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Résumé étendu

Problématique

Les formations carbonatées karstiques a�eurent sur environ 15.2 % de la surface conti-
nentale mondiale hors glaciers (Goldscheider et al., 2020) et sont largement représentées
dans le sous-sol (Chen et al., 2017). Elles sont essentielles pour l'alimentation en eau
potable, ainsi que pour l'agriculture et le maintien du fonctionnement des écosystèmes,
en particulier dans la région méditerranéenne où 15 % de l'eau domestique, et jusqu'à
90 % dans certaines régions, provient des aquifères karstiques (Bakalowicz, 2015; Ste-
vanovi¢, 2019). Ces systèmes présentent généralement un haut degré d'hétérogénéité et
sont gouvernés par des processus complexes régulant le �ux et le stockage de l'eau, ce
qui les rend di�ciles à étudier et particulièrement vulnérables aux changements environ-
nementaux (Parise et al., 2018).

Le changement climatique, les pressions anthropiques, ainsi que les évolutions des
régimes de précipitations et d'évapotranspiration pourraient avoir un impact signi�catif
sur la recharge des aquifères karstiques. Les propriétés hétérogènes de ces systèmes
et la non-linéarité de leurs processus internes les rendent particulièrement di�ciles à
étudier � une exploration plus approfondie de leur réponse aux changements globaux est
donc nécessaire. Les analyses hydrologiques et les modèles numériques sont des outils
pertinents pour ce type d'investigation (Hartmann et al., 2014) et sont utilisés dans les
environnements karstiques à di�érentes �ns : (i) simuler le débit des sources (Fleury et
al., 2007; Wunsch et al., 2022), (ii) prédire et prévoir les inondations (Kong-A-Siou et al.,
2011; Wu et al., 2008), (iii) gérer l'exploitation des aquifères (Fleury et al., 2009; Xanke
et al., 2016), (iv) caractériser le fonctionnement spéci�que et interne du système (Baude-
ment et al., 2017; Dubois et al., 2020), (v) enquêter sur la genèse et l'évolution du
système (Kaufmann and Romanov, 2020; Liedl et al., 2003), (vi) évaluer la qualité et
la vulnérabilité de la ressource en eau (Husic et al., 2019; Sullivan et al., 2019), et (vii)
étudier l'impact du changement climatique sur le fonctionnement du système (Hartmann
et al., 2012; Sivelle et al., 2021). En particulier, les modèles à paramètres globaux per-
mettent d'étudier les systèmes karstiques sans nécessiter de données météorologiques et
systémiques à haute résolution spatiale. Ils sont l'aspect central de cette thèse, qui vise
à développer et améliorer les analyses hydrologiques et les modèles réservoir pour carac-
tériser le fonctionnement des systèmes karstiques en réponse aux changements climatiques
et anthropiques. Un accent est mis sur les questions de recherche suivantes :

i. Comment caractériser le fonctionnement d'un système karstique dans un contexte de
manque de données ?

ii. Sur quels aspects peut-on encore améliorer les modèles simples, unidimensionnels ?

iii. Peut-on se �er aux critères de performance pour la calibration et l'évaluation des
modèles hydrologiques ?

iv. Quels sont les avantages et les inconvénients des di�érentes approches de modélisation
empiriques et conceptuelles en hydrologie karstique ?

iii



iv Résumé étendu

Organisation du mémoire et principaux résultats

Le Chapitre 1 fournit une brève description de la formation, du fonctionnement et des
particularités des systèmes karstiques. La modélisation des écoulements pluie-débit dans
les environnements karstiques est introduite, avec un rappel des dé�s rencontrés et une
description des di�érentes approches de modélisation couramment utilisées. En partic-
ulier, les modèles à paramètres globaux o�rent un bon compromis entre accessibilité et
pertinence du modèle. Leur utilisation dans les environnements karstiques est complexe
en raison de l'hétérogénéité caractéristique de ces systèmes, ajoutant un autre dé� en plus
des incertitudes et biais typiques associés à la modélisation hydrologique. Ils permettent
néanmoins d'obtenir des informations précieuses pour la caractérisation et la prédiction
du fonctionnement de ces systèmes (Hartmann et al., 2014).

La première partie est dédiée à la caractérisation du fonctionnement hydrologique des
systèmes karstiques.

Le Chapitre 2 présente une nouvelle classi�cation des systèmes karstiques basée sur
l'analyse des débits à la source. Cette étude tire pro�t de larges bases de données de
débit de sources (Jourde et al., 2018; Olarinoye et al., 2020) pour prendre en compte
la grande diversité des fonctionnements hydrologiques existants. Les séries temporelles
de débit sont étudiées avec l'analyse des courbes de récession, ainsi que des analyses
statistiques et de signal pour identi�er des indicateurs de fonctionnement hydrologique.
La sélection des indicateurs les plus pertinents et la proposition de la classi�cation sont
basées sur des analyses multivariées. La classi�cation repose sur l'analyse des courbes
de récession et permet de discriminer six classes à l'aide de trois indicateurs re�étant
la capacité de stockage dynamique, la dynamique de drainage de la fonction capacitive,
et la variabilité du fonctionnement hydrologique (Figure 1). La méthode est développée
pour être adaptée aux contextes de manque de données et est évaluée sur une base de
données de 78 systèmes karstiques situés dans le monde entier. Tous les systèmes se
répartissent de manière homogène parmi les six classes proposées, ce qui met en évidence
la pertinence de l'approche et la représentativité des di�érentes classes de fonctionnement
hydrologique. Les résultats de la méthodologie proposée sont �nalement discutés pour
explorer ses limites et dé�nir des conditions pour son application.

Le Chapitre 3 présente une boîte à outils développée dans le cadre de cette thèse.
KarstID aide les utilisateurs à analyser les séries chronologiques de débit et à carac-
tériser le fonctionnement hydrologique des systèmes karstiques en utilisant la classi�ca-
tion décrite dans le Chapitre 2. Les analyses de séries chronologiques de débit de sources
sont souvent utilisées pour obtenir une première compréhension du fonctionnement hy-
drologique d'un système karstique. Le logiciel permet (i) d'e�ectuer des analyses statis-
tiques, de courbes de récession (Figure 2), de classements des débits, et de signal (anal-
yses corrélatoire et spectrale simples) ; (ii) de calculer des indicateurs représentatifs de
di�érents aspects du fonctionnement d'un système ; (iii) de classer le fonctionnement
hydrologique du système étudié ; et (iv) de comparer les résultats à une base de données
de 78 systèmes karstiques. La réalisation de ces analyses est facilitée par une interface
graphique qui ne nécessite aucune compétence en programmation � KarstID peut être
ainsi utilisé à la fois pour la recherche et à des �ns pédagogiques. Le logiciel est égale-
ment gratuit, open source, et activement développé sur une plateforme communautaire
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Figure 1: Diagramme pour la classi�cation des systèmes karstiques à partir des trois indicateurs
issus de l'analyse des courbes de récession.

de développeurs. L'application et son manuel utilisateur sont tous deux disponibles sur
le site web du SNO KARST (Jourde et al., 2018).

La deuxième partie est consacrée à l'amélioration et l'évaluation des performances des
modèles à paramètres globaux pour la simulation des débits et des niveaux piézométriques
des systèmes karstiques.

Le Chapitre 4 présente les nouvelles fonctionnalités développées pour la version 3.0
du logiciel KarstMod, une plateforme dédiée à la modélisation pluie-débit des aquifères
karstiques (Mazzilli et al., 2019; Mazzilli et al., 2023). KarstMod o�re un environ-
nement de modélisation modulaire et accessible pour des �ns éducatives, de recherche
et opérationnelles. Il comprend également des outils numériques pour l'analyse des
séries temporelles, l'évaluation des modèles et les analyses de sensibilité. La modular-
ité de la plateforme facilite les opérations courantes relatives aux modèles à paramètres
globaux, telles que (i) la mise en place et l'estimation des paramètres d'une structure
de modèle pertinente, et (ii) l'évaluation de la sensibilité des paramètres et des car-
actéristiques des simulations. Ce travail a porté sur deux aspects principaux : (i)
l'utilisation de données d'entrée pertinentes à travers des modules optionnels (routines de
neige et d'évapotranspiration potentielle), (ii) l'expansion des possibilités de calibration
multi-objectifs et multi-variables, o�rant davantage de �exibilité en termes de fonctions
objectifs ainsi que de variables de calibration, et (iii) des outils supplémentaires pour
l'évaluation des performances du modèle, incluant de nouveaux critères de performance
et des graphiques associés. La nouvelle version est appliquée sur deux études de cas en
France (les systèmes karstiques de la Touvre et du Lez).

Le Chapitre 5 examine le mécanisme de compensation des erreurs sur le critère de

https://sokarst.org/en/softwares-en/karstid-en/
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Figure 2: Onglet pour la sélection et l'analyse des courbes de récession dans KarstID. Le
graphique de gauche présente les séries temporelles étudiées et les courbes de récession sélec-
tionnées. Le graphique de droite a�che la récession sélectionnée avec le modèle de récession
de Mangin (1975). Le tableau montre les détails de chaque courbe de récession et les valeurs
des indicateurs correspondants.

performance Kling-Gupta E�ciency (KGE) (Gupta et al., 2009) et ses variantes (Kling
et al., 2012; Lee and Choi, 2022; Liu, 2020; Pool et al., 2018; Schwemmle et al., 2021;
Tang et al., 2021). Les critères de performance jouent un rôle clé dans la calibration
et l'évaluation des modèles hydrologiques et ont été largement développés et étudiés,
mais certains des critères les plus utilisés présentent encore des écueils mal identi�és.
Au total, neuf critères de performance � incluant le KGE et ses variantes, ainsi que le
critère de Nash-Sutcli�e (NSE) (Nash and Sutcli�e, 1970) et l'Index of Agreement (d1)
(Willmott et al., 1985) � et leur décomposition sont comparés sur des séries chronologiques
synthétiques et un cas d'étude réel. L'étude démontre que l'évaluation d'un modèle
présentant des surestimations et sous-estimations simultanées peut amener à des scores
globaux de critères plus élevés sans pour autant qu'ils soient associés à une amélioration de
la pertinence du modèle (Figure 3). Ces erreurs de compensation favorise les paramètres
de biais et de variabilité, qui représentent généralement deux tiers du poids dans l'équation
du KGE et de ses variantes. Il est recommandé d'utiliser (i) des critères de performance
qui sont peu ou pas sujets aux erreurs de compensation (d1, KGE modi�é, KGE non
paramétrique, Diagnostic E�ciency), et/ou (ii) des facteurs d'échelle dans l'équation
pour réduire l'in�uence des paramètres relatifs (Gupta et al., 2009).

Le Chapitre 6 présente une comparaison de deux approches de modélisation largement
utilisées en hydrologie karstique : les réseaux de neurones arti�ciels (ANN, pour Arti�-
cial Neural Network) et les modèles réservoir. De nombreuses approches de modélisation
peuvent être utilisées pour l'étude des ressources en eau karstiques, ce qui peut rendre
di�cile le choix de la méthode la plus appropriée. Les modèles empiriques et conceptuels
présentent un intérêt particulier dans les environnements karstiques en raison de leur ac-
cessibilité vis-à-vis de la complexité et de l'hétérogénéité de ces systèmes. Cinq systèmes
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Figure 3: Chroniques synthétiques mettant en évidence l'in�uence de la compensation des biais
et variabilité sur l'optimisation et l'évaluation par le KGE et ses variantes.

karstiques aux caractéristiques di�érentes en termes de conditions climatiques, de pro-
priétés hydrogéologiques et de disponibilité des données sont étudiés pour la comparaison
des approches de modélisation. Les résultats de chaque modèle sont comparés sur la
base de plusieurs critères de performance appliqués à di�érentes périodes hydrologiques.
Les résultats montrent que les modèles ANN et réservoir peuvent simuler avec précision
le débit des sources karstiques (Figure 4, Figure 5), mais également qu'ils ont di�érents
avantages et inconvénients : (i) Les modèles ANN sont très �exibles concernant le format
et la quantité des données d'entrée du modèle, (ii) les modèles réservoir peuvent fournir
de bons résultats même avec seulement quelques années d'observations de débit pour la
période de calibration, et (iii) les modèles ANN semblent robustes pour reproduire des
conditions de débit élevé tandis que les modèles réservoir sont supérieurs pour reproduire
des conditions de débit faible. Cependant, les deux approches de modélisation ont des
di�cultés à reproduire les événements extrêmes (étiages, inondations), ce qui est une lim-
itation connue en modélisation hydrologique. Pour des objectifs de recherche, les modèles
ANN peuvent être utiles pour dériver des informations à partir des données d'entrée, par
exemple l'identi�cation des zones de recharge. Les modèles réservoir peuvent quant à eux
permettre de caractériser le fonctionnement hydrologique d'un système, en étudiant la
structure et les paramètres du modèle.
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Figure 4: Séries temporelles des débits observés et simulés lors de la période de validation avec
(i) des intervalles de con�ance (IC) à 90 %, et (ii) le seuil pour les hautes eaux (HE) et faibles
eaux (BE) utilisé pour le calcul des critères de performance. (a) Source d'Aubach, (b) source de
Gato Cave, (c) source du Lez, (d) source de Qachqouch, et (e) sources d'Unica.



ix

Figure 5: Performance des modèles ANN et réservoir sur la période de validation, selon dif-
férents critères de performance : erreur moyenne quadratique (MSE), le Kling-Gupta E�ciency

modi�é (KGE', Kling et al., 2012) et sa décompisition sous les di�érents aspects de volume (β),
variabilité (γ) et corrélation (r). Chaque critère de performance est appliqué sur la chronique
entière, mais aussi sur les périodes de basses (L) et hautes eaux (H) uniquement.
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Conclusions

Cette thèse vise à développer et utiliser les méthodes numériques et les modèles hy-
drologiques pour caractériser le fonctionnement hydrologique des systèmes karstiques en
réponse aux changements climatiques et anthropiques, en mettant l'accent sur la modéli-
sation réservoir conceptuelle.

Moyens. Ce travail repose sur di�érentes bases de données et approches :

i. Les bases de données SNO KARST (Jourde et al., 2018) et World Karst Spring
(WoKaS, Olarinoye et al., 2020) ont été utilisées pour l'analyse des séries
chronologiques de débit des sources (Chapitre 2, Chapitre 3 et Chapitre 4).

ii. Des méthodes numériques telles que les analyses des courbes de récession, ainsi que
les analyses statistiques et de signal ont été utilisées pour la classi�cation du fonc-
tionnement hydrologique des systèmes karstiques (Chapitre 2 et Chapitre 3).

iii. Le cadre du projet européen KARMA a permis de travailler sur plusieurs systèmes
karstiques à travers la région méditerranéenne et de béné�cier des connaissances
expertes locales (Chapitre 5 et Chapitre 6).

iv. Les approches à paramètres globaux, en particulier les modèles réservoir conceptuels,
ont été utilisés pour approfondir la compréhension des dynamiques internes des sys-
tèmes karstiques (Chapitre 6).

Questions de recherche. Les méthodes numériques et les modèles hydrologiques
ont été utilisés pour répondre aux questions de recherche initiales :

(i) Comment caractériser le fonctionnement d'un système karstique dans un contexte de
manque de données ?

Un contexte de manque de données implique l'étude d'un système avec des données
limitées, que ce soit en termes de couverture spatiale, de portée temporelle, de résolu-
tion, ou de diversité. Le Chapitre 2 montre les informations sur le fonctionnement d'un
système qui peuvent être déduites de l'analyse des séries chronologiques de débit d'une
source. L'analyse des courbes de récession permet une évaluation pertinente de di�érents
aspects du fonctionnement hydrologique d'un système karstique : capacité de stockage
dynamique, dynamique de drainage de la fonction capacitive et variabilité du fonction-
nement hydrologique. La considération de la variabilité du fonctionnement hydrologique
dans la classi�cation proposée est un aspect nouveau qui permet une meilleure di�érenci-
ation des systèmes karstiques. L'utilisation d'analyses multivariées et l'application de la
classi�cation sur de larges bases de données a permis d'identi�er un nombre de classes de
fonctionnement idéal � six étant un bon compromis entre le gain de connaissance, la perti-
nence, et l'accessibilité de la méthode. Le Chapitre 2 montre que cette caractérisation est
pertinente compte tenu d'un nombre minimal d'observations dépendant des dynamiques
du système et des caractéristiques du climat, restant généralement compatible avec les
contextes de manque de données. Le Chapitre 6 montre que les modèles à paramètres
globaux peuvent fournir des résultats intéressants avec peu de données en entrée (pré-
cipitations et températures unidimensionnelles) et avec de courtes séries chronologiques.
L'utilisation des modèles réservoir peut être béné�que dans un contexte de manque de
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données ou pour réaliser une caractérisation préliminaire du fonctionnement d'un système
karstique peu connu (e.g. répartition des volumes entre matrice et conduits, dynamique
des �ux internes).

(ii) Sur quels aspects peut-on encore améliorer les modèles simples, unidimensionnels ?
Les modèles unidimensionnels peuvent être améliorés sur plusieurs aspects : données

d'entrée, calibration et évaluation. Le Chapitre 4 propose plusieurs ajouts à la plateforme
de modélisation KarstMod sur ces aspects. Dans la nouvelle version 3.0 du logiciel, la
dé�nition des paramètres pour le prétraitement des données d'entrée peut être réalisée
par calibration du modèle en utilisant des modules optionnels (neige ou évapotranspira-
tion), permettant l'utilisation de données plus adéquates. La fonction objectif supporte
maintenant plus de deux éléments, permettent ainsi de calibrer les modèles avec plusieurs
variables d'observation (débit de la source, piézométrie, débit de source de trop-plein) et
avec un ou plusieurs critères de performance, comme démontré pour le cas d'étude du Lez.
Des outils supplémentaires ont été implémentés pour l'évaluation des modèles, qui peut
être réalisée sur di�érents aspects du fonctionnement d'un système : bonne reproduction
des volumes, de la variabilité, et de la corrélation. Le Chapitre 5 souligne l'importance
de choisir des critères de performance adaptés.

(iii) Peut-on se �er aux critères de performance pour la calibration et l'évaluation des
modèles hydrologiques ?

Le Chapitre 5 démontre l'impact des erreurs de compensation lors de l'utilisation
de certain critères de performance pour la calibration et l'évaluation d'un modèle hy-
drologique. Les critères de performance ne sont pas entièrement �ables car chacun
présente des limites spéci�ques. Ils doivent être choisis avec précaution en fonction de
l'objectif du modèle, et de préférence dans un cadre multi-critères.

(iv) Quels sont les avantages et les inconvénients des di�érentes approches de modélisation
empiriques et conceptuelles en hydrologie karstique ?

Le Chapitre 6 propose une comparaison des approches de modélisation réservoir et
à réseaux de neurones arti�ciels (ANN). Les modèles ANN, issus de l'apprentissage au-
tomatique, montrent une grande �exibilité par rapport aux données d'entrée et sont
particulièrement performants pour reproduire les forts débits. Les modèles réservoir peu-
vent opérer avec des séries temporelles relativement courtes et semblent reproduire avec
précision les faibles débits. Ces deux approches peuvent aider à caractériser di�érents
aspects d'un système : (i) les modèles ANN en ce qui concerne la pertinence des don-
nées d'entrée et la délimitation du bassin versant, et (ii) les modèles réservoir en ce qui
concerne le fonctionnement interne de l'aquifère.

Résultats clés. Les points clés de ce travail sont les suivants :

i. Malgré la forte hétérogénéité des systèmes karstiques, une caractérisation préliminaire
de leur fonctionnement hydrologique est possible même dans un contexte de manque
de données. L'analyse des séries chronologiques de débit ou l'utilisation de modèles à
paramètres globaux unidimensionnels peuvent apporter de nombreuses informations
sur les caractéristiques du système, son fonctionnement interne et sa réponse à di-
verses perturbations anthropiques ou climatiques, moyennant peu de données et de
moyens.
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ii. Les modèles hydrologiques doivent être appliqués avec discernement pour que
l'interprétation soit pertinente. Chaque étape d'un processus de modélisation né-
cessite une étude approfondie des options disponibles, que ce soit pour le choix de
l'approche de modélisation, la dé�nition de la structure du modèle, l'utilisation des
données d'entrée, la procédure de calibration, la fonction objectif, les critères de per-
formance pour l'évaluation des résultats, ou l'analyse de sensibilité des paramètres.
En particulier, cette thèse montre que tous les critères de performance ont des limites
et doivent être sélectionnés en fonction de l'objectif du modèle hydrologique et de
l'étude.

Perspectives. Les recherches futures peuvent porter sur :

i. L'impact du changement climatique sur les systèmes karstiques en Méditerranée à
partir d'une même méthodologie appliquée à plusieurs sites ayant des caractéris-
tiques di�érentes en termes de localisation, conditions climatiques, propriétés hy-
drogéologiques et disponibilité des données. Un travail en cours (commencé récem-
ment dans le cadre de cette thèse) tire pro�t du cadre du projet KARMA pour
étudier les tendances futures à large échelle de la dynamique et de la disponibilité
des ressources en eau des aquifères karstiques, en utilisant des modèles réservoir.
Pour tenir compte des incertitudes des projections climatiques, 8 modèles de climat
couplés GCM/RCM sont considérés avec deux scénarios d'émission (RCP 4.5 et RCP
8.5). Une telle étude pourrait apporter des connaissances pertinentes sur la réponse
des systèmes karstiques aux changements des précipitations et sous des conditions
marquées de réchau�ement et de sécheresse.

ii. L'éventuel lien entre la classe de fonctionnement hydrologique d'un système karstique
et la structure du modèle réservoir considérée pour la simulation du débit à la source
ou du niveau piézométrique. L'identi�cation d'élements structuraux (compartiments,
fonctions de transfert) spéci�ques à certaines classes pourrait simpli�er la tâche de
modélisation.

iii. L'utilisation d'indicateurs de fonctionnement hydrologique pour la calibration des
modèles (par exemple, les indicateurs issus de l'analyse des courbes de récession).
Contraindre un modèle pour qu'il reproduise les aspects clés du fonctionnement d'un
système (capacité de stockage dynamique, dynamique de drainage de la fonction ca-
pacitive et variabilité du fonctionnement hydrologique) pourrait amener à une struc-
ture et un paramétrage plus pertinents.

iv. La proposition d'un indicateur pour évaluer l'ampleur des erreurs de compensation
d'un modèle, qui pourrait aider à renforcer l'évaluation de la pertinence des résultats.
Une autre perspective serait de développer un critère de performance alternatif non
sujet aux erreurs de compensation pour éviter des sous-estimations et surestimations
simultanées trop prononcées dans les simulations.

v. Le couplage des modèles ANN et réservoir pour béné�cier des avantages de chaque
approche. Une utilisation possible serait d'utiliser les modèles ANN pour contourner
les limitations des modèles réservoir issues du traitement des données d'entrée. Cela
permettrait de béné�cier des informations relatives à la structure et aux paramètres
issus de la modélisation réservoir.
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Introduction

Scienti�c context

Karst carbonate formations outcrop on approximately 15.2 % of the global ice-free con-
tinental surface (Goldscheider et al., 2020) and are extensively represented in the sub-
surface (Chen et al., 2017). They are essential for providing drinking water, supporting
agriculture and maintaining ecosystems, especially in the Mediterranean where 15 % of
the domestic water (Bakalowicz, 2015) and up to 90 % in some regions originate from
karst aquifers (Stevanovi¢, 2019). These systems generally exhibit a high degree of het-
erogeneity and involve complex processes that govern water �ow and storage, which make
them challenging to study and particularly vulnerable to environmental changes (Parise
et al., 2018).

Aim of this work

Climate change, increase in anthropogenic in�uence, as well as shifts in precipitation and
evapotranspiration patterns could have a signi�cant impact on the recharge of aquifers.
The heterogeneous properties of karst systems and the non-linearity of their internal pro-
cesses make them particularly challenging to study � further exploration of their response
to these major changes is thus needed. Hydrological methods and numerical models con-
stitute valuable tools for such investigations (Hartmann et al., 2014) and are widely used
for di�erent purposes in karst environments: (i) simulating spring discharge (Fleury et al.,
2007; Wunsch et al., 2022), (ii) predicting and forecasting water �ood/inrush (Kong-A-
Siou et al., 2011; Wu et al., 2008), (iii) managing the exploitation of aquifers (Fleury et
al., 2009; Xanke et al., 2016), (iv) characterising speci�c and internal functioning (Baude-
ment et al., 2017; Dubois et al., 2020), (v) investigating the system's genesis and evolu-
tion (Kaufmann and Romanov, 2020; Liedl et al., 2003), (vi) assessing water quality and
vulnerability (Husic et al., 2019; Sullivan et al., 2019), and (vii) studying the impact of
climate change on water resources (Hartmann et al., 2012; Sivelle et al., 2021). In par-
ticular, lumped parameter models permit the study of complex and heterogeneous karst
systems without requiring extensive meteorological and system-related data with high
spatial resolution. They are the central aspect of this thesis, which aims to develop and
improve hydrological methods and reservoir models for characterising the functioning of
karst systems in response to climatic and anthropogenic changes. A focus is made on the
following research questions:

i. How to characterise the functioning of a karst system in data-scarce contexts?

ii. On which aspects can simple, one-dimensional models be further improved?

iii. Can performance criteria be trusted for the calibration and evaluation of hydrological
models?

iv. What are the advantages and drawbacks of di�erent lumped parameter modelling
approaches in karst hydrology?

xvii



xviii Introduction

Structure of this thesis

This document is structured as follows.

Chapter 1 provides a brief description of the formation, functioning, and particularities
of karst systems. Rainfall-runo� modelling in karst environments is introduced, with an
emphasis on lumped parameter models.

The �rst part is dedicated to the characterisation of karst systems hydrological function-
ing.

Chapter 2 proposes a new classi�cation of karst systems hydrological functioning based
on the analysis of the discharge at the spring. The classi�cation relies on the analysis of
recession curves and allows to characterise a karst system using three indicators re�ecting
the capacity of dynamic storage, the drainage dynamic of the capacitive function, and the
variability of hydrological functioning. The method is developed to be also adapted for
data-scarce contexts and is tested on a database of 78 karst systems located worldwide.

Chapter 3 presents a toolbox developed within the scope of this thesis. KarstID helps
users in analysing karst spring discharge time series and characterising the hydrological
functioning of karst systems using the classi�cation outlined in Chapter 2. The software
supports statistical, recession curve, classi�ed discharge, and signal (correlational and
spectral) analyses. The completion of these analyses is facilitated through a graphical
interface, which require no programming skills.

The second part is devoted to the improvement and evaluation of the performance of
lumped parameter models for the simulation of spring discharge and water level of karst
systems.

Chapter 4 presents the new features introduced in the KarstMod modelling platform
for the update to version 3.0. This work focused on two major aspects: (i) the use of
relevant input data through optional modules (snow and potential evapotranspiration
routines), and (ii) the proposition of appropriate objective functions and performance
criteria for model calibration and evaluation. The new version is applied on two case
studies in France (the Touvre and Lez karst systems).

Chapter 5 investigates the mechanism of counterbalancing errors on the Kling-Gupta
E�ciency (KGE) and its variants, which are extensively used to evaluate hydrological
models. In total, nine performance criteria and their decomposition are compared on
synthetic time series and a real case study. The study demonstrates that, assessing a
simulation, concurrent over- and underestimation of discharge can lead to an overall
higher criterion score without being associated to an increase in model relevance.

Chapter 6 presents a comparison of two widely used lumped parameter modelling
approaches in karst hydrology: arti�cial neural networks (ANN) and reservoir models.
Numerous modelling approaches can be used for studying karst water resources, which can
make it di�cult for a stakeholder or researcher to choose the appropriate method. Five
karst systems with di�erent characteristics in terms of climatic conditions, hydrological
properties and data availability are investigated. The study presents the advantages and
drawbacks of each modelling approaches, as well as the common uncertainties faced in
karst hydrological modelling.
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Doctoral research � Timeline and contributions

This thesis started in October 2020, following a six-month Master's internship on the
same topic, and took place within the framework of the European project KARMA (Karst
Aquifer Resources availability and quality in the Mediterranean Area). The project aims
to achieve signi�cant progress in the hydrogeological understanding and sustainable man-
agement of karst groundwater resources in the Mediterranean area, in terms of both water
availability and quality. This context provided the opportunity to access a large amount
of data from the various partners and led to numerous interactions with hydrogeologists
and modellers from the di�erent universities involved in the project.

Throughout the duration of the thesis, several contributions have been made to the
project, mainly in the form of deliverables:

i. Deliverable 4.1: Report of typology of the karst system (Cinkus et al., 2020)

ii. Deliverable 4.2: Application of lumped parameter modelling at the KARMA test
sites (Cinkus et al., 2021c)

iii. Deliverable 4.4: Release of modelling tools: Lumped parameter modelling (Cinkus
et al., 2021d)

iv. Policy Brief: Reservoir modelling (Cinkus et al., 2022b)

v. Deliverable 2.2: Recharge evaluation (Andreo et al., 2021)

vi. Deliverable 2.6: Spring discharge monitoring (Barberá et al., 2021)

vii. Deliverable 2.7: Uncertainties in water budget (Petitta et al., 2022)

viii. Deliverable 2.8: Water Availability (Petitta et al., 2023)

ix. Contribution to the KARMA Final report

During the three years of the thesis, 158 hours of teaching were realised and two
practical course subjects were entirely developed from the outset for a Master's program.
Six articles were produced: four as �rst author (Cinkus et al., 2021a; Cinkus et al., 2023d;
Cinkus et al., 2023a; Cinkus et al., 2023b) and two as co-author (Sivelle et al., 2023;
Wunsch et al., 2022). A total of nine oral presentations and one poster were presented
during progress meetings, workshop or international conferences (Table 1).
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Date Event City Topic

2020-10 KARMA Progress meeting Montpellier (FR) Oral � Chapter 2
2021-03 KARMA Progress meeting Rome (IT) Oral � Chapter 6
2021-04 EGU21 Online Oral1 � Chapter 2
2021-06 SNO Karst Workshop Nîmes (FR) Oral � Chapter 3
2021-09 KARMA Progress meeting Beirut (LB) Oral � Chapter 6
2022-03 KARMA Progress meeting Tunis (TN) Oral � Chapter 6
2022-05 EGU22 Vienna (AT) Oral2 � Chapter 5
2022-06 SNO Karst Workshop Saint-Martin-le-N÷ud (FR) Oral � Chapter 3
2022-06 Eurokarst 2022 Málaga (ES) Poster3 � Chapter 3
2023-04 EGU23 Vienna (AT) Oral4

1Cinkus et al., 2021b
2Cinkus et al., 2022c
3Cinkus et al., 2022a
4Cinkus et al., 2023c

Table 1: Oral presentations and poster realised during the thesis.
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Chapter 1

Scienti�c context
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This chapter provides the general scienti�c context of the thesis. Speci�c and extensive
states of the art are further detailed in each Chapter. Section 1.1 gives an introduction
to the characteristics, functioning and uniqueness of karst systems. Section 1.2 presents
the main challenges in applying hydrological models to karst environments. The main
modelling approaches are brie�y introduced, highlighting their concepts, advantages and
drawbacks, and main applications. Section 1.3 contrasts the scienti�c context against the
goals and structure of the thesis.

1.1 Introduction to karst systems

1.1.1 Formation and characteristics

The term karst de�nes a landscape in a carbonate or evaporite environment, charac-
terised by unique surface or underground formations resulting from the in�ltration and
�ow of acidic waters (Ford and Williams, 2007). Karst is predominantly found in car-
bonate rocks (limestone, dolomite, and to a lesser extent, chalk and marble), but it can
also be present in evaporite rocks (gypsum, halite, anhydrite) (Stevanovi¢, 2015). From
a hydrogeological perspective, carbonate rocks are by far the most signi�cant when con-
sidering karst (Goldscheider et al., 2020). This type of environment is known for its high
heterogeneity resulting from various processes that occur both during and after the rock's
diagenesis and over geological time.

The primary heterogeneity of karst is linked to the environment and deposition con-
ditions. The precipitation of carbonates is dependent on many biotic and abiotic factors
that in�uence the characteristics of the deposit over time and space (Lowenstam and
Weiner, 1989). Thus, the characteristics of the produced rock vary spatially on both
lateral and vertical scales, according to the conditions and processes that constrained

1
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the deposit, the diagenesis, and the simultaneous or subsequent alteration of the carbon-
ates (Tendil, 2018).

Heterogeneity over geological time develops after the diagenesis of the rock. Unlike
silicate rocks, karst is highly chemically reactive, and the phenomena of alteration of
the parent rock occur over very short geological timescales (White and Blum, 1995).
The in�ltration and circulation of meteoric waters in the rock are unevenly distributed
due to the already present heterogeneity; the preferential expansion of certain voids by
dissolution thus favours �ow within these same voids. This positive feedback mechanism
is the origin of a hierarchy of �ows within the karst, where di�erent degrees of porosity
(matrix, fractures, conduits) induce di�erent �ow velocities. These di�erences result in a
complex, diversi�ed morphological landscape, unique to karst (Figure 1.1).

The heterogeneity of a karst system thus depends on the rock formation conditions and
alteration phenomena over time (Jouves et al., 2017). As a result, the evolution of primary
properties of carbonates (e.g. mineralogical composition, porosity, permeability) in space
and time contributes to the general and multi-scale complexity of karst systems (Tendil,
2018). This leads to a unique hydrodynamic functioning speci�c to each system; the
presence of major karst drains favours rapid �ows while the less altered matrix results in
slower �ows and water storage areas (Király, 1998). All the waters that are in�ltrated
and transported in the system generally converge towards one or several outlets referred
to as springs, which can be either sur�cial or underwater.

1.1.2 Global distribution and importance

Karst carbonate formations outcrop on approximately 15.2 % of the global ice-free con-
tinental surface (Goldscheider et al., 2020), and are extensively represented in the sub-
surface (Chen et al., 2017). About two-thirds of carbonate outcrops are present across
three continents: Europe (21.8 %), North America (19.6 %) and Asia (18.6 %), the latter
having the largest surface area in absolute terms (Goldscheider et al., 2020). Goldschei-
der et al. (2020) also demonstrated that around 16.5 % of the global population lived
in karst areas in 2015, with the most populated continents in relative proportion being
Europe (25.3 %, 172.1 million) and North America (23.5 %, 134.2 million), and Asia in
the highest absolute population (15.1 %, 661.7 million). Karst is highly represented in
the Mediterranean basin � situated in the southeast region of Europe and north of Africa,
centred on the Mediterranean Sea (Figure 1.2) � especially along the coastlines. Well-
known examples include the Dinaric karst along the Adriatic coast, and the coastlines of
Libya and Egypt (Goldscheider et al., 2020).

Carbonate aquifers play a crucial role in the Mediterranean region as they provide
on average about 15 % of domestic water (Bakalowicz, 2015), and can supply up to
90 % in certain areas (Stevanovi¢, 2019). They also contribue to surface waters and
are important for irrigation and heating purposes (Stevanovi¢, 2015), geochemical and
carbon cycling (Chen et al., 2023; Liu et al., 2010), their unique and valuable ecosystems
and biodiversity (Bonacci et al., 2009; Pipan and Culver, 2013), geotourism (Ravbar and
�ebela, 2015; Ruban, 2018), palaeoclimatology (Vaks et al., 2018), and archaeological
and cultural heritage (Gu et al., 2023; Williams, 2008).

However, due to their relatively rapid transfer times, karst aquifers are particu-
larly vulnerable to pollution (Bakalowicz, 2015), especially when the rock is not un-
dercover (Goldscheider, 2005). In coastal areas, the direct connection of karst systems
with the sea makes them sensitive to seawater intrusion (Ar�b et al., 2007; Pinault et al.,
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Figure 1.1: Karst landscape (Unica catchment, Slovenia).
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Figure 1.2: Map from MEDKAM (Xanke et al., 2022). Blue areas correspond to karst aquifers
in sedimentary and metamorphic carbonate rocks. Purple areas represent karst aquifers in
evaporite rocks. The detailed legend can be found on the online MEDKAM map.

2004) � a problem exacerbated by overexploitation in certain regions (Goldscheider et al.,
2020). The unique structure of karst systems also makes them vulnerable to a variety
of geohazards (De Waele et al., 2011; Gutiérrez et al., 2014). All these vulnerabilities
are likely to intensify in the future amid climate disruptions and increasing human pres-
sures (Parise et al., 2018; Stevanovi¢, 2019). Furthermore, the Mediterranean basin is
considered a hot-spot of climate change, where decreases in precipitation and increases
in temperature (more severe than in the rest of the world) are expected (Lionello and
Scarascia, 2018). Numerous studies have thus lately been dedicated to studying future
karst water resources, under various scenarios of climate change and anthropogenic pres-
sure (Dirnböck et al., 2016; Hartmann et al., 2012b; Nerantzaki and Nikolaidis, 2020;
Sivelle et al., 2021).

1.2 Rainfall-runo� modelling in karst environments

1.2.1 Challenges in (karst) hydrological modelling

Hydrological models can provide very valuable insights into the functioning of hydrosys-
tems, as well as predict and forecast �ow conditions at short and long terms. However,
they have a fair amount of limitations and improving models has been identi�ed as a cru-
cial area of research (Blöschl et al., 2019). Issues limiting the performance and relevance
of hydrological models include:

i. Data-scarcity: some catchments are not su�ciently instrumented or have not been
monitored for a long enough period to allow relevant �ow modelling; this problem is
particularly pronounced in karst environments (Hartmann et al., 2014).

ii. Reliability of discharge measurements: discharge time series are generally derived
from water height, using water level�discharge calibration curves. Numerous uncer-
tainties are associated with this determination method (Pelletier, 1988), including

https://doi.org/10.25928/MEDKAM.1
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extrapolation errors for extreme values (Di Baldassarre and Montanari, 2009; Moges
et al., 2021).

iii. Input data: input data does not always accurately re�ect the heterogeneity of pro-
cesses occuring on a catchment. For instance, the spatial variability of precipita-
tion can be very high, especially in areas where strong convective storms are fre-
quent (Lobligeois et al., 2014).

iv. Model structure and parameters: models can be subject to over-parametrisation.
Careful sensitivity analyses and uncertainty assessment should be considered along
with model results to avoid over-interpretation (Beven, 2019; Refsgaard et al., 2007).

v. Model calibration and evaluation: models that are reliable in known conditions may
be biased in other periods due to the non-stationarity of the climate (Vaze et al.,
2010). The calibration period should encompass the diversity of hydrological obser-
vations and meteorological conditions, and be evaluated with relevant performance
criteria assessing di�erent aspects of the model (Clark et al., 2021; Gupta et al., 2009;
Hartmann et al., 2017; Knoben et al., 2019; Seibert et al., 2018).

