (and problems) for cancer therapy[END_REF]Powathil et al., 2012b;[START_REF] Sullivan | Hypoxiainduced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity[END_REF][START_REF] Wartenberg | Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species[END_REF], the analytical results also suggest that hypoxia favours the selection for chemoresistant phenotypic variants prior to treatment, which facilitates the development of resistance following chemotherapy. Moreover, these results put on a rigorous mathematical basis the idea, previously suggested by formal analysis and numerical simulations [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF][START_REF] Robertson-Tessi | Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes[END_REF], that chemotherapy removes the selective barrier limiting the growth of chemoresistant phenotypic variants by killing aerobic phenotypic variants in well-oxygenated regions of the tumour.

The analytical results are corroborated by the numerical simulations. The numerical results also indicate that gradients of oxygen and chemotherapeutic agents, which are released from the intratumoural vascular network, naturally emerge in vascularised tumours due to the nonlinear interplay between the spatial distribution of the blood vessels, the reaction-di↵usion dynamics of oxygen and chemotherapeutic agents, and their con-sumption by tumour cells.

Vascularisation and phenotypic heterogeneity

The results of numerical simulations of the model further establish a relation between the degree of tissue vascularisation and the level of intratumour phenotypic heterogeneity, measured either as the equitability index or the Simpson diversity index, which may be a↵ected by the level of clusterisation of blood vessels. This supports the idea that maps of the intratumour vascular network, which can be reconstructed from clinical images obtained via non-invasive imagine techniques, such as D-OCT [START_REF] Laviña | Brain vascular imaging techniques[END_REF][START_REF] Schuh | Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology[END_REF] and many others [START_REF] Anderson | Measuring changes in human tumour vasculature in response to therapy using functional imaging techniques[END_REF][START_REF] Fukumura | Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models[END_REF][START_REF] Grimes | Estimating oxygen distribution from vasculature in three-dimensional tumour tissue[END_REF][START_REF] Nobre | The di↵erent routes to metastasis via hypoxia-regulated programs[END_REF][START_REF] Padhani | Imaging oxygenation of human tumours[END_REF], could be clinically relevant, as they could be used to inform targeted anticancer therapy [START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF]Powathil et al., 2012a,b;[START_REF] Vaupel | Tumor microenvironmental physiology and its implications for radiation oncology[END_REF]. In view of the simplifying assumptions on blood vessel morphology and inflow rates of abiotic factors from the vasculature made in Chapter 2, the aforementioned results would be of particular clinical relevance in combination with vascular normalisation treatments [START_REF] Jain | E↵ect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model[END_REF][START_REF] Magnussen | Vascular normalisation as the stepping stone into tumour microenvironment transformation[END_REF]. Whilst numerical simulations were carried out considering a region of tumour tissue of area 2.5 ⇥ 10 3 cm 2 , which was chosen in agreement with clinical images provided by [START_REF] Schuh | Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology[END_REF], and using parameter values that are derived from specific cancer datasets, given the robustness and structural stability of the results of analysis presented here, we expect the conclusions of this study about the emergence of substantial intratumour phenotypic heterogeneity driven by eco-evolutionary processes at the cellular scale to hold when larger tumour regions and di↵erent cancer datasets are considered.

The role of spatial di↵usion

The results of the formal asymptotic analysis presented in Section 2.2.2, in the case where cell movement is modelled through Fick's first law, indicate that the qualitative behaviour of the results obtained in the absence of spatial di↵usion remain unchanged in the asymptotic regime where the rate of spontaneous phenotypic variation and the cell di↵usivity tend to zero. In order to disentangle and quantify the impact of spatial movement on the emergence and development of intratumour phenotypic heterogeneity, it would be useful to have exact solutions of (2.5). However, further developments of the method of proof employed here are required in order to carry out a similar analysis of evolutionary dynamics in more general scenarios. In fact, some works suggest that more significant spatial movement may result in the emergence of a polymorphic population [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF][START_REF] Mirrahimi | A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments[END_REF][START_REF] Mirrahimi | Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration[END_REF].

Research perspectives

Alternative temporal scales and stochasticity

In order to further assess the clinical relevance of intratumoural phenotypic landscapes that could be drawn from clinical images discussed in Section 3.1.2, the model should be validated experimentally. The results presented in Chapter 2 rely on the assumption of a fixed vasculature in order to obtain a steady state solution and the intratumoural blood vessel maps that can be obtained from clinical images illustrate only a snapshot of a complex biological system undergoing spatiotemporal changes. Despite the long-time asymptotics considered to characterise the phenotypic landscapes discussed in Section 2.3.4, we expect the drawn conclusions to be comparable with empirical observations in evolving vascularised tumours, given the agreement between the model results presented in Section 2.3.3 and the empirical observations on intratumour phenotypic heterogeneity reported in Section 1.1.3. Moreover, the realistic time-scale at which chemoresistant phenotypic variants are selected in hypoxic regions may be shorter in view of the hypoxia-induced up-regulation of HIF-1 [START_REF] Denko | Hypoxia, HIF1 and glucose metabolism in the solid tumour[END_REF][START_REF] Lee | Hypoxia-inducible factor (hif-1) ↵: its protein stability and biological functions[END_REF][START_REF] Semenza | HIF-1: upstream and downstream of cancer metabolism[END_REF] and related glycolytic switch [START_REF] Baumann | Hypoxic upregulation of glucose transporters in bewo choriocarcinoma cells is mediated by hypoxia-inducible factor-1[END_REF]. This could be tested by extending the model here presented to include a phenotypic drift induced by environmental stress, i.e. hypoxia, similarly to the one proposed by Chisholm and coworkers (Chisholm et al., 2016b[START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF][START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF]. Furthermore, although well suited to modelling the dynamics of large cell populations, PDE models like that considered here cannot capture adaptive phenomena that are driven by stochasticity in the evolutionary paths of single cells, particularly relevant in the comparison with empirical data. Therefore, it would also be interesting to complement the results of our study with numerical simulations of corresponding IB models which track the evolutionary trajectories of single cells across a space of discrete phenotypic states, as similarly done by Ardaševa et al. (2020a); Chisholm et al. (2016b[START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF]; [START_REF] Stace | Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy[END_REF]. In such case, the dynamics of tumour cells would be described in terms of a branching random walk, while the concentrations of oxygen and chemotherapeutic agent would be governed by discrete balance equations. This would make it possible to have a more precise description of the phenotypic evolution of tumour cells in cases where cell numbers are relatively low and, therefore, stochastic fluctuations in single-cell phenotypic properties will have a stronger impact on intratumour phenotypic heterogeneity. This may, for instance, be the case for highly vascularised tumours, where distances between capillaries may be so small that only few cells reside in the space between them.

Environmental fluctuations and additional abiotic factors

Further investigations on a possible link between the tumour blood vessel distribution and the level of intratumour phenotypic heterogeneity could be undertaken, along the lines of [START_REF] Scott | Spatial metrics of tumour vascular organisation predict radiation e cacy in a computational model[END_REF], and extended to post-treatment scenarios. It would also be interesting to include the e↵ect of temporal variation in the spatial distribution of intratumoural blood vessels, which would make it possible to explore the influence of angiogenesis on the evolutionary dynamics of tumour cells in vascularised tumours. More complex models would need to be formulated in order to include explicit vascular dynamics, as indicated by the extensive literature addressing the experimental and theoretical study of neovascularisation processes -see Part III. Moreover, building upon the ideas presented by Ardaševa and coworkers (Ardaševa et al., 2020b,c), it would be interesting to study the e↵ect on the evolutionary dynamics of tumour cells of fluctuations in the rate of oxygen inflow, which are known to influence intratumour phenotypic heterogeneity [START_REF] Gillies | Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow[END_REF][START_REF] Marusyk | Intra-tumour heterogeneity: a looking glass for cancer?[END_REF][START_REF] Robertson-Tessi | Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes[END_REF]. Finally, while the focus of this work has been on the impact of spatial variability in the oxygen and chemotherapeutic agent concentrations on the emergence of intratumour phenotypic heterogeneity, building on Fiandaca et al. (2021b), it would be interesting to extend the modelling framework used here to incorporate the e↵ect of nonlinear dynamic interactions between tumour cells and other abiotic factors, such as glucose and lactate, that are known to influence the levels of intratumour phenotypic heterogeneity (Gatenby et al., 2007;Gatenby and Gillies, 2007;[START_REF] Gillies | Hypoxia and adaptive landscapes in the evolution of carcinogenesis[END_REF][START_REF] Kaznatcheev | Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature[END_REF][START_REF] Manem | Modeling invasion dynamics with spatial random-fitness due to micro-environment[END_REF][START_REF] Molavian | Fingerprint of cell metabolism in the experimentally observed interstitial ph and po2 in solid tumors[END_REF][START_REF] Robertson-Tessi | Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes[END_REF][START_REF] Zhao | Targeting cellular metabolism to improve cancer therapeutics[END_REF].

Optimal therapeutic strategies

As similarly done in [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured mode[END_REF] and [START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-di↵erential system modelling healthy and cancer cells exposed to chemotherapy[END_REF], it would be relevant to address numerical optimal control of the model equations in order to identify possible delivery schedules of the chemotherapeutic agent that make it possible to minimise the number of tumour cells at the end of the treatment or the average number of tumour cells during the course of treatment (Chisholm et al., 2016a;[START_REF] Clairambault | A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer[END_REF].

In particular, it would be relevant to verify whether the results presented by [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured mode[END_REF] for a spatially homogeneous model carry through when spatial reaction-di↵usion dynamics of the chemotherapeutic agent are incorporated into the model. In this regard, it would be interesting to assess the impact of molecular properties of the chemotherapeutic agent (e.g. decay, di↵usion and cellular uptake rates) and structural properties of the intratumoural vascular network (e.g. vascular density and blood vessels distribution) on the optimal chemotherapy schedule.

A nonlocal PDE model of metastatic spread

Finally, the model considered here could be extended to carry out a mathematical study of the eco-evolutionary dynamics of tumour cells in metastatic tumours. In this respect, a modelling approach analogous to the one presented by [START_REF] Franssen | A mathematical framework for modelling the metastatic spread of cancer[END_REF], whereby different metastatic sites are represented as distinct compartments and the metastatisation process is modelled by allowing tumour cells to transition from one site to another through the intratumour blood vessels seen as entry/exit locations, may prove useful.

Building on [START_REF] Mirrahimi | A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments[END_REF] and [START_REF] Mirrahimi | Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration[END_REF], insights on the ecoevolutionary dynamics of metastatic cancers could first be gained considering a simpler modelling framework. Consider the evolutionary dynamics of N 2 N cancer cell populations residing in N di↵erent sites of the body, each characterised by its local environment, some of which may be connected. In particular, we label the primary tumour site as site 
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subject to suitable initial conditions. This model could be employed to disentangle the evolutionary determinants of metastatic spread (e.g. the seed-and-soil hypothesis, secondary seeding), by investigating the conditions under which di↵erent solutions are observed (cf. Figure 3.1B). 

Part III Modelling cluster formation in vasculogenesis

This part focusses on modelling the formation of clusters during the early stages of vasculogenesis. The formation of new vascular networks is essential for tissue development and regeneration, in addition to playing a key role in pathological settings such as ischemia and tumour development. Experimental findings in the past two decades have led to the identification of a new mechanism of neovascularisation, known as cluster-based vasculogenesis, during which endothelial progenitor cells (EPCs) mobilised from the bone marrow are capable of bridging distant vascular beds in a variety of hypoxic settings in vivo. This process is characterised by the formation of EPC clusters during its early stages and, while much progress has been made in identifying various mechanisms underlying cluster formation, we are still far from a comprehensive description of such spatiotemporal dynamics. In addition, a systematic mathematical description of the determinants of cluster formation and size may help unlock its full therapeutic potential. In order to achieve this, we propose a novel mathematical model of the early stages of cluster-based vasculogenesis, comprising a system of PDEs including key mechanisms such as endogenous chemotaxis, matrix degradation, cell proliferation and nonlocal cell-to-cell adhesion.

We conduct a LSA on the system and solve the equations numerically, employing the numerical solutions to investigate the determinants of cluster formation and cluster size.

The results, which qualitatively compare with data from in vitro experiments, elucidate the complementary role played by endogenous chemotaxis and matrix degradation in the formation of clusters, suggesting chemotaxis is responsible for the clusters' structure while matrix degradation is responsible for the speed of cluster formation. Our results also indicate that the nonlocal cell-to-cell adhesion term in our model, even though it initially causes cells to aggregate, is not su cient to ensure clusters are stable over long time periods. Consequently, new modelling strategies for cell-to-cell adhesion are required to stabilise in silico clusters. The results of the proposed model are compared with related findings in the extant literature and various promising future research perspectives are identified.

Part III is organised as follows: in Chapter 4 the biological background leading to relevant in vitro studies of cluster-based vasculogenesis is presented together with an overview of the mathematical models of vasculogenesis proposed in the literature; in Chapter 5 a nonlocal PDE model of EPC cluster formation during the early stages of vasculogenesis is presented together with its analytical and numerical results; in Chapter 6 a thorough discussion of the results is given together with promising research perspectives.

The contents of Part III are based on the paper [START_REF] Villa | A novel nonlocal partial di↵erential equation model of endothelial progenitor cell cluster formation during the early stages of vasculogenesis[END_REF].

Chapter 4

Biological and modelling background 4.1 Endothelial progenitor cell cluster-based vasculogenesis Blood vessels are tubular structures of various sizes -with diameters varying between 5µm (capillaries) and 2cm (aorta) -which carry blood throughout the body and they are part of the circulatory system [START_REF] Gartner | Textbook of Histology E-Book[END_REF]. Capillaries, the smallest type of blood vessel, are composed of a layer of mature endothelial cells (ECs), called endothelium, covered by what is known as the basement membrane, separating it from the surrounding connective tissue 1 . Arteries and veins have a more laminated structure, composed of a thick outer layer (tunica externa or adventina) made up of connective tissue, an even thicker middle layer (tunica media) made up of circularly arranged elastic fibers and smooth muscle cells, and a thin inner layer (tunica intima) of endothelium supported by a subendothelial layer. The void area in which the blood flows is known as the lumen.

The formation of new vascular networks is essential for tissue development and regeneration, since a functional vasculature is critical for tissue homeostasis. It is responsible for the delivery of oxygen and nutrients as well as the disposal of waste products. In addition, neovascularisation of local tissue is critical in a variety of pathological processes, among which are retynopathy, wound healing, soft-tissue ischemia2 and tumour growth [START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF]. As seen in Section 1.1.1, the development of a vascular network in localised solid tumours is particularly well-known to promote further tumour growth and metas-

1
Connective tissue supports, protects, and gives structure to other tissues and organs in the body; it is made up of cells, fibers and a gel-like substance (interstitial matrix).

tases. Therefore a better understanding of the mechanisms governing neovascularisation can help improve current therapeutic strategies, as well as identify new ones.

New blood vessels may form from pre-existing ones through the neovascularisation process known as angiogenesis. Vasculogenesis, on the other hand, is the de novo formation of blood vessels, during which endothelial progenitor cells (EPCs) reorganise into networks and subsequently di↵erentiate into mature ECs, as summarised in Figure 4.1. This is an important distinction since EPCs are highly proliferative cells, unlike mature ECs [START_REF] Asahara | Isolation of Putative Progenitor Endothelial Cells for Angiogenesis[END_REF][START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF][START_REF] Kukumberg | Characterization and functional assessment of endothelial progenitor cells in ischemic stroke patients[END_REF][START_REF] Vajkoczy | Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[END_REF][START_REF] Zhang | Endothelial progenitor cells and vascular repair[END_REF]. Once a new network-like pattern of mature ECs has formed, lumen formation occurs along EC cords due to a series of complex molecular mechanisms involving cell shape changes [START_REF] Lammert | Vascular lumen formation[END_REF]. Di↵erent biological, chemical and mechanical processes are at the basis of EC and EPC reorganisation into networks, and they involve a variety of homotypic and heterotypic interactions3 . 

Homotypic and heterotypic interactions

Cells are equipped with membrane receptors, usually transmembrane proteins, which mediate signal transduction for cellular responses to extracellular stimuli [START_REF] Yeagle | The membranes of cells[END_REF]. The receptors can bind to extracellular molecules -e.g. nutrients, growth factors, cell adhesion molecules (CAM) -on one side of the membrane and the binding induces a cascade of chemical changes thus transmitting information to the other side of it.

Chemotaxis.

A key growth factor for blood vessel formation is the Vascular Endothelial Growth Factor (VEGF), which may stimulate EC proliferation during angiogenesis and EPC di↵erentiation into mature ECs [START_REF] Heloterä | The VEGF family, the inside story[END_REF][START_REF] Weinberg | The biology of cancer[END_REF]. VEGF is also a well-known chemoattractant, inducing cell migration towards areas of high VEGF densities. When the chemoattractant's source is external, we refer to this type of migration as exogeneous chemotaxis, while we use the term endogenous chemotaxis when the chemoattractant is being secreted by cells within the same population. In fact, ECs and EPCs can themselves secrete VEGF [START_REF] Heloterä | The VEGF family, the inside story[END_REF].

Adhesion. Cells may adhere to other cells or extracellular components due to CAMs [START_REF] Roberts | Molecular biology of the cell[END_REF], which provide anchorage, cues for migration, and signals for growth and di↵erentiation. In particular, ECs and EPCs are the only cell types expressing vascular endothelial cadherin (VE-cadherin), which allows them to create cell-to-cell adhesion bonds [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF][START_REF] Vestweber | Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player[END_REF]. On the other hand, cells may also adhere to components of what is known as the extracellular matrix (ECM) due to a family of CAMs called integrins [START_REF] Bachmann | Cell adhesion by integrins[END_REF]Ruoslahti et al., 1991).

Extracellular matrix. The ECM is the non-cellular component of tissues and organs in which the cells are embedded, providing essential sca↵olding for the cells as well as a series of biochemical and biomechanical cues required for tissue morphogeneis, differentiation and homeostasis [START_REF] Frantz | The extracellular matrix at a glance[END_REF][START_REF] Ingber | Mechanical control of tissue morphogenesis during embryological development[END_REF][START_REF] Khalilgharibi | To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease[END_REF][START_REF] Kular | The extracellular matrix: structure, composition, age-related di↵erences, tools for analysis and applications for tissue engineering[END_REF][START_REF] Wolf | Extracellular matrix determinants of proteolytic and nonproteolytic cell migration[END_REF]. It is made up of fibrous proteins and macromolecules, partly produced by the cells embedded in it, generally made of polymer chains 4 or long filaments, which are interconnected via cross-linkers 5 , while the remaining space is occupied by interstitial fluid 6 . The most abundant structural proteins in the ECM are collagen and elastin. Collagen is arranged into fibrils, structures which confer to connective tissues the tensile strength required to withstand mechanical stresses (e.g. tension, shear stresses, pressure), while elastin confers to the ECM the ability to recover from continuous stretching. Non-structural proteins of the ECM, such as fibronectin and laminin, are linked to integrins and therefore play a key role in cell adhesion. We can distinguish between two forms of ECM:

1. The basement membrane: a thin and dense ECM layer between epithelial cells 7 and other cell types which can be found in blood vessels and epithelial and endothelial tissues, mostly made up of collagen, laminin and fibronectin;
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Polymer chains are macromolecules formed by the chemical bonding of large numbers of smaller molecules, or repeating units, called monomers.

5

A cross-link is a bond or short sequence of bonds linking one polymer chain to another.
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The interstitial fluid is mostly made up of water and proteoglycans (extremely hydrophylic molecules), with space-filling and lubricating functions.
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Epithelial cells are a type of cell that covers internal and external body surfaces; endothelial cells are a specialised type of epithelial cells that only line the internal surfaces of the components of the circulatory system.

2. The interstitial matrix: the porous 3D ECM lattice found in connective tissue, mostly made up of collagen, elastin and fibronectin, with the latter being responsible for the organisation of the matrix structure. During in vitro studies for tissue engineering applications di↵erent types of ECM sca↵olds can be used, such as natural ECM (e.g. collagen), other biomaterials (e.g. fibrin), ex vivo decellularised ECM (e.g. Matrigel) or syntetic ECM (e.g. hydrogels) [START_REF] Brafman | Constructing stem cell microenvironments using bioengineering approaches[END_REF][START_REF] Hoshiba | Decellularized Extracellular Matrix: Characterization, Fabrication and Applications[END_REF][START_REF] Kular | The extracellular matrix: structure, composition, age-related di↵erences, tools for analysis and applications for tissue engineering[END_REF][START_REF] Wolf | Extracellular matrix determinants of proteolytic and nonproteolytic cell migration[END_REF].

Cell-matrix interactions. Cellular adhesion to the ECM via integrins leads to a great variety of heterotypic interactions [START_REF] Espina | Durotaxis: the mechanical control of directed cell migration[END_REF][START_REF] Harris | Tissue culture cells on deformable substrata: biomechanical implications[END_REF][START_REF] Khalilgharibi | To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease[END_REF][START_REF] Kular | The extracellular matrix: structure, composition, age-related di↵erences, tools for analysis and applications for tissue engineering[END_REF][START_REF] Rau↵ | Imaging the dynamic interaction between sprouting microvessels and the extracellular matrix[END_REF][START_REF] Wolf | Extracellular matrix determinants of proteolytic and nonproteolytic cell migration[END_REF]. First of all cells can exploit such adhesion bonds to move within the extracellular environment, which they can sense and scout using thin membrane protrusions called filopodia. In this regard, cells have a tendency to move towards areas of higher ECM density (haptotaxis) or higher ECM sti↵ness (durotaxis), as these areas provide, respectively, more and more solid structural support for the cells. The ECM sti↵ness is a mechanical property quantifying its resistance to deform under stress, and it is generally linked with the number of cross-links between collagen fibers. Via transduction and mechanotransduction (respectively, the transmission of chemical signals and mechanical forces via cell adhesion bonds), ECM sti↵ness can a↵ect the cell cytoskeletal structure 8 and sti↵ness, with important consequences on cell morphology and movement. On the other hand, cells adhering to the ECM and pulling on it in order to migrate may generate considerable traction forces capable of deforming the ECM. In addition, high ECM density may impose serious physical limits of cell migration, which can be overcome by the cells secreting matrix degrading enzymes such as matrix-metalloproteases (MMPs), which may be membrane-bound or di↵usible, and are responsible for proteolytic degradation of the ECM.

In vivo processes of vascular network formation

Embryonic vasculogenesis. The first occurrence of formation of new vasculature in living organisms is embryonic vasculogenesis, as the cardiovascular system is the first functional organ system to develop in the embryo. This process takes place in the mesoderm 9 , in which reside EPCs called angioblasts. These assemble into a vascular pattern by cell migration and cohesion [START_REF] Poole | The role of FGF and VEGF in angioblast induction and migration during vascular development[END_REF]. In particular, together with hematopoietic precursor cells10 , they aggregate to form blood islands. After aggregation, angioblasts
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The cytoskeleton is a cellular structure made up of filamentous proteins, from microtubules to actin microfilaments, responsible for structural support, substance transport and movement of the cell.

9

The mesoderm is the middle of the three embryonic germ layers (between ectoderm and endoderm).

di↵erentiation into ECs occurs, an event followed by lumen formation and basal lamina 11 production. The growth and fusion of multiple blood islands results in a primitive capillary network [START_REF] Kolte | Vasculogenesis and Angiogenesis[END_REF][START_REF] Risau | Vasculogenesis[END_REF], from which an extended vascular network can form via angiogenesis.

Angiogenesis. New blood vessels may form from pre-existing ones through two types of angiogenesis (Adair and Montani, 2010):

(i) Intussusceptive angiogenesis, or splitting angiogenesis, during which elements of interstitial tissues invade existing vessels due to the extension of the vessel wall into the lumen causing a single vessel to split in two; (ii) Sprouting angiogenesis, during which new sprouts composed of ECs grow from existing blood vessels towards areas devoid of blood vessels. In the embryo, as often in local tissue of the adult organism, angiogenesis is driven by angiogenic stimuli activated by hypoxia. Low oxygen levels stimulate HIF-↵-mediated gene expression of pro-angiogenic factors, such as VEGF, in parenchymal12 cells [START_REF] Rahimi | The ubiquitin-proteasome system meets angiogenesis[END_REF]. In sprouting angiogenesis, the pro-angiogenic factors induce blood vessel' basement membrane degradation, proliferation of ECs and migration towards the origin of the angiogenic stimuli, i.e. exogenous chemotaxis. This is followed by tube formation and remodelling before maturation of the new blood vessels [START_REF] Kolte | Vasculogenesis and Angiogenesis[END_REF], and in order for blood to circulate in the new vasculature anastomosis may need to occur, that is, the fusion of vessel segments to eliminate dead ends [START_REF] Diaz-Santana | Endothelial cell dynamics during anastomosis in vitro[END_REF].

Postnatal vasculogenesis. The distinction between blood vessels that originated by cell di↵erentiation in situ (vasculogenesis) and those which developed from pre-existing vessels (angiogenesis) has been clear since the early days of the field of study of early vascular development [START_REF] Sabin | Origin and development of the primitive vessels of the chick and of the pig[END_REF]. On the other hand, for a long time the term vasculogenesis has only been associated with the early embryonic vasculogenesis described above, while blood vessel formation in adult organisms was believed to be formed predominantly, if not exclusively, via angiogenesis [START_REF] Risau | Vasculogenesis[END_REF]. This understanding of neovascularisation, constraining vasculogenesis to only occur during embryonic development, has quickly changed over the past two decades. [START_REF] Asahara | Isolation of Putative Progenitor Endothelial Cells for Angiogenesis[END_REF] first isolated putative EPCs from human peripheral blood, which were shown to di↵erentiate in vitro into ECs and be incorporated in active angiogenic sites in ischemic tissue. These circulating EPCs were then found to be recruited from the bone marrow and mobilised to the peripheral circulation to reach angiogenic sites in vivo [START_REF] Asahara | Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[END_REF][START_REF] Shi | Evidence for circulating bone marrow-derived endothelial cells[END_REF].
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The basal lamina is a layer of ECM secreted by the epithelial cells, on which the epithelium sits; it constitutes a portion of the basement membrane.

Since these discoveries, much progress has been made in recognising the origin and role of EPCs -both in animals and humans -in neovascularisation of developing tumours, wound healing, ischemia and physiological neovascularisation [START_REF] Asahara | Endothelial progenitor cells for postnatal vasculogenesis[END_REF][START_REF] Asahara | Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[END_REF]introducing the notion of postnatal vasculogenesis.

In vitro single-cell vasculogenesis

We have seen that mature ECs reside in the endothelium of blood vessels and thus only participate in in vivo neovascularisation through angiogenesis. Despite this, many in vitro studies of vasculogenesis actually investigate the direct reorganisation into a vascular network of sparse single ECs. Di↵erent types of ECs have been considered, the most popular one being human umbilical vein endothelial cells (HUVECs), and cultured mostly in fibrin gels and Matrigel [START_REF][END_REF][START_REF] Morin | In vitro models of angiogenesis and vasculogenesis in fibrin gel[END_REF][START_REF] Sasaki | Mathematical modeling for meshwork formation of endothelial cells in fibrin gels[END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF]. We will henceforth refer to this process as "singlecell" vasculogenesis. The work of [START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF] has particularly caught the attention of the mathematical community -see Section 4.2.1. [START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF] investigated single-cell vasculogenesis in Matrigel. During the early stages of this process, ECs were observed to undergo rapid motion, during which they maintained a round shape, until collision with their closest neighbours (3-6 hours). They then proceeded to reorganise into a continuous multicellular network, which can be represented as a collection of nodes connected by capillary cords (of mean length `⇡ 200µm), exhibiting a more elongated morphology, until network stabilisation (9-15 hours). The authors observed that EC trajectories have a high degree of directional persistence and undergo endogenous chemotaxis following VEGF-A. Moreover, they observed the formation of groups of disconnected structures, instead of a single connected network, below a critical density of 100 cells/mm 2 . Increasing the cell density above 200 cells/mm 2 resulted in increased cord thickness eventually leading to a cell monolayer with void areas called lacunae, that is, a "Swiss-cheese" pattern.

Investigation of single-cell vasculogenesis in fibrin gels indicated that vessel formation is inhibited by low cell numbers, similarly to what is observed in Matrigel, and a high gel density, while it is fostered by exogenous chemotaxis [START_REF] Morin | In vitro models of angiogenesis and vasculogenesis in fibrin gel[END_REF].

In vivo and in vitro cluster-based vasculogenesis

With increased attention being given to circulating EPCs and postnatal vasculogenesis came a deeper understanding of the mechanisms behind de novo vascularisation. In particular, a new vasculogenic mechanism has been identified, characterised by EPC cluster formation during the early-stages of this process and thus referred to as clusterbased vasculogenesis. This neovascularisation process has been documented in animal models, specifically in hypoxic settings in vivo, such as in ischemia and tumour vascularisation [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF][START_REF] Tepper | Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells[END_REF][START_REF] Vajkoczy | Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[END_REF]. As indicated by [START_REF] Tepper | Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells[END_REF], prior to these experiments there had not been any direct evidence for true in situ vasculogenesis in adult physiology. Nevertheless, as described in Section 4.1.2, previous embryonic vasculogenesis studies anticipated the ability of EPCs to organise into clusters -specifically blood islands -from which to extend projections and form vascular networks. Cluster-based vasculogenesis has also been observed in embryos, such as during cranial vasculature formation in zebrafish embryos [START_REF] Proulx | Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis[END_REF], in a later stage than that of the formation of the primary vascular plexus. Recall that, as anticipated in Section 4.1.2, prior to the discovery of circulating EPCs and cluster-based vasculogenesis, the term vasculogenesis was used to indicate embryonic vasculogenesis -i.e. the formation of the primary vascular plexus. Many works in the literature still consider this definition, such as [START_REF] Vajkoczy | Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[END_REF] who have proposed the term "angiomorphosis" (from the Greek words "angio" for blood vessel and "morphosis" to give shape, to form) for the neovascularisation process under study, to distinguish it from angiogenesis and vasculogenesis. Nowadays, the term vasculogenesis is more often used to indicate any de novo vascular formation that does not originate from pre-existing blood vessels. For this reason, we here choose to use the term "cluster-based" vasculogenesis, first introduced by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF], for the process under study as it quickly summarises its key di↵erence with single-cell vasculogenesis. Below we report the main findings of in vivo studies in which this mechanisms was first described.

In vivo cluster-based vasculogenesis. [START_REF] Vajkoczy | Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[END_REF] conducted an animal model study of the contribution of ex vivo-expanded embryonic EPCs (eEPCs) to tumour-induced blood vessel growth in the adult, and mention similar experiments on tissue ischemia models. [START_REF] Tepper | Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells[END_REF] and Blatchley et al. ( 2019) also studied postnatal vasculogenesis in ischemic tissue in vivo. All of these authors observed cluster-based vasculogenesis, occurring through the following steps:

(i) Circulating EPCs are mobilised and home into hypoxic and ischemic sites (e.g. through growth factors and oxygen gradients); (ii) Recruited EPCs attach to the local endothelium (via integrins and intercellular adhesion molecules); (iii) EPCs extravasate to the interstitial tissue, actively proliferate and form clusters; (iv) EPC clusters undergo sprouting and anastomose with existing blood vessels, revascularising the local microenvironment. The final network formed was reported to be larger than previously observed ones formed via angiogenesis or single-cell vasculogenesis [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. In fact, EPC clus-ters form in regions far from pre-existing blood vessels and, after sprouting, function as a bridge for distant vascular beds, allowing for neovascularisation in physiological and pathological settings in which angiogenesis alone would not have su ced. [START_REF] Vajkoczy | Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[END_REF] specifically report that recruitment, extravasation, survival and incorporation into functional tumour blood vessels of eEPCs within a few days (⇠ 4 days) was tumour-specific, by comparison with control experiments. Interestingly, they detected no significant e↵ect of eEPC incorporation in the local vasculature on the total vessel density and tumour size. This suggests that eEPCs may be used to regulate tumour vasculature and hence optimise drug delivery to treat tumours without stimulating tumour growth. In tissue ischemia models, recruitment, adhesion to the local endothelium, localised migration and proliferation of recruited EPCs were significantly increased in severe hypoxia (⇠ 0.5% O 2 tension). [START_REF] Tepper | Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells[END_REF] report that, by day 14, cord-like structures along ischemic gradients had formed -i.e. blood vessels entirely made of EPCs -which canalised and connected with existing vasculature. Contrary to observations in tumour vascularisation, in ischemic tissues this process resulted in increased vessel density, blood flow levels and tissue function.

In vitro cluster-based vasculogenesis. [START_REF] Akita | Hypoxic preconditioning augments e cacy of human endothelial progenitor cells for therapeutic neovascularization[END_REF] reported that EPC differentiation, secretion of pro-angiogenic factors, such as VEGF, and migration were enhanced by hypoxic conditioning (i.e. exposition to hypoxia for an extended period of time), resulting in increased EPC cluster formation in hypoxia in vitro. While the recruitment of circulating EPCs to regions of hypoxia and ischemia has been well defined, it is not yet understood how clusters form and what drives subsequent vascular sprouting. This was further investigated by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] who, thanks to oxygen controllable hydrogels, reproduced hypoxic gradients in vitro (hypoxia defined by <5% O 2 tension), see Figure 4.2A, in which they deposited a high concentration of a subtype of EPCs, known as endothelial colony-forming cells (ECFCs). Cluster formation was eventually observed in highly hypoxic conditions (⇠ 1% O 2 ), while not in non-hypoxic ones -see Figure 4.2B. In particular, cluster formation started 6-12 hours after encapsulation, by which time an oxygen gradient was present. Cluster sizes increased up to 24 hours, while the number of single cells decreased, and stayed at a consistent level up to 48 hours, suggesting clusters reached their maximum natural size at the 24 hour mark, with diameters in the range 100-400 µm. After 24 hours increased cell-to-matrix interactions were observed with extensive sprouting from the clusters taking place after 48 hours. Within 72 hours a network up to 500µm in length had formed, much larger than single-cell vasculogenesis derived networks. In the course of the experiment, high matrix-degrading activity was recorded in hypoxic regions, starting at the 6 hour mark with a significant increase by 18 and 24 hours, thanks to the employment of DQ-gelatin 13 . This suggests proteasemediated matrix degradation, up-regulated in hypoxic conditions, may be responsible for cluster formation. This was supported by further experimental observations indicating MMP-1 was significantly more prevalent under hypoxic conditions than non-hypoxic ones, and that a high concentration of MMP inhibitor hindered cluster formation. Upon cluster formation, clusters are stabilised by CAM, such as VE-cadherin, and cells at the cluster periphery extend filopodia towards the outside ready to sprout. The increased cell-ECM interaction plays a big role in the extensive sprouting from clusters and network formation. In particular, vascular networks extended below the clusters, suggesting the extensive matrix degradation needed for cluster formation may inhibit vascular network formation. In addition, an increase in matrix sti↵ness was observed to speed up sprouting and lead to extensive vascular network formation. Figure 4.3 provides a summary of the cluster-based vasculogenesis mechanism proposed by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF].

While the findings reported in this section are significant steps forward in the understanding of cluster-based vasculogenesis, much further work is required to reach an exhaustive comprehension of the process, as well as to unlock its full potential in therapeutic interventions in a variety of pathological conditions. In this regard, mathematical modelling can help elucidate the mechanisms behind cluster and network formation, as demonstrated by previous works investigating single-cell vasculogenesis, discussed in Section 4.2. 

Mathematical models of vasculogenesis

While the mathematical model we will present in Chapter 5 is the first one formulated to study cluster-based vasculogenesis, many have been proposed to investigate in vitro single-cell vasculogenesis. With the exception of [START_REF] Sasaki | Mathematical modeling for meshwork formation of endothelial cells in fibrin gels[END_REF], whose model of EC network formation in fibrin gels showed that random searching of ECs and cell-tocell adhesion were su cient to generate a network in such a medium, most models in the literature refer back to the work of [START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF], presented in Section 4.1.3, who investigated single-cell vasculogenesis in Matrigel. We first review key single-cell vasculogenesis models in the literature, referring the interested reader to detailed reviews by [START_REF][END_REF]; [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF]; [START_REF] Czirok | Endothelial cell motility, coordination and pattern formation during vasculogenesis[END_REF]; Scianna et al. (2013), and then discuss model requirements to study cluster-based vasculogenesis.

PDE models of single-cell vasculogenesis

Continuum deterministic models in the extant literature can be categorised as Persistence and Endogenous Chemotaxis (PEC) models [START_REF] Ambrosi | Cell directional and chemotaxis in vascular morphogenesis[END_REF][START_REF] Coniglio | Percolation and burgers' dynamics in a model of capillary formation[END_REF][START_REF] Gamba | [END_REF][START_REF] Kowalczyk | On the stability of homogeneous solutions to some aggregation models[END_REF][START_REF] Liu | Asymptotic stability of di↵usion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis[END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF], modelling the early stages of single-cell vasculogenesis, and mechanochemical models [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Murray | A mechanical theory of vascular network formation[END_REF][START_REF] Murray | On the mechanochemical theory of biological pattern formation with application to vasculogenesis[END_REF][START_REF] Namy | Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields[END_REF], better suited to describe the late stages of the process, with the exception of the work by [START_REF] Tosin | Mechanics and chemotaxis in the morphogenesis of vascular networks[END_REF] who proposed a comprehensive model.

