First principles such as unitarity and causality determine the analytic structure of scattering amplitudes. We study how this analytic structure affects the long distance limit of quantum field theories and gravitational theories. We unveil a beautiful geometric space where these effective field theories must live in, and discuss in detail several applications that range from physics beyond the Standard Model to cosmology and the swampland program.
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Introduction

The idea that physics at low energy can be described in terms of light degrees of freedom alone is one of the most satisfactory organising principle in physics, which goes under the name of Effective Field Theory (EFT).

A quantum field theory (QFT) can be viewed as the trajectory in the renormalization group flow from one EFT to another, each being well described by an approximate fixed point where the local operators are classified mainly by their scaling dimension. The effect of ultraviolet (UV) dynamics is systematically accounted for in the resulting infrared (IR) EFT by integrating out the heavy degrees of freedom, which generate an effective Lagrangian made of infinitely many local operators. This infinite tower of operators can moreover be organized in terms of symmetries that are tracked along the renormalization group flow (RG).

This picture is actually valid beyond QFT: even gravitational theories like string theory, seen at very long distance, have to reduce to the Standard Model (SM) and General Relativity (GR), plus possible deformations in terms of irrelevant operators and extra light degrees of freedom we have not yet detected experimentally because too weakly coupled. 1Despite the fact an EFT has infinitely many operators, it remains predictive, even when the UV dynamics is unknown, because in practice only a finite number of operators contributes, at any given accuracy, to observable quantities. The higher the operator dimension, the smaller the effect at low energy.

The RG is compressing information along its flow: several different theories can produce the same set of leading or next-to-leading set of operators, as long as they share the same symmetries and one is working with finite energy resolution. Moreover, once the coefficients of the effective operators are known, one can unambiguously calculate and predict the non-analytic terms in the scattering amplitudes that are produced by the light degrees of freedom alone -in the IR theory-oblivious of any finer information from the UV that is not encapsulated in the local -contact-operators seen at low energy.

This compressing-memory effect of the RG flow, especially for a long evolution or going through stages of strong dynamics, has supported for many years a degenerate version of the Gell-Mann's totalitarian principle, originally "everything that is not for-CONTENTS bidden is compulsory". The degenerate version is basically the belief that every set of EFT Wilson coefficients {c i } that we could -and should-write down

L = i c i O i (x) (0.0.1)
is the IR-end of a consistent RG evolution, as long as it is respecting the desired symmetries and a few consistency requirements, such as anomaly cancellations. In other words, it was expected that we can always UV complete any desired tower of operators such as (0.0.1), as long it respects the basic rules such as locality, Lorentz-invariance, gauge invariance etc.

It has become clear over the last couple of decades that this belief was too naïve. The Wilsonian picture is rooted in the euclidean thinking and it holds regardless of the UV theories being unitary or causal. On the other hand, we are interested in minkowkian theories that are unitary and causal in the UV (hence in the IR too). It was thus emphasised in [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF] that fundamental properties of the S-matrix such as unitarity, analyticity, crossing symmetry, and polynomial boundedness provides constraints on the RG evolution. They showed that while the Wilsonian picture is perfectly valid, some extra -coarse-information about the UV still survives along the RG flow, if the underlying Lorentz invariant microscopic theory is indeed unitary, causal and, to a less extent, local. 2These constraints originate from the properties of the S-matrix which provides an UV-IR connection in the form of dispersion relations. On the one side, the Wilson coefficients can be extracted by the amplitudes in the deep IR. On the other side, because of causality, the Wilson coefficients can also be written as a dispersive integral over discontinuities that are integrated all the way to infinite energy, to the UV. Unitarity ensures positivity of the discontinuities, and it implies in turn the positivity of (certain) Wilson coefficients associated to the operators in the IR effective Lagrangian. This UV-IR connection can be used to show that Wilson coefficients with the "wrong" sign can not be generated by a Lorentz invariant, unitary, casual and local UV completion, as it was emphasised in Ref. [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF], despite they may be respecting the desired symmetries. The basic but instructive example is the EFT for a single Goldstone boson π that is invariant under a shift symmetry π → π + c. Following the Gell-Mann's totalitarian principle, we write down all terms allowed by the symmetries starting from the least irrelevant L = (∂π) 2 + a(∂π) 4 + . . . (0.0.2)

Beside the kinetic term, the most important operator for 2-to-2 scattering is therefore (∂π) 4 . Either choice for the sign of its Wilson coefficient is consistent with the symmetries, a > 0, a < 0 or a = 0 are all good for the symmetry. Yet, according to the dispersive argument put forward in [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF], the Wilson coefficient admits a dispersive representation a = 2 π ∞ 0 ds σ ππ→anything (s)/s 2 ≥ 0 (0.0.3) with a strictly positive integrand, a total cross-section, unless the theory is free. An UV completion that is unitary and causal that would generate a < 0. Not even an interacting one that would produce a = 0. Only a > 0 is allowed for an interacting causal and unitary UV completion to exist.

These type of "positivity bounds" have found several applications over the years, perhaps the deepest being the proof of the a-theorem [START_REF] Komargodski | On Renormalization Group Flows in Four Dimensions[END_REF][START_REF] Luty | The a-theorem and the Asymptotics of 4D Quantum Field Theory[END_REF]. Since then, the understanding of the space where the EFTs can live has blossom in an active research field with several applications, from particle phenomenology to the swampland program. In a sense, after the (so far) null searches of physics beyond the SM, exploring the EFT with theory constraints has become a modern (and in some cases a better) version of model building. One can classify what is possible and what is impossible, at least in principle, by charting the space of EFTs and their border with the swampland, using positivity bounds. This manuscript is recollecting some of the main contributions made by the author, in the last few years, to the idea that the space of EFTs is actually carved out by infinitely many positivity constraints that generalize (0.0.3) to a much richer geometric structure. It is reviewed in great detail how causality and positivity are encoded in the properties of the scattering amplitudes that are calculable in the EFTs, and how they shape the resulting convex space where the EFT can live: the EFT-hedron [START_REF] Arkani-Hamed | The Eft-Hedron[END_REF][START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF]. Several applications of the original author's work, ranging from high-energy particle physics to the swampland program, from the weak-gravity conjecture to massive gravity and to higher spin theories, are also covered in detail. This manuscript is organized as follows. The first two chapters are basically an introduction to positivity bounds through the author's point of view on the subject. They require no previous knowledge except for the basics of QFT. In particular, Chapter 1 introduces from scratch the role of causality in QFT and how it is encoded in physical observables such as scattering amplitudes. It contains as well some original material, both in terms of applications and in terms of reformulation of known results. Chapter 2 shows how to construct the EFT-hedron in the simplest and instructive cases, and it covers as well as some relevant applications e.g. to the Galileon EFT. Chapter 3 reports a mixed bag of applications, from supersymmetry and R-axions, from higher spin theory to composite Higgs models. Chapter 4 is about positivity bounds in gravitational theories, which represent the frontier of the field and it is the point of contact with the string theory swampland program. The applications covered in chapter 4 include the the weak-gravity conjecture, the fate of massive gravity, and the study of time delay. We discuss the conclusions in Chapter 5.

Chapter 1

Causality and Analyticity in QFT

Causality in QFT takes the form of the micro-causality axiom: local observables commute at spacelike separation or, more generally, fields O i (x) either commute or anti-commute at spacelike separation depending on their statistics

[O i (x 1 ), O j (x 2 )] ± = 0 , (x 1 -x 2 ) 2 < 0 . (1.0.1)
Let's recall three basic aspects of QFT that make clear why micro-causality is a fundamental requirement for a relativistic quantum mechanical theory. where T is the anti-time ordering operations. Expanding it to linear order in the perturbation, but exact in the original dynamics, we arrive at the Kubo-formula for the linear causal response O(x) J = O(x) J=0i d 4 yJ(τ, y)θ(tτ ) α|[O(τ, y), O(t, x)]|α + . . .

(1.0.4) 1 Namely, the interacting Hamiltonian is the 3D integral H = d 3 xHI (t, x) over a scalar density Hamiltonian HI (t, x), possibly after picking the needed local counterterms.

CHAPTER 1. CAUSALITY AND ANALYTICITY IN QFT

The (1.0.4) is manifestly causal even without (1.0.1) since the expectation value at x = (t, x) gets contributions only from its past region, τ < t. However, it is by assuming (1.0.1) that the response is actually relativistically causal: only the past lightcone of x -as opposed to its whole past region-contributes to the expectation value O(x) J . This is shown in Fig. 1.1. nor its spacelike past or future (in light greenish) contribute to changing O(x) . Likewise, the source at y contribute only to its future lightcone inside the blue lines.

(c) Anti-particles and CPT By inserting a complete set of states in the vacuum expectation value of the commutator of O with O † at spacelike separation (taken scalars for simplicity), and using Lorentz invariance to go to a frame where x = (0, x), we can write it as

0|[O(x), O † (0)]|0 x 2 <0 = ∞ 0 dm 2 W m 2 (0, x) ρ +q (m 2 ) -ρ -q (m 2 ) (1.0.5)
where W m 2 (x) is the free-theory Wightman function 2 and ρ ±q (m 2 ) the spectral densities for states of charges ±q (those of O and O † )

ρ ±q (m 2 ) = | 0|O(0)|k, ±q | 2 > 0 , k 2 = m 2 .
(1.0.6)

The micro-causality condition requires the vanishing of (1.0.5) for all x, a nontrivial constraint that is solved by equality of the particle and anti-particle spectral densities for all masses CPT : ρ +q (m 2 ) = ρ -q (m 2 ) .

(1.0.7)

That is, for any (single-or multi-particle) |k, q overlapping with 0|O(0) there exist a state |k, -q of identical k 2 = m 2 and opposite charge overlapping with 0|O † (0). CPT ensures that this is the only solution to the causal constraint. Existence of anti-particles is hardwired to micro-causality.

As made clear by the points (a) and (b) above, the micro-causality condition (1.0.1) holds not just on the vacuum state |0 , but rather as an operator statement that is valid in any state. This is actually important and the very reason why causality constraints provide a rich set of non-trivial bounds on a variety of effective field theories. Indeed, one 2 Explicitly, W m 2 (x) =

d 4 k (2π) 4 δ(k 2 -m 2 )θ(k 0 )e -ikx .
can choose to exploit the vanishing commutator in (1.0.1) by sandwich it, A|[O, O]|B , with all sort of states |0 , |1particle , |angular-mom. 2particle -, |Lorentz-breaking bkg , . . . hence extracting different information from the underlying causal dynamics. We discuss below in great detail the first two cases, the vacuum 0|[O, O] ± |0 and 1-particle background 1|[O, O] ± |1 . They offer already a great deal of implications of causality in the form of analyticity of correlators and scattering amplitudes. The reader can find micro-causality exploited in Lorentz-breaking backgrounds in e.g. [START_REF] Dubovsky | Microcausality in Curved Space-Time[END_REF][START_REF] Creminelli | Positivity Bounds on Effective Field Theories with Spontaneously Broken Lorentz Invariance[END_REF]. The expectation between the vacuum and 2-particle states of definite angular momentum is used to study the convergence of the partial wave expansion, see e.g. the classic [START_REF] Lehmann | Analytic Properties of Scattering Amplitudes as Functions of Momentum Transfer[END_REF].

1.1 Causality on the vacuum state: 0|[O, O]0 .

As we have seen in (1.0.5), the vanishing commutator at spacelike separation evaluated on the vacuum state provides a strong constraint which is solved by the equality of particles and anti-particles spectral density. This in turn determines the Källen-Lehmann spectral decomposition of time-order 2-point correlators

∆(k) = d 4 xe ikx 0|TO(x)O † (0)|0 (1.1.1) namely 3 ∆(k) = ∞ 0 dm 2 ρ ( ) (m 2 ) iP ( ) (k) k 2 -m 2 + i (1.1.2)
where P (k) has the tensor structure of the numerator of the spin-free particle propagator of mass m (indices suppressed). For spin ≥ 1 there are ambiguities associated to the definition of the time-ordering operator due to the multiplication of two distributions, the step function in time and the Wightman's correlators. This is reflected in the freedom of adding local polynomial terms, known as Schwinger terms in the context of gauge theories. This freedom does not change the analytic structure of the propagator. The ambiguity in time-ordered correlators is often resolved by demanding them to be compatible with symmetries and Ward identities, or by focusing on sufficiently high derivatives ∂ n k 2 ∆ so that any local polynomial is removed. We show detailed examples of the role of these ambiguities in a couple of examples below.

There is a spectral density ρ ( ) (m 2 ) for each Lorentz irrep labelled by the spin that is found in the overlap of k, |O(0)|0 . Since the P ( ) (k) can always be chosen to be a polynomial in k, this shows that the Fourier transform 2pt-function is actually analytic everywhere in the complex k-plane except for possible poles k 2 = m 2 i > 0 on the positive real axis (single particles) and a branch cut, lying as well on the positive real axis, with the branch point located at the multiparticle production threshold. We call hereafter µ IR the smallest of these IR scales.

The analytic properties of correlators and scattering amplitudes is actually the recurring theme of this work, along with the positivity of the spectral densities. One can even turn the argument around and trade causality ⇐⇒ Analyticity Indeed, by demanding the correct analytic structure of the 2-point function as starting point -branch cuts and poles lying only on the positive real axis (and with positive discontinuity adding unitarity)-we can reconstruct the two-point function via dispersion relation, up to a polynomial of order n, where ∆(k 2 ) = o(k 2n ) for k 2 → ∞.

Taking for example the propagator of a real scalar field ∆ = ∆(k 2 ) to be an analytic function in the cut k 2 -plane which is also vanishing at infinity, we get back the spectral decomposition by starting with

∆(k 2 ) = dz 2πi ∆(z) z -k 2 (1.1.3)
for some k 2 away from the poles and branch-cut on the real axis 4 , and then deforming the contour integral as reported in Fig. 1 

∆(k 2 ) = i ∆(m 2 i ) k 2 -m 2 i + µ 2 IR dz i Disc∆(z)/2π k 2 -z (1.1.4)
where we defined the (positive by assumption) discontinuity across the branch cut

Disc∆(z) = ∆(z + i ) -Disc∆(z -i ) > 0 . (1.1.5)
4 More precisely, the retarded (advanced) commutator (or anticommutators for fermions) vanish outside the future (past) lightcone and can therefore be extended analytically in the upper (lower) part of the energy complex plane. In fact, the retarded and advanced commutators are the analytic continuation of one into the other because they agree on the real axis below the multi-particle production threshold and away from poles. Moreover, the time-ordered correlator also agrees with this single function for k 2 < 0 or k 0 < 0, because of the spectral condition that physical states have support only on the forward light-cone k 2 ≥ 0 , k 0 > 0, see the discussion around (1.2.1) and (1.2.6). Therefore, we have a single analytic function ∆(k) everywhere in the complex plane -except for poles and branch-cuts on the positive real axis-whose boundary value approached as ∆(k 0 ± i , k) are the retarded and advanced commutators whereas ∆(k 2 ± i ) (with an abuse of notation) provides the T-ordered or anti-T-ordered correlator respectively. This is sort of obvious from Källen-Lehmann because it is sum of free propagators that have these properties.

The (1.1.4) reproduces the correct spectral decomposition once k 2 is sent to the real axis from the upper plane, corresponding to renaming k 2 → k 2 + i with k 2 ∈ R and → 0 + , and where we have made the identification z = m 2 . By the familiar distributional identity 1/(x ± i ) = P.V.1/x ∓ iπδ(x), it is also immediately verified that 2πρ(m 2 ) = Disc∆(m 2 ) .

(1.1.6)

More generally, if ∆ grows instead polynomially at infinity -∆(k 2 )/(k 2 ) n-1 → const as k 2 → ∞ for a certain n ≥ 1 -one can just take under the in (1.1.3) a better-behaved integrand in the UV, such as e.g. ∆(z)/(zk 2 ) n+1 . In jargon: we are taking n-subtractions, but clearly a better name would be n-"divisions". The nowconvergent Källen-Lehmann decomposition for 1/n!∂ n ∆(k 2 )/∂k 2n can be integrated ntimes, delivering the general dispersive rapresention

n-subtractions: ∆(k 2 ) = p (n-1) (k 2 ) + (-1) n ∞ 0 dm 2 iρ(m 2 ) k 2 -m 2 + i . (1.1.7)
The p (n-1) is a (n -1)-order polynomial (absent for n < 1, no subtractions) whose coefficients correspond to the n integration constants -the subtraction constants-which generically are à priori unknown. 5Other choices of the subtraction point are occasionally more convenient. This happens when the behavior of the 2-point function is known in a special kinematical configuration, for example in the deep IR k 2 ≈ 0. For example, a once-subtracted dispersion around

k 2 = 0 comes from working with ∆(z)/[z(z -k 2 )] under the in (1.1.3), ∆(k 2 ) = ∆(0) + ∞ 0 dm 2 iρ(m 2 )k 2 m 2 (k 2 -m 2 + i ) . (1.1.8)
The subtraction constant ∆(0) is known by matching it to IR data, either theoretical or experimental. Physically relevant examples of spectral decompositions of spin-1 and spin-2 currents (along with the required subtractions) and the resulting positivity bounds on running couplings is given in (1.1.11) and and 1.1.3.

The point that we want to stress now is that spectral representations (1.1.4) or (1.1.7) on the 2-point function -with positive spectral density-place non-trivial constraints in the form of positivity bounds. Let's show some instructive example, two of them actually turn out to be very relevant to our universe.

Propagator's decay rate

Any QFT that gives rise to a decaying propagator

∆(k 2 ) → 0 faster than 1/k 2 as k 2 → ∞ is inconsistent with unitarity+causality, because lim k 2 →∞ k 2 ∆(k 2 ) = dm 2 ρ(m 2 ) > 0 (1.1.9)
where ρ(m 2 ) > 0 for all masses. 6 This makes clear that any regularization of the QFT based on an improved UV behavior of the propagator (such as e.g. Pauli-Villars) can't be interpreted as an unitary and causal deformations of the theory at finite cutoff. There is no point in trying to UV-complete, say, Pauli-Villars-like regularizations into an actual physical model valid at all scales. More physically, one can approach an UV fixed point

∆ → k -2+α = 1 k 2 1 + α log k 2 + . . . α ≥ 0 (1.1.10)
where the case α < 0 is never realized. This can be turned into a bound on the sign of the beta functions of running couplings, as we show in the next two subsections 1.1.2 and 1.1.3, in the context of gauge and gravity theories.

Positive running of U (1) gauge coupling

Closely related to the previous point is the positivity of the β-function in abelian gauge theories. Consider a gapped sector, possibly strongly coupled (say QCD or composite Higgs models), which has a an exact U (1) symmetry and its associated Noether current J µ that we weakly gauge by coupling it to a massless spin-

1 boson A µ , L g = A µ J µ .
The conservation condition ∂ µ J µ = 0 has two implications: it projects out the spin-0 intermediate states in the spectral decomposition of TJ µ J ν leaving only the spin-1 spectral density ρ ( =1) = ρ, and it fixes the Schwinger terms via the Ward identity ∂ µ TJ µ J ν = 0 that corresponds to neutrality of the current. The resulting dispersion reads

TJ µ (k)J ν (-k) = -k 2 η µν + k µ k ν iΠ(k 2 ) , (1.1.11) 
Π(k 2 ) = Π(0) + ∞ µ 2 IR dm 2 ρ(m 2 )k 2 m 2 (k 2 -m 2 + i ) , ρ (1) (m 2 ) ≥ 0 (1.1.12)
where we anticipated the need for one subtraction to eventually match to the gauge coupling g(0) at low energy. The 2-point function of A µ gets corrected from integrating out the heavy sector

S = d 4 k (2π) 4 1 2 A µ (k) -k 2 η µν + k µ k ν 1 g 2 -Π(k 2 ) A µ (-k) (1.1.13)
with resulting running coupling that grows at larger energy

Q 2 ≡ -k 2 > 0 7 1 g 2 (Q 2 ) = 1 g 2 (0) -Π(-Q 2 ) + Π(0) = 1 g 2 (0) - ∞ µ 2 IR dm 2 m 2 Q 2 (Q 2 + m 2 ) ρ(m 2 ) . (1.1.14) Since g 2 (Q 2 ) > g 2 (0)
, the beta function is positive. Equivalently

β g = 2 dg(Q 2 ) d log Q 2 = g 3 ∂Π(-Q 2 ) ∂ log Q 2 = g 3 ∞ µ 2 IR dm 2 Q 2 (m 2 + Q 2 ) 2 ρ(m 2 ) ≥ 0 (1.1.15)
We remark that positivity is inherited by positivity of the norm of the Hilbert space, which is at the core of the probabilistic interpretation of the transitions among physical states in quantum mechanics. Notoriously, in a gauge theory the full Hilbert space is not positive-definite in a Lorentz-preserving gauge. Yet, the gauge invariant subspace where the neutral currents act is positive definite, and it's that part of the Hilbert space that is relevant for our argument. For non-abelian gauge theories this argument breaks down because the conserved current is not gauge invariant in a Lorentz preserving gauge.

Let's end this example by observing that (1.1.15) provides also an efficient method of calculating perturbatively the β-function in the high-energy regime Q µ IR . Rescaling m 2 → xQ 2 and using ∞ 0 dx/(1 + x 2 ) = 1, we have

β g = g 3 ρ(q 2 ) q 2 m 2 i (1.1.16)
that is the spectral density is the beta-function up to the trivial prefactor g 3 . Moreover, ρ follows immediately at one loop via the Cutkowski rule (equivalently, optical theorem)

ρ = 1 π Imi 2 Π(q 2 → ∞) =⇒ β g = g 3 16π 2 4 3 N ψ + 1 3 N φ (1.1.17)
where N ψ and N φ is the number of Dirac fermions and charged scalars respectively, of masses

m 2 i Q 2 .
Even beyond perturbation theory: the log-term in Π(k 2 ) in (1.1.12) comes from ρ → C J = const, and if the QFT flows to a CFT in the UV then the C J is nothing but the J µ -central charge (suitably normalized), hence

UV=CFT =⇒ β = g 3 C J . (1.1.18) 
The right-most expression in (1.1.17) is actually C free J for the gaussian free theory with the matter content given by N ψ,φ .

Running of R 2 and W 2 µνρσ in gravity

Similarly to the previous case, any QFT with an energy-momentum tensor T µν can be probed by an external metric g µν = η µν + h µν . The coupling to the QFT generates an effective diff-invariant action for the metric tensor (which may or may not be dynamical).

In particular it corrects the quadratic part in the following way

δS = - d 4 k (2π) 4 1 2 h µρ (k) TT µν (-k)T ρσ (k) h ρσ (-k) + contact-terms . (1.1.19)
The whole structure of δS is more complicated than in the U (1)-gauge analog discussed in 1.1.2 because the contact terms are harder to fix by the Ward identities, the T µν being charged under the Poincaré group. The contact terms must include as well the cosmological constant counter-term in order to keep the space flat whenever T µν (x) = 0. Let's proceed then focusing first on the discontinuity of the two point function at leading order in the coupling 1/m 2 Pl , which is free of any ambiguity and contact terms. The T µν (0)|0 decomposes into 0 1 ⊕ 0 2 ⊕ 1 ⊕ 2 irreps of rotations, corresponding to T 00 , T i i , T 0i and T ijδ ij T k k /3, respectively. The conservation equation p µ p |T µν (0)|0 = 0 projects out 1 and 0 1 , leaving just two independent spectral densities, ρ ( =0) and ρ ( =2) . The discontinuity along the branch-cut k 2 > µ 2

IR is therefore

Disc TT µν T ρσ (k 2 ) = 2πρ (0) (k 2 )P µν P ρσ + 2πρ (2) (k 2 ) 1 2 P µ(ρ P σ)ν - 1 3 P µν P ρσ (1.1.20)
where

A (a B b) = A a B b + A b B a , P µν (k 2 ) = -k 2 η µν + k µ k ν . The ρ ( ) (k 2
) ≥ 0 has been normalized to be dimensionless. The second term in the square bracket has the massive spin-2 tensor structure, while the first term is the spin-0 contribution.

Integrating the discontinuity we get to the full stress-energy 2-point function up to contact terms, that is up to local polynomials 8 

TT µν (k)T ρσ (-k) = ∞ µ 2 IR dm 2 i k 2 -m 2 + i × (1.1.21) × ρ =0 (m 2 )P µν P ρσ + ρ =2 (k 2 ) 1 2 P µ(ρ P σ)ν - 1 
δS EF T = d 4 x |g| α R R 2 + α W W 2 µνρσ + . . . (1.1.22)
where W µνρσ is the Weyl tensor. It's now immediate to derive the positivity constraints on the Wilson coefficients α W,R assuming the the integral of ρ (0,2) (m 2 )/m 

α R = 1 2 ∞ µ 2 IR dm 2 m 2 ρ ( =0) (m 2 ) , α W = ∞ µ 2 IR dm 2 m 2 ρ ( =2) (m 2 ) . (1.1.23) Therefore If dm 2 m 2 ρ (0,2) < ∞ =⇒ α R,W ≥ 0 . (1.1.24)
While the positivity bounds (1.1.24) are an interesting result, we have little control on the validity of the assumption about the convergence in the UV.

If the QFT flows to a CFT in the UV we can use the methods of [START_REF] Grinstein | Comments on Unparticles[END_REF] to show that in fact UV=CFT =⇒

dm 2 ρ (2) (m 2 )/m 2 = ∞
is not convergent but rather logarithmically divergent. The overall strength of the divergence is set by the T µν -central charge C T . The obvious step would then to go studying the 6-derivative terms which, according to the UV=CFT scaling, are instead determined by UV-convergent dispersive integrals which allow to make sharp predictions, free of ambiguities.

Not so fast: with 50+ years hindsight on renomalization we know the EFT-interpretation of a log-diverging Wilson coefficients: running coupling! It turns out there is still more we 8 The ambiguity of Pµν (m 2 ) vs Pµν (k 2 ) in (1.1.21) is absorbed in the local polynomial. can squeeze out of the 4-derivative terms. As we show below, this is just the gravitational analog of the U (1) example discussed above.

Let's first recap: we are dispersing in the complex m 2 -plane around the m 2 = k 2 = 0 point, then deforming the contour to wrap around the discontinuities, and finally dropping the contribution at infinity which is the troublesome part. Take now an EFT perspective and separate the IR contribution to the dispersive integral (from light QFTstates with mass m 2 < Λ 2 ) from the heavy-state contribution above a certain scale Λ 2 . This can be done by integrating the 2-point function over a double-arc in the complex m 2 -plane centered at the origin, and with radius µ 2 IR < µ 2 < Λ 2 , that plays the role of RG scale, see Fig 1 .3 . These arcs, projected on the two tensor structures of (1.1.21), define two running Wilson coefficients α R,W (µ 2 ). They run larger in the IR, namely

α R (µ 2 ) = α IR R - 1 2 µ 2 µ 2 IR dm 2 m 2 ρ (0) (m 2 ) , α W (µ 2 ) = α (IR) W - µ 2 µ 2 IR dm 2 m 2 ρ (2) (m 2 ) .
(1.1.25) where it should be appreciated that everything is now converging. The β-functions for Ricci 2 and Weyl 2 terms are thus negative

β α i = dα i (µ 2 )
d log µ 2 ≤ 0 and in particular proportional to the spectral densities:

β α R = - 1 2 ρ (0) (µ 2 ) < 0 , (1.1.26) β α W = -ρ (2) (µ 2 ) < 0 . (1.1.27)
They in particular imply that

α i (µ 2 ) > α i (Λ 2 ) µ 2 < Λ 2 . (1.1.28)
In contrast to (1.1.24), the negative sign of the β-functions in (1.1.26) is completely insensitive to the behavior in the UV, and independent of the contact terms, it's controlled entirely by the discontinuity of the correlator. Main lesson: the IR-run Wilson coefficients are larger than their value at any matching UV scale.

While negativity of α IR i is in fact still possible (if α(Λ) < 0 at the matching scale Λ), an immediate consequence of (1.1.26) is that a sufficiently long running can eventually dominates any UV boundary value α W (Λ). Indeed, if the QFT has very light d.o.f µ IR µ Λ, then the spectral density is dominated by an intermediate IR-CFT in this nearly scale invariant regime

µ 2 ρ (2) (m 2 )/m 2 = C IR T 640 log µ 2 + . . . =⇒ β α W = -ρ (2) (µ 2 ) = - C IR T 640 < 0 (1.1.29)
where C IR T is the central charge of the intermediate CFT. 9 Therefore, we find in particular that, asymptotically, the coefficient is positive 10

α W deep-IR ≥ 0 (1.1.30)
if µ IR is sufficiently small to allow for an exponentially long running needed to overcome a sizeable and negative UV boundary value for α W (Λ 2 ).