Hydrological models applied in karst environments must therefore consider and ad-
dress these limitations, in addition to the constraints associated with the complexity and
the characteristic heterogeneity of karst, which manifest at all levels:

i. Surface: the in�ltration of precipitation into the system can be either di�use or
concentrated.

ii. Subsurface/unsaturated zone: varying degrees of porosity and permeability, prefer-
ential �ow paths, local and temporary water storage, interaction with vegetation.

iii. Underground/saturated zone: dual �ow regime with conduit and di�use �ow
(through matrix).

Traditional hydrological models are often too simplistic to capture the complexity
of karst functioning. The majority of the system is inaccessible to human exploration,
and investigations and samplings only provide information about very small areas, at
the borehole scale (Parise et al., 2018). This strong heterogeneity makes estimating the
parameters of physical models very challenging (Hartmann et al., 2014), especially given
that the location of conduits is unknown in most cases (Parise et al., 2018). Anthro-
pogenic in�uence through pumping also poses a challenge in models as it complicates the
interactions between the various compartments of the systems. In some cases, this even
causes the drying up of the source (Hamed Ferjani et al., 2020; Maréchal et al., 2013),
whose observations are a crucial aspect of hydrodynamic modelling. Despite these high
contrasts in porosity and permeability, which can be challenging to evaluate, hydrologi-
cal models still o�er valuable insight into the functioning of karst systems (Parise et al.,
2018), particularly in predicting the impact of climate and land use changes (Hartmann
et al., 2014).
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Figure 1.3: Block diagram of a heterogeneous karst aquifer illustrating the duality of recharge
(allogenic vs. autogenic), in�ltration (point vs. di�use) and porosity/�ow (conduits vs. ma-
trix) (Goldscheider and Drew, 2007).

1.2.2 Modelling approaches

Hydrological models are numerical tools that aim to reproduce key variables of karst
systems, such as aquifer piezometric levels or spring discharge. Precipitation and evap-
otranspiration are essential input variables for all hydrological models, but many other
variables can be used to better represent or constrain the physical phenomena and internal
processes of the system. Hydrological models can be categorised into lumped parame-
ter, semi-distributed and distributed approaches (Hartmann, 2018; Kovács and Sauter,
2007). While distributed models partition a karst system into a two- or three-dimensional
grid, where each cell is assigned suitable hydraulic parameters and system states, lumped
parameter models rely on the mathematical analysis of input data (e.g. precipitation,
temperature) to simulate spring discharge time series. Lumped parameter models encom-
pass (i) �black-box� models, which do not use any a priori information about a system
functioning, and (ii) �conceptual reservoir� models, which are based on a conceptual rep-
resentation of a system. Some reservoir models are semi-distributed, i.e., their structure
is repeated in space to take into account the spatial heterogeneity of land cover, precipi-
tation, and hydrogeological properties. A wide range of these numerical modelling tools
currently used in research and operation have been compared by Jeannin et al. (2021)
based on the simulation results of the discharge of a karst spring. This section brie�y
presents the main modelling approaches used in karst hydrology: distributed, black-box,
and conceptual reservoir models. Choosing a modelling approach primarily depends on
the goal of the study, but is also constrained by the current understanding of the system,
available data, and regional or institutional preferences (Addor and Melsen, 2019).
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1.2.2.a Distributed models

Distributed, physically-based models typically discretise a karst system into a 2 or 3-
dimensional grid. Each cell of the grid has its own physically-based parameters and
system states which must be de�ned or calibrated. There are di�erent approaches to
physically-based models which are presented in more detail by Hartmann et al. (2014),
Jeannin et al. (2021), Jourde and Wang (In press), and Mazzilli (2011):

i. Equivalent porous medium

ii. Dual continuum

iii. Discrete features (pipe network models)

iv. Combined Discrete-Continuum

These models are particularly of interest for (i) gaining insight into the spatio-temporal
distributions of internal �ows in a system (Gill et al., 2021; Kavousi et al., 2020), (ii)
characterising the geometry and evolution of conduits (Fandel et al., 2021), and (iii) as-
sessing the impacts of changes in boundary condition, system variables, or anthropogenic
in�uence (Mazzilli, 2011). The primary limitation of this approach is related to the lack
of knowledge about the physical properties of the system (Hartmann et al., 2014) � most
models therefore rely on assumptions or propose multiple conduit and fracture networks.
As a result, the calibration of a physically-based model can also be challenging, as there
are a large number of parameters that may be subject to equi�nality (Beven, 2006).

1.2.2.b Black-box models

Black-box models are empirical models transforming an input signal into an output sig-
nal without any consideration of the system structure or physical parameters. They
consist in analytical transfer functions or machine learning methods, with the latter see-
ing signi�cant growth in the past decades (Maier et al., 2010). Black-box approaches
include, among others, linear and non-linear transfer functions (Juki¢ and Deni¢-Juki¢,
2006; Labat et al., 1999), deep recurrent multilayer perceptron, NARX model, convolu-
tional neural networks, long short-term memory networks (Jeannin et al., 2021). Both
approaches can be very e�ective in simulating known functioning of a system, but may
be limited in the case of unobserved conditions (e.g. extreme) or disruptive events such
as climate change or anthropogenic pressures. Neural networks, in particular, require a
learning period to develop the function and its parameters, which can make their use
di�cult in data-scarce contexts (Jeannin et al., 2021). However, they are quick, reliable,
and �exible on input data � the models can quickly assimilate meteorological processes
(evapotranspiration, snow accumulation and melting) without necessarily requiring any
preprocessing of the input data (Kong-A-Siou et al., 2015). Although the acquisition
of knowledge in terms of a system internal functioning remains limited (Jeannin et al.,
2021), machine learning approaches can help determine the most relevant input, identify
the major contributing areas of a catchment, or even assist in their delineation (Wunsch
et al., 2022).
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1.2.2.c Conceptual reservoir models

Conceptual reservoir models are a conceptual representation of a hydrosystem, which
involves the association of several components (reservoirs) that are thought to be rep-
resentative of the main processes at stake. Each reservoir is characterised by its water
height and a �ow equation that translates the variation of water height into discharge.
The �ow equation is generally function of a speci�c discharge coe�cient and a positive
exponent (di�erent from 1 for non-linear �ows), which are de�ned by calibration against
observed data. Other �ow equations exist such as the in�nite characteristic time transfer
function, which allows to account for long-term memory e�ects (Guinot et al., 2015).
Many reservoir models have been developed to study the relation between precipitation
and discharge in karst systems � some of them being semi-distributed (Bittner et al.,
2018; Hartmann et al., 2012a; Hartmann et al., 2014; Jeannin et al., 2021; Ollivier et al.,
2020; Sarrazin et al., 2018). They all di�er in complexity with respect to the number
of reservoirs and parameters, which need to be well-thought-out in order to preserve
physical realism and limit equi�nality on model parameters (Hartmann, 2018). Reservoir
models can be seen as a compromise between simulation performance and insight into
the functioning of a system (Mazzilli, 2011).

In strict one-dimensional models, input data generally need preprocessing and thus
contribute to model uncertainty: (i) arbitrary decisions on the raw data (e.g. choos-
ing precipitation from one meteorological station rather than another), (ii) interpolation
(when data from several meteorological stations over a catchment are available), or (iii)
preprocessing (e.g. snow processes, potential evapotranspiration). Even if it still remains
a conceptualisation, the underlying structure of the model allows the characterisation of
�ows dynamics within a system. For example, it allows to assess the water partitioning
between the di�erent compartments, as well as internal �ow processes (Baudement et al.,
2017).

Based on this modelling approach, the French SNO KARST (Jourde et al., 2018) has
developed the KarstMod platform, which provides a modular, user-friendly interface for
simulating discharge and piezometry of karst systems (Mazzilli et al., 2019). The structure
of models built using the KarstMod platform is based on the conceptual model of a karst
aquifer with in�ltration and saturated zones. The in�ltration zone (soil and epikarst)
drains water from the surface through a vertical network of �ssures and conduits. Water
storage can occur in the in�ltration zone, as well as local saturation. The saturated zone
comprises a dual porosity functioning with a network of high-permeability fractures and
conduits, and a low-permeability matrix with a high storage capacity. The KarstMod
model structure can include up to four reservoirs. One at the upper level re�ects the
processes occurring in the soil and epikarst zone (in�ltration, storage and drainage).
Three at the lower level can be connected with the �rst one and correspond to the
in�ltration and/or saturated zones. The discharge can be simulated with (i) several linear
and non-linear water level-discharge laws, including a hysteretic water level-discharge
function to reproduce the hysteretic functioning observed on the wet-dry cycles in the
unsaturated zone (Lehmann et al., 1998; Tritz et al., 2011), (ii) an exchange function that
aims to reproduce the interactions between the matrix and conduits, and (iii) an in�nite
characteristic time transfer function (Guinot et al., 2015). More details on the balance
equations, the parameters involved and the KarstMod platform in general can be found
in Mazzilli et al. (2019) or in the KarstMod User Guide (Mazzilli et al., 2023).
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1.3 Conclusions

Lumped parameter models o�er a good compromise between model accessibility and rele-
vance. Their use in karst environments is intricate due to the characteristic heterogeneity
of these systems, adding another challenge on top of the typical uncertainties and biases
associated with hydrological modelling. Nevertheless, they provide relevant and bene�cial
insights in the characterisation and prediction of karst systems functioning. This thesis
explores the options for (i) characterising the functioning of karst systems, (ii) improving
the robustness of lumped parameter models, as well as (iii) exploring the information
that can be derived from the analysis of simulations � even in a data-scarce context.
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Characterisation of the hydrological

functioning of karst systems
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Introduction to Part 1

This part aims to address the �rst research question of the thesis (see i.) and focuses on
the characterisation of the hydrological functioning of karst systems through the analysis
of discharge time series, with the consideration of data-scarce contexts. The main research
questions addressed in this part are as follows:

i. How to characterise the functioning of a karst system in data-scarce con-
texts?

ii. Which discharge time series analyses are relevant for classifying the functioning of
karst systems?

iii. Does the hydrological functioning of a karst system exhibit a strong identi�ability?

iv. Is the classi�cation consistent irrespective of the length of the time series?

v. How can the classi�cation process be facilitated for researchers and stakeholders?

Chapter 2 investigates di�erent time series analyses that can be e�ectively applied to
karst spring discharge records, even in data-scarce context. Di�erent indicators of karst
dynamics are calculated using a core dataset of 10 karst systems. The selection of the
most insightful indicators and the proposal of a classi�cation are based on multivariate
analyses. The relevance and robustness of the classi�cation are further examined on a
larger dataset.

Chapter 3 presents a toolbox that facilitates the completion of discharge time series
analyses and the classi�cation of a karst system. KarstID is a freely available, open-source
software with ongoing development on a developer community platform. Its user-friendly
installation and launch make it especially accessible for those without programming ex-
perience.
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Chapter 2

Classi�cation of karst hydrological

functioning

Classi�cation is a �rst-line tool for understanding the main characteristics of a natu-
ral system's response. We propose a new classi�cation of karst systems hydrological
functioning that is based on spring discharge time series and takes pro�t of spring dis-
charge databases to encompass the high diversity of karst hydrological functioning. It
discriminates six di�erent classes based on three relevant indicators of karst hydrolog-
ical functioning. A core dataset made of 10 karst systems was �rst considered for the
set-up of the classi�cation. The spring discharge time series were investigated according
to recession curves, statistical and signal analyses to identify relevant indicators of hy-
drological functioning. The selection of the most relevant indicators and the proposal of
the classi�cation were based on multivariate analyses. The classi�cation was then tested
on spring discharge time series of 78 karst systems located worldwide. All the systems
homogeneously spread among the six proposed classes, which highlights the relevance of
the approach and the representativeness of the various classes of hydrological functioning.
Results from the proposed methodology were �nally discussed to explore its limitations
and de�ne guidelines for its application.

This work has contributed to the KARMA project in the form of a deliverable and
has been presented during a progress meeting. It has also resulted in a publication in
Journal of Hydrology (Cinkus et al., 2021a) and a presentation during EGU21 (Cinkus
et al., 2021b).

Article:
Cinkus, G., Mazzilli, N., and Jourde, H.: Identi�cation of relevant indicators for the

assessment of karst systems hydrological functioning: Proposal of a new classi�cation, J.
Hydrol., 603, 127006, https://doi.org/10.1016/j.jhydrol.2021.127006, 2021.
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2.1 Introduction

10 % of the world's population is dependent on karst water resources for drinking wa-
ter (Stevanovi¢, 2018). Karst systems are underground entities that drain recharge water
over a catchment towards a main outlet. The water is drained through conduits, fractures
and matrix, which originate from the dissolution of the calcite deposits by acidic water
from the surface. Understanding the functioning of these complex and heterogeneous sys-
tems is therefore a major challenge for long-term water resource management. Over the
past century, di�erent methods have been developed to analyse hydrological time series,
and subsequently characterise the functioning of karst systems. These methods can be
considered as a preliminary step in the development and design of hydrological models
of karst functioning for sustainable water resource management.

Classi�cation has been widely used in surface hydrology to characterise hydrosystems.
Although the three-dimensional properties of aquifers generate an additional complexity,
some authors proposed di�erent methodologies to classify them based on geological, mor-
phological and hydrological functioning analyses (Dahl et al., 2007; Heath, 1982; Heudor-
fer et al., 2019). In many cases however, these classi�cations fail to address the complexity
of karst systems, which are strongly heterogeneous and correspond to a wide diversity
of hydrological functioning. For these reasons, many authors worked on classi�cations
speci�c to karst systems, either based on geological and morphological analyses (Jouves
et al., 2017; Mylroie, 2020; Veress, 2020; Waltham and Fookes, 2003), hydrological re-
sponse analyses (Bonacci, 1993; Flora, 2004; Kullman, 2000; Malík and Vojtková, 2012;
Mangin, 1975; Mangin, 1984; Rashed, 2012; Soulios, 1991; Springer et al., 2008) or even
karst groundwater microbiological analyses (Sinreich et al., 2013).

The spring discharge of a karst system is considered as a base information in karst
hydrogeology. It results from the combination of �ows from the di�erent compartments of
the hydrosystem (soil, epikarst, unsaturated and saturated zones). The widely increased
development of karst spring discharge monitoring o�ers the opportunity to study the re-
lations between discharge and hydrological functioning in depth. Some authors proposed
classi�cations of karst systems based on the analysis of spring discharge time series, ei-
ther with visual interpretations (Bonacci, 1993; Soulios, 1991), by calculating indicators
of functioning (Flora, 2004; Mangin, 1975; Mangin, 1984; Rashed, 2012; Springer et al.,
2008) or by interpreting the parameters of recession models (Kullman, 2000; Malík and
Vojtková, 2012; Mangin, 1975).

However, the aforementioned classi�cations have been developed by analysing only few
karst systems or without considering the high diversity of karst hydrological functioning.
Therefore, diversity in karst systems physical properties and hydrological functioning
is not fully considered, which impairs the relevance of these classi�cations and raises
the need for a more generic approach. This work aims to provide a new classi�cation
of karst systems hydrological functioning with the following key features: (i) a clear
methodological basis, (ii) the analysis of a wide diversity of karst systems representative
of contrasted hydrodynamics behaviours, (iii) an approach being relevant worldwide and
in a data-scarce context (i.e. sites where there is little knowledge of the system, or only
discharge monitoring for a few years).

In this paper, we took advantage of the recent release of spring discharge time series in
databases such as the French Karst National Observatory Service (SNO KARST, Jourde
et al., 2018) or the WoKaS database (Olarinoye et al., 2020) to propose a new clas-
si�cation of karst systems hydrological functioning. The typology describes a system
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where one single hydrodynamic response to precipitation impulse is expected. The aim
of the classi�cation is to characterise the hydrological functioning of a system, but not to
decorrelate the factors that in�uence the functioning. The paper is organised as follows.
In Section 2.2, we de�ne the general characteristics of the karst systems considered in
this study. Section 2.3 presents the various tools and analyses considered for the char-
acterisation of karst systems hydrological functioning. The most relevant indicators of
karst hydrodynamics are identi�ed and presented in Section 2.4, using the discharge time
series of 10 well-known karst systems that cover a wide range of hydrological functioning.
Section 2.5 is devoted to multivariate analyses that are considered for the proposal of the
new classi�cation described in Section 2.6. The discussion in Section 2.7 aims to evaluate
the relevance of the proposed approach applied to 78 karst systems and to highlight some
of its limitations. Section 2.8 gives the conclusions.

2.2 Data and study sites

This section presents the data we used to develop and test the classi�cation, which involve
in two di�erent datasets: (i) a core dataset for the assessment of the most relevant
indicators of functioning and the design of the classi�cation, and (ii) a complementary
dataset for assessing the most e�cient recession model, testing the classi�cation and
identifying its strength and limitations.

2.2.1 Core dataset

To ensure the quality of the study and its relevance to the problem, we performed spring
selection on the basis of three criteria: (i) quality of the hydrodynamic monitoring, which
is function of time-step, instrumentation, measurement uncertainty and length of the time
series, (ii) diversity of the hydrological functioning among the karst systems, meaning that
the �nal dataset should cover a wide range of hydrological functioning (e.g. related to
dimensions of the catchment, rainfall, degree of karsti�cation, hydrological functioning,
etc.), and (iii) existing knowledge from prior studies, to ensure that the classi�cation is
consistent with the actual knowledge on system functioning.

We selected 10 karst systems (Table 2.1), located in France. We retrieved data from
several organisations: The SNO KARST, the Parc Naturel Régional des Grands Causses
(PNRGC), Suez, and the DREAL of Bourgogne Franche-Comté. Selected systems have
been the subject of several comprehensive studies based of methods such as geology,
cartography, �eld observations, tracing, geochemistry, time series analysis and modelling.

2.2.2 Complementary dataset

In order to check the relevance of the method and its capacity to di�erentiate karst
systems functioning, the classi�cation resulting from the analysis of the aforementioned
well-known karst systems was tested on a complementary dataset of 68 karst systems
with di�erent characteristics (e.g. dimensions of the catchment, meteorological regime,
climate, and karsti�cation degree). We worked with springs discharge time series of 23
French karst systems coming from a database provided by the French state (Banque Hy-
dro) and took the other 45 from the WoKaS (World Karst Spring hydrograph) database,
which provides details of over 400 karst systems worldwide (Olarinoye et al., 2020).
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System Köppen-Geiger Catchment area Discharge time series
climate classi�cation [km2] Length [year] Time step

Aliou Cfb 12 45 Daily
Baget Cfb 13 47.5 Daily
Durzon Csb 117 9 Daily
Esperelle Cfb 91 8 Daily
Fontaine-de-Nîmes Csa 45 18.8 Daily
Fontaine-de-Vaucluse Csa 1115 52.2 Daily
Lods Cfb 35 6.4 Daily
Mouline Cfb 32 9 Daily
Mouthe Dfb 50 7.3 Daily
Toulon Cfb 100 5.5 Daily

Table 2.1: General characteristics of the selected karst system (Bakalowicz and Ricard, 1994;
Blavoux et al., 1992; Cholet, 2017; Lorette et al., 2018; Mangin, 1975; Maréchal and Ladouche,
2006; Moussu, 2011) and their associated discharge time series.

The quality of these 68 springs discharge time series is appreciated according to low
(C2) to very good (A) quality discharge data (Figure 2.1C) as proposed in Olarinoye et al.
(2020). The dataset is fairly well distributed throughout the world, with karst springs
discharge from 17 countries (Figure 2.1B). The considered karst systems are located in
various climatic conditions. According to Köppen-Geiger classi�cation (Peel et al., 2007),
these climatic conditions correspond to 12 di�erent climates, the temperate oceanic (Cfb)
being the most represented (63.2 %, Figure 2.1A).
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Figure 2.1: Details about the complementary dataset, regarding (A) climate (Köppen-Geiger
classi�cation), (B) countries and (C) quality of the time series. (D) is the legend for the di�erent
abbreviations.

2.3 Methodology

The discharge is directly related to the recharge and the emptying of the capacitive
function of a system, but also depend on the system geometry and hydrodynamic prop-
erties (Malík, 2015). This section provides details about four methods for analysing
discharge time series and the indicators that can be retrieved from these methods to
characterise the functioning of a karst system.

2.3.1 Statistical analyses

Statistical indicators of discharge time series provide basic information about the overall
functioning of a system. The most common are the mean, minimum, maximum, standard
deviation, and the various quantiles. The mean interannual discharge depends on both
the dimensions of the catchment and the mean recharge; it can therefore be used to assess
the dimensions of a system. The observed minimum and maximum discharges make it
possible to understand the �ow amplitude. However, signi�cant uncertainty related to
the extrapolation of extreme discharges at springs is associated with this indicator.

The comparison between various karst systems is facilitated when using nondimen-
sionalised indicators, such as the coe�cient of variation (CV), which is the ratio between
the standard deviation and the mean of the discharge time series. Netopil (1971) pro-
posed the calculation of a �characteristic discharge�, which is the ratio between the 0.9
quantile (discharge value that is exceeded 10 % of the time) and the 0.1 quantile. This
�characteristic discharge� was referred to as spring variability coe�cient (SVC) in Ste-
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vanovi¢ (2015). The SVC is less a�ected by extreme values. The speci�c discharge (QS)
corresponds to the ratio between the mean interannual discharge and the catchment area.
It allows assessing karst hydrodynamics with an implicit consideration of the dimensions
of the catchment. However, the area information is not always available and also depends
on the quality of hydrogeological studies over the catchment of interest.

2.3.2 Recession curves analysis

The hydrograph of a �ood recession corresponds to the period when the discharge grad-
ually decreases as water is not replenished (Toebes and Strang, 1964). It is possible to
distinguish two regimes: (i) the in�uenced (quick�ow) regime, which corresponds to the
period when the discharge is in�uenced by the rapid in�ltration of water into conduits
in the unsaturated zone; and (ii) the non-in�uenced (base�ow) regime, which begins
when rapid in�ltration ends, and corresponds to the draining of the saturated zone and
less transmissive compartments of the system (Mangin, 1975). In the literature, analy-
sis of recession curves is mainly used to estimate groundwater reserves (Drogue, 1972;
Forkasiewicz and Paloc, 1967; Mangin, 1975), determine the hydrodynamic parameters of
the aquifer (Mangin, 1975), and provide information on �ows, drainage, and karsti�cation
degree (Drogue, 1972; Kre²i¢, 2007; Kullman, 2000; Malík, 2006; Malík and Vojtková,
2012; Mangin, 1975). The karsti�cation degree is an indicator of the karst maturity
of a system, which is directly related to groundwater recharge, storage capacity, spring
discharge dynamics and system connectivity.

Numerous models for the analysis of recession curves of discharge time series have
been proposed (Table 2.2). Boussinesq (1877) and Maillet (1905) made the �rst propos-
als. Horton (1933) and Barnes (1939) then developed recession models based on Maillet's
equation. Coutagne (1948) proposed an equation that simulates the discharge from a
reservoir. Padilla et al. (1994) highlighted that Coutagne's equation struggles to repro-
duce the recession curves of karst systems, and thus introduced a new parameter Qc.
This later parameter corresponds either to the discharge from poorly transmissive zones
of the aquifer, or to the discharge from aquitards outside the karst system; it may also
have no physical meaning. Drogue (1972) proposed to approach the whole recession curve
with a hyperbolic function. Mangin (1975) developed a two-equation recession model,
representative of the in�uenced and non-in�uenced regimes. Kullman (2000) approached
recession curves by �tting a model based on a linear equation (Kullman, 1983) for in-
�uenced regime, and Maillet's equation for non-in�uenced regime. Based on Kullman's
work, Malík and Vojtková (2012) proposed a classi�cation of karst systems functioning
according to the number of equations required to model the recession and the values of the
parameters. Other authors (Gri�ths and Clausen, 1997; Ladouche et al., 2006; Samani
and Ebrahimi, 1996) proposed models inspired by the aforementioned models. We did
not consider physical-based models as we do not have any information on reservoir geom-
etry. Further details about empirical, physical-based models and recession curve analysis
can be found in Fiorillo (2014).

In this study, we wanted to assess the variability of the hydrological response of the
karst systems, which is only possible when accounting for di�erent recession periods. For
this reason, we dismissed the use of a Master Recession Curve (MRC) which aims to
overcome the problem of recession variation by combining several recession curves into
one and only.

The Mangin's model has been widely used to characterise karst systems, mainly be-
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Model Equation Comment

Boussinesq (1903) Qt =
Q0

(1+αt)2
Non-in�uenced stage
Surface water

Maillet (1905) Qt = Q0e
−αt Non-in�uenced stage

Surface water

Horton (1933) Qt = Q0e
−αtn More suitable to surface water

Barnes (1939) Qt =
∑k

i=1 Q0e
−αit More suitable to surface water

Coutagne (1948) Qt = Q0[1 + (n− 1)αt]
n

(1−n) Suitable for karst systems

Padilla et al. (1994) Qt = (Q0Qc)[1 + (n− 1)αt]
n

(1−n) +Qc
Suitable for karst systems
Qc strengthens Coutagne model

Drogue (1972) Qt =
Q0

(1+αt)n Suitable for karst systems

Mangin (1975) Qt = QR0e
−αt + q0

1−ηt
1+εt

Suitable for karst systems
Associated classi�cation

Kullman (2000) Qt =
∑k

i=1 Q0ie
−αit +

∑k
j=1(

1
2 +

|1−Bjt|
2(1−Bjt)

)Q0j(1−Bjt)
Suitable for karst systems
Associated classi�cation

Table 2.2: Summary of the main models developed to analyse recession curves, corresponding
equations and comment on their most appropriate usage. Qt [L

3 T-1] is the discharge at time
t [T], Q0 [L3 T-1] the discharge at t = 0 [T], α the recession coe�cient [T-1], n [-] a constant,
Qc [L

3 T-1] a constant discharge, QR0 [L3 T-1] the base�ow extrapolated at t = 0, q0 [L3 T-1]
the in�uenced discharge corresponding to the di�erence between Q0 and QR0, η [T-1] a constant
characterising the speed of in�ltration (η = 1

ti
, with ti [T] being the duration of the in�uenced

stage), ε [T-1] a constant characterising the concavity of the in�uenced part of the recession
curve and β [T-1] a recession coe�cient for the turbulent �ow. L and T are the dimensions for
the base quantities of length and time, respectively.
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cause the author proposed a classi�cation based on two indicators derived from the pa-
rameters of the model equation. The parameter α is assumed to characterise the draining
of the capacitive function of the karst system, which corresponds in most cases to �ow
from the saturated zone. In case of a low karsti�cation degree, α can be a�ected by
�ows occurring in the unsaturated zone, which may induce a lag in the response in the
non-in�uenced regime (Mudarra and Andreo, 2011). The indicator k is strongly linked to
the α recession coe�cient of the �rst component of the Mangin model (Table 2.2), which
is applied only on the non-in�uenced regime. The indicator k is thus focused on the slow
depletion of the aquifer and assumed to characterise the ability of a system to store and
return recharge water. It is calculated with the following equation:

k =
VDYN

Van

(2.1)

With VDYN the dynamic volume and Van the interannual mean yearly volume of
water discharged at the spring. The dynamic volume is calculated by integrating the
exponential function:

VDYN =

∫ ∞

0

Qie
−αtdt =

Qi

α
(2.2)

With Qi the discharge at the time ti (ti being the time at which the �ow is considered
to be laminar and also the beginning of the non-in�uenced regime) and α the recession
coe�cient. In his work, Mangin (1975) suggested to characterise the capacity of dynamic
storage with the maximum calculated VDYN , as it tends towards a stable value for a large
number of analysed recession curves. The indicator i is used to characterise the capacity
of a system to �lter and attenuate the precipitation signal. It corresponds to the discharge
attributed to the in�uenced regime (second component of the Mangin model, Table 2.2)
two days after the �ood peak. This discharge is expressed in relative proportion to the
in�uenced discharge q0 and is calculated with the following equation:

i =
1− 2η

1 + 2ε
(2.3)

With η a constant characterising the speed of in�ltration (η = 1
ti
, with ti being the

duration of the in�uenced stage) and ε a constant characterising the concavity of the
recession curve during the in�uenced stage.

The classi�cation initially proposed by Kullman (2000) and updated by Malík and
Vojtková (2012) di�erentiate systems by their karsti�cation degree. The methodology
consists to reproduce a recession curve by �tting one to several equations (either expo-
nential or linear) and calibrate the α and β parameters of each formula. The karsti�cation
degree is then deduced from a table based on the presence of di�erent �ow sub-regimes
(i.e. the number and nature of the equations) and the value of the α and β parameters.
It ranges from 0.5 to 10 and is associated with a description of assumed structure of the
system and karst groundwater circulation.

2.3.3 Correlational and spectral analyses

Correlational and spectral analyses are time series analyses that are used to study the
frequency content of a signal (referred to as �simple analysis�) and relations between
signals (referred to as �cross-analyses�) (Massei et al., 2006). The simple analysis consists
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of calculating the autocorrelation function of a signal and the corresponding spectrum
(obtained using a Fourier transformation, the calculations are detailed in Appendix 2.A).
The principle is to compare the signal with itself over an increasing time interval or
shift (Jeannin and Sauter, 1998). The cross-analyses examine the transformation of the
input signal into an output signal (Padilla and Pulido-Bosch, 1995). Signal analyses,
mainly developed by Box and Jenkins (1976), Brillinger (1975), Hannan (2008), and
Jenkins and Watts (1968), were �rst applied to karst hydrology by Mangin (1984).

According to Mangin (1984), a karst system can be characterised by its response time
to a unitary impulse (precipitation) and its inertia, which depends on both the volume
of groundwater reserves and karsti�cation degree of the karst system.

Simple correlational and spectral analyses allow determining three indicators of karst
hydrological functioning: (i) the memory e�ect (ME), which is the shift k for an autocor-
relation coe�cient rk of 0.2. It translates variation in discharge over time, and is directly
related to the inertia of the karst system (Marsaud, 1997); (ii) the regulation time (RT ),
which is the inverse of the bandwidth, i.e. the maximum ordinate of the spectrum divided
by 2 (value of the integral of the function between 0 and +∞). It provides information
on the duration of the in�uence of a unitary impulse (Kovács, 2003; Larocque et al.,
1998), on the volume of groundwater reserves (Marsaud, 1997), and makes it possible
to assess the overall organisation of �ows in the system (e.g., conduits, fractures, and
cracks) (Jeannin and Sauter, 1998); (iii) the cut-o� frequency or spectral band breadth
(SBB), which corresponds to the frequency f at which the value of the spectrum sf
becomes negligible. Beyond this frequency, the spectrum is equal to zero, and can be
assimilated to noise (Jeannin and Sauter, 1998). The cut-o� frequency provides infor-
mation on the ability of the system to �lter unitary pulses (Marsaud, 1997). The results
provide a general idea of how a karst system works, with an emphasis on the inertia of
the system and its capacity to attenuate the recharge signal.

2.3.4 Analysis of classi�ed discharges

The analysis of classi�ed discharges provides information on �ow regimes within a system,
based on discharge monitoring at the outlet of a karst system (Marsaud, 1997). Based
on empirical observations, Mangin (1971) suggested that the distribution of discharges
(or logarithm of discharges) from karst springs can be approximated by a half-normal
Gaussian distribution (the calculations are detailed in Appendix 2.B). He concluded that
the comparison between quantiles of measured discharges and quantiles given by the
half-normal distribution should follow a straight line. According to this theory, any
discontinuities of the line (corresponding to an in�exion point) indicate inhomogeneity
in the functioning of the system, below or above a certain range of discharge. Such
changes can occur at low or high discharges, and may be positive or negative. The
interpretation proposed by Mangin is based on an extremely strong hypothesis, which is
that the statistical half-normal Gaussian distribution properly describes the distribution
of discharges from karst springs under a �homogeneous functioning�.

The method allows identifying particular events inherent in karst hydrology, e.g. over-
�ow at outlet, leakage to another system, storage and emptying phenomena, time varying
extent of the recharge catchment. It also allows assessing the quality of the gauging sta-
tion (Dör�inger, 2010; Grasso and Jeannin, 1994; Marsaud, 1997).
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System Mean discharge Minimum discharge Maximum discharge CV SVC QS
[m3 s-1] [m3 s-1] [m3 s-1] [%] [-] [mm d-1]

Aliou 0.45 0.0 28.91 190.4 32.1 3.20
Baget 0.49 0.02 10.10 147.2 14.0 3.22
Durzon 1.63 0.72 16.33 59.8 3.3 1.21
Esperelle 1.11 0.16 14.50 139.8 11.8 1.05
Fdn 0.54 0.0 16.52 221.9 40.4 1.04
Fdv 17.54 2.79 85.0 71.3 5.9 1.36
Lods 1.01 0.15 8.54 127.2 19.6 2.48
Mouline 0.51 0.19 3.15 45.7 2.6 1.37
Mouthe 1.92 0.01 18.28 120.1 24.4 3.32
Toulon 0.46 0.27 0.99 37.6 2.5 0.40

Table 2.3: Results of the statistical analyses for the core systems.

2.4 Analysis and selection of indicators of karst dynam-

ics

Analysis of discharge time series were performed for the 10 karst systems aforementioned
(core dataset) based on methods detailed in Section 2.3, with the goal to select the most
relevant indicators of karst systems hydrodynamics.

2.4.1 Statistical indicators

The results of the statistical analyses highlight the diversity of hydrological functioning
of the core systems (Table 2.3). The mean discharge allows to distinguish systems with
a low discharge (Aliou, Baget, Fontaine-de-Nîmes (Fdn), Mouline and Toulon), with a
medium discharge (Durzon, Esperelle, Lods, and Mouthe), and with a large discharge
(Fontaine-de-Vaucluse (Fdv)). Although the mean discharge is highly correlated with the
dimensions of the catchment, it is also dependent of the precipitation and the hydrological
functioning of the system. CV and SV C are highly correlated with each other (correlation
coe�cient R = 0.925, p-value = 0.00012). Both can be related to the inertia of the system
and allow to di�erentiate reactive systems (Aliou, Baget, Esperelle, Fontaine-de-Nîmes,
Lods and Mouthe) from inertial systems (Durzon, Fontaine-de-Vaucluse, Mouline and
Toulon). There is no evident relation between QS and the characteristics of the system.
As the dimensions of the catchment are bypassed, we suppose that QS may be related to
the karsti�cation degree or the speci�c recharge (volume of water that goes to the aquifer,
by unit area). As QS requires the knowledge about the area of the recharge catchment,
which is either unknown or with high uncertainty, it is not retained as a relevant indicator
for the classi�cation.

2.4.2 Recession indicators

The dynamics of a karst system can be either (i) at infra-day time scale, meaning that
the system is reactive with fast variations in discharge of the order of an hour, or (ii)
at daily time scale, meaning that the system has high inertia and changes in discharge
can be assessed on a daily basis. A comparison of results issued from recession curves
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analysis performed on hourly and daily time series showed that, even for reactive karst
systems, the daily time scale provides su�cient accuracy.

We selected a total of 93 recession curves (Figure 2.2) from the overall time series
of each system of the core dataset, with no distinction between seasonal or event-scale
recessions, on the basis of the following conditions: (i) the peak �ood discharge must
be signi�cantly high regarding the overall dynamics of the system. We suggest at least
one tenth of the maximum discharge of the discharge time series, or greater than the
interannual mean discharge. However, we do not exclude the eventuality of site-speci�c
thresholds; (ii) there should be little or no disruption during the recession (e.g. precipi-
tation leading to untimely peaks). In cases where the disruption was of short duration,
data could be removed and replaced with a blank; and (iii) the recession must be com-
plete, meaning it should include both the in�uenced regime and the entire non-in�uenced
regime (with some tolerance for high-inertia systems). In the speci�c case when karst
spring behaviour is in�uenced by a particular hydrological functioning (e.g. the activa-
tion of an over�ow outlet) that appears on the recession curve as a bending point, our
selection concerned only the last, una�ected part of the curve, including the end of the
recession limb. This approach ensured that the models, which are not mean to �t curves
with bending points other than the one between the in�uenced and non-in�uenced regime,
were correctly calibrated. Information loss was relatively minor, as discharges that were
excluded from the analysis only represented a tiny part of the overall �ow.

The bending point required for Mangin's model (Mangin, 1975) was de�ned manually
and corresponds to the time t when the non-in�uenced regime begins (when �ow is
considered as part of the non-in�uenced regime).

Out of the 9 recession models presented in Section 2.3.2, 4 models suit the study's
requirements (we identi�ed them as relevant for karst hydrodynamics analysis but also
easy to automate). They correspond to the models from Coutagne (1948), Drogue (1972),
Mangin (1975), and Padilla et al. (1994), and will be further referred as Hyperbolic,
Coutagne, Padilla and Mangin models, respectively. We tested the 4 models by examining
their performance in �tting all 390 observed recession curves of both core dataset and
complementary dataset (Figure 2.3), and by performing a sensitivity analysis.

We found Hyperbolic, Padilla and Mangin models to be relatively successful in �tting
the observed recession curves, although Padilla and Hyperbolic model signi�cantly failed
(Nash-Sutcli�e E�ciency (NSE) lower than 0) on 31 and 3 recession curves, respectively.
This illustrates that Padilla and Hyperbolic models are not suitable for all the karst
systems. The median relative error of Hyperbolic, Padilla and Mangin models are of 7.7
%, 6.7 % and 5.6 %, respectively; with median NSE of 0.986, 0.989 and 0.995. Coutagne
model showed a poor performance with a median relative error of 38 % and a median
NSE of 0.730. The sensitivity analyses revealed that Coutagne and Padilla models have
equi�nality issues for the parameters α and n, with only Qc having an optimum. On
the other hand, the parameters of Hyperbolic and Mangin models have systematically an
optimum.