PEC models of single-cell vasculogenesis. First introduced by Serini and coworkers [START_REF] Gamba | [END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF], PEC models consist of a conservation equation for the EC density, a momentum equation describing changes in the EC velocity and a reaction-di↵usion equation describing VEGF dynamics. In particular ECs are assumed to undergo persistent motion, that is movement characterised by inertia in the velocity field, and this movement is modulated by friction between cells and substrate, density-dependent pressure and chemotaxis, with the VEGF being secreted by the cells themselves. [START_REF] Ambrosi | Cell directional and chemotaxis in vascular morphogenesis[END_REF] also considered network formation in anisotropic conditions, by including a constant velocity field in the transport equation for the VEGF concentration. The solution of PEC models in 3D was recently analysed [START_REF] Liu | Asymptotic stability of di↵usion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis[END_REF], and various interesting analytical insights for the 2D model have been presented over the years. Such models have so far helped to extrapolate information underlying the origin and structure of newly formed vascular networks, for instance relating the characteristic cord length `to the VEGF di↵usion coe cient D c and decay rate c with the formula [START_REF] Ambrosi | Cell directional and chemotaxis in vascular morphogenesis[END_REF][START_REF][END_REF][START_REF] Gamba | [END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF], or investigating the minimum -and maximum -initial cell density required for network assembly [START_REF][END_REF][START_REF] Coniglio | Percolation and burgers' dynamics in a model of capillary formation[END_REF][START_REF] Gamba | [END_REF][START_REF] Kowalczyk | On the stability of homogeneous solutions to some aggregation models[END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF]. In particular, [START_REF] Gamba | [END_REF] and [START_REF] Coniglio | Percolation and burgers' dynamics in a model of capillary formation[END_REF] analysed in detail the transition from a phase in which several disconnected structures appear to one in which a single connected structure appears, a phenomenon known as percolative transition, as the initial cell density increases, identifying the critical EC density at which we observe this phenomenon to be around 100 cells/mm 2 , in agreement with the work of [START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF]. PEC models have also been used to investigate the mechanisms at the basis of the Swiss-cheese transition, leading to the formation of lacunae as cell density increases. Studying the linear stability properties of PEC models, chemotaxis was found to be the key destabilising force for lacunae fomation and pressure to be the main stabilising one, and suitable conditions on the density-dependent pressure function to avoid blow up of the solution in finite time were derived [START_REF] Kowalczyk | Preventing blow-up in a chemotaxis model[END_REF][START_REF] Kowalczyk | On the stability of homogeneous solutions to some aggregation models[END_REF]. As a result of the presence of the pressure term, the Swiss-cheese transition can be predicted by PEC models to occur about the critical initial cell density of 300 cells/mm 2 [START_REF][END_REF].
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Mechanochemical models of single-cell vasculogenesis. Mechanochemical models of vasculogenesis, on the other hand, placed special emphasis on the role played by cell traction forces, and are therefore particularly suited for the later stages of vasculogenesis during which the mechanical interaction between the ECs and the ECM cannot be neglected. Mechanical models or vasculogenesis, following the work of [START_REF] Murray | A mechanical model for mesenchymal morphogenesis[END_REF], consist of a conservation equation for the EC density and one for the ECM density, a force-balance equation to describe changes in the cell-ECM displacement as cells pull on the ECM and, in the case of mechanochemical models, additional reaction-di↵usion equations for chemical factors, such as the VEGF concentration [START_REF][END_REF]. Both ECs and ECM are assumed to be advected according to changes in the cell-ECM displacement, and ECs are also assumed to undergo strain-dependent movement [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Murray | On the mechanochemical theory of biological pattern formation with application to vasculogenesis[END_REF][START_REF] Namy | Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields[END_REF], haptotaxis [START_REF] Namy | Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields[END_REF] and chemotaxis [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF]. Note that while sometimes these models include reaction terms, modelling EC proliferation [START_REF] Holmes | A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic e↵ects[END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF] and ECM degradation [START_REF] Holmes | A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic e↵ects[END_REF][START_REF] Tranqui | Mechanical signalling and angiogenesis. the integration of cell-extracellular matrix couplings[END_REF], such cases are considered in relation to angiogenesis rather than de novo vasculogenesis. In the force-balance equation ECs and ECM, itself modelled as linear elastic or viscoelastic material, are assumed to be connected in parallel and the overall stress of the system is in equilibrium with external restoring forces, such as viscous drag or elastic forces depending on the assumed external substratuum. Cell traction is assumed to grow linearly at low cell densities and go to zero for large densities, with the exception of [START_REF] Namy | Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields[END_REF] and [START_REF] Tranqui | Mechanical signalling and angiogenesis. the integration of cell-extracellular matrix couplings[END_REF] whose cell traction term becomes negative at large densities, thus modelling the e↵ect of density-dependent pressure. LSA predicts instability of the homogeneous steady state, and in general lacunae formation, if the cell traction coe cient is high enough or the ECM Young modulus is low enough, and if the initial cell density is below a threshold value, dependent on the way cell traction is modelled [START_REF][END_REF]. Haptotaxis was also indicated to have a destabilising e↵ect [START_REF] Namy | Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields[END_REF][START_REF] Tranqui | Mechanical signalling and angiogenesis. the integration of cell-extracellular matrix couplings[END_REF], while the restoring forces and long range e↵ects have a stabilising e↵ect [START_REF][END_REF]. Note that while these models may predict cluster formation in the case of very high cell traction or very low ECM sti↵ness, such modelling frameworks are not compatible with the application here considered as they do not include any of the key mechanisms of early-stage cluster-based vasculogenesis.

A comprehensive model of single-cell vasculogenesis. The only model considering both early-stages dynamics and cell-ECM mechanical interactions was proposed by [START_REF] Tosin | Mechanics and chemotaxis in the morphogenesis of vascular networks[END_REF]. Their model resembles those proposed for PEC, with the addition of an external drag force in the momentum equation, which models the fact that EC movement is slowed down by cell adhesion to the ECM as they move over it. The same drag force appears as an external restoring force in the force-balance equation for the ECM, where the ECM is modelled as a linear elastic material. In this framework, cells and ECM are modelled as separate layers influencing each other by generating external forces at their interface, and we only keep track of the ECM displacement, not the ECM density itself. The model indicated that cell adhesiveness to the substratum plays a key role in network formation, with excessive adhesiveness resulting in no network and insu cient adhesiveness a↵ecting the stability of cords so that cells would eventually clusterise due to chemotaxis.

Cellular Potts models of single-cell vasculogenesis

Despite their lower analytical tractability, Cellular Potts (CP) models have been widely used to study single-cell vasculogenesis over the years [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF]Scianna et al., 2013). These are lattice-based models, with simulations obtained via a Monte-Carlo method following energy minimisation principles, which track cell and ECM dynamics at the mesoscale. They are therefore particularly suited to investigate mechanisms occurring at the cell level, such as cell shape and cell-to-cell adhesion, which are di cult to describe with continuum models of macroscale dynamics and which may be crucial for single-cell vasculogenesis as the process involves few cells [START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF]. In fact, it is standard to omit cell proliferation and death when considering in vitro dynamics of mature ECs on a relatively short timescale (9-15 hours).

CP models ignoring active cell traction. [START_REF] Palm | Vascular networks due to dynamically arrested crystalline ordering of elongated cells[END_REF] showed that elongated, adhesive cells can self-organised into vascular structures. Extending the model to include endogenous chemotaxis results in a faster pattern formation process and the stabilisation of the network [START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF]. This framework confirmed a correlation between the characteristic cord length, and thus size of lacunae, and the VEGF di↵usion rate, as previously predicted with PEC models. In the absence of elongation, network formation is compromised and cells form islands, whether elongation is imposed as a constraint [START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF] or is a consequence of strong cell-to-cell adhesion [START_REF] Merks | Cell-oriented modeling of in vitro capillary development[END_REF]. Similar results were obtained when considering cell adhesion-mediated saturation of chemotaxis instead of cell elongation, as this motility inhibition still led to cell polarisation and, in the absence of such an e↵ect, clusters were observed [START_REF] Merks | Dynamic mechanisms of blood vessel growth[END_REF][START_REF] Merks | [END_REF][START_REF] Singh | Role of di↵erential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis[END_REF]. Overall the work of Merks and coworkers pointed towards cell elongation, or polarisation, and endogenous chemotaxis being essential for network formation, just like persistence of motion and endogenous chemotaxis in PEC models. In fact, we might expect cell elongation to result in more persistent motion at the macroscale. Alternatively, Szabo and coworkers suggested that a preferential attraction of cells to elongated structure is su cient for vascular network formation [START_REF] Szabo | Network formation of tissue cells via preferential attraction to elongated structures[END_REF], particularly highlighting the role this plays in cell sprouting from clusters which would otherwise remain stable due to cell-to-cell adhesion [START_REF] Szabo | Multicellular sprouting in vitro[END_REF][START_REF] Szabó | The role of cell-cell adhesion in the formation of multicellular sprouts[END_REF].

CP models investigating active cell traction. Cell elongation has also been proposed to result from the mechanical interaction of ECs with the ECM [START_REF] Van Oers | Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro[END_REF][START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF]. [START_REF] Van Oers | Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro[END_REF] proposed a CP model which included cell-to-cell adhesion, active cell traction on the ECM and durotaxis, the preferential movement of cells up ECM sti↵ness gradients. They further assumed that the ECM would sti↵en under strain, generated by the ECs' pulling action which, in combination with durotaxis, resulted in EC elongation. Note that these dynamics may result in cell traction and strain-dependent movement at the macroscale, which are key factors of mechanochemical models. The model was further analysed by [START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF], who predicted network formation for high enough cell traction compared to the ECM Young modulus, just like in mechanochemical models, with cell alignment and polarisation still playing an important role, while cell-to-cell adhesion was indicated to be responsible for network configuration.

Modelling the early stages cluster-based vasculogenesis

We are interested in investigating the determinants of cluster formation and cluster size with a model of the early stages cluster-based vasculogenesis. While much work has been conducted in order to better understand the mechanisms at the basis of single-cell vasculogenesis, many of which are relevant to cluster-based vasculogenesis, recent experimental observations [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] suggest that other processes need to be considered when studying EPC cluster formation. While CP models may be preferred when studying a system comprising a few cells, EPCs actively proliferate and we therefore choose to study this process through the lense of a continuum deterministic model. The model should include endogenous chemotaxis, MMP-mediated ECM degradation, cell-tocell adhesion, EPC random movement, proliferation and death, together with annexed ECM, VEGF and MMP dynamics. Note that while cell proliferation and ECM degradation have been included in previous models of vascular network formation [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF][START_REF] Daub | A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis[END_REF][START_REF] Holmes | A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic e↵ects[END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Tranqui | Mechanical signalling and angiogenesis. the integration of cell-extracellular matrix couplings[END_REF], these have been formulated to study angiogenesis rather than vasculogenesis, which require di↵erent initial conditions and exogenous, rather than endogenous, chemotaxis.

Modelling chemotaxis. PEC models included chemotaxis in the momentum equation, but this implies that cells accelerate in chemical gradients, an assumption that might be unrealistic given the highly viscous, non-inertial environment of the ECM [START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF][START_REF] Merks | [END_REF]. We thus choose to follow standard modelling of chemotaxis in the flux term of the EPC density mass-balance equation, as done in mechanochemical models [START_REF][END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF], following the classic Patlak-Keller-Segel model of di↵usion and chemotaxis [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF][START_REF] Painter | Mathematical models for chemotaxis and their applications in selforganisation phenomena[END_REF]. As the PKS model is well-known for having solutions that blow up in finite time, a number of variations have been proposed in the literature [START_REF] Bubba | A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells[END_REF][START_REF] Kowalczyk | Preventing blow-up in a chemotaxis model[END_REF][START_REF] Painter | Mathematical models for chemotaxis and their applications in selforganisation phenomena[END_REF], and we will hereby consider a modified version of the forms proposed by Hillen and Painter [START_REF] Hillen | Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding[END_REF][START_REF] Painter | Volume-filling and quorum-sensing in models for chemosensitive movement[END_REF] whereby chemotaxis is saturated in a tightly packed environment. While this results in a local description of chemotaxis, various nonlocal ones have also been proposed over the years, reviewed for instance by [START_REF] Chen | Mathematical models for cell migration: a non-local perspective[END_REF]; [START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF]; [START_REF] Painter | A nonlocal model for contact attraction and repulsion in heterogeneous cell populations[END_REF].

Modelling cell-to-cell adhesion. While CP models allowed for a mesoscopic description of cell-to-cell adhesion, during the development of PEC and mechanochemical models this biological process had not yet been explicitly modelled at the macroscopic scale. [START_REF] Armstrong | A continuum approach to modelling cell-cell adhesion[END_REF] proposed, in their seminal paper, a continuum nonlocal description of intrapopulation and interpopulation cell adhesion. This was later adapted by [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF] to account for cell-to-cell and cell-to-matrix adhesion. The model relies on the presence of an advective flux of the cell density at position x, calculated nonlocally by scouting for availability of adhesion sites in a sensing region centered in

x. This has become a popular continuum description of cell adhesion, with a number of variations proposed to study tumour invasion and cell movement across the ECM [START_REF] Bitsouni | Mathematical modelling of cancer invasion: the multiple roles of TGF-pathway on tumour proliferation and cell adhesion[END_REF][START_REF] Buttenschön | A space-jump derivation for nonlocal models of cell-cell adhesion and non-local chemotaxis[END_REF][START_REF] Chaplain | Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion[END_REF][START_REF] Domschke | Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF]Gerisch and Painter, 2010;[START_REF] Painter | The impact of adhesion on cellular invasion processes in cancer and development[END_REF][START_REF] Sherratt | Boundedness of solutions of a non-local reaction-di↵usion model for adhesion in cell aggregation and cancer invasion[END_REF], development and cell-sorting dynamics [START_REF] Armstrong | Adding adhesion to a chemical signaling model for somite formation[END_REF][START_REF] Carrillo | A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation[END_REF]Gerisch and Painter, 2010;[START_REF] Painter | A nonlocal model for contact attraction and repulsion in heterogeneous cell populations[END_REF]. Attention has also been given over the years to variations of the nonlocal modelling of adhesion by considering di↵erent ways to enforce limits on the cell density and to include nonlinear cross di↵usion, that is substituting linear di↵usion modelling random movement with nonlinear di↵usion modelling movement of cells down a density-dependent pressure gradient, into the overall model [START_REF] Burger | Segregation e↵ects and gap formation in cross-di↵usion models[END_REF][START_REF] Carrillo | A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation[END_REF][START_REF] Madzvamuse | Cross-di↵usion in reaction-di↵usion models: Analysis, numerics, and applications[END_REF][START_REF] Murakawa | Continuous models for cell-cell adhesion[END_REF]. These modifications principally lead to sharper interfaces between the densities of di↵erent cell types, or the ECM, or can even lead to strict segregation of them. Since such e↵ects are not part of the primary dynamics which we will focus on in our model of the early stages of cluster-based vasculogenesis, we will not include these variations here.

Chapter 5

A novel nonlocal PDE model of endothelial progenitor cell cluster formation

We present a continuum deterministic model of EPC cluster formation during the early stages of cluster-based vasculogenesis, during which mechanical interactions between EPCs and the ECM can be neglected. The model comprises a system of PDEs modelling dynamics such as endogenous chemotaxis, MMP-mediated ECM degradation, nonlocal cell-to-cell and cell-to-matrix adhesion, EPC random movement, proliferation and death, together with annexed ECM, VEGF and MMP dynamics. The model provides a theoretical basis for a comprehensive description of the mechanisms underlying cluster formation.

In this study we seek to clarify the role played by di↵erent dynamics and elucidate the determinants of cluster size, by introducing appropriate metrics for cluster width and compactness. We investigate this in primis by means of a LSA and numerical simulations relying on a baseline parameter set drawn from the literature. We then proceed to provide a first overview of potential model behaviour to gain insight into the importance of various parameters or processes in the pattern formation potential of the system. We do this by simulating the model using the baseline parameter set as well as by varying parameters, one at a time, with values in a suitable range identified from existing literature (parametric analysis). The mathematical model is described in detail in Section 5.1.

The key results of a LSA are summaried in Section 5.2, followed by numerical results in Section 5.3. In particular, the numerical investigations on the determinants of cluster formation and cluster size are presented for the 1D and 2D problems, and the results are qualitatively compared with the experimental findings of [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] presented in Section 4.1.4.

The mathematical model

Let t 0 indicate time and x 2 R 2 a position in space. We will consider the dynamics in a 2D spatial domain ⌦ ⇢ R 2 , as well as the corresponding 1D problem, for which we make use of the notation x 2 R to indicate space. Unless indicated otherwise, all definitions introduced in this section for the 2D problem hold for the corresponding 1D one. The density of EPCs at time t and position x is given by n(t, x), in units of cell cm 31 , and the ECM density by ⇢(t, x), in units of nM. Similarly we indicate the concentration of a matrix-degrading enzyme, such as MMP-1, by m(t, x), in units of µg cm 3 , and that of a chemotactic agent, such as VEGF-A, by c(t, x), in units of ng cm 3 . We also introduce the vector of reddependent variables v(t, x) := n(t, x), ⇢(t, x), m(t, x), c(t, x) | . Our model then consists of a system of mass-balance equations, one for each dependent variable introduced.

Dynamics of endothelial progenitor cells

The mass-balance equation for the density of EPCs is of the form:

@ t n + r • [J d (n) + J c (n, c) + J a (v)] = pn(1 # 1 n # 2 ⇢) , (5.1) 
where J d (n) models spatial di↵usion to account for random movement of cells, J c (n, c) indicates the chemotactic flux in response to VEGF gradients and J a (v) the advective flux due to cell-to-cell and cell-to-matrix adhesion, while the term on the right-hand side of the equation models cell proliferation and death. In particular, we consider a modified version of the standard logistic growth, as proposed by [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF], in which EPCs proliferate at rate p 0 and die due to competition for space -occupied by both cells and ECM -and resources. Parameters # 1 > 0 and # 2 > 0 indicate the fraction of one unit volume of physical space occupied by EPCs at unit density and by ECM at unit density respectively, such that (# 1 n + # 2 ⇢) indicates the total fraction of locally occupied space.

Spatial di↵usion and chemotaxis. Following the motivations introduced in Section 4.2.3, we make use of the following definitions for the di↵usive and chemotactic flux terms:

J d (n) = D n rn , J c (n, c) = f (n, ⇢) nrc .
(5.2)

In definitions (5.2) spatial di↵usion follows Fick's law, with di↵usivity D n 0, while chemotaxis is modelled as an advective flux of cells up the gradient of the chemotactic agent concentration c, modulated by the chemotactic sensitivity of cells. This is proportional to the chemotactic sensitivity coe cient 0 and the function f (n, ⇢), which accounts for volume exclusion. This is given by

f (n, ⇢) = (1 # 1 n # 2 ⇢) + (5.3)
where we have used (•) + := max(0, •) -see also [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF]; [START_REF] Hillen | Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding[END_REF]; [START_REF] Painter | Volume-filling and quorum-sensing in models for chemosensitive movement[END_REF]. According to definition (5.3), the chemotactic sensitivity of the cells is proportional to the locally available space. If the local space is overcrowded, cells will struggle to sense the chemotactic gradient, to the extent that if the space is locally full no chemotaxis can occur.

Cell-to-cell and cell-to-matrix adhesion. Following the motivations introduced in Section 4.2.3, we model cell-to-cell and cell-to-matrix adhesion in the continuous form proposed by [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF]. The advective flux of the EPC density n due to cell-to-cell and cell-to-matrix adhesion in (5.1) is therefore given by

J a (v) = n A[v(t, •)] (5.4) 
where A[v(t, •)] is the adhesion velocity at some point x, that is the velocity of cells at

x due to adhesive interactions with their environment, which is an operator acting on v(t, •) defined as a function of x. For problems in 1D this is defined as

A[v(t, •)](x) := 1 R Z R 0 1 X j=0 ⌘(j) (r)g v(t, x + r⌘(j)) dr , (5.5) 
while for problems in 2D it is defined as in the 1D and 2D problems respectively, i.e. in equations (5.5) and (5.6) respectively. Assuming (r) decays linearly with r to be zero at the boundary of the sensing region, we here make use of the forms proposed by [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF]

A[v(t, •)](x) := 1 R Z R 0 r Z 2⇡ 0 ⌘(✓) (r)g v(t, x + r⌘(✓)) d✓ dr . ( 5 
) (r) = 1 R ⇣ 1 r R ⌘ and (r) = 3 ⇡R 2 ⇣ 1 r R ⌘ (5.8)
in the 1D and 2D problems respectively, chosen so that (5.7) is satisfied. Finally, in both (5.5) and ( 5.6) the term g(v(t, •)) represents the nonlocal impact of the system's state at some point within the sensing region at x on the velocity of the cells at x due to adhesion to other cells or the ECM in the sensing region at x. This is given by

g(v) := g(n, ⇢) = (S nn n + S n⇢ ⇢) f (n, ⇢) , (5.9) 
in which S nn 0 and S n⇢ 0 are the cell-to-cell and cell-to-matrix adhesion coe cients respectively, while the function f (n, ⇢) is defined in (5.3). Under definition (5.9), the velocity of cells at position x in the direction of a point -sayy in the sensing region of x due to cell-to-cell adhesion is directly proportional to the cell density n at y, and that due to cell-to-matrix adhesion is directly proportional to the ECM density ⇢ at y. This is because a higher cell or ECM density correlates with a higher number of adhesion sites. Meanwhile, under definitions (5.9) and ( 5.3), the velocity is also proportional to the available space at position y. This accounts for volume exclusion, as cells will be unable to sense adhesive sites at spatial locations with high densities of EPCs and/or ECM and, hence, will not migrate in those directions.

Dynamics of extracellular factors

Dynamics of ECM. We let the ECM be degraded by matrix-degrading enzymes at a rate 0 and account for ECM remodelling at a rate µ 0, resulting in the following mass-balance equation for the ECM density: (5.10) where the parameters # 1 and # 2 have already been introduced in Section 5.1.1, indicating ECM remodelling is here understood as a restructuring phenomenon that only occurs if space is available [START_REF] Domschke | Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF]. This is assumed to be independent of the cell density n as ECM remodelling in vivo is generally mediated by other cell types present in the tissue, such as mesenchymal stem cells, fibrocytes and fibroblast [START_REF] Bellini | The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses[END_REF][START_REF] Bianchetti | Extracellular matrix remodelling properties of human fibrocytes[END_REF][START_REF] Diaz-Flores | CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. location, morphology, function and role in pathology[END_REF][START_REF] Mcanulty | Fibroblasts and myofibroblasts: their source, function and role in disease[END_REF][START_REF] Stenmark | Hypoxic activation of adventitial fibroblasts: role in vascular remodeling[END_REF], which we do not include in our modelling framework.

@ t ⇢ = ⇢m + µ(1 # 1 n # 2 ⇢) + ,
Dynamics of MMPs. We let the matrix-degrading enzyme (MMP) be produced by the EPCs at a rate ↵ m 0, undergo Fickian di↵usion with di↵usivity D m 0, and decay at rate m 0. Then the MMP concentration m(t, x) satisfies:

@ t m D m m = ↵ m n m m .
(5.11)

Dynamics of VEGFs. Similarly to the matrix-degrading enzyme, we let the chemotactic agent (VEGF) be produced by the EPCs at a rate ↵ c 0, undergo Fickian di↵usion with di↵usivity D c 0, and decay at rate c 0. This results in the following massbalance equation for the VEGF concentration c(t, x):

@ t c D c c = ↵ c n c c .
(5.12)

Boundary and initial conditions

Boundary conditions. While equation (5.10) describes the dynamics of the ECM in the closed spatial domain ⌦ = ⌦ [ @⌦, equations (5.1), (5.11) and ( 5.12) are posed on the open set ⌦, and are complemented with zero-flux boundary conditions. These boundary conditions imply that no mass is exchanged with the outside of the spatial domain, i.e. we have a closed system. For the nonlocal terms (5.5) and (5.6) this means that they cannot sense the system's state outside of the spatial domain ⌦. We thus impose that in these terms the function g(v(t, •)) equals zero if it is to be evaluated for a point outside of ⌦ [START_REF] Domschke | Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF] and thus obtain well-defined nonlocal terms (5.5) and (5.6) throughout the spatial domain.

Initial conditions. As proposed by [START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF], we construct the initial conditions to mimic sparsely distributed cells on the ECM. In particular, the initial cell density is given by the sum of K 2 N randomly distributed bell-shaped bumps. In particular, we construct these bumps as Gaussian-like functions with maximum height and full width at half maximum (FWHM) both equal to the size of an average cell diameter a > 0. We let the initial ECM density be constant and the initial MMP and VEGF concentrations be null. Thus we have (5.13) where G i (x; a) indicates the Gaussian-like function centered at the (randomly selected)

n(t, x) = K X i=1 G i (x; a) , ⇢(0, x) = ⇢ 0 > 0 , m(0, x) = c(0, x) = 0 ,
x (i) 2 ⌦ and is given by

G i (x; a) := a exp  4 ln 2 a 2 | x x (i) | 2 .
(5.14)

In equation ( 5.14) we have used the formula FWHM= 2 p 2 ln 2 where is the standard deviation of the Gaussian.

Nondimensional model

We nondimensionalise the system of equations ( 5.1) and ( 5.10)-( 5.12), together with definitions (5.2)-( 5.9), (5.13) and (5.14), by letting

t = t ⌧ , x = x L , n = n N , ⇢ = ⇢ P , m = m M , ĉ = c C
.

We use L = 0.1 cm as characteristic length scale, in accordance with previous vasculogenesis works [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF] and for easy visual comparison with the experimental results reported by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. We then take reference time scale ⌧ := L 2 /D, where D is a characteristic cell di↵usion coe cient D ⇠ 10 6 cm 2 s 1 [START_REF] Bray | Cell movements: from molecules to motility[END_REF], resulting in a reference time scale ⌧ = 10 4 s. The reference cell density is chosen to be N := n M = # 1 1 and we take # 1 = 10 9 cm 3 /cell, the average volume occupied by an endothelial cell [START_REF] Rubin | Endothelial cell subpopulations in vitro: Cell volume, cell cycle, and radiosensitivity[END_REF]. We use a reference ECM density of P = 10 1 nM [START_REF] Anderson | A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion[END_REF][START_REF] Anderson | Mathematical Modelling of Tumour Invasion and Metastasis[END_REF][START_REF] Terranova | Human endothelial cells are chemotactic to endothelial cell growth factor and heparin[END_REF] and define the parameter # 2 := P 1 . We take the reference VEGF density to be C = 20 ng cm 3 , in the range of values generally considered in in vitro set ups (Hanjaya-Putra and Gerecht, 2009; [START_REF] Lee | [END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF]. Finally, [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] reported concentrations of MMP-1 in the range 1 100 µg ml 1 , so we take the intermediate concentration as reference MMP density, i.e. M = 10 µg cm 3 . Let us introduce the following nondimensional parameters:

Dn = D n D , ˆ = C D , R = R L , Ŝnn = S nn D# 1 , Ŝn⇢ = S n⇢ D# 2 , p = p⌧ , ˆ = M ⌧ , μ = µ⌧ # 2 , Dm = D m D , ↵m = ↵ m ⌧ M # 1 , ˆ m = m ⌧ , Dc = D c D , ↵c = ↵ c ⌧ C# 1 , ˆ c = c ⌧ , â = a L , ⇢0 = ⇢ 0 P .
Then the overall nondimensionalised system becomes, dropping hats for convenience, 5.15) where (5.15) 1 , (5.15) 3 and (5.15) 4 are posed on (t, x) 2 (0, 1) ⇥ ⌦ and are complemented by zero-flux boundary conditions on @⌦, while (5.15) 3 is posed on (t, x) 2 (0, 1) ⇥ ⌦. In equation ( 5.15) 1 the operator A[v(t, •)] takes the form (5.5) in 1D and (5.6) in 2D, with (r) still defined as in (5.8), and g(v) is given as in (5.9) with f (n, ⇢) now given by

8 > > > > > > > > > > < > > > > > > > > > > : @ t n = D n n r • n f(n, ⇢) rc r • n A[v(t, •)] + pn(1 n ⇢) @ t ⇢ = ⇢m + µ(1 n ⇢) + @ t m = D m m + ↵ m n m m @ t c = D c c + ↵ c n c c ( 
f (n, ⇢) = (1 n ⇢) + .
(5.16)

The parameters R, S nn and S n⇢ are the nondimensional ones introduced above, and the system (5.15) is complemented with initial conditions (5.13)- (5.14), in which the parameters a and ⇢ 0 now corresponds to the nondimensional ones introduced above.

Linear stability analysis results

Linear stability analysis steps. We perform a LSA on the spatially homogeneous steady states, say, v of the nondimensional system (5.15)-( 5.16), together with the relevant definitions for the 1D and 2D problems, in order to gain insights into the destabilising processes that might lead to cluster formation. During the LSA we first introduce a small spatially homogeneous perturbation v = v + ṽ(t), with |ṽ| ⌧ 1, in (5.15) and linearise. By assuming the small perturbation is proportional to exp ( t), we derive a characteristic equation for , analogous to that satisfied by the eigenvalues i (i = 1, ..., 4) of the Jacobian matrix of the spatially homogeneous system. We distinguish between the following options: (i) If all eigenvalues (solutions to the characteristic equation) i (i = 1, ..., 4) are such that Re( i ) < 0, the steady state is stable under spatially homogeneous perturbations; (ii) If at least one eigenvalue i (for some i 2 {1, 2, 3, 4}) is such that Re( i ) > 0, the steady state is unstable under spatially homogeneous perturbations; (iii) If all eigenvalues i (i = 1, ..., 4) are such that Re( i )  0 with at least one zero eigenvalue, the LSA is inconclusive and the steady state is said to be 'degenerate'.

In the latter case, the linear stability of the spatially homogeneous steady state under spatially homogeneous perturbations is investigated numerically. We then repeat these steps under a small spatially inhomogeneous perturbation v = v + ṽ(t, x), with |ṽ| ⌧ 1, assuming it is proportional to ṽ(t, x) / exp ( t + i k • x). Once we obtain a dispersion relation (k 2 ), where k 2 = |k| 2 , we study the conditions under which Re( (k 2 )) > 0 for some k 2 , as in such regimes we expect spatially inhomogeneous perturbations to grow in time and patterns to arise. We conduct this analysis both in 1D and 2D for the model ( 5.15)-( 5.16), as well as for the corresponding problem in the absence of volume exclusion, i.e. substituting definition (5.16) for f (n, ⇢) with f (n, ⇢) = 1 .

(5.17)

The analytical details are reported in Appendix A.4.

Linear stability analysis results. The two spatially homogeneous steady states v of system (5.15) are such that either the whole domain is solely occupied by cells (n = 1 and ⇢ = 0, the 'cell-full' steady state) or solely occupied by ECM (n = 0 and ⇢ = 1, the 'cell-free' steady state). The cell-full steady state is the biologically relevant one and LSA indicates that:

• The cell-full steady state is stable under spatially homogeneous perturbations;

• In the presence of volume exclusion saturating e↵ects, i.e. under definition (5.16), it is also stable under spatially inhomogeneous perturbations;

• In the absence of volume exclusion saturating e↵ects, i.e. under definition (5.17), chemotaxis and cell-to-cell adhesion may drive it unstable under spatially inhomogeneous perturbations. These results suggest that patterns may arise when cell-to-cell adhesions and chemotactic mechanisms dominate the dynamics. This may occur, for instance, when the domain is not too densely packed with cells and ECM. Remark 6. LSA indicated that the cell-free steady state, which is not biologically relevant per se, is a degenerate steady state. However, while LSA is inconclusive on the linear stability of the cell-free steady state under spatially homogeneous perturbations, numerical simulations indicate instability in the case of perturbations with ñ > 0 (i.e. if some cells appear in the system), in which case the solution eventually converges to the cell-full steady state. Moreover, further observations indicate cell proliferation and matrix degradation by the cells play important roles in its instability under small spatially homogeneous perturbations. These results suggest that cell proliferation and matrix degradation might have an important destabilising e↵ect when the initial conditions with low cell density satisfy volume filling conditions.

Numerical investigations

In this section we construct numerical solutions of the nondimensional system (5.15)- (5.16), together with the appropriate definitions in 1D and 2D, with zero-flux boundary conditions and initial conditions (5.13)- (5.14). We use these numerical solutions to provide an overview of potential model behaviours under one-at-a-time perturbations from the baseline parameter set. This, together with the corresponding nondimensional (ND) parameter values according to the choices presented in Section 5.1.4, is reported in Table 5.1 -see Appendix C.2 for details. In Section 5.3.1, we describe the set-up of numerical simulations and the methods employed to construct numerical solutions. In Section 5.3.2 we report the results of the 1D model under the baseline parameter set and qualitatively investigate the determinants of cluster formation in Section 5.3.3. In Section 5.3.4 we report the results of the parametric analysis conducted to elucidate the determinants of cluster size in 1D. In Section 5.3.5 we report the results of the 2D model.

Set-up of numerical simulations and numerical methods

Set-up of numerical simulations of Sections 5.3.2-5.3.5. For the numerical simulations we present in Sections 5.3.2-5.3.4, we define ⌦ = (0, 1) and solve system (5.15)-(5.16) under definition (5.5) and the 1D version of definitions (5.8) and (5.9), i.e. for

x ⌘ x, with zero-flux boundary conditions and the 1D version of initial conditions (5.13)- (5.14). For the parametric analysis reported in Section 5.3.4, we make use of the metrics of cluster size defined at the end of this section. For the numerical simulations we present in Section 5.3.5, we define ⌦ = (0, 1) ⇥ (0, 1) in order to model a (nondimensional) horizontal cross-section of a 3D in vitro vasculogenesis assay. We solve system (5.15)-( 5.16) under definition (5.6) and the 2D version of definitions (5.8) and (5.9), with zero-flux boundary conditions and the 2D version of initial conditions (5.13)- (5.14).

Numerical method. Numerical solutions are constructed via a numerical scheme that follows the method of lines by first discretising the nonlocal model in space (with 1000 grid cells in 1D and 100 ⇥ 100 grid cells in 2D), yielding an initial value problem for a large system of ODEs. This system is then solved using the time integration scheme ROWMAP [START_REF] Weiner | ROWMAP-a ROW-code with Krylov techniques for large sti↵ ODEs[END_REF], implemented in a Fortran subroutine and called from Matlab. For the discretisation in space a second-order finite volume approach which makes use of flux-limiting for an accurate discretisation of the taxis and adhesion terms is employed. All numerical simulations have been performed in Matlab. See Appendix B.2 for more details on the numerical scheme. Cluster size metrics. In order to gain insight into the role played by di↵erent biological, chemical and mechanical factors in dictating the cluster size, we define two di↵erent measures of cluster size with complementary information, as similarly done in [START_REF] Palmer | Nanostructured surfaces from size-selected clusters[END_REF]. We define these for the nondimensional 1D problem, but analogous definitions can be considered for the 2D problem. Assume that Q 2 N clusters have formed at time t = T and let ! ⇢ ⌦ be the subdomain supporting these clusters, i.e.

! := supp n(T, x) .

(5.18)

Then ! can be partitioned into Q subdomains ! 1 , ..., ! Q , i.e. we have

Q [ i=1 ! i = ! and ! i \ ! j = ; for i, j = 1, ..., Q , i 6 = j , (5.19) 
where each ! i (i = 1, ..., Q) corresponds to the support of a cluster. We let the average cluster width W and average cluster compactness C be defined by

W := 1 Q Q X i=1 W i , where W i := |! i | i = 1, ..., Q , (5.20) 
C := 1 Q Q X i=1 C i , where C i = R ! i n(T, x) dx W i i = 1, ..., Q .
(5.21)

Under definitions (5.18)-(5.20), the width W i (i = 1, ..., Q) of each cluster is a measure of the length of its support, which may be understood as an indicator of the diameter of the cluster assuming the 1D case is reflective of the corresponding 2D problem. Note that the analogous 2D definition to (5.20) would inform us on the area covered by each cluster, from which the average cluster diameter could be calculated. However, this would need to be complemented with an additional metric for cluster elongation (e.g. the ratio between the diameter of the circle circumscribing ! i and that of the one inscribed in ! i ), in order to obtain an exhaustive description of the clusters structure. Under definition (5.21), in which n(T, x) is the nondimensional cell density, the compactness C i (i = 1, ..., Q) of each cluster is a measure of the average cell density within cluster i. Cluster compactness allows us to distinguish between simple cell aggregates and well-defined clusters, identified as such only if C is higher than 0.5, corresponding to at least half the local volume being occupied by cells. Under the choices of nondimensionalisation and of spatial domain for the numerical simulations, we expect 0  W i  1 and -under cell incompressibility assumptions -0  C i  1 for all i = 1, .., Q. Figure 5.1 summarises the biological interpretation of possible combinations of W and C. In practice, the cluster domains ! i used to calculate W and C are identified via image segmentation by thresholding, with a threshold value for the cell density set to be 10 4 -though smaller values have also been considered which do not remarkably a↵ect the results presented henceforth -below which n(t, x) is approximated to zero. 

Cluster formation under the baseline parameter set

We report in Figure 5.2 the cell density n(t, x) obtained from numerical simulations of the 1D model under the baseline parameter set and in Figure 5.3 the corresponding cluster width W and compactness C measured. The plots displayed in these figures indicate that our model predicts three stages of cluster formation in 1D. First EPCs form aggregates which reach a minimum cluster width of about W = 0.2 around t = 17 (cf. left panel in Figure 5.2 and Figure 5.3). Then the cells in these aggregates continue to proliferate, increasing their compactness, while keeping the cluster width unchanged up to about t = 50 (cf. central panel in Figure 5.2 and Figure 5.3). Finally, the cells continue to proliferate until the whole domain is occupied by cells (cf. right panel in Figure 5.2 and Figure 5.3).

The simulated dynamics of cluster formation nicely match the experimentally observed ones by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF], see Figure 4.2, although in our simulations they occur on 5.1, reported in Figure 5.2.

Numerical investigation of cluster formation

In view of the results reported in Section 5.3.2, we now investigate the role played by chemotaxis, ECM degradation and cell-to-cell adhesion in cluster formation by varying the relevant parameter values and observing changes in the solution up until t = 50, starting from the same initial conditions considered in the previous section. The longtime dynamics (up to t = 400) of the solutions plot in Figure 5.4 are reported in the supplementary Figure D.2.

The primary role of chemotaxis and ECM degradation

The plots reported in the second row of Figure 5.4 reveal the role of chemotaxis and ECM degradation in cluster formation, according to the dynamics described in Section 5.1. Under the baseline parameter set we observe cluster formation (cf. first plot in second row of Figure 5.4), as discussed in the previous paragraph and summarised in Figure 5.2. In the absence of ECM degradation, even though cell aggregates of the same width form, the maximum cell density remains below 0.3 (cf. second plot in second row of Figure 5.4) and actually decays over longer periods of time (see supplementary Figure D.2). On the other hand, in the absence of chemotaxis, no cell aggregation occurs and we either observe total invasion of the domain by the cells (cf. third plot in second row of Figure 5.4) or, in the absence of ECM degradation, a simple spatial redistribution of the cells (cf. fourth plot in second row of Figure 5.4). These results indicate that chemotaxis and ECM degradation are both crucial to cluster formation, with chemotaxis playing a key role in cell aggregation, and ECM degradation being responsible for these aggregates growing into well-defined and compact clusters.

