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Arthur Carvalho Walraven da Cunha
Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)

UMR7271 UCA CNRS

Présentée en vue de l’obtention
du grade de docteur en INFORMATIQUE

d’Université Côte d’Azur

Dirigée par : Emanuele NATALE, Chargé de
Recherche, Inria, France
Soutenue le : 13 septembre 2023

Devant le jury, composé de :
Vincent GRIPON, Directeur de recherche,
IMT-Atlantique, France
Marc LELARGE, Directeur de recherche, In-
ria, France
Frederic GIROIRE, Directeur de recherche,
Inria, France
Konstantin AVRACHENKOV, Directeur de
recherche, Inria, France
Pierluigi CRESCENZI, Directeur de
recherche, Gran Sasso Science Institute,
Italy
Laurent VIENNOT, Directeur de recherche,
Inria, France





ÉLAGAGE DES STRUCTURES ALÉATOIRES

Pruning random structures

Arthur Carvalho Walraven da Cunha

▷◁

Jury :

Rapporteurs
Vincent GRIPON, Directeur de recherche, IMT-Atlantique, France
Marc LELARGE, Directeur de recherche, Inria, France

Examinateurs
Frederic GIROIRE, Directeur de recherche, Inria, France
Konstantin AVRACHENKOV, Directeur de recherche, Inria, France
Pierluigi CRESCENZI, Directeur de recherche, Gran Sasso Science Institute, Italy

Directeur de thèse
Emanuele NATALE, Chargé de Recherche, Inria, France

Membres invités
Laurent VIENNOT, Directeur de recherche, Inria, France

Université Côte d’Azur



Arthur Carvalho Walraven da Cunha

Élagage des structures aléatoires
ix+158 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : main.tex – 11/12/2023 – 5:23

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau



Élagage des structures aléatoires

Résumé

La Strong Lottery Ticket Hypothesis (SLTH) stipule que les réseaux de neurones contiennent,
lors de l’initialisation aléatoire, des sous-réseaux qui fonctionnent bien sans aucun entraîne-
ment. Le réseau aléatoire doit cependant être sur-paramétré : avoir plus de paramètres qu’il
n’en aurait besoin. La SLTH a d’abord été prouvée pour les réseaux entièrement connectés
et suppose une sur-paramétrisation polynomiale. Puis, cela a été amélioré pour ne nécessiter
qu’un surplus logarithmique, ce qui est essentiellement optimal. Ce fort résultat a tiré parti
d’un beau théorème sur le Subset Sum Problem (SSP). Il considère une version aléatoire du
SSP dans laquelle on cherche à approximer une valeur cible en sommant des sous-ensembles
d’un échantillon aléatoire donné. Le théorème affirme que garantir l’existence d’une solution
avec une haute probabilité ne nécessite qu’une taille d’échantillon logarithmique par rapport
à la précision des approximations. Nous présentons une preuve plus simple et plus directe
pour ce résultat. Ensuite, en tirant parti du théorème sur le SSP, nous étendons le SLTH aux
Convolutional Neural Networks (CNNs) : nous montrons que les CNN aléatoires contiennent
des sous-CNN clairsemés qui n’ont pas besoin d’entraînement pour obtenir de bonnes per-
formances. Nous avons également obtenu le résultat en supposant une sur-paramétrisation
logarithmique. Bien que le surplus imposé par le SLTH puisse être compensé par la rareté des
sous-réseaux obtenus, exploiter la rareté en pratique est très difficile si elle n’est pas structurée.
Étendre les résultats sur le SLTH pour produire des sous-réseaux structurés nécessiterait une
version multidimensionnelle du théorème sur le SSP. Nous prouvons la véracité d’une telle
version et nous l’utilisons pour montrer que le SLTH est toujours valable pour les CNN si nous
exigeons que les sous-réseaux soient structurés. Enfin, nous proposons une application des
idées de cette thèse à la conception de circuits : nous exploitons l’aléatoire inhérent aux spéci-
fications des composants électroniques intégrés pour obtenir des composants programmables
hautement précis à partir de composants statiques de faible précision.