We selected Mangin model for the analysis of recession curves, as it provides a con-
sistent and very good �t for all the recession curves (lowest NSE of 0.91), with a limited
equi�nality. Moreover, this model has been widely used for years and its indicators are
well known by the community. Results show that these indicators clearly di�erentiate
among systems of the core dataset (Figure 2.4). The analysis of i values, which allow
assessing the capacity of a system to �lter and attenuate the precipitation signal, revealed
a relationship between the value of this indicator, and the saturation state of the system
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Figure 2.2: Selected recession curves for each of the 10 karst systems. n corresponds to the
number of recession curves identi�ed over the available discharge time series of each spring (a
total of 93 recession curves is considered).
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Figure 2.3: Comparison of the performance of the models with respect to observed discharge
over all recessions of both core and complementary dataset. (A) Boxplot of relative errors for
in�uenced and non-in�uenced �ow regimes. (B) Boxplot of Nash-Sutcli�e E�ciency.

Figure 2.4: Boxplot of the values of the indicators proposed by Mangin (1975) after analysing
the spring discharge recession curves for each of the core systems. (A) i, (B) k, and (C) α.

(Figure 2.5), which corresponds to the volume of water stored in both the saturated and
unsaturated zones. Variability in i can be a consequence of either (i) the volume of water
already stored in the karst system when the recharge occurs (i.e. the in�uence of the
saturation state on the system connectivity), but also (ii) the variability of the overall or-
ganisation of �ow and groundwater storage between matrix, fracture and conduits in the
di�erent compartments of the system. We therefore decided to take account of variabil-
ity in i values (or lack thereof) as an additional information of karst system hydrological
functioning, by including a new indicator based on the variance of i.

2.4.3 Signal indicators

The correlational and spectral analyses were performed with a sampling step of 1 day
and a maximum o�set m of 125 days, according to the suggestions of Mangin (1984)
on short-term and long-term analyses. The short-term analysis can be performed on
systems that have at least one continuous year of daily discharge recording. As the 10
core systems are all in the same climatic context according to the Köppen-Geiger climate
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Figure 2.5: Variability in i for the core systems. The standardised ratio between the mean
discharge of the month preceding the �ood and the mean interannual discharge (Q1M) is used
as a proxy of the saturation state of the system.

classi�cation, the starting date for the discharge time series was set as the beginning of
the hydrological cycle (September 1) to consider the seasonality.

The results highlight the diversity of hydrological functioning of the core systems
(Table 2.4). Aliou and Mouthe are very reactive systems that rapidly transfer a response
proportional to the intensity and duration of unitary pulses (precipitation), with almost
no dampening of the recharge signal. Because they exhibit a fast response to recharge
events but are less reactive than the former, Baget, Fontaine-de-Nîmes and Lods are
referred as low-inertia systems. Durzon, Esperelle and Mouline correspond to the category
of medium-inertia systems, which are able to �lter a greater-or-lesser proportion of unitary
pulses, and dampen the recharge signal. This category encompasses a wide variety of
hydrological functioning, as the medium RT value may translate either (i) a medium
inertia or (ii) a high variability of hydrological functioning with both high inertia and
low inertia responses resulting in an average RT . Fontaine-de-Vaucluse and Toulon are
considered as high-inertia systems, as they have a high �ltration capacity and noticeably
dampen the recharge signal.

2.4.4 Indicators issued from the analysis of classi�ed discharges

Within the core dataset (Table 2.4), this analysis hints that there is no change in the
hydrological functioning of 5 systems (Aliou, Baget, Durzon, Esperelle and Mouline),
but that there might be hydraulic or �ow properties changes beyond a certain discharge
for 4 systems (Fontaine-de-Nîmes, Fontaine-de-Vaucluse, Lods and Toulon). For 4 other
systems (Fontaine-de-Nîmes, Lods, Mouthe and Toulon), there might be an over�ow
outlet, discharge to another system or a temporary storage of water within the karst
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System ME RT SBB Interpretation of the classi�ed
[day] [day] [day-1] discharges curve

Aliou 4.6 11.2 0.41 A
Baget 17.6 24.4 0.34 A
Durzon 49.9 41.4 0.24 A
Esperelle 28.3 30.0 0.25 A
Fdn 18.9 17.8 0.33 B
Fdv 81.4 67.8 0.13 B
Lods 13.0 23.5 0.36 B, C
Mouline 57.8 44.6 0.265 A
Mouthe 7.9 11.7 0.415 C
Toulon 101.8 86.1 0.08 B, C

Table 2.4: Results of correlational and spectral simple analyses and interpretation of the clas-
si�ed discharges curve for the core systems. (A) Systems with no apparent, speci�c functioning;
(B) systems in which the hydraulic or �ow properties change beyond a certain discharge; (C)
systems in which there is an activation of an over�ow outlet, a discharge to another system, or
a temporary storage of water that occur above a certain discharge.

system when the discharge reaches a certain value. These interpretations are con�rmed
in the literature for Fontaine-de-Nîmes (Maréchal and Ladouche, 2006), Fontaine-de-
Vaucluse (Mangin, 1975), Lods, Mouthe (Cholet, 2017) and Toulon (Lorette et al., 2018).

This analysis, whose interpretation requires prior knowledge of the system or �eld
observations to be fully relevant, does not seem appropriate for the classi�cation of karst
systems. The method is based on a strong hypothesis that may not be suitable for all
systems. Although some relevant indicators of functioning can be retrieved from this
analysis (e.g. activation of an over�ow outlet, �ow to another system), the interpretation
is overly in�uenced by (i) the quality of the discharge-water height relationship, and (ii)
the subjective vision of the operator who is performing the analysis. Moreover, when
there is poor or no prior knowledge of the functioning of a system, it is very di�cult to
identify the speci�c functioning behind a bending point on the curve (e.g. the di�erence
between a bending point due to the activation of an over�ow outlet, or due to uncertainties
on ungauged discharges). Thus, we choose to not include the indicators of functioning
retrieved from this analysis in the proposed methodology for the classi�cation of karst
system hydrological functioning.

2.5 Multivariate analyses

The aim of this section is to gain insights into the dataset and the relations between
indicators. We applied two unsupervised techniques on a dataset consisting of 9 vari-
ables and 10 observations. The observations correspond to the 10 core karst systems,
and the variables are relevant quantitative indicators of functioning resulting from the
application of the di�erent methods of discharge time series analysis (excluding the in-
dicators resulting from the analysis of classi�ed discharge). The selected indicators are
kmax, imean, IR, αmean, ME, RT , SBB, CV and SV C. Terms �max� and �mean� corre-
spond to, respectively, maximum and average values of the indicator over all the recession
analysed.
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Figure 2.6: Biplot of the �rst two principal components PC1 and PC2 resulting from the PCA
performed on the dataset (9 variables for 10 observations). The points correspond to the PC1
and PC2 scores of each observation (i.e. karst systems). The arrows represent the correlation of
the variables (i.e. indicators of functioning) with PC1 and PC2. The brown circle indicates the
theoretical maximum extent of the arrows. Clusters (colours) are referring to the results of the
hierarchical clustering performed on the dataset (see section 2.5.2).

2.5.1 Principal component analysis

2.5.1.a Principle

Principal component analysis (PCA) is a multivariate method that aims to reduce the
dimensions of an observation space by producing �principal components�, which are lin-
ear combinations of initial variables of a dataset that retain the most possible variation.
Principal components are uncorrelated with each other (i.e. orthogonal to the previous
one) and are ordered according to the amount of variance explained by the combina-
tion (Everitt and Hothorn, 2011). The results of a PCA can be seen as a small number of
new variables that contains most of the information of a large number of initial variables.
The interpretation of a principal component is realised by looking at the correlation
between initial variables and the component, i.e. assessing the contribution of each vari-
able. This analysis provides information on trends in the dataset and allows identifying
eventual complementarity between initial variables.

2.5.1.b Results

The results of the PCA are presented as a biplot of the �rst factorial plane (Figure 2.6),
which explains 87.9 % of the total variance of the dataset.

The �rst principal component (PC1) is strongly correlated with all indicators except
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IR: (i) kmax informs about the capacity of dynamic storage, (ii) imean, ME, RT and
SBB are related to the capacity to attenuate the precipitation signal, (iii) αmean charac-
terises the draining dynamic of the capacitive function and (iv) CV and SV C are about
�ow dynamics. Together, these indicators can be seen as characterising the inertia of a
system, which would correspond to the �rst principal component (PC1, 73.4 % of vari-
ance explained). The second principal component (PC2, 14.5 % of variance explained)
is mainly correlated with IR and thus would re�ect the variability of the hydrological
response of a system. The third principal component (PC3, 5.8 % of variance explained)
is most correlated with αmean, which characterises the draining dynamic of the capacitive
function of a system.

It is worth mentioning that the high correlation between several input parameters
(e.g. CV and SV C) may have a substantial e�ect on the PCA results, particularly on
the variance explained by the principal components (i.e. PC2 and PC3 could have had a
higher variance), by overemphasising the contribution of redundant indicators.

Systems from the core dataset are mostly scattered along PC1 with rather inertial
systems on the positive part (e.g. Fontaine-de-Vaucluse, Toulon) and reactive systems
on the negative part (e.g. Aliou, Mouthe), and to a lesser extent along PC2 with �highly
variable hydrological response� systems on the positive part (e.g. Esperelle, Durzon,
Mouline) and �more regular, steady hydrological response� systems on the negative part
(e.g. Fontaine-de-Vaucluse, Toulon).

2.5.2 Clustering

2.5.2.a Principle

The purpose of data clustering is to identify clusters that contain observations or objects
with similar characteristics (Govender and Sivakumar, 2020; Jain et al., 1999). Cluster-
ing analysis can be used to identify archetypes, and o�er a better understanding of the
structure within a dataset (Halkidi et al., 2001). This technique is considered unsuper-
vised, because it is not based on prede�ned classes or examples that would give an idea
of the structure of the dataset (Berry and Lino�, 1997).

We selected a Ward hierarchical clustering method for performing the analysis, which
consists of a succession of binary fusions that minimise between-cluster variance until one
cluster remains (Murtagh and Legendre, 2014). The Ward distance is equal to (Tu�éry
and Riesco, 2011):

D(A,B) =
d(a, b)2

n−1
A + n−A

B

(2.4)

With D the Ward distance between two clusters A and B that have centers of gravity
a and b and frequencies nA and nB. The analysis was realised with standardised data
and Euclidean distance as measure of dissimilarity, which is calculated with the following
equation:

deuc(x, y) = [
d∑

j=1

(xj − yj)
2]

1
2 (2.5)

With d the distance between two points x and y of a d-dimensional dataset, and xi

and yi the values of the jth attribute of x and y, respectively (Gan et al., 2007).
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This method is suitable for clusters of di�erent sizes and shapes and provides a graphi-
cal representation (dendrogram) which helps for understanding the clusters structure and
how they are connected. The main advantages over a non-hierarchical method are (i) that
it is not necessary to know the number of clusters prior to the analysis, and (ii) that the
results do not depend on the choice of initial clusters (Tu�éry and Riesco, 2011).

A way to assess whether a variable is relevant to characterise a cluster is to realise a
value-test or v-test (Lebart et al., 1984). For a given quantitative variable, it involves in
comparing the mean x̄k for this variable of a particular cluster k to the overall mean X̄,
with the formula:

v =
x̄k − X̄√
s2

nk
(N−nk

N−1
)

(2.6)

With v the result of the test, s2 the overall standard deviation, N the total number
of observations and nk the number of observations in the cluster k. A value of |v| greater
than 1.96 corresponds to a p-value less than 0.05, which rejects the following hypothesis:
the mean of the particular cluster is equal to the overall mean (Lebart et al., 1984). In
this case, the variable is relevant to describe the group of observations in the cluster.

2.5.2.b Results

Results are presented as a dendrogram. Four relevant clusters (corresponding to two
majors clusters) have been identi�ed (Figure 2.7). There is a great similarity between
clusters and PCA results (Figure 2.6).

A v-test was performed to assess the indicators that best characterise each cluster (Ap-
pendix 2.C). The major clusters A and B are di�erentiated on the basis of the following
indicators: kmax, ME, CV , RT , imean, SBB, SV C and αmean (in order of importance),
which are related to the capacity of dynamic storage and inertia of a system. According
to the sign of the v-test results, cluster A includes reactive systems, with low to medium
capacity of dynamic storage and cluster B includes inertial systems, with higher capacity
of dynamic storage. The systems from cluster 1 are characterised by a high αmean value,
corresponding to a fast draining of the capacitive function. None of the indicators clearly
characterise the systems in cluster 2. The systems in cluster 3 are characterised by a high
IR value, corresponding to a high variability of the hydrological response. The systems
in cluster 4 are characterised by very high RT , ME and imean and a very low SBB,
corresponding to a high attenuation capacity of the precipitation signal.

2.5.3 Confrontation of the results with the actual knowledge of
the functioning of the systems

PCA and clustering gave similar insight into the functioning of the 10 core karst systems.
Two major clusters were identi�ed (A and B, Figure 2.7): (i) cluster A is characterised
by systems with a highly reactive functioning, which can be divided into two sub clusters
(1 and 2) by looking at the draining dynamic of the capacitive function; (ii) cluster B
is characterised by systems with inertial functioning, and can be divided into two sub
clusters (3 and 4) by looking at the variability of the hydrological functioning (Figure
2.6, Figure 2.7).

The hydrological response of Aliou and Baget corresponds to well karsti�ed sys-
tems (Mangin, 1984), which is consistent with their position in the major cluster A.
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Figure 2.7: Dendrogram resulting from the Ward's hierarchical clustering performed on the
dataset (9 variables for 10 observations). The X-axis gives the distance between observations
and/or clusters. The nodes (or vertical bars) indicate at which value two observations and/or
clusters are merged. Four relevant clusters (1, 2, 3 and 4) are identi�ed with di�erent colours, and
�major� clusters A and B correspond to the merging of clusters 1-2 and clusters 3-4, respectively.

The karst conduits network induces �oods of short duration, that can have a high am-
plitude (Mangin, 1975), with a response time estimated to 7 hours after a precipitation
event for Aliou and 14 hours for Baget (Sivelle et al., 2019). Sivelle et al. (2019) also
found lower transfer coe�cients for Baget in their reservoir modelling study. These re-
sults on the two systems support the di�erence between both clusters (1 for Aliou and 2
for Baget), as Aliou is characterised by a faster draining dynamic.

Cross-correlational analyses between precipitation and discharge performed by (Cho-
let, 2017) on Lods and Mouthe systems showed low response times (17 and 10 hours,
respectively) and high peak values (0.3 and 0.41, respectively), which are characteris-
tics of a very reactive functioning. On Mouthe system, the higher draining dynamic of
the capacitive function (cluster 1) is consistent with both the lower response time and
higher peak value of the cross-correlation function than the ones obtained on Lods system
(cluster 2).

Fontaine-de-Nîmes is a reactive karst system with a moderate degree of karsti�ca-
tion (Maréchal and Ladouche, 2006). The hydrological response is fast due to a high
in�ltration rate and a fast water transfer in a well-developed conduits network (Maréchal
et al., 2008), which corresponds to the characteristics of cluster A . Fleury et al. (2013)
found that the draining of the saturated zone was slow, which is consistent with the
position of the system in cluster 2.

Esperelle karst system is described as signi�cantly fractured (Moussu, 2011), and
characterised by both a high impulse response height and dampened recession (Pinault
et al., 2001). This description is consistent with the one of cluster 2, which consists of
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reactive systems with moderate draining of the capacitive function.
Durzon, Mouline, Fontaine-de-Vaucluse and Toulon systems are included in the cluster

B. Mouline is considered as a complex karst system, with long response times despite
presence of �ush �ow e�ect that induces a quick transfer during winter (Pinault et al.,
2001). Although there is no explanation for quick transfer in Durzon system, we can
suppose that its functioning is similar to Mouline as it is located in the same area. The
existence of both slow and fast dynamics on these systems depending on recharge event
and/or geometrical structure highlights a high variability of hydrological functioning,
which is characteristic of cluster 3. Fontaine-de-Vaucluse and Toulon are di�erentiated
in another cluster (cluster 4) due to the low variability of their hydrological functioning.
The high inertia and homogeneous response of the Fontaine-Vaucluse system can be
explained by the thickness of the non-saturated zone (800 m in average) and the large
area of its catchment, estimated to be about 1160 km2 (Ollivier et al., 2019). The Toulon
system, de�ned as a complex karst system by Lorette et al. (2018), is a multi-layer system
with the discharge of an uncon�ned, fractured and karsti�ed aquifer that is permanently
fed by another con�ned aquifer. This continuous alimentation can explain the mostly
homogeneous response of the system.

2.6 Classi�cation of karst hydrological functioning

In this section, we �rst present the classi�cation based on the results of multivariate
analyses. The classi�cation is then applied on both core and complementary datasets
to assess the relevance of the approach, regarding (i) the coherence with the well-known
hydrological functioning of the karst systems in the core dataset, and (ii) the distribution
of karst systems among the di�erent classes from a worldwide perspective.

2.6.1 Classi�cation of karst systems according to various types
of hydrological functioning

The exploration realised with PCA and clustering con�rmed the expected relations be-
tween the functioning of karst systems and indicator values. In both methods, karst
systems are �rst di�erentiated from two main aspects: their capacity of dynamic stor-
age and their capacity to attenuate the precipitation signal. The former is expressed
through kmax and the latter through imean, RT , ME and SBB (n.b. the absolute values
of the Pearson correlation coe�cients of each pair are greater than 0.85, suggesting strong
correlations). We chose the indicator RT to characterise the capacity to attenuate the
precipitation signal (further referred as global inertia, as it considers the overall organ-
isation of �ows in the system, the shape and the dimensions of the catchment and the
saturation state of the system). Indeed, this indicator is more relevant than (i) imean,
which is biased by the number of available recession curves, and (ii) ME and SBB be-
cause their assessments are somehow questionable as they rely on an arbitrary threshold
and a subjective evaluation, respectively. A second element of di�erentiation between
karst systems is the draining dynamic of the capacitive function of a system with the
αmean indicator. In this case, the mean of α values seems relevant due to the relatively
low amplitude of the values for a given system (Figure 2.4C). A third element of di�er-
entiation between systems is the variability of the hydrological response by quantifying
the variability of i with the IR indicator.



40 2. Classi�cation of karst hydrological functioning

Class kmax αmean IR Capacity of dy-
namic storage

Draining of the
capacitive func-
tion

Variability of the
hydrological func-
tioning

C1 ≤ 0.4 ≥ 0.03 ≥ 0.25 Poor Fast Substantial
C2 ≤ 0.4 ≥ 0.03 < 0.25 Poor Fast Low
C3 ≤ 0.4 < 0.03 ≥ 0.25 Poor Moderate Substantial
C4 ≤ 0.4 < 0.03 < 0.25 Poor Moderate Low
C5 > 0.4 < 0.03 ≥ 0.25 Noticeable Slow Substantial
C6 > 0.4 < 0.03 < 0.25 Noticeable Slow Low

Table 2.5: Characterisation of the karst systems hydrological functioning for the six de�ned
classes, in terms of capacity of dynamic storage, draining dynamic of the capacitive function,
and variability of the hydrological response, with the corresponding indicator values.

The proposed classi�cation thus relies on the following three main characteristics of the
hydrological functioning: (i) the capacity of dynamic storage, (ii) the draining dynamic
of the capacitive function, and (iii) the variability of the hydrological response. These
characteristics are assessed using (i) kmax, (ii) αmean, and (iii) IR indicators, respectively.
Based on these 3 distinct characteristics of hydrodynamic behaviour, six classes are pro-
posed to discriminate the hydrological functioning of karst systems (Table 2.5, Figure 2.8):
(i) C1: Poor capacity of dynamic storage, with fast draining of the capacitive function
and substantial variability of hydrological functioning; (ii) C2: Poor capacity of dynamic
storage, with fast draining of the capacitive function and low variability of hydrological
functioning; (iii) C3: Poor capacity of dynamic storage, with moderate draining of the
capacitive function and substantial variability of hydrological functioning; (iv) C4: Poor
capacity of dynamic storage, with moderate draining of the capacitive function and low
variability of hydrological functioning; (v) C5: Noticeable capacity of dynamic storage,
with slow draining of the capacitive function and substantial variability of hydrological
functioning; and (vi) C6: Noticeable capacity of dynamic storage, with slow draining of
the capacitive function and low variability of hydrological functioning.

We chose to not include the indicator RT in the classi�cation methodology, as it seems
that the global inertia of a karst system is relatively independent of its main characteristics
of functioning, especially for systems in C3, C4, C5, and C6 (Figure 2.9B).

The proposed classi�cation is based on recession parameters derived from Mangin's
model for recession simulation. This model gave good simulations results over the 78
catchments considered in this study. However, the good performance of this model should
be checked before any use of the classi�cation over other systems. To gain insights into
the functioning of such systems, we recommend the operators to make use of correlational
and spectral analyses, or analysis of classi�ed discharges, which can already give relevant
information about global inertia and functioning of a system.

2.6.2 Application of the proposed methodology to 78 karst sys-
tems

The classi�cation was applied on the complementary dataset presented in section 2.2.2
and composed of 68 karst systems, plus the 10 core systems for a total of 78 karst systems
(Figure 2.9A).

The most represented class is C3, which represents systems with a very low to medium
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Figure 2.8: Flowchart for the classi�cation of karst systems based on three indicators issued
from the recession curves analysis.

capacity of dynamic storage, a moderate to slow draining of the capacitive function and
a medium to high variability of the hydrological response. About 74 % of the systems
are characterised with a very low to medium capacity of dynamic storage (C1, C2, C3
and C4), 26 % have a fast draining of their capacitive function (C1 and C2) and 67 %
have a medium to high variability of the hydrological response (C1, C3 and C5).

RT was calculated for each system (except for 1 system in C3 and 4 systems in C2
with too much gaps in the time series), with means of 19.5, 13.9, 31.8, 41.4, 43.8 and
46.3 days for, respectively, C1, C2, C3, C4, C5 and C6 (Figure 2.9B). The small increase
of RT throughout the classes is consistent given the functioning description of each class
(C1 being the most reactive and C6 the most inertial). The smaller mean in C2 is
related to the structure of the classi�cation: a high IR in C3 and C5 means that the
hydrological response can be more reactive than expected, whereas in C1 it means that
the hydrological response can be more inertial than expected. It results in a higher RT
mean in C1 (over C2) as it includes systems with potential inertial responses. Finally,
we observed that RT is biased for systems with long dry periods (Saint-Pierre or Lez
systems, the latter being under anthropic in�uence), thus it is suggested to not calculate
this indicator for these systems.

The systems are spread across all classes and types of hydrological functioning. It
means that, even applied on a wider dataset, there is a relative representativeness of all
classes and types of hydrological functioning. The spread of the 10 core systems between
the six classes somehow con�rms the respect of the second criteria for spring selection
(diversity of the hydrological functioning among the karst systems, see section 2.2.1) and
the relevance of the proposed classi�cation.
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Figure 2.9: Results of the classi�cation for the systems in the core and complementary datasets.
(A) The 6 classes are depicted on the x-axis and the number of systems by class on the y-axis.
The colour is related to the capacity of dynamic storage, the outline is related to the draining
dynamic of the capacitive function and the pattern is related to the variability of the hydrological
response. (B) On the right-upper side, the boxplot shows the distribution of RT among the
systems.



2.7. Discussion 43

2.7 Discussion

The aim of this section is to take a step back on the methodology by questioning some
of its limitations and assessing their impact on the relevance of the classi�cation.

2.7.1 In�uence of the length of the time series on the classi�ca-
tion

We performed a sensitivity analysis in order to assess the reliability of the classi�cation
regarding discharge time series of short length. For 9 systems of the 10 core systems
(Toulon was not considered as there is only 5 years of monitoring), we de�ned 7 scenarios
that range from 1-year (Y1) to 7-years (Y7) length of the discharge time series. The
classi�cation methodology was then applied on each scenario in order to compare the
results to those obtained with the full-length (FL) discharge time series (Table 2.6).

The accuracy of each indicator increases with the length of the time series (Figure
2.10). kmax is the most consistent with a steady decrease throughout the years in the
deviation to the kmax value obtained for the full-length time series (FL indicator). αmean

becomes more stable and probably more reliable from Y5 even though it does not show
any signi�cant increase in precision for Y6 and Y7. IR is highly uncertain for the shorter
time series (<Y4) but stabilizes from Y5 and become relevant for Y6 and Y7.

Aliou, Baget, Durzon and Mouline were correctly classi�ed from Y2 (Table 2.6), Es-
perelle and Mouthe from Y5 and Y6, respectively, while Fontaine-de-Nîmes, Fontaine-
de-Vaucluse and Lods were not consistently classi�ed at all. The results emphasise the
bene�ts of long-term monitoring (as there are more chances of observing multiple �ood
events, as well as di�erent meteorological conditions), but also highlight several limita-
tions:

i. The classi�cation is not reliable if only one recession curve is considered, as IR would
be 0.

ii. When the indicator is close to the threshold, it can mislead the classi�cation (e.g.
Esperelle and Fontaine-de-Nîmes, for which the variability in αmean can be explained
by either a highly variable or a complex hydrological functioning, respectively).

iii. As the maximum observed discharge Qmax can change over time, this can a�ect the
recession curves selection, since only recessions with a peak �ood discharge of at least
one tenth of the maximum observed discharge are considered for the analysis (e.g.
Fontaine-de-Nîmes with Qmax that went from 8.2 to 16.5 m3 s-1 from Y1 to Y3).

iv. As the mean interannual discharge Qmean may vary over years, this can induce an
evolution of kmax value and thus modify the class of the karst spring when the value
is close to the threshold (e.g. Fontaine-de-Vaucluse, for which kmax oscillate around
the 0.4 threshold with changes in Qmean during the years, despite being issued from
the same recession curve).

Based on these results, we suggest working with at least 3-years length discharge time
series for the classi�cation. These 3 years should be taken as a guideline and may di�er
notably depending on the system's dynamics. Indeed, very reactive systems may require
only a few years for a de�nitive classi�cation thanks to their high hydrodynamic variabil-
ity, while the minimum length of the discharge time series required to reach satisfying
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System Indicator Y1 Y2 Y3 Y4 Y5 Y6 Y7 FL

Aliou kmax 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02
αmean 0.127 0.127 0.115 0.090 0.084 0.083 0.086 0.067
IR 0.02 0.02 0.04 0.18 0.18 0.18 0.18 0.18
Class 2 2 2 2 2 2 2 2

R. num 2 2 3 6 7 8 10 12
Baget kmax 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.08

αmean 0.032 0.028 0.026 0.026 0.028 0.028 0.027 0.021
IR / 0.07 0.07 0.07 0.09 0.09 0.13 0.23
Class / 4 4 4 4 4 4 4

R. num 1 2 3 3 5 6 7 13
Durzon kmax 0.54 0.63 0.68 0.72 0.75 0.76 0.75 0.78

αmean 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004
IR / 0.51 0.68 0.68 0.68 0.68 0.68 0.70
Class / 5 5 5 5 5 5 5

R. num 1 3 5 7 8 9 10 10
Esperelle kmax 0.14 0.09 0.10 0.11 0.12 0.12 0.12 0.13

αmean 0.030 0.034 0.034 0.034 0.029 0.029 0.027 0.022
IR 0.55 0.57 0.57 0.57 0.57 0.57 0.57 0.62
Class 3 1 1 1 3 3 3 3

R. num 3 5 7 7 9 9 10 11
Fdn kmax 0.01 0.06 0.04 0.04 0.05 0.05 0.05 0.09

αmean 0.035 0.023 0.035 0.035 0.031 0.031 0.031 0.021
IR / 0.36 0.21 0.21 0.25 0.25 0.25 0.25
Class / 3 2 2 1 1 1 3

R. num 1 2 2 2 3 3 3 6
Fdv kmax 0.38 0.35 0.37 0.41 0.35 0.35 0.37 0.40

αmean 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.005
IR / 0.10 0.10 0.10 0.13 0.13 0.13 0.14
Class / 4 4 6 4 4 4 6

R. num 1 2 3 4 5 6 7 9
Lods kmax 0.03 0.08 0.09 0.08 0.08 0.08 0.07 0.09

αmean 0.029 0.018 0.018 0.016 0.021 0.020 0.021 0.021
IR / 0.02 0.02 0.18 0.18 0.22 0.22 0.28
Class / 4 4 4 4 4 4 3
R. num 1 3 3 6 7 10 10 11

Mouline kmax 0.58 0.49 0.54 0.55 0.57 0.56 0.56 0.59
αmean 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005
IR / 0.43 0.58 0.59 0.59 0.59 0.59 0.60
Class / 5 5 5 5 5 5 5

R. num 1 3 6 7 8 8 8 9
Mouthe kmax 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

αmean 0.060 0.060 0.064 0.064 0.064 0.061 0.061 0.059
IR 0.08 0.11 0.11 0.11 0.11 0.25 0.25 0.33
Class 2 2 2 2 2 1 1 1

R. num 3 5 6 6 6 8 8 10

Table 2.6: Results of the classi�cation performed on the di�erent scenarios of discharge time
series of di�erent length (from 1 to 7 years, Y1 to Y7). For each scenario, there are details about
the results of indicators kmax, αmean, IR, the corresponding class, and the number of recession
curves considered in the analysis. The full-length (FL) column corresponds to the results on the
classi�cation on the whole discharge time series.
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Figure 2.10: Boxplot of the mean relative error of each indicator across 9 core systems and
for the di�erent scenarios, regarding the indicators issued from the analysis of the full-length
discharge time series. Each indicator on the x-axis is associated with 7 boxes that are sorted
from shorter (left) to wider (right) length.
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Figure 2.11: Distribution of the 78 systems according to each pair of indicators: (A) αmean vs.
kmax, (B) IR vs. kmax, and (C) IR vs. αmean. The colours correspond to the di�erent classes.

classi�cation may increase for very inertial systems. However, it remains appropriate to
work with shorter time series when there is no alternative. Our analysis shows that 7 out
of 9 systems are correctly or almost correctly classi�ed at Y2 if we include those that are
close to the threshold (Table 2.6).

2.7.2 Evaluation of the distance between a system and other
classes

The uncertainties related to either (i) the length of the discharge time series, or (ii) the
indicators that are close to the threshold, can be addressed by estimating the distance to
the other classes. The distance Ds−C of a system s to an adjacent class C is measured
with the following equation:

Ds−C =
|Ith − Icalc|

Ith
(2.7)

Where Icalc corresponds to the calculated value of a given indicator and Ith corresponds
to its threshold value. The indicator to consider in the calculation is the one that is critical
for the class de�nition (i.e. corresponding to the junction in the �owchart). A distance D
lower or equal to 0.1 (10 %) can be considered as close to the threshold. As the distance
increase, the system is not likely to be related with the involved class.

In relation to the structure of the classi�cation, there is no need to calculate the
distance between classes 1-5 and classes 2-6, as it is highly uncertain that a system
has both a kmax higher than 0.4 and a αmean greater than or equal to 0.03 (hatched
area, Figure 2.11A). The formula allows for calculating the distance between (i) classes
1-2, 3-4 and 5-6 with IR, (ii) classes 1-3 and 2-4 with αmean, and (iii) classes 3-5 and
4-6 with kmax. The distance between diagonal classes can be calculated by applying the
Pythagorean Theorem:

Ds−C =
√

D2
s−Cx +D2

s−Cy (2.8)

Where x and y correspond to two di�erent classes. The formula allows for calculating
distance between (i) classes 1-4 and 2-3 with αmean and IR (Figure 2.11C), and (ii) classes
3-6 and 4-5 with kmax and IR (Figure 2.11B). These notions of distances can be more
easily appreciated on the Figure 2.12, which shows the 3-dimensional distribution of the
karst systems in the kmax, αmean and IR space.
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Figure 2.12: 3D distribution of the 78 systems according to each indicator. The associated
rectangles show the boundaries of each class. The colours correspond to the di�erent classes.
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System Class Distance to
C1 C2 C3 C4 C5 C6

Aliou C2 0.27 0 1.25 1.22 / /
Baget C4 0.32 0.31 0.08 0 0.81 0.81
Durzon C5 / / 0.95 2.04 0 1.81
Esperelle C3 0.27 1.52 0 1.50 0.68 1.64
Fdn C3 0.30 0.30 0 0.01 0.76 0.76
Fdv C6 / / 0.46 0.004 0.46 0

Lods C3 0.31 0.33 0 0.13 0.78 0.80
Mouline C5 / / 0.47 1.49 0 1.42
Mouthe C1 0 0.31 0.98 1.03 / /
Toulon C6 / / 1.48 1.43 0.39 0

Table 2.7: Distance to the other classes for the 10 core karst systems.

To complement the discussion in Section 2.7.1 related to the �close to the threshold�
systems, we calculated the distance to other classes for the 10 core karst systems (Table
2.7). The results highlight that (i) Baget is close to C3, (ii) Fontaine-de-Nîmes is close
to C4 and (iii) Fontaine-de-Vaucluse is close to C4. Regarding the 78 systems, only 12
systems are close to a threshold with a distance to another class lower or equal than 0.1.

This distance measure allows re�ecting on the classi�cation results by highlighting
potential threshold issues. Thus, we can tell if a system is clearly into a said class, or is
close to one or two classes.

2.7.3 Beyond the classi�cation

Correlational, spectral and classi�ed discharges analyses can be performed post-
classi�cation to really exploit the maximum of information that can be obtained by
analysing the discharge time series, in order to get a deeper knowledge of the functioning
of a system.

We propose to use RT as an additional indicator to complement the above-described
classi�cation and to gain further insights into the global inertia of a karst system. We
de�ned four ranges: (i) lower or equal than 15 days; (ii) greater than 15 days and lower
or equal than 30 days; (iii) greater than 30 days and lower or equal than 45 days; and
(iv) greater than 45 days, which are referred as (i) low, (ii) medium, (iii) high, and (iv)
very high global inertia, respectively.

In a similar manner, we propose to perform the visual interpretation of the curve
of classi�ed discharges after the classi�cation to have additional information about the
presence or absence of major speci�c functioning.

For example, HR_0020 system has a kmax of 0.07, an αmean of 0.021 day-1, and an IR
of 0.34, corresponding to C3 (Appendix 2.D). HR_0020 is thus described as a system with
a very low to low capacity of dynamic storage, a fast draining of the capacitive function
and a medium to high variability of the hydrological response. The regulation time of
15.5 days indicates that the system has a medium capacity to attenuate the precipitation
signal (or medium global inertia). The bending point on the curve of classi�ed discharges
at 1.8 m3 s-1 may be due to the activation of an over�ow outlet, a discharge to another
system, or a temporary storage of water. The one at 30 m3 s-1 may translate the same
processes, but it is not excluded that it can be related to uncertainties on ungauged
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discharges.

2.8 Conclusion

Our objective was to propose a new classi�cation of karst systems hydrological func-
tioning based on the analysis of spring discharge time series that is representative of a
wide diversity of karst systems. Several methods were considered to identify indicators of
functioning. Multivariate analyses allowed the identi�cation of relevant indicators that
allow distinguishing the analysed karst systems. Three indicators were identi�ed as the
most relevant indicators and thus retained to characterise karst systems and propose a
classi�cation into six di�erent types of hydrological functioning. The hydrological func-
tioning of karst systems was distinguished according to their capacity of dynamic storage,
the draining dynamic of their capacitive function and the variability of their hydrolog-
ical functioning. The classi�cation can be completed with two additional analyses to
characterise the global inertia and highlight the presence or absence of major speci�c
functioning.

The challenge of developing a relevant classi�cation was addressed (i) by considering
a core dataset of karst systems with a high diversity of hydrological functioning, (ii)
by selecting the most relevant indicators of hydrological functioning and proposing a
classi�cation based on multivariate analyses, and (iii) by testing the relevance of the
classi�cation on spring discharge time series of 78 karst systems located worldwide.

As the methodology requires only spring discharge time series, which is the most
common monitored data, and gives relevant results with only few years of monitoring,
the classi�cation can be used in data-scarce contexts. It can thus be seen as a modern tool
for the classi�cation of karst systems hydrological functioning, which provides researchers
and stakeholders with a �rst insight into karst system functioning based on accessible and
straightforward analyses. We emphasise that the proposed typology �rst aims to describe
the hydrological functioning of a system where one single hydrodynamic response to
precipitation impulse is expected, but remains useful even when two or more responses
are observed.

One perspective of this work would be to provide a database that allows both com-
paring the hydrological functioning of several karst systems and then proposing a link be-
tween the developed classi�cation and the design of lumped parameter models. Research
perspectives include the study of the relation between classi�cation and the relevant
structures and parameters of models for rainfall-discharge simulation.
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2.9 Appendix

2.A Calculation details for the correlational and spectral analyses

The autocorrelation function rk is calculated with the following equation:

rk =
Ck

C0

(2.9)

with the autocovariance function Ck:

Ck =
1

n

n−k∑
1

(xi − x̄)(xi+k − x̄) (2.10)

with k the shift (0, 1, 2, . . . , m), n the length of the series, m the maximum shift
possible (generally m < n

3
), xi the ith element of the series, xi+t the (i + t)th element of

the series and x̄ the mean of the series. The correlogram corresponds to the plot of rk
versus k.

The spectrum sf is calculated with the following equation:

sf = 2[1 + 2
m∑
k=1

Dkrkcos(2πfk)] (2.11)

with f the frequency (f = j
2m

for daily timestep), rk the autocorrelation function and
Dk a weighting function (Tukey-Hanning window) to ensure that the estimated sf is not
biaised (Mangin, 1984):

Dk =
1 + cos(πk

m
)

2
(2.12)

The spectrum is represented on a plot of sf versus f .

2.B Calculation details for the analysis of classi�ed discharges

The procedure to obtain the curve of classi�ed discharges involves in (i) the quantiles
calculation of the empirical distribution function, (ii) the calculation of the corresponding
variable from the reference distribution function, (iii) the graphical representation of the
relation between the quantiles of the empirical and reference distribution functions, and
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(iv) the choice of the x-axis scale, either arithmetic or logarithmic (corresponding to a
normal or log-normal adaptation of the reference distribution, respectively).

