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1. Introduction

The Habilitation à Diriger des Recherches (HDR) is a French diploma, acknowledging that a
researcher is considered experienced enough to be the main supervisor of Ph.D. students1. The
following text, created as part of my application for the HDR, summarizes my career path and most
relevant research lines, highlighting the works that I mostly contributed to, especially regarding the
supervision of master and Ph.D. students, with the aim of showing the current degree of maturity in
my research path.

1.1 My Career Path

My main research topics during my Ph.D. concerned the real-world applications of modeling and
evolutionary computation (EC) techniques, mostly to hardware and software testing. Progressing to
my post-doctoral positions, I gained an interest in machine learning (ML), that I see as optimization
applied to models, and applications related to the food science and health sectors, where data is
often scarce and incomplete, and models’ predictions can be hard to interpret. Motivated by these
difficulties, I developed theoretical approaches to successfully tackle the obstacles, and at the same
time progressed with real-world applications.

My Ph.D. (obtained in 2011 by Politecnico di Torino, Italy, under the supervision of Prof.
Giovanni Squillero) was focused on optimization, modeling, and reverse-engineering of complex
systems. I am particularly interested by the great challenges presented to optimization techniques
by real-world problems: from unpredictable interactions among elements of the same system,
to non-linear relationships between variables, from superexponential complexity, to sparsity and
scarcity of training data. My thesis manuscript was published as a book, edited by me and my
supervisors [SST12].

After obtaining my Ph.D., I started a first post-doctoral position at Politecnico di Torino, in

1Or, citing the Arrêté du 23 novembre 1988 relatif à l’habilitation à diriger des recherches, “[...] anctionne la
reconnaissance du haut niveau scientifique du candidat, du caractère original de sa démarche dans un domaine de la
science, de son aptitude à maîtriser une stratégie de recherche dans un domaine scientifique ou technologique suffisamment
large et de sa capacité à encadrer de jeunes chercheurs.”
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the same research team, working on the follow-up of the same topics. Between 2011 and 2012 I
worked on my second post-doctoral position, at Institut des Systèmes Complexes, Paris, in the scope
of the European FP7 project DREAM. My work in this period was focused on the development
of new approaches for optimizing the structure of Bayesian networks models, applied to milk gel
processing [Lut+14; Ton+13; Ton+12]. It’s during this experience that I first came in contact with
scientists from the French National Institute for Research in Agriculture, Food, and the Environment
(INRAE), started discovering the intricacies of agri-food systems, and gained a raising interest in
ML.

I have been recruited by INRAE as permanent researcher (Chargé des recherches, classe normale)
in 2012, where I joined team MALICES, focused on modelling complex agri-food and biological
systems (Modélisation des Systèmes Alimentaires et Biologiques Complexes). As my experience in
research grew, I had the opportunity of leading an international networking project on modelling in
food science and industry, COST Action FoodMC, between 2016 and 2020. In January 2020 my
team merged with team LINK (Learning and Integration of Knowledge) to create team EKINOCS
(Expert Knowledge, INteractive modeling and learnINg for understandINg and decisiOn makINg in
dYNamic Complex Systems). Between my recruitment and the time of writing, my research topics
slowly expanded from optimization to ML, and the applications went from being more strictly related
to food processing to addressing broader questions in life sciences and health. Working on real-world
applications informed my methodological developments, raising new research questions related to
the interpretability of models and sparsity of data.

1.2 My Research

Since the beginning of my Ph.D., my research has been focused on real-world applications. Real-
world optimization problems very often present features that make it impossible or impractical to
apply traditional, exact techniques: for example, vast non-convex spaces of candidate solutions that
cannot be exhaustively explored, or computationally expensive cost functions (also called fitness
functions), or even a difficulty of translating the structure of a candidate solution into a simple array
of real values. Evolutionary algorithms (EAs) [De 16], ranging from evolution strategies [Sch65] to
genetic programming [Koz92], are uniquely suited to tackle these kind of issues, and consequently
they have always been a central part of my research topics.

EAs are stochastic optimization techniques that explore the search space of possible solutions
attempting to move towards areas with better values of a given fitness function. In order to achieve
this objective, EAs keep an archive of candidate solutions called population, that can be seen as
their current sampling of the fitness landscape. Starting from candidate solutions with the known
best fitness values, new solutions are created as random mutations or recombination of existing
ones, furthering the exploration of the solution search space. EAs are applied wherever classical
optimization techniques fail, and even though there is no theoretical guarantee that they will be
able to find the global optimum, corresponding to the absolute best candidate solution, they usually
deliver solutions of high quality in a reasonable amount of computational time.

The first applications I tackled as a Ph.D. student dealt mostly with software and hardware
testing [Car+11; Gan+10], and represented problems so complex that even classical EAs would
struggle finding good solutions. These obstacles motivated my long-standing research into algorith-
mic aspects of EC, such as measuring diversity in the population of an EA [ST08] with the objective
of preserving and promoting it [ST16], with the final objective of further improving the performance
of these already efficient techniques.
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When I first started stepping into the field of ML, mostly during my post-doctoral experiences,
coming from the domain of optimization informed my view of ML algorithms as optimization
techniques applied to models. From my perspective, ML is nothing more that transforming a learning
problem into an optimization problem: ML algorithms explore a large search space of possible
models, attempting to find the global optimum, defined as the model that not only fits the training data
provided, but is able to generalize as much as possible to unseen data points. The ML community has,
in my opinion, the great added advantage of having created a rich common vocabulary to describe
and compare techniques as different as logistic regression [Pea96] and random forest [Bre01]. With
this common language, I can argue that some EA applications, like symbolic regression [Koz92;
SL09], are indeed ML: the fact that the optimization algorithm used is an EA, from this point of
view, is just a detail.

Indeed, while ML and EC progressed almost independently in the past decades, the two fields
are deeply linked. The obvious connection between the processes of learning and evolution has been
pointed out by Alan Turing back in 1950 [TH50]. Even the term “machine learning” was coined in
1959 by Arthur Lee Samuel, a pioneer in the field of computational intelligence, whose attempts to
devise a checkers player are frequently listed in EC history [Sam59]. Seminal works in EC explicitly
refer to ML, far pre-dating the beginning of the current ML windfall [FPP86; Gol89; GH88; Gre93].

The connection between ML and EC led me to reframe some of the problems of the domain in a
familiar perspective: for example, overfitting, the phenomenon by which a ML algorithm produces
a model that fits the training data but does not generalize well, can be seen as an optimization
algorithm missing the desired global optimum (a model able to generalize) and landing on an
unsatisfying local optimum instead. The real-world applications I worked on since my post-doctoral
experiences, and later on during my permanent position, mainly in the fields of food science [LPT16]
and health [Lop+18; Lop+20], also contributed to complete my mindset on ML. Both domains
feature high-dimensional problems for which relatively few data points are available, and having
“good predictive models” is not enough; it is also necessary to find an explanation of the models’
predictions, that a human expert can make sense of.

For these reasons I got interested in techniques that attempt to select the minimal information
necessary for ML algorithms, to both make their conclusions human-readable, and help prevent
overfitting [BST20b; BT20; Bar+20]. I also find the exact processes by which ML algorithms
construct knowledge extremely intriguing, and I started investigating their mechanisms to understand
whether it is possible to predict generalization capabilities of a ML model, starting from high-level
dataset characteristics [BST20a].

As I will describe more in detail in Chapter 6 I plan to further the research lines I presented, by
tackling more complex case studies in food science and health, and at the same time by addressing
the more general algorithmic issues raised by these real-world problems. I am currently continuing
my research line on the fundamental aspects of ML by developing new methods for detecting
extrapolation in ML models (Section 6.1). The emerging challenge of bacteria resistant to antibiotics
has all the features of a complex problem that could be tackled with ML and EAs, and this is
what I am currently attempting to push towards to (Section 6.2). Finally, my expertise in EAs, and
multi-objective optimization in particular, led to applying these techniques to problems in food
science that inherently present conflicting objectives (Section 6.3).
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1.3 Manuscript Overview

This section briefly summarizes the remaining chapters of the manuscript, acknowledging my many
collaborators that made this work possible. As a computer scientist, I developed methodological im-
provements in the niches I am part of, machine learning and evolutionary computation. Nevertheless,
the research lines I explored are motivated by practical needs that arose in the domains I applied ML
and EA techniques to, mainly food science and healthcare. Both domains share some fundamental
obstacles to the application of artificial intelligence and optimization techniques, such as relative
scarcity of data and large feature spaces. I think that the two parts, one more theoretical and one
more applied, inform each other, as I tried to summarize in Figure 1.1. Each chapter is structured to
contain all necessary background information, so that it can be read independently from the others.

Figure 1.1: Conceptual scheme of the research works described in this manuscript.

Chapter 2 groups research lines on what can be termed the epistemology of ML algorithms,
dealing with how ML algorithms acquire and use knowledge related to a given task. This work
has been carried out in collaboration with my former Ph.D. supervisor, Giovanni Squillero from
Politecnico di Torino, Italy, and Evelyne Lutton, INRAE, France. All the ideas have been developed
through my co-supervision of a master student of Politecnico di Torino, Pietro Barbiero, who is now
pursuing a Ph.D. at the University of Cambridge, UK, in the laboratory of Pietro Liò, Cambridge
Center for AI in Medicine, UK. Our collaboration is still ongoing.

Chapter 3 describes my contributions to the algorithmic aspects of EC. Section 3.1 reports
a review on the state of the art for diversity preservation and promotion, that I co-wrote with
Giovanni Squillero. Section 3.2 summarizes the content of different publications, produced again
in collaboration with Giovanni Squillero, through the shared co-supervision of a Ph.D. student at
Politecnico di Torino, Marco Gaudesi. Finally, Section 3.3 reports a work that I developed from an
initial idea of Maarten Keijzer, Pegasystems, The Netherlands, in collaboration with my colleagues
from INRAE, Sébastien Gaucel and Evelyne Lutton.
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Chapter 4 summarizes the food science applications I worked on since my recruitment at INRAE.
The works have been carried out in collaboration with the colleagues of my institute, mainly Nadia
Boukhelifa, Eric Dugat-Bony, Fernanda Fonseca, Sébastien Gaucel, Séverine Layec, Steven Le
Feunteun, Evelyne Lutton, and Nathalie Méjean-Perrot, through the shared co-supervision of the
Ph.D. students Etienne Deschamps and Thomas Chabin, AgroParisTech, France. For Section 4.3,
describing the activities of COST Action FoodMC, a project I led with over 150 participants, there
are simply too many people to acknowledge individually, so I will just extend a collective thanks.

Chapter 5 is an overview of my research on healthcare applications. These works have been
achieved in collaboration with the Department of Pharmacology of Utrecht University, The Nether-
lands, and in particular with Alejandro Lopez-Rincon and Aletta Kraneveld. The results in Section 5.1
would have been impossible without the staff of Hospital Civil de Guadalajara “Dr. Juan I. Men-
chaca”, Mexico, in particular Lucero Mendoza-Maldonado; and without the participation of Carmina
Perez-Romero, Universidad Central de Queretaro, Mexico.

Chapter 6 concludes the manuscript, outlining the research projects I planned for the next part of
my career, most of them derived from ideas contained in the previous chapters.

1.4 Paralipomena2

In compiling this manuscript, I had to necessarily perform a selection of my works, focusing not
only on what I consider the most relevant, but also on those that are easier to weave together in a
coherent narration. As a result, a considerable number of research lines were left out. I would like
to briefly mention three of those, as even though they did not fit in this work, I still consider them
remarkable professional and personal experiences.

Together with Doina Bucur, University of Twente, The Netherlands, Giovanni Iacca, University
of Trento, Italy, and Giovanni Squillero, we tackled topics related to graphs, both for communication
and social networks; for some of these works, I co-supervised the Ph.D. student Andrea Marcelli,
Politecnico di Torino, Italy. We framed network security issues as optimization problems [Buc+13;
Buc+14a; Buc+14b; Buc+15; Buc+16] and posed influence maximization in social networks as a
multi-objective problem [Buc+17; Buc+18a; Buc+18b], describing compromises between amount
of resources invested and global propagation, and developed an open-source package for influence
maximization [Iac+21]. One of our contributions won the Best Paper Award at the EvoApplications
conference in 2017.

Another research line I am particularly attached to is related to the development of AI for
games. Early works, again stemming from my co-supervision of Ph.D. student Marco Gaudesi, dealt
with learning the opponent’s behavior for the iterated prisoner’s dilemma [Gau+14; Gau+16b], a
classic benchmark for game theory. More recent contributions, tackling the real-world games of
StarCraft [Gar+15] and HearthStone [Gar+20; Gar+16; Gar+18], are the result of my collaboration
with Pablo Garcia-Sanchez, Antonio Mora, and Juan Merelo from University of Granada, Spain.

A last topic I would like to mention is the use of EC and ML techniques to deal with malware.
This was the main subject of Andrea Marcelli’s thesis, a Ph.D. student I co-supervised with Giovanni
Squillero. Together, we published several works on EAs applied to computer virus creation [Gau+15;
Gau+16a] and on how to perform clustering on malware applications for mobile phone operative
systems [Atz+18].

2From the Greek for what has been left out.
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2. Epistemology of Machine Learning

This chapter groups all activities related to more theoretical aspects of machine learning (ML), that
I consider part of its epistemology, the theory dealing with how information is transformed into
knowledge, and what are the limits of the learned models. Both questions become of utmost practical
relevance when machines are tasked with taking critical decisions.

The first research line described in this chapter (Section 2.1) deals with predicting the capa-
bility of generalization of ML algorithms, starting from dataset characteristics, such as number of
classes, number of features, and statistical metrics describing data distribution, a work currently
under review but available on arXiv [BST20a]. The second part (Section 2.2) concerns several
techniques for selecting a minimal, essential amount of information from larger datasets, at the
level of features [BST20b; Bar+20] or at the level of samples [BST19; BT19; BT20]: information
extracted in this way can be used to train ML algorithms and obtain both better generalization
and more human-readable decisions. All activities described in the chapter are the result of my
co-supervision of Politecnico di Torino’s master student Pietro Barbiero (now Ph.D. candidate at
University of Cambridge, UK).

2.1 Predicting Generalization

Among all common inquiries regarding ML, perhaps the most basic is: can ML work on a specific
problem? Or, in other words: given the characteristics of a target data set, can the effectiveness of a
ML approach be predicted? Interestingly, this latter question can be further rephrased as: what are
the characteristics of a data set that are well correlated with the possibility, or the impossibility, of
obtaining ML models able to effectively extrapolate to unknown instances of the problem? It is well
known that ML algorithms are affected by the curse of dimensionality [AK18], but ML practitioners
also know that it could be possible to obtain reliable models even for high-dimensional data sets, and
with a relatively small number of samples [Bar+18]. The common approach among practitioners
in the field, when dealing with a new data set, seems to be this one: try as many different ML
algorithms as possible in a cross-validation, and evaluate the outcomes; then focus on the techniques
that provided the best results, possibly applying them in an ensemble [AK17].
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Taking inspiration from Oreski et al. [OOK17], where the authors find links between data-set
characteristics and efficiency of feature selection techniques, it is here proposed to empirically explore
the relation between data-set characteristics and effectiveness of standard ML classification models,
to finally obtain a general meta-model able to extrapolate. In order to investigate the relationship
between the considered metrics and extrapolation ability, 72 publicly available classification data sets
from open-access, curated sources are analyzed. The focus of the experiments is on classification, as
supervised ML represents a quite significant portion of real-world problems; and, differently from
regression, several sophisticated quality metrics have already been developed for this task [Osi+17].

During the analysis, characteristics such as number of features, number of classes, number of
samples, are taken into account, searching for correlations with quality metrics, such as accuracy of
a ML model on training and test points. Extrapolation is assessed not just by alternatively dividing
the data into training and test sets, but by analyzing whether data points fall inside or outside of the
convex hull of the training data. After collecting the meta-data on the performance of state-of-the-
art classification algorithms on the data sets, the statistical analysis presents both predictable and
surprising results, hinting at the fact that dimensionality might not be so cursed after all.

2.1.1 The curses of dimensionality
As the concept of curse of dimensionality will be extensively referenced in the following, it is worth
it to briefly summarize it in this Section. The curse of dimensionality denotes a variety of different
phenomena that impair data analysis if a large number of variables need to be considered at the
same time [Bel66; Bel15]. While in most cases it has no closed form nor a unique solution, it has
distinctive deleterious effects. Problems like data sparsity, collinearity, and overfitting seem to
confirm the platitude that in ML dimensionality is cursed [AK18].

As an example, let consider a collection of n data points generated by sampling two random
variables X1 and X2 originated from two standard normal distributions (µ = 0,σ = 1.0). The amount
of samples falling within the interval xi±σ with xi = 1.5 is around the 30% both for X1 and X2,
individually (grey histograms in Figure 2.1). However, when the joint distribution of X1 and X2 is
considered, the amount of samples falling within the joint interval (x1±σ ,x2±σ) (with x1,2 = 1.5)
drops substantially. The worst-case scenario arises when the two random variables are uncorrelated
(Figure 2.1, left). As the number of random variables (p) increases, the fraction of points within
the p-dimensional interval of radius σ decreases rapidly: ∼ 5% for p = 2, ∼ 1% for p = 3, and
∼ 0% for p = 4 [AK18]. In practice, the sparser the samples the harder will be collecting data that
are representative of the population. The best-case scenario occurs when the random variables are
perfectly correlated (Figure 2.1, right). In this case, the decrease is still significant, but much slower
(from 30% to 20% rather than 5% for p = 2).

In most real-world scenarios, a considerable number of variables are correlated. As supervised
ML algorithms are likely to favor variables correlated with the target variable [Hal00; YL03], the
data-sparsity problem may be usually mitigated by considering together highly correlated sets of
variables. However, exploiting correlated variables may also have a catastrophic impact when
variables are used for prediction: as there could be more than one subset of variables yielding
approximately the same result, considering them together can make it impossible to understand the
individual impact of each variable. For example, suppose that two variables X1 and X2 can be used
to predict a target variable Y by means of a predictive model f :

Y = f (X1,X2) (2.1)
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Now suppose that there exists another variable X3 that can be expressed as a function of both
X1 and X2, e.g., X3 = X1 + 2X2. Such a system of equations can be solved by using an arbitrary
pair of variables {(X1,X2),(X1,X3),(X2,X3)}, as they are all perfectly correlated. Even though the
predictive problem appears to be solved, the causative source of variability of Y is now uncertain,
and the relative importance of the variables cannot be estimated from data. The situation gets critical
when the number of variables exceeds the number of samples (p> n): at least one of the variables can
always be expressed as a linear combination of the others, thus yielding multiple perfect correlations
[ZSK12].
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Figure 2.1: Visual representation of the data sparsity phenomenon in case of correlated random
variables (left) and collinear random variables (right).

In the case of multicollinearity, one of the possible solutions exploited by supervised ML
algorithms (e.g., logistic regression [MZ75]) is to associate a weight to each variable, corresponding
to its relevance. Instead of discarding variables which may be the true causative source of variability,
these approaches make it possible to take into account all the observed variables at the same time, by
increasing the number of model’s parameters. Such increase in model complexity may in turn be a
possible cause of overfitting, another phenomenon related to the curse of dimensionality. In fact,
the increased flexibility makes the model not only able to fit the underlying relationship between
variables, but also the random idiosyncrasies of the observations [LKA16b].

2.1.2 Extrapolation and interpolation
The objective of supervised ML can be roughly summarized as automatically obtaining a predictive
model for a specific phenomenon starting from a set of known cases. Usually such known cases
consist in different instances of measurements, or samples, each one specifying the values of all
different variables, or features of the problem. One of these features is the target variable, that is,
what should be predicted by the final model. ML algorithms try to find a mathematical relationship
between the target feature and the others in the set of known data, or training set of data. Eventually,
such relation can be encoded with a linear model [LKA16a], more complex structures [LBH15], or
even ensembles of simpler models [AK17; KA17]. Indeed, it is quite important to assess to what
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Figure 2.2: Two-class samples drawn from two correlated Gaussian random variables. Notably the
classification problem is trivial as the two classes are linearly separable (top-left). By increasing the
number of correlated random variables the highest value (in green), the lowest value (in orange), and
the variance of samples’ correlation shrink towards zero (top-right). The number of highly correlated
variables (ρ > 0.8) increases polynomially with the overall number of features (bottom-left). On the
other hand, the generalization accuracy of logistic regression in predicting class labels decreases,
down to the point of providing almost random estimates (bottom-right).

extent the model obtained is able to generalize, that is, to provide meaningful predictions for new
instances of the problem [Ney+17; Raj+20; RR16]. A model that is only able to deal with the data it
was trained on is said to be overfitted [LKA16b], and it is generally considered useless regardless its
performance on the train set.

In ML the term capacity may describe the ability of a model to represent complex relationships
— the term complexity, when referred to a model, can also be used with a similar meaning. While it
sounds obvious that a second-degree polynomial has a higher capacity than a linear regression, and
can better fit more instances of data, there are relatively few contributions in literature that attempt to
provide a more formal framing [BM02; Pog+04; VC15], and these terms are often used in rather
intuitive and qualitative statements. As a fast but crude approximation, ML practitioners often assess
model capacity by evaluating the number of parameters that can be tuned inside a model. In theory,
the best ML model for a task is the one with just enough capacity to properly represent the training
data: models with lower capacity would underfit, i.e., they deliver unsatisfying results as they are
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Figure 2.3: Mutual relationships among generalization ability (cross-validation accuracy), sample
correlation, and number of features when all variables are correlated and gaussian. When the
number of features is higher than 20–25, samples’ correlation drops leading to a dramatic decrease in
generalization ability. The top part of the figure shows sample correlation on the x axis, and number
of features on the y axis; the right-most part describes the relationship between number of features
on the x axis and cross-validation accuracy on the y axis.

unable to cope with the complexity of the phenomenon; models with higher capacity would risk to
overfit and consequently generalize poorly.

A simple depiction of overfitting and underfitting is provided in Figure 2.4. In practice, unfortu-
nately, it’s extremely hard to estimate the capacity necessary to correctly represent a data set; and
the solution that many ML practitioners use is — yet again — to apply several techniques with
increasing capacity to the data set, until either the gain in fitting stops, or the improvements are not
considered important enough to justify an increase in capacity. More interestingly, even estimating
effective model capacity is not trivial, as there is evidence from works on deep learning that models
with enough parameters to theoretically overfit the training data are actually able to generalize well in
real-world case studies [Zha+16]. The trade-off between fitting and capacity has been independently
explored by different ML communities, with the definition of model-dependent metrics that attempt
to take into account both fitting and capacity to assess overall quality, to facilitate model selection: A
few examples include the Akaike Information Criterion [Aka74], the Bayesian Information Criterion
[Sch+78], and Pareto-based approaches used mainly in symbolic regression [SK05].

While evaluating model capacity can help reducing the chance of overfitting, measuring over-
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Figure 2.4: Visual representation of the effect of model capacity on fitting. The original data points
can be properly represented by a polynomial of degree 4 (middle), so a polynomial regression with
lower capacity will underfit (left), while a polynomial regression with higher capacity will overfit
(right).

fitting remains far from trivial. Ideal ML models should be able to obtain good predictions even
for unknown samples of the same problems, but - by definition - the models cannot be tested on
unknown data sets. Given this practical need, ML researchers found ways to at least assess overfitting,
through different techniques. A basic, but extremely efficient technique, is cross-validation (with all
its variations, such as leave-one-out cross-validation, stratified cross-validation and the like): the
training data is split into k folds of equal size, a ML algorithm is iteratively trained on all folds minus
one, and tested on the remaining fold [Sto74]. Analyzing the results of a k-fold cross-validation, for
example the average performance, or single instances where the performance on a test fold differs
greatly from the others, can provide further insight on the problem characteristics.

As the real objective of evaluating overfitting is to assess a model’s capability of extrapolating
to unknown instances of the same problem, it is worth it to spend a few words on the meaning of
extrapolation in supervised ML. As for model capacity, there is an intuitive and imprecise concept of
extrapolation, defined as the ability of the model to correctly predict data points that are considerably
different from the information provided in the training data, but still belong to the same problem.
An alternative outlook on extrapolation comes from computational geometry: Interpreting the data
points in the training set as points in R f , where f is the number of features, it is possible to compute
its convex hull, the smallest polytope that contains all training points. Given the convex hull of the
training set, it is then possible to assess whether an unseen test data point will fall inside or outside
the convex hull. It is reasonable to assume that, for points inside the convex hull, a ML model will
interpolate known data to obtain a prediction; while the same model will extrapolate for test points
placed outside of the convex hull. An example is presented in Figure 2.5. It is important to notice
that, depending on the characteristics and the distribution of the training points, this interpretation of
interpolation/extrapolation might not correspond to the actual difficulty of predictions for the model.
For example, it is possible to imagine a situation where the model will provide better predictions
for of a test point outside of the convex hull of the training data, but still relatively close to known
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points, than for a test point located inside the convex hull of the training data, but in a part of the
space where training points are relatively sparse. Still, in most practical scenarios, it is generally
harder for models to reliably predict values for test points outside of the convex hull of the training
data. A more in-depth discussion on the convex hull is provided in the following Section.
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Figure 2.5: An example of convex hull. The convex hull of a set of training samples is the minimal
hyper-polygon (in this case, a 2D polygon) that contains all the data inside its edges (left). For
a machine learning model trained on the initial training set, predicting a value for an unseen test
point inside the convex hull (in green) probably requires interpolation; but predicting for a test point
outside the convex hull requires extrapolation (right).

2.1.3 Assessing generalization with the convex hull
In an Euclidean space, the convex hull of a set of points X = {xi ∈ Rd} is the smallest convex set
containing all the points in X . If the number of points n in X is finite (i.e. if X is a matrix Rn×d), then
the convex hull forms a convex polytope in Rd . Finding faces or the set of extreme points of this
convex polytope is a NP-hard problem [Tiw08]. However, checking if a point z lies inside or outside
the polytope is much easier, and can be performed in polynomial time [ST04]. When dealing with
ML models, evaluating the convex hull of a training set can provide extra information on unseen
test points: if a test point falls inside the convex hull, it is expected that the ML model will probably
interpolate known points to find the predicted value; vice versa, if a test point falls outside the convex
hull of the training set, the ML model will likely be required to extrapolate to obtain a prediction.

The problem of checking whether a point z lies inside the polytope of X has a simple linear
programming formulation [PLH95]:

min
y

cT y

s.t. Ay = b

c,y ∈ Rn.

(2.2)
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where:

c = 0 A =

[
XT

1T

]
b =

[
z
1

]
(2.3)

Such formulation is known as a Phase I method [BV04], as the final goal is not the actual
optimization of variable z, but rather checking whether a feasible solution does exist. In such
contexts, the cost function can be a constant, as the only objective is satisfying the constraints. The
first n constraints impose that the position of z in the feature space must be a combination of the
points X :

z =
n

∑
i=1

yixi (2.4)

The last constraint imposes that such combination must be convex, which implies, by definition, that
the coefficients yi must sum to 1:

n

∑
i=1

yi = 1 (2.5)

If the Phase I problem is feasible, point x can be expressed as a convex combination of the set of
points X . By definition, this means that point z lies inside the convex polytope of X . On the contrary,
if the Phase I problem does not have any feasible solution, then point z lies outside the convex hull
of X .

Even the proposed approach exploiting the convex hull can be affected by the curse of dimen-
sionality. The critical point occurs when the dimension of the Euclidean space exceeds the number
of observations (d > n). In this case the upper bound of the rank of the matrix X corresponds to the
number of samples n [Mac95; Mir12]:

rank(X)≤ n (2.6)

Therefore, the maximal number of linearly independent columns of X cannot be higher than
n. Independently from the number of dimensions d, the points xi will lie in a subspace Rs where
s≤ rank(X)≤ n < d. As a consequence, the convex hull generated by the set of points xi will belong
to the same subspace. By definition, for s < d, the subspace Rs has measure zero in Rd and can
be considered as negligible [Fol13]. Hence, when a new point z is added to the space, it is almost
sure that it will fall outside negligible subspaces as Rs [JP12]. In summary, when d > n, the new
point z will almost never belong to the convex hull of X , making the computation of the convex hull
ultimately useless.

2.1.4 Modeling generalization as a function of data set characteristics
The objective of this work consists in assessing generalization abilities of ML classification models
with empirical experiments. To this aim, it is necessary to first select (i) a large set of publicly
available data sets for classification, (ii) a representative set of machine learning classifiers, and
(iii) a set of data set characteristics. Then, on each data set, a cross-validation using ML models is
performed, and the relevant metrics for each fold are computed. Finally, the relationships between
data set characteristics and generalization ability of ML models are analyzed, using both classical
correlation metrics, and association models derived through symbolic regression.
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Data sets
Following the analyses presented in [OOK17] and [Mic+94], this study focuses on classification, as it
is easier to characterize classification rather than regression data sets, as several of the characteristics
analyzed are based on comparing batches of samples belonging to different classes (see the Statistical
metrics paragraph in subsection 2.1.4). Additionally, as the following analysis is partly based on
evaluating convex hulls, only data sets with real-valued features are considered.

The data sets examined are acquired from the OpenML repository [Van+13], an online, curated
collection that, as the time of writing, includes over 3,100 data sets of different kinds. After selecting
only data sets related to classification problems, with real-valued features exclusively, and discarding
those containing errors, a total of 72 data sets was ultimately retained for the analysis. The number
of samples in the selected collection ranges from 47 to 44,819, while the number of features spans
from 2 to 3,758. All selected data sets have real-valued features and a discrete target (suited for
classification). The mean feature correlation of the data sets is 0.619, with a standard error of the
mean of 0.007, the average intrinsic dimensionality ratio is 0.629, with a standard error of the mean
of 0.047.

Data set characterization
As in previous meta-analyses [Mic+94; OOK17], each data set is characterized using metrics,
grouped into four categories: simple, statistical, Euclidean, and generalization metrics. For each data
set, such measures are computed over a stratified 10-fold cross validation [Sto74].

Simple metrics
Simple metrics describe general characteristics of data sets, namely number of samples (n), number
of features (d, a.k.a. dimensionality), and number of classes (c) [DKA06].

Statistical metrics
Statistical metrics assess (i) class differences in feature distributions and shapes, and (ii) relationships
between features and classification target.

Levene’s test [Lev60] is an inferential statistical test used to assess if a vector of random variables
is homoscedastic, i.e. if the variance of the random variables is almost equal. In the following,
Levene’s test is used to compare class covariances for each data set feature. The lower the p-value,
the higher will be the probability that the class covariances of the feature under study are different
[AKR17]. In the following experiments, the score λ collected for each data set is the average of the
Levene’s p-values of its features.

Pearson’s correlation coefficient [Pea20] measures the linear relationship between two variables,
providing an indication of the interdependence between pairs of features. The correlations between
all pairs of attributes are calculated for each class separately. Since the objective is to evaluate the
strength of the relationship and not its sign (positive or negative), the absolute value of the coefficient
is used. For each data set, the collected score ρ is the average of the coefficient over all pairs of
features and over all classes.

Skewness [Pea05b] corresponds to the third standardized moment of a random variable. It
indicates the magnitude of the asymmetry of a feature around its mean, yielding an estimate of the
feature’s departure from normality. The skewness for a class is computed as a weighted average of
the skewness of the feature values of its samples. The final skewness score γ represents the average
skewness over all classes.

Kurtosis [Pea05a] corresponds to the fourth standardized moment of a random variable. It
indicates the “thickness” of the tails of a density function. Distributions with kurtosis less than 3
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Table 2.1: Summary of the metrics used to characterize the data sets analyzed in the study.

Metric type Symbol Description

Standard metrics
n Number of samples
d Number of features
c Number of classes

Euclidean metrics

I Intrinsic dimensionality
Ir Intrinsic dimensionality ratio
N Feature noise (1−Ir)
µD Average sample distance
σD Standard deviation of sample distance

Statistical metrics

λ Average of Levene’s test p-values
ρ Average of class-wise feature correlation
γ Average of class-wise feature skewness
κ Average of class-wise feature kurtosis
η Average of feature-target mutual information

Generalization metrics

CItrain Class-imbalance of training samples
CItest Class-imbalance of test samples
Tin Ratio of test samples inside the convex hull
Tout Ratio of test samples outside the convex hull (1−Tin)
CIin Class-imbalance of test samples inside the convex hull
CIout Class-imbalance of test samples outside the convex hull
F1train F1 for the training set
F1test F1 for the whole test set
F1in F1 for the part of the test set inside the convex hull (interpolation ability)
F1out F1 for the part of test set outside the convex hull (extrapolation ability)

are called platykurtic, i.e. they produce fewer and less extreme outliers than the normal distribution.
Inversely, distributions with kurtosis higher than 3 are called leptokurtic and produce more outliers
with respect to the normal distribution. The kurtosis for a class is computed as a weighted average of
the kurtosis of the feature values of its samples. The final kurtosis score κ represents the average
kurtosis over all classes.

Mutual information [KL87; Ros14] measures the mutual dependence between two variables.
In the following experiments, it is used to estimate the amount of information obtained about the
classification target by observing a data set feature. The overall mutual information score η is
computed as the average over all features.

Euclidean metrics

Euclidean metrics assess the shape of the data manifold.
The intrinsic dimensionality ratio provides a normalized estimate of the dimensionality of the

data, considering a linear manifold. It is computed counting the number of principal components
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needed to explain 90% of the variance in the target [Jol11] (I). The final score Ir is normalized over
the number of original features .

Feature noise is an estimate of the amount of information that is useless with respect to the
classification task. Following [OOK17] and [Lóp+13], the score is computed through the difference
between dimensionality (the original number of features) and intrinsic dimensionality. The final
score N is normalized over the original dimensionality.

The average sample distance µD and the standard deviation of sample distances σD [AR10]
measure the average pairwise distance between two data set points, and the standard deviation of the
resulting distribution, respectively.

Generalization metrics

Generalization metrics estimate the nature and hardness of the classification task. Given the convex
hull of a training data set, the ratio of test points inside it Tin and outside of it Tout assesses the type
of generalization task ML models are asked to perform. Indeed, if test points often fall inside the
convex hull of the training set, it is expected that the ML model will probably interpolate known
points to find predicted values, most of the time; vice versa, if test points frequently fall outside the
convex hull, the ML model will likely be required to recurrently extrapolate to obtain predictions.
Class-imbalance may also play a role in impairing classifier performance. It has been computed for
training and test samples, both inside and outiside the convex hull.

Classification performance estimates how difficult it is for a given classifier to learn from the
training set and generalize to the test set. Since the analyzed data sets usually have more than two
classes, the F1 score [Van79] is used to measure the classification performance. F1 is a measure
of classification accuracy, the harmonic mean of the precision and recall. More specifically, the
weighted F1 score is adopted, to account for label imbalance. Two scores related to the test set are
computed, assessing effectiveness in both interpolation (F1in) and extrapolation (F1out).

2.1.5 Experimental results and discussion

This section describes the experimental results obtained through the analysis of the selected data sets.
First, classical linear correlations between the chosen metrics are considered. Then, more complex
non-linear models are explored and discussed, outlining the importance of the convex hull. While
different algorithms might perform differently on the same data set, testing all possible classifying
alternatives is impractical. For this purpose, a Logistic Regression (LR) [YHL11] classifier, a Support
Vector Machines classifier with radial basis function kernel (SVC) [Pla+99], and a Random Forest
classifier with 100 decision tree estimators (RF) [Bre01a; LW+02] are selected as representative
classifiers for the following experiments, taking into account their considerable efficiency and their
heterogeneous capacity.

All the code and data necessary to reproduce the experiments is available in a public GitHub repos-
itory1. The experiments took 5 months of computational time on a server with 64 Intel®Xeon®E7-
4830 2.13GHz CPUs, and 128 GB of RAM. The choice of the machine learning classifiers used in
this study is also tied to the availability of processing power: while testing other algorithms such as
deep neural networks would have been informative, the longer training time would have made the
experiments impractical.

1https://github.com/pietrobarbiero/dataset-characteristics

https://github.com/pietrobarbiero/dataset-characteristics
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Correlations between data set characteristics
Once all the considered metrics described in Sec. 2.1.4 have been computed for the 72selected data
sets, classical statistical correlations can be evaluated. In particular, computing Pearson’s correlation
coefficients results in the matrix presented in Fig. 2.6. Analyzing the matrix, several predictable
correlations can be found: In the following, a few of the least immediately obvious will analyzed
more in depth.
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Figure 2.6: Heatmap showing a selection of the most relevant correlations between data set charac-
teristics. F1test , the F1 score computed on test samples corresponds to the average score over the
three ML models used in the experiments, i.e. LR, SVC, and RF.

γ ⋄κ: the mean skewness and mean kurtosis of a dataset are highly correlated (0.84), as both
metrics assess the difference in data distribution with respect to a reference Gaussian distribution.

I⋄ρ : very often, the higher the correlation between features, the lower the intrinsic dimensional-
ity of a dataset, so as expected the two metrics are anti-correlated (-0.71).
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d: dimensionality is positively correlated with I (0.85) and negatively correlated with ρ (-0.70).
In other words, as the number of features increases, intrinsic dimensionality tends to rise; and, at the
same time, features are less likely to be strongly correlated with each other.

µD ⋄ρ: as the number of features/dimensions increases, the average distance between samples
also increases, unless the additional features are strongly correlated with existing ones. For this
reason, as expected, the average distance between samples is negatively correlated with the average
correlation between features (-0.76). For the same reason, a 0.85 positive correlation is found
between average sample distance and intrinsic dimensionality (I), and an equally strong positive
correlation between µD and number of features d.

Tin ⋄Ir: the correlation between the ratio of test samples falling inside the convex hull of the
training set and the intrinsic dimensionality ratio (0.81) is maybe the less intuitive of the relationships
analyzed so far. When the intrinsic dimensionality I is lower than the number of dimensions d,
training points used to compute the convex hull might actually all lie in a polytope of dimension
d′ ≈ I < d; the likelihood of test points laying exactly inside this polytope becomes then low,
especially when compared to a situation where I≈ d, and the convex hull of the training set occupies
a much larger portion of the feature space. The very same concept is also expressed by the negative
correlation between Tin and N (-0.81), as a higher feature noise also represents a lower effective
dimensionality. The same reasoning holds for the correlations Tout −Ir and Tout −N.

Regarding classifier-specific metrics, such as F1 for training and validation, it is possible to
observe how LR presents the highest correlation between the two, suggesting a similar behavior for
training and unseen samples. SVC and RF, on the other hand, have poorer correlations, as they tend
to overfit the training set more, as expected by classifiers with higher capacity. It is important to
notice that the strength of this correlation does not imply a poor performance, as RF, with the lowest
correlation, shows the best F1 on the test set (see Table 2.2).

Correlations that are unexpectedly weak in the analysis, those between F1test and all metrics
related to dimensionality (d, I, Ir), hint at a surprising conclusion: the performance of the ML
algorithms on an unseen test set is almost independent from the dimensionality of the data set.
This is particularly true for LR (F1test ⋄Ir = 0.1) and RF (F1test ⋄Ir = 0.9), while corresponding
correlations for SVC are higher, but still not very strong (F1test ⋄d =−0.43, F1test ⋄I=−0.37, but
F1test ⋄Ir = 0.28).

For the complete correlation matrices between all considered characteristics, see Figs. 2.7,
2.8, 2.9. In addition to the metrics described in Subsection 2.1.4 Data set characterization, the
correlation matrices reported below also include: Atrain (classification accuracy on training set), Atest

(classification accuracy on test set), Ain (classification accuracy on test samples contained inside
the convex hull of the training set), Aout (classification accuracy on test samples falling outside the
convex hull of the training set), d/n (ratio between number of features and number of samples of the
data set), and I/n (ratio between intrinsic dimensionality and number of samples of the data set).

The Key Role of the Convex Hull

In Table 2.2 the F1-scores of ML models on training and validation sets are reported. A high
difference between F1train and F1test corresponds to overfitting. Interestingly, RF exhibits the
highest overfitting, while still providing the best generalization performance during validation. On
the other hand, the difference between |F1train−F1in| and |F1train−F1out | reveals the discrepancy
between interpolation and extrapolation performances, pinpointing the importance of the convex
hull in assessing machine learning generalization.

While classical correlation metrics try to optimize the coefficients of models of known structure
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Figure 2.7: Correlations between data-set characteristics using Logistic Regression.

(e.g., often linear), it might be useful to extend such analysis to models of different structure. In
statistical terms, this implies assessing association, a relationship between variables more general
than correlation: two or more variables are associated if the values of some provide information on
the value of the others [AK15]. To this purpose, the use of symbolic regression [Koz92; SL09] is
proposed: symbolic regression is a technique that searches the space of mathematical expressions
to find the model that best fits a given data set. The irony of using machine learning techniques to
analyze the results of a meta-analysis on machine learning is not lost on the authors, but symbolic
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Figure 2.8: Correlations between data-set characteristics using SVC.
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Figure 2.9: Correlations between data-set characteristics using Random Forest.
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Figure 2.10: Correlations between data-set characteristics over all ML models used in the experi-
ments.
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Table 2.2: Average F1-score and standard error of the mean of ML models.

ML model F1train F1test F1in F1out

LR 0.87±5.16 ·10−3 0.79±5.97 ·10−3 0.82±9.00 ·10−3 0.78±6.44 ·10−3

SVC 0.86±4.19 ·10−3 0.78±6.34 ·10−3 0.85±8.19 ·10−3 0.76±6.81 ·10−3

RF 0.99±1.01 ·10−3 0.84±4.88 ·10−3 0.88±6.76 ·10−3 0.82±5.78 ·10−3

ML model |F1train−F1test | |F1train−F1in| |F1train−F1out |
LR 0.08±3.51 ·10−3 0.06±4.76 ·10−3 0.12±4.22 ·10−3

SVC 0.09±4.32 ·10−3 0.06±4.52 ·10−3 0.14±4.76 ·10−3

RF 0.15±4.74 ·10−3 0.11±6.27 ·10−3 0.18±5.58 ·10−3
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Figure 2.11: Pareto-optimal models predicting F1in and F1out based on data set characteristics taking
into account the results on all ML models (top-left). Pareto fronts for each ML model: logistic
regression (top-right), SVC (bottom-left), and random forest (bottom-right).

regression has the advantage of returning completely human-readable models, that can later be
interpreted and explained, all the while considering relationships between data set characteristic
more complex than just linear correlations. Furthermore, symbolic regression can deliver multiple
candidate solutions, models of increasing complexity and fitting, whose meta-analysis can deliver
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Figure 2.12: Comparison of Pareto fronts predicting F1in and F1out based on data set characteristics.

additional information to the user. For this task, the commercial symbolic regression software
Eureqa Formulize2 is employed. All available building blocks for equations were selected, with
the exception of those specifically designed for time series analysis. Each run is stopped when the
convergence metric of Eureqa crosses the threshold of 90%.

In order to assess generalization abilities of machine learning models, the results provided by
Eureqa in different scenarios are analyzed and compared.For each classifier, symbolic regression
generates a set of Pareto-optimal models, predicting the performance of the classifier in terms of
F1-score. Pareto optimality is considered as a function of both R2 (i.e. the accuracy of the formula)
and complexity (the number of terms and complexity of formula’s building blocks). Among all
Pareto-optimal equations proposed by symbolic regression, a selection representing reasonable
compromises between fitting and complexity is now manually analyzed. Eqs. 2.7-2.13 represent
candidate equations of similar complexity (C = 9), describing nonlinear associations between data
set characteristics and generalization metrics for each machine learning classifier.

F1LR
in = F1train +0.020 ·I ·CI2

out +
−0.010 · c ·F1train ·CI5

out

η

[R2 = 0.79,C = 40] (2.7)

F1LR
out = 0.889 ·F1LR

train +0.031 ·η · γ + 0.002
CIout −0.983

[R2 = 0.52,C = 16] (2.8)

F1SVC
in = F1LR

train +
Ir

n−201.639
[R2 = 0.71,C = 8] (2.9)

2Eureqa Formulize is developed by Nutonian, Inc. https://www.nutonian.com/products/eureqa/

https://www.nutonian.com/products/eureqa/
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F1SVC
out = 0.883 ·F1SVC

train +
0.044 ·CIout

CItest
+

0.118
F1SVC

train ·CI2
out
− 0.724 · c ·I

n

[R2 = 0.54,C = 38] (2.10)

F1RF
in = 192.439+0.157 ·N+0.027 ·I+ −15.814

ρ

+154.092 ·ρ · log(ρ)−64.840 · eρ −0.004 · γ · c
[R2 = 0.52,C = 38] (2.11)

F1RF
out = 4.367+0.148 ·CIout +0.0001 ·κ +

−1.364
ρ

+
0.250

γ +CIout ·σD
−0.0035 · c−2.33 ·ρ

[R2 = 0.39,C = 31] (2.12)

Tin =
3.381+ γ ·Ir

d +σD
−0.061

[R2 = 0.89,C = 12] (2.13)

Overall, the interpolation ability (F1in) of a ML algorithm on a data set can be predicted in
a satisfying way using only the data set characteristics analyzed in this study. On the contrary,
predicting extrapolation ability (F1out) from data set characteristics seems much harder, as pointed
out by the lower R2 scores of models for corresponding complexity. Besides, the difference between
predictors found for LR or SVC, with respect to RF, is noteworthy: in fact, the generalization ability
of the models for the first two algorithms seems strongly associated with their training performance
(F1train) and either the intrinsic dimensionality ratio (Ir) or the feature noise (N = 1−Ir). On
the other hand, the test accuracy of RF seems much harder to predict, and associated with the
average class-wise correlation among features (ρ) only. Moreover, is it possible to observe how
the ratio of test samples falling inside the convex hull could be easily estimated by considering the
class-wise feature correlation (ρ) and either the feature noise (N) or the intrinsic dimensionality ratio
(Ir = 1−N), confirming the reasoning derived from the previous analysis of the linear correlations:
higher feature noise leads to a lower effective dimensionality, thus reducing the likelihood of test
samples falling inside the convex hull.

It is interesting to remark how F1train is the variable that explains most of the variance for LR
and SVC models; while the same variable does not appear in models for RF, showing how the
generalization ability of this classifier is poorly correlated with its performance on the training set,
it is generally harder to predict (lower R2), and seems to solely depend on the class-wise feature
correlation ρ . The model for Tin also presents interesting insights, displaying rather high R2 = 0.88
and depending on just two variables, ρ and N. The negative influence of N can be explained
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intuitively: as the feature noise increases, the intrinsic dimensionality ratio reduces, and thus the
points belonging to the convex hull of the training set lie more and more on a polytope of lower
dimensionality than the entire feature space, making it more difficult for test points to fall inside its
hypervolume. The positive influence of ρ on Tin is harder to account for: a speculative explanation
could be that a higher class-wise feature correlation would bring points belonging to the same class
closer together in the feature space, as depicted in Fig. 2.1. Having the data points gathered in a
smaller part of the feature space might imply that more test points will fall inside the convex hull
of the training set, without necessarily reducing the true dimensionality of the feature space. This
is somehow confirmed by the results reported in Fig. 2.6, where intrinsic dimensionality ratio and
average class-wise feature correlation are positively correlated, albeit weakly (Ir ⋄ρ = 0.45).

The analysis of symbolic regression results is further extended by comparing Pareto fronts of
ML models both inside and outside the convex hull to verify whether data set characteristics have a
significant impact on models’ performances. If Pareto front A dominates Pareto front B it is likely
that data set characteristics have a higher impact on ML performances in the first scenario rather than
in the second one. The Pareto front analysis is presented in Figs. 2.11 and 2.12. In Fig. 2.11, the link
between data set characteristics and generalization ability is analyzed by comparing interpolation and
extrapolation results of ML models. In all scenarios the relationship looks stronger when predictions
are made inside the convex hull of training samples. However, while this difference is emphasized
for LR and SVC, it is less pronounced for RF. In Fig. 2.12, symbolic regression results are further
inspected by comparing Pareto fronts inside and outside the convex hull. Once more, it is possible to
observe stronger associations between data set characteristics and LR or SVC compared to RF. This
means that the impact of data set-specific properties on RF performances is lower, as if the higher
capacity of the model would make it more robust.

2.1.6 Limitations

While the experimental findings of this work could provide novel contributions to the discussion on
model generalization in the field of machine learning, it is also important to highlight the limitations
of the study.

The first obvious limit lies in the task chosen for the analysis: the results obtained for classification
might not be valid for regression tasks, not to mention other types of supervised ML or the whole
field of unsupervised ML. Further experiments are needed in order to assess whether the conclusions
obtained in this study can hold for other types of tasks. Nevertheless, given the considerable
computational effort necessary to run the experiments presented in this section, the authors deem
it interesting to present results for classification only, as it is the single task for which the most
sophisticated data set metrics are available.

A second point of discussion is the use of the convex hull for estimating whether a ML model is
interpolating or extrapolating while predicting a test sample. Evaluating the position of a test sample
with respect to the convex hull of the training set is a very attractive metric, as it does not require
setting arbitrary thresholds and it can be computed efficiently. There are, however, a few drawbacks:
if the number of features is higher than the number of available samples, in other words d > n, as
previously discussed all samples in the test set will have a high probability of falling outside the
convex hull of the training set. So, for corner cases, the value of a quality metric such as F1in might
simply not exist, as no samples from the test set would fall into the convex hull of the training set.
This might somehow limit the validity of the conclusions drawn for the correlations with F1in.

After presenting the analysis of the correlations found on the 72data sets analyzed, there is a
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Figure 2.13: Frequency of appearance of the most relevant variables corresponding to data-set
characteristics inside SR models for F1in and F1outon the Pareto fronts. It is interesting to notice
how the performance on the training set F1train is a highly predictive variable for both LR and SVC,
while it has lower to no predictive power for RF.
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(rather ironic) question to be faced: how general are the results found so far? Or, in other words,
how well do the predictions performed extrapolate to unknown data sets? Frankly speaking, it would
be unwise to claim that the correlations described in this work hold for all possible data sets, but the
sheer number of different data sets analyzed gives some hope of generality.

There is, however, a possible bias in the selection of data sets for this study: the focus on openly
accessible, curated data sets, that already had to pass several quality checks in order to be hosted on
repositories such as OpenML. This pre-selection process might make the data sets considered in this
work not representative of all real-world data sets. In other words, usually a data set is uploaded on
OpenML because the authors already know that at least one ML technique is going to work well for
that specific data set; thus, what was analyzed might be representative only of data sets for which
ML techniques work well. It is also important to remark that, in order to use the convex hull, only
data sets with real-valued features were selected, a restriction that might further narrow the scope of
the insights presented.

Another possible explanation for the most counter-intuitive correlations uncovered is that real-
world data sets are a subset of all possible data sets. While some general mathematical conclusions,
such as the curse of dimensionality, might hold for the set of all hypothetical data sets, they might
not necessarily be true for the subset of data that is measured from real phenomena. This observation
mirrors the remarks by Lin et al. [LTR17]: in an attempt to explain the effectiveness of neural
networks and ML at representing physical phenomena, the authors notice that laws of physics can
typically be approximated by a tiny subset of all possible polynomials, of order ranging from 2 to
4; this is a consequence of such phenomena usually being symmetrical when it comes to rotation
and translation. As the data sets analyzed in this study come from either simulations or real-world
experiments, their characteristics might lead ML algorithms to represent them more easily than
expected.

2.2 Extracting Meaningful Information
Following the leading question of this chapter, related to how ML algorithms learn and represent
knowledge, another related topic I worked on is the extraction of minimal meaningful information, in
the form of features and coresets. When supervised ML algorithms are training on data, they need to
select a subset of the information provided as the most important for the task at hand. Not only, but
being based on greedy optimization procedures, ML algorithms can sometimes encounter difficulties
if the search space presented, be it in number of samples or number of features, is too large: from
an optimization point of view, this translates to falling into an unsatisfying local optimum. From
the point of view of optimization, it logically follows that by reducing the search space the task
becomes less complex, and thus most promising solutions can be found more easily. From a ML
perspective, this leads to the somehow counter-intuitive conclusion that providing less information
to the algorithm actually provides better results.

Selecting the minimal, meaningful information to provide to an algorithm is a problem that the
ML approached from two different directions: feature selection deals with the features, the variables
in the ML problem, while coreset and prototype discovery deal with the samples.