The main message of this example is the following: causality+positivity give a definite sign for the beta-function of running-Weyl 2 -coupling in the effective action (1.1.22), and that a long-enough running -if possible-implies its asymptotic positivity in the deep IR. 11 In contrast to (1.1.24), the sign of the beta-function (1.1.29) is a robust claim that relies on first principles. An extra assumption on the IR spectrum, something an EFT observers can control, delivers also (1.1.30).

We can not instead prove positivity of α W (Λ) at the matching scale. This is actually consistent with the positivity bounds from scattering amplitudes [START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF][START_REF] Henriksson | Bounding Violations of the Weak Gravity Conjecture[END_REF] that allow in general for a negative α W which shows up in the graviton (if dynamical) or matter 2-to-2 scattering amplitudes, whenever these extra d.o.f are added to the EFT.

As recalled in Section (4.3.2), a similar reasoning and the introduction of running couplings via dispersive arcs in the complex plane have appeared in appendix B of [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF] where negativity of β-functions in the Maxwell-Einstein effective theory was established, leading to a proof of the asymptotic form of the weak-gravity conjecture (i.e. for big enough black holes). Closely related arguments were later presented in [START_REF] De Rham | Speed of Gravity[END_REF] as well, where the Weyl-squared operator was probed by looking at the graviton's spectral decomposition which enters in the scattering of spectator matter. The several properties of dispersive arcs and their connection to the classic Haussdorff moment problem has been systematically studied in [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF] and are reviewed in the next chapter. 9 In the normalization Tµν (x)Tρσ(0) = (IµρIνσ + µ ↔ ν -1/2gµν gρσ) /(4π 2 x 8 ) and Iµν = gµν -2xµxν /x 2 . Weakly coupled d.o.f. in the deep IR that are described by a nearly Gaussian fixed point have central charge proportional to C IR T ∝ 4/3N φ + 8N ψ + 16NA for N φ scalars, N ψ Dirac fermions and NA vectors [START_REF] Osborn | Implications of Conformal Invariance in Field Theories for General Dimensions[END_REF][START_REF] Rattazzi | Central Charge Bounds in 4D Conformal Field Theory[END_REF]. 10 The accurate statement is sign αW (µ) → 1 for µ → 0 while µIR/µ → 0 and m Pl → ∞. 11 The connection between positivity and exponentially separated scales rings a bell to any high-energy physicist who has pondered on the hierarchy problem. We will not show it here, but the obvious way to justify the hierarchy of scales through a failure of positivity at the matching scale, does not actually work out [START_REF] Bellazzini | work in progress[END_REF]. We thank Nima Arkani-Hamed for illuminating discussions on this point.

Other wrong-sign effective interactions

Imagine we have some massless scalar φ in the IR that couples weakly to a heavy sector as

L = gJ µν ∂ µ φ∂ ν φ (1.1.31)
One can motivate this scenario by saying that φ → φ + c and φ → -φ are symmetries of the light sector that are respected by the heavy sector, which is also neutral under the Z 2 . The J µν (0)|0 decomposes in irreps 0 1 ⊕ 0 2 ⊕ 1 ⊕ 2 under rotations, and four spectral densities are thus present in the J µν 2-point function. Nevertheless, this complexity is not reflected in the lowest order interaction term that, up to field redefinitions, is12 

δS φ = d 4 xc(∂ µ φ) 4 + . . . c = g 2 ∞ µ 2 IR dm 2 m 2 ρ ( =0) (m 2 ) + 2 3 ρ ( =2) (m 2 ) (1.1.32) =⇒c ≥ 0 (1.1.33)
Negative c is thus forbidden if, needless to say, the dispersive integral converges. 13 This formulation of positivity of the (∂φ) 4 -term via Källen-Lehmann originates from [START_REF] Dvali | Road Signs for Uv-Completion[END_REF], and it has been largely developed and extended in [START_REF] Englert | The Ĥ-Parameter: An Oblique Higgs View[END_REF], in the very interesting context of composite Higgs models.

Shortcoming of Källen-Lehmann approach to positivity

The example we have discussed so far are based on the Källen-Lehmann representation of operators O coupled to the light d.o.f. It's integrating out O that the EFT of light fields gets generated. The positivity of the spectral density is imprinted into the signs of certain Wilson coefficients or the beta-functions of running couplings.

As it is made clear by the example of previous subsections, this method has two main weak points.

• It relies on knowing how the operators of the EFT are generated, which is a pretty strong limitation of the method. This is manifest in the scalar example discussed in 1.1.4.

On the other hand, the gauge theory and gravity examples discussed in 1.1.3 and 1.1.3 are immune to this criticism because photons and gravitons couple necessarily, at long distance, to currents J µ and T µν respectively. What remains free is the coupling to shorter length scales, which is connected to the next point.

• The number of subtractions in the dispersion relation is à priori unknown, unless extra information about the UV is available. Extra UV information may in fact be available, e.g. for a theory that has conserved currents and an energy-momentum tensor, and which flow to a CFT in the UV.

The cases like the one of the scalar field discussed in subsection 1.1.4 are based on more dubious assumptions about the UV. 14 Remarkably, both these problems are solved by working with scattering amplitudes, as we do in the next sections.

Causality in 1-particle background 1[O, O]|1

The relevance of considering this "1-particle background" is the following: it maps directly to the scattering amplitude via the LSZ reduction formula. 15 The analytic properties of 2-to-2 forward scattering amplitudes are thus inherited by those of advanced and retarded (anti)-commutators, namely analyticity in the upper and lower complex s-plane, cut on both the positive and negative real axis. The branch-cuts correspond to intermediate states that produce the discontinuity of the amplitude in the sand in the u-channels, respectively. Let's show how these properties are derived.

LSZ via retarded/advanced correlators

The important fact, which was also exploited with the Källen-Lehmann approach in previous sections (see footnote 4), is that time-ordered correlators can be replaced in the LSZ reduction formula by retarded commutators (or anti-commutators) because of the spectral condition (p 0 > 0 and p 2 > 0) on physical stable states, which include the vacuum and the single-particle states among the other in-and out-states.

Indeed, say that we want to LSZ-reduce particle |1 in and out 3| in the background out 4| . . . |2 in . The identity

T O 3 O † 1 = θ(x 0 31 )[O 3 , O † 1 ] ∓ ± O † 1 O 3 (1.2.1)
(with x ij ≡ x ix j ) allows us to separate the contribution coming from the retarded commutator inside the LSZ-reduction operator acting on the T-ordered correlator from the second term on the r.h.s. of (1.2.1) which is actually vanishing:

LSZ 1+3 • out 4|O † 1 O 3 |2 in ∝ M 1+anything→4 • M 2→3+anything = 0 . (1.2.2)
This is because we inserted a complete set of states and then LSZ-reduced particle 1 and 3 by selecting the matrix element consistent with the spectral condition which, producing M 2→3+anything and M 1+anything→4 , clashes with the single-particle stability e.g.

|2 in = |2 out , out anything -else|2 in = 0 (1.2.3)
and likewise for particle-4. Therefore, these amplitudes in (1.2.2) are vanishing. The other matrix elements which are consistent with momentum conservation and stability, 14 To better appreciate this limitation consider for example integrating out the QCD pions. There are infinitely many interpolating fields that one could use, e.g. qq and qq(G A µν ) 2 are equally valid choices but the Källen-Lehmann decomposition but the latter needs four extra subtractions than the former, since their scaling dimension in the neighbourhood of the UV fixed point differ by 4. The number of subtractions (for a scalar operator) in a QFT that flows to a UV-CFT is given by ∆O -2. Conserved currents have universal scaling dimensions instead, ∆Jµ = 3 and ∆T µν = 4, and the number of subtractions is determined for them regardless of the fields they are made of. 15 Whenever O † |0 has non-vanishing overlap with the one-particle state, 0|O(0)|k = √ Zu = 0, and u are the the wave-function polarizations with λ uū = P (k) the numerator of the spin-propagator.

such as M 2+ 3→anything , are forbidden by the spectrum condition because they require negative-energy single-particle states.

Therefore, we can equivalently recast the LSZ reduction by keeping only the first term in (1.2.1), with LSZ acting on the retarded commutator (omitting here-after the "in/out" subscripts)

M 12→34 = -i LSZ 1+3 • 2|θ(x 0 31 )[O 3 , O † 1 ] ∓ |4 (1.2.4) = d 4 x 31 e i k31 x 31 iθ(x 0 31 ) ū3 • 4|[J( x 31 2 
), J † (-

x 31 2 )] ∓ |2 • u 1 +local polynomial .
We have defined kij = (k i + k j )/2

x ij = x i -x j (1.2.5) and J = ( + m 2 )O/ √ Z and J † = ( + m 2 )O † / √
Z are the LSZ-operators that in (1.2.4) are suitably contracted with the external polarizations u 1 and ū3 of particle 1 and 3 respectively. Commuting the step function with the time derivatives has produced an extra polynomial in (1.2.4) which does not affect the analyticity properties; it is effectively providing subtraction constants. 16The LSZ-reduction (1.2.4) looks messy but it is actually conveying something simple: rather than amputating the external T-ordered propagator in T-ordered correlators, you can equally amputate the retarded 2-point function in retarded correlators instead. In fact one can even LSZ-reduce n-point correlators in this way, not just the 2-point function, and work directly with retarded n-point correlators from the get-go, see e.g. [START_REF] Meltzer | Dispersion Formulas in Qfts, CFTs, and Holography[END_REF] for a nice summary on this point. Because the retarded correlators vanish outside the future light-cone, they are ready to be extended analytically to complex momenta k i , which was not the case for the T-ordered correlators.

It's interesting to look at the crossing-symmetric process M3 2→ 14 . Using the identity

T O 3 O † 1 = θ(-x 0 31 )[O † 1 , O 3 ] ∓ ± O 3 O † 1 (1.2.6)
we can again drop the second term on the r.h.s under the action of LSZ1 + 3 projection

LSZ1 + 3 • out 4|O 3 O † 1 |2 in ∝ M3 +anything→4 • M 2→ 1+anything = 0 (1.2.7)
because of stability+spectral condition. Therefore, we can can recast the LSZ formula for the crossed-process M3 2→ 14 in terms of the advanced (anti-)commutator

M3 2→ 14 = -i LSZ1 + 3 • 2|θ(-x 0 31 )[O † 1 , O 3 ] ∓ |4 (1.2.8) = d 4 x 31 e -i k31 x 31 iθ(-x 0 31 ) ū1 • 4|[J † (- x 31 2 ), J( x 31 2 )] ∓ |2 • u3 +local polynomial
Comparing (1.2.4) to (1.2.8) we recognize the crossing transformation k → -k and u 1 ↔ u3, ū3 ↔ ū1 that sends one into the other. This expression is useful when discussing the analytic extension in the lower complex s-plane, and its crossing relation to the amplitude in the upper plane.

The Analytic S-matrix: forward scattering

The (1.2.4) and (1.2.8) are the starting point to analytically extend the amplitude in the upper and lower complex plane, respectively. Let's show how this work first in a concrete example: the forward elastic process 1 + 2 λ → 1 + 2 λ of a spin-0 particle-1 scattering off particle-2 of arbitrary helicity (or spin) λ and mass m 2 . We then generalize to the case of arbitrary spin for particle-1 at the end of this section.

The LSZ-reduction formula (1.2.4) for forward elastic scattering 12 → 12 reads

M 12→12 (k 1 = k 3 ≡ k) = d 4 xe ikx i θ(x 0 ) 2|[J( x 2 ), J † (- x 2 )]|2 . (1.2.9)
The micro-causality and the presence of the step-function make the integrand vanishing outside the future light-cone x 0 > 0 , x 2 > 0 . Therefore, we can use the right-hand side of (1.2.9) to define the extention of the (momentarily off-shell) amplitude to a function of complex variable

k → k = Rek + iImk . (1.2.10)
This extension is valid as long as Re(ik • x) < 0 which provides the exponential dumping factor ExpRe(ik • x) in (1.2.9) that ensures convergence of the integral and of all its derivatives w.r.t. k. 17 Because x is time-like and future-directed, we can thus analytically continue the amplitude as function of k inside the forward light-cone

F + = Imk 0 > 0, (Imk) 2 ≥ 0 = Imk 0 ≥ |Imk| . (1.2.11) 
For the crossing symmetric process as given by (1.2.8) we consider

M1 2→ 12 (k1 = k3 ≡ -k) = d 4 xe ikx i θ(-x 0 ) 2|[J † (- x 2 ), J( x 2 )]|2 (1.2.12)
which is in the physical kinematics for k 0 < 0. The integrand now vanishes outside the past light-cone. This function of k can thus be extended analytically in the backward light-cone

F -= Imk 0 < 0, (Imk) 2 ≥ 0 = Imk 0 ≤ -|Imk| .
(1.2.13) via the r.h.s. of (1.2.12).

To go on-shell we need to intersect the analytic region with the mass-shell k 2 = m 2 1 , and for that we need a separate discussion for the massive and massless case.

Massless Spin-0

The forward light-cone F + intersects the on-shell region {k 2 = 0}, e.g. k = (k 0 , 0, 0, ±k 0 ) belongs to both regions and it can thus extended in the upper complex-energy plane, {Imk 0 > 0}. More covariantly, we can write k µ = k 0 µ with 0 = 1 and i ∈ R with 2 = 0. Note that in the forward elastic kinematics there is a preferred direction associated to the relative motion in the c.o.m. frame of particle 1 and 2. It is quite 17 Here we are also assuming polynomial boundedness of the correlators. If the correlators were instead growing more or equal than a linear exponential this argument would not apply. We recall that in QFT the correlators are tempered distributions and do satisfy polynomial boundedness. For a discussion in gravity see [START_REF] Häring | Gravitational Regge bounds[END_REF].

natural to assign all momenta and spin relative to such a single (z-)axis, and the region of analyticity on the zero mass-shell is thus simply Imk 0 > 0 .

(1.2.14)

Likewise, the backward light-cone F -has as well overlap with the on-shell region {k 2 = 0}, e.g. k = (k 0 , 0, 0, ±k 0 ), so that now the crossing-symmetry amplitude as function of k = -k1 can be extended analytically in the lower complex k 0 -plane. Together, one amplitude and its crossing symmetric process define a single function

M(k) ≡ M 12→12 (k) Imk 0 > 0 M1 2→ 12 (-k) Imk 0 < 0 (1.2.15)
which is analytic everywhere away from the real axis.

The discontinuity of this function on the real axis , the first term from the commutator would vanish while the second term would not, because corresponding to an open u-channel, u > m 2 2 . Vice-versa, for u below threshold it's the other term in the propagator that would not vanish. Therefore, for the gapless case we see that the branch-cut extends actually on the whole real axis.

DiscM(k) = d 4 xe ikx i 2|[J( x 2 ), J † (- x 2 )]|2 ( 
Finally, the function M satisfies a reality condition

M * (k * ) = M(k) (1.2.17)
which can be checked by direct inspection

M * (k * ) = -i d 4 x e -ikx θ(-x 0 ) 2|J † ( x 2 ), J(-x 2 )|2 Imk 0 > 0 , -i d 4 x e -ikx θ(x 0 ) 2|J(-x 2 ), J † ( x 2 )|2 Imk 0 > 0 = M(k) (1.2.18)
by changing integration variable x → -x. These analytic properties translate into analytic properties for s. Note that the forward amplitude is trivially invariant under 2D-boosts (all little group factor from particle 2 and 4 cancel out) so that one can freely go to the rest frame of particle 2 to read the simple linear relation s = m 2 2 + 2k 0 m 2 and u = m 2 -2k 0 m 2 . The domain of analyticity of M(s) expressed in the Mandelstam variable (abusing of notation) is thus

M(s) analytic in s ∈ C \ R (1.2.19) and M(s) = M(u)
For s approaching the boundary region of analyticity we get back the amplitude or its crossed amplitude, depending on the direction of approach:

M(s) =        M 12→12 (s) Ims → 0 + s > m 2 2 u < m 2 2 M * 12→12 (s) = M1 2→ 12 (u) Ims → 0 -s > m 2 2 u < m 2 2 M1 2→ 12 (u) Ims → 0 -s < m 2 2 u > m 2 2 M * 12→ 12 (u) = M 12→12 (s) Ims → 0 + s < m 2 2 u > m 2 2 .
(1.2.20)

These regions are shown in Figure 1.4 where in the massless case m 1 → 0 the branch cuts cover the entire real line. Massive Spin-0

In the massive spin-0 case, the region F + is not large enough because it does not intersect the mass-shell region k 2 = m 2 1 > 0. Specifically,

k 2 = (Rek) 2 -(Imk) 2 + 2i(Rek) • (Imk) = m 2 1
which implies that Rek and Imk are orthogonal 4-vectors for m 2 1 ∈ R. Therefore Imk can't be time-like while m 2 1 > 0 because if it was then Rek would be spacelike, and (Rek) 2 -(Imk) 2 < 0 running in a contradiction.

In that case one needs to enlarge sufficiently the domain of analyticity in order to overlap with the mass-shell. This is possible but a little cumbersome to be shown here. We refer the reader to the classic textbook [START_REF] Bogoliubov | Introduction to the Theory of Quantized Fields[END_REF][START_REF] Itzykson | Quantum Field Theory. International Series In Pure and Applied Physics[END_REF] with the details of this extension of region of analyticity fully worked out. Alternatively, one can work with an unphysical mass m 2 1 < 0 which is instead consistent with the primitive domain of analyticity and then analytically continue in m 2 1 to the positive mass region [START_REF] Lehmann | Analytic Properties of Scattering Amplitudes as Functions of Momentum Transfer[END_REF][START_REF] Bremermann | Proof of Dispersion Relations in Quantized Field Theories[END_REF][START_REF] Symanzik | Derivation of Dispersion Relations for Forward Scattering[END_REF], see also the reviews [START_REF] Sommer | Present State of Rigorous Analytic Properties of Scattering Amplitudes[END_REF][START_REF] Thirring | Proof of some of the analytic properties of the relativistic scattering amplitude: lectures at the Scottish Universities' summer school[END_REF]. We just remark here that the either methods imply that some extra simple-pole many be found on the real axis below the sand u-channel thresholds.

After the region of analyticity in k or m 2 1 is sufficiently extended to include the physical mass-shell, all previous discussion from the gapless case carries over. In particular, there is a single analytic function in the upper and lower complex s-plane built out of the amplitude and its crossing respectively

M(s) = M 12→12 (s) Ims > 0 M1 2→ 12 (u) Ims < 0 . ( 1 

.2.21)

There is however an important difference with the gapless case: the discontinuity of M on the real axis does vanish for where I is a real interval between m 1 -m 2 2 and (m 1 +m 2 ) 2 excluding the simple poles. By the Schwarz reflection principle, the M(s) is real below threshold thanks to the reality condition Eq. (1.2.17). The analytic properties of M are summarized in Figure 1.4.

(m 1 -m 2 ) 2 < s < (m 1 + m 2 ) 2 ( 
Finally, because M is a single function that connects analytically the 12 → 12 and 12 → 12 processes, we have provided a simple proof of crossing symmetry in the forward kinematics.

Spinning Particles

The case where all particles carry spin is more delicate in general because there it may be extra non-analyticities associated to external polarizations which have no connection to the dynamics. As we discuss more in detail in Section 1.2.4, these non-analyticities are in fact associated to angular momentum conservation selection rules and are kinematical in nature.

In the forward scattering limit, however, there are many simplifications due to the simple kinematics and its 2D Lorentz invariance, and it is thus convenient a separate discussion.

Take for example the case of a spin-1/2 massless particle. The (1.2.4) has two polarizations u(k) a ū(k 3 ) ḃ where a and ḃ are SU (2) L,R spinor indices that need to be contracted with the matrix element. In the spinor-helicity notation they appear as |1 |3] traced with the retarded anti-commutator of two spinor operators J and J † in (1/2, 0) and (0, 1/2) irreps of Lorentz

M 12→34 = d 4 xe i k31 x i θ(x 0 ) Tr |1 [3| k 4 |{J( x 2 ), J † (- x 2 )}|k 2 . (1.2.24) 
For k 3 → k 1 they just provide a linear -analytic -function

|1 [3| → |1 [1| = k µ σ µ . (1.2.25)
Moreover, in the forward kinematic the Lorentz transformation properties are exactly like those of the scalar case because all little group factor cancel out between the inand out-states and the retarded anti-commutator for spinors vanish outside the future light-cone. Therefore, we recover for the massless spin-1/2 exactly the same analytic structure that we have discussed in the previous paragraphs for the scalar.

Even simpler it's the scattering with a massless spin-1 particle: in the forward limit we can work with the explicit wave-function polarizations (up to a gauge choice)

u 1 = ± µ (k) ∝ (0, 1, ±i, 0), ū1 = ∓ µ (k) ∝ (0, 1, ∓i, 0) that are just constant, hence ana- lytic.
The discussion becomes a little more convoluted with massive spinning particles, but again many simplifications still occur in the forward limit as discussed in generality in [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF].

Let's show another concrete example: the forward elastic scattering of 4 identical massive spin-1 states, of mass m i = m. There is an extra longitudinal polarization that we need to keep track of, 0

µ (k) = (k z , 0, 0, k 0 )/m 1 for k = (k 0 , 0, k z ). The orthogonality λ * (k) • λ (k) = -δ λλ , transversity k • λ (k) = 0 and CPT condition λ * = (-1) λ -λ , trivialize all contractions but 0 (k 1 ) • 0 (k 2 ) = - s -2m 2 2m 2 , 0 (k 1 ) • k 2 = √ -su 2m (1.2.26)
where the right-most is actually non-analytic in s. Yet, in the elastic forward scattering it must appear at least squared, and therefore no kinematical singularity is introduced in these amplitudes.

The case of a massive spin-1/2 particle is slightly more complicated because the fermion polarizations can now combine, by direct inspection, to produce

a λ (k 1 ) • k 2 ∝ -su + (m 2 1 -m 2 2 ) 2 (1.2.27)
where the polarization vector a λ is defined by 2ma λ µ (k) = ūλ(k)γ µ γ 5 u λ (k) [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF][START_REF] Berestetskii | Quantum Electrodynamics[END_REF]. While this term becomes analytic as any of the two masses vanishes, it is in general non-analytic and present e.g. in fermion-fermion massive scattering (unless one restricts to P -and C-preserving interactions). It is for example generated by a ψγ 5 γ µ ψ Ψγ µ Ψ vertex.

Nevertheless, even these cases are under control because the non-analyticity is of the square-root type and the discontinuity can be fully localized on a finite segment on the real line between the branch-points

s = (m 1 -m 2 ) 2 , s = (m 1 + m 2 ) 2 (1.2.28)
below the physical IR thresholds. The kinematical singularity (1.2.27) neither affects the physical regions nor enter in the upper and lower s-plane. After all, this is not much different than the massless case with a branch cut running all along the real axis; the only difference is that the one below threshold now is not associated to the exchange of physical states. This example presents thus no problem as long as one avoids the region below threshold, e.g. considering dispersive arcs with large radius, large enough to avoid that IR region while remaining in the range of validity of the EFT. This is hardly surprising because as s m 2 one should recover the massless case. We refer the reader to [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF] for further details.

The Analytic S-matrix: non-forward scattering

Let's move now to the case of finite momentum exchanged, t = -q 2 = 0. The LSZ reduction formulas (1.2.4) and (1.2.8) in terms of retarded and advanced (anti)-commutators, along with the micro-causality condition (1.0.1) which crucially restricts the integration domain, are again the starting point for the analytic extension in the complex s-plane.

Let's restrict in this subsection to the spin-0 elastic scattering, leaving the spinning case to next subsection. In order to simplify the kinematics it is convenient to go to the so called "brick-wall" or Breit frame where particle-4 has opposite 3-momentum than particle-2, k 4 + k 2 = 0, so that the kinematics for m 2 = m 4 and m 1 = m 3 is

k 1 = (k 0 , -e 1 Q + e 2 k 2 0 -Q 2 -m 2 1 ) k 2 = ( Q 2 + m 2 2 , e 1 Q) k 3 = (k 0 , e 1 Q + e 2 k 2 0 -Q 2 -m 2 1 ) k 4 = ( Q 2 + m 2 2 , -e 1 Q) Q 2 = -(k 1 -k 3 ) 2 /4 k 0 = (k 1 + k 3 ) • (k 2 + k 4 )/2 (k 2 + k 4 ) 2 (1.2.29)
where we have defined unit vectors e i e j = δ ij . (In the forward limit this frame becomes the rest frame of particles 2 and 4. ) With this choice of frame the (1.2.4) nicely simplifies

M 12→34 = d 4 xe ik 0 x-e 2 •x √ k 2 0 -Q 2 -m 2 1 iθ(x 0 ) 4|[J( x 2 ), J † (- x 2 )]|2 . (1.2.30)
Micro-causality ensures that the retarded commutator vanishes outside the future timelike region of the integrand, therefore allowing the extension of (1.2.30) to

Imk 0 > |Im k 2 0 -Q 2 -m 2 1 | (1.2.31)
where the integral is convergent thanks to a dumping factor provided by the exponential in (1.2.30).

The combination Q 2 + m 2 1 enters like an effective mass would enter in the the forward scattering problem that we have analyzed in the previous subsection and where it was shown that a negative m 2 1 was needed to ensure an overlap between the region of analyticity and the on-shell condition. Here we thus find that the region of analyticity is compatible with the on-shell condition only for m 2 1 < -Q 2 < 0, that is for unphysical values again.

Unsurprisingly, the solution to this problem is the same as the massive forward scattering: we first write a dispersion relation in s at fixed and negative t, for the unphysical mass m 2 1 < -Q 2 . Then we analytically continue the DiscM 12→12 that appears in the dispersive integral to physical values for m 2 1 which, by direct inspection [START_REF] Lehmann | Analytic Properties of Scattering Amplitudes as Functions of Momentum Transfer[END_REF], is possible as long as t takes values for which the partial wave expansion of the discontinuity

DiscM 12→34 = 4π √ s/|p| P (cos θ)DiscM (s) (1.2.32)
is convergent, that inside the so-called "large Lehmann ellipse". 18 This condition gives for indentical particles -2m 2 1 < t ≤ 0. The t-domain such that the amplitude is s-analytic can actually be further extended in the positive-t region, 0 < t < 4m 2 for identical particles, by using the constraints coming from unitarity [START_REF] Martin | Extension of the Axiomatic Analyticity Domain of Scattering Amplitudes by Unitarity. 1[END_REF]. Extension to more negative regions than -2m 2 1 are also possible in general [START_REF] Sommer | Present State of Rigorous Analytic Properties of Scattering Amplitudes[END_REF]. Finally, in the very same paper where crossing symmetry has been established [START_REF] Bros | A Proof of the Crossing Property for Two-Particle Amplitudes in General Quantum Field Theory[END_REF], it was shown that for any fixed negative t the amplitude is analytic in the cut s-plane except for an IR-region around the origin with radius that scales as |t| 3+ with arbitrarily small positive, see Fig. 1.5. The main lesson is that as long as one avoids the deep IR region of the s-plane, just like in the forward scattering of spinning particles we have already discussed, the amplitude is analytic in the cut s-plane. See the review [START_REF] Sommer | Present State of Rigorous Analytic Properties of Scattering Amplitudes[END_REF] for a detailed account of these aspects.

Non-Analyticity from Helicity Selection Rules

Let's discuss now, in full generality, the kinematical singularities that appear in scattering amplitudes for spinning particles. The classification of these singularities was solved in [START_REF] Cohen-Tannoudji | Kinematical Singularities, Crossing Matrix and Kinematical Constraints for Two-Body Helicity Amplitudes[END_REF] for all massive particles 19 , and in [START_REF] Ader | Analyticity Properties of Two-Body Helicity Amplitudes for Reactions Involving Massless Particles[END_REF] for (some of the) particles being massless.

We present in this section an alternate derivation which we consider much more insightful. We shows that the kinematical singularities are all connected to angular-momentum selection rules.

Moreover, our method deals simultaneously with massless and massive particles, treating them on same footing and allowing thus a single streamlined derivation of the analytic properties.

As we have seen already for the forward elastic scattering, the amplitude for spinning particles does not depend just on the 4-vectors of momenta and their contractions, but also on the polarization tensors contracted in various ways consistent with the little group scaling, for example

λ i (k i ) • k j , λ i (k i ) • λ j (k j ) (1.2.33) 
for spin-1 polarizations. When written in terms of the Mandelstam invariants in the centre of mass frame, they introduce various cos θ/2 and sin θ/2 factors ()for reasons to be explained below) and carry extra non-analytic terms. For generic elastic-scattering,

m 1 = m 3 = m 2 = m 4 , we have cos θ/2 = -su + (m 2 1 -m 2 2 ) 2 S 12 (s) , sin θ/2 = √ -st S 12 (s) (1.2.34)
where

S ij (s) ≡ (s -(m i + m j ) 2 )(s -(m i -m j ) 2 ) (1.2.35)
gives the centre of mass momentum |p i,j | = S ij (s)/2 √ s of the particle-i and -j; in our case S 12 (s) = S 34 (s). The singularities associated to these factors are called "kinematical singularities", because they are outside or at the boundary of the physical region.