The secondary role of cell-to-cell adhesion Let us now compare the plots in the second row of Figure 5.4 with those in the rest of the figure, which have been obtained by varying the cell-to-cell adhesion coe cient S nn , the value of which was chosen a priori due to lack of proper estimates in the current literature. We immediately observe that for small values S nn  0.1, under the baseline parameter set, cell-to-cell adhesion does not play any particular role in cluster formation, as demonstrated by the fact that the simulations in the absence of cell-to-cell adhesion closely resembles those with S nn = 0.1 (cf. first and second row of Figure 5.4). On the other hand, increasing the order of magnitude of the cell-to-cell adhesion coe cient results in the initial formation of smallscale aggregates. Moreover, the maximum density reached by these aggregates increases as S nn increases (cf. third and fourth row of Figure 5.4). This, however, does not seem to a↵ect the long-time dynamics of the solution, which remain analogous to those described in the previous paragraph. For instance, under the baseline parameter set except for First row: Plots of the cell density n(t, x) up to t = 50 obtained solving the system (5.15), together with definitions (5.5), (5.8) and (5.16), initial conditions (5.13) and (5.14) 1 , complemented with zero-flux boundary conditions, in the absence of cell-to-cell adhesion, i.e for S nn = 0: under the baseline parameter set (first column), in the absence of ECM degradation, i.e. for = 0 (second column), in the absence of chemotaxis, i.e. = 0 (third column), and in the absence of both chemotaxis and ECM degradation, i.e. = = 0 (fourth column). Second, third and fourth rows: Same as first row but in the presence of cell-to-cell adhesion, with S nn = 0.1 (second row), S nn = 1 (third row) and S nn = 10 (fourth row) respectively.

Numerical investigation of cluster size

We study changes in the measures W and C, defined according to (5.20) and (5.21), at t = 50 under alternative values of each parameter in the baseline parameter set. In particular, we consider the e↵ect of halving and doubling the magnitude of each parameter in equations ( 5.15) 1 and (5.15) 2 in Figure 5.5, and those in equations (5.15) 3 and (5.15) 4 in Figure 5.6. Each boxplot had been obtained using data from 100 simulations under the same parameter set, starting from randomised initial conditions as in (5.13) and ( 5.14) 1 . The cluster width W measured over 100 simulations under the baseline parameter width ranges between 0.15 and 0.41 with median (and mean) around 0.23, as portrayed in Figures 5.5 and 5.6 (central boxplot in each W plot). This nondimensional width corresponds to a diameter in the range 150 410µm, which is consistent with the experimentally observed cluster size in [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] 

(cf. Figure 4.2).
The role of chemotaxis Boxplots of the width W and compactness C of clusters for di↵erent values of the chemotactic sensitivity are displayed in Figure 5.5b. While higher values of correlate with slightly smaller clusters, yet maintaining a mean width around 0.2, lowering the magnitude of seems to result in a wider range of values of W with much higher median, as well as higher compactness C. This supports the notion that lowering the chemotactic sensitivity of the cells hinders cluster formation and -assuming all other dynamics are present -fosters tissue invasion, which is in line with the results presented in Section 5.3.3.

The role of ECM degradation Boxplots of the width W and compactness C of clusters for di↵erent values of the ECM degradation rate are displayed in Figure 5.5f. Notice that, while the median width W is maintained around 0.2, increasing the magnitude of results in a smaller range of values measured for both W and C, as well as higher values of cluster compactness. In addition, this trend suggests that further decreasing will lead to higher values of W and lower values of C (see supplementary Figure D.3c), which is in line with the observed dynamics in the absence of ECM degradation in Section 5.3.3 (cf. Figure 5.4, second and fourth columns). Overall, this highlights the key role ECM degradation has in cluster formation, establishing a relation between the rate and the cluster compactness C.

The role of matrix remodelling We see in Figure 5.5g that increasing the magnitude of the matrix remodelling rate µ yields opposing e↵ects to those obtained increasing its degradation rate (vid. Figure 5.5f), which is coherent with the opposite nature of these dynamics.

The role of cell-to-cell adhesion The plots in Figure 5.5c confirm that small changes in the cell-to-cell adhesion coe cient S nn do not influence the size of clusters, as expected from the results in Section 5.3.3. Additional numerical tests considering di↵erent orders of magnitude of S nn (see supplementary Figure D.3b) revealed a slight increase in the median W , probably due to the initial presence of smaller clusters (cf. Figure 5.4, third row) which at t = 50 may still be in the process of merging depending on their spatial distribution. These results suggest that cell-to-cell adhesion is not a key mechanism in determining cluster structure.

The role of cell di↵usion and cell-matrix interactions

The boxplots of W and C of clusters for di↵erent values of the cell di↵usion coe cient D n , displayed in Figure 5.5a, show that changing the magnitude of D n has very little e↵ect on the cluster compactness C and median width W . There is, however, an increasing range of values of W measured as D n increases, indicating that low di↵usivity correlates with more precisely defined clusters, while high di↵usivity results in more variability in cluster size. Moreover, this variability allows for larger values of W to be measured, suggesting that much higher di↵usivity may result in tissue invasion (see supplementary Figure D.3a). The same observations can be conducted on the boxplots in Figure 5.5d, obtained by varying the magnitude of the cell-to-matrix adhesion coe cient. This is in line with the notion that lower cell-matrix interactions facilitate cluster formation, while much higher cell-matrix interactions promote tissue invasion.

The role of cell proliferation In Figure 5.5e we see that slower proliferation -i.e. lower p -correlates with a wide range of lower values of cluster compactness C, while the median width is maintained around 0.2. On the other hand, faster proliferation -i.e. higher p -results in a wide range of higher values of cluster width W and a small range of high values of compactness C. Note that these data portray di↵erent stages of the cluster formation process, as demonstrated in Figure 5.3 (central panel): initially aggregates form without being very condensed (low-to-medium W and C), then they increase their compactness while keeping steady width (low W and high C), and eventually grow further invading the surrounding space (medium-to-high W and high C). This suggests that the rate of proliferation of EPCs might play a key role in determining the speed of the cluster formation process.

The role of initial ECM density The plots in Figure 5.5h indicate that changes in the initial ECM density ⇢ 0 do not a↵ect the long-time spatiotemporal dynamics. In fact, while di↵erent values of ⇢ 0 results in slightly di↵erent values of the median width and compactness of clusters observed at t = 50, these values still capture the same biological scenario (i.e. cluster are recognisable at t = 50).

The role of VEGF dynamics Figure 5.6e displays changes in cluster width W and compactness C as the rate production of VEGF, ↵ c , varies. Note that these results well mirror those obtained by varying chemotactic sensitivity (cf. Figures 5.5b and 5.6e), which is coherent with the notion that higher VEGF production rates correlate with stronger chemotactic dynamics, already established to play a key role in cluster formation. In addition, the size of clusters seems to be proportional to the VEGF di↵usion coe cient D c , as demonstrated by the plots in Figure 5.6d in which we see that increasing the magnitude of D c results in higher W and C. This trend, however, suggests that much higher values of D c may result in tissue invasion, rather than cluster formation (see supplementary Figure D.3e). Finally, as suggested by Figure 5.6f, changes in the VEGF decay rate c do not seem to particularly e↵ect cluster size, over the range of parameter values considered.

The role of MMP dynamics Figure 5.6b displays changes in cluster width W and compactness C as the rate production of MMP, ↵ m , varies. Similarly to what was observed for ↵ c in relation to , we see that these boxplots closely resemble those obtained varying (cf. Figures 5.5f and 5.6b), which is coherent with the notion that higher MMP production rates correlate with stronger degrading dynamics, already established to be responsible for turning aggregates into clusters -that is, increasing their compactness. In addition, we see in Figure 5.6c that increasing the magnitude of the MMP decay rate m yields opposite e↵ects to those obtained increasing their production ↵ m , further confirming the role MMP-mediated ECM degradation has in cluster formation. On the other hand, changes in the MMP di↵usivity D m do not seem to a↵ect cluster size, as demonstrated in Figure 5.6a -verified under di↵erent orders of magnitude of D m (see supplementary Figure D.3d). This suggests not much will be gained by distinguishing between membrane-bound and di↵usive MMPs, at least in this modelling framework and within the range of parameter values considered.

2D clusters

Let us now consider the 2D problem. In this section we focus on the most interesting results obtained in Section 5.3.4 and investigate the role played by chemotaxis, ECM degradation and cell proliferation in the formation of 2D clusters. We also consider the results in the absence of ECM remodelling, discussing its biological interpretation in relation to in vitro and in vivo assays. 2D clusters under the baseline parameter set. Under the baseline parameter set reported in Table 5.1, 2D cluster formation follows slightly di↵erent spatiotemporal dynamics to those observed in the 1D case, as demonstrated by the plots in the second row of Figures 5.7,5.8 and 5.9. At t = 20, the cell density has already reached maximum local compactness in some regions, while aggregation dynamics are still at their early stages (cf. first panel in second row of Figures 5.7,5.8 or 5.9), and the minimum cluster size is observed no earlier than t = 140 (cf. fourth panel in second row of Figures 5.7,5.8 or 5.9). The cluster observed at this stage has a nondimensional diameter of about 0.2, which perfectly agrees with the results in 1D and is also consistent with experimental observations reported by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. After the cluster has formed, no tissue invasion is observed -see supplementary The role of chemotaxis in 2D. The plots reported in Figure 5.8 demonstrate that endogenous chemotaxis promotes aggregation dynamics, as predicted by the results of the 1D model presented in Sections 5.3.3 and 5.3.4, and reveal that chemotaxis is an important determinant of 2D cluster structure. Lower values of the chemotactic sensitivity correlate with slower and weaker aggregation dynamics, so that no well-defined clusters can be observed (cf. first row of Figure 5 The role of cell proliferation in 2D. While the results of the 1D model presented in Section 5.3.4 seemed to suggest that the speed of the cluster formation process is proportional to the cell proliferation rate p, the plots reported in Figure 5.9 in a 2D framework indicate otherwise. While the rate of cell proliferation may influence how the cells respond to spatial gradients at the beginning of the cluster formation process (cf. plots in the second column of Figure 5.9), it does not seem a↵ect the overall spatiotemporal dynamics of 2D cluster formation. Upon these considerations, the results displayed in Figure 5.5e may simply be a 1D projection of the 2D dynamics occurring around the same time -consider for instance a 1D cross-section (e.g. x 1 = 0.5) of the plots in the second column of Figure 5.9. The role of matrix remodelling and its relation to in vitro studies. While matrix remodelling naturally occurs in vivo thanks to the presence of other cells in biological tissue, this is not generally observed in in vitro assays, which occur in isolated environments. Thus, in order to compare our results with those of in vitro studies, we chose to set the ECM remodelling rate µ = 0, and present the results in Figure 5.10. We observe that clusters still form in the absence of ECM remodelling, however they are smaller than in the baseline parameter set (cf. last panel in the second row of Figures 5.7-5.9 and that of Figure 5.10). The smaller cluster size may result from the more dominant role played by cell-to-cell adhesion following ECM degradation: in the absence of ECM remodelling, volume exclusion is less likely to a↵ect the cell dynamics and, at the cell boundaries, cell-matrix interactions become negligible compared with cell-cell interactions. We would then expect to observe clusters of a smaller diameter but higher maximum density, but because of death due to competition for space we instead observe a loss of cell mass. While these results are mathematically consistent with our model set up, the observed cluster size under the baseline parameter set was more coherent with in vitro experimental observations in [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] than that observed for µ = 0. This could be explained by considering that our 2D set up is meant to reflect dynamics occurring in a 2D horizontal cross section of the 3D experimental domain reported in [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF], illustrated in Figure 4.2. As the cells degraded the matrix and reorganised into clusters, they also fell towards the bottom of the hydrogel, as illustrated by the experimental data reported in Figure 4.2D, in regions where it was not yet degraded. Thus, following the horizontal plane intersecting the cluster's centre, we would indeed observe cell-independent matrix remodelling. 

Chapter 6

Discussion and research perspectives

Summary and discussion

Despite the great progress made in the past 20 years in understanding the mechanisms behind EPC cluster-based vasculogenesis, much more needs to be achieved in order to unlock its full therapeutic potential. Mathematical modelling provides theoretical means to shed light on the otherwise hidden role played by underlying dynamics in the origin and structure of the emergent vascular network, as previously achieved in the study of mature EC vascular network formation (single-cell vasculogenesis). We therefore formulated a nonlocal PDE model of EPC cluster formation during the early stages of vasculogenesis, including mechanisms such as ECM degradation, cell proliferation and cell-to-cell adhesion, which were recently found to distinguish cluster-based vasculogenesis from singlecell vasculogenesis [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. By introducing appropriate metrics of cluster width and compactness, we investigated the role played by the underlying dynamics in facilitating cluster formation, regulating the speed of the cluster-formation process and the size of clusters -see Table 6.1 for a summary of the results of the parametric analysis of the 1D problem. Furthermore, we verified that most of the key observations from the parametric analysis for the 1D model still hold in a 2D framework.

Chemotaxis, degradation and their link to hypoxia

Our results confirmed the role played by matrix degradation in the formation of EPC clusters in both the 1D and 2D models, providing additional theoretical support to the mechanism of EPC cluster formation proposed by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. For example, the in vitro experiments indicated that no clusters form in the absence of MMPs, which is precisely what we discovered here. In addition, the investigation conducted in Sec- Little to no e↵ect 5.6f tions 5.3.4 and 5.3.5 indicate that the speed of cluster formation is proportional to the rate of matrix degradation -and the rate of MMP secretion by the cells -which nicely agrees with their experimental observations. Our numerical results further highlighted that matrix degradation alone may not su ce to explain the formation of clusters, as endogenous chemotaxis was shown to be responsible for aggregation dynamics, without which the cells would simply invade the whole tissue. In addition, the investigation conducted in Sections 5.3.4 and 5.3.5 suggests that the size of clusters is (inversely) related to the chemotactic sensitivity of the cells -and the rate of VEGF secretion by the cellsindicating chemotaxis may be a key determinant of cluster topology. Note that, in view of the experimental evidence presented by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] and [START_REF] Akita | Hypoxic preconditioning augments e cacy of human endothelial progenitor cells for therapeutic neovascularization[END_REF], the MMP production rate ↵ m and the VEGF production rate ↵ c may be correlated with the local level of hypoxia. It would therefore be interesting to let these production rates be given as functions of the local oxygen concentration. The results here obtained suggest that our model would then predict cluster formation to be fostered by higher levels of hypoxia, indeed agreeing with the referenced experimental observations [START_REF] Akita | Hypoxic preconditioning augments e cacy of human endothelial progenitor cells for therapeutic neovascularization[END_REF][START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF].

Cell-to-cell adhesion and cluster stability

Cell-to-cell adhesion, on the other hand, did not seem to play an important role in cluster formation or cluster structure. While this may seem counter-intuitive considering previous single-cell vasculogenesis works [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF][START_REF] Merks | Cell-oriented modeling of in vitro capillary development[END_REF][START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF]Scianna et al., 2013), these models did not include both chemotaxis and degradation and thus did not predict cluster formation as an intermediate step in network formation.

In view of these works, however, we cannot exclude that the final network configuration (e.g. cord thickness) depends on cell-to-cell adhesion. According to [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF], cell-to-cell adhesion is not related to cluster structure, which is consistent with our model predictions, but is responsible for cluster stability. The mathematical study of cluster-based vasculogenesis would therefore benefit from a more suited description of cell-to-cell adhesion, as we have seen in Section 5.3.3 that our modelling choice allows us to capture the aggregative e↵ect of cell-to-cell adhesion, but not its role in cluster stabilisation. This could perhaps be achieved by, instead of modelling cell adhesion nonlocally, modelling di↵usion nonlinearly 1 [START_REF] Carrillo | A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation[END_REF][START_REF] Murakawa | Continuous models for cell-cell adhesion[END_REF] together with volume exclusion, as done for chemotaxis (cf. definitions (5.2) and ( 5.3)). This would implicitly account for the physical limits of migration imposed by adhesion bonds. Alternatively, one could modify the volume exclusion term (i.e. definition (5.3)) to explicitly model cell adhesion molecules, which would additionally allow for the study of the e↵ect of cell adhesion-mediated saturation of chemotaxis [START_REF] Merks | Dynamic mechanisms of blood vessel growth[END_REF][START_REF] Merks | [END_REF][START_REF] Singh | Role of di↵erential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis[END_REF]. Otherwise, the stabilising e↵ect of cell-to-cell adhesion could be more easily achieved by adopting an IB or hybrid modelling approach [START_REF] Anderson | A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion[END_REF][START_REF] Singh | Role of di↵erential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis[END_REF][START_REF] Turner | Intercellular adhesion and cancer invasion: a discrete simulation using the extended potts model[END_REF][START_REF] Turner | From a discrete to a continuous model of biological cell movement[END_REF], as done in previous CP models of single-cell vasculogenesis [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF][START_REF] Merks | Cell-oriented modeling of in vitro capillary development[END_REF][START_REF] Merks | [END_REF][START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF][START_REF] Scianna | A multiscale hybrid approach for vasculogenesis and related potential blocking therapies[END_REF]Scianna et al., , 2013;;[START_REF] Szabo | Multicellular sprouting in vitro[END_REF].

Research perspectives 6.2.1 Model validation

The results reported in Chapter 5 suggest that in order to gain a comprehensive understanding of EPC cluster formation during the early-stages of cluster-based vasculogenesis, it is necessary to consider both ECM degradation and chemotaxis. So far these processes have only been experimentally investigated separately [START_REF] Akita | Hypoxic preconditioning augments e cacy of human endothelial progenitor cells for therapeutic neovascularization[END_REF]Blatchley et al., 1 Nonlinear di↵usion might also prevent infinite speed of propagation predicted by linear di↵usion theory [START_REF] Andreu | Di↵usion equations with finite speed of propagation[END_REF], which is per se unrealistic when modelling cellular movement. It might therefore also prevent the strict positivity of cell density over the whole domain, which might make the identification of the support of each cluster more straightforward, cf. Section 5.3.1.
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), but it would be interesting to examine them in both normoxic and hypoxic conditions, in view of our in silico results (cf. Section 6.1.1). Model validation would also allow for a more accurate baseline parameter set. In fact, while the role played by matrix degradation and the size of clusters in our numerical simulations well matches the experimental observations reported by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF], this -and future -mathematical models would benefit from the estimation of parameter values by fitting the model to experimental data in order to obtain a better match of the timescale of 2D cluster formation. Note, for instance, that the ten-fold increase in ↵ m which results in the observation of well-defined clusters at t = 20 (see supplementary Figure D.6) might be justified by the experimental conditions reported in [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] (see Appendix C.2). In view of the results reported in Section 5.3.5 in the absence of matrix remodelling, it would also be interesting to further investigate the role ECM remodelling may play in cluster formation and cluster size. This could lead to interesting observations regarding the empirical di↵erences of cluster-based vasculogenesis during in vitro and in vivo studies, and suggest interesting focus points for therapeutic intervention. In order to achieve this, however, alternative experimental set ups might need to be considered, in order to avoid the remodelling-resembling e↵ects of cells falling towards the bottom of the 3D hydrogel during the cluster-formation process.

Further analytical investigations

In Section 5.3 we have conducted a parametric analysis of the model in order to elucidate potential model behaviour. Whereas this already gave meaningful information to discuss the importance of the various processes involved in cluster-based vasculogenesis, there are more advanced mathematical tools available for the analysis of the dependence of the model outcome on the model parameters. In particular, once accurate ranges of parameter values have been estimated from data spanning di↵erent levels of hypoxia, it would be of significant interest to conduct a global sensitivity analysis [START_REF] Marino | A methodology for performing global uncertainty and sensitivity analysis in systems biology[END_REF][START_REF] Qian | Sensitivity analysis methods in the biomedical sciences[END_REF][START_REF] Renardy | Global sensitivity analysis of biological multiscale models[END_REF] of the cluster width and compactness to parameter variability. In fact, while the conducted parametric analysis highlighted the role played by each single parameter as it deviates from its baseline value, the global sensitivity analysis would provide a tool to investigate the e↵ect of combined changes in the value of multiple or all parameters over ranges indicative of di↵erent levels of hypoxia. This global approach is also significant given the nonlinear nature of the model [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF][START_REF] Saltelli | Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices[END_REF]. Upon revision of the modelling strategy adopted to describe cell-to-cell adhesion, a global sensitivity analysis could be conducted in 2D in relation to the cluster compactness (C), area (W ) and elongation (see Section 5.3.1). Moreover, it would be particularly interesting to conduct a weakly nonlinear analysis [START_REF] Boonkorkuea | Nonlinear stability analyses of vegetative pattern formation in an arid environment[END_REF]Cross and Greenside, 2009;[START_REF] Han | Pattern formation for a volume-filling chemotaxis model with logistic growth[END_REF][START_REF] Hoyle | Pattern formation: an introduction to methods[END_REF] of the 2D model for a quantitative description of how chemotaxis is responsible for cluster structure. For instance, considering the results reported in Figure 5.8, there might be a threshold value of the chemotactic sensitivity below which we do not observe 2D clusters.

The inclusion of persistence of motion

In addition to the modelling research perspectives discussed in Sections 6.1.1 and 6.1.2, interesting investigations could be conducted by considering the possible interplay between degradation and persistence of motion. Previous CP models of single-cell vasculogenesis predicted cluster formation in the absence of cell elongation [START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF], due to chemotaxis. Despite their exclusion of ECM degradation and proliferation, we expect such result to capture the role of elongation during cluster-based vasculogenesis, given that EPC motion during the early stages of the process is mostly amoeboid-like, and we observe cell polarisation only in the later stages [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. On the other hand, persistence of motion, indicated to prevent cell clusterisation by PEC models of single-cell vasculogenesis [START_REF] Tosin | Mechanics and chemotaxis in the morphogenesis of vascular networks[END_REF], was observed to be enhanced during amoeboid-like migration [START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF]. It would therefore be interesting to investigate whether clusters would still form in this modelling framework with the inclusion of persistence of motion. In particular note that [START_REF] Tosin | Mechanics and chemotaxis in the morphogenesis of vascular networks[END_REF] included in their momentum equation a drag force generated by cells moving on the ECM and observed that lower cell-matrix adhesion resulted in cell clusterisation. We might thus expect ECM degradation to play a key role in lowering cell adhesiveness to the ECM in such modelling framework, thus leading to clusters.

Modelling the late-stages of cluster-based vasculogenesis

Future work should focus on the theoretical investigation of cluster-based vasculogenesis at later stages of this process, during which EPCs increase their interaction with the ECM and bridge clusters, forming the vascular network. In these stages the mechanical interaction between the cells and ECM becomes non-trivial and one might therefore consider a mechanochemical model similar to those previously proposed to study the late stages of single-cell vasculogenesis [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Murray | On the mechanochemical theory of biological pattern formation with application to vasculogenesis[END_REF][START_REF] Tosin | Mechanics and chemotaxis in the morphogenesis of vascular networks[END_REF]. Various works in the current literature already address the formation of sprouts from existing clusters [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF][START_REF] Merks | [END_REF][START_REF] Szabo | Multicellular sprouting in vitro[END_REF][START_REF] Szabó | The role of cell-cell adhesion in the formation of multicellular sprouts[END_REF] and prior single-cell vasculogenesis models investigating the formation of a vascular network, rather than clusters, may still be relevant to these late stages. For instance, while cell-to-cell adhesion may saturate chemotaxis [START_REF] Merks | [END_REF], VEGF gradients may still be strongly perceived at the cluster boundaries. This is especially the case if ECMbound VEGF was the main signalling molecule, and in this case we would indeed expect steep VEGF gradients to form at the cluster boundaries [START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF]. Perhaps such a scenario can explain the change in cell morphology. The role cell elongation plays in the formation of a final well-defined network has already been extensively addressed by CP models of single-cell vasculogenesis [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF][START_REF] Merks | Cell-oriented modeling of in vitro capillary development[END_REF][START_REF] Merks | Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling[END_REF][START_REF] Van Oers | Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro[END_REF][START_REF] Palm | Vascular networks due to dynamically arrested crystalline ordering of elongated cells[END_REF][START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF]Scianna et al., 2013). [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] indeed reported an elongated cell morphology during sprouting, as well as an increased mechanical interaction with the ECM. The combination of cell traction on the ECM and strain-dependent movement of cells would also su ce in explaining bridging between clusters [START_REF][END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Murray | On the mechanochemical theory of biological pattern formation with application to vasculogenesis[END_REF][START_REF] Namy | Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields[END_REF]. Nevertheless mechanochemical models, as well as CP models including cell traction [START_REF] Van Oers | Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro[END_REF][START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF], generally predict that higher ECM sti↵ness inhibits network formation, which is in contradiction with the experimental observations presented by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. Existing single-cell vasculogenesis models of late-stage dynamics, however, do not include ECM degradation, a key element for the study of cluster-based vasculogenesis. On the other hand, ECM degradation has been shown to have an important role during sprouting angiogenesis [START_REF] Boas | Cellular potts model: applications to vasculogenesis and angiogenesis[END_REF][START_REF] Daub | A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis[END_REF][START_REF] Holmes | A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic e↵ects[END_REF]Scianna et al., 2013;[START_REF] Tranqui | Mechanical signalling and angiogenesis. the integration of cell-extracellular matrix couplings[END_REF], a result which could very well translate into an active role in clusterbased vasculogenesis, although the interplay between ECM degradation and cell-ECM interactions may be particularly complex. Upon formulation of a mathematical model which accurately predicts cluster-based vascular network assembly, this could be used to investigate the determinants of network size and configuration. For instance, one might explore whether the size of clusters or cell-to-cell adhesion [START_REF] Merks | [END_REF][START_REF] Ramos | Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity[END_REF] will a↵ect tube diameters, or whether VEGF di↵usion and decay rates determine cord length [START_REF] Ambrosi | Cell directional and chemotaxis in vascular morphogenesis[END_REF][START_REF][END_REF][START_REF] Gamba | [END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF], and how these are a↵ected by matrix sti↵ness.

Modelling the ECM in mechanochemical models. During tissue engineering in vitro studies di↵erent types of ECM sca↵olds can be used, see Section 4.1.1. Given the complexity of cell-matrix interactions during many other developmental, physiological and pathological processes, the investigation of the role ECM sti↵ness plays in the di↵erent stages of cluster-based vasculogenesis may benefit from a more precise description of the ECM viscoelastic properties that might di↵er between in vivo and in vitro studies. In fact, we will see in Part IV that even simple changes in the ECM linear viscoelasticity assumptions can a↵ect the pattern formation potential of classic mechanical models.

Mechanical and mechanochemical models of pattern formation in biological tissues have been used to study a variety of biomedical systems, particularly in developmental biology, and describe the physical interactions between cells and their local surroundings. These models, in their original form, consist of a balance equation for the cell density, a balance equation for the density of the extracellular matrix (ECM), and a force-balance equation describing the mechanical equilibrium of the cell-ECM system. Under the assumption that the cell-ECM system can be regarded as an isotropic linear viscoelastic material, the force-balance equation is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain relation of the ECM. However, due to the multifaceted bio-physical nature of the ECM constituents, there are rheological aspects that cannot be e↵ectively captured by this model and, therefore, depending on the pattern formation process and the type of tissue considered, other constitutive models of linear viscoelasticity may be better suited. Here, we systematically assess the pattern formation potential of di↵erent stress-strain constitutive equations for the ECM within a mechanical model of pattern formation in biological tissues. The results obtained through LSA and the dispersion relations derived therefrom support the idea that fluid-like constitutive models, such as the Maxwell model and the Je↵rey model, have a pattern formation potential much higher than solid-like models, such as the Kelvin-Voigt model and the standard linear solid model. This is confirmed by the results of numerical simulations, which demonstrate that, all else being equal, spatial patterns emerge in the case where the Maxwell model is used to represent the stress-strain relation of the ECM, while no patterns are observed when the Kelvin-Voigt model is employed. These findings suggest that further empirical work is required to acquire detailed quantitative information on the mechanical properties of components of the ECM in di↵erent biological tissues in order to furnish mechanical and mechanochemical models of pattern formation with stress-strain constitutive equations for the ECM that provide a more faithful representation of the underlying tissue rheology.

Part IV is organised as follows: in Chapter 7 background on mechanochemical models is presented, along with constitutive models of linear viscoelasticity and the rheological properties that they capture; in Chapter 8 a mechanical model of biological pattern formation is presented, along with its analytical and numerical results; in Chapter 9 the implications of this study are discussed, together with an overview of possible research perspectives.

The contents of Part IV are based on the paper Villa et al. (2021a).

Chapter 7

Background and linear viscoelasticity models

PDE models of pattern formation

Pattern formation resulting from spatial organisation of cells is at the basis of a broad spectrum of physiological and pathological processes in living tissues [START_REF] Jernvall | Mechanisms of pattern formation in development and evolution[END_REF]. While the first formal exploration of pattern and form from a mathematical (strictly speaking, geometrical) perspective goes back over a century to D'Arcy Thompson's "On Growth and Form" [START_REF] Thompson | On growth and form[END_REF], the modern development of mathematical models for this biological phenomenon started halfway through the twentieth century to elucidate the mechanisms that underlie morphogenesis and embryogenesis [START_REF] Maini | Morphogenesis, biological[END_REF]. Since then, a number of mathematical models for the formation of cellular patterns have been developed [START_REF] Urdy | On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell di↵erentiation, growth, pattern formation and morphogenesis[END_REF]. Amongst these, particular attention has been given to reaction-di↵usion models and mechanochemical models of pattern formation [START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF].

Reaction-di↵usion models

Reaction-di↵usion models of pattern formation, first proposed by Turing in his seminal 1952 paper [START_REF] Turing | The chemical basis of morphogenesis[END_REF] and then further developed by [START_REF] Gierer | A theory of biological pattern formation[END_REF][START_REF] Meinhardt | Models of Biological Pattern Formation[END_REF], apply to scenarios in which the heterogeneous spatial distribution of some chemicals (i.e. morphogens) acts as a template (i.e. a prepattern) according to which cells organise and arrange themselves in di↵erent sorts of spatial patterns. These models are formulated as coupled systems of reaction-di↵usion equations for the spatiotemporal dynamics of the concentrations of two morphogens, with di↵erent reaction kinetics depending on the biological problem at stake. Such systems exhibit di↵usion-driven instability whereby homogeneous steady states are driven unstable by di↵usion, resulting in the formation of pre-patterns, provided that the di↵usion rate of one of the morphogens is su ciently higher than the other [START_REF] Maini | Spatial pattern formation in chemical and biological systems[END_REF][START_REF] Maini | The Turing Model for Biological Pattern Formation[END_REF][START_REF] Maini | Turing's model for biological pattern formation and the robustness problem[END_REF][START_REF] Murray | A pre-pattern formation mechanism for animal coat markings[END_REF].

Mechanochemical models

On the other hand, mechanochemical models of pattern formation, first proposed by Murray, Oster and coauthors in the 1980s (Murray and Oster, 1984a,b;[START_REF] Murray | A mechanical model for mesenchymal morphogenesis[END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF], describe spatial organisation of cells driven by the mechanochemical interaction between cells and the ECM -i.e. the substratum composed of collagen fibers and various macromolecules, partly produced by the cells themselves, in which cells are embedded [START_REF] Harris | Tissue culture cells on deformable substrata: biomechanical implications[END_REF][START_REF] Harris | Fibroblast traction as a mechanism for collagen morphogenesis[END_REF]. As introduced in Section 4.2.1 for mechanochemical models of vasculogenesis, these models in their original form consist of systems of PDEs comprising a balance equation for the cell density, a balance equation for the ECM density, and a force-balance equation describing the mechanical equilibrium of the cell-ECM system [START_REF] Murray | Pattern formation mechanisms-a comparison of reaction-di↵usion and mechanochemical models[END_REF][START_REF] Murray | [END_REF]. When chemical processes are neglected, these models reduce to mechanical models of pattern formation [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Murray | Pattern formation mechanisms-a comparison of reaction-di↵usion and mechanochemical models[END_REF][START_REF] Murray | [END_REF].

The role of mechanical forces. While reaction-di↵usion models well explain the emergence and characteristics of patterns arising during chemical reactions [START_REF] Castets | Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern[END_REF][START_REF] Maini | Spatial pattern formation in chemical and biological systems[END_REF][START_REF] Maini | The Turing Model for Biological Pattern Formation[END_REF], as well as pigmentation patterns found on shells [START_REF] Meinhardt | The algorithmic beauty of sea shells[END_REF] or animal coatings [START_REF] Kondo | A reaction-di↵usion wave on the skin of the marine angelfish pomacanthus[END_REF][START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF], various observations seem to suggest they may not always be the most suited models to study morphogenic pattern formation [START_REF] Bard | How well does turing's theory of morphogenesis work[END_REF][START_REF] Brinkmann | Post-Turing tissue pattern formation: Advent of mechanochemistry[END_REF][START_REF] Maini | The Turing Model for Biological Pattern Formation[END_REF]. For instance, experiments up to this day seem to fail in the identification of appropriate morphogens and overall molecular interactions predicted by Turing models in order for de novo patterns to emerge may be too complex. In addition, unrealistic parameter values would be required in order to reproduce experimentally observable patterns and the models appear to be too sensitive to parameter changes, hence lacking the robustness required to capture precise patterns. These considerations indicate that other mechanisms, driven for instance by significant mechanical forces, should be considered since solely chemical interactions may not su ce in explaining the emergence of patterns during morphogenesis. Hence mechanochemical models may be better suited. Interestingly, this need to change modelling framework sometimes arises within the same biological application as time progresses. For instance, supracellular organisation in the early stages of embryonic development closely follows morphogenic chemical patterns, but further tissue-level organisation requires additional cooperation of osmotic pressures and mechanical forces [START_REF] Petrolli | Confinement-induced transition between wavelike collective cell migration modes[END_REF]. Similarly, pattern formation during vasculogenesis is generally divided into an early stage highly driven by cell migration following chemical cues, and a later one dominated by mechanical interactions between the cells and the ECM [START_REF][END_REF]Scianna et al., 2013;[START_REF] Tosin | Mechanics and chemotaxis in the morphogenesis of vascular networks[END_REF]. Finally, purely mechanical models are a useful tool for studying the isolated role of mechanical forces and can capture observed phenomena without the inclusion of chemical cues [START_REF] Petrolli | Confinement-induced transition between wavelike collective cell migration modes[END_REF][START_REF] Serra-Picamal | Mechanical waves during tissue expansion[END_REF][START_REF] Tlili | Collective cell migration without proliferation: density determines cell velocity and wave velocity[END_REF].

Applications of mechanochemical models. Over the years, mechanochemical and mechanical models of pattern formation in biological tissues have been used to study a variety of biomedical problems, including morphogenesis and embryogenesis [START_REF] Brinkmann | Post-Turing tissue pattern formation: Advent of mechanochemistry[END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Maini | [END_REF][START_REF] Murray | A new approach to the generation of pattern and form in embryology[END_REF][START_REF] Murray | [END_REF]Murray and Oster, 1984a,b;[START_REF] Murray | A mechanical model for mesenchymal morphogenesis[END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF], angiogenesis and vasculogenesis [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF]Scianna et al., 2013;[START_REF] Tranqui | Mechanical signalling and angiogenesis. the integration of cell-extracellular matrix couplings[END_REF], cytoskeleton reorganisation [START_REF] Alonso | Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids[END_REF][START_REF] Lewis | Analysis of stable two-dimensional patterns in contractile cytogel[END_REF], wound healing and contraction [START_REF] Javierre | Numerical modeling of a mechano-chemical theory for wound contraction analysis[END_REF][START_REF] Maini | [END_REF][START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF][START_REF] Tranquillo | Continuum model of fibroblast-driven wound contraction: inflammation-mediation[END_REF], and stretch marks [START_REF] Gilmore | [END_REF]. These models have also been used to estimate the values of cell mechanical parameters, with a particular focus on cell traction forces [START_REF] Barocas | The Fibroblast-Populated Collagen Microsphere Assay of Cell Traction Force-Part 2: Measurement of the Cell Traction Parameter[END_REF][START_REF] Barocas | Biphasic theory and in vitro assays of cell-fibril mechanical interactions in tissue-equivalent gels[END_REF][START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Ferrenq | [END_REF][START_REF] Moon | Fibroblast-populated collagen microsphere assay of cell traction force: Part 1. Continuum model[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF]. The roles that di↵erent biological processes play in the formation of cellular patterns can be disentangled via LSA of the homogeneous steady states of the model equations -i.e. investigating what parameters of the model, and thus what biological processes, can drive homogeneous steady states unstable and promote the emergence of cell spatial organisation. Further insight into certain aspects of pattern formation in biological tissues can also be provided by nonlinear stability analysis of the homogeneous steady states [START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Lewis | Analysis of stable two-dimensional patterns in contractile cytogel[END_REF][START_REF] Maini | [END_REF].