2.2.1 Feature selection
Feature selection is the process of choosing, or removing, features to obtain the most informative
feature subset of minimal size. Such subsets are used to improve performance of machine learning
algorithms and enable human understanding of the results. In my research, I tackled this issue
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from two different perspectives: (i) a multi-objective approach, aiming at finding compromises
between number of features and performance of a target ML algorithm, taking into account the
non-separability of the performance of different feature subsets; and (ii) a recursive elimination
procedure, where features whose values can be predicted starting from others are identified as
redundant and can thus be safely removed.

Background

In ML, feature selection is the process of choosing (or eliminating) features from a dataset, reducing
them to the minimal, most informative subset. Removing information might, at first glance, seem
detrimental for the performance of ML algorithms: however, certain features might just add noise; or
they might be redundant, for example being heavily correlated with others; and finally, eliminating
features reduces the search space that ML algorithms have to explore, facilitating the task of finding
effective models.

Besides improving the performance of ML algorithms (not only in terms of computation time but
also regarding precision of results [FK12]), feature selection can also be used to reduce information
and ultimately make it human-readable. For example, while reviewing the contributions of 1,000
different variables in a problem is impossible for human experts, a selection of 10 highly-informative
features can usually be analyzed, even if relevant parts of the information are removed. This is
particularly useful when dealing with genomic or other high-dimensional data [Ber+15]. More
generally, feature selection is one facet of dimensionality reduction, which is an important domain in
the field of data visualization [Tsa12].

Feature selection can be performed using various approaches [GE03], simple ones consist in
filtering the features according to a criterion (often based on statistical tests), or in using recursive
procedures (forward or backwards) to eliminate redundant features [Lew62][CF67]. Subset selection
methods are more complex and rely on the definition of a quality measurement of the subset. The
problem is thus turned into an optimization one: selecting the best subset of features that maximizes
an objective function (usually a "goodness-of-fit" combined with a regularization term, including
a penalty for a large number of variables [GE03; Wes+00]). Several single-objective EAs have
been proposed, exploiting similar scores for the fitness function [Cil+19; Xue+15]. Finally, feature
construction and space dimensionality is another way to reduce information. Subsets made of
combinations of features are built for a better representation of the dataset (dimensionality reduction
methods, principal component analysis for instance).

Given a candidate subset of features, evaluating its efficacy is not trivial. Ideally, what would
need to be measured is the content of information of the feature subset, and several metrics have been
proposed to assess it in literature: for example mutual information [KL87] or analysis of variance
[Fis19]. In practice, however, even the most popular metrics can only assess part of the information
content of a feature subset, as taking into account the contribution of non-linear combinations of
features is too computationally expensive.

A different way to assess efficacy for a feature subset is using it as input of a ML algorithm,
and evaluate the difference in performance compared with the same algorithm, using all features,
or a different feature subset. To avoid issues with overfitting, a K-fold cross-validation can be
used, obtaining an average of its performance (for example, classification accuracy) on the test
folds. As the cross-validation procedure is stochastic, comparing two feature subsets on just their
average performance on test folds is not enough, because the variance of the results is not taken into
account. A more robust approach is to consider the K performance results on test folds of the two
feature subsets as samples drawn from two probability distributions, and exploit a statistical test to
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assess the likelihood that the two sets of samples are drawn from different distributions. If the two
sets of samples are separable below an arbitrary confidence threshold, for example p < 0.05, the
feature subset with the best average performance can be considered better than the other. The main
issue of this methodology is that it is sometimes impossible, with the available data, to separate the
performance of different feature subsets.

Multi-objective Approaches
Multi-objective optimization algorithms aim at finding the best compromises between conflicting
criteria, ultimately delivering a set of non-comparable, non-dominated solutions to the users. Evolu-
tionary Algorithms (EAs) currently represent the state-of-the-art in the field, with the Multi-Objective
EA (MOEA), Non-Sorting Genetic Algorithm II (NSGA-II) [Deb+02] being one of the most widely
adopted for real-world applications. Given their effectiveness, it is not surprising that MOEAs have
been already applied to feature selection problems, where the conflicting objectives are usually:
i. minimizing the number of features and ii. maximizing a quality metric for a feature subset.
In [Ham+07] the authors apply NSGA-II for feature selection. In [XFZ14], differential evolution is
used instead. MOEA approaches to feature selection have been recently applied to facial recognition
[VMS13] and medical imaging [Zho+19].

In [Bar+20], I proposed a novel approach to feature selection in ML, framing it as a multi-
objective problem with three aims: i. minimizing the number of features; ii. minimizing error
on a cross-validation; iii. maximizing mutual information content between each feature and the
target. Feature selection can be seen as finding the best compromises between the number of features
considered and the final result for a ML algorithm. However, assessing the effectiveness of the
selected features for the problem is far from trivial, and only indirect metrics are available.

It must be noted that analyzing all feature subsets for a given dataset is often impossible, as the
total number of feature subsets of dimension d for a dataset with F features is:

F

∑
d=1

(
F
d

)
= 2F (2.14)

Individual representation
Individuals represent feature subsets, and are internally stored as simple bit-strings of size equal to
the number of features in the original dataset. A ’1’ in the i-th position of an individual means that
the corresponding i-th feature is included in the subset; a ’0’ indicates that the i-th feature is not
included in the subset.

Fitness function
The first objective in the proposed approach is to minimize the number of features included in a
subset:

O1 =
F

∑
i=1

I(i) (2.15)

where I is an individual represented as a bit-string, I(i) indicates the bit in i-th position, and F is
the number of features in the problem, also corresponding to the size of an individual.

The second objective assesses the effectiveness of a candidate feature subset for a specific
problem, through a K-fold cross-validation, a procedure where training data is divided into K parts,
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termed folds, that are alternatively used for training and test. This objective can be stated as:

O2 =
1
K

K

∑
i=1

Lk(i) (2.16)

where K is the number of folds; k(i) is the i-th fold. Lk(i) is defined as:

Lk(i) = L(yk(i), ĝ
−k(i)(xk(i))) (2.17)

where L is an error function, evaluating the differences between the values predicted by ĝ−k(i)

and the known values yk(i); ĝ−k(i) is the function learned by a ML algorithm, trained on all data,
except fold k(i); in general, ĝ is always considered to be an approximation of the real function
g that generated the known values of y; yk(i) and xk(i) are the known values of the target and the
corresponding features for samples in k(i), respectively. The error measured by L is averaged over
the K folds to obtain the final value of O2.

Finally, the third objective is a proxy for human readability of the candidate feature subset. Using
the one-way Analysis of Variance (ANOVA) F-value procedure [Hei01], that captures univariate
relationships between a feature and the target. Indeed, the F-value of the i-th feature φi can be
interpreted as the proportion of variance explained by the feature to the total variance in the data.
Making the reasonable assumption that a higher amount of explained variance may correspond to
a higher discriminating capability, it is then possible to rank features according to their φ , where
the best feature will have the highest value. Finally, for each subset of features (i.e. the candidate
solution), the third fitness objective is function of the worst φ in the feature subset:

O3 =
1

min(φ0,φ1, ...,φ f )
(2.18)

where f is the number of features in the subset. This objective will force the evolutionary process
to drop feature sets containing at least one variable whose univariate contribution is negligible. In
fact, ML classifiers as well as other automatic FS algorithms (such as RFE) risk to retain a dramatic
amount of features which are not a true causative source of the observed phenomenon (a.k.a. false
positives). However, they are often selected as they might be slightly correlated with the target,
providing a minor contribution to the classification accuracy.

Taking into account Eq. 2.15, 2.16, and 2.18, the multi-objective optimization problem can be
described as:

argmin(O1,O2,O3) (2.19)

Experimental Evaluation of the Multi-Objective Approach
The experiments presented in this work deal with classification only, due to the greater availability
of high-dimensional classification datasets in the public domain; but the proposed methodology
can also be straightforwardly applied to regression problems. The experimental evaluation of the
proposed approach is divided into two parts. Firstly, datasets that have a relatively low dimensionality
(9-18 features) are analyzed: as all feature subsets for these datasets can be explored exhaustively,
it is possible to assess whether there is actually a single best feature subset, and whether different
methodologies are able to find it. In a second batch of experiments, the proposed methodology tackles
an artificial dataset with high dimensionality (500 features), that cannot be analyzed exhaustively,
but whose characteristics are completely known.
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Experimental setup
For the following experiments, the error function L (see Equation 2.17) is classification error, an
established quality metric for classifiers, simply defined as the ratio between incorrect predictions
and total predictions. The closer classification error is to 0, the higher the quality of the predictive
model. The classifier used to learn f̂ in O2 is Logistic Regression [Cox58], a popular algorithm of
proved effectiveness.

The MOEA selected for the experiments is NSGA-II [Deb+02], that currently represents the state
of the art for multi-objective optimization with up to three objectives. After preliminary evaluations,
NSGA-II’s parameters are set to: µ = 100, λ = 100, probability of crossover pc = 0.9, probability
of mutation pm = 1/l, where l is the length of an individual, and a stop condition based on the
maximum number of generations, set to 200.

The proposed approach, termed EvoFS in tables and figures, is compared against three popular
state-of-the-art feature selection methods: recursive feature elimination (RFE) [Guy+02], that uses a
classifier to score a feature set, then iteratively removes the lowest-performing feature and scores
the subset again; greedy forward selection, that greedily adds features to a subset, using either their
mutual information (MI) [KL87], or analysis of variance (ANOVA) [Fis19] scores. All these methods
need the user to specify the number of features to be selected, so in the experiments they have been
called once for every possible size of feature subset in the problem, to have a fair comparison.

As previously stated, comparing the effectiveness of two feature subsets for classification using
the error function L is not trivial, due to possible random effects in the classifier’s training process,
or in the way the training/test split of the data is performed. Randomly dividing the data in K folds
and performing a K-fold cross-validation can help obtain a better average for L, but introduces
further stochasticity in the process. When comparing results in this work, the outcome of a K-fold
cross-validation is considered as K separate samples coming from an unknown statistical distribution.
The results of two feature subsets are then compared as if assessing the likelihood that their accuracy
scores have equal means. As it is not reasonable to assume that the two distributions have the same
standard deviation, a Welch’s T-test [Wel47] is applied, with an arbitrary but commonly accepted
threshold for the p-value (p < 0.05). Such a statistical test assumes that samples are drawn from
populations that are normal in shape. As pointed out in [KA14], this assumption is quite easy to
meet for a wide range of practical distributions at a significance level α = 0.05 and a sample size of
K ≥ 5. In the following, K = 10. This procedure will be used to isolate clusters of feature subsets
that are non-separable for their classification error, and can thus be considered all equally optimal
with regards to this metric. For each considered dataset, running times for all algorithms are reported
in Table 2.4.

All the code in the experiments has been implemented in Python v3, using the modules
scikit-learn [Ped+11b] for all ML and feature selection algorithms, openml [Cas+17] for access-
ing the datasets in the OpenML repository, and inspyred [Gar12] for NSGA-II. The scripts are
freely available in a Bitbucket repository3. Experiments have been run on a consumer-end laptop4.

Simple datasets
In a first set of experiments, simple datasets with a limited number of features are examined. The
advantage of dealing with such datasets is that all their feature subsets can be enumerated and
analyzed, a task that becomes impossible if dealing with hundreds or thousands of features. The
datasets are freely accessible on the OpenML repository [Van+13], and their characteristics are

3https://bitbucket.org/evomlteam/moea-feature-selection
4Intel® Core™ i7-8750H 2.20 GHz, 8 GB RAM.

https://bitbucket.org/evomlteam/moea-feature-selection
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summarized in Table 2.3.

Table 2.3: Characteristics of the datasets used in the experiments.

Dataset name Type Features Samples Classes Feature subsets
diabetes [DG17] Medical 9 768 2 512
australian [Qui87] Credit scores 14 690 2 16,384
vehicle [Sie87] Vehicle recognition 18 846 4 262,144
Madelon [Guy+05] Artificial 500 4,400 2 10150

Figures 2.14, 2.15, and 2.16 show how many non-separable feature subset that have size lower
or equal to the best performing one each algorithm was able to find: ideally, these are the ones that
human users should be interested in. Then, for each algorithm, the position of each non-separable
solution found is mapped into the exhaustive exploration of all feature subsets.

Figure 2.14 reports the results for the diabetes dataset. While all approaches are able to find
feature subsets that are non-separable from the best ones, EvoFS finds the largest number. The
same holds for the australian dataset, in Figure 2.15, where notably RFE seems unable to find good
solutions of small size. For vehicle, that features the largest search space so far, results reported in
Figure 2.16 show that, this time, RFE performs much better than the other two comparing methods,
equalling the performance of EvoFS. Nevertheless, EvoFS is able to find a few non-separable
solutions that are of smaller size than those uncovered by RFE.

An interesting general behavior that emerges from the plots, is that EvoFS is able to find non-
separable feature subsets of lower size than the other algorithms. Notably, non-separable solutions
of size larger than the best performing one are not included in its Pareto fronts.

High-dimensional datasets
The second set of experiments deals with a high-dimensional dataset, for which an exhaustive
analysis of all feature sets is impossible. This datasets is artificial, taken from a classification
competition focused on feature selection [Guy+05]. The datasets’ characteristics are summarized in
Table 2.3.

The targed dataset, named Madelon, is an artificial dataset that can be procedurally generated,
with a few informative features, several features that are linear combinations of the informative
features, and a large number of deceiving features called probes [Guy03]. For this work, an instance
of Madelon is generated with the same parameters as the one featured in the competition [Guy+05]:
5 informative features, 15 linear combination features, 480 deceiving features/probes.

Figure 2.17 illustrates a summary of the results on the Madelon dataset. Remarkably, EvoFS
is able to find a higher number of non-separable feature subsets having size lower or equal to the
overall best solution. Moreover, EvoFS is also the only algorithm able to identify a non-separable
solution of size 3, that includes only informative features (in positions 2, 3, 18).

While the greedy algorithms continue to be extremely fast on the high-dimensional dataset, it is
noticeable from the running times reported in Table 2.4, how now RFE, with its iterative process,
scales much worse than EvoFS.

Predictable Feature Elimination

Predictable Features Elimination, the approach originally presented in [BST20b], stems from the
observation that if the distribution of a feature fr can be approximated by using the information of
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Figure 2.14: (top left) Number of non-separable optimal feature subsets, of size less or equal to the
one with the lowest error, found by each algorithm. (top right) All possible feature subsets for the
dataset, identified exhaustively. In red, for each size, the ones that are non-separable. In green, the
single feature subset with the lowest average error. (middle-left to bottom-right) Features subsets
uncovered by the different approaches.
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Figure 2.15: (top left) Number of non-separable optimal feature subsets, of size less or equal to the
one with the lowest error, found by each algorithm. (top right) All possible feature subsets for the
dataset, identified exhaustively. In red, for each size, the ones that are non-separable. In green, the
single feature subset with the lowest average error. (middle-left to bottom-right) Features subsets
uncovered by the different approaches.
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Figure 2.16: (top left) Number of non-separable optimal feature subsets, of size less or equal to the
one with the lowest error, found by each algorithm. (top right) All possible feature subsets for the
dataset, identified exhaustively. In red, for each size, the ones that are non-separable. In green, the
single feature subset with the lowest average error. (middle-left to bottom-right) Features subsets
uncovered by the different approaches.
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Figure 2.17: Number of non-separable optimal feature subsets, of size less or equal to the one with
the lowest error, found by each algorithm, on the madelon dataset.

Table 2.4: Running time (seconds) of the feature selection algorithms.

Dataset EvoFS anova MI RFE
diabetes 421.28 s 0.02 s 0.05 s 0.10 s
australian 579.38 s 0.03 s 1.47 s 0.24 s
vehicle 819.43 s 0.03 s 2.17 s 1.88 s
madelon 3,549.57 s 0.05 s 12.97 s 18,925.29 s

other features, then fr is likely to be almost redundant and of little importance for whatever model
will be eventually built. Algorithm 1 summarizes the main steps of the training process.

PFE requires the user to provide two parameters: an auxiliary machine learning model g and
a threshold σ . The first is the model used to discriminate non-redundant features, the second,
the acceptable loss of information. A sub-optimal choice of g would cause some features to be
erroneously marked as non-redundant, increasing the size of the feature set, but probably not affecting
the quality of the final model. On the other hand, a low σ is likely to make PFE select a very small
set of features, but also to impair the quality of the final model.

The algorithms is composed of two phases: an initialization and the main loop. In the former,
features are ranked according to their mutual average linear correlation. First, the feature correlation
matrix C is computed:

C =
(

diag(KXX)
)1/2

KXX

(
diag(KXX)

)1/2
(2.20)

where KXX is the auto-covariance matrix of the input matrix X :

KXX = E[(X−E[X ])(X−E[X ])T )] (2.21)

The correlation matrix C is used to estimate the amount of mutual information shared among
features. By summing up the rows of C, for each feature an approximation of the amount of
information which can be obtained using all the other features is then obtained:

κ = ∑
i

C(i, ·) (2.22)



2.2 Extracting Meaningful Information 49

The more a feature is correlated with others, the lower the chances that the feature may contain
exclusively useful information. Hence, by ranking features according to their mutual average linear
correlation, an ordered list of their significance is obtained:

κs = sort(κ) (2.23)

Starting from the feature with the highest rank f , the ML model g is trained on the remaining
features using the f -th feature as a target variable y:

y = X(·,κs( f )) (2.24)

The performance of g is assessed on a validation set Xval using the coefficient of determination
R2. If the validation score is greater than the user defined threshold σ , then it means that the model g
represents an accurate nonlinear association between the f -th feature and the other features. Hence,
the chances that the f -th feature may contain exclusively useful information are low. Therefore, the
f -th feature should be safely removed from the feature set and the process may continue using the
following feature in the ranking. The algorithm stops when more than half of the features have been
analyzed.

Algorithm 1: Predictable feature elimination

Input: data X ∈ Rn,d , model g, threshold σ ∈ [0,1]
Initialize C = corr(XT )
Initialize κ = ∑iC(i, ·)
Initialize κs = sort(κ)
for f = 1 to ⌊d/2⌋ do

Initialize y = X(·,κs( f )).
Split data into train and validation sets
Train model g← (Xtrain,ytrain)
Make validation predictions ŷ = g(Xval)
Evaluate predictions score = R2(ŷ,yval)
if score≥ σ then

Remove current feature
end if

end for

I introduce the following theorems to yield a theoretical justification for the proposed approach.
Besides, they show how the performance loss can be formally estimated by providing upper bounds
in worst case scenarios.

Theorem 2.2.1 — Elimination for linear combinations. Let F be a set of features F =
{ f1, . . . , fd} and F ′ be a subset of F such that fi /∈F ′. If the feature fi is a linear combination
of the feature set F ′, then fitting a linear model using F ′ is equivalent to fitting the same model
using F ′∪{ fi}.
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Proof. By definition fi is a linear combination of F ′, hence:

fi = ∑
j ̸=i

w j f j (2.25)

which can be written as:

fi = F ′w (2.26)

where F ′ ∈Rn×d′ is a matrix whose columns are features in F ′ and w∈Rd′ is a row vector containing
the weights of the linear combination.

A linear model g trained using the matrix F ′ can be written as:

ŷ = g(F ′) = F ′wg = ∑
j∈d′

f jw
g
j (2.27)

Let F ′′ be the matrix whose columns correspond to the features in F ′ ∪{ fi}, then the model g
trained on F ′′ can be written as:

ŷ = g(F ′′) = F ′′wg = ∑
k∈d′′

fkwg
k

= ∑
j∈d′

f jw
g
j +wg

i fi

= ∑
j∈d′

f jw
g
j +wg

i ∑
j∈d′

f jw j

= ∑
j∈d′

f jw
g
j + ∑

j∈d′
f jw jw

g
i

= ∑
j∈d′

f jw
g
jw jw

g
i

= ∑
j∈d′

f jω
g
j (2.28)

■

Theorem 2.2.2 — Approximate elimination for linear combinations. Let F be a set of
features F = { f1, . . . , fd} and F ′ be a subset of F such that fi /∈F ′. If the feature fi can be
written as a linear combination of the feature set F ′ with an additional term ε , then the upper
bound of the training error obtained by fitting a linear model on F ′ instead of F ′∪{ fi} is at most
ε .

Proof. By definition fi can be written as a linear combination of the feature set F ′ with an additional
term ε , hence:

fi = ∑
j ̸=i

w j f j + ε (2.29)

which can be written as:

fi = F ′w+ ε (2.30)
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where F ′ ∈Rn×d′ is a matrix whose columns are features in F ′ and w∈Rd′ is a row vector containing
the weights of the linear combination.

A linear model g trained using the matrix F ′ can be written as:

ŷ = g(F ′) = F ′wg = ∑
j∈d′

f jw
g
j (2.31)

Let F ′′ be the matrix whose columns correspond to the features in F ′ ∪{ fi}, then the model g
trained on F ′′ can be written as:

ŷ = g(F ′′) = F ′′wg = ∑
k∈d′′

fkwg
k

= ∑
j∈d′

f jw
g
j +wg

i fi

= ∑
j∈d′

f jw
g
j +wg

i ∑
j∈d′

f jw j + ε

= ∑
j∈d′

f jw
g
j + ∑

j∈d′
f jw jw

g
i + ε

= ∑
j∈d′

f jw
g
jw jw

g
i + ε

= ∑
j∈d′

f jω
g
j + ε (2.32)

■

Theorem 2.2.3 — Approximate elimination. Let F be a set of features F = { f1, . . . , fd} and
F ′ be a subset of F such that fi /∈F ′. Let g and h be two nonlinear models with equivalent
capacity. If the feature fi can be written as a function of F ′ through h with an error term ε , then
the upper bound of the training error obtained by fitting g on F ′ instead of F ′∪{ fi} is at most
η(g,ε).

Proof. By definition fi can be written as a nonlinear function h of the feature set F ′ with an
additional term ε , hence:

fi = h(F ′)+ ε (2.33)

where F ′ ∈ Rn×d′ is a matrix whose columns are features in F ′.
A nonlinear model g trained using the matrix F ′ can be written as:

ŷ = g(F ′) (2.34)

Let F ′′ be the matrix whose columns correspond to the features in F ′ ∪{ fi}, then the model g
trained on F ′′ can be written as:

ŷ = g(F ′′) = g(F ′, fi) = g(F ′,h(F ′)+ ε) (2.35)

Since the information in h(F ′) can be obtained from F ′ by applying the function h, then g can be
fitted on F ′ without information loss by discarding h(F ′):

ŷ = g(F ′′) = g(F ′,ε) = g(F ′)+η(g,ε) (2.36)

where η is a function of g and ε . ■
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The following definition can be used to monitor in an unsupervised way the performance loss
when multiple features are recursively eliminated. In some applications, this lemma may be used to
derive alternative stopping conditions.

Definition 2.2.1 — Validity of feature elimination. Let λ be an upper bound of the performance
loss required for a specific application and let {η1, . . . ,ηk} be a sequence of training errors
obtained by performing k steps of feature elimination. The sequence of k feature elimination
steps is valid if and only if λ ≤ ∑

k
i=1 ηi.

Experimental Evaluation of Predictable Feature Elimination
Experimental setup
The performance of predictable feature elimination is compared over a 10-fold cross-validation
against both supervised and unsupervised feature selection algorithms [Li+18; Ped+11b]: Laplacian
score for feature selection (lap_score [HCN06]), spectral feature selection for unsupervised
clustering (SPEC [ZL07]), multi-cluster feature selection (MCFS [CZH10]), non-negative spectral
feature selection (NDFS [Li+12]), regularised discriminative feature selection (UDFS [Yan+11]), and
recursive feature elimination (RFE [Guy+02]). For each fold, each algorithm is used to select a subset
of the original features.

Ridge classifier is used as the internal estimator for RFE. Equivalently, PFE uses an instance of
Ridge regressor to discard redundant features. This model (i.e. Ridge) is chosen both for its high
train speed and its generalization ability in a variety of experimental settings. For all the experiments
λ has been set to 0.9. PFE is set in order to remove at most half of the original features. For the
comparison to be fair, all the other feature selection algorithms are set in order to provide for each
fold the same number of features chosen by PFE.

All the necessary code for the experiments has been implemented in Python 3, relying upon
open-source libraries [Li+18; Ped+11b]. In order to generate reproducible results, all algorithms
that exploit pseudo-random elements in their training process have been set with a fixed seed.
Unless differently specified, each algorithm uses its default parameters as defined in [Li+18;
Ped+11b]. Each dataset has been standardized removing the mean and scaling to unit variance
(StandardScaler [ZWC11]). All the experiments have been run on the same machine: an AMD
EPYC 7301 16-Core Processor at 2 GHz equipped with 64 GB memory.

Redundancy detection
The Madelon dataset proposed in [Guy03] was specifically designed to challenge feature selection
algorithms in detecting redundant features. Features generated by MADELON can be informative
(di), repeated (dr), or redundant (dc). The algorithm generates clusters of points normally distributed
about vertices of an hypercube in a subspace of dimension di and assigns an equal number of clusters
to each class. Then it stacks dc linear combinations of the informative features followed by dr

duplicates, drawn randomly with replacement from the informative and redundant features. All
the remaining features (dn) are random noise (dn = d− di− dc− dr). This benchmark dataset is
used to assess the ability of PFE in detecting redundant features. For this experiment the number
of informative features is set to 150 as well as the number of redundant and repeated features
(di = dc = ds = 150). The total number of features is set to d = 500, thus dn = 50 features are
just random noise. The task is to detect informative, redundant, duplicate, and noisy features in
order to correctly classify clusters of samples on hypercube vertices. Experimental results are
shown in Figure 2.18. Once feature selection algorithms are fitted on a training fold, an instance of
RidgeClassifier and of DecisionTreeClassifier are used to assess the quality of the selection
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Figure 2.18: Classification performances on the Madelon dataset (top two); features selected for the
Madelon dataset (bottom four).

on the test set. The resulting F1 score [Van79] is then compared to the one obtained by training on
the same fold but using all the original features. In this way, the performance of all techniques can be
evaluated with respect to a fair baseline (see Figure 2.18, top). Except for lap_score, PFE resulted
as the fastest approach. The most interesting result of the simulation is represented by boxplots
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in Figure 2.18, bottom. They show for each kind of feature (informative, redundant, duplicate,
and noisy) the percentage of features retained by each algorithm. Notably, PFE and MCFS preserve
most of the informative features while discarding most of the redundancy. However, MCFS is the
worst technique in terms of duplicate detection, whereas PFE is the best one together with NDFS
and lap_score. It should be remarked, anyway, that PFE retains all noisy features. Yet, it is not
surprising at all as the approach is not designed to get rid of random noise. In authors view, PFE is
not meant to be used alone but combined with other complementary feature selection approaches.

Cross-talk benchmarks
The ability of feature selection algorithms in tackling different kind of machine learning problems
is assessed using four benchmark datasets taken from the OpenML[Van+13]. Table 2.5 highlights
the main characteristics of the four datasets. The first two (gas-drift and isolet) are used to test

Table 2.5: Benchmark datasets.

dataset samples features classes reference

gas-drift 13,910 128 6 [Ver+12]
isolet 7,797 617 26 [FC91]
Mercedes 4,209 377 - [Eri+20]
crime 1,994 127 - [Tur+11]

classification and clustering performances while the latters are employed for regression. The quality
of the selections is assessed over a 10-fold cross-validation. Once fitted on a training fold, each
algorithm provides a selection of the original features to an instance of a machine learning model
on the filtered training set only. RidgeClassifier and DecisionTreeClassifier are used to
evaluate classification performance in terms of F1 score. AgglomerativeClustering [War63] and
KMeans [Ste56] are employed to assess clustering performances through the Silhouette coefficient
[Rou87]. The number of centroids for k-means is chosen as twice as much as the number of
classes. For regression Ridge and DecisionTreeRegressor are used to measure the coefficient
of determination (R2 score, [ST+60]). Once collected, performance scores are compared to the
ones obtained by training on the same folds but using all the original features. In this way, the
performance of all techniques can be evaluated with respect to a fair baseline. Figures 2.19, 2.20,
and 2.21 show the results in terms of performance metrics and training time. As mentioned before,
all the other feature selection algorithms are set in order to provide for each fold the same number of
features chosen by PFE, thus yielding a fair comparison.

Compared to state-of-the-art techniques, PFE is among the fastest solutions together with RFE
and lap_score. Notably, RFE is not used for clustering as it is a supervised algorithm, thus it
cannot be employed for unsupervised tasks. Despite its unsupervised nature, PFE often matches
RFE performances and sometimes provides even better solutions (i.e. Mercedes dataset using
DecisionTreeRegressor). The efficiency of PFE with respect to other unsupervised approaches is
revealed on the largest dataset (gas-drift) where it is faster by a few order of magnitudes. Moreover,
even when PFE performances appear to be slightly worse than others (i.e. Mercedes using Ridge), it
may be sufficient to change the downstream predictor (i.e. the performance looks much better when
DecisionTreeRegressor is used). Indeed, by construction, PFE performs feature selection such
that the information loss is almost negligible.

In summary, experimental results prove PFE to be competitive with state-of-the-art feature
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Figure 2.19: Classification results on benchmark datasets.

selection algorithms, on a set of non-trivial classification, regression, and clustering benchmarks.
The main drawback of the approach is the impossibility of removing uninformative, but hard-to-
predict features, for example those including completely random values: In most cases, however,
such features are filtered out by subsequent machine learning algorithms applied to the data, as they
have no correlation with the objectives.

2.2.2 Coreset discovery

The concept of coreset, originally from computational geometry, has been redefined in the field of
machine learning (ML) as the minimal number of input samples from which a ML algorithm can
obtain a good approximation of the behavior it would have on the whole original dataset. In other
words, a coreset represents a fundamental subset of an available training set, that is sufficient for a
given ML algorithm to obtain a good performance, or even the same performance it would have if
trained on the whole training set [BLK17]. This definition is intentionally generic, as it encompasses
different tasks, ranging from classification, to regression, to clustering, that entail different measures
of performance. The practical applications of coresets range from speeding up training time, to
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Figure 2.20: Regression results on benchmark datasets.

obtaining a better understanding of the data itself, making it possible for human experts to analyze
only a few data points, instead of dealing with prohibitive amounts of samples.

Discovering coresets for a specific task is an open research line, and specialized ML literature
reveals a considerable number of approaches, among which the most popular are Bayesian Logis-
tic Regression (BLR, [HCB16]), Greedy Iterative Geodesic Ascent (GIGA, [CB18]), Frank-Wolfe
(FW, [Cla10]), Forward Stagewise (FSW, [M A60]), Least-angle regression (LAR, [Efr+04][BDM13]),
Matching Pursuit (MP, [MZ93]), and Orthogonal Matching Pursuit (OMP, [PRK93]). Interestingly,
very often such algorithms require the user to specify the desired number N of points in the coreset;
or assume, for simplicity, that a good coreset is independent from the task and/or the ML algorithm
selected for that task. However, the problem of finding a coreset can be intuitively framed as
multi-objective, as the quality of the results is probably dependent on the number of points included
in the coreset; and minimizing the number of selected points goes against maximizing performance.
Moreover, it also seems likely that different ML algorithms would actually need coresets of different
size and shape to operate at the best of their possibilities.

Starting from these two intuitions, an evolutionary approach to coreset discovery for classification
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Figure 2.21: Clustering results on benchmark datasets.

tasks is introduced in this section. Starting from a given training set, a state-of-the-art multi-objective
evolutionary algorithm, NSGA-II [Deb+02], is set to find the coresets representing the best trade-offs
between amount of points (to be minimized) and classifier accuracy (to be maximized), for a specific
classification algorithm. The resulting Pareto front will then represent several coresets, each one
a different optimal compromise beteween the objectives, and a human expert will then be able to
not only select the coreset more suited for their needs, but also obtain extra information on the ML
algorithm’s behavior from observing its decrease in performance as the number of coreset points
decreases.

Experimental results on two iconic classification benchmarks show that the proposed approach
is able to best several state-of-the-art coreset discovery algorithms in literature, obtaining results that
also allow the classifier to generalize better on an unseen test set, belonging to the same benchmark.
Moreover, a meta-analysis of the results on different classifiers shows that indeed, while some of
the points selected are common to different algorithms, the choice of points in the coreset is heavily
dependent on the classifier selected for the classification task, with similarities between classifiers
belonging to the same families.
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Coresets

Coresets were originally studied in the context of computational geometry, and defined as a small
set of points that approximates the shape of a larger point set. In ML the definition of coreset is
extended to intend a subset of the input samples, such that a good approximation to the original input
can be obtained by solving the optimization problem directly on the coreset, rather than on the whole
original set of input samples [BLK17].

Finding coresets for ML problems is an active line of research, with applications ranging
from speeding up training of algorithms on large datasets [TKC05] to gaining a better under-
standing of the algorithm’s behavior. Unsurprisingly, a considerable number of approaches to
coreset discovery can be found in the specialized literature. In the following, a few of the
main algorithms in the field, that will be used as a reference during the experiments, are briefly
summarized: Bayesian Logistic Regression (BLR, [HCB16]), Greedy Iterative Geodesic Ascent
(GIGA, [CB18]), Frank-Wolfe (FW, [Cla10]), Forward Stagewise (FSW, [M A60]), Least-angle
regression (LAR, [Efr+04][BDM13]), Matching Pursuit (MP, [MZ93]) and Orthogonal Matching
Pursuit (OMP, [PRK93]).

BLR is based on the idea that finding the optimal coreset is too expensive. In order to overcome
this issue, the authors use a k-clustering algorithm to obtain a compact representation of the data set.
In particular, they claim that samples that are bunched together could be represented by a smaller set
of points, while samples that are far from other data have a larger effect on inferences. Therefore,
the BLR coreset is composed of few samples coming from tight clusters plus the outliers.

The original FW algorithm applies in the context of maximizing a concave function within a
feasible region by means of a local linear approximation. In Section 2.2.2, the Bayesian implementa-
tion of the FW algorithm designed for core set discovery is considered. This technique, described
in [CB17], aims to find a linear combination of approximated likelihoods (which depends on the
core set samples) that is similar to the full likelihood as much as possible.

GIGA is a greedy algorithm that further improves FW. In [CB18], the authors show that com-
puting the residual error between the full and the approximated likelihoods by using a geodesic
alignment guarantees a lower upper bound to the error at the same computational cost.

FSW [M A60], LAR [Efr+04][BDM13], MP [MZ93] and OMP [PRK93] were all originally
devised as greedy algorithms for dimensionality reduction. The simplest is FSW which projects
high-dimensional data in a lower dimensional space by selecting one at a time the feature whose
inclusion in the model gives the most statistically significant improvement. MP instead includes
features having the highest inner product with a target signal, while its improved version OMP at
each step carries an orthogonal projection out. Similarly, LAR increases the weight of each feature
in the direction equiangular to each one’s correlations with the target signal. All these procedures
could be applied to the transpose problem of feature selection, that is approximation of core sets.

Very often these algorithms start from the assumption that the coreset for a given dataset
will be independent from the ML pipeline used. This premise might not always be correct, as
the optimization problem underlying, for example, a classification task, might vary considerably
depending on the algorithm used. It is also important to notice that the problem of finding the coreset,
given a specific dataset and an application, can be naturally expressed as multi-objective: on the one
hand, the user wishes to identify a set of core points as small as possible; but on the other hand, the
performance of the algorithm trained on the coreset should not differ from its starting performance,
when trained on the original dataset. For this reason, multi-objective evolutionary algorithms could
be well-suited to this task.
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Multi-objective evolutionary algorithms
When dealing with problems that feature contrasting objectives, there is no single optimal solution
to be found. Each candidate solution, in fact, represents a different compromise between conflicting
aims. Nevertheless, it is still possible to find optimal trade-offs, for which it is not possible to improve
an objective without degrading the others. The set of such optimal compromises is called Pareto
front. Multi-objective evolutionary algorithms (MOEA) have been particularly successful in tackling
problems with contradictory objectives and obtaining good approximations of the Pareto front. One
of the most known MOEAs is the Non-Sorting Genetic Algorithm II (NSGA-II) [Deb+02], that
exploits a crowding mechanism to evenly spread candidate solutions on the Pareto front, a procedure
that is considerably efficient for problems with 2-3 objectives.

Proposed Approach for Coreset Discovery
The proposed approach is to exploit evolutionary computation to explore the space of all subsets
of samples in a given training dataset in a classification task, searching for those subset that do not
reduce classification accuracy. Such samples would then represent a coreset, a collection of points
that is necessary and sufficient to correctly define the decision boundaries for a target classifier, given
a target dataset.

A candidate solution in the problem is a set of samples to be kept from the training set. The
genome of an individual is thus defined as a binary array of size equal to the training set, with a
‘1’ in a given position meaning that the sample corresponding to that index will become part of the
coreset, and a ‘0’ meaning that the sample will be removed.

Intuitively, it is easier to maintain a classifier’s accuracy while keeping a large number of samples
from its training set, rather than just a small quantity. For this reason, it is more appropriate to frame
the optimization problem as multi-objective, with the conflicting aims of i. minimizing the number
of samples in the coreset, and ii. maximizing classifier’s accuracy on the whole dataset. The first
objective is measured by simply counting the number of ‘1’s, i.e. the number of samples in the
coreset, in each candidate solution. For the second objective, the target classifier is trained on the
reduced training set, and its accuracy is then tested on the whole set of training points, including
all samples removed from the training set by the candidate solution. A scheme of the individual
evaluation is presented in Figure 2.22.

Experimental evaluation
In order to empirically validate the proposed approach, the methodology is evaluated with 6 algo-
rithms, chosen to be representative of both hyperplane-based and ensemble, tree-based classifiers:
BaggingClassifier [Bre99], GradientBoostingClassifier [Fri01], LogisticRegression [Cox58],
RandomForestClassifier [Bre01b], RidgeClassifier [Tik43], SVC (Support Vector Machines) [Hea+98].
All classifiers are implemented in the scikit-learn5 [Ped+11a] Python module and use default
parameters. A fixed seed has been set for all those that exploit pseudo-random elements in their
training process, such as RandomForestClassifier, as for the stated objective it is important that
the classifier will follow the same training steps, albeit with a reduced training set. A similar result
could have been obtained by repeating multiple times the training process of classifiers containing
random elements. In this first batch of experiments, that constitute the proof of concept, the former
option is selected to reduce computational effort. The implementation of NSGA-II, used during
the evolutionary process, is taken from the inspyred6 [Gar12] Python module. NSGA-II uses a

5scikit-learn: Machine Learning in Python, http://scikit-learn.org/stable/
6inspyred: Bio-inspired Algorithms in Python, https://pythonhosted.org/inspyred/

http://scikit-learn.org/stable/
https://pythonhosted.org/inspyred/
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Figure 2.22: Scheme of the proposed fitness evaluation. A given dataset is randomly split between
training and test set. Candidate solutions, encoded as binary strings, are used to reduce the training
set, by removing samples whose index corresponds to a ‘0’ in the binary string. The target classifier
is then trained on the reduced training set, while its accuracy is measured on all the original training
samples.
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binary tournament selection, µ = 100, λ = 100, a one-point crossover, a bit-flip mutation, and a stop
condition set at 100 generations. Each individual can remove between 1 and 90 samples from the
training dataset, so valid candidate genomes can contain between 1 and 90 ’0’s.

The results obtained by the proposed approach are then compared against the 7 coreset dis-
covery algorithms BLR [HCB16], GIGA [CB18], FW [Cla10], MP [PRK93], OMP [PRK93],
LAR [Efr+04][BDM13], and FSW [M A60], described in more detail in subsection 2.2.2. Some of
the algorithms require the user to specify the number N of desired points in the coreset: in order to
provide a fair comparison, N is set to the size of the highest-accuracy coreset found by the proposed
approach in the corresponding experiment.

The first two experimental runs are performed on the well-known Iris dataset [Fis36], comprising
150 samples from 3 different classes. The samples are randomly split between a 99-sample training
set and a 51-sample test set. As shown in Table 2.6, all considered classifiers perform reasonably
well on the dataset, as Iris is a benchmark that presents no particular difficulty for most algorithms. In
a first batch of experiments (Iris-2), only two features of the dataset are considered, in order to offer
the reader a more intuitive visual assessment of the results. The datasets are shown in Figure 2.23.
In further experiments, the proposed approach is tested on Moons, a synthetic data set composed
of two interleaving distributions having an half circle shape (2 classes, 400 samples, 2 features)
and Credit, a dataset evaluating credit risk (2 classes, 1000 samples, 20 features). For Credit, a
human-readable analysis of the results is also presented. The code used in this work is freely available
in the BitBucket repository https://bitbucket.org/evomlteam/evolutionary-core-sets.
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Figure 2.23: Samples from the Iris dataset (left) visualized considering only features 2 and 3, (right)
visualized considering the first two components of a PCA performed on all features.

Experiments on 2-feature Iris
The first column of Figures 2.24 and 2.25 shows the Pareto front obtained by the proposed approach
for all the classifiers on Iris-2. It is noticeable how the trade-offs found are different in both size
and accuracy, depending on the considered algorithm. The second and third columns of the figures
portray the frequency of appearance of samples in the training set inside the candidate solutions on
the Pareto fronts of the corresponding experiment. It is easy to observe that several points appear
among all candidate coresets found in the same experiment.

Table 2.7 presents the accuracy of the most accurate coreset found by the proposed approach,
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Table 2.6: Initial performance (classification accuracy) of the considered classifiers on the Iris dataset
(using two features and all, respectively).

Iris (2 features) Iris (all features)
Classifier Overall Training Test Overall Training Test

GradientBoostingClassifier 0.9800 0.9899 0.9608 0.9867 1.0 0.9608
BaggingClassifier 0.9733 0.9899 0.9412 0.9867 1.0 0.9608
LogisticRegression 0.8533 0.8081 0.9412 0.9733 0.9596 1.0
RandomForestClassifier 0.9733 0.9899 0.9412 0.9867 1.0 0.9608
RidgeClassifier 0.8000 0.7677 0.8627 0.8667 0.8586 0.8824
SVC 0.9733 0.9697 0.9804 0.9733 0.9697 0.9804

Table 2.7: Test performance of the considered classifiers and coreset algorithms on the Iris-2 dataset.

Training EvoCore BLR GIGA FW MP OMP FSW LAR
BaggingClassifier 0.9798 1.0000 0.8824 0.8824 0.8039 0.9412 0.9412 0.9412 0.9412
GradientBoostingClassifier 0.9596 0.9804 0.8627 0.8431 0.8824 0.9608 0.9608 0.9608 0.9608
LogisticRegression 0.9697 0.9804 0.6471 0.7059 0.6667 0.9804 0.9804 0.9804 0.9804
RandomForestClassifier 0.9798 0.9804 0.9020 0.8824 0.8039 0.9412 0.9412 0.9412 0.9412
RidgeClassifier 0.9798 0.9608 0.6667 0.6667 0.6667 0.9020 0.9020 0.9020 0.9020
SVC 0.9697 0.9804 0.6667 0.8824 0.8627 0.9412 0.9412 0.9412 0.9412
Average 0.9731 0.9804 0.7712 0.8105 0.7810 0.9444 0.9444 0.9444 0.9444

against coresets discovered by state-of-the-art algorithms in ML literature. Not only the proposed
approach outperforms the accuracy of all algorithms on the training set, but it also enables the
classifiers to create decision boundaries that generalize better, obtaining improved results on the
unseen test set as well.

Experiments on 4-feature Iris
The first column of Figures 2.26 and 2.27 shows the Pareto front obtained by the proposed approach
for all the classifiers on Iris-4. Again, the trade-offs found appear different in both size and accuracy,
depending on the considered algorithm. As observed for Iris-2, the second and third columns of the
figures portraying the frequency of appearance of samples in the training set inside the candidate
solutions on the Pareto fronts show several points appearing among all candidate coresets found in
the same experiment.

Table 2.8 presents the accuracy of the most accurate coreset found by the proposed approach,
against coresets discovered by state-of-the-art algorithms in ML literature. Again, the proposed
approach outperforms the accuracy of all algorithms on both the training set and the unseen test set.

Table 2.8: Test performance of the considered classifiers and coreset algorithms on the Iris-4 dataset.

Training EvoCore BLR GIGA FW MP OMP FSW LAR
BaggingClassifier 0.9596 0.9804 0.7059 0.9412 0.8824 0.9608 0.4118 0.8431 0.4118
GradientBoostingClassifier 0.9697 0.9804 0.7647 0.7255 0.8824 0.8824 0.6471 0.8824 0.6471
LogisticRegression 0.9798 1.0000 0.7843 0.8824 0.8039 0.8431 0.8039 0.7059 0.8039
RandomForestClassifier 0.9394 0.9608 0.7255 0.8627 0.9020 0.9804 0.7647 0.7843 0.7647
RidgeClassifier 0.9798 1.0000 0.7255 0.9020 0.8824 0.8824 0.7451 0.7451 0.7451
SVC 0.9697 0.9608 0.7843 0.9608 0.9608 0.9608 0.6275 0.6471 0.6275
Average 0.9663 0.9804 0.7484 0.8791 0.8856 0.9183 0.6667 0.7680 0.6667
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Figure 2.24: For each experiment on dataset Iris-2, Pareto fronts showing optimal solutions (left), bar plots (center) and scatter plots
(right) displaying the frequency of appearance of samples inside coresets. Bar height in bar plots and color saturation in scatter plots are
directly proportional to the frequency of appearance of a specific sample. The first row refers to BaggingClassifier, the second one to
GradientBoostingClassifier, and the third one to RandomForestClassifier.
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Figure 2.25: For each experiment on dataset Iris-2, Pareto fronts showing optimal solutions (left), bar plots (center) and scatter plots
(right) displaying the frequency of appearance of samples inside coresets. Bar height in bar plots and color saturation in scatter plots are
directly proportional to the frequency of appearance of a specific sample. The first row refers to LogisticRegression, the second one to
RidgeClassifier, and the third one to SVC.
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Figure 2.26: For each experiment on dataset Iris-4, Pareto fronts showing optimal solutions (left), bar plots (center) and scatter plots
(right) displaying the frequency of appearance of samples inside coresets. Bar height in bar plots and color saturation in scatter plots are
directly proportional to the frequency of appearance of a specific sample. The first row refers to BaggingClassifier, the second one to
GradientBoostingClassifier, and the third one to RandomForestClassifier.
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Figure 2.27: For each experiment on dataset Iris-4, Pareto fronts showing optimal solutions (left), bar plots (center) and scatter plots
(right) displaying the frequency of appearance of samples inside coresets. Bar height in bar plots and color saturation in scatter plots are
directly proportional to the frequency of appearance of a specific sample. The first row refers to LogisticRegression, the second one to
RidgeClassifier, and the third one to SVC.
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Table 2.9: Moons data set. Training set size, classification accuracy on an unseen test set and running
time (in seconds) for different classifiers exploiting both EvoCore and state-of-the-art algorithms for
core set discovery.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 266 0.9328 - 2661 0.9254 - 266 0.9179 - 266 0.8134 -

EvoCore 10 0.9403 440.2 s 30 0.9478 415.9 s 24 0.9403 126.6 s 2 0.8209 139.8 s

GIGA 2 0.4254 0.01 s 2 0.2463 0.01 s 2 0.4701 0.01 s 2 0.4701 0.01 s
FW 6 0.6493 3.6 s 6 0.6493 3.6 s 6 0.5299 3.6 s 6 0.6866 3.6 s
MP 3 0.5149 4.6 s 3 0.5821 4.6 s 3 0.5896 4.6 s 3 0.6642 4.6 s
FS 2 0.5149 4.3 s 2 0.2313 4.3 s 2 0.6119 4.3 s 2 0.6119 4.3 s
OP 2 0.5149 0.01 s 2 0.2463 0.01 s 2 0.6493 0.01 s 2 0.6493 0.01 s
LAR 3 0.5149 24.2 s 3 0.2388 24.2 s 3 0.5224 24.2 s 3 0.5896 24.2 s
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Figure 2.28: Global results, taking into account all candidate solutions found during all experiments
on Iris-2 (top row) and Iris-4 (bottom row). Bar height in bar plots (left) and color saturation in
scatter plots (right) are directly proportional to the frequency of appearance of a specific sample.

Experiments on Moons

Experimental results on the dataset Moons are summarized in Table 2.9, with decision boundaries
for SVC displayed in Figure 2.29. Figure 2.30 reports a meta-analysis of all the Pareto-optimal
candidate core sets found by EvoCore, divided by dataset, considering all classifiers. A few samples
clearly appear very often among all candidate core sets, while others almost never do, but overall
there is a considerable number of samples that are included with low but non-negligible frequency,
indicating that different classifiers indeed exploit core sets of different shape.
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Figure 2.29: Decision boundaries on the Moons data set using all the samples in the training set
(Left) and only the core set (Right) for training the classifier. Train samples are represented by
squares, test samples by crosses, core samples by black diamonds and test errors by ’x’-shapes.
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Figure 2.30: Frequency of appearance of samples in the Pareto front solutions of all the classifiers,
for the Moons and Credit datasets.

Experiments on Credit

A summary of the experiments performed on the Credit dataset is reported in Table 2.10. Visualizing
the decision boundaries in this case is more difficult, due to the higher dimensionality of the dataset;
however, in the following an analysis of the samples most frequently included in the coresets for
Credit is presented. Notice from Figure 2.30 that there are four training points that appear in each core
set of the Pareto fronts for all the classifiers. Table 2.11 lists the features of the most frequent core
samples. Interestingly, such samples represent four different customer profiles. C1 is a 58-years-old
married female. She is asking the bank for relatively small credit for a new radio/tv. Currently, she
has 4 existing credits at this bank, but her economical status seems stable (long-term employment,
house and real estate of ownership), despite her low disposable income (less than 1,000 DMs). C2 is
an aged single male asking a credit for a new car. He is skilled and well paid (∼2,000 DMs). He has
recently changed his job, but he lives in its own house and has a life insurance. Overall, he looks like
a responsible customer. C3 is a young and skilled man. He has rented the house where he lives (with
his wife, probably) for the last three years. Despite his young age, he owns a real estate, he already
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paid off previous credits with the bank and his disposable income is very high (more than 15,000
DMs). He is currently asking a remarkable credit of more than 3,000 DMs, but he is very rich and
the bank will reserve him a kid-glove treatment. C4 is 32 years old and wants to buy a new radio/tv.
He has had the same employment for the past four years and he owns the house where he lives.
However, his saving account is nearly empty and he must provide maintenance for two dependants.

Table 2.10: Credit data set. Training set size, classification accuracy on an unseen test set and running
time (in seconds) for different classifiers exploiting both EvoCore and state-of-the-art algorithms for
core set discovery.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 666 0.7275 666 0.7066 666 0.7635 666 0.7695

EvoCore 223 0.7395 735 241 0.7006 538 94 0.7335 173 11 0.7485 161

GIGA 137 0.7305 0.11 137 0.7066 0.11 137 0.7096 0.11 137 0.7156 0.11
FW 537 0.6886 0.87 537 0.6856 0.87 537 0.7635 0.87 537 0.7635 0.87
MP 528 0.6856 1.99 528 0.7036 1.99 528 0.7515 1.99 528 0.7605 1.99
FS 74 0.7006 1.90 74 0.7186 1.90 74 0.7305 1.90 74 0.7455 1.90
OP 20 0.7066 0.09 20 0.7036 0.09 20 0.6617 0.09 20 0.6587 0.09
LAR 21 0.6707 0.68 21 0.6886 0.68 21 0.6407 0.68 21 0.6677 0.68

Despite their differences, the low-income aged woman (C1), the middle-class aged man (C2),
and the wealthy young man (C3) turn out to be good customers for the bank. They probably represent
three "ideal" profiles of good customers, as their characteristics suggest economic stability. On the
contrary, the middle-class young (and single) man with two dependants to support and low liquidity
seems a representative sample of a risky customer.