The repartition function corresponding to the cumulative probability density regard-
ing the standard normal distribution is:

P (X ≤ z) =
1

2
[1 + erf(

z√
2
)] (2.13)

For a half-Gaussian distribution:

P (X ≤ z) = erf(
z√
2
) (2.14)

The observed discharges are plotted on the x-axis of the quantile-quantile plot.

2.C Results of the v-test applied on clusters A, B, 1, 2, 3 and 4

Indicator of functioning v-test value
Cluster A Cluster B Cluster 1 Cluster 2 Cluster 3 Cluster 4

αmean 2.00 -2.00 2.65 -0.17 -1.18 -1.26
kmax -2.59 2.59 -1.28 -1.55 1.58 1.59
imean -2.33 2.33 -1.76 -0.89 0.63 2.22

IR -0.57 0.57 -0.67 -0.02 2.15 -1.45
CV 2.47 -2.47 0.95 1.69 -1.53 -1.50
SV C 2.23 -2.23 1.42 1.07 -1.44 -1.30
ME -2.54 2.54 -1.43 -1.37 0.71 2.41

RT -2.39 2.39 -1.48 -1.18 0.43 2.50

SBB 2.26 -2.26 1.75 0.83 -0.40 -2.37

Table 2.8: Results of the v-test applied on clusters A, B, 1, 2, 3 and 4, with values of each
indicators of functioning . Bold entries highlight values for which the p-value is lower than 0.05.
The sign of the v-test value indicates if the mean of the cluster is lower or greater than the
overall mean.

2.D Graphical summary of the typology of HR_0020 karst system
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Figure 2.13: Graphical summary of the typology of HR_0020 karst system (WoKaS
database, Olarinoye et al., 2020).
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Chapter 3

KarstID, a software for the analysis of

discharge time series

Karst spring discharge time series analyses are often used to gain preliminary insights into
the hydrological functioning of a karst system. KarstID is an R Shiny application that
facilitates the completion of such analyses and allows the identi�cation of karst system
hydrological functioning. The application permits (i) to perform statistical, recession
curves, classi�ed discharges and signal (simple correlational and spectral) analyses; (ii)
to calculate relevant indicators representative of distinct hydrological characteristics of
karst systems, (iii) to classify karst systems hydrological functioning; and (iv) to compare
the results to a database of 78 karst systems. The KarstID software is free, open source,
and actively developed on a developer community platform. The user-friendly installation
and launch make it especially accessible even for non-programmers, therefore KarstID can
be used for both research and educational purposes. The application and its user manual
are both available on the French SNO KARST website.

This work has resulted in a publication in Environmental Earth Sciences (Cinkus et
al., 2023), several presentations during a progress meeting and a national workshop on
karst, as well as a poster during Eurokarst 2022 (Cinkus et al., 2022).

Article:
Cinkus, G., Mazzilli, N., and Jourde, H.: KarstID: an R Shiny application for the anal-

ysis of karst spring discharge time series and the classi�cation of karst system hydrological
functioning, Environ Earth Sci, 82, 6, https://doi.org/10.1007/s12665-023-10830-5, 2023.
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3.1 Introduction

Around 9 % of the world's population is dependent on karst water resources for drinking
water (Stevanovi¢, 2019). Karst systems are heterogeneous media with high contrasts
in porosity and permeability, inducing a high variability in in�ltration and internal �ow
processes (Bakalowicz, 2005; Ford and Williams, 2007). With the increasing demand for
water, the characterisation of the functioning of karst aquifers become a major challenge
for water resource management (Bakalowicz, 2011). Among the numerous methods to
study karst aquifers, analyses of spring discharge time series (recession curves, signal,
statistics) are the most accessible as they only require the monitoring of spring discharge.
Therefore, they are generally used as a preliminary step for characterising the hydrological
functioning of karst systems, and subsequently for developing and designing hydrological
models. Also, many authors declined these analyses into classi�cations for di�erentiat-
ing karst systems, with recession curves (Bonacci, 1993; Cinkus et al., 2021; Dewandel
et al., 2003; Fiorillo, 2014; Malík and Vojtková, 2012; Mangin, 1975; Soulios, 1991), sig-
nal (Gár�as-Soliz et al., 2010; Mangin, 1984), hydrograph (Kovács, 2021; Zhang et al.,
2020) and statistical indicators (Flora, 2004; Hakoun et al., 2022; Rashed, 2012; Springer
et al., 2008).

Recession curves analysis has been widely developed over the past century (Barnes,
1939; Boussinesq, 1903; Coutagne, 1948; Drogue, 1972; Horton, 1933; Maillet, 1905;
Mangin, 1975; Padilla et al., 1994). It consists in calibrating numerical models on a
selection of recession curves from a hydrograph and interpreting the parameters of the
equations. Signal analyses �developed by Box and Jenkins (1976), Brillinger (1975), and
Jenkins and Watts (1968) �were introduced in karst hydrology by Mangin (1984). Their
purpose is to characterise the temporal structure of hydrological signals, which allows
deducing information on the inertia of a karst system (Jeannin and Sauter, 1998; Kovács,
2003; Larocque et al., 1998). Statistical analyses include distribution indicators such as
mean, standard deviation and quantiles, but also cumulative frequency curves (Malík,
2015; Mangin, 1971). Numerous studies across the world are based on these analyses
for characterising karst systems properties, determining the hydrodynamic parameters of
aquifers and providing information on �ow dynamics (Guo et al., 2021; Lorette et al.,
2018; Malík et al., 2021; Nurkholis et al., 2019; Sa§�r et al., 2020; Vrsalovi¢ et al., 2022;
Zerouali et al., 2021).

The completion of these analyses often requires a meticulous reading of the literature
and appropriate programming skills. The application of statistical and signal analyses
(e.g. simple correlational and spectral analyses) is generally done using or writing spe-
ci�c code functions. The recession curves analysis requires to (i) select and isolate several
parts of the discharge time series, (ii) calibrate a recession model over each recession
curve, and (iii) calculate indicators of functioning from the model's parameters values.
These operations can be tedious for long time series �and are subjects to errors in selec-
tion, calibration and indicators calculation. For these reasons, several authors proposed
powerful toolboxes and software to facilitate the completion of the recession curves anal-
ysis (Arciniega-Esparza et al., 2017; Carlotto and Cha�e, 2019; Gregor and Malík, 2016;
Posavec et al., 2017), one of them also including statistical and signal analyses (BRGM,
2022).

This paper presents an application (KarstID) that provides the user a toolbox for both
the analysis of karst spring discharge time series and the characterisation of karst systems
hydrological functioning. KarstID is distinguishable from other software because (i) it
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supports multiple analyses of discharge time series (statistical, recession curves, simple
correlational and spectral, classi�ed discharges) and automatic calibration of recession
model; (ii) it proposes a classi�cation of karst systems hydrological functioning (according
to the proposal of Cinkus et al., 2021) and a comparison of the results to a database of
78 karst systems; and (iii) it is free, open source and actively developed on a developer
community platform. KarstID is built with the R Shiny framework (Chang et al., 2021)
and is embedded into an R package (R Core Team, 2021), which make the installation
and launch easy even for non-programmers.

3.2 Software overview

The links to the user guide, the source code and the git repository are available on
the French SNO KARST (Service National d'Observation du Karst) website. The user
guide provides guidelines for the installation and launch, as well as a technical, in-depth
and visual description of all the features of the application. The source code includes
the data and functions used (i) for applying the analyses, (ii) for generating the plots,
(iii) for managing the application and (iv) for building the R package. Users can start
discussions or raise issues in the git repository, as well as propose new code or modify
existing code with Pull Requests.

3.2.1 Work�ow

First, the user has to load an appropriate dataset using the �Data import� tab. The
second step is to apply four di�erent methods for analysing the hydrological functioning
of the system (Figure 3.1). Two of these analyses (statistical and classi�ed discharges
analyses) do not need any actions from the user and the results of these analyses are
directly displayed in their respective tabs. Two complementary analyses (recession curves
and signal analyses) require the user to select curves and/or de�ne parameters for the
functions (i.e. recession model, autocorrelation function). The completion of the recession
curves analysis automatically launches the third step which is the classi�cation of the
hydrological functioning of the system according to the methodology proposed by Cinkus
et al. (2021). The user can then appreciate the results of the classi�cation and compare
the various hydrological characteristics of the analysed karst system with the ones of 78
karst systems located worldwide.

3.2.2 Data import

The �Data import� tab allows the user to load a karst spring discharge time series into
KarstID. The raw data can be either a plain text or an Excel �le, and must have only
two columns referring to date and discharge, respectively. KarstID supports date and
date-time format for the date column, and numeric format for the discharge column. The
application proposes several features to minimise the preprocessing of the data: it is thus
possible to (i) skip rows, (ii) select a speci�c Excel sheet, (iii) use a header or not, (iv)
de�ne the decimal mark, (v) de�ne the delimiter and (vi) specify the date format. The
user can give a name to the dataset, which will be used when displaying or downloading
results.

The user can choose to interpolate missing discharge values and specify the maximum
gap that will be covered. The interpolation is performed with the na.spline(method

https://sokarst.org/en/softwares-en/karstid-en/
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Figure 3.1: Synthetic work�ow of the KarstID application. Green, yellow, blue, and purple
boxes represent, respectively, (i) input data, (ii) action within KarstID, (iii) available analyses
within KarstID, and (iv) output data.

= �monoH.FC�) R function from the zoo package (Zeileis and Grothendieck, 2005). The
method is particularly well suited for the interpolation of small gaps, but users must be
careful when using it for large gaps. Critical gap length cannot be speci�ed a priori since
it depends on both the time step on the time series and the hydrological behaviour of the
investigated system. The user can also choose to either (i) keep all missing values in the
time series or (ii) keep only the longest part of the time series without missing values.

After de�ning the import options and starting the importation, the application will
(i) look for missing date entries and �ll the blanks if necessary (adapted to the time step
of the time series), (ii) interpolate missing discharge values, (iii) perform a daily or hourly
mean over the discharge time series, and (iv) display a hydrograph on the same page. The
interpolation and daily/hourly mean are realised according to the user-de�ned options.
Note that the hourly mean can only be applied if the initial time step of the time series
is at an hourly time step or less.

3.2.3 Methods

Four di�erent methods are proposed in KarstID for analysing karst spring discharge time
series. The methods can be applied independently of each other in their respective tabs.

3.2.3.a Statistical analyses

Statistical analyses of spring discharge provide fundamental information about the hy-
drological functioning of a system. In KarstID, the following indicators are automatically
calculated over the discharge time series when a dataset is imported: mean, maximum,
minimum, standard deviation, 10th percentile (Q10), 90th percentile (Q90), Coe�cient
of Variation (CV ) and Spring Variability Coe�cient (SV C). The coe�cient of variation
corresponds to the ratio between the standard deviation σ and the mean µ of the values:

CV =
σ

µ
(3.1)

The SVC, which corresponds to the proposal of a �characteristic discharge� by Netopil
(1971), is the ratio between Q90 (value that is exceeded 10 % of the time) and Q10:

SV C =
Q90

Q10
(3.2)
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The statistical indicators appear in a table below the hydrograph in the �Data import�
tab. The number of missing discharge values are given in the last column of the table.
The statistical analyses can be performed even if there are missing discharge values in
the discharge time series.

3.2.3.b Recession curve analysis

Recession curves correspond to the periods when the discharge gradually decreases with-
out replenishment of water (Toebes and Strang, 1964). The analysis of recession curves
can be used to assess groundwater storage and gain insights into the hydrological func-
tioning of an aquifer (Drogue, 1972; Forkasiewicz and Paloc, 1967; Kovács, 2003; Kre²i¢,
2007; Kullman, 2000; Malík, 2006; Malík and Vojtková, 2012; Mangin, 1975). Generally,
a recession curve can be divided into (i) an in�uenced regime or quick�ow component,
and (ii) a non-in�uenced regime or base�ow component. Usually, the in�uenced regime
results from the fast in�ltration of the precipitation through large fractures and conduits,
while the non-in�uenced regime results from slow in�ltration through a less transmissive
media such as a porous matrix (Mangin, 1975). Numerous recession models exist whose
indicators of functioning and interpretation di�er.

To date, after analyses of the various aforementioned methods, Mangin's recession
model (Mangin, 1975) was identi�ed as the most informative model (Cinkus et al., 2021).
Accordingly, KarstID only propose Mangin's recession model to identify relevant indica-
tors necessary for classifying karst systems hydrological functioning (see section 3.2.4).
Mangin's model is a two-equations recession model that requires the manual de�nition
of an in�exion point for distinguishing between in�uenced and non-in�uenced regimes:

Qt = QR0e
−αt + q0

1− ηt

1 + εt
(3.3)

with Qt the discharge at time t, α the recession coe�cient, QR0 the base�ow extrap-
olated at t = 0, q0 the in�uenced discharge corresponding to the di�erence between Q0

(discharge at t = 0) and QR0, η a constant characterising the speed of in�ltration (η = 1
ti
,

with ti the beginning of the non-in�uenced regime) and ε a constant characterising the
concavity of the in�uenced part of the recession curve.

The Mangin's recession model is widely used as several indicators can be calculated
for characterising the hydrological functioning of a karst system. The indicator k gives
information about the capacity of a system to store and release recharge water, and is
calculated as follows:

k =
VDYN

Van

(3.4)

with Van the yearly mean volume of water discharged at the spring. The dynamic
volume VDYN corresponds to the integral of the exponential function of the recession
model:

VDYN =

∫ ∞

0

Qie
−αtdt =

Qi

α
(3.5)

The indicator i can be used to characterise the capacity of a system to dampen the
precipitation signal, and corresponds to the discharge generated by the in�uenced regime
two days after the �ood peak:
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i =
1− 2η

1 + 2ε
(3.6)

The �Recession curves analysis� tab allows to perform the recession curves analysis.
The selection of recession curves is done with the cursor using the graphical interface.
The retained recession curves appear in a recap table where they can be selected to
apply Mangin's model. The user has to de�ne the in�exion point of the curves, based
on his knowledge and experience. The recession model is calibrated with the nonlinear
least squares nlsLM() function from the minpack.lm package (Elzhov et al., 2016), which
minimises the squared sum of the residuals between observed and simulated discharges.
The Root Mean Square Error (RMSE) between observed and simulated discharges is
displayed below the recession model plot and helps to appreciate the performance of the
model. Once a recession model is calibrated and validated, the indicators of functioning
are calculated. They appear in the recap table when saved by the user.

The user can choose to remove spikes on the recession curves, which usually correspond
to the system's response to small precipitation events and can be considered as noise for
the modelling. Recession curves analysis can be performed even if there are missing
discharge values in the discharge time series.

3.2.3.c Simple correlational and spectral analyses

Simple correlational and spectral analyses are used to study the frequency content of a
signal (Massei et al., 2006) by calculating the autocorrelation function and the associated
spectrum with a Fourier transform. Mangin (1984) �rst applied these signal analyses
to karst hydrology and proposed three indicators of karst hydrological functioning: the
memory e�ect, the regulation time and the cut-o� frequency. These three indicators
mainly help to characterise the inertia of a karst system and its capacity to �lter unitary
impulse (Larocque et al., 1998; Marsaud, 1997; Massei et al., 2006). The autocorrelation
rk and autocovariance Ck functions are calculated as follows:

rk =
Ck

C0

(3.7)

Ck =
1

n

n−k∑
1

(xi − x̄)(xi+k − x̄) (3.8)

with n the length of the series, m the maximum shift possible (usually m < n
3
), k the

shift (between 0 and m), x̄ the mean of the series and xi and xi+t the ith and (i + t)th

elements of the series, respectively. The spectrum sf is derived from the autocorrelation
function:

sf = 2[1 + 2
m∑
k=1

Dkrkcos(2πfk)] (3.9)

with f the frequency (f = j
2m

at daily time step) and Dk a weighting function to
ensure that sf is not biaised (Mangin, 1984):

Dk =
1 + cos(πk

m
)

2
(3.10)
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The correlogram is represented as the plot of rk against k, and the spectrum of sf
against f . The memory e�ect corresponds to the value of k for a rk of 0.2, which can be
read on the correlogram or calculated from the data. The regulation time corresponds to
the value of the integral of the spectrum between 0 and +∞, i.e. the maximum value of
the the spectrum divided by 2.

The �Simple correlational and spectral analyses� tab displays the results of the simple
correlational and spectral analyses. The user can de�ne the cutting point m, which
correspond to the maximum shift possible for the calculation. The cut-o� frequency is
not displayed as it results from a visual, subjective assessment of the spectrum. Simple
correlational and spectral analyses cannot be performed if there are any missing discharge
values in the discharge time series. Appendix 3.A presents a comparison of the results
obtained by Mangin (1984) and those calculated with KarstID, although the databases
are di�erent as the ones used in Mangin (1984) are unavailable.

3.2.3.d Analysis of classi�ed discharges

The analysis of classi�ed discharges provides information on �ow dynamics within a
system by analysing the distribution of the discharges at the spring. For most authors,
classi�ed discharges are equivalent to the empirical cumulative function of discharge (Ste-
vanovi¢, 2015). Mangin (1971) proposed a variant based on the assumption that the
distribution of the discharges can be approximated by a half-normal distribution. From
this perspective, classi�ed discharges refer to the quantile-quantile graph of observed
discharges quantiles against quantiles of the half-normal distribution. Homogeneous hy-
drological functioning should be outlined by a straight line in the classi�ed discharge plot.
Interpretation of Mangin's classi�ed discharges thus consists of assessing the discontinu-
ities of the curve and to relate them to changes in the hydrological functioning (e.g.
activation of over�ow springs, storage and release of water, leakage to another aquifer
or miscalibration of the gauging station). The repartition function corresponding to the
cumulative probability density regarding the standard normal distribution is calculated
as follows:

P (X ≤ z) =
1

2
[1 + erf(

z√
2
)] (3.11)

For a half-Gaussian distribution:

P (X ≤ z) = erf(
z√
2
) (3.12)

The �Analysis of classi�ed discharges� tab displays the results of both analyses of
classi�ed discharges. No user action is needed for the calculation. Analyses of classi�ed
discharges can be performed even if there are missing discharge values in the discharge
time series.

3.2.4 Classi�cation

In KarstID, it is possible to characterise a karst system after the methodology pro-
posed by Cinkus et al. (2021) and compare the results with 78 karst systems located
worldwide, the discharge of which being extracted from di�erent database: Banque Hy-
dro (Banque Hydro, 2021), SNO KARST (Jourde et al., 2018), and World Karst Spring
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Class kmax αmean IR Capacity of dy-
namic storage

Draining of the
capacitive func-
tion

Variability of the
hydrological func-
tioning

C1 ≤ 0.4 ≥ 0.03 ≥ 0.25 Poor Fast Substantial
C2 ≤ 0.4 ≥ 0.03 < 0.25 Poor Fast Low
C3 ≤ 0.4 < 0.03 ≥ 0.25 Poor Moderate Substantial
C4 ≤ 0.4 < 0.03 < 0.25 Poor Moderate Low
C5 > 0.4 � ≥ 0.25 Noticeable Slow Substantial
C6 > 0.4 � < 0.25 Noticeable Slow Low

Table 3.1: Indicator thresholds and corresponding characterisation of hydrological functioning
for each class.

hydrograph (Olarinoye et al., 2020). This dataset covers a wide diversity of karst hydro-
logical functioning (from very reactive to inertial responses) with data from 17 countries
in 12 di�erent climatic conditions, according to the Köppen-Geiger classi�cation (Cinkus
et al., 2021). The classi�cation allows characterising karst systems hydrological function-
ing according to 6 classes based on 3 indicators of functioning (Table 3.1). The indicators
are derived from the results of the analysis of at least two recession curves. The draining
of the capacitive function αmean is calculated by averaging the α parameters of the reces-
sion models. The capacity of dynamic storage kmax corresponds to the maximum value of
k among the analysed recession curves. The variability of the hydrological functioning IR
corresponds to the di�erence between the maximum and minimum of the i distribution:

IR = imax − imin (3.13)

The �Classi�cation� tab highlights the results obtained for the analysed karst system
and summarises the values of the various indicators considered for the classi�cation (Fig-
ure 3.6). A �owchart thus indicates how the system is classi�ed according to the values
of the indicators of functioning. The associated text section (i) describes the hydrological
functioning of the system according to its class, (ii) displays the indicators values and
(iii) shows the distance to other classes. A 3D scatter plot shows the investigated system
(highlighted in red) alongside 78 other karst systems, with each axis corresponding to one
indicator of functioning. Results from statistical, recession curves, simple correlational
and spectral analyses, as well as indicators of functioning of all 78 systems also appear in
a recap table. By default, the systems in the table are ordered by increasing distance to
the investigated system. The user can select a system in the table to highlight (in yellow)
its position on the 3D scatter plot.

3.3 Test case

Fontaine de Vaucluse is a karst spring located South-East of France. Its recharge area is
estimated to be about 1160 km2 (Ollivier et al., 2019), resulting in one of the highest karst
spring interannual mean discharge in Europe (17.5 m3 s-1 over the 1966�2018 period).

Fontaine de Vaucluse's daily discharges over the 2013�2019 period (amounting to
1923 observations) are provided in KarstID as a test dataset. After importation using
the �load test dataset� button, the hydrograph is loaded on the import page (Figure
3.2). The statistical indicators and number of missing discharge values are displayed
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Figure 3.2: Import and statistical analyses tab. Left pane is dedicated to data import (section
3.2.2). Right part presents the hydrograph and the results of statistical analyses (section 3.2.3.a).

in the table below the plot. For this period, Fontaine de Vaucluse's interannual mean
discharge is about 15.9 m3 s-1 with no missing discharge values. The maximum observed
discharge (about 67.1 m3 s-1) and the 90th percentile of observed discharges (about 32.0
m3 s-1) show that the discharge at the spring can be and stay very high during wet
periods. The minimum observed discharge and the 10th percentile of observed discharges
are relatively close (about 3.3 and 5.6 m3 s-1, respectively), highlighting a slow and
consistent release of water from storage during dry periods. The coe�cient of variation
(72.3 %) and SV C (5.7) are average and correspond to a �moderate� and �balanced�
discharge variability, respectively (Flora, 2004; Springer et al., 2008). The moderate
discharge variability and the fact that the discharge can attain very high values can be
related to a strong karsti�cation of a part of the system. Using cross-correlation analyses
between precipitation and discharge, (Ollivier et al., 2015) found a transfer time between
1 and 6 days, indicating a somewhat reactive response of the system to precipitation
events.

The autocorrelation function of discharge (Figure 3.3) declines slowly and steadily,
reaching 0 at 117 days. The memory e�ect and the regulation time are of about 56.0 and
44.0 days, respectively. These values testify of a signi�cant capacity of �ltration of the
precipitation signal, which relates to the overall organisation of �ows in the system (Jean-
nin and Sauter, 1998). The noticeable dampening of the recharge in the Fontaine de
Vaucluse karst system can be related to the very large dimensions of its recharge area
and unsaturated zone (Ollivier et al., 2019) or the characteristics of the Urgonian lime-
stones (Carrière et al., 2016).

The analysis of classi�ed discharges (Figure 3.4) according to the methodology pro-
posed by Mangin (1975) hints that there are �ow properties changes beyond 20 m3 s-1

(less steep slope following the in�exion point). This discontinuity re�ects the over�ow
threshold of the upper spring pool (Mangin, 1975). The other in�exion point, occurring
at 57.5 m3 s-1, can be related to several hydrological processes: activation of an over�ow,
temporary storage of water or leakage to another aquifer. It can be also due to a miscal-
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Figure 3.3: Simple correlational and spectral analyses tab. Left and right graphs present the
autocorrelation function and the variance density spectrum, respectively (section 3.2.3.c).

Figure 3.4: Analysis of classi�ed discharges tab. Left and right graphs present the empiri-
cal cumulative function of discharge and the Mangin classi�ed discharges, respectively (section
3.2.3.d).

ibration of the gauging station or uncertainties on the water level-discharge calibration
curve.

Three recession curves were selected and applied Mangin's recession model to iden-
tify relevant indicators (Figure 3.5). The recession curves were chosen according to the
following criteria to ensure a maximum relevance of the analysis and its results: (i) the
peak discharge must be at least one tenth of the maximum discharge of the time series,
(ii) there must be little or no untimely peaks during the recession, and (iii) the reces-
sion must include both in�uenced and non-in�uenced regimes. The in�exion points (n.b.
�breakpoint� in the application) were de�ned manually based on expert knowledge and
RMSE values. The indicators k, i, and α are then calculated for each recession curve and
appear in the recap table.

Fontaine de Vaucluse is classi�ed C6 with a kmax of 0.403, an αmean of 0.006 and
an IR of 0.022 (Figure 3.6). This class characterises a system with noticeable capacity
of dynamic storage, slow draining of the capacitive function and low variability of hy-
drological functioning. Fontaine de Vaucluse is considered close to the C4 class with a
distance of about 0.8 % (normalised Euclidean distance in the three-dimensional criteria
space), meaning that C4 characteristics can also be considered in the interpretation. It
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Figure 3.5: Recession curves and modelling tab. The left graph presents the studied time
series and retained/selected recession curves. The right graph displays the selected recession
with the Mangin recession model. The table shows the details of each recession curves and their
corresponding indicators values (section 3.2.3.b).

highlights that the system may have a capacity of dynamic storage and a draining of
the capacitive function in-between C4 and C6 characteristics. Fontaine de Vaucluse's
class is also far from the classes C3 and C5 with distances of about 91.4 %, which is
due to the very low IR (0.022). The low variability of hydrological functioning and no-
ticeable capacity of dynamic storage assigned to this system can be also related to the
large extent of the recharge area and the thick unsaturated zone. Local variability of
hydrological functioning may thus be mitigated as a consequence of the spatial averaging
(indirectly inducing a strong �ltration of the precipitation signal). The dampening of the
rainfall-discharge relationship and the noticeable capacity of dynamic storage may also
be related to particular hydrological behaviour of Urgonian limestones (Carrière et al.,
2016). By looking at the page 1 of the database table, users can �nd other karst systems
with similar hydrological functioning: e.g. Taillade, PR_0005 and IE_0018. These sys-
tems are highlighted in yellow on the 3D scatter plot, alongside the investigated system
highlighted in red. Studying the characteristics of other similar systems may help to
support the interpretation of the investigated system. Note that Fontaine de Vaucluse
also appears in the table but here corresponds to the permanent entry of the database,
which results from the analysis of the whole discharge time series.
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Figure 3.6: Classi�cation tab. The top part shows the classi�cation �owchart and its associated
text description: indicator values and distance to other classes (section 3.2.4).

3.4 Conclusion

KarstID can be seen as a useful tool for gaining preliminary insights into the hydrological
functioning of a karst system. The application supports di�erent methods for analysing
discharge time series and proposes a classi�cation of karst systems hydrological func-
tioning. It is also possible to compare the results with a database of 78 karst systems
located worldwide. KarstID is free, open source, and available on a developer community
platform, which allow potential interaction between users and developers for improving
software e�ciency or adding new features. Other than the installation of R and R pack-
ages, no programming skills are required to use the application. KarstID could therefore
also be relevant for occasional users or educational purpose. Future developments of the
application include (i) a continuous consideration of feature requests and bug reports
to improve user experience, (ii) the proposition of additional recession models (Drogue,
1972; Kullman, 2000; Padilla et al., 1994), and (iii) the addition of other discharge time
series analyses (e.g. wavelet analyses).
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3.5 Appendix

3.A Comparison of indicators values from the correlational and
spectral analyses

System Indicator Mangin (1984) Cinkus et al. (2021)

Aliou
Memory E�ect (days) 4 5
Regulation time (days) 14 11

Baget
Memory E�ect (days) 15 18
Regulation time (days) 22.5 24

Table 3.2: Comparison of indicators values from the correlational and spectral analyses between
the original publication of Mangin (1984) and recent work of Cinkus et al. (2021) � calculated
with KarstID. The exact time series used by Mangin (1984) are unavailable so di�erent � and
more recent � time series were used by Cinkus et al. (2021).
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Introduction to Part 2

This part aims to address the second, third and fourth research questions of the thesis (see
ii., iii. and iv.) and is dedicated to the improvement and evaluation of the performance
of lumped parameter models in karst hydrology. The main research questions addressed
in this part are as follows:

i. On which aspect can one-dimensional models be further improved?

ii. Are elaborate objective functions appropriate for karst systems and do they improve
model calibration?

iii. How to evaluate a model simulation in a purposeful and insightful way?

iv. Can performance criteria be trusted for the calibration and evaluation of
hydrological models?

v. What are the advantages and drawbacks of ANN and reservoir models in
karst hydrology?

Chapter 4 introduces newly developed features implemented in the KarstMod platform
version 3.0. Improvements in one-dimensional lumped parameter models are achieved
through better-suited input data and more sophisticated objective functions for calibra-
tion. New evaluation methods are proposed to assess various relevant aspects of the
simulations.

Chapter 5 proposes a critical evaluation of several performance criteria including the
Kling-Gupta E�ciency (KGE) and its variants. It shows how performance criteria, when
based on relative parameters, can be misleading about the performance of a simulation.
The aim is to raise awareness among modellers and promote a careful use of performance
criteria for the evaluation of hydrological model performance.

Chapter 6 presents a comparison of the ANN and reservoir modelling approaches
in karst hydrology. Considering several karst systems in di�erent contexts, the study
details the advantages and drawbacks of each approach with respect to input data, system
characterisation, method limitations and model results.
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Chapter 4

Improving model relevance: input data

and performance criteria

We propose an updated version of KarstMod, an adjustable platform dedicated to lumped
parameter rainfall-discharge modelling of karst aquifers. KarstMod provides a modular,
user-friendly modelling environment for educational, research and operational purposes.
It also includes numerical tools for time series analysis, model evaluation and sensitivity
analysis. The modularity of the platform facilitates common operations related to lumped
parameter rainfall-discharge modelling, such as (i) set up and parameter estimation of a
relevant model structure, and (ii) evaluation of internal consistency, parameter sensitivity
and hydrograph characteristics. The updated version now includes (i) external routines to
better consider the input data and their related uncertainties, i.e. evapotranspiration and
solid precipitation, (ii) enlargement of multi-objective calibration possibilities, allowing
more �exibility in terms of objective functions as well as observation type, and (iii)
additional tools for model performance evaluation including further performance criteria
and tools for model errors representation.

This work has resulted in the updated version 3.0 of KarstMod (available online on
the SNO KARST website) and in a scienti�c article, currently under review in Hydrology
and Earth System Sciences (Sivelle et al., 2023).

Important note: The preprint of the article presented in this chapter was
written by Vianney Sivelle. As second author, my contributions include mod-
ule development, as well as the review and editing of various parts of the
manuscript.

Article:
Sivelle, V., Cinkus, G., Mazzilli, N., Labat, D., Ar�b, B., Massei, N., Cousquer,

Y., Bertin, D., and Jourde, H.: Improvement of the KarstMod modeling platform for
a better assessment of karst groundwater resources, Hydrol. Earth Syst. Sci., 1�26,
https://doi.org/10.5194/hess-2023-17, 2023.
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4.1 Introduction

Karst systems consist of heterogeneous aquifers characterised with the co-existence of
three types of porosity: (i) inter-granular porosity, (ii) fracture porosity and (iii) large
voids and conduits (Palmer, 1991) characterised by contrasted hydrodynamic properties.
The existence of surface karst features such as shaft or swallow hole often leads to con-
centrated point-source recharge towards karst conduits in addition to the more common
homogeneous di�use recharge over the catchment. It also implies that �ow regimes can
be either laminar or turbulent. Karst aquifers constitute an essential source of drinking
water for about 9.2 % of the world population (Stevanovi¢, 2019) and it is estimated
that one-quarter of the world population depends on freshwater from karst aquifers (Ford
and Williams, 2007). Karst aquifers contain an important volume of freshwater while
only 1 % of its annually renewable water is used for drinking water supply (Stevanovi¢,
2019). Karst groundwater thus represents a unique opportunity to limit the increasing
imbalance between growing demand and limited freshwater resource (Bierkens and Wada,
2019; Wada et al., 2016) in the present context of global change. However, karst aquifers
are also particularly vulnerable to potential source of contamination, including emergent
contaminants (Luka£ Reberski et al., 2022), residues of phyto-sanitary products (Lorette
et al., 2022) and wastewater (Doummar et al., 2022). Understanding the functioning
of karst aquifers and developing operational tools to predict the evolution of freshwater
resources is therefore a major challenge for the hydrological science community (Blöschl
et al., 2019). Such tools are also required for a better assessment of groundwater vulner-
ability as well as sustainable management of the groundwater resources (Elshall et al.,
2020).

KarstMod is an adjustable modelling platform (Mazzilli et al., 2019) dedicated to
lumped parameter rainfall-discharge modelling allowing for (i) simulation of spring dis-
charge, piezometric head and surface discharge, (ii) hydrodynamic analysis of the internal
�uxes considered in the model, (iii) model performance evaluation and parametric sen-
sitivity analysis. In this paper, we present the new features incorporated in KarstMod:
(i) external routines to better consider the input data and their related uncertainties,
i.e. evapotranspiration and solid precipitation, (ii) enlargement of multi-objective cali-
bration possibilities, allowing more �exibility in terms of objective functions as well as
observation type with the possibility to include surface water discharge in the calibra-
tion procedure and (iii) model performance evaluation, including additional performance
criteria as well as additional tools for model errors representation such as the diagnostic
e�ciency plot (Schwemmle et al., 2021). Also, we present two cases studies to illustrate
how KarstMod is useful in the framework of the assessment of karst groundwater resources
and its sensitivity to groundwater abstraction. Section 4.2 is devoted to the presentation
of the background and motivations to improve the functionalities of the platform while
section Section 4.3 presents the main features of KarstMod. Section 4.4 illustrates the
application of rainfall-discharge modelling using KarstMod within the Touvre (western
France) and the Lez (southern France) karst systems, which both constitute strategic
fresh water resources and ensure drinking water supply.
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4.2 Background and motivations

4.2.1 Challenges in karst groundwater resources

Karst aquifers are a�ected by the combination of di�erent components of global change
such as (i) e�ects of climate change which are particularly pronounced in the Mediter-
ranean area (Dubois et al., 2020; Nerantzaki and Nikolaidis, 2020), (ii) increasing ground-
water abstraction (Labat et al., 2022), as well as (iii) changes in land cover land use (Bit-
tner et al., 2018; Sarrazin et al., 2018). Therefore, the assessment of karst groundwater
resources vulnerability in the present context requires operational tools for estimating
the sustainable yield of karst aquifers but also to predict the impacts of climatic or an-
thropogenic forcing on groundwater resources in the long term (Sivelle et al., 2021). In
order to address these issues, di�erent modelling approaches have been developed (Jean-
nin et al., 2021) such as, among others, fully-distributed models (Chen and Goldscheider,
2014), semi-distributed models (Doummar et al., 2012; Dubois et al., 2020; Ollivier et al.,
2020), and lumped parameter models (Mazzilli et al., 2019) including semi-distributed
recharge (Bittner et al., 2018; Sivelle et al., 2022a). Among these, lumped parameter
models are recognised as major tools to explore the ability of conceptual representations
to explain observations in karst systems (Duran et al., 2020; Frank et al., 2021; Poulain
et al., 2018; Sivelle et al., 2019) and for managing karst groundwater resources (Cousquer
and Jourde, 2022; Labat et al., 2022; Sivelle and Jourde, 2021; Sivelle et al., 2021).

4.2.2 Challenges in lumped parameter modelling in karst hydrol-
ogy

Lumped parameter models consist of a functional approach that analyses a hydroge-
ological system at the catchment scale and describes the transformation from rainfall
into discharge using empirical or conceptual relationships. Therefore, parameter values
or distributions cannot be determined directly from catchment physical characteristics
or in-situ measurements, excepted the discharge coe�cient to the spring that can be es-
timated on the basis of recession curve analysis. Instead, model parameters values must
be estimated by history-matching. In a general way, rainfall-discharge models in karst
hydrology are calibrated considering spring discharge measurements.

Former studies have shown the interest of considering various type of observations such
as natural hydro-chemical tracers: NO3 and SO4 concentrations (Hartmann et al., 2013),
electrical conductivity (Chang et al., 2021) or excess air (Sivelle et al., 2022b). Indeed,
the consideration of complementary observation data in groundwater model calibration
appears relevant in many applications (Schilling et al., 2019) but requires additional in-
vestigations before a suitable implementation in KarstMod. Therefore, in this paper, we
will focus on the use of hydrodynamics observations only. Indeed, considering piezometric
head variations in lumped parameter rainfall-discharge models may lead to better model
performance (Cousquer and Jourde, 2022; Mazzilli et al., 2011). Nonetheless, the infor-
mation content of the piezometric head time series (directly measured, or derived from
ground-based gravity measurements) for lumped parameter rainfall-discharge models cal-
ibration purpose can be disputable when the available data is not adequate to characterize
the whole catchment due to the important heterogeneity in karst aquifers (Mazzilli et al.,
2013; Sivelle and Jourde, 2021). Also, Cousquer and Jourde (2022) accounted for the sur-
face runo� in a lumped parameter rainfall-discharge model calibration procedure allowing
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to reduce the parametric uncertainties.
Another key point in lumped parameter rainfall-discharge modelling concerns the eval-

uation of the meteorological forcing, i.e. precipitation (P ) and evapotranspiration (ET ).
The transformation of precipitation into recharge and �nally into discharge includes sev-
eral processes with characteristic time covering several orders of magnitude (Blöschl and
Sivapalan, 1995). Thus, the temporal resolution of the hydrological model must be suit-
able in the range of time and space scale where the physical phenomenons take place.
Coupling hydrological models at multiple temporal resolutions can provide a better model
consistency (Sivelle et al., 2019) since the transfer function in karst aquifers may present
short response time. Also, errors in rainfall time series can signi�cantly a�ect model pa-
rameters and structure (Oudin et al., 2006). Finally, the response of karst spring discharge
is sensitive to energy and water �uxes within the soil-vegetation-atmosphere continuum
as well as changes in climatic conditions (Hartmann et al., 2017). Bittner et al. (2021)
computed several models to evaluate the �uxes related to interception, evapotranspira-
tion and snow process. The results show signi�cant uncertainties related to input data as
well as potential compensation between the various uncertain processes. In some cases,
snow melt is a controlling factor in the water balance (Doummar et al., 2018a; Liu et al.,
2021), thus a suitable snow melt estimation is required to improve hydrological model
performance (Çall� et al., 2022). Therefore, two meteorological modules have been added
to KarstMod: (i) a �snow routine� and (ii) a �PET routine� allowing to better account
for snow and evapotranspiration processes.