Linear viscoelasticity assumptions on the ECM

Mechanical and mechanochemical models usually rely on the assumption that the cell-ECM system can be regarded as an isotropic linear viscoelastic material. This is clearly a simplification due to the nonlinear viscoelasticity and anisotropy of soft tissues [START_REF] Bischo↵ | A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue[END_REF][START_REF] Huang | Quasi-linear viscoelastic properties of fibrotic neck tissues obtained from ultrasound indentation tests in vivo[END_REF][START_REF] Liu | On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour[END_REF][START_REF] Nasseri | Viscoelastic properties of pig kidney in shear, experimental results and modelling[END_REF][START_REF] Snedeker | Strain-rate dependent material properties of the porcine and human kidney capsule[END_REF][START_REF] Valtorta | Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device[END_REF][START_REF] Verdier | Rheological properties of living materials. From cells to tissues[END_REF], a simplification that various rheological tests conducted on biological tissues have nonetheless shown to be justified in the regime of small strains [START_REF] Bilston | Linear viscoelastic properties of bovine brain tissue in shear[END_REF][START_REF] Liu | On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour[END_REF][START_REF] Nasseri | Viscoelastic properties of pig kidney in shear, experimental results and modelling[END_REF][START_REF] Valtorta | Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device[END_REF], which is the one usually of interest in the applications of such models. Under this assumption, the force-balance equation for the cell-ECM system is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain relation of the ECM [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Murray | [END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF]. However, due to the multifaceted bio-physical nature of the ECM constituents, introduced in Section 4.1.1, there are rheological aspects that cannot be e↵ectively captured by the Kelvin-Voigt model and, therefore, depending on the pattern formation process and the type of biological tissue considered, other constitutive models of linear viscoelasticity may be better suited [START_REF] Barocas | Biphasic theory and in vitro assays of cell-fibril mechanical interactions in tissue-equivalent gels[END_REF]. In this regard, [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF] demonstrated that, ceteris paribus, using the Maxwell model of linear viscoelasticity to describe the stress-strain relation of the ECM in place of the Kelvin-Voigt model can lead to di↵erent dispersion relations with a higher pattern formation potential. This suggests that a more thorough investigation of the capability of di↵erent stress-strain constitutive equations of producing spatial patterns is required.

Essentials of viscoelastic materials and stressstrain constitutive equations

The main properties of viscoelastic materials are summarised in Section 7.2.1. Then, the 1D stress-strain constitutive equations that are considered in Chapter 8 are briefly presented, together with the main rheological properties of linear viscoelastic materials that they capture, in Section 7.2.2. Finally, in Section 7.2.3 are reported the 2D constitutive equations used in Chapter 8. Most of the contents of this section can be found in standard textbooks, such as [START_REF] Findley | Creep and relaxation of nonlinear viscoelastic materials -with an introduction to linear viscoelasticity[END_REF] and [START_REF] Mase | Continuum mechanics[END_REF], and are reported here for the sake of completeness. Further considerations of and applications to living tissues can be found in [START_REF] Fung | Biomechanics Mechanical Properties of Living Tissues (2nd Edition)[END_REF].

Essentials of viscoelastic materials

As the name suggests, viscoelastic materials exhibit both viscous and elastic characteristics, and the interplay between them may result in a wide range of rheological properties that can be examined through creep and stress relaxation tests. During a creep test, a constant stress is first applied to a specimen of material and then removed, and the time dynamic of the correspondent strain is tracked. During a stress relaxation test, a constant strain is imposed on a specimen of material and the evolution in time of the induced stress is observed [START_REF] Findley | Creep and relaxation of nonlinear viscoelastic materials -with an introduction to linear viscoelasticity[END_REF].

Here we list the main properties of viscoelastic materials that may be observed during the first phase of a creep test (see properties 1a-1c), during the recovery phase, that is, when the constant stress is removed from the specimen (see properties 2a-2c), and during a stress relaxation test (see property 3).

1a Instantaneous elasticity. As soon as a stress is applied, an instantaneous corresponding strain is observed. 1b Delayed elasticity. While the instantaneous elastic response to a stress is a purely elastic behaviour, due to the viscous nature of the material a delayed elastic response may also be observed. In this case, under constant stress the strain slowly and continuously increases at decreasing rate. 1c Viscous flow. In some viscoelastic materials, under a constant stress, the strain continues to grow within the viscoelastic regime (i.e. before plastic deformation).

In particular, viscous flow occurs when the strain increases linearly with time and stops growing at removal of the stress only. 2a Instantaneous recovery. When the stress is removed, an instantaneous recovery (i.e.

an instantaneous strain decrease) is observed because of the elastic nature of the material. 2b Delayed recovery. Upon removal of the stress, a delayed recovery (i.e. a continuous decrease of the strain at decreasing rate) occurs. 2c Permanent set. While elastic strain is reversible, in viscoelastic materials a nonzero strain, known as "permanent set" or "residual strain", may persist even when the stress is removed. 3 Stress relaxation. Under constant strain, gradual relaxation of the induced stress occurs. In some cases, this may even culminate in total stress relaxation (i.e. the stress decays to zero).

The subset of these properties exhibited by a viscoelastic material will depend on -and hence define -the type of material being tested. Moreover, during each phase of the creep test, more than one of the above properties may be observed. For instance, a Maxwell material under constant stress will exhibit instantaneous elasticity followed by viscous flow -see supplementary Figure A.3.

1D stress-strain constitutive equations

In this section, we briefly describe the di↵erent constitutive equations that are used in our study to represent the stress-strain relation of the ECM. In general, these equations can be used to predict how a viscoelastic material will react to di↵erent loading conditions, in one spatial dimension, and rely on the assumption that viscous and elastic characteristics of the material can be modelled, respectively, via linear combinations of dashpots and springs, as illustrated in Figure 7.1. Di↵erent stress-strain constitutive equations correspond to di↵erent arrangements of these elements and capture di↵erent subsets of the rheological properties summarised in the previous section (see Table 7.2). Rules of derivation of the constitutive equations are detailed in Appendix A.5.1. In the remainder of this section, we will denote the stress and the strain at position x and time t by (t, x) and "(t, x), respectively. Linear elastic model. When viscous characteristics are neglected, a linear viscoelastic material can be modelled as a purely elastic spring with elastic modulus (i.e. Young's modulus) E > 0, as illustrated in Figure 7.1a. In this case, the stress-strain constitutive equation is given by Hooke's spring law for continuous media, that is,

= E" . (7.1)
Linear viscous model. When elastic characteristics are neglected, a linear viscoelastic material can be modelled as a purely viscous damper of viscosity ⌘ > 0, as illustrated in Figure 7.1b. In this case, the stress-strain constitutive equation is given by Newton's law of viscosity, that is, = ⌘ @ t " . (7.2)

Kelvin-Voigt model. The Kelvin-Voigt model, also known as the Voigt model, relies on the assumption that viscous and elastic characteristics of a linear viscoelastic material can simultaneously be captured by considering a purely elastic spring with elastic modulus E > 0 and a purely viscous damper of viscosity ⌘ > 0 in parallel, as illustrated in Figure 7.1c. The corresponding stress-strain constitutive equation is

= E" + ⌘ @ t " . (7.3)
Maxwell model. The Maxwell model relies on the assumption that viscous and elastic characteristics of a linear viscoelastic material can be captured by considering a purely elastic spring with elastic modulus E > 0 and a purely viscous damper of viscosity ⌘ > 0 in series, as illustrated in Figure 7.1d. The corresponding stress-strain constitutive equation is 1

E @ t + ⌘ = @ t " . (7.4)
Standard linear solid (SLS) model. The SLS model, also known as the Kelvin model, relies on the assumption that viscous and elastic characteristics of a linear viscoelastic material can be captured by considering a Kelvin arm of elastic modulus E 1 > 0 and viscosity ⌘ > 0 in series with a purely elastic spring of elastic modulus E 2 > 0, as illustrated in Figure 7.1e. The corresponding stress-strain constitutive equation is [START_REF] Mase | Continuum mechanics[END_REF]) 1

E 2 @ t + 1 ⌘ ✓ 1 + E 1 E 2 ◆ = @ t " + E 1 ⌘ " . (7.5) 
Je↵rey model. The Je↵rey model, also known as the Oldroyd-B or 3-parameter viscous model, relies on the assumption that viscous and elastic characteristics of a linear viscoelastic material can be captured by considering a Kelvin arm of elastic modulus E > 0 and viscosity ⌘ 1 > 0 in series with a purely viscous damper of viscosity ⌘ 2 > 0, as illustrated in Figure 7.1f. The corresponding stress-strain constitutive equation is

✓ 1 + ⌘ 1 ⌘ 2 ◆ @ t + E ⌘ 2 = ⌘ 1 @ 2 tt " + E@ t " . (7.6)
Generic 4-parameter model. The following stress-strain constitutive equation encompasses all constitutive models of linear viscoelasticity whereby a combination of purely elastic springs and purely viscous dampers, up to a total of four elements, and therefore 4 parameters, is considered

a 2 @ 2 tt + a 1 @ t + a 0 = b 2 @ 2 tt " + b 1 @ t " + b 0 " . (7.7)
Here the non-negative, real parameters a 0 , a 1 , a 2 , b 0 , b 1 , b 2 depend on the elastic moduli and the viscosities of the underlying combinations of springs and dampers. For example, a Kelvin-Voigt arm (elasticity E 1 > 0 and viscosity ⌘ 1 > 0) and a Maxwell arm (elasticity

E 2 > 0 and viscosity ⌘ 2 > 0) connected in series,
representing what is known as the Burger's model, correspond to the constitutive equation

⌘ 1 ⌘ 2 E 1 E 2 @ 2 tt + ⇣ ⌘ 1 E 1 + ⌘ 2 E 1 + ⌘ 2 E 2 ⌘ @ t + = ⌘ 1 ⌘ 2 E 1 @ 2 tt " + ⌘ 2 @ t " .
When parameters a 0 , a 1 , a 2 , b 0 , b 1 , b 2 are defined as in Table 7.1, the generic 4-parameter constitutive model (7.7) reduces to the specific stress-strain constitutive equations (7.1)-(7.6). For convenience of notation, we define the di↵erential operators

L a := a 2 @ 2 tt + a 1 @ t + a 0 and L b := b 2 @ 2 tt + b 1 @ t + b 0 (7.8)
so that the stress-strain constitutive equation (7.7) can be rewritten in the following compact form

L a [ ] = L b [ " ] .
(7.9)

A summary of the rheological properties of linear viscoelastic materials listed in Section 7.2.1 that are captured by the 1D stress-strain constitutive equations (7.1)-(7.6) is provided in Table 7.2. These properties can be examined through mathematical procedures that mimic creep and stress relaxation tests [START_REF] Findley | Creep and relaxation of nonlinear viscoelastic materials -with an introduction to linear viscoelasticity[END_REF], of which examples for the Kevin-Voigt and Maxwell models can be found in Appendix A.6. Notice that, for all these constitutive models, instantaneous elasticity correlates with instantaneous recovery, delayed elasticity correlates with delayed recovery, and viscous flow correlates with permanent set. Materials are said to be more solid-like when their elastic response dominates their viscous response, and more fluid-like in the opposite case [START_REF] Nargess | To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease[END_REF]. For this reason, models of linear viscoelasticity that capture viscous flow and, as a consequence, permanent set -such as the Maxwell model and the Je↵rey model -are classified as "fluid-like models", while those which do not -such as the Kelvin-Voigt model and the SLS model -are classified as "solid-like models". In the remainder of the paper we are going to include the linear viscous model in the fluid-like class and the linear elastic model in the solid-like class, as they capture -or do not capture -the relevant properties, even if they are not models of viscoelasticity per se.

Table 7.1: Relations between the generic 4-parameter model (7.7) and the stress-strain constitutive equations (7.1)-(7.6). *Burger's model has been included for illustrative purposes (cf. Section 9.2.1). 

Generic 4-parameters model a 2 a 1 a 0 b 2 b 1 b 0 Linear elastic model 0 0 1 0 0 E Linear viscous model 0 0 1 0 ⌘ 0 Kelvin-Voigt model 0 0 1 0 ⌘ E Maxwell model 0 1 E 1 ⌘ 0 1 0 SLS model 0 1 E 2 1 ⌘ ⇣ 1 + E 1 E 2 ⌘ 0 1 E 1 ⌘ Je↵rey model 0 1 + ⌘ 1 ⌘ 2 E ⌘ 2 ⌘ 1 E 0 Burger's model* ⌘ 1 ⌘ 2 E 1 E 2 ⇣ ⌘ 1 E 1 + ⌘ 2 E 1 + ⌘ 2 E 2 ⌘ 1 ⌘ 1 ⌘ 2 E 1 ⌘ 2 0

X X

Linear viscous X X

2D stress-strain constitutive equations

Most of the study presented in Chapter 8 is conducted for the 1D case, but numerical simulations of a 2D model, making use of the Kelvin-Voigt or the Maxwell model of linear viscoelasticity for the ECM, are also considered. In analogy with equation (7.7), we consider the following generic 2D constitutive equation

a 1 @ t + a 0 = b 1 @ t " + b 0 " + c 1 @ t ✓I + c 0 ✓I . (7.10)
This, together with the associated parameter choices reported in Table 7.3, summarises the 2D versions of the 1D Kelvin-Voigt (7.3) and the Maxwell model (7.4) used in Chapter 8, which are derived in Appendix A.5.2.

Table 7.3: Relations between the parameters in the generic 2D stress-strain constitutive equation (7.10) and those in the 2D constitutive equations for the Kelvin-Voigt model and the Maxwell model.

Generic 2D model a 1 a 0 b 1 b 0 c 1 c 0 Kelvin-Voigt model 0 1 ⌘ 1 E 0 ⌘ ⌫ 0 E 0 ⌫ 0 ⌘ Maxwell model 1 E 0 1 ⌘ 1 0 ⌫ 0 0
In (7.10), (t, x) is the stress tensor, while the strain "(t, x) and the dilation ✓(t, x) are defined in terms of the displacement u(t, x) as

" = 1 2 ru + ru | and ✓ = r • u . (7.11)
Notice that both " and ✓ reduce to " = @ x u in the 1D case. Amongst the parameters in the stress-strain constitutive equation (7.10) reported in Table 7.3 for the 2D Kelvin-Voigt and Maxwell models, ⌘ > 0 is the shear viscosity,

E 0 := E 1 + ⌫ and ⌫ 0 := ⌫ 1 2⌫ , (7.12) 
where ⌫ > 0 is Poisson's ratio and E > 0 is Young's modulus. The 2D Maxwell model in the form (7.10) holds under the simplifying assumption that the quotient between the bulk viscosity and the shear viscosity of the ECM is equal to ⌫ 0 (see Appendix A.5.2). Note that the entries of Table 7.3 rely on this relation, which was assumed to hold for both the Maxwell and the Kelvin Voigt models in our baseline parameter set.

Chapter 8

The role of stress-strain constitutive equations in mechanical models of biological pattern formation

Following the problem introduced in Section 7.1.3, here we complement and further develop the results presented in [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF] by systematically assessing the pattern formation potential of di↵erent stress-strain constitutive equations for the ECM within a mechanical model of pattern formation in biological tissues [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Murray | [END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF]. Compared to the work of [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF] here we consider a wider range of constitutive models, presented in Section 7.2.1, we allow cell traction forces to be reduced by cell-cell contact inhibition, and undertake numerical simulations of the model equations showing the formation of cellular patterns both in 1D and 2D. A related study has been conducted by [START_REF] Alonso | Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids[END_REF], who considered a mathematical model of pattern formation in the cell cytoplasm. The chapter is structured as follows. In Section 8.1, we describe the 1D mechanical model of pattern formation in biological tissues that is used in this study, which follows closely the one considered in [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF]; [START_REF] Murray | [END_REF]; [START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF], and briefly introduce the corresponding 2D model. In Section 8.2, we carry out a LSA of a biologically relevant homogeneous steady state of the 1D model equations, derive dispersion relations when di↵erent stress-strain constitutive equations for the ECM are used, and investigate how the model parameters a↵ect the dispersion relations obtained. In Section 8.3, we verify key results of LSA via numerical simulations of the 1D model equations, complementing these findings with the results of numerical simulations of the 2D version of the mechanical model of pattern formation considered.

A mathematical model of mechanical pattern formation

We consider a 1D region of tissue and represent the normalised densities of cells and ECM at time t 0 and position x 2 [`, L] by means of the non-negative functions n(t, x) and ⇢(t, x), respectively. We let u(t, x) model the displacement of a material point of the cell-ECM system originally at position x, which is induced by mechanical interactions between cells and the ECM -i.e. cells pull on the ECM in which they are embedded, thus inducing ECM compression and densification which in turn cause a passive form of cell repositioning [START_REF] Van Helvert | Mechanoreciprocity in cell migration[END_REF]. In Section 8.1.5, the extension of this modelling framework to the 2D case is addressed.

Dynamics of the cells

Following [START_REF] Murray | [END_REF]; [START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF], we consider a scenario where cells change their position according to a combination of: (i) undirected, random movement, which we describe through Fick's first law of di↵usion with di↵usivity (i.e. cell motility) D 0; (ii) haptotaxis (i.e. cell movement up the density gradient of the ECM) with haptotactic sensitivity ↵ 0; (iii) passive repositioning caused by mechanical interactions between cells and the ECM, which is modelled as an advection with velocity field @ t u. Moreover, we model variation of the normalised cell density caused by cell proliferation and death via logistic growth with intrinsic growth rate r 0 and unitary local carrying capacity. Under these assumptions, we describe cell dynamics through the following balance equation for n(t, x)

@ t n = @ x [ D @ x n n (↵ @ x ⇢ + @ t u)] + r n(1 n) ( 8 . 1 )
subject to suitable initial and boundary conditions.

Dynamics of the ECM

As was done for the cell dynamics, in a similar manner we model compression and densification of the ECM induced by cell-ECM interactions as an advection with velocity field @ t u. Furthermore, as in [START_REF] Murray | [END_REF] and [START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF], we neglect secretion of ECM components by the cells since this process occurs on a slower time scale compared to mechanical interactions between cells and the ECM. Under these assumptions, we describe the cell dynamics through the following transport equation for ⇢(t, x)

@ t ⇢ = @ x (⇢ @ t u) ( 8 . 2 )
subject to suitable initial and boundary conditions.

Force-balance equation for the cell-ECM system

Following [START_REF] Murray | [END_REF]; [START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF], we represent the cell-ECM system as a linear viscoelastic material with low Reynolds number (i.e. inertial terms are negligible compared to viscous terms) and we assume the cell-ECM system to be in mechanical equilibrium (i.e. traction forces generated by the cells are in mechanical equilibrium with viscoelastic restoring forces developed in the ECM and any other external forces). Under these assumptions, the force-balance equation for the cell-ECM system is of the form

@ x ( c + m ) + ⇢ F = 0 , (8.3) 
where m (t, x) is the contribution to the stress of the cell-ECM system coming from the ECM, c (t, x) is the contribution to the stress of the cell-ECM system coming from the cells, and F (t, x) is the external force per unit matrix density, which comes from the surrounding tissue that constitutes the underlying substratum to which the ECM is attached.

The stress c is related to cellular traction forces acting on the ECM and is defined as

c := ⌧ f (n) n ⇢ + @ 2 xx ⇢ with f (n) := 1 1 + n 2 .
(8.4) Definition (8.4) relies on the assumption that the stress generated by cell traction on the ECM is proportional to the cell density n and -in the short range -the ECM density ⇢, while the term @ 2 xx ⇢ accounts for long-range cell traction e↵ects, with > 0 being the long-range traction proportionality constant. The factor of proportionality is given by a parameter ⌧ 0, which measures the average traction force generated by a cell, multiplied by a non-negative and monotonically decreasing function of the cell density, f (n), which models the fact that the average traction force generated by a cell is reduced by cell-cell contact inhibition [START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF]. The parameter 0 measures the level of cell traction force inhibition and assuming = 0 corresponds to neglecting the reduction in the cell traction forces caused by cellular crowding.

The stress m is given by the stress-strain constitutive equation that is used for the ECM, which we choose to be the general constitutive model (7.9) with the strain "(t, x) being given by the gradient of the displacement u(t, x), that is, " = @ x u. Therefore, we define the stress-strain relation of the ECM via the following equation

L a [ m ] = L b [ @ x u ] , (8.5) 
where the di↵erential operators L a and L b are defined according to (7.8).

Assuming the surrounding tissue to which the ECM is attached to be a linear elastic material [START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF], the external body force F can be modelled as a restoring force proportional to the cell-ECM displacement, that is,

F := s u . (8.6)
Here the parameter s 0 represents the elastic modulus of the surrounding tissue.

In order to obtain a closed equation for the displacement u(t, x), we apply the di↵erential operator L a [ • ] to the force-balance equation ( 8.3) and then substitute (8.4)-(8.6) into the resulting equation. In so doing, we find

L a [ @ x ( m + c ) ] = L a [ ⇢ F ] , L a [ @ x m ] + L a [ @ x c ] = L a [ s⇢u ] , @ x L a [ m ] = L a [ s⇢u ] L a [ @ x c ] , @ x L b [ @ x u ] = L a [ s⇢u @ x c ] , L b [ @ xx u ] = L a [ s⇢u @ x c ] ,
that is,

L b [ @ xx u ] = L a  s⇢u @ x ✓ ⌧ n 1 + n 2 (⇢ + @ xx ⇢) ◆ .
(8.7)

Finally, to close the system, equation (8.7) needs to be supplied with suitable initial and boundary conditions.

Boundary conditions

We close our mechanical model of pattern formation defined by the system of PDEs (8.1), (8.2) and (8.7) with the following boundary conditions

8 > > > > > > < > > > > > > : n(t, `) = n(t, L) , @ x n(t, `) = @ x n(t, L) , ⇢(t, `) = ⇢(t, L) , @ xx ⇢(t, `) = @ xx ⇢(t, L) , u(t, `) = u(t, L) , @ x u(t, `) = @ x u(t, L) , 8t 0 . (8.8)
Here, the conditions on the derivatives of n, ⇢ and u ensure that the fluxes in equations (8.1) and (8.2), and the overall stress ( m + c ) in equation ( 8.3), are periodic on the boundary, i.e. they ensure that 8 > > > > > < > > > > > :

[ D @ x n n (↵ @ x ⇢ + @ t u)] x=`= [ D @ x n n (↵ @ x ⇢ + @ t u)] x=L , [n @ t u] x=`= [n @ t u] x=L , h ⌧ n (1 + 2 ) ( ⇢ + @ 2 xx ⇢ ) + m i x=`= h ⌧ n (1 + 2 ) ( ⇢ + @ 2 xx ⇢ ) + m i x=L , 8t 0 ,
with m given as a function of @ x u in equation (8.5), according to the selected constitutive model. The periodic boundary conditions (8.8) reproduce a biological scenario in which the spatial region considered is part of a larger area of tissue whereby similar dynamics of the cells and the ECM occur.

Extension to 2D

The mechanical model of pattern formation defined by the system of PDEs (8.1), (8.2) and ( 8.3) posed on a 2D spatial domain represented by a bounded set ⌦ ⇢ R 2 with smooth boundary @⌦ reads as 8 > > > < > > > :

@ t n = div [D rn n (↵ r⇢ + @ t u)] + r n(1 n) , @ t ⇢ = div(⇢ @ t u) , div( m + c ) + ⇢F = 0 , (8.9) 
with t 0, x = (x 1 , x 2 ) | 2 ⌦ and u = (u 1 , u 2 ) | . We close the system of PDEs (8.9) imposing the 2D version of the periodic boundary conditions (8.8) on @⌦. Furthermore, we use the following 2D analogues of definitions (8.4) and (8.6)

c := ⌧ n 1 + n 2 ⇣ ⇢ + ⇢ ⌘ I and F := s u , (8.10) 
where I is the identity tensor. Moreover, in analogy with the 1D case, we define the stress tensor m via the 2D constitutive model (7.10), together with the parameter choices reported in Table 7.3 for the Kelvin-Voigt and Maxwell models, that is used to represent the stress-strain relation of the ECM. As introduced in Section 7.2.3, the strain "(t, x) and the dilation ✓(t, x) are defined in terms of the displacement u(t, x) according to (7.11).

Linear stability analysis and dispersion relations

In this section, we carry out LSA of a biologically relevant homogeneous steady state of the 1D system of PDEs (8.1), (8.2) and (8.7) in Section 8.2.1, and we compare the dispersion relations obtained when the constitutive models (7.1)-(7.6) are alternatively used to represent the contribution to the overall stress coming from the ECM, in order to explore the pattern formation potential of these stress-strain constitutive equations in Section 8.2.2.

Linear stability analysis

Biologically relevant homogeneous steady state. All non-trivial homogeneous steady states (n, ⇢, ū) | of the system of PDEs (8.1), (8.2) and (8.7) subject to boundary conditions (8.8) have components n ⌘ 1 and ū ⌘ 0, and we consider the arbitrary non-trivial steady state ⇢ ⌘ ⇢ 0 > 0 amongst the infinite number of possible homogeneous steady states of the transport equation (8.2) for the normalised ECM density ⇢. Hence, we focus our attention on the biologically relevant homogeneous steady state

v = (1, ⇢ 0 , 0) | .
Linear stability under spatially homogeneous perturbations. Similarly to as done in Section 5.2, in order to investigate the linear stability of the steady state v = (1, ⇢ 0 , 0) | under spatially homogeneous perturbations, we make the ansatz v(t, x) ⌘ v + ṽ(t), where the vector ṽ(t) = (ñ(t), ⇢(t), ũ(t)) | models small spatially homogeneous perturbations, and linearise the system of PDEs (8.1), (8.2) and (8.7) about the steady state v. Assuming ñ(t), ⇢(t) and ũ(t) to be proportional to exp ( t), one can easily verify that satisfies the algebraic equation ( + r)( 2 a 2 + a 1 + a 0 ) = 0. Since r is positive and the parameters a 0 , a 1 and a 2 are all non-negative, the solution of such an algebraic equation is either negative, for which the small perturbations ñ(t), ⇢(t) and ũ(t) will decay to zero as t ! 1, or = 0. However, the zero eigenvalue here does not correlate with instability: small spatially homogeneous perturbations in ⇢ simply correspond to a di↵erent, nearby, steady states and thus will not grow in time, while small spatially homogeneous perturbations in n or u will decay in time (cf. spatially homogeneous version of equations (8.1) and (8.7)). This is the case for any choice of the parameter a 0 , a 1 , a 2 , b 0 , b 1 and b 2 in the stress-strain constitutive equation (8.5) (i.e. for all constitutive models (7.1)-(7.6)).

Linear instability under spatially inhomogeneous perturbations. Similarly, in order to investigate conditions under which the steady state v = (1, ⇢ 0 , 0) | is unstable un-der small spatially inhomogeneous perturbations, we make the ansatz v(t, x) = v+ṽ(t, x), where the vector ṽ(t, x) = (ñ(t, x), ⇢(t, x), ũ(t, x)) | models small spatially inhomogeneous perturbations, and linearise the system of PDEs (8.1), (8.2) and (8.7) about the steady state v. Assuming ñ(t, x), ⇢(t, x) and ũ(t, x) to be proportional to exp ( t + ikx), we find that satisfies the following equation

h c 3 (k 2 ) 3 + c 2 (k 2 ) 2 + c 1 (k 2 ) + c 0 (k 2 ) i = 0 , (8.11) with c 3 (k 2 ) := a 2 ⌧ 1 k 4 + ⇥ b 2 a 2 ⌧ ( 1 + 2 ⇢ 0 ) ⇤ k 2 + a 2 s⇢ 0 (8.12) c 2 (k 2 ) := a 2 ⌧ 1 D k 6 + ⇥ b 2 D a 2 ⌧ ( 2 ⇢ 0 ↵ + D 1 r 1 ) + a 1 ⌧ 1 ⇤ k 4 + ⇥ b 2 r + b 1 + a 2 (Ds⇢ 0 r⌧ 1 ) a 1 ⌧ ( 1 + 2 ⇢ 0 ) ⇤ k 2 + (a 1 + a 2 r)s⇢ 0 (8.13) c 1 (k 2 ) := a 1 ⌧ 1 D k 6 + ⇥ b 1 D a 1 ⌧ ( 2 ⇢ 0 ↵ + D 1 r 1 ) + a 0 ⌧ 1 ⇤ k 4 + ⇥ b 1 r + b 0 + a 1 (Ds⇢ 0 r⌧ 1 ) a 0 ⌧ ( 1 + 2 ⇢ 0 ) ⇤ k 2 + (a 0 + a 1 r)s⇢ 0 (8.14) and c 0 (k 2 ) := a 0 ⌧ 1 D k 6 + ⇥ b 0 D a 0 ⌧ ( 2 ⇢ 0 ↵ + D 1 r 1 ) ⇤ k 4 + ⇥ b 0 r + a 0 (Ds⇢ 0 r⌧ 1 ) ⇤ k 2 + a 0 rs⇢ 0 (8.15) 
where

1 := 1 1 + and 2 := (1 ) (1 + ) 2 .
Equation (8.11) has multiple solutions (k 2 ) for each k 2 , including = 0 which we ignore henceforth in order to focus on positive solutions, and we denote by Re(•) the maximum real part of all these solutions. For cell patterns to emerge, we need the non-trivial homogeneous steady state v to be unstable under spatially inhomogeneous perturbations, that is, we need Re( (k 2 )) > 0 for some k 2 > 0. Notice that a necessary condition for this to happen is that at least one amongst c 0 (k 2 ), c 1 (k 2 ), c 2 (k 2 ) and c 3 (k 2 ) is negative for some k 2 > 0. Hence, the fact that if ⌧ = 0 then c 0 (k 2 ), c 1 (k 2 ), c 2 (k 2 ) and c 3 (k 2 ) are all non-negative for any value of k 2 allows us to conclude that having ⌧ > 0 is a necessary condition for pattern formation to occur. This was expected based on the results presented in [START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF] and references therein.

In the case where the model parameters are such that c 2 (k 2 ) = 0 and c 3 (k 2 ) = 0, solving equation (8.11) for gives the following dispersion relation

(k 2 ) = c 0 (k 2 ) c 1 (k 2 ) . (8.16)
On the other hand, when the model parameters are such that only c 3 (k 2 ) = 0, from equation (8.11) we obtain the following dispersion relations

(k 2 ) = c 1 (k 2 ) ± q c 1 (k 2 ) 2 4c 2 (k 2 )c 0 (k 2 ) 2c 2 (k 2 ) . (8.17)
Finally, in the general case where the model parameters are such that c 3 (k 2 ) 6 = 0 as well, from equation (8.11) we obtain the following dispersion relation

(k 2 ) = ⇢ q + h q 2 + m p 2 3 i 1/2 1/3 + ⇢ q h q 2 + m p 2 3 i 1/2 1/3 + p , (8.18)
where p ⌘ p(k 2 ), q ⌘ q(k 2 ) and m ⌘ m(k 2 ) are defined as

p := c 2 3c 3 , q := p 3 + c 2 c 1 3c 3 c 0 6c 2 3 , m := c 1 3c 3 . (8.19)

Dispersion relations

Substituting the definitions of a 0 , a 1 , a 2 , b 0 , b 1 and b 2 corresponding to the stress-strain constitutive equations (7.1)-(7.6), which are reported in Table 7.1, into definitions (8.12)-(8.15) for c 0 (k 2 ), c 1 (k 2 ), c 2 (k 2 ) and c 3 (k 2 ), and then using the dispersion relation given by formula (8.16), (8.17) or (8.18)-(8.19) depending on the values of c 2 (k 2 ) and c 3 (k 2 ) so obtained, we derive the dispersion relation for each of the constitutive models (7.1)-(7.6). In particular, we are interested in whether the real part of each dispersion relation is positive, so whenever multiple roots are calculated -for instance using (8.17) -the largest root is considered. In addition, dispersion relations throughout this section are plotted against the quantity k/⇡, which directly correlates with perturbation modes and can therefore better highlight mode selection during the parametric analysis.

Base-case dispersion relations. Figure 8.1 displays the dispersion relations obtained for the stress-strain constitutive equations (7.1)-(7.6) under the following base-case parameter values

E = 1 , E 1 = E 2 = 1 2 E = 0.5 , ⌘ = 1 , ⌘ 1 = ⌘ 2 = 1 2 ⌘ = 0.5 , D = 0.01 , (8.20) ⇢ 0 = 1 , ↵ = 0.05 , r = 1 , s = 10 , = 0.5 , ⌧ = 0.2 = 0.005 . (8.21)
The parameter values given by (8.20) and (8.21) are chosen for illustrative purposes, in order to highlight the di↵erent qualitative behaviour of the dispersion relations obtained using di↵erent models, and are comparable with nondimensional parameter values that can be found in the extant literature (see Appendix C.3 for further details). A comparison between the plots in Figure 8.1 reveals that fluid-like models, that is, the linear viscous model (7.2), the Maxwell model (7.4) and the Je↵rey model (7.6) (cf. Table 7.2), have a higher pattern formation potential than solid-like models, since under the same parameter set they exhibit a range -or, more precisely, they exhibit the same range -of unstable modes (i.e. Re( (k 2 )) > 0 for a range of values of k/⇡), while the others have no unstable modes. We now undertake a parametric analysis with respect to the di↵erent model parameters and discuss key changes that occur in the base-case dispersion relations displayed in Figure 8.1.

ECM elasticity. The plots in Figure 8.2 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter E, and therefore also E 1 and E 2 (i.e. the parameters modelling ECM elasticity), are considered. These plots show that lower values of these parameters correlate with overall larger values of Re( (k 2 )) for all constitutive models, except for the linear viscous one, which corresponds to speeding up the formation of spatial patterns, when these may form. In addition, su ciently small values of the parameters E, E 1 and E 2 allow the linear elastic model (7.1), the Kelvin-Voigt model (7.3), and the SLS model (7.5) to exhibit unstable modes. However, further lowering the values of these parameters appears to lead to singular dispersion relations (cf. the plots for the linear elastic model (7.1), the Maxwell model (7.4) and the SLS model (7.5) in Figure 8.2), which suggests that linear stability theory may fail in the regime of low ECM elasticity.

ECM viscosity. The plots in Figure 8.3 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter ⌘, and therefore also ⌘ 1 and ⌘ 2 (i.e. the parameters modelling ECM viscosity), are considered. These plots show that larger values of these parameters leave the range of modes for which Re( (k 2 )) > 0 unchanged but reduce the values of Re( (k 2 )). This supports the idea that a higher ECM viscosity may not change the pattern formation potential of the di↵erent constitutive models but may slow down the corresponding pattern formation processes.

Cell motility. The plots in Figure 8.4 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter D (i.e. the parameter modelling cell motility) are considered. These plots show that larger values of this parameter may significantly shrink the range of modes for which Re( (k 2 )) > 0. In particular, with the exception of the linear elastic model, all constitutive models exhibit: infinitely many unstable modes when D ! 0; a finite number of unstable modes for intermediate values of D; no unstable modes for su ciently large values of D. This is to be expected due to the stabilising e↵ect of undirected, random cell movement and indicates that higher cell motility may correspond to lower pattern formation potential.

Intrinsic growth rate of the cell density and elasticity of the surrounding tissue. The plots in Figures 8. 5 and 8.6 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter r (i.e. the intrinsic growth rate of the cell density) and the parameter s (i.e. the elasticity of the surrounding tissue) are, respectively, considered. These plots show that considering larger values of these parameters reduces the values of Re( (k 2 )) for all constitutive models, and in particular it shrinks the range of unstable modes for the linear viscous model (7.2), the Maxwell model (7.4) and the Je↵rey model (7.6), which can become stable for values of r or s su ciently large. This supports the idea that higher growth rates of the cell density (i.e. faster cell proliferation and death), and higher substrate elasticity (i.e. stronger external tethering force) may slow down pattern formation processes and overall reduce the pattern formation potential for all constitutive models. Moreover, the plots in Figure 8.6 indicate that higher values of s may in particular reduce the pattern formation potential of the di↵erent constitutive models by making it more likely that Re( (k 2 )) < 0 for smaller values of k/⇡ (i.e. low-frequency perturbation modes will be more likely to vanish).

Level of contact inhibition of the cell traction forces and long-range cell traction forces. The plots in Figures 8.7 and 8.8 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter (i.e. the level of cell-cell contact inhibition of the cell traction forces) and the parameter (i.e. the long-range cell traction forces) are, respectively, considered. Considerations similar to those previously made about the dispersion relations obtained for increasing values of the parameters r and s apply to the case where increasing values of the parameter and the parameter are considered. In addition to these considerations, the plots in Figures 8.7 and 8.8 indicate that for small enough values of or the SLS model (7.5) can exhibit unstable modes, which further suggests that weaker contact inhibition of cell traction forces and lower long-range cell traction forces foster pattern formation. Moreover, the plots in Figure 8.8 indicate that in the asymptotic regime ! 0 we may observe infinitely many unstable modes (i.e. Re( (k 2 )) > 0 for arbitrarily large wavenumbers), exiting the regime of physically meaningful pattern forming instabilities [START_REF] Moreo | On the modelling of biological patterns with mechanochemical models: insights from analysis and computation[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF].

Cell haptotactic sensitivity and cell traction forces. The plots in Figures 8.9 and 8.10 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter ↵ (i.e. the cell haptotactic sensitivity) and the parameter ⌧ (i.e. the cell traction force) are, respectively, considered. As expected [START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF], larger values of these parameters overall increase the value of Re( (k 2 )) and broaden the range of modes for which Re( (k 2 )) > 0, so that for large enough values of these parameters the linear viscous model (7.2), the Kelvin-Voigt model (7.3) and the SLS model (7.5) can exhibit unstable modes. However, su ciently large values of ⌧ appear to lead to singular dispersion relations (cf. the plots for the linear elastic model (7.1), the Maxwell model (7.4) and the SLS model (7.5) in Figure 8.10), which suggests that linear stability theory may fail in the regime of high cell traction for certain constitutive models, as previously observed in [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF].

Initial ECM density. The plots in Figure 8.11 illustrate how the base-case dispersion relations displayed in Figure 8.1 change when di↵erent values of the parameter ⇢ 0 (i.e. the initial ECM density) are considered. Considerations similar to those previously made about the dispersion relations obtained for increasing values of the parameter ↵ apply to the case where increasing values of the parameter ⇢ 0 are considered. In addition to these considerations, the plots in Figure 8.11 indicate that smaller values of the parameter ⇢ 0 , specifically ⇢ 0 < 1, correlate with a shift in mode selection toward lower modes (cf. the plots for the linear viscous model (7.2), the Maxwell model (7.4) and the Je↵rey model (7.6) in Figure 8.11). 

Numerical investigations

We verify key results of LSA presented in Section 8.2 by carrying out numerical simulations in 1D in Section 8.3.2. In particular, we report on numerical solutions obtained in the case where equation (8.7) is complemented with the Kelvin-Voigt model (7.3) or the Maxwell model (7.4). These results are complemented with the numerical simulations of the corresponding problem in 2D, reported in Section 8.3.3. The set-up of these numerical simulations and the methods employed to construct numerical solutions are described in Section 8.3.1.