We can understand the kinematical singularities in the general case by the following two observations: i) we are dealing with helicity amplitudes -each spin is projected along the corresponding particle's 3-momentum-in this way massive and massless particles are on equal footing. We denote the helicities of the particles as λ i and the scattering amplitude for

1 λ 1 2 λ 2 → 3 λ 3 4 λ 4 as M λ 1 λ 2 →λ 3 λ 4 .
ii) the role of wave-function polarizations is to merely enforce the correct little group transformations of the amplitude.

The first observation tells us that (helicity) amplitudes are actually not well defined whenever the momentum of one of the spinning particles vanishes, for the good reason that the projection of the spin is ill defined on a vanishing 3-vector. In our elastic scattering this corresponds to the condition of vanishing centre of mass frame 3-momentum

|p i,j | that is S ij (s) = 0 =⇒ (s -(m i + m j ) 2 )(s -(m i -m j ) 2 ) = 0 (1.2.36)
We have indeed encountered already the branch points associated to solving this condition in (1.2.28) for fermion-fermion scattering. These singularities are sometimes called threshold and pseudo-thresholds.

The second observation tells us that we should be able to spot the kinematical singularities by looking at the angular momentum selection rules, that is to the partial wave expansion. Indeed, the total angular momentum of the initial state projected on the direction of motion p 12 z-axis is λ 12 = λ 1λ 2 , while the projection of the final state angular momentum on p 34 (sin θ, 0, cos θ)) is λ 34 = λ 3λ 4 . As θ → 0 or θ → π, the amplitude should thus vanishes unless λ 12 = λ 34 or λ 12 = -λ 34 , respectively. These selection rules are automatically implemented in the partial wave expansion

M λ 1 λ 2 →λ 3 λ 4 = 4π √ s |p 12 | e i(λ 12 -λ 34 )φ (2 + 1)d λ 12 λ 34 (θ)M λ 3 λ 4 λ 1 λ 2 (s) (1.2.37) 
λ ij ≡λ i -λ j (1.2.38)
because the Wigner d-matrix20 in (1.2.37) is nothing but a certain regular orthogonal (Jacobi) polynomial in cos θ -thus regular-multiplied by the (sin θ/2) |λ 12 -λ 34 | and (cos θ/2) |λ 34 +λ 12 | factors that make the amplitude indeed vanishing at θ = 0 and π, respectively. Explicitly,

d λ 12 λ 34 (θ) = N ,λ 12 ,λ 34 sin θ 2 |λ 12 -λ 34 | cos θ 2 |λ 34 +λ 12 | P (|λ 12 -λ 34 |,|λ 34 +λ 12 |) -L (cos θ) (1.2.39)
where N ,λ 12 ,λ 34 is a certain constant 21 . From this, and recalling the kinematics (1.2.34), we can read where discontinuities enter in the amplitude and remove them. In particular, the combination

M λ 1 λ 2 →λ 3 λ 4 = M λ 1 λ 2 →λ 3 λ 4 (sin θ/2) |λ 12 -λ 34 | (cos θ/2) |λ 34 +λ 12 | (1.2.40)
is free of any t-channel (and u-channel) kinematical singularities: the resulting partial wave expansion can fail to converge now only because of t hitting a physical singularity associated to intermediate states exchanged in t-channel, exactly like for the Legendre expansion in the spin-0 case.

What about the kinematical discontinuity in s instead? The final step needed to extract the s-channel kinematical singularities is to use st crossing symmetry to relate the singularities in the t-channel channel process

M (t) λ4 λ 2 →λ 3 λ1
to those in the s-channel, namely (repeated indices are summed over)

M λ 1 λ 2 →λ 3 λ 4 (s, t, u) = X λ4 λ 2 ;λ 3 λ1 λ 1 λ 2 ;λ 3 λ 4 (s, t)M (t) λ4 λ 2 →λ 3 λ1
(s, t, u) .

(1.2.41)

The crossing matrix is explicitly known in terms of Wigner d-matrices, see (A.0.1), and it is a rather complicated object in general, except when massless particles are involved, see e.g. see (1.2.44). We can define an improved amplitude for the t-channel as we have done for the s-channel process, which is thus free of any s-kinematical singularities,

M (t) λ4 λ 2 →λ 3 λ1 (t, s, u) = M (t) λ4 λ 2 →λ 3 λ1 (s, t, u) sin θ (t) /2 | λ 42 -λ 31 | cos θ (t) /2 | λ31 + λ 42 | (1.2.42)
where λ 42 ≡ λ4λ 2 , λ 31 ≡ λ 3 -λ1 . The crossing equation (1.2.41) in terms of the better-behaved M -amplitudes is thus

M λ 1 λ 2 →λ 3 λ 4 (s, t, u) = X λ4 λ 2 ;λ 3 λ1 λ 1 λ 2 ;λ 3 λ 4 (θ, s, t) M (t) λ4 λ 2 →λ 3 λ1 (s, t, u) (1.2.43)
where X is the new crossing matrix reported in (A.0.8).

The key point is the following: the M (t) on the right-hand side of (1.2.43) has no s-kinematical singularity, therefore all such singularities for M on the left-hand side must be contained in the crossing matrix X, which is completely determined. By explicitly writing X in terms of Mandelstam variable one extracts thus all the remaining s-channel kinematical singularities of M, and remove them by suitable multiplications of kinematical factors. Below we have worked out some illustrative examples.

Amplitudes free of kinematical singularities: examples

• Photons and Graviton Compton-scattering

For m i → 0, the st crossing matrix simplifies significantly, see Appendix A, and it trivializes completely if particles-2 and 4 have spin-0

X λ 3 λ1 λ 1 ;λ 3 (s, t) → (-1) J 1 -λ 1 δ λ 3 λ 3 δλ 1 -λ 1 = J-integer δ λ 3 λ 3 δλ 1 -λ 1 .
(1.2.44)

Therefore, from (1.2.43), the M λ 1 →λ 3 is free of any kinematical singularities in all channels. Specifically, the kinematics in this case is

cos θ 2 2 = m 4 -su (s -m 2 ) 2 , sin θ 2 2 = -ts (s -m 2 ) 2 (1.2.45)
and amplitudes free of kinematical singularities in all channels (chosen to have exactly the same dynamical singularities as a theory of scalars 22 ) are

M λ 1 →λ 1 regular = M λ 1 →λ 1 ((s -m 2 ) cos θ/2) 2|λ 1 | = M ±→± (m 4 -su) 4 gravitons M ±→∓ (m 4 -su) 2
photons (1.2.46) 22 We have included an extra factor of 1/(s -m 2 ) w.r.t M, in order to keep the dynamical pole at s = m 2 around like for a scalar theory, that is M λ 1 →λ 1 regular,tree ∝∼ G t(u-m 2 )(s-m 2 ) has the correct poles in the three channels.

in perfect agreement with [START_REF] Gross | Low-Energy Theorem for Graviton Scattering[END_REF][START_REF] Abarbanel | Low-Energy Theorems, Dispersion Relations and Superconvergence Sum Rules for Compton Scattering[END_REF].

It is worth emphasising that the case of massless particles is somewhat special because it can easily be worked out with spinor-helicity variables, bypassing all previous discussion. There is just one spinor-helicity contraction compatible with the little-group scaling, namely for gravitons

M λ 1 →λ 3 (s, t) = 3k 2 1] 4 F +-(s, t) [13] 4 F ++ (s, t) 13 4 F --(s, t) 1k 2 3] 4 F +-(u, t) λ 1 λ 3 (1.2.47)
where the F 's are scalar functions, F +-for helicity-preserving and F ++ helicityflipping (in all-incoming convention). Since

3k 2 1] 4 = 1k 2 3] 4 = (su -m 4 ) 2 , [13] 4 = t 2 e 4iφ , (1.2.48) 
we see that the general method just reconstructs the scalar form factors that are much more easily found with the spinor-helicity variables.

• Identical (massive) particles The regulated amplitude for the parity-preserving elastic scattering of identical particles, λ 1 = λ 3 , λ 2 = λ 4 , and

m i = m = 0, is M λ 1 λ 2 →λ 1 λ 2 regular = (s -4m 2 ) 2J (-u) |λ 12 | M λ 1 λ 2 →λ 1 λ 2 (1.2.49)
in agreement with [START_REF] Cohen-Tannoudji | Kinematical Singularities, Crossing Matrix and Kinematical Constraints for Two-Body Helicity Amplitudes[END_REF]. The regulated amplitude has only dynamical singularities exactly like an amplitude between spin-0 particles.

In the forward limit, the prefactors in (1.2.49) combine in a single (s-4m 2 ) 2J-|λ 12 | , which we can actually dispense because the singularities at s > 4m 2 are all dynamical. In this limit we can just use M λ 1 λ 2 →λ 1 λ 2 (s, t = 0) are regulated amplitude.

• Distinct (massive) particles

The regulated amplitude, free of kinematic singularities, for P -preserving elastic scattering of different massive particles,

m 1 = m 3 = m 2 = m 4 is [41] M λ 1 λ 2 →λ 1 λ 2 regular = (s -(m 1 + m 2 ) 2 )(s -(m 1 -m 2 ) 2 ) J 1 +J 2 -su + m 2 1 -m 2 2 |λ 12 | M λ 1 λ 2 →λ 1 λ 2
(1.2.50) where J i are the spins, and the kinematical configuration is given by (1.2.34).

Chapter 2

Positivity and the Theory of Moments

As we have reviewed in detail in the previous chapter, causality means analyticity of correlators and scattering amplitudes. We have also derived some interesting results from 2-point correlators in Section 1.1, specifically the definite sign of running Wilson coefficients in a theory probed by an external metric. This was possible thanks to mixing analyticity with another crucial ingredient, positivity of the physical (gauge invariant) Hilbert space: unitarity.

In this section we exploit systematically the implications of taking together unitarity and analyticity in the more general context of scattering amplitudes. We show that they imply infinitely many constraints that any given EFT must satisfy, additionally to the usual selection rules from symmetries. These constraints essentially mean that Wilson coefficients are moments of a positive distribution, and therefore they can't be assigned freely but rather they live inside a convex space -dubbed the EFT-hedron-that we study in detail in the following.

As a case of study we look at the Galileon EFT (with no gravity) both at tree-and loop-level, and show that it lives outside the EFT-hedron, that is in the swampland.

Positivity of the amplitude: forward scattering

The forward elastic 2-to-2 amplitude of spin-0 particles is analytic everywhere in the upper and lower s-plane with branch-cuts and poles on the real axis that are associated to dynamical information, e.g. existence of bound states (poles below multi-particle thresholds) and branch-points at the opening multiparticle thresholds. Moreover, the discontinuities of these dynamical singularities are all positive by unitarity.

The analytic structure of particles with spin is identical to that of scalars provided one either works with the regulated amplitude as we have explained in Section 1.2.4 or, more simply, just takes s away from the deep IR region as explained in 1.2.3. If the particles are identical, moreover, the amplitude is already regular in the forward limit and all properties of the scalar amplitude carry over. So we focus first on the notationally cleaner and simpler 2-to-2 elastic forward amplitude for massless spin-0 particles, and then promptly extend the results to the more general massive, spinning, and eventually non-forward, scattering.

CHAPTER 2. POSITIVITY AND THE THEORY OF MOMENTS

Arcs

Let's define the key observable that we use to characterise the properties of the space of EFT's: the "Arcs " a n . They are (anti-clockwork) contour integrals along -the two semi-circles with radius s and centered at s = 0shown in Fig. 2.1

"Arcs": a n (s) ≡ 1 2πi ds s M(s ) s 2n+2 , n ≥ 0 (2.1.1)
Since the tree-level forward amplitude is We deform the contour into a contour that encompasses the discontinuities on positive and negative real axis, together with upper and lower semicircles at infinity. We further assume that the latter vanish, because of

M(s) = c 0 + c 2 s 2 + c 4 s 4 + . . . ( 2 
lim |s|→∞ M(s)/s 2 = 0 (2.1.4)
as implied by the Froissart-Martin bound [START_REF] Froissart | Asymptotic Behavior and Subtractions in the Mandelstam Representation[END_REF][START_REF] Martin | Unitarity and High-Energy Behavior of Scattering Amplitudes[END_REF][START_REF] Jin | Number of Subtractions in Fixed-Transfer Dispersion Relations[END_REF].

For integer n, we can use crossing symmetry M(s) = M(-s) and real analyticity (1.2.17) to relate the amplitude above the lefthand cut to the one above the righthand cut

M(s + i ) = M * (s -i ) = M * (-s + i ) .
(2.1.5)

We can thus write (2.1.1) as

a n (s) = 2 π ∞ s ds s ImM(s ) s 2n+2 , n ≥ 0 . (2.1.6)
On the one hand, the arcs as defined via the IR representation (2.1.1) are IR observables that can be systematically computed as an expansion in powers of s in the domain of validity of the IR EFT s s max , with s max the cutoff. For example, they return the Wilson coefficients (2.1.3) in the tree-level approximation in the IR EFT.

On the other hand, according to the UV representation in (2.1.6), the arcs receive contributions from all microphysics scales up to the far UV, possibly a strongly coupled one too. So, (2.1.1) ideally represents something measurable in our low energy experiment, while the representation in (2.1.6) requires knowledge of the theory at all scales. In that form, (2.1.6) has interesting properties that we now discuss.

The 1D Moment problem

From (2.1.6) it follows that the arcs are positive,

a n (s) > 0 , (2.1.7)
since the imaginary part of the forward amplitude is positive (which is in fact proportional to the total cross-section via the generalized optical theorem). The a n can be written in terms of Wilson coefficients and thus (2.1.7) implies already a non-trivial constraint on the space of EFT. Before exploring the implications, let's ask the following Question 1: What is the complete set of constraints the arcs a n (hence the Wilson coefficients) must satisfy?

To answer this question we will relate our problem to the theory of moments. The following change of variables x ≡ (s/s ) 2 and

dµ = dx π Im M(s/ √ x) (2.1.8)
simplifies the notation and defines a positive measure, so that we can write

ŝ2n+2 a n = 1 0
x n dµ(x) .

(2.1.9)

A sequence of dimensionless numbers, defined as in (2.1.9) with dµ positive, is called a sequence of moments:

"Arcs=Moments of Positive Measure"

Since Arcs can be expressed in terms of Wilson coefficients and, as we show below, moments are constrained to live in a certain convex space, Wilson coefficients are constrained to live in the so-called EFT-hedron,. This is a key insight on the structure of EFT that was first uncovered in its generality and implications in [START_REF] Arkani-Hamed | The Eft-Hedron[END_REF][START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF]. In fact, we actually have a one-parameter family of moments, because each one depends on s, which carry information about the RG evolution.

Let's characterise now the space where moments, hence arcs (thus Wilson coefficients), are allowed to live in. The defining property of a positive measure is that integrated against any positive function it returns a positive outcome, that is

1 0 dµF (x) > 0 ∀F positive in [0, 1].
All information of positivity is thus reduced to find a basis for the positive functions on the unit real interval. A convenient basis is provided by the socalled Bernstein polynomials

F (n,k) (x) = x n (1 -x) k .
(2. 1.10) which are all manifestly positive in [0, 1]. They are a special basis: any continuum function can be decomposed in Bernstein polynomials (with uniform convergence) and, moreover, with positive coefficients if the function itself is positive, namely

F (x) > 0 ∈ [0, 1] =⇒ F (x) = n,k c n,k F (n,k) (x) , c n,k ≥ 0 . (2.1.11)
Therefore, a measure is positive if and only if

1 0 dµx n (1 -x) k ≥ 0 . (2.1.12)
We recognise that the left-hand side is nothing but a linear combination of moments, which is actually the reason why they are interesting objects in the first place: they characterise completely the space of positive measures.

Introducing the discrete derivatives

(∆a) n = s 2 a n+1 -a n , (2.1.13) 
with higher order differences defined recursively, ∆ k = ∆(∆ k-1 ) and ∆ 0 a n = a n 1 we thus see that Arcs are moments if and only if

(-1) k (∆ k a) n = 1 ŝ2n+2 1 0 x n (1 -x) k dµ(x) > 0 (2.1.14)
Moreover, by the Hausdorff moment theorem, if a series satisfies

(-1) k (∆ k a) n > 0 ∀n, k ≥ 0, (2.1.15) 
then there exists a unique measure dµ such that (2.1.9) is satisfied. That is, knowing all moments allows one to reconstruct the measure (i.e. the spectral density (2.1.8)) completely.

We have thus learnt that positivity of the arcs (2.1.7), a n ≥ 0, is just the first of an infinite tower of constraints that moments -hence Wilson coefficients-must satisfy. They define part of the EFT-hedron, the rest will be found working beyond the forward scattering limit. The constraints (2.1.15) mean that all discrete derivatives are negative, that is the series of moments is completely monotonically decreasing shaping a convex space.

The next-to-simplest constraint w.r.t. positivity of the arcs is ∆a n < 0 (corresponding to the Bernestein polynomial 1x), 0 ≤ s 2 a n+1 ≤ a n .

(2.1.16)

1 For instance, (∆ 2 a)n = an -2s 2 an+1 + s 4 a2+n, etc.

This means that every arc is smaller than the previous arc, as compared in units of the energy scale s. In the tree-level approximation, the Wilson coefficients are therefore decreasing

0 ≤ s 2 c 2n+2 ≤ c 2n , n ≥ 2 (2.1.17)
In particular, c 2 can be larger than c 0 in units of s (e.g. in a theory of Goldstone bosons c 0 = 0 and c 2 > 0), but from c 4 onward all other terms must necessarily decrease monotonically and thus contribute less to the amplitude, in the tree-level approximation

M = c 0 + c 2 s 2 + n≥2 c 2n s 2n c 0 + c 2 s 2 + . . . (2.1.18)
There is no configuration of Wilson coefficients in the EFT-hedron in this tree-level approximation that would make c 2 contribution to the amplitude subleading to n≥2 c 2n s 2n . Enforcing by symmetry that c 2 would be suppressed (like e.g. in the Galileon) means that the resulting EFT lives actually in the swampland (outside the EFT-hedron) because there is no causal and unitary UV completion from which it can possibly descend while respecting the symmetry.

As mentioned above, both the arcs and their discrete derivatives depend explicitly on the scale s, as captured by,

d ds [(-1) k ∆ k a n ]=    -2 π ImM(s) s 3+2n (k = 0) 2ks[(-1) k ∆ k-1 a n+1 ] (k ≥ 1) (2.1.19)
which is negative for all k, because of (2.1.15). Therefore, as s is increased, the arcs decrease -proportionally to ImM. This implies that, given an EFT, the constraints (2.1.15) for k ≥ 1 become more stringent as s increases. Conversely, if the conditions (2.1.15) are satisfied at one scale s they are automatically satisfied at smaller scales. This behaviour will play an important role later on, when we discuss constraints on the arcs in specific EFTs.

Optimal Bounds for a Finite Set of Arcs In practice we often focus on a finite number of arcs. For instance, in a typical EFT only the first few powers of s are phenomenologically interesting -at tree-level this corresponds to the first few arcs. Thus it is natural to ask, Question 2: Considering only a finite number N of arcs, what are their optimal constraints?

Similarly to Question 1 -that implied finding the most general positive function in [0, 1] -Question 2 requires finding a parametrization for the most general polynomial

p(x) = N i=1 α i x i of finite degree ≤ N , positive in x ∈ [0, 1]
. Indeed, via (2.1.9), each such p(x) leads to a condition on arcs,

1 0 p(x)dµ(x) > 0 ⇒ N i=0 α i a i > 0 .
(2.1.20)

One can prove that any such polynomial can be written as

p = J q 2 J,1 type-1 + xq 2 J,2 type-2 + (1 -x)q 2 J,3 type-3 + x(1 -x)q 2 J,4
type-4

(2.1.21)

where q J,k (x)'s are non-zero real polynomials -not necessarily positive -such that p(x) is degree N , i.e. q J,k has at most degree d k , with

d 1 = N/2 , d 2 = d 3 = (N -1)/2 and d 4 = (N -2)/2 ,
where k is the integer part of k ≥ 0. Since (2.1.21) is a sum over positive terms, it is sufficient to discuss them individually. Therefore we drop the index J and consider one by one generic polynomials q k of each type-k in (2.1.21),

q k (x) = d k j=0 α kj x j (2.1.22)
with arbitrary real coefficients α kj . We define the Hankel matrix (H N ) ij = a i+j+ , for i, j = 0, . . . , (N -)/2 , so that H N involves arcs up to a N for Neven and a N -1 for Nodd. For instance,

H 0 4 = H 0 5 ≡   a 0 a 1 a 2 a 1 a 2 a 3 a 2 a 3 a 4   . (2.1.23)
Now, polynomials of type-1 imply,

1 0 q 1 (x) 2 dµ(x) = s 2 N/2 i,j=0 s 2(i+j) α 1i a i+j α 1j > 0 .
(2.1.24)

Since the vector {α 10 , α 11 s 2 , α 12 s 4 , . . . α 1,N/2 s N } is arbitrary, the following Hankel matrix must be positive definite,

H 0 N 0 . (2.1.25)
Following similar steps one finds that the positiveness of 

1 0 xq 2 2 (x)dµ(x) > 0, 1 0 (1 - x)q 2 3 (x)dµ(x) > 0 and 1 0 x(1 -x)q 2 4 (x)dµ(x) > 0 imply, H 1 N 0 , (2.1.26) H 0 N -1 -s 2 H 1 N 0 , (2.1.27) H 1 N -1 -s 2 H 2 N 0 , ( 2 
a 0 a 1 a 1 a 2 0 , a 1 > 0 , a 0 > s 2 a 1 , a 1 > s 2 a 2 . (2.1.29)
This is illustrated in the left panel of Fig. 2.2. The first constraint in (2.1.29) implies a 0 a 2 > a 2 1 , and is saturated by the lowest parabola in Fig. 2.2; the fourth constraint in (2.1.29) is saturated by the upper line, the other constraints imply that the coordinates lie in the interval [0, 1]. For comparison, the green lines show the constraints obtained using (2.1.15) and arcs up to a 2 (solid), a 3 (dashed), and a 4 (dotted), and then projected

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � � � /� � � � � � /� � Figure 2
.2: Allowed regions for the arcs a 0 , a 1 , a 2 (LEFT) and including a 3 (RIGHT), according to Eqs. (2.1.29,2.1.30). The ŝ ≡ s -2m 2 to cover the massive case too. LEFT: For fixed Wilson coefficients, as energy is increased, the theory spans a trajectory in the space of arcs: the blue trajectories (arrows in the direction of increasing s) correspond to examples in the weak coupling limit (2.1.32), the red trajectories are examples using loop corrections in the extreme limit of strong coupling. Values of s 4 a 2 /a 0 larger than the green solid/dashed/dotted lines are excluded by the conditions (2.1.15) from Bernstein polynomials, up to k + n = 2, 3, 4 respectively. RIGHT: The projections into two dimensional planes correspond to optimal bounds when only two coefficients are taken into account (the bottom projection corresponds to the left panel). The volume of the allowed region is 1/180 w.r.t. the volume of the unit cube. onto the (s 2 a 1 /a 0 ,s 4 a 2 /a 0 ) plane: clearly these converge to the optimal result A(2).

Similarly, evaluating Eqs. (2.1.25-2.1.28) for N = 3, we find A(3): To conclude this section we compare our results, reported in [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF], to those of Ref. [START_REF] Arkani-Hamed | The Eft-Hedron[END_REF], which -considering the forward amplitude -finds that consistent EFTs must satisfy the set of homogeneous Hankel matrix positivity constraints, Eqs. (2.1.25-2.1.26). Indeed, the whole set of homogeneous constraints (i.e. for arbitrarily large N ) implies the ensemble of constraints in (2.1.15), 2 and thus by Hausdorff moment theorem is a necessary and sufficient set. However, when only a finite number N of arcs/Wilson coefficients is 2 That is because, for x ∈ [0, 1], the Bernstein polynomials in (2.1.10) are arbitrarily well approximated by a combination of polynomials of type-1 and type-2 in (2.1.21), with arbitrarily large degree, which precisely correspond to the complete set of homogeneous constraints in Eqs. (2.1.25-2.1.26). For instance considered, as it is often the case, our equations Eqs. (2.1.25-2.1.28) represent the optimal constraints. For instance, if we are interested in the allowed space for three arcs, as in (2.1.29), the first two homogenous conditions correspond to simple Hankel determinants and can be easily obtained with the methods of [START_REF] Arkani-Hamed | The Eft-Hedron[END_REF]. The latter two inhomogeneous conditions, instead, can only be obtained by considering infinite many homogeneous Hankel matrices.

a 0 a 1 a 1 a 2 0 , a 0 -a 1 s 2 a 1 -a 2 s 2 a 1 -a 2 s 2 a 2 -a 3 ŝ2 0 , a 1 a 2 a 2 a 3 0 , a 1 > s 2 a 2 , ( 2 
F (x) = 1-x is reproduced by q1(x) = √ 1 -x = 1-x/2-x 2 /8-x 2 /16

Bounds on Wilson Coefficients

Constraints on arcs translate, in principle, into constraints on the Lagrangian's Wilson coefficients. In practice, this translation is complicated by the fact that arcs might receive contributions from (infinitely) many Wilson coefficients. In this section we discuss the simplest case where the EFT is weakly coupled in the IR and work with tree-level amplitudes, deferring the discussion of loop corrections to the section 2.3.3 which includes as well finite-t effects.

Tree-level

In the tree-level approximation the forward amplitude takes a polynomial form

M(s) = c d s d = c 0 + c 2 s 2 + c 4 s 4 + • • • . (2.1.31)
We compute the a n (s) using the definition (2.1.1) and (2.1.31) and find,

a n = 1 (2n + 2)! ∂ 2n+2 ∂s 2n+2 M(s) s=0 = c 2n+2 , (2.1.32) 
independently of s in this tree-level approximation. So the constraints of the previous sections can be read directly in terms of the coefficients appearing in the amplitude. From a practical point of view it is simpler to focus on a limited number of coefficients (rather than the complete series), so that Eqs. ( For the simple case of the first three coefficients, in addition to positivity of each of them, (2.1.29) and (2.1.32) imply

c 2 -s 2 c 4 > 0 , c 4 -s 2 c 6 > 0 , c 2 c 6 > c 2 4 . (2.1.33)
For fixed values of the Wilson coefficients, as s increases, the arcs track trajectories in Fig. 2.2 (blue lines, for different values of c n ), that start for s → 0 at the origin and evolve along parabolae. In this case the cutoff must satisfy s 2 max < c 4 /c 6 . This is basically the NDA expectation, put on firm ground.

One the main lessons here is the following: the simplest inhomogeneous constraints c 2 s 2c n s n > 0 suffice to rule out any, even approximate, "supersoft behaviour": where the tree-level forward amplitude is dominated by the O(s n ) growth, n > 2. First of all, positivity already implies that supersoft symmetries are never exact: they are always explicitly broken by a (possibly small) c 2 > 0. They could a priori have been appreciable in the regime of energy

s (c 2 /c n ) 1 n-2 .
(2.1.34)

However our bounds forbid that: super-soft theories cannot consistently be UV-completed at weak coupling, as the expansion in s must be strictly decreasing [START_REF] Bellazzini | Massive Higher Spins: Effective Theory and Consistency[END_REF][START_REF] Englert | The Ĥ-Parameter: An Oblique Higgs View[END_REF]. As a concrete example, consider for instance interactions of the form

L = 1 2 (∂φ) 2 + c(∂∂φ) 4 + . . . (2.1.35)
which is invariant under the Galilean symmetry φ → φ + b + b µ x µ , and giving M(s) ∼ s 4 . Purely on the basis of symmetries, these terms could have naturally dominated the more relevant (∂φ) 4 interactions, which break the Galilean symmetry. This is however inconsistent with the first inequality in (2.1.33) which forces (∂∂φ) 4 to be subdominant.

There is another term in the galilean-symmetric limit that contribute as stu to the amplitude (e.g. from the cubic galileon vertex (∂φ) 2 φ), and therefore it is not constrained by the forward-amplitude positivity bounds, in the tree-level limit. It is however constrained at loop-level [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF] by recalling that a n (0)a n (s) ∼ s 0 σ tot (s )/s 2 > 0, an amount calculable in the EFT which gets sizeable contributions from the t = 0 region. Moreover, we show in Section 2.3.4, working at finite t, that the cubic Galileon is indeed in the swampland, see (2.3.43).

General masses and general spins

How does the previous discussion generalize to finite masses and non-trivial spin?

Both cases are straightforwardly included in the positivity bounds obtained in the forward limit. Identical massive scalars, for example, just need to shift s to the crossing symmetric variable s → ŝ = s -2m 2 , everywhere. With this minimal changes everything we have derived it carries over directly [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF].