Table 2.11: Comparison of the fundamental samples found in the credit risk dataset.

features C1 C2 C3 C4
checking account (DMs) <0 no checking 0<x<200 no checking
credit duration (months) 12 24 18 24
credit history critical/other existing existing paid existing paid existing paid
credit purpose radio/tv new car radio/tv radio/tv
credit amount 385 2255 3213 1552
savings account (DMs) <100 unknown 500<x<1000 <100
employment duration (years) 4<x<7 <1 <1 4<x<7
installment rate 4% 4% 1% 3%
personal status married female single male married male single male
other debtors none none none none
residence since (years) 3 1 3 1
property magnitude real estate life insurance real estate car
age 58 54 25 32
other payment plans none none none bank
housing own own rent own
existing credits 4 1 1 1
job unskilled resident skilled skilled skilled
dependants 1 1 1 2
own telephone yes no no no
foreign worker yes yes yes yes

target good good good bad
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Discussion
The proposed framework proved to be extremely effective in discovering high-quality coresets for
classification. Framing the problem as a function of both application and algorithm seems to be a
better method than a more general approach, as highlighted by the differences in the coresets found
using different classifiers. Furthermore, obtaining a Pareto front of different compromises, instead of
a single solution, might not only provide the user with different viable alternatives, but also provide
insight on the behavior of the classifier considered for the task.

Nevertheless, this methodology presents a few drawbacks. The main issue of the approach is
computational time. All other coreset discovery algorithms in literature are able to return solutions in
a few seconds on regular laptops, while the proposed method typically takes from minutes to tens of
minutes. In fact, as the MOEA trains a classifier for each individual evaluation, everything depends
on the classifier itself. Among the selected classifiers, a huge variance in training time is noticable be-
tween the fastest (RandomForestClassifier) and the slowest (GradientBoostingClassifier),
with corresponding repercussions on the speed of the MOEA. While this problem can be mitigated
by parallelizing evaluations, it is arguable that even the current performance is not a great obstacle,
as usually coresets are computed once, and then used multiple times. Given that not only the quality
of the coresets discovered by the MOEA is higher, but that also several trade-offs are delivered in
place of a single solution, it can be claimed that the proposed approach is a preferable alternative to
other solutions in literature.

From an overall analysis of the results on the two benchmarks Iris-2 and Iris-4, it is notice-
able that, while points frequently appearing in candidate solutions on the Pareto front are gener-
ally different between classifiers, algorithms based on decision trees (RandomForestClassifier,
GradientBoostingClassifier, BaggingClassifier) and algorithms based on linear hyper-
planes (LogisticRegre-ssion, RidgeClassifier, SVC) tend to use similar points, see the second
and third column of Figures 2.24, 2.25, 2.26, and 2.27. The two families seem to prefer points on
the boundaries between classes (decision trees) or close to the class centroid (linear hyperplanes),
respectively. Furthermore, taking into account all coresets found during all the experiments, Fig-
ure 2.28 shows how, despite differences between algorithms, a few samples are consistently selected
among most of the candidate solutions found. Such samples might have a relevance going beyond
the scope of the single technique, being instead excellent representatives of the class they belong to.
Not surprisingly, the most common samples for each class are in part close to the class centroid, and
in part close to the class boundaries, fully defining the shape of the training samples of the class.
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3. Evolutionary Optimization

Since the start of my Ph.D., evolutionary optimization has been a core part of my scientific activities.
While most research lines I worked on dealt with real-world case studies, I also contributed to more
fundamental aspects of Evolutionary Computation (EC), often motivated by practical obstacles found
by tackling applications.

This chapter presents the outcomes of two research lines I explored: the first, related to diversity
preservation and promotion, summarizes a review on the state of the art [ST16] (Section 3.1) and
two proposed distance metrics for complex genomes [GST13a; GST14] (Section 3.2). This part has
been developed through my shared co-supervision of Ph.D. student Marco Gaudesi, from Politecnico
di Torino. The second research line described in this chapter (Section 3.3) deals with the use of
standard Genetic Programming (GP) for learning models encoded as systems of Ordinary Differential
Equations (ODEs) [Gau+14]. While this last part is more application-oriented, I still consider it part
of my contributions to the field of evolutionary algorithms (EAs), and I decided to place it as the last
section of this chapter as a bridge towards the real-world applications of Chapter 4 and 5.

3.1 Diversity Preservation and Promotion

In the past decades, different evolutionary optimization methodologies have been proposed by
scholars and exploited by practitioners, in a wide range of applications. Each paradigm shows
distinctive features, typical advantages, and characteristic disadvantages; however, one single
problem is shared by almost all of them: the “lack of speciation”. While natural selection favors
variations toward greater divergence, in artificial evolution candidate solutions do homologize. Many
authors argued that promoting diversity would be beneficial in evolutionary optimization processes,
and that it could help avoiding premature convergence on sub-optimal solutions. This section surveys
the research in this area up to mid 2010s, it re-orders and re-interprets different methodologies into
a single framework, and proposes a novel three-axis taxonomy. Its goal is to provide the reader
with a unifying view of the many contributions in this important corpus, allowing comparisons and
informed choices. Characteristics of the different techniques are discussed, and similarities are
highlighted; practical ways to measure and promote diversity are also suggested.
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3.1.1 Introduction

Evolution is the biological theory that animals and plants have their origin in other types, and that
the distinguishable differences are due to modifications in successive generations. Natural evolution
is not a random process, on the contrary, it is based on random variations, but some are rejected
while others preserved according to objective evaluations. Only changes that are beneficial to the
individuals are likely to spread into subsequent generations. Darwin called this principle “natural
selection” in his Origin of the Species [Dar59], a process where random variations simply “afford
materials”.

When natural selection causes variations to be accumulated in one specific direction the result
strikingly resembles a deliberate optimization process. Indeed, such processes only require to
assess the effect of random changes, not the ability to design intelligent modifications, inspiring
several researchers. Evolutionary computation (EC) is the offshoot of computer science focusing on
algorithms loosely inspired by the theory of evolution. The definition is deliberately vague since
the boundaries of the field are not, and cannot be, sharply defined. EC is a branch of computational
intelligence, and it is also included into the broad framework of bio-inspired heuristics.

Divergence of character is a cornerstone of Darwinian theory: “the principle, which I have
designated by this term, is of high importance on my theory, and explains, as I believe, several
important facts” [Dar59]. The English biologist favored sympatric speciation, and such principle
perfectly rationalizes why breeds diverge in character not only from their common parents, but also
from each other; and why differences, at first barely appreciable, steadily increase over generations.
Indeed, the principle is “simplicity itself” [May92]: the more the co-habitants of an area differ from
each other in their ecological requirements, the less they will compete; therefore, in natural evolution,
any variation toward greater divergence is likely to be favored.

Differently, artificial evolution in EC is plagued by an endemic lack of diversity: during evolu-
tionary optimization processes, all candidate solutions frequently homologize. This situation has
different effects on the different search algorithms, but almost all are quite deleterious. Such a
lack of speciation has been pointed out by Holland in his seminal works [Hol75], and nowadays
is plainly recognized by scholars. The problem is usually labeled with the oxymoron “premature
convergence”, that is, the tendency of an algorithm to converge towards a point where it was not
supposed to converge to in the first place.

EC is based by necessity on oversimplifications of the complex mechanics of nature. Darwinian
theory focuses on members of the same species vying for limited resources, and the push for
evolutionary diversification is prominent in ecosystems with limited resources [SB07], while it is
not clear whether the competition between different species favors or rather impedes diversification
[Bai+13]. In artificial evolution, on the other hand, there is no clear distinction between intraspecific
and interspecific competition, because either the struggle is simulated at the level of individuals
inside a single species, or at the level of species with no explicitly defined individuals.

Moreover, according to Darwin “the same spot will support more life if occupied by very diverse
forms” [Dar59]. But optimization algorithms use a fitness function that evaluates the goodness of
each candidate solution with respect to a given task – that is, the whole ecosystem is indirectly
modeled through its effects, and only few very specific facets are taken into consideration. The
general inability to exploit environmental niches noted by Holland could be explained with the
absence of such natural spots to survive in. Indeed, even the term “environment” is not widely used
by Evolutionary Computation (EC) scholars, that favor “fitness landscape”.

Over the years, EC has shown the capability to tackle quite difficult problems with very complex
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fitness landscapes. Evolutionary optimizers have been successfully exploited both in stationary and
dynamic situations, and they were demonstrated able to identify either single optimums or whole
Pareto sets in multi-objective problems. In such a wide variety of applications, promoting diversity
inside the population has often been seen as the common key factor to improve performances (e.g.,
[BR07; BGK04; CLY09; Shi01; Urs02]).

Not surprisingly, scientific literature reports several sharp methodologies to promote diversity,
that range from general techniques to problem-dependent heuristics. However, the fragmentation of
the field and the difference in terminology led to a general dispersion of this important corpus of
knowledge in many small, hard-to-track research lines – and consequently to the risk of neglecting
effective solutions already known in similar domain, or re-discovering equivalent solutions in
different communities.

The goal of this survey is to re-order and re-interpret the different approaches for promoting
diversity into a single comprehensive framework, and to propose a taxonomy that enables the
comparison of techniques originally presented for different EAs. For the nature of the topic and the
vastness of the field, such a classification will be necessarily coarse-grained. Nevertheless, it could
help scholars undertaking these issues, and practitioners tackling new problems.

It is important to stress that these considerations concern EAs applied to optimization tasks, only.
There is a considerable amount of research lines that employ evolutionary computation as a means to
analyze the dynamics of artificial life, with different problems and objectives, for which the premises
of this work may not hold true1.

In the following, subsection 3.1.2 briefly introduces EC and the notion of diversity, and subsection
3.1.3 introduces the proposed taxonomic scheme. The following subsections use the first axis of
the taxonomy as main theme to survey and classify the different approaches presented in literature,
namely section 3.1.4 for lineage-based ones, 3.1.5 for genotype-based, and 3.1.6 for phenotype-based.
Subsection 3.1.7 provides some recommendations for practitioners who approach this topic. Finally,
subsection 3.1.8 concludes the section and shows possible future research directions for the subject.

3.1.2 Evolutionary computation and the notion of diversity in evolutionary algorithms

EC does not have a single recognizable origin. Some scholars identify its starting point in 1950,
when Alan Turing drew attention to the similarities between learning and evolution [Tur50]. Others
pointed out the inspiring ideas that appeared later in the decade, despite the fact that the lack of
computational power impaired their diffusion in the broader scientific community [Fog98]. More
commonly, the birth of EC is set in the 1960s with the appearance of three independent research lines:
John Holland’s genetic algorithms (GA) [Hol75]; Lawrence Fogel’s evolutionary programming (EP)
[Fog62]; Ingo Rechenberg’s and Hans-Paul Schwefel’s evolution strategies (ES) [BS02b]. The three
paradigms monopolized the field until the 1990s, when John Koza entered the arena with genetic
programming (GP) [Koz92].

These four main paradigms, together with several variants proposed over the years, have been
grouped under the umbrella term of “evolutionary algorithms” (EAs). In the 1990s, Kennedy et al.
proposed the new “particle swarm optimization” (PSO), a population-based optimization technique
that mimics the principles of social interaction rather than struggling for survival. Despite the
apparent differences, PSO and all related swarm-based approaches are nowadays usually listed
amongst EA techniques [PKB07].

1Readers interested in Artificial Life as a discipline may find a comprehensive review of its roots, methodological tools,
and applications in [BM12].
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In such algorithms, a single candidate solution is an individual; the set of all candidate solutions
that exists at a particular time represents the population. Evolution proceeds through discrete steps
called generations. In each of them, the population is first expanded and then collapsed, mimicking
the processes of breeding and struggling for survival. Moreover, most evolutionary optimization
algorithms proceed by alternating phases of exploration, where distant parts of the search space are
sampled, with phases of exploitation, where small neighborhoods of the best solutions are thoroughly
investigated for improvements. Maintaining a set of solutions, EAs are more resilient than other
optimization techniques to the attraction of local optima [ES10]; nevertheless, particularly promising
points might induce an algorithm to a premature phase of exploitation, concentrating the whole
population around few single points. When all candidate solutions are very close in the solution
space, EAs could eventually lose their ability to explore new promising areas.

This phenomenon is a direct consequence of the mechanisms used to generate new individuals,
collectively known as genetic operators. They can be roughly divided into recombinations and
mutations: the formers mix together the information contained in two or more solutions to create
new ones; the latter work by changing the structure of a single solution, and usually perform small
adjustments. When all parents are very similar, the potential to jump to remote parts of the search
space is strongly impaired: thus, “conventional wisdom suggests that increasing diversity should be
generally beneficial” [Shi97]. It is, therefore, useful to first discuss the notion of “diversity”, the
reciprocal concept of “similarity”, and how they can be measured.

Diversity is usually quantified in three different ways: as a distance metric between individuals;
as a measurable attribute of the individuals (individual diversity); as a characteristic of the population
as a whole (population diversity). Individual diversity may be measured considering how far an
individual is from the whole population, or from a subset; population diversity, similarly, may be
defined as the average individual diversity. However, in many applications, a distance is not required
to sensibly define the concept of “individual diversity”, nor individual diversity is required to define
an acceptable “population diversity”.

When analyzing an evolutionary process, at least three different levels can be recognized:
genotype, phenotype, and fitness – and promoting diversity might be pursued in different manners
at each level. Considering diversity at the level of phenotype is usually the more effective way to
enhance performances, but phenotypic diversity is also the hardest to define and the more demanding
to calculate. In practical cases, assessing the diversity at the level of genotype requires acceptable
effort, and there is more correlation between genotype and phenotype than between phenotype and
fitness. This considerations may explain why the majority of the methodologies for promoting
diversity take into account the genotypic diversity.

Genotype-phenotype distinction
In biology, the distinction between genotype and phenotype is apparent: the former is the genetic
constitution of an organism; the latter is the composite of the organism’s observable characteristics
or traits. Moreover, albeit a precise definition of the term “fitness” led to some discussions [Daw99],
all scholars agree on the relationship between individual’s fitness and reproductive success2.

In EC, the genotype is the internal representation of the individual, or, more operatively, the entity
that is directly manipulated by genetic operators; the fitness is the measure of how well the candidate
solution is able to solve the target problem. While alternative definitions have been proposed in
literature, for the purpose of this discussion the term “phenotype” denotes the candidate solution

2The phrase “survival of the fittest” was first used by Herbert Spencer in his Principles of Biology [Spe64] to better
describe Darwin’s idea of “preservation of favoured races in the struggle for life.”
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that is encoded in the genotype. That is, whenever the genotype cannot be evaluated directly by the
fitness function, but needs to be transformed into something else, the phenotype is the intermediate
form in which the genotype needs to be transformed into3. When the genotype can be directly
evaluated, genotype and phenotype coincide. The genotype-phenotype mapping is, by definition,
strictly deterministic, as there is no environment that could interfere with the process. Whether
random elements need to be considered, scholars classify the fitness as noisy, assuming that the same
phenotype could be evaluated differently. Such cases are not considered here.

In evolutionary paradigms such as Genetic Programming (GP) [Koz92] and Linear Genetic
Programming (LGP) [BB07] the distinction between genotype, phenotype and fitness is usually
clearly visible. For instance, when GP is applied to symbolic regression, the genotype is the tree, the
phenotype is the function, and the fitness relates to the difference between experimental data and
those generated by the expression itself (Figure 3.1).

Figure 3.1: Genotype, phenotype and fitness for GP applied to a symbolic regression problem.

It may be worth noting that the phenotype is the function in its mathematical sense4, or, equiv-
alently, an expression in a defined canonical form. As a consequence, x+ y+ 2, y+ 2+ x, and
x+3+ xy+ y−1− yx express the same phenotype, although they are likely to derive from different
genotypes. Similar considerations hold true for any other EA adopting complex individual encoding.

Figure 3.2: Genotype, phenotype and fitness for GA applied to the one-max test function.

On the contrary, in the classic GA, modern EP, ES, PSO, and Differential Evolution (DE) [SP97]
such a difference can be less evident. Individuals are usually represented by arrays of numbers –
either binary or real values – and for opposite reasons the phenotype has been sometimes identified
with the array itself, and sometimes with the fitness value. As noted above, here the former option is
adopted (Figure 3.2).

3The distinction between “structure” and “behavior” found in [BGK04] is also compatible with the above definition.
4A function f from S into T is a subset of the product set S×T with the property that for each element x ∈ S, there

exists a unique element y ∈ T such that (x,y) ∈ f .
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Measuring diversity at different levels
As a matter of fact, detecting whether two individuals are clones, i.e., identical, is often an easy
task at any level. As seen in section 3.1.2, both the transformation of a phenotype into a genotype,
and the evaluation of a phenotype are assumed to be fully deterministic processes. Thus, for two
individuals x and y, different fitness values imply different phenotypes, and different phenotypes
imply different genotypes:

Fx ̸= Fy⇒Px ̸= Py⇒ Gx ̸= Gy (3.1)

where F denotes the fitness, P the phenotype, and G the genotype. However, different
genotypes are not necessarily translated to different phenotypes, as different behaviors are not
necessarily rewarded with different fitness values. Nor should the amount of diversity at one level
suggest a similar amount at a different one.

As fitness values are usually real numbers, or vectors in Rn, it may be quite easy to define
distance metrics at this level. Such measures have per se little significance, however, unless they can
be used as a proxy for different distances. When “phenotypic diversity is synonymous with fitness
diversity” [Cor+12], the lack of difference between genotypes can be sensibly inferred from the
fitness values being equal. Similarly, variety in fitness values could be used as a proxy for measuring
population diversity at the level of phenotype. Intuitively, phenotype variations could cause more
fitness variations when the fitness is a vector in a high-dimensional space v f ∈ Rn, as it happens in
multi-objective optimization, because obtaining identical fitness values is less probable.

The locality principle states that small modifications of the genotype should correspond to small
modifications of the phenotype, and small modification of the latter should yield small variations in
the fitness (that is, in the typical terminology of ES scholars, the problem exhibits a strong causality).
In this situation the fitness distance can be used as an effective measure for both genotypic and
phenotypic distance. And, in practical terms, such smoothness may be regarded as a lucky foreteller
of an easy problem. Indeed, locality is not an intrinsic characteristic of the problem, but of the
genotype-phenotype-fitness mapping; and a doltish definition of the fitness function could cause
different phenotypes to yield the very same value.

Measuring diversity in a population of individuals is a simple task if a distance metric is available.
In a classic GA, for example, the genotype distance can be straightforwardly evaluated resorting to
the Hamming distance [Shi97]. In other cases, a considerable number of distance metrics can be
defined over real-value genotypes, or over real-value fitnesses, a comprehensive analysis of which
can be found in [Cor+12]. For EAs featuring more complex individual structures, such as GP, the
literature presents several solutions. In his seminal work, Koza proposes to take into account the
number of different genotypes contained in a population [Koz92], and the idea is later considered as
a sufficient upper bound of population diversity [Lan98]. Genotypical diversity in GP can also be
measured using subtrees and their relative frequency in the population [Kei96; Tac94]. In [MH99],
numerical tags are assigned to each node in the population, in order to track their survival and the
changes of context from the initial stages, confirming that populations in the final steps of the EA
often descend from one single individual. A thorough analysis of diversity measurements in GP and
their performances can be found in [BGK04].

The edit distance, also known as “Levenshtein distance”, is a well-known string metric used
to compute the difference between two sequences [Lev66]. It has been applied to GP genotypes
considering single nodes insertion, deletions and substitutions as possible operations [DWP01;
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ORe97]; a modified version proposed in [EN00] also takes into account the cost of replacing a
node with one of a different type; and in [BB02], a similar idea is applied to LGP, considering the
coding part of the genome along with a sequence of operators. Interestingly, in many applications
the edit distance could be also used to appraise diversity between phenotypes, although, given its
computational complexity, it may not be very efficient [GST13b].

It is also possible to define a measure of diversity for a set of individual without relying on
distance metrics. Shannon ideas [Sha48] have been applied to fitness values in the population to
define entropy and free energy: absence of changes or monotonic decreases in the grade of disorder
in subsequent generations correlate with a fall into local optima [Ros95]. The Shannon entropy
is also used in [ST08]: nodes and pattern of nodes in the genotypes are regarded as symbols in
messages. Then, individuals that increase the amount of information carried by the whole population
are slightly favored regardless of their fitness value. The idea of bits of information is also applied in
[GST13b], where the distance between LGP individuals is computed as the symmetric difference
between their sets of symbols.

It is always important to consider the possibility of creating ad-hoc distance measures, exploiting
specific characteristics of the target problem. For example, [BB02] proposes alternative distance
metrics for a program evolved through LGP, based on the number and type of test cases satisfied.

Interestingly, methodologies in EC often consider the average distance between solutions as
a proxy for the global amount of diversity, and resort to a comparison of all possible pairs in a
population, with algorithms of complexity O(n2), where n is the size of the population: in [WO03],
the authors propose a new algorithm that is proved to obtain the same result in time O(n).

3.1.3 Proposed taxonomy
It may be maintained that a methodology for promoting diversity alters the selection probability of
individuals:

px|Ψ = px|Ψ ·ξ (x,Ψ) (3.2)

where px|Ψ is the selection probability of individual x given that individuals in set Ψ are also chosen
(the set Ψ may be empty); px|Ψ is the same probability without the adopted methodology; and ξ

the corrective factor. Such a definition does not imply that a mechanism operates explicitly on the
selection operators, but rather the effects on selection probabilities are assessed to classify it. For
instance, in the well-known island model ξ (a,{b}) = 0 when the two individuals a and b are on
different islands.

A simple taxonomic scheme is here proposed, based on three independent categories (Table 3.1).
No distinction is made whether the goal is to preserve the existing diversity in the population, or
rather to promote it. The main classification rests on the individual’s relevant characteristics, that
is, which element influences most the value of ξ ; this text considers lineage (L ), phenotype (P),
and genotype (G ). Then, the different methodologies can be categorized considering the type of
selection influenced by the methodology: parent selection, survival selection, or both. Finally, it
may be considered whether the probability of choosing an individual is influenced by the choice of
another one (context-dependent methodologies) or not (context-independent methodologies).

The first axis of the taxonomy is the more apparent. A mechanism based on lineage considers
the topology of the population, the individual’s progenitors, or, more generally, the conditions of
its birth, for calculating ξ . Mechanisms based on the genotype evaluate the individuals’ internal
structure, while mechanisms based on the phenotype take into account how individuals behave.
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Table 3.1: Proposed taxonomic scheme.

Characteristic Possible values
Element considered Lineage

Genotype
Phenotype

Type of selection Parent
Survival
Both

Context dependency True
False

The fitness is not considered here, because of the assumption that it is always used as a proxy
to measure distance at a different level. Some methodologies consider the fitness of individuals to
determine which one should be removed during, or prior to, diversity promotion, and here they are
categorized as phenotype-based.

The second categorization is based on the type of selection modified by the diversity preservation
mechanism: parent selection or survival selection. During the former, parents are chosen to generate
offspring; while the latter individuals are chosen to survive up to the next generation.

The last distinction is between context dependent preservation mechanisms and context indepen-
dent ones. The former methods base the value of the corrective factor ξ on the value of Ψ; the latter
methods assume:

∀Ψ : ξ (x,Ψ) = ξ (x, /0) = ξ (x) (3.3)

In other words, a methodology is classified as context dependent if the probability of selection for
an individual x (reproduction or survival) is modified in function of the presence of other (possibly
specific) individuals in the set Ψ of individuals already selected. On the opposite, a methodology is
considered context independent if the probability of selection for an individual x is not influenced by
the composition of set Ψ. If a mechanism operates on parent selection and the algorithm does not
implement sexual recombination, it is considered context-independent.

The latter distinction is relevant because it may help better understand how the mechanisms
operate. Intuitively, context-dependent methodologies support the exploitation of diversity already
inside the population. However, it may be generally less straightforward to add such techniques to
an existing algorithm, and they may strongly bias the whole evolutionary process. According to this
point of view, migrants can be seen as the necessary patch to un-bias the evolution after a division
into islands enforces a strictly context-dependent scheme.

All the techniques presented in the following, well-known approaches found in literature, are
organized using the proposed taxonomy. Table 3.2 on page 101 shows the complete summary of
the classification performed: the first column reports the part of the section where the technique
is discussed in more detail; the main element column, L indicates lineage, G genotype, and P
phenotype; in the selection columns, “P” stands for “parent” and “S” for “survival”; the last column
reports whether the considered technique depends on the context.
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3.1.4 Lineage-based methodologies
In lineage-based methodologies the value of ξ does not depend on an individual structure or
behavior, but it can be determined considering the circumstances of its birth (e.g., time, location).
Such techniques can thus be applied to any kind of problem, even in addition to other diversity
preservation methods.

Several techniques belonging to this category are based on limiting interactions between individ-
uals, or creating constraints on selection for reproduction or survival. Island models and cellular EAs,
which share the basic idea of fractionating the panmictic population of a classical EA into several
sub-populations, are sometimes called decentralized EAs and are the most popular lineage-based
methods in practice.

Island models
A popular lineage-based diversity method consists of splitting the main population into sub-
populations, and greatly limiting the exchange of individuals between the sub-populations. EAs
resorting to this technique are often called island models [WRH99], or distributed EAs. The intuition
behind this technique is that, since EAs are stochastic in nature, different populations may explore
different parts of the search space. Since a larger population is also proven to be beneficial, many
island-model EAs employ a periodic exchange of the best individuals between sub-population that
is usually termed migration, allowing the recombination operators to mix useful traits emerged
separately.

Island models are easy to implement and well-suited for parallel or distributed computing, so
they have been and are successfully used in real-world problems [BB01; MG15; OK09]. In addition,
the computational overhead of managing several islands is almost negligible, and concentrated
in the migration function, usually performed once every epoch (few generations). An example
of the benefits provided by island models is summarized in Figure 3.3. Belonging to an island
influences both the probability of reproduction and survival of an individual. The technique is
context-dependent, because individuals in a sub-population can be selected only with others on the
same one.

Segregation
Besides island-model and cellular EAs, other diversity preservation approaches are also based
on the notion of limiting interaction between individuals. Segregation [Aff01] is a lineage-based
diversity technique, where the global population is initially split into N sub-populations that evolve
independently. Once all sub-population reach stagnation (e.g., the best individual has not improved
for a user-defined number of generations, or a user-defined limit of iterations is reached), they
are merged into N− 1 populations, and the evolution is resumed. The process is iterated until a
single panmictic population reaches stagnation, see Figure 3.4 for an example. Like for islands, the
rationale of this method is that different sub-populations will explore different areas of the search
space: when each segregated sub-population converges on a local optimum, they are merged with
the hope of finding better optima by combining solutions in different parts of the search space.
Segregation influences both reproduction and survival, and it is context-dependent.

Cellular EAs
Cellular EAs [AD08; Rob87], also known as lattice models, limit the interaction between individuals
by creating a structure similar to that of cellular automata [Tom05]: candidate solutions evolve in
overlapped neighborhoods, often over a bi-dimensional grid of individuals, such as the one presented
in Figure 3.5. When an individual is selected for reproduction, it can only combine with others in
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Figure 3.3: Distribution of solutions over generations, in a single-population EA (left) against a
island-model EA with three sub-populations (right). Even if the global number of individuals is
the same, the isolated sub-populations converge on different optima in the search space. Eventually,
migration of individuals between sub-populations can help the algorithm to escape local points of
attraction and converge on global optima.

the same neighborhood. Newly created solutions replace individuals in the same neighborhood of
their parents, usually following a fitness-based criteria. Like cellular automata, cellular EAs can be
either asynchronous or synchronous [SR98], depending on the strategy of individual replacement
and population update.

Since cellular EAs promote the smooth diffusion of good solutions, creating temporary niches,
they preserve diversity better than classical EAs with a panmictic population. In fact, cellular EAs
present a large number of tightly connected, small sub-populations, while island models maintain a
small number of loosely connected, large sub-populations. Still, this approach is generally more
complex to implement than islands. This technique has an influence on both parent and survival
selection, and it is classified as context-dependent because individuals can be chosen only among the
neighborhoods.

Aging

In generational approaches, the parental population is completely replaced by the offspring before
applying survival selection: the main advantage of this approach lies in an added resilience against
local optima. In its basic form, Aging can be seen as a softened version of a generational approach:
individuals do age, and are discarded after Amax generations [CNR07]. Indeed, a full generational
EA can be seen as an EA with aging where the maximum age is set to Amax = 1.

This technique has an influence on both parent and survival selection, and it is classified as
context-independent. However, the aging process could be influenced by the performance of the
individual or by its fitness [SSS11a]. In such cases, the methodology should be considered as based
on phenotype.



3.1 Diversity Preservation and Promotion 91

Figure 3.4: Segregational genetic algorithm, starting with 4 subpopulations. Each time a stagnation
condition is reached, all individuals are mixed and merged into N−1 subpopulations, and the process
is iterated until a single panmictic population is obtained.

Deterministic crowding
The basic idea of Deterministic crowding [Mah95] is to generate a competition between the children
individuals and their parents. This technique resembles standard crowding (section 3.1.5). Every
time the offspring is created, if it is fitter than the parents it is inserted in the population and the
parent individual is removed; otherwise, the child individual is removed. Differently from standard
crowding, deterministic crowding does not require the explicit definition of a distance between
individuals, and that is why it is classified under lineage-based techniques, while standard crowding
falls into the class of genotype-based methods. Deterministic crowding does not influence parent
selection, and it is independent from the context.

Allopatric selection
Closely related to deterministic crowding, allopatric selection [Ton+12] puts all offspring generated
during the same application of certain genetic operators in competition: only the fittest progeny is
stored in the population, and then the standard fitness-based survival selection is applied. In a context
where several genetic operators may produce a considerable number of children each, this technique
is used to avoid early colonizations of the population by successful lineages. For a comparison with
deterministic crowding, see Figure 3.6. Allopatric selection is a context-independent technique that
acts on survival selection only.

Gender
Another diversity-promoting technique is to add a feature inside the EA, representing the gender
of an individual: crossovers are then allowed to operate between individuals of different genders,
only [All92; GLR03]. Variants of this approach try to exploit the presence of more than two sexes
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Figure 3.5: On the left, the classical structure of cellular EAs. Solutions are placed in a toroidal
bi-dimensional grid. On the right, examples of neighborhoods. Neighborhoods are user-defined, and
usually follow one of the portrayed structures: linear-n (covering up to n elements in the same row
and column) or compact-n (considering the n−1 nearest individuals in every direction, including
the diagonal). In practice, two of the most used are linear-5 and compact-9.

to further promote diversity [LE97], while other make use of different mutation rates for each sex
[SB03]. In principle, gender could be managed even externally, through a reference table embedded
in the algorithm. However, if the gender is inserted inside the genome and it is inheritable, its
effect is to add a new trait with the only purpose to ease the evaluation of diversity, thus, the
methodology should be classified as genotype-based. Several methodologies that are labeled with the
word “gender” use the fitness values as discriminant [RA00], and should therefore be included into
phenotype-based methodologies. All gender-based techniques are context-dependent and influence
reproduction alone.

3.1.5 Genotype-based methodologies

A considerable number of methods exploit information at genotype level to promote diversity inside
the population. Such techniques can be effective especially when it is straightforward to define a
distance measure between different individuals: distances are often used to avoid overexploitation of
peaks in the fitness landscape and to promote the generation of new solutions very far from the most
successful ones.

The most prominent techniques in the field belong to the family of niching methods, derived from
Holland’s observations on fitness sharing and the successive refinements of Goldberg, Richardson
and Deb [DG89; GR87; Hol75]. The basic idea is to achieve the emergence of artificial niches in the
search space, following the paradigm of natural niches: in nature, a niche is defined as a subspace in
the environment with a finite amount of physical resources, that can support different types of life.
An example is reported in Figure 3.7.

Niching methods can be further divided into two classes [SK98]: explicit neighborhood methods,
that require an explicit definition of the size of a niche through a parameter called niche radius; and
implicit neighborhood methods, where the algorithm requires no information about the search space.
It is important to notice that, without a distance metric defined between individuals at genotype or
phenotype level, explicit neighborhood techniques cannot operate. All niching methods introduce an
overhead in the evolutionary process, but the computational effort required to enforce diversity is
usually negligible when compared to fitness evaluation in real-world problems.
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Figure 3.6: Deterministic crowding (top) and allopatric selection (bottom) compared. In determin-
istic crowding, both parents and offspring compete for a place inside the population; in allopatric
selection, the competition is between children individuals generated during the same application of a
genetic operator, only.

Besides niching techniques, many other research lines follow the idea of using information
gathered from the genotype of the population to maintain and promote diversity.

Fitness Sharing
A well-known example of niching technique with an explicit niche dimension is fitness sharing.
Sharing [McK00] reduces the attractiveness of densely populated regions of the search space,
lowering the fitness value of individuals in the same niche by a value proportional to the number of
individuals. Given an individual Ik and its fitness value f (Ik), its new fitness with sharing f ′(Ik), can
be expressed as follows:

f ′(Ik) =
f (Ik)

∑
individuals
i=0 sh(Ik, Ii ̸=k)

(3.4)

with

sh(Ia, Ib) =

{
1− (d(Ia,Ib)

σs
)α d(Ia, Ib)< σs

0 d(Ia, Ib)≥ σs
(3.5)

where d(Ia, Ib) is the distance function between two individuals Ia and Ib and α is a constant
parameter which regulates the shape of the sharing function (commonly α = 1). For its characteristics,
fitness sharing influences both the probability of reproduction and survival of an individual, and it
is context-independent since the selection of an individual is independent from other individuals
already chosen for that purpose.
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Figure 3.7: When niching is used, individuals are in competition with other individuals in the same
niche, only. This method makes it possible for low-fitness solutions to survive, provided they are in
a relatively unexploited area of the search space. For example, all individuals in niche c could have
a higher fitness value than individuals in niche d, and in a classic scenario individuals in d would
be removed from the population. When using niching, an individual in d is nevertheless preserved,
since it was in a sparsely explored area of the search space.

Clearing

Clearing [Pét96] is part of the niching techniques with an explicit neighborhood: differently from
sharing, however, it relies upon the concept of dominant individuals of the niche. Inside each niche,
the k best individuals preserve their fitness, while all others have their fitness reset. As in the sharing
method, individuals belong to the same niche if their distance in the search space is less than a
dissimilarity threshold σs, here called clearing radius. The complexity of the procedure is O(qN),
where q is the number of niches maintained during the search. Clearing is sometimes used along with
other diversity-promoting techniques, such as in [BS02a]: it influences the selection probabilities for
both reproduction and survival, and it is context-independent.

Standard Crowding

Standard crowding [De 75] is a niching technique with an implicit neighborhood: it makes use of
a scheme where only part of the population reproduces and dies at each generation. Every time
a new individual is created, a sub-population of size CF is randomly drawn, and the offspring
replaces the most similar solution inside this sub-population. The similarity is measured at the level
of genotype, and if the locality principle is not true, the methodology could lead to replacement
errors, as noted by Deb and Goldberg [DG89]. This technique influences survival selection, and it is
context-independent.
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Restricted Tournament Selection
Among niching techniques with implicit neighborhoods, one of the most successful is Restricted
Tournament Selection (RTS) proposed by [Har95]. RTS selects two individuals from the population,
to undergo crossover and mutation; then, each offspring is compared with the closest element
in a randomly drawn sub-population of size CF; finally, the winners are inserted into the global
population, while the losers are discarded. This process is repeated N/2 times, where N is the size of
the global population. The complexity of RTS is O(CF ·N), and it can grow up to O(N2) if CF = N.
This technique is context-independent, and it influences the survival probability of individuals.

Sequential Niching
An interesting variant of niching is the Sequential Niching [BBM93], whose basic idea is to alter the
fitness of parts of the search space where good solutions have already been found. Differently from
other fitness sharing approaches, it performs several iterations of the EA: the most promising points
in the search space after each run are altered so to become less interesting in further executions. This
method might be more performing than standard fitness sharing on multimodal search spaces, since
there is evidence that mating between individuals on different peaks often leads to uninteresting
solutions [Deb89]. Sequential niching is a context-independent technique that influences both the
probability of reproduction and survival of individuals.

Reference points partitioning
To maintain diversity during a multi-objective optimization problem with several objective functions,
Deb and Jain improved their Non-Sorting Genetic Algorithm II5 (NSGA-II) creating the Many-
objective NSGA-II (or NSGA-III, as it is sometimes called) [DJ13a; DJ13b].

The new tool uses a predefined set of reference points: reference points are initially set, either
manually or with an automatic procedure; then, during evolution, each individual is dynamically
associated to the closest reference point, partitioning the population; eventually, a traditional niching
is used on each subset. This methodology is a context-independent technique that influences both
the probability of reproduction and survival of individuals.

Delta entropy and pseudo entropy
In [ST08], the population is considered as a message, composed of the concatenation of all the
individuals, with each gene corresponding to a symbol. Authors calculate the entropy associated to
the message using Shannon’s formula:

H =−∑
s∈P

f (s) · log( f (s)) (3.6)

where s is a symbol (i.e., a gene) in the population P, and f (s) is its frequency. The effect on the
global population entropy caused by each individual is considered as an indication of the amount of
diversity brought by it. Then, with a given probability candidate solutions are compared on their
capability to increase the global entropy instead on their fitnesses.

The approach was called “pseudo entropy” because authors acknowledged that the computation
of the population entropy was not fully correct. This problem was solved in [SSS11a], where the
concept of symbol was further extended, taking into consideration genes and small sequences of
genes.

5Other techniques used by NSGA-II can be found in section “Crowded-comparison operator” (3.1.6)
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Figure 3.8: An example of two-level diversity selection. In the first part, a fitness-based tournament
selection between two individuals is repeated 3 times. In the second part, the three winners are put
in competition with each other, and the two most diverse are selected for mating.

Two-level diversity selection
When a genotype-level distance between individuals can be defined, diversity can be promoted by
putting a selective pressure on diversity as well as fitness. This idea, presented in [BB02], employs a
two-level tournament selection, where three individuals are first chosen, based on their fitness values,
and subsequently the two with maximum distance are finally selected for reproduction. In this case,
the distance is evaluated between the three fittest individuals, only, and the rest of the population
is not considered. A scheme of the technique is proposed in Figure 3.8. The two-level diversity
selection is context-dependent, and acts on the selection of the parents.

Tarpeian method
Named after the Tarpeian rock in Rome, the infamous execution place for traitors and criminals,
this method proposes to randomly kill individuals if they do not satisfy a genotype-level metric
[Pol03]. In the original paper, the purpose is to limit bloating in GP by lowering the selection
probability of programs bigger than a user-defined threshold, but in general the technique can be used
to promote diversity by favoring less fit individuals that score well on the considered genotype-level
metric. The author argues that this method dynamically and non-deterministically creates fitness
holes in the fitness landscape, and that it could be superior to just creating static holes with other
bloat-controlling techniques. The Tarpeian method is context-independent, and it influences both
survival and reproduction.

FOCUS and GDEM
Another interesting approach is to exploit the potential of Multi-Objective Evolutionary Algorithms
(MOEA) by adding a diversity-related function among the objectives to optimize. The contribution
of a single individual to the variety of the population is thus evaluated. This idea is first presented in
[DWP01] and applied to GP in order to limit the growth of solutions over time, using a technique
called Find Only and Complete Undominated Sets (FOCUS), where only non-dominated individuals
are preserved in the population.
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The Genetic Diversity Evaluation Method (GDEM) [TB03] makes use of a similar idea. Genetic
diversity is used again as a second objective in a MOEA, but this time it is managed so that solutions
with the same rank with regards to other objectives will not dominate one another, independently
from the values of their diversity measure. In other words, individual u(ranku,diversityu) dominates
individual v(rankv,diversityv) if and only if:

ranku > rankv∧diversityu ≥ diversityv

Both these techniques have been applied to MOEAs, but in principle they could be used for
single-objective optimization as well; both alter the probability of selecting an individual for survival;
and they are context-independent since choosing a specific individual would not alter the probabilities
of selecting a second one for the same purpose.

Diversifiers
A more refined and computationally expensive version of the random immigrants strategy (section
3.1.6), presented in [KB95], tries to fill gaps of under-represented areas in the search space with
individuals, called diversifiers, created specifically for the task. If a two-dimensional distance
metric d can be defined over a population of individuals, a distance space DG ⊂ R2

0+ can be used
to approximate areas of relative emptiness, where few genomes can be found. In particular, there
are algorithms able to find the largest-area rectangle Rmax that is axis-parallel to the x,y axis of DG,
whose opposite vertices are two genomes, in O(n · log(n)) where n is the number of individuals. The
part of the genotype space Rmax can then be used to generate individuals able to fall inside it.

This technique is context-independent and indirectly influences the probability of reproduction
and survival of other individuals.

3.1.6 Phenotype-based methodologies
All techniques that operate directly in the fitness space, either artificially altering the fitness landscape,
or relying upon fitness-level information to promote diversity are grouped under the label phenotype
diversity. At a first glance, diversity preservation at fitness level might look impractical: if the fitness
landscape of the problem is multi-modal, there could be several genotype-level points corresponding
to the same fitness value, and enforcing a distinction could thus appear meaningless. Still, especially
if a genotype-level distance measure is hard to conceive, even single-objective fitness can be exploited
to enforce diversity.

Moreover, the thriving sub-field of MOEAs relies upon a multi-dimensional fitness space. Since
MOEAs return a set of non-comparable candidate solutions, it is in the user’s interest to obtain very
diverse solutions, avoiding the concentration of individuals on some parts of this multi-dimensional
fitness landscape, only.

Random immigrants
A simple but effective technique to maintain diversity, often adopted in problems where the fitness
landscape is dynamic, is to periodically add random immigrants [Gre92] to the current population.
Such individuals are randomly generated, thus offering fresh material for the genetic operators to
exploit: usually, however, their fitness value is very small when compared to the other individuals
in the population. For this reason, algorithms employing this technique often act on the survival
selection, favoring the unfit but useful random immigrants for, at least, some generations [TY07].

The presence of random immigrants influences the probability of reproduction and survival of
other individuals: both these techniques are context-independent.
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Extinction
The difficulty to survive faced by random immigrants is mitigated by the extinction methodology
[GFC99], that operates by periodically removing a significant amount of the population. More in
detail, at each generation, a stress factor η(t) is generated according to η(t)∼U(0,0.96). Assuming
a minimization problem, for each individual Ii the algorithm scales its fitness f (I) to the interval
[α;1] on the basis of the following formula:

f ′(i) = α +(1−α) · f (Ii)− f (Imax)

f (Imin)− f (Imax)
(3.7)

where f (Imax) and f (Imin) are the fitness of the worst and best individuals, respectively, and
α ∈ [0,1] controls the lower bound of the assigned fitness. The individuals with fitness values f ′

less than the stress factor are removed, and the empty slots are filled with a tournament selection
between mutated variants of survived individuals. If no individual is killed, a percentage m of the
population will be replaced by mutants, with a process called a background extinction.

This context-independent technique acts exclusively on the survival selection mechanism.

Crowded-comparison operator
Multi-objective optimization addresses all problems that give rise to a set of trade-off optimal
solutions (known as Pareto-optimal solutions) [Deb05]. A trivial example of a multi-objective
problem with two objectives is reported in Figure 3.9. MOEAs strive to find as many Pareto-optimal
points as possible, because any two solutions on the Pareto front represent a trade-off between the
objectives: when a large groups of solutions is returned, users are in a better position to make an
informed decision.

For the same reason, it is interesting for the user to obtain solutions that are well distributed
along the Pareto front, in order to have a more complete picture of the problem. The crowding
mechanism introduced in the MOEA Non-Sorting Genetic Algorithm II (NSGA-II) [Deb+02]
is designed to tackle this problem, effectively enforcing diversity on the Pareto front through a
Crowded-Comparison Operator (CCO).

The CCO guides the selection process in various steps of the algorithm, trying to achieve a
uniformly spread-out Pareto-optimal front. Every individual I in the population possesses two
attributes, a non-domination rank Irank and a crowding distance Idistance. The non-domination
rank basically identifies the front the individual belongs to, and represents the primary source of
comparison. If two individuals have the same non-domination rank, they are then compared on their
Idistance, so that solutions located in less crowded regions are preferred.

NSGA-II uses an estimate of the density of solutions surrounding individual I, by taking the
nearest neighbors as vertices of a cuboid, and then calculating the average distance from the vertices
along each of the objectives, see again Figure 3.9. This method only operates in the objectives’
space, so it can be applied independently from the genotype or phenotype representation of the
individuals: there are even LGP tools that exploit this technique for multi-objective problems
[SSS11a]. Furthermore, NSGA-III, the successor of NSGA-II, exploits the concept of ε-domination
to adaptively discretize the Pareto-optimal front and find a better-distributed set of points [DJ13a;
DJ13b].

Hierarchical fair competition
Sub-populations are the focus of Hierarchical Fair Competition (HFC) [Hu+05]: in this approach
each sub-population tries to contain individuals of similar fitness values, promoting the best ones to
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Figure 3.9: Sample multi-objective problem. Each solution, representing an airplane ticket for
the same destination, is a trade-off in terms of price and hours of flight. Optimal, non-dominated
solutions are on the line representing the Pareto front. Points in the top left of the curve represent
cheap tickets with long flight times; points in bottom right represent expensive tickets with the
shortest flights. The highlighted areas represent the cuboids used by NSGA-II to estimate the density
of solutions surrounding individuals. The cuboid for individual I1, in black, is clearly bigger than the
cuboid of individual I2, in gray; thus, individual I1 will be preferred for selection.

upper sub-populations and demoting the worst ones to lower sub-populations (see Figure 3.10). The
technique proves to be quite effective to help new patterns emerge in the gene pool without being
immediately overwhelmed by existing already-adapted individuals. HFC can be seen as an enhanced
version of the island model (section 3.1.4) and it shares the assumptions that a multi-start scheme
would yield different solutions, however it is based on how individuals behaves rather than where
they have been generated.

The main drawback of the methodology is that it leaves several parameters for the user to define,
such as the number of sub-populations, the size and the two thresholds for acceptance and upward
migration, for each sub-population. There exist HFC models that self-adapt all parameters, but a
good user-defined regulation usually returns better results. Relying on an idea similar to the islands,
this technique influences both reproduction and survival, and it is context-dependent.

Vector evaluated genetic algorithm

Besides NSGA-II’s CCO (section 3.1.6), other strategies are employed by MOEAs to promote
diversity inside the population. The Vector Evaluated Genetic Algorithm (VEGA) [Sch85], for
example, evenly divides the mating pool into a number of parts equal to the number of objectives:
each part is filled with individuals selected on a different objective. A derived technique proposed in
[HL92] uses a similar division of the mating pool, considering different trade-offs between objectives
as a weighted sum. The weights are encoded in the genotype, and evolved to search for multiple
solutions simultaneously. Diversity within weight combinations is promoted by phenotype-level
fitness sharing.
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Figure 3.10: Hierarchical Fair Competition scheme. Depending on their fitness value, individuals are
divided into sub-populations P1...Pn, synchronously or asynchronously through admission buffers,
following user-defined Admission Thresholds (ADT). Fresh genetic material is added through a
random individual generator.

Strength Pareto

This approach promotes diversity by using an external secondary population to store the non-
dominated solutions [ZT99]. The strength of an individual in the secondary population is proportional
to the number of other individuals covered by it, while dominated individuals are assigned a fitness
based on the strength of individuals that cover them. The secondary population is updated at every
generation and pruned by clustering if the number of the non-dominated individuals exceeds a
predefined size.

3.1.7 Promoting diversity: a hands-on approach

The amount of different methodologies proposed to cope with the lack of diversity can be discon-
certing for someone approaching EC. This section presents a few rules of thumb that could help
practitioners to assess what technique may be best suited for their particular cases, together with
hints and tricks to implement it, as source code is not generally available6. These spare indications

6Scholars willing to evaluate and compare on their own the listed methodologies would need to implement them
in a common environment. A good framework that already includes islands and provides a convenient platform is
Open BEAGLE, available under GNU Lesser GPL from https://code.google.com/p/beagle/. Moreover, the
simplistic implementations and didactic videos showing the effects of few methodologies are available under Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License from https://bitbucket.org/atonda/
eatutorial/src/.

https://code.google.com/p/beagle/
https://bitbucket.org/atonda/eatutorial/src/
https://bitbucket.org/atonda/eatutorial/src/
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Table 3.2: Summary of all techniques analyzed in this section, in alphabetic order, classified following
the proposed taxonomy. In the main element column, L indicates lineage, G genotype, and P
phenotype. In the selection columns, “P” stands for “parent” and “S” for “survival”.

Sec Methodology name
Main Selection Context

element P S dep.
3.1.4 Aging L yes yes no
3.1.4 Allopatric selection L no yes no
3.1.4 Cellular EAs L yes yes yes
3.1.5 Clearing G yes yes no
3.1.6 Crowded-comparison operator P yes no no
3.1.5 Delta/pseudo entropy G yes no no
3.1.4 Deterministic crowding L no yes no
3.1.5 Diversifiers G yes yes no
3.1.6 Extinction P no yes no
3.1.5 Find only and complete undominated set G no yes no
3.1.5 Fitness sharing G yes yes no
3.1.4 Gender L yes no yes
3.1.5 Genetic diversity evaluation method G no yes no
3.1.6 Hierarchical fair competition P yes yes yes
3.1.4 Island model L yes yes yes
3.1.6 Random immigrants P yes yes no
3.1.5 Reference points partitioning G no yes no
3.1.5 Restricted tournament selection G no yes no
3.1.4 Segregation L yes yes yes
3.1.5 Sequential niching G no yes no
3.1.5 Standard crowding G no yes no
3.1.6 Strength pareto P yes no no
3.1.5 Tarpeian method G yes yes no
3.1.5 Two-level diversity selection G yes no yes
3.1.6 Vector evaluated genetic algorithm P yes no yes

are to be intended as a starting point for further research, and not as absolute rules applicable to
every circumstance.

The first step before considering diversity promotion is to understand if the problem at hand
requires the effort. It may be assumed that, if a practitioner is questioning how to promote diversity,
the evolutionary optimizer already got stuck in suboptimal solutions several times. However, if
repeated experiments yield very different results, but the optimizer is able to find at least few
acceptable solutions, then the fitness landscape is probably very rough, and the task is probably
going to be hard. Nevertheless, in that situation lack of diversity would not represent the most taxing
problem: it is recommended to revise the encoding and the fitness function. On the contrary, when
repeated experiments yield very similar sub-optimal results, premature convergence may be the
issue.

Indeed, it is not required to run the full-fledged evolutionary optimizer for performing this first
check. A random mutation hill climber [MHF+93] is probably faster and equally effective to this end.
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Moreover, the hill climber could be easily built using the same mutation operators already present
in the core of the original optimizer, by stripping down the evolutionary process. Unfortunately,
for many real-world industrial problems the time required to run such experiments would make
them effectively useless. Thus, in several practical applications, the best option is to include some
methodologies for promoting diversity as a default. It is generally better to resort to well established
methodologies (section 3.1.7).

Even when dealing with quite complex representations where a mathematical analysis of the
fitness landscape is impractical or too computationally expensive, it may be possible to obtain useful
problem-specific knowledge that can be exploited inside future diversity-preservation mechanisms.
In such cases practitioners could also try to prepare their own methodology for promoting diversity
(section 3.1.7).

Out-of-the box methodologies

In absence of any domain-specific information on the problem, Extinction (section 3.1.6) is a
methodology able to return sensible results with minimal effort. Additionally, it features few
parameters to be tuned, namely, how to trigger an extinction, and the percentage of the population to
be replaced. Several implementations of popular optimization algorithms make use of extinction or
similar mechanisms to periodically remove a considerable part of the population.

Island models (section 3.1.4) represent another quick and simple, yet effective, way to promote
diversity even when information about the target problem is scarce. This technique only needs few
parameters to be set by the user, namely the size of each island and the modalities of migration, and
can provide a first assessment of how adding diversity preservation can significantly improve the
results. Additionally, it requires only minor modification to the original algorithm: for this reason,
island models are often adopted even by commercial evolutionary software [SL09].

Both methodologies can be added to an existing algorithm with limited effort, although the latter
could be slightly more complex to implement but easier to parallelize. To be fully effective, both
rely on the crossover operator. After an extinction, good, fresh traits of new individuals may be
merged with the genome of already good solutions, allowing to escape from the local optima. In
island models, after migration the crossover operator could merge solutions exploiting different local
optima, allowing to explore new regions of the search space.

If information about the problem is reliable, adding niching to the optimizer is a good solution.
Techniques that use an implicit neighborhood, such as restricted tournament selection (section 3.1.5)
or even standard crowding (section 3.1.5), can be easily adopted. Both techniques require to evaluate
the distance between genotypes, but dos not rely on assumptions on the local optima distribution.
However, if also a good estimation for the distance between local optima in the fitness landscape is
available, it is recommended to use niching techniques that operate with an explicit neighborhood,
such as fitness sharing (section 3.1.5) or clearing (section 3.1.5), can be applied to the problem.