Set-up of numerical simulations and numerical methods

Set-up of numerical simulations in 1D. We first solve numerically the 1D system of PDEs (8.1), (8.2) and (8.7) subject to boundary conditions (8.8) using the parameter values given by (8.20) and (8.21). We choose the endpoints of the spatial domain to be `= 0 and L = 1, and the final time T is chosen su ciently large so that distinct spatial patterns can be observed at the end of simulations. We consider the initial conditions

n(0, x) = 1 + 0.01 ✏(x) , ⇢(0, x) ⌘ ⇢ 0 , u(0, x) ⌘ 0 , (8.22) 
where ✏(x) is a normally distributed random variable with mean 0 and variance 1 for every

x 2 [0, 1]. Initial conditions (8.22) model a scenario where random small perturbations are superimposed to the cell density corresponding to the homogeneous steady state of components n = 1, ⇢ = ⇢ 0 and u = 0. This is the steady state considered in the LSA undertaken in Section 8.2.1. Consistent initial conditions for @ t n(0, x), @ t ⇢(0, x) and @ t u(0, x) are computed numerically -details provided in Appendix B.3.

Set-up of numerical simulations in 2D. Next, we solve numerically the system of PDEs (8.9) subject to the 2D version of the periodic boundary conditions (8.8) and complemented with (8.10)-(7.12). Numerical simulations are carried out using the following parameter values (8.24) which are chosen for illustrative purposes and are comparable with nondimensional parameter values that can be found in the extant literature (see Appendix C.3 for further details). We choose ⌦ = [0, 1] ⇥ [0, 1] and the final time T is chosen su ciently large so that distinct spatial patterns can be observed at the end of simulations. We consider the following 2D analogue of initial conditions (8. 22) (8.25) where ✏(x 1 , x 2 ) is a normally distributed random variable with mean 0 and variance 1 for each (x 1 , x 2 ) 2 [0, 1] ⇥ [0, 1]. Consistent initial conditions for @ t n(0, x 1 , x 2 ), @ t ⇢(0, x 1 , x 2 ) and @ t u(0, x 1 , x 2 ) are computed numerically, as similarly done in the 1D case.

n(0, x 1 , x 2 ) = 1 + 0.01 ✏(x 1 , x 2 ) , ⇢(0, x 1 , x 2 ) ⌘ 1 , u(0, x 1 , x 2 ) ⌘ 0 ,
Numerical methods. Numerical solutions are constructed on a uniform discretisation of the interval [0, 1] or the square [0, 1] ⇥ [0, 1] as the computational domain of the independent variable x, using the Method of Lines. Finite di↵erence and finite volume approximations of the spatial derivatives are used, together with first order upwinding for the flux terms, to obtain a system of ODEs, solved implicitly with the Matlab solver ode15i. All numerical computations are performed in Matlab. Details of the numerical schemes are given in Appendix B.3.

1D patterns

The results obtained are summarised by the plots in Figure 8.12, which display the solution of the system of PDEs (8. • Vanish in the case of the Kelvin-Voigt model, thus leading the cell density to relax to the homogeneous steady state n = 1 and attain numerical equilibrium at t = 100 while leaving the ECM density unchanged;

• Grow in the case of the Maxwell model, resulting in the formation of spatial patterns both in the cell density n and in the ECM density ⇢, which attain numerical equilibrium at t = 500. Notice that the formation of spatial patterns correlates with the growth of the cell-ECM displacement u. In fact, the displacement remains close to zero (i.e. ⇠ O(10 11 )) for the Kelvin-Voigt model, whereas it grows with time for the Maxwell model. In addition, the steady state obtained for the Maxwell model in Figure 8.12, together with those obtained when considering alternative initial perturbations (cf. Figure D.8), demonstrate that, in agreement with the dispersion relation displayed in Figure 8.1 for the Maxwell model, for the parameter values given by (8.20) and (8.21), under small perturbations in the cell density, be they randomly distributed, randomly perturbed periodic or periodic, the fourth mode is the fastest growing one within the range of unstable modes (cf. Re( (k 2 )) > 0 for k/⇡ between 2 and 6, with max Re( (k 2 )) ⇡ 4 in Figure 8.1 for the Maxwell model). Moreover, all the obtained cellular patterns at steady state exhibit the same structure -up to a horizontal shift -consisting of four large peaks, independently of the initial conditions that is used (cf. left panel in the bottom row of Figure 8.12 and supplementary Figure D.8). This indicates robustness and consistency in the nature of the saturated nonlinear steady state under specific viscoelasticity assumptions and parameter choices.

2D patterns

The results obtained are summarised by the plots in Figures 8.13 and 8.14. Solutions of the system of PDEs (8.9), together with (8.10)-(7.12), subject to initial conditions (8.25) and periodic boundary conditions, for the parameter values given by (8.23) and (8.24), are calculated both for the Kelvin-Voigt model and the Maxwell model according to the parameter changes summarised in Table 7.3. The randomly generated initial perturbation in the cell density, together with the cell density at t = 200 both for the Kelvin-Voigt and the Maxwell model are displayed in Figure 8.13, while the solution to the Maxwell model is plotted at a later time in Figure 8.14. Overall, these results demonstrate that, in the scenarios considered here, which are analogous to those considered for the corresponding 1D models, small randomly distributed perturbations present in the initial cell density (cf. first panel in Figure 8.13):

• Vanish in the case of the Kelvin-Voigt model, thus leading the cell density to relax to the homogeneous steady state n = 1 and attain numerical equilibrium at t = 260 (cf. second panel of Figure 8.13) while leaving the ECM density unchanged;

• Grow in the case of the Maxwell model, leading to the formation of spatiotemporal patterns both in the cell density n and in the ECM density ⇢ (cf. third panel of Figure 8.13 and Figure 8.14), capturing spatiotemporal dynamic heterogeneity arising in the system. Similarly to the 1D case, the formation of spatial patterns correlates with the growth of the cell-ECM displacement u. In fact, the displacement remains close to zero (i.e.

⇠ O(10 11 )) for the Kelvin-Voigt model, whereas it grows with time for the Maxwell model -see Figure 8.14. Note that, while the observed pattern for the Maxwell model is not at steady state and we cannot therefore conclude that patterns exist at steady state, spatiotemporal heterogeneity and the emergence of transient patterns can sometimes be more biologically interesting than the existence of steady patterns. 

Summary and discussion

In Chapter 7 we saw how mechanical and mechanochemical models of pattern formation have been used in a variety of applications in which the mechanical interaction between the cells and the ECM cannot be neglected. These models generally rely on linear viscoelasticity assumptions on the ECM, often making use of the Kelvin-Voigt model of linear viscoelasticity. However, a variety of linear viscoelasticity models that can better capture the rheological properties of the ECM exist, as outlined in Section 7.2. In Chapter 8 we therefore investigated the impact of considering di↵erent stress-strain constitutive equations in a generic mechanical model of pattern formation in biological tissue on the pattern formation potential of the system.

Summary

We have investigated the pattern formation potential of di↵erent stress-strain constitutive equations for the ECM within a 1D mechanical model of pattern formation in biological tissues formulated as the system of implicit PDEs (8.1), (8.2) and (8.7). The results of LSA undertaken in Section 8.2 and the dispersion relations derived therefrom support the idea that fluid-like stress-strain constitutive equations (i.e. the linear viscous model (7.2), the Maxwell model (7.4) and the Je↵rey model (7.6)) have a pattern formation potential much higher than solid-like constitutive equations (i.e. the linear elastic model (7.1), the Kelvin-Voigt model (7.3) and the SLS model (7.5)). This is confirmed by the results of numerical simulations presented in Section 8.3, which demonstrate that, all else being equal, spatial patterns emerge in the case where the Maxwell model (7.4) is used to represent the stress-strain relation of the ECM, while no patterns are observed when the Kelvin-Voigt model (7.3) is employed. In addition, the structure of the spatial patterns presented in Section 8.3 for the Maxwell model (7.4) is consistent with the fastest growing mode predicted by LSA. In Section 8.3.3, as an illustrative example, we have also reported on the results of numerical simulations of a 2D version of the model, which is given by the system of PDEs (8.9) complemented with the 2D Kelvin-Voigt and Maxwell models (7.10). These results demonstrate that key features of spatial pattern formation observed in one spatial dimension carry through when two spatial dimensions are considered, thus conferring additional robustness to the conclusions of our work.

Empirically informed mechanical models

These findings corroborate the conclusions of [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF] suggesting that prior studies on mechanochemical models of pattern formation relying on the Kelvin-Voigt model of viscoelasticity may have underestimated the pattern formation potential of biological tissues and advocating the need for further empirical work to acquire detailed quantitative information on the mechanical properties of single components of the ECM in di↵erent biological tissues, in order to furnish such models with stress-strain constitutive equations for the ECM that provide a more faithful representation of tissue rheology, cf. [START_REF] Fung | Biomechanics Mechanical Properties of Living Tissues (2nd Edition)[END_REF]. This is particularly relevant as the Kelvin-Voigt model, typically selected in mathematical studies also thanks to its simple constitutive equation in 2D, is unlikely to give a faithful representation of the viscoelastic behaviour of biological or bio-engineered tissues, even in linear viscoelasticity regimes. These, in fact, generally display viscous flow during the creep test, as exemplified by the experimental creep curve reported in Figure 9.1a, and some form of stress relaxation during the stress relaxation test, as shown by the stress relaxation curves obtained fitting experimentally data reported in Figure 9.1b.

Research perspectives

Model extensions, further analytical and numerical work

The dispersion relations given in Section 8.2 indicate that there may be parameter regimes whereby solid-like constitutive models of linear viscoelasticity give rise to dispersion relations which exhibit a range of unstable modes, while the dispersion relations obtained using fluid-like constitutive models exhibit singularities, exiting the regime of validity of LSA. In this regard, it would be interesting to consider extended versions of the mechanical model of pattern formation defined by the system of PDEs (8.1), (8.2) and (8.7), in order to re-enter the regime of validity of LSA for the same parameter regimes and verify that in such regimes all constitutive models can produce patterns. For instance, it is known that including long-range e↵ects, such as long-range di↵usion or long-range haptotaxis, can promote the formation of stable spatial patterns [START_REF] Moreo | On the modelling of biological patterns with mechanochemical models: insights from analysis and computation[END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF], which could be explored through nonlinear stability analysis, as previously done for the case in which the stress-strain relation of the ECM is represented by the Kelvin-Voigt model [START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Lewis | Analysis of stable two-dimensional patterns in contractile cytogel[END_REF][START_REF] Maini | [END_REF]. In particular, weakly nonlinear analysis could provide information on the existence and stability of saturated nonlinear steady states, supercritical bifurcations or subcritical bifurcations, which may exist even when the homogeneous steady states are stable under small perturbations according to LSA (Cross and Greenside, 2009). Nonlinear analysis would further enable exploring the existence of possible di↵erences in the spatial patterns obtained when di↵erent stress-strain constitutive equations for the ECM are used -such as amplitude of patterns, perturbation mode selection and geometric structure in two spatial dimensions. In particular, the base-case dispersion relations given in Section 8.2 for di↵erent fluid-like models of viscoelasticity displayed the same range of unstable modes. This suggests that the investigation of similarities and di↵erences in mode selection between the various models of viscoelasticity could yield interesting results. It would also be interesting to construct numerical solutions for the mechanical model defined by the system of PDEs (8.1), (8.2) and (8.7) complemented with the Je↵rey model (7.6). For this to be done, suitable extensions of the numerical schemes presented in Appendix B.3 need to be developed.

2D constitutive equations. It would also be relevant to systematically assess the pattern formation potential of di↵erent constitutive models of viscoelasticity in two spatial dimensions. This would require to relax the simplifying assumption (A.64) on the shear and bulk viscosities of the ECM, which we have used to derive the 2D Maxwell model in the form of (7.10), and, more in general, to find analytically and computationally tractable stress-strain-dilation relations, which still remains an open problem [START_REF] Birman | 2D Maxwell model[END_REF][START_REF] Haghighi-Yazdi | Modeling linear viscoelasticity in glassy polymers using standard rheological models[END_REF]. In order to solve this problem, new methods of derivation and parameterisation for constitutive models of viscoelasticity might need to be developed [START_REF] Valtorta | Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device[END_REF]).

Burger's model of linear viscoelasticity. Once appropriate 2D constitutive equations for the models of linear viscoelasticity presented in Section 7.2.2 have been derived, and the numerical methods further developed to address a constitutive equation in the form (7.7) -or (7.9) in 2D -it might be beneficial to focus on the Burger's model of linear viscoelasticity. While this was not addressed in this study, it can capture all the rheological properties of linear viscoelastic materials introduced in Section 7.2.1 (cf. Table 7.2) and will therefore more easily fit any experimental creep and stress-relaxation data -e.g. see Figure 9.1a.

Experimentally motivated studies

As previously mentioned, the values of the model parameters used in this paper have been chosen for illustrative purposes only. Hence, it would be useful to re-compute the dispersion relations and the numerical solutions presented here for a calibrated version of the model based on real biological data. On a related note, in addition to the relevance this study has for in vitro vs. in vivo assays as briefly mentioned at the end of Chapter 6, there exists a variety of interesting applications that could be explored by varying parameter values in the generic constitutive equation (8.7) both in space and time. For instance, cell monolayers appear to exhibit solid-like behaviours on small time scales, whereas they exhibit fluid-like behaviours on longer time scales [START_REF] Tlili | Collective cell migration without proliferation: density determines cell velocity and wave velocity[END_REF], and spatiotemporal changes in basement membrane components are known to a↵ect structural properties of tissues during development or ageing, as well as in a number of genetic and autoimmune diseases [START_REF] Khalilgharibi | To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease[END_REF]. Amongst these, remarkable examples are Alport's syndrome, characterised by changes in collagen IV network due to genetic mutations associated with the disease, diabetes mellitus, whereby high levels of glucose induce significant basement membrane turnover, and cancer. In particular, cancer-associated fibrosis is a disease characterised by an excessive production of collagen, elastin and proteoglycans, which directly a↵ects the structure of the ECM resulting in alterations of viscoelastic tissue properties [START_REF] Ebihara | Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis: Temporal aspects[END_REF]. Such alterations in the ECM may facilitate tumour invasion and angiogenesis. Considering a calibrated mechanical model of pattern formation in biological tissues, whereby the values of the parameters in the stress-strain constitutive equation for the ECM change during fibrosis progression, may shed new light on the existing connections between structural changes in the ECM components and higher levels of malignancy in cancer [START_REF] Chandler | The double edge sword of fibrosis in cancer[END_REF][START_REF] Park | Lung cancer in patients with idiopathic pulmonary fibrosis[END_REF].

Part V Potential future directions Spatial sorting and the migratory phenotype

Throughout this thesis, a series of mathematical models comprising of systems of PDEs have been proposed to study di↵erent mechanisms at the basis of spatial sorting of cell populations at the tissue scale. In Part II this spatial sorting resulted from the nonlinear interaction between cells and abiotic factors which leads to the creation of distinct ecological niches in which cells in di↵erent phenotypic states can be selected. Here, cell spatial movement was either neglected or modelled as low di↵usion in the quantity n(t, x, y), i.e. the cell phenotypic distribution. In Part III spatial sorting resulted from more complex forms of movement, such as chemotaxis and long-range cell adhesion, and interaction with the ECM, including matrix degradation. Finally, in Part IV it was a result of the mechanical interaction between cells and ECM, based on the cells' ability to exert traction forces on the ECM.

While in Parts III and IV it was assumed that all cells in the population were undergoing the same spatiotemporal dynamics, in reality cell populations are often composed of cells with di↵erent migratory abilities. In particular, it is known that mesenchymal-like cells, as opposed to amoeboid-like ones, have a more elongated morphology allowing them to sense environmental clues, including ECM binding sites, at larger distance and exert high traction forces on the ECM fibers to which they are bound [START_REF] Friedl | Tumour-cell invasion and migration: diversity and escape mechanisms[END_REF][START_REF] Friedl | Prespecification and plasticity: shifting mechanisms of cell migration[END_REF]. In tumours, mesenchymal-like invasive cells are also characterised by invadopodia, protrusions associated with proteolytic degradation of the ECM [START_REF] Alblazi | Cellular protrusions-lamellipodia, filopodia, invadopodia and podosomes-and their roles in progression of orofacial tumours: current understanding[END_REF]. It might therefore be beneficial, for certain cell spatial sorting problems, to include a phenotype-structuring variable, say, y 2 Y ⇢ R to model the cell morphologic and migratory phenotype, and define di↵erent terms in the equations as functions of y, similarly to as done in Part II for the metabolic phenotype. Below are discussed three problems, in cancer and development, which could benefit from this approach.

Cancer invasion. As hinted at in Section 1.1.1, EMT allows cells to switch to an invasive phenotype, capable of moving more easily though the ECM thanks to long-range adhesion and secretion of matrix-degrading enzymes. During EMT, moreover, tumour cells can display hybrid morphologies resulting in a range of motile behaviours within the same population [START_REF] Jolly | Implications of the hybrid epithelial/mesenchymal phenotype in metastasis[END_REF]. Therefore, in a first instance, it would be interesting to study cancer invasion in a modelling framework similar to that recently proposed by Fiandaca et al. (2021a). The model would incorporate phenotype-dependent ECMdriven movement by considering local haptotaxis, as in equations (8.1) and (8.9), with heterogeneous haptotactic coe cient, e.g. ↵(y). Moreover, ECM degradation could be modelled by considering a phenotype-dependent degradation rate, e.g. (y), and the product (y)n(t, x, y) would need to be integrated over Y and multiplied by the ECM density. This way matrix degradation would introduce a nonlocal term in the balance equation for the ECM density, as opposed to the local term used in (5.10). In view of the results in [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF][START_REF] Lorenzi | Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility[END_REF][START_REF] Lorenzi | Trade-o↵s between chemotaxis and proliferation shape the phenotypic structuring of invading waves[END_REF], and other works discussed in Section 1.2.4, we expect phenotype-dependent spatial movement to result in travelling wave solutions with the most motile individuals selected at the edge of the invading front. Moreover, these results could be combined with LSA to explore a potential emergence of spatial patterns, such as the finger-like patterns that are sometimes observed in invading tumours -see for instance [START_REF] Bearer | Multiparameter computational modeling of tumor invasion[END_REF][START_REF] Roche | Microinvasive carcinoma of the cervix the significance of lymphatic invasion and confluent patterns of stromal growth[END_REF][START_REF] Weinberg | The biology of cancer[END_REF] and references therein.

Cell migration by nonlocal adhesion. In the cancer invasion problem introduced above, as well as in the cluster-based vasculogenesis one introduced in Part III, cell migration through the ECM could be guided by nonlocal adhesion thanks to cell protrusions. To capture the range of migratory abilities of cells in di↵erent phenotypic states, it would therefore be relevant to let the sensing radius of a cell be defined as a function of y, e.g. R(y). Modelling nonlocal cell adhesion as in equations (5.5) and (5.6), this would introduce a y-dependence in the integration limits. A simpler first step in this direction would be to consider the approach of Loy andPreziosi (2020, 2021), where the sensing radius appears in the integrand, which is set to zero at spatial points further than the distance imposed by the sensing radius R.

Cluster-based vasculogenesis. As hinted at in Sections 4. 1.4 and 6.2.3, during the early stages of cluster-based vasculogenesis EPCs display amoeboid-like features, and have been observed to extend protrusions and have an elongated morphology only after clusters have formed [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. The introduction of a phenotype-structuring variable would therefore allow for a comprehensive model including dynamics occurring at the early and late stages, without the need for separate modelling frameworks. In such model, local vs. nonlocal adhesion could be modelled as discussed in the previous paragraph. Moreover, mechanical clues relevant at the later stages could be modelled as in equations (8.3)-(8.5), or (8.9)-(8.10), of the mechanical models discussed in Part IV, with phenotype-dependent cell traction coe cient, e.g. ⌧ (y). Note that it is still unclear what drives this phenotypic change after cluster formation, and mathematical modelling could therefore provide a great theoretical framework in which to test verbal hypotheses.

The interest of the mathematical community is indeed moving in this direction, as indicated by the fact that these modelling frameworks are increasingly being discussed -e.g. at seminars, workshops and conferences -and related papers are starting to be proposed -e.g. Fiandaca et al. (2021a); [START_REF] Lorenzi | Trade-o↵s between chemotaxis and proliferation shape the phenotypic structuring of invading waves[END_REF]. This will likely lead to new mathematical challenges at the interface of the fields of adaptive dynamics and pattern formation, which would feed back into related fields in physics and mathematics, and inspire new mathematical and interdisciplinary work.

Moreover, equating the coe cients of the first-order terms in y, and eliminating @ t v from the resulting equation, yields

@ t µ = 2b(h µ) v .
(A.4) Lastly, choosing y = µ in (A.2) gives

@ t ⇢ ⇢ + @ t v 2v = v + a b(µ h) 2 ⇣ ⇢ (A.5)
and eliminating @ t v from (A.5) we obtain

@ t ⇢ = ✓ a b v b (µ h) 2 ◆ ⇣⇢ ⇢. (A.6)
Under the initial condition (2.27), we have

v(0, x) = v 0 (x), µ(0, x) = µ 0 (x), ⇢(0, x) = ⇢ 0 (x),
and imposing these initial conditions for (A.3), (A.4) and (A.6) we arrive at the Cauchy problem (2.30) for the functions v(t, x), µ(t, x) and ⇢(t, x).

A.2 Proof of Theorem 1 in Chapter 2

Under assumptions (2.24) and (2.25), Proposition 1 ensures that for any (t, x) 2 [0, 1)⇥⌦ the solution of (2.5) subject to (2.27) and (2.28) is of the Gaussian form (2.29). Therefore, building upon the method of proof presented in (Ardaševa et al., 2020b;Chisholm et al., 2016b), we prove Theorem 1 by studying the behaviour of the components of the solution to the Cauchy problem (2.30) for t ! 1.

Step 1: asymptotic behaviour of v(t, x) ⌘ 1/ 2 (t, x) for t ! 1. Solving (2.30)

1 subject to the initial condition v(0, x) = v 0 (x) gives v(t, •) = s b r b + v 0 ✓r b v 0 ◆ exp 4 p b t r b + v 0 + ✓r b v 0 ◆ exp 4 p b t , (A.7) which implies that v(t, •) ! s b exponentially fast as t ! 1. (A.8)
Step 2: asymptotic behaviour of µ(t, x) for t ! 1. Solving (2.30) 2 subject to the initial condition µ(0, x) = µ 0 (x) yields

µ(t, •) = µ 0 exp ✓ 2b Z t 0 dz v(z, •) ◆ + h  1 exp ✓ 2b Z t 0 dz v(z, •) ◆ , (A.9)
which implies that µ(t, •) ! h exponentially fast as t ! 1.

(A.10)

Step 3: asymptotic behaviour of ⇢(t, x) for t ! 1. We define

w(t, x) ⌘ w(v(t, x), µ(t, x), S(x), C(x)) := ✓ p b b v ◆ b (µ h) 2
and rewrite (2.30) 3 as

@ t ⇢ = h⇣ a p b + w ⌘ ⇣⇢ i ⇢. (A.11) Solving (A.11) subject to the initial condition ⇢(0, x) = ⇢ 0 (x) yields ⇢(t, •) = ⇢ 0 exp  ⇣ a p b ⌘ t + Z t 0 w(z, •) dz 1 + ⇣ ⇢ 0 Z t 0 exp  ⇣ a p b ⌘ z + Z z 0 w(⌧, •) d⌧ dz . (A.12)
The asymptotic results (A.8) and (A.10) ensure that w(t, •) ! 0 exponentially fast as t ! 1, (A.13) and, therefore, (A.12) allows us to conclude that if p b(S(x), C(x)) a(S(x), C(x)) then ⇢(t, x) ! 0 as t ! 1.

(A.14)

On the other hand, the asymptotic result (A.13) implies that in the asymptotic regime

t ! 1 we have exp  ⇣ a p b ⌘ t + Z t 0 w(z, •) dz ⇠ A(S, C) exp h⇣ a p b ⌘ t i ,
and also that, under the additional assumption

p b < a, Z t 0 exp  ⇣ a p b ⌘ z + Z z 0 w(⌧, •) d⌧ dz ⇠ A(S, C) exp ⇥ a p b t ⇤ a p b ,
Bounds on ⇢. We here make use of the notation ⇢ ¯and ⇢ to indicate the infimum and supremum of ⇢, respectively (i.e. ⇢ ¯(t, x)  ⇢(t, x)  ⇢(t, x)). From the maximumminimum principle of parabolic equations [START_REF] Perthame | Parabolic equations in biology[END_REF] we obtain from (2.5) This is the constraint imposed on the Hamilton-Jacobi equation for u(t, x) in (2.42) 2 .

Canonical equation for ȳ. Evaluating (A.18) at y = ȳ(t, x) and using (A.23) along with (A.24) yields R(ȳ(t, x), ⇢(t, x), S(x), C(x)) = 0. (A.25) Di↵erentiating (A.23) with respect to t yields @ ty u(t, x, ȳ(t, x)) + @ 2 yy u(t, x, ȳ(t, x)) @ t ȳ(t, x) = 0 and, using (A.22), we can formally rewrite the above equation as @ t ȳ(t, x) = (@ 2 yy u(t, x, ȳ(t, x)) 1 @ ty u(t, x, ȳ(t, x)).

(A.26) Furthermore, di↵erentiating both sides of (A.18) with respect to y, evaluating the resulting equation at y = ȳ(t, x) and using (A.23) along with (A.24) gives @ ty u(t, x, ȳ(t, x)) = @ y R ȳ(t, x), ⇢(t, x), S(x), C(x) .

Substituting the latter equation into (A.26) we formally obtain the following canonical equation for ȳ(t, x)

@ t ȳ(t, x) = (@ 2 yy u(t, x, ȳ(t, x))) 1 @ y R ȳ(t, x), ⇢(t, x), S(x), C(x) . (A.27)
Equilibrium values of ⇢ and ȳ. Combining (A.25) and (A.27) we find that the steady-state values of ⇢(t, x) and ȳ(t, x), say ⇢ 1 (x) and ȳ1 (x), need to satisfy 8 > < > :

R(ȳ 1 (x), ⇢ 1 (x), S(x), C(x)) = 0, @ y R(ȳ 1 (x), ⇢ 1 (x), S(x), C(x)) = 0.
Substituting (2.6) into the above system of equations, we formally obtain 8 > < > :

p(ȳ 1 (x), S(x)) k(ȳ 1 (x), C(x)) ⇣⇢ 1 (x) = 0, @ y ⇥ p(ȳ 1 (x), S(x)) k(ȳ 1 (x), C(x)) ⇤ = 0,
which implies the following equilibrium solution 8 > < > : A.28) valid in the support of ⇢ 1 , i.e. as long as ⇢ 1 (x) > 0 with ⇢ 1 (x) given by (A.28) 1 . Under definitions (2.13) and (2.14), rewritten in the form (2.15), we obtain 8 > > < > > :

⇢ 1 (x) = 1 ⇣ ⇥ p(ȳ 1 (x), S(x)) k(ȳ 1 (x), C(x)) ⇤ , ȳ1 (x) = arg max y2R ⇥ p(y, S(x)) k(y, C(x)) ⇤ , ( 
⇢ 1 (x) = 1 ⇣ ⇣ a(x) b(x) ȳ1 (x) h(x) 2 ⌘ , ȳ1 (x) = arg max y2R ⇣ a(x) b(x) y(x) h(x) 2 ⌘ , =) 8 > < > : ⇢ 1 (x) = 1 ⇣ a(x), ȳ1 (x) = h(x), (A.29)
that is a unique value of ȳ1 (x) for each x, dictated by the local values of S(x) and C(x) through (2.16)-(2.18). Taken together, these formal results lead to the weak solution given in (2.43) and (2.44).

assumption the term (1 n ⇢) + = (1 n ⇢) 0 for all perturbations allowed.

Remark 8. During the LSA reported in the following sections, we are going to use the fact that n + ⇢ = 1 and ⇢n = ⇢ m = ⇢c = 0 for all spatially homogeneous steady states, as concluded above, to further simplify calculations.

Remark 9. In the following we are interested in the biologically significant steady states, that is, we are going to consider the stability of the steady states with n > 0, focussing on the cell-full steady state with additional observations drawn on the intermediate steady states in the absence of matrix degradation. We will however also include results for the cell-free steady state, which will clearly indicate that such steady state is degenerate.

Remark 10. In the following we will encounter inconclusive LSA results -i.e. option (iii) described in Section 5.2 -particularly for the cell-free steady state. In such case the stability of the steady state under consideration could be investigated by considering the dynamics along a center manifold about the steady state, as LSA calculations reported below are inconclusive for this case. Such investigation, however, goes beyond the scope of this study and we leave the mathematical details to the interested reader, referring them to [START_REF] Carr | Applications of centre manifold theory[END_REF]; [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF]. We will instead briefly comment on the linear stability or instability of the steady state in question by means of ad hoc numerical simulations.

Stability under spatially homogeneous perturbations. Introducing a small spatially homogeneous perturbation v = v + ṽ(t), with |ṽ| ⌧ 1, in (5.15) and linearising leads to the following system for the perturbation ṽ(t): .32) Assuming small perturbations in the form ñ, ⇢, m, c / exp ( t), the system (A.32) can be rewritten as

8 > > > > > > < > > > > > > : @ t ñ = pn(ñ + ⇢) @ t ⇢ = (⇢ m + m⇢) µ(ñ + ⇢) @ t m = ↵ m ñ m m @ t c = ↵ c ñ c c . ( A 
Mṽ = 0 , with M = 0 B B B B @ + pn pn 0 0 µ + m + µ ⇢ 0 ↵ m 0 + m 0 ↵ c 0 0 + c 1 C C C C A . (A.33)
For a non-trivial solution we require det M = 0, leading to the characteristic equation ( + m )( + c )

h 2 + ⇣ pn + m + µ ⌘ + pn mi = 0 , (A.34)
Additional numerical tests with initial conditions such that n 0 > 0 indicate that the cellfree steady state is stable under spatially-homogeneous perturbations also in the latter case if = 0 (cf. Figure A.1c). Under the same initial condition, the solution also does not reach the cell-full steady state if p = 0 (cf. Figure A.1d). In this case, however, it is because for p = 0 there are infinitely many spatially homogeneous steady states of system (5.15) with 0  n  1, ⇢ = µ(1 ⇢)/(µ + m), m and c as in (A.31). Thus the initial condition considered in Figure A.1d may be seen as a spatially homogeneous perturbation (in ⇢) of the steady state n = n 0 , which is stable in this case. Overall these tests indicate that the cell-free steady state, which is unstable under spatially homogeneous perturbations with positive cell density, may owe such instability to cell proliferation and matrix degradation.

Stability under spatially inhomogeneous perturbations. We now introduce spatially inhomogeneous perturbations v = v + ṽ(t, x), with |ṽ| ⌧ 1. After linearisation, system (5.15) gives .36) We immediately notice that, as all steady states satisfy volume filling conditions, chemotaxis in the presence of saturating e↵ects does not play a role in the dynamics of small perturbations from any of these states. After linearisation, for the 1D problem

8 > > > > > > < > > > > > > : @ t ñ = D n ñ n r • A[v + ṽ(t, •)] pn(ñ + ⇢) @ t ⇢ = (⇢ m + m⇢) µ(ñ + ⇢) @ t m = D m m + ↵ m ñ m m @ t c = D c c + ↵ c ñ c c . ( A 
A[v + ṽ(t, •)] in equation (A.36) 1 becomes A[v + ṽ(t, •)](x) = 1 R (S nn n + S n⇢ ⇢) Z R 0 1 X j=0 ⌘(j) (r) ñ(t, x + r⌘(j)) + ⇢(t, x + r⌘(j)) dr (A.37)
with (r) given by the corresponding definition in (5.8). Assuming small perturbations in the form ñ, ⇢, m, c / exp ( t + ikx), we have that (A.37) can be rewritten as .38) of definition (5.17) for the function f (n, ⇢), which influences both the chemotactic sensitivity of cells and their adhesion velocity. All results and considerations made earlier in this section on spatially homogeneous steady states and their stability under spatially homogeneous perturbations still hold. Introducing spatially inhomogeneous perturbations as done above leads to the following linearised system alternative to (A.36):

A[v + ṽ(t, •)](x) = 1 R (S nn n + S n⇢ ⇢) ñ(x) + ⇢(x) Z R 0 (r) exp (ikr) exp ( ikr) A{v + ṽ(t, •)}(x) = 1 R (S nn n + S n⇢ ⇢) ñ(x) + ⇢(x) 2i R Z R 0 ⇣ 1 r R ⌘ sin(kr) dr A{v + ṽ(t, •)}(x) = 2i R 2 k (S nn n + S n⇢ ⇢) ñ(x) + ⇢(x) ⇣ 1 1 Rk sin(Rk) ⌘ . ( A 
8 > > > > > > > > < > > > > > > > > : @ t ñ = D n ñ n c n r • A[v + ṽ(t, •)] pn(ñ + ⇢) @ t ⇢ = (⇢ m + m⇢) µ(ñ + ⇢) @ t m = D m m + ↵ m ñ m m @ t c = D c c + ↵ c ñ c c (A.43) in which, for the 1D problem, A[v + ṽ(t, •)] is given by A[v + ṽ(t, •)](x) = 1 R Z R 0 1 X j=0 ⌘(j) (r) S nn ñ(t, x+r⌘(j))+S n⇢ ⇢(t, x+r⌘(j)) dr (A.44)
with (r) given by the corresponding definition in (5.8). Then, assuming small perturbations in the form ñ, ⇢, m, c / exp ( t + ikx), (A.44) can be rewritten as A.45) with w 1 (k) 0 defined in (A.39). We can rewrite (A.43) as Mṽ = 0, with M given by .46) where

A[v + ṽ(t, •)](x) = 1 R S nn ñ(x) + S n⇢ ⇢(x) Z R 0 (r) exp (ikr) exp ( ikr) A{v + ṽ(t, •)}(x) = 2i R 2 k S nn ñ(x) + S n⇢ ⇢(x) w 1 (k) , ( 
M = 0 B B B B @ + D n k 2 A n (k) + pn A ⇢ (k) + pn 0 nk 2 µ + m + µ ⇢ 0 ↵ m 0 + D m k 2 + m 0 ↵ c 0 0 + D c k 2 + c 1 C C C C A , ( A 
A n (k) = 2n R 2 S nn w 1 (k) and A ⇢ (k) = 2n R 2 S n⇢ w 1 (k) .
(A.47)

We have both A n (k) 0 and A ⇢ (k) 0 for all k 2 R. Comparing these to (A.40) and (A.41), we see that in the absence of saturation e↵ects the contributions from cell-to-cell and cell-to-matrix adhesion are decoupled and both give a negative contribution to M. Furthermore, the contribution from chemotaxis does not vanish for any of the biologically significant steady states (i.e. n > 0). From this system the dispersion relation (k 2 ) rewritten as

A[v + ṽ(t, •)](x) = 1 R (S nn n + S n⇢ ⇢) ñ(x) + ⇢(x) Z R 0 r Z 2⇡ 0 ⌘(✓) (r) exp (irk • ⌘(✓)) d✓ dr A{v + ṽ(t, •)}(x) = 3 ⇡R 3 (S nn n + S n⇢ ⇢) ñ(x) + ⇢(x) h ⇥ I (k) + i ⇥ R (k) i (A.50)
where we have defined, with notation that will become more intuitive in a few steps,

⇥ R (k) = Z 2⇡ 0 ⌘(✓) k • ⌘(✓) 2 " sin R k • ⌘(✓) + 2 cos R k • ⌘(✓) 1 R k • ⌘(✓) # d✓ , (A.51) ⇥ I (k) = Z 2⇡ 0 ⌘(✓) k • ⌘(✓) 2 " 1 + cos R k • ⌘(✓) + 2 sin R k • ⌘(✓) R k • ⌘(✓) # d✓ . (A.52)
We eventually obtain the system (A.40), in which k 2 = |k| 2 = k 2 1 + k 2 2 and, instead of A(k) as in (A.41), we have A(k) given by Considerations in the absence of saturation e↵ects. In the absence of saturation e↵ects, A[v + ṽ(t, •)](x) is given by the 2D correspondent of equation (A.44), that is

A(k) = 3n ⇡R 3 (S nn n + S n⇢ ⇢) k • h ⇥ R (k) i ⇥ I (k) i , ( 
A[v + ṽ(t, •)](x) = 1 R Z R 0 r Z 2⇡ 0 ⌘(✓) (r) ⇣ S nn ñ(t, x + r⌘(✓)) + S n⇢ ⇢(t, x + r⌘(✓)) ⌘ d✓ dr . (A.54)
Then assuming small perturbations in the form ñ, ⇢, m, c / exp ( t with ⇥ R (k) and ⇥ I (k) defined in (A.51) and (A.52). We eventually end up with a system Mṽ = 0, with M defined as in (A.46), in which again we have

+ ik • x), with k = (k 1 , k 2 ) | 2 R 2 , (A.54) can be rewritten as A[v + ṽ(t, •)](x) = 1 R S nn ñ(x) + S n⇢ ⇢(x) Z R 0 r Z 2⇡ 0 ⌘(✓) (r) exp (irk • ⌘(✓)) d✓ dr A{v + ṽ(t, •)}(x) = 3 ⇡R 3 S nn ñ(x) + S n⇢ ⇢(x) h ⇥ I (k) + i ⇥ R (k) i , (A.55)
k 2 = |k| 2 = k 2 1 + k 2 2 and, instead of A n (k) and A ⇢ (k) as in (A.47), A n (k) and A ⇢ (k) defined by A n (k) = 3n ⇡R 3 S nn k • h ⇥ R (k) i ⇥ I (k) i and A ⇢ (k) = 3n ⇡R 3 S n⇢ k • h ⇥ R (k) i ⇥ I (k) i . (A.56)
Again, as demonstrated by the numerically evaluated quantity plot in Figure A.2, we have that Re A n (k) 0 and Re A ⇢ (k) 0 for all k 2 R 2 , and can therefore reach analogous conclusions to those drawn in section A.4.1 for the corresponding 2D problem.