The case of spinning particles can be covered as well quite simply in the forward elastic scattering [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF]. Indeed, we have seen that the analytic structure of forward elastic amplitudes is identical to the one of scalars. The only minor change arises in the use of crossing-symmetry to related the dispersive integral running over the u-channel discontinuity to the one running over the s-channel discontinuity. For identical spinning particles for example

M λ 1 λ 2 →λ 1 λ 2 (s, t = 0) = M -λ 1 λ 2 →-λ 1 λ 2 (u, t = 0) . (2.2.1)
Keeping this into account, the arcs at t = 0 defined in the elastic scattering carry now two helicity indices a n → a λ 1 λ 2 n , and the measure associated to the moment problem is the sum of the uand s-channel discontinuities. Therefore, they are also positive moments for any choice of the helicity indices, and everything derived for the scalars carries over to the spinning scattering case.

Beyond Forward: the 2D Moment Problem

We are now ready to extend the properties of Arcs at finite t = 0, that is exploring the full EFT-hedron space. The main difference w.r.t. the forward scattering case is that arcs at finite t can be expressed as (known) linear combinations of positive moments, with coefficients controlled by t. Therefore one can still extract constraints which now depend on t, see (2.3.8) and (2.3.11).

In order to keep the discussion as simple as possible, we study again the 2 → 2 scattering amplitude of a single particle of spin-0.

Arcs at finite t

As discussed in chapter 1, the M(s, t) is analytic in the entire complex s plane except at the physical branch-cut at s ≥ 4m 2 and its crossing symmetric counterpart at s < -t, for fixed values of t, the exact range being specified below.

We focus on dispersion relations with n + 2 (n ≥ 0) subtractions in s = 0 and n + 1 subtractions in s = -t, and define generalized "arcs" at finite t the following ŝand t-dependent contour integral

a n (ŝ, t) ≡ dŝ 2πiŝ M(ŝ , t) [ŝ (ŝ + t)] n+1 , n ≥ 0 (2.3.1) where ŝ ≡ s -2m 2 , M(ŝ, t) ≡ M(s, t) (2.3.2) 
and is now the circle with radius ŝ + t/2 and centered at -t/2. These Arcs probe the theory at energy ŝ and momentum transfer q 2 = -t.

Repeating all steps we have seen in Section 2.1.1, and expanding the imaginary part under the dispersive integral in partial waves 3Im M(ŝ, t) =

∞ =0 P (1 + 2t ŝ-2m 2 )Im f (ŝ) (2.3.3)
we can express the arcs in terms of their UV integral representation,

a n (ŝ, t) = 2 π ∞ ŝ ∞ =0 dŝ Im f (ŝ ) I n t ( , ŝ ) ŝ 2n+3 (2.3.4)
with the kernel I n t ( , ŝ ) given by,

I n t ( , ŝ ) ≡ 1 + t 2ŝ 1 + t ŝ n+2 P (1 + 2t ŝ -2m 2 ) .
(2.3.5)

In the following we are interested in the limit m 2 s where also ŝ → s. In practice we will set m → 0 everywhere except in the presence of IR divergences where the mass acts as an explicit regulator.

Arcs can be computed within the EFT via (2.3.1) in terms of Wilson coefficients. Let's consider first an EFT which, in a weak-coupling regime valid in the IR, can be well approximated by the tree-level expression,

M(s, t) =g 0,0 + g 2,0 2 (s 2 + t 2 + u 2 ) + g 3,1 stu + . . . = n,q g n,q s 2 + t 2 + u 2 2 n-3q 2 
• (stu) q (2.3.6)
where n sets the overall energy-squared scaling, whereas q tells how fast the amplitude vanishes for t → 0 and fixed s. Then, at t = 0 the arcs read

a n (ŝ, 0) = g 2n+2,0 (2.3.7) 
while at finite t, 4

a 0 (ŝ, t) = ∞ n=1 [nt 2n-2 g 2n,0 -t 2n-1 g 2n+1,1 ] . (2.3.8)
with similar expressions for higher arcs. At tree-level, arcs are in one-to-one correspondence with couplings. In particular, knowledge of

a n | t=0 , ∂ t a n | t=0 , • • • , ∂ n+1 t a n | t=0 (2.3.9)
is enough to reconstruct the whole series of Wilson coefficients.

2D Moments problem near t = 0

One efficient way of deriving near-forward bounds, involves mapping UV arcs to moments of a positive distribution in ŝ and [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF][START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF]. The interpretation in terms of moments is possible because the coefficients in the t-Taylor expansion of the arc integrand (2.3.5), are themselves polynomials in 1/ŝ and J 2 ≡ ( + 1), Let's define two-dimensional moments,

µ q n = 1 ŝn+2 dµ(x, J 2 ) x n J 2 q , J 2 = ( + 1) (2.3.10)
with respect to a positive measure dµ(x, J 2 ) (proportional to xIm f (J 2 ) (ŝ/x)dx > 0 by unitarity) with support on x ∈ [0, 1] where x = (ŝ/ŝ ), times the non-compact discrete set of positive integer numbers (for even ,

J 2 = 0, 6, 20, • • • ).
The arcs a n (ŝ, t) at finite t are written via their UV representation as linear combinations of 2D moments

a n (ŝ, t) = µ 0 2n + t µ 1 2n+1 - 3 + n 2 µ 0 2n+1 (2.3.11) + t 2 µ 2 2n+2 4 -(2 + n)µ 1 2n+2 + (2 + n) 2 2 µ 0 2n+2 + • • • 4 The subtraction choice 1 [s(s+t)] n+1 = (-t) n+1
(stu) n+1 in (2.3.1) implies that the coefficient of (stu) q only appears in a n≥q-1 , while (s 2 + t 2 + u 2 ) p appears in all a n≤p . This coincides with the choice of Ref. [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF] only at t = 0.

where dots denote higher powers of t. The general expression for the t-derivatives of arcs can be given as a Taylor series around t = 0

a n (t, s) = ∞ m=0 t m   m k=0 d n,m-k k j=0 α k j µ j 2n+m   (2.3.12)
with coefficients d and α known explicitly, see [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF]. The (2.3.11) is an explicit example of this Taylor series.

Once arcs are expressed in terms of moments, their positivity constraints stem from the bounds on the 2D moments, which, in turn, are in one-to-one correspondence with the space of all polynomials in x and J 2 that are positive on the integration domain. Indeed, every positive polynomial implies a positivity condition among moments βi,j

x i J 2 j ≡ p(x, J 2 ) > 0 =⇒ β i,j µ j i = dµ(x, J 2 )p(x, J 2 ) > 0 . (2.3.13)
We will first take the limit in which J 2 is continuous, which allows us to find conservative bounds in terms of a finite number of conditions. The continuum bounds (which are quantitatively very similar to exact bounds) is more conservative because the space of polynomials that are positive on the continuum contains the space of polynomials that are positive just on the discrete subspace. Moreover, this approach will enable us to obtain analytic bounds without having to rely on numerical extrapolations to large .

The set (x, J 2 ) ∈ [0, 1] × R + can be described by the conditions,

x ≥ 0 , 1 -x ≥ 0 , xJ 2 ≥ 0 . (2.3.14)
From this, a theorem due to Schmüdgen [START_REF] Schmuedgen | The K-moment problem for compact semi-algebraic sets[END_REF][START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF] classifies all positive polynomials p(x, J 2 ) in a domain in terms of sum of squares of polynomials as,

5 p(x, xJ 2 ) = k q k (x, J 2 )   i,j β k i,j x i+j J 2j   2 (2.3.15)
where q k stem from products of the monomials in (2.3.14) defining the domain as q k ≥ 0, and in our case belongs to the set,

q k ∈ {1, x, xJ 2 , J 2 x 2 , 1 -x, x(1 -x), J 2 x(1 -x), J 2 x 2 (1 -x)} .
These capture terms that cannot be written as squares (recall J 2 rather than J is the variable entering in the polynomials). The conditions for each individual q k can be written in compact form. For instance, for q k = 1, integrating (2.3.15) against the positive measure leads to the condition i,j,m,n

β 1 i,j µ j+n i+j+m+n β 1 m,n > 0 (2.3.16) µ 2 4 µ 3 4 µ 4 4 • • • • • • • • • • • • • • • • • • • • • • • •           0 (2.3.17)
where the indices of H (0,0) denote the indices of the first entry, and the blocks correspond to monomials of given order k in x: x k-i (xJ 2 ) i , i = 0, . . . , k.

Taking into account the other q k , we find the conditions on the shifted matrices,

H (0,0) 0 H (1,0) 0 H (1,1) 0 H (2,1) 0 (2.3.18)
H (0,0) -ŝ2 H (1,0) 0 , H (1,0) -ŝ2 H (2,0) 0 , (2.3.19) 
H (1,1) -ŝ2 H (2,1) 0 (2.3.20)
where ŝ = s -2m 2 in case of finite mass.

Contrary to the 1D moment problem discussed in Section 2.1.2, in 2D and higher there is no optimal solution involving only a finite number of moments (the truncated 2D moment problem is solved only asymptotically). This means that in order to find the exact bounds satisfied by, e.g., moments up to order two in x and xJ 2 , {µ 0 0 , µ 0 1 , µ 1 1 , µ 0 2 , µ 1 2 , µ 2 2 }, we still need to compute infinitely many bounds involving infinitely many moments, and then project into the finite subset. Because of Sylvester's criterion, positive definiteness in (2.3.20) implies also positive definiteness of all finite-size principal minors, corresponding to matrices H (i,j) of finite size. This necessary but not sufficient condition leads to conservative bounds. For instance, the bounds in (2.3.17) involving only moments up to

µ 2 2 are   µ 0 0 µ 0 1 µ 1 1 µ 0 1 µ 0 2 µ 1 2 µ 1 1 µ 1 2 µ 2 2   0 µ 0 1 > 0 µ 1 1 > 0 µ 1 2 > 0 (2.3.21) µ 0 0 -ŝ2 µ 0 1 > 0 µ 0 1 -ŝ2 µ 0 2 > 0 µ 1 1 -ŝ2 µ 1 2 > 0 (2.3.22)
and represent a simple (albeit not optimal) subset of all bounds.

Bounds: Tree and Loops

In this subsection we translate the inequalities that shape the space of 2D-moments into bounds on arcs via (2. 
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In green, a schematic representation of the arcs and their derivatives (both at t = 0) needed to reconstruct all Wilson coefficients, (2.3.9). Red cells correspond instead to arc derivatives that are singular at t = 0, according to (2.3.28).

going to do derive bounds beyond the simple tree-level analysis and we thus focus on the most important 1-loop IR effect from two insertions of g 2,0 . We have

δM = β 4 2 s 2 (s 2 - tu 21 ) log(-s) + (s ↔ t, u) , (2.3.23) 
where the renormalisation scale is implicit and,

β 4 = - 7 10 
g 2 2,0 16π 2 (2.3.24)
which must be small |β 4 ŝ2 | 1 for the perturbative expansion to make sense. This gives an additional contribution to the first arc additional to (2.3.8)

a 0 (ŝ, t) = ∞ n=1 [nt 2n-2 g 2n,0 -t 2n-1 g 2n+1,1 ] + β 4 ŝ2 - 41 21 ŝt + t 2 2 - ŝ3 2(ŝ + t) + t 2 (2 log(ŝ + t) + 1 42 log -t ŝ + t ) (2.3.25)
which is non-analytic in either s, t, u → 0. In particular, the term proportional to t 2 log -t will play an important role in what follows, since the relation between arcs and 2D moments discussed in the previous section rely on a Taylor expansion of the arcs at t ∼ 0, see (2.3.12).

In fact all couplings generate non-analyticities in t = 0. The most singular effects in the 1-loop contributions proportional to the marginal coupling g 0,0 are,

δM = g 0,0 32π 2 log -t s -g 0,0 + t 2 5g 2,0 3 + t 3 g 3,1 3 + t 4 7g 4,0 5 + • • • (2.3.26)
These (and all other 1-loop contributions involving g 0,0 ) carry no powers of s, and therefore do not appear in arcs and do not enter in the dispersion relations.

On the other hand, 1-loop effects involving more irrelevant couplings have singularities:

δM = - s 2 t 2 16π 2 log -t s -t g 2,0 g 3,1 30 + t 2 2g 2,0 g 4,0 35 + t 2 g 3,1 g 3,1 60 -t 3 2g 3,1 g 4,0 35 + t 2 s 2 g 2 4,0 1260 + • • • . (2.3.27)
Of these, the first four will appear in the first arc a 0 (s, t) and will be subdominant to the term ∝ g 2 2,0 from (2.3.25). Only the term ∝ g 2 4,0 has enough powers of s to appear in the second arc a 1 , but it is proportional to t 4 log(-t). Therefore, the second arc and its first three derivatives are finite at t → 0. This trend propagates to higher arcs, with leading behavior

δa n (ŝ, t) ∝ t 2n+2 log -t ŝ . (2.3.28)
We deduce that arc n and its first 2n+ 1 derivatives are finite in t → 0. This is important in light of (2.3.9): it is possible to reconstruct all coefficients in the forward limit, without encountering a divergence at t = 0. We illustrate this in Table 2.3.

Near-forward bounds

We are now ready to derive the bounds on Wilson, in particular on the cubic Galileon coupling. These bounds stem from comparing, order by order in t, IR and UV definitions of arcs in terms of moments. Expanding the (2.3.25), we find from a 0 (ŝ, t),

g 2,0 + β 4 ŝ2 2 = µ 0 0 , -g 3,1 - 61 42 β 4 ŝ = µ 1 1 - 3 2 µ 0 1 , (2.3.29) 
2g 4,0 + β 4 2 log ŝ + log(m 2 /ŝ) 42 = µ 2 2 4 -2µ 1 2 + 2µ 0 2 . (2.3.30) 
The term proportional to log m 2 represents the leading effect at finite mass, which acts here as a regulator for the otherwise divergent expression as t → 0. From (2.3.22) (in particular µ 1 1 > 0 and µ 0 0 -ŝ2 µ 0 1 > 0) we read the upper bound

g 3,1 ŝ < 3 2 g 2,0 - 10 7 β 4 ŝ2 (2.3.31)
which for β 4 → 0 reduces to the tree-level values discussed in [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF][START_REF] De Rham | Positivity Bounds for Scalar Field Theories[END_REF]. This is an upper bound on the cubic Galileon coupling, including the leading loop corrections.

On the other hand the moments µ 1 1 , µ 2 2 do not have upper bounds in (2.3.22), and consequently there appears to be no lower bound on g 3,1 . 6A lower bound can stem from realizing that, because of full stu crossing symmetry [START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF][START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF], g 4,0 appears also in the second arc at t = 0,

a 1 = g 4,0 + β 4 log ŝ = µ 0 2 . (2.3.32)
Comparing this to the second line in (2.3.30) leads to a "null constraint" which, taking into account loop effects reads [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF] Null Constraint at 1-loop:

µ 2 2 = 8µ 1 2 + 2β 4 21 log m 2 ŝ . (2.3.33)
Null constraints relate higher and lower moments in J 2 and, together with bounds on moments, lead also to a lower bound on g 3,1 [START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF][START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF][START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF][START_REF] Sinha | Crossing Symmetric Dispersion Relations in Quantum Field Theories[END_REF]. The simplest way to see this is to combine the null constraint with the condition µ 1 1 -ŝ2 µ 1 2 > 0 and µ 2 2 µ 0 0 > (µ 1 1 ) 2 (the latter follows from positivity of the minors in the positive definite matrix of (2.3.22)), to obtain,
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g 3,0 ŝ > -4g 2,0   1 + 1 - g 2,0 ŝ2 log m 2 ŝ 240 × 16π 2   - 10 7 β 4 ŝ2 . (2.3.34) 
In absence of loop effects, this reduces to g 3,0 ŝ > -8g 2,0 ; instead using all relations from (2.3.22) we find g 3,0 ŝ > -6.5g 2,0 ; finally, using moments up to µ 6 6 , we find

g 3,0 ŝ -5.3g 2,0 (2.3.35) 
in agreement with [START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF][START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF][START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF][START_REF] Sinha | Crossing Symmetric Dispersion Relations in Quantum Field Theories[END_REF]]. This is an example of how the 2D moment problem converges as more and more moments are taken into account.

We show these bounds, as function of log m 2 /ŝ, in Fig. 2.4. 7 The interesting feature is that in the exact m = 0 limit, although the upper bound is untouched, the lower bound disappears completely.

Nevertheless, for practical purposes, in the case of the Goldstone, as soon as the mass is finite the impact of loop effects is limited. Indeed, even considering the most favorable phenomenological conditions for the EFT, in which the cutoff is at the Planck scale ŝ = m 2 Pl , while the mass of the particle is at the lowest testable scale (Hubble) m = H 0 , the logarithm is of order log m 2 ŝ ≈ -280 and the departures from the tree-level limit are of the size of a loop factor ∼ g 2 2,0 s 2 /16π 2 .

In the approach of this section, positive functions are approximated by polynomials. This is a strength, because they provide a simple and systematic path to positivity. At the same time, polynomials are the weak link of this approach, as they do not converge uniformly to continuum functions on non-compact domains. For instance, consider 7 At fixed m, with more moments, the lower bound improves, because the solution to the 2D moment problem is more precise, but it still diverges as m → 0. In contrast to the tree-level limit, here higher null constraints (from expressing any gp,q in terms of different combinations of moments, similarly to (2.3.33)) do not improve the bound, because higher t-derivatives of (2.3.25) are more and more singular

∂ k t a0 ∼ m -2(k-2) as m → 0.
the combination of moments associated with integrating cos J 2 over the measure dµ in (2.3.10), µ cos ≡ ∞ n=0 (-1) n µ 2n 0 /(2n!). Clearly µ cos < µ 0 0 , since | cos J 2 | < 1; yet this feature is invisible at any finite order of moments. In the next section we provide an alternative method to extract bounds, that attacks directly the integrand boundedness.

Positivity bounds at large |t|: excluding the Galileon

In this subsection, we want now to extend the previous results away from the near forward scattering which, as we have shown, may present IR sensitivity in the case of massless particle scattering.

We assume the amplitude to be analytic in the cut complex s plane for fixed large negative t (within the EFT validity). This provides a way of regulating the singularities using finite t rather than mass. Analyticity in s for finite t < 0 has been rigorously proven [START_REF] Bros | A Proof of the Crossing Property for Two-Particle Amplitudes in General Quantum Field Theory[END_REF], except for a region of size ∼ (-t) 3 around the origin, as we have reviewed in the previous chapter. For t within the range of EFT validity, the amplitude is explicitly calculable and known, and it displays in fact no non-analyticity. This extended domain of analyticity enables us to study dispersion relations at fixed large negative t, without the need to expand them around t ≈ 0. Contrary to analogous quantities defined at t = 0, Legendre polynomials are not positive, and therefore the integrand (2.3.4) is not positive. For -ŝ < t ≤ 0, however, the integrand I t ( , ŝ ) is bounded from above and below, because the Legendre polynomials are themselves bounded for all even and ŝ ∈

[ŝ, ∞[ - 1 2 ≤ min ,ŝ P (1 + 2t ŝ -2m 2 ) ≤ P (cos θ) ≤ 1 . (2.3.36)
Since the integrand is bounded, we can pull it out of the integral and bound arcs a n (ŝ, t ) in terms of arcs at t = 0 (where P (cos θ) = P (1) = 1), 

a n (ŝ, 0) = 2 π ∞ ŝ ∞ =0 dŝ Im f (ŝ ) ŝ 2n+3 = µ 0 2n , (2.3 
I n t ( , ŝ ) ≤ a n (ŝ, t) a n (ŝ, 0) ≤ ŝ + t 2 [ŝ(ŝ + t)] n+2 . (2.3.38)
Here, for all t, the upper bound is exactly saturated in = 0 or ŝ → ∞ (corresponding to cos θ = 1), P 0 (cos θ) = P (1) = 1. Instead, for generic value of t/ŝ the lower bound is determined by different points in the , ŝ domain: for t/ŝ ∼ -1/2, min ,ŝ I t ( , ŝ ) is saturated by the = 2 polynomial, and as t/ŝ → 0 or 1 it is saturated by larger and larger values of . The region excluded is illustrated for n = 0 by the grey area in Fig. 2.5 (the black lines correspond to the simple t-independent bound -1 2 ≤ P (cos θ) ≤ 1).

We can now compare the arcs computed within the EFT (2. .

The second inequality labels the regime where loop effects are under control, even in strongly coupled theories. We first discuss the tree-level limit in which we neglect these effects altogether such that the IR amplitude is well described by (2.3.6). We then invoke the first inequality in (2.3.39) so that the first arc is well approximated by, a 0 (ŝ, t) ≈ g 2,0tg 3,1 .

(2.3.40)

and higher-order terms can be neglected. 8The approximate IR tree-level EFT arc is illustrated in Fig. 2.5, by lines with steepness -ŝg 3,1 /g 2,0 : its extrema (orange dashed) are found by requiring that a 0 (ŝ, t) lies within the UV allowed region (2.3.38), for all values of -1 ≤ t/ŝ ≤ 0. Equating IR and UV arcs, and dividing by a 0 (ŝ, 0), we find,

3 2 > ŝ g 3,1 g 2,0 > -min t min ,ŝ I 0 t -1 -t . ( 2 

.3.41)

The upper bound is saturated by the = 0, ŝ = ŝ UV contribution, corresponding to a weakly coupled scalar with mass M 2 = ŝ. This bound comes from the near forward limit, where our assumption of neglecting higher order terms is exact. It can be found analytically by comparing ∂| t=0 a 0 (ŝ, t) in the UV (the rhs of (2.3.38)) and the IR, (2.3.40), and is in fact equivalent to the moment problem approach. The lower bound instead requires min ,ŝ I 0 t , which implies finding the minima of (Legendre) polynomials, which is saturated by larger as t/ŝ → 0. Nevertheless, the bound (2.3.41) is dominated by finite |t|/ŝ where min ,ŝ I 0 t is at the interception of the = 2 and = 4 contributions, which can be found by solving a 4th order equation. It leads to, ŝg 3,1 g 2,0 -4.9 , (2.3.42)

and is dominated by the region t ≈ -0.3ŝ, which explains why s-analyticity at large negative -t m 2 is necessary.

This result relies on neglecting higher order terms but it can be shown that in fact it holds in full generality once higher-order terms are included, provided one works with an improved arcs, see [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF] and [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF]. In particular, including those higher order terms leads to Fig. 2.6 which translate into the refined bound

3 2 > ŝ g 3,1 g 2,0 -5.18 , (2.3.43) 
compatible with [START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF][START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF][START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF]. Notice that this bound appears weaker than the nonimproved one (2.3.42), which ignored O(t 2 ) terms.
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.6: LEFT: As in Fig. 2.5, but using improved arcs a imp 0 (ŝ, t) [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF]. RIGHT: Bounds on the ratio g 3,1 ŝ/g 2,0 as a function of the coupling g 2,0

ŝ2 . Grey area/dashed line: bounds neglecting terms O(t 2 ) in a 0 (ŝ, t) (but using the full loop contribution (2.3.25)). Solid lines: bounds from improved arcs [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF].

We now turn to loop effects, as captured by (2.3.25). Despite its non-analyticity, both the amplitude and its first derivative remain finite at all s, t, u within the EFT validity. This is important, because the bounds presented in the previous paragraph depend on the first derivative of a 0 (ŝ, t) at t = 0 and on the amplitude at finite t ≈ -0.3ŝ, where loop effects have a finite impact. Ignoring terms at order (t/ŝ) 2 ∼ (0.3) 2 , loop effects are captured by the substitution,

ŝg 3,1 g 2,0 → ŝg 3,1 + 61 42 β 4 ŝ2 g 2,0 + β 4 ŝ2 2 (2.3.44)
in (2.3.42). We illustrate this in Fig. 2.6 (the area between the upper solid line and the lower dashed line).

Contrary to bounds on moments based on near-forward expansion we have derived in previous subsection, here loop effects have a finite impact on the lower bound, which survives also in the massless limit. In practice, the singularity is regulated, rather than by the mass, by the finite value of t which happens to determine the lower bound.

The method presented in this section and developed in [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF] complement in a simple and analytic way the alternative method pioneered in [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF] where the space of positive functions living in R + × {0, 2, 4, . . .} was found instead numerically.

An immediate implication of these bounds, (2.3.31) with (2.3.43), is that there is no Galileon EFT (where |g 3,1 s| g 2,0 ) consistent with causality and unitarity.

Chapter 3

Applications to BSM physics

Positivity bounds originate from the first principles of causality and unitarity, and have thus the power to be applied to a huge variety of EFTs. In the previous chapters we have focused on highlighting the structural aspects of these constraints, restricting the detailed application to the simplest and instructive case of a light scalar. But positivity bounds have found several applications also in the physics beyond the Standard Model. In this chapter we briefly review a subset of the contribution to this subject made by the author in the context of supersymmetric models, composite Higgs models, and higher-spin EFT. 1Clearly, the most important bounds come directly from the simplest positivity condition on the first arc alone, a 0 > 0, because it captures the lowest dimensional Wilson coefficient, that is the most important deformation of the theory that may be visible in the IR. In the context of higher spin theory, we also use higher arcs instead, because the amplitudes scale very quickly with the energy already in the lowest order EFT. We will also discuss the case of a -1/2 , that is once-subtracted dispersion relations, that provide sum rules for dim-6 operators in composite Higgs models.

Bound on the Superpotential

As a concrete case of study, let's consider an effective theory for a Goldstino and a Goldstone boson, from supersymmetry and R-symmetry breaking respectively. This scenario, despite not being fully generic, is actually quite common in models for the hidden sector that breaks supersymmetry spontaneously see e.g. [START_REF] Nelson | R Symmetry Breaking Versus Supersymmetry Breaking[END_REF][START_REF] Affleck | Dynamical Supersymmetry Breaking in Chiral Theories[END_REF][START_REF] Intriligator | Dynamical SUSY Breaking in Meta-Stable Vacua[END_REF]. Moreover, it may be interesting for phenomenology at colliders if the scale of SUSY and R-symmetry breaking are not too large relative to the TeV scale, see e.g. [START_REF] Bellazzini | R-axion at colliders[END_REF].

The effective action of the Goldstino and the R-axion can be written using the nonlinear superfield formalism of [START_REF] Komargodski | From Linear SUSY to Constrained Superfields[END_REF] and reads

L hid = d 4 θ(X † X + f 2 a 2 R † R) + d 2 θ(F X + w R R 2 ) + c.c. ⊃ -F 2 + i Ḡσ µ ∂ µ G + f 2 a 2 (∂ µ a) 2 - w R F 2 iG 2 e -2ia 2a + c.c. (3.1.1)
where X and R = e iA carry R-charge 2 and 1 respectively (the R-charge of a supermultiplet is identified with that of its bottom component) and satisfy the non-linear constraints X 2 = 0 and X(R † R -1) = 0. As a solution of the first constraint, the bottom component of X is integrated out in terms of the Goldstino bilinear and its F-component gets identified with (minus) the SUSY-breaking scale F , namely X = G 2 /2F 2 + √ 2Gθ -F θ 2 . Analogously, all the degrees of freedom of the chiral field A become functions of the Goldstino and its real bottom component a, which we identify as the R-axion A = a + O(aG).

Since the R-charge of R is 1, its effective action differs from the one of a SUSY axion in that a superpotential term is allowed. This is controlled by the dimension three parameter w R , which is related to the VEV of the superpotential.

After a field redefinition we can recast the Goldstino-axion interaction that is relevant for Ga → Ga elastic scattering as

L Ga = ic F 2 (∂ µ a∂ ν a)G † σµ ∂ ν G + h.c. c = f 2 a -8w 2 R /F 2 . (3.1.2)
The forward elastic amplitude M(Ga → Ga) = 2cs 2 and therefore the positivity of a 0 = c implies that the super-potential vev is bounded above by a geometric mean of the global symmetry breaking scales [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF] w

R < F f a /2 √ 2 . (3.1.3) 
One obvious implication of (3.1.3) is that the decay width of the R-axion into Goldstini, once the R-symmetry is slightly broken, is necessarily bounded

Γ(a → GG) = 1 4π m 5 a w 2 R f 2 a F 4 < 1 32π m 5 a F 4 . (3.1.4)
The positivity bound (3.1.3) is in perfect agreement with the superluminal bound of [START_REF] Dine | A Bound on the Superpotential[END_REF] (slightly stronger: it removes the equality sign that can arise only in the theory where the axion is free). See e.g. [START_REF] Bonnefoy | Causality Constraints on Nonlinear Supersymmetry[END_REF] for the comparison of the constraints from superluminality w.r.t. the positivity bounds, in the context of non-linearly realized supersymmetry.

EFT of Massive Higher Spins

In [START_REF] Bellazzini | Massive Higher Spins: Effective Theory and Consistency[END_REF] we have explored the consistency of the EFT for a single massive particle of mass m and spin S > 2 at the bottom of the spectrum, separated by the rest of the states by a mass gap Λ m. We were interested in the following Question: can higher-spin particles be parametrically lighter than all other states? Can in fact m Λ be realized at all in a causal and unitary theory?