Hybrid methodologies

As a general consideration, tackling diversity at the level of genotype is simpler, but operating at the
level of phenotype is likely to be more effective. Fortunately, in several problems, genotypes and
phenotypes are highly correlated. Two simple tests could help a practitioner to detect this situation:
count the collisions and check whether the locality principle is fulfilled.

Collisions happen whenever two or more individuals that are different at the level of genotype
are given exactly the same fitness value. A large number of collisions could seriously impair the
effectiveness of artificial evolution, because the principle of differential survival is a cornerstone of
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the whole process: different individuals should have different chances to survive, and this is not true
if they share the same fitness value. In general, a high number of collisions is a sign that the fitness
function should be redesigned and improved.

To check if the locality principle is fulfilled, the suggestion is to generate a set P of random
individuals. Then, for i = 1...n generate the sets Oi containing the offspring obtained applying
exactly i mutation operators to each parent in P. Finally, examine the difference in the fitness values
∆(I1, I2) between individuals in P and individuals in Oi with respect to i. As a rule of thumb, the
locality principle is satisfied if there is a correlation between i and ∆(I1, I2) with I1 ∈ P, I2 ∈Oi

If it is possible to assign a diversity bonus to each individual, for instance, by measuring the
average distance between itself and the whole population, or by measuring population diversity with
and without it, then diversity can also be pursued as an explicit goal using multi-objective algorithms
[DWP01; TB03]. The consequence of searching for a Pareto-front with some highly-fit and some
highly-diverse solutions is to promote diversity during the evolutionary process.

Alternatively, it may be possible to promote diversity by tweaking selection probabilities. The
real (i.e., the original) fitness could be scaled, or in any other way modified, according to a diversity
measure. The main advantage of this technique is that it can be implemented with limited coding
effort, because, except for the fitness calculation, the algorithm does not need to be modified.
However, the amount of scaling needs to be carefully considered. It is also possible to tweak
the selection by changing how individuals are compared, creating artificial holes in the fitness
landscape. Literature reports several successful stories: in [EN01], such holes are created by taking
into account the size of individuals, trying to favor smaller, less effective GP trees over bigger and
more performing ones; in [Pol03] the fitness of a certain proportion of the offspring is radically
zeroed; while in [CSS05] original fitness values are used with probability h, while with probability
1−h an individual able to diversity of the population is preferred.

These techniques do not require the definition of a distance between all pairs of individuals,
although such a metric could be easily used to implement them. Even basic information on the
problem, that might not be directly exploited to measure the difference between two candidate
solution, may be nevertheless capitalized on to introduce randomness in individual selection and
indirectly prevent premature convergence. For example, the tarpeian method (section 3.1.5) was
originally used to limit bloating in experiments with individuals of non-fixed size, but the possibility
to create non-deterministic fitness holes in the fitness landscape should not be underestimated. If
a metric other than fitness value is available to compare two individuals, it could be employed to
promote diversity.

3.1.8 Conclusions

As the divergence of character is an essential element in natural evolution, the lack of divergence of
character is an endemic problem in evolutionary optimization. This section surveys notable methods
to overcome this problem, promoting diversity. The algorithms are classified on the basis of the
elements considered (lineage, phenotype or genotype), the type of selection influenced (reproduction
and/or survival) and their dependency from the context.

Looking at the resulting compendium, it is easy to identify the recurring ideas that have been
exploited through different domains: restrict the interaction of individuals to random sub-groups
for mating (e.g. gender), survival (e.g. niching) or both (e.g. islands, segregation); strengthen
the competition between solutions that are closely related (e.g. allopatric selection, deterministic
crowding); artificially alter the fitness values of individuals, taking into account their contribution
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to population’s diversity as well as their goodness with regards to the problem’s objectives (e.g.
FOCUS, genetic diversity evaluation method, fitness holes, Tarpeian method); and regularly add
entirely new genetic material to the population (e.g. random immigrants, diversifiers, hierachical
fair competition).

In fact, it must be remarked that it is often hard to quantify the improvement that a diversity-
promoting technique can add to an evolutionary optimization process. While several extremely
challenging test functions are available, modern EAs often feature a set of mechanisms aimed at
increasing their efficiency, and separating the contribution of each to the final result can be quite
complex. The authors’ feeling is that there is still a lack of benchmarks able to consistently evaluate
diversity preservation in evolutionary optimization, and especially finding a test case that could be
generalized to all different paradigms in EC could constitute an interesting and challenging research
line.

Several well-known EAs with proved effectiveness include indirect mechanisms for promoting
diversity. However, such techniques are so deeply embedded – or have so many side-effects – that
they cannot be easily extrapolated from the original algorithm and analyzed separately. Paradigmatic
examples are generational approaches [ES10] (or comma strategies in ES), the core of CMA-ES
[Han06], competitive co-evolution, used for example in [SL08], or the effect of increasing the
crossover rate in DE [CBM14].

From a practitioner’s perspective, it is interesting to notice how the great majority of techniques
try to exploit information at genotype-level, the easiest to deal with; that several diversity-promoting
techniques can be applied to the same algorithm at the same time, acting at different levels (lineage
and genotype, for example); and that not necessarily methods that are more complex to implement
return better results.

A considerable number of EAs have been adopted by practitioners of other domains as effective
means to find reasonable solutions for problems that could not be tackled with classical optimization
techniques. Looking at the most popular software, it is striking to notice how almost all provide
some default value for the parameters, so that the users can try an approach out of the box, without
having to tweak the population size or the activation probabilities for the genetic operators.

While diversity preservation is essential, the main challenge for scholars is devising general
methodologies that could be applied seamlessly, trying to limit the number of parameters the user
has to set, or providing a few default values that work in most cases.
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3.2 Measuring Diversity for Complex Genomes
Defining a distance measure over the individuals in the population of an Evolutionary Algorithm can
be exploited for several applications, ranging from diversity preservation to balancing exploration
and exploitation. When individuals are encoded as strings of bits or sets of real values, computing
the distance between any two can be a straightforward process; when individuals are represented as
trees or linear graphs, however, quite often the user must resort to phenotype-level problem-specific
distance metrics. This section presents a generic genotype-level distance metric for Linear Genetic
Programming: the information contained by an individual is represented as a set of symbols, using
n-grams to capture significant recurring structures inside the genome. The difference in information
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between two individuals is evaluated resorting to a symmetric difference. Experimental evaluations
show that the proposed metric has a strong correlation with phenotype-level problem-specific
distance measures in two problems where individuals represent string of bits and Assembly-language
programs, respectively.

3.2.1 Introduction

Defining a distance metric in an Evolutionary Algorithm (EA) is both theoretically sound and practi-
cally challenging – and ultimately useful. Being able to quantify the similarity of two individuals
can be used to promote diversity inside the population’s gene pool, to avoid the over-exploitation of
niches in the fitness landscape, to balance exploration and exploitation, and ultimately to ease the
premature convergence problem. Not surprisingly, the topic has been actively investigated by the
evolutionary community for many years.

From the theoretical point of view, two different aspects must be examined when a distance is
defined: the level at which it is calculated; and the purpose for calculating it. On the other hand, for
the practitioner the complexity involved in the calculation is the key point.

The level at which a distance is defined may be: genotype, phenotype, or fitness. The first and the
last are probably the most easily definable: the genotype corresponds to the internal representation
of the candidate solution; the fitness is ultimately the number, or numbers, returned by its evaluation.
In biology, the phenotype is the sum of all the observable characteristics of an organism that result
from the interaction of its genotype with the environment. It is hard to translate the concept in
Evolutionary Computation since the environment is missing, being indirectly defined by its effects
through the fitness function. Yet, in several classical problems – where an individual is a fixed-length
bit string, for instance – the need to distinguish between genotype and phenotype is reduced. As a
consequence, several works assimilate the fitness to the phenotype.

In many other cases identifying phenotype and fitness is not an option. The fitness is a synthetic
information, and may not be able to convey the necessary data to separate individuals. Even in the
simplistic one-max problem two solutions may have the same fitness without sharing a single gene
(e.g., "0011" and "1100"). Moreover, the very same solution can be encoded in different ways. If the
individual is the movement of a robot, for instance, a single 90◦ turn could also be represented as
two consecutive 45◦ ones. More generally, whenever the genotype cannot be evaluated directly by
the fitness function, but needs to be transformed into something else, fitness and genotype should be
distinguished. In such scenarios, the phenotype could be easily defined as the "something else" in
which the genotype needs to be transformed into.

The final goal for measuring the distance between individuals plays an important role. If the
distance metric is used to avoid that a region of the search space becomes overly populous, then it
should be defined at the level of phenotype. However, phenotype-level distances are often difficult to
define or practically impossible to calculate. Remarkably, NSGA-II, the widely used multi-objective
evolutionary optimizer, adopts a sharp and computationally efficient mechanism called crowding
distance to scatter individuals [Deb+02]. Here, the crowding distance may rely exclusively on
information from the fitness because the genotypes are fixed-length arrays of real numbers, requiring
no transformation; and the fitness is composed of several different values, reducing the loss of
information.

Conversely, if the distance metric is used to promote diversity in the gene pool, balancing
exploration and exploitation, it could be based on the genotype. For example, in [Mau84] solutions
are encoded as fixed-length bit strings and a metric based on the hamming distance is used to assess
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the global diversity inside the population. When the phenotypes are sets of real values of fixed
size, computing the distance between them is relatively straightforward, albeit not trivial [Cor+12].
However, phenotypes in Genetic Programming (GP) [Koz92], Linear Genetic Programming (LGP)
[BB07] and other complex EAs pose a harder challenge: calculating the similarity between two
binary trees, linear graphs, or generic compound structures is an open problem.

This section proposes a new distance metric easily usable in different types of LGPs. The
distance is calculated quite efficiently at the level of genotype, yet it is able to convey a considerable
amount of information about the individual. Thus, it may be used to reduce crowding in place of
a phenotype-level distance. The proposed approach computes the symmetric difference [BB91]
between the global information contained in two individuals; while the global information itself is
evaluated resorting to the concept of n-grams [Sue79].

Experimental results demonstrate that the proposed distance is highly correlated with other
phenotype-level problem-specific distance measures, both where individuals are string of bits and
Assembly language programs. Further experiments show that exploiting the proposed metric to
perform fitness sharing in a sample problem produces results comparable to using a phenotype-level
metric.

3.2.2 Linear genetic programming
LGP is a variant of GP that evolves computer programs as sequences of instructions. It was
introduced by Markus Brameier and Wolfgang Banzhaf between the late 90s and the early 2000s
[Ban+97] [BB07], after the seminal work of Friedberg [Fri58]. A traditional, Koza-style GP encodes
individuals as trees. Such tree GPs – or TGPs, as they are sometimes called – are commonly used to
evolve mathematical expressions: leaves correspond to terminals, such as input values, constants or
variables; inner nodes represent functions. Quite differently, LGP evolves a simplified list structure
that represents a sequence of instructions in an imperative programming language. The resulting
individuals represent real programs, although in a simplified language, that can grow to a significant
complexity. Since their appearance, LGPs have been widely used to solve both practical problems
and perform theoretical studies.

In LGP the difference between genotype and phenotype becomes fully apparent. The genotype
is the internal, list-based representation; the phenotype is the actual program resulting from the
interpretation of the genotype; the fitness is the final result of the evaluation of the program (Figure
3.11).

3.2.3 Symmetric difference
In set theory, the symmetric difference [BB91] of two sets A and B is defined as

A△B = A∪B−A∩B (3.8)

In practice, the symmetric difference contains all elements which are in either of the sets and not
in their intersection. The Venn diagram of the symmetric difference is reported in Figure 3.12.

Considering the set as the information carried by an individual, the symmetric difference appears
a plausible formalization of the intuitive idea of distance: when two sets are almost completely
overlapping, their symmetric difference is very small; when they are completely separated, it is big.

Moreover, the symmetric difference exhibits useful properties for a distance: it is commutative
(A△B = B△A); and the empty set is neutral (A△ /0 = A and A△A = /0). The symmetric distance
is also associative, but this fact is negligible in this application.
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Figure 3.11: Distinction between genotype, phenotype and fitness value in an example with LGP
used for Assembly language generation.

3.2.4 Fitness sharing
When a reliable distance metric is defined, one useful application is to exploit it for fitness sharing,
one of many methods to enforce diversity inside the population of an EA [RB97; SK98].

The general idea of fitness sharing is to artificially decrease the fitness of individuals in crowded
areas of the search space. The fitness fi of an individual Ii is modified in a fitness f ′i = f/mi, where
mi is dependent upon the number of individuals in a given radius σs from individual Ii, and their
distance from the individual itself. In particular,

mi =
N

∑
j=0

sh(Ii, I j) (3.9)

where N is the number of individuals in the population, and sh(Ii, I j) is defined as

sh(Ii, I j) =

{
1− (

d(Ii,I j)
σs

)α d(Ii, I j)< σs

0 d(Ii, I j)≥ σs
(3.10)

where σs is once again a user-defined radius, and d(Ii, I j) is a distance measure applicable to the
individuals’ representation. α is a constant parameter that regulates the shape of the sharing function.
In many practical cases α = 1, with the resulting sharing function referred to as the triangular sharing
function [Gol89].

3.2.5 Shannon entropy
In information theory, entropy quantifies the expected value of the information contained in a
message. Shannon et al. [Sha+49] define entropy as the average unpredictability in a random
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Figure 3.12: Venn diagram of the symmetric difference. The area corresponding to A△B is depicted
in grey.

variable, which is equivalent to its information content. The Shannon entropy H of a discrete random
variable X with possible values {x1, ...,xN} is defined as

H(X) =−
n

∑
i=1

P(xi)logb(P(xi)) (3.11)

where P(xi) denotes the probability for variable X to assume value xi, and b is a user-selected base
for the logarithm.

3.2.6 Proposed Approach
In LGP, Shannon entropy can be effectively used as a metric to assess the diversity in a population
at a given generation [CSS05]. The entire population is considered a message, and each allele
appearing in an individual is a symbol: entropy is then computed on the basis of the number of
different symbols and their occurrences.

In a preliminary work [ST08], a variant of this approach is sketched. Instead of considering
just the alleles of each gene, their disposition inside the individual is also taken into account. A
symbol is no longer considered equivalent to a single allele, but to the allele and its position inside
the individual instead. Following the idea that recurring structures might possess meaning, n-grams
of nodes are also regarded as symbols. An n-gram is a group of n items from a longer sequence. For
example, a b, b c and c d are all 2-grams from the sequence a b c d, while a b c and b c d
are 3-grams. Very often n-grams are used for the purpose of modelling the statistical properties of
sequences, particularly natural language [Sue79].

Building on the same principles, a generic genotypic Universal Information Distance (UID) for
individuals in LGP is proposed. Considering two individuals Ii and I j, the UID is defined as

UID(Ii, I j) = |S(Ii)△S(I j)| (3.12)

where S(I) represents the set of symbols in individual I,△ is the symmetric difference as defined in
Equation 3.8, and the operator |S| denotes the cardinality of set S.

In other words, the UID between two individuals is the number of distinct symbols they do not
have in common. Intuitively, when two individuals share many common symbols, the UID will be
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Figure 3.13: Example of symbols computed for alleles and (2,3)-grams for two individuals. Symbols
are represented as Greek letters inside hexagons, alleles as Roman letters inside circles, while their
position in the individual is reported in a square. The symbols common to the two individuals are
ε (corresponding to allele E in position 4), η (2-gram B−C), θ (2-gram C−D) and λ (3-gram
B−C−D). The UID between the two individuals is thus |S(A)△ S(B)| = |S(A)∪ S(B)− S(A)∩
S(B)|= 16

small; on the contrary, if they have no symbols in common, their UID will be high. An example is
reported in Figure 3.13.

When used in practice, symbols for each individual are computed resorting to a hash function of
the n-grams and alleles. It is interesting to notice how the proposed UID, that acts at genotype level
and is quite straightforward to compute, could provide the same information of more computationally
intensive distance metrics that are evaluated at phenotype level: thus, UID could be used for fitness
sharing, delivering the same results as problem-specific metrics.

3.2.7 Experimental evaluation
The correlation between the proposed UID and two phenotypic distance metrics is examined,
in two problems where individuals are encoded as strings of bits, and as Assembly language
programs, respectively. Experiments with an evolutionary toolkit that supports LGP [SSS11b] are
then performed for the two problems, and the effectiveness of UID for fitness sharing is compared to
the previously considered phenotypic distance metrics.

In the all the experiments, the computation of UID is limited to n-grams of order 2 and 3,
as a trade-off between computational efficiency and thoroughness of the approach. Symbols are
computed resorting to the DJB7 hash function.

The proposed approach is tested on two benchmarks: NK-landscapes, a NP-complete problem
where individuals are represented a strings of bits, and a simple Assembly-language generation task.

NK-landscapes
In the NK-landscapes problem [KW89], the individual is a string of bits of fixed length: both the
overall size of the fitness landscape and the number of its local optima can be adjusted by tuning
the two parameters, N and K. Generally speaking, values of K close to N create more irregular
landscapes. Albeit simple, this benchmark is widely studied in the optimization community, because

7http://cr.yp.to/djb.html
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it is proven to be NP-complete [Wei96]. In the following experiments, values of N and K are very
close, in order to obtain a fairly rugged fitness landscape.

Assembly language generation
This second set of experiments targets a simple Assembly language generation problem: the fitness
of a program is the number of bits set to 1 in registry %eax at the end of its execution.

During the Assembly-generation problem, the minimum length of the variable part of a program
is set to 1 instruction, the while the maximum length is set to 1500 instructions. For the initial
population, individuals are generated in order to possess an average of 70 instructions, with a large
standard deviation of 60 in order to efficiently sample the search space. Table 3.3 recapitulates the
possible genes (instructions) appearing in the individuals.

Gene Parameters Prob.
<ins> <sreg>, <dreg> ins={addl, subl, movl, andl, orl, xorl,

compl}, sreg={%eax, %ebx, %ecx,
%edx}, dreg={%eax, %ebx, %ecx,
%edx}

0.33

<ins> <scon>,<dreg> ins={addl, subl, movl, andl, orl, xorl,
compl}, scon={integer in (0,255)},
dreg={%eax, %ebx, %ecx, %edx}

0.33

<ins> <reg> ins={incl, decl, notl}, reg={%eax,
%ebx, %ecx, %edx}

0.33

Table 3.3: Possible genes appearing inside the individuals during the Assembly generation problem.
For each gene, all variables and corresponding values are listed, as well as the probability of
occurrence.

The fitness function used for this experiment is based on both the result of a candidate program’s
execution and the length of its code, and it is defined as

f (I) = 104 · (
N=31

∑
i=0

%eax[i])+max(0,104− length(I)) (3.13)

where %eax[i] is the value of the ith bit of register %eax, while length(I) represents the number of
instructions of candidate program I. Thus, the most important objective is to set to 1 bits in register
%eax, while a small bonus is assigned to individuals that perform the task with a moderate number
of instructions.

Correlation
An important result that it is possible to immediately esteem looking at the figures is how much the
proposed UID distance is well correlated with problem-specific phenotype-level distances. Figure
3.14 plots the UID against the standard Hamming distance for 500 random 50-bit individuals8. The
cloud of points does not stretch down to the origin, nor up to the maximum because it is quite
unlikely to find two identical strings, or two completely different ones, in a random pool.

Figure 3.15, on the other hand, plots the same data for all individuals generated during a run,
until the optimal solution is reached. Since there is a strong similarity between all individuals in the

8Several values are overlapping.
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Figure 3.14: Correlation between the proposed UID distance and hamming distance in the standard
OneMax problem (50 bits)– Sample of 500 random individuals.

same parental group, the cloud stretches down to distance zero. The correlation is even more evident
than in the preceding example.

Figure 3.16 plots the proposed distance against the Levenshtein, or edit, distance for 500 random
programs on the Assembly OneMax problem. Here, differences are more subtle and the number of
overlapping values is reduced compared to the previous case. The triangular shape of the cloud is
indicative: the two distances are better correlated for low values – that is, exactly when they are more
useful: distinguishing between closely related individuals is in fact quite harder than discriminating
between very different ones. The Levenshtein distance is a computationally expensive metric that can
be computed only at the level of phenotype. The proposed UID, on the contrary, can be efficiently
calculated at the level of genotype and it is effective in estimating the distance between similar
individuals.

Fitness sharing

Since the proposed metric shows a heavy correlation with phenotypic distance metrics, its effective-
ness can now be tested in multi-modal problems where a fitness sharing might help to spread the
individuals over the search space. The aim of the following experiments is to show how using the pro-
posed UID for fitness sharing delivers the same results as employing more rigorous problem-specific
distance metrics, that are also more computationally expensive.

The first experiments are performed on the NK-landscapes (or NK-model) benchmark, tuned to
obtain a rugged fitness landscape: the UID is compared to a classical Hamming distance [Ham50].
A second set of experiments is then executed on a simple Assembly-language generation problem,
where the objective is to obtain a program able to set all bits of register %eax to 1. In this latter tests,
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Figure 3.15: Correlation between the proposed UID distance and hamming distance in the standard
OneMax problem (50 bits) – Individuals generated during a run.

the UID is weighted against the Levenshtein distance [Lev66].
In the LGP tool used for the experiments [SSS11b], µ is the population size; λ represents the

number of genetic operators applied at each generation, rather than the offspring size; and σ is the
strength of the mutation operators. Each time a mutation operator is applied to an individual, a
random number r in the interval (0,1) is generated: if r < σ , the operator creates another mutation
in the same individual, and a new r is generated.

It is important to notice that the parameters of the tool used in the trials have not been tuned
to optimality, since the main objective of this experimental evaluation is to assess whether the
fitness sharing mechanism behaves comparably when different distance metrics are applied with an
equivalent radius, even with sub-optimal settings.

NK-landscapes
Parameters of the LGP tool used in the experiments are reported in Table 3.4. The mutation operator
in this case simply changes the value of a random gene, while the one-point crossover selects a
random cut point.

For each landscape, 10 experiments are run with the Hamming distance, and 10 with the UID,
respectively, using equivalent radius measures derived from the correlation described in Subsection
3.2.7. At the end of the evolution, the fitness of the best individual (online fitness) and the average
fitness of the final population (offline fitness) are compared.

From results in Table 3.5 it is noticeable how, for the same NK-landscape, the final online and
offline fitness values are very close, as well as the average distance value between individuals in the
population. In fact, running a two-sample Kolmogorov-Smirnov test on corresponding distributions
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Figure 3.16: Correlation between the proposed UID distance and the Levenshtein distance in the
Assembly OneMax problem (32 bits) – Sample of 500 random individuals.

Parameter Value Parameter Value
µ 32 P(one-point crossover) 0.5
λ 32 P(mutation) 0.5
σ 0.5 Max generations 50

Table 3.4: Parameters used during the experiments with fitness sharing in the NK-landscapes
benchmark.

for an equivalent radius reveals that the distributions are undistinguishable with p < 0.01.

Assembly OneMax
This second set of experiments targets a simple Assembly language generation problem: the fitness
of a program is the number of bits set to 1 in registry %eax at the end of its execution. Table 3.6
summarizes the parameters used for the LGP tool in this experiment.

The mutation operator, in this case, can add a random instruction; remove a random instruction;
or change one or more parameters inside a random instruction, with equal probability. The crossover
can operate on one or two cut points, with equal probability.

Table 3.7 shows the results over 10 experiments with each parameter configuration. At the end
of the evolution, the fitness of the best individual (online fitness) and the average fitness of the final
population (offline fitness) are compared.

Again, the results for an equivalent radius are indistinguishable through a two-sample Kolmogorov-
Smirnov test with p < 0.01.
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Fitness sharing with Hamming distance Fitness sharing with UID
Radius (Ham-
ming)

Online fitness
(avg)

StDev Offline fitness
(avg)

StDev Radius (UID) Online fitness
(avg)

StDev Offline fitness
(avg)

StDev

N=16, K=14, seed=1234567890
5 0.6710 0.0167 0.3655 0.0256 10 0.6739 0.0326 0.3798 0.0391

N=16, K=14, seed=4242424242
5 0.6774 0.0318 0.4094 0.0142 10 0.6948 0.0304 0.4099 0.0235

N=16, K=15, seed=1234567890
5 0.6543 0.0228 0.3819 0.0124

10
0.6468 0.0109 0.3901 0.0137

N=16, K=15, seed=4242424242
5 0.6770 0.0209 0.3912 0.0352 10 0.6671 0.0256 0.4067 0.0316

Table 3.5: Results for the set of experiments on the NK-landscapes benchmark. Experiments
with fitness sharing with the Hamming distance (left) and the UID (right); experiments with a
corresponding radius are reported on the same line.

Parameter Value Parameter Value
µ 10 P(crossover) 0.25
λ 7 P(mutation) 0.75
σ 0.7 Max generations 10

Table 3.6: Parameters used during the experiments with fitness sharing in the Assembly language
generation problem.

3.3 Symbolic Regression of Dynamical Systems

Symbolic regression has many successful applications in learning free-form regular equations from
data. Trying to apply the same approach to differential equations is the logical next step: so
far, however, results have not matched the quality obtained with regular equations, mainly due
to additional constraints and dependencies between variables that make the problem extremely
hard to tackle. This chapter illustrates a new approach to dynamic systems learning. Symbolic
regression is used to obtain a set of first-order Eulerian approximations of differential equations,
and mathematical properties of the approximation are then exploited to reconstruct the original
differential equations. Advantages of this technique include the de-coupling of systems of differential
equations, that can now be learned independently; the possibility of exploiting established techniques
for standard symbolic regression, after trivial operations on the original dataset; and the substantial
reduction of computational effort, when compared to existing ad-hoc solutions for the same purpose.
Experimental results show the efficacy of the proposed approach on an instance of the Lotka-Volterra
model.

3.3.1 Introduction
In recent years, Genetic Programming (GP) gained popularity as an effective optimization technique
[SL09], and its capabilities of automatically uncovering hidden relationships in datasets and produc-

Fitness sharing with Levenshtein distance Fitness sharing with UID
Radius (Leven-
shtein)

Online fitness
(avg)

StDev Offline fitness
(avg)

StDev Radius (UID) Online fitness
(avg)

StDev Offline fitness
(avg)

StDev

3 325,927 7,205.14 312,903 19,800.8 2 320,919 12,608.4 297,899 32,800.8
5 324,939 7,992.28 309,902 27,989.6 3 324,949 8,008.23 315,909 17,616.6
10 318,909 11,422.8 292,901 20,998.7 5 314,930 15,015.5 285,923 32014.3

Table 3.7: Results for the set of experiments on the Assembly-language generation benchmark. Ex-
periments using fitness sharing with the Levenshtein distance (left) and the UID (right); experiments
with a corresponding radius are reported on the same line.
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ing rules to control complex systems haves been proved in several real-world applications [Pic+10]
[SH13].

Differential equations are mathematical equations for an unknown function of one or several
variables that relates the values of the function itself and its derivatives of various orders: they play a
prominent role in engineering, physics, economics, biology, and other disciplines.

The idea of using symbolic regression to learn differential equations is present since the begin-
nings of GP [Koz92]: given the great interest towards this topic, several research lines have followed.
Babovic and Keijzer [Bab+01] propose a dimensionally-aware GP to learn dynamic systems in
hydraulic engineering. Cao et al. [Cao+00] present a GP-based technique where an individual is
a set of trees, representing a system of equations. Coefficients of the equations are optimized via
a Genetic Algorithm, then the system is solved through a numerical integration method and the
resulting equations are finally evaluated against training data. Iba [Iba08] proposes an improvement
over the previous approach, where coefficients are optimized through a least mean square technique,
and a Runge-Kutta method of 4th order is used to build a solution. Bernardino and Barbos [BB11]
use Grammar-Based Immune Programming to tackle the problem. It is important to notice that,
while quite effective, all these concepts rely upon the use of ad-hoc individual construction, and
significant computational costs to first solve the candidate equations and then compare them to
experimental data.

A novel methodology for learning ordinary differential equations (ODE) through symbolic
regression is proposed, whose original idea stems from an invited talk given by Maarten Keijzer
during the GECCO conference in 2013 [Kei13]. Given a system of ODEs, the problem can be
reduced to finding the first-order approximation of each ODE. The approach includes the subsequent
steps:

1. For each equation, standard symbolic regression is used to obtain a small group of candidate
solutions that represent a trade-off between complexity and fitting;

2. A simple derivation procedure, following the properties of the first-order approximation of an
ODE, is applied to each candidate solution, transforming them in ODEs;

3. Finally, corresponding equations are coupled in systems and examined with respect to dynam-
ical behavior and fitting on the original data. The best system is returned to the user as the
solution for the original problem.

Important advantages of the proposed method are the possibility of learning differential equations
using established symbolic regression techniques, instead of devising ad-hoc individual represen-
tations and fitness functions; the greatly reduced computational cost, since the most expensive
procedures are performed a posteriori on a reduced set of candidate solutions; and the possibility of
separately learning each differential equation in a target system, since the first-order approximation
removes dependencies between variables.

Using the Lotka-Volterra model as a case study, the applicability of the proposed methodology is
proved through experimental validation. The described approach is able to regularly find the correct
structure of the original model, even in presence of noise. Results are discussed, and future works
outlined.

The rest of the section is structured as follows: subection 3.3.2 recalls a few necessary concepts
related to symbolic regression and differential equations. The proposed approach is outlined in
subsection 3.3.3. The case study is presented in subsection 3.3.4, while the experimental evaluation
is described in subsection 3.3.5. Results are discussed in subsection 3.3.6, and finally subsection
3.3.7 draws the conclusions and prospects future works.
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3.3.2 Background
Genetic Programming and symbolic regression
Symbolic regression is an evolutionary technique able to extract free-form equations that correlate
data from a given experimental dataset. The original idea is presented in [Koz92]. Candidate
solutions are encoded as trees, with terminal nodes corresponding to constants and variables of
the problem, while intermediate nodes encode mathematical functions such as {+,−,∗,/, ...}. The
fitness function is usually proportional to the absolute or squared error between experimental data,
with parsimony corrections to favor more compact solutions. An example of an individual for a
symbolic regression problem is presented in Figure 3.1.

Differential equations and first-order approximation
In order to clarify the scope of this work, a few basic concepts related to differential equations
are summarized in the following. A differential equation is defined as an equation containing
the derivatives of one or more dependent variables, with respect to one of more independent
variables [Zil08]. The focus of this work is on ordinary differential equations (ODEs), that contain
derivatives as a function of a single variable (e.g. the time). A classical example of a differential
equation is the first-order ordinary differential equation :

y′(t) = f (t,y(t)) y(t0) = y0 (3.14)

where y(t) is a function and y0 is an initial condition.
The (Explicit) Euler method [Eul68] is a first-order numerical procedure for solving ordinary

differential equations with a given initial value: it is the most basic explicit method for numerical
integration of ordinary differential equations. With reference to Equation 3.14, the finite difference
formula can be used to approximate y′(t):

y′(tn) = lim
∆t→0

y(tn +∆t)− y(tn)
∆t

∼= y(tn +∆t)− y(tn)
∆t

(3.15)

Choosing a value ∆t for the size of every step and setting tn = t0+n ·∆t, one step of the Euler method
from tn to tn+∆t = tn +∆t is:

yn+∆t = yn +∆t · f (tn,yn) (3.16)

where the value of yn is an approximation of the solution to the ODE at time tn, so that yn ≈ y(tn).
The error per step of this method is proportional to the square of the step size, while its error at a
given time is proportional to the step size. It is important to notice how the selection of the step size
plays a crucial role in the quality of the results.

A remarkable property of the Euler approximation is the possibility of reconstructing the initial
ODE, under specific conditions. In particular, one can rewrite Equation 3.16 as follows:

yn+∆t − yn = F(tn,yn,∆t) (3.17)

where F is a function which allows to evaluate yn+∆t for any value ∆t . From Equation 3.17 and
looking at the derivative according to ∆t around 0, the result is
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lim
∆t→0

yn+∆t − yn

∆t
= lim

∆t→0

F(tn,yn,∆t)−F(tn,yn,0)
∆t

(3.18)

which can be rewritten as

f (t,y(t)) = y′(t) =
∂F(tn,yn,∆t)

∂∆t

∣∣∣∣
∆t=0

(3.19)

going back to Equation 3.14.
In a practical scenario, Equation 3.17 can be used to iteratively build the approximate solution

of Equation 3.14. At the opposite, assuming that an analytical form of the approximate solution of
Equation 3.14 is available, Equation 3.19 can be used to obtain function f .

3.3.3 Proposed approach
Using Equation 3.19, it is possible to return to the original ODE starting from the first-order
approximation given in Equation 3.17. It is sufficient to find the classical function F in Equation
3.17.

In order to find F , additional data must be computed. Given a standard dataset with values of y
for different values of time t, extra information needs to be added to each line yn, tn, by computing
the values of ∆t and yn +1: in fact, in a real-world dataset, it is not given that ∆t = tn+1− tn will
be constant for every n. Nevertheless, the procedure is trivial: an example is reported in Table 3.8.
Once the new data are obtained, symbolic regression can be straightforwardly applied to the new
dataset, to learn F .

t y

0 20
1.8 16.1
3.5 13.2
5.4 10.9
7.4 8.8
... ...

=⇒

t y ∆t F = yn+∆t − yn

0 20 0 0
0 20 1.8 -3.9

1.8 16.1 0 0
1.8 16.1 1.7 -2.9
3.5 13.2 0 0
3.5 13.2 1.9 -2.3
5.4 10.9 0 0
5.4 10.9 2.0 -2.1
... ... ... ...

Table 3.8: An example on how the values of the additional variables (right) can be easily produced
starting from the original dataset (left). In this case, for each line, computed the values of ∆t and F
to the next point, only, are computed.

One of the known issues of symbolic regression and GP in general is the so-called overfitting:
solutions that closely approximate training data often exploit exclusive features of the dataset, for
example by including terms that model the noise as well. This leads to poor performances on
validation sets. Overfitting is sometimes associated with bloating, that is, the tendency of GP
algorithms to produce bigger and bigger solutions as the evolution goes on. Connections between
overfitting and bloating are still being investigated [VCS10] [ONe+10], but empirical evidence shows
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how it can be beneficial to add parsimony measurements in the fitness function or preserve solutions
of different complexity, in order to contain the phenomenon.

While overfitting is always undesired, it is particularly deleterious for the proposed approach:
even if the F found through symbolic regression performed reasonably well on validation data, when
using the proposed procedure to go back to the original ODE, terms with a limited influence on F
could create degenerate solutions. For this reason, instead of just using the best solution obtained
at the end of the process, it is preferable to have a set of candidate equations, each one a different
compromise on a Pareto front between complexity and fitting on data.

Dynamic systems are usually represented by a set of ODEs and the proposed approach allows
the user to run a symbolic regression algorithm independently on each equation: however, since
it is preferable to work with a set of candidate solutions for each equation, an extra step is needed
to choose the best combination to represent the original system. Thus, the procedure described in
Equation 3.19 is applied to every candidate solution of each set; a set of n-uples, where n is the
number of equations in the original system, is generated by permuting solutions in all sets; degenerate
n-uples, showing a behavior dissimilar from the original data, are discarded; and finally the n-uple
with the least absolute error with regards to the training data is selected. The whole procedure is
summarized in Figure 3.17.

Figure 3.17: Summary of the proposed approach. In Step I, standard symbolic regression is executed
independently on each equation of the original dynamic system: each run returns a set of candidate
solutions of variable size, representing different compromises between complexity and fitting on
training data. During Step II, the obtained sets are transformed into sets of ODEs, following the
proposed methodology, and then permuted. Finally, in Step III, the resulting set of systems of ODEs
is pruned of degenerate equations, the remaining candidate solutions are sorted by fitting on the
original data, and the best solution is returned to the user.
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3.3.4 Case study
In order to attest the viability of the proposed approach, the Lotka-Volterra model [Lot10] is selected
as a case study. This model, also known as predator-prey equations, is a system composed of two
first-order, non-linear, differential equations frequently used to describe the dynamics of biological
systems in which two species interact, one as a predator and the other as prey. The equations have
been extensively used in biology and other fields, such as economic theory [Goo67]. Their form is:

{
dx
dt = x(α−βy)
dy
dt =−y(γ−δx)

(3.20)

where x is the number of prey, y is the number of predators, t represents time, dx
dt and dy

dt represent
the growth rates of the two populations over time. α , β , γ and δ are parameters that describe the
interaction between the two species.

A particular configuration of the Lotka-Volterra model is selected, where the parameters’ values
have been chosen so that no population goes extinct, leading to periodic solutions: α = 0.04,
β = 0.0005, γ = 0.2 and δ = 0.004. Initial populations were taken as x0 = y0 = 20. A plot of the
chosen configuration is reported in Figure 3.18.

Figure 3.18: Plots of the Lotka-Volterra model with parameters used in the experiments. On the left,
the variation of the two population with respect to time (x in black, y in blue/light grey). On the
right, the state plane with x on the horizontal axis and y on the vertical axis.

Following Equation 3.17, the objective is then to find the two functions F and G, first-order
approximations of the first and second differential equation of the Lotka-Volterra model, respectively:

xn+∆t − xn = F(∆t,xn,yn) (3.21)

yn+∆t − yn = G(∆t,xn,yn) (3.22)

A major feature of the proposed approach is the ability to learn the two functions in two separate
and independent runs of the symbolic regression algorithm. Indeed, the reciprocal dependency of the
Lotka-Volterra system has been removed.

3.3.5 Experimental results
Since one of the main advantages of the proposed approach is the possibility of exploiting existing
tools for standard symbolic regression, for the present study the software Eureqa Formulize9 [SL09],

9http://formulize.nutonian.com/

http://formulize.nutonian.com/
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considered a state-of-the-art in the field, is selected. Eureqa has one feature of particular interest
for the stated purpose: instead of returning a single solution per run, it presents the user a group of
solutions that represent a Pareto front for the objectives of fitting and complexity: see Figure 3.20
for an example. In Eureqa, each symbol that can appear in a GP tree is associated with a weight,
and the complexity of a candidate solution is simply the sum of all weights of terms appearing in
it; fitting is computed with respect to the squared error with regards to the training data. It must be
noted that, in principle, any GP-based technique able to preserve individuals of different complexity
in the final population could be used for the proposed methodology.

Each dataset is modified following the procedure described in Section 3.3.3: 200 points are used
for the training set. Since the interest is in exploring the influence of noise and regularity of sampling
on the quality of the final results, for each experiment two datasets are considered: a first dataset
sampled every 2 s, and a second one, where every point of data is sampled between 1.5 and 2.5 s
from the previous one, with uniform probability.

Eureqa is configured to employ its Basic set of functions {+,-,*,/,negation} and terminal
symbols {integer constant, float constant, variable}. In each experiment Eureqa is
run once to stagnation, that is, until the index for the maturity of the population hits the threshold
value of 90%. On the machine used for the experiments, a laptop with an Intel i5-2430M CPU (2
cores, 2 threads per core) at 2.40 GHz and 4 GB of RAM, running to stagnation takes 15-20 minutes,
and around 1010 total fitness evaluations. After each run, Eureqa typically returns about 20 solutions
on its Pareto front.

Noise-free data
In the simplest scenario, no noise is added to the datasets. The first run, with data regularly sampled,
returns 20 candidate solutions for F and 20 candidate solutions for G. Each equation is transformed
into an ODE, following the proposed approach. The resulting 400 systems are then pruned of
degenerate solutions, that is, solutions that converge towards a point in the x,y plane (see Figure
3.19 for an example). The remaining systems of ODEs are finally sorted by fitting on the original
unmodified training data. The same procedure is followed for the dataset with irregular sampling.
This time, 21 candidate solutions are produced for F and 25 for G. The best ODE systems are:{

dx
dt = 0.04114x−0.0004946xy
dy
dt = 0.00367xy−0.1861y

{
dx
dt = 0.04116x−0.0004924xy
dy
dt = 0.003599xy−0.1826y

(3.23)

with the result for regular sampling on the left, and the result for irregular sampling on the right.
Both show the same form of the original Lotka-Volterra model, and a remarkable approximation of
the parameters’ values. As a comparison, in Figure 3.19 the two systems found with the proposed
approach are compared to the systems obtained by simply coupling the best fitting-wise candidate
solutions produced in each run.

Absolute noise
In a second trial, random noise (selected from the interval (−5,5) with uniform probability) is added
to the x and y outputs of the model. On the regularly sampled dataset, Eureqa finds 17 candidate
solutions for F and 20 for G. On the irregularly sampled dataset, 13 solutions for F and 19 for G are
obtained. The best resulting systems are:{

dx
dt = 0.03992x−0.0005548xy
dy
dt = 0.003525xy−0.1916y

{
dx
dt = 0.03946x−0.0005354xy
dy
dt = 0.003662xy−0.1948y

(3.24)
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(a) Regular sampling, noise-free (b) Irregular sampling, noise-free

Figure 3.19: Side-by-side comparison on the noise-free dataset, of the best system found through
the proposed approach (left), and the system obtained by pairing the two fitting-wise best solutions
of each run (right). It is easy to notice how simply pairing the best candidate solutions leads to
degenerate forms or to a lowest fitting on the original training data.

with the result for regular sampling on the left, and the result for irregular sampling on the right.

Noise 5%
In the third experimental run, random noise proportional to the output value is added, ranging from
-5% to +5% with uniform probability. On the regularly sampled dataset, Eureqa returns 16 candidate
solutions for F and 15 for G. On the irregularly sampled dataset, 16 candidate solutions are obtained
for F and 16 for G. The best resulting systems are:{

dx
dt = 0.03947x−0.0004883xy
dy
dt = 0.003706xy−0.1902y

{
dx
dt = 0.03743x−0.0004522xy
dy
dt = 0.003707xy−0.1916y

(3.25)

with the result for regular sampling on the left, and the result for irregular sampling on the right.

Noise 10%
In the last experiment, random noise proportional to the output value is added, ranging from -10% to
+10% with uniform probability. On the regularly sampled dataset, 23 candidate solutions for F and
20 for G are obtained. On the irregularly sampled dataset, Eureqa finds 17 candidate solutions for F
and 18 for G. The best systems are:

{
dx
dt = 0.0362x−0.0004797xy
dy
dt = 0.003306xy−0.1841y

{
dx
dt = 0.03874x−0.0004959xy
dy
dt = 0.003587xy−0.1898y

(3.26)

with the result for regular sampling on the left, and the result for irregular sampling on the right.

3.3.6 Results discussion
The proposed approach is able to find the correct model for the Lotka-Volterra function during each
run, even if the parameters (α , β , γ , δ ) might slightly differ, especially when dealing with noise.
Remarkably, the irregularity of the sampling for the training set does not seem to influence the final
outcome; while the presence of noise predictably returns results of lower quality.

From the experimental evaluation, it is noticeable how Eureqa consistently returns a set of
candidate solutions in the order of 101: since there are only two differential equations in the model,
the search space for coupling the candidate solutions and assessing the results in the second step of
the proposed process explores a search space of 102. However, when dealing with huge systems of
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(a) Noise-free dataset, regular sampling: Pareto fronts for F (left) and G (right). (b) Noise-free dataset, irregular sampling: Pareto fronts for F (left) and G (right).

(c) Dataset with absolute noise, regular sampling: Pareto fronts for F (left) and G
(right).

(d) Dataset with absolute noise, irregular sampling: Pareto fronts for F (left) and G
(right).

(e) Dataset with 5% noise, regular sampling: Pareto fronts for F (left) and G (right). (f) Dataset with 5% noise, irregular sampling: Pareto fronts for F (left) and G (right).

Figure 3.20: Pareto fronts of the solutions found by Eureqa during some of the experiments. The
individual with the correct form of the Lotka-Volterra function is highlighted in red, and it is
noticeable how it almost always lies in the middle of the Pareto front, often showing the biggest
improvement over the previous step.

differential equations, the complexity quickly explodes: if the GP routinely returns n solutions, the
search space of possible systems of m equations would become O(nm). Thus, it would be beneficial
to reduce the number of viable equations in each set before the coupling process. For example,
all equations that, after the derivation process from Equation 3.19, are reduced to a constant, can
be dismissed. This subset, however, includes only 1-2 candidate solutions per set: other methods
to prune the Pareto front from uninteresting models should be explored. From the experimental
results, it is observable how most of the exact forms for the Lotka-Volterra equations always lie
in the middle part of the Pareto front fitting/complexity provided by Eureqa (see Figure 3.20). It
would be interesting to investigate whether this property can be generalized to all problems: in that
case, the extremes of the Pareto front could be excluded; also, from the Pareto fronts, it looks that
often the correct solution shows the biggest improvement with regards to the previous one. These
considerations could be included in a heuristic coupling to reduce the number of associations.

3.3.7 Conclusions and future works

In this chapter, a GP-based methodology to learn ordinary differential equations starting from
experimental data is proposed. The basic idea is reducing the problem to finding Euler’s first-
order approximation of an ODE, that is, a regular equation. Once the starting dataset is modified
accordingly, a standard symbolic regression technique can be applied, obtaining a group of candidate
solutions that represent a trade-off between complexity and fitting to data. Through an inverse
procedure to reconstruct an ODE starting from its first-order approximation, used on the whole
group of candidate solutions, a group of ODEs is acquired. Finally, by coupling the ODEs obtained,
discarding degenerate solutions, and sorting the remaining ones by fitting on the training data, it is
possible to find a system of ODEs that solves the initial problem. From the preliminary experiments,
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it is clear that the coupling step might lead to a combinatorial explosion for the systems to evaluate.
Future works will explore an automated coupling of candidate solutions, using theoretical and
heuristic measurements to return the best set of solutions.
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4. Food Science Applications

Since I joined INRAE, the bulk of the applications I worked on were related to modeling and
optimization of agri-food processes. Food transformation, in particular, has been the focus of my
activities. This chapter provides a summary of the most important research lines I worked on,
together with the description of a international resaerch project I chaired, focused on modelling in
food science and industry.

A first part (Section 4.1) summarizes my work on interactive modelling of food processes,
carried out resorting to machine learning methodologies and evolutionary optimization. The results
illustrated there are the outcome of my co-supervision of Ph.D. students Etienne Deschamps and
Thomas Chabin, AgroParisTech. A second part (Section 4.2) describes a stochastic model I developed
for the action of the pepsin enzyme during digestion. A last part (Section 4.3) is devoted to a summary
of COST Action CA15118 FoodMC, a European networking project on modeling of food processes
that I led between 2016 and 2020.

4.1 Interactive Modelling of Food Processes

The apparent simplicity of food processes often hides complex systems, where physical, chemical
and living organisms’ processes co-exist and interact to create the final product. Data can be plagued
by uncertainty; heterogeneity of available information is likely; qualitative and quantitative data
may also coexist in the same process, from expert perception of food quality to nano-properties
of ingredients. In order to obtain reliable models, it then becomes necessary to acquire additional
information from external sources. Experts of a domain can provide invaluable insight in products
and processes, but this precious knowledge is often available only in the form of intuition and
implicit expertise. Including expert insight in a model can be tackled by having humans interacting
with a machine learning process, through visualization or via specialists in encoding implicit domain
knowledge. In this chapter, three selected case studies in food science portray different success
stories of combining machine learning and expert interaction. This section will show how expert
knowledge can be integrated at different stages of the modelling process, either online or offline, to
initialize, enrich or guide this process.
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4.1.1 Introduction

When dealing with meaningful representations of food systems, several important issues have to be
considered: data can be plagued by uncertainty, particularly when chemical, physical, and biological
phenomena concur to define the process; heterogeneity of available information is also likely, as a
vegetable involved in a process can be characterized by more than 40,000 genes, whereas the quality
of the final product can be assessed using just a few sensory features; qualitative and quantitative
information, from expert perception of food quality, to nano-properties of ingredients, may also
coexist in the same process. Consequently, when applying machine learning to agri-food data, the
user has to carefully account for variance, manage heterogeneous data, and be able to include both
qualitative and quantitative values in the final model.

As gathering data in food science is an expensive and time-consuming process, available datasets
are often sparse and incomplete, which poses a challenge to both human modelling practitioners
and machine learning algorithms. This issue has been long acknowledged by the community, and
ongoing projects have been approved to tackle it, by defining roadmaps to achieve an e-infrastructure
for open science 1, and by fostering cooperation between food scientists and modelling experts 2. In
order to obtain reliable models, it thus becomes necessary to acquire additional information from
external sources. Experts in a specific domain can provide invaluable insight into products and
processes, but this precious knowledge is often available only in the form of intuition and non-coded
expertise. Including expert insight in a model is not a straightforward process, but it can effectively
be tackled by having humans interacting with a machine learning process, through visualization, or
via specialists in encoding implicit domain knowledge [LPT16].

In the following, three selected case studies portray different ways of combining machine learning
with expert interaction, in the domain of food processing:

• first, a model for Camembert cheese ripening is built, encompassing variables from the micro-
scale (presence of bacteria and chemical components) to the macro-scale (sensory evaluations),
relying upon experts to help design the structure of a dynamic Bayesian network;

• a second dynamic Bayesian network model is constructed to help winemakers assess the
appropriate time for harvesting grapes, depending on weather conditions

• a graphical model based on symbolic regression is used to help experts create a model of
bacterial production and stabilization.

Interaction with the experts of each specific process is always mediated by visualization, com-
plemented by the use of targeted questionnaires (first case study), fuzzy-logic models (second case
study), or human-readable equations (third case study). In all considered cases, oriented graphs
are used to provide experts with an intuitive and transparent representation of the model under
construction. While the models’ inner working, ranging from conditional probability inference to
computation of free-form equations, is mostly hidden, users can easily interact with oriented graphs,
where arcs represent correlation between variables, and modify connections created by learning
algorithms, if they are deemed incorrect. For most users, graphs are familiar representations, and
manipulating them is intuitive. When users are dealing with graphs that can be considered small,
with less than 50 variables, node-link diagrams are a well suited portrayal, while matrices become
more appropriate for larger or denser graphs [GFC].

1eRosa European project, http://www.erosa.aginfra.eu/
2COST Action CA15118 FoodMC, http://www.inra.fr/foodmc

http://www.erosa.aginfra.eu/
http://www.inra.fr/foodmc
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4.1.2 Dynamic Bayesian network model for Camembert ripening

Cheese ripening is a good example of a process that human practitioners can achieve with success but
for which several scientific details remain poorly understood. Nevertheless, even for these processes
it is possible to create effective models by harnessing knowledge from experts in the domain and
coupling it with experimental data. This can be achieved by using an appropriate machine learning
framework, that is able to take into account such heterogeneous information. The work presented
in [Sic+11] shows how the described methodology can be applied to the case of Camembert, a
popular French cheese. The desired model goes from micro-scale properties such as concentration
of lactose and bacteria, to macro-scale properties such as color and consistency of the crust, with the
goal to describe the development of the ripening process, up to the prediction of the current phase of
ripening. In Figure 4.1, a few pictures of the cheese ripening process are reported: experts find it
useful to divide the ripening into 4 distinct phases.

Figure 4.1: Pictures of Camembert cheese during the ripening process. There are visible changes in
the cheese’s rind, color, and aroma during the ripening.

The approach used in this experiment is a dynamic Bayesian network (DBN) [Mur02], a variation
on a classical Bayesian network [Pea14]. Bayesian networks are probabilistic models widely used
to encode knowledge in several different fields: computational biology and bioinformatics (gene
regulatory networks, protein structure, gene expression analysis), medicine, document classification,
information retrieval, image processing, data fusion, decision support systems, engineering, gaming
and law. BNs are directed acyclic graphs, where each node represents a variable in the problem, and
links encode correlations between variables. An example of BN is reported in Figure 4.2.