A.5 Derivation of the constitutive equations of the models of linear viscoelasticity in Chapter 7

In Section A.5.1 are reported the rules of derivation of the constitutive equations of the 1D models of linear viscoelasticity presented in Section 7.2.2, using the Kelvin-Voigt and Maxwell models as illustrative examples. In Section A.5.2 are reported the details of the derivation of the constitutive equations for the 2D Kelvin-Voigt and Maxwell models introduced in Section 7.2.3.

A.5.2 Derivation of the 2D Kelvin-Voigt and Maxwell models

Landau & Lifshitz derived from first principles the stress-strain relations that give the 2D versions of the linear elastic model (7.1) and of the linear viscous model (7.2) in isotropic materials [START_REF] Landau | Theory of Elasticity[END_REF], which read, respectively, as

e = E 1 + ⌫ ⇣ " e + ⌫ 1 2⌫ ✓ e I ⌘ and v = ⌘ @ t " v + µ @ t ✓ v I . (A.61)
Here, E is Young's modulus, ⌫ is Poisson's ratio, I is the identity tensor, ⌘ is the shear viscosity and µ is the bulk viscosity. Moreover, " e and ✓ e are the strain and dilation under a purely elastic deformation u e while " v and ✓ v are the strain and dilation under a purely viscous deformation u v , which are all defined via (7.11).

In the case of a linearly viscoelastic material satisfying the Kelvin-Voigt model, the two dimensional analogue of (7.3) is simply given by

= e + v = E 0 " + E 0 ⌫ 0 ✓I + ⌘ @ t " + µ @ t ✓I . (A.62)
Here E 0 and ⌫ 0 are defined via (7.12) and there is no distinction between the strain or dilation associated with each component (i.e. " = " e = " v and ✓ = ✓ e = ✓ v ), as the viscous and elastic components are connected in parallel. This is the stress-strain constitutive equation that is typically used to describe the contribution to the stress of the cell-ECM system coming from the ECM in 2D mechanochemical models of pattern formation [START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Ferrenq | [END_REF][START_REF] Javierre | Numerical modeling of a mechano-chemical theory for wound contraction analysis[END_REF][START_REF] Maini | [END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF][START_REF] Murray | [END_REF]Murray and Oster, 1984a,b;[START_REF] Murray | A mechanical model for mesenchymal morphogenesis[END_REF][START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF].

On the other hand, deriving the 2D analogues of Maxwell model (7.4), of the SLS model (7.5) and of the Je↵rey model (7.6) is more complicated due to the presence of elements connected in series. In the case of Maxwell model, using the fact that the overall strain and dilation will be distributed over the di↵erent components (i.e. " = " e + " v and ✓ = ✓ e + ✓ v ) along with the fact that the stress on each component will be the same as the overall stress (i.e. = e = v ), one finds

1 ⌘ + 1 E 0 @ t = @ t " + ⌫ 0 @ t ✓I + ✓ µ ⌘ ⌫ 0 ◆ @ t ✓ v I , (A.63)
with E 0 and ⌫ 0 being defined via (7.12). Under the simplifying assumption that µ ⌘ = ⌫ 0 (A.64) the stress-strain constitutive equation (A.63) can be rewritten in the form given by the generic 2D constitutive equation (7.10) under the parameter choices reported in Table 7.3. Dividing (A.62) by ⌘, under the simplifying assumption (A.64), the stress-strain constitutive equation for the Kelvin-Voigt model (A.62) can be rewritten as

1 ⌘ = E 0 ⌘ " + E 0 ⌫ 0 ⌘ ✓I + @ t " + ⌫ 0 @ t ✓I ,
which is in the form given by the generic 2D constitutive equation (7.10) under the parameter choices reported in 

⌘ " a = 1 ⌘ 0 for t 0  t < t 1 .
This can be solved using an integrating factor, yielding

" a (t) = "(t 0  t < t 1 ) = 0 E ✓ 1 exp ✓ E ⌘ (t 0 t) ◆◆ , (A.65)
where we can identify a delayed elastic response. For the strain "(t) during the second phase of the creep test, we note that removing the stress 0 at t = t 1 is the same as applying a stress b = 0 , and by linearity we have that the strain " b due to stress removal is given by " b (t) = " a (t t 1 ). Using Boltzmann's superposition principle, i.e. "( a + b ) = "( a ) + "( b ), we can compute the overall strain

"(t t 1 ) = " a (t) " a (t t 1 ) = 0 E ✓ exp ✓ Et 1 ⌘ ◆ 1 ◆ exp ✓ E ⌘ (t 0 t) ◆ ! t!1 0 , (A.66)
where we can identify a delayed elastic recovery, eventually observing a total recovery -see also Figure A.3 (first column,second row). On the other hand, for the Maxwell model, the strain " a (t) during the first phase of the creep test satisfies the constitutive equation (7.4), and we have

" a (t) = Z t t 0 "a (s)ds = Z t t 0 ✓ ˙ a E + a ⌘ ◆ ds for t 0  t < t 1 ,
where we have used that "(t < t 0 ) = 0. This can be integrated, using that a = 0 and that ˙ a (t) = 0 (t t 0 ) in the interval considered, and we obtain

" a (t) = "(t 0  t < t 1 ) = 0 E + 0 ⌘ (t t 0 ) , (A.67)
where we can identify an instantaneous elastic response and viscous flow. Following the same principles introduced above for the Kelvin-Voigt model, we have that the strain in the second phase of the creep test is given by

"(t t 1 ) = " a (t) " a (t t 1 ) = 0 E + 0 ⌘ t 0 E 0 ⌘ (t t 1 ) = 0 ⌘ t 1 ! t!1 0 ⌘ t 1 (A.68)
where we can recognise an instantaneous elastic recovery (cf. cancelled out terms) and a permanent set (residual strain) -see also Figure A.3 (first column,third row). Note that this is exactly due to viscous flow, and therefore specifically characterises viscoelastic fluid models such as Maxwell's (viscous flow and permanent set are observed in the same way repeating the test for the linear viscous and the Je↵rey model).

The stress relaxation test. During a stress relaxation test we impose a constant strain " 0 at t = t 0 , and calculate the resulting stress (t) which can be plotted to give the stress relaxation curve (cf. left column in Figure A.3). For t < t 0 we have = 0.

For the Kelvin-Voigt model we can apply the constitutive equation ( 7.3) directly and obtain (t t 0 ) = E " 0 + ⌘ " 0 (t t 0 ) , (A.69) which implies ˙ (t t 0 ) = 0 and we observe no stress relaxation -see also Figure A.3 (second column, second row). Note that the singularity in is due to the presence of the viscous damper, since it is unphysical to impose an instantaneous strain on a purely viscous damper. For this reason, we have indicated stress relaxation as N.A. for the linear viscous model in Table 7.2. For the Maxwell model, on the other hand, we have that the Using an integrating factor and the fact that " = " 0 (t t 0 ), we obtain .70) which implies ˙ (t t 0 ) < 0 so we observe stress relaxation -see also Then numerical fluxes can be computed at the grid cell interfaces, which is particularly helpful when solving transport equations. In this case a popular approach is to define the approximate advective flux at each interface according to the sign of its velocity, a method known as 'upwinding' that helps to avoid spurious oscillations and negative solution values often introduced by large advective fluxes. Finite volume methods are at the basis of the scheme described in Section B.2, as well as in the mixed finite di↵erence and finite volume scheme presented is Section B.3 for the advective/taxis terms. Finally, for the numerical approximation of the integral terms found in Parts II and III, we make use of finite di↵erence schemes based on a weighted sum of the values of the integrand at a finite set of integration points. The method described in Section B.2, in particular, relies on the composite trapezoidal rule of numerical integration. This consists of applying the trapezoidal rule, i.e. the approximation of an integral by calculating the area of the trapezoid fitting under the curve of the integrand, over a partition of the integration interval and summing up the results.

(t t 0 ) = E " 0 exp ✓ E ⌘ (t 0 t) ◆ , ( A 
Time integration: explicit and implicit schemes. Time integration is computed via explicit or implicit numerical methods. These can be obtained by approximating the time derivatives using, respectively, forward and backward di↵erence approximations.

Explicit schemes, such as the one presented in Section B. We denote the spatial grid width with x and the grid width of the computational domain for the independent variable y as y. We also consider a uniform discretisation of the time interval [0, T] with grid width t = 0.01 and denote the total number of grid points by K t + 1.

The phenotypic distribution n(t, x, y) is approximated as

n(t i , x j , y m ) ⇡ n i j,m
for i = 0, ..., K t , j = 0, ..., K x , m = 0, ..., K y , while the cell density ⇢(t, x), the local mean trait µ(t, x) and the inverse variance v(t, x) = 1/ 2 (t, x) are approximated as

⇢(t i , x j ) ⇡ ⇢ i j , µ(t i , x j ) ⇡ µ i j , v(t i , x j ) ⇡ v i j for i = 0, ..., K t , j = 0, ..., K x .
Finally we make use of the notation S j := S(x j ) and C j := C(x j ) for the stationary distributions of oxygen S(x) and chemotherapeutic agent C(x) at each grid point j = 0, ..., K x .

Numerical scheme for the nonlocal reaction-di↵usion equation (2.26). We rewrite the 1D version of the reaction-di↵usion equation (2.26) under stationary distributions of oxygen and chemotherapeutic agent as

@ t n = @ 2 yy n + R(y, ⇢(t, x), S(x), C(x))n , with ⇢(t, x) = Z L L n(t, x, y)dy ,
where R is defined as in (2.6) with (2.15)-(2.18). We discretise the equation as

n i+1 j,m = n i j,m + t  y 2 n i j,m+1 2n i j,m + n i j,m 1 + R i j,m n i j,m , (B.1)
where we have used the notation R i j,m := R(y m , ⇢ i j , S j , C j ), with

⇢ i j = Ky X m=0 n i j,m y . (B.2)
In particular, equation (B.1) is based on a first order forward di↵erence approximation for the time derivative, thus yielding an explicit scheme, and a second order central di↵erence approximation for the di↵usion term in y. For this reason, the scheme (B.1) is based on a three-point stencil and can only be solved for m = 2, ..., K y 1. The solution for m = 1 and m = K y is calculated using a first order (forward and backward, respectively) di↵erence approximation of the derivative @ y , which is set to zero at the boundary (i.e. at y = L and y = L) under the zero-flux boundary conditions (2.52). This yields

n i j,1 = n i j,2
and n i j,Ky = n i j,Ky 1 .

(B.3)

Numerical scheme for the system (2.30). Note first of all that, thanks to absence of spatial derivatives, the PDE system (2.30) is de facto and ODE system to be solved at each point in space. Therefore, we rewrite the 1D version of the system (2.30) under stationary distributions of oxygen and chemotherapeutic agent as 8 > > > < > > > :

v 0 = 2 (b(S, C) v 2 ) , µ 0 = (2b(S, C)/v) (h(S, C) µ) , ⇢ 0 = ⇥ a(S, C) (b(S, C)/v) b(S, C) (µ h(S, C)) 2 ⇣⇢ ⇤ ⇢ .
Where a, b and h are defined as in (2.18)-(2.18). Introducing the notation a j := a(S j , C j ), b j := b(S j , C j ) and h j := h(S j , C j ), we discretise system (2.30) as 8 > > > < > > > : . This is because we seek to have corresponding numerical initial conditions for the two problems, in order to compare the numerical solutions of the two systems and verify the analytical results of Section 2.2.1. Initial condition (2.27) is defined as a Gaussian-like function with support R, integrating to ⇢ 0 . However, integrating the Gaussian-like function over the finite computational domain [ L, L] introduces an approximation error and the resulting quantity does not match the required initial cell density of 10 8 . In order for these to match, ⇢ 0 in (2.27) needs to be defined as

v i+1 j = v i j + t ⇥ 2 b j (v i j ) 2 ⇤ , µ i+1 j = µ i j + t ⇥ 2b j /v i j h j µ i j ⇤ , ⇢ i+1 j = ⇢ i j + t nh⇣ a j b j /v i j b j µ i j h j 2 ⌘ ⇣⇢ i j i ⇢ i j o . ( 
⇢ 0 = 10 8 p 2⇡ 2 0 (x) R L L exp h 1 2 2 0 (x) (y µ 0 (x)) 2 i dy ⇡ 10 8
for the numerical initial condition complementing scheme (B.1)-(B.3).

B.1.2 Numerical schemes for 2D spatial domains

Numerical simulations in 2D rely on a uniform discretisation of the the spatial domain [0, 0.05] ⇥ [0, 0.05] consisting of (K x + 1) ⇥ (K x + 1) = 101 ⇥ 101 grid points and, as in the 1D case, a uniform discretisation of the computational domain [ L, L] (L = 7) for the independent variable y consisting of K y + 1 = 1000 grid points. Again, we denote the spatial grid width in each direction with x and the grid width of the computational domain for the independent variable y as y. We again consider a uniform discretisation of the time interval [0, T] with grid width t = 0.01 and denote the total number of grid points by K t + 1. The phenotypic distribution n(t, x, y) is approximated as n(t i , x j , x l , y m ) ⇡ n i j,l,m for i = 0, ..., K t , j, l = 0, ..., K x , m = 0, ..., K y , while the cell density ⇢(t, x), oxygen concentration s(t, x) and chemotherapeutic agent concentration c(t, x) are approximated as ⇢(t i , x j , x l ) ⇡ ⇢ i j,l , s(t i , x j , x l ) ⇡ s i j,l , c(t i , x j , x l ) ⇡ c i j,l for i = 0, ..., K t , j, l = 0, ..., K x .

Numerical scheme for the nonlocal reaction-di↵usion equation (2.5). We rewrite the 2D version of the reaction-di↵usion equation (2.5) as

@ t n = D n x n + @ 2 yy n + R(y, ⇢(t, x), s(t, x), c(t, x))n , with ⇢(t, x) = Z L L n(t, x, y)dy ,
where R is defined as in (2.6) with (2.15)-(2.18). We discretise the equation as

n i+1 j,l,m = n i j,l,m + t  D n x 2 n i j+1,l,m + n i j,l+1,m 4n i j,l,m + n i j 1,l,m + n i j,l 1,m + y 2 n i j,l,m+1 2n i j,l,m + n i j,l,m 1 + R i j,l,m n i j,l,m , (B.5) 
where we have used the notation R i j,l,m := R(y m , ⇢ i j,l , s i j,l , c i j,l ), with

⇢ i j,l = Ky X m=0 n i j,l,m y . (B.6)
In particular, equation (B.5) is based on a first order forward di↵erence approximation for the time derivative, thus yielding an explicit scheme, and a second order central di↵erence approximation for the di↵usion terms in x and y. For this reason, the scheme (B.5) is based on a seven-point stencil and can only be solved for j, l = 2, ..., K x 1 and m = 2, ..., K y 1. The solution at the end points of the grid is calculated using a first order (forward and backward, respectively) di↵erence approximation of the derivatives @ x 1 , @ x 2 and @ y , which are set to zero at the boundary under the zero-flux boundary conditions (2.5) 3 and (2.52). This yields, at each timestep i, n i 1,l,m = n i 1,l,m and n i Kx,l,m = n i Kx 1,l,m for l = 2, ..., K x 1 , m = 2, ..., K y 1 , n i j,1,m = n i j,2,m and n i j,Kx,m = n i j,Kx 1,m for j = 1, ..., K x , m = 2, ..., K y 1 , n i j,l,1 = n i j,l,2

and n i j,l,Ky = n i j,l,Ky 1 for j, l = 1, ..., K x .

(B.7)

In the absence of spatial di↵usion, i.e. for the 2D system (2.26) coupled with (2.19) and (2.20), we obtain a scheme analogous to (B.5) with D n = 0, together with (B.6), and boundary conditions (B.7) 3 as in such case the scheme for n i+1 j,l,m is valid for all j, l = 1, ..., K x . where we have used the notation (r s ) i j,l,m := r s (y m , s i j,l ), and where W i,j is a (K x + 1) ⇥ (K x + 1) matrix of ones in correspondence of the blood vessel positions and zeros otherwise. As for (B.5), equation (B.8) is based on a finite di↵erence scheme that is first order forward in time and second order central in space, computed on a five-point stencil. The solution at boundary grid points are computed, as in (B.7), from the zeroflux boundary conditions (2.19) 2 using a first order finite di↵erence approximation in space, i.e. s i 1,l = s i 1,l and s i Kx,l = s i Kx 1,l for l = 2, ..., K x 1 , s i j,1 = s i j,2 and s i j,Kx = s i j,Kx 1 for j = 1, ..., K x .

Numerical

(B.9)

The scheme for the numerical computation of the solution c(t, x) to equation (2.20), together with definitions (2.22)-(2.23), is analogous to that here described for s(t, x).

B.2 Numerical method used in Chapter 5

The code used for the numerical simulations reported in Section 5.3 for the nonlocal PDE model introduced in Section 5.1 was developed by Alf Gerisch, from the Technical University of Darmstadt. We here describe the main features of the scheme and refer the interested reader to publications which report its sophisticated details -e.g. Gerisch (2010); [START_REF] Gerisch | On the approximation and e cient evaluation of integral terms in PDE models of cell adhesion[END_REF]Chaplain (2006, 2008). As introduced in Section 5.3.1, we solve the nondimensional system (5.15)- (5.16) in ⌦ = (0, 1) in 1D and ⌦ = (0, 1) ⇥ (0, 1) in 2D, with zero-flux boundary conditions and initial conditions (5.13)- (5.14).

Spatial discretisation.

The numerical solution is constructed following the MOL by first discretising the nonlocal model in space, yielding an initial value problem for a large system of sti↵ ODEs. This is obtained using a second-order finite volume approach, described in detail by [START_REF] Gerisch | Robust numerical methods for taxis-di↵usion-reaction systems: Applications to biomedical problems[END_REF] and references therein. First, the spatial domain ⌦ is discretised by an equi-spaced linear grid of K = 1000 grid cells in 1D, in a similar fashion to the example grid (b) in Figure B.1, and K ⇥K = 100⇥100 grid cells in 2D. Reaction terms are computed using approximations at the grid cell centres. Di↵usion terms are calculated using a second-order finite di↵erence approximation of the di↵usion operator within each grid cell (e.g. in 1D the three-point stencil used is made up of the left grid cell interface, the grid cell centre and the right grid cell interface). Advection (chemotaxis and adhesion) terms exploit the calculation of the advective flux at the grid cell interfaces using first-order upwinding -see Section B.3 (equations (B.16)-(B.18)) -with the additional use of flux limiter functions in order to ensure an accurate and at the same time non-negative approximation of the taxis and adhesion terms; note that here in particular we employ the Koren flux limiter (k = 1/3, = 0.25) [START_REF] Gerisch | Robust numerical methods for taxis-di↵usion-reaction systems: Applications to biomedical problems[END_REF][START_REF] Koren | A robust upwind discretization method for advection, di↵usion and source terms[END_REF]. Zero-flux boundary conditions are simply implemented by imposing the flux to be zero at the interfaces corresponding to the boundary of ⌦.

Computation of the nonlocal term. In order to calculate the adhesion terms, we require a computation of the nonlocal adhesion velocity at each grid cell interface. A detailed account of the approximation of the nonlocal term in a periodic boundary condition setting is given by [START_REF] Gerisch | On the approximation and e cient evaluation of integral terms in PDE models of cell adhesion[END_REF]. The integral needs to be computed over integration domains which can be discretised by means of finer stencils overlapping the main spatial grid; note in particular that for the sensing region in 2D a circular stencil is usedsee (Gerisch, 2010, Figure 6). A piecewise-constant reconstruction of the quantity g v in (5.5) is used to approximate the function within the sensing region starting from the approximation evaluated at the grid cell interfaces. Then the composite trapezoidal rule of numerical integration is applied over the discretised integration domain. The combination of these two steps gives rise to a matrix-vector product resulting in a vector for the adhesion velocity at each grid cell interface. In the case of periodic boundary conditions the matrix involved in this product is a circulant 2 matrix. Under zero-flux boundary conditions the matrices involved in this product have Toeplitz 3 structure, and can be embedded in slightly larger circulant matrices [START_REF] Domschke | Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF][START_REF] Villa | A novel nonlocal partial di↵erential equation model of endothelial progenitor cell cluster formation during the early stages of vasculogenesis[END_REF]. Then the matrix-vector product involving a circulant matrix can be evaluated e ciently using fast Fourier transform techniques. This e cient approximation of the nonlocal term, simultaneously on the full computational grid, is key to an overall e cient numerical scheme for the full PDE system.

2

A circulant matrix is a Toeplitz matrix where each row is a right cyclic shift of the row above it.

3

A Toeplitz matrix is an n ⇥ n matrix M such that M i,j = M i+1,j+1 for all i, j = 1, ..., n 1.

Time integration. The above methods yield an initial value problem for a large system of sti↵ ODEs. This system is solved using the linearly-implicit time integration scheme ROWMAP [START_REF] Weiner | ROWMAP-a ROW-code with Krylov techniques for large sti↵ ODEs[END_REF], implemented in a Fortran subroutine and called from Matlab. ROWMAP is specifically designed for the numerical solution of sti↵ initial value problems of ODEs of large dimension, and implements automatic time step size control ensuring that the temporal discretisation error of the numerical solution is negligible in comparison with the spatial error introduced during the spatial discretisation [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF].

B.3 Numerical schemes used in Chapter 7

Details of the numerical schemes for the 1D and 2D problems presented in Chapter B.3 are given in Section B.3.1 and B.3.2 respectively. The files containing the code corresponding to the schemes is available on GitLab4 . The following schemes and available code have been developed in collaboration with Alf Gerisch (TU Darmstadt).

B.3.1 Numerical schemes for the 1D problem

Numerical solutions for the system of implicit, time-dependent and spatially 1D PDEs (8.1), (8.2) and (8.7) are obtained exploiting the Method of Lines. We make use of a uniform discretisation of the spatial domain [l, L] consisting of K + 1 grid points, or grid cell centres, while, at first, leaving the time variable continuous. We denote the spatial grid width by x. The normalised cell density n(t, x), the normalised ECM density ⇢(t, x) and the displacement of a material point of the cell-ECM system u(t, x) are approximated as n(t, x i ) ⇡ N i (t) , ⇢(t, x i ) ⇡ P i (t) , u(t, x i ) ⇡ U i (t) for i = 0, . . . , K .

Thanks to the periodic boundary conditions we have N 0 (t) = N K (t) , P 0 (t) = P K (t) and U 0 (t) = U K (t) , and consequently have 3 ⇥ K time-continuous approximations to determine. We collect them in the vectors N (t), P (t), U (t) and denote their time-derivatives by N 0 (t), P 0 (t), U 0 (t). The discretization of the spatial derivatives in the PDE system will then result in an implicit system of 3 ⇥ K ODEs for the variables N (t), P (t), U (t) and their time-

In addition, the K⇥K matrices * M x and ( M x are used to approximate the first-order derivatives in space of a periodic grid function at the (right) grid cell interfaces, when the grid function is given in the grid cell centres, and at the grid cell centres, when the grid function is given in the (right) grid cell interfaces, respectively. These are given by * M x := 1 Note that, even though these two matrices are multiplied by 1/ x, they still stem from second-order finite di↵erence approximations, calculated on a staggered grid shifted by half the grid cell width.

Convention: In the formulas which follow below, we use the convention that any product of a matrix from above with a vector of length K is a matrix-vector product but any operation between two vectors, in particular multiplication, division, or exponentiation, are understood element-wise.

Numerical scheme for the balance equation (8.1). We rewrite the balance equation (8.1) as @ t n D@ 2 xx n + r x ( n) rn(1 n) = 0 with = ↵ r x ⇢ + @ t u , which, upon spatial discretisation, leads to the following system of K ODEs Numerical scheme for the transport equation (8.2). We rewrite the transport equation (8.2) as @ t ⇢ + r x (@ t u ⇢) = 0 which, upon spatial discretisation, leads to the following system of K ODEs where the function A * M U 0 , P is defined in (B.16), together with definitions (B.17) and (B.18), with advection velocity given by U 0 calculated at the cell interfaces using * M defined in (B.12).

Numerical scheme for the force-balance equation (8.7). We solve the system of PDEs (8.1), (8.2) and (8.7) for the Kelvin-Voigt (7.3) and the Maxwell (7.4) models. In these cases we have b 2 = a 2 = 0, and the force-balance equation (8.7) reads as b 1 @ 3 xxt u + b 0 @ 2 xx u a 1 s @ t (⇢u) a 0 s⇢u + r x a 1 @ t c + a 0 c = 0

with c = ⌧ n 1 + n 2 ⇢ + @ 2 xx ⇢ .
Upon spatial discretisation, this leads to the following system of K ODEs Convention: With the definitions above, we have hidden all applications of the matrices from the spatially 1D case in newly defined functions. Consequently, in the formulas which follow below, we use the convention that any further operation between matrices, in particular multiplication, division, or exponentiation, are understood element-wise.

Numerical scheme for the balance equation (8.9) 1 . We rewrite the balance equation (8.9) 1 as

@ t n D ⇥ @ 2 x 1 x 1 n + @ 2 x 2 x 2 n ⇤ + @ x 1 ( 1 n) + @ x 2 ( 2 n) rn(1 n) = 0 with i = ↵ @ x i ⇢ + @ t u i i = 1, 2 ,
which, upon spatial discretisation, leads to the following system of K2 ODEs Numerical scheme for the transport equation (8.9) 2 . We rewrite the transport equation (8.9) 2 as @ t ⇢ + @ x 1 (@ t u 1 ⇢) + @ x 2 (@ t u 2 ⇢) = 0 which, upon spatial discretisation, leads to the following system of K 2 ODEs Numerical scheme for the force balance equation (8.9) 3 . We rewrite the first component of the force balance equation (8.9) 3 , complemented with (30)-( 32), as

f n (N, P, N 0 , U 0 1 , U 0 1 ) =N 0 D ⇥ M xx1 (N ) + M xx2 (N ) ⇤ + A 1 * 1 , N + A 2 * 2 ,
b 1 ⇣ @ 2 x 1 x 1 @ t u 1 + 1 2 ⇥ @ 2 x 2 x 2 @ t u 1 + @ 2 x 1 x 2 @ t u 2 ⇤ ⌘ + b 0 ⇣ @ 2 x 1 x 1 u 1 + 1 2 ⇥ @ 2 x 2 x 2 u 1 + @ 2 x 1 x 2 u 2 ⇤ ⌘
+ c 1 @ 2 x 1 x 1 @ t u 1 + @ 2 x 1 x 2 @ t u 2 + c 0 @ 2 x 1 x 1 u 1 + @ 2 x 1 x 2 u 2 + @ x 1 [a 1 @ t c + a 0 c ] a 1 s(u 1 @ t ⇢ + ⇢@ t u 1 ) a 0 s⇢u 1 = 0 , (B.33) and, similarly, we rewrite the second component as

b 1 ⇣ @ 2 x 2 x 2 @ t u 2 + 1 2 ⇥ @ 2 x 1 x 2 @ t u 1 + @ 2 x 1 x 1 @ t u 2 ⇤ ⌘ + b 0 ⇣ @ 2 x 2 x 2 u 2 + 1 2 ⇥ @ 2 x 1 x 2 u 1 + @ 2 x 1 x 1 u 2 ⇤ ⌘
+ c 1 @ 2 x 2 x 2 @ t u 2 + @ 2 x 1 x 2 @ t u 1 + c 0 @ 2 x 2 x 2 u 2 + @ 2 x 1 x 2 u 1 + @ x 2 [a 1 @ t c + a 0 c ] a 1 s(u 2 @ t ⇢ + ⇢@ t u 2 ) a 0 s⇢u 2 = 0 ,

(B.34)
where c is defined by than the proliferation rate for consistency with the parameter choices of [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF]. Moreover, in agreement with experimental results of [START_REF] Gordan | HIF-2↵ promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity[END_REF] and the choices made by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], we choose the maximum proliferation rate via aerobic energy pathways to be one order of magnitude higher than via anaerobic energy pathways. This results in about ' = 1 ⇥ 10 5 s 1 and s = 1 ⇥ 10 4 s 1 . We take the rate of cell death due to competition for space ⇣ = 2 ⇥ 10 13 cm 3 s 1 cells 1 , for consistency with the parameter choices made by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], who considered experimental values reported in [START_REF] Li | The glucose distribution in 9l rat brain multicell tumor spheroids and its e↵ect on cell necrosis[END_REF]. Finally, we chose the maximal reduction of the background fitness due to chemotherapy c = 1.8 ⇥ 10 4 s 1 as chosen by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF] referring back to [START_REF] Ward | Mathematical modelling of avascular-tumour growth[END_REF].

c = ⌧ n 1 + n 2 ⇢ + @ 2 x 1 x 1 ⇢ + @ 2 x 2 x 2 ⇢ . (B.
Oxygen. In agreement with the choices made by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], in view of the considerations made by [START_REF] Ward | Mathematical modelling of avascular-tumour growth[END_REF] and the experimental results reported by [START_REF] Casciari | Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH[END_REF], we take the Michaelis-Menten constant of oxygen ↵ s = 1.5 ⇥ 10 7 g cm 3 and the di↵usivity of oxygen D s = 2 ⇥ 10 5 cm 2 s 1 with reference to the experimental results of [START_REF] Hlatky | Two-dimensional di↵usion limited system for cell growth[END_REF]. In view of definitions (2.21) and (2.13), and the parameter choice for s , we take the conversion factor for cell consumption of oxygen ⌘ s = 2 ⇥ 10 11 g cells 1 , so that the maximum consumption rate of oxygen max r s = ⌘ s s matches that of [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], who refer back to the considerations made by [START_REF] Ward | Mathematical modelling of avascular-tumour growth[END_REF] and the experimental results reported by [START_REF] Casciari | Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH[END_REF]. We take the rate of natural decay of oxygen s = 2.78 ⇥ 10 6 s 1 mathing the value used by [START_REF] Cumsille | Proposal of a hybrid approach for tumor progression and tumor-induced angiogenesis[END_REF]. Similarly to as chosen by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], we pick the reference value for the concentration of oxygen S 0 = 6.3996 ⇥ 10 7 g cm 3 , consistent with experimental data on oxygen concentration reported by [START_REF] Kumosa | Permeability of subcutaneous tissues surrounding long-term implants to oxygen[END_REF]. We pick the constant rate of inflow of oxygen through blood vessels I s to match this value, i.e. I s = 6.3996 ⇥ 10 7 g cm 3 s 1 .

Chemotherapeutic agent. We follow the parameter choices made by [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF], who take the Michaelis-Menten constant of chemotherapeutic agent ↵ c = 2⇥10 6 g cm 3 following considerations made by [START_REF] Norris | Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics[END_REF] and experimental results of [START_REF] Kwok | The response to cytotoxic drugs of EMT6 cells treated either as intact or disaggregated spheroids[END_REF]. For consistency with the choice made for ⌘ s , we take the conversion factor for cell consumption of chemotherapeutic agent ⌘ c = 4 ⇥ 10 11 g cells 1 , cf. [START_REF] Norris | Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics[END_REF]; [START_REF] Lorenzi | The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity[END_REF]. We take average values in the range of estimates reported by Powathil et al. (2012b) for the di↵usivity of chemotherapeutic agent, yielding and the rate of natural decay of chemotherapeutic agent , yielding D c = 4.4 ⇥ 10 6 cm 2 s 1 and c = 2.3 ⇥ 10 4 s 1 . [START_REF] Norris | Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics[END_REF] reported reference values for the concentration of chemotherapeutic agent in the range 5 ⇥ 10 8 2 ⇥ 10 5 g cm 3 , thus we chose C 0 = 2.5 ⇥ 10 6 g cm 3 , although other parameter values in that range are considered for the study in Section 2.3. Similarly to as chosen for I s , we take the constant rate of inflow of chemotherapeutic agent through blood vessels I c to match C 0 , i.e. I c = 2.5 ⇥ 10 6 g cm 3 s 1 .

C.2 Parameter values used in Chapter 5

As already indicated in Section 5.1.4, we use L = 0.1 cm as characteristic length scale, in accordance with previous vasculogenesis works [START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Serini | Measures and estimates of the di↵usion coe cient of the chemoattractant, usually identified as VEGF, are in the range 10[END_REF] and for easy visual comparison with the experimental results reported by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF]. We then take reference time scale ⌧ := L 2 /D, where D is a characteristic diffusion coe cient D ⇠ 10 6 cm 2 s 1 [START_REF] Bray | Cell movements: from molecules to motility[END_REF], resulting in a reference time scale ⌧ = 10 4 s.

Endothelial progenitor cells (or endothelial cells).

The reference cell density is chosen to be N := n M = # 1 1 and we take # 1 to be the average volume occupied by an EC. [START_REF] Rubin | Endothelial cell subpopulations in vitro: Cell volume, cell cycle, and radiosensitivity[END_REF] measured the average ECs volume during di↵erent phases of the cell cycle, registering values in the range of 800 1800 µm 3 , with a predominance of measurements around 1000 µm 3 . Hence we take # 1 = 10 9 cm 3 /cell, corresponding to an average cell diameter of approximately a = 10 3 cm. Measures and estimates of the di↵usion coe cient of ECs fall in the range 10 6 -10 12 cm 2 s 1 [START_REF][END_REF], so we take D n = 10 9 cm 2 s 1 . We consider the chemotactic sensitivity coe cient estimated by Jain and Jackson (2013), corresponding to = 1.4 ⇥ 10 7 cm 5 ng 1 s 1 . [START_REF] Sen | Matrix strains induced by cells: computing how far cells can feel[END_REF] estimated a maximum cell surface radius, upon morphological changes to better adhere to the underlying gel, of about 50 µm. Given cell-to-cell and cell-to-matrix adhesion occurs via adhesion molecules on the cell surface, we take the sensing radius R = 0.5 ⇥ 10 2 cm. While the nonlocal term introduced in equations (5.5) and (5.6) allows us to consider cell-to-cell and cell-to-matrix adhesion dynamics at tissue level, these are the result of smaller scale dynamics between adhesion molecules and receptors on cell surfaces -vid. for instance [START_REF] Albelda | Integrins and other cell adhesion molecules[END_REF]; [START_REF] Berrier | Cell-matrix adhesion[END_REF]; [START_REF] Garrod | Cell to cell and cell to matrix adhesion[END_REF] -of which our modelling choice is a simplification. As a result, good estimates for cell-to-cell and cell-to-matrix coe cients S nn and S n⇢ are currently lacking. We therefore consider nondimensional values chosen by [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF] for our baseline parameter set which correspond to S nn = 10 16 cm 5 s 1 and S n⇢ = 10 6 cm 2 nM 1 s 1 respectively, acknowledging that model fitting to experimental data is required. [START_REF] Kinev | Endothelial colony forming cells (ECFCs) as a model for studying e↵ects of low-dose ionizing radiation: growth inhibition by a single dose[END_REF] reported dubling times of non-irradiated ECFCs -the same class of EPCs employed by [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] -of about 19.5 hours, estimated from measured growth rates assuming exponential growth. Following their calculations, this corresponds to proliferation rates of about p = 10 5 s 1 .

Extracellular matrix. We use a reference matrix density of P = 10 1 nM [START_REF] Anderson | A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion[END_REF][START_REF] Anderson | Mathematical Modelling of Tumour Invasion and Metastasis[END_REF][START_REF] Terranova | Human endothelial cells are chemotactic to endothelial cell growth factor and heparin[END_REF] and define the parameter # 2 := P 1 . Since the LSA suggest that a domain not too densely packed with cells and ECM may facilitate the emergence of spatial patters (see Section 5.2 and Appendix A.4), we take the initial ECM density in (5.13) to be ⇢ 0 = 0.5 in our nondimensional baseline parameter set, corresponding to ⇢ 0 = 0.5 ⇥ 10 1 nM. We take the ECM degradation rate by MMPs proposed by [START_REF] Kim | Interaction of tumor with its micro-environment: A mathematical model[END_REF], i.e. = 9 ⇥ 10 5 cm 3 g 1 s 1 . ECM remodelling is a complex process involving a variety of cells and molecules [START_REF] Chang | Restructuring of the extracellular matrix in diabetic wounds and healing: A perspective[END_REF][START_REF] Daley | Extracellular matrix dynamics in development and regenerative medicine[END_REF][START_REF] Lefebvre | Developmental Expression and Cellular Origin of the Laminin 2, 4, and 5 Chains in the Intestine[END_REF][START_REF] Streuli | Extracellular matrix remodelling and cellular di↵erentiation[END_REF], so the remodelling term introduced in equation ( 5.10) is an oversimplification of the underlying dynamics. Therefore the lack of experimental values or estimates for the remodelling rate µ is not surprising, and we take the nondimensional value 0.2 as similarly considered in [START_REF] Deakin | Mathematical modeling of cancer invasion: The role of membrane-bound matrix metalloproteinases[END_REF]; [START_REF] Domschke | Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF]; [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF] for our baseline parameter set. Under the defined nondimensional parameters this corresponds to the dimensional value µ = 0.2 ⇥ 10 5 nM s 1 .