It turns out that positivity bounds allow us to answer this question: negatively! At least for the integers spins we have restricted our analysis to.

Indeed, a spin-S massive field represented by a symmetric and traceless field Φ µ 1 ...µ S has 2S + 1 polarizations of which all but 2 grow with energy. For example, the helicity-0 polarization can be seen as being produced by the Stuckelberg scalar ϕ that lives inside Φ µ 1 ...µ S ∼ ∂ µ 1 . . . ∂ µ S ϕ, and therefore goes as E S . A completely generic theory would thus have amplitudes that grow very fast with energy, which are the perfect target for ). Since red and blue region don't overlap, there is no solution to the positivity bounds for non-vanishing λ i .

positivity bounds. One can show that the best energy behavior of the 2-to-2 scattering amplitude is actually [START_REF] Bellazzini | Massive Higher Spins: Effective Theory and Consistency[END_REF] S-even

M ∼ E 3s , S-odd M ∼ E 3s+1 , (3.2.1) 
and it corresponds to a suitable choice of the potential (analog to the dRGT potential in massive gravity), namely S-even:

µ 1 ...µ 4 ν 1 ...ν 4 . . . ρ 1 ...ρ 4 Φ µ 1 ν 1 ...ρ 1 Φ µ 2 ν 2 ...ρ 2 Φ µ 3 ν 3 ...ρ 3 Φ µ 4 ν 4 ...ρ 4 (3.2.2)
S-odd:

µ 1 ...µ 4 ν 1 ...ν 4 . . . ρ 1 ...ρ 4 Φ µ 1 ν 1 ...ρ 1 α Φ α µ 2 ν 2 ...ρ 2 Φ µ 3 ν 3 ...ρ 3 β Φ β µ 4 ν 4 ...ρ 4 (3.2.3)
Incidentally, this proves an earlier conjecture [START_REF] Bonifacio | Bounds on Amplitudes in Effective Theories with Massive Spinning Particles[END_REF] on the optimal energy behavior for spinning particle scattering. Even with the optimal choice, the amplitude grows still very fast and it's therefore constrained by the positivity bounds. The point is that there are several positivity bounds, one for every independent elastic forward scattering, whereas the number of parameters in the leading EFT is not very large so that one in unable to solve them all simultaneously. For example, a spin-3 particle has only 3 independent potential terms (restricting for simplicity to a Z 2 symmetric theory)

V = λ 1 Φ de a Φ abc Φ f bd Φ cef + λ 2 Φ d ab Φ abc Φ ef c Φ def + λ 3 Φ abc Φ abc 2 (3.2.4)
with the optimal energy behavior achieved with λ 2 = λ 1 = -2λ 3 . The associate amplitude for scattering longitudinally polarized particles is O(E 12 )

M 00→00 (E m) = 1 25m 12 3 4 (2λ 1 -λ 2 + 2λ 3 )(stu) 2 + 1 6 (λ 2 + 2λ 3 )(s 2 + t 2 + u 2 ) 3 +. . . (3.2.5) becoming O(E 10 ) if the tuning is performed.
In Fig. 3.1 we show that the positivity bounds demand mutually exclusive conditions on the λ i so that only the trivial, free, EFT is able to pass them. This same pattern repeats for all (integer) spins, and it allows us to conclude that these theories belong to the swampland. An EFT for an isolated higher spin can't be obtained as the end-point of the RG evolution that originated from a causal and unitary microscopic theory.

It remains however open a very interesting question: whether or not one could add a minimal, finite, number of particles in the IR in order to make the EFT of the higher-spin plus those extra particles consistent with the positivity bounds. Certainly a very large, or infinite, number of extra states should be able to solve the positivity bounds because higher-spin particles exist, it's just that they are not separated in mass from the other states. Now we know why.

Sum Rules in Composite Higgs

Within the framework of composite Higgs models, the Higgs boson emerges at low energy as a (pseudo-)Goldstone boson associated to a certain symmetry breaking pattern of a strong sector. In these scenarios, the Higgs boson coupling to other SM particles such as the W -and Z-boson may deviate by an amount that parametrically scales as v2 /f 2 , where v is the electro-weak VEV and f is the scale of spontaneous symmetry breaking of the strong sector.

It was pointed out in [START_REF] Low | Theoretical Constraints on the Higgs Effective Couplings[END_REF] that once-subtracted dispersion relations constrain these Higgs coupling deviations to satisfy certain sum rules. In general, one does not expect once-subtraction dispersion relations to hold because this would require a better behavior in the UV than expected by the Froissart bound. Nevertheless, [START_REF] Falkowski | What If the Higgs Couplings to W and Z Bosons are Larger Than in the Standard Model?[END_REF] noticed that if the theory has an isospin symmetry, and if the leading energy-growth is universalindependent of the isospin-channel-(as it happens in QCD for pion-pion scattering), one can thus take suitable linear combinations of once-subtracted dispersions relations in order to get a better UV behavior, and thus justify the Higgs coupling sum rules.

This idea was extended in full generality in [START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF] which studied the interplay between symmetries and dispersion relations, in particular how crossing matrices act on the various eigen-amplitudes and the associated eigen-arcs, and how to extract finite oncesubtracted sum rules. Moreover, this work covered higher arcs and dim-8 operators as well, uncovering for the first time in the literature, to the best our best knowledge, the convex-space geometry behind the constraints from causality and unitarity. 2 Let's revisit some of these early results that predate by various years the recent explosion in activity of positivity bounds for dim-6 operators for LHC physics.

Goldstone bosons from SO(N + 1)/SO(N ) and SO(N, 1)/SO(N )

We consider a theory of a Goldstone boson emerging from the spontaneous breaking patterns SO(N + 1) → SO(N ) or SO(N, 1) → SO(N ) with N > 4. The case N = 4 is treated separately in the next subsection.

The Lagrangian at O(p 2 ) is given by

L = 1 2 ∂ µ π a ∂ µ π a ∓ 1 6f 2 π (π b π b )(∂ µ π a ∂ µ π a ) -(∂ µ π a π a )(∂ µ π b π b ) , (3.3.1) 
where the N Goldstone bosons live on a N -dimensional sphere (upper sign) or hyperboloid (lower sign) respectively, carrying the SO(N ) fundamental irrep index. We also add two light states, h ∈ 1 and h ab ∈ S, that are coupled as

1 f π (ahδ ab + bh ab ) ∂ µ π a ∂ µ π b . (3.3.2)
We can think of them as additional Higgs-like states in the low energy spectrum. The low-energy constants are the decay constant f π , and the couplings a and b. With these ingredients we can calculate the amplitudes for the scattering at low-energy

M(π a π b → π c π d ) = (±1 -a 2 + N + 2 2N b 2 ) s f 2 π δ ab δ cd -δ cb δ ad , (3.3.3) 
The amplitude decomposes in irreps N ⊗ N = 1 ⊕ S ⊕ A for the singlet, symmetric and anti-symmetric SO(N )-irreps that one can find in the product of two fundamentals. One can thus define arcs with one-less subtraction for each eigen-amplitude, that is a I=1,S,A n=-1/2 in the definition (2.1.1), so that at tree-level they capture the s-growing term of the eigenamplitudes

a 1 -1/2 = (N -1) f 2 π ±1 -a 2 + N + 2 2N b 2 , (3.3.4) a S -1/2 = - 1 f 2 π ±1 -a 2 + N + 2 2N b 2 , (3.3.5) 
a A -1/2 = 1 f 2 π ±1 -a 2 + N + 2 2N b 2 , (3.3.6) 
enforced by crossing symmetry on the eigen-amplitudes [START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF], M I (s) = X IJ M J (u). Because crossing is now a non-trivial matrix in eigen-amplitude space, M I (s) = X IJ M J (u), the UV representation of the eigen-arc a n becomes

a n = c ∞ n + ∞ 0 2ds sπ 1 s 2n+2 1 + (-1) 2n X 2 ImM(s + i ), (3.3.7) 
where the subtraction constant c ∞ n = 0 for n = -1/2 and zero for n ≥ 0. Since X 2 = 1

we recognize on the right-hand side the orthogonal projectors

P ± = (1 ± X)/2 (3.3.8)
on the ± eigen-space of crossing symmetry.

Here is the catch: the amplitude is allowed to grow maximally and saturate the Froissart bound but universally so

M ab→cd (|s| → ∞) ∼ s δ ac δ bd =⇒ M I ∼ s .
(3.3.9)

i.e. as due to an object with the same quantum number of the vacuum, like it happens with the pomeron in QCD. In this way the eigen-amplitude is asymptotically proportional to the sc ∞ n ∝ s(1, 1, . . . , 1) vector which is always a +1-eigenvalue of the crossing matrix X, as proven in [START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF]. Therefore, by acting with the orthogonal projector P -on both sides of (3.3.10) the subtraction constant drops out and one obtain a perfectly finite sum rule, namely

P -a -1/2 = ∞ 0 2ds sπ 1 s P -ImM(s + i ), (3.3.10)
The X-matrix in this example is

X =   1 N ∆ S N -∆ A N 1 N α ∆ S ∆ A ∆ S ( 1 2 + 1 N ) -1 N 1 2 + 1 N 1 2   , (3.3.11)
where the states are ordered as 1, S, and A and the various dimensions of the irreps are

∆ 1 = 1, ∆ S = 1 2 N (N + 1) -1 and ∆ A = 1
2 N (N -1). One can verify that X 2 = 1, det X = -1, and TrX = 1. As claimed the +1-eigenspace contains the vector (1, 1, 1) T and the columns sum up to 1 for each row. Diagolizing X with a non-singular matrix

M M =   1 2N -N +2 4N 1 4 -1 2N N +2 4N 3 4 1 2N 6N -4 8N 1 4   , M XM -1 = -1 1 0 0 1 2 . (3.3.12)
we see that its first row gives the coefficients of the sum rule with an odd number of subtractions, i.e.

2a 1 -1/2 -(N + 2)a S -1/2 + N a A -1/2 = 2 π ∞ 0 ds s 2σ tot 1 (s) -(N + 2)σ tot S (s) + N σ tot A (s) (3.3.13)
The convergence for one subtraction is guaranteed by the fact that the coefficients in front of the cross-sections add up to zero being orthogonal to the vector (1, 1, 1) T . The other two rows set instead the constraints on the a I -1/2 's that we can write as

a S -1/2 = -a A -1/2 = - 1 N -1 a 1 -1/2 , (3.3.14)
and apply to the once-subtracted sum rule (3.3.13) that in terms of just one eigenamplitude, e.g. a A -1/2 , takes the form

a A -1/2 = 1 2πN ∞ 0 s . s 2σ tot 1 (s) -(N + 2)σ tot S (s) + N σ tot A (s) . (3.3.15)
Using now the explicit expression in terms of the decay constants and couplings, we get the sum rule which constrains the Wilson coefficients

±1 -a 2 + N + 2 2N b 2 = f 2 π 2πN ∞ 0 ds s 2σ tot 1 (s) + N σ tot A (s) -(N + 2)σ tot S (s) . (3.3.16)
The two signs + andcorrespond to the sphere and the hyperboloid respectively. For SO(4)/SO(3) ∼ SU (2) L × SU (2) R /SU (2) V we recover the sum rule of ref. [START_REF] Falkowski | What If the Higgs Couplings to W and Z Bosons are Larger Than in the Standard Model?[END_REF] for b = 0, and the original Olsson sum rule of QCD for a = b = 0.

Composite Higgs models SO(5)/SO(4)

We now move on to consider the case SO(5) → SO(4) ∼ SU (2) L × SU (2) R which is one of the realistic and important custodially symmetric composite Higgs models, see e.g. ref. [START_REF] Bellazzini | Composite Higgses[END_REF][START_REF] Panico | The Composite Nambu-Goldstone Higgs[END_REF][START_REF] Contino | The Higgs as a Composite Nambu-Goldstone Boson[END_REF] for comprehensive reviews. The scattering of two 4 ∈ SO( 4) is special because the anti-symmetric 6 is further reducible into (1, 3) ⊕ (3, 1) of SU (2) L × SU (2) R . An immediate consequence is that there are two sum rules for an odd number of subtractions, rather than just one like for SO(N = 4), and two sum rules for an even number of subtractions.

Working directly with SU (2) L × SU (2) R , every irrep carries pairs of indices in the irreps of SU (2). In particular, we have (2, 2) ⊗ (2, 2) = (1, 1) ⊕ (1, 3) ⊕ (3, 1) ⊕ [START_REF] Luty | The a-theorem and the Asymptotics of 4D Quantum Field Theory[END_REF][START_REF] Luty | The a-theorem and the Asymptotics of 4D Quantum Field Theory[END_REF]. Adapting all previous steps from the study of SO(N + 1)/SO(N ) sum rules of previous subsection, but leaving all the details to the original paper3 [START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF], we get the following sum rule

c H -a 2 + 3 4 b 2 = f 2 π 4π ∞ 0 ds s σ tot (1,1) (s) + σ tot (1,3) (s) + σ tot (3,1) (s) -3σ tot (3,3) (s) (3.3.17)
where we have included in the IR i) the effect of the dim-6 operator

O H = c H 2f 2 π (∂ µ |H| 2 ) 2 , (3.3.18)
and ii) the contribution from an SO(4) singlet and a light symmetric (traceless) scalar coupled to the Higgs with couplings a and b as in eq. (3.3.2).

We have thus obtained convergent dispersion relations by suitably projecting the arcs a -1/2 on the -1-eigenspace of the crossing matrix. This allowed us to remove the unknown subtraction constants that would otherwise pollute the dispersion relations. However, there is a price to pay, namely the fact that we obtain sum rules which are not definite sign. Therefore, the information that one can extract from the sum rules is much more limited than what is the case for a n≥0 .

In fact, one can even argue that the relevance of the sum rule goes in the opposite direction: measuring the arcs in the IR one would learn about the properties of the cross-sections in the various channels at all energies. For example, looking at (3.3.17) for a = b = 0 (no extra states around but for the composite Higgs), if one was measuring a negative c H < 0 it would point out to an enhancement in the (3, 3) channel, in the same spirit of [START_REF] Low | Theoretical Constraints on the Higgs Effective Couplings[END_REF] and [START_REF] Falkowski | What If the Higgs Couplings to W and Z Bosons are Larger Than in the Standard Model?[END_REF], and of the Weinberg's sum rules.

An interesting avenue has been instead undertaken recently in [START_REF] Albert | Bootstrapping Pions at Large N[END_REF]: assuming large-N limit of the underlying microscopic theory, it is demanded that no subtraction-constant is needed for the arc a -1/2 , despite being a once-subtracted dispersion relation. Moreover, this allows one also to discard the otherwise-negative contribution from the u-channel, and it delivers therefore once-subctracted and positivite-definite dispersion relations. They provide bounds that have been used to single out the space of consistent pionpion S-matrices, under this restricting -yet interesting-set of assumptions. For other approaches to bound dim-6 operators see e.g. [START_REF] Remmen | Consistency of the Standard Model Effective Field Theory[END_REF][START_REF] Remmen | Signs, Spin, Smeft: Sum Rules at Dimension Six[END_REF][START_REF] Davighi | Natural Selection Rules: New Positivity Bounds for Massive Spinning Particles[END_REF].

Chapter 4

Positivity in Gravity

One of the most important open problems in gravitational theories is to separate the "swampland " from the "landscape ": finding necessary conditions that an EFT with dynamical gravity must satisfy in order to be the IR-end of an RG evolution from the UV theory of quantum gravity.

Positivity bounds offer an efficient way of attacking this problem, providing consistency conditions for the amplitudes found in EFTs, assuming causality and positivity of the underlying UV theory. If a theory violate these conditions it lives in the swampland: neat, simple and sharp. 1There are a couple important differences w.r.t. positivity in QFT:

• We cannot invoke micro-causality to prove analyticity of scattering amplitudes as we have done in Chapter 1. Analyticity of amplitudes is instead assumed, it is part of the axioms of gravitational scattering, as the expression of causality in a theory that has no local observables. In fact, in perturbation theory, analyticity and dispersion relations do actually follow by the usual cutting rules -the largest time equation-at a diagrammatic level, see e.g. [START_REF] Remiddi | Dispersion Relations for Feynman Graphs[END_REF][START_REF] Veltman | Diagrammatica: the Path to Feynman Rules[END_REF].

• The graviton is massless, neutral, and it has spin 2: it thus couples universally at long distance to all particles in any EFT. Therefore, the elastic amplitudes in any EFT is actually dominated, for small momentum exchanged, by the universal graviton pole, namely M(s, t) = -s 2 /tm 2 Pl . Since t < 0 in the region where analyticity is assumed to hold, the graviton pole in t-channel provides an irreducible source of positivity, i.e. -time-delay-in the language of [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF]. This plays an important role in twice-subtracted dispersion relations, as we discuss in the next sections.

• Related to the previous point, it's the peculiar large-s limit of the amplitude for M(|s| → ∞, t) with t/s 1: twice-subtracted dispersion relations are convergent for t < 0, thanks to a gravitational Regge bound recently proven [START_REF] Häring | Gravitational Regge bounds[END_REF]. This extends the Regge behavior in string theory, M(|s| → ∞) → s α(t) with α(t) < 2 (and moreover α(t → 0 -) → 2 from below). While negative-t is enough for convergence, the positivity of the dispersive integral is not straightforward because the Legendre polynomials (or Wigner-d symbol in general) in the partial wave expansion are no longer positive everywhere for t < 0, see a related discussion in Section 2.3.4. Nonetheless, this problem was recently solved in [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF] that derived twice-subtracted positivity bounds at negative t. On the other hand, twice-subtracted dispersion relations at t ≥ 0, where positivity of the dispersive integrand would be trivial, do not deliver convergent integrals, contrary to the QFT case. For convergent positivity bounds in gravity at t ≥ 0 one needs at least 3 subtractions.

In this chapter we show some of applications of positivity bounds to gravitational EFTs, focusing on the author's contribution to this subject.

Causal Modifications of Gravity

What conditons must satisfy the leading corrections to the Einstein-Hilbert action at low-energy (without any new degrees of freedom) in order to descend from a causal and unitarity UV completion?

For deformation of the graviton 3pt-function, this question was answered for the first time in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] by working in the eikonal limit (large-s and large impact parameter limit) and demanding positive time delay in the 2-to-2 scattering.

For causal deformations of the 4pt functions it was instead answered for the first time in [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF]. Both these results for 3pt and 4pt deformations were later combined in a single framework of positivity bounds away from the forward limit [START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF][START_REF] Caron-Huot | Graviton Partial Waves and Causality in Higher Dimensions[END_REF]. Following [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF], let's parametrize the low-energy deformation of gravity via the action

S = d D x √ -g ∞ n=1 L n , (4.1.1)
where L n are contributions to the action entering at order 2n in the derivative expansion.

The L 1 = -R 2κ 2 is Einstein-Hilbert term and

L 2 = λ(R µνρσ R µνρσ -4R µν R µν + R 2 ) L 3 = R µνσδ R σδργ R µν ργ (4.1.2)
are the Gauss-Bonnet term and the helicity-flipping 3pt vertex, respectively. We assume the Gauss-Bonnet form for L 2 throughout since this is the unique ghost-free quadratic curvature invariant [START_REF] Zwiebach | Curvature Squared Terms and String Theories[END_REF][START_REF] Zumino | Gravity Theories in More Than Four-Dimensions[END_REF] in D dimensions. Moreover, we can field-redefine away the R 2 and R µν R µν terms. The L 4 takes the form

L 4 = 7 i=1 c i O i , (4.1.3)
expressed in terms of the minimal basis of quartic Riemann operators 2 in [START_REF] Fulling | Normal Forms for Tensor Polynomials. 1: the Riemann Tensor[END_REF],

O 1 = R µνρσ R µνρσ R αβγδ R αβγδ O 2 = R µνρσ R δ µνρ R αβγ σ R αβγδ O 3 = R µνρσ R αβ µν R γδ αβ R ρσγδ O 4 = R µνρσ R αβ µν R γδ ρα R σβγδ O 5 = R µνρσ R αβ µν R γ δ ρ α R σγβδ O 6 = R µνρσ R α β µ ρ R γ δ α β R νγσδ O 7 = R µνρσ R α β µ ρ R γ δ α ν R βγσδ . (4.1.4)
2 Applying leading-order equations of motion to Ln is equivalent to a field definition modulo new terms generated in Ln+1. Repeating this procedure at each order, we can freely impose R = Rµν = 0 in a pure gravity theory [START_REF] Georgi | On-Shell Effective Field Theory[END_REF].

Note that linear dependences arise among operators as the dimension D of spacetime decreases. At quadratic order, L 2 is unphysical in D ≤ 3, a total derivative in D = 4, and dynamical in D ≥ 5. Meanwhile, at quartic order, the number of algebraically independent operators O i in D = 4, 5, 6, 7, 8 is 2, 4, 6, 6, 7, respectively [START_REF] Fulling | Normal Forms for Tensor Polynomials. 1: the Riemann Tensor[END_REF], with one linear combination-the eight-dimensional Euler density-a total derivative in D = 8 and hence dynamical only in D ≥ 9 [START_REF] Deser | Tree Amplitudes and Two Loop Counterterms in D = 11 Supergravity[END_REF].

We are interested in constraining the leading contributions from L 4 , which are quartic graviton vertices, which contribute to graviton scattering amplitudes via contact interactions. Since these corrections are free from kinematic singularities, their forward limit is regular. Thus, to obtain their contribution to the forward elastic amplitude, we can simply set t = 0 and take identical (here linear) polarizations 3 = 1 , and 4 = 2 :

δM(s, t → 0) = κ 4 s 4 2 (2c 6 + c 7 )( 1µν µν 1 2ρσ ρσ 
2 ) + (32c 1 + 4c 2 + 2c 6 )( 1µν µν 2 ) 2 + (4c 2 + 16c 3 + 2c 6 )( µν 1 2νρ ρσ 1 2σµ ) + (4c 2 + 8c 4 + 2c 7 )( µν 1 1νρ ρσ 2 2σµ ) . (4.1.5)
The important point is that this contributions grows as s 4 , as opposed to the Einstein-Hilbert term which grows as s 2 /t (and the one from L 3 that gives instead only helicity flipping contributions). Therefore, the overall sign of s 4 -term can be extracted by a forthsubtracted dispersion relation at t = 0 which is simultaneously convergent, manifestly positive, and free of the graviton t-channel pole

∂ 4 δM ∂s 4 s=0=t > 0 . (4.1.6)
To determine the optimal constraints on the coefficients of L 4 , we should marginalize over all possible values of the independent polarizations, 1 and 2 . Since these depend on the spacetime dimensions, let's look at various physically well-motivated scenarios, including general theories in D = 4 and supersymmetric theories in arbitrary D.

Theories in D = 4

The number of linearly independent curvature invariants monotonically increases with the dimension of spacetime. In D = 4, there are only two independent quartic curvature invariants. Hence, L 4 in (4.1.4) collapses to

L 4 = c 1 O 1 + c1 Õ1 , (4.1.7)
where O 1 is defined as in (4.1.4) but Õ1 is unique to D = 4,

O 1 = R µνρσ R µνρσ R αβγδ R αβγδ and Õ1 = R µνρσ Rµνρσ R αβγδ Rαβγδ , (4.1.8)
where Rµνρσ = R αβ µν αβρσ /2 is the dual Riemann tensor. The operator Õ1 can be written as a linear combination of any two the operators in (4.1.4) modulo contributions proportional to R and R µν , which can be eliminated by the equations of motion. For example, Õ1 = 4O 2 -4O 3 = -4O 2 + 8O 4 = . . .. 3Marginalizing over the polarizations in D = 4, we find [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF] c 1 > 0 and c1 > 0, (4.1.9) which corresponds, to parallel or perpendicular polarization vectors, respectively. The sharp conclusion on a D = 4 universe is the following: any EFT with either c 1 < 0 or c1 < 0 is in the swampland bin. One immediate consequence is that they imply a definite sign-shift in the entropy of Kerr black holes, [START_REF] Reall | Higher Derivative Corrections to Kerr Black Hole Thermodynamics[END_REF].

Theories in D = 5

In D = 5, there are four linearly independent quartic curvature invariants. For the sake of generality we use the basis of (4.1.4) with the linear dependences among operators assumed. Marginalizing over the D = 5-polarizations, the positivity bounds read which are a stringent set of requirements on quartic curvature corrections to general relativity in D ≥ 6, necessary to guarantee analyticity of scattering amplitudes.

-8c 3 + 4c 4 + c 6 + 2c 7 > 0 32c 1 + 8c 2 + 8c 3 + 4c 4 + 5c 6 + 2c 7 > 0 4c 2 + 8c 3 + 4c 4 + 7c 6 + 4c 7 > 0 .

Eikonal Scattering and Time Delay

As mentioned in the previous section, there is another way to enforce causality on the EFT: the net time-delay experienced by particles in a scattering process should be positive. 4 Loosely speaking:

Interactions can only slow the particles down.

The condition of positive time delay was used in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] to obtain constraints on the size of the deformation of the on-shell 3pt function of one graviton and two other light particles (or itself). It was further argued that these 3pt functions can be UV-completed in a causal and weakly coupled theory only if it looks stringy, i.e. comprising an infinite tower of higher spin particles. In a sense, supporting the lore that string-like theories are the only UV completions consistent with first principles.

Following [START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF], we show that this argument while formally correct, it is actually inconclusive. In the controlled setting of QED coupled to gravity, we find that the helicityflipping 3pt function at low-energy for γγh (h being the graviton) is indeed generated by an infinite tower of higher spin states, but they are nothing but that electron-positron pairs in a loop, carrying orbital angular momentum. No higher-spin resonance is actually exchanged in t-channel in order to restore causality and unitarity, but pairs of elementary particles. Basically, we show that the argument of [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] requires not just weak coupling, but rather it needs the stronger assumption of a tree-level UV completion, of which QED+gravity is not an example for completing Maxwell-Einstein EFT.

Nevertheless our finding confirms that positivity of time-delay works beyond the classical limit and it is able to diagnose inconsistencies of the theory at 1-loop level. They can even catch the inconsistency associated to a Landau pole which is separated by exponentially large energies w.r.t those of the EFT.

Incidentally, we also show that other, stronger, notions of causality put forward in the literature, are violated in QED coupled to gravity, at scales shorter than the electron Compton wavelength but much larger than the Planck length.

Time Delay

Let's explain what we mean by time-delay and how it is connected to the scattering phase shift, generalizing the approach of [START_REF] Arkani-Hamed | The Eft-Hedron[END_REF][START_REF] Maiani | Unstable Systems in Relativistic Quantum Field Theory[END_REF] to the generic case of non-negligible inelasticity Im δ > 0, i.e. when other particles can be produced in the scattering.

The idea is to introduce a real parameter δT that labels a family |f δT out of time delayed 2-particle states,

|f δT out ≡ Exp(iδT H)|f out , |f in/out = dE J,λ f J,λ (E)|E, J, λ in/out (4.2.1)
with normalization in f |f in = out f |f out = J,λ dE|f E,J,λ | 2 = 1, and then search for a δT = δT * that maximizes the transition probability

| δT out f |f in | 2 , δT out f |f in = dE J,λ |f J,λ (E)| 2 e i(2δ λ (J,E)-EδT ) , (4.2.2)
for some narrowly peaked wave-packet. Here E = √ s is the total center of mass energy and J and λ label the basis where the 2-body partial-wave S-matrix is diagonal. Without spin, J and λ represent the angular momentum and possible other internal quantum numbers. With spin, J is still the total angular momentum (or proportional to the impact parameter b 2J/E in the eikonal limit) while λ is a proxy for a linear combination of the helicity indices, say λ = ± in the scattering of photons we consider below. Since |f J,± (E)| 2 > 0, and Im δ ± (J, E) ≥ 0 by unitarity, the transition probability for a localized wave-packet at E E 0 is maximised at the stationary phase

δT * = 2 ∂Re δ ± (J, E) ∂E , | δT * out f |f in | e -2Im δ ± (J,E 0 ) ≤ 1 (4.2.3)
where the transition amplitude is less than unity due to the opening of inelastic channels that deplete the elastic amplitude. Notice that Eq. (4.2.3) reduces to Wigner's formula δT * = 2 ∂δ ± ∂E when the phase shift is real. In the eikonal limit of large angular momentum we can replace δ ± (J, E) = δ ± (s, b), and the notion of time delay becomes

δT * = 2 ∂Re δ ± (s, b) ∂E (4.2.4)
which again reduces to δT * = 2 ∂δ ± (s,b)

∂E

for real δ ± (s, b). Since δ ± (s, b) can be calculated in terms of the discontinuities of the form factors that at one loop are given by products of real tree-level vertices only, any imaginary part can only arise from two loops onward (to the leading post-Minkowskian order). The 1-loop phase shift is therefore real, and we can safely omit the "Re" in the expression for the time delay to this order. In the following we sometimes leave the index ± of the phase shift implicit.