Figure 4.2: On the left, a directed acyclic graph. On the right, the parameters it is associated
with. Together they form a Bayesian network BN whose joint probability distribution is P(BN) =
P(A)P(B|A,E)P(C|B)P(D|A)P(E).
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Like a BN, a DBN is a graph-based model of a joint multivariate probability distribution that cap-
tures properties of conditional independence between variables; in the graph, nodes Xi(t), i = 1, ...,N,
represent random variables, indexed by time t. Differently from a regular BN, a DBN is in fact
able to encode dependencies between the same variable over multiple instants of time, providing a
compact representation of the joint probability distribution P for a finite time interval [1,τ] defined
as follows:

P(X(1), ...,X(τ)) =
N

∏
i=1

τ

∏
t=1

P(Xi(t)|Pa(Xi)(t)) (4.1)

where X(t) = X1(t), ...,XN(t), is called a slice, and represents the set of all variables indexed by
the same time t. Pa(Xi)(t) denotes the parents of Xi(t). P(Xi(t)|Pa(Xi)(t)) denotes the conditional
probability function associated with the random variable Xi(t) given Pa(Xi)(t). The joint probability
P(X(1), ...,X(τ)) represents the beliefs about possible trajectories of the dynamic process X(t).
DBNs are useful tools for combining expert knowledge with data at different levels and length
scales. The structure of a model (e.g. the directed graph) can be explicitly built on the basis of
expert knowledge, or automatically learned from data by an algorithm [CBL97]. In practice, a
combination of the two approaches is commonly used, with a first, automatically-learned structure
subsequently corrected by humans, resorting to graphical user interfaces such as BayesiaLab 3 or
GeNie [Dru99]4. Once the structure of a DBN is defined, parameters (i.e. conditional probability
functions) can be automatically obtained without a priori knowledge on the basis of a dataset, all
through a deterministic machine learning procedure known as parameter learning.

In this case study, data is gathered from 6 experiments on the cheese ripening process, each
experiment lasting 41 days, with a sampling every day. The information obtained concerns the
temperature of the ripening chamber (T , ◦C), relative humidity (RH, %), and the concentration
of lactose (lo, g/kg), lactate (la, g/kg), and the bacteria Kluyveromyces marxianus (Km, cfu/kg),
Geotrichum candidum (Gc, cfu/kg), Penicillium camemberti (Pc, cfu/kg), and Brevibacterium
aurantiacum (Ba, cfu/kg). During each experiment, several Camemberts are destroyed to be
analyzed, with a considerable economic investment for the producer. At the same time, experts
are interviewed to provide additional information. The study involves two groups of experts: 4
cheesemakers with over 15 years of expertise in the industry, and 8 scientists with a track record
of over 10 years of research on cheese processes. The questions posed to the experts are carefully
constructed in order to elicit expert knowledge, with methods ranging from open-ended questions to
focus groups. Values of the variables are discretized in 2 to 12 classes each, depending on expert
judgment [Bau+10].

Following cheesemakers’ considerations on the ripening process, the global model is divided into
two parts, that are built independently and then linked: M1 reproduces the temporal links between
measured experimental data, simulating how such quantities vary during the ripening process;
while M2 is derived almost entirely from the expert knowledge gathered using questionnaires, and
provides a more qualitative assessment between sensory information such as flavor, texture, color,
and the ripening phase. Camambert cheesemakers traditionally identify four different phases in
the ripening process. Figure 4.3 shows the final structure of the DBN obtained after the learning
process. Variables between M1 and M2 are used to link variations in measurable quantities to
sensory properties of the cheese.

3http://www.bayesia.com
4https://www.bayesfusion.com/

http://www.bayesia.com
https://www.bayesfusion.com/
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Figure 4.3: Final DBN model for the Camembert cheese ripening process. The part denominated M1
represents the variables taken mainly from experimental data, whereas part M2 represents variables
derived from expert knowledge and assessment. Grey nodes represent constraints defined by experts.
Figure redrawn from [Sic+11], with permission from Elsevier.

Figure 4.4 presents an example of predictions of the dynamics in the process. It is noticeable
how the model is able to satisfyingly reproduce the dynamics of variables tied to microbial growth,
substrate consumption, and sensory properties, for different temperature conditions. Experts ulti-
mately assessed model simulations resorting to classical two-dimensional plots against test data, and
were satisfied with the results.

4.1.3 Decision-support system for grape maturity prediction

Predicting the right moment to harvest grapes intended for wine production is a task that traditionally
is left to specialists in the field. Still, as repercussions of climate change make local weather more
unpredictable, experts can use machine learning techniques as a decision support tool, helping them
to deal with modified conditions. Such decision support systems are commonly defined as interactive
computer-based systems that help organizations in decision-making activities.

In viticulture, some decision support systems are already in use, for example to prevent mildew
[Ray+10]. Grape berry maturity is analyzed in [Dai+09] where the authors built mechanistic
models to predict the concentration of sugar in grapes. Other modelling techniques based on
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Figure 4.4: (color online) Predictions of the Camembert cheese ripening model for the evolutions
of (top row) microbial growth (Km, Gc, Ba in decimal logarithm scale); (middle row) substrate
consumption (lo, la) and (bottom row) sensory properties (RH, Pc coat and odor). The DBN
model’s prediction are represented as lines, versus raw data, represented as points, for three different
ripening processes, carried out at 8 ◦C (marked with +), 12 ◦C (marked with ◦) and 16 ◦C (marked
with ⋄). Figure reproduced from [Sic+11], with permission of Elsevier.

spectroscopy predict maturity indicators [FBR15]. These decisions support systems are based solely
on experimental data, and do not integrate experts knowledge in order to predict grape maturity.
As the human knowledge gained over years of wine production is invaluable and often includes
conditions that have not been measured in recent times, it is only sensible to include it as much as
possible in the target framework. Expert knowledge handling was already successfully used in the
field of viticulture in [Cou+12]. Similar to the proposed approach, their model relies on fuzzy logic
but to predict vine development with two indicators, vigor and precocity. In order to predict grape
maturity, the innovative work presented in [Per+15] offers a good example of how human expertise
can be employed to fill the gaps in experimental data, with the final objective of training a machine
learning approach. This study represents the basis of the current work.

For this case study, data related to 66 parcels of land in the Loire Valley is collected over
the course of 27 years (1988-2015), for a total of 1,086 data points describing weekly average
temperature (T , ◦C), relative humidity (RH, %), insolation (Ins, hours of sunlight received per
day, h/day) and rainfall (Pl, mm). Further data on sugar concentration (S, g/l) and acidity (Ac, g/l
Eq H2SO4) of the grapes are collected every week, when 200 berries of Cabernet-Franc randomly
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sampled from the parcels are crushed with a blender and subsequently analyzed. It is important
to notice again how obtaining data is an expensive and time-consuming process, and it has to
be integrated by expert knowledge, in order to improve the knowledge base eventually used for
modelling. For this case study, human expertise is collected through a synthesis of the available
literature and industrial reports, performed by 4 scientists and 5 winegrowers working in the areas
considered in the study.

As for the previous case study, a Dynamic Bayesian Network proves particularly suited for this
application, as such technique makes it possible to employ qualitative and quantitative variables,
at different scales, in the same model. The network is designed with the help of the experts,
through a trial-and-error process that includes several steps of structure visualization, correction,
and analysis of the predictions, initially presented in [Bau+15]: the resulting structure is shown in
Figure 4.7 (top). In this particular case study, even with an established structure, computing the
parameters of each node is not trivial. Following experts’ assessment, in fact, input is discretized
into 8 to 15 classes for sugar, acidity, sugar variation, acidity variation, insolation, pluviometry,
humidity and temperature. This discretization, featuring a relatively high number of classes when
compared to more traditional applications of BNs, leads to conditional probability tables with a
considerable amount of combinations: so many, that some of these combinations are not present
in experimental data, and thus probabilities for these cases cannot be straightforwardly learned;
resorting to experimental data for parameter learning, only, would leave too many gaps. A possible
solution to the issue is to resort to experts again, formalizing their knowledge of the process through
fuzzy logic mathematical functions.

Fuzzy logic [Zad65] is an extension of the binary logic, where a set is defined by its membership
function. A value, x, belongs to a fuzzy set with a membership degree µL, with 0≤ µL(x)≤ 1, see
Figure 4.5. If define L as a set of Low insolation, the membership degree µL(x) of a given insolation
value x can be defined as the level up to which insolation x should be considered as Low.

Figure 4.5: Example of three fuzzy sets Low, Medium, High, with µL(x): the membership degree in
the Low fuzzy set and µM(x): the membership degree in the Medium fuzzy set.

Fuzzy sets for the four meteorological variables are then used to build 46 linguistic rules, e.g.
if insolation and pluviometry are Low, then the sugar increase is high. Each rule is associated by
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the experts to one of the four classes of meteorological condition, see Figure 4.6, and is activated
according to the activation degree of each rule which define the class. Each class of meteorological
condition corresponds to a certain variation of sugar and acidity for one day. The sum of variations
on 7 days is performed to produce global variation over the week. This variation of sugar or acidity
is added as an input to the DBN.

Figure 4.6: Definition of classes related to meteorological conditions defined into four classes for
sugar and acidity concentration evolution expressed in g/L. Class index 0: Bad climatic conditions;
Class index 1: Not favorable climatic conditions; Class index 2: Standard climatic conditions; Class
index 3: exceptional climatic conditions.

The fuzzy logic model is created to produce data for combinations of input variables associated
to equiprobability in the probability tables of the DBN; equiprobability, in turn, is associated to
combination of input variables never observed in experimental data.

The complete structure of the framework, including the coupling fuzzy logic-DBN is shown in
Figure 4.7. The first step (top) corresponds to the DBN learning based on experimental data. This
step allows to produce probability table necessary to perform global predictions. However, some
combinations of variable are absent from experimental data. For these specific cases, a probability
table is updated using a fuzzy model (bottom). A simulated database is created in variable ranges
of interest and variations of sugar and acidity can be produced. These data are included in parallel
to experimental data and make it possible to define probabilities in any meteorological conditions
necessary.

In order to evaluate the benefit of adding human expertise, the predictions were successively
performed with the DBN model, the fuzzy model, and then with combined DBN-fuzzy models, see
Figure 4.8. Best results are obtained by learning from both experimental data and expert knowledge.
The resulting model is able to obtain satisfactory predictions, showing good R2 values (a statistical
measure of how close the data are to the fitted regression line) [SJ60] for both sugar content and
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Figure 4.7: Proposed framework for the prediction of acidity and sugar content in grapes. (top)
Structure of the DBN designed for the prediction of acidity (Ac) and sugar content (S) of grapes.
(bottom) Parameters of DBN are updated with data produced by expert knowledge, making it possible
to learn robust conditional probability tables for the nodes.

acidity, with R2
S = 0.85 and R2

Ac = 0.83, respectively. In comparison, the DBN model alone obtains
R2

S = 0.80 and R2
Ac = 0.74 and the expert model alone obtains R2

S = 0.81 and R2
Ac = 0.83. Errors of

predictions are shown in Figure 4.8. It is noticeable that at extremes values, the influence of the
coupling DBN-Fuzzy approach is visible with significant improvement.

In the current context of climate change, exceptional meteorological conditions are expected to
become more frequent. Learning process performed on experimental data of past years, only, risk to
be unsatisfactory. The building of fuzzy models to integrate DBNs offers the possibility to enlarge
the range of possible meteorological conditions and make the model more flexible and more robust.

4.1.4 Interactive symbolic regression modelling for bacterial production and stabilization
Concentrates of lactic acid bacteria are widely used in the food industry for products such as yogurt,
cheese, fermented meat, vegetables and fruit beverages. The quality of bacterial starters, defined
by the viability and acidification activity of the cells, depends on numerous control parameters
across the different steps of the production and stabilization process, summarized in Figure 4.9 and
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Figure 4.8: Prediction error according to class of values, for sugar (top) and acidity (bottom). For
each class, the error is reported for the DBN model (green), the fuzzy model (orange) and combined
model with DBN and fuzzy method (blue). The combined model clearly obtains the best results.

described in more details by Champagne and al. [Cha+91]. The bacterias levels of resistance to the
processes is also dependent to the biochemical and biophysical properties and organization of their
membrane [Vel+15; Vel+14] which in turn is determined by the genomic expression of the bacteria
itself. For these reasons, modelling the bacteria resistance to the process is a complex problem
due to many possible non-linear dependencies between the different length scales and steps of the
process. In addition, no models are available for several sub-parts of the process, and even those that
can be found in literature [Pas+11] are often too simple to be included in a wider framework.

One successful approach in modelling complex processes is to stack smaller models such that
predictions are propagated between multiple layers formed by these sub-components [Cro+03;
DVG07]. In such cases, typically, rich datasets and vast amounts of knowledge are available to
describe the stacked components and their interactions. When little data is available, and prior
knowledge is limited, mathematical regression techniques can be used to model these complex
systems [Ped+11]. However, a multitude of candidate models can be obtained through these
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techniques. Deciding which of these models is the best with respect to the study domain and problem
at hand, may be carried out automatically based on a fitness criteria, or delegated to domain experts
[KPB14]. While the former is efficient but can result in models that do not capture the reality of
the underlying system, the former may be grounded albeit time-consuming. Similarly to Turkay et
a. [Tur+17], the proposed approach uses mathematical regression to generate candidate solutions.
However, the novelty is the combination of automatic evaluation of candidate models with expert
evaluations to ensure both model robustness and validity.

The dataset in this case study concerns the full process of bacteria production and stabilization,
with 49 variables measured at 4 different steps (fermentation, freezing, and storage) and at 4 different
fermentation conditions (22 ◦C and 30 ◦C, with the fermentation stopped at the beginning of the
stationary growth phase and 6 hours later). The variables consists of transcriptomics, composition of
fatty acid membrane, acidification activity and viability [Vel+15]. Such a large number of variables
requires peculiar methods to deal with. Using machine learning capacity to provide automatic
modelling enable us to find possible dependencies.

Figure 4.9: Steps of the freeze-drying process. Control parameters at every point in the process chain
can influence the quality of bacterial starters.

From a vast number of possible dependencies between the measured variables, an automatic
methodology can identify the most relevant ones, and combine them to obtain a global model. The
main problem of this approach is that the number of variables is far superior to the number of samples
in the dataset. The key idea is to remember that experts possess invaluable process knowledge that
can considerably improve the robustness of the global model. While formalizing this often-implicit
knowledge is not trivial, experts’ insights can be effectively included in the modelling process by
resorting to interactive approaches. To achieve these objectives, the software LIDeOGraM (Life
science Interactive Development of Graph-based Models) is introduced, a semi-supervised model
learning framework, based on regression analysis [Cha+17a; Cha+17b]. LIDeOGraM is able to
obtain free-form equations for each variable in the process, as a function of all other variables. Each
equation, describing a sub-part of the global process, can be considered a local model. Such models
should fit the experimental data, and at the same time be deemed plausible by the experts. However,
when using an automatic technique without expert guidelines, these two goals are often incompatible:
it is always possible to find a polynomial equation that perfectly fits the data points, for example
with a complex equation featuring as many parameters as data points available but such an equation
could overfit the dataset, failing to represent the underlying relationship between the variables, and
ultimately poorly predict the unseen data.
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To avoid this issue, every variable in LIDeoGraM is associated with a set of candidate equations,
obtained through symbolic regression [Koz92]. Eureqa5 [SL09], a commercial software specialized
in symbolic regression, is able to obtain a set of possible equations for every variable in a given
dataset. A local model can thus be associated to each variable by selecting one of the equations in
the set. Symbolic regression makes it possible to effectively search the vast space of all possible
mathematical expressions, taking into account both the fitting of the equation and its complexity
– indeed, more complex equations tend to be overfitted, while simpler ones are often unable to
characterize the data. A collection of local models will then constitute the base for a global model,
built using an evolutionary optimization algorithm [De 06] that stochastically searches the space of
all sets of local models for the one that best fits the global dataset. To evaluate a candidate global
model, the input nodes are set to known experimentally-measured values, and the errors in the
prediction are averaged over all nodes, thus obtaining a global error, that the evolutionary algorithm
aims to minimize.

Human experts are then involved in the modelling process, via a graphical user interface, showing
a node-link graph visualization of the global model, where each node represents a variable, and each
link marks a possible dependency between two variables. This interface allows experts to visualize
the results from Eureqa, contribute with their knowledge, and finally lead the search for an efficient
global model.

For this objective, two views are available. The Local model view shows an overall qualitative
view of the equation sets given by Eureqa for each variable. This view enables nodes with no
satisfactory equation in terms of fitting and/or complexity to be easily spotted. The Global model
view shows the predictive capability of the current global model, for each variable. This view enables
users to rapidly assess which variables in the global model are poorly predicted, but also which ones
may be responsible for the poor predictions of their dependent nodes.

LIDeoGraM has several ways to add expert knowledge. First, it is possible to attribute a category
to each variable, and specify the available dependencies between categories for the symbolic
regression. A category of nodes can represent a step in the process, or a scale of information. This
interface is presented in Figure 4.10.

After obtaining a set of equations for every node, experts can then filter it by specifying that
certain kinds of node-to-node dependencies are not allowed. Experts can then manually add new
equations in the set of candidate local models for a node, and eventually restart the search for a
global model after putting all their constraints in place. With LIDeOGraM, it is possible to learn
global models for the production and stabilization of bacteria. Such models can then be used to
better understand how to preserve the quality of the culture during the process, foster the emergence
of new hypotheses, and design new experiments, whose data could in turn be used to further improve
the global model. These functionalities are demonstrated in Figure 4.11.

Results obtained for the previously described dataset [Vel+15] are presented in Figure 4.12.
In a preliminary experiment on the presented framework, a user with 20 years of experience

on freeze-drying process is able to inject their knowledge into the optimization process. Out of a
total of 232 equations generated for the local models, the expert deletes 5 equations, and 2 nodes,
removing in turn 14 more equations in which the 2 deleted variables are involved. The expert then
restarted symbolic regression on 3 nodes, obtaining 12 new equations. At the end of this process, the
global optimization results are better than without the expertise, with the average error computed
on all nodes being 0.801, using only the automatic approach, and 0.787 combining the automatic

5http://nutonian.com/products/eureqa/

http://nutonian.com/products/eureqa/


4.1 Interactive Modelling of Food Processes 147

Figure 4.10: Screenshot of the interface allowing to choose the authorized links between the defined
classes. A link between two classes means that all variables associated to the parent class can be
used in the equations for all variables associated to the child class. The displayed graph represents
the selected constraints chosen for the presented results.

approach with expert interaction. Figure 4.13 shows the evolution of the mean error per node, for
both the automatic and the combined approaches. The results are still not completely satisfactory,
as the prediction error for some of the nodes remains large, but the positive influence of the expert
on the machine learning process is already substantial. In future works, more data points will be
collected, and experiments with several other experts on the freeze-drying process are scheduled.

4.1.5 Discussion and guidelines

Computational Modelling is an iterative process that comprizes three main activities: designing
a model where the aim is to define a suitable representation for objects and their relationships;
exploring the model to understand its behavior, and tuning it to find the best or optimal parameter
values to obtain good predictions. The proposed approach in building interactive machine learning
systems for food science and technology focuses on involving experts of the process in one or more
stages of this modelling pipeline, facilitating their interactions with the machine learning process
through visual representations.

For the first two case studies, on modelling Camembert cheese ripening and grape maturity
prediction, expert knowledge is integrated primarily at the design stage of model building. Using
established methodologies from the knowledge elicitation domain (e.g. interviews, case studies, and
observations), expert knowledge can be collected, coded and formalized into a probabilistic model.
The goal, in these cases, is to create a knowledge representation of the process that matches the
domain expert’s mental model.

For the last case study, on modelling bacterial production and stabilization, experts knowledge is
integrated at each stage of the modelling process. At the design stage, to structure the relationship of
variables and system constrains prior to launching the automatic machine learning and optimization
algorithms; and post-model learning through various user interactions via the LIDeOGraM interface.
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Figure 4.11: Screenshot of LIDeOGraM. The left side shows a graphical model representing the
mean fitness of the local models obtained by symbolic regression. The top-right part is the list of
equations proposed by Eureqa for the selected node, and the bottom-right part shows a plot of the
measured versus predicted data associated to the selected equation.

For instance, domain experts can add or remove variables, classes and constraints. They could filter
local models, or add new equations to explore how well they fit their data.

While interaction with experts is invaluable even with classical approaches, in the food science
domain it is necessary to argue for a more user-centered design approach to machine learning,
whereby users can participate at each stage of modelling process, from design to exploration and
tuning. This involvement not only helps domain experts understand computational models better, but
it allows them to confront their domain knowledge and know-how with with the results of machine
learning, ultimately making machine learning more transparent. The authors’ informal evaluations
and discussions with domain experts allowed them to observe the following:

• providing visual representations of machine learning models improves user engagement
and encourages feedback, especially if domain experts are involved at the design stage and
exploration stages.

• graph-based model representations are easy to understand, but multiple linked representations
are more helpful when trying to understand the model.

• experts tend to take a multi-step approach to model validation, first to verify existing knowledge
(most likely to build trust in the ML algorithm), then to assess new predictions. When doing
so, they first look at the general high-level dependencies between variables, before looking at
detailed information such as values of weights, or data in the conditional probability tables
when DBNs are involved.

It remains to prove whether making machine learning more transparent helps domain experts
better explore and validate computational models in food science. More research is needed to study
whether user-centered design for modelling improves decision making and helps indeed build trust
in constructed models.
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Figure 4.12: (color online) Graphical model generated in LIDeOGraM representing a (optimized)
global model. Nodes are organized in 4 categories: experimental conditions, genomic scale, cellular
scale, and population scale. A Pearson correlation coefficient, calculated using the predictions from
the global model compared to the experimental measurements, is printed below each node. An edge
between two nodes means that the parent variable is used in the equation chosen to calculate the
child variable. The color of an edge depends on the Pearson correlation coefficient, which represent
the quality of the prediction. The color varies from red for a poor-quality prediction to green for a
satisfying one.

4.2 Modelling the Action of the Pepsin Enzyme During Digestion

This section presents a novel model of protein hydrolysis and release of peptides by endoproteases.
It requires the amino-acid sequence of the protein substrate to run, and makes use of simple Monte-
Carlo in silico simulations to qualitatively and quantitatively predict the peptides that are likely to be
produced during the course of the proteolytic reaction. In the present study, the model is applied
to the case of pepsin, the gastric protease. Unlike pancreatic proteases, pepsin has a low substrate
specificity and therefore displays a stochastic behavior that is particularly challenging to model
and predict. Two versions of the model are studied and compared with peptidomic data obtained
during pepsin hydrolysis of bovine lactoferrin. The first version of the model takes into account
cleavage probabilities according to the amino acids in position P1-P1’ only, whereas the second
version also accounts for the influence of neighbor amino acids (P4, P3, P2, P2’, P3’, P4’) and
peptide terminal ends. The second version of the model was able to reproduce many real-world
features of the reported behavior of pepsin, such as the peptide size distribution, or the quantity
of free amino-acids. More remarkably, 50% of the experimentally monitored peptides (44/87) lay
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Figure 4.13: Comparison of an experiment on the learning of the freeze-drying model, using
LIDeOGraM with and without human interaction. The term fitness here refers to the average error,
computed on all variables in the problem. The generations are the iterations of the evolutionary
algorithm used for optimizing the global model.

within the 120 most abundant simulated peptides. The presented methodology has the advantage of
being applicable not only to different proteins, but to different enzymes as well, as long as cleavage
frequency data are available.

4.2.1 Nomenclature
Pn: amino acid in the n-th position to the left (i.e. N-terminal) of a target peptide bond.
Pn’: amino acid in the n-th position to the right (i.e. C-terminal) of a target peptide bond.
P(A): probability of event A.
P(A = a1): probability of event A obtaining outcome a1.
P(A|B): conditional probability of event A, given event B.
P(A = a2|B = b1,C = c3): conditional probability of event A obtaining outcome a2, knowing that
event B obtained outcome b1 and event C obtained outcome c3.

4.2.2 Background
Gastric digestion, while integral to the interaction of animal bodies with foods, is far from being
fully characterised. Various factors affect food digestion - some connected to the properties of the
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food (e.g. buffering capacity, mechanical and structural properties) and others to the gastric process
(e.g. endogenous secretions, shearing forces). [Che+11][Guo+15][FXS14] If a complete modeling
of the fate of foods in the stomach is a very challenging area, several of these aspects have been
modeled by in silico approaches. [Le +14][FS10] With the development of peptidomic approaches,
an increasing number of studies are also dedicated to the identification of bioactive peptides during
food digestion. [Bar+14][NF15] Computer-aided methods have been developed alongside, to predict
which peptides are susceptible to be released by digestive enzymes. [Min+08] However, the first
protease of the GI tract, pepsin, has a low substrate specificity and therefore releases a great variety
of peptides at the stomach level. It is therefore very difficult to predict the composition of protein
hydrolysate that is emptied into the small intestine, i.e. the substrates of pancreatic proteases.

4.2.3 Pepsin

Pepsin is the enzyme responsible for protein digestion in the stomach. It is active in the low pH
gastric environment; activity is zero at pH 6.5 and is highest around pH 2. [Joh+07] Pepsin in dilute
hydrochloric acid is routinely used to simulate gastric conditions for in vitro assessment of protein
digestion, [Min+14][GVS86] and since the 1950s, reports have been released that describe its
proteolytic interaction with substrate proteins. [Chr55][Tan63][Kei92] One paper, by Hamuro et
al., [Ham+08] describes the substrate specificity of pepsin in some detail, presenting the probability
of proteolytic cleavage according to the amino acids flanking the cleavage site.

4.2.4 In-silico models

In silico simulators have been developed to predict the sequence of peptides that may be released
after peptic digestion. These include Expasy PeptideCutter [Gas+05] 6 and MEROPS [Raw+14]. The
present study details an in silico model for protein hydrolysis by pepsin that departs from such quali-
tative prediction tools, in that the relative abundance of both substrates and products are quantitatively
modelled during the course of the reaction. Additionally, pepsin substrate specificity values from
Hamuro et al. [Ham+08] are used, which differ slightly from those used by PeptideCutter [Gas+05]
or MEROPS7 [Raw+14]. To develop and optimise the model, it was compared with experimental
data from the peptic digestion of bovine lactoferrin, as published by Grosvenor et al.. [GHD14] This
data was selected as suitable for model development because it used a simple purified protein system,
and tracked not only the sequence of peptides released over the digestive time course, but provided
quantitative information on peptide relative abundance that could be compared to the model outputs.
The cleavage probability values from Hamuro et al. [Ham+08] were selected because of the greater
specificity this team identified for pepsin, compared to previous reports. Also included was the effect
of terminal residues on cleavage probabilities presented in Powers et al. [PHM77]

Featuring stochastic components, the proposed approach belongs to the category of Monte-Carlo
models [Rip87], computational algorithms that rely on repeated random sampling to obtain numerical
results. The basic idea behind these techniques is to use randomness to solve problems that might be
deterministic in principle, but for which complete information is not available. Monte-Carlo models
are often used in physical and mathematical problems, [Kro+14] and are most useful when it is
difficult or impossible to tackle the case study with other approaches.

6expasy.org/peptidecutter
7merops.sanger.ac.uk, accessed December 2016.

expasy.org/peptidecutter
merops.sanger.ac.uk
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Figure 4.14: Flowchart of the proposed approach for the in silico simulation of enzyme behavior.
The parts highlighted in red include random number generation.

4.2.5 Mathematical model
The objective of this article is to propose an in silico model for enzyme behaviour, simple enough to be
run without resorting to computational clusters or super-computers, and at the same time able to return
results that are qualitatively interesting for the end user. For the model to be computationally feasible,
it cannot take into account the exact 3D structure of a protein, as finding the correct three-dimensional
structure of a target amino acid sequence is in itself very difficult (NP-hard), requiring intensive
calculations in a time that grows non-polynomially with the problem dimension. [Fra93] In practice,
these problems cannot be solved exactly. Nonetheless, implicit information on enzyme behavior
related to protein structure can be gathered from other sources: experiments on enzyme cleavage
frequency on different proteins, [Ham+08] databases reporting disulfide bonds or glycosylations on
the protein, [Con+14] and results for enzyme activity in proximity to the peptide termini [PHM77].

The proposed approach is a simple Monte-Carlo model, [Rip87] with the following flow (a more
rigorous description of the proposed algorithm is reported in Figure 4.14):

1. The model is initialized with a user-defined number of copies of the target protein. For each
copy, only the amino acid sequence is considered, including the presence of disulphide bonds
or glycosylations.

2. At each iteration, a random bond between two adjacent amino acids is selected, with uniform
probability on all peptide bonds.

3. The model then evaluates the cleavage probability for the bond P1-P1’, P(cleavage|P1,P1′),
based on experimental data [Ham+08] and possibly heuristic considerations (see below the
discussion for Model II). A random number (0,1) is generated, and if the number is below
the computed probability, the cleavage is considered successful.

4. If the cleavage is successful, the selected protein is removed, and the two resulting peptides
are added to the model.
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5. The algorithm goes back to point 2, unless a user-defined stop condition is satisfied. Such a
stop condition might entail reaching a specific degree of hydrolysis (DH), or a time limit.

As the key element of the model lies in the computation of the cleavage probability for a certain
bond, it is worth discussing this feature in more detail. Data from Hamuro et al., [Ham+08] reported
in Table 4.1, provides a good estimation of the frequency of pepsin action, if the amino acids to the
left (P1) and to the right (P1’) of a bond are known. Considering pepsin’s activity as a stochastic
process, the information on frequency can be easily interpreted as a conditional probability of cutting
a bond, for example, P(cleavage|P1 = Y,P1′ = F) = 0.65.

Table 4.1: Frequency of pepsin cleavage between two amino acids, P1 (columns) - P1’ (rows). Data
taken from Table 3a in Hamuro et al. with permission from Wiley [Ham+08]

F L M C E W Y D A Q N T S G V I K H R P Ave.
Y 65% 68% 30% 25% 70% 71% 36% 48% 48% 47% 39% 23% 31% 17% 11% 7% 0% 0% 0% 0% 33%
F 85% 84% 64% 75% 53% 40% 33% 37% 38% 24% 28% 21% 5% 9% 8% 8% 0% 0% 0% 0% 28%
W 60% 60% 50% 57% 63% - 50% 17% 17% 33% 38% 17% 23% 17% 24% 30% 0% 0% 0% 0% 28%
I 65% 63% 62% 40% 36% 15% 20% 42% 30% 40% 25% 18% 13% 9% 9% 0% 2% 0% 0% 0% 24%
M 83% 58% 42% 0% 29% 33% 25% 20% 30% 20% 0% 11% 0% 11% 6% 0% 0% 0% 0% 0% 21%
V 50% 53% 61% 21% 31% 10% 16% 25% 28% 23% 16% 11% 12% 0% 4% 2% 0% 0% 0% 0% 19%
L 64% 56% 66% 36% 21% 29% 25% 12% 16% 7% 4% 8% 4% 13% 7% 1% 0% 0% 0% 0% 18%
C 20% 54% 0% 50% 36% 22% 0% 33% 6% 33% 25% 0% 20% 12% 0% 18% 0% 0% 0% 0% 17%
A 55% 54% 38% 18% 35% 8% 9% 13% 14% 7% 9% 7% 6% 4% 3% 2% 0% 0% 0% 0% 16%
E 42% 45% 29% 20% 9% 24% 19% 6% 6% 2% 0% 0% 4% 0% 4% 6% 0% 0% 0% 0% 10%
D 44% 46% 38% 0% 11% 21% 17% 5% 5% 0% 5% 2% 2% 4% 0% 0% 0% 0% 0% 0% 10%
R 42% 34% 26% 29% 9% 13% 16% 9% 8% 6% 4% 0% 5% 3% 0% 0% 0% 0% 0% 0% 10%
N 42% 45% 7% 0% 13% 0% 11% 0% 4% 5% 0% 0% 4% 0% 0% 0% 0% 0% 0% 0% 9%
S 52% 42% 22% 0% 4% 6% 14% 2% 5% 0% 0% 5% 2% 0% 3% 0% 0% 0% 0% 0% 9%
T 31% 27% 25% 35% 3% 29% 4% 12% 5% 3% 6% 9% 3% 2% 0% 0% 0% 0% 0% 0% 9%
H 43% 33% 29% 17% 6% 0% 10% 15% 22% 15% 0% 11% 3% 0% 0% 0% 0% 0% 0% 0% 9%
K 47% 33% 32% 0% 12% 13% 0% 2% 3% 3% 0% 4% 0% 2% 0% 2% 0% 0% 0% 0% 8%
Q 33% 26% 17% 0% 11% 0% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6%
P 17% 24% 18% 20% 8% 0% 6% 0% 5% 0% 0% 0% 2% 0% 11% 2% 0% 5% 0% 0% 6%
G 28% 7% 8% 6% 1% 0% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 3%
Ave. 46% 44% 35% 23% 20% 17% 16% 13% 13% 10% 9% 7% 5% 4% 4% 2% 0% 0% 0% 0% 14%

In a first variant of the proposed model, labeled Model I, probabilities are computed according
to the cleavage frequencies given the amino acids in positions P1 and P1’ only (Table 4.1). The
literature, however, reports additional data on how the cleavage probability may be influenced by
amino acids in further positions (P4, P3, P2, ..., P2’, P3’, P4’), see Table 4.2, originally from Hamuro
et al. [Ham+08], or by the proximity to the peptide termini, see Table 4.3, taken from Powers et
al..[PHM77]

While the aforementioned experimental data is unfortunately not quantitatively sufficient to prop-
erly compute complex conditional probabilities such as P(cleavage|P4,P3,P2,P1,P1′,P2′,P3′,P4′),
it might still be heuristically exploited to modify the P(cleavage|P1,P1′) obtained from Table 4.1.
For example, in Table 4.2, it is easy to notice how the presence of certain amino acids in positions P2
and P2’ can considerably alter cleavage frequency; and from Table 4.3 it is noticeable that proximity
to a terminal end of a peptide can impede pepsin’s action. For these reasons, a second variant of the
proposed approach is presented, Model II, where the cleavage probability originally obtained from
Table 4.1 is modified according to the following two heuristics:

1. to take into account the relative contribution of a specific amino acid in positions (P4,P3,P2,P2’,P3’,P4’),
an altered probability is proposed:

Palt = Por ∗
P(cleavage|Pi = x)

Pavgi

, where Por (the original probability) is multiplied by the ratio between the cutting probability
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Table 4.2: Frequency of pepsin cleavage when each amino acid residue occupies positions P4...P4’,
reproduced from Table 2 in Hamuro et al. with permission from Wiley. [Ham+08] The last column
reports the number of each type of amino acid observed in the study.

P4 P3 P2 P1 P1’ P2’ P3’ P4’
F 17.8% 6.5% 6.8% 45.8% 28.1% 7.6% 13.8% 13.8% 542
L 12.0% 15.3% 11.1% 44.2% 18.1% 10.9% 17.3% 14.7% 1375
M 12.7% 21.3% 12.2% 35.0% 20.7% 12.2% 19.8% 14.1% 331
C 10.8% 20.7% 20.1% 23.4% 16.8% 12.1% 13.1% 16.5% 214
E 12.7% 14.7% 19.1% 19.9% 10.5% 17.9% 14.9% 11.2% 955
W 15.8% 9.2% 5.1% 16.7% 27.6% 11.6% 15.2% 15.2% 198
Y 17.8% 7.1% 8.6% 16.2% 33.1% 13.7% 13.1% 15.7% 451
D 16.7% 12.3% 17.5% 13.1% 10.5% 11.8% 11.7% 13.1% 799
A 11.8% 19.5% 16.6% 12.9% 16.4% 17.5% 10.0% 11.6% 989
Q 11.8% 12.1% 15.4% 9.7% 6.1% 12.7% 14.6% 12.9% 607
N 14.2% 9.9% 21.7% 9.0% 9.0% 8.5% 11.5% 14.3% 467
T 14.6% 18.9% 14.2% 6.7% 8.8% 15.6% 14.5% 11.0% 657
S 11.4% 19.5% 18.4% 5.3% 9.0% 17.6% 12.5% 13.5% 851
G 13.1% 19.1% 9.4% 4.1% 3.2% 8.2% 7.3% 15.1% 933
V 13.0% 17.7% 18.1% 4.0% 18.6% 22.1% 17.4% 12.0% 876
I 13.2% 19.0% 17.2% 2.4% 24.3% 18.3% 20.2% 12.8% 706
K 12.7% 1.6% 11.0% 0.3% 7.7% 14.3% 17.0% 12.7% 763
H 11.7% 1.7% 7.7% 0.2% 8.6% 2.6% 9.1% 11.5% 405
R 13.3% 1.2% 13.3% 0.0% 9.8% 21.1% 15.3% 13.9% 737
P 19.4% 13.7% 0.2% 0.0% 5.6% 1.3% 2.7% 20.7% 63

when amino acid x is in position i, and the average cutting probability over column i of
Table 4.2. As an example, consider

P(cleavage|P1 = Y,P1′ = F) = 0.65

if amino acid K is in position P3 with respect to the considered bond, the original probability
will become

Palt = 0.65 ·P(C|P3 = K)/Pavg3

From the table, it is observable that P(C|P3 = K) = 0.016, while the average probability in
column P3 is 0.1305, so

Palt = 0.65 ·0.016/0.1305 = 0.07969

with a considerable reduction of the original probability. Of course, to obtain the complete
Palt , the alterations for P4, P2, P2’, P3’, P4’ still need to be computed and applied.

2. from data in Table 4.3, appearing in Powers et al. [PHM77], it appears that pepsin is less
likely to cut bonds close to a peptide terminal end. Comparing the frequency of cutting a bond
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Table 4.3: Effect of terminal residues on pepsin cleavage probabilities, data taken from Powers et
al. with permission from Springer [PHM77]. AA = any amino acid residue. HPA = an amino acid
residue with high cleavage probability (e.g. F, M, L, C). AAZ = any terminal amino acid. The *
indicates the position of the cleaved bond.

Positions Probability Positions Probability
-HPA*AA- 0.44 AAZ-HPA*AA 0.11
HPA*AA- 0.18 AAZ-AA-HPA*AA- 0.47
-HPA*AAZ 0.11 -HPA*AA-AAZ 0.29

Figure 4.15: Amino acid sequence for bovine lactoferrin. The first 19 amino acids in the chain,
marked in yellow, form a signal peptide that was not considered during the simulations. Amino
acids highlighted in red and green mark the positions of glycosylations and disulfide bonds, respec-
tively. [Con+14]

between two specific amino-acids in positions P1-P1’, and the same situation, but closer to a
terminus, it is clear that there is a huge interference with pepsin’s activity, on average reducing
the frequency to about a third of the original. For this reason, another heuristic consideration is
added: if at least one amino acid is missing in positions P2, P2’, P3, P3’ (and thus the cutting
point is close to a peptide terminus), the already altered probability is multiplied by 0.33.

Given these models, the DH at each iteration can be computed by simply comparing the number
of cleaved bonds in the simulation with the total number of bonds in the target protein. It is important
to notice that DH, not reaction time, is the only reference that can be used to compare the models’
behavior to experimental data.

4.2.6 Simulations on the case study

The case study considered for the proposed methodology is the hydrolysis of bovine lactoferrin
by pepsin. The amino acid sequence of the target protein, shown in Figure 4.15, is taken from
Grosvenor et al., [GHD14] which is also the source of the experimental data that was used to validate
the approach. It should be noted that the first 19 amino acids in the chain are not considered, as they
are part of a signal peptide. [Con+14] Model I and Model II, described in the previous section, are
both tested.

To enable comparing the results produced by the simulations with the experimental data, the
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Figure 4.16: Power law model used to fit the experimental data on the degree of hydrolysis obtained
from the trials. The original data from three trials (averaged) is shown in blue, the model prediction
is shown in red.

time evolution of DH during the pepsin digestion experiments (3 replicates) was estimated by fitting
a power law model, as shown in Figure 4.16.

For Model I and Model II, ten simulations are performed, each one including 500 copies of
bovine lactoferrin (sequence reported in Figure 4.15), and using the probability tables and heuristic
alterations described in Section 4.2.5, with a stop condition tied to reaching DH = 10%.

4.2.7 Results and discussion
The following results include, for each model, the sum of peptides generated during the ten sim-
ulations. While the model was allowed to reach a simulated DH of 10% in each simulation, the
following results show comparisons up to DH = 9.18%, to allow comparison with the maximum DH
reached during the reference experimental trials.

Experimental data
The experimental data, taken from Grosvenor et al., [GHD14] includes a list of 105 monitored
peptides. Since the original trials were performed on both pasteurized and unpasteurized bovine
lactoferrin, with a different peptide list, the comparison will consider only peptides that are found in
both pasteurized and unpasteurized versions of the protein. This is justified by Ahn et al., [Ahn+13]



4.2 Modelling the Action of the Pepsin Enzyme During Digestion 157

which shows that the reproducibility of peptic peptides is remarkably low, even when performed
in the same conditions. Furthermore, a few monitored peptides contain a mutation of the original
protein sequence, or are usually involved in disulfide bonds, and are thus discarded. At the end of
this filtering process, a total of 87 monitored peptides remain. In the following, these peptides are
denoted as monitored peptides. For each monitored peptide, the experimental concentration profile
according to the DH evolution in relative quantities is available.

It is important to note that, while the proposed models keep track of all peptides produced, only
a few can be experimentally observed through mass spectrometry; to perform a fair comparison,
the non-observable simulated peptides have to be discarded. Three filters will then be alternatively
applied to the data during the comparison. The first removes all peptides larger than 30 AA in
length to analyze the peptide size distribution of the simulated peptides. The second only considers
peptides of sizes 5-18 AA for comparison with the experimentally monitored peptides that all fell
within this range of sizes. The third one discards all peptides containing an amino acid involved
in a disulfide bond or glycosylation (Figure 4.15), since such peptides should not be detected by
mass spectrometry a priori unless their post-translational modification is removed. These filters have
considerable effects on the number of considered peptides: for example, applying all of them on the
output of Model I at DH = 9.18%, reduces the number of simulated peptides from 6,201 to 1,847.

Comparison

A first qualitative assessment of the simulation results can be performed by analyzing the size
distribution of the peptides as a function of DH, reported in Figure 4.17. Both plots seem to follow
the expected behavior: quantities starts low for all categories, and build up as the DH increases.
Interestingly, Model I predicts that cleavage products of just one amino acid in length will prevail,
while Model II forecasts higher quantities of peptides of intermediate sizes.

Figure 4.17: Size distribution of simulated peptides of sizes 1-30 amino acids, for Model I (left) and
Model II (right).

The size distribution for DH = 9.18%, the final value registered during the experimental trials, is
reported in Figure 4.18. Model II, taking into account the modified behavior when pepsin attacks
links closer to the terminal parts of a chain, [PHM77] produces a higher percentage of peptides of
3-10 amino acids in length. These results seem in fact more consistent with the literature on pepsin-
derived peptides, that report alternatively peptides of 6-10 [Kop+14] and 6-20 amino acids [Ahn+13]
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as the most commonly observed. Data obtained from the simulations can also be compared with
Egger et al., [Egg+16] who found 1% of free amino acids after two hours of pepsin digestion of
skim milk. In simulations for Model II at DH = 9.18%, the quantity of free amino acids produced is
around 0.6% of the total number of amino-acid residues, which therefore seems to be in the right
order of magnitude.

Figure 4.18: Size distribution of simulated peptides for DH = 9.18%. Results of Model I (left)
predict higher quantities of smaller peptides, compared to Model II (right).

Monitored peptides and their relative abundance ranking obtained by simulations of Model I
and Model II are reported in Table 4.4.

To better illustrate the presence of monitored peptides within the results of the simulations,
comparative histograms are presented in Figure 4.19. It is interesting to notice that a great number of
monitored peptides, highlighted in blue, are effectively generated with both models. Results also
show that the predictions of Model II are much better than those of Model I because the ranking
of monitored peptides according to the simulated quantities were remarkably improved despite a
reduced variety of individual peptides. This highlights the importance of considering the effects
of neighbor amino-acids and peptide termini to estimate cleavage probabilities, and provides more
empirical validation for the heuristic approaches used in the computations.

The same data (Figure 4.19) can be analyzed from another point of view, by calculating how
many experimentally detected (i.e. monitored) peptides are found among the most common peptides
simulated by the models. These calculated percentages are shown in Figure 4.20. Interestingly, 50%
of the monitored (i.e., 44 / 87) fall within the 299 most abundant peptides simulated by Model I,
but within the 120 most abundant simulated by Model II. Again, this empirically corroborates the
benefit of heuristically taking into account the presence of specific amino acids or termini in the
P2-P4 and P2’-P4’ positions. Taking into account the 25 most abundant peptides predicted by Model
II, 14 of them were experimentally observed and monitored, and among the 11 unobserved peptides,
7 of them display a disulfide bond in position P3, P2, P2’ or P3’ of the bonds to cleave to generate
them. This illustrates that the model could be improved with a more accurate evaluation of the effects
of the proximities of post-translational modifications on the cleavage probabilities. Nevertheless, 10
of the 87 experimentally monitored peptides were produced despite the same configuration, meaning
that the model would have missed them if cleavage probabilities were set to zero when a disulfide
bond is in position P3, P2, P2’ or P3’. Figure 4.20 also exposes that six of the monitored peptides are
not simulated by either model. Cross-referencing the list of monitored-but-not-simulated peptides



4.2 Modelling the Action of the Pepsin Enzyme During Digestion 159

Figure 4.19: Histogram of the simulated peptides produced by Model I (a) and Model II (b) at
DH = 9.18%, ordered by descending relative abundance. MPs detected during the experiments are
highlighted in blue. As MPs are also the most abundant peptides produced, a good model fit will
place these towards the left of the graph to match the peptides predicted to be most abundant. As a
reference for the reader, since 10 simulations of 500 intial copies of the protein (5,000 intial copies)
were performed, a simulated quantity of 1,000 corresponds to a molar percentage of 20, i.e. that 20
copies of the peptide considered were formed per 100 initial protein substrates.
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Table 4.4: List of the 87 monitored peptides (MP), in alphabetical order. Their position in bovine
lactoferrin is reported in column Pos.. Column Rank I and Rank II show the relative abundance
ranking for each peptide, in simulations of Model I and Model II, respectively.

Sequence Pos. Rank I Rank II Sequence Pos. Rank I Rank II Sequence Pos. Rank I Rank II
AEIYGTKESPQTHY 98-111 346 60 FKDSALGF 319-326 12 11 RTAGWNIPMGL 482-492 268 78
AKLGGRPTYE 668-677 277 48 FKSETKNLL 651-659 20 92 SFQLFGSPPGQRDLL 304-318 - -
AKLGGRPTYEE 668-678 15 33 FQLDQL 123-128 214 116 SLEPLQGAVAKF 160-171 610 372
ARSVDGKEDL 276-285 620 185 FQLFGSPPGQRDLL 305-318 1116 234 SWTESLEPLQG 156-166 903 515
AVAKF 167-171 315 97 FVKETTVF 227-234 74 19 TESLEPLQGAVAKF 158-171 88 16
AVVARSVDGKEDL 273-285 - - IAEKKADA 68-75 97 9 VFEAGRDPYKLRPVA 83-97 309 77
DALNLDGGY 409-417 1008 356 IAEKKADAVTL 68-78 96 216 VFEAGRDPYKLRPVAA 83-98 692 164
DGGMVF 79-84 58 87 IAEKKADAVTLDGGM 68-82 153 214 VFEAGRDPYKLRPVAAE 83-99 135 156
DLIWKL 284-289 300 215 IYGTKESPQTHY 100-111 59 69 VKETTVF 228-234 19 4
DRTAGWNIPMGL 481-492 - - KGEADALNL 405-413 181 229 VLKGEA 403-408 493 56
EAGRDPYKLRPVA 85-97 254 24 KGEADALNLDGGY 405-417 553 504 VLKGEADAL 403-411 78 45
EAGRDPYKLRPVAA 85-98 575 84 KKADAVTLDGGM 71-82 262 390 VLKGEADALNL 403-413 142 107
EAGRDPYKLRPVAAE 85-99 99 57 KKADAVTLDGGMVF 71-84 751 401 VLKGEADALNLDGGY 403-417 477 219
EIYGTKESPQTHY 99-111 479 124 KNLRETAE 348-355 329 81 VLLHQQAL 629-636 126 63
ENLPEKADRDQ 235-245 34 150 KSETKNLL 652-659 16 26 VTLDGGM 76-82 52 22
ENLPEKADRDQY 235-246 267 76 KYYGYTGA 541-548 274 49 VTLDGGMVF 76-84 218 21
ENLPEKADRDQYE 235-247 338 152 LDGGMVF 78-84 746 205 VVARSVDGKEDL 274-285 48 20
ENLPEKADRDQYEL 235-248 172 47 LFGSPPGQRDLL 307-318 780 625 VVKKGSNF 116-123 73 13
EPLQGAVAKF 162-171 18 151 LKNLRETAE 347-355 948 345 VVKKGSNFQLDQL 116-128 373 362
ESLEPLQG 159-166 - - LNLDGGY 411-417 552 169 WAKNLNRED 579-587 217 210
ESLEPLQGA 159-167 - - LRIPSKVDSAL 327-337 7 3 WAKNLNREDF 579-588 291 23
ESLEPLQGAVAKF 159-171 - - LTTLKNLRE 344-352 1277 429 WAKNLNREDFRL 579-590 343 122
EVKARYTRV 356-364 1094 459 LTTLKNLRETAE 344-355 804 147 WIIPMG 144-149 585 43
EYLGTE 678-683 333 58 LTTLKNLRETAEE 344-356 324 80 WIIPMGIL 144-151 129 121
EYLGTEY 678-684 1056 340 NLDGGYIY 412-419 733 689 WNIPMGL 486-492 101 6
FEAGRDPYKLRPVA 84-97 1115 267 QLFGSPPGQRDLL 306-318 196 365 YLAVA 452-456 357 51
FENLPEKADRDQYEL 234-248 649 674 RPYLSWTESLEPLQG 152-166 1382 1252 YLGSRY 338-343 38 14
FGSPPGQRDLL 308-318 10 31 RSVDGKEDL 277-285 200 44 YLGSRYLTT 338-346 363 198
FGSPPGQRDLLF 308-319 128 91 RSVDGKEDLIWKL 277-289 432 466 YLGSRYLTTL 338-347 86 79

with the probability tables used as a base for the models, the reason for their absence becomes clear:
all of these monitored peptides are in fact produced by cleavages that are not observed by Hamuro
et al., [Ham+08] and thus the derived probabilities are set to 0. Even heuristic alterations included
in Model II cannot change an initial probability of 0. The complete list of the missing monitored
peptides and the relative cutting points that generate them are reported in Table 4.5.

Table 4.5: Missing MPs, not produced by the simulations. Cross referencing their position with
frequency tables reported in Figure 4.1, it is noticeable how cuts P1-P1’ with the corresponding
amino acids are not observed.

Sequence Position Cut Probability
AVVARSVDGKEDL 273-285 H-A P(cleavage|P1 = H,P1′ = A) = 0.0

DRTAGWNIPMGL 481-492 V-D P(cleavage|P1 =V,P1′ = D) = 0.0
ESLEPLQG 159-166 T-E P(cleavage|P1 = T,P1′ = E) = 0.0

ESLEPLQGA 159-167 T-E P(cleavage|P1 = T,P1′ = E) = 0.0
ESLEPLQGAVAKF 159-171 T-E P(cleavage|P1 = T,P1′ = E) = 0.0

SFQLFGSPPGQRDLL 304-318 K-S P(cleavage|P1 = K,P1′ = S) = 0.0

A final assessment of the models’ behavior can be performed through a comparative analysis
of the heat map computed from the original data (taken from Grosvenor et al. [GHD14]) and heat
maps obtained from simulated data, see Figure 4.21. It is worth reminding that the experimental
data allow for relative quantifications of a peptide as a function of time or DH, but not between
two different peptides. Thus, the corresponding heat map is normalized by the maximum of a
column (corresponding to one amino-acid of the protein sequence). This contrasts with the heat map
calculated from simulated results for which absolute quantities are predicted. Therefore, it is not
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Figure 4.20: Cumulative number of MPs simulated by Model I (blue thin line) and Model II (red
thick line), out of the 87 considered (dotted line) at DH = 9.18%. Both models fail to produce 6 MPs
that are found experimentally.

possible to compare grey-levels horizontally in the experimental map nor between simulated and
experimental maps for a given AA residue. Figure 4.21 nevertheless unambiguously demonstrates
that both the experimental and simulated maps show gaps in the same locations. In other words, the
most abundant simulated regions are indeed the ones where peptides are experimentally detected
and monitored.