4.3 Implementation

The updated version of KarstMod implements additional features to enhance the rainfall-
discharge modelling practices. First, we describe the additional modules (snow and PET
routines) for a better meteorological forcing estimation. Then, we introduce the additional
tools proposed for (i) set up and calibration of the model structure, (ii) model performance
evaluation as well as (iii) uncertainties consideration.

4.3.1 Meteorological modules

4.3.1.a Snow routine

KarstMod allows using either observation-based precipitation time series P [L T-1] or
estimated precipitation time series Psr [L T-1] using a snow routine. The latter is similar
to the one used by Chen et al. (2018) � without the radiation components � which has been
successfully used for improving the simulation of karst spring discharge in snow-covered
karst systems (Chen et al., 2018; Cinkus et al., 2023b). It consists of a modi�ed HBV-
snow routine (Bergström, 1992) for simulating snow accumulation and melt over di�erent
sub-catchments based on altitude ranges (Appendix 4.A). The estimated precipitation
Psr gives the water leaving the snow routine, equivalent to the recharge into the �rst
compartment of the model (compartment E in KarstMod). P ∗

sr for each sub-catchment
is proportional to its surface regarding the complete catchment area. The snow routine
work�ow requires both air temperature T [◦C] and precipitation P [L T-1] time series.
P is considered as snow when T in the sub-catchment is lower than the temperature
threshold Ts. Snow melt starts when the temperature overpasses the threshold according
to a degree-day expression. The snow melt is a function of the melt coe�cient MF and
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the degrees above the temperature threshold Ts. Runo� starts when the liquid water
holding capacity of snow CWH is exceeded. The refreezing coe�cient (CFR) stands for
refreezing liquid water in the snow when snow melt is interrupted (Bergström, 1992). The
output of the snow routine consists of a redistributed precipitation time series Psr. The
four parameters of the snow routine (i.e. Ts, MF , CWH and CFR) can be considered
in the parameter estimation procedure as well as sensitivity analysis.

4.3.1.b PET routine

Evapotranspiration in KarstMod can be tackle in four di�erent ways (Figure 4.1):

(a) E�ective precipitation time series (Peff ) can be preprocessed by user (Eq. 4.1) and
the evapotranspiration �ux is not activated in the model structure selection window
in KarstMod. Therefore, Peff is given through the P time series in the input data
�le.

Peff = P − ETa (4.1)

where Peff is e�ective precipitation [L T-1], P is precipitation [L T-1] and ETa is
user-de�ned actual evapotranspiration [L T-1] computed by observation-based data
or external model.

(b) User de�ned potential evapotranspiration (PET ) can be given as input in KarstMod
for the evapotranspiration time series. Compartment E stands for a soil and epikarst
storage zone, where water is available for actual evapotranpiration (ETa), �ows to
lower level of the model structure or out�ow as surface discharge losses. Using Emin,
user can simulate water holding capacity and non-linear behavior of karst recharge.

(c) User-de�ned actual evapotranspiration (ETa) can be given as input data in Karst-
Mod for evapotranspiration time series instead of potential evapotranspiration.
KarstMod computes e�ective precipitation by limiting the evapotranspiration to
water content available in compartment E; calculated actual evapotranspiration
can then be lower than user's input ETa.

(d) The new feature in KarstMod is the PET routine which estimates the potential
evapotranspiration based on the Oudin's formula (Oudin et al., 2005) (Eq. 4.2). It
needs a temperature time series and two parameters to be estimated, which can be
considered in the parameter estimation procedure as well as sensitivity analysis.

PET =
Re

λ.ρ
× T +K2

K1
if T +K2 > 0 else PET = 0 (4.2)

where Re is the extraterrestrial radiation [MJ L-2 T-1] depending only on latitude
Lat and Julian day, λ is the latent heat �ux (taken equal to 2.45 MJ M-1), ρ is
the density of water [M L-3] and T is the mean daily air temperature [◦C], which
is therefore a single function of the Julian day for a given location. K1 [◦C] and
K2 [◦C] are constants to adjust over the catchment for rainfall-discharge model,
which both can be considered in the parameter estimation procedure and sensitivity
analysis.
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Figure 4.1: The four ways to account for evapotranspiration in KarstMod (P is precipitation,
ETa is actual evapotranspiration, PET is potential evapotranspiration, PETOudin is Karst-
Mod's computed potential evapotranspiration with Oudin's formula).

4.3.2 Set up and calibration of the model structure

The modular structure proposed in KarstMod is based on a widely used conceptual model
which separates karst aquifers into an in�ltration zone and a saturated zone. Based on
this conceptual representation, the platform o�ers four compartments organised as a
two-level structure: (i) compartment E (higher level) and (ii) compartments L, M and C
(lower level). The modular structure proposed in KarstMod is based on a widely used
conceptual model which separates karst aquifers into an in�ltration zone and a saturated
zone, or low and quick �ows through the unsaturated and saturated zones. Based on
this conceptual representations, the platform o�ers four compartments organised as a
two-level structure: (i) compartment E (higher level) and (ii) compartments L, M and
C (lower level). A priori, the higher-level stands for the in�ltration zone or the soil and
epikarst. At the lower level, compartments L, M, and C stand for the di�erent sub-
systems of the saturated zone, or for low and quick �ows of the whole hydrosystem. The
various model structures and their governing equations are presented in Mazzilli et al.
(2019) and Mazzilli et al. (2023).

The user can activate (or deactivate) the various compartments (E, L, M and C),
the �uxes and their activation threshold as well as the exponent of the discharge law α
(in case of non-linear discharge law such α ̸= 1). Figure 4.2 gives an example of model
structure in KarstMod where the solid and faded colors represent the activated and the
inactivated features respectively. The user must provide the warm-up, calibration and
validation periods. The warm-up period must be set in order to be independent from
initial conditions to avoid bias in the parameter estimation procedure (Mazzilli et al.,
2012). Then, a calibration period (i.e. the period in which the parameter are estimated
to reduce the predictive errors) and a validation period (i.e. period separated from the
calibration period) can be de�ned to run the split sample test procedure (Kleme², 1986).
For calibration purpose, KarstMod proposes several widely used performance criteria
ϕ: the Pearson's correlation coe�cient rp (Freedman et al., 2007), the Spearman rank
correlation coe�cient rs (Freedman et al., 2007), the Nash-Sutcli�e E�ciency NSE (Nash
and Sutcli�e, 1970), the volumetric error VE (Criss and Winston, 2008), the modi�ed
balance error BE (Perrin et al., 2001), the Kling-Gupta E�ciency KGE (Gupta et al.,
2009) and a non-parametric variant of the Kling-Gupta E�ciency KGENP (Pool et al.,
2018). To compute a multi-objective calibration procedure the user can create his own
objective function Φ as a weighted sum of several objective functions:
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Φ =
N∑
i=1

ωi × ϕi(U) (4.3)

where ω is the weight a�ected to the objective function ϕ(U) with
∑

wi = 1 and U
a general notation for the observations used for parameter estimation purpose. In the
KarstMod modelling platform U corresponds to either spring discharge Qs, piezometric
head measurements Z (available for compartments E, L, M and C) or surface water dis-
charge Qloss from compartment E. Also, the objective function ϕ can be computed on
transformed U to avoid high water level bias on quadratic error. The following transfor-
mation are available in KarstMod: 1/U ,

√
U , 1/

√
U . Therefore, the user can use any

combination of the objective function ϕ, observations U and variable transformations.
Depending on the modelling purpose, the user must refer to the literature to de�ne the
suitable objective function (Bennett et al., 2013; Ferreira et al., 2020; Hauduc et al.,
2015; Jackson et al., 2019).

The model is calibrated using a quasi Monte-Carlo sampling procedure with a Sobol
sequence sampling of the parameter space (Sobol, 1976). The procedure consists in
�nding an ensemble of parameter set providing an objective function ϕ greater than the
user de�ned value. The calibration procedure is stopped when either the user-de�ned
maximum duration tmax is reached or the user-de�ned number of parameter set nmax

are collected. KarstMod o�ers a �run� option allowing to run the model for user-de�ned
parameter set, without calibration procedure, and so allowing to investigate �by-hand�
the parameter space and the sensitivity of the model to speci�c parameters.

4.3.3 Model evaluation

The model performance can be evaluated for both the calibration and validation peri-
ods. It allows (i) to ensure the robustness of model predictions, even under changing
conditions (which is a key point for the assessment of climate change impact) and (ii)
to avoid model over-�tting within a speci�c range of hydro-climatic conditions observed
during the calibration period. KarstMod allows the computation of the above mentioned
performance criteria for both calibration and validation periods. Even though the nota-
tion �validation� is disputable such procedure is required to evaluate both explanatory
and predictive dimensions of the model structure (Andréassian, 2022). Then, KarstMod
o�ers an ensemble of numerical tools devoted to (i) check the model consistency, i.e. ex-
planatory dimension of the model (Beven, 2001; Shmueli, 2010), (ii) evaluate the model
performance, i.e. predictive dimension of the model structure.

To check the model consistency, the simulation based on the parameter set that pro-
vides the highest objective function value can be analysed through an ensemble of graphs
such as (i) internal and external �uxes as a function of time, (ii) cumulative volumes
for both observed and simulated time series for spring discharge Qs and surface wa-
ter discharge Qloss, (iii) simulated mass-balance as function of time, (iv) comparison
of observations and simulations for either Qs or Qloss with probability function plots,
auto-correlogram of the spring discharge time series, cross-correlogram of precipitation-
discharge time series.

To evaluate the model performance, KarstMod o�ers a �Model evaluation� panel that
includes several sub-panels, from the left to the right (see the KarstMod Graphical User
Interface screenshot �gure, Figure 4.4):
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� The diagnostic e�ciency DE (Schwemmle et al., 2021) which consists of a diagnostic
polar plot that facilitates the model evaluation process as well as the comparison of
multiple simulations. The DE accounts for constant, dynamics and timing errors,
and their relative contribution to the model errors. Also, the decomposition of the
errors between the periods of high �ows and low �ows allows to better investigate the
model bias, as well as to provide critical evaluation for impact studies, particularly
for the assessment of climate change impacts. Indeed, the accurate evaluation of
low �ow periods (in terms of frequency, intensity and duration) becomes more and
more crucial for groundwater resource variability assessment.

� The available objective functions ϕ are presented as a radar chart which consists of
a polygon where the position of each point from the center gives the value of the
performance criteria. The closer the point is to the outside of the radar chart, the
better the model performs. The radar chart is made for both calibration and vali-
dation periods and for each of the calibration variables considered in the modelling
(Qs, ZA

obs with A for either E, M, C or L compartments and Qloss).

� The KGE (Gupta et al., 2009) consists of a diagonal decomposition of the
NSE (Nash and Sutcli�e, 1970) to separate Pearson's correlation coe�cient rp,
representation of bias βKGE, and variability αKGE. Thus, the KGE is comparable
to multi-objective criteria for calibration purpose (Pechlivanidis et al., 2013). The
sub-panel o�ers (i) a bi-plot of the three KGE's components and (ii) a radar plot
visualisation of the KGE's components, allowing to identify potential counterbal-
ancing errors according to these di�erent components (Cinkus et al., 2023a). The
two above mentioned plots also include the decomposition of the KGENP (Pool et
al., 2018) in terms of Spearman's rank correlation coe�cient rs, representation of
bias βKGENP

and non-parametric variability αKGENP
.

4.3.4 Dealing with uncertainties

Moges et al. (2021) summarise the various source of uncertainties in hydrological mod-
els including structural and parametric uncertainties as well as uncertainties related to
input data and observations. The latter concern both the input (i.e. precipitation and
evapotranspiration) and the output (i.e. discharge) of the modeled systems. Many ref-
erences are devoted to the uncertainties related to input data and observations. As an
example, Westerberg et al. (2022) include information about the discharge uncertainty
distribution in the objective function and perform better discharge simulation. Also,
the precipitation error can be dependent on the data time step (McMillan et al., 2011)
and could impact the hydrological model performance (Ficchì et al., 2016). KarstMod
allows to perform hydrological modelling on both daily and hourly temporal resolutions,
allowing to account for uncertainty related to the data time step. Lumped parameter hy-
drological models generally consider meteorological time series representative of a whole
catchment, which may require some preprocessing, particularly for snow processes since
it can have a strong in�uence on �ow dynamics. Thus, KarstMod includes variables re-
lated to both the snow routine (i.e. the redistributed precipitation time series Psr) and
the PET routine (i.e. estimated potential evapotranspiration PET ) in the parameter
estimation procedure. This allows to investigate the sensitivity of the �ow simulation to
these input data, when using snow and PET routines. Nonetheless, KarstMod does not
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include features to investigate the impact of observation uncertainties on the parameter
estimation.

As many environmental problems, parameter estimation in rainfall-discharge mod-
elling consists mainly in ill-posed problems, i.e. the modelling encounters issues about
the unicity, identi�ability and stability of the problem solution (Ebel and Loague, 2006).
As a consequence, several representations of the modeled catchment may be considered
as equally acceptable (Beven, 2006). Knoben et al. (2020) evaluate the performance of
36 daily lumped parameter models over 559 catchments and show that between 1 and up
to 28 models can show performance close to the model structure with the highest perfor-
mance criteria. Such results are widely covered in catchment hydrology (Dakhlaoui and
Djebbi, 2021; Darbandsari and Coulibaly, 2020; Gupta and Govindaraju, 2019; Pandi
et al., 2021; Zhou et al., 2021) but still poorly investigated in karst hydrology. Indeed,
the structural uncertainty impacts on rainfall-discharge modelling in karst hydrology is
not properly evaluated whereas many studies consider several hydrological model struc-
ture to include structural uncertainty in �ow simulation (Hartmann et al., 2012; Jiang
et al., 2007; Jones et al., 2006; Sivelle et al., 2021). KarstMod includes more than 50
combinations of the various compartments as well as various compartments' model (i.e.
compartment with linear or non-linear discharge law and compartment with in�nite char-
acteristic time) and allows a quick implementation of the various model structures. The
user can easily manage to start the modelling with one single compartment and gradually
move to more complex model structure with up to 4 compartments, 5 �uxes connected
to the spring, 4 internal �uxes and 1 �ux running out of the system.

Considering each model structure, parametric equi�nality can be investigated using
(i) dotty plots of the values of the objective function against the parameter values, (ii)
dotty plot of the values of the performance criteria used to de�ne the aggregated objective
function, and (iii) the variance-based, �rst-order Si and total ST i sensitivity indexes for
the model parameters. Details concerning the computation of sensitivity indexes within
KarstMod are given in Mazzilli et al. (2019) and Mazzilli et al. (2023).

4.4 Case studies

To illustrate KarstMod application and the use of the above presented functionalities
for the assessment of karst groundwater resources, we propose two case studies: (i) the
Touvre karst system and (ii) the Lez karst system. Both karst systems consist of strategic
freshwater resources for drinking water supply (DWS), for the city of Angoulême (western
France) and Montpellier (southern France) respectively.

4.4.1 The Touvre karst system (La Rochefoucauld)

The Touvre karst system is a binary karst system where the in�ltration consists of (i) a
delayed in�ltration of e�ective rainfall on karstic recharge area and (ii) a direct in�ltration
of surface water from the Tardoire, Bandiat, and Bonnieure rivers. These lasts are surface
stream �ow within metamorphic rocks that partly in�ltrate to subterranean at the contact
with sedimentary formations, mainly composed of Middle to Upper Jurrasic limestones.
The springs of the Touvre, located 7 km east of Angoulême (western France), have three
main outlets (the Bouillant, the Dormant and the Font de Lussac) and a secondary outlet
(the Lèche) (Labat et al., 2022). In the following, the discharge of the four outlets are
accumulated and named Touvre spring.
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The Touvre karst system constitutes a strategic freshwater resource for drinking water
supply (DWS) of Angoulême, with around 110,000 inhabitants, but also contributes to
water supply for industry and agriculture. In 2015, there were 84 pumping wells over
the karstic impluvium of the Touvre karst system, and around 100 more in the Tardoire,
Bandiat, and Bonnieure rivers catchment. Based on the data provided by the Adour-
Garonne Water Agency, the annual groundwater abstraction for agriculture represents
4.6 Mm3 whereas annual groundwater abstraction for DWS represents 1.1 Mm3 over
the karstic impluvium of the Touvre karst system. On the three rivers catchment (out
of the karstic impluvium), the annual groundwater abstraction represents 2.5 Mm3 for
agriculture and 3.3 Mm3 for DWS, mainly through river intakes or alluvial groundwater
abstraction. The total annual volume of abstracted groundwater in the area represents
around 5 % of the annual volume of transit at the Touvre spring. This is quite low
compared with karst aquifers in France exploited for their groundwater resource, such as
the Lez spring (Jourde et al., 2014) and the Oeillal's spring karst catchment (Sivelle et al.,
2021), where the annual groundwater abstraction volume represents respectively 50 % and
15 % of annual volume of transit at the spring. Therefore, the Touvre catchment seems
not to be over exploited at the moment but the impact of groundwater abstraction should
be addressed in the actual context of global change to ensure a sustainable management
of this strategic fresh water resource.

The area is characterised by an ocean in�uenced climate with a mean annual precipi-
tation around 800 mm distributed over 255 rainy days. The estimation is performed with
Thiessen polygon methods based on eleven meteorological stations over the area (Labat
et al., 2022). The mean annual potential evapotranspiration is around 770 mm according
to the Penman-Monteith estimation provided by the french meteorological survey (Météo-
France). The Touvre spring discharge shows a signi�cant variability ranging from 3 m3 s-1

to 49 m3 s-1 with a coe�cient of variation around 0.46 (Figure 4.3b). The surface stream
�ow rates for the Bonnieure, Bandiat and Tardoire rivers are concentrated within the
autumn and winter periods. During the summer period, the discharge in the three rivers
are very low (Figure 4.3c). The more signi�cant groundwater abstraction is performed
during the summer period, while the Touvre spring discharge reaches its lowest values
within the late summer and early autumn periods (Figure 4.3c, Figure 4.3d).

The objective of the hydrological modelling is to assess the impact of groundwater
abstraction on spring discharge, and more particularly during low �ow periods (Labat
et al., 2022). So, the calibration is performed according to the KGENP that improve the
simulations during mean and low-�ow conditions using the Spearman rank correlation
due to it insensitivity to extreme values (Pool et al., 2018). The sampling procedure is
set up to �nd nobj = 5000 simulations with KGENP greater than 0.9. Afterwards the
model is evaluated using the various features proposed in KarstMod (Figure 4.4). The
diagnostic e�ciency plot (Figure 4.4a) testi�es of several elements: (i) the model seems to
slightly overestimate high �ow and underestimate low �ow, (ii) the timing error is about
0.9, testifying of suitable �ow dynamics in the model, (iii) low �ow periods contribute
more to the model errors, and (iv) there is no o�set in the simulated spring hydrograph.
The radar chart (Figure 4.4b) shows a good equilibrium between the various objective
functions which values are greater than 0.8, excepted for the NSE criteria (NSE = 0.75).
It is the consequence of the design of this criteria that tends to overweight the errors
during �oods. Here the NSE value still greater than 0.7 and testi�es of a "very good" �t
according to D. N. Moriasi et al. (2007). Finally, the decomposition of the KGE (Figure
4.4c, Figure 4.4d) shows rp = 0.91, α = 1.15 and β = 1.02 testifying of accurate dynamics
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Figure 4.2: Screenshot of KarstMod with a focus on the panel "Model structure" for the Touvre
karst system. The solid lines correspond to the activated �uxes whereas the faded color lines
are not activated. QM

p. and QC
p. stand for groundwater abstraction that a�ects compartments M

and C respectively while QM
s. and QC

s. stand for sinking �ow that a�ects compartments M and
C respectively.
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Figure 4.3: Daily time series for the Touvre system: a) precipitation (P ) and potential evapo-
transpiration (PET ), b) observed and simulated karst spring discharge (QTouvre obs and QTouvre

sim), c) river stream�ow discharge (QBonnieure, QBandiat, QTardoire), d) and e) groundwater ab-

straction discharge (Qagriculture
p. , Qdomestic

p. ).
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Figure 4.4: Screenshot of KarstMod with a focus on the sub-panel "Model evaluation". Appli-
cation for the model evaluation on the Touvre system: (a) diagnostic e�ciency plot (Schwemmle
et al., 2021), (b) radar chart of the objective functions, (c) bi-plot of the KGE's (square) and
KGENP's (triangle) components, and (d) radar chart of the KGE's components.

and low bias, but slightly too high variability.

4.4.2 The Lez spring

The Lez spring (southern France) consists of the main outlet of a karst system encom-
passed in the North Montpellieran Garrigue hydrogeological unit delimited to the west
by the Herault river, and to the north and east by the Vidourle river. The geology in the
area corresponds to the Upper Jurassic layers separated by the Corconne-Matelle fault
(oriented N30◦), leading to two main compartments in the aquifer (Bérard, 1983; Clauzon
et al., 2020). The karst aquifer is uncon�ned in the western compartment and is locally
con�ned in the eastern compartment. The Lez spring is located about 15 km north of
Montpellier. It is of Vauclusian-type with an over�ow level at 65 m asl, and a maximum
discharge of approximately 15 m3 s-1. The area is characterised by a typical Mediter-
ranean climate with dry summers and rainy autumns. Over the 2009�2019 period, the
mean annual precipitation is around 900 mm distributed over 133 rainy days (estimation
with Thiessen's polygon methods based on four meteorological stations over the area:
Prades-le-Lez, Saint-Martin-de-Londres, Sauteyrargues and Val�aunès), a mean annual
potential evapotranspiration is around 900 mm according to the estimation based on
Oudin's formula with the temperature measured at Prades-le-Lez station while the mean
annual evapotranspiration is around 450 mm (eddy covariance �ux-station of Puéchabon).

Since 1854, the Lez spring supplies the drinking water to Montpellier city and the
surroundings. It currently constitutes the main fresh water resource for around 350,000
people in the area. The present water management scheme allows pumping at higher rates
than the natural spring discharge during low �ow periods, while supplying a minimum
discharge rate (∽ 0.23 m3 s-1) into the Lez river to ensure ecological �ow downstream,
and reducing �ood hazards via rainfall storage in autumn (Avias, 1995; Jourde et al.,
2014). The pumping plant was built in 1982 with four deep wells drilled to intercept the
karst conduit feeding the spring, 48 m below the over�ow level of the spring. Pumping
in these wells allows up to 1.8 m3 s-1 to be withdrawn under low �ow periods (with an
authorized maximum drawdown of 30 m), while the average annual pumping �ow rate is
about 1.010 m3 s-1 (over the 2008�2019 period). Due to the pumping management of the
aquifer, which supplies about 30 to 35 Mm3 of water per year to the metropolitan area
of Montpellier, the discharge at the Lez spring is often low or nil.
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In the present context of global change, Mediterranean karst systems already show sig-
ni�cant decrease in spring discharge (Doummar et al., 2018b; Dubois et al., 2020; Fiorillo
et al., 2012; Hartmann et al., 2012; Nerantzaki and Nikolaidis, 2020; Smiatek et al., 2013)
which could be aggravated with groundwater abstraction (Sivelle et al., 2021). The Lez
spring is strongly exposed to global change impact: (i) the Mediterranean area is iden-
ti�ed as a climate change hot-spot (Di�enbaugh and Giorgi, 2012) where the projected
warming spans 1.83�8.49◦C according to CMIP6 and 1.22�6.63◦C according to CMIP5
during the summer period (Cos et al., 2022), and (ii) the water management scheme will
have to adapt to the future need in drinking water for the growing population in the
area as well as changes in the fresh water consumption practice (e.g. water use restric-
tion order). Therefore, a sustainable water management plan for the Lez spring requires
a good appreciation of the hydrological functioning as well as operational hydrological
model to properly address impacts studies. In this framework, KarstMod allows choosing
and calibrating a suitable model structure. This constitutes a �rst step for global change
impact study that requires prediction tools to simulate the aquifer response to various
external forcing.

Figure 4.5 shows the model structure for the Lez karst catchment (Mazzilli et al., 2011)
that consists of three compartments organised in two levels. The upper level corresponds
to compartment E and represents the unsaturated part of the system, including a soil
water holding capacity Emin and a discharge lost from the compartment Qloss. The
compartment E is exposed to precipitation P and evapotranspiration ET and discharge
towards the lower level of the model structure starts when the water level exceeds the
water holding Emin. The lower level consists of two inter-connected compartments M
and C allowing to reproduce the lateral exchanges, denoted QMC , between transmissive
function (compartment C) and capacitive function (compartment M) of the karst aquifer.
Both M and C compartments are considered bottomless, allowing to reproduce period of
non-over�ow at the Lez spring when the mean water level in the aquifer stands below 65
m a.s.l., mainly during summer periods due to pumping in the karst conduit. Figure 4.6a
and Figure 4.6b show the various daily time series required for the hydrological modelling
of the Lez karst system (i.e. P , ET and Qpump).

The available hydrological observations for model calibration consist of spring dis-
charge QS, piezometric head measurement ZC at the Lez spring and surface water dis-
charge from secondary outlets and intermittent springs Qloss (Figure 4.6c, Figure 4.6d
and Figure 4.6e). The surface water discharge is estimated as the di�erence in discharge
measured at the Lavalette station (15 km downstream the Lez spring) and the discharge
measured at the Lez spring, as performed in Cousquer and Jourde Cousquer and Jourde
(2022). Therefore, Qloss includes all the water loss from the epikarst within several sea-
sonal over�owing springs (i.e. Lirou spring, Restinclière spring and Fleurette spring).
KarstMod allows to easily handle with the various parameter estimation depending on
the considered hydrological observations (i.e. spring discharge, piezometric head mea-
surement, and surface discharge from the epikarst). The sampling procedure is set up to
�nd nobj = 5000 simulations with an aggregated objective function Φ greater than 0.6.
As suggested by Cousquer and Jourde (2022), using complementary hydrological observa-
tions in addition to the spring discharge allows to reduce the parametric uncertainties in
the modelling of the Lez spring discharge. Therefore, using a multi-objective calibration
procedure implemented in KarstMod, the objective function is build such as:

Φ =
1

3
×NSE(Qs) +

1

3
×NSE(ZC) +

1

3
×NSE(Qloss) (4.4)



98 4. Improving model relevance: input data and performance criteria

Figure 4.5: Screenshot of KarstMod with a focus on the panel "Model structure" for the Lez
karst system. The solid lines correspond to the activated �uxes whereas the faded color lines are
not activated. Qloss stands for the surface discharge from the epikarst compartment, QC

p. stands
for groundwater abstraction that a�ects compartments C while ZC stands for piezometric head
measurements considered as representative of the compartment C.
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Figure 4.6: Daily time series for the Lez system: a) precipitations (P ) and evapotranspiration
(ET ), b) groundwater abstraction (Qpump), c) observed and simulated karst spring discharge
(QLez obs and QLez sim), d) observed and simulated piezometric head (ZLez obs and ZLez sim),
e) surface water discharge (Qloss) and f) simulated exchanges �uxes between compartment M
and C (QMC).
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Figure 4.7: Screenshot of KarstMod with a focus on the sub-panel "Model evaluation". Ap-
plication for the model evaluation on the Lez system. The panel is composed such as (i) each
row correspond to the variable for calibration (QS , Qloss and ZC) and (ii) each columns corre-
sponds to (a) diagnostic e�ciency plot, (b) radar plots, one should note that VE and BE are
not computed according to the piezometric time series, (c) decomposition of KGE (square) and
KGENP (triangle) and (d) radar plot of the KGE decomposition.

The calibration procedure leads to an optimal Φ = 0.65 decomposed such as ϕ Qs =
0.70, ϕ ZC = 0.57 and ϕ Qloss = 0.70 within the calibration period. Model performance
evaluation on the validation period shows suitable model performance for both spring
discharge and piezometric with ϕ Qs = 0.54 and ϕ ZC = 0.79, but poor model performance
according to the surface water discharge with ϕ Qloss = 0.36. Afterwards the results can
be evaluated using the various features proposed in KarstMod (Figure 4.7). The results
show higher model performances for QS and ZC than for Qloss. The model performance
appears quite satisfactorily concerning the variable of interest to assess the impact of
water management scheme on the groundwater resources within the Lez aquifer.

The simulated exchanges �uxes between compartment M and C (Figure 4.6f) show
consistent dynamics with the observations. Indeed, during periods of high �ow the ex-
change �uxes are oriented from the compartment C to compartment M (i.e. QMC < 0).
Signi�cant precipitation events lead to rapid rises in piezometric head, saturation of the
transmissive part of the aquifer and �nally the establishment of over�ow at the Lez spring
(i.e. QS > 0) as well as the over�owing springs (i.e. Qloss > 0). Conversely, during the
periods of low piezometric head (i.e. both QS and Qloss are nil), the simulated exchange
�uxes are oriented from compartment M to compartment C (i.e. QMC < 0). Such �ow
exchanges between capacitive and transmissive part of karst aquifers has been evidenced
using KarstMod on other karst environment (Duran et al., 2020; Frank et al., 2021; Labat
et al., 2022; Sivelle et al., 2019).

4.5 Conclusions

KarstMod consists in a useful tool for the assessment of karst groundwater variability
and sensitivity to anthropogenic pressures (e.g. groundwater abstraction). This tool is
devoted to promote good practices in hydrological modelling for learning and occasional
users. KarstMod requires no programming skills and o�ers a user-friendly interface al-
lowing any user to easily handle hydrological modelling. As a �rst step, KarstMod can
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be used to explore the ability of conceptual representations to explain observations such
as discharge or piezometric heads in karst systems. A more advanced use of KarstMod
is also possible as it provides a complete framework for (i) primary analysis of the data,
(ii) comparison of various model structures, (iii) evaluation of the hydrological model
performance as well as (iv) �rst assessment of parametric uncertainties. The research
community increasingly uses KarstMod to address various challenges in karst hydrology,
from understanding hydrological processes to practical applications such as evaluation
of groundwater management plan, or even assessment of the impact of groundwater ab-
straction and climate changes on karst groundwater resources.

Future developments of KarstMod might include: (i) the consideration of land cover
land use to consider the spatial heterogeneity in recharge processes (Sivelle et al., 2022a),
(ii) the simulation of electrical conductivity (Chang et al., 2021), major ions concentra-
tion (Hartmann et al., 2013) or natural tracer such as air excess (Sivelle et al., 2022b),
and (iii) the assessment of structural uncertainty (Cousquer, 2022). KarstMod should
tend toward an open-source research software to avoid duplication of e�orts in karst hy-
drological modelling. Also, a Python version is required for a better connection with
additional framework for sensitivity analysis such as SAFE toolbox (Pianosi et al., 2015)
and for model calibration procedure such as particle swarm optimization (Kennedy and
Eberhart, 1995; Lee, 2014). Finally, the development of the KarstMod modelling plat-
form will bene�t better transparency and repeatability with an open-source approach, as
observed on other numerical tools (Pianosi et al., 2020).
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4.6 Appendix

4.A Snow routine

P ∗
sr (liquid water leaving the routine) is estimated for each time step t based on the

precipitation P and air temperature T time series for each sub-catchment (Figure 4.8).
The total snow routine output Psr is calculated as a weighted sum of P ∗

sr time series:

Psr =
N∑
i

P ∗
sri × pi (4.5)

where pi is the proportion of the sub-catment i regarding the complete catchment
area such as

∑
pi = 1, and N is total number of sub-catchments.

The snow routine requires four parameters, whose values are the same for all sub-
catchments: the snowmelt temperature threshold Ts [◦C], the melt factor MF [L T-1

◦C-1], the refreezing factor CFR [-], and the water holding capacity of snow CWH [-].
The snow routine allows estimating P ∗

sr according to Algorithm 4.1.

Figure 4.8: Snow routine work�ow.
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Algorithm 1: Estimating P ∗
sr in sub-catchment

With P ∗
sr = water leaving the routine/recharge to the soil (mm/dt), Ta = active

temperature for snowmelt (◦C), Tn = active temperature for refreezing (◦C), m
= snow melt (mm/dt), rfz = refreezing (mm/dt), v = solid component of
snowpack depth (mm), vl = liquid component of snowpack depth (mm), and dt
= temporal resolution.
for t=1 to tmax do

m[t] = min((MF × Ta[t]), v[t])
rfz[t] = min(CFR×MF × Tn[t], vl[t])
v[t+ dt] = v[t]−m[t] + snow[t] + rfz[t]
if vl[t+ dt] > CWH × v[t+ dt] then

P ∗
sr[t] = vl[t+ dt]− CWH × v[t+ dt]

vl[t+ dt] = CWH × v[t+ dt]
else

P ∗
sr[t] = 0

end

end
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Chapter 5

Critical evaluation of performance

criteria

Performance criteria play a key role in the calibration and evaluation of hydrological
models and have been extensively developed and studied, but some of the most used cri-
teria still have unknown pitfalls. This study set out to examine counterbalancing errors,
which are inherent to the Kling-Gupta E�ciency (KGE) and its variants. A total of nine
performance criteria � including the KGE and its variants, as well as the Nash-Sutcli�e
E�ciency (NSE) and the modi�ed index of agreement (d1) � were analysed using syn-
thetic time series and a real case study. Results showed that, assessing a simulation,
the score of the KGE and some of its variants can be increased by concurrent over- and
underestimation of discharge. These counterbalancing errors may favour bias and vari-
ability parameters, therefore preserving an overall high score of the performance criteria.
As bias and variability parameters generally account for 2/3 of the weight in the equa-
tion of performance criteria such as the KGE, this can lead to an overall higher criterion
score without being associated with an increase in model relevance. We recommend using
(i) performance criteria that are not or less prone to counterbalancing errors (d1, modi-
�ed KGE, non-parametric KGE, Diagnostic E�ciency), and/or (ii) scaling factors in the
equation to reduce the in�uence of relative parameters.

This work resulted in a publication in Hydrology and Earth System Sciences (Cinkus
et al., 2023a) and a presentation during EGU22 (Cinkus et al., 2022).

Article:
Cinkus, G., Mazzilli, N., Jourde, H., Wunsch, A., Liesch, T., Ravbar, N., Chen,

Z., and Goldscheider, N.: When best is the enemy of good � critical evaluation of
performance criteria in hydrological models, Hydrol. Earth Syst. Sci., 27, 2397�2411,
https://doi.org/10.5194/hess-27-2397-2023, 2023.
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5.1 Introduction

Hydrological models are fundamental to solve problems related to water resources. They
help characterising hydrosystems (Hartmann et al., 2014), predicting �oods (Jain et al.,
2018; Kau�eldt et al., 2016) and managing water resources (Muleta and Nicklow, 2005).
A lot of research e�orts are thus dedicated to improve the reliability, the robustness
and the relevance of such models. Improvements can be made by working on (i) input
data, (ii) model parameters and structure, (iii) uncertainty quanti�cation, (iv) model
calibration (Beven, 2019), and also (v) appropriate benchmarks for assessing model per-
formance (Seibert et al., 2018). In this study, we focus on the proper use of performance
criteria for calibrating and evaluating hydrological models � an important part that can
easily be overlooked (Jackson et al., 2019).

A performance criterion aims to evaluate the goodness-of-�t of a model to an observed
data. It is generally expressed as a score, for which the best value corresponds to a perfect
�t between predictions and observations. In hydrology, the Nash-Sutcli�e E�ciency
(NSE) (Nash and Sutcli�e, 1970) is still one of the most commonly used criteria (Kling
et al., 2012), although the past decade has seen a gain in popularity of alternatives (Clark
et al., 2021), e.g. the Kling-Gupta E�ciency (KGE) (Gupta et al., 2009). Many authors
have pointed out the inherent limitations of using performance criteria, especially the fact
that a single score metric cannot re�ect all relevant hydrological aspects of a model (Gupta
et al., 2009). The use of a multi-criteria framework is thus often emphasised to quantify
di�erent aspects of a model (Altho� and Rodrigues, 2021; Clark et al., 2021; Gupta
et al., 1998; Jackson et al., 2019; Knoben et al., 2019; Krause et al., 2005; Legates and
McCabe Jr., 1999; Moriasi et al., 2015; Ritter and Muñoz-Carpena, 2013; van Werkhoven
et al., 2009), alongside a scienti�c evaluation of the results (Biondi et al., 2012). Altho�
and Rodrigues (2021), Clark et al. (2021), and Knoben et al. (2019) pointed out that
modellers should carefully think about which aspects they consider the most important
in their hydrological model and how to evaluate them. In relation to the assessment
of model performance, Seibert et al. (2018) argued that the current benchmarks poorly
re�ect what could and should be expected of a model. They suggested to de�ne lower
and upper benchmarks based on the performance of a simple bucket-type model with few
parameters, using the same data set.

Performance criteria also have shortcomings at a distinctive level. A number of studies
have identi�ed several limitations of the NSE: (i) the contribution of the normalised bias
depends on the discharge variability of the basin, (ii) discharge variability is inevitably
underestimated because the NSE is maximised when the variability equals the correlation
coe�cient, which is always smaller than unity, and (iii) mean �ow is not a meaningful
benchmark for highly variable discharges (Gupta et al., 2009; Willmott et al., 2012). The
KGE aims to address these limitations but also has its own issues (Gupta et al., 2009).
Santos et al. (2018) identi�ed pitfalls when using the KGE with a prior logarithmic
transformation of the discharge. Knoben et al. (2019) warned against directly comparing
NSE and KGE scores as the KGE has no inherent benchmark. Clark et al. (2021) and
Ritter and Muñoz-Carpena (2013) showed that NSE and KGE scores can be strongly
in�uenced by few data points, resulting in substantial uncertainties on the predictions.