In the eikonal limit the |f δT out can be visualised as the family of asymptotic outgoing trajectories emerging from the scattering region and specified by -in addition to the impact parameter and the energy which are preserved in the scattering-the time-shift δT relative to the incoming asymptotic trajectory. The δT = δT * corresponds to the emergent semiclassical asymptotic trajectory selected by quantum constructive interference, see Fig. 4.1.

The way we derived the time delay makes clear that the asymptotic causality condition δT * ≥ 0 that we discuss next is meaningful only for δT * much larger than the quantum mechanical uncertainty δT q.m. ∼ /E, which for the δ ± (s, b) ∝ s in our gravitational setup is just the requirement of large scattering phase shift.

Despite such a large phase shift, it is well known that δ remains reliably calculable in the eikonal scattering at large impact parameter in the transplanckian regime, or against a coherent state of spectators. The latter is nicely explained in detail in e.g. [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF]: the fact that the phase shift grows (at least) linearly with s, which is the case for gravitational interactions, implies that perturbatively small phases δ 1 of photons scattering against a series of time-separated N 1 spectator particles exponentiates thanks to factorization, (1 + iδ) N → e iN δ , while keeping the wave-packet localized in the impact parameter space. Therefore, the sequence of scattering events returns δ = N δ 1, i.e. a large scattering phase produced by a coherent state of spectators. Since δ and δ have the same dependence on energy and impact parameter, in the following we keep referring to just δ, but it is left understood that we actually consider scattering against a coherent state that gives rise to a large phase shift.

Alternatively, we can resort to the reliable exponentiation of the large eikonal phase when scattering against a particle in the transplanckian regime s m 2 Pl at small momentum exchanged t s, see e.g. [START_REF] Amati | Planckian Scattering Beyond the Semiclassical Approximation[END_REF][START_REF] Amati | Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[END_REF][START_REF] Kabat | Eikonal Quantum Gravity and Planckian Scattering[END_REF] and references therein, where the theory admits as well a semiclassical approximation for impact parameters much larger than the Schwarzschild radius R s ∼ G √ s. Higher post-Minkowskian corrections correspond to including higher relative o(R s /b) corrections to δ, and they are made smaller than the gauge loop contributions we calculate below by a suitable choice of the kinematics, within the transplankian eikonal scattering. Post-Minkowskian corrections are instead clearly more important than gauge corrections when scattering astrophysical bodies.

The Phase Shift for Photons in Gravity

In order to calculate the time delay (4.2.4), δT * / √ s = 4 ∂δ ± (s,b) ∂s , we need the phase shift δ in a gravitational theory, i.e. the amplitude in impact parameter space, at large b R s and s m 2 Pl . Large energy is also needed to make the time-delay large w.r.t. the quantum uncertainty on the particle localization.

We focus on the scattering of photons against some spectator neutral massless field minimally coupled to gravity. We perform the calculation up to 1 gauge-loop order, but restrict to the lowest post-Minkowskian order, see Fig. 4.2.

In the eikonal limit s t, the amplitude exponentiates in impact parameter space, S = e 2iδ(s,b) where δ(s, b) is referred to as the phase shift and b is the impact parameter. The large phase in the eikonal transplanckian scattering against a single spectator is generated when Gs 1 and G √ s b, see e.g. [START_REF] Amati | Planckian Scattering Beyond the Semiclassical Approximation[END_REF][START_REF] Amati | Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[END_REF][START_REF] Kabat | Eikonal Quantum Gravity and Planckian Scattering[END_REF][START_REF] Hooft | Graviton Dominance in Ultrahigh-Energy Scattering[END_REF], while with several N shockwaves each scattering is subplanckian building up to N sG 1 [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF]. The 1-loop quantum corrections from pure gravity, δ 1 ∼ G 2 s/b 2 [START_REF] Amati | Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[END_REF], are always relatively very small in the transplankian eikonal regime, set in fact by the ratio of the Planck length over the impact parameter b, δ 1 /δ 0 ∼ 1/(m Pl b) 2 . They are also much smaller than the 2-loop gravitational corrections Reδ 2 ∼ Gs(R s /b) 2 . The 1-loop gauge contribution scales instead as Gs(α/4π) log 2 (m X b) for b < 1/m X and Gs(α/4π)/(m X b) 2 for b > 1/m X where m X is the particle running the in the loop, see Eq. (4.2.11) and Eq. (4.2.10). It can be much larger than 1 and dominate over the gravitational δ 2 for a suitable range of s and b we restrict to. Similar scaling applies to the case of scattering against a coherent spectator background. Up to contact terms which are irrelevant at large impact parameter, the eikonal amplitude associated to the process of Fig. 4.2 is controlled by the 1-loop photon energy- momentum tensor matrix elements 5

γ 1 γ 3 q S F i γ 1 γ 3 q S F i
iq 2 i q 2 2 + 4m 2 Γ [ q 1
0|T µν (0)|k h k h N (4.2.5) = 1 2 k σ µ k] k σ ν k]F 1 (t) -kk 2 (P µν (q)F 2 (t) + p µ p ν F 3 (t)) -[kk ] 2 (P µν (q)F 2 (t) + p µ p ν F 3 (t)) 1 2 kσ µ k ] kσ ν k ]F 1 (t)
One can recognize the three covariant little-group structures: F 1 parametrizes the helicitypreserving scattering of photons against an off-shell graviton -equivalently on-shell massive spin-2-, while F 2 and F 3 control the overlap between the helicity-flipping photon pair -hence having zero spin in the direction of motion-and either the spin-0 or the spin-2 state found in T µν |0 , which can have such a vanishing spin projection. There is no spin-1 state and only one spin-0 state because of the conservation equation ∂ µ T µν = 0.

From the normalization lim k →k k h |T µν (0)|k h = k µ k ν /k 0 associated to the particle 4momentum P µ |k = d 3 x T 0µ (x)|k = k µ |k , the helicity-preserving entries of Eq. (4.2.5) are fixed at zero-momentum transfer F 1 (t → 0) = 1. Once coupled to gravity, this corresponds to the universal helicity-preserving low-energy coupling of gravity set by the reduced Planck mass m Pl = (8πG) -1/2 , where G is the Newton constant. The matrix elements (4.2.5) give rise to the following eikonal amplitude 6

M eik (t) = s 2 m 2 Pl q 2 F 1 (t) -4q 2 + F 3 (t) -4q 2 -F 3 (t) F 1 (t) , (4.2.6) 
where q + = 1 √ 2 (q 1 +iq 2 ) and q -= 1 √ 2 (q 1 -iq 2 ), and we dropped any analytic contribution in t (that Fourier transformed to impact parameter space b would produce irrelevant delta-functions of derivatives thereof). 5 Where the diagonal entries correspond to h = -h = ± (here referred to as helicity-preserving, in reference to the crossed process), while the off-diagonal entries correspond to h = h = ± (helicityflipping). 6 In the kinematics k µ 1 = (ω, -p+ q/2), k µ 3 = -(ω, -p-q/2), k µ 2 = (ω, p-q/2), and k µ 4 = -(ω, p+ q/2), where q is the exchanged momenta, ω = p 2 + q 2 /4, and in the following we fix the direction of p = pẑ, where ẑ is the unit vector in the z-direction. The Mandelstam variables in this configuration are given by s = s12 = 4ω 2 , t = s13 = -q 2 , u = s14 = -4 p 2 . By momentum conservation, the product p • q is zero, implying that the momentum transfer q lies in the xy-plane. With an abuse of notation, we will refer to q as a two-dimensional vector with components q = (q1, q2). and q 2 > 4m 2 X (1-3 crossed triangle diagrams omitted for simplicity). Curly lines are graviton legs, wiggle lines represent photons, charged particles of spin 0, 1/2 and 1 in the loop are represented by X = φ, ψ, W respectively, and dotted lines put legs that they cut on-shell.

γ 1 γ 3 q X k k′ γ 1 γ 3 q X k k′
The phase shift is obtained by Fourier transforming the 4-point amplitude in the eikonal limit Eq. (4.2.6) to impact parameter space δ(s, b) = 1 4s

d 2 q (2π) 2 e i b• q M eik (t = -q 2 ) , (4.2.7) 
where b ≡ | b|. By means of the complex contour in t-plane, see Fig. 4.3, the eigenvalues of this matrix are given

δ ± (s, b) = s 4m 2 Pl - 1 2π F 1 (0) log b b IR ∓ 8 b 2 F 3 (0) + i (2π) 2 +∞ 4m 2 dt t Disc F 1 (t)K 0 b √ t ± 4 t Disc F 3 (t)K 2 b √ t , (4.2.8) 
which makes manifest that the phase shift δ(s, b) depends just on the t → 0 graviton pole and the t-channel discontinuities of the self-energy form factors, i.e. on-shell data, that can be extracted using the Cutkowski rules, see Fig.

These discontinuities have been calculated for various particles running in the loop7 and then integrated in a dispersion relation to reconstruct the full form factors in [START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF]. Table 4.1 reports the asymptotic expressions, see [START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF] for more details.

Before discussing the whole 1-loop calculation, we focus on the tree-level contribution, which corresponds to F 1 (t) = 1 and F 2 (t) = F 3 (t) = 0. Therefore, the tree-level phase shift is

δ 0 (s, b) = - s 8πm 2 Pl log b/b IR . (4.2.9) 
Since the IR cutoff b IR is the largest length scale that we consider, Eq. (4.2.9) always leads to a positive contribution to the phase shift.8 At 1-loop, there are additional contributions coming from F i (0) and the discontinuity, see (4.2.8) and Tab. 4.1.

F 1 (t) -1 F 2 (t) F 3 (t) X m 2 |t| m 2 |t| m 2 |t| m 2 |t| m 2 |t| m 2 |t| φ αt 180πm 2 α 72π 19 -6 log -t m 2 α(13-10ξ φ ) 720πm 2 - α(5-4ξ φ ) 24πt -α 720πm 2 α 24πt ψ 11αt 360πm 2 α π 35 36 -1 3 log -t m 2 α 180πm 2 -α 12πt α 360πm 2 -α 12πt W 7αt 20πm 2 -α 4π 125 6 -7 log -t m 2 + 2 log 2 -t m 2 -7α 240πm 2 3α 8πt -α 240πm 2 α 8πt
Table 4.1: Large and small m limits of the form factors Fi. The discontinuity in these limits are easy to extract, e.g. Disct1/t = -2iπ.

The Large b Limit

In the scenario b 1/m, we can use the asymptotic behavior of the Bessel function

K 0 (b √ t) ∼ e -b √ t / √ bt 1/2 in (4.2.8
) which shows that the contribution from the integral over the discontinuity is exponentially suppressed. Therefore, the only contribution comes from the graviton pole, and the phase shift is given by

δ ± (s, b 1/m) = δ 0 (s, b) ± sF 3 (0) πm 2 Pl b 2 , (4.2.10) 
where F 3 (0) is summarized in Tab. 4.1 for different spins of the particle in the loop. This is the result one would obtain by working in the EFT where the massive states have been integrated out, and it reproduces the correction from the effective term F µν F αβ R µναβ computed first in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF].

The Small b Limit for Scalar-and Fermion-loops

For b 1/m, one finds δ ± (s, b 1/m) = δ 0 (s, b) - sβ X 8πgm 2 Pl log 2 bm/ȳ ± α sκ X 8π 2 m 2 Pl , (4.2.11) 
where κ φ = -1/12 for a scalar in the loop and κ ψ = 1/6 for a fermion. The β X is the QED beta-function associated to the particle-type X running in the loop.

In particular, for small enough impact parameter, the log correction proportional to the β-function will dominate over the constant contribution of F 3 (t), as shown numerically in Fig. 4.5. Notice, that the change in behavior of the F 3 (t) contribution at small impact parameter, from 1/(mb) 2 to a constant in b, is crucial in the causality discussion. If that was not the case, we would observe causality violation. This is avoided thanks to the onset of new physics associated to the particles of mass m before such a violation would become resolvable. We discuss the consequences in Sec. 4.2.3.

The Small b Limit for Vector-loops

The small b region for vector-loops is in principle more delicate because of IR Sudakov double-logs that enters already at one-loop order. We refer the reader to [START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF] a detailed discussion on how to handle these soft and collinear IR divergences. It is shown in particular that these divergences exponentiate and can be resummed with an RG-inspired the EFT result which, if allowed to continue to small bm, would eventually give a negative total phase shift and thus time delay. See discussion in Sec. 4.2.3. Left: We plot the scalar case (as discussed, the spinorial case has similar features, so it is not shown here) that have two contributions coming from the form factors F3(t), relevant at large impact parameters Eq. (4.2.10), and F1(t), which dominates as small bm Eq. (4.2.11). The full numerical solutions is shown as solid lines, and their limiting behaviors as dashed lines. We have taken ȳ = 0.27 to make the approximation close to the exact answer on the scales shown in the plot. Right: Quantum corrections to the phase shift in the vector case with IR Sudakov double-logs resummation as a function of bm, choosing for simplicity bIR = 1/m. The dots reproduce the full numerical solution for α = 1/10 (blue), α = 1/100 (red), and α = 1/200 (black). The solid lines for Exp(-π/2α) < bm < 1 are the analytic approximation without the Sudakov resummation that if (uncorrectly) extrapolated would turn to negative values as displayed by the thin dotted lines.

After resumming the IR Sudakov double-logs we find instead a positive constant phase shift in the region bm < Exp(-π/2α), and no causality violation.

approach. The resulting phase shift, at exponentially small impact parameter with respect to the W 's Compton wavelength 1/m, i.e. where the Sudakov resummation is important, is given by

δ(s, bm e - √ π/2α ) s 4m 2 Pl 1 √ 32α + 1 4π log m 2 b 2 IR . (4.2.12) 
This matches the numerics in Fig. 4.5 pretty well at small α, and shows that neither δ nor the time delay turn negative.

Asymptotic Causality

By asymptotic causality we mean the following refinement of the Gao-Wald condition [START_REF] Gao | Theorems on Gravitational Time Delay and Related Issues[END_REF] used in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF]: the time delay experienced by any particle scattering against a coherent source of spectators, or in the eikonal transplankian regime, should be positive

δT * ≥ 0 (4.2.13)
for all b < b IR , whenever resolvable and calculable within the range of validity of the theory. 9 In a forthcoming publication [START_REF] Bellazzini | To appear[END_REF] we will actually derive positivity of time delay 9 In fact, since δ(b, s) in D = 4 is defined only up to an overal shift δ(b, s) → δ(b, s) + s 8πm 2

Pl log λ (associated to rescaling of the IR cutoff), which results in a b-independent shift of the time delay δT * → δT * + const, a slight refinement is demanding that δT * should be bounded below as b is decreased, or simply lim b→0 δT * > -∞, a condition insensitive to the rescaling of the IR cutoff. Moreover, in Appendix B we show that this IR divergence is regulated by the distance between the detectors recording the scattering data: to probe an EFT with cutoff Λ is enough to take the IR regulator larger than a few times 1/Λ.

(4.2.13) from analyticity and unitarity. At the first post-Minkowskian order of the calculation we are performing, the δT * ∝ s so that it differs from δ just by a positive proportionality factor, see (4.2.4) and (4.2.11). Positivity of δT * is equivalent to δ > 0 to this order.

The violation of asymptotic causality would imply that signals sent via massless particles through the bulk of a spacetime perturbed by some spectator field (which could be the graviton itself), would be recorded by a detector at future null infinity at earlier times than if sent instead through an unperturbed empty Minkowski spacetime, provided the impact parameter is chosen small enough. Notice that any violation of causality would be associated to small regions of spacetime, far from the IR cutoff, b b IR , and it is relative to the flat Minkowski causal structure that is obtained by removing the massless spectator field, e.g. by sending the center of mass energy to zero.

Turning the asymptotic causality condition around, forbidding its violation can be used to determine the validity range of the theory, that is putting bounds on the cutoff and/or couplings. For instance, [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] put bounds on the cutoff associated to certain EFTs under the assumption that the higher-dimensional operators are generated at tree level so that the resolution of apparent causality violation should also be resolved at tree level, as it happens in string theory that provides infinitely many higher spin states exchanged at tree-level [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF][START_REF] D'appollonio | Regge Behavior Saves String Theory from Causality Violations[END_REF] to fix the issue with causality. Tree-level causality bounds are obtained along similar reasoning in e.g. [START_REF] Hinterbichler | Massive Spin-2 Scattering and Asymptotic Superluminality[END_REF][START_REF] Bonifacio | Massive and Massless Spin-2 Scattering and Asymptotic Superluminality[END_REF][START_REF] Afkhami-Jeddi | A Bound on Massive Higher Spin Particles[END_REF][START_REF] Kaplan | A Species or Weak-Gravity Bound for Large N Gauge Theories Coupled to Gravity[END_REF] and several other works. Here we are instead interested in probing the notion of asymptotic causality quantum mechanically, at loop-level.

The results of the previous sections show that this asymptotic notion of causality is in fact respected at one loop in gauge theories that are perturbatively renormalizable (before turning on gravity) at all scales. The reason lies in the change of behavior of the contribution to the phase shift of F 3 (t), which transitions from the unbounded 1/b 2 in the EFT regime, where charged particles are integrated out, to a constant (see Fig. 4.5 and Eq. (4.2.11)), without ever becoming of the size of the leading effect. Moreover, while the F 1 (t) contribution to the time delay δT

(F 1 ) * = -[4Eβ/(8πgm 2 
Pl )] log 2 bm from Eq. (4.2.11) and Eq. (4.2.4) does become indefinitely more negative as the impact parameter is decreased, the condition δT * ≥ 0 in fact remains always satisfied as long as the impact parameter b is taken larger than the strong coupling scale b L of the Landau pole (if any) 10 b > b L = 1 m e -g/β for g/β > 0 . (4.2.14)

Here β > 0 is the β-function of the gauge coupling g of any spin-0 and spin-1/2 charged particles running in the loop.

As for the quantum corrections generated by spin-1 particles, they satisfy automatically the causality condition δT * ≥ 0 for any b < b IR since the Sudakov IR double-logs suppress exponentially the form factor at the same scale where quantum corrections would otherwise start dominating over the minimal gravitational contribution. This is 10 Notice that we have also taken mbIR 1 while respecting bLbIRm 2 1, that is bIR < 1/m Exp(g/β) which is exponentially larger than 1/m, hence a valid choice for the IR cutoff, for perturbative couplings. Larger values of bIR are certainly valid, but there is no choice for which a violation of δT * > 0 can be found in the domain bL < b < bIR. Alternatively, one can remove any bIR-dependence by looking for the scale b * where gravity would become repulsive, that is where the scattering angle would change sign and the photon would be deflected away, as proxy for the scale of causality violation. This corresponds to demand gravity always being attractive. The b * has the same parametric dependence on m and g than bL in Eq. (4.2.14).

nicely consistent with the fact that the non-abelian gauge theories associated to charged spin-1 particles have negative β-functions and are therefore asymptotically free in the UV, needing a priori no UV completion before meeting the Planck length 1/m Pl .

In other words, no asymptotic-causality violation is therefore detectable, even at the quantum level, at any length scale within the range of validity of our perturbative calculations. Moreover, because of the connection we have established between the sign of the β-function and the sign of the leading quantum corrections to the phase shift δ(s, b) at small impact parameter, demanding that δT * ≥ 0 correctly infers the existence of new dynamics at or before the scale of the Landau pole11 Λ L = 1/b L , if any. That is, in scalar and spinorial QED either new physics in the form of strong coupling or weakly coupled particles must appear at b > max{b L , 1/m Pl }, while for QED embedded in a non-abelian gauge theory with negative β-function the only consistency threshold associated to asymptotic causality is set by the Planck length.

Our finding shows that asymptotic causality is therefore able to diagnose the presence of a cutoff not only when the theory has strongly irrelevant operators like in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF], but even when the cutoff is exponentially large because it is associated with marginally-irrelevant deformations such as the gauge coupling in QED. There is however no sign of stringy UV completion contrary to the claim of [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] because a loop of electron-positron pairs is enough to carry large angular momentum in the loop.

Bulk Causality

Let's turn now to another notion of causality which stems from the idea to race against gravitons through a spacetime perturbed by some spectator field. The bulk (or local) causality condition is the statement that any massless particle would lose the race to the graviton by an amount that is resolvable and calculable within the range of validity of the theory. That is, sending a massless particle and a graviton with the same energy simultaneously through the bulk of a weakly perturbed spacetime, a detector at future null infinity would always record the graviton first and then the other particle.

Sending photons for definiteness, bulk causality implies

δT (γ) * -δT (0) * ≥ 0 , (4.2.15) 
where δT (0) * = 2∂δ 0 (s, b)/∂E is the time delay experienced by gravitons, which is the classic Shapiro time delay. At the classical level the difference in the time delay vanishes, i.e. massless particles travel along the same geodesic, classically, for large impact parameter. The difference in Eq. (4.2.15) removes the universal term which is also present in the photon time delay as a manifestation of the classical equivalence principle. Therefore, bulk causality Eq. (4.2.15) is genuinely sensitive to quantum corrections generated by charged states running in the loop.

As a matter of fact, the quantum corrections we calculated in the previous sections violate the bulk-causality condition quantum mechanically, within the range of validity of perturbation theory. Indeed, at small impact parameter for loops of spin-1/2 (X = ψ) and spin-0 (X = φ) particles, 12 b 1/m, the difference in time delays is

δT (γ) * -δT (0) * X - Eβ X 2πgm 2 Pl log 2 bm/ȳ (4.2.16)
and it is negative even for impact parameters much larger than the Landau pole lengthscale b L , see Fig. 4.5. Note that these differences are independent of the IR cut-off b IR . All in all, bulk causality is violated at one loop: 13 although light that scatters against spectator particles is always slower than free gravitons in Minkowski spacetime (asymptotic causality), it can win the race against gravitons that also bounce off the same spectators. We interpret this result as evidence against bulk causality, whereas asymptotic causality is respected at one loop.

We emphasize that this conclusion is similar in spirit to the Drummond-Hathrell "paradox" [START_REF] Drummond | Qed Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons[END_REF] where one is working directly with the velocity of the perturbations in certain backgrounds and charged states have been integrated out. In that case, however, the alleged violation of causality is not resolvable within the validity range of the EFT, see e.g. [START_REF] Goon | Superluminality, Black Holes and Eft[END_REF][START_REF] De Rham | Causality in Curved Spacetimes: the Speed of Light and Gravity[END_REF], whereas in our case bulk causality fails within the validity of the perturbative QED theory with dynamical gravity (as opposed to fixed background), where the propagating charged particles remain in the spectrum and where the effect is resolvable as soon as s m 2 Pl 4π/α, that is at transplanckian energy (or scattering against several spectators).

It is presently unclear what the physical consequences of bulk causality violation would be. It appears that no fundamental principle is violated by having two particle species that travel across a shockwave slower than in Minkowski space, despite one species being relatively faster than the other one. Moreover, different species -photons vs. gravitons-have different interactions and the effective metrics are in general different except for b → ∞, in particular b 1/m X , where one indeed recovers the equivalence principle as an emergent low-energy effect. On a practical side, however, and taking it at face value, our finding teaches us that bulk causality should not be used to constrain EFT coefficients, as is instead sometime advocated in the literature, see e.g. [START_REF] De Rham | Causality in Curved Spacetimes: the Speed of Light and Gravity[END_REF].

Our interpretation for the failure of bulk causality at loop level is that for b < 1/m we are effectively working with a non-local effective action for the photons due to charged states that can go on-shell, i.e. the photon can't be localized better than 1/m (e.g. without producing particle-antiparticle pairs). Therefore, the idea of non-propagating outside a local light-cone does not seem a very useful one for b < 1/m, and it is in fact misleading. It makes sense only classically. What is actually vanishing outside the lightcone is instead the causal commutator. And we have shown that analyticity of amplitudes follows from that (see first chapter of this manuscript), which in turn implies positivity of the asymptotic-time delay [START_REF] Bellazzini | To appear[END_REF], as opposed to the bulk one. Recent gravitational positivity bounds derived in [START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF] are also based on asymptotic causality at all scales and not on bulk causality. 12 For spin-1 particles running in the loop (X = W ), the leading contribution for b 2 m 2 Exp(-2π/α) is given by Eq. (4.2.12) and therefore δT

(γ) * -δT (0) * W E m 2 Pl 1 2π log(bm) + 1 √ 32α
, which is also negative in this regime of small impact parameter. 13 A word of caution: one could try to restore it by adding more degrees of freedom that, however, should be relatively light, with a mass M that is at best 1-loop factor away from the charged states we considered, in order not to decouple again their contribution to δ at the rate 1/b 2 M 2 .

Weak Gravity Conjecture and Black Holes

Let's return in this section to positivity bounds. We want now to highlight an intriguing connection [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF] between positivity bounds in the Einstein-Maxwell EFT and a version of the weak gravity conjecture [START_REF] Arkani-Hamed | The String Landscape, Black Holes and Gravity as the Weakest Force[END_REF]. Let's first set the stage.

The Einstein-Maxwell theory, i.e. the low-energy EFT of an abelian U (1) gauge theory coupled to gravity, contains higher-dimensional operators that can change the black hole's extremality condition (the minimal mass for which a charged black hole can exist, as opposed to a naked singularity). The Einstein-Maxwell EFT can be parametrized as

S = d 4 x |ĝ| m 2 Pl 2 R - 1 4 F M N FMN (4.3.1) + α 1 4m 4 Pl F M N FMN 2 + α 2 4m 4 Pl ˆ F M N FMN 2 + α 3 2m 2 Pl FAB FCD Ŵ ABCD ,
where Ŵ ABCD is the Weyl tensor and

ˆ F M N = M N AB F AB /2.
The dependence on the UV scale Λ U V that generates the α i is absorbed into their definitions. These are the most general (parity preserving) four-derivative operators, up to field redefinitions [START_REF] Cheung | Infrared Consistency and the Weak Gravity Conjecture[END_REF][START_REF] Cheung | Proof of the Weak Gravity Conjecture from Black Hole Entropy[END_REF]. The leading higher-dimensional corrections α i in the 4D Einstein-Maxwell EFT (4.3.1) modify the black hole extremality condition to [START_REF] Kats | Higher-Order Corrections to Mass-Charge Relation of Extremal Black Holes[END_REF] 

√ 2|Q| M/m Pl extr. = 1 + 4 5 (4π) 2 m 2 Pl M 2 (2α 1 -α 3 ) (4.3.2)
where M is the black hole mass and Q its charge (including the gauge coupling), and we work around the unperturbed extremality condition M Qm Pl √ 2. If positivity bounds could imply that (2α 1 -α 3 ) > 0 then the right-hand side of (4.3.2) would be strictly larger than 1. In turn that would imply the mild form of the WGC [START_REF] Arkani-Hamed | The String Landscape, Black Holes and Gravity as the Weakest Force[END_REF], which states that a consistent theory of quantum gravity must contain massive charged states in the spectrum with |q| > m/( √ 2m Pl ): the extremal black holes of (4.3.2) would be such states. Indeed, the paradox of stable extremal black holes [START_REF] Arkani-Hamed | The String Landscape, Black Holes and Gravity as the Weakest Force[END_REF] would be resolved: since extremal black holes would no longer be kinematically forbidden to decay into smaller black holes. Indeed, an extremal black hole of mass M and charge Q cannot decay into states that all have larger mass-to-charge ratio, since the spectrum of masses and charges (m i , q i ) is constrained by M > i m i and Q = i q i , whereas i m i = i |q i |m i /|q i | > M which would be a contradiction. This argument would be evaded precisely by decay products that contain one smaller extremal black hole, which would have smaller massto-charge ratio (4.3.2). See Fig. 4.6. Notice, moreover, that the same EFT coefficients' combination , 2α 1α 3 , enters the Wald entropy shift [START_REF] Cheung | Proof of the Weak Gravity Conjecture from Black Hole Entropy[END_REF][START_REF] Hamada | Weak Gravity Conjecture from Unitarity and Causality[END_REF], so that the black hole WGC is as well linked to an increased black-hole entropy, see also [START_REF] Jones | The Black Hole Weak Gravity Conjecture with Multiple Charges[END_REF][START_REF] Goon | Universal Relation Between Corrections to Entropy and Extremality[END_REF].

The relevant question we want to address is therefore the following: do positivity bounds imply 2α 1α 3 > 0? If so the WGC conjecture would be derived by causality and unitarity.