Although heat map rendition showed good correlations, the quantitative predictions of a given
monitored peptide as a function of digestion time were less well-aligned with experimental obser-
vations (data not shown). Experimentally-observed peptides were more likely to form and then
decline as additional cleavage formed smaller peptides, [GHD14] whereas both models tend to
predict increasing abundance up to the stop point of 10% DH. This may be linked to the much
higher number of peptides predicted by the models than monitored experimentally. This is a logical
consequence of the great number of non-zero probabilities in Table 4.1, hence illustrating one limit
of the proposed model. In a long term perspective, such approaches may nevertheless rely on more
complete and accurate information regarding cleavage specificities, and include other alterations on
cleavage probabilities related to structural and/or physicochemical properties of the substrates.

4.2.8 Conclusions
The models presented in this contribution represent a novel approach to modelling pepsin digestions,
diverging from and complementing standard cleavage prediction tools like PeptideCutter in that the
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Figure 4.21: Heat maps from Model II (a), original experimental data reproduced from [GHD14]
with permission from the Royal Society of Chemistry, and including two disulfide peptides not
included in the models (b), and from Model I (c).
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quantitative peptide profile is predicted, rather than the peptide sequences only.
The two Monte-Carlo system models developed, utilising simpler (Model I) and more complex

(Model II) cleavage probabilities, generated quantitative peptide profiles at degrees of hydrolysis
up to 10%. On comparison to quantitative experimental data, Model II, which was modified to
account for flanking residues up to four positions away from the site of cleavage (P4-P4’) and
altered cleavage probabilities near peptide termini, predicted a peptide profile that included nearly
all (81 out of 87) of the experimentally monitored peptides, with increasing likelihood linked with
experimental abundance (Figure 4.19). The six monitored peptides not predicted by either Model
I or Model II were produced by cuts set to zero probability in the models, which were based on
reported cleavage probabilities. [Ham+08] This signifies that improvements to models such as these
will be possible with increasingly accurate information regarding cleavage specificities. This high
number of predicted peptides represents satisfyingly accurate qualitation from the model.

Although the similarities between the experimental and simulated heat maps is very promissing,
the quantitative predictions of a given peptide as a function of time does not match experimental
observations so far. Futher developments of this model for pepsin activity will be made possible as
increasingly accurate cleavage specificities become available. Other heuristic alterations could also
be included within the model to account for structural features of the considered substrate, such as
the accessibility of the peptide bonds, the flexibility and/or hydrophibicity of the considered chain.
In the meantime, it will serve as a computationally simple approach to forecast the appearance of
peptides from any protein, able to be run on an average end-user computer. A single experiment on
500 copies of lactoferrin, for example, takes less than 40 minutes to run on a Dell Latitude laptop,
with an i7-2640M processor and 8 GB of RAM. The methodology can be useful, for example, in
predicting the release of allergens or bioactives from well-characterised food products. Additionally,
the basic principle may be adapted to any endoprotease, for which there is sufficient available data
on cleavage specificities.
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4.3 COST Action FoodMC

Methodologies and tools from Maths and Computer Science (MCS) are emerging as key contributors
to modernization and optimization of processes in various disciplines: the agri-food sector, however,
is not a traditional domain of application for MCS, and at the moment there is no community
organized around solving the issues of this field. COST Action “Mathematical and Computer Science
Methods for Food Science and Industry” (FoodMC) brings together scientists and practitioners from
MCS and agri-food domains, stimulating the emergence of new research, and structuring a new
community to coordinate further investigation efforts. Exploiting approaches originating at different
sub-fields of MCS, from applied mathematical models to knowledge engineering, this COST Action
covers two main topics: understanding and controlling agri-food processes; and eco-design of
agri-food products.
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4.3.1 Introduction
European Cooperation in Science and Technology (COST) is Europe’s longest-running intergov-
ernmental framework for cooperation in science and technology. Founded in 1971, COST holds a
successful history of funding science and technology networks for over 40 years, offering scientists
the opportunity to embark upon bottom-up, multidisciplinary cooperation across all science and
technology domains.

Also known as COST Actions, these science and technology networks allow scientists to grow
their ideas by sharing them with their peers. This gives impetus to their research, career and
innovation. Researchers, engineers and scholars from both public and private sectors can set up their
own network in any field of science and technology.

COST Actions grow throughout a funding period of 4 years. The funding covers networking
activities such as meetings (e.g. travel, subsistence, local organiser support), conferences, workshops,
short-term scientific missions (STSMs), training schools, publications and dissemination activities.
COST does not fund research itself.

4.3.2 Challenge

Figure 4.22: Organization of the Working Groups envisioned in the Action.

Food processing and agricultural products catering companies are one of the major employers
and economic forces in the EU, representing both a central component of the agro-food system,
and a crucial provider of biomaterials and biofuels. In recent years, this strategic industry has been
facing unprecedented challenges, mainly concerning food security and the threat of climate change.
Additionally, the production of processed agricultural products needs to adopt and comply with
several new regulations, aiming at reducing waste, improving re-utilization of by-products, limiting
energy consumption and lowering the overall environmental impact. These demanding objectives
can only be achieved through appropriate adaptation and innovation in the food processing activity.
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Disruptive innovations, however, require considerable economic efforts and the development of new
skills not readily available in the agro-food domain, especially in small and medium enterprises
(SMEs). A considerable number of unsustainable practices are still in place, due to the high cost of
experimenting with new techniques on existing production/supply chains and validating scale-up.

There is evidence that developing Mathematical and Computer Science (MCS) models for the
target processes can contribute to solving the issue [Try12], allowing even SMEs to optimize resource
management and economic outputs, while guaranteeing the current levels of quality and availability
of products. The agro-food industry, however, is not a traditional application domain for MCS: at the
moment, there is no structured community around this issue, nor a coordinated effort to advance the
state of the art; and building adequate mathematical models for specific applications is extremely
knowledge and labour intensive. It is the role of academic research to initiate the development of
methods, functional models, software or technologies, which will be critical to guide the evolution
of the food processing industry with regards to the grand challenges of the future.

MCS researchers and practitioners can also benefit from working on agro-products industry
applications, since the field provides considerable challenges to existing methodologies in MCS:
uncertainty of the data, multi-scale description of the systems, coupling of models, representation of
expert knowledge, etc. As the upcoming challenges for the industry grow more pressing, promoting
cooperation between agro-food and applied mathematics becomes more and more urgent. The aim of
this COST Action is thus to create a community of scientists and practitioners from the two different
domains, stimulating the emergence of new research and ideas tackling these ambitious topics.

The development of novel mathematical and computer models, following the complex systems
and knowledge engineering paradigms, has been slowly gaining support in the agro-food commu-
nity over the last two decades [Per+16; Van+14]). Existing projects, however, are scattered and
uncoordinated, focusing more on the solutions to specific issues than on an organized collection of
demands and techniques in the field: for these reasons, major methodological breakthroughs, even
stemming from applications, are still extremely rare. Although food production is a major industry
in most countries, the number of publications dedicated to the treatment of food industry problems
by means of innovative MCS modelling is well below that of other types of industries. Coordinating
the currently divided research efforts is crucial to avoid re-discoveries and dispersion of useful data,
and at the same time promoting the sharing of theoretical and experimental results. Moreover, the
application domain of agro-food products is rich and multi-faceted, and research efforts so far have
not been balanced over all aspects. As a result, several features of the considered challenges are not
well understood, while the expertise around others should be further developed. Significant progress
in the domain can be obtained by providing a roadmap with well-defined MCS problems, addressing
critical issues in food processing, in particular food security and sustainability. This issue calls for
the close collaboration of domain specialists with mathematicians and computer scientists.

4.3.3 Action organization

FoodMC officially started on April 11, 2016 and included researchers from 28 different European
nations (Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Denmark, Finland, France,
Germany, Greece, Ireland, Israel, Italy, Lithuania, Luxembourg, Malta, The Netherlands, North
Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovenia, Spain, Switzerland, Turkey,
United Kingdom) and 4 partner countries (Canada, Morocco, Ukraine, USA).

The Action is divided into four Working Groups (WGs), organized as in Figure 4.22. Each WG
is going to focus on a specific aspect of the network, ranging from exploring suitable real-world case
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studies, to discussing industrials’ and practitioners’ needs for efficient modelling tools, to gathering
and sharing information.

WG 1: Modelling food products and processes
This group is focused on MCS solutions for modelling food properties and food processes. As the
domain is very large, the group identified the opportunities susceptible to lead to breakthroughs and
to meet stakeholders’ needs, focusing the work on the description of benchmark case-studies. This
WG produced state-of-the-art reviews of food products and food process modelling, an overview
of the scientific challenges and finally identified stakeholders concerns. WG 1 provided guidelines
for research at both the fundamental and the applicative level. The WG members were in charge of
identifying modelling approaches with a potential high impact on food sector activities, and define
benchmark case-studies that will be addressed during Action workshops and STSMs. Finally, this
WG promoted the use of MCS solutions in the food sector through the support and co-organization
of training schools.

WG 2: Eco-design of food processes
This group described the kind of systems to be addressed by eco-design, the appropriate MCS
techniques and tools to be used, it proposed illustrative/pedagogical case-studies, and defined the
boundaries of this interdisciplinary research, that can potentially lead to the delivery of suitable
methods and tools in the future. Mirroring the actions on WG 1, WG 2 described the state of the art
for modelling in eco-design, addressing the complex network of interactions linking the agro-food
activities together, which grows more intricate with system size (local, regional, international).
To do so, the WG collected and integrate inputs from involved stakeholders and specialists from
different disciplines, through dedicated meetings, workshops and STSM. Finally, it identified a few
representative case studies that the scientific community could efficiently address.

WG 3: From scientific results to tools
The WG has the objective of promoting the development of computer applications, allowing a larger
audience of users to exploit scientific results. Expert knowledge, experimental data and mathematical
models have been used to answer the users’ needs. WG 3 addressed the problem of the low delivery
of operational tools based on food science research results. Existing applications, such as web
semantic applications, knowledge-based systems, simulation tools, were adapted to the food sector.
The WG identified the main needs of the users that can benefit the most from the development
of such tools. A limited number of case-studies were identified and addressed during the Action,
through specific workshops and STSMs, from the second year. At the end of the Action, results
were disseminated to interested users through a comprehensive report, and a training school was
organized with the gathered materials.

WG 4: Knowledge acquisition and diffusion
The WG’s objective is to promote dissemination of the Action results, via the design and maintenance
of the Action website. More than a support to convey related information and deliverables, the Action
website stimulated knowledge transfer. This WG’s activity also favored communication, as successful
interdisciplinary research requires a mutual understanding between participants with different
backgrounds. Face-to-face meetings of specialists from distant disciplines are generally insufficient to
reach this point, because a typical expert relies on a great deal of tacit and implicit knowledge. Shared
understanding can be promoted by formalization of tacit knowledge and participatory modelling
using, for example, visualization techniques that support acquisition of knowledge. WG members
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worked with the other WGs leaders to take part into activities that require strong interdisciplinary
exchange, and organize the co-construction of knowledge models.

4.3.4 Outcomes
Besides yearly meetings, FoodMC sponsored 4 training schools for graduate and unergraduate
students, focused on modelling in food science8. The Action supported in particular Ph.D. students
and early career researchers by funding 31 STSMs that allowed them to gain new insights and
techniques in different laboratories. FoodMC also supported researchers from inclusiveness target
countries by awarding 13 conference grants, that made it possible for Ph.D. students and early career
investigators to participate to conferences of their domain. Several new collaborations were started
in the scope of FoodMC, and the papers co-wrote by different subset of authors are too many to be
cited here. I will just mention the review and position papers that were completed under my direction
by participants to COST Action [Car+21; Dje+18; Dje+19a; Dje+19b]. The Action also coordinated
an application for a Marie-Curie Initial Training Network focused on food modelling, and produced
a series of web seminars where different participants described their activities. More information is
available on FoodMC’s website, https://www6.inrae.fr/foodmc.

8https://www.virprofood.org

https://www6.inrae.fr/foodmc
https://www.virprofood.org
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5. Health Applications

The domain of health care offers a large variety of complex, practical problems that can in principle
be tackled with algorithms. These problems often present complex obstacles, such as a considerable
inter-sample variance and high feature dimensionality, making them particularly suited for machine
learning and optimization approaches described in the previous sections. In this chapter, I describe
applications I worked on, where Artificial Neural Networks (ANNs) and Evolutionary Algorithms
(EAs) are used to face important challenges in the field.

In the first part (Section 5.1), I present automatic the results of a research line tackling the
automatic discovery of primer sets, characteristic subsequences of RNA used to identify virus strains,
with the specific application to SARS-CoV-2 detection [Lop+21a; Lop+21b]. In a second part
(Section 5.2), feature selection techniques are applied to the identification of short gene expression
signatures for the classification of cancer types [Lop+18; Lop+19; Lop+20].

5.1 Automatic Design of Primer Sets

As the pandemic of SARS-CoV-2 continues to affects the globe, researchers and public health teams
around the world monitor the virus for acquired mutations that may lead to higher risks of developing
COVID-19 or vaccine resistance. Prompt and widespread diffusion of information related to viral
threats plays a critical role in research and mitigation of outbreaks [Waa+20]. This is especially true
when viruses mutate rapidly under clinical, therapeutic or vaccine pressure.

Several molecular kits have been proposed and developed to diagnose SARS-CoV-2 infections.
Most kits rely on the amplification of one or several genes of SARS-Cov-2 by real-time reverse
transcriptase-polymerase chain reaction (qRT-PCR) [Afz20; Org+20], using primers. Primers are
short RNA sequences, used to detect the presence of a specific virus in a host organism. Good
qRT-PCR primer candidates need to possess several qualities, including having a PCR product size
or amplicon between 100 - 200 bps, with a melting temperature (Tm) close to 60°C, a presence of C
and G bases representing 40-60% of the sequence, and of a typical length of 18-22 nucleotides.

As new variants are identified, like B.1.1.7 from the UK, B.1.351 from South Africa, or
P.1/B.1.1.28.1 from Brazil, developing primers specific to these potentially more dangerous strains
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Figure 5.1: PCR amplification of a section of interest in viral RNA. A primer uniquely identifies a
section of the viral genome.

becomes pivotal in locating and containing the disease. Primer design, however, is traditionally a
long process, where domain experts create a canonical sequence for the target virus, analyze the
virus’ structure, identify promising areas that might be unique to the strain, and create candidates
that are then tested first in-silico, and then in the lab. The emerging adoption of machine learning
techniques in the health sector, together with the free access to an unprecedented amount of data,
opened the way for semi- and fully automated solutions for primer design.

In the following sections, basic background information on primer design is provided, and two
automatic approaches to primer design, with their respective results, are described.

5.1.1 Primer design
A primer or oligonucleotide is a short nucleic acid sequence that helps to start the DNA synthesis in
a Polymerase Chain Reaction (PCR) assay. The presence of primers is necessary because the DNA
polymerase can only attach new nucleotides to an existing strand of nucleotides to make copies of a
DNA fragment1. Primers typically have a length of 18-22 nucleotides and are essential components
of the procedure, as they determine the specificity of PCR [PBH08]. In the case of SARS-CoV-2, the
viral RNA will be first transformed into single-strand complementary DNA (cDNA), and then the
section of interest will be amplified. The forward and reverse primer attach in different directions of
the targeted section in the cDNA sequence. If the cDNA sequence does not contain the forward and
reverse primer sequences, then they will not attach and consequently won’t be amplified, see Fig. 5.1
for a summary of the procedure.

Primer design is a crucial step of the process, because of its relationship with the success and
quality of PCR analyses. Different factors can affect primers’ efficiency, including; dimer formation

1https://www.nature.com/scitable/definition/primer-305/

https://www.nature.com/scitable/definition/primer-305/
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(high self-complementary formation), stem loop interference, GC content (presence of C and G
bases in the DNA sequence), high 3’ stability (presence of C/G pairs at the 3’ end) and extreme
melting temperatures. While different computer programs have been proposed to facilitate the design
process, it is still necessary to develop new algorithms to select the best PCR primers and avoid
errors when using them in the laboratory [LB10; Rod+15].

The traditional approach to primer generation is to first use a canonical sample of the target
variant, a summary of all samples available, and then analyze the differences with respect to the
original virus. The differences, mainly mutations, are going to be possible locations of interest,
and candidate primers can be designed by hand around the mutation. In the case of SARS-CoV-2,
all the mutations are referenced to the canonical sequence NC_045512.2 [Wu+20]. In addition,
several parameters need to be verified such as Tm close to 60°, %GC content close to 50%, self
complementarity, and high 3’ stability. Then, the designed primer has to be checked as a unique sub-
sequence, not appearing more than once inside the same sample. This is traditionally carried out with
the BLAST software, from the National Center for Biotechnology Information (NCBI) [Bor+13].
Nevertheless, if a sequence is not available in BLAST it cannot be identified using this method, as
is the case for many of the new samples recently sequenced from the SARS-CoV-2 virus and its
variants.

5.1.2 Convolutional neural networks

A Convolutional Neural Network (CNN) is a type of ANN featuring one or more convolutional
layers. Such layers take inspiration from the human visual system [Fuk80], and are able to recognize
patterns appearing in a stream of information, such as combinations of pixels in an image, or a
subsequence of bps in RNA, independently from their absolute position.

Convolution is better described by an example: let’s consider an input tensor (a generic n-
dimensional matrix) of size 5*5, with a tensor of weights 3*3. In CNNs, a sliding window is used
to represent the receptive field: using a sliding window of size 3*3 in the example would result in
the convolution operation presented in Figure 5.2. The sliding window and the weights are turned
into a vector, and the dot product of each is summed up. After the dot product, there is an activation
function (for each neuron), typically a rectified linear unit, commonly referred to as ReLU [NH10],
with a function f (x) = max(x,0). This will result in a single value. The same procedure is repeated
to the whole input tensor, resulting in a 3x3 output tensor. In practical applications, input tensors
can have even higher dimensions. To further reduce the output size, a maxpooling operation can
be performed, where only the highest value in a sliding grid is reported to the subsequent layer.
Following the example of the convolution operation, the max pooling of the 3x3 output tensor with a
2x2 sliding window, will result in a 2x2 output tensor. In a complete CNN, the resulting 4 values
will be transmitted to a fully connected rectifier layer with a so f tmax function, for classification
applications. The so f tmax function reduces a k-dimensional vector of arbitrary real values to a
k-dimensional vector of real values in range (0,1), that add up to 1: this can be used to associate
each class with a probability.

Once the structure of a CNN is defined, its internal weights need to be optimized to fit the target
problem. This operation is performed through backpropagation. In backpropagation, the initial
system output is compared to the desired output, and the system is adjusted until the difference
between the two is minimized, typically resorting to gradient descent optimization, using cross-
entropy loss as the function to minimize. Cross-entropy loss for one-hot labels is defined as:



178 Chapter 5. Health Applications

Figure 5.2: Example of convolution. A 5*5 input tensor (for example, a 5*5 pixel picture in black
and white), is passed through a weight tensor of size 3*3.

L =
N

∑
j=1

M

∑
i=1
−t(i)j logz(i)j (5.1)

where t j = (0, . . . ,0, 1︸︷︷︸
k

,0, . . . ,0) is the desired output vector and z j the calculated output vector,

if the example j belongs to the m-th class, and

z(i)j =
e f j

∑
M
i=1 e fi

, (5.2)

is the softmax function, and N the number of samples.

CNN architecture
After a few trial runs with varying hyperparameters, the final architecture is selected and reported
in Fig. 5.3. The CNN used during all the experiments is composed of one convolutional layer with
12 different filters or weights (each with window size 21) with maxpooling (with pool size and
stride 148), a fully connected layer (196 rectified linear units with dropout probability 0.5), and a
final softmax layer with 5 units, to differentiate the different classes of Coronavirus strains. The
optimized used is Adaptive Momentum (ADAM) [KB14], with learning rate 10−5 and a batch size
of 50 samples, run for 1,000 epochs.

The convolutional layer of the network, in simple terms, is analyzing subsequences of 21 base
pairs that can appear in different points of the virus genome. The size selected is 21 base pairs,
as designed primers for real-time PCR (RT-PCR) tests have a length of 18-22 bps normally. The
pool size of the maxpooling represents the interval in which a specific 21-bps sequence can be
recognized (in this case, 148 positions). Through the training process, the convolutional layer is
de-facto learning new features to characterize the problem, directly from the data. In this specific
case, the new features are 21-bps sequences that can more easily separate different virus strains.
By analyzing the result of each filter in a convolutional layer, and how its output interacts with
the corresponding max pooling, it is possible to detect human-readable sequences of base pairs
that might provide domain experts with relevant information. It is important to notice that these
sequences are not bound to specific locations of the genome; thanks to its structure, the CNN is able
to detect them and recognize their importance even if their position is displaced in different samples.
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conv2d_1_input: InputLayer
input:

output:

(None, 1, 31029, 1)

(None, 1, 31029, 1)

conv2d_1: Conv2D
input:

output:

(None, 1, 31029, 1)

(None, 1, 31029, 12)

max_pooling2d_1: MaxPooling2D
input:

output:

(None, 1, 31029, 12)

(None, 1, 210, 12)

flatten_1: Flatten
input:

output:

(None, 1, 210, 12)

(None, 2520)

dense_1: Dense
input:

output:

(None, 2520)

(None, 196)

dropout_1: Dropout
input:

output:

(None, 196)

(None, 196)

dense_2: Dense
input:

output:

(None, 196)

(None, 5)

Figure 5.3: Architecture of the CNN used in the experiments for automated primer design.

Dataset
583 sequences (*.fasta files) are downloaded from the NGDC repository [Bei13] on March 15th,
2020 (Table 5.1). 30 SARS-CoV-2 sequences are left out, while the rest of the data is repeatedly
split into 80% for training, 10% for validation, 10% for testing. The trained CNN described above
obtained a mean accuracy of 98.73% on test data in a 10-fold cross-validation. Once the network is
trained, in a first analysis, the inputs and outputs of the convolutional layer are plotted, to visually
inspect for patterns. As an example, Fig. 5.4 reports the visualization of the first 1,250 bps of each of
the 553 samples from the NGDC repository used in the validation process.

Each filter slides a 21-bps window over the input, and for each step produces a single value. The
output of a filter is thus a sequence of values in (0,1). The output of the max pooling for each of the
12 filters is then further inspected for patterns. It is noticeable how samples belonging to different
classes can be already visually distinguished. At this step, filter 0 is identified as the most promising,
as it seems to focus on a few relevant points in the genome, that could correspond to meaningful
cDNA sequences.

Given this data, it is now possible to identify the 21-bps sequences that obtained the highest
output values in the max pooling layer of filter 0, in a section of 148 positions. This process results
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Table 5.1: Organism, assigned label, and number of samples in the unique sequences for the NGDC
repository (left) and for query: gene=“ORF1ab” AND host=“homo sapiens” AND “complete
genome” in the NCBI repository (right). The NCBI organism naming convention [Miz07] is adopted
here.

Organism Label Number of Samples Organism Label Number of Samples
SARS-CoV-2 0 96 SARS-CoV-2 0 68
MERS-CoV 1 240 MERS-CoV 1 180
HCoV-OC43 2 132 HCoV-OC43 1 105
HCoV-229E 2 22 HCoV-NL63 1 29
HCoV-EMC 2 6 HCoV-HKU1 1 13
HCoV-4408 2 2 HCoV-4408 1 2
HCoV-NL63 3 58 HCoV-229E 1 3
HCoV-HKU1 3 17 HCoV-EMC 1 3
SARS-CoV 4 7 HAstV-VA1 1 1
SARS-CoV P2 4 1 HAstV-BF34 1 1
SARS-CoV HKU-39849 4 1 HMO-A 1 1
SARS-CoV GDH-BJH01 4 1 HAstV-SG 1 1
Total Samples - 583 Total Samples - 407

in 210 (31,029 divided by 148) max pooling features, each one identifying the 21-bps sequence that
obtained the highest value from the convolutional filter, in a specific 148-position interval of the
original genome: The first max pooling feature will cover positions 1-148, the second will cover
position 149-296, and so on. The whole set of max pooling features is graphed for the complete data
4,410 (210*21), Fig. 5.5.

Figure 5.4: cDNA visualization for the first 1,250 bps from the input NGDC dataset, for each
of the 553 samples. Each sample is represented by a horizontal line of pixels. colored pixels
represent bases: G=green, C=blue, A=red, T=orange, missing=black. The data is separated by class
(Table 5.1) SARS-CoV1: SARS-CoV, SARS-CoV P2, SARS-CoV HKU-39849 and SARS-CoV
GDH-BJH01. For visualization purposes HCov-EMC and HCoV-4408 are not shown, given the
number of examples. From a simple visual inspection, it is already possible to notice the similarity
of the patterns between the classes.

Analyzing the different sequence values appearing in the max pooling feature space, a total of
3,827 unique 21-bps cDNA sequences are found, all potentially informative for identifying different
virus strains. For example, sequence AGG TAA CAA ACC AAC CAA CTT is only found inside
the SARS-CoV-2 class, in 59 out of 66 available samples. Sequence CAC GAG TAA CTC GTC
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Figure 5.5: cDNA visualization for the first 105 out of 210 21-bps-long sequences selected from the
input dataset. Each sample is represented by a horizontal line of pixels. Colored pixels represent
bases: G=green, C=blue, A=red, T=orange, missing=black. The data is separated by class (Table 5.1)
SARS-CoV1: SARS-CoV, SARS-CoV P2, SARS-CoV HKU-39849 and SARS-CoV GDH-BJH01.
For visualization purposes HCov-EMC and HCoV-4408 are not shown, given the number of examples.
From a simple visual inspection, it is already possible to notice the similarity of the patterns between
the classes.

TAT CTT is present again only in SARS-CoV-2, in 63 out of the 66 samples.
The combination of the convolutional and max pooling layer allows the CNN to identify se-

quences even if they are slightly displaced in the genome (by up to 148 positions). Thus, a table of
feature appearance of each of the sequences selected from the previous step is created. This results,
in just a set of feature to differentiate SARS-CoV-2 from other viruses.

The experiments presented in the following subsections to validate the method have different
objectives and make use of different datasets, all slowly building towards the final objective of
designing primers for SARS-CoV-2. A summary of all the experiments and datasets used is shown
in Fig. 5.6.

Experiment 1: Validation on the NGDC dataset
Starting from the dataset downloaded from the NGDC repository [Bei13] on March 15th 2020,
repeated sequences are removed, and the procedure to translate the data into the sequence feature
space is applied. The result is a frequency table of 3,827 features (21-bps sequences) with 583
samples (Table 5.1 (left)). Next, a state-of-the-art feature selection algorithm [Lop+19; Lop+20]
is executed, reducing the sequences needed to identify different virus strain to the bare minimum.
Remarkably, it is possible to correctly differentiate all the coronavirus (MERS-CoV, SARS-CoV-
2, SARS-CoV-1, etc) samples using only 53 of the original 3,827 sequences, obtaining a 100%
accuracy in a 10-fold cross-validation with a simpler and more traditional classifier, such as Logistic
Regression.

Experiment 2: Validation on the NCBI dataset
A dataset is downloaded from the NCBI repository [She+01] on March 15th 2020, with the following
query: gene=“ORF1ab” AND host=“homo sapiens” AND “complete genome”. The query results in
407 non-repeated sequences (Table 5.1 (right)). This dataset, named NCBI-A, presents 68 sequences
belonging to SARS-CoV-2. The procedure to translate the data into the set of sequence features is



182 Chapter 5. Health Applications

Figure 5.6: Summary of the different experiments, and corresponding datasets used.

then applied, and the same state-of-the-art feature selection algorithm of the previous experiment is
applied. The result is a list of 10 different sequences (Table 5.2), with a remarkable property: just
checking for their presence is enough to differentiate between SARS-CoV-2 and other viruses in
the dataset, with a 100% accuracy. Each of the sequences, in fact, only appears in SARS-CoV-2
samples.

Table 5.2: Sequences that only exist in SARS-CoV-2, that help differentiate between the virus and
other taxa.

TAG CAC TCT CCA AGG GTG TTC
CAT CTA CTG ATT GGA CTA GCT
AAT GAA TTA TCA AGT TAA TGG
CAC GTA GGA ATG TGG CAA CTT
TGA GCA GTG CTG ACT CAA CTC
CAA CTT TTA ACG TAC CAA TGG
CTA AAG CAT ACA ATG TAA CAC
GAT GGT CAA GTA GAC TTA TTT
TGC CAC TTG GCT ATG TAA CAC
TAT TAG TGA TAT GTA CGA CCC

Experiment 3: Further validation on the NCBI dataset

On March 17th 2020, the NCBI repository [She+01] is queried with: “virus” AND host=“homo
sapiens” AND “complete genome”, restricting the size from 1,000 to 35,000 bps. The query
returns 20,603 samples, of which only 32 belong to SARS-CoV-2, and 20,571 are from other taxa,
including Hepatitis B, Dengue, Human immunodeficiency, Human orthopneumovirus, Enterovirus
A, Hepacivirus C, Chikungunya virus, Zaire ebolavirus, Human respirovirus 3, Orthohepevirus
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A, Norovirus GII, Hepatitis delta virus, Mumps rubulavirus, Enterovirus D, Zika virus, Measles
morbillivirus, Enterovirus C, Human T-cell leukemia virus type I, Yellow fever virus, Adeno-
associated virus, rhinovirus (A, B and C), for a total of more than 900 viruses. This dataset is named
NCBI-B. Then,the procedure to translate the data into the sequence feature space is applied, and
the feature selection algorithm is executed. This results in 2 sequences of 21 bps: just by checking
for their presence, it is possible to separate SARS-CoV-2 from the rest of the samples with a 100%
accuracy. The sequences are: AAT AGA AGA ATT ATT CTA TTC and CGA TAA CAA CTT
CTG TGG CCC.

Experiment 4: Validation on the GISAID dataset
The Global Initiative for Sharing All Influence Data (GISAID) repository [SM17] on August 10th,
2020, had 53,183 sequences available for SARS-CoV-2, from different countries. From those, 52,645
have as < 1% Ns (low percentage of missing values), high coverage and host="homo sapiens".
Starting from the 21-bps sequences obtained from experiments 2 and 3, a frequency table is computed,
to verify whether the sequences also appear in other datasets and could then be used for detection.
The frequency of appearance of the target sequences among the samples in the GISAID dataset is
reported in Table 5.3, second column. In addition, 26 sequences from other hosts (manis javanica,
rhinolophus affinis, canine and felis catus) are also obtained from the GISAID repository, to make a
comparison with the sequences from experiment 2 and 3.

Table 5.3: Percentage of appearance for each of the 12 discovered 21-bps sequences across the
different datasets, and comparison to similar viruses in nature and other hosts.

Source GISAID NCBI NCBI NGDC NGDC GISAID GISAID GISAID GISAID
Virus SARS-CoV-2 Other Taxa SARS-CoV-2 Other Taxa SARS-CoV-2 Betacoronavirus Betacoronavirus Betacoronavirus Betacoronavirus
Host Homo Sapiens Homo Sapiens Homo Sapiens Homo Sapiens Homo Sapiens Manis javanica Rhinolophus affinis Canine Felis Catus
# Samples 52,645 20,572 32 487 96 17 1 2 6
CAC GTA GGA ATG TGG CAA CTT 99.84% 0.00% 100.00% 0.00% 97.92% 0.00% 100.00% 100.00% 50.00%
TAT TAG TGA TAT GTA CGA CCC 99.73% 0.00% 100.00% 0.00% 97.92% 0.00% 0.00% 100.00% 50.00%
AAT GAA TTA TCA AGT TAA TGG 99.94% 0.00% 100.00% 0.00% 96.88% 76.47% 0.00% 100.00% 66.67%
AAT AGA AGA ATT ATT CTA TTC 99.73% 0.00% 100.00% 0.00% 96.88% 0.00% 100.00% 100.00% 66.67%
CAA CTT TTA ACG TAC CAA TGG 99.55% 0.00% 100.00% 0.00% 97.92% 0.00% 0.00% 100.00% 50.00%
CTA AAG CAT ACA ATG TAA CAC 99.76% 0.00% 100.00% 0.00% 100.00% 0.00% 0.00% 100.00% 66.67%
TAG CAC TCT CCA AGG GTG TTC 99.57% 0.00% 100.00% 0.00% 97.92% 0.00% 0.00% 100.00% 66.67%
CGA TAA CAA CTT CTG TGG CCC 99.06% 0.00% 100.00% 0.00% 97.92% 0.00% 100.00% 50.00% 50.00%
TGC CAC TTG GCT ATG TAA CAC 99.90% 0.00% 100.00% 0.00% 97.92% 0.00% 100.00% 100.00% 66.67%
CAT CTA CTG ATT GGA CTA GCT 99.79% 0.00% 100.00% 0.00% 97.92% 0.00% 100.00% 100.00% 50.00%
TGA GCA GTG CTG ACT CAA CTC 99.56% 0.00% 100.00% 0.00% 98.96% 0.00% 0.00% 100.00% 66.67%
GAT GGT CAA GTA GAC TTA TTT 99.69% 0.00% 100.00% 0.00% 96.88% 0.00% 0.00% 100.00% 66.67%

The results remarkably outperform earlier publications using machine learning for identifying
SARS-CoV-2 (see for example [Ran+20]), with the added benefit of producing human-readable
results instead of a plain black box classifier. Not to mention, the 21-bps sequences identified by the
experiments can straightforwardly be used as primers.

Experiment 5: Design of the candidate primer set.
After the analysis carried out on the deep learning model, a test with Primer3plus [Unt+07] is
performed, to see which of the sequences could be used as a forward primer, using sample NCBI
NC045512.2 as the reference SARS-CoV-2 sequence. Primer3plus is a software able to predict the
suitability of candidate primers. Sequence TAG CAC TCT CCA AGG GTG TTC is predicted
to be suitable, showing a frequency of appearance of 99.57% in viral genomes available from
different countries in GISAID [SM17] and 100.0% on the NCBI-A and NCBI-B [She+01] datasets.
Using the reference SARS-CoV-2 sequence, this discovered sequence is located between nucleotides
25,604 and 25,624 in the ORF3a gene. In SARS-CoV, this gene encodes a protein of 274 aa, that
is related with necrotic cell death [Shi+19], chemokine production like interleukin 8 (IL-8) and
RANTES/CCL5, NFκB activation resulting in an inflammatory response [Kan+06] and may play
an important role in the virus’ life cycle [Pad+07]. A specific primer set for detection of SARS-
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CoV-2 is designed using Primer3plus: TAG CAC TCT CCA AGG GTG TTC is used as forward
primer and GCA AAG CCA AAG CCT CAT TA as reverse primer, obtaining an amplicon size
of 179 bps. An in-silico PCR test using FastPCR 6.7 [KLS+09] with default parameters is then
run, using NC045512.2 as a reference SARS-CoV-2 sequence. This yields positive results, with a
melting temperature T m = 56.2◦C for the forward primer, T m = 53.1◦C for the reverse primer and
Ta = 58◦C.

In order to compare the primer automatically designed with the proposed approach, the frequency
of appearance of different primers sets’ sequences used in SARS-CoV-2 RT-qPCR tests developed
by WHO referral laboratories is computed on the 52,645 sequences from the GISAID repository,
and the 583 samples of different coronaviruses from the NGDC dataset from experiment 1. The used
primers set are developed by University of Hong Kong (HKU-N); Charite, Berlin, Germany (Charite-
E); US-CDC, United States (US-CDC-N1, US-CDC-N2, US-CDC-N3) and China CDC, China
(China-CDC-ORF1ab, China-CDC-N) (Table 5.4). These primers are the ones more commonly used,
as stated in the GISAID status update of August 11, 2020 2.

From the results in Table 5.4, it is visible how all sequences have a frequency of appearance
of > 99%, with the exception of CHINA-CDC-N-F with a 68.52%. This is consistent with the
percentage of genomes with mutation in the primer region in the GISAID update summary of August
11, 2020. In the in-silico analysis of specificity , all the primers sets’ sequences are compared
with samples from the NCBI-B and NGDC datasets: the results show that HKU-N-F, HKU-N-R,
Charite-E-F, Charite-E-R and US-CDC-N2-F are not specific to SARS-CoV-2, as these primers bind
to SARS-CoV-1 too. The rest of the sequences, including the automatically designed primers, only
appear in SARS-CoV-2. Thus, in summary from 8 different primer sets, 3 of them are not specific
to SARS-CoV-2, and from the remaining 5, considering frequency of appearance only, the design
obtained with the proposed approach appears to be the third best option, when evaluating the worst
frequency between forward and reverse primer.

Table 5.4: Frequency comparison for different sequences in primer sets suggested at the GISAID
repository. The primers uncovered are marked with UtrechtU, as they were the result of a work in
collaboration with Utrecht University.

Primer Sequence Frequency
HKU-N-F 5’-TAA TCA GAC AAG GAA CTG ATT A-3’ 99.56%
HKU-N-R 5’-CGA AGG TGT GAC TTC CAT G-3’ 99.58%
Charite-E-F 5’-ACA GGT ACG TTA ATA GTT AAT AGC GT-3’ 99.90%
Charite-E-R 5’-ATA TTG CAG CAG TAC GCA CAC A-3’ 99.90%
US-CDC-N1-F 5’-GAC CCC AAA ATC AGC GAA AT-3’ 99.71%
US-CDC-N1-R 5’-TCT GGT TAC TGC CAG TTG AAT CTG-3’ 99.57%
US-CDC-N2-F 5’-TTA CAA ACA TTG GCC GCA AA-3’ 99.43%
US-CDC-N2-R 5’-GCG CGA CAT TCC GAA GAA-3’ 99.74%
US-CDC-N3-F 5’-GGG AGC CTT GAA TAC ACC AAA A-3’ 99.09%
US-CDC-N3-R 5’-TGT AGC ACG ATT GCA GCA TTG-3’ 99.72%
CHINA-CDC-ORF1ab-F 5’-CCC TGT GGG TTT TAC ACT TAA-3’ 99.90%
CHINA-CDC-ORF1ab-R 5’-ACG ATT GTG CAT CAG CTG A-3’ 99.59%
CHINA-CDC-N-F 5’-GGG GAA CTT CTC CTG CTA GAA T-3’ 68.52%
CHINA-CDC-N-R 5’-CAG ACA TTT TGC TCT CAA GCT G-3’ 99.20%
UtrechtU-F 5’-TAG CAC TCT CCA AGG GTG TTC-3’ 99.57%
UtrechtU-R 5’-GCA AAG CCA AAG CCT CAT TA-3’ 99.48%

2https://www.gisaid.org/hcov-19-analysis-update/

https://www.gisaid.org/hcov-19-analysis-update/
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Experiment 6: Validation of the candidate primer set in biological samples
To validate the primer obtained through an automatic in-silico procedure, a conventional PCR is
performed on cDNA obtained from RNA from SARS-CoV-2 and other human coronaviruses. In
addition, RNAs from nasopharyngeal swabs from six patients previously diagnosed with SARS-CoV-
2 infection and four patients negative for SARS-CoV-2 by routine diagnostic method [Cor+20] are
analyzed with the same conventional PCR. The RNA was converted into cDNA using SuperscriptIII
(Thermo-Fisher Scientific, USA) and random hexamers. Subsequently, conventional PCR was
performed on the cDNA using HotStar Taq DNA polymerase (Qiagen, The Netherlands) with 400nM
forward primer (5’-AG CAC TCT CCA AGG GTG TTC-3’) and 400nM reverse primer (5’-GCA
AAG CCA AAG CCT CAT TA- 3’) and the following cycling conditions: 15 min at 95◦C, followed
by 40 cycles of 1 min. at 95◦C , 1 min. at 5 ◦CC and 1 min. at 72◦C. The PCR products were
visualized by electrophoresis. The same RNA was used in a diagnostics reference assay by Corman
et al. [Cor+20] and the Cycle threshold values form this reference assay were used for estimating
sensitivity.

Different dilutions of SARS-CoV-2 RNA are detected with similar sensitivity compared to
the diagnostic reference assay, see Fig. 5.7 lanes 1-8. The candidate primer set created with the
proposed approach exclusively detects SARS-CoV-2 and does not amplify RNA from other human
coronaviruses, as shown in Fig. 5.7, lanes 9-14. The candidate primer set is able to detect SARS-CoV-
2 RNA in patient samples previously found positive for SARS-CoV-2, but not in patients previously
found negative, as displayed in Fig. 5.7, lanes 15-24. Although further validation will be required to
develop this candidate primer set into a diagnostic assay, the results clearly demonstrate the power
of the proposed method to select potential sequences for further validation.

Figure 5.7: Laboratory validation of the candidate primer set by conventional PCR. MM, molecular
weight marker; Lanes 1-8, 10-fold dilutions of SARS-CoV-2 RNA (corresponding to Ct values
26 to 39 in the diagnostic reference assay); Lanes 9-14, RNA from different human coronaviruses
(hCoV-OC43, hCoV-229E, hCoV-NL63, MERS-CoV, SARS-1, SARS-CoV-2 respectively); Lanes
15, 16, 17, 19, 20, 21, patient samples previously found positive for SARS-CoV-2; Lanes 18, 22, 23,
24, patient samples previously found negative for SARS-CoV-2.

5.1.3 Evolutionary algorithms
While the CNN-based approach presented in section 5.1.2 proved to be effective, such technique
presents a few important limitations: primers have a series of desired features, such as melting
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Figure 5.8: Subsequence I, representing a primer candidate, is uniquely identified by two integer
values: index of the sample k in the training set, and position inside its genome p.

temperature Tm in a given range, presence of certain base pairs in specific positions, etc. that cannot
be easily expressed as constraints in the procedure. A stochastic optimization algorithm, such as an
EA, on the other hand, could include all this information in the fitness function. In the following
sections, an EA is tested on the task of finding suitable primers for a SARS-CoV-2 variant.

Individual representation
An individual in the proposed approach is a primer candidate, thus a sub-sequence of a given virus
sample. Assuming N samples of the target virus are available, and each sample is a sequence of L
bps, an individual will be described by two integers, sample number k in the training dataset, and
position number p inside the sample. The candidate primer will then be represented by the 21 bps
in positions {p, p+1, ..., p+20} of sample sk, see Figure 5.8. While primers can be of any length
between 18 and 22 bps, size 21 is selected to compare the final results with the primers produced by
DL techniques [Lop+21a; Lop+21b], that are of length 21.

Population initialization
The population is initialized with random individuals. More specifically, the i-th individual will be
characterized by two integers, ki drawn with uniform probability in (1,N) and pi drawn with uniform
probability from (1,L−21).

Fitness function
The fitness function is a weighted sum, attempting to take into account all the criteria for a good
primer candidate. The first term of the sum, F , is evaluating the presence of the sequence selected as
candidate primer I inside training samples labeled with the target virus strain, and its absence from
samples with a different label. In formal terms:

P(I) =
T

∑
i=0

P(I,si) (5.3)

where T is the number of samples in the training set, si is the i-th sample in the training set, and
function P is defined as:
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P(I,si) =

{
0, if I is found inside si and L(si) == L(sk)

1, otherwise.
(5.4)

where L(s) returns the class label of sample s. In other words, P(I,si) equals 1 if sequence I is
found inside a sample with the same class label as sample sk, the origin of sequence I. So, if the
candidate primer I is found inside a sample that does not belong to the target class, or is not found in
a sample that belongs to the target class, the solution is penalized.

The second term of the weighted sum takes into account the GC content of the candidate primer,
or in other words, the presence of bases G and C:

C (I) = 0.5−
21

∑
i=0

C(I(i))
21

where C(b) =

{
1, if base b is C or G
0, otherwise.

(5.5)

where I(i) represents the base in position i inside sequence I. The following element of the
weighted sum is N , defined as:

N (I ) =
21

∑
i=0

N(I(i)) where N(b) =

{
1, if base b is N
0, otherwise.

(5.6)

that takes into account the presence of N symbols in the sequence, indicating an error in the read.
The ideal primer candidate should only contain A, C, G, or T values.

The final term tackles the requirement of having a melting temperature Tm centered around 60◦.
Specialized literature [Unt+07] provides an equation to compute Tm for a sequence I:

Tm(I) = 81.5+16.6∗ log10([Na+])+41∗C (I)−600/l(I) (5.7)

where C (I) is the content of C and G bases in sequence I, as described in Equation 5.5, [Na+]
is the molar sodium concentration, and l(I) is the length of sequence I, in bps. The value of
[Na+] = 0.2 is used, as described in [Unt+07], while l(I) = 21 by design. The term taking into
account Tm will then be:

T (I) = |60−Tm(I)| (5.8)

To summarize, the final weighted sum will be:

F (I) = wp ·P(I)+wc ·C (I)+wn ·N (I)+wt ·T (I) (5.9)

with wp,wc,wn,wt representing the weights associated to each term. Function F is to be
minimized.

Selection
Individual selection for reproduction is performed through a tournament selection of size τ , where
τ individuals are randomly drawn from the population with uniform probability, their fitness is
compared, and the individual with the best fitness is ultimately chosen.
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Evolutionary operators
Mutations operators can act on the two integer values k, representing the index of a sample in the
training set, and p, representing a position inside sample k’s genome. Mutations acting on p draw
from a multinomial distribution where the probabilities are calculated from a normal distribution,
following the idea that small displacements of the beginning of a primer left or right in the genome
might provide small changes in the fitness function. Mutations targeting k, on the other hand, draw
uniformly from all available sample indexes: most genomes of a virus, resulting from a sequencing
process, will be almost aligned with each other, with small differences resulting from additions or
deletions in the cDNA; for this reason, it is conceivable that the principle of locality will be preserved
when creating a primer candidate from position p of two different samples k and k′. The second
evolutionary operator adopted in the experiments is a classic one-point crossover.

Replacement
Individual replacement is carried out through a (µ,λ ) scheme, where the entire population is replaced
at each generation.

5.1.4 Experimental evaluation of the evolutionary algorithm
The proposed approach is validated on real-world data, using samples collected from the GISAID
repository. 10,712 SARS-CoV-2 sequences are downloaded on December 23rd, 2020. After
removing repeated sequences, a total of 2,104 sequences labeled as B.1.1.7, and 6,819 sequences
from other variants are left, for a total of 8,923 samples. B.1.1.7 variants are assigned class label 1,
while all the remaining samples are labeled as class 0. Then, the data are divided into 8,030 samples
for training and 893 for testing.

The algorithm described in section 5.1.3 has been implemented in C#, and is available, along with
all the data, in a GitHub open repository3. After a few preliminary trials to tune the EA’s parameters,
population size is set to µ = 100, offspring size to λ = 100, and a termination condition based on
a maximum number of generations, 20, probability of mutation to pm = 0.15 and probability of
crossover to pc = 0.85, tournament selection size τ = 2, and a (µ,λ ) scheme, where the whole
population is replaced at every generation. For the fitness function, the values for the weights are
set as wp = 1.0,wc = 100.0,wn = 1000.0,wt = 1.0, to provide the same numerical importance to
different parts of the evaluation, with the exception of N (I), as primers containing N symbols are
unlikely to be acceptable. In principle, the fitness function could also be structured as a lexicographic
comparison, first evaluating the presence of Ns in the sequence, and then proceeding with the rest of
the evaluation. Using a combination of lexicographic acceptability and multi-objective evaluations
could also be beneficial. These possibilities will be analyzed in future works.

In order to assess the stability of the results, the proposed approach is run 20 times, with each
single run lasting around 62 minutes with 5 threads on a 64-bit Windows 10 laptop with Intel Xeon
E-2186M. Thread parallelization is exploited to evaluate several individuals at the same time. The
best individual of each run is then stored, to perform a later comparison with primers designed
through other methods, discussed in Section 5.1.5.

The 20 runs of the proposed approach return different candidate primers, as shown in Table 5.5.
Each of the resulting solutions is then simulated in the canonical version of B.1.1.7 in the GISAID
sample EPI_ISL_601443 using Primer3Plus [Unt+07], to compute the reverse primer and perform a
final assessment of its suitability as a primer. This last process is more computationally expensive

3https://github.com/albertotonda/ea-primers
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than a simple evaluation of a fitness function, and it can last up to 20 minutes (Primer3Plus) depending
of the software used to crosscheck.

From the 20 best individuals obtained, only 6 solutions can be used as forward primers. Further
analysis on the sequences shows that the selected primers are in the region of 2 non-synonymous
mutations (S982A, A570D) and 2 synonymous mutations (C15279T, C16176T), with the best
candidate being the one based on mutation A570D (Table 5.6).

The results are then further validated on 487 samples of other coronaviruses, obtained from the
National Genomics Data Center (NGDC) [Bei13]. All the candidate primers only target B.1.1.7
SARS-CoV-2, with no appearance in any other coronavirus sample. Further validation on 20,571
samples belonging to other non-corona viruses from the National Center for Biotechnology Informa-
tion (NCBI) [She+01], shows no appearance of the sequence in any other virus sample, providing
further support for specificity of the obtained best candidate primers.

Table 5.5: Candidate primers found during 20 runs of the proposed approach, and Primer3Plus
output simulated on the canonical reference sequence EPI_ISL_601443.

Sequence Result
GCACGTCTTGACAAAGTTGAG GAGGTGCTGACTGAGGGAAG
TGGCAGAGACATTGATGACAC Left primer is unacceptable: High end self complementarity
CAGAGACATTGATGACACTAC Left primer is unacceptable: Tm too low
GGCAGAGACATTGATGACACT Left primer is unacceptable: High end self complementarity
CCTCAAGGTATTGGGAACCTG CATCACAACCTGGAGCATTG
TTGGCAGAGACATTGATGACA AGCAACAGGGACTTCTGTGC
ACCTCAAGGTATTGGGAACCT CATCACAACCTGGAGCATTG
CACACAACACATTTGTGTCTG Left primer is unacceptable: Tm too low/High end self complementarity
TTCAGTGCATCGATATCGGTA Left primer is unacceptable: High end self complementarity
CTCAGACTAATTCTCATCGGC Left primer is unacceptable: Tm too low/High 3’ stability
TCAGACTAATTCTCATCGGCG Left primer is unacceptable: High 3’ stability
TCAGACTAATTCTCATCGGCG Left primer is unacceptable: High 3’ stability
GGCAGAGACATTGATGACACT Left primer is unacceptable: High end self complementarity
CAGACTAATTCTCATCGGCGG Left primer is unacceptable: High 3’ stability
GTGATGTAGAAAACCCTCATC Left primer is unacceptable: Tm too low
GTGATGTAGAAAACCCTCATC Left primer is unacceptable: Tm too low
CTCAGACTAATTCTCATCGGC Left primer is unacceptable: Tm too low/High 3’ stability
CTCAGACTAATTCTCATCGGC Left primer is unacceptable: Tm too low/High 3’ stability
CTCATCTTATGGGTTGGGATT GCCACACATGACCATTTCAC
CCTTGCACGTCTTGACAAAGT GAGGTGCTGACTGAGGGAAG

Table 5.6: Frequency of appearance in the training and test set, for each of the six candidate primers
validated by Primer3Plus.

Candidate Primer Frequency in test set Frequency in training set Mutation
GCACGTCTTGACAAAGTTGAG 0.9922 0.9893 T24506G (S982A)
CCTCAAGGTATTGGGAACCTG 0.9922 0.9889 C16176T
TTGGCAGAGACATTGATGACA 0.9922 0.9895 C23271A (A570D)
ACCTCAAGGTATTGGGAACCT 0.9922 0.9888 C16176T
CTCATCTTATGGGTTGGGATT 0.9910 0.9893 C15279T
CCTTGCACGTCTTGACAAAGT 0.9922 0.9890 T24506G (S982A)

5.1.5 Discussion
While the candidate primers identified by the proposed approach can be considered of high quality,
it is worth it to compare them to other primer sets designed by conventional bioinformatics tools. A
typical primer set would be represented by a sequence around a specific mutation, believed to be
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exclusive to the target virus variant.
In order to perform this comparison, 21-bps sequences are generated around mutations N501Y,

A570D, D614G, P681H, T716I, S982A, D1118H, with 10 bps before and after the position of
the mutation, using the canonical sequence of the B.1.1.7 variant: for example, mutation N501Y
(A23063T) will correspond to sequence CCAACCCACT T ATGGTGTTGG. The frequency of
appearance of these human-designed primers is then tested against the best primers found by the EA
during the experimental evaluation. The results are reported in Table 5.7.

Table 5.7: Frequency of appearance of the most significant mutations and the forward primer in the
8,293 sequences from the GISAID dataset.