Matrix degrading enzyme (MMP). [START_REF] Blatchley | Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis[END_REF] reported concentrations of MMP-1 in the range 1 100 µg ml 1 , so we take the intermediate concentration as reference MMP density, i.e. M = 10 µg cm 3 . We let the di↵usion coe cient for the MMP be given by D m = 8 ⇥ 10 9 cm 2 s 1 , which was experimentally determined by [START_REF] Sa↵arian | Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen[END_REF], although di↵usion rates have been observed in the range 10 10 10 8 cm 2 s 1 [START_REF] Collier | Di↵usion of MMPs on the surface of collagen fibrils: the mobile cell surface-collagen substratum interface[END_REF][START_REF] Kumar | MMP secretion rate and inter-invadopodia spacing collectively govern cancer invasiveness[END_REF]. While MMPs secretion rates by cells have been reported in a variety of works, these fail to provide parameter values in the appropriate unit of ↵ m in this model. For instance [START_REF] Kumar | MMP secretion rate and inter-invadopodia spacing collectively govern cancer invasiveness[END_REF] considered secretion rates varying between 0.01 0.5 s 1 but the associated MMP concentration is unspecified, while [START_REF] Ruggiero | Mathematical Modeling of Tuberculosis Granuloma Activation[END_REF] estimated secretion rates by stromal cells and macrophages to be 5.75 ⇥ 10 10 and 4.44 ⇥ 10 10 g cm 3 respectively, without an indication of the considered time frame. We here consider that molecular dynamics are generally faster than cellular ones and therefore the observed average MMP concentration satisfies (5.11) at equilibrium, i.e. m = ↵ m n/ m . Under the chosen reference values N , M and m , this corresponds to an MMP production rate of ↵ m = 0.5 ⇥ 10 12 µg s 1 per cell. Note that the resulting nondimensional parameter value is close to that chosen in previous mathematical models -vid. for instance [START_REF] Anderson | Mathematical Modelling of Tumour Invasion and Metastasis[END_REF]; [START_REF] Deakin | Mathematical modeling of cancer invasion: The role of membrane-bound matrix metalloproteinases[END_REF]; [START_REF] Domschke | Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF]; [START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the e↵ect of adhesion[END_REF]. Nonetheless, we will also consider higher values of ↵ m , since [START_REF] Deem | Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species[END_REF] have reported up to a 4-fold increase in MMP production in the presence of reactive oxygen species, and in addition MMP production levels have been shown to be significantly upregulated in human cancers [START_REF] Shiomi | MT1-MMP and MMP-7 in invasion and metastasis of human cancers[END_REF]. Finally, [START_REF] Kim | Interaction of tumor with its micro-environment: A mathematical model[END_REF] estimated and we take ↵ = 0.05 for our baseline parameter set. While most authors ignore cell proliferation dynamics, i.e. consider r = 0 [START_REF][END_REF][START_REF] Byrne | [END_REF][START_REF] Gilmore | [END_REF][START_REF] Murray | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF], when present, the rate of cell proliferation takes nondimensional value in the range [0.02, 5] ( [START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF]. Hence, we choose r = 1 for our baseline parameter set.

Parameters in the balance equation (8.2). While no parameters appear in the balance equation (8.2), the value of the parameter ⇢ 0 introduced in Section 8.2 as the spatially homogeneous steady state ⇢ = ⇢ 0 , and successively specified to be the initial ECM density in (8.22) for our numerical simulations, stems from neglected terms in equation (8.2). With the exception of [START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF] and [START_REF] Maini | [END_REF] who, respectively, have ⇢ 0 = 100.2 and ⇢ 0 = 0.1, this parameter is usually taken to be ⇢ 0 = 1 in mechanochemical models ignoring additional ECM dynamics [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Harris | Fibroblast traction as a mechanism for collagen morphogenesis[END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Moreo | On the modelling of biological patterns with mechanochemical models: insights from analysis and computation[END_REF]Murray and Oster, 1984a,b;[START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF][START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF].This is generally justified by assuming the steady state ⇢ 0 of equation (8.2) that is introduced by the additional term, say S(n, ⇢), is itself used to nondimensionalise ⇢, before assuming the dynamics modelled by S(n, ⇢) to occur on a much slower timescale than convection driven by the cell-ECM displacement, thus neglecting this term [START_REF] Murray | Mathematical biology. II Spatial models and biomedical applications {Interdisciplinary Applied Mathematics V. 18[END_REF], resulting in the nondimensional parameter ⇢0 = 1. Hence, we take ⇢ 0 = 1.

Parameters in the force balance equation (8.7). The elastic modulus, or Young modulus, E is usually itself used to nondimensionalise the other parameters in the dimensional correspondent of equation (8.7) and, therefore, does not appear in the nondimensional system [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Gilmore | [END_REF]Murray and Oster, 1984b,b;[START_REF] Murray | [END_REF][START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF]. This corresponds to the nondimensional value E = 1, which is what we take for our baseline parameter set. The viscosity coe cient ⌘ has been taken with nondimensional values in low orders of magnitude, such as ⌘ ⇠ 10 3 10 1 [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Gilmore | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF], as well as in high orders of magnitude, such as ⌘ ⇠ 10 2 10 3 [START_REF] Gilmore | [END_REF][START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF]. It is, however, generally taken to be ⌘ = 1 [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF]Murray and Oster, 1984b;[START_REF] Murray | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF], which is what we choose for our baseline parameter set. When the constitutive model includes two elastic moduli, i.e. for the SLS model (7.5), or two viscosity coe cients, i.e. for the Je↵rey model (7.6), we take E 1 = E 2 = E/2 = 0.5 and ⌘ 1 = ⌘ 2 = ⌘/2 = 0.5 as done by [START_REF] Alonso | Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids[END_REF]. The cell traction parameter ⌧ takes nondimensional values spanning many orders of magnitude: it can be found as low as ⌧ = 10 5 [START_REF] Ferrenq | [END_REF] and as high as ⌧ = 10 [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF], but it is generally taken to be of order ⌧ ⇠ 1 [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Gilmore | [END_REF][START_REF] Murray | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF] and many works consider ⌧ ⇠ 10 2 10 1 [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Ferrenq | [END_REF]Murray and Oster, 1984b;[START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF]. Hence, for our baseline parameter set we choose ⌧ = 0.2. The cell-cell contact inhibition parameter generally takes nondimensional values in the range [10 2

, 1] ( [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF][START_REF] Murray | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF], so we choose = 0.5 for our baseline parameter set. The long-range cell traction parameter , when present, takes nondimensional values in the range [10 3

, 10 2 ] ( [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Gilmore | [END_REF][START_REF] Moreo | On the modelling of biological patterns with mechanochemical models: insights from analysis and computation[END_REF][START_REF] Murray | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF]) so we choose = 0.005 for our baseline parameter set. The elasticity of the external elastic substratum s, which is sometimes ignored or substituted with a viscous drag, has been taken to have nondimensional values as low as s 2 [10 1

, 1] ( [START_REF] Byrne | The importance of constitutive equations in mechanochemical models of pattern formation[END_REF]Murray and Oster, 1984b;[START_REF] Olsen | A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile[END_REF] but is generally chosen in the range [10,400] [START_REF] Bentil | Pattern selection in biological pattern formation mechanisms[END_REF][START_REF] Gilmore | [END_REF][START_REF] Murray | [END_REF][START_REF] Perelson | Nonlinear pattern selection in a mechanical model for morphogenesis[END_REF]. Hence, we take s = 10 for our baseline parameter set.

Parameters in the 2D system (8.9)-(7.12). For the parameters in the 2D system (8.9)-(7.12) and initial condition (8.25) that also appear in the equations (8.1), (8.2), (8.7) and initial conditions (8.22), we make use of the same nondimensional values selected in the 1D case (see previous paragraphs). The Poisson ratio ⌫, which can only take values in the range [0.1, 9.45], has been estimated to be in the range [0.2, 0.3] for the biological tissue considered in mechanochemical models in the current literature [START_REF][END_REF][START_REF] Cruywagen | On a tissue interaction model for skin pattern formation[END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Moreo | On the modelling of biological patterns with mechanochemical models: insights from analysis and computation[END_REF]. Hence, we choose ⌫ = 0.25 for our baseline parameter set. This results in E 0 = E/(1 + ⌫) = 0.8 and ⌫ 0 = ⌫/(1 2⌫) = 0.5 according to definitions (7.12). In addition, under the simplifying assumption (A.64) introduced in Appendix A.5.2, the bulk viscosity takes the value µ = ⌫ 0 ⌘ = 0.5⌘ = 0.5, which is in agreement with the fact that the bulk and shear viscosities are usually assumed to take values of a similar order of magnitude in the extant literature [START_REF][END_REF][START_REF] Manoussaki | A mechanochemical model of angiogenesis and vasculogenesis[END_REF][START_REF] Moreo | On the modelling of biological patterns with mechanochemical models: insights from analysis and computation[END_REF][START_REF] Murray | On the mechanochemical theory of biological pattern formation with application to vasculogenesis[END_REF]. 

Figure 1 . 1 :

 11 Figure 1.1: The Hallmarks of cancer. Summary of the ten Hallmarks of cancer and their potential treatment options. Reprinted from Cell, 144 (5), D. Hanahan, R. A. Weinberg, Hallmarks of Cancer: The Next Generation, 646-674, Copyright (2011), with permission from Elsevier (Hanahan and Weinberg, 2011, Figure 6).
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  xeric habitat (or plant) is characterised by (or requiring only) a small amount of moisture.

Figure 1 .

 1 Figure 1.2: The analogy between riparian habitats and vascularised tumours. (A) Riparian habitat in the Sonoran Desert of Arizona. Reprinted from Evolutionary Applications, 6(1), K. O. Alfarouk, M. E. Ibrahim, R. E. Gatenby, J. S. Brown, Riparian ecosystems in human cancers, 46-53, 2013, under Creative Commons licence https: //creativecommons.org/licenses/by/3.0/ (Alfarouk et al., 2013, Figure 2). (B-C) Hypoxic (white, PMO = hypoxia) and cellular (blue, Hoechst = cells) spatial gradients in a vascularised tumour (red, CD31 = blood vessels). Reprinted from Proceedings of the National Academy of Sciences, 114(11), C. Carmona-Fontaine, M. Deforet, L. Akkari, C. B. Thompson, J. A. Joyce, J. B. Xavier, Metabolic origins of spatial organisation in the tumour microenvironment, 2934-2939, 2017 (Carmona-Fontaine et al., 2017, Figure 1B-C).

Figure 1 .

 1 Figure 1.3: Waddington epigenetic landscape. (a) Waddington epigenetic landscape (Waddington, 1957), and how this might di↵er (b) preceding and (c) following treatment. Reprinted from Biochimica et Biophysica Acta (BBA) -General Subjects, 1860 (11), R. H. Chisholm, T. Lorenzi, J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, 2627-2645, Copyright (2016), with permission from Elsevier (Chisholm et al., 2016a, Figure 3.2).
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 21 Figure 2.1: Assumptions on the phenotypic state. Summary of the modelling assumptions on the phenotypic state y 2 R of each cancer cell.
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 22 Figure 2.2: Plots of ⇢ 1 (S, C), µ 1 (S, C) and 2 1 (S, C). Plots of the equilibrium cell density ⇢ 1 , the equilibrium local mean phenotypic state µ 1 and the related variance

2 1

 1 given by (2.32) as functions of the stationary concentrations of oxygen S and of chemotherapeutic agent C. The plots refer to the parameter values listed in Table

Figure 2 . 3 :

 23 Figure 2.3: Stationary concentrations of oxygen and of chemotherapeutic agent considered in Section 2.3.2. Plots of the oxygen concentration S(x) and of the concentration of chemotherapeutic agent C(x) used to obtain the numerical results of Figure 2.4 and Figure 2.5. The coloured dots highlight the values of S(x) and C(x) corresponding to the lines of the same colours in Figure 2.4 and Figure 2.5 -i.e. S(x)and C(x) at x = 0.007 (red), x = 0.015 (blue) and x = 0.035 (green). The space variable x is in units of cm, while both S(x) and C(x) are in units of g cm 3 . The oxygen concentration S(x) is defined in such a way as to match the experimental pO 2 profile presented in(Helmlinger et al., 1997, Fig. 3). The conversion from mmHg of pO 2 to g cm 3 of oxygen concentration was performed using the conversion factor 1 mmHg= 4.6 ⇥ 10 8 g cm 3 , which was estimated using the ideal gas law. The concentration of chemotherapeutic agent C(x) is defined in such a way as to have a behaviour which is qualitatively similar to that of S(x) and the value of C(0) is chosen in agreement with experimental data presented in[START_REF] Helmlinger | Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation[END_REF].

  Figure 2.5 refer to the case where s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x), with S(x) and C(x) being defined as illustrated by the plots in Figure 2.3.Agreement between analytical and numerical results. In agreement with the results established by Proposition 1, the numerical results displayed in the top rows of Figure2.4 and Figure2.5 show that there is a perfect match between the cell density ⇢(t, x), the local mean phenotypic state µ(t, x) and the related variance 2 (t, x) computed via numerical integration of the local cell phenotypic distribution n(t, x, y), which is obtained by solving numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), and the corresponding quantities obtained by solving numerically the Cauchy problem (2.30) complemented with (2.49). Similarly, the sample of numerical results presented in the bottom rows of Figure2.4 and Figure2.5 show that the local cell phenotypic distribution n(t, x, y) matches the exact local cell phenotypic distribution (2.29).

Figure 2

 2 Figure 2.4: 1D numerical results under stationary concentration of oxygen and in the absence of chemotherapeutic agent. First row: Plots of the cell density ⇢(t, x) (left panel), the local mean phenotypic state µ(t, x) (central panel) and the related variance 2 (t, x) (right panel) at x = 0.007 (red, solid lines), x = 0.015 (blue, solid lines) and x = 0.035 (green, solid lines) obtained by solving numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), under the stationary concentration of oxygen s(t, x) ⌘ S(x) displayed in Figure 2.3 and the stationary concentration of chemotherapeutic agent c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). The black, dashed lines highlight the corresponding quantities obtained by solving numerically the Cauchy problem (2.30) complemented with (2.49). Second row: Plots of the local cell phenotypic distribution n(t, x, y) obtained by solving numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), under the stationary concentration of oxygen s(t, x) ⌘ S(x) displayed in Figure 2.3 and the stationary concentration of chemotherapeutic agent c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent), atx = 0.007 (left panel), x = 0.015 (central panel) and x = 0.035 (right panel). Di↵erent solid, coloured lines correspond to di↵erent time instants t and the dashed lines highlight the exact solution (2.29) with 2 (t, x), µ(t, x) and ⇢(t, x) given by numerical solutions of the Cauchy problem (2.30) complemented with (2.49). The bullets on the axis of abscissas highlight the value of the mean phenotypic state µ(t, x) at t = 5. The time variable t is in units of 10 4 s, the space variable x is in units of cm and the parameters values used are those listed in Table2.1 (D n = 0, = 10 6 ).
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 25 Figure 2.5: 1D numerical results under stationary concentrations of oxygen and chemotherapeutic agent. First row: Plots of the cell density ⇢(t, x) (left panel), the local mean phenotypic state µ(t, x) (central panel) and the related variance 2 (t, x) (right panel) at x = 0.007 (red, solid lines), x = 0.015 (blue, solid lines) and x = 0.035 (green, solid lines) obtained by solving numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), and under the stationary concentrations of oxygen s(t, x) ⌘ S(x) and chemotherapeutic agent c(t, x) ⌘ C(x) displayed in Figure 2.3. The black, dashed lines highlight the corresponding quantities obtained by solving numerically the Cauchy problem (2.30) complemented with (2.49). Second row: Plots of the local cell phenotypic distribution n(t, x, y) obtained by solving numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), and under the stationary concentrations of oxygen S(x) and chemotherapeutic agent C(x) displayed in Figure 2.3, at x = 0.007 (left panel), x = 0.015 (central panel) and x = 0.035 (right panel). Di↵erent solid, coloured lines correspond to di↵erent time instants t and the dashed lines highlight the exact solution (2.29) with 2 (t, x), µ(t, x) and ⇢(t, x) given by numerical solutions of the Cauchy problem (2.30) complemented with (2.49). The filled bullets on the axis of abscissas highlight the value of the mean phenotypic state µ(t, x) at t = 5, while the empty bullets highlight the corresponding values obtained in the case where c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). The time variable t is in units of 10 4 s, the space variable x is in units of cm and the parameters values used are those listed in Table2.1 (D n = 0, = 10 6 ).

  Figure 2.6 reproduce a realistic scenario whereby variation in the delivered dose of the chemotherapeutic agent leads to pronounced changes in the agent concentration in close proximity of the blood vessel while leaving the concentration far from the blood vessel almost unchanged (vid. the stationary distributions of chemotherapeutic agent displayed in the first panel of Figure 2.6). These results indicate that increasing the value of the delivered dose leads to a reduction in the number of tumour cells at the cost of promoting a selective sweep toward more resistant phenotypic variants in the vicinity of the blood vessel -i.e. for values of x su ciently close to 0, the area under the curve of the equilibrium local cell phenotypic distribution shrinks (vid. the plots in the second and third panel of Figure 2.6) and the equilibrium value of the local mean phenotypic state progressively shifts from values closer to y = 0 to values closer to y = 1 (vid. the insets in the second and third panel of Figure 2.6). This supports the idea that higher doses of chemotherapeutic agent removes the selective barrier limiting the growth of less proliferative and more resistant phenotypic variants in vascularised areas of the tumour.

Figure 2

 2 Figure 2.6: 1D numerical results for di↵erent delivered doses of chemotherapeutic agent. Plots of the local cell phenotypic distributions n(T, x, y) at x = 0.007 (second panel), x = 0.015 (third panel) and x = 0.035 (fourth panel) obtained by solving numerically (2.26) subject to the initial condition defined via (2.27) and (2.49), under the stationary concentration of oxygen S(x) displayed in Figure 2.3 and di↵erent stationary concentrations of chemotherapeutic agent. In particular, the three stationary concentrations of chemotherapeutic agent displayed in the first panel are used, that is,

Figure 2

 2 Figure 2.7: 2D numerical results under dynamical concentration of oxygen and in the absence of chemotherapeutic agent. First row: Plots of the oxygen concentration s(T, x) (second panel), the cell density ⇢(T, x) (third panel) and the local mean phenotypic state µ(T, x) (fourth panel), with T = 5 ⇥ 10 5 s, obtained by solving numerically (2.26) and (2.19) imposing the initial conditions defined via (2.27), (2.49) and (2.50), and assuming c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). The set ! in (2.22) consists of the parts of ⌦ highlighted in red in the first panel. Second row: Plots of the oxygen concentration s(T, x 1 , 0.4) (second panel), the cell density ⇢(T, x 1 , 0.4) (third panel, blue line) and the local mean phenotypic state µ(T, x 1 , 0.4) (fourth panel, blue line). The plot of the oxygen concentration s(T, x) is displayed in the first panel, where the white, dashed line highlights the 1D cross-section corresponding to x 2 = 0.4. The red lines in the third and fourth panels highlight ⇢ 1 (x 1 , 0.4) and

  -2.10 demonstrate that the qualitative behaviour of the numerical results obtained under stationary concentrations of oxygen and chemotherapeutic agents displayed in Figure2.4 and Figure2.5 remains unchanged when dynamical concentrations of oxygen and chemotherapeutic agent are considered. Specifically, in the absence of chemotherapy, when moving away from the blood vessels, the equilibrium value of the cell density ⇢(t, x) decreases, the local mean phenotypic state µ(t, x) at equilibrium increases from values close to y = 0 to values close to y = 1, and the equilibrium value of the related variance 2 (t, x) increases

  Figure 2.9 and Figure 2.10).

Figure 2

 2 Figure 2.8: 2D numerical results under dynamical concentration of oxygen and in the absence of chemotherapeutic agent. Plots of the oxygen concentration s(T, x) (first panel) and the local cell phenotypic distribution n(T, x, y) at x = (0.15, 0.4) (second panel), x = (0.16, 0.4) (third panel) and x = (0.3, 0.4) (fourth panel), with T = 5 ⇥ 10 5 s, obtained by solving numerically (2.26) and (2.19) imposing the initial conditions defined via (2.27), (2.49) and (2.50), and assuming c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). The set ! in (2.22) consists of the parts of ⌦ highlighted in red in the first panel of Figure 2.7. The white, dashed line in the first panel highlights the 1D cross-section corresponding to x 2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4). In the second, third and fourth panels, the bullets on the axis of abscissas highlight the value of the local mean phenotypic state

Figure 2

 2 Figure 2.9: 2D numerical results under dynamical concentrations of oxygen and chemotherapeutic agent. First row: Plots of the oxygen concentration s(T, x) (second panel), the concentration of chemotherapeutic agent c(T, x) (third panel), the cell density ⇢(T, x) (fourth panel) and the local mean phenotypic state µ(T, x) (fifth panel), with T = 5 ⇥ 10 5 s, obtained by solving numerically (2.26), (2.19) and (2.20) imposing the initial conditions defined via (2.27), (2.49) and (2.50). The set ! in (2.22) consists of the parts of ⌦ highlighted in red in the first panel. Second row: Plots of the oxygen concentration s(T, x 1 , 0.4) (third panel, blue line), the concentration of chemotherapeutic agent c(T, x 1 , 0.4) (third panel, orange line), the cell density ⇢(T, x 1 , 0.4) (fourth panel, blue line) and the local mean phenotypic state µ(T, x 1 , 0.4) (fifth panel, blue line). The plots of the oxygen concentration s(T, x) and the concentration of chemotherapeutic agent c(T, x) are displayed in the first and second panels, where the white, dashed lines highlight the 1D cross-section corresponding to x 2 = 0.4. The red lines in the fourth and fifth panels highlight ⇢ 1 (x 1 , 0.4) and µ 1 (x 1 , 0.4) computed through (2.34) and (2.35) with s 1 (x 1 , 0.4) := s(T, x 1 , 0.4) and c 1 (x 1 , 0.4) := c(T, x 1 , 0.4). Third row: Same as the second row but for x 2 = 0.2. The space variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table2.1 (D n = 0, = 10 6 ).

Figure 2 .

 2 Figure 2.10: 2D numerical results under dynamical concentrations of oxygen and chemotherapeutic agent. Plots of the oxygen concentration s(T, x) (first panel), the concentration of chemotherapeutic agent c(T, x) (second panel) and the local phenotypic cell distribution n(T, x, y) at x ⌘ (x 1 , x 2 ) = (0.15, 0.4) (third panel), x ⌘ (x 1 , x 2 ) = (0.16, 0.4) (fourth panel) and x ⌘ (x 1 , x 2 ) = (0.3, 0.4) (fifth panel), with T = 5 ⇥ 10 5 s, obtained by solving numerically (2.26), (2.19) and (2.20) imposing the initial conditions defined via (2.27), (2.49) and (2.50). The set ! in (2.22) consists of the parts of ⌦ highlighted in red in the first panel of Figure2.9. The white, dashed lines in the first and second panels highlight the 1D cross-section corresponding to x 2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4). In the third, fourth and fifth panels, the filled bullets on the axis of abscissas highlight the value of the mean phenotypic state µ(T, x), while the empty bullets highlight the corresponding values obtained in the case where c(t, x) ⌘ 0 (i.e. in the absence of chemotherapeutic agent). Moreover, the black, dashed lines highlight the asymptotic limit (2.33) with ⇢ 1 (x), µ 1 (x) and 2 1 (x) computed through (2.34) and (2.35) with s 1 (x 1 , 0.4) := s(T, x 1 , 0.4) and c 1 (x 1 , 0.4) := c(T, x 1 , 0.4). The space variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table2.1 (D n = 0, = 10 6 ).

Figure 2 .

 2 Figure 2.11: Numerical results for blood vessel distributions reconstructed from clinical images. First row: Plots of the oxygen concentration s(T, x) (second panel), the cell density ⇢(T, x) (third panel) and the mean phenotypic state µ(T, x) (fourth panel), with T = 5 ⇥ 10 5 s, obtained by solving numerically the problem given by (2.5) and (2.19) subject to the initial conditions defined via (2.27), (2.51) and (2.50). The set ! is reconstructed from the blood vessel distribution provided by the clinical image displayed in the first panel, where the intratumoural vascular network is highlighted in red. Second and third row: Same as the first row but for a di↵erent clinical image. Clinical images are taken from Dermatology and Therapy 7(2), S. Schuh, J. Holmes, M. Ulrich, L. Themstrup, G. B. Jemec, N. De Carvalho, G. Pellecani, J. Welzel, Imaging blood vessel morphology in skin: dynamics optical coherence tomography as a novel potential diagnostic tool in dermatology, 187-202, 2017, under Creative Commons licence https://creativecommons.org/licenses/by-nc/4.0/ (Schuh et al., 2017, Fig.5(df)). These images correspond to three cross sections of a malignant melanoma at a depth of 0.02 cm (first row), 0.03 cm (second row) and 0.04 cm (third row) from the surface of the epidermis. The oxygen concentration s(T, x) is in units of 10 7 g cm 2 , the cell density ⇢(T, x) is in units of 10 8 cells cm 2 , and the spatial variables x 1 and x 2 are in units of cm. The parameter values listed in Table2.1 (D n = = 10 13 ) except for

Figure 2 .

 2 Figure2.12: E↵ect of varying blood vessel density on the level of intratumour phenotypic heterogeneity. Plots of the equitability index E(T) and the Simpson diversity index D(T), with T = 5⇥10 5 s, for di↵erent definitions of the set ! characterised by di↵erent values of the vascular density % defined according to (2.53). The equitability index and the Simpson diversity index are computed numerically through formulas (2.54) using the numerical solutions of the problem given by (2.5) and (2.19) subject to the initial conditions defined via (2.27), (2.51) and (2.50). The insets display sample plots of the oxygen distributions s(T, x) (top panel) and the mean phenotypic state µ(T, x) (bottom panel) corresponding to di↵erent values of %. The Simpson diversity index D(T) is in units of 10 4 , the vascular density % is in units of 10 4 , the oxygen concentration s(T, x) is in units of 10 7 g cm 2 , the spatial variables x 1 and x 2 are in units of cm, and the parameter values used are those listed in Table2.1 (D n = = 10 13 ).

Figure 2 .

 2 Figure 2.13: E↵ect of varying blood vessel clusterisation on the level of intratumour phenotypic heterogeneity. First row: Plots of the oxygen distribution s(T, x) (first panel), mean phenotypic state µ(T, x) (second panel) and fraction of cells in each phenotypic state F (T, y) defined via (2.4) (third panel), with T = 5 ⇥ 10 5 s, obtained by solving numerically the problem given by (2.5) and (2.19) subject to the initial conditions defined via (2.27), (2.49) and (2.50). The set ! is defined according to a random distribution of blood vessels characterised by vascular density % = 25 ⇥ 10 4 and a low level of blood vessel clustering. The values of the corresponding equitability index E(T) and Simpson diversity index D(T), which are computed numerically through formulas (2.54), are provided in the inset of the third panel. Second and third row: Same as the first row but for a definition of the set ! corresponding to an intermediate level (second row) and a high level (third row) of blood vessel clustering. The oxygen concentration s(T, x) is in units of 10 7 g cm 2 , the spatial variables x 1 and x 2 are in units of cm, the Simpson diversity index D(T) is in units of 10 4 , and the parameter values used are those listed in Table 2.1 (D n = = 10 13 ).
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 31 Figure 3.1: Modelling metastatic spread. (A) Schematic illustration of interconnected metastatic sites modelled by system (3.1). (B) Example solutions of system (3.1).

Figure 4 . 1 :

 41 Figure 4.1: Neovascularisation processes. Visual summary of vascular network formation via vasculogenesis (EPCs, de novo) and angiogenesis (mature ECs, from preexisting vessels). Figure produced by editing illustrations by L. Govi, with permission from the artist.

Figure 4 . 2 :

 42 Figure 4.2: In vitro cluster-based vasculogenesis. (A) Illustration summarising the 3D in vitro experimental set ups considered by Blatchley et al. (2019) to study EPC cluster formation in hypoxic gradients (bottom) and in control nonhypoxic environments (top). (B) Corresponding experimental images displaying cluster formation after 48 hours in hypoxic environments (bottom), while no clusters formed in nonhypoxic conditions (top). (C) Time-lapse microscopy and (E) subsequent quantification of number of cells in clusters (top) and single cells (bottom) observed over time at di↵erent heights in the 3D hypoxic hydrogel. Figures reproduced from (Blatchley et al., 2019, Figure 1) under Creative Commons licence https://creativecommons.org/licenses/by-nc/4.0/.

Figure 4

 4 Figure 4.3: Cluster-based vasculogenesis steps. Summary of the steps of clusterbased vasculogenesis: (A) EPCs in the bone-marrow enter the circulation and reach the hypoxic site; (B) local hypoxia fosters EPC production of matrix degrading enzymes (MMP-1) and chemotactic agents (VEGF); (C) clusters form and are stabilised by celladhesion molecules (CAM); (D) cell-matrix interactions increase, sprouting from clusters occurs and a vascular network forms.

. 6 )

 6 In equation(5.5) ⌘(j) = ( 1) j with j = 0, 1 indicates the 1D right and left unit outer normal vector, while in equation(5.6) the 2D unit outer normal vector corresponding to angle ✓ is given by ⌘(✓) = (cos ✓, sin ✓) | . In definitions (5.5) and (5.6), we have that the sensing region of cells at position x 2 R d (d = 1, 2) is the d-dimensional ball centred in x with radius R > 0, called the sensing radius. Then (r) is the radial dependency function, indicating how strongly the adhesion velocity at a point x is influenced by points at a distance r  R from the centre x of the sensing region. Since this should not alter the magnitude itself of the adhesion velocity, (r) must satisfy Z

93Table 5 . 1 :

 51 Baseline parameter set (ND = Nondimensional value) used in the numerical simulations reported in Section 5.3.

Figure 5 . 1 :

 51 Figure 5.1: Biological interpretation of cluster width and compactness. Biological interpretation of possible combinations of cluster width W (5.20) and cluster compactness C (5.21): high W and low C capture the scenario in which few cells are widely spread across the domain (top left region of the C-W plane); low W and low C capture the presence of loose cell aggregates, (bottom left region); low W and high C capture the presence of clusters (bottom right region); high W and high C capture the scenario in which many cells are widely spread across the domain, corresponding to the case of tissue invasion in which no clusters can be identified (top right region).

Figure 5 .

 5 Figure 5.2: 1D numerical results under the baseline parameter set. Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.5), (5.8) and (5.16), initial conditions (5.13) and (5.14) 1 , complemented with zero-flux boundary conditions, under the baseline parameter set in Table 5.1. The solution is plotted in the time intervals t = [0, 17] (left panel), t = [17, 50] (central panel) and t = [50, 400] (right panel).

Figure 5 . 3 :

 53 Figure 5.3: Cluster width and compactness of 1D numerical results under the baseline parameter set. Average cluster width W (5.20) and cluster compactness C (5.21) (left panel) measured over time on the cell density n(t, x) (right panel) obtained solving the system (5.15), together with definitions (5.5), (5.8) and (5.16), initial conditions (5.13) and (5.14) 1 , complemented with zero-flux boundary conditions, under the baseline parameter set in Table 5.1, reported in Figure 5.2.

S

  nn = 1, the initial aggregates merge -likely due to chemotaxis -into wider clusters and then proceed to invade the whole tissue (cf. first plot in third row ofFigure 5.4 and of Figure D.2). For S nn = 10 we do not yet observe small aggregates merging into larger clusters at t = 50 -likely due to cell-to-cell adhesion overpowering chemotaxisand tissue invasion is simply delayed (cf. first plot in fourth row ofFigure 5.4 and of Figure D.2). Overall these results suggest that the continuum nonlocal description of cell-to-cell adhesion considered in our model, while it may capture the aggregating e↵ect of cell-to-cell adhesion for S nn high enough, does not capture the stabilising e↵ect that we are seeking in this modelling framework.

Figure 5 .

 5 Figure 5.4: 1D numerical results under the baseline parameter set with changes to parameters S nn , and as detailed. First row: Plots of the cell density n(t, x) up to t = 50 obtained solving the system (5.15), together with definitions (5.5), (5.8) and (5.16), initial conditions (5.13) and (5.14) 1 , complemented with zero-flux boundary conditions, in the absence of cell-to-cell adhesion, i.e for S nn = 0: under the baseline parameter set (first column), in the absence of ECM degradation, i.e. for = 0 (second column), in the absence of chemotaxis, i.e. = 0 (third column), and in the absence of both chemotaxis and ECM degradation, i.e. = = 0 (fourth column). Second, third and fourth rows: Same as first row but in the presence of cell-to-cell adhesion, with S nn = 0.1 (second row), S nn = 1 (third row) and S nn = 10 (fourth row) respectively.

( a )Figure 5 . 5 :

 a55 Figure 5.5: Parametric analysis of cluster width and compactness (part 1). Cluster width W and compactness C, defined in (5.20) and (5.21), under deviations from the baseline parameter set (BPS), in Table 5.1, of each parameter in equations (5.15) 1 and (5.15) 2 . In (a) we have boxplots of W and C measured on the numerical solution of the system (5.15) at t = 50, for D n taking its value in the BPS (center), half (left) and double (right) its value in the BPS. Each boxplot collects data from 100 simulations under randomised initial conditions (5.13)-(5.14) 1 . In (b)-(g) we have the same as in (a) but varying parameters (b), S nn (c), S n⇢ (d), p (e), (f), µ (g) and ⇢ 0 (h).

  Figure 5.6: Parametric analysis of cluster width and compactness (part 2). Cluster width W and compactness C, defined in (5.20) and (5.21), under deviations from the baseline parameter set in Table 5.1 of each parameter in equations (5.15) 3 and (5.15) 4 . In (a) we have boxplots of W and C measured on the numerical solution of the system (5.15) at t = 50, for D m taking its value in the BPS (center), half (left) and double (right) its value in the BPS. Each boxplot collects data from 100 simulations under randomised initial conditions (5.13)-(5.14) 1 . In (b)-(f) we have the same as in (a) but varying parameters ↵ m (b), m (c), D c (d), ↵ c (e) and c (f).

  Figure D.4. The role of ECM degradation in 2D. The plots reported in Figure 5.7 demonstrate that ECM degradation promotes the formation of 2D clusters, as predicted by the results of the 1D model presented in Sections 5.3.3 and 5.3.4. Lower ECM degradation rates correlate with slower aggregation dynamics and lower compactness of such aggregates (cf. first row of Figure 5.7) -to the extent that in the absence of ECM degradation no clusters form (see supplementary Figure D.5) -and higher ECM degradation rates correlate with faster cluster formation with well-defined and compact clusters observed at much earlier times (cf. third row of Figure 5.7). As for the 1D model, we obtain the same results under analogous changes of the MMP secretion rate ↵ m (see supplementary Figure D.6).

Figure 5 .

 5 Figure 5.7: 2D numerical results under di↵erent matrix degradation rates. First row: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14) 2 , complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for = 0.02. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as first row, except for = 0.2 (second row) and = 2 (third row).

  .8). Higher values of correlate with faster and stronger aggregation dynamics, with well-defined clusters observed at earlier times (cf. third row of Figure 5.8) and cluster diameter -once the clusters have reached minimum size -smaller than that observed with lower values of (cf. last panel in the second row and last panel in the third row of Figure 5.8). As for the 1D model, we obtain the same results under analogous changes of the VEGF secretion rate ↵ c (see supplementary Figure D.7).

Figure 5 .

 5 Figure 5.8: 2D numerical results under di↵erent chemotactic coe cients. First row: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14) 2 , complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for = 1.4. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as first row, except for = 2.8 (second row) and = 5.6 (third row).

Figure 5 .

 5 Figure 5.9: 2D numerical results under di↵erent proliferation rates. First row: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14) 2 , complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for p = 0.5. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as first row, except for p = 1 (second row) and p = 2 (third row).

Figure 5 .

 5 Figure 5.10: 2D numerical results in the absence of matrix remodelling. Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14) 2 , complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for µ = 0. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel).
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 71 Figure 7.1: Models of linear viscoelasticity considered in Chapter 8. Combinations of elastic springs and viscous dampers, together with the associated elastic (E, E 1 , E 2 ) and viscous moduli (⌘, ⌘ 1 , ⌘ 2 ), for the models of linear viscoelasticity considered in Chapter 8: the linear elastic model (a), the linear viscous model (b), the Kelvin-Voigt model (c), the Maxwell model (d), the SLS model (e), and the Je↵rey model (f).
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 81 Figure 8.1: Base-case dispersion relations. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for the base-case set of parameter values given by (8.20) and (8.21).

Figure 8

 8 Figure 8.2: E↵ects of varying the ECM elasticity. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the ECM elasticity, that is for E 2 [0, 1]. The values of the other parameters are given by (8.20) and (8.21). White regions in the plots related to the linear elastic model, the Maxwell model and the SLS model correspond to Re( (k 2 )) > 10 (i.e. a vertical asymptote is present in the dispersion relation). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8 . 3 :

 83 Figure 8.3: E↵ects of varying the ECM viscosity. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the ECM viscosity, that is for ⌘ 2 [0, 1]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8

 8 Figure 8.4: E↵ects of varying the cell motility. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the cell motility, that is for D 2 [0, 0.1]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.
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 85 Figure 8.5: E↵ects of varying the intrinsic growth rate of the cell density. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the intrinsic growth rate of the cell density, that is for r 2 [0, 10]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8

 8 Figure 8.6: E↵ects of varying the elasticity of the surrounding tissue. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the elasticity of the surrounding tissue, that is for s 2 [0, 100]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8 . 7 :

 87 Figure 8.7: E↵ects of varying the level of cell-cell contact inhibition of the cell traction forces. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing levels of cell-cell contact inhibition of the cell traction forces, that is for 2 [0, 2]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8

 8 Figure 8.8: E↵ects of varying the long-range cell traction forces. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing long-range cell traction forces, that is for 2 [0, 0.1]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.
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 89 Figure 8.9: E↵ects of varying the cell haptotactic sensitivity. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the cell haptotactic sensitivity, that is for ↵ 2 [0, 0.5]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8 .

 8 Figure 8.10: E↵ects of varying the cell traction forces. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing cell traction forces, that is for ⌧ 2 [0, 2]. The values of the other parameters are given by (8.20) and (8.21). White and black regions in the plots related to the linear elastic model, the Maxwell model and the SLS model correspond, respectively, to Re( (k 2 )) > 20 and Re( (k 2 )) < 20 (i.e. a vertical asymptote is present in the dispersion relation). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

Figure 8 .

 8 Figure 8.11: E↵ects of varying the initial ECM density. Dispersion relations corresponding to the stress-strain constitutive equations (7.1)-(7.6) for increasing values of the initial ECM density, that is for ⇢ 0 2 [0, 10]. The values of the other parameters are given by (8.20) and (8.21). Red dashed lines mark contour lines where Re( (k 2 )) = 0.

E = 1 ,

 1 ⌘ = 1 , D = 0.01 , ⌫ = 0.25 ,

Figure 8 .

 8 Figure 8.12: 1D numerical results for the Kelvin-Voigt and the Maxwell models. Cell density n(t, x) (left), ECM density ⇢(t, x) (centre) and cell-ECM displacement u(t, x) (right) at t = 0 (first row) and at steady state obtained solving numerically the system of PDEs (8.1), (8.2) and (8.7) complemented with the Kelvin-Voigt model (7.3) (second row) and with the Maxwell model (7.4) (third row), respectively, subject to boundary conditions (8.8) and initial conditions (8.22), for the parameter values given by (8.20) and (8.21).