Mots-clés : Réseau de neurones, Algorithmes des graphes, Compression de modèles, Élagage



Pruning random structures

Abstract

The Strong Lottery Ticket Hypothesis (SLTH) states that neural networks contain, at random
initialisation, sub-networks that perform well without any training. The random network
needs, however, to be over-parameterized: to have more parameters than it would otherwise
need. The SLTH was first proved for fully-connected networks and assumed polynomial over-
parameterization. Soon after, this was improved to only require a logarithmic overhead, which
is essentially optimal. This strong result leveraged a theorem on the Subset Sum Problem
(SSP). It considers a randomised version of the SSP in which one seeks to approximate a target
value by summing subsets of a given random sample. The theorem asserts that ensuring the
existence of a solution with high probability only requires a logarithmic sample size relative
to the precision of the approximations. We present a simpler, more direct proof for this re-
sult. Then, leveraging the theorem on the SSP, we extend the SLTH to Convolutional Neural
Networks (CNNs): we show that random CNNs contain sparse sub-CNNs that do not require
training to achieve good performance. We also obtained the result assuming a logarithmic
over-parameterization. Even though the overhead imposed by the SLTH could be offset by the
sparsity of the sub-networks obtained, exploiting sparsity in practice is very difficult if it is
not structured. Extending the results on the SLTH to produce structured sub-networks would
require a multidimensional version of the theorem on SSP. We prove such a version and use
it to show that the SLTH still holds for CNNs if we require the sub-networks to be structured.
Finally, we propose an application of the ideas in this thesis to the design of circuits: We har-
ness the inherent randomness in the specs of integrated electronic components to obtain highly
accurate programmable components from low-precision static ones.

Keywords: Neural network, Graph algorithms, Model compression, Pruning
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CHAPTER 1
Introduction

“Il semble que la perfection soit atteinte non quand il n’y a plus
rien à ajouter, mais quand il n’y a plus rien à retrancher”

— Antoine de Saint-Exupéry, Terre des Hommes.

1
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1.0 – 3

The diagram below represents a binary grid. Assuming you could freely turn cells on or off,
how would you make it symmetric relative to both axes?

Binary grid experiment. Subjects can freely invert bits. They are asked to make the grid symmetric
about the two centralised axes indicated by stronger lines.

Adams, Converse, Hales, and Klotz (2021) experimented with variations of this puzzle and
some other tasks of similar nature. They found that the subjects tended to solve the puzzle by
adding blue cells, neglecting that the task could be solved more easily by removing them. The
tendency persisted even when subjects were cued with instructions such as “each piece that you
add costs ten cents but removing pieces is free”,1 especially when they were under external cog-
nitive load. Combined, the experiments by Adams et al. (2021) suggest that human thinking is
significantly biased towards additive strategies.

Among other possible explanations for this heuristic avoidance of subtraction, the authors
propose that it may simply be the case that our usual environment, probabilistically, offers more
good opportunities to add than to subtract. We highlight one of the examples they bring to illustrate
this possibility:

“In designed environments, one may infrequently encounter artefacts from which the
designers have not already subtracted the obviously negative components.”

In this thesis, we discuss a subtractive idea in optimisation that is quite easy to overlook. It is
uncommon for promising subtractive approaches to be neglected in optimisation since deletion is
an integral part of it. The compelling example by Adams et al. (2021) alludes to this. Translated
to our context, the example says that optimisation (design) should remove any obviously negative
parameters (components) from models (artefacts); the researchers (designers) would spot them.
However, we propose that something may be escaping our scissors by hiding at a more abstract
level. Something we may neglect to prune in the concept of optimisation itself.

If we want to focus on subtractive strategies, addition easily becomes an “obviously negative
component” to remove. Yet, to optimise a model, besides adding and subtracting parameters,
we can also tune them. Thus, to isolate the subtraction component, we must also remove the
tuning. Because tuning interferes with subtracting and is frequently at odds with it. We all feel
this competition when we try to let go of something we have spent a lot of time and effort on. For
example, being forced to do so when writing is known as “killing your darlings”. Many darling

1Similarly to how we biased the reader with the title of the thesis, the abstract, the epigraph, etc.
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paragraphs were murdered in the production of this document. Less subjectively, once we start
to review the related literature, the intricacy of the interaction between calibration and removal
will become evident quite soon. For instance, there has been an entire line of research inspired
by the possibility of subtracting parameters from a neural network before effectively tuning what
remains. Here, to investigate the capabilities of subtraction, we will completely forego tuning.

In all honesty, there are good reasons to be sceptical of this idea. Perhaps the main one is that
without parameter calibration we become especially bound to the initialisation of the model. If we
were given a sufficiently convenient initialisation it could mitigate this restriction. For example,
consider a LEGO® set: the design of the bricks allows children to achieve quite a lot even though
they cannot create new bricks or modify them. However, the problems we will consider all assume
absolutely unremarkable, random starting points.

Daunting. This can be a good thing in research, though.
Also, we have essentially removed everything but removal itself. While not making things

easier, this does make them simpler. The only tool left is probability. This will allow us to
explore ideas in machine learning, algorithms, and electrical engineering while requiring much
less background than one may expect.

1.0.1 Organisation of the thesis

After