From 4D to 3D and back

Trying to derive positivity bounds near the forward limit we run immediately in the problem alluded at the beginning of this chapter: the graviton t-channel pole swamps the amplitude and the arc a 0 by a large positive amount. Explicitly, taking the leading terms in the t → 0 limit in γγ-scattering we have

M ↓↓ 4D = - s 2 m 2 Pl t - s m 2 Pl + 2s 2 (2α 1 -α 3 ) m 4 Pl , (4.3.3) 
M ↑↑ 4D = - s 2 m 2 Pl t - s m 2 Pl + 2s 2 (2α 1 + α 3 ) m 4 Pl , (4.3.4) 
M ↑↓ 4D = - s 2 m 2 Pl t - s m 2 Pl + 4s 2 α 2 m 4 Pl , (4.3.5) 
where the up and down arrows represent the two choices of real linear polarizations for the photons 14 The amplitude (4.3.3) shows that the combination 2α 1α 3 needed in the charge-to-mass ration (4.3.2) does indeed show up as an s 2 -coefficient in the crossing symmetric amplitude near the forward limit, but it's unfortunately subleading to the contribution -s 2 /tm 2 Pl from the graviton pole. Ref. [START_REF] Henriksson | Bounding Violations of the Weak Gravity Conjecture[END_REF] has attacked this problem directly working away from the t = 0 region and found, unsurprisingly, that the resulting bounds are too weak. Clearly, one needs a new input, a new idea.

What we have proposed in [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF] is based on the following reasoning. The t-channel pole originates from the graviton being a propagating degree of freedom, therefore it should not be a problem for positivity if we were deforming the theory into some rigid limit of non-dynamical gravity, while still keeping finite the 1/m 2 Pl effects. We need to look for a smooth deformation of the theory where the graviton is not dynamical while conserving the good UV properties: we need an IR modification of the theory that regulates the IR graviton pole, without changing the short distance physics. 15 . The main idea of [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF] is thus to look at the same theory but in the compactified phase, down to D = 3 spacetime dimensions, 16 where there is no propagating graviton (see Appendix C.2 for details).

The 4D graviton has not fully disappeared though, it has rather left three propagating avatars (on top of a non-propagating auxiliary field g µν which gives rise to contact terms):

ĝMN → {σ , V µ , KK-modes} , (4.3.6) 
a massless dilaton σ, a massless (abelian) graviphoton V µ , and an infinite tower of Kaluza-Klein (KK) modes with masses m 2 n ∼ n 2 /L 2 , where L is the radius of the compactified dimension. In the limit L → ∞, that we take at the end after isolating the diverging terms, one recovers the 4D dynamics we are interested in.

There is another technical advantage of compactifying to D = 3, namely that asymptotic states all behave as massless scalars at high energies because the massless 3D littlegroup is trivial. This explains why the massless graviphoton is dual to a scalar field, and also explains why a massive KK-graviton decomposes into a massless scalar, a massless vector (dual to a massless scalar again) and a non-dynamical 2-tensor at high energy.

The 3D Amplitudes

We compactify the z direction as described in the previous section

dŝ 2 4 [ĝ M N ] = e σ ds 2 3 [g µν ] + e -σ (dz + V µ dx µ ) 2 , (4.3.7) ÂM dx M = A µ dx µ + Φ dz , (4.3.8) 
where all of the 3D fields are functions only of (t, x, y). Focusing on terms which contribute to the s 2 part of the amplitude for ΦΦ → ΦΦ, AA → AA, and ΦA → ΦA only, the terms in the action that we must retain are17 

S = L d 3 x √ -g m 2 Pl 2 R - 1 2 (∂σ) 2 - 1 4 V 2 - 1 4 (1 -σ)F 2 - 1 2 (1 + σ)(∂Φ) 2 - 1 2 F µν V µν Φ (4.3.9) + α 1 4m 4 Pl F 2 + 2(∂Φ) 2 2 + α 2 m 4 Pl ( µνρ F µν ∂ ρ Φ) 2 + α 3 m 4 Pl F ρµ F ρν F µσ F νσ - 1 2 F 4 -(∂Φ) 4 + 1 2 F 2 (∂Φ) 2 - α 3 m 2 Pl (F ρµ F ρ ν -∂ µ Φ∂ ν Φ) ∇ µ ∇ ν σ - α 3 m 2 Pl F µν ∂ ρ Φ (∇ ρ V µν + g µρ ∇ α V να ) ,
where F 2 = F µν F µν , and the same for V . Therefore, The associated forward elastic scattering amplitudes at tree-level are given by

M(ΦΦ → ΦΦ)(s, t = 0) = 2s 2 m 4 Pl L (2α 1 -α 3 ) > 0 , (4.3.10) M(AA → AA)(s, t = 0) = 2s 2 m 4 Pl L (2α 1 + α 3 ) > 0 , (4.3.11) M(ΦA → ΦA)(s, t = 0) = 4s 2 m 4 Pl L α 2 > 0 . (4.3.12)
We have put a tilde-symbol on top of the M to distinguish this amplitudes' contribution from the KK-loop contribution, to be discussed in the next section.

3D positivity bounds

Almost everything is in place now to derive the desired positivity bounds on the Einstein-Hilbert EFT coefficients. For that, we need to assume the analog of the Froissart bound, namely

lim s→∞ |M z 1 z 2 (s, t = 0)/s 2 | → 0 , z i = Φ , A , (4.3.13) 
where with a slight abuse of notation we are using z i to label now the scattered 3D states. This is the crucial assumption, and admittedly somewhat suspicious since in D ≥ 4 actually fails. For a gapped system, the Froissart bound becomes an actual theorem [START_REF] Martin | Extension of the Axiomatic Analyticity Domain of Scattering Amplitudes by Unitarity. 1[END_REF][START_REF] Froissart | Asymptotic Behavior and Subtractions in the Mandelstam Representation[END_REF], providing the asymptotic bound |M(s → ∞)| < const • s log D-2 s for D ≥ 3 [START_REF] Chaichian | Higher Dimensional Space-Time and Unitarity Bound on the Scattering Amplitude[END_REF][START_REF] Chaichian | Generalization of the Froissart-Martin bounds to scattering in a space-time of general dimension[END_REF]. In our case is however a true assumption which may or may not be correct. 18Under this assumptions (4.3.13) we obtain a (provisional) dispersion relation for our IR-regulated 4D gravitational theory

a z 1 z 2 0 = 2 π ∞ 0 ds s 3 ImM z 1 z 2 (s, t = 0) > 0 , (4.3.14) 
where the low-energy scattering amplitude for the 3D states z i is now regular in the forward elastic limit

M z 1 z 2 (s, t → 0) = a z 1 z 2 0 s 2 + . . . . (4.3.15) 
The a z 1 z 2 0 is now given by the 0-mode tree-level contribution in (4.3.10) and the loop of KK modes.

Each KK mode gives

a z 1 z 2 KK ∝ 1 L 2 m 4 Pl m KK ∝ 1 Lm 4 Pl |n| , (4.3.16) 
where we used that the nth KK-mode mass is m KK ∝ |n|π/L. While each such contribution is subleading with respect to the terms we want to bound in the following sections, their sum is actually logarithmically divergent. In addition, zero-mode loops generate s 3/2 -terms in the amplitude, which dominate over the s 2 -terms at low energy, seemingly swamping again the information about a z 1 z 2 0 . In fact, these problems can be easily solved because the right-hand side of the dispersion relation (4.3.14) reproduces the same growth, so that these otherwise large terms cancel out between the two sides of (4.3.14). Indeed, since the integrand itself in (4.3.14) is positive by the optical theorem, schematically ImM z 1 z 2 (s, t = 0) = x |M z 1 z 2 →x | 2 × (phase space), we can move to the left-hand side any contribution from intermediate states x in |M z 1 z 2 →x | 2 and still get a positivity bound due to the remaining set of intermediate states. Specifically, we can move to the left-hand side the contributions from the intermediate IR states, such as the KK modes or anything that is calculable within the EFT (e.g. IR loops, that is, the light multi-particle intermediate states). The zero-and KK-mode contributions get subtracted and one is left to calculate just the contact terms suppressed by the cutoff Λ U V , that is, those that are generated by integrating out genuine UV states. This is basically the statement that we can focus on Arcs at s Λ 2 U V , and discard the trivial running effect from Λ 2 U V to s ∼ 0 which is entirely due to IR physics loops, and that just adds some more positive contribution to the already positive arc at the matching scale.

In order to illustrate this general point with a simple tree-level example, let us consider ΦΦ → ΦΦ scattering with the exchange of a scalar state S coupled to (∂Φ) 2 ,

M ΦΦ S (s, t) = - 2c m 2 Pl L s 2 s -m 2 S + i + crossing , (4.3.17) 
where c is a fixed O(1) number. This contributes to a z 1 z 2 in (4.3.15) by an amount a ΦΦ S = 4c/(m 2 Pl Lm 2 S ). The imaginary part (associated to the production of S) is

ImM ΦΦ S (s, t = 0) = 2πc m 2 Pl L m 4 S δ(s -m 2 S ) + . . . , (4.3.18) 
precisely such that

a ΦΦ S - 2 π ∞ 0 ds s 3 ImM ΦΦ S (s, t = 0) = 0 , (4.3.19) 
as expected on general grounds.

The KK-mode contributions to a z 1 z 2 0 in (4. 3.16) actually arise at one loop, but the reasoning based on the optical theorem is completely general and works as in the previous example. This can be understood by discretizing the KK branch cut in a series of poles. Likewise for the contribution of the zero modes. 19 . The concrete details of how these contributions are subtracted can be found in Appendix C of [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF]. Here we only note that the KK modes, which grow the "extra" dimension as seen from a low-energy 3D observer, reproduce nicely the 4D universal gravitational contribution to the RG running of a z 1 z 2 0 . This contribution is positive and as noted above would dominate the left-hand side of (4.3.14). Since we can subtract it, which amounts to setting the renormalization scale at which a z 1 z 2 0 is evaluated at the cutoff where UV and IR amplitudes are matched, our final dispersion relation properly captures the UV physics we are interested in.

All in all, our provisional dispersion relation (4.3.14) is rearranged into a much more informative expression where M is the amplitude with the aforementioned gravitational zero-and KK-mode loop contributions subtracted. The left-hand side is therefore obtained by taking into account only the s 2 -contributions to the elastic z 1 z 2 -scattering due to the tree-level interactions with massless particles such as the graviphoton and the dilaton, as well as the UV generated contact terms, especially those from the auxiliary field g µν . 20 The two sides (factor L -1 ) of the subtracted dispersion relation (4.3.20), are not only finite for L → ∞, but they are also positive because of the optical theorem, while convergence is granted by the Froissart-like assumption (4.3.13).

a z 1 z 2 0 -a z 1 z 2 KK,IR = 2 π ∞ 0 ds s 3 Im M z 1 z 2 (s, t = 0) > 0 , ( 4 
We note that removing the IR modes from the positivity bound is always possible but is useful in practice only for UV completions that are not strongly coupled at Λ U V , because it would become murky to assign what is IR (KK) and what is UV physics at around the scale Λ U V . The subtracted dispersion relation is instead sharp and useful for weakly coupled UV completions.

One general lesson is that gravity still has a finite effect on the positivity bounds even after removing the Coulomb singularity, due to the dilaton, the graviphoton, and the auxiliary 2-tensor. Therefore, the associated positivity bounds from the amplitudes (4.3.10) under the assumption (4.3.13) are

2α 1 -α 3 > 0 , (4.3.21) 2α 1 + α 3 > 0 , (4.3.22) α 2 > 0 , (4.3.23) or, equivalently, α 1 > |α 3 |/2, α 2 > 0.
Therefore, if the Froissart-like assumption (4.3.13) holds true, then the black hole version of the WGC follows from the 3D positivity bounds.
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Running Coefficients and Asymptotic WGC

In this section we discuss how the positivity constraints are affected when relaxing the assumption of the Froissart-like asymptotic bound (4.3.13) on which we have no control.

In particular we show that positivity still follows, but only asymptotically. It corresponds to proving the WGC for asymptotically large extremal black holes only. Other -weaker-assumptions than (4.3.13) are discussed in detail in Appendix B of [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF].

Assuming nothing about the asymptotic behavior of the forward elastic amplitude, we can still compare the integrals over (double) arcs at finite radius in the complex s-plane at t = 0, as depicted in Fig. 4.8, namely

a 0 (s 0 ) -a 0 (s) = 2 π s s 0 ds s 3 ImM z 1 z 2 (s, t = 0) > 0 (4.3.24)
for s > s 0 . This means that the Wilson coefficients run at s 0 are larger than those at s, i.e. the β-function for those coefficients selected by the forward amplitudes are negative, growing towards the IR. Here we define the Wilson coefficients by taking into account the leading logarithmic correction to the IR amplitude,

M z 1 z 2 (s, t = 0) = a z 1 z 2 0 (s)s 2 + β a s 2 1 2 (log(s/s) + log(-s/s)) . (4.3.25)
Equivalently, β a = da z 1 z 2 (s)/d log s from the RG equation dM z 1 z 2 /d log s = 0. In the Einstein-Maxwell EFT, this corresponds to

β 2α 1 ±α 3 < 0 , β α 2 < 0 . (4.3.26)
This is in perfect agreement with the results of Section 1.1.3 as one can check after performing a field redefinition to remove the Weyl 2 and Ricci 2 operators considered there, and generating photon contact interactions.

Therefore, from negativity of the β-functions it follows asymptotic positivity of the Wilson coefficients (2α 1 ± α 3 ) and α 2 evaluated at s 0 → 0, that is asymptotically. This corresponds to s 0 /Λ 2 U V taken sufficiently small, corresponding to evaluating the extremality condition for very large black holes, r s 1/Λ U V . In turn, this proves the WGC for such (exponentially) large black holes, as a direct consequence of unitarity and causality only, with no reference to a Froissart-like bound.

Massive Gravity

Let's consider in this section one last application of positivity, in the context now of modified-gravity theories.

We focus on the IR modifcation of gravity known as Λ 3 or dRGT-massive gravity in flat spacetime, originally envisioned in [START_REF] Arkani-Hamed | Effective Field Theory for Massive Gravitons and Gravity in Theory Space[END_REF] and brought to explicit realization in [START_REF] De Rham | Resummation of Massive Gravity[END_REF][START_REF] De Rham | Generalization of the Fierz-Pauli Action[END_REF]. 21 This deformation of gravity is in fact also an UV deformation, in the sense that it introduces three new longitudinal degrees of freedom (one vector and one scalar) that have strong-coupling scale at

Λ 3 = m 2 m Pl 1/3 m Pl (4.4.1)
where m is the graviton mass. 22 The strong coupling scale is the energy where the 2-to-2 amplitude of the longitudinal modes becomes large, M(E ∼ Λ 3 ) ∼ (4π) 2 . The Λ 3 should not be mistaken for the cutoff Λ of the theory, which is the mass scale associated to the states of the UV completion. In fact Λ 3 ≥ Λ, with the equality reached only for a strongly coupled UV completions, whereas a weakly coupled UV completion has Λ Λ 3 . 23 The high energy behavior of the graviton-graviton amplitude for the scalar polarizations (labelled by S) in massive gravity is parametrically and this can be made manifest by realising that for m Pl → ∞ and m → 0 (keeping Λ 3 fixed) the scalar-mode amplitude is described by an effective Galileon theory. This rings a bell: we have already studied -and ruled out-Galileon theories in Section 2.3.3 unless the stu-term in the amplitude is smaller or at best as large as the s 2 -term. As we have seen there, the failure of this condition sets an upper bound on the cutoff: we therefore expect that parametrically the theory breaks down when (Λ/Λ 3 ) 6 ∼ Λ 4 m 2 /Λ 6 3 , that is Λ 2 ∼ m 2 . (4.4.3)

M SSSS (m E < Λ 3 ) ∼ stu Λ 6 
21 For a nice on-shell perspective on dRGT massive gravity see also [START_REF] Falkowski | Matter Coupling in Massive Gravity[END_REF]. 22 Incidentally we recall that the graviton mass is bounded above experimentally m 10 -32 eV. It's not hard to guess this bound by recalling that the Hubble scale is 10 -33 eV. 23 For a particle-physics analogy, the cutoff of longitudinally polarized W 's is the Higgs boson mass m h = 125 GeV, with the Higgs that enters to unitarize the WLWL amplitude well before it becomes large. The EW strong coupling scale is Λstrong = 4πv m h , would be the scale of technicolor or Higgsless theories.

That would mean that there is no EFT of massive gravity consistent with causality and positivity where the graviton would be at the bottom of the spectrum parametrically separated by heavier states at Λ.

One can try ways out to this basic conclusion. For examples, the coefficient of stu in M SSSS depends on the two free parameters of massive gravity known as c 3 and d 5 that enters in the potential that defines dRGT, see (4.4.11) and (4.4.12) for their precise definition.

Specifically, by working out the detail amplitude in dRGT we have

M SSSS = - stu 6Λ 6 
3

(1 -4c 3 (1 -9c 3 ) + 64d 5 ) + . . . (4.4.4) so that tuning the parameters to 1 -4c 3 (1 -9c 3 ) + 64d 5 = 0 one would make this amplitude seemingly consistent with positivity.

The problem with this is that there are several amplitudes that grow as stu. Indeed, there are several longitudinal amplitudes that one can consider, SSSS, SV SV , SV SV , V V V V . . . , and each one comes with a different stu coefficient, whereas the parameters to play with are just two, c 3 and d 5 . So again the expectation is that indeed Λ ∼ m.

The diehards of massive gravity (e.g. Dr. Diehard of [START_REF] Coleman | Sidney Coleman's Dirac Lecture[END_REF] who finally understood QM and moved to EFTs) could complain that this structural argument is a bit too quick because after all the detailed argument of positivity beyond the forward limit, of the type presented in Section 2.3.3 for scalars, have not been fully worked out for vector-scalar and vector-vector scattering, let alone for the full massive spin-2 case beyond the decoupling limit.

While the explicit extension to the fully general case is currently under investigation [START_REF] Bellazzini | work in progress[END_REF], we can still present the fully worked out forward-only positivity bounds of [START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF], which are enough to exclude massive gravity theory in flat space with a cutoff higher than 24Λ 8 m 6 m 2 Pl (4.4.5)

as we show below. That this, even with forward-positivity only, we can show that new dynamics must enter at length scales larger than which is about the Earth-Venus distance. Notice, moreover that Λ Λ 3 , so that the new dynamics at Λ is weakly coupled, with an effective coupling g * = (Λ/Λ 3 ) 3 1. The parametrics of this bound is easy to understand: the forward arc a 0 (0) of Section 2 is not only positive, but larger than a 0 (s = Λ 2 ) because of positivity of the integrand ∝ ImM > 0, see (2.1.19). Since the stu part of (4.4.2) vanishes in the forward limit, whereas the ImM(s, t = 0) ∼ sσ(s) does not 25 which in turn gives (4.4.5). This parametric structural argument was presented for the first time in [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF]. The sharp bound was derived in [START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF] and it is reproduced in the next subsection. See Fig. 4.9 for the summary plot.

Some physicists would consider the bound (4.4.6) already the end of massive gravity as a realistic phenomenological theory for our universe (to be contrasted with the expected beyond-forward positivity bound m ∼ Λ which would be its end in all universes). But massive gravity diehards could still invoke some screening mechanism near compact objects, where the experimental constraints are more stringent. We point out that such a screening can't be the Vainshtein's [START_REF] Vainshtein | To the Problem of Nonvanishing Gravitation Mass[END_REF][START_REF] Deffayet | Nonperturbative Continuity in Graviton Mass Versus Perturbative Discontinuity[END_REF] within the EFT. Indeed, while ∂∂π/Λ 3 3 1 is needed in the background of a compact object in order to enhance the kinetic term (∂π) 2 (∂∂π/Λ 3 3 ) to make the perturbations more weakly coupled (in the Galileon decoupling limit for simplicity), there is actually no more control on further derivatives acting on the same number of field insertions, (∂/Λ) n (∂∂π/Λ 3 3 ) (∂∂π/Λ 3 3 ) for rΛ 1 (4.4.8)

where r is the distance from the compact object. Once r < 1/Λ there is no control on the theory anymore. In fact, the kinetic terms could even be suppressed by those extra derivative terms, there is no way to tell in which direction it goes, and it's probably wrong still to organize the theory in an expansion in derivatives, that is local operators, once new states can be excited. The only way out would be having an explicit UV completion where one shows that the actual masses of the particles change (increase) in the background of the compact objects. 26 Then of course one can still look at the experimental constraints on a variety of backgrounds, e.g. binary systems rather than spherically symmetric configurations etc. . . Invoking instead a screening mechanism blindly, outside the EFT domain of validity -and to just avoid exclusion-does not seem a good practice in the author's humble opinion.

Besides, it's worth recalling that GR is valid in principle from the Planck length to the Hubble scale, and it has been confronted succesfully with experiments from the Hubble scale down to the micrometer. This should be contrasted with the implications of our positivity bounds for massive gravity seen as competing theory to GR. Either massive gravity displays new d.o.f. that should already be visible -without screeningas expected in an EFT setting, or the theory as it is presently formulated can't even compare with data below the Venus-Earth distance. Another logical possibility is that our assumptions of causality and positivity in QM do not apply to massive gravity, an extraordinary claim that would require extraordinary evidence.

But the good news is that much stronger bounds are yet to come, by working away from the forward limit. Just to give a glimpse on these bounds, we anticipate for example that the 3-point functions are inconsistent unless c 3 = 1/4, as it can be seen already in the eikonal regime. This is just one of the several conditions to be enforced, and this one alone projects the whole (c 3 , d 5 )-plane into a line. Adding the constraint for the scalar-only polarizations we mentioned above, 1 -4c 3 (1 -9c 3 ) + 64d 5 = 0, one reduces Figure 4.9: LEFT: contour lines for Λ in the (c3, d5) plane. Coloured regions are allowed depending on the value of Λ. The black solid line is the island found in [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF], while our bounds [START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF] show that the island disappears for 1/Λ 10 7 km, corresponding roughly to the yellow region shrinking to a point and disappearing. Past that, there is no EFT of massive gravity left. The small region in the right bottom corner is the marginal improvement over [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF] by the near-forward bounds [START_REF] De Rham | Positivity Bounds for Massive Spin-1 and Spin-2 Fields[END_REF]. RIGHT: 3D plot for the bound on Λ in the plane (c3, d5) in suitable units.

The hard-scattering limits of the amplitudes for s, t m 2 read

M SSSS = st(s + t) 6Λ 6 
3

(1 -4c 3 (1 -9c 3 ) + 64d 5 ) ,

M V V V V = M V V V V = 9st(s + t) 32Λ 6 3 (1 -4c 3 ) 2 , M V V V V = 3t 3 32Λ 6 3 
(1 -4c 3 ) 2 , (4.4.17) On the other hand the SS, V ( ) V ( ) , V ( ) S elastic scatterings have the following suppressed arcs a 0 at t = 0, which follows from the positivity of the residue of maximally-mixed ST polarizations, i.e. a T T 0 + a SS 0 + 2a T ST S 0 + 4a T T SS 0 > 0. This inequality together with (4.4.18) explicitly reproduce the early positivity bounds in massive gravity of [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF].

M V SV S = 3t 4Λ 6 
a SS 0 (0) = 2m 2 9Λ 6 3 (7 -6c 3 (1 + 3c 3 ) + 48d 5 ) > 0 , a V V 0 (0) = a V V 0 (0) = m 2 16Λ 6
The positivity bound a 0 (0) > a 0 (s) for any s in the EFT place an upper limit Λ 2 on s, past which this inequality gets violated. This bound on the (c3, d5, Λ)-volume is projected on the (c 3 , d5)-plane in Fig. 4.9.

It's no surprise that this accurate bound just reproduces the parametric bound (4.4.5). Notice that the size of the bound Λ -1 10 7 km 10 -32 eV/m 3/4 (4.4.20) is astronomical (pun intended). The reader can find a discussion of the implications of this bound in the previous section around (4.4.8).

Chapter 5

Conclusions

Effective Field Theories are one of the cornerstones of physics, hardwired in our way of organizing the knowledge about the world: in a sense they represent the reductionism and the analytic thinking at work. It's probably for this reason that EFTs pervade entire fields such as high-energy physics, cosmology, condensate matter, statistical field theory and certainly many others. 1Yet, despite its relevance in so many areas of physics, the basic structure of the space of EFTs is still not fully understood. It has been in fact only very recently that great and fast progress in understanding such an "EFT-hedron" has happened. This manuscript records the contribution made by the author in understanding such a space, unveiling the beautiful convex geometry behind it, and deriving physically relevant applications. They range from physics beyond the SM to cosmology, touching the swampland program. Those results are based on the work [START_REF] Bellazzini | Positive moments for scattering amplitudes[END_REF][START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF][START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF][START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF][START_REF] Bellazzini | R-axion at colliders[END_REF][START_REF] Bellazzini | The Other Effective Fermion Compositeness[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF][START_REF] Bellazzini | New phenomenological and theoretical perspective on anomalous ZZ and ZÎş processes[END_REF][START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF][START_REF] Bellazzini | Massive Higher Spins: Effective Theory and Consistency[END_REF][START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF][START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF] by the author together with multiple collaborators and students over the last few years.

One important message that results from this work is that prime principles such as unitarity, causality, Lorentz invariance, and locality, are very constraining, barely consistent with each other, and as such provide a detailed picture of the EFT-hedron, in fact much more accurate than just using symmetry principles. In a certain sense, these principles once mixed with suitably added ingredients (power counting, assumptions about UV and symmetries etc. . . ) may represent a a new way of model-building, in the era of penury of new physics signals or lack of experiments. Theory, with some care, may be sometimes enough to falsify models and ideas.

We have in particular shown how causality is encoded in the analytical properties of the scattering amplitudes which in turn allow to create an extremely powerful UV-IR connection. Then unitarity turns this connection into certain inequalities -the positivity bounds-that restrict the space allowed for the EFTs in the IR.

More specifically, in chapters 1 and 2 we have shown than curving out the space of EFTs is equivalent to solving what in mathematics is known as the 1D or 2D moment problem. We have also studied the implications of this geometrical interpretations by ruling out, as an instructive example, the Galileon EFT. Chapters 3 and 4 contain CHAPTER 5. CONCLUSIONS instead various physics applications of the general ideas, some even extrapolated to gravitational EFTs where the graviton is dynamical, and where we made contact with the swampland ideas that originated in string theory, but from a totally different perspective.

Looking ahead, we would like to highlight some future directions that we believe are important.

The positivity bounds, so far, are rooted in the causal and unitary properties of the 2point functions evaluated on certain backgrounds, or in the 2-to-2 scattering amplitudes, which is also a 2-point function is a special 1-particle background. Therefore, positivity bounds are at the moment oblivious to the properties of higher n-point functions, except for their effect in lower-order correlators via loops. It is natural to expect that unitarity and causality are still able to constrain even the 3-to-3 or 2-to-n scattering, an information that has not been exploited so far, if not numerically in the S-matrix bootstrap approach [START_REF] Paulos | The S-Matrix Bootstrap. Part I: QFT in AdS[END_REF][START_REF] Paulos | The S-Matrix Bootstrap Iii: Higher Dimensional Amplitudes[END_REF].

Another present limitation, perhaps connected to the previous one, is the impossibility to place sharp bounds whenever the S-matrix elements are IR divergent, i.e. not even well defined. This clearly happens whenever light or massless particles are involved in the scattering process, e.g. with gravitons and photons around.

As long as we look at the implications of causality and unitarity for IR-unsafe observables, in contrast to IR-safe observables such as inclusive cross-section suitably averaged, it remains an open problem to see what their implication should be. An option is perhaps to go back to study localized closed timelike curves in suitable curved backgrounds that the EFT at hand can sustain [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF], in contrast to the use of asymptotic data -the S-matrix elements-stored on a sphere at infinite distance with its infinite IR contribution attached. While this would certainly be less systematic than working with amplitudes and arcs, it would have the clear advantage of being applicable beyond flat space, another present limitation of the scattering amplitude method.

All in all, we think that understanding the space of EFTs through causality and unitarity is still in his infancy, promising to grow in a mature subject in the years ahead.

where q 2 = -t, and we dropped an irrelevant i4πsδ(q). The first-order term in a 1/m 2 Pl expansion reproduces the tree-level amplitude -s 2 /(tm 2 Pl L), but higher-order terms are even more singular for t → 0, confirming the need to include all orders to arrive at the non-perturbative result (C.1.3). The resummed forward amplitude does not grow with s 2 , it actually goes to a constant, -16Lm 2 Pl . This is irrelevant for the dispersion relation (4.3.20), and it can thus be subtracted from M, without spoiling the Froissart bound (4.3.13), very much like the case of the massive KK modes.

The same result (C.1.3) can be obtained by solving the motion of one of the scattered particles in the shock-wave spacetime generated by the other particle [START_REF] Hooft | Nonperturbative Two Particle Scattering Amplitudes in (2+1)-Dimensional Quantum Gravity[END_REF][START_REF] Deser | Ultraplanck Scattering in D = 3 Gravity Theories[END_REF]. This actually provides a nice geometrical interpretation of the result, since the space is flat except at the conical singularity where the particle is located: the resummed amplitude (C.1.3) is clearly dominated by the classical scattering on the cone, by an angle θ satisfying sin θ/2 = √ s/(4Lm 2 Pl ) (for small angle). This actually explains the singularity at s = ±4Lm 2 Pl √ -t in usual terms: it is generated by an on-shell particle, propagating through spacetime on two classical trajectories, each reaching one of the two points on the edge of the conical space that are identified. Hence, this generates an Aharonov-Bohm like effect due to the interference of the two different paths [START_REF] Deser | Ultraplanck Scattering in D = 3 Gravity Theories[END_REF]. This is in complete analogy to the case of light bending in the background of cosmic strings in 4D; even though there is no static force, the particle accumulates two different phases from its two different trajectories around the string.