What is not fully addressed yet is the trade-o� between individual components (Wöh-
ling et al., 2013) and especially the impact of counterbalancing errors induced by bias
and variability parameters, which are integrated in many performance criteria. While
accurate bias and variability are desired aspects of hydrological models, sometimes good
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evaluations may accidentally result from negative and positive values cancelling each
other (Jackson et al., 2019; Massmann et al., 2018). This can be particularly detrimental
to model calibration and evaluation, as it generates an increase in criterion score without
necessarily being associated with a better model relevance. Some performance criteria
naturally address this problem by using absolute or squared error values, but other crite-
ria such as the KGE and its variants do not, as they use relative errors. The aim of this
study is to assess the extent to which criteria scores can be trusted for calibrating and
evaluating hydrological models when predictions have concurrent over- and underesti-
mated values. The in�uence of counterbalancing errors is evaluated on nine performance
criteria including the NSE and KGE. This selection is far being from exhaustive but
includes widely used and recently proposed KGE variants, as well as more traditional
criteria such as the NSE or the modi�ed index of agreement (d1) for comparison purpose.
We �rst use synthetic time series to highlight the counterbalancing errors mechanism.
Second, we show how counterbalancing errors can impair the interpretation of hydrologi-
cal models in a real case study. Finally, we provide some recommendations about the use
of scaling factors and the choice of appropriate performance criteria to nullify or reduce
the in�uence of counterbalancing errors.

5.2 Performance criteria

5.2.1 Parameters description

All the performance criteria considered in this study are based on the same or similar
statistical indicators, which are �rst described to avoid repetition.

We use xo(t) and xs(t) to refer to observed and simulated values of calibration variable
x at a speci�c time step t. r and rs correspond to the Pearson and the Spearman rank
correlation coe�cients (Freedman et al., 2007), respectively.

β is the ratio between the mean of simulated values µs and the mean of observed
values µo:

β =
µs

µo

(5.1)

βn corresponds to the bias (mean error) normalised by the standard deviation of
observed values σo:

βn =
µs − µo

σo

(5.2)

α is the ratio between the standard deviation of simulated values σs and the standard
deviation of observed values σo:

α =
σs

σo

(5.3)

γ is the ratio between the coe�cient of variation of simulated values (CVs = σs/µs)
and the coe�cient of variation of observed values (CVo = σo/µo):

γ =
CVs

CVo

(5.4)
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Brel and |Barea| (Schwemmle et al., 2021) are based on the Flow Duration Curve
(FDC). Brel(i) is de�ned as the relative bias of the simulated and observed �ow duration
curves at the exceedance probability i:

Brel =
xs(i)− xo(i)

xo(i)
(5.5)

where xs(i) and xo(i) correspond to the simulated and observed values of calibration
variable at exceedance probability i. Brel is the mean of Brel(i) when looking at n
observations:

Brel =
1

n

i=1∑
i=0

Brel(i) (5.6)

|Barea| is calculated as follows:

|Barea| =
∫ 1

0

|Bres(i)|di (5.7)

with Bres the residual bias:

Bres = Brel(i)−Brel (5.8)

αNP (Pool et al., 2018) is also based on the FDC:

αNP = 1− 1

2

n∑
k=1

|xs(I(k))

nµs

− xo(J(k))

nµo

| (5.9)

where I(k) and J(k) stand for the time steps of the kth largest discharge for the
simulated and observed time series, respectively.

As β, βn and Brel all represent the bias, they are therefore designed as �bias parame-
ters� in this study.

5.2.2 Score calculation

A total of nine performance criteria are analysed in this study: the NSE, KGE, 2012-
version of the KGE or modi�ed KGE (KGE'), 2021-version of the KGE (KGE�), non-
parametric KGE (KGENP), Diagnostic E�ciency (DE), Liu-Mean E�ciency (LME),
Least-squares Combined E�ciency (LCE) and d1. The value considered as the best
score is equal to one for all criteria, except for the DE, for which it is equal to zero.

The NSE (Nash and Sutcli�e, 1970) is a normalised variant of the Mean Squared
Error (MSE) and compares a prediction to the observed mean of the target variable:

NSE = 1−
∑

(xs(t)− xo(t))
2∑

(xo(t)− µo)2
(5.10)

Gupta et al. (2009) algebraically decomposed the NSE into correlation, variability,
and bias components:

NSE = 2αr − α2 − β2
n (5.11)
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The Kling-Gupta E�ciency (KGE) was proposed by Gupta et al. (2009) as an al-
ternative to the NSE. The optimal KGE corresponds to the closest point of the three-
dimensional Pareto front � of α, β and r � to the ideal value of [1; 1; 1]:

KGE = 1−
√

(α− 1)2 + (β − 1)2 + (r − 1)2 (5.12)

A modi�ed Kling-Gupta E�ciency was proposed by Kling et al. (2012). The coe�cient
of variation is used instead of the standard deviation to ensure that bias and variability
are not cross-correlated:

KGE ′ = 1−
√

(γ − 1)2 + (β − 1)2 + (r − 1)2 (5.13)

Tang et al. (2021) proposed another variant (KGE�) by using the normalised bias
instead of β to ensure that the score is not overly sensitive to mean values � µo or µs �
close to zero (Santos et al., 2018; Tang et al., 2021):

KGE ′′ = 1−
√

(α− 1)2 + β2
n + (r − 1)2 (5.14)

Pool et al. (2018) cautioned against the implicit assumptions of the KGE � data
linearity, data normality and absence of outliers � and proposed a non-parametric alter-
native (KGENP) for limiting their impact. The non-parametric form of the variability is
calculated using the FDC and the Spearman rank correlation coe�cient is used instead
of the Pearson correlation coe�cient:

KGENP = 1−
√

(αNP − 1)2 + (β − 1)2 + (rs − 1)2 (5.15)

In a similar way, Schwemmle et al. (2021) used FDC-based parameters to account for
variability and bias in another KGE variant: the Diagnostic E�ciency. This criterion
is based on constant, dynamic and timing errors and aims to provide a stronger link to
hydrological processes (Schwemmle et al., 2021):

DE =

√
Brel

2
+ |Barea|2 + (r − 1)2 (5.16)

In this study, we used a Normalised Diagnostic E�ciency (DE') so that the best error
score equals to one for facilitating the comparison with other performance criteria:

DE ′ = 1−
√

Brel
2
+ |Barea|2 + (r − 1)2 (5.17)

Liu (2020) proposed another alternative, the Liu-Mean E�ciency, to improve the
simulation of extreme events. The LME thus aims to address the underestimation of
variability of the KGE, which is still a concern despite being not as severe as with the
NSE (Gupta et al., 2009; Mizukami et al., 2019):

LME = 1−
√

(rα− 1)2 + (β − 1)2 (5.18)

Lee and Choi (2022) proposed the Least-squares Combined E�ciency to address the
shortcomings of the LME identi�ed by Choi (2022): (i) an in�nite number of solutions for
the maximum score, and (ii) a inclination to overestimate high �ows and underestimate
low �ows. The LCE is based on the least-squares statistics combined from both-way
regression lines rα and r/α:

LCE = 1−
√

(rα− 1)2 + (r/α− 1)2 + (β − 1)2 (5.19)
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Willmott et al. (1985) proposed a modi�ed index of agreement, which aim to address
the issues associated with r and the coe�cient of determination, as well as the sensitivity
of the original index of agreement to outliers (Legates and McCabe Jr., 1999):

d1 = 1−
∑

|xs(t)− xo(t)|∑
(|xs(t)− µo|+ |xo(t)− µo|)

(5.20)

5.3 Synthetic time series

5.3.1 Generating synthetic time series with homothetic transfor-
mations

A simulation performance can be assessed in terms of bias, variability and timing er-
rors (Gupta et al., 2009). Bias and variability errors correspond to a di�erence in volume
and amplitude of discharges. Timing errors correspond to a shift in time. We created a
synthetic hydrograph corresponding to one �ood event as the reference (observed) time
series. We also generated synthetic transformations � of the reference time series � with
di�erent errors on bias and variability corresponding to time series simulated by a model.
We did not consider any timing errors as our aim is to assess counterbalancing errors
induced by bias and variability parameters. Synthetic transformations were generated by
multiplying the reference time series by a coe�cient ω:

Qs(t) = Qo(t) ∗ ω (5.21)

where Qs(t) stands for the transformed discharge at the time t, Qo(t) the reference
discharge at the time t and ω a coe�cient. ω values were sampled uniformly on the log-
transformed interval [-0.36, 0.36] at a de�ned step of 0.002 to ensure a fair distribution
between underestimated and overestimated transformations. The exponentiation in base
10 of the sampled values results in 361 ω values evenly distributed around the ω = 1 ho-
mothety, which corresponds to the reference time series (i.e. absence of transformation).
We de�ned ω bounds such that the transformed peak discharge roughly ranges from half
(ω ≈ 0.437 ≈ 10−0.36) to twice (ω ≈ 2.291 ≈ 100.36) compared to the reference time series.
Note that (i) the data linearity between simulated and observed values is veri�ed, and
(ii) ω homotheties still induce small timing errors � which were considered negligible �
because the correlation coe�cients (r and rs) also slightly account for the shape of the
transformation.

To study counterbalancing errors induced by bias and variability parameters, we gen-
erated time series that consist of two successive �ood events and considered all possible
combinations of the 361 transformations for the simulated time series (Figure 5.1). This
results in a total of 3612 = 130321 transformations with two �ood events, including (i)
a �perfect� transformation with ω = 1 for both �ood events, (ii) �Bad-Good� (BG) or
�Good-Bad� (GB) transformations when ω = 1 for only one out of the two �ood events,
and (iii) �Bad-Bad� (BB) transformations when ω ̸= 1 for both �ood events. The perfor-
mance of the transformations � with regards to the reference time series � were evaluated
using the nine performance criteria presented in section 5.2.
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Figure 5.1: Synthetic hydrograph corresponding to two �ood events.

5.3.2 Identifying counterbalancing errors on a straightforward
example

Figure 5.2 presents two hydrographs extracted from the set of transformations: (i) a
BB model with the combination [ω1 = 0.75;ω2 = 1.2], and (ii) a BG model with the
combination [ω1 = 0.75;ω2 = 1]. The BG model stands as a better model because it
perfectly reproduces the second �ood event and is identical to the BB model on the �rst
�ood (ω1 = 0.75). Nevertheless, the KGE and its variants � KGE', KGE�, KGENP, DE',
LME and LCE � all favour the BB model, whereas only the NSE and d1 evaluate the
BG model as better (Figure 5.3a). Further results for common and recently developed
performance criteria are presented in Appendix 5.A.

The investigation of the components of the criteria (Figure 5.3b) reveals how a seem-
ingly better model (i.e. the BG model) can have a lower score than expected. Bias
parameters are systematically better for the BB model, with 0.98 over 0.88 for β, -0.02
over -0.08 for βn and -0.04 over -0.12 for Brel. Timing parameters are systematically
better for the BG model, with 0.99 over 0.96 for r and 0.99 over 0.98 for rs. Variability
parameters are mixed: (i) α favours the BB model with 1.01 over 0.89, (ii) γ favours the
BG model with 1.01 over 1.04, (iii) αNP slightly favours the BG model with 0.94 over
0.93, and (iv) |Barea| is equal for both models. rα and r/α parameters are better for the
BB model. 2αr is better for the BG model.

β, βn, Brel, α, rα and r/α parameters all provide a better evaluation of bias and
variability for the BB model. Concurrent over- and underestimation of discharges over
the time series result in a good water balance: close to 1 for β and Brel and 0 for βn.
Depending on the criterion, the variability parameter can also a�ect the score in a similar
counter-intuitive manner. α is heavily impacted by the counterbalance, whereas it seems
mitigated for γ, αNP and |Barea|. The timing parameters (r and rs) have an expected
score that favour the BG model. However, the score di�erence on timing errors between
BB and BG models is very small (0.03 at best for r). The impact on the overall score is
thus minimised compared to the one induced by bias and variability parameters, which
can be cumulated (e.g. both β and α counterbalancing errors in the KGE) or have a
larger di�erence � up to 0.12 for α. Counterbalancing errors can thus result in better
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Figure 5.2: Synthetic examples extracted from the set of transformations. The �rst and
second �ood events of the �Bad-Bad� and �Bad-Good� transformations were shifted with [ω1 =
0.75;ω2 = 1.2] and [ω1 = 0.75;ω2 = 1] combinations, respectively.

Figure 5.3: (a) Score of the BB and BG transformations according to the di�erent performance
criteria. (b) Values of the parameters used in the calculation of the performance criteria.
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values for bias and variability, which increase the overall score. In this case, the highest
score may not be the most appropriate indicator of model relevance.

The largest di�erences in score appear for the LME and LCE criteria as all their
parameters are a�ected by counterbalancing errors (β, rα and r/α). The KGE and
KGE� also show signi�cant di�erences as they accumulate the counterbalancing errors of
α and β. The KGE' demonstrates a smaller di�erence than the KGE due to the use of
γ. Both FDC-based criteria KGENP and DE' show the smallest di�erences due to αNP

and |Barea|, which have a nearly equal value for both BB and BG models. The NSE has
a slightly better score on the BG model, while the di�erence is more pronounced on d1.

This example demonstrates how relative error metrics can cancel out each other and
a�ect the design and the evaluation of hydrological models. The counterbalancing errors
especially a�ect bias parameters (β, βn and Brel) but also the variability parameter α.

5.3.3 Exploring counterbalancing errors with synthetic transfor-
mations

Figure 5.4 shows the score distribution of the synthetic set of hydrographs presented
in section 5.3.1. For each value of ω1, the minimum and maximum criteria scores of the
transformations resulting from all combinations with ω2 provide the dashed envelope of
the score distribution, with the maximum transformation score at the top (1 correspond-
ing to a perfect model), and the worst at the bottom. The transformations corresponding
to the BG models (with ω2 = 1) are represented by the black line. All transformations
included in the dashed envelope can be identi�ed as �Bad-Bad� models, except when
ω1 = 1 or ω2 = 1 (black line).

It is obvious that the KGE and its variants � KGE', KGE�, KGENP, DE', LME and
LCE � always evaluate one or several BB models as better than the BG model for a
same ω1 value, except for ω1 = 1. On the other hand, the NSE and d1 correctly identify
the BG model as the best transformation for all combinations of [ω1;ω2], i.e. the black
line is always above the dashed envelope. The envelope of the KGE, KGE' and KGE�
criteria are similar, but they do not display the same di�erence between the best scores
and the scores of the BG models. These di�erences are smaller for the latter two because
the KGE' is based on γ instead of α, and the KGE� is based on βn instead of β, for
which it is demonstrated in section 5.3.2 that they both soften counterbalancing errors.
The envelope of the LCE criterion looks like that of the KGE. However, the di�erence
between the best scores and the scores of the BG models is much higher. This is likely
due to the nature of the equation consisting of 3 parameters a�ected by counterbalancing
errors (β, rα and r/α). The LME criterion has a very distinctive envelope, for which the
maximum score of 1 is reached for a lot of BB models, even when both ω1 and ω2 are
di�erent from 1. This can be explained by the interaction between r and α that leads to
an in�nite number of solutions (Choi, 2022). The KGENP and DE' (FDC-based criteria)
both show similar envelopes with a break point near the maximum transformation score
in both directions around ω1 = 1. This is especially pronounced for the DE', for which
the BG model is nearly the best model between ω1 = 0.83 and ω1 = 1.17. These results
show that counterbalancing errors can happen on a large range of parameters, and when
using the KGE or its variants, there is a possibility for the more meaningful model (i.e.
BG model) to have a lower score than a �compensated� or �Bad-Bad� model.

Figure 5.5 shows the value of ω2 corresponding to the best evaluation for a given
ω1, by performance criteria. As identi�ed above, the NSE and d1 both evaluate the BG
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Figure 5.4: Score of each transformation for all [ω1;ω2] combinations by performance criteria.
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Figure 5.5: Graph of each [ω1;ω2] combination identi�ed as the best transformation by each
performance criteria. The NSE and the d1 black lines coincide at ω2 = 1.



5.4. Real case study 123

models as the best transformations (NSE and d1 black lines coincide at ω2 = 1, Figure
5.5). Counterbalancing errors are apparent for the KGE and its variants. For ω1 ̸= 1,
best transformations are always BB models and follow two conditions: (i) if ω1 < 1 then
ω2 > 1, and (ii) if ω1 > 1 then ω2 < 1. This means that, in this case, such performance
criteria will always be �awed towards concurrent under- and overestimation of discharges
in a transformation.

5.4 Real case study

To highlight how counterbalancing errors can a�ect the assessment of hydrological mod-
els on a real case study, we used two di�erent modelling approaches: arti�cial neural
networks (ANN) and bucket-type models. The simulations of karst spring discharges of
both models were evaluated on the same 1-year validation period. To clearly highlight
the problem, we deliberately chose a bucket-type simulation that is noticeably a�ected
by counterbalancing errors � yet still realistic. Further information on the modelling ap-
proaches, the input data, the calibration strategy and the simulation procedure can be
found in Cinkus et al. (2023b).

5.4.1 Study site

The Unica springs are the outlet of a complex karstic system in�uenced by a network
of poljes. The recharge area is about 820 km2 and is located in a moderate continental
climate with a strong snow in�uence. Recharge comes from both (i) allogenic in�ltration
from two sub-basins drained by sinking rivers, and (ii) autogenic in�ltration through a
highly karsti�ed limestone plateau (Gabrov²ek et al., 2010; Kova£i£, 2010; Petric, 2010).
The network of connected poljes constitutes a common hydrological entity that induces
a high hydrological variability in the system, and long and delayed high discharges at the
Unica springs (Mayaud et al., 2019). The limestone massif can reach a height of 1800 m
above sea level and has signi�cant groundwater resources (Ravbar et al., 2012). A polje
downstream of the springs can �ood when the Unica discharge exceeds 60 m3 s-1 for several
days. If the �ow reaches 80 m3 s-1, the �ooding can reach the gauging station and in�uence
its measurement. The �ow data are from the gauging station in Unica-Hasberg (ARSO,
2021b). Precipitation, height of snow cover, and height of new snow data are from the
meteorological stations in Postojna and Cerknica (ARSO, 2021a). Temperature and
relative humidity data are from the Postojna station. Potential evapotranspiration is
calculated from the Postojna station data with the Penman-Monteith formula (Allen et
al., 1998).

5.4.2 Modelling approaches

The �rst modelling approach is based on Convolutional Neural Networks (CNN) (LeCun
et al., 2015), which is a speci�c type of ANN that is powerful in processing image-
like data but also very useful for processing sequential data. The model consists of a
single 1D Convolutional layer with a �xed kernel size of three and an optimised number
of �lters. This layer was complemented by a Max-Pooling layer a Monte-Carlo dropout
layer with 10 % dropout rate and two dense layers. The �rst dense layer has an optimised
number of neurons and the second a single output neuron. We programmed our models in
Python 3.8 (van Rossum, 1995), using the following frameworks and libraries: Bayesian
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Optimization (Nogueira, 2014), Matplotlib (Hunter, 2007), Numpy (van der Walt et al.,
2011), Pandas (McKinney, 2010; Reback et al., 2021), Scikit-Learn (Pedregosa et al.,
2018), TensorFlow 2 .7 (Abadi et al., 2016) and its Keras API (Chollet, 2015).

The second modelling approach is a bucket-type model, which is a conceptual rep-
resentation of a hydrosystem consisting of several buckets that are supposed to be rep-
resentative of the main processes involved. We used the adjustable modelling platform
KarstMod (Mazzilli et al., 2019). The model structure consists of one upper bucket for
simulating soil and epikarst processes (including a soil available water capacity), and
two lower buckets corresponding to matrix and conduits compartments. A very reactive
transfer function from the upper bucket to the spring is used to reproduce very fast �ows
occurring in the system.

5.4.3 Impact of counterbalancing errors on model evaluation

Figure 5.6a shows the results of the two hydrological models on Unica springs. The
models have overall good dynamics and successfully reproduce the observed discharges.
Regarding high �ow periods, both models show a small timing error, inducing a delay in
the simulated peak �ood. The �rst �ood event (February 2017) is slightly underestimated
by the ANN model and highly overestimated by the bucket-type model. The second �ood
event (March 2017) is similarly underestimated by both models but the bucket-type model
demonstrates a slightly better performance. The third �ood event (May 2017) is poorly
simulated by the models � both underestimate the �ood peak � but the ANN model is
more accurate in terms of timing and volume estimate, while the bucket-type model has
a better recession coe�cient and �ow variability. The last �ood event (September 2017)
comprise a small peak followed by a very high and long-lasting �ood. Both models fail to
account for the small peak. The following important �ood event is highly overestimated
by the bucket-type model, while being nicely simulated by the ANN model � despite
the small underestimation and timing error. The small �ood events are better simulated
by the ANN model than the bucket-type model: (i) the ANN model simulates them
satisfactorily, except for the second one (mid-April), where the simulated discharges are
overestimated; (ii) the bucket-type model does not simulate the �rst two events at all
(mid-January and mid-April) and largely overestimates the last two (early and late June),
in addition to timing errors. Both models can be improved during recession and low �ow
periods. The ANN model is rather close to the observed discharges but seems to be
too sensitive to precipitation (continuous oscillations). On the other hand, the bucket-
type model shows no oscillations but either overestimates or underestimates the observed
discharges. Some events are not well simulated by both models (e.g. the May 2017 �ood),
which may be due to uncertainties in the input data. Also, the data linearity between
simulated and observed values is slightly skewed for both models, which can a�ect the
relevance of r (Barber et al., 2020).

In general, the ANN model can be described as better because it is closer to the ob-
served values in the high and low �ow periods. While this statement cannot be supported
by performance metrics, we believe that an expert assessment based on intuition and ex-
perience is still valuable despite being intrinsically subjective. In this particular case, one
can assess the main, distinctive �aws of each model: (i) the ANN model has continuous
oscillations � especially on recession and low �ow periods � and lacks of accuracy during
recession periods; (ii) the bucket-type model highly overestimates several �ood events
and is inaccurate during a lot of recession and low �ow periods. Figure 5.6b also shows
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Figure 5.6: (a) Observed and simulated spring discharge time series on the validation period.
(b) Relative di�erence between simulated and observed discharge on the validation period.

that the bucket-type model has an overall higher bias than the ANN model. Hydrolog-
ical models are generally used for (i) the prediction/forecast of water �ood/inrush, (ii)
the management of water resources, (iii) the characterisation of hydrosystems, and more
recently (iv) the study of the impact of climate change on water resources. Most studies
thus put the emphasis on volumes, and also extremes events (i.e. dry and �ood periods),
which in this case are more satisfactorily reproduced by the ANN model � in terms of
volume estimate, timing and variability.

This visual assessment is con�rmed only by few performance criteria: the NSE, d1
and KGENP (Figure 5.7a). These criteria evaluate the ANN model as better, although
the performances of both models are quite close for the d1. However, the KGE and
most of its variants (except the KGENP) all favour the bucket-type model over the ANN
model � sometimes by a large margin. Further results for common and recently developed
performance criteria are presented in Appendix 5.A. It is interesting to note how similar
these results are to those of the synthetic example (Figure 5.3a, Appendix 5.A). Looking
at the values of the equations' parameters (Figure 5.7b), we �nd that bias parameters are
systematically better for the bucket-type model, with 1 over 0.92 for β, 0 over -0.06 for βn

and -0.07 over 0.18 for Brel. Timing errors are systematically better for the ANN model,
with 0.95 over 0.92 for r and 0.94 over 0.83 for rs. Variability parameters favour the
bucket-type model with 1.1 over 0.78 for α, 1.1 over 0.85 for γ, 0.22 over 0.3 for |Barea|,
and a very close better value by 0.005 on the αNP parameter. In summary, all bias and
variability parameters have better values for the bucket-type model, while timing and
shape parameters are better for the ANN model.

As the KGE and its variants are generally composed of equally-weighted bias, vari-
ability and timing, their overall score is heavily a�ected by compensation e�ects � except
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Figure 5.7: (a) Score of the ANN and bucket-type models according to the di�erent perfor-
mance criteria. (b) Values of the parameters used in the calculation of the performance criteria.

in the case of a large error on one parameter. In our case, all parameters have similar
errors, which results in a better KGE for the bucket-type model compared to the ANN
model. This applies to all the KGE variants except the KGENP where the error on rs is
signi�cant, resulting in a better score for the ANN model. The LME score is extremely
high (0.99) for the bucket-type model, which is probably due to the compensation of r
and α identi�ed by Choi (2022). Also, using γ instead of α for assessing the variability
seems to lower counterbalancing errors.

Interestingly, the cumulative sum of the absolute bias error between simulated and
observed values (Figure 5.6b) is smaller for the ANN model (1394 m3) than the bucket-
type model (1611 m3), but still the relative bias and variability parameters are better
for the bucket-type model. This observation highlights how counterbalancing errors can
impair the evaluation of hydrological models: seemingly better parameters values (bias
and variability) that increase criteria scores are not necessarily associated with an increase
in model relevance.

5.5 Recommendations

The aim of this paper is primarily to raise awareness among modellers. Performance
criteria generally comprise several aspects of the characteristics of a model into a single
value, which can lead to an inaccurate assessment of said aspects. Ultimately, all criteria
have their �aws and should be carefully selected with regards to the aim of the model.

5.5.1 Use of relevant performance criteria

Table 5.1 summarises the presence and impact of counterbalancing errors, as well as the
advantages and drawbacks (as reported in other studies) of the di�erent performance
criteria. The recommendations on counterbalancing errors are based on the results of
this research � i.e. synthetic and real case studies. The KGE and all its variants are
a�ected by counterbalancing errors with varying degrees of intensity: (i) mildly impacted
(+) for the KGE', KGENP and DE, (ii) moderately impacted (++) for the KGE, KGE�
and LCE, and (iii) strongly impacted (+++) for the LME. In this study, the NSE and
d1 stand out as clearly better since they have no counterbalancing errors. However, they
have other drawbacks that are not associated with counterbalancing errors, especially the
NSE with its limitations related to variability (Gupta et al., 2009). We thus recommend
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using performance criteria that are not or less prone to counterbalancing errors (d1, KGE',
KGENP, DE).

5.5.2 Use of scaling factors

The assessment of the hydrological models in the real case study shows how concurrent
over- and underestimation can generate counterbalancing errors on bias and variability
parameters. For the case study considered in this paper, the ANN model, although
o�ering a better simulation, is evaluated as � sometimes considerably � worse than the
bucket-type model, because it slightly underestimates the total volume. This has a great
impact on the overall score, as the KGE and its variant are calculated with both bias and
variability parameters accounting for 2/3 of the overall criterion score.

While the overall balance (bias) may be a desired feature in a model, we showed that
a good value may be accidental and result from counterbalancing errors. The common
use of the KGE neglects one of the original proposals which is to weight the parameters
β, α and r in the equation. Gupta et al. (2009) proposed an alternative equation for
adjusting the emphasis on the di�erent aspects of a model:

KGEs = 1−
√

[sα(α− 1)]2 + [sβ(β − 1)]2 + [sr(r − 1)]2 (5.22)

with sr, sβ and sα the scaling factors of r, β and α, respectively. By default, these
factors are equal to 1, which induces a weight of 1/3 on the parameter in absolute value
(r) and 2/3 on the parameters in relative values (β, α). To the best of our knowledge,
only Mizukami et al. (2019) ever considered changing the scaling factors when using the
KGE. We suggest to carefully consider such scaling factors for the calibration and the
evaluation of hydrological models using the KGE and its variants. Depending on the
purpose of the model, they can help to emphasise particular aspects of a model or reduce
the in�uence of relative parameters and counterbalancing errors.

Figure 5.8 shows how emphasising absolute parameters with scaling factors helps to
reduce the in�uence of counterbalancing errors for the KGE (Figure 5.8a) and its most
used variant KGE' (Figure 5.8b). The default value (1-1-1) � corresponding to scaling
factors of 1 for α (KGE) or γ (KGE'), 1 for β and 1 for r, respectively � is compared to
other factor combinations with di�erent ratios between absolute and relative parameters.
The 2:1 ratio (2-1-1) increases counterbalancing errors as the emphasis is on the relative
parameters, while the 1:2, 1:3, 1:4 and 1:5 ratios decrease counterbalancing errors. The
ANN model is evaluated as better with the 1:4 ratio for the KGE and the 1:3 ratio for
the KGE', highlighting that the KGE' is less sensitive to counterbalancing errors. This
also shows how the score of a performance criterion and by extension its interpretation
can be radically di�erent depending on the parameters used in the equation. This is
why a multi-criteria framework can strengthen the evaluation of models and reduce the
uncertainties of performance criteria scores.
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Criterion Year A�ected
by CE

Impact
of CE

Advantages Drawbacks

KGE 2009 Yes ++
Variability is not
underestimated (Gupta et al., 2009)

Still slight underestimation of high dis-
charges (Gupta et al., 2009)

Bias and variability are cross corre-
lated (Kling et al., 2012)

Implicit assumptions of data linearity,
data normality and absence of out-
liers (Pool et al., 2018)

No inherent benchmark (Knoben et al.,
2019)

Not suited to logarithmic transforma-
tion of discharge (Santos et al., 2018)

KGE' 2012 Yes +
Bias and variability are not cross corre-
lated (Kling et al., 2012)

KGE� 2021 Yes ++
The score is not overly sensitive to mean
values close to zero (Santos et al., 2018;
Tang et al., 2021)

KGENP 2018 Yes +

Reduce the impact of implicit assump-
tions of data linearity, data normal-
ity and absence of outliers by using
non-parametric parameters (Pool et al.,
2018)

DE 2021 Yes +
Aims to provide a stronger link to hy-
drological processes (Schwemmle et al.,
2021)

LME 2020 Yes +++
Improve the simulation of extreme
events (Liu, 2020)

In�nite number of solutions for the
maximum score (Lee and Choi, 2022)

Inclination to overestimate high �ows
and underestimates low �ows (Lee and
Choi, 2022)

LCE 2022 Yes ++
Improve the simulation of extreme
events (Lee and Choi, 2022)

NSE 1970 No /

The contribution of βn depends on the
variability (Gupta et al., 2009)

Variability is underestimated (Gupta et
al., 2009)

The benchmark is inappropriate for
highly variable discharges (Gupta et al.,
2009)

d1 1985 No /

Address the shortcomings of r and the
coe�cient of determination (Willmott,
1981)

The score is less sensitive to errors con-
centrated in outliers in comparison to
the original index of agreement (Will-
mott et al., 1985)

Table 5.1: Presence and impact of counterbalancing errors (CE) on the assessment of model
performance of di�erent performance criteria. The impact of CE is denoted as null (/), mild
(+), moderate (++), or strong (+++).
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Figure 5.8: (a) KGE and (b) KGE' scores of the ANN and bucket-type models (Figure 5.6a)
according to di�erent scaling factors. The y-axis numbers correspond to the scaling factors of
the variability, bias and timing parameters, with the default being 1-1-1.

5.6 Conclusion

This study sets out to explore the in�uence of counterbalancing errors and raise awareness
among modellers about the use of performance criteria for calibrating and evaluating
hydrological models. A total of nine performance criteria (NSE, KGE, KGE', KGE�,
KGENP, DE, LME, LCE and d1) are analysed. The investigation of synthetic time
series and real hydrological models shows that concurrent over- and underestimation of
multiple parts of a discharge time series may favour bias and variability parameters. This
especially concerns the bias parameters (β, βn and Brel) as their values are all in�uenced
by counterbalancing errors in both synthetic time series and the real case study. On the
other hand, the impact of counterbalancing errors on the variability parameters seems
to depend on the time series: only the value of α is in�uenced in the synthetic time
series, while the values of all variability parameters (α, γ, |Barea| and αNP ) are in�uenced
in the real hydrological models. As bias and variability parameters generally account
for 2/3 of the weight in the equation of certain performance criteria, this can lead to
an overall higher criterion score without being associated with an increase in model
relevance. This is especially concerning for the KGE and its variants, as they generally
use relative parameters for evaluating bias and variability in hydrological models. These
�ndings highlight the importance of carefully choosing a performance criterion adapted
to the purpose of the model. Recommendations also include the use of scaling factors to
emphasise di�erent aspects of a hydrological model and reduce the in�uence of relative
parameters on the overall score of the performance criterion. Further research could
explore the appropriate values of scaling factors to use, depending on the modelling
approach and the purpose of the study.
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Figure 5.9: Score of the BB and BG transformations according to other common and re-
cently developed performance criteria: the Root Mean Square Error (RMSE), the coe�cient of
determination R2, the index of agreement d (Willmott, 1981), the re�ned index of agreement
dr (Willmott et al., 2012), the Onyutha e�ciency E and the revised R-squared RRS (Onyutha,
2022).

Figure 5.10: Score of the ANN and bucket-type models according to other common and
recently developed performance criteria: the Root Mean Square Error (RMSE), the coe�cient
of determination R2, the index of agreement d (Willmott, 1981), the re�ned index of agreement
dr (Willmott et al., 2012), the Onyutha e�ciency E and the revised R-squared RRS (Onyutha,
2022).
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Chapter 6

Comparison of arti�cial neural

networks and reservoir models

Hydrological models are widely used to characterise, understand and manage hydrosys-
tems. Lumped parameter models are of particular interest in karst environments given
the complexity and heterogeneity of these systems. There is a multitude of lumped pa-
rameter modelling approaches, which can make it di�cult for a manager or researcher
to choose. We therefore conducted a comparison of two lumped parameter modelling
approaches: arti�cial neural networks (ANN) and reservoir models. We investigate �ve
karst systems in the Mediterranean and Alpine regions with di�erent characteristics in
terms of climatic conditions, hydrogeological properties and data availability. We compare
the results of ANN and reservoir modelling approaches using several performance crite-
ria over di�erent hydrological periods. The results show that both ANN and reservoir
models can accurately simulate karst spring discharge, but also that they have di�er-
ent advantages and drawbacks: (i) ANN models are very �exible regarding the format
and amount of input data, (ii) reservoir models can provide good results even with few
years of relevant discharge in the calibration period, and (iii) ANN models seem robust
for reproducing high-�ow conditions while reservoir models are superior for reproducing
low-�ow conditions. However, both modelling approaches struggle to reproduce extreme
events (droughts, �oods), which is a known problem in hydrological modelling. For re-
search purposes, ANN models have been shown to be useful for identifying recharge areas
and delineating catchments, based on insights into the input data. Reservoir models
are adapted to understand the hydrological functioning of a system, by studying model
structure and parameters.

A part of this work has contributed to the KARMA project in the form of a deliverable
and has been presented during a progress meeting. This work resulted in a publication
in Hydrology and Earth System Sciences (Cinkus et al., 2023).

Article:
Cinkus, G., Wunsch, A., Mazzilli, N., Liesch, T., Chen, Z., Ravbar, N., Doummar,

J., Fernández-Ortega, J., Barberá, J. A., Andreo, B., Goldscheider, N., and Jourde, H.:
Comparison of arti�cial neural networks and reservoir models for simulating karst spring
discharge on �ve test sites in the Alpine and Mediterranean regions, Hydrol. Earth Syst.
Sci., 27, 1961�1985, https://doi.org/10.5194/hess-27-1961-2023, 2023.
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6.1 Introduction

Karst systems are complex and heterogeneous media. High contrasts in porosity and per-
meability induce a high variability in in�ltration and internal �ow processes (Bakalowicz,
2005; Ford and Williams, 2007) which can be di�cult to assess. Considering the in-
creasing demand for water and that around 9 % of the world's population (up to 90 %
in some parts of the Mediterranean area) depends on karst water resources for drinking
water supply (Stevanovi¢, 2019), the characterisation of karst systems functioning and
water availability become a major challenge for water resource management. Among the
numerous methods to study karst systems (Goldscheider, 2015), hydrological models are
useful to characterise karst functioning, and specially to predict the impact of climate
and land use changes (Hartmann et al., 2014). Hydrological models can be grouped into
lumped parameter and distributed approaches (Kovács and Sauter, 2007). While dis-
tributed models divide a karst system into a two- or three-dimensional grid, for which
each cell is assigned appropriate hydraulic parameters and system states, lumped param-
eter models are based on the mathematical analysis of input data (e.g. precipitation,
temperature) for simulating spring discharge time series. They include (i) �black-box�
models such as neural-networks-based approaches, which use no a priori information
about the functioning of a system; and (ii) �conceptual� models, which are based on a
conceptual representation of a karst system � e.g., for the reservoir models, a succession
of one or several reservoirs using simpli�ed physical transfer functions.

The choice of a modelling approach depends mainly on the objective of the study, but
also on the current knowledge of the system, the available data, and regional/institutional
preferences (Addor and Melsen, 2019). For karst systems, the available data are often
scarce and poorly re�ect the heterogeneity of the meteorological and karst processes.
Distributed models require a lot of diverse data with high spatial and temporal reso-
lution for de�ning physical parameters and thus can be tough to use in a scarce data
context (Hartmann et al., 2014). On the other hand, lumped parameter models permit
the study of complex and heterogeneous karst systems without requiring extensive meteo-
rological and system-related data with high spatial resolution. Arti�cial neural networks
(ANN) have been successfully used to simulate karst spring discharge (Hu et al., 2008;
Kurtulus and Razack, 2007; Meng et al., 2015; Wunsch et al., 2022), predict and forecast
water �ood/inrush (Kong-A-Siou et al., 2011; Wu et al., 2008) and manage the exploita-
tion of karst aquifers (Kong-A-Siou et al., 2015; Yin et al., 2011). Reservoir models have
also been successfully used to simulate karst spring discharge (Dubois et al., 2020; Fleury
et al., 2007), manage the exploitation of karst aquifers (Fleury et al., 2009; Zhou et al.,
2021), as well as characterise speci�c functioning in karst systems (Bittner et al., 2020;
Juki¢ and Deni¢-Juki¢, 2009; Perrin et al., 2003; Tritz et al., 2011). This approach is
well suited to karst systems due to the high heterogeneity and low level of knowledge of
their structure (Fleury et al., 2009; Hartmann et al., 2012). Although several authors
compared the performance of di�erent ANN models (Cheng et al., 2020; Kova£evi¢ et al.,
2018; Kurtulus and Razack, 2010) and studied structure and parameter equi�nality in
reservoir models (Gondwe et al., 2011; Hartmann et al., 2012; Makropoulos et al., 2008;
Mazzilli et al., 2012), only a few studies have been conducted on the comparison of both
approaches in karst environments (Jeannin et al., 2021; Kong-A-Siou et al., 2014; Sezen
et al., 2019). Kong-A-Siou et al. (2014) observed that ANN models are more e�ective at
accounting for the non-linearity of karst systems during extreme events (dry and �ood
periods), while reservoir models were better at representing the hydrological functioning
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of the system during intermediate water periods. Sezen et al. (2019) observed that ANN
models were better for simulating low-�ow periods and reservoir models for simulating
spring discharges on predominantly non-karst catchments. Jeannin et al. (2021) empha-
sised the great potential of ANN models but highlighted two main limitations: (i) they
require long time series to accurately learn the functioning of a karst system, and (ii)
usually no information about speci�c functioning of a system can be deduced from the
results.