Figure 8 .

 8 Figure 8.13: 2D numerical results for the Kelvin-Voigt and the Maxwell models. Cell density n(t, x 1 , x 2 ) at t = 0 (left panel) and at t = 260 for the Kevin-Voigt model (central panel) and the Maxwell model (right panel) obtained solving numerically the system of PDEs (8.9) subject to the 2D version of the periodic boundary conditions (8.8) and initial conditions (8.25), complemented with (8.10)-(7.12), for the parameter values given by (8.23) and (8.24).

Figure 8 .

 8 Figure 8.14: 2D numerical results for the Maxwell model. Cell density n(t, x 1 , x 2 ) (top row, left panel), ECM density ⇢(t, x 1 , x 2 ) (top row, right panel), first and second components of the cell-ECM displacement u(t, x 1 , x 2 ) (bottom row, left panel and right panel, respectively) at t = 1000 for the Maxwell model obtained solving numerically the system of PDEs (8.9) subject to the 2D version of the periodic boundary conditions (8.8) and initial conditions (8.25), complemented with (8.10)-(7.12), for the parameter values given by (8.23) and (8.24). The random initial perturbation of the cell density is displayed in the left panel of Figure 8.13.
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 91 Figure 9.1: Experimental creep and stress relaxation curves. (a) Experimental creep curve of hydrogel-based engineered tissue, and comparison with creep curves captured by the Maxwell and Burger's models. Reprinted from Biomedical materials, 12(2), R. Kocen, M. Gasik, A. Gantar, S. Novak, Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load, 025004, 2017, under Creative Commons licence https://creativecommons.org/licenses/by/3.0/ (Kocen et al., 2017, Figure 8). (b) Fitted stress relaxation curves of experimental stress relaxation tests conducted by Hoyt et al. (2008) on normal prostatic and cancerous tissues. Reprinted from the Journal of the Mechanical Behavior of Biomedical Materials, 41, J. Palacio-Torralba, S. Hammer, D. W. Good, S. A. McNeill, G. D. Stewart, R. L. Reuben, Y. Chen, Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation, 149-160, 2015, under Creative Commons licence https://creativecommons.org/licenses/by/3.0/ (Palacio-Torralba et al., 2015, Figure 1).

  A.53) with ⇥ R (k) and ⇥ I (k) defined in (A.51) and (A.52). Despite the complexity of these integrals, we evaluated numerically the quantity k • ⇥ R (k) -see Figure A.2 -which allowed us to conclude that, just like in the 1D case, Re A(k) 0 for all k 2 R 2 . For this problem we therefore obtain the corresponding version of equation (A.42) for the dispersion relation and reach the same conclusions as in section A.4.1 for the full system including saturation e↵ects.

Figure A. 2 :

 2 Figure A.2: Plot of the quantity k • ⇥ R (k), where k = (k 1 , k 2 ) | and ⇥ R (k) is defined in (A.51) for nondimensional R = 0.05. We clearly have k • ⇥ R (k) 0 for all k 2 R 2 , ensuring the real part of A(k) in (A.53), as well as those of A n (k) and A ⇢ (k) in (A.56) are non-negative. The integral in (A.51) was evaluated numerically using the composite trapezoidal rule for numerical integration.

Figure A. 3 :

 3 Figure A.3: Left column: Creep curve for the Kelvin-Voigt model (second row) and the Maxwell model (third row) obtained under a constant stress (first row) applied during a creep test. The curves are obtained plotting functions (A.65) and (A.66) for the Kelvin-Voigt model, and (A.67) and (A.68) for the Maxwell model. Right column: Stress relaxation curve for the Kelvin-Voigt model (second row) and the Maxwell model (third row) obtained under a constant strain (first row) applied during a stress relaxation test. The curves are obtained plotting functions (A.69) and (A.70) for the Kelvin-Voigt and Maxwell models respectively.
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 1 Figure B.1: Schematic illustration of the spatial discretisation of the (1D) domain used in this thesis: (a) grid with K + 1 grid points x i (i = 1, ..., K + 1) used for the finite di↵erence scheme presented in Section B.1; (b) grid made up of K cells (finite volumes) of centres x i (i = 1, ..., K), left and right grid cell interfaces x i 1/2 and x i+1/2 (i = 1, ..., K), used for the finite volume scheme described in Section B.2; (c) grid with K +1 grid points x i (i = 1, ..., K + 1) with cells constructed centred at each x i used for the mixed finite di↵erence and finite volume scheme presented in Section B.3.

  Numerical simulations in 1D rely on a uniform discretisation of the the spatial domain [0, 0.05] consisting of K x + 1 = 101 grid points and a uniform discretisation of the computational domain [ L, L] (L = 7) for the independent variable y consisting of K y +1 = 1000 grid points, in a similar fashion to the example grid (a) in Figure B.1.

  f n (N, P, N 0 , U 0 ) = N 0 D M xx N + A * , N rN (1 N ) = 0 (B.14)with * indicating the advective velocity computed at the grid cell interfaces, that is defined in (B.11), (B.12) and (B.13), respectively. The function A * , N computes the contribution of advection, given advective velocity and advected quantity as inputs, at the grid cell centres as defined in (B.13) and the advective flux * F at the grid cell interfaces is computed using first-order upwinding, i.e. + and (•) being the positive and negative parts of the input variable, i.e.

f

  ⇢ (P, P 0 , U 0 ) = P 0 + A * M U 0 , P = 0 , (B.19)

1

 1 f u (N, P, U, N 0 , P 0 , U 0 ) = b 1 M xx U 0 + b 0 M xx U a 1 s(P U) 0 a 0 sP U + M x T 1 (N, ⇤ 2 (N )N 0 M T 1 P + a 1 ⇤ 1 (N )M T 1 P 0 + a 0 ⇤ 1 (N )M T 1 P ⇤ , (B.21)where the functions ⇤ 1 and ⇤ 2 are defined as⇤ 1 (N ) := N 1 + N 2and its derivative⇤ 2 (N ) := 1 N 2 (1 + N 2 ) 2 , (B.22)where the matrix M xx is defined in (B.11). Then the function M x1x2 (N ) is used to approximate the second-order mixed derivative in space at the grid cell centres and is defined asM x1x2 (N ) := M x2 M x1 (N ) = ⇥ M x M x N | ⇤ | . (B.27)In order to approximate the value of a variable in the centres of the (right or upper) grid cell interfaces in the x 1 -and x 2 -direction, we make use of the functions * (B.12). In a similar fashion we define the functions A 1 * v 1 , N and A 2 * v 2 , N which approximate the contribution of advection in the x 1and x 2 -direction, respectively, given as input the advective velocity at the grid cell interfaces in the direction of interest -say v 1 and v 2 are, respectively, the first and second components of the advective velocity -and the advected quantity. These are given by A * v 1 , N given by (B.16) together with definitions (B.17) and (B.18).

  M xx1 (•) and M xx2 (•) defined in (B.26), and the components of the advective velocity at the grid cell interfaces given by where functions * M x1 (•) and * M x2 (•) are defined in (B.25), * M 1 (•) and * M 2 (•) are defined in (B.28), and functions A 1 (•, •) and A 2 (•, •) are defined in (B.29).

  A 1 (•, •) and A 2 (•, •) are defined in (B.29) and functions * M 1 (•) and * M 2 (•) are defined in (B.28).

  35)Upon spatial discretisation, these lead to the following systems of K 2 ODEsf u1 (N, P, U, N 0 , P 0 , U 0 ) = b 1 M xx1 ((U 1 ) + M x1x2 (U 2 ) ) + c 1 M xx1 (U 0 1 ) + M x1x2 (U 0 2 ) + c 0 M xx1 (U 1 ) + M x1x2 (U 2 ) + M x1 T 2 (N, P, N 0 , P 0 ) a 1 s(P U 0 1 + P 0 U 1 ) a 0 sP U 1 = 0 (B.36) 
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 2 Figure D.2:First row: Plots of the cell density n(t, x) up to t = 400 obtained solving the system (5.15), together with definitions (5.6),(5.8) and(5.16), initial conditions (5.13) and(5.14), complemented with zero-flux boundary conditions, in the absence of cellto-cell adhesion, i.e for S nn = 0: under the baseline parameter set (first column), in the absence of matrix degradation, i.e. for = 0 (second column), in the absence of chemotaxis, i.e. = 0 (third column), and in the absence of both chemotaxis and matrix degradation, i.e. = = 0 (fourth column). Second, third and fourth rows: Same as first row but in the presence of cell-to-cell adhesion, with S nn = 0.1 (second row), S nn = 1 (third row) and S nn = 10 (fourth row) respectively.

( a )

 a Figure D.3: Cluster width W and compactness C, defined in (5.20) and (5.21), under alterations of certain parameters from the baseline parameter set (BPS), in Table 5.1. In (a) we have boxplots of W and C measured on the numerical solution of the system (5.15) at t = 50, for D n taking its value in the BPS (center), one order of magnitude higher (left) and one order of magnitude lower (right) than the one in the BPS. Each boxplot collects data from 100 simulations under randomised initial conditions (5.13) and (5.14). In (b)-(e) we have the same as in (a) but varying parameters S nn (b), (c), D m (d) and D c (e).
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 4 Figure D.4: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14), complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1. The solution is plotted at time t = 0, 20, 40, 60, 80 (first row, left to right), t = 100, 120, 140, 160, 180 (second row, left to right) and t = 200, 220, 240, 260, 500 (third row, left to right).
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 5 Figure D.5: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14), complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for = 0. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel).

Figure D. 6 :

 6 Figure D.6: First row: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14), complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for ↵ m = 0.05. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as first row, except for ↵ m = 0.5 (second row) and ↵ m = 5 (third row).

Figure D. 7 :

 7 Figure D.7: First row: Plots of the cell density n(t, x) obtained solving the system (5.15), together with definitions (5.6), (5.8) and (5.16), initial conditions (5.13) and (5.14), complemented with zero-flux boundary conditions, under the parameter choices reported in Table 5.1, except for ↵ c = 1.25. The solution is plotted at time t = 20 (first panel), t = 40 (second panel), t = 80 (third panel) and t = 140 (fourth panel). Second and third row: Same as first row, except for ↵ c = 2.5 (second row) and ↵ c = 5 (third row).

Figure D. 8 :

 8 Figure D.8: First row: Cell density n(t, x) obtained solving numerically the system of PDEs (8.1), (8.2) and (8.7) complemented with the Maxwell model (7.4) subject to boundary conditions (8.8) and initial conditions (8.22), for the parameter values given by (8.20) and (8.21). The solution is plotted at time t = 0 (first panel), t = 50 (second panel), t = 100 (third panel) and t = 500 (fourth panel). Second row: Same as first row, but under sinusoidal initial perturbations, i.e. with n(0, x) = 1 + 0.01 sin(4⇡x) in (8.22). Thirds row: Same as first row, but under randomly perturbed sinusoidal initial perturbations, i.e. with n(0, x) = 1 + 0.01✏(x) sin(4⇡x) in (8.22).
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  1.2.4 Nonlocal PDE models of space-and phenotype-structured populations Spatially explicit nonlocal PDE models of adaptive dynamics generally consider spaceand phenotype-structured populations n(t, x, y), where x 2 X ✓ R d indicates the position in the d-dimensional spatial domain. The evolutionary dynamics of populations undergoing explicit spatial movement can be modelled by nonlocal versions of the Fisher-KPP model 13 . In this framework, individuals are assumed to undergo undirected random movement which translates mathematically into a Fickian di↵usion term, as in the classic Fisher-KPP model

Table 2 . 1 :

 21 Parameter values used in numerical simulations. Two variations of this parameter set are considered: (A) with = 10 6

	and D n = 10 13 cm 2 s 1 to match		Reference	Norris et al. (2006)	Casciari et al. (1992)	Chisholm et al. (2015)	Doerfler and Böhm (2006)	Section 2.2.1
	s 1 and D n = 0 cm 2 s 1 to match assumptions made in Section 2.2.1, and (B) with = 10 13 s 1	assumptions made in Section 2.2.2.	Parameter Biological meaning Value	↵ c Michaelis-Menten constant of chemotherapeutic agent 2 ⇥ 10 6 ↵ s Michaelis-Menten constant of oxygen g cm 3 1.5 ⇥ 10 7 Rate of spontaneous phenotypic changes g cm 3 (A) 10 6 s 1	s 1 (B) 10 13	D n Cell motility s 1 (A) 0 cm 2	(B) 10 13

  .19) and (2.20), together with definitions (2.21)-(2.23). We complement (2.26) with the initial condition defined via (2.27) and (2.49), while (2.19) and (2.20) are complemented with the following initial conditions

Table 6 . 1 :

 61 Summary of the results of the parametric analysis of the 1D problem conducted in Section 5.3.4. The biological meaning of each parameter is summarised in Table5.1. Cluster width W and compactness C are defined in Section 5.3.1. Better defined clusters may correlate with: (i) smaller range of width W measured; (ii) higher median compactness C measured. Less well defined clusters correlate with lower median compactness C measured. Bigger clusters correlate with higher median width W and compactness C measured.

	Parameter Main e↵ect of increasing the parameter	Ref. Figure
		value on cluster size	
	D n	Little e↵ect favouring tissue invasion	5.5a, D.3a
		Better defined clusters (i)	5.5b
	S nn	Little to no e↵ect	5.5c, D.3b
	S n⇢	Little e↵ect favouring tissue invasion	5.5d
	p	Increased cluster formation speed (refuted in 2D)	5.5e
		Better defined clusters (ii)	5.5f, D.3c
	µ	Less well defined clusters	5.5g
	⇢ 0	Little to no e↵ect	5.5h
	D m	Little to no e↵ect	5.6a, D.3d
	↵ m	Better defined clusters (ii)	5.6b
	m	Less well defined clusters (ii)	5.6c
	D c	Bigger clusters	5.6d, D.3e
	↵ c	Better defined clusters (i)	5.6e
	c		

Table 7 .

 7 

	Model	Instantaneous elasticity	Delayed elasticity	Viscous flow	Instantaneous recovery	Delayed recovery	Permanent set	Stress relaxation
	Linear elastic							

2: Properties of linear viscoelastic materials captured by the stress-strain constitutive equations (7.1)-(7.6). *Burger's model has been included for illustrative purposes (cf. Section 9.2.1). N.A.= not applicable (see Appendix A.6).

Table 7

 7 We here report examples the mathematical procedures mimicking the creep and stress relaxation tests that can be used on the constitutive equations of linear viscoelastic models in order to identify the properties of linear viscoelastic materials captured by each model. The Kevin-Voigt and Maxwell models have been chosen as illustrative examples, and analogous methods have been used for the other models presented in Section 7.2.2.The creep test. During a creep test we first impose a constant stress a = 0 at t = t 0 and then remove it at t = t 1 , and calculate the resulting strain "(t) which can be plotted to give the creep curve (cf. left column in Figure A.3). For t < t 0 we have " = 0. For the Kelvin-Voigt model, the strain during the first phase of the creep test, here labelled " a (t) as resulting from the stress a , satisfies the constitutive equation (7.3), i.e. we have

	.3.

  1, allow for the calculation of the solution at the next timestep solely relying on the solution at the current and/or previous timesteps. Implicit schemes, such the one presented in Section B.3 which relies on the Method of Lines (MOL), require an implicit equation involving the solution at the next and current (and/or previous) timesteps to be solved instead. Implicit methods are computationally more expensive than explicit ones, but are better suited to solve sti↵ systems of equations, for which explicit schemes require extremely small step sizes for numerical stability[START_REF] Leveque | Finite di↵erence methods for ordinary and partial di↵erential equations: steady-state and time-dependent problems[END_REF].

	26) and
	system (2.5) in 2D, each coupled with equations (2.19) and (2.20), for Section 2.3.3
	and 2.3.4 respectively. Therefore, Appendix B.1 is organised as follows: the schemes
	developed for simulation in 1D spatial domains, both to solve (2.26) and (2.30) for given
	S(x) and C(x), are reported in Section B.1.1; the scheme developed for simulations
	in 2D spatial domains, to solve (2.5) together with (2.19) and (2.20), are reported in
	Section B.1.2. Comments on how the scheme changes to solve (2.26), together with (2.19)
	and (2.20), in 2D will be made throughout Section B.1.2. Files containing the code
	corresponding to the schemes is available on GitLab 1
	B.1.1 Numerical schemes for 1D spatial domains

B.1 Numerical schemes used in Chapter 2

As introduced in Section 2.3.1, we construct numerical solutions both to system (2.26) and system (2.30) in 1D under stationary distributions of s(t, x) ⌘ S(x) and c(t, x) ⌘ C(x) for Section 2.3.2. Then we construct numerical solutions both to system (2.

  B.4) System(B.4) is based on a first order forward di↵erence approximation of the time derivative corresponding, at each point in space, to what is known as the explicit Euler method for solving systems of ODEs.

Remark 11. System (B.4) is complemented with initial conditions (2.49) with exactly ⇢ 0 = 10 8 . On the other hand system (B.1)-(B.3) is complemented with initial conditions (2.27) with (2.49), where ⇢ 0 ⇡ 10 8

  scheme for the balance equations (2.19) and (2.19). We rewrite equation (2.19), together with definitions (2.22)-(2.23), as@ t s = D s x s Z R r s (y, s) n(t, x, y) dy s s + I s 1 ! (x)where r s is defined as in (2.21). This is discretised as

			
	s i+1 j,l = s i j,l + t	D s x 2 s i j+1,l + s i j,l+1	4s i j,l + s i j 1,l + s i j,l 1
		Ky X	(B.8)
		(r s ) i j,l,m n i j,l,m	s s i j,l + I s W i,j ,
		m=0	

HIF-1 promotes glycolysis by activating genes responsible for glucose transport and inhibits oxidative phosphorylation in the mitochondria.

Ischemia is a restriction in blood supply, causing a shortage of oxygen and nutrients needed for cellular metabolism and inadequate removal of metabolic waste, resulting in tissue damage or dysfunction.

Cell interactions with cells of the same type are called homotypic, while those with other cell types or extracellular components are called heterotypic.

Hematopoietic precursor cells are stem cells capable of di↵erentiating into blood cells.

Parenchymal cells are those contributing to the functional parts (the parenchyma) of organs or structures such as tumours, as opposed to the structural parts (the stroma, e.g. connective tissue).

DQ-gelatin is a fluorogenic substrate that can be used to detect protease activity in vitro.

The proposed modelling framework is meant to provide a

2D approximation of a 3D problem, and the units of measurement for the dependent variables are chosen accordingly.

N. A. Kelvin-Voigt X X Maxwell X X X X X SLS X X X X X Je↵rey X X X X X Burger's* X X X X X X X

https://github.com/ChiaraVilla/VillaEtAl2021Phenotypes

https://git-ce.rwth-aachen.de/alf.gerisch/VillaEtAl2021BullMathBiol

) ,(B.31) 
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Appendices

Appendix A

Analytical details

We here report the details of the investigations conducted to support analytical results presented throughout the manuscript. In particular we include: the proof of Proposition 1 and that of Theorem 1 stated in Part II (Section 2.2.1) in Section A.1 and A.2 respectively; details of the formal analysis conducted in the asymptotic regime considered in Part II (Section 2.2.2) in Section A.3; details of the LSA conducted in Part III (Section 5.2) in Section A.4; rules of derivation of the constitutive equations in Part IV (Chapter 7) in Section A. [START_REF]3 Parameter values used in Chapter 7 In order not to limit the conclusions of our work by selecting a specific biological scenario, we identified possible ranges of values for each parameter of our model on the basis of the existing literature on mechanochemical models of pattern formation and then define our baseline parameter set by selecting values in the middle of such ranges[END_REF]; examples of creep and stress relaxation tests presented in Part IV (Section 7.2.2) in Section A.6.

A.1 Proof of Proposition 1 in Chapter 2

Substituting (2.6) and (2.15) into (2.5) yields

n ⌘ n(t, x, y), (t, x, y) 2 (0, 1) ⇥ ⌦ ⇥ R.

(A.1)

Building upon the results presented in [START_REF] Almeida | Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured mode[END_REF]Chisholm et al., 2016b;[START_REF] Lorenzi | Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments[END_REF], we make the ansatz (2.29). Substituting this ansatz into (A.1) and introducing the notation v(t, x) := 1/ 2 (t, x) we find

Equating the second-order terms in y gives the following di↵erential equation for v alone

for some positive function A(S, C). These asymptotic relations, along with (A.12), allow us to conclude that if p b(S(x), C(x)) < a(S(x), C(x))

then ⇢(t, x) ! a(S(x), C(x)) p b(S(x), C(x)) ⇣ as t ! 1.

(A.15)

Taken together, the asymptotic results (A.14) and (A.15) ensure that

Claims (2.31)-(2.32) follow from the asymptotic results (A.8), (A.10) and (A.16).

A.3 Formal analysis presented in Chapter 2

We consider the asymptotic behaviour of the weak solution of (2.37) subject to the initial condition (2.38)-(2.39) in the asymptotic regime " ! 0.

Hamilton-Jacobi equation. Having introduced the WKB ansatz (2.41), i.e. n " (t, x, y) = exp [ u " (t, x, y)/" ], we have the following @ t n " = " 1 n " @ t u " , r x n " = " 1 n " r x u " , @ y n " = " 1 n " @ y u " ,

Substituting the ansatz (2.41) into (2.37) 1 , and using the identities listed above, we obtain .17) subject to the initial condition u " (0, x, y) = u 0 " (x, y), with u 0 " (x, y) given by (2.38). Letting " ! 0 in (A.17) we formally obtain the following equation for the leading-order term u of the asymptotic expansion for u " @ t u = R(y, ⇢(t, x), S(x), C(x)) + (@ y u) 2 + |r x u| 2 in ⌦, (A.18) where ⇢(t, x) is the leading-order term of the asymptotic expansion for ⇢ " (t, x). This is the Hamilton-Jacobi equation (2.42) 1 .

A.4 Linear stability analysis presented in Chapter 5

In Section A.4.1 we conduct a LSA of the 1D system (5.15) under definitions (5.5), (5.8) and (5.9), and either under definition (5.16) or (5.17). Similarly, in Section A.4.2 we conduct an analogous LSA of the 2D system (5.15) under definitions (5.6), (5.8) and (5.9), and either under definition (5.16) or (5.17).

A.4.1 Linear stability analysis of the 1D problem

Spatially homogeneous steady states. The spatially homogeneous steady states of the system (5.15 .31) with either n = 0 or n = 1. The first one ('cell-free' steady state) corresponds to the absence of cells, with the whole volume occupied by the ECM. The second one ('cellfull' steady state) corresponds to the case in which the cells have completely degraded the ECM and are occupying the whole volume. Note that in the absence of matrix degradation (i.e. = 0) the spatially homogeneous steady states are still in the form (A.31), but with 0  n  1. We thus have, in addition to the two already described, infinitely many steady states in which both cells and ECM are present, filling up the volume. These might be referred to as 'intermediate' steady states henceforth, as they correspond to intermediate values of n, namely 0 < n < 1.

Remark 7. We are going to assume that n + ⇢  1 for our LSA investigations. That is indeed satisfied by the steady states and it can be justified through the biological argument that random perturbations to these states are likely to arise naturally if there is space available, while changes that would imply n + ⇢ > 1 are much less likely as they would require high energy expenses to oppose a high pressure environment. Mathematically this allows us to avoid complications that arise when introducing perturbations in the typical ansatz (vid. below) due to definition (5.3) and equation (5.10). In fact, under this Note that these steps simply provide an alternative route to the calculation of the eigenvalues i (i = 1, ..., 4) of the Jacobian matrix of the ODE system 8 > > > > > > < > > > > > > : .35) which corresponding to the spatially homogeneous version of the PDE system (5.15). The eigenvalues are then given by the roots of the characteristic polynomial on the left-hand side of equation (A.34). For n = 1 we have that all eigenvalues i (i = 1, ..., 4) are such that Re( i ) < 0 indicating the cell-full spatially homogeneous steady state is stable under spatially homogeneous perturbations. On the other hand, for n = 0 we have one zero eigenvalue, thus LSA is inconclusive. We briefly investigate this by constructing numerical solutions for the ODE system (A.35) under the nondimensional baseline parameter set (BPS) in Table 5.1, complemented with initial conditions mimicking spatially homogeneous perturbations from the cell-free steady state, i.e. steady state (A.31) with n = 0.

From the numerical solutions displayed in Figure A.1 we observe that:

• If the perturbation is such that n 0 = 0, then the cell-free steady state is stable under spatially homogeneous perturbations (cf. Figure A.1a);

• If the perturbation is such that n 0 > 0 (although in this case n 0 + ⇢ 0 > 1), then the cell-free steady state is unstable under spatially homogeneous perturbations (cf. We will make use of the notation

for which we have that w 1 (k) 0 for all k 2 R. Then, for small perturbations in the form introduced above, system (A.36) can be rewritten as Mṽ = 0 with M given by

where

with w 1 (k) defined in (A.39). This immediately implies A(k) 0 for all steady states, those with, or without, matrix degradation. Imposing det M = 0 for a non-trivial solution to Mṽ = 0, we obtain the characteristic equation from which to infer the dispersion relation (k 2 ) which, in its more general form, is given by

In order for the steady states to be unstable under spatially inhomogeneous perturbations -and patterns to arise -we require Re (k 2 ) > 0 for some k 2 2 R. It is clear from (A.42) that Re (k 2 ) < 0 for all k 2 and n > 0. This indicates that the cell-full steady state (as well as the intermediate ones) is also stable under spatially inhomogeneous perturbations. We claim this to be due to saturation e↵ects introduced in (5.16), while we may still expect chemotaxis and cell-to-cell or cell-to-matrix adhesion to play an important role for cell aggregation when the initially perturbed states are far from being volume filling, which will be investigated in the next paragraph. On the other hand, note that for n = 0 the second term in (A.42) is zero, thus any value of will satisfy (A.42). However, substituting n = 0 from the beginning of this investigation would lead to the corresponding simpler version of matrix (A.40), the determinant of which would be given by the product of the entries in its main diagonal: in this case the dispersion relation would satisfy Re (k 2 ) < 0 for all k 2 , with the exception of k = 0, in which case we retrieve the results obtained above under spatially homogeneous perturbations.

Considerations in the absence of saturation e↵ects. We here consider the pattern formation potential of the model in the absence of saturation e↵ects, that is we make use satisfies

We now have that any biologically significant steady state -with or without matrix degradation -may be unstable under spatially inhomogeneous perturbations for strong enough cell-to-cell adhesion and/or chemotaxis, i.e. for large enough S nn and ↵ c and/or . In addition, the magnitude of cell-to-cell adhesion A n (k) in (A.47) will be larger for smaller values of the sensing radius R and larger values of n, and the contribution from chemotactic movement will also increase for larger values of n. Therefore in the absence of saturation e↵ects steady states with n > 0 may be unstable under spatially inhomogeneous perturbations and patterns may form. This suggests that perturbed initial conditions far from being volume filling, so that saturation e↵ects do not play a big role, might result in cell aggregation thanks to cell-to-cell adhesion and chemotaxis, as long as the initial cell density is large enough for these dynamics to play a significant role. On the other hand, for n = 0, we reach the same conclusions as in the presence of saturation e↵ects, that is the cell-free steady state is stable under spatially inhomogeneous perturbations, although we retrieve instability in the limit case of spatially homogeneous perturbations.

A.4.2 Linear stability analysis of the 2D problem

We here consider how the results obtained so far change in the 2D problem. Conclusions drawn in Section A.4.1 on the steady states of the system and their stability under spatially homogeneous perturbations remain unchanged and we report below the 2D calculations under spatially inhomogeneous perturbations.

Considerations in the presence of saturation e↵ects. When introducing spatially inhomogeneous perturbations

with (r) given by the corresponding definition in (5.8). Assuming small perturbations in the form ñ, ⇢, m, c / exp ( t 

which gives the constitutive equation ( 7.2) for the linear viscous model. When two elements are connected in parallel the strain of each component is the same as the overall strain, while the overall stress is given by the sum of the stress of each component. For a Kelvin-Voigt arm, where a purely elastic spring and a purely viscous damper are connected in parallel, this means that the overall stress and strain " are related via 8 <

:

where e and " e satisfy (A.57), while v and " v satisfy (A.58). Solving system (A.59) with (A.57) and (A.58) leads to the constitutive equation (7.3) for the Kevin-Voigt model. On the other hand, when elements are connected in series the overall strain is given by the sum of the strain of each component, while the stress of each component is the same as the overall stress. For a Maxwell arm, where a purely elastic spring and a purely viscous damper are connected in series, this means that the overall stress and strain " are related via 8 <

:

where e and " e satisfy (A.57), while v and " v satisfy (A.58). Solving system (A.60) with (A.57) and (A.58) leads to the constitutive equation (7.4) for the Maxwell model. The same rules can be applied to obtain the constitutive equations of any model of linear viscoelasticity starting from the system of purely elastic springs and purely viscous dampers that illustrates it, as was done to obtain (7.5) and (7.6) from Figures 7.1e and 7.1f respectively. Note that more complex models may be represented by di↵erent systems (e.g. the SLS model may be illustrated as a Maxwell arm connected in parallel with a purely elastic spring instead of as in Figure 7.1e), which lead to di↵erent constitutive equations but still capture the same properties characterising the model.

Appendix B Numerical details

The numerical schemes used to construct numerical solutions to the models studied in this thesis are based on finite di↵erence and finite volume methods. We first give a brief introduction of these methods, for 1D problems, followed by details of the schemes used in each part: the scheme developed for the numerical simulations reported in Part II is described in detail in Section B.1; the scheme developed by Alf Gerisch (TU Darmstadt) used for the numerical simulations in Part III is described in Section B.2; the scheme developed for the numerical simulations reported in Part IV is described in detail in Section B.3. , 2007) rely on the approximation of derivatives in the di↵erential equation by finite di↵erence formulas at each grid point. These can be obtained from Taylor expansions of the function whose derivative we need to approximate centred at di↵erent points on the grid, and truncating the obtained expression by ignoring terms of order x N ( x = L/K is the distance between two grid points) for an approximation of order N . The approximations may be 'backward', 'forward' or 'central', depending on which points of the grid are used to obtain the approximation. This gives a large but finite algebraic system of equations to be solved in place of the di↵erential equation, which can often be done e ciently using programming and numeric computing platforms (e.g. Matlab). Finite di↵erence approximations are used in the schemes presented in Sections B.1 and B.3.

derivatives of the following form

In this system f n (N, P, N 0 , U 0 ) = 0, f ⇢ (P, P 0 , U 0 ) = 0 and f u (N, P, U, N 0 , P 0 , U 0 ) = 0 are each systems of K ODEs obtained, respectively, from PDEs (8.1), (8.2) and (8.7), using second-order central finite di↵erence approximations for the spatial derivatives and the first-order upwind scheme for the advection terms, as detailed below for each equation.

In order to solve system (B.10), we make use of the Matlab solver ode15i, which uses a variable-order (orders 1 to 5) backward di↵erence formula (BDF) method in a form suitable to an implicit system of ODEs. Initial conditions N (0), P (0) and U (0) are given by the appropriate equivalent of initial conditions (8.22), and we make use of the Matlab function decic to obtain consistent initial conditions N 0 (0), P 0 (0) and U 0 (0) such that (B.10) is satisfied at initial time t = 0.

Useful matrices. In order to apply the first-order upwind scheme we need to compute variables and derivatives at the grid cell interfaces, i.e. half-way between grid points, in addition to those at the grid cell centres. We here clarify the notation adopted throughout the rest of this document. The K⇥K matrices M x and M xx are used to approximate, using second-order finite di↵erences, the first-order and the second-order derivatives in space, respectively, of a periodic grid function at the grid cell centres and are therefore given by where I is the K⇥K identity matrix and M x is defined in (B.11). This scheme is valid as long as b 2 = a 2 = 0 and can therefore also be applied when considering the linear elastic model (7.1), the linear viscous model (7.2), and the SLS model (7.5). On the other hand, in the case where b 2 6 = 0 (i.e. when the Je↵rey model (7.6) is considered) the above numerical scheme cannot be directly employed due to the presence of a second-order derivative in t. We could still, however, take a similar approach and make use of the ode15i solver by introducing extra variables for the first-order derivatives in t of n and ⇢, thus formally reducing the PDE (8.7) to first-order in time, at the cost of increasing the number of equations in the Method of Lines ODE system.

B.3.2 Numerical scheme for the 2D problem

Similarly as done for the spatially 1D model, numerical solutions for the system of implicit, time-dependent and spatially 2D PDEs (8.9), together with ( 30)-( 32), are obtained exploiting the Method of Lines. We make use of a uniform discretisation of the square spatial domain [l, L] ⇥ [l, L] consisting of (K + 1)⇥(K + 1) grid points, while leaving the time variable continuous. The spatial grid width, in both spatial directions, is denoted by x again. The normalised cell density n(t, x 1 , x 2 ), the normalised ECM density ⇢(t, x 1 , x 2 ) and the displacement of a material point of the cell-ECM system

Thanks to the periodic boundary conditions, we can drop the index values i = 0 and j = 0 and consequently have 4 ⇥ K 2 time-continuous approximations to determine. We collect them in the matrices N (t), P (t), U 1 (t), U 2 (t) and denote their time-derivatives by N 0 (t), P 0 (t), U 0 1 (t), U 0 2 (t). The discretization of the spatial derivatives in the PDE system will then result in an implicit system of 4 ⇥ K 2 ODEs for the variables N (t), P (t), U 1 (t), U 2 (t) and their time-derivatives of the following form In this system f n = 0, f ⇢ = 0, f u 1 = 0 and f u 2 = 0 are each systems of K 2 ODEs obtained from the system of PDEs (8.9), using second-order central finite di↵erence approximations for the spatial derivatives and the first-order upwind scheme for the advection terms, as detailed below for each equation.

In order to solve system (B.24), we make, similarly to the spatially 1D case, use of the Matlab solver ode15i. Initial conditions N (0), P (0), U 1 (0) and U 2 (0) are given by the appropriate equivalent of initial conditions (8.25), and we make use of the Matlab function decic to obtain consistent initial conditions N 0 (0), P 0 (0), U 0 1 (0) and U 0 2 (0) such that (B.24) is satisfied at initial time t = 0.

Useful functions In order to solve the system (B.24) we need to compute variables and derivatives at the grid cell centres and interfaces, both in the x 1 -and the x 2 -direction. We here introduce the functions that will be used in the rest of this document to compute the aforementioned quantities in the di↵erent directions. These rely on the fact that the matrices (B.11)-(B.13) act on column vectors and therefore, when applied to an K⇥K argument matrix, they will act on each column of that, which in our framework corresponds to computing the quantity of interest in the x 1 -direction. In order to compute the same quantities in the x 2 -direction, we need the operating matrix to act on each row of the argument matrix of interest, which can be achieved by matrix transposition of the argument matrix before and of the product matrix after matrix multiplication. Hence the functions M x1 (N ) and M x2 (N ) are used to approximate the first-order derivative of the variable of interest, say N , at the grid cell centres in the x 1 -and x 2 -directions respectively, and are defined as

where the matrix M x is defined in (B.11). Similarly, the functions M xx1 (N ) and M xx2 (N ) are used to approximate the second-order derivative of the variable of interest at the grid cell centres in the x 1 -and x 2 -directions, respectively, and are defined as Remark 12. The Matlab solver ode15i allows for the specification of the sparsity pattern of Jacobian matrices. In particular in the spatially 2D simulations this leads, in comparison to not specifying these patterns, to substantial savings in required CPU time.

For details on these patterns we refer to the available Matlab implementation for the numerical solution of the PDE systems.

Appendix C

Parameter details C.1 Parameter values used in Chapter 2

Numerical solutions are computed in a domain of length L = 0.5 cm, which in 2D corresponds to a region of tumour tissue of area 2.5 ⇥ 10 3 cm 2 , chosen in agreement with clinical images provided by [START_REF] Schuh | Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology[END_REF].

Cancer cells. As discussed in Section 2.2, typical values of the epimutation rate are one or two orders of magnitude larger than the rate of somatic DNA mutation (Doerfler and Böhm, 2006, p.45), which is about 10 12 s 1 [START_REF] Duesberg | Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy[END_REF], and typical values of the cell di↵usivity D n are about 10 12 cm 2 s 1 [START_REF] Smith | Measurement of cell migration on surface-bound fibronectin gradients[END_REF][START_REF] Wang | A mathematical model quantifies proliferation and motility e↵ects of TGFon cancer cells[END_REF].

Given the various sources of spontaneous phenotypic changes, discussed in Section 1.1.3, and the wide range of observable mutation rates [START_REF] Duesberg | Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy[END_REF], higher rates of spontaneous phenotypic variation have been considered in the literature (Ardaševa et al., 2020c;[START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF]. In view of the analytical choices made in Section 2.2 we make di↵erent choices of these parameters for two parameter sets. (A) We take = 0 6 s 1 as proposed by [START_REF] Chisholm | Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation[END_REF], and D 0 = 0 cm 2 s 1 to match assumptions made for the analysis in Section 2.2.1. (B) We take = D n = 10 13 for consistency with assumptions made for the formal analysis in Section 2.2.2, i.e. parametrising these quantities as the square of a small parameter " , and this way we have D n = 10 13 cm 2 s 1 close to the estimate of [START_REF] Wang | A mathematical model quantifies proliferation and motility e↵ects of TGFon cancer cells[END_REF] using an experimentally calibrated model, and = 10 13 s 1 closer to the order of magnitude discussed above [START_REF] Doerfler | DNA methylation: development, genetic disease and cancer[END_REF][START_REF] Duesberg | Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy[END_REF]. The maximal background fitness of anaerobic phenotypic variants ' can be estimated from the experimental data reported by [START_REF] Gordan | HIF-2↵ promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity[END_REF] on the proliferation of the control culture in hypoxic conditions using the logistic growth, where the death rate is assumed to be 10 9 orders of magnitude smaller Appendix D Supplementary figures g cm 2 , the cell density ⇢(T, x) is in units of 10 8 cells cm 2 the spatial variables x 1 and x 2 are in units of cm, and the parameters values used are those listed in Table 2.1 (D n = 0 = = 10 13 ).