Importantly, in the large compact-dimension limit L → ∞, one recovers flat Minkowski space exactly. Nevertheless, taking the long-distance limit t → 0 faster than decompactifying 1/L 2 → 0, the amplitude is regular (of course for energies within the EFT, s Λ 2 U V m 2 Pl ). This was possible because the leading gravitational effects can be resummed exactly in the compactified theory, whereas scattering in a gravitational theory with D ≥ 4 non-compact dimensions does not grant as much control over the departure from exact Lorentz invariance, always present when scattering particles in gravity. In this regard, we recall that since Λ U V 1/L, the positivity constraints we derive in the main text bound 4D Wilson coefficients generated by the UV physics integrated out at distances 1/Λ U V , regardless of the limit t 1/L 2 .

In practice, we learn that the flat-space propagator for the graviton is a bad starting point for the forward scattering amplitude, and one should rather use the propagator in the background generated by the other particle. Incidentally, this explains why one does not get any subleading singularities at t = 0 from graviton loops, e.g. s 2 / √ -t, since t = 0 is a regular configuration for the actual propagator.

Once the leading order 3D theory is nicely behaving in the forward limit, we can safely add the perturbative corrections due the higher-dimensional operators in (4.3.1), generated by short-distance physics. Since these produce just contact terms in the elastic amplitude (4.3.10), of the form cα i s 2 , the eikonal resummation has no effect to leading order in the α i , namely

∆M α i (s, t) = -i2s +∞ -∞
db e ibq e 2iδ(b,s) 2i∆ α i = cα i s 2 , (C. 1.4) where ∆ α i = cα i sδ(b)/4. Another method that arrives at the same conclusions is described in [START_REF] Zeni | Forward Scattering in (2+1) Quantum Gravity[END_REF].

( a )

 a Lorentz invariant S-matrix Together with locality 1 of time evolution, the (1.0.1) provides Lorentz invariance of the Dyson representation of the S-matrix S = Te -i d 4 xH I (x) . (1.0.2) Indeed, the lack of Lorentz invariance of time ordering of spacelike-separated points is harmless because [H I (x), H I (y)] = 0 precisely in spacelike regions, trivializing there the T-ordering operation. (b) Causal linear response theory Consider a system -possibly strongly coupled-and let's study its response to some scalar operator O(x) sourced by an external current J. The expectation value in any state |α = |α in prepared in the far past before the disturbance is switched-on evolves as O(x) J = α| Te -i t -∞ dτ d 3 yJ(τ,y)O(τ,y) O(t, x)Te i t -∞ dτ d 3 yJ(τ,y)O(τ,y) |α (1.0.3)
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 11 Figure 1.1: Causality of the linear response formula (1.0.4). Neither the future of x (shaded in orange)

. 2 Figure 1 . 2 :

 212 Figure 1.2: Analytic structure of the 2-point function, discontinuity and poles are displayed in red. Källen-Lehmann is derived by a Cauchy contour around z = k 2 , with k 2 sent to the real axis from the upper plane.

Figure 1 . 3 :

 13 Figure 1.3: Running coupling αR,W (µ 2 ) defined as the integral along a double-arc contour (in green) of radius |m 2 | = µ 2 in the complex cut m 2 = k 2 -plane. For µ 2 < µIR there is no IR discontinuity and it returns α IR R,W as a closed contour around the origin. The mismatch between two double-arcs of different radii is the contour integral (in blue) over the IR discontinuity, (1.1.25).

Figure 1 . 4 :

 14 Figure 1.4: Region of Analyticity of M(s) in the complex cut s-plane, and it's boundary values in terms of M12→12 or M1 2→ 12 or their complex conjugate.

Figure 1 . 5 :

 15 Figure 1.5: Region of analyticity is the cut s-plane, outside a potatoes-like shape in the IR-region (shaded in green), which scales to zero as |t| 3+ . Physical thresholds on the real s-line in red.

  .1.2) the arcs capture in the IR tree-level approximation the value of the Wilson coefficients tree-level: a n = c 2n+2 (2.1.3) starting from n ≥ 0 for reason of convergence that will become clear below. Beyond tree-level, arcs probe the theory at energy s and are suited to capture the RG flow within EFTs.
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 21 Figure 2.1: Region of analyticity and complex contours defining the arcs of radius s in the s -plane.By Cauchy theorem, an(s) = an(s → ∞) + Integral over Disc, that is (2.1.6) whenever the arc at infinity is vanishing.

  .1.30) which we illustrate in the right panel of Fig. 2.2. Eqs. (2.1.25-2.1.28) capture how the full constraint on the arc sequence is projected on the first N arcs.
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 242 Figure 2.4: Bounds on ratio g 3,1 ŝ/g 2,0 as a function of the particle mass m, for fixed β 4 ŝ2 = 0.1, where ŝ = s -2m 2 . Lower lying curves correspond to bounds involving more moments in the UV: in orange only Cauchy-Schwartz (2.3.34), in red moments ut to µ 2 2 as in (2.3.22), and in blue moments up to µ 4 4 (numerical). All curves diverge as m → 0.
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 31 Figure3.1: Allowed regions of the coefficients λ 1 , λ 2 as function of the sign of λ 3 . Blue: result from a 0 > 0 for linear-definite polarizations. Red: result from a 0 > 0 for different choice of linear combination of polarizations (still elastic). Yellow: result from arc a 1 > 0 by scattering linear-definite choice of polarizations. The dotted line correspond to the tuning λ 1 = λ 2 = -λ 3 in (3.2.4). Since red and blue region don't overlap, there is no solution to the positivity bounds for non-vanishing λ i .

( 4 . 1 . 10 )2 1 - 3 D- 2 + 1 D- 3 (D- 4 D- 2 (2 D- 2 1 + 4 (

 4110132134224 Theories in D ≥ 6Consider finally the general case of D ≥ 6. Marginalizing over the polarizations in (4.1.5), we obtain the positivity bounds-8c 3 + 4c 4 + c 6 + 2c 7 > 0 4c 2 + 8c 3 + 4c 4 + c 6 + c 7 ) + 32c 1 + 4c 2 + 4c 6 + c 7 > 0 4c 2 + 8c 3 + 4c 4 + c 6 + c 7 ) + 2c 6 + c 7 > 0 D mod 2) (D-1)(D-3) (4c 2 + 8c 3 + 4c 4 + c 6 + c 7 ) + 32c 1 + 4c 2 + 4c 6 + c 7 > 0 2c 6 + c 7 > 0,(4.1.11) 
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 41 Figure 4.1: Semiclassical picture of the time delay experienced by a particle that went through an interaction region displayed in grey.

Figure 4 . 2 :

 42 Figure 4.2: Type of diagram contributing to the eikonal scattering and the resulting time delay via the form factors Fi. Curly lines are graviton legs, wiggle lines represent photons, dashed lines are the spectators, and Fi are the form factors associated to the photon energy-momentum tensor matrix elements, defined in (4.2.5).
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 43 Figure 4.3: Integral contour Γ in the upper complex q1-plane for Fi. There are two contributions: one from the graviton pole, and the second from the discontinuity above threshold t > 4m 2 .
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 44 Figure 4.4: Diagrams contributing to the 1-loop discontinuity of the 3-point function with k 2 = k 2 = 0

Figure 4 . 5 :

 45 Figure 4.5: Quantum corrections to the phase shift as function of bm. Dotted lines for large bm show

Figure 4 . 6 :

 46 Figure 4.6: Spectrum of extremal black holes in units m 2Pl = 1/2: they lie on the red-dotted line for 2α1 -α3 > 0, and on the blue-dotted line for 2α1 -α3 < 0. Extremal black holes on the latter curve are stable, whereas extremal black holes on the former curve are unstable to decay to smaller extremal black holes. The black line represents the spectrum of extremal black holes without any higher derivative corrections. The blue dots represent evaporating non-extremal black holes that eventually reach the extremality curve.

3 Figure 4 . 7 :

 347 Figure 4.7: Positivity bounds (4.3.21, 4.3.22) require α 1 and α 3 to live inside the the smaller green wedge. The blue striped region is where extremal black holes are selfrepulsive, |Q| > M/( √ 2m Pl ).
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 391233 312c 3 + 432c 2 3 + 384d 5 > 0 .One does not need to scatter definite linear polarizations only, but any linear combination that gives elastic scattering is a valid choice for the positivity bounds. Therefore one obtains for example also m 192d 5 > 0 ,(4.4.19) 
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  The purpose of the local polynomial is twofold: i) to ensure the Ward identities (Poincaré invariance and flat space, conservation equation, no graviton mass, . . . ) ii) to ensure the correct behavior of the correlator at large k, i.e. the convergence of the dispersive integral.At energy below the QFT mass gap, k 2 µ 2 IR , plugging (1.1.21) in (1.1.19) we can recast the new terms as an EFT expansion in local diff-invariant operators

	3	P µν P ρσ
	+ local polynomial .	

  1.2.16) is proportional to the Fourier transform of the propagator. By inserting a complete set of momentum eigenstates |k n we see that the discontinuity would vanishes if neither k + k 2 = k n nor -k + k 2 = k n were satisfied by the spectrum of states that can be exchanged. These conditions are easier to visualize in terms of Mandelstam invariant, i.e. s = k 2 n and u = k 2 n . For s taken below the s-channel thresholds, s < m 2 2

  Eqs. (2.1.25-2.1.28) represent the optimal constraints, providing an answer to Question 2. For instance, Eqs. (2.1.25-2.1.28) with N = 2 define the A(2) region:

.1.28) respectively. We refer to Eqs. (2.1.25-2.1.26) as homogeneous and Eqs. (2.1.27,2.1.28) as inhomogeneous constraints. Since (2.1.21) is an arbitrary positive polynomial for x ∈ [0, 1],

  is translated in the normalisation of Figs. 2.2 being s-dependent). Given an EFT, in the form of a set of c n satisfying Eqs. (2.1.25-2.1.26), we can think of Eqs. (2.1.27-2.1.28) as defining the highest possible cutoff ŝmax where new dynamics must modify our EFT amplitude.

2.1.25-2.1.28) represent the relevant constraints. Of these, the homogenous constraints of Eqs. (2.1.25-2.1.26) do not depend on s and thus represents properties of the UV theory that are intrinsic, i.e. independent of the overall scale of the dynamics. In particular they include (2.1.7), which implies that all coefficients c n be strictly positive, reproducing the classic result of Ref.

[START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF] 

On the other hand, the energy scale s appears explicitly in Eqs. (2.1.27-2.1.28) (this

  Bounds on arc a 0 (ŝ, t) as a function of t. In gray the region excluded by UV positivity bounds (in black the region excluded by the simple approximation on the extremes of (2.3.36)). Orange dashed lines illustrate IR arcs calculated with the approximated EFT (a 0 (ŝ, t) in (2.3.8) truncated at O(t)), for extremal values of g 3,1
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					3.8) with the arcs bounded
	by UV unitarity/causality in (2.3.38). Calling s max the theory's cutoff, we will first
	consider the kinematics,			
		|t|	ŝ	ŝmax .	(2.3.39)

� Figure 2.5:

With the exception perhaps of the dim-5 operator associated to generating the neutrino masses. Other examples of light undetected dynamics is provided by axions, and by whatever dynamics drives the cosmological acceleration, if not entirely accounted for by the cosmological constant which comes with its own naturalness puzzle.

This came from facing a wave of modified-gravity model-building at that times, Ref.[START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF] wrote "the pendulum has swung too far in the "anything goes" direction".

Assuming momentarily ∆(k 2 ) → 0 as k 2 → ∞. See (1.1.7) for the more general case.

For a simpler notation, in (1.1.7) we have clumped together poles and branch-cuts inside the dispersive integral.

[START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF] The integral on the right-hand side is convergent by the assumption that ∆(k 2 ) → 0 in the first place.

We specialized it to spacelike momentum which corresponds to the kinematics of a Coulomb-like experiment measuring the potential energy between static sources.

We have chosen units [J µν ] = 1 and [g] = -1, so that [ρ ( ) ] = -2. In this way the exchange of a Higgs boson J µν (x) = η µν h(x) with strength g = 1/v corresponds to ρ ( =0) (m 2 ) = δ(m 2 -m 2 h ), the resulting coupling c = 1/v 2 m 2 h .

The amplitude-based argument of next section are not restricted instead by this condition, so that c > 0 is proven there in more generality.

1.2. CAUSALITY IN 1-PARTICLE BACKGROUND 1[O, O]|1

And often they can reabsorbed by a suitable change of renormalization scheme, by what is sometimes called the T * product.

See e.g.[START_REF] Correia | An Analytical Toolkit for the S-Matrix Bootstrap[END_REF] for a review of the convergence properties of the partial wave expansion.

We recall the definition of the Wigner-d matrix as the matrix element for rotations around y-axis: λ|e -iθJ 2 |λ ≡ δ d λλ (θ).

Explicitly, N ,λ 12 ,λ 34 = ( +L )!( -L )! ( +L)!( -L)! , with L = max{|λ12|, |λ34|} and L = min{|λ12|, |λ34|}.

Where the Wigner d-matrix reduces to Legendre polynomials P (cos θ). Moreover, the sum over = 0, 2,

. . . is restricted to even numbers for identical scalars, because of crossing symmetry.

Eqs.(2.3.14,2.3.15) parametrize polynomials of (x, xJ 2 ) rather than (x, J 2 ). This is an efficient set of polynomials to characterize moments µ q n with n ≥ q, as they appear in arcs (2.3.12). It will provide simpler expression when considering truncations to polynomials of finite order (a finite number of moments), but does not make any difference once polynomials of arbitrary order are taken into account.

This is a consequence of the domain of angular momentum being non-compact: µ q n can be larger and larger as q increases. In contrast, 0 ≤ x ≤ 1, and moments µ q n are monotonically decreasing in n.

While neglecting higher orders is a customary assumption in the context of EFTs, it is plausible that g3,1 is not suppressed w.r.t. g2,0 in units of ŝ, while higher order terms are: a situation that corresponds to a system with approximate Galileon symmetry.

Other examples of the author's work where positivity bounds have found important applications in BSM physics, such as[START_REF] Bellazzini | The Other Effective Fermion Compositeness[END_REF] for the EFT of composite fermions[START_REF] Liu | Patterns of Strong Coupling for Lhc Searches[END_REF], and[START_REF] Bellazzini | New phenomenological and theoretical perspective on anomalous ZZ and ZÎş processes[END_REF] for the production of di-bosons at the LHC, are not covered in this manuscript in order to keep it of reasonable length.

This happened much earlier than follow up papers such as[START_REF] Zhang | Convex Geometry Perspective to the (Standard Model) Effective Field Theory Space[END_REF].

The original paper contains also the generic case for arbitrary groups and arbitrarily large irreps of the scattering states, including the general theory for extracting their crossing matrices.

The perspective offered by positivity bounds in gravity should be contrasted with the web of swampland conjectures, of various degree of evidence, see e.g.[START_REF] Palti | The Swampland: Introduction and Review[END_REF] for a review, that might unfortunately be biased by the lamppost effect in the vast string theory landscape.

Corresponding to a choice of operator coefficients, (c1,

4c1, -4c1, 0, 0, 0, 0) or (c1, -4c1, 0, 8c1, 0, 0, 0), etc. The ellipses in (4.1) denote equivalent representations in terms of other operators, which are not unique due to the linear dependence in D = 4 of all but two of the operators in (4.1.4).

In a forthcoming publication[START_REF] Bellazzini | To appear[END_REF] we actually show that positivity of time delay is not an independent constraint, but it can rather be proven from analyticity and unitarity.

Specifically, X = φ, ψ and W is for charged scalars, charged fermions, and charged spin-1 bosons, respectively. The mX = m is there mass, and the charge is ±1.

See Appendix B for an immediate interpretation of this IR divergence in the worldline approach to the eikonal scattering.

We are tacitly considering the case where the scale of the Landau pole of the U (1) gauge theory at hand is smaller than the Planck mass. For theories with α too small, the Landau pole would be found beyond the Planck mass and the bound would trivialize to b > 1/m Pl , where gravity becomes already strongly coupled.

We use real linear polarizations because they correspond to crossing symmetric amplitudes[START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF][START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF], up to the terms due to the Coulomb singularity.

Clearly, giving mass to the graviton is not an option, it adds degrees of freedoms and the UV behavior is completely different, much worse, as we see in the next section

This is inspired by[START_REF] Arkani-Hamed | Quantum Horizons of the Standard Model Landscape[END_REF] which shows that the SM naturally admits 3D phases by varying the neutrino masses.

After a field redefinition Aµ → Aµ + ΦVµ and the integration of the non-propagating gµν , effectively equivalent to plugging the lowest-order equations of motion R µν -1 2 g µν R = T µν /(L∓ 2 ) and into the interaction terms.

In Section 4.3.2 we discuss how our conclusions adapt to relaxing the Froissart bound (4.3.13). We show in particular that an asymptotic form of the WGC, i.e. for very large extremal black holes, can still be proven even assuming no Froissart-like bound.

The tree-level exchange of an exactly massless dilaton is inconsequential because s + t + u = const. If a stabilisation potential for the dilaton σ is included, for example a mass term ∼ σ 2 /L 2 , the tree-level subtraction also works for the dilaton pole.

Incidentally, the resulting contact terms can not be subtracted except for obtaining the useless relation 0 = 0, since they do not correspond to any IR intermediate state that alone would satisfy (4.3.13).

This scale is nothing but the so-called Λ4 = (m 3 m Pl ) 1/4 .

being proportional to the total cross-section σ, schematically σ ∼ |M| 2 × phase -space, it receives the leading contribution in the EFT region from the stu part of amplitude in the phase space region away from the forward direction.

This may happen e.g. in strongly coupled model where Λ3 Λ are tight together[START_REF] Nicolis | Classical and Quantum Consistency of the Dgp Model[END_REF]; Massive gravity instead has Λ3 Λ so that increasing the strong coupling scale does not help.

And it's also probably for this reason that the failure of EFT thinking in the cosmological constant problem is somewhat shocking, suggesting something deeper to be discovered or understood.
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which implies positive definiteness of the infinitely sized matrix,

further the allowed space to a single point (c 3 = 1/4, d 5 = -9/256). The expectation is that the remaining constraints on vector-scalar scattering would remove that point too. The beyond-positivity bounds [START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF], which are weaker, do eventually remove it, see Fig. [START_REF] Arkani-Hamed | The Eft-Hedron[END_REF].9 where that point is outside the yellow island.

Let's end this section on a positive note: very much like the higher spin EFT discussed in Section 3.2, it remains an open question whether there exists or not a finite number of extra light degrees of freedom that one could add to move from massive gravity EFT into another one consistent with positivity bounds.

Sharp Bounds

Let's review the detailed bound of [START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF]. The ghost-free massive gravity action is

where g µν = η µν + h µν is an effective metric written in term of the Minkowski metric η µν (with mostly + signature) and a spin-2 graviton field h µν in the unitary gauge, R is the Ricci scalar for g µν , and

(4.4.12)

with h ≡ h µν g µν , h 2 ≡ g µν h νρ g ρσ h σµ , etc. The coefficients depend on just two parameters, c 3 and d 5 , after imposing the ghost-free conditions

)

.4.15)

For a much more insightful derivation of these relations see the on-shell approach of [START_REF] Falkowski | Matter Coupling in Massive Gravity[END_REF].

Conventions

We work in the mostly minus metric convention (+, -, -, -) except for Section 4. The discontinuity on the real line is defined as DiscF (z) ≡ F (z + i ) -F (zi ). We work with natural units = 1, c = 1, and m Pl = (8πG) -1/2 is the reduced Planck mass, with G the Newton constant, . The vacuum state is |0 Appendix A

S-T Crossing Matrix

Crossing symmetry is a simple operation for amplitudes expressed in terms of 4-momenta M = M(k i ), it just flips the sign of the momentum which is crossed, as well as its helicity, times an overall statistic factor for fermions.

This should be constrasted with the complexity of crossing on amplitudes expressed in the centre of mass frame in terms of the Mandelstam variables M(s, t, u). There, the crossing matrix X is quite a complicated beast. Take for example the s-t crossing matrix [START_REF] Cohen-Tannoudji | Kinematical Singularities, Crossing Matrix and Kinematical Constraints for Two-Body Helicity Amplitudes[END_REF][START_REF] Trueman | Crossing Relations for Helicity Amplitudes[END_REF][START_REF] Muzinich | Crossing matrices for helicity amplitudes, application to crossed channel partial-wave analysis, and reggeization[END_REF][START_REF] Hara | Crossing Relations for Helicity Amplitudes[END_REF]]

where J i the spin of particle-i, i.e. -J i ≤ λ i ≤ J i , and the angles are

The bar on the index recall which particle we are crossing. The overall phase φ depends on the precise normalization convention of the 2-particle state relative to the tensor product of single particle states; it is φ = 0 in [START_REF] Trueman | Crossing Relations for Helicity Amplitudes[END_REF] and e iφ = (-1) 2J 2 +2J 4 +σ+λ 2 -λ 3 where σ = ±1 for crossing bosons or fermions. The crossing matrix is a complicated string of Wigner-d matrices because the crossed amplitude is no longer in the centre of mass frame, k 2k 4 = 0. The Wigner d-matrices are in fact the result of Wigner little-group rotations when boosting from the crossedprocess frame back to the centre of mass frame. See [START_REF] Hebbar | Spinning S-Matrix Bootstrap in 4D[END_REF] for a detailed and fresh look to this problem.

The crossing matrix simplify considerably for massless particles, cos θ i → ±1 for m i → 0, for the very good reason that there are only two helicities λ = ±J i which are available to the particle; either d J λλ (0) = δ λλ or d J λλ (π) = (-1) J-λ δ λ-λ , the latter arises indeed for cos θ = -1 for the crossed particle, reversing the helicity. Moreover, for APPENDIX A. S-T CROSSING MATRIX integer spins Jλ is even. For all massless particles it reduces to X λ4 λ 2 ;λ 3 λ1 λ 1 λ 2 ;λ 3 λ 4 = e iφ (-1)

For massless particle-1 and -3 and spin-0 particle-2 and -4, it is instead

Another simplification arises in the forward scattering with ∆ 13 = ∆ 24 = 0 so that for t → 0 the cos θ i ∼ √ t goes to zero (assuming non-vanishing masses).

For reference, the st crossing matrix for the regulated M-amplitudes is X λ4 λ 2 ;λ 3 λ1 λ 1 λ 2 ;λ 3 λ 4 (s, t) = X λ4 λ 2 ;λ 3 λ1 λ 1 λ 2 ;λ 3 λ 4 (s, t)

where

Appendix B

The Logarithmically Divergent Phase in D = 4

In this appendix we derive an intuitive interpretation of the IR divergent phase in gravity and Coulomb scattering. It also makes manifest how to deal with it. Given a scattering amplitude, one can define an associated potential by matching to the amplitude that it would produce,

up to some normalization factor N . Inverting this relation and expressing M in the eikonal limit one gets e 2iδ(b,s) -

which extends the textbook result valid for potential scattering theory in QM [START_REF] Landau | Course of theoretical physics vol 3 quantum mechanics[END_REF]. The interpretation of this result is straigthforward: the eikonal amplitude in impact parameter space is just the wordline integral of the potential over the straightline geodesic.

What's interesting about this formula is that allows an immediate interpretation of the IR divergence for the time-delay that arises from the 1/|x| = 1/ √ z 2 + b 2 -potential (which itself originates from the 3D Fourier-transform of amplitudes with a 1/q 2 -pole of the massless graviton exchanged in t-channel). At the lowest order in G-newton and integrating over a finite travelled distance L from the source to the detector,

The IR divergence arises because the time-delay is accumulated -logarithmically-over the travelled distance L. Notice that this divergence does not affect the scattering angle.

Since the source and the detector are always at some finite distance, we can choose L as small as the largest length scale we want to include in the scattering. Say we want to probe some heavy physics at the mass scale Λ, then it's enough to choose L 1/Λ and large enough to include the wavelengths of all particles involved. The precise factor relative to Λ is not important because it enters only logarithmically. A similar IR divergence arises in QED but in that case some screening mechanism can always be devised by adding spectator charges to neutralise the system as seen at long distance.

Appendix C

Details on 3D amplitudes

In this appendix we discuss some special features of D = 3 gravitational scattering in the forward limit.

C.1 Forward limit and graviton pole

In 3D flat space, the propagator of the metric fluctuations h µν , say in harmonic gauge, seems to give rise to the offending s 2 /t-term in elastic amplitudes at tree level. This happens despite the fact that there is no massless graviton in the spectrum, the reason being that the forward limit does not actually put the internal h µν leg on a physical on-shell one-particle state. Indeed, t = 0 is obtained in the physical kinematics when the exchanged momentum in the t-channel vanishes, q = k 1k 3 = (0, k 1k 3 ) → (0, 0), which is just a point of the light-cone q 2 = 0. Such a momentum q is not carried by a massless one-particle state, since it has no energy, but it rather corresponds to the soft scattering of a state with the same quantum numbers of the vacuum. Therefore, naively there is a singularity in the scattering amplitude at t = 0 that does not correspond to a particle on-shell. The situation is different for more general complex kinematics where t = -q 2 → 0 , q = 0 , (C. 1.1) which would correspond to an on-shell particle. In this case the amplitude factorizes into the product of two 3-point amplitudes where all legs are now on-shell. In D = 3, this non-forward t = 0 kinematics is possible only when all momenta are parallel, since

In this case we have that as t → 0 also s → 0, implying that s 2 /t → 0, confirming the absence of a physical, on-shell graviton in the spectrum.

Precisely because there is no propagating graviton in D = 3, as opposed to the 4D case, higher-order corrections can -and in fact do -shift the pole in 3D [START_REF] Ciafaloni | Selfconsistent Scattering Matrix in (2+1) Gravity[END_REF][START_REF] Hooft | Nonperturbative Two Particle Scattering Amplitudes in (2+1)-Dimensional Quantum Gravity[END_REF][START_REF] Deser | Ultraplanck Scattering in D = 3 Gravity Theories[END_REF][START_REF] Zeni | Forward Scattering in (2+1) Quantum Gravity[END_REF]. One way to reproduce this result is by resumming the exchange of an infinite number of tchannel diagrams using the eikonal amplitude [START_REF] Kabat | Eikonal Quantum Gravity and Planckian Scattering[END_REF] specialized to 3D [START_REF] Ciafaloni | Selfconsistent Scattering Matrix in (2+1) Gravity[END_REF][START_REF] Deser | Ultraplanck Scattering in D = 3 Gravity Theories[END_REF]. Focusing first on the pure Einstein-Hilbert contribution, one obtains

dbe ibq e 2iδ(b,s) = -16Lm We check in this section that no graviton d.o.f. is propagating in D = 3 by showing that its polarizations trivialise on-shell (but not off-shell).

To see this, consider the 3D flat-space polarizations in the harmonic gauge, ∂ µ hµν = 0

where hµν ≡ h µν -1/2η µν h and h = h µ µ . Looking at the matrix elements q| hµν |0 ≡ ¯ µν (q)e iqx for q = 0 we get ¯ µν (q) = a q µ q ν + b(s µ q ν + s µ q µ ) + cs µ s ν (C.2.1)

where q 2 = 0, q µ µ ν = 0, and s µ is a spacelike unit vector orthogonal to q and to q, the latter being another null vector such that q•q = -1, e.g. q µ = (E, E, 0), qµ = 1 2E (1, -1, 0) and s µ = (0, 0, 1). In this way the metric can be written as η µν = -(q µ qν + q ν qµ ) + s µ s ν , from which it follows that ¯ µν (q) = aq µ q ν + b(s µ q ν + s µ q µ ) + c(η µν + q µ qν + q ν qµ ) .

(C.2.2)

When the graviton polarization µν = ¯ µν -¯ η µν is contracted with a conserved and symmetric energy-momentum tensor, q µ T µν = 0, one gets µν T µν = 0, confirming that on-shell polarizations, such as those in the numerator of the propagator at the pole, give rise to contact terms only.

In the harmonic gauge, moreover, there remains a residual gauge symmetry h µν → h µν + ∂ µ ξ ν + ∂ ν ξ µ with ξ ν = 0, that one can actually use to set to zero all the on-shell polarizations. This is accomplished by choosing ξ µ = (αq µ + β qµ + γs µ ) e iqx which gives δ¯ µν (q) = i2α q µ q ν + iβs µ s ν + iγ(s µ q ν + s ν q µ ) (C.2.3)

and with α = ia/2, β = ic and γ = ib, set the on-shell (q 2 = 0) polarizations to zero. The h µν contribution to scattering amplitude can only be off-shell, q 2 = 0.