The performance of ANN and reservoir models can therefore be in�uenced by the
characteristics of the catchment, as well as the format and length of the input data. The
aim of the present study is to help researchers and stakeholders to choose between ANN
and reservoir modelling approaches for simulating karst spring discharge, depending on
their purpose and the available data. This research provides the �rst extensive comparison
of ANN and reservoir models in karst hydrology by investigating results on �ve study
sites with di�erent context and input data. We use ANN as they have proven to be
fast and reliable for modelling hydrological time series (Jeannin et al., 2021; Van et al.,
2020; Wunsch et al., 2021). We speci�cally apply one-dimensional convolutional neural
networks (CNNs) because in an earlier study (Wunsch et al., 2022) we were able to
demonstrate their high ability to perform karst spring discharge modelling. Furthermore,
they have some favourable properties compared to popular recurrent neural networks (e.g.
the LSTMs), such as a batch-wise training procedure which makes them considerably
faster and computationally less expensive. Reservoir modelling is carried out using the
KarstMod platform, as it provides a powerful modular interface for varying the structure,
parameters and transfer functions of the conceptual model (Mazzilli et al., 2019). This
research seeks to address the following research questions:

i. What are the advantages and drawbacks of ANN and reservoir models in karst hy-
drogeology?

ii. To which extent can ANN and reservoir models be used to get a better understanding
of system functioning?

iii. What are the implications from a stakeholder's perspective?

6.2 Data and study sites

We compare ANN and reservoir modelling approaches using data from �ve di�erent
well-studied karst systems (Table 6.1, Figure 6.1). All the systems have di�erent charac-
teristics in terms of hydrogeological properties (e.g. catchment area, karsti�cation), data
availability (e.g. length of the time series, number of meteorological stations, time step),
and environmental conditions (e.g. climate, anthropogenic in�uence). Each study site is
detailed in the following sub-sections and further details about the meteorological data
can be found in Appendix 6.A.

6.2.1 Aubach spring, Austria

Aubach spring (1080 m asl) is a large non-permanent spring located in the Hochifen-
Gottesacker area, on the border between Germany and Austria (Northern Alps). The
Hochifen-Gottesacker system covers an area of about 35 km2 and its altitude varies be-
tween 1000 and 2230 m asl (Chen et al., 2018). The area is under a cool temperate,
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Figure 6.1: Locations of the study sites (carbonate outcrops from Goldscheider et al., 2020).

Spring Country Climate Catchment area Qmean Pan Period
[km2] [m3 s-1] [mm]

Aubach Austria Cool temperate and humid 9 0.91 2113 2012-11-20 � 2020-10-31
Gato Cave Spain Mediterranean 69�79 1.50 1872 1963-10-02 � 2015-04-29
Lez France Mediterranean 130 0.84 904 2008-10-21 � 2020-12-03
Qachqouch Lebanon Mediterranean 56 2.01 1293 2015-09-06 � 2020-02-05
Unica Slovenia Mediterranean 820 21.97 1605 1961-01-02 � 2018-12-31

Table 6.1: Summary of the studied springs and areas. Qmean corresponds to the mean observed
discharge and Pan to the annual mean precipitation over the considered period.
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humid climate and is strongly a�ected by snow accumulation and melting, which typ-
ically occur between November and May (Chen et al., 2018). The spring is located in
the Schwarzwasser valley, which follows the geological contact between highly karsti�ed
limestone (Schrattenkalk formation) in the northern and western parts and impermeable
sedimentary rocks of the Flysch zone in the southern part (Goldscheider, 2005). The
main catchment of Aubach spring is estimated to be approximately 9 km2 (Chen and
Goldscheider, 2014; Goldscheider, 2005). The spring also receives in�ow from several
upstream karst catchments and the Flysch zone, where surface runo� can sink into an
estavelle and pass through an underground karst conduit during low-�ow periods, as
demonstrated by multiple tracer tests (Goldscheider, 2005).

Precipitation and temperature data were obtained from three meteorological stations
located outside the catchment. The potential evapotranspiration is calculated using data
from one station with the modi�ed Turk-Ivanov approach after (Wendling and Müller,
1984), described in (Conradt et al., 2013).

6.2.2 Gato Cave spring, Spain

Gato cave spring (462 m asl) is one of the main outlets of the karst system of Sierra
de Lìbar. It is located in the north-western part of the province of Málaga, within the
boundaries of the Grazalema Natural Park, about 75 km west of Málaga. The alti-
tude of the Sierra de Lìbar varies between 400 and 1400 m asl according to the main
north-east/south-west mountain alignments. The area is under a Mediterranean climate,
with an average annual precipitation of about 1500 mm and is de�ned by a strong sea-
sonal pattern (Andreo et al., 2006). The site is located within the External Zone of
the Betic Cordillera and presents mainly Jurassic limestones and dolomites, Cretaceous-
Paleogene marly-limestones and Tertiary clays and sandstones (Flysch) that cover the
whole Mesozoic rock sequence. The Jurassic rocks outcrop as anticlinal cores, while the
synclines and tectonic grabens are composed of Cretaceous rocks (Martín-Algarra, 1987).
The Hundidero-Gato system constitutes a binary karst system where a wide range of
well-developed karst landforms are found, such as karren�elds, swallow holes and caves.
These features strongly condition recharge, which is primarily produced in two ways: (i)
autochthonous, by direct in�ltration of rainfall through carbonate outcrops (20�40 km2)
as well as rainwater that in�ltrates through swallow holes in poljes; and (ii) allochthonous,
as a contribution from runo� produced in the Gaduares River basins (43.5 km2). This
runo� is stored in the Montejaque dam, which was built on karsti�ed limestone, resulting
in water losses in the reservoir and, consequently, the arti�cial recharge of the aquifer
through the Hundidero cave (Andreo et al., 2004).

Precipitation and temperature data are from the meteorological station of Grazalema,
which is the closest to the catchment, and therefore the most representative. Potential
evapotranspiration is calculated with the Hargreaves-Samani approach (Hargreaves and
Samani, 1985).

6.2.3 Lez spring, France

The Lez spring (64 m asl) is located 15 km north of Montpellier, and the altitude of
its catchment varies between 64 and 655 m asl. The Lez catchment is exposed to a
Mediterranean climate, which is characterised by hot, dry summers, mild winters and
wet autumns. As a large part of the hydrogeological basin is relatively impermeable due
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to the presence of marl and marly-limestone formation, the e�ective recharge area of
the Lez spring covers about 130 km2 (Fleury et al., 2009) and corresponds to Jurassic
limestone outcrops. Localised in�ltration occurs through fractures and sinkholes along
the basin and through the major geologic fault of Corconne-Les Matelles. The Lez aquifer
is subject to anthropic pressure (i.e. exploitation for water supply) with pumping directly
into the karstic conduit. The discharge is measured at the spring pool and is regularly
zero during low water periods, when the pumping rate exceeds the natural discharge of
the spring.

Precipitation data are from four meteorological stations. Three are located in the
catchment and one is located about 5 km west of the catchment. Potential evapotran-
spiration is calculated with the Oudin approach (Oudin et al., 2005). Temperature data
are from the Prades-le-Lez meteorological station.

6.2.4 Qachqouch spring, Lebanon

Qachqouch spring (64 m asl) is located in the Nahr el-Kalb catchment and originates
from a Jurassic karst aquifer. The recharge area is estimated to be about 56 km2 with
altitudes ranging from 60 to over 1500 m asl (Doummar et al., 2018; Dubois et al.,
2020). The catchment is primarily exposed to a Mediterranean climate, with snow in�u-
ence at higher altitudes (Dubois et al., 2020)). The lithology mainly consists in Jurassic
karsti�ed limestone and dolomitic limestone (on the higher plateaus) changing to more
massive micritic limestone in the lower part of the catchment. The Qachqouch system
is characterised by a duality of �ow in a low permeability matrix and a high permeabil-
ity conduit system (Dubois, 2017). Potential runo� in�ows from higher altitudes and
in�ltrates downstream into the Jurassic karst aquifer.

Precipitation and temperature data are from two meteorological stations. One is
located in the catchment at 950 m asl. The other, with a heated rain gauge, is located
22 km north-east of the catchment at 1700 m asl (Doummar et al., 2018). Potential
evapotranspiration is calculated using data from the 950 m station with the modi�ed
Penman-Monteith approach (Allen et al., 1998).

6.2.5 Unica springs, Slovenia

Unica springs (450 m asl) are the outlets of a complex karst system with an estimated
recharge area of about 820 km2. The area is under a moderate continental climate
and is strongly in�uenced by snow accumulation and melting. It is subdivided into
three subcatchments, with a predominance of (i) allogenic in�ltration from two sub-
catchments drained by sinking rivers �owing through a chain of karst poljes and a river
valley, and (ii) autogenous in�ltration through a karst plateau with highly karsti�ed lime-
stone (Gabrov²ek et al., 2010; Kova£i£, 2010; Petric, 2010). The poljes follow each other
in a descending series at altitudes between 450 and 750 m asl and are connected in a
common hydrological system. Characterised by a network of surface rivers and frequent
�ooding, this induces a very particular response at the Unica springs with very high hy-
drological variability (by several orders of magnitude), as well as delayed and prolonged
high-�ow values (Mayaud et al., 2019). Low-�ow periods are sustained by �ows from the
karsti�ed limestone aquifer, which reaches heights up to 1800 m asl and has signi�cant
groundwater storage (Ravbar et al., 2012). Part of the discharge is lost due to an under-
ground bifurcation (Kogov²ek et al., 1999). When the discharge exceeds about 60 m3 s-1
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and remains high for a few days, a polje downstream of the springs becomes �ooded.
When the discharge reaches about 80 m3 s-1, the �ooding reaches the monitoring sta-
tion, in�uencing the measurement. The water from the lake is drained by several ponors
downstream of the monitoring station, but their absorption capacity is much lower than
the discharges of the springs.

Precipitation, snow cover height, and height of new snow data were obtained from
two meteorological stations located on the catchment. Temperature and relative humid-
ity data are from Postojna meteorological station only. Potential evapotranspiration is
calculated using data from the Postojna station with the modi�ed Penman-Monteith
approach (Allen et al., 1998).

6.3 Methodology

6.3.1 Arti�cial neural networks

ANN are a branch of machine learning, i.e. a technique to learn complex relations from
existing data. They imitate the basic functioning of biological nervous systems and sim-
ilarly consist of mathematical representations of neurons structured and interconnected
in layers. Given su�cient data from which to learn, ANN can establish complex input-
output relations with only limited domain knowledge.

In this study, CNNs (LeCun et al., 2015) � a speci�c model type from the ANN-
sub�eld of deep learning (DL) � were used. CNNs are predominantly successful in pro-
cessing image-alike data, but are also useful in signal processing for sequential data.
They usually consist of sequences or blocks of convolutional layers for feature recognition
and pooling layers for information consolidation. In the former, �lters of a speci�c size
(de�ning their receptive �eld) are used to produce feature maps. These feature maps are
subsequently downsampled (often by maximum selection) into pooling layers to consol-
idate the contained information. Several of these blocks with varying properties can be
stacked on top of each other, also in combination with other layer types such as batch
normalization layers (Io�e and Szegedy, 2015) to prevent exploding gradients or dropout
layers (Srivastava et al., 2014). Lastly, one (or multiple) fully connected dense layers
follow to produce the model output. For the models in this study, we used a single one-
dimensional convolutional layer with a �xed kernel size (three) and an optimised number
of �lters. This layer was succeeded by (i) a Max-Pooling layer, (ii) a Monte Carlo dropout
layer (10 % dropout rate), and (iii) two dense layers: the �rst with an optimised number
of neurons and the second with a single output neuron (Figure 6.2). Besides number of
�lters and number of neurons in the �rst dense layers, we optimised the training batch
size and the length of the input sequence for each simulation step using the Bayesian
Optimization library (Nogueira, 2014). The number of minimum and maximum opti-
misation steps was individually selected for each site and can be found in the provided
modelling scripts (Cinkus and Wunsch, 2022). To ensure proper learning, the models are
regularised with several measures. Hence, early stopping with a patience of 20 steps is
applied to prevent the model from over�tting. Except for Qachqouch, where few data
are available, the size of the according stopset ranges between one and four annual cycles
(see the provided scripts for details). This stopset is considered a part of the calibration
period mentioned in section 6.3.4. Further, dropout ensures robust training and serves
as another measure against over�tting. We applied the Adam optimizer for a maximum
of 150 to 300 training epochs with an initial learning rate of 0.001 and applied gradient
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Figure 6.2: Selected structure of the CNN model.

clipping to prevent exploding gradients.

6.3.2 Reservoir models

Reservoir models are a conceptual representation of a hydrosystem, which involves the
association of several reservoirs that are thought to be representative of the main processes
at stake. Each reservoir is characterised by its water height and a �ow equation that
translates the variations of water height into discharges. The �ow equation is function
of a speci�c discharge coe�cient and a positive exponent (di�erent from 1 for non-linear
�ows), which are de�ned by calibration against observed data.

Many reservoir models have been developed to study the relation between precipita-
tion and discharge in karst systems (Hartmann et al., 2014). They all di�er in complexity
with respect to the number of reservoirs and parameters, which need to be well thought
out in order to preserve physical realism and limit equi�nality on model parameters.
Careful sensitivity analyses and uncertainty assessment should be considered along with
model results to avoid over-interpretation (Refsgaard et al., 2007). Reservoir models can
be seen as a compromise between simulation performance and insight into the functioning
of a system.

We used the adjustable modelling platform KarstMod to perform reservoir modelling.
KarstMod provides a modular, user-friendly interface for simulating spring discharge at
karst outlets. The structure of models built using the KarstMod platform is based on
the conceptual model of a karst aquifer with in�ltration and saturated zones (Mazzilli
et al., 2019). The in�ltration zone (soil and epikarst) drains water from the surface
through a vertical network of �ssures and conduits. Water storage can occur in the
unsaturated zone, as well as local saturation. The saturated zone comprises a dual
porosity functioning, with a network of high-permeability fractures and conduits, and a
low-permeability matrix with a high storage capacity.

In KarstMod, the model structure can include up to four reservoirs. One at the upper
level re�ects the processes (in�ltration, storage and drainage) occurring in the soil and
epikarst zone. Three at the lower level can be connected with the �rst one and correspond
to the in�ltration and/or saturated zones. The discharge can be simulated with (i) several
linear and non-linear water level-discharge laws, (ii) a hysteretic water level-discharge
function to reproduce the hysteretic functioning observed on the wet-dry cycles in the
unsaturated zone (Lehmann et al., 1998; Tritz et al., 2011), and (iii) an exchange function
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Figure 6.3: Selected model structures for (a) Aubach, (b) Gato Cave, (c) Lez, (d) Qachqouch
and (e) Unica springs. Flux names correspond to the terminology of the KarstMod plat-
form (Mazzilli and Bertin, 2019).

that aims to reproduce the interactions between the matrix and conduits. More details
on the balance equations, the parameters involved and the KarstMod platform in general
can be found in (Mazzilli et al., 2019) or in the KarstMod User Guide (Mazzilli and
Bertin, 2019).

In this study, we �rst addressed the structure of the models taking into account our
expert knowledge and previous studies. For each site, we examined the major charac-
teristics that determine the functioning of the system and associated the corresponding
conceptual modelling. We then modi�ed this base structure according to the perfor-
mance of the model while trying to maintain physical realism. The most e�cient model
structures that we obtained after performing the modelling are shown in Figure 6.3.

Aubach spring selected model (Figure 6.3a) is close to the conceptual model with a
very reactive transfer function (QES), corresponding to the well-developed conduit net-
work, and a matrix reservoir (M), which in this case mostly re�ects the storage properties
in the unsaturated limestone. We tested di�erent con�gurations (lost discharge from up-
per level reservoir and/or pumping in lower reservoirs) to simulate the lost discharges
through over�ow springs and underground �ows, but there were no signi�cant increases
in model performance. Gato Cave spring selected model (Figure 6.3b) is di�erent from
the conceptual model as the platform could not account for the allochthonous recharge on
the catchment. The model structure includes a soil available water capacity (Emin), ma-
trix and conduits compartments (M and C), as well as matrix-conduits exchanges (QMC),
which may translate the processes occurring through the dam. Lez spring selected model
(Figure 6.3c) is accurate with the conceptual model and includes an over�ow transfer
function (Qloss), matrix and conduit compartments (M and C), matrix-conduit exchanges
(QMC), and pumping into the main conduit (Qpump). We considered a low soil available
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water capacity (Emin) as it greatly increased the performance of the model. Qachqouch
spring selected model (Figure 6.3d) is consistent with previous conceptual models that
considered many di�erent response times. The model structure features a very reactive
transfer function (QESO), matrix and conduits compartments (M and C), matrix-conduits
exchanges (QMC) as well as a soil available water capacity. The multiple di�erent trans-
fer functions help to reproduce the reactive and dampened responses of the Qachqouch
karst aquifer. Unica springs selected model (Figure 6.3e) is signi�cantly simpler than the
conceptual model, which includes polje �ooding, allochthonous recharge, over�ow springs
and matrix-conduits exchanges. We only retained a very simple structure as it was the
best trade-o� between physical realism and model performance. The very reactive trans-
fer function QESO allows reproduction of fast �ows through conduits, while the matrix
reservoir (M) likely translates processes occurring in the matrix and surface �ooding.

6.3.3 Input data

Input data are the time series that are used for simulating karst spring discharge. They
can be derived from either a direct observation (e.g. observed discharge, temperature,
sinking stream discharge or pumping) or a calculation from raw input data (e.g. potential
evapotranspiration derived from temperature). The nature of input data usually di�ers
between ANN and reservoir modelling approaches, as ANN models tend to make good use
of direct observations, whereas reservoir models often require one to preprocess the raw
input data. We decided to work with raw input data to ensure equitable performance
between ANN and reservoir models. The raw input data was either used directly or
preprocessed, depending on the modelling approach.

The data used for each modelling approach and site is summarised in Table 6.2. Ob-
served discharge time series were used directly (without further preprocessing) in ANN
and reservoir models. In the case of the Lez spring, the models were simultaneously
calibrated on the spring discharge (Q) as well as on the water level in the aquifer (Z).
Furthermore, the pumped discharge time series in reservoir C (Qpump, Figure 6.3c) was
used as an input. Precipitation time series were used di�erently as there are often several
meteorological station per study site. For ANN models, precipitation time series were
used as raw input Praw, except for Lez spring where the individual raw precipitation data
had too many missing values, so we used the same input as the reservoir model (Pin).
In the case of Aubach, Qachqouch and Unica, Praw includes all the precipitation time
series from the di�erent meteorological stations (Appendix 6.A). For reservoir models,
the precipitation time series were either (i) used directly if there was no snow dynamics
in the catchment and only one meteorological station was available (Gato Cave), (ii)
preprocessed with Thiessen's polygon interpolation (Appendix 6.B) if there were several
meteorological stations (Lez), (iii) preprocessed with a snow routine (Appendix 6.C) to
simulate snow accumulation and melting over the catchment (Aubach) if snow dynamics
could not be neglected, or (iv) preprocessed with both Thiessen's polygon interpola-
tion and a snow routine (Qachqouch, Unica). For reservoir models, evapotranspiration
processes were considered using time series of potential evapotranspiration, which were
calculated for each site using di�erent methods depending on the available meteorologi-
cal data, the climate of the area and local expert knowledge. For ANN models, we used
temperature time series instead of evapotranspiration because calculating potential evap-
otranspiration is generally not necessarily beforehand. Additionally, we used a sinusoidal
temperature signal time series (Tsin, derived from the observed temperature) to better
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Spring Time step Date range Data used Maximum gap [days]
ANN Reservoir P T Q ET

Aubach Hourly 2012�2020 Qobs, Praw, T, Tsin
a Qobs, Psr, PET

c 0 0 0 0
Gato Cave Daily 1963�2015 Qobs, Praw, Tmax, Tmin, Tmed Qobs, Praw, PET 0 0 0 0
Lez Daily 2008�2020 Qobs, Qpump, Zobs, Pin, Tsin Qobs, Qpump, Zobs, Pin, PET 0 2 7 0
Qachqouch Daily 2015�2020 Qobs, Praw, Tmax

b Qobs, Pin, PET 0 0 11 0
Unica Daily 1961�2018 Qobs, Praw, T, Tsin, NS Qobs, Pin-sr, PET 0 1 0 29

aPraw, T and Tsin data are from Diedamskopf, Oberstdorf and Walmendinger Horn meteorological stations
bTmax data are from the 1700 m meteorological station
cPsr data are calculated with the data from Diedamskopf station

Table 6.2: Summary of input data. (i) Praw, (ii) Pin and (iii) Psr refer to (i) raw precipitation
data, (ii) precipitation data interpolated with Thiessen's polygon method, and (iii) precipitation
data redistributed by applying the snow routine. Qobs, Zobs and T refer to observed discharge,
observed water level and temperature, respectively. ET (Evapotranspiration) refers to either
PET (Potential Evapotranspiration) or AET (Actual Evapotranspiration) time series.

account for seasonality in Aubach, Lez and Unica ANN models.
We handled missing values in the di�erent time series as follows: (i) temperature gaps

were linearly interpolated, (ii) precipitation and evapotranspiration gaps were considered
to be equal to 0, and (iii) discharge gaps were interpolated with a Lagrange polynomial
function. Maximum observed gaps for precipitation, temperature, discharge and evap-
otranspiration time series are detailed in Table 6.2. Note that (i) for Lez spring, we
observed maximum gaps of 17 and 16 days for pumped discharge and piezometric level,
respectively; and (ii) for Unica springs, there are no missing values in the Cerknica new
snow height (NS) time series.

6.3.4 Model calibration and simulation

The calibration period is the period used for selecting the parameters that provide the
best results according to the performance measure. The validation period is intended to
assess the relevance of the parameters over a time interval that is not used for calibration.
In the domain of the ANN modelling, the validation is usually denoted as testing period.
However, we unify the terminology at this point. The calibration period is again split into
three di�erent parts in the case of ANN modelling, (i) to train the model, (ii) to prevent
the model from over�tting, and (iii) to optimize its hyperparameters. We de�ned the
same calibration and validation periods for both modelling approaches (Table 6.3), which
ensures fair initial conditions and a meaningful comparison of the results. We have chosen
the periods in a way to maximise the length of the calibration periods, which allows for
relevant model results (especially in ANN models). In reservoir model, we considered a
short warm-up interval at the beginning of the calibration period for the model to adjust
and reach an optimal state.

We calibrated the models by applying the mean squared error (MSE) to simulated and
observed discharge time series. For Lez spring, we used a composite function of discharge
and water level in order to consider both variables in the same modelling process.

Multiple simulations were carried out for each modelling approach at each site. The
obtained simulated discharge (or water level) time series corresponds to the mean of the
distribution of simulated values at each time step. We also considered the uncertainties in
the model prediction by calculating the 90 % con�dence interval, whose limits correspond
to the 5th and 95th percentiles of the distribution at each time step.
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Spring Calibration period Validation period Objective function

Aubach 2014-04-18 � 2019-12-31 2020-01-01 � 2020-10-31 MSE(Q)
Gato Cave 1963-10-02 � 2011-09-03 2011-09-04 � 2015-04-29 MSE(Q)
Lez 2008-10-21 � 2017-12-31 2018-01-01 � 2020-12-30 MSE(Q,Z)
Qachqouch 2015-09-06 � 2019-09-30 2019-10-01 � 2020-01-22 MSE(Q)
Unica 1961-01-01 � 2016-09-28 2016-09-29 � 2018-12-31 MSE(Q)

Table 6.3: Calibration and validation periods.

In KarstMod (reservoir models), the retained simulations correspond to all the results
satisfying a maximum MSE threshold on the calibration period for a 6-hour model run.
The con�dence interval re�ects the uncertainty in the parameters used in the model,
which are not �xed but are de�ned as a range (e.g. catchment area = 150 to 200 km2).
In the case of ANN models, we used a model ensemble of 10 models based on di�erent
random number generator seeds for model initialization. Using the Monte Carlo dropout
layer, for each of the ensemble members a total of 100 simulation results were generated.

6.3.5 Model evaluation

We evaluated the performance of the models using the MSE and several performance
criteria that assess di�erent aspects of the discharge: modi�ed Kling-Gupta e�ciency
(KGE'), KGE' components (r, γ, β) (Kling et al., 2012), and Diagnostic e�ciency
(DE) (Schwemmle et al., 2021). These criteria were all applied to the whole discharge
regime, but also to sub-regimes of high- and low-�ow conditions (with the exception of
DE, which already takes sub-regimes into account). For Lez spring, we also applied the
MSE and KGE' criteria on water level. Model performance is usually evaluated on both
calibration and validation periods for reservoir models. However, this approach is not
suited to ANN models, for which the calibration period corresponds to the learning pe-
riod of the model. Thus, we chose to only evaluate and compare the reservoir and ANN
models on their validation periods.

The Kling-Gupta e�ciency (KGE) has gained in popularity as it aims to address some
limitations of the Nash-Sutcli�e e�ciency (Nash and Sutcli�e, 1970), i.e. (i) the discharge
variability is underestimated, (ii) the mean of observed values is not a meaningful bench-
mark for variables with high variability, and (iii) the normalised bias is dependent on
the variability (Gupta et al., 2009; Willmott et al., 2012). The KGE' is based on the
KGE and aims to ensure that bias and variability are not cross-correlated by using the
coe�cient of variation ratio (γ) instead of the standard deviation ratio (α):

KGE ′ = 1−
√

(γ − 1)2 + (β − 1)2 + (r − 1)2 (6.1)

with r the Pearson correlation coe�cient between the simulated and observed dis-
charge, β the ratio between mean simulated and mean observed discharge, and γ the
ratio between simulated and observed coe�cients of variation of discharge. The three
components of KGE' help to evaluate di�erent aspects of a model: (i) r is related to
shape and timing (Santos et al., 2018), (ii) β is used to assess the overall volume of water
discharged at the spring (further referred to as �volume�), and (iii) γ gives insight into
the �ow variability. The KGE' and r criteria can range from −∞ to 1, whereas γ and β
can range from −∞ to +∞. A KGE' score equal to 1 means a perfect match between
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simulated and observed discharge, while a score lower than -0.41 indicates that the model
is worse than using the observed mean as a predictor (Knoben et al., 2019).

The DE criterion is intended to help de�ne the weaknesses of a model. It is based on
constant, dynamic and timing errors. DE is proposed as a numerical measure (ranging
from 0 to +∞, with 0 indicating a perfect model), but can also be visualised on a polar
plot that e�ectively di�erentiates error contributions. The overall error is calculated with
the following equation:

DE =

√
Brel

2
+ |Barea|2 + (r − 1)2 (6.2)

with Brel and |Barea| the measures for constant and dynamic errors, respectively. As
these measures are based on the �ow duration curve, they give information in terms of
exceedance probability. Details of their calculation can be found in (Schwemmle et al.,
2021).

The performance criteria applied to high- and low-�ow conditions are denoted by
the lower script indices �L� and �H�, respectively. These criteria allow the performance
of the models to be evaluated over di�erent �ow regimes (i.e. dry/intermediate, wet).
Discharge thresholds were set manually based on our knowledge of the system and a
careful assessment of the distribution of discharge values. They are equal to 1, 2, 0.8, 5,
and 20 m3 s-1 for Aubach, Gato Cave, Lez, Qachqouch and Unica springs, respectively.

6.4 Results and discussion

The obtained models and their con�dence intervals for the two approaches and each test
site are presented in Figure 6.4 for discharge and Figure 6.5 for water level (Lez spring).
Their performance � assessed with multiple criteria � are shown in Figure 6.6, Table 6.4,
and Appendix 6.D. The DE polar plots for each site are presented in Figure 6.7.

6.4.1 Modelling results

6.4.1.a Aubach spring

ANN model is very good with a KGE' of 0.88 (Table 6.4). The snow-in�uenced period
from April to mid-June is accurately modelled, as are the peaks in summer and early
autumn (Figure 6.4a). The highest peaks of the whole time series occurring in February,
July and November are only slightly underestimated. The model is balanced and accurate
on volume (β = 0.93), variability (γ = 1.01) and shape and timing (r = 0.91). The model
is very good for simulating high �ows and is decent on low �ows, but could be improved,
especially on shape and timing (rH = 0.84, rL = 0.66). The slightly higher value of γL
(1.26) may be related to the tendency of the model to �oscillate� during low/medium
�ows (e.g. in September, Appendix 6.Ea). This wave-like behaviour may be related to a
high sensitivity to precipitation events or to inappropriate learning from other data. DE
is very good (0.14, Figure 6.7a). The model shows negative dynamic and constant errors
with a higher share of high �ows, which points a small underestimation of the occurrence
of high �ows.

Reservoir model is decent with a KGE' of 0.69 (Table 6.4), but the model fails to
accurately reproduce the discharges in all seasons. There is a de�cit in water during
winter/early spring and an excess during spring (Figure 6.4a). The model is balanced
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Figure 6.4: Observed and simulated spring discharge time series with (i) 90 % con�dence
intervals (CI) on the validation period and (ii) the threshold for high and low �ows used for the
calculation of the performance criteria. (a) Aubach, (b) Gato Cave, (c) Lez, (d) Qachqouch and
(e) Unica springs.
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Figure 6.5: Observed and simulated spring water level time series with 90 % con�dence intervals
(CI) on the validation period (Lez spring).

Figure 6.6: Performance of the ANN and reservoir models on the validation period, according
to di�erent performance criteria. Exact values can be found in Table 6.4.
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Spring Flow regime MSE KGE' β r γ
ANN RSV ANN RSV ANN RSV ANN RSV ANN RSV

Aubach Total 0.26 0.63 0.88 0.69 0.93 0.81 0.91 0.78 1.01 0.91
Aubach High �ow 0.55 1.34 0.80 0.53 0.91 0.70 0.84 0.68 1.07 1.15
Aubach Low �ow 0.07 0.16 0.57 0.33 0.99 1.18 0.66 0.41 1.26 1.26
Gato Cave Total 1.53 1.07 0.91 0.85 0.98 0.88 0.92 0.96 0.97 0.92
Gato Cave High �ow 5.62 3.93 0.77 0.80 0.92 0.82 0.82 0.91 1.11 0.99

Gato Cave Low �ow 0.18 0.13 0.59 0.64 1.32 1.19 0.82 0.86 1.19 1.27
Lez Total 0.21 0.32 0.70 0.70 0.74 0.77 0.93 0.88 1.13 1.15
Lez High �ow 0.58 0.92 0.52 0.40 0.75 0.78 0.84 0.68 1.38 1.46
Lez Low �ow 0.03 0.02 0.38 0.47 0.64 0.72 0.64 0.76 1.34 1.39
Qachqouch Total 7.78 2.87 0.67 0.83 0.87 1.05 0.82 0.93 0.75 0.85

Qachqouch High �ow 51.74 16.84 0.22 0.55 0.71 0.98 0.46 0.88 0.51 0.57

Qachqouch Low �ow 0.61 0.60 0.74 0.72 1.21 1.20 0.91 0.93 1.12 1.19
Unica Total 123.51 152.92 0.73 0.77 1.03 0.81 0.93 0.93 0.74 0.89

Unica High �ow 229.00 371.37 0.73 0.68 0.87 0.74 0.79 0.81 0.89 1.02

Unica Low �ow 58.55 18.43 0.07 0.63 1.92 1.17 0.86 0.78 0.95 1.25

Table 6.4: Details of indicator values for the reservoir (RSV) and ANN models in the validation
period. For each site, the simulations are evaluated with di�erent performance criteria on total,
high- and low-�ow conditions. Values in bold correspond to the better score between ANN and
reservoir models.

Figure 6.7: Diagnostic e�ciency polar plots on the validation period. (a) Aubach, (b) Gato
Cave, (c) Lez, (d) Qachqouch and (e) Unica springs.
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and accurate on variability (γ = 0.91), but has middling shape and timing (r = 0.78)
and underestimates volume (β = 0.81). The model is particularly bad for simulating low
�ows, with high errors on volume (βL = 1.18), variability (γL = 1.26) and shape and
timing (rL = 0.41). The simulated high �ows are decent, although they can be improved
on shape and timing (rH = 0.68) and volume (βH = 0.70). DE is good (0.26, Figure
6.7a). The model has negative dynamic and constant errors, with a higher share of high
�ows. These errors can be either due to (i) a miscalibration of the snow routine, retaining
too much water as snow in winter and thus releasing too much in warmer periods, (ii)
the uncertainties related to the meteorological data in mountainous catchments, or (iii)
the snow dynamics which cannot be taken into account within the KarstMod platform,
e.g. by adding a snow storage above the epikarst (Chen et al., 2018).

In October, a series of peaks is not well captured by the outputs of both models
(Figure 6.4a). A plausible explanation is that the inputs do not capture the respective
local precipitation events due to the location of the climate stations outside the catchment.

The modelling of discharges from Aubach spring is challenging due to the large eleva-
tion di�erences and the heterogeneity of precipitation on the catchment. This makes it
di�cult to provide accurate data to the model, especially with regard to snow dynamics.
The reservoir model is particularly confronted with these aspects because (i) it can only
handle a single precipitation input (from one weather station or interpolated from several
stations) and (ii) the snow dynamics must be simulated by a snow module. As these
preprocessings cannot really catch the spatial heterogeneity of complex snow processes,
they strongly limit the model performance (Çall� et al., 2022). Leaving aside the mis-
matches related to inadequate meteorological inputs, the structure of the reservoir model
seems appropriate to simulate the hydrological response of the spring. In contrast, the
ANN model is able to consider snow dynamics without any preprocessing, using only the
precipitation and temperature time series during calibration. It shows great versatility
with respect to the input data, similar to that of a two-dimensional approach.

6.4.1.b Gato Cave spring

ANN model is very good with a KGE' of 0.91 (Table 6.4), but the model struggles
to reproduce the discharges during �ood events (Figure 6.4b). Very high peaks are
either overestimated (e.g. May 2012, April 2013, March 2014) or underestimated (e.g.
December 2011, November 2012, March 2013). The model is balanced and accurate on
volume (β = 0.98), variability (γ = 0.97) and shape and timing (r = 0.92). The model
is good for simulating high �ows and is somewhat decent on low �ows. It shows a slight
lack on shape and timing on both high and low �ows (rH = 0.82, rL = 0.82), and also
seems to overestimate low �ows (βL = 1.32). In the same way as Aubach ANN model,
the slightly high variability (γL = 1.19) may be related to the �oscillations� that can be
observed, especially on medium and low �ows (e.g. January 2012, May 2013, Appendix
6.Eb).

Reservoir model is very good with a KGE' of 0.85 (Table 6.4), although the model
tends to slightly underestimate the discharges during high-�ow events (βH = 0.82, Figure
6.4b). This seems to happen when precipitation occur during several days without reach-
ing really high values, which may indicate either (i) some kind of hysteresis functioning
with �ow occurring after a connection has been made in the system, or (ii) in�ows into
the system that are not taken into account in the model. The model is balanced and
accurate on variability (γ = 0.92) and shape and timing (r = 0.96), but generally un-
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derestimates volume (β = 0.88). The model has good performance on high �ows and is
decent on low �ows. After �ood periods, the model seems to simulate a slower draining
than observed � higher volume (βL = 1.19) and variability (γL = 1.27) of low/medium
�ows � resulting in inaccurate recession periods for which the discharge is overestimated
(e.g. November 2011, January 2013, April 2014).

Some periods like November 2012 or February 2015 are not simulated very well by
both models (Figure 6.4b), which may be related to uncertainties in the meteorological
data input. DE is decent (0.39) for ANN model and good (0.32) for reservoir model
(Figure 6.7b). Both models have a positive dynamic error with a higher share of low
�ows, which highlight a small underestimation of the occurrence of low �ows.

The modelling of discharges from Gato Cave spring shows that both approaches can
have great performance given few modelling constraints. Raw precipitation input was
used in both models, thereby avoiding additional uncertainties from interpolation or
snow preprocessings.

6.4.1.c Lez spring

ANN model is good with a KGE' of 0.7 for discharge (Table 6.4) and 0.89 for water level
(Figure 6.5). The high piezometric levels (above 55 m asl) seem a bit too sensitive to
precipitation events, especially at the end of 2019 (Figure 6.5). On discharges, the model
is accurate on variability (γ = 1.13) and shape and timing (r = 0.93), but underestimates
volume (β = 0.74). The overall underestimation of volume mainly comes from high �ows
(βH = 0.75) as they are the most represented on the time series. The model is decent
on high �ows, although having too much variability (γH = 1.38). On low �ows, the
model performs poorly mainly due to high underestimation of volume (βL = 0.64) and
insu�cient shape and timing (rL = 0.64).

Reservoir model is good with a KGE' of 0.7 for discharge (Table 6.4) and 0.75 for water
level (Figure 6.5). However, the model fails to reproduce the observed discharge for several
months for the period between September 2020 and March 2020 (Figure 6.4c). During dry
periods, there is a too high de�cit in the lower reservoirs, leading to a strong delay in the
spring response when fresh precipitation occur � the C reservoir having to be replenished
beforehand. The model is balanced and accurate on shape and timing (r = 0.88), but
overestimates variability (γ = 1.15) and underestimates volume (β = 0.77). The model
is decent on high �ows, but has poor variability (γH = 1.46) and shape and timing
(rH = 0.68), and also underestimates volume (βH = 0.78). On low �ows, the model
has too much variability (γL = 1.37) and middling shape and timing (rL = 0.76). The
piezometric levels are satisfactory when the spring is �owing (greater than 65 m asl), but
lose accuracy during dry periods. The model could not reproduce the changes in �ow
dynamics at 46 m asl (August 2019, August 2020, Figure 6.5). Also, the draining of the
aquifer seems to be simulated more slowly than observed (July 2018, July 2019), which
can be a result of the model trying to �t the aforementioned periods during calibration.