Sequence B.1.1.7 Other Variants
# samples (%) # samples (%)

N501Y 1,985 (94.34%) 14 (0.02%)
A570D 2,013 (95.67%) 1 (< 0.01%)
D614G 2,096 (99.62%) 5,384 (78.96%)
P681H 2,014 (95.72%) 1 (< 0.01%)
T716I 2,005 (95.29%) 1 (< 0.01%)
S982A 2,008 (95.43%) 0 (0%)
D1118H 2,011 (95.57%) 0 (0%)
GCACGTCTTGACAAAGTTGAG 2,011 (95.57%) 0 (0%)
CCTCAAGGTATTGGGAACCTG 2,008 (95.43%) 0 (0%)
TTGGCAGAGACATTGATGACA 2,014 (95.72%) 1 (< 0.01%)
ACCTCAAGGTATTGGGAACCT 2,007 (95.38%) 0 (0%)
CTCATCTTATGGGTTGGGATT 2,012 (95.62%) 1 (<0.01%)
CCTTGCACGTCTTGACAAAGT 2,009 (95.48%) 0 (0%)
Total Samples 2,104 6,137

The 6 primer sets generated for the B.1.1.7 variant show almost the same frequency of appearance
and similar specificity. Nevertheless, the sequence using mutation A570D is slightly better in
frequency of appearance in the training set. The generated forward primers for the B.1.1.7 variant
appear in 2,010 of 2,104 sequences, with an average frequency of 95.54%. A further analysis shows
that only 2,014 of the sequences labeled as B.1.1.7 present 5 or more of the 7 studied mutations,
which could point to an error in the annotation of the variant inside the GISAID dataset, or several
extra mutations in the generated 21-bps sequences. If only sequences that show 5 or more of the
mutations are considered as proper B.1.1.7 variant samples, the average of the generated primers
correctly identifies 2,095 out of 2,104 samples, for a final 99.57% frequency of appearance.

While the primers generated by the proposed approach have a performance similar to primers
obtained by conventional PCR design, it is extremely important to remark that this primers can only
exist after the canonical sequence of a virus variant is defined. The canonical sequence represents the
reference genome of a virus, and a considerable amount of effort from experts is necessary to reach
a consensus on this sequence. The approach, like other ML techniques for primer design [Lop+21b]
has the advantage of automatically finding suitable primers in a matter of hours; but differently
from similar ML approaches, it is much faster (about an order of magnitude faster on comparable
hardware, from the experiments reported in the previously cited publications) and can handle a wider
variety of constraints describing the desired features of a candidate primer.

As of February 5th, other SARS-CoV-2 variants of concern have been identified and are on
the rise across the globe, such as the one originating from Brazil (P.1) [DP21; Far21] and the one
generated in South Africa (B.1.351) [Had+18; 20; Teg+20]. These new SARS-CoV-2 variants also
carry the N501Y and D614G mutations, similarly to the B.1.1.7 variant. Thus, it is important to
verify that the primers generated in this work are able to differentiate between the variants.

From the GISAID repository, all available 326 sequences of the B.1.351 variant are downloaded
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on January 7, 2021 and all 28 non-repeated sequences of the P.1 variant are obtained on January 19,
2021. Next, the frequency of appearance of the primers in samples from other variants is verified.
From Table 5.8, it is evident that while the primers found with the proposed approach are exclusive
to the B.1.1.7 variant, other sequences built around mutations (such as the one built around N501Y)
are often also found in different variants. thus negatively impacting their specificity.

Table 5.8: Frequency of appearance of the characteristic mutations for the UK (B.1.1.7), South
African (B.1.351), and Brazilian (P.1) variants in B.1.1.7 sequences (2,104), B.1.351 sequences
(337), P.1 sequences (28) and sequences of other variants (6,808).

Sequence Other B.1.1.7 B.1351 P.1
T1001I 0.01% 95.53% 0.00% 0.00%
A1708D 0.00% 91.83% 0.00% 0.00%
I2230T 0.01% 94.39% 0.00% 0.00%
N501Y 0.04% 94.34% 99.70% 82.14%
A570D 0.01% 95.67% 0.00% 0.00%
P681H 0.01% 95.72% 0.30% 0.00%
T716I 0.01% 95.29% 0.00% 0.00%
S982A 0.00% 95.44% 0.00% 0.00%
D1118H 0.00% 95.58% 0.00% 0.00%
Q27stop 0.04% 90.64% 0.30% 0.00%
R52I 0.00% 90.64% 0.00% 0.00%
Y73C 0.00% 90.78% 0.00% 0.00%
S235F 0.03% 95.58% 0.00% 0.00%
GCACGTCTTGACAAAGTTGAG 0.00% 95.58% 0.00% 0.00%
CCTCAAGGTATTGGGAACCTG 0.00% 95.44% 0.00% 0.00%
TTGGCAGAGACATTGATGACA 0.01% 95.72% 0.00% 0.00%
ACCTCAAGGTATTGGGAACCT 0.00% 95.39% 0.00% 0.00%
CTCATCTTATGGGTTGGGATT 0.03% 95.63% 0.00% 0.00%
CCTTGCACGTCTTGACAAAGT 0.00% 95.48% 0.00% 0.00%

Finally, from a comparison between the frequency of appearance of reverse primers in UK
samples (Table 5.9) and the frequency of appearance in other variants (Table 5.8), it is possible to
conclude that the best candidates for a primer set are sequences GCA CGT CTT GAC AAA GTT
GAG as forward primer, based on mutation S982A, and GAG GTG CTG ACT GAG GGA AG
as reverse primer. While the results are encouraging, it is important to remember that an in-silico
validation is not enough to provide a final answer. The next step in the process will be to test the
primers in the lab.

Table 5.9: Frequency of appearance of the forward and reverse primers found by the EA algorithm.

Forward Primer Frequency Reverse Primer Frequency Average
GCACGTCTTGACAAAGTTGAG 95.58% GAGGTGCTGACTGAGGGAAG 99.71% 97.65%
CCTCAAGGTATTGGGAACCTG 95.44% CATCACAACCTGGAGCATTG 98.62% 97.03%
TTGGCAGAGACATTGATGACA 95.72% AGCAACAGGGACTTCTGTGC 99.62% 97.67%
ACCTCAAGGTATTGGGAACCT 95.39% CATCACAACCTGGAGCATTG 98.62% 97.01%
CTCATCTTATGGGTTGGGATT 95.63% GCCACACATGACCATTTCAC 99.81% 97.72%
CCTTGCACGTCTTGACAAAGT 95.48% GAGGTGCTGACTGAGGGAAG 99.71% 97.60%

5.1.6 Limitations
While both methods for the automatic discovery of primers proved to be effective, there is one
important limitation that must be addressed. Framing the primer discovery as an optimization
problem, at a first glance the search space of all possible primers seems vast. Taking for example
a 21-bps fixed-length sequence, and 2,000 samples that have around 30,000 bps each, the total
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number of candidate primers is 2 ·103 · (3 ·104−21)≃ 6 ·107: computing statistics such as melting
temperature Tm and frequency of appearance in other samples for each candidate would probably
take months, even with parallel evaluations.

Nevertheless, I recently discovered a fundamental mistake in the reasoning that motivated the use
of the previously presented techniques. While it is true that the potential number of primer candidates
is large, most of them are actually identical, as the genomic sequences of different samples of the
same virus strain are usually extremely close to each other, give or take a few mutations, deletions,
or additions. Performing a preliminary inventory of all possible candidates with the support of a
hash table to identify unique sequences, reduces the number of candidates to be analyzed from 107

to 105, a quantity that can be treated in a few days of computational effort on a multi-core server.
This consideration appears to cast a shadow on the use of CNNs and EAs for these problems:

after all, if the search space can be treated with an exhaustive analysis, there is not need to use such
complex computational intelligence techniques. While this might be true for the specific application
to SARS-CoV-2, it becomes immediately apparent that an exhaustive approach is unfeasible for
larger viruses (comprising 1M bps) or bacteria (easily numbering more than 1.5M bps and presenting
further challenges, such as difficulties in aligning reads to a reference and the presence of mobile
elements). Not to mention, some of the techniques alternative to qT-PCR, like Loop-mediated
isothermal amplification (LAMP) require more than two primer sequences, each one with specific
size and distance from the others,

In conclusion, even if the techniques developed for this specific challenge might be superseded
by more traditional approaches, the experimental results open exiting perspectives for the use on
computational intelligence on more complex genomic problems.

5.2 Signatures for Cancer Classification
MicroRNAs (miRNA) are small noncoding RNA molecules that can be detected in bodily fluids
without the need for major invasive procedures on patients. miRNAs have shown great promise as
biomarkers for tumors, to both assess their presence and predict their type and subtype. Recently,
thanks to the availability of miRNAs datasets, machine learning techniques have been successfully
applied to tumor classification. Results, however, are difficult to assess and interpret by medical
experts because the algorithms exploit information from thousands of miRNAs.

In this section, I describe a research line for a novel methodology that aims at reducing the
necessary information to the smallest possible set of circulating miRNAs, exploiting feature selection
techniques. The dimensionality reduction achieved reflects a very important first step in a potential,
clinically actionable, miRNA-based precision medicine pipeline.

5.2.1 Biomarkers for cancer
Cancer is difficult to diagnose and classify at early stages, and is one of the top leading causes of death
worldwide [Fer+15]. Therefore, several attempts have been made to identify possible biomarkers for
cancer detection. MicroRNAs (miRNAs) represent a class of small noncoding RNA molecules, with
a critical role in the post-transcriptional regulation of gene expression. miRNAs also act on several
cellular processes, such as cell differentiation, cell cycle progression, and apoptosis. Additionally, in
tumors, some miRNAs can function as oncogenes, while others suppress tumors [TOB11].

Succeeding the earliest evidence of miRNA involvement in human cancer by Croce et al. [Cal+02],
various studies have demonstrated that miRNA expressions are deregulated in human cancer through
a variety of mechanisms [PC16]. Since ectopic modulation of specific miRNAs compromise the
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hallmarks of cancer, several efforts have been spent to generate scaffold-mediated miRNA-based
delivery systems trying to demonstrate the potential of miRNA-mediated therapies.

In comparison to invasive methods currently used for cancer diagnosis, there is an ongoing debate
on the use of circulating miRNAs as possible biomarkers due to the fact that they can be detected
directly from biological fluids, such as blood, urine, saliva and pleural fluid [SP11]. miRNAs possess
other qualities of good candidate biomarkers such as: a) they are useful for the identification of
cancer types, b) their availability of high-quality measurement techniques for miRNAs and c) they
present good conservation between practical and preclinical models [He+15].

Several studies have shown the properties of miRNAs as oncogenes and tumor suppressors
genes [CLG13; Fab13; FVN10]. Since then, techniques such as microarray (Affymetrix, Agilent) and
sequencing techniques (Illumina), have been proposed for their identification [LLC12]. In the context
of increasing availability of data, it is of utmost practical importance to build databases of miRNA
expressions data for cancer research [Akh+15; BZC12; KG10] and to extract features that could be
used as cancer biomarkers [BT09; Cor+11; IC12]. For example, the expression levels of miRNA
hsa-miR-21 change for different cancer types such as: squamous cell lung carcinoma [Gao+11],
astrocytoma [Zhi+10], breast cancer [Yan+08], and gastric cancer [Wan+15]. Following this idea, the
scientific community is currently looking for miRNA signatures (a subset of miRNAs), representing
the minimal number of miRNAs to be measured for discriminating between different stages and
types of cancer.

Thousands of miRNAs have been identified, and currently miRBase (v22.1) contains 1,917
stem-loop sequences, and 2,657 mature sequences for human microRNA [KG10]. Although a
classification of cancer tumor type is possible using isomirs [Tel+17], not all of the miRNAs listed
are available in every study, and only a few of them have been shown to work as circulating
biomarkers [He+15]. Obtaining a minimal list of miRNAs able to correctly classify tumors is of
utmost practical importance, because it would reduce the measurements needed and improve the
likelihood of validation across multiple studies.

Several approaches in the literature propose the use of machine learning techniques for feature
selection involving miRNAs. For example, feature selection for identifying miRNA targets [YAK16],
for prediction of specific biomarkers for tumor origin [Tan+17] and to learn subset of features for
tumor classification [PPR17]. In this study, the objective was to use feature selection and to uncover
a small miRNAs signature with the aim to correctly classify cancer tumor types, and distinguish
between normal and tumor tissue reducing the necessary features by an order of magnitude.

5.2.2 Ensemble feature selection

As the objective is to discover and validate a reduced list of miRNAs to be used as a signature
for tumor classification, features that could optimally assist in distinguishing between different
cancer types and tumor tissue need to be selected. In this sense, popular approaches used for feature
selection range from univariate statistical considerations, to iterated runs of the same classifier with
a progressively reduced number of features in order to assess the contribution of the features to the
overall result. As the considered problem is particularly complex, relying upon simple statistical
analyses might not suffice. Furthermore, features extracted using an iterative method on one classifier
are likely to work well only for that specific classifier. Following the idea behind ensemble feature
selection [Abe+09; SAV08; Sei+17], the use of multiple algorithms is proposed, to obtain a more
robust and general predictive performance. An ensemble approach has the advantage of obtaining
features that will be effective across several classifiers, with a better likelihood of being more
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representative of the data, and not just of the inner workings of a single classifier.
For this purpose, a set of classifiers is trained to extract a sorted list of the most relevant features

from each. Intuitively, as a feature considered important by the majority of classifiers in the set is also
likely to be relevant for our objective, then information from all classifiers is compiled to find the most
common relevant features. Starting from a comparison of 22 different state-of-the-art classifiers on
the considered dataset, presented in [Rin+18], a subset of those classifiers was selected considering
both; high accuracy and a way to extract the relative importance of the features from the trained classi-
fier. After preliminary tests to set algorithms’ hyperparameters, 8 classifiers were chosen, all featuring
an average accuracy higher than 90% on a 10-fold cross-validation: Bagging [Bre99], Gradient
Boosting [Fri01], Logistic Regression [Cox58], Passive Aggressive [Cra+06], Random
Forest [Bre01], Ridge [Tik43], SGD (Stochastic Gradient Descent on linear models) [Zha04], SVC (
Support Vector Machines Classifier with a linear kernel ) [Hea+98]. All considered classifiers are
implemented in the scikit-learn Python toolbox.

Overall, the selected classifiers fall into two broad typologies: those exploiting ensembles of
classification trees [Bre+84] (Bagging, Gradient Boosting, Random Forest), and those opti-
mizing the coefficients of linear models to separate classes ( Logistic Regression, Passive
Aggressive, Ridge, SGD, SVC ). Depending on classifier typology, there are two different ways of
extracting relative feature importance. For classifiers based on classification trees, the features used
in the splits are counted and sorted by frequency, from the most to the least common. For classifiers
based on linear models, the values of the coefficients associated to each feature can be used as a proxy
of their relative importance, sorting coefficients from the largest to the smallest in absolute value. As
the two feature extraction methods return heterogeneous numeric values, only the relative sorting of
features provided by each classifier was considered. Furthermore, it is decided to extract the top 100
most relevant features as a reduction of about an order of magnitude, so each feature f is assigned a
simple score s f = Nt/Nc, where Nt is the number of times that specific feature appears among the
top 100 of a specific classifier instance, while Nc is the total number of classifiers instances used;
for instance, a feature appearing among the 100 most relevant in 73% of the classifiers used would
obtain a score s f = 0.73. 100 features are selected, because in this way the dataset is compressed
at by least 90%, from 1,046 to 100 features. In order to increase the generality of the results, each
selected classifier was run 10 times, using a 10-fold stratified cross-validation, so that each fold
preserves the percentage of samples of each class in the original dataset. Thus, Nc = 80 (8 types of
classifiers, run 10 times each). The complete procedure is summarized by Algorithm 2. Different
approaches to the aggregation of heterogeneous feature importance from various sources are also
possible (see for example [Abe+09; SAV08; Sei+17]), such as assigning to each feature a weight
proportional to its relative importance. However, most alternatives would require adding and tuning
extra parameters, so it is decided to opt for a simpler approach.

5.2.3 Experiment 1
An ensemble feature selection method is applied to a subset of The Cancer Genome Atlas dataset
(TCGA) [Wei+13], containing 8,023 cases, with 28 different types of cancer, and 1,046 different
stem-loop miRNA expressions (miRBase V16 4, summarized in Table 5.10). Typically, classifiers
trained on a dataset do not use the whole set of available features to separate classes, but only a subset
which could be ordered by relative importance, with a different meaning given to the list by the
specific technique, pushing for simpler models. Using 8 state-of-the-art classifiers implemented in

4ftp://mirbase.org/pub/mirbase/16/
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Algorithm 2: Ensemble feature selection.

1 Normalize dataset on each of the F features, Divide dataset in N folds, Select K classifiers,
Choose the number of features in the signature S;

2 for each fold n of N do
3 for each classifier k of K do

Train classifier kn on all folds minus n, using all features;
Test classifier kn on fold n;
Obtain sorted list lkn of features from kn;
Assign weight w f nk to each f of the F features;

4 for each feature f of F do
if f is among the top S features in lkn then

w f nk = 1
else

w f nk = 0

5 Nc = N ·K;
6 for each miRNA feature f do

Nt = ∑
N
n ∑

K
k w f nk;

s f = Nt/Nc;

7 Select S-feature signature, from features with highest s f ;
8 for each fold n of N do
9 for each classifier k of K do

Train classifier kn on all folds minus n, using signature;
Test classifier kn on fold n;

10 Compare performance of classifiers using all features and signature;
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the scikit-learn toolbox [Ped+11], the most relevant miRNAs are extracted to be used as features
for cancer classification. The top k features in the list are then evaluated as a potential reduced
signature for classification. In this work, after preliminary tests, k = 100 is selected to reduce the
original features by an order of magnitude. Because other feature selection methods require the user
to specify a desired number of features, this also allows for a fair and meaningful comparison with
these methods.

The obtained 100-miRNA signature is first tested to classify the initial TCGA dataset, and
later applied on 14 Gene Expression Omnibus (GEO) datasets obtained with different platforms
(Affymetrix Multispecies Array miRNA-1, miRNA-2 and miRNA-3, Illumina 2000, and Agilent-
021827 Human miRNA Microarray V3), for different cancer tumor types (Prostate, Liver, Breast,
Esophageal, Head and Neck Squamous and Lung). A summary of this validation is presented in
Fig. 5.9. Furthermore, the proposed methodology is compared to popular feature selection methods
in bioinformatics, such as Univariate Feature Selection, Recursive Feature Elimination, Genetic
Algorithms, Least Absolute Shrinkage and Selection Operator, Random Selection, Elastic Net and
Ensemble Feature Selection with Complete Linear Aggregation. Next, the same signature is used to
try to distinguish molecular subtypes in breast cancer, both for the TCGA dataset and a set of GEO
datasets.

Finally, the 100 miRNAs included in the signature are evaluated through a meta-analysis based
on the medical literature. Because this meta-analysis reveals known relationships between features
selected by our approach, relative to the type of cancer considered, it has the potential to yield insight
into the biological processes and relationships combinedly affecting miRNAs and cancer.

Figure 5.9: Summary of the different datasets and their use in the experiments.
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TCGA Dataset

The data used in the experiments comes from the TCGA Data Portal5, downloaded on September
1, 2016. The used data is miRNA-SEQ files (*.mirna.quantification.txt) a total of 1,046 miRNA
expression features for each sample in format mirbase V16 for stem-loop sequences 6. The read
per million (RPM) values in the file are considered, and all of the samples where the item does
not meet the study protocol as stated in the file annotations are removed. In summary, the dataset
used in the following experiments includes 28 types of tumors, 1,046 miRNA features, and 8,023
patient samples. Information on the dataset is summarized in Table 5.10. The data is normalized by
removing the mean and scaling to unit variance: it is important to notice that the normalization is
learned on the training set, and applied to the test set, so that knowledge of the whole dataset did not
bias the performance on the test set. In addition, a second dataset that differentiates between normal
tissue (NT) and tumor tissue (TT) is created, consisting of 8,657 samples; 8,023 TT and 634 NT.

Table 5.10: Summary of the TCGA dataset used in the study.

Tumor Type Acronym Tumor Tissue Normal Tissue Class
Adrenocortical carcinoma ACC 80 0 0
Bladder Urothelial Carcinoma BLCA 411 19 1
Breast invasive carcinoma BRCA 777 87 2
Cervical squamous cell carcinoma CESC 306 3 3
Cholangiocarcinoma CHOL 36 9 4
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC 47 0 5
Esophageal carcinoma ESCA 187 13 6
Head and Neck squamous cell carcinoma HNSC 487 44 7
Kidney Chromophobe KICH 66 25 8
Kidney renal clear cell carcinoma KIRC 260 71 9
Kidney renal papillary cell carcinoma KIRP 291 34 10
Lower Grade Glioma LGG 528 0 11
Liver hepatocellular carcinoma LIHC 374 50 12
Lung adenocarcinoma LUAD 458 46 13
Lung squamous cell carcinoma LUSC 341 45 14
Mesothelioma MESO 86 0 15
Pancreatic adenocarcinoma PAAD 154 4 16
Pheochromocytoma and Paraganglioma PCPG 184 3 17
Prostate adenocarcinoma PRAD 494 52 18
Sarcoma SARC 260 0 19
Skin Cutaneous Melanoma SKCM 450 2 20
Stomach adenocarcinoma STAD 399 45 21
Testicular Germ Cell Tumors TGCT 156 0 22
Thyroid carcinoma THCA 513 59 23
Thymoma THYM 124 2 24
Uterine Corpus Endometrial Carcinoma UCEC 417 21 25
Uterine Carcinosarcoma UCS 57 0 26
Uveal Melanoma UVM 80 0 27
Total 8,023 634

5https://tcga-data.nci.nih.gov/docs/publications/tcga/
6ftp://mirbase.org/pub/mirbase/16/genomes/hsa.gff
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Geo Datasets
To validate the results, 14 datasets from the GEO repository 7 are used, from 5 different platforms.
Two types of miRNA discovery technologies are used in the datasets: microarrays and sequencing.
miRNAs expression levels are platform and technology dependent [BAB14; Del+13; Les+13].
Therefore, for each dataset is important to consider whether the information is in stem-loop or mature
sequence and then calculate the contributions to make a direct comparison.

In the TCGA dataset, stem-loop sequences were directly measured in raw read counts. When
reading a mature sequence, the protocol that was followed assigns a read count to it, and then
randomly assigns a read count to one of the stem-loop sequences that share the same mature
sequence [Chu+15].

GPL8786, GPL10850
Affymetrix Multispecies miRNA-1 Array (GPL8786) and Agilent-021827 Human miRNA Microar-
ray V3 (GPL10850) cannot read stem-loop sequences, so the corresponding GEO datasets only show
information for mature sequences. Thus, in order to perform a fair comparison, the raw read count
for stem-loop sequences is defined as a linear function of the read counts of the mature sequences. If
the read counts of a specific stem-loop sequence is termed Xi, for hsa-mir-10b the result will be:

Xhsa−mir−10b = a0 ·Xhsa−miR−10b +a1 ·Xhsa−miR−10b∗ (5.10)

Where a0 and a1 are two coefficients to be set. The mapping between the values of two different
platforms P1 and P2 can then be written as:

XP1
hsa−mir−10b = a2 ·XP2

hsa−mir−10b (5.11)

To reduce the problem, only relationships between a stem-loop sequence and its most common
corresponding mature sequence e.g hsa-mir-10b to hsa-miR-10b, are considered, disregarding
hsa-miR-10b*. From Eq. 5.10 and 5.11:

XP1
hsa−mir−10b = a2 ·XP2

hsa−mir−10b

XP1
hsa−mir−10b = a2 · (a0 ·XP2

hsa−miR−10b +a1 ·XP2
hsa−miR−10b∗)

XP1
hsa−mir−10b = a2 ·a0 ·XP2

hsa−miR−10b

XP1
hsa−mir−10b = aP

hsa−miR−10b ·XP2
hsa−miR−10b

(5.12)

where aP
i becomes the only coefficient to be found, and it represents the transformation between

platforms for that specific sequence. A different linear function will be found for each pair of
platforms, as it is assumed that each machine will have unique properties.

For GPL8786 GEO datasets, the linear gene expression values given by the function rmasummary
from the Matlab bioinformatics toolbox are considered, which is a normalized robust multi-array
average procedure, as a z-score [Che+03; Iri+03]. The equation of a z-score is:

7https://www.ncbi.nlm.nih.gov/gds
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Z =
(X−µ)

σ
(5.13)

where X is the value of a feature; µ and σ are the average and the standard deviation for a feature.
Next, by considering the linear expression values as z-scores, the GEO datasets are mapped to
corresponding intensities in the TCGA dataset space, by solving for X :

Xi = (Zi · (σTCGA
i )+µ

TCGA
i ) ·aP

i (5.14)

where Xi is the intensity of miRNA i in the TCGA dataset space, Zi is the linear gene expression
value given by the scaled rmasummary summary function, µTCGA

i and σTCGA
i are the average value

and the standard deviation for miRNA i, both computed on the original TCGA dataset, and aP
i is

a scale value, dependent on the platform. The value aP
i is computed using a subset of all the GEO

datasets from the same platform, by minimizing the error between actual class and predicted class,
using a model trained in the TCGA dataset with Root Mean Squared Error (RMSE).

RMSE =

√
∑

S
s=1 Predicteds(TCGA,aP)−Actuals(TCGA)

S
(5.15)

where S is the total number of samples in the dataset, and aP is a vector containing the values of
aP

i for each feature i. A state-of-the-art numerical optimizer [HMK03] is applied to this task, to find
the 98 parameters represented by aP.

For GPL10850 the MatLab function agferead from the Bioinformatics Toolbox is appleid, and
the value of gTotalGeneSignal is adopted for each of the probes to calculate the contributions and
aP

i as for GPL8786.

GPL14613, GPL16384
Affymetrix Multispecies miRNA-2 Array (GPL14613) and Affymetrix Multispecies miRNA-3
Array (GPL16384) measure the stem-loop sequences directly, and denote them by hp_hsa. The
linear relationship between the TCGA dataset and the corresponding subset of GEO datasets is thus
represented by Eq. 5.11, and the aP

i parameters to be found are reduced to the a2i

As remarked by Telonis et al [Tel+17], for these datasets, not all the types of cancer are available,
or present the necessary quality standards. Thus, the analysis is limited to 6 different types of cancer;
Prostate, Liver, Breast, Esophageal, Head and Neck Squamous Cell and Lung. For the sequencing
data, extra mapping is not necessary besides the sample normalization (platform GPL11154), and
only stem-loop sequences are used.

Using this procedure, it is possible to map the GEO repository measurements into the TCGA
dataset space as seen in Fig. 5.10. Other examples are shown in Fig. 5.11, where plots were created
using the first two dimensions of a Principal Component Analysis (PCA) computed on the TCGA
dataset and applied to the GEO datasets, to provide a comparison between the cancer type in each
GEO and the corresponding class in TCGA. Remarkably, samples from GEO datasets are often
considerably close to samples of the corresponding class in TCGA. During validation, the common
features between each GEO dataset and the 100-miRNA signature obtained using the ensemble
approach are selected. The accuracy of the classification algorithms was then evaluated by training
them on the TCGA dataset and testing them on each GEO dataset. A summary of the experiments is
presented in Fig. 5.9.
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Figure 5.10: Example of mapping GSE microarray data into TCGA space (GSE36802).

Feature selection and validation on the TCGA dataset

Table 5.11 compares the classification accuracy on a 10-fold cross-validation for each classifier,
using the full 1,046 features, and then employing the reduced 100-miRNA signature. It is interesting
to notice how the accuracy is, for most cases, unchanged, providing empirical evidence that a 100-
miRNA signature is enough to obtain good classification results, with a small statistically significant
(T-test, p < 0.05) difference of 1.4%.

Table 5.11: Accuracy of classifiers used in the experiments on the TCGA dataset. In the case a
classifier is not using standard values for its hyperparameters, the relevant variations are summarized
in the corresponding column.

Classifier
Accuracy (10-fold CV)

1,046 Features 100 Features
Hyper Parameters

Feature
Selection Methodavg std avg std

Gradient Boosting 0.9398 0.0076 0.9359 0.0086 300 predictors Decision Trees
Random Forest 0.9351 0.0071 0.9324 0.0073 300 predictors Decision Trees
Logistic Regression 0.9178 0.0096 0.9237 0.0067 - Coefficients
Passive Aggressive 0.9117 0.0104 0.8831 0.0115 - Coefficients
SGD 0.91 0.0074 0.9035 0.0152 - Coefficients
SVC 0.9211 0.0122 0.9154 0.0065 Linear kernel Coefficients
Ridge 0.8971 0.0138 0.8305 0.0062 - Coefficients
Bagging 0.9151 0.0120 0.9110 0.0077 300 predictors Decision Trees
Average 0.918463 - 0.9044 - - -

Fig. 5.12 shows a heatmap comparing the relative frequency of the overall top 100 most frequent
miRNA features, for each considered classifier. As expected, not all classifiers used the same features
to separate the types of cancer, and thus, evaluating their consensus is more robust than just relying
upon a single algorithm, as it is commonly accepted in the field of machine learning [AK17]. It is
interesting to notice that while the most common biomarkers appear among the top for most classifier,
others make use of only a few. For example, Bagging and Ridge do not use the vast majority of
the features exploited by other techniques to discriminate between classes. A further difference
between the two classifiers is that features used by Bagging that also appear in the top 100 are
clearly important for the classifier, being used in almost 100% of its 10 runs; while it is noticeable
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Figure 5.11: Examples of PCA projections of GEO datasets transformed into the TCGA dataset
space. Orange data points represent samples from the target class from the TCGA dataset, the blue
data points are other samples in TCGA, and the red points are the projected samples from GEO
datasets.

how Ridge probably bases its discrimination on features that do not appear among the top 100. This
would also explain why Ridge is the only algorithm that presents a decrease in performance when
using the 100-miRNA signature. It’s important to note that, while the results emerging from the
heatmap suggest that this is indeed the case, Ridge’s decision boundaries should be analyzed more
in-depth, for each class and multiple instances, in order to have absolute certainty, a task that is
outside of the scope of the current work. Fig. 5.13 shows the difference between 1,046 features and
100 features for each cancer type and classifier.



202 Chapter 5. Health Applications

hs
a-

m
ir-

10
b

hs
a-

m
ir-

12
6

hs
a-

le
t-7

i
hs

a-
m

ir-
10

a
hs

a-
m

ir-
30

a
hs

a-
m

ir-
12

2
hs

a-
m

ir-
9-

1
hs

a-
m

ir-
9-

2
hs

a-
m

ir-
21

hs
a-

m
ir-

12
5a

hs
a-

m
ir-

14
3

hs
a-

le
t-7

c
hs

a-
m

ir-
37

5
hs

a-
m

ir-
19

6b
hs

a-
m

ir-
20

5
hs

a-
m

ir-
20

0c
hs

a-
m

ir-
14

1
hs

a-
m

ir-
14

5
hs

a-
m

ir-
19

0b
hs

a-
m

ir-
19

3a
hs

a-
m

ir-
93

4
hs

a-
m

ir-
13

5b
hs

a-
m

ir-
19

a
hs

a-
m

ir-
49

0
hs

a-
m

ir-
30

d
hs

a-
m

ir-
12

47
hs

a-
m

ir-
29

c
hs

a-
m

ir-
58

4
hs

a-
m

ir-
13

5a
-1

hs
a-

m
ir-

10
1-

2
hs

a-
m

ir-
99

a
hs

a-
m

ir-
20

0b
hs

a-
le

t-7
b

hs
a-

m
ir-

19
9b

hs
a-

m
ir-

7-
3

hs
a-

le
t-7

f-1
hs

a-
m

ir-
10

3-
1

hs
a-

m
ir-

87
4

hs
a-

m
ir-

14
2

hs
a-

m
ir-

88
5

hs
a-

m
ir-

21
0

hs
a-

m
ir-

20
0a

hs
a-

m
ir-

50
3

hs
a-

m
ir-

13
7

hs
a-

m
ir-

15
2

hs
a-

m
ir-

22
hs

a-
m

ir-
95

hs
a-

m
ir-

13
0a

hs
a-

m
ir-

13
5a

-2
hs

a-
m

ir-
14

6a
hs

a-
m

ir-
15

a
hs

a-
m

ir-
15

5
hs

a-
m

ir-
19

4-
2

hs
a-

m
ir-

30
b

hs
a-

m
ir-

19
9a

-1
hs

a-
m

ir-
19

4-
1

hs
a-

m
ir-

1-
2

hs
a-

m
ir-

36
13

hs
a-

m
ir-

19
9a

-2
hs

a-
m

ir-
10

6a
hs

a-
m

ir-
30

e
hs

a-
m

ir-
12

45
hs

a-
m

ir-
19

6a
-1

hs
a-

m
ir-

28
hs

a-
m

ir-
21

1
hs

a-
m

ir-
18

3
hs

a-
m

ir-
20

2
hs

a-
m

ir-
13

9
hs

a-
m

ir-
12

5b
-1

hs
a-

m
ir-

36
78

hs
a-

m
ir-

32
6

hs
a-

m
ir-

67
6

hs
a-

m
ir-

94
4

hs
a-

m
ir-

27
b

hs
a-

m
ir-

21
7

hs
a-

m
ir-

34
a

hs
a-

m
ir-

19
2

hs
a-

m
ir-

10
7

hs
a-

m
ir-

42
4

hs
a-

m
ir-

37
4b

hs
a-

m
ir-

34
0

hs
a-

m
ir-

18
1b

-1
hs

a-
m

ir-
36

16
hs

a-
le

t-7
f-2

hs
a-

m
ir-

20
4

hs
a-

m
ir-

12
77

hs
a-

m
ir-

23
a

hs
a-

le
t-7

g
hs

a-
m

ir-
19

0
hs

a-
m

ir-
89

1a
hs

a-
le

t-7
d

hs
a-

m
ir-

20
3

hs
a-

m
ir-

37
8

hs
a-

m
ir-

14
6b

hs
a-

m
ir-

18
2

hs
a-

m
ir-

42
9

hs
a-

m
ir-

59
8

hs
a-

m
ir-

14
8a

hs
a-

m
ir-

12
64

hs
a-

m
ir-

10
1-

1

miRNA types sorted by overall frequency (left to right)

Bagging

GradientBoosting

LogisticRegression

PassiveAggressive

RandomForest

Ridge

SGD

SVC

Feature frequency by classifier

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.12: Heatmap with the frequency of the overall top 100 most frequent features, divided by
classifier. Features are sorted from overall most to least frequent, from left to right, using information
from the whole ensemble. For example, the most frequent is mir-10b, that is considered important
by all classifiers. Color intensity is computed using information from instances of the same classifier,
only. This shows the different importance that different classifiers assign to each feature.

Figure 5.13: Heatmap of the accuracy by cancer type, by classifier using the 1,046 features (top) and
the 100-miRNA signature (bottom).

Normal vs Tumor Tissue classification
A classification between Tumor Tissue (TT) vs Normal Tissue (NT) is performed in a 10-cross fold
validation, using stratified cross-validation to maintain the proportions for the two classes inside the
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folds. The global score and the classification accuracy by class are reported in Table 5.12. All of the
classifiers have fair quality for differentiating between normal tissue and tumor tissue, except Ridge,
which is more sensitive to the unbalanced number of examples.

Table 5.12: Accuracy for each classifier in a 10-fold cross-validation for the comparison between
Tumor Tissue (TT) and Normal Tissue (NT) for 1,046 and 100 features.

Classifier 100-NT 100-TT 1046-NT 1046-TT 100-Global 1046-Global
Gradient Boosting 0.8612 0.9944 0.8707 0.9950 0.9846 0.9859
Random Forest 0.8091 0.9978 0.7256 0.9985 0.9839 0.9785
Logistic Regression 0.8423 0.9908 0.8659 0.9764 0.9799 0.9683
Passive Aggressive 0.7177 0.9798 0.8123 0.9728 0.9606 0.9611
SGD 0.8060 0.9902 0.7445 0.9936 0.9767 0.9754
SVC(linear) 0.8517 0.9892 0.8218 0.9771 0.9791 0.9657
Ridge 0.2997 0.9981 0.5994 0.9923 0.9470 0.9635
Bagging 0.8028 0.9953 0.7792 0.9966 0.9812 0.9807

Comparison to established feature selection methods

Several feature selection techniques have been proposed for microarray data [HG15]. The most
effective approaches include Univariate Feature Selection (UFS), Recursive Feature Elimination
(RFE), Elastic Net (EN), Genetic Algorithms (GALGO), Least Absolute Shrinkage and Selection
Operator (LASSO) and Ensemble Feature Selection with Complete Linear Aggregation (EFS-CLA).
UFS aims at finding the best features, scoring them using univariate statistical tests, such as the
ANOVA F-value [LR78], and ultimately taking the k features with the highest scores. RFE runs
several times a machine learning algorithm capable of scoring features, such as SVC, iteratively
removing the feature with the lowest score [Guy+02] until it reaches the user-specified k features.
EN simply runs the machine learning algorithm Elastic Net [FHT10], and takes the k highest-scored
features. As Elastic Net is trying to balance accuracy and weight size in a linear model, exploiting
L1 and L2 regularization, it is a popular choice for feature selection in bio-informatics [Bas+18;
Sok+16], because it tends to create sparse models with few weights different from zero. LASSO is a
regression analysis method, performing variable selection and regularization to improve prediction
accuracy and interpretability of the statistical model it produces [Tib96], so it can be easily used for
feature selection, only. All considered feature selection methods are implemented in the machine
learning package scikit-learn, already used in the previous experiments. GALGO is a genetic
algorithms-based feature selection library in R that ranks the features using several calls to a classifier
and choosing the features that appear the most after evolving a subset several times [TF06]. EFS-
CLA is a method that uses instances of SVM with several calls to a subsample of the data, ranks the
features by weight value and reduces a percentage at each iteration [Abe+09].

As some of these techniques require the user to specify the number of features k to be taken,
to provide a comparison with the approach presented in this section, k = 100 features are selected,
using all the formerly described feature selection methods and compared classification accuracy
on the considered classifiers with a 10-fold cross validation. For RFE, the SVC classifier is used
in the loop, as not only it is commonly adopted for feature selection in bioinformatics [Guy+02;
Sei+17], but also represents a good compromise between accuracy and speed of convergence on our
specific dataset. For EN, ElasticNetCV scikit-learn method is selected, which exploits a 3-fold
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cross-validation to automatically adapt the internal parameter α , balancing the importance of L1 and
L2 regularization in the model. For the same reasons, the LassoCV scikit-learn method is selected for
LASSO. For EFS-CLA, percentage of reduction E = 20%, 40 as SVM calls per step, and k = 100,
are set as parameters. Finally, a random selection of 100 features is also performed, to be used as a
baseline reference to portray the efficiency of the feature selection algorithms.

From the results presented in Table 5.13, it is immediately clear that the 100 features selected
by UFS are much less informative than the ones found by the proposed approach. RFE performs
better, especially when considering SVC as the classifier used for the cross validation, but overall
the performance for the other classifiers is lower. It must also be noted that, among all the methods,
RFE is the most computationally expensive, as it calls the considered classifier, SVC in this case,
N− k = 1,046−100 = 946 times, where N is the original number of features. All feature selection
algorithms, as expected, perform much better than the baseline random selection of features.

Table 5.13: Comparison between different feature selection techniques and the proposed ensemble
method for k = 100, on the TCGA dataset.

Classifier Random GALGO EFS-CLA UFS EN LASSO RFE EFS
Gradient Boosting 0.8588 0.8782 0.8871 0.9028 0.9208 0.9315 0.9309 0.9359
Random Forest 0.8515 0.8787 0.8824 0.8929 0.9224 0.9341 0.9288 0.9324
Logistic Regression 0.8015 0.8295 0.8832 0.8813 0.8988 0.8996 0.9088 0.9237
Passive Aggressive 0.6986 0.7235 0.8111 0.8091 0.8406 0.8424 0.8506 0.8831
SGD 0.7278 0.764 0.8446 0.8334 0.8649 0.8648 0.8824 0.9035
SVC 0.8077 0.8348 0.8706 0.885 0.9049 0.9008 0.9103 0.9154
Ridge 0.6534 0.6614 0.7422 0.7504 0.7753 0.7751 0.7954 0.8305
Bagging 0.822 0.8382 0.8562 0.8719 0.8889 0.9078 0.9061 0.911
Global Average 0.7777 0.8010 0.8472 0.8534 0.8771 0.8820 0.8892 0.9044
Calls to Classifier - 60,000 480 - - 10 946 80

A qualitative analysis of the features selected by each method shows that the highest-scoring
ones are easily found by all considered approaches. In particular, from the 100 features found by our
approach, 8 are in common with Random, 11 with GALGO, 29 with EFS-CLA, 38 are common to
the group obtained through UFS, 44 are shared with the group found by LASSO, 48 again are found
by EN, and 54 are in common with RFE.

Cross-platform validation on GEO datasets
As different datasets present distinctive sets of miRNAs, it is important to assess the performance of
the identified signature on unseen data. Using the methodology previously described, the proposed
approach is validated on the 14 GEO datasets. Each run of a classifier on a dataset was repeated 10
times, to compensate possible random elements that appear during the training phase of specific
algorithms, e.g. RandomForest. It is worth noticing how this validation presents considerable
challenges. Since the datasets are obtained by different platforms, not all of the 100 features in the
signature were available everywhere. For most GEO datasets 98 were available, while for GSE62182
featured 75 of them. Furthermore, despite the transformation needed to bring the samples of the
GEO datasets in the TCGA dataset space, samples measured by platforms used in the GEO datasets
might prove particularly difficult to tackle for classifiers trained on TCGA samples, as most GEO
datasets use microarray technology while TCGA uses sequencing. The properties of the used GEO
datasets are summarized in Table 5.14.
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Table 5.14: Summary of the used GEO datasets, and the number of features in common with our
100-miRNA signature.

Dataset ID Platform Tumor Type #Samples Total Feats. Common Feats. Reference
GSE34496 GPL8786 HNSC 44 847 98 -
GSE36802 GPL8786 PRAD 21 847 98 [Lin+13]
GSE67138 GPL8786 LIHC 57 847 98 -
GSE67139 GPL8786 LIHC 115 847 98 -
GSE45604 GPL14613 PRAD 50 2,143 98 [Cas+14]
GSE48088 GPL14613 BRCA 33 2,143 98 [Peñ+14]
GSE55856 GPL14613 ESCA 108 2,143 98 [Jan+17]
GSE86277 GPL14613 BRCA 72 2,143 98 [Rom+18]
GSE116182 GPL14613 LIHC 64 2,143 98 -
GSE86278 GPL16384 BRCA 49 3,242 98 [Rom+18]
GSE86281 GPL16384 BRCA 50 3,242 98 [Rom+18]
GSE31164 GPL10850 LIHC 110 851 98 [Mur+13]
GSE105134 GPL10850 BRCA 50 851 98 -
GSE62182 GPL11154 LUAD 94 3,242 75 [Vuc+14]

Fig. 5.14 shows the outcomes of the validation for all classifiers. In spite of the difficulties,
most algorithms yielded good classification results, with Logistic and SGD in particular featuring
over 93% average accuracy on all GEO datasets. Several classifiers, on the other hand, show poor
performance on specific datasets, probably due to the way their decision boundaries for that specific
class were learned on the TCGA dataset. In this sense, dataset GSE45604 proves to be the overall
hardest to classify correctly for most algorithms. GSE86277,GSE86278 and GSE86281, deal with
different molecular subtypes of BRCA, that could explain some of the performance issues. Finally
the average performance in GSE62182, is because the classifiers have problems differentiating
LUAD and LUSC. In general, however, different algorithms seem to have difficulties for different
classes and datasets, which suggests that an ensemble approach for classification could compensate
local issues.

Figure 5.14: Results with the 100 selected features in the GEO datasets, using a 10-fold cross-
validation. From the average accuracy and standard deviation, SGD proves to be significantly better
than the rest using a Kolmogorov-Smirnov test (p < 0.05)

To the best of our knowledge, the most similar work in literature that that the results can be
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compared with is Telonis et al. [Tel+17], where isoform quantification was adopted to classify three
of the GEO datasets used in this study (GSE36802, GSE67138, GSE67139), training SVC on a
TCGA-derived dataset. For GSE36802, [Tel+17] reports an accuracy of 76%, that is surpassed
by all of the classifiers. Considering GSE67138, for which an accuracy of 91% is reported, all
the algorithms in our case perform better. Finally, for GSE67139, a 96% accuracy, again all the
algorithms outperform that value. It must be noted, however, that even this comparison is made
difficult by differences in how data was treated: for example, [Tel+17] reduced the number of classes
to 6 and tested on 4 different types of tumors. In our study, all 28 classes are kept for testing.

Tumor subtypes
To further test the proposed approach, the 100-miRNA signature is used to classify tumor subtypes.
As a comparison with GEO datasets is important for the validation, the molecular subtype in breast
cancer (BRCA) is selected, as it’s the only tumor class for which molecular subtype information
is available in the GEO datasets. From the information in [Col+15; Net+12], it is possible to label
764 of the 777 BRCA samples in the TCGA dataset in 5 different subtypes (Luminal A, Luminal
B, Triple-negative/basal-like, HER2-enriched and Normal-like). More information on the subtypes
can be found in [Wei13]. Next, the accuracy in a 10-fold cross validation is computed for the 1,046
TCGA features and the 100-miRNA signature, with results reported in Table 5.15 and Table 5.16
respectively.

Table 5.15: Molecular subtype classification accuracy of Breast Cancer for the 1,046 features.

Normal LumA LumB TNBC Her2 Global
#Samples 33 399 139 135 58 764
Gradient Boosting 0.1818 0.9348 0.5396 0.9333 0.5172 0.7987
Random Forest 0.0606 0.9724 0.4532 0.9630 0.0345 0.7657
Logistic Regression 0.1212 0.8747 0.5540 0.9259 0.4483 0.7606
Passive Aggressive 0.1515 0.8622 0.5612 0.9111 0.4483 0.7539
SGD 0.3030 0.9073 0.4604 0.9556 0.4655 0.7752
SVC 0.2727 0.8797 0.5252 0.9185 0.5345 0.7697
Ridge 0.1515 0.7293 0.4317 0.3704 0.2759 0.5524
Bagging 0.3333 0.9298 0.5108 0.9704 0.4310 0.7973
Average 0.1970 0.8863 0.5045 0.8685 0.3944 0.7467

Table 5.16: Molecular subtype classification accuracy of Breast Cancer for the 100 features.

Normal LumA LumB TNBC Her2 Global
#Samples 33 399 139 135 58 764
Gradient Boosting 0.2424 0.9248 0.5324 0.9333 0.5517 0.7975
Random Forest 0.2121 0.9599 0.4029 0.9704 0.2069 0.7712
Logistic Regression 0.2727 0.8997 0.4892 0.9037 0.5517 0.7727
Passive Aggressive 0.3939 0.8546 0.4460 0.8667 0.5000 0.7358
SGD 0.4545 0.8897 0.4460 0.8444 0.4310 0.7475
SVC 0.5152 0.8446 0.5108 0.9037 0.5517 0.7581
Ridge 0.0606 0.9474 0.4388 0.8593 0.3966 0.7594
Bagging 0.2727 0.9173 0.4964 0.9481 0.3793 0.7777
Average 0.3030 0.9048 0.4703 0.9037 0.4461 0.7650

The best classification results are obtained for subtypes Triple-Negative Breast Cancer (TNBC)
and Luminal A (LumA), due to the scarcity of samples for other subtypes (especially Normal and
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Her2). Luminal B (LumB) presents considerable similarities to LumA, and the classifiers have
difficulty separating the two subtypes using the data at our disposal. For these reasons, and the
practical concern that TNBC is the subtype of BRCA with the worst prognosis, it is decided to
tackle the issue as a binary classification problem, separating TNBC from the other classes. TNBC
is a subtype of cancer where the cells have tested negative for estrogen receptors (ER), hormone
epidermal growth factor receptor 2 (Her2), and progesterone receptors (PR). This subtype of cancer
has limited treatment options and poor prognosis, as hormone therapies or targeted drugs do not
work on it. Results of the binary classification problem on TCGA are reported in Table 5.17.

Finally, the binary subtype classification of BRCA is tested for the GEO datasets, using just the
100-miRNA signature. A single dataset composed of 4 series (GSE86281, GSE86277, GSE86278,
GSE46823), is created with 2 classes: TNBC, featuring 139 samples, and all other molecular
subtypes (LumA, LumB, and Her2), with 32 samples in total. Using the stem-loop sequences from
platform GPL14613, and GPL1368, the 98 common stem-loop miRNAs of the 100 in the signature
are used for the classification. Table 5.18 shows the results of the classification in a 10-fold cross
validation, and the accuracy by class.

Table 5.17: TNBC classification from the other molecular subtypes in the TCGA dataset, using
1,046 features and 100 signature.

TNBC-100 TNBC-1046 Other-100 Other-1046 Global-100 Global-1046
#Samples 135 135 629 629 764 764
Gradient Boosting 0.9111 0.8963 0.9857 0.9857 0.9725 0.9699
Random Forest 0.8889 0.8815 0.9905 0.9905 0.9725 0.9712
Logistic Regression 0.8963 0.9630 0.9793 0.9587 0.9647 0.9593
Passive Aggressive 0.8815 0.9630 0.9714 0.9523 0.9556 0.9540
SGD 0.8000 0.8222 0.9809 0.9841 0.9490 0.9555
SVC 0.8444 0.8963 0.9666 0.9825 0.9451 0.9673
Ridge 0.8000 0.7259 0.9825 0.9237 0.9503 0.8888
Bagging 0.8444 0.8963 0.9793 0.9825 0.9555 0.9673
Average 0.8583 0.8806 0.9795 0.9700 0.9582 0.9542

Discussion
The results of the five experiments performed with the 100-miRNA signature (Tumor Type Clas-
sification, Tumor Tissue vs Normal Tissue, GEO datasets, BRCA subtype in TCGA, and BRCA
subtype in GEO datasets), are reported in Table 5.19. All classifiers show high levels of accuracy
over all trials, with the validation on the GEO datasets (both tumor type and subtype classification)
proving to be the hardest task.

As miRNAs have been shown to regulate approximately 30% of the human genes, and because
their dysregulation has been associated with the development and progression of cancer, miRNAs
have been found to have the potential to play a critical role in computational oncology. Nevertheless,
their analysis and their employment in clinically relevant settings still faces various, specific technical
challenges: a) the extremely small size of the miRNAs leads to diverse complications for example
with respect to hybridization techniques, b) there is a lack of specificity in detection because of the
high similarity of several miRNA family members, and c) the low expression of various miRNAs
requires detection methods of utmost sensitivity [Li+14]. To date, most new miRNAs are discovered
through cloning, despite these methods being time-consuming, low-throughput, and being biased
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Table 5.18: Molecular subtype classification of Breast Cancer to separate TNBC from other breast
cancer subtypes using the 100-miRNA signature, on the GEO dataset.

TNBC Other Global
#Samples 139 44 183
Gradient Boosting 0.9353 0.7500 0.8909
Random Forest 0.9424 0.6136 0.8634
Logistic Regression 0.9065 0.6590 0.8476
Passive Aggressive 0.8561 0.7045 0.8197
SGD 0.9065 0.5227 0.8145
SVC 0.8561 0.7727 0.8355
Ridge 0.8993 0.6136 0.8300
Bagging 0.9496 0.7727 0.9070
Average 0.9065 0.6761 0.8511

Table 5.19: Comparison of the 8 classifiers, for the different experiments with the 100-miRNA
signature. Logistic Regression was the best across all experiments, and Ridge has the worst accuracy.