On both models, the poor overall KGE' value on low/medium �ows is probably due
to the small occurrences of low discharges (except 0), thus inducing a high error on
volume. DE is good for both ANN (0.31) and reservoir models (0.35) (Figure 6.7c). Both
models have negative dynamic and constant errors with a higher share of high �ows,
which highlight an underestimation of the occurrence of high �ows.

The time series is generally characterised by distinct dry periods without any recharge
due to the anthropogenic pumping of water into the saturated zone of the aquifer. These
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periods are simulated fairly accurately by both models but ANN model is better at
simulating �rst �oods after or during dry periods. Several boreholes at the north of
the spring showed �ow-bearing structures at 50 m asl (Dausse et al., 2019). These fast
water transfers could explain the rapid increases in observed piezometric level and the
reactive spring responses. We also suspect an evolution of the carbonate's facies with
depth, which could a�ect the e�ective porosity of the medium and induce di�erent �ow
dynamics. These aspects are not considered in the reservoir model which results in
poor simulations when the water level is below 60 m asl. However, this failure provides
information on the structure of the aquifer, which is valuable for research. On the other
hand, ANN model was successful in learning these particular behaviours, especially as it
only had a medium learning time of about 8 years.

6.4.1.d Qachqouch spring

ANN model is decent with a KGE' of 0.67 (Table 6.4), but strongly overestimates low
�ows at the beginning of December and then underestimates the �ood peak at the end
of the month (Figure 6.4d). The model slightly underestimates volume (β = 0.87),
and is lacking in variability (γ = 0.75) and shape and timing (r = 0.82). The high
�ows are poorly simulated but the low �ows are well �tted, although volume is slightly
overestimated (βL = 1.21). The oscillations of the simulated discharges (Appendix 6.Ec)
may appear because the model does not account the time needed for the aquifer to
replenish and generate an increase of discharge at the spring.

Reservoir model is very good with a KGE' of 0.83 (Table 6.4). At the end of the
dry period, the low �ows are overestimated and the �rst �ood is underestimated (Figure
6.4d). This may be due to heterogeneous precipitation occurring on highly transmissive
parts of the catchment. In this case, the soil available water capacity (Emin) � which
is necessary for a good simulation of low-�ow periods � may not be representative of
the whole catchment, thus inducing a more dampened response than observed. The
model is balanced and accurate on volume (β = 1.05) and shape and timing (r = 0.93),
but slightly lacks in variability (γ = 0.85). The model is decent on high �ows but has
middling variability (γH = 0.57) which can be due to the underestimation of the late
December �ood peak. The low �ows and recession periods are overestimated (βL = 1.20
and γL = 1.19).

DE is bad for ANN and reservoir models (0.77 and 0.84, respectively, Figure 6.7d).
Both models have a positive dynamic error with a higher share of low �ows, which high-
light an underestimation of the occurrence of low �ows. Here, the positive dynamic error
is in�uenced by the constant underestimation of the observed discharge during the dry
period (October�December 2019), accounting for more than 50 % of the observations.

The very short data length is particularly detrimental to the ANN model as the
learning period is only about 4 years. Furthermore, even when data are available, there
is a signi�cant amount of time without (relevant) discharge, for which no input-output
relation can be learned. Due to the characteristics of the discharge time series, it can be
assumed that a much longer time series of daily values would be needed to successfully
simulate the discharges of Qachqouch spring. On the other hand, the reservoir model
seems more appropriate to simulate Qachqouch spring discharges even with the limited
data available. This highlights the strength of conceptual modelling to take into account
recharge processes and reservoir replenishment, even on a short dataset with long dry
periods.
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6.4.1.e Unica springs

ANN model is good with a KGE' of 0.73 (Table 6.4). The model is accurate on volume
(β = 1.03) and shape and timing (r = 0.93), but insu�cient on variability (γ = 0.74). The
model is good at simulating high �ows, although slightly lacking in volume (βH = 0.87),
variability (γH = 0.89) and shape and timing (rH = 0.79). The model is poor for
simulating low �ows, which are often signi�cantly overestimated (βL = 1.92), especially
the recession periods which systematically have a slower draining (Figure 6.4e). The
overestimation of low �ows could be the result of the model trying to better �t the high-
�ow periods during training, which may shift the whole discharge curve slightly towards
the upper limits. The model also seems to be too sensitive regarding precipitation events,
hence the wave-like behaviour of the simulated time series (Appendix 6.Ed). DE is bad
(0.72, Figure 6.7e). The model has a negative dynamic error and a positive constant error
with a higher share of low �ows, which highlights an overestimation of the occurrence of
low �ows.

Reservoir model is good with a KGE' of 0.77 (Table 6.4). The model is balanced and
accurate on variability (γ = 0.89) and shape and timing (r = 0.93), but has shortcomings
on volume (β = 0.77). In some winter months (December 2017, March 2018), the model
has a delayed response of the rising limb (Figure 6.4e), which may be due to a slightly
wrong parametrisation of the snow routine. The model is good on high �ows, but shape
and timing (rH = 0.81) and volume (βH = 0.74) could be improved. The model accurately
simulates low �ows volume, but has too much variability (γL = 1.25) and is middling on
shape and timing (rL = 0.78). The di�culty of the model to reproduce the depletion of
the capacitive function may be due to the size and complexity of the catchment and the
very speci�c in�uence of poljes draining over the catchment, which cannot be simulated
within the KarstMod platform. DE is very good (0.18, Figure 6.7e). The model has
negative dynamic and constant errors with a higher share of high �ows, which highlight
a small underestimation of the occurrence of low �ows.

Both models were unable to reproduce the plateau-like behaviour observed at very
high discharges (Figure 6.4e), which is due to the �ooding of a polje at Unica springs that
in�uences the monitoring station (Mayaud et al., 2022). They are simulated as separate
peaks, which is false in terms of model accuracy but may also have some underlying con-
ceptual truth. Only two meteorological stations were considered, which is very few for
such a large catchment (820 km2). Moreover, the major recharge area (Javorniki plateau)
does not have any direct climate data available. Both models have di�culties in consis-
tently reproducing the very particular hydrological functioning of the system (in�uenced
by polje and surface water). ANN model is more reactive, which helps for reproducing
the dynamics of high �ood peaks but hinders the simulation of low �ows. Reservoir model
has better dynamics for medium and low �ows but does not always manage to reproduce
high �ood peaks, which may be a consequence of the simple structure of the model.

6.4.2 Sources of uncertainties

Both ANN and reservoir models have similar trends on water volume and hydrological
variability (Figure 6.6). Overall volumes are great with β ranging from 0.74 to 1.05.
High-�ow volumes are systematically underestimated with βH ranging from 0.70 to 0.98.
Low-�ow volumes are mainly overestimated � βL ranging from 0.99 to 1.92 � except at
Lez spring with βL of 0.64 and 0.72. Overall hydrological variability is mainly underes-
timated, with only Lez and Aubach springs having γ values slightly above 1. High-�ow
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hydrological variability does not show a distinct trend, being either overestimated or
underestimated depending on the studied system. Low-�ow hydrological variability is
mainly overestimated with γL ranging from 0.95 to 1.37. These overestimations may be
due to (i) improper � and generally softer � simulation of recession periods or (ii) too
high sensitivity to precipitation events, especially in ANN models, inducing discharge
oscillations during recession and low-�ow periods. The performance on shape and timing
(r) are mixed between the two approaches. They depend mainly on the system studied
and the quality of the model, but also on the hydrological period considered.

These similar results between the two approaches highlight a common struggle to
simulate extreme water conditions. As ANN and reservoir modelling approaches are very
di�erent, explanation must be sought in common factors to both approaches such as input
data, observed data, internal/external system dynamics or the consideration of extreme
events during calibration:

i. Input data: Generally, in one-dimensional modelling approaches, input data only
come from at most few meteorological stations and do not accurately re�ect the het-
erogeneity of meteorological processes on a catchment. Spatial variability of precipi-
tation can be very high and not fully captured by meteorological stations, (i) resulting
in di�erent travel times and generating a di�erent response at the spring (Ollivier
et al., 2020), and (ii) hindering the simulation of very high �ows (Hohmann et al.,
2021; Pereira et al., 2014) � especially in areas where strong convective storms are
frequent (Lobligeois et al., 2014). McMillan et al. (2018) suggested that uncertain-
ties in precipitation data are about 0�10 % at point scale but can go up to 40 %
when considering interpolation uncertainties. Temperature data are generally less
heterogeneous than precipitation, although they can be a�ected by complex topog-
raphy (Aalto et al., 2017). In the case of snow-covered areas, this can result in strong
uncertainties on the timing of snow accumulation and melting (Zhang et al., 2016),
and therefore the recharge of the aquifer. The uncertainties related to precipitation
and temperature input in one-dimensional hydrological models can thus � partly �
explain the di�culties to reproduce extreme events (Bittner et al., 2021; Huang et al.,
2019; Lobligeois et al., 2014; Ollivier et al., 2020), especially high �ows.

ii. Observed data: Discharge time series are generally derived from water height mea-
sured at the spring, using water level�discharge calibration curves. Numerous uncer-
tainties are related to this determination method (Pelletier, 1988), including extrap-
olation errors for extreme values (Di Baldassarre and Montanari, 2009; Moges et al.,
2021). Extreme events occur more rarely and are harder to measure, especially high
�ows. This can result in inaccurately observed discharge time series that are di�cult
to reproduce with simulations (e.g. Unica springs at very high �ows). The uncer-
tainties related to discharge measurements are highly dependent on the quality of
the gauging station and usually range between 10 and 40 % (McMillan et al., 2018).
Although they are expected to be higher in a karst context (Westerberg et al., 2016),
some authors reported uncertainties of about 20 % (Jeannin et al., 2021) or 10�15
% (Katz et al., 2009).

iii. Internal/external system dynamics: Karst systems are inherently complex media.
Internal dynamics are not necessarily captured in hydrological models (Hartmann
et al., 2017; Sidle, 2006; Sidle, 2021) and can be related to numerous processes
in karst media, e.g. the saturation state of the system, surface water exchanges,
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temporary storage of water, incoming or outgoing �ows from/to another aquifer,
change in physical properties beyond a certain level, or karst features such as poljes
or sinkholes. These complex processes do not occur systematically and can change
from year to year (Ollivier et al., 2020). This can lead to di�culties in training ANN
models or in adapting the structure of reservoir models.

iv. Extreme events during calibration: ANN and reservoir models are both trained on
a calibration period. By de�nition, extreme events are rare. Therefore, models may
have less opportunities to successfully �t model parameters to such events (Seibert,
2003), preferring more balanced parameters that are appropriate to the rest � and
most � of the time series (Onyutha, 2019). In addition, models are generally cali-
brated over the whole time series using one performance criterion against observed
data. In this case, extreme events are not explicitly emphasised in the objective func-
tion. A solution could be to give more weight to the reproduction of certain parts of
the time series, such as �ood and dry periods (Singh and Bárdossy, 2012), or to use
di�erent model optimisation techniques, such as cross-validation (Wilks, 2011).

Both approaches can also bene�t from a careful assessment of the calibration period.
For example, the ANN model is thought to overestimate low �ows in Unica springs by
trying to �t the plateaus at very high discharges. In Lez spring, the reservoir model
simulates a slower draining in the aquifer (piezometric level) because it does not account
for a potential change in underground dynamics. These limitations emphasise the need
for a meticulous investigation of the results in regard to the characteristics of the system
and the input data. Such errors can be avoided or lessened by excluding abnormal periods
during the calibration, which can be justi�ed by inaccurate input data or limitation in
the conceptual model.

6.4.3 Comparison of general model properties

The main �ndings of this study are presented in Table 6.5. The extensive analysis of
high and low �ows did not show a clear trend, but did reveal slight di�erences between
the two approaches for this study. For high-�ow periods, results slightly favour the
ANN approach (except for Qachqouch spring), with consistently accurate volumes and
shape and timing (Figure 6.6). ANN models also tend to achieve higher �ows than
reservoir models (Figure 6.4); due to the noticeable/strong karsti�cation of the studied
systems, the high occurrence of high discharge data may bene�t the learning of the ANN
models. On the other hand, reservoir models are more dependent on the relevance and
the quality of the input data preprocessing, thus can be more a�ected by the uncertainties
presented in section 6.4.2, especially regarding high �ows. For low-�ow periods, results
slightly favour the reservoir approach (except for Aubach spring), with good estimation
of volumes and only a slight overestimation of the hydrological variability (Figure 6.6).
The conceptual representation of the aquifer with reservoirs and transfer functions may
help to simulate the recharge process (especially for inertial systems): a precipitation
event will not directly result in a discharge increase at the spring if the reservoir is not
fully saturated. On the other hand, ANN models seem to not always account for the
time needed for the aquifer to replenish, inducing wave-like behaviours during medium-
and low-�ow periods (Appendix 6.E), which can hinder the simulation of low �ows. The
water level (Lez spring) was correctly simulated by both approaches, with only some
imprecision during dry periods (Figure 6.5).
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ANN models Reservoir models

Advantages

Fast and reliable The simulation is supported by a concep-
tual model

Flexible regarding input data Slightly better on low �ows

Slightly better on high �ows Can be used to gain knowledge about sys-
tem functioning

Can be used to gain knowledge about in-
put data, catchment delineation, recharge
processes

Can work with short observed time series

Drawbacks

Struggle to reproduce extreme events Struggle to reproduce extreme events

Need medium/long observed time series
for a proper learning

Input data generally need preprocessing

Essentially a black-box approach Can be time consuming

Potential platform/coding limitations

Table 6.5: Advantages and drawbacks of ANN and reservoir models, based on the results of
this research.

ANN models are �exible and provide numerous advantages over reservoir models
with respect to input data. They can easily integrate meteorological processes (e.g.
snow dynamics, evapotranspiration) without any preprocessing of the raw data, whereas
this is generally calculated beforehand in reservoir models. It is also possible to add
a large amount of raw data in ANN models and let the model select those relevant
for a good simulation, which makes the modelling easier and can also give insight into
the input data or catchment characteristics (Wunsch et al., 2022). This helps to avoid
additional uncertainties related to (i) arbitrary decisions over the raw data (e.g. choosing
precipitation from one station rather than another), (ii) interpolation (when data from
several meteorological stations over a catchment are available) or (iii) preprocessing (e.g.
snow routine, potential evapotranspiration). This great �exibility regarding input data
makes ANNmodels close to a 2D or semi-distributed approach. If necessary, the transition
between 1D and 2D input data are comparably easy, whereas in reservoir models this
usually involves changing or adapting the tool.

Reservoir models do not need a long calibration period to provide accurate and rele-
vant simulation results. In contrast, a very short time series or a short time series with
long dry periods can be detrimental for the learning of ANN model, which seems to bene-
�t from long periods of relevant discharge (at least 5 years). We have seen that the ANN
model has di�culties in simulating the �ows of the Qachqouch spring, mainly because of
(i) the short calibration period, and (ii) the long low water periods which are not relevant
for training the model. On the other hand, the reservoir model has been able to integrate
key elements (e.g. double porosity, matrix-conduit exchanges, fast conduit transfer in
wet periods) by relying on the conceptual model.

The ANN approach does not require any prior knowledge of the system and inherently
considers model structure and parameters. This makes the modelling process easier and
faster thus saving the operator a great amount of time. On the other hand, reservoir
models require a signi�cant investment in reading the literature, analysing expert knowl-
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edge, and doing trial and error during model design. Moreover, the cost of a change of
structure is not trivial. Depending on the modelling platform (e.g. software, raw code),
it may take more or less time � or even be impossible � to take certain elements into
account. For example, in this study, the KarstMod platform does not allow one to (i)
consider di�erent porosities in the same reservoir, leading to di�culties in modelling the
piezometric levels during dry periods for the Lez system; (ii) use di�erent Emin values,
which may bene�t the Qachqouch model; (iii) consider polje and surface water in�uence
in the Unica model; or (iv) consider snow dynamics in the structure of the Aubach model.

Both ANN and reservoir models can be used for research purposes. Model structure,
transfer functions and parameters are explicitly expressed in reservoir models, which can
provide valuable insights into the hydrogeological structure of the reservoir and the in-
ternal processes of the karst system, e.g. (i) the relative contributions of fast and slow
�ows; (ii) the draining of each compartment; (iii) the activation thresholds of the over�ow
transfer functions (either to the spring or out of the system); (iv) the changes in �ow
dynamics with respect to dry and wet periods; and (v) the exchanges between the matrix
and conduit compartments. In comparison, ANN models act rather as a �black-box�,
whose parameters are more di�cult to exploit and associate with the hydrological func-
tioning of a system. However, ANN model can help to explore input data, thus indirectly
providing insights into catchment delineation or external recharge processes (Wunsch et
al., 2022).

6.5 Conclusion

Our objective was to provide researchers and stakeholders with guidelines for choosing
either arti�cial neural networks or reservoir models to simulate karst spring discharges,
depending on their purpose, data availability, data length and time budget. Five test
sites were considered, allowing di�erent hydrological conditions and input data to be
studied. The results of ANN and reservoir models were compared on the basis of several
performance criteria, distinguishing between high- and low-�ow conditions. Both mod-
els succeeded in simulating spring discharges satisfactorily, but struggled to reproduce
extreme events (drought, �ood), generally overestimating low �ows and underestimating
high �ows. This can be related to common problems in hydrological modelling regarding
uncertainties in the input data or observed data, internal/external system dynamics or
the consideration of extreme events during calibration.

ANN models seem robust for reproducing high-�ow conditions and reservoir models
for reproducing low-�ow conditions. The input data are also a critical factor in choice.
Reservoir models can work with relatively short time series while ANN models need a
minimum number of relevant years to learn the functioning of a karst system. On the
other hand, ANN models are very �exible on the format and amount of input data.
They can learn many meteorological processes with no prior need for preprocessing the
raw data, as well as use several time series for a single variable. This avoids arbitrary
interpolation decisions (e.g. precipitation between several stations), parameter de�nitions
(e.g. snow routine) or meteorological calculation (e.g. potential evapotranspiration), and
allows these aspects to be integrated into the model calibration.

Both ANN and reservoir models can be used for karst aquifer management, �ood fore-
casting and system characterisation. ANN models may be more appropriate for simulat-
ing high �ows, delineating catchments, or assessing external recharge processes. Reservoir
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models seem more robust for simulating low �ows and gaining insights into the internal
functioning of a system. ANN models can also be interesting time-wise as (i) they do not
require any prior knowledge of the system and (ii) model design is more �exible regarding
input data and system functioning.

One of the di�culties this paper faced was to distinguish the general limitations of
the reservoir modelling approach from those speci�c to the chosen modelling platform.
In comparison to user-de�ned models, the modelling platform constrains the structure
and the transfer functions of the conceptual model. Remaining within the KarstMod
platform provided the time advantages of a turnkey toolbox (which are widely used in
research and by stakeholders), but limited the possibilities of the conceptual models.
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6.6 Appendix

6.A Origin of the meteorological data

6.B Calculation details for the Thiessen's polygon interpolation
method

The Thiessen's polygon interpolation method consists of calculating a weighted average
of precipitation data from several meteorological stations. The contribution percentages
of the stations are proportional to their in�uence area on the catchment. An in�uence
area corresponds to a polygon where the precipitation is considered to be identical to that
measured at the associated meteorological station. The polygons are de�ned in two steps:
(i) drawing the straight-line segments between all adjacent stations and (ii) adding the
perpendicular bisectors of each segment, which correspond to the edges of the polygons.
The weighted average of the precipitation PTH is calculated with the following equation:

PTH =

∑n
i=1AiPi

A
(6.3)

with A the area of the catchment, n the number of meteorological stations, Ai the
area of the polygon associated with the ith station and Pi the precipitation measured at
the ith station.
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Spring Station Altitude Latitude Longitude Data measured
[m asl] [°] [°]

Aubach Diedamskopf 1790 47.3389 10.0256 P, T, RSO

Aubach Oberstdorf 806 47.3984 10.2759 P, T, RSO

Aubach Walmendinger Horn 1650 47.3216 10.1225 P, T, RSO

Gato Cave Grazamela 901 36.7678 -5.3658 P, T
Lez Prades-le-Lez 69 43.7176 3.8573 P, T, RH, U
Lez Puéchabon 250 43.7414 3.5958 AET
Lez Saint-Martin-de-Londres 214 43.7903 3.7326 P
Lez Sauteyrargues 150 43.8345 3.9207 P
Lez Val�aunèes 155 43.8001 3.8707 P
Qachqouch 950 m station 950 33.9180 35.6763 P, T, RH, U, RS

Qachqouch 1700 m station 1700 34.0253 35.8360 P, T, RH, U, RS

Unica Cerknica 569 45.7956 14.3634 P, S, NS
Unica Postojna 533 45.7661 14.1932 P, T, RH, S, NS

Table 6.6: Origin of the meteorological data (i) P, (ii) T, (iii) RSO, (iv) RH, (v) U, (vi)
AET, (vii) RS, (viii) S and (ix) NS refer to (i) precipitation, (ii) temperature, (iii) clear-sky
solar radiation, (iv) relative humidity, (v) wind speed, (vi) actual evapotranspiration, (vii) solar
radiation, (viii) snow and (ix) new snow, respectively.

6.C Calculation details for the snow routine

Accounting for snow accumulation and melting in hydrological modelling can greatly
improve model results, especially for regions with high snow volumes. Chen et al. (2018)
successfully simulated spring discharge of a mountainous karst system strongly in�uenced
by snow accumulation and melting. They applied a modi�ed version of the HBV snow
routine Bergström (1992) proposed by (Hock, 1999). We used this snow routine as an
external KarstMod module (i.e. without internal calibration).

The snow routine simulates snow accumulation and melting over di�erent sub-
catchments de�ned according to altitude ranges. The input data consist of three time
series (temperature, precipitation and potential clear-sky solar radiation) and �ve param-
eters (temperature threshold, melt coe�cient, refreezing coe�cient, radiation coe�cient
and water holding capacity of snow). The potential clear sky solar radiation time series
and radiation coe�cient are only used when working at an hourly timescale to simu-
late a more re�ned snowmelt by considering sun exposure. The parameters values were
estimated by model calibration.

Precipitation is considered as snow when the air temperature is below the temperature
threshold. Snowmelt begins when the temperature is above the threshold according to a
degree-day expression, where snowmelt is a function of the melt coe�cient, solar radiation
and degrees above the threshold. Runo� starts when the liquid water holding capacity of
snow is exceeded. The refreezing coe�cient allows one to consider the refreezing processes
of liquid water in the snow if snowmelt is interrupted (Bergström, 1992). The output of
the snow routine is a time series of redistributed precipitation.

6.D Calibration scores of the reservoir models

6.E Examples of wave-like behaviour produced by the ANN model

The periods were selected in such a way that the in�uence of snow precipitation and
snowmelt is zero or almost zero. Precipitation input corresponds to either direct observa-
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Spring Calibration period Validation period
ANN Reservoir ANN Reservoir

Aubach / 0.40 0.26 0.63
Gato Cave / 1.53 1.53 1.07

Lez / 8.63 4.53 8.84
Qachqouch / 1.17 7.78 2.87

Unica / 81.57 123.51 152.92

Table 6.7: Scores of both modelling approaches over the calibration and validation periods with
MSE. No results are available in the calibration period for the ANN models, as this corresponds
to the learning period of the models. Each component of the composite objective function
MSE(Q, Z) of the Lez spring has been normalised.

tions from a meteorological station, or preprocessed observations with Thiessen's polygon
interpolation (Appendix 6.B) if there are several meteorological stations.
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Figure 6.8: Examples of wave-like behaviour produced by the ANN model on (a) Aubach, (b)
Gato Cave, (c) Qachqouch and (d) Unica springs.
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Conclusions

This thesis aimed to develop and improve numerical methods and hydrological models for
characterising the functioning of karst systems in response to climatic and anthropogenic
changes, with a focus on conceptual reservoir modelling.

Tools. This work used di�erent databases and approaches for characterising karst
systems hydrological functioning:

i. The SNO KARST andWorld Karst Spring hydrograph (WoKaS) databases were used
for the analysis of spring discharge time series (Chapter 2, Chapter 3 and Chapter
4).

ii. Numerical methods such as recession curves, signal and statistical analyses were
used as a basis for the classi�cation of the hydrological functioning of karst systems
(Chapter 2 and Chapter 3).

iii. The framework of the KARMA project allowed to work on several karst systems
across the mediterranean region and to bene�t from local expert knowledge (Chapter
5 and Chapter 6).

iv. Lumped parameter approaches, and especially conceptual reservoir models, were used
to gain insights into the internal dynamics of karst systems (Chapter 6).

Research questions. Numerical methods and hydrological models have been used
to answer the initial research questions:

(i) How to characterise the functioning of a karst system in data-scarce contexts?
A data-scarce context implies the study of a system with limited data, whether in

terms of spatial coverage, temporal scope, resolution, or diversity. Chapter 2 shows the
information about a system functioning that can be retrieved from the analysis of the
spring discharge time series. The analysis of recession curves can give relevant insight
into di�erent aspects of a karst system hydrological functioning: capacity of dynamic
storage, draining dynamic of the capacitive function and variability of the hydrological
functioning. The consideration of the variability of the hydrological functioning in the
proposed classi�cation is a novel aspect, allowing for a more accurate di�erentiation of
karst systems. The use of multivariate analyses and the application of the classi�cation
on large databases have made it possible to identify an optimal number of classes of
functioning � six providing a good compromise between the gain in knowledge, relevance,
and accessibility of the method. Chapter 2 demonstrates that this classi�cation is relevant
given a minimum number of observations that depends on the system dynamics and the
variability of climate, which generally remains compatible with a data-scarce context.
Chapter 6 shows that reservoir models can provide relevant results with few input data
(one-dimensional precipitation and temperature) and, especially, short length time series.
Using reservoir models can therefore provide a bene�t in a context of data scarcity or
help gaining preliminary insights into the functioning of a poorly known karst system
(e.g. water partitioning between matrix and conduits and internal �ow dynamics).

(ii) On which aspects can simple, one-dimensional models be further improved?
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One-dimensional models can be improved on several aspects: input data, calibration
and evaluation. Chapter 4 proposes several additions to the KarstMod modelling platform
on such aspects. In the new version 3.0 of this software, the de�nition of the parameters
for preprocessing input data can be realised by model calibration using optional modules
(snow or evapotranspiration), resulting in a more adapted input data. The objective
function now supports more than two components, which can help to calibrate a model
with respect to several observation variables (spring discharge, piezometry, temporary
spring discharge), and using one or several performance criteria, as demonstrated in the
Lez case study. Additional tools are also proposed for model evaluation, which can be
realised on di�erent aspects of the functioning of a system, i.e. the good reproduction
of volumes, variability and correlation. Chapter 5 underlines the importance of choosing
relevant performance criteria. They all have their �aws and a one-dimensional simulation
can be improved by good modelling practices alone.

(iii) Can performance criteria be trusted for the calibration and evaluation of hydrological
models?

Chapter 5 evidences the impact of counterbalancing errors using performance criteria
for the calibration and evaluation of a hydrological model. Performance criteria cannot
be fully trusted as they all have di�erent limitations. They should be carefully selected
in regard to the aim of a model, and preferably in a multi-criteria framework.

(iv) What are the advantages and drawbacks of di�erent lumped parameter modelling
approaches in karst hydrology?

Chapter 6 proposes a comparison of arti�cial neural networks (ANN) and reservoir
modelling approaches. ANN models, a branch of machine learning, show a high �exibility
regarding input data and are e�cient for reproducing high �ows. Reservoir models can
work with relatively short time series and seem to accurately reproduce low �ows. Both
approaches can help characterising di�erent aspects of a system: (i) ANN models for the
relevance of input data, catchment delineation, and (ii) reservoir models for the internal
functioning of the aquifer.

Key results. The key points of the work are the following:

i. Despite the high heterogeneity and complexity of karst systems, a preliminary char-
acterisation of their hydrological functioning is possible even in data-scarce context.
The analysis of discharge time series or the use of one-dimensional lumped parameter
models can give a lot of information on system characteristics and internal function-
ing.

ii. Hydrological models should be applied thoughtfully for the interpretation to be rel-
evant. Each step of a modelling process requires a thorough review of the available
options, whether it is for the choice of the modelling approach, the de�nition of the
model structure, the use of input data, the calibration procedure, the objective func-
tion, the performance criteria for model evaluation, or the sensitivity analysis of the
model parameters. In particular, this thesis shows that performance criteria all have
limitations and should be selected with respect to the objectives of the hydrological
model and the aim of the study.

Perspectives. Future work may focus on:
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i. The impact of climate change on karst systems in the Mediterranean using a con-
sistent methodology across multiple sites with di�erent characteristics in terms of
locations, climatic conditions, hydrogeological properties and available data. A cur-
rent work (recently started during this thesis) takes advantage of the framework of
the KARMA project to study the large scale future trends of water dynamics and
availability in karst systems in this region, using reservoir models. To account for
uncertainties in climate projection, 8 coupled GCM/RCM climate models are con-
sidered with two emission scenarios (RCP 4.5 and RCP 8.5). Such study could bring
interesting general insights in the response of karst systems to changes in precipitation
patterns and under signi�cant warming and drying conditions.

ii. The possible link between the hydrological functioning class of a karst system and
the reservoir model structure considered in the simulation of spring discharge and/or
water level of karst systems. The identi�cation of structure components (compart-
ments, transfer functions) that may be speci�c to certain classes could simplify the
modelling process while adding value to the classi�cation proposed in Chapter 2.

iii. The use of indicators of functioning (e.g. recession dynamics) for the calibration
of hydrological models. Constraining the model to reproduce key aspects of the
functioning of the system (capacity of dynamic storage, draining dynamic of the
capacitive function, and variability of the hydrological functioning) could result in
more relevant model structure and parameters.

iv. The proposition of an indicator to assess the extent of counterbalancing errors in a
simulation, which could be used as a tool to evaluate the relevance of the model.
Another perspective would be to develop an alternative performance criterion not
subject to counterbalancing errors, in order to avoid undesired overestimations and
underestimations in the simulations.

v. The coupling of the ANN and reservoir modelling approaches to leverage the advan-
tages of each approach. A possible way would be to use ANN models to bypass the
limitations of reservoir models concerning the processing of input data, and then use
a reservoir model accounting for the output of the ANN model. This would allow
bene�ting from the information derived from the model structure and parameters of
the reservoir model.
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Abstract: As a result of erosion due to in�ltration and circulation of acidic waters,
karst systems have a particular geomorphological structure which generally consists of
a substantial and structured heterogeneity conditioned by past �ow conditions. Under-
standing the functioning of �ow and storage processes in karst aquifers thus represents
a major challenge � especially since these resources provide drinking water to approxi-
mately 9 % of the global population. This thesis aims to develop and improve numerical
methods and hydrological modelling for characterising the functioning of karst systems
in response to climatic and anthropogenic changes.

A classi�cation of karst systems hydrological functioning is �rst proposed. Based
on the analysis of recession curves, the method allows to categorise a karst system into
6 classes with di�erent characteristics in terms of storage capacity, draining dynamic
and hydrological variability. In parallel, a software � KarstID � is developed to perform
various discharge analyses as well as the aforementioned classi�cation.

Another aspect of the thesis is dedicated to the evaluation and improvement of lumped
parameter models. Bene�ting from the framework of the KARMA European project,
the accessible data facilitates large-scale and extensive research based on multiple karst
systems in the Mediterranean region. Firstly, a comparative study of the performance of
two modelling approaches � arti�cial neural networks and reservoir models � is carried out.
The objective is to identify the advantages and disadvantages of each approach, depending
on the available data and the objectives of a study. Secondly, the counterbalancing error
mechanism on the Kling-Gupta E�ciency and its variants is extensively studied: when
calibrating or evaluating a model, counterbalancing errors can arti�cially lead to a higher
criterion score that is not associated with an increase in model relevance. Further work
is also focused on the development of new functionalities (related to input data and
performance criteria) for KarstMod, a software dedicated to rainfall-runo� modelling for
karst systems.

Résumé : Les systèmes karstiques, principalement constitués par des roches carbon-
atées, présentent une structure géomorphologique particulière résultant de leur érosion
par l'in�ltration et la circulation d'eaux acides. La compréhension du fonctionnement
des processus d'écoulement et de stockage des eaux des aquifères karstiques représente
un dé� majeur � d'autant plus que ces ressources alimentent en eau potable environ 9
% de la population à l'échelle mondiale. Cette thèse vise à développer et à améliorer les
méthodes numériques et la modélisation hydrologique pour caractériser le fonctionnement
des systèmes karstiques en réponse aux changements climatiques et anthropiques.

Une classi�cation du fonctionnement des systèmes karstiques est proposée dans un
premier temps. Cette classi�cation est basée sur l'analyse des courbes de récession et
permet de caractériser un système karstique en six classes sur la base de trois indica-
teurs, qui re�ètent sa capacité de stockage, sa dynamique de drainage et sa variabilité
de fonctionnement hydrologique. En parallèle, un logiciel a été développé, permettant de
réaliser di�érentes analyses de débit ainsi que la classi�cation proposée.

Un autre aspect de cette thèse est consacré à l'évaluation et à l'amélioration des mod-
èles à paramètres globaux. Béné�ciant du cadre du projet européen KARMA, les données
accessibles facilitent les études large échelle basées sur plusieurs systèmes karstiques dans
la région méditerranéenne. Dans un premier temps, une étude comparative de la perfor-
mance de deux approches de modélisation � les modèles réservoir et à réseaux de neurones
arti�ciels � est réalisée. L'objectif est d'identi�er les avantages et les inconvénients de
chaque approche, en fonction des données disponibles et des objectifs d'une étude. Dans
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un second temps, le mécanisme de compensation des erreurs sur le Kling-Gupta E�ciency
(KGE) et ses variantes est étudié : lors de la calibration ou de l'évaluation d'un modèle,
les erreurs de compensation peuvent arti�ciellement conduire à un score de critère plus
élevé qui n'est pas nécessairement associé à une meilleure pertinence du modèle. Des
travaux supplémentaires ont également porté sur le développement de nouvelles fonction-
nalités (liées aux données d'entrée et aux critères de performance) pour KarstMod, un
logiciel dédié à la modélisation réservoir pour les systèmes karstiques.


	Remerciements
	Résumé étendu
	Introduction
	Scientific context
	Introduction to karst systems
	Formation and characteristics
	Global distribution and importance

	Rainfall-runoff modelling in karst environments
	Challenges in (karst) hydrological modelling
	Modelling approaches
	Distributed models
	Black-box models
	Conceptual reservoir models


	Conclusions
	References for Chapter 1

	I Characterisation of the hydrological functioning of karst systems
	Introduction to Part 1
	Classification of karst hydrological functioning
	Introduction
	Data and study sites
	Core dataset
	Complementary dataset

	Methodology
	Statistical analyses
	Recession curves analysis
	Correlational and spectral analyses
	Analysis of classified discharges

	Analysis and selection of indicators of karst dynamics
	Statistical indicators
	Recession indicators
	Signal indicators
	Indicators issued from the analysis of classified discharges

	Multivariate analyses
	Principal component analysis
	Principle
	Results

	Clustering
	Principle
	Results

	Confrontation of the results with the actual knowledge of the functioning of the systems

	Classification of karst hydrological functioning
	Classification of karst systems according to various types of hydrological functioning
	Application of the proposed methodology to 78 karst systems

	Discussion
	Influence of the length of the time series on the classification
	Evaluation of the distance between a system and other classes
	Beyond the classification

	Conclusion
	Appendix
	2.A  Calculation details for the correlational and spectral analyses
	2.B  Calculation details for the analysis of classified discharges
	2.C  Results of the v-test applied on clusters A, B, 1, 2, 3 and 4
	2.D  Graphical summary of the typology of HR_0020 karst system

	References for Chapter 2

	KarstID, a software for the analysis of discharge time series
	Introduction
	Software overview
	Workflow
	Data import
	Methods
	Statistical analyses
	Recession curve analysis
	Simple correlational and spectral analyses
	Analysis of classified discharges

	Classification

	Test case
	Conclusion
	Appendix
	3.A  Calculation details for the correlational and spectral analyses

	References for Chapter 3


	II Improvement and evaluation of the performance of lumped parameter models for the simulation of spring discharge and water level of karst systems
	Introduction to Part 2
	Improving model relevance: input data and performance criteria
	Introduction
	Background and motivations
	Challenges in karst groundwater resources
	Challenges in lumped parameter modelling in karst hydrology

	Implementation
	Meteorological modules
	Snow routine
	PET routine

	Set up and calibration of the model structure
	Model evaluation
	Dealing with uncertainties

	Case studies
	The Touvre karst system (La Rochefoucauld)
	The Lez spring

	Conclusions
	Appendix
	4.A  Snow routine

	References for Chapter 4

	Critical evaluation of performance criteria
	Introduction
	Performance criteria
	Parameters description
	Score calculation

	Synthetic time series
	Generating synthetic time series with homothetic transformations
	Identifying counterbalancing errors on a straightforward example
	Exploring counterbalancing errors with synthetic transformations

	Real case study
	Study site
	Modelling approaches
	Impact of counterbalancing errors on model evaluation

	Recommendations
	Use of relevant performance criteria
	Use of scaling factors

	Conclusion
	Appendix
	5.A  Common and recently developed performance criteria applied to the synthetic time series and the real case study

	References for Chapter 5

	Comparison of artificial neural networks and reservoir models
	Introduction
	Data and study sites
	Aubach spring, Austria
	Gato Cave spring, Spain
	Lez spring, France
	Qachqouch spring, Lebanon
	Unica springs, Slovenia

	Methodology
	Artificial neural networks
	Reservoir models
	Input data
	Model calibration and simulation
	Model evaluation

	Results and discussion
	Modelling results
	Aubach spring
	Gato Cave spring
	Lez spring
	Qachqouch spring
	Unica springs

	Sources of uncertainties
	Comparison of general model properties

	Conclusion
	Appendix
	6.A  Origin of the meteorological data
	6.B  Calculation details for the Thiessen’s polygon interpolation method
	6.C  Calculation details for the snow routine
	6.D  Calibration scores of the reservoir models
	6.E  Examples of wave-like behaviour produced by the ANN model

	References for Chapter 6


	Conclusions