TT vs TCGA GEO
Classifier TCGA NT GEO (Subtype) (Subtype) Global
Gradient Boosting 0.9359 0.9846 0.6697 0.9725 0.8909 0.8907
Random Forest 0.9324 0.9839 0.8085 0.9725 0.8634 0.9121
Logistic Regression 0.9237 0.9799 0.9351 0.9647 0.8476 0.9302
Passive Aggressive 0.8831 0.9606 0.8678 0.9556 0.8197 0.8974
SGD 0.9035 0.9767 0.9393 0.9490 0.8145 0.9166
SVC 0.9154 0.9791 0.7724 0.9451 0.8355 0.8895
Ridge 0.8305 0.9470 0.8867 0.9503 0.8300 0.8889
Bagging 0.9110 0.9812 0.7682 0.9555 0.9070 0.9046
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toward the discovery of abundant miRNAs [Che+09; LR09].
Nevertheless, it is possible conclude from the results that the extracted 100-miRNA signature is

able to reliably classify the 28 different types of cancer in the TCGA dataset, and distinguish between
normal and tumor tissue. In addition, it is sufficiently stable to be applicable across platforms,
such as the ones such as the ones used in the ten GEO datasets and ahich show a good accuracy in
differentiating TNBC from other molecular subtypes of BRCA. Looking ahead into the possibility of
classifying tumor types using miRNAs, it becomes more and more pressing to consider circulating
miRNAs, and their relationship to cancer studies.

For the miRNAs included in the signature, a bibliographic meta-analysis of specialized literature
is performed. The proposed meta-analysis is mainly based on 5 surveys of circulating miRNAs for
cancer studies [CLG13; Che15; He+15; Lar+16; Wan+14b]. Out of the 100 miRNAs in the signature,
77 appear as circulatory miRNAs, either in their stem-loop form or mature sequence. The complete
list for the 100-miRNAs is reported in Annex A of the online supplementary material, in Fig. 5.15
shows the expression levels by type of cancer of the top 50 miRNAs.

Figure 5.15: miRNAs mean expression levels (RPMs) of the top 50 miRNAs for each type of cancer
tumor tissue.

Across all surveys analyzed, hsa-miR-21, included in the identified signature in stem-loop
form, appears to be the most commonly over-expressed miRNA for all classes of tumors, as it
is expected of a known oncomarker. 23 miRNAs in the signature do not appear in the surveys,
but they are mentioned in recent research papers, as promising research leads whose role may
need further corroboration: miR-211 [Mar+15], miR-135a [Kog+10], miR-3678-3p [Giu+17], miR-
204 [Men+13], miR-1228 [Tan+14], miR-374b [Sum+15], miR-424 [Gir+13] miR-217-5p [Gir+13]
miR-3613-5p [Mat+15], miR-124 [Med+14], miR-1277-5p [Zhe+14] miR-190 [Sch+14], miR-
934 [Tsu+15], miR-490 [Jia+18], miR-1247 [Wan+14a], miR-199b [Mon+18], miR-135a [Kog+10],
miR-503 [Shi+15], miR-584 [Wan+18], miR-137-3p [Hsu+12], and miR-103 [Jia+16].

Interestingly, hsa-mir-135a-1 and hsa-mir-135a-2, located inside chromosomes 3 and 12, re-
spectively, generate the same mature active sequence [Tri+16]. In the same manner, hsa-mir-124-1,
hsa-mir-124-2, and hsa-mir-124-3, generate the same mature sequence hsa-miR-124-5p, and
miR-124 is known as a tumor suppressor in head and neck squamous cell carcinoma [Zha+17],
hepatocellular carcinoma [Cai+17] and breast cancer [Wan+16]. All of them were identified by
the proposed feature selection approach, indicting the presence of miRNA pathways shared across
different tumor types. Targeting these miRNA pathways with anti-miRNA-based approaches such
as infection with viral particles (having antisense sequence against the specific miRNA) or even
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drug design of small molecules inhibitors of miRNAs (SMIRs) which can be considered poten-
tial anti-tumoral therapy. On the other hand, the down regulation of tumor suppressor miRNAs
also contributes to the acquisition of malignant features. For example, by ectopic expression of
hsa-miR-944 which decreases malignant features in gastric [Pan+17], colorectal [Wen+17] and
endometrial [He+17] cancers. Strikingly, miR-944 and other understudied miRNAs could have
been detected by the proposed approach analizing 28 different types of cancer, suggesting that they
could play a key role in the biology of cancer. Future works will include further analyses of the
100-miRNA signature, crossing the information with genetic sources, assessing measures of gene
quality and biomarker stability, using tools such as sigQC [Dha+17].

Conclusions
miRNAs fine-tune the regulation of the transcriptome [CCZ16; Mun+09]. Alterations in miRNA
expression profiles are associated with several diseases, such as cancer. On the other hand, the altered
miRNA expression profiles present in cancer could be used as prognostic and/or diagnostic markers.
In summary, several miRNA signatures are associated with clinically relevant factors [Lam+15;
SH17]. Therefore, the miRNA signature, which is obtained by using data from different types
of cancers, can highlight the presence of so far underestimated miRNA’s such as miR-944, and
overall has the potential to be used in the frame of microarray based assays, as a potential building
block in clinical decision support. Of course, further experimental validation on cancer patient
samples will be required to weigh the biological significance of the signature in terms of diagnosing,
treating and prognosing the outcome of cancer. The code and the datasets are available at https:
//github.com/steppenwolf0/miRNAs100

5.2.4 Experiment 2
Using the previously described methodology, a new set of experiments is performed on circulating
miRNAs, only. When compared to other miRNA biomarkers, circulating miRNAs are easier to
detect using non-intrusive clinical tests, like blood or urine tests, and could thus provide a more
reliable foundation for personalized therapy.

Circulating miRNAs
A list of circulating miRNAs (mature sequences) is compiled, based on 5 reviews of circulating
miRNAs from cancer studies [CLG13; Che15; He+15; Lar+16; Wan+14b]. Next, from this list, only
miRNAs that appear in blood, serum, urine, plasma and saliva are selected. To narrow it further,
only miRNAs that can be detected by Affymetrix platforms Affy-1 (GPL8786), Affy-2 (GPL14613),
and Affy-3 (GPL16384) are kept. The choice of restricting to datasets from Affymetrix platforms
GPL8786, GPL14613, GPL16384 has the aim of avoiding the known issue of miRNAs expression
levels being platform and technology-dependent [BAB14; Del+13; Les+13]. After this selection, a
total of 253 miRNA remain. The detailed list is included in Table 5.20.

Classification of cancer types
From the gene expression omnibus (GEO) repository [EDL02] 16 datasets for 10 different types
of cancer are selected, based on clinical studies: Breast (BRCA), esophageal (ESCA), head and
neck squamous cell (HNSC), liver hepatocellular (LIHC), prostate (PRCA), glioblastoma (GBM),
colorectal (CRC), non-small-cell lung (NSCLC), gastric (GC) and ovarian (OVC), as summarized
in Table 5.21. For each dataset, the raw data is downloaded and processed using the function
Affyrma() from the Matlab bioinformatics toolbox™. This function processes the probe intensity
values using RMA background adjustment, quantile normalization, and summarizing procedures,

https://github.com/steppenwolf0/miRNAs100
https://github.com/steppenwolf0/miRNAs100
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let-7a miR-140-3p miR-19b miR-335 miR-513a-3p
let-7a* miR-141 miR-200a miR-338-3p miR-516b
let-7b miR-142-3p miR-200b miR-338-5p miR-518b
let-7c miR-143 miR-200c miR-339-3p miR-520a-3p
let-7d miR-144 miR-202 miR-339-5p miR-548b-5p
let-7e miR-145 miR-203 miR-340* miR-557
let-7f miR-146a miR-205 miR-342-3p miR-564
let-7g miR-146b-3p miR-206 miR-345 miR-566
let-7i miR-146b-5p miR-20a miR-346 miR-571
miR-1 miR-148a miR-20b miR-34a miR-574-3p
miR-100 miR-148b miR-21 miR-34b miR-574-5p
miR-101 miR-150 miR-210 miR-361-3p miR-587
miR-106b miR-150* miR-212 miR-365 miR-589
miR-107 miR-151-5p miR-214 miR-371-5p miR-595
miR-10a miR-152 miR-215 miR-372 miR-601
miR-10b miR-155 miR-218 miR-373 miR-616*
miR-1182 miR-15a miR-22 miR-375 miR-618
miR-122 miR-15b miR-221 miR-376a miR-622
miR-122* miR-15b* miR-222 miR-376c miR-625
miR-1224-5p miR-16 miR-223 miR-377 miR-625*
miR-1229 miR-16-2* miR-23a miR-378 miR-628-3p
miR-1231 miR-17 miR-23b miR-378* miR-629
miR-1245 miR-181a miR-24 miR-379 miR-630
miR-1246 miR-181a-2* miR-25 miR-382 miR-638
miR-1254 miR-181b miR-26a miR-409-3p miR-646
miR-125b miR-181d miR-26b miR-409-5p miR-650
miR-125b-2* miR-182 miR-27a miR-410 miR-652
miR-126 miR-1825 miR-27b miR-411 miR-654-3p
miR-1260 miR-183 miR-296-5p miR-421 miR-656
miR-1268 miR-184 miR-298 miR-423-5p miR-668
miR-127-3p miR-185 miR-299-5p miR-425 miR-675
miR-1275 miR-186 miR-29a miR-425* miR-7
miR-128 miR-187 miR-29b miR-429 miR-708
miR-1280 miR-187* miR-29c miR-431 miR-744
miR-1284 miR-18a miR-301a miR-431* miR-744*
miR-1285 miR-18b miR-302b miR-432 miR-760
miR-1288 miR-18b* miR-30a miR-451 miR-874
miR-1290 miR-190b miR-30b miR-452 miR-885-5p
miR-1295 miR-191 miR-30c miR-454 miR-922
miR-129-5p miR-192 miR-30c-1* miR-454* miR-92a
miR-1304 miR-193a-3p miR-30d miR-483-3p miR-92a-2*
miR-130a* miR-193b miR-30e miR-483-5p miR-92b
miR-130b miR-194 miR-31 miR-484 miR-93
miR-1323 miR-195 miR-32 miR-486-3p miR-93*
miR-133a miR-196a miR-320a miR-486-5p miR-936
miR-133b miR-196b miR-320c miR-487b miR-939
miR-134 miR-197 miR-320d miR-493 miR-942
miR-138 miR-198 miR-324-3p miR-494 miR-99a
miR-138-2* miR-199a-3p miR-326 miR-497 miR-99b
miR-139-3p miR-199a-5p miR-328 miR-502-5p
miR-139-5p miR-19a miR-331-3p miR-504

Table 5.20: List of all circulating miRNAs.
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then outputs Expression (non-dimensional). The resulting aggregated dataset for the multi-class
classification problem presents 845 samples, 253 features and 10 different tumor classes. Next,
the Z-score normalization is applied to the dataset, to then run the feature selection algorithm in a
10-fold stratified cross-validation scheme.

Table 5.21: GEO repository datasets of miRNA cancer studies used in the project for platforms
GPL8786, GPL14613 and GPL16384.BRCA: breast cancer; ESCA: esophageal cancer; HSNC: head
and neck squamous cell cancer; LIHC: liver hepatocellular cancer; PRCA: prostate cancer; GBM:
gliobastoma; CRC: colorectal cancer; NSCLC: non-small-cell lung cancer; GC: gastric cancer; OVC:
ovarian cancer

Dataset Samples Type Reference Class Platform
GSE48088 33 BRCA [Peñ+14] 0 GPL14613
GSE86277 72 BRCA [Rom+18] 0 GPL14613
GSE86278 49 BRCA [Rom+18] 0 GPL14613
GSE86281 50 BRCA [Rom+18] 0 GPL16384
GSE55856 108 ESCA [Jan+17] 1 GPL14613
GSE34496 44 HSNC - 2 GPL8786
GSE67138 57 LIHC - 3 GPL8786
GSE67139 115 LIHC - 3 GPL8786
GSE116182 64 LIHC - 3 GPL14613
GSE36802 21 PRCA [Lin+13] 4 GPL8786
GSE45604 50 PRCA [Cas+14] 4 GPL14613
GSE104554 38 GBM [Her+17] 5 GPL14613
GSE110402 75 CRC [Jep+18] 6 GPL14613
GSE46729 24 NSCLC - 7 GPL8786
GSE63121 15 GC [Zha+15] 8 GPL8786
GSE47841 30 OVC [Elg+14] 9 GPL14613

Then, the results are compared against two current state-of-the-art feature selection methodolo-
gies: A homogeneous ensemble classifier, exploiting variations of SVC [Abe+09]; and a feature
selection tool based on genetic algorithms, called GALGO [TF06]. Since each algorithm contains
stochastic elements, each algorithm is run 10 times (Fig. 5.16) and the set of features with the best
average accuracy is kept. When applied to the 253 circulating miRNAs, the top features obtained by
each classifier appear as in Fig. 5.17.

The homogeneous ensemble uses several runs of SVC to rank the features by weight, and reduces
the number of features by a given percentage at each step. In this case the same parameters as for
algorithm 2 are used; 20% step reduction and 90% accuracy as stop parameter. In contrast, for
GALGO to obtain a fair comparison, the requested number of features is set to the resulting number
of features from the heterogeneous ensemble feature selection classifier.

Finally, the genes targeted by the candidate miRNAs are analyzed using miRNet [Fan+16]. The
parameters for the miRNet analysis are: target genes as main function with a 0.05 Betweenness filter,
and pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes [Kan+16]
(KEGG) and Gene Ontology-Biological Process [FG06] (GO:BP). Using a Betweenness filter implies
that the genes must be targeted by at least 2 miRNAs.

The resulting most significant 5 features uncovered by the presented algorithm are hsa-let-7a,
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Figure 5.16: Results of 10 runs of the recursive ensemble feature selection for cancer type classifica-
tion. The x axis cuts at 5 variables, where all runs cross the 90% average accuracy stop parameter
(the subsequent values are computed as a reference).

Figure 5.17: Feature importance by classifier. On the horizontal axis, the top features are reported,
following their ensemble ranking. The intensity of the color in each square represents the frequency
of appearance of that particular feature in the 10 instances of the same classifier produced by cross-
validation; the darker the color the most frequent the appearance of that feature among the most
important. It is noticeable how different classifiers rank features differently. For this figure, only the
top 42 features are reported, for visualization purposes.
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hsa-miR-23b, hsa-miR-122, hsa-miR-708, and hsa-miR-200c, with seemingly different Expression
levels for each cancer type (Fig. 5.18). The classifiers Gradient Boosting, Random Forest, SVC and
Bagging seem to work in a satisfying way for all tumor types using only 5 miRNAs, whereas the rest
have issues classifying the types of cancer HNSC, GC and OVC, while having better performance
when using the full 253 miRNAs, as shown in Fig. 5.19. Interestingly, hsa-let-7 and hsa-miR-200c
were also discovered by the homogeneous ensemble, while GALGO’s performance seems to be
less effective and has no miRNAs in common with the proposed approach. From the comparison
with GALGO and the homogeneous ensemble classifier with SVC, it is noticeable how the proposed
heterogeneous ensemble classifier outperforms the other feature selection techniques in Table 5.22.

Table 5.22: Comparison of the results of the different feature selection algorithms, reducing from the
initial 253 to 5 features to differentiate cancer types.

Heterogeneous Homogeneous GALGO
Ens. 5 Feats. Ens. 5 Feats. 5 Feats. 253 Feats.
µ σ µ σ µ σ µ σ

Gradient Boosting 0.9751 0.0134 0.9797 0.0154 0.8374 0.0453 0.975 0.0128
Random Forest 0.9761 0.0192 0.9854 0.0155 0.8656 0.0383 1 0
Logistic Regression 0.8877 0.0239 0.8777 0.0281 0.4954 0.0416 1 0
Passive Aggressive 0.8239 0.0544 0.8144 0.0707 0.4545 0.0590 1 0
SGD 0.8937 0.0305 0.8632 0.0362 0.5204 0.0832 0.9941 0.0078
SVC 0.9620 0.0197 0.9499 0.0186 0.5308 0.0454 1 0
Ridge 0.8083 0.0272 0.6900 0.0173 0.5010 0.0451 0.9977 0.0045
Bagging 0.9702 0.0193 0.9643 0.0165 0.8418 0.0425 0.9894 0.0121
Global 0.9121 0.0260 0.8906 0.0273 0.6309 0.0500 0.9945 0.0047

Numerical validation
To further validate the methodology, the dataset described in subsection 5.2.4 is split into a training
(90%) and a validation (10%) subsets. Then, 10 instances of the recursive ensemble feature selection
algorithm are run with 90% of the data in a 10-fold cross-validation, which yields the curve in
Fig. 5.20.

Next, the smallest signature that provided an accuracy of 90% or above is selected, having as
result: hsa-let-7a, hsa-mir-122, hsa-mir-200c, hsa-mir-708 and hsa-mir-23b, the same miRNAs
identified in the previous experiment described in subsection 5.2.4. Then, this signature is tested
on the 10% subset, comparing against signatures identified by other approaches: homogeneous
ensemble feature selection, GALGO, K-best univariate feature selection (using f-score), and 3
random selected subsets. In addition, the test set’s labels are shuffled to verify the proper working of
the classifiers (Table 5.23). Finally, the Matthews Correlation Coefficient (MCC) is comptued for all
of the signatures and classifiers [JRF12] (Table 5.24).

From the 10 instances, the frequency of appearance of miRNAs in the top 5 features is then
measured for each run. From the original 253 features, only 10 features appear in the top 5 for
the heterogeneous recursive ensemble feature selection algorithm, with frequencies presented in
Fig. 5.21. The same procedure was repeated for 10 runs of the homogeneous ensemble feature
selection algorithm (feature frequency presented in Fig. 5.22) and GALGO (feature frequency
presented in Fig. 5.23). The variability of the output signature for each algorithm reflected that the
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Figure 5.18: Heatmap of average expression levels by cancer type for the 5 miRNAs identified by
the proposed approach. Cancer types: breat (BRCA); esophageal (ESCA); head and neck squamous
cell (HNSC); liver hepatocelluar (LIHC); prostate (PRCA); gliobastoma (GBM); colorectal (CRC);
non-small-cell lung (NSCLC); gastric (GC); ovarian (OVC).



216 Chapter 5. Health Applications

Figure 5.19: Comparison of accuracy by classifier and tumor type for all the 253 features (top)
and the 5 features identified by the proposed approach (bottom). Cancer types: breast (BRCA);
esophageal (ESCA); head and neck squamous cell (HNSC); liver hepatocellular (LIHC); prostate
(PRCA); gliobastoma (GBM); colorectal (CRC); non-small-cell lun g (NSCLC); gastric (GC);
ovarian (OVC)
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Figure 5.20: 10 runs of the heterogeneous ensemble recursive selection algorithm. From the 10
runs, the minimum number of necessary miRNA to have an accuracy above 90% is 5; hsa-let-7a,
hsa-miR-23b, hsa-miR-122, hsa-miR-708, and hsa-miR-200c.

Table 5.23: Accuracy on the 10% data for testing the feature selection algorithm. Results for the sig-
natures found by the heterogenous recursive ensemble feature selection algorithm, the homogeneous
recursive ensemble feature selection algorithm, K-Best feature selection algorithm using f-score as
selection citeria, 3 random feature subsets, and a random shuffle of the test labels.

Heterogeneous Homogeneous Univariate GALGO Random 1 Random 2 Random 3 Shuffle
Gradient Boosting (n_estimators=300) 0.9412 0.9294 0.9412 0.9176 0.8824 0.8353 0.8000 0.2471
Random Forest (n_estimators=300) 0.9412 0.9529 0.9412 0.9059 0.8941 0.8235 0.8235 0.2471
Logistic Regression 0.9059 0.8824 0.8588 0.8706 0.6353 0.5412 0.5882 0.2824
Passive Aggressive 0.8706 0.7765 0.7176 0.8471 0.4235 0.4118 0.5294 0.1765
SGD 0.8824 0.8588 0.7765 0.7882 0.5294 0.4235 0.3765 0.2353
SVC(linear) 0.9765 0.9176 0.8941 0.8588 0.6235 0.6235 0.5412 0.2824
Ridge 0.8118 0.7059 0.7412 0.7059 0.5882 0.4588 0.4000 0.2706
Bagging (n_estimators=300) 0.9412 0.9294 0.9176 0.8824 0.8706 0.8471 0.8235 0.2118
Average 0.9089 0.8691 0.8485 0.8471 0.6809 0.6206 0.6103 0.2442

average and standard deviation for accuracy and MMC for the proposed heterogeneous recursive
ensemble feature selection algorithm is better than the homogeneous recursive ensemble feature
selection algorithm and GALGO (see Table 5.25).

Pathway Analysis
Next, using the 5 candidate miRNAs identified by the proposed approach to separate the tumor type,
miRNet is run to identify the targeted genes, obtaining a total of 1,732 genes. After the application
of a 0.05 Betweenness filter, the list is reduced to 156 genes. From these genes, BCL2, CCNG1,
COX1, TUBB2A, CELF1 and FOXJ3 are targeted by at least 3 of the 5 miRNAs (Fig. 5.24). Finally,
using the function Explorer of miRNet, a functional enrichment analysis is performed, using a
hypergeometric test of the genes from the KEGG database and GO: BP. Table 5.26 and Table 5.27,
show the results of the top 10 functional enrichment analysis for KEGG and GO:BP respectively.
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Table 5.24: Matthews Correlation Coefficient values for the 10% data left for testing the feature
selection algorithm. Results for the heterogenous recursive ensemble feature selection algorithm, the
homogeneous recursive ensemble feature selection algorithm, K-Best feature selection algorithm
using f-score as selection citeria, 3 random feature subsets, and a random shuffle of the test labels.

Heterogeneous Homogeneous Univariate GALGO Random 1 Random 2 Random 3 Shuffle
Gradient Boosting (n_estimators=300) 0.9346 0.9216 0.9346 0.9085 0.8693 0.8170 0.7778 0.1634
Random Forest (n_estimators=300) 0.9346 0.9477 0.9346 0.8954 0.8824 0.8039 0.8039 0.1634
Logistic Regression 0.8954 0.8693 0.8431 0.8562 0.5948 0.4902 0.5425 0.2026
Passive Aggressive 0.8562 0.7516 0.6863 0.8301 0.3595 0.3464 0.4771 0.0850
SGD 0.8693 0.8431 0.7516 0.7647 0.4771 0.3595 0.3072 0.1503
SVC(linear) 0.9739 0.9085 0.8824 0.8431 0.5817 0.5817 0.4902 0.2026
Ridge 0.7908 0.6732 0.7124 0.6732 0.5425 0.3987 0.3333 0.1895
Bagging (n_estimators=300) 0.9346 0.9216 0.9085 0.8693 0.8562 0.8301 0.8039 0.1242
Average 0.8987 0.8546 0.8317 0.8301 0.6454 0.5784 0.5670 0.1601

Figure 5.21: 10 recurrent features in the 5-feature signature for the heterogeneous ensemble feature
selection algorithm.

Table 5.25: µ and σ for accuracy and MMC over 10 runs using the top 5 features, for each algorithm.

Accuracy MCC
µ σ µ σ

Heterogeneous 0.8840 0.0120 0.8691 0.0156
Homogeneous 0.8518 0.0183 0.8353 0.0204
GALGO 0.8227 0.0255 0.8132 0.0338

The first result in KEGG is the P53 signaling pathway. The P53 protein is a tumor suppressor protein
and it is involved in several anticancer mechanisms [Ste12]. In GO: BP database, the first result is
the cellular response to stress, with 44 of the genes in the pathway; cellular stress is a component of
the P53-mediated tumor suppression [CBS07].
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Table 5.26: Top 10 miRNet Enrichment Analysis in the KEGG Dataset for miRNAs hsa-miR-122,
hsa-let-7a, hsa-miR-23b, hsa-miR-708, and hsa-miR-200c.

Pathway Total Expected Hits Pval
p53 signaling pathway 68 1 10 3.70E-06
Pathways in cancer 310 4.57 19 3.70E-06
Prostate cancer 87 1.28 11 3.70E-06
Glioma 65 0.958 8 0.000207
Melanoma 68 1 7 0.00196
Bladder cancer 29 0.428 5 0.00196
Colorectal cancer 49 0.722 6 0.00217
Chronic myeloid leukemia 73 1.08 7 0.00227
Focal adhesion 200 2.95 11 0.00327
Small cell lung cancer 80 1.18 7 0.00327

Table 5.27: Top 10 miRNet Enrichment Analysis in the GO:BP Dataset for miRNAs hsa-miR-122,
hsa-let-7a, hsa-miR-23b, hsa-miR-708, and hsa-miR-200c.

Pathway Total Expected Hits Pval
Cellular response to stress 1620 15.4 44 3.03E-08
Positive regulation of cell proliferation 786 7.43 27 1.66E-06
Response to hypoxia 245 2.31 15 2.53E-06
Regulation of cell cycle 886 8.37 28 2.53E-06
Regulation of cell proliferation 1430 13.5 36 4.30E-06
Response to abiotic stimulus 876 8.28 27 5.44E-06
Negative regulation of cell cycle 520 4.91 20 1.04E-05
Regulation of molecular function 2250 21.2 46 1.08E-05
Regulation of cyclin-dependent protein kinase activity 89 0.841 9 1.40E-05
Negative regulation of apoptotic process 679 6.42 22 2.56E-05
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Figure 5.22: 12 recurrent features in the 5-feature signature for the homogeneous ensemble feature
selection algorithm.

Figure 5.23: 9 recurrent features in the 5-feature signature for the GALGO.

Triple-Negative Breast Cancer Classification

Cancer tumors are divided into tumor subtypes, which can be treated by different strategies de-
pending on their classification. From the available data in the GEO repository, it was possible to
compile a dataset to assess the possibility of classifying tumor subtypes (Luminal A, Luminal B,
HER2-enriched, Triple-Negative and Normal [Dai+15]) in breast cancer (BRCA) using circulating
miRNAs. Then, datasets GSE86277, GSE86278, GSE86281 and GSE46823 were selected, all of
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Figure 5.24: miRNET targeted genes analysis, showing genes targeted by at least 3 of the 5 miRNA
to classify cancer type: BCL2, CCNG1, COX1, TUBB2A, CELF1 and FOXJ3.
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them BRCA studies with sub-type information. From the BRCA subtypes, Triple-Negative has the
worst prognosis, as it is resistant to hormone therapies [Wei13]. For this reason, the labels of the
resulting dataset are set to separate the Triple-Negative subtype from the rest. Although making
an analysis of all the sub-types would have been more interesting, the unbalance in the subtypes
samples found in the original data makes it impossible: Thus, more precisely, the resulting dataset
has 139 Triple-Negative samples and only 44 from all the rest of the subtypes, for a total of 183
samples, 253 features, and 2 classes (Triple-Negative/Other).

Next, the function Affyrma() from the Matlab bioinformatics toolbox™is applied, along with
a Z-score normalization on the dataset to run the feature selection algorithm in a 10-fold stratified
cross-validation scheme. As in the previous experiment, the feature selection algorithm was set to
identify the smallest miRNA subset sufficient to obtain a 90% accuracy. In addition, the results are
compared with the 31-miRNA signature proposed by Romero et al. [Rom+18] to separate Triple-
Negative Breast Cancer (TNBC) from other sub-types of BRCA using miRNA-mRNA integrative
analysis in TNBC tumors, based on the differential expressed transcripts. It is important to take into
consideration that this 31-miRNA list considers non-circulating miRNAs, that are not included in
the proposed method, and could potentially access more information. Finally, miRNet is run using
the candidate miRNAs, as in the previous experiment.

The heterogeneous ensemble algorithm is run 10 times, identifying 5 meaningful miRNA features
for separating Triple-Negative BRCA from the other sub-types (Fig. 5.25). The resulting miRNAs are:
hsa-miR-378*, hsa-miR-221, hsa-miR-342-3p, hsa-miR-630, and hsa-miR-145. The corresponding
expression levels for the identified miRNAs in TNBC and non-TNBC are reported in Fig. 5.26.

Figure 5.25: Results of 10 runs of the recursive ensemble feature selection for the TNBC discrimina-
tion example. The x axis cuts at 5 variables, which is where most evaluations cross the average 0.90
accuracy stop parameter.

Next, the accuracy of all classifiers is compared, using all the 253 miRNAs in the dataset, using
the identified 5-miRNA signature, and the 31-miRNA signature proposed by Romero et al. for
distinguishing TNBC from other cancers (Table 5.28). From the results, the proposed algorithm
outperforms the 31-miRNA signature. In addition, the area under the curve (AUC) of the results
(Fig. 5.27) calculated with Gradient Boosting classifier is above 90%. This is considered as an
outstanding results, following the guidelines in [Man10; Šim09] for clinical use of algorithmic
methodologies.
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Figure 5.26: Boxplot for the Expression levels between Triple Negative Breast Cancer (TNBC, cases)
and other subtypes (controls).

Figure 5.27: ROC Curve using the gradient boosting classifier to separate Triple Negative Breast
Cancer (TNBC) from the rest of breast cancer subtypes.
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Table 5.28: Accuracy comparison for all classifiers, using all 253 features, the 5-miRNA signature
found by the proposed approach, and the 31-miRNA signature from Romero et al., for separating
Triple-Negative from the rest of BRCA sub-types.

5 Feats. 253 Feats. Romero et al. (31 Feats.)
Classifier µ σ µ σ µ σ

GradientBoosting 0.9345 0.0523 0.9134 0.0487 0.9239 0.0485
RandomForest 0.9354 0.0617 0.9459 0.0416 0.9184 0.0432
LogisticRegression 0.9243 0.0487 0.9406 0.0612 0.8958 0.0643
PassiveAggressive 0.9076 0.0550 0.9076 0.0778 0.8797 0.0637
SGDClassifier 0.9085 0.0628 0.8918 0.0770 0.8692 0.0700
SVC(linear) 0.9243 0.0487 0.9242 0.0655 0.8572 0.0400
Ridge 0.9079 0.0754 0.9085 0.0533 0.8856 0.0611
Bagging 0.9295 0.0411 0.9076 0.0544 0.9341 0.0412
Global 0.9215 0.0557 0.9175 0.0599 0.8955 0.0540

Finally, the results of miRNet found 1,294 genes targeted by the 5 miRNAs, with 79 having
at least 2 miRNAs in common. From those 79, MTDH is targeted by 4 miRNAs, while IGF1R
and CDK6 are targeted by by 3, see Fig. 5.28. From the enrichment analysis, the most important
functional pathway in the KEGG database (Table 5.29) is the p53 signaling pathway (the same
identified in the previous experiments for separating cancer types); and in GO:BP (Table 5.30),
the negative regulation of cell proliferation, with 12 of the 79 genes followed by regulation of
cell proliferation and just cell proliferation. This results show an important involvement of cell
proliferation in TNBC.

Table 5.29: Top 10 miRNet enrichment analysis results for miRNAs hsa-miR-378*, hsa-miR-221,
hsa-miR-342-3p, hsa-miR-630 and hsa-miR-145 using the KEGG database.

Pathway Total Expected Hits Pval
p53 signaling pathway 68 0.509 6 0.000518
Pancreatic cancer 69 0.516 6 0.000518
Glioma 65 0.486 6 0.000518
Melanoma 68 0.509 6 0.000518
Chronic myeloid leukemia 73 0.546 6 0.000576
Bladder cancer 29 0.217 4 0.00197
Cell cycle 124 0.927 6 0.00821
Pathways in cancer 310 2.32 9 0.009
Non-small cell lung cancer 52 0.389 4 0.0133
Adherens junction 70 0.524 4 0.0368

Discussion

In this section, an analysis of the candidate miRNAs identified by the proposed feature selection
method is reported, using the available literature in cancer studies.
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Figure 5.28: miRNET targeted genes analysis, showing genes targeted by at least 3 of the 5 miRNA
to separate Triple Negative Breast Cancer (TNBC) from other breast cancer subtypes: metastasis
gene metadherin-positive (MTDH), type 1 insulin-like growth factor receptor-positive (IGF1R),
cyclin-dependent kinase 6-positive (CDK6).

,

Table 5.30: Top 10 miRNet enrichment analysis results for miRNAs hsa-miR-378*, hsa-miR-221,
hsa-miR-342-3p, hsa-miR-630 and hsa-miR-145 using the GO:BP database.

Pathway Total Expected Hits Pval
negative regulation of cell proliferation 585 2.7 12 0.00631
regulation of cell proliferation 1430 6.6 19 0.00631
cell proliferation 1900 8.79 22 0.00674
G1 phase of mitotic cell cycle 47 0.217 4 0.00882
enzyme linked receptor protein signaling pathway 1180 5.43 16 0.00882
myeloid cell differentiation 296 1.37 8 0.00882
G1 phase 49 0.226 4 0.00882
response to endogenous stimulus 1360 6.3 17 0.0114
positive regulation of cell proliferation 786 3.63 12 0.0166
response to organic substance 2500 11.5 24 0.0166
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miRNAs from Cancer Type Classification
The five circulating miRNAs identified by the proposed method as the most informative for cancer
type classification are hsa-miR-122, hsa-let-7a, hsa-miR-23b, hsa-miR-708, and hsa-miR-200c.

hsa-miR-122 is a 22-nucleotide RNA molecule that plays an important role in liver func-
tions [TG15]. It is related with regulation of cholesterol, fatty acid metabolism, and hepatocytes
differentiation. Evidence indicates that hsa-miR-122 acts like a tumor suppressor, and its depletion
is related with liver inflammation and hepatocellular cancer in mice [Ban+15; TG15]. In breast
cancer, hsa-miR-122 has different expression patterns according to the subtype [Erg+15]. In addition,
miR-122 promotes aggression and epithelial-mesenchymal transition in TNBC [WW19], and cell
survival in radio-resistance cells [Per+19]. High plasma miR-122 levels have been detected in
AFP-producing gastric cancer [Mar+18].

The let-7 miRNAs show a high evolutionary conservation between organisms. Vertebrates have
multiple let-7 isoforms and play an important role in development and tumor suppression [Lee+16].
hsa-let-7a is a member of the family and shows a downregulated expression in many tumor types
like breast cancer [Kha+18; Liu+15], lung adenocarcinoma [Zha+18] and gastric cancer [Yan+11].

hsa-miR-23b is known to target tumor suppressor and cancer promoter genes. hsa-miR-23b is dis-
regulated in proliferation, invasion, migration, apoptosis, autophagy and cell survival [Gro+18]. As a
circulating biomarker hsa-miR-23b is down-regulated in colon cancer measured in plasma [Kou+16].
In contrast, it is up regulated in gastric cancer [Zhu+16], lung cancer [Zhu+17], and pancreatic
cancer [Che+17].

hsa-miR-708, also known as miR-708-5p, is a microRNA encoded within an intron of ODZ4
gene. It can be found in different tissues with varying expression patterns like reproductive, secretory,
muscle, gastrointestinal, nervous, and lung [ML17]. hsa-miR-708 acts as a tumor suppressor
or oncogene according to the cancer type. It has been associated with poor prognosis in lung
adenocarcinoma [Jan+12] and carcinogenesis in colon [Fed+16] and bladder [Son+13]. On the other
hand, normal levels of hsa-miR-708 decrease cell growth, invasion and increase apoptosis in renal
cancer cells [Sai+11].

hsa-miR-200c has been identified in lung, gastric, breast, ovarian and endometrial cancer with
different expression patterns related with prognosis, aggressiveness and chemoresistance [Coc+10;
Liu+12]. Moreover, hsa-miR-200c is involved in signaling cascades such as TGF-β , PI3K/Akt,
Notch, VEGF, and NF-κB making it a candidate biomarker in cancer [Mut+16].

The result with the smallest p− value from the Enrichment Analysis in the KEGG Dataset
identified a strong relationship between the P53 signaling pathway and hsa-miR-122, hsa-let-7a, hsa-
miR-23b, hsa-miR-708, and hsa-miR-200c. P53 is an important tumor suppressor that regulates the
expression of many genes and is one of the most common mutated genes in cancer. Many miRNAs
work as direct and indirect mediators of the P53 activity and the components of its pathway [Liu+17;
TL09]. Moreover, the normal function of this tumor suppressor helps to the maturation of some
miRNAs with growth-suppressing function [Suz+09].

On the other hand, the first result in the Enrichment Analysis in the GO:BP Dataset was cellular
stress response. In normal cells, there is a balance between the activation of survival and cell
death pathways, according to the type and duration of the stress [Ful+10]. Cancer cells develop
molecular mechanisms that facilitate their adaptation to different conditions like oxidative, metabolic,
mechanical, and genotoxic stresses, avoiding the restriction of the growth and increasing cell
proliferation [CX18]. Importantly, miRNAs have the capacity to modify the stress response in
cancer by making cells more susceptible or resistant to chemotherapy [BSW08]. This findings prove
that miRNAs play an important role in cancer biology, and could be used as powerful circulating
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biomarkers for diagnosis and prognosis in human malignancies.

miRNAs from Triple-Negative Breast Cancer Classification
From the analysis performed, 5 candidate miRNAs are selected as the most informative to separate
cancer TNBC from the other subtypes in BRCA: hsa-miR-378*, hsa-miR-221, hsa-miR-342-3p,
hsa-miR-630, and hsa-miR-145. All of them had already been shown to have potential as circulating
cancer biomarkers in cancer studies, e.g. [Cit+10; Eic+10; He+13; Wan+09; Wei+14; Yan+14;
Yin+14; Zha+08; Zho+16].

hsa-miR-378* is considered a onco-miRNA for its relationship with tumor growth and cell-
renewal. It is associated with progression of breast cancer and the Warburg effect. Furthermore,
hsa-miR-378* is capable of discriminating between breast cancer patients and controls [Eic+10;
Yin+14].

Evidence indicates that hsa-miR-221 is up-regulated and its expression is related with prolif-
erative pathways [Che+13; San+18]. Several studies have linked microRNA cluster 221/222 with
chemoresistance. The miR-221/222 expression participates in the clinically aggressive basal-like
subtype [Sti+11] and tamoxifen resistance in ER-positive breast cancer cells [Wei+14; Zha+08].
Furthermore, this cluster interfers with ERα expression [Wei+14] and miR-221/222 knockdown
induces to growth arrest and apoptosis in cells exposed to tamoxifen [Zha+08].

On the other hand, hsa-miR-342-3p expression correlates with ERα mRNA expression and
its downregulation is related with tamoxifen resistance. hsa-miR-342-3p plays an important role
to therapy response of tamoxifen in ER-positive breast cancer [Cit+10; He+13]. Moreover, hsa-
miR-342-3p activity affects some metabolic pathways like lactate and glucose fluxes in TNBC
[Rom+18].

hsa-miR-630 is considerably suppressed in BRCA [Zho+16]. From in-vitro experiments, in
which hsa-miR-630 mimics was transfected into MDA-MB-231 cells, it could be detected that the
expression of hsa-miR-630 was decreased. miR-630 was also capable to inhibit MDA-MB-231 cells
migration and invasion targeting SOX4-3’-UT. Additionally, SOX4 over expression plasmid was
transfected to further confirm hsa-miR-630 played its role by down-regulation [Liu+16].

Finally, hsa-miR-145 acts as a tumor suppressor through the inhibition of different proteins like
ERBB3 and RTKN [Wan+09; Yan+14]. Additionally, hsa-miR-145 cooperates with P53 and has a
pro-apoptotic effect in patients with breast cancer [Spi+10].

The miRNet enrichment analysis yields that P53 and the negative regulation of cell prolifera-
tion were the signaling pathways mostly involved with these miRNAs. Furthermore, the MTDH,
IGF1R and CDK6 genes are targeted by at least 3 of the 5 miRNAs used to identify TNBC.
Zare et al. [Zar+18] described the interplay of methilation patterns in miRNAs and the epithelial-
mesenchymal transition. They identified that some genes like MTDH, IGF1R and CDK6 can be
affected by miRNAs and modify cellular processes in breast cancer.

5.2.5 Abbreviations
Adrenocortical carcinoma ACC
Bladder Urothelial Carcinoma BLCA
Breast invasive carcinoma BRCA
Cervical squamous cell carcinoma CESC
Cholangiocarcinoma CHOL
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC
Esophageal carcinoma ESCA
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Head and Neck squamous cell carcinoma HNSC
Kidney Chromophobe KICH
Kidney renal clear cell carcinoma KIRC
Kidney renal papillary cell carcinoma KIRP
Lower Grade Glioma LGG
Liver hepatocellular carcinoma LIHC
Lung adenocarcinoma LUAD
Lung squamous cell carcinoma LUSC
Mesothelioma MESO
Pancreatic adenocarcinoma PAAD
Pheochromocytoma and Paraganglioma PCPG
Prostate adenocarcinoma PRAD
Sarcoma SARC
Skin Cutaneous Melanoma SKCM
Stomach adenocarcinoma STAD
Testicular Germ Cell Tumors TGCT
Thyroid carcinoma THCA
Thymoma THYM
Uterine Corpus Endometrial Carcinoma UCEC
Uterine Carcinosarcoma UCS
Uveal Melanoma UVM
microRNA miRNA
The Cancer Genome Atlas TCGA
Gene Expression Omnibus GEO
Stochastic Gradient Descent SGD
Support Vector Machines Classifier SVC
Read Per Million RPM
Normal Tissue NT
Tumor Tissue TT
Root Mean Squared Error RMSE
Principal Component Analysis PCA
Univariate Feature Selection UFS
Recursive Feature Elimination RFE
Elastic Net EN
Least Absolute Shrinkage and Selection Operator LASSO
Ensemble Feature Selection with Complete Linear Aggregation EFS-CLA
Triple Negative Breast Cancer TNBC
Luminal A LumA
Luminal B LumB
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6. Perspectives and Conclusions

This chapter concludes the Habilitation à Diriger des Recherches, describing the planned follow-ups
of the research lines outlined in the previous chapters. More in detail, the work on epistemology
of machine learning (Chapter 2) will be pursued with a new technique to detect extrapolation
(Section 6.1). The techniques developed for the automated discovery of SARS-CoV-2 primers
and tumor signatures (Chapter 5) can interestingly be generalized to detect any kind of genomic
subsequence: a promising development is to use this methodology to uncover bacterial genes
that provide resistance to antibiotics, helping experts quickly ascertain the type of antibiotic that
could work against a given infection (Section 6.2). The food science applications I worked on
(Chapter 4) lead naturally to future applications on the development of alternative proteins and finding
compromises for ecosystem services (Section 6.3). My experience in evolutionary computation
(Chapter 3) will be used throughout my future research lines.

6.1 Detecting Extrapolation in Machine Learning

The techniques to assess generalization capabilities of machine learning (ML) algorithms described
in Section 2.1 rely upon a methodology to detect extrapolation, the computation of the Convex Hull
(CH) of a dataset. To summarize, the CH is hyper-polygon with minimal hyper-volume that contains
all data points in a given dataset. When a new point is inside the CH of a training set, it is possible to
assume that a ML algorithm will interpolate in order to provide a prediction for it; when a new point
is outside, the ML algorithm will probably be forced to extrapolate. While this technique is effective,
and testing for the relative position of the point is computationally feasible even in high dimensions,
there are cases where the CH could deliver misleading information. For example, the training data
provided might not be equally distributed in the feature space: as a result, the data points will be
denser in some parts of the CH, and extremely rare in others. In this situation, it might be a mistake
to assume that a ML algorithm would be in interpolation inside the sparser areas of the CH: the
information available to the algorithm for that part of the feature space could have been so scarce
that the resulting model should be treated as extrapolating instead, see Figure 6.1 for an example.

In order to tackle this issue, together with Pietro Barbiero, University of Cambridge, UK, and
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Figure 6.1: Example of a dataset (left) with relatively sparse data, except for two dense areas
highlighted by spheres (right). In this situation, even if the theoretical convex hull of the dataset is
much larger, it is conceivable that a machine learning model trained on this data would interpolate
only in the areas delimited by the spheres.

Ben Mathiesen, Capgemini Engineering, France, I am working on a novel technique to assess
extrapolation for ML algorithms. The basic idea is to find and isolate areas of the feature space with
a high density of data points, and surround them with simple geometric shapes, such as hyperspheres
or hypercylinders, surrounded by empty (or extremely sparse) areas. This technique, for the moment
termed P-Sphere Hull, has several desirable criteria for integration into industrial applications:

• Modular. It provides a geometric model of the training domain as a collection of subdomains
bounded by simple geometric envelopes. The subdomains can be defined by any clustering
method upstream, and the domain model can be consumed by any AI model downstream.

• Computationally inexpensive. The domain model should add almost no overhead to the
training process. The P-Sphere Hull is generated once, during the exploration phase of a
data science project. Testing a new point for membership in the hull requires only a single
dot product operation per subdomain. This consideration is the main reason that I explore
modeling the domain as a collection of spheres, cylinders, and boxes rather than simplexes or
CHs.

• Intuitive. The domain model can provide information on the topology of the dataset in
high-dimensional space. For example, it can reveal a series of overlapping subdomains with
low intrinsic dimensionality and similar orientations extending away from the main body of
the point cloud.

• Compact. The domain model hypervolume is small compared to the hypercuboid defined by
individual feature ranges, or even when compared to the hypervolume of a CH. The P-Sphere
Hull can calculate its own volume by geometry or by subsampling the space.

• Insensitive to scatter. I assume that industrial data are subject to both measurement errors
and random sampling uncertainty. Hence, I view the training domain as a collection of point
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clouds rather than a continuous manifold.
• Permissive. Since the data are assumed to be noisy, the boundaries of the domain should not

contain too many data points.
While preliminary experiments seem promising, there are still several obstacles to be overcome

for this technique to be usable out of the box. The main issue lies in the definition of the areas
to be surrounded by hyperspheres and hypercylinders, that is currently performed by clustering.
Clustering is an unsupervised ML procedure that attempts to find subsets of data points, without
ground truth: consequently, its outcomes can vary considerably depending on the hyperparameters
of the clustering algorithm used, which might return unsatisfying results for certain datasets. Finding
good general hyperparameters for clustering is not straightforward, and we are currently focusing on
this part in order to make the P-Sphere Hull viable.

6.2 Prediction of Antibiotic Sensitivity

The techniques developed in Section 5.1, originally conceived for uncovering primer sets in viral
RNA, can in principle be generalized to finding any subsequence of genetic material that can separate
different classes of organisms. A promising application for this methodology is the prediction of
antimicrobial resistance (AMR) in bacteria. AMR is the acquired resistance of fungi, viruses, bacteria
and parasites to medicine designed to combat them, and it is a growing threat, due to the misuse of
antibiotics: in 2016, 30% of neonatal sepsis deaths were linked to AMR [Fol+17]. Indeed, while
fast and adequate treatment is essential to the survival of patients, an increasing amount of so-called
superbugs are resistant to both first-line and second-line antibiotics recommended by the WHO. In
order to assess resistance or sensitivity of a specific bacteria to a given antibiotic, techniques known
as antibiotic sensitivity testing (AST) have been developed. While effective, these methodologies
are extremely time-consuming, as they require sending samples of the bacteria to laboratory, where
disks of drugs are placed in a Petri dish, and an agar plate inoculated with the isolated pathogen is
placed in the same dish. After a day or so of incubation, the dish is inspected to determine which
drugs either killed or prevented the growth of the microbe: in which case the micro-organism is
considered susceptible to the treatment, see Figure 6.2. Due to the incubation step, this process can
take up to 24 hours.

A viable alternative would be trying to infer sensitivity just through the analysis of the bacterial
genome. As techniques for rapid genomic sequencing are becoming faster and less expensive, it is
now possible to obtain a digital version of the genome of a bacteria in a matter of hours. It is then
possible to use the same methodology previously outlined in Section 5.1 to find the subsequences that
separate bacteria resistant to specific antibiotics from those which are sensitive. I started exploring
this line of research, together with my colleagues Pietro Barbiero and Giovanni Squillero, through the
supervision of a master student, Arthur Cahu, École Polytechnique, France, and the co-supervision
of a second master student, Simone Alessandrì, Politecnico di Torino, Italy.

While the preliminary results are promising, bacteria offer unique challenges, mainly due to
the their considerable higher complexity, with respect to viruses previously analyzed. Not only the
length of their genomic sequence is order of magnitudes higher (millions of base pairs against tens
of thousands), but post-sequencing algorithms that attempt to reconstruct the genomic sequence
in-order often struggle with bacteria, producing as a results several files, each one ranging from
thousands to millions of bases, that could appear in any order in the bacterial DNA. Everything
is further complicated by the presence of mobile genetic elements (MGEs), also known as selfish
genetic elements, a type of genetic material that can move around within a genome, or that can be
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Figure 6.2: Diagram of a disk diffusion test. Antibiotic A does not inhibit bacterial growth, while C
does so effectively; the microbe seems only partially susceptible to B. Source: Wikimedia Commons
(Sommer36)

transferred from one species to another [Koo16]. As convolutional neural networks (CNNs) need to
consider the adjacency of the elements, this could potentially be a sizable obstacle.

In order to overcome this hurdle, we are currently exploring alternative approaches: one solution
could be using an EA, as described in subsection 5.1.3, but that introduces further research questions
on the preservation of locality, or in other words, how to conceive mutations and cross-overs so that
they make sense in the complex genomic space of a bacteria; another interesting option is to describe
the bacterial genome as a De Bruijn graph [CPT11], and then use a graph neural network in a similar
fashion as the CNN was adopted for SARS-CoV-2.

6.3 Multi-objective Optimization for Food Science
Multi-objective optimization [Deb05] is one of the domains where EAs really shine, and since
effective multi-objective algorithms now have been available for nearly 20 years [Deb+02], it is not
surprising that even domains as far away from computer science as life sciences started adopting these
techniques to tackle problems with conflicting criteria. One interesting example is the field of life-
cycle analysis/assessment (LCA), a methodology for evaluating environmental impacts associated
with all the stages of the life cycle of a commercial product, process, or service, where expert of the
domain have been long aware of the need for multi-objective optimization, to find trade-offs between
environmental needs, production efficiency, and societal requirements [AC99].

Thanks to my experience with EA and multi-objective optimizaton in particular, I am currently
participating in a European Horizon 2020 project on the development of sustainable insect production
chains for food and feed, called SUSINCHAIN1. In the work package I am part of, dealing with
modelling and optimization, I plan to use multi-objective optimization to find trade-offs between the
different objectives collected by interviewing domain experts in the same project. This real-world
task poses intriguing challenges: for example, so far a total of 18 different objectives have been
gathered [Ton+21], a number that tests the limits of multi-objective optimization, and goes into

1https://susinchain.eu/

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://susinchain.eu/
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what EA practitioners call many-objective optimization [ITN08]. It is well known, in fact, that
the performance of classical multi-objective EAs degrades as the number of objective increases.
Together with a post-doctoral researcher that I recruited on this project, Nisrine Mouhrim, we are
going to explore different possibilities to tackle this obstacle, ranging from objective aggregation
to dimensionality reduction in the space of the objectives [DS+06], with the ultimate objective of
providing reasonable trade-offs for the experts to analyze. I also plan to propose a similar approach
in the scope of an Horizon Europe project proposal coordinated by Alessandra Bordoni, University of
Bologna, Italy, that I am currently drafting as a work package leader, again focused on the production
of alternative proteins for food and feed.

A second domain where multi-objective optimization has the potential of delivering significant
results is the study of ecosystem services (ES). ES include all benefits to humans provided by the
natural environment and from healthy ecosystems, ranging from crop production, to animal energy
production, to carbon sequestration. Land allocation in ES is a naturally occurring multi-objective
problem: intuitively, assigning a plot of land to crop production will increase the quantity of food
yielded, but will in turn reduce the potential carbon sequestration that would have been obtained
by assigning the same land to forests, or the animal energy production in the case of the allocation
of the same plot to grasslands for animal husbandry. After preliminary works on multi-objective
optimization applied to ES in cooperation with Francesco Accatino, INRAE, France [Acc+19a;
Acc+19b] (see Figure 6.3), I am currently progressing our cooperation by addressing the assessment
of uncertainty in ES models, a subject still relatively unexplored in the community. To this aim, I
developed an open-source package named HumanModels2, that will make it possible to perform
robust, reproducible experiments with human-designed ES models, and compare them to ML models
on the same data, in a transparent way.

Figure 6.3: Preliminary results of multi-objective optimization applied to ecosystem services. The
figures on the left and center show the impact on the French region of a specific candidate solution
on the Pareto front for the conflicting objectives of crop production and carbon sequestration. The
figure on the right is an example of a Pareto front found by multi-objective evolutionary optimization
for three conflicting objectives: crop production, carbon sequestration, and animal energy production.
Points in green represent solutions that have better fitness values of carbon sequestration, points in
yellow feature better values for crop production, while points in red have better values for animal
energy production.

2https://pypi.org/project/humanmodels/

https://pypi.org/project/humanmodels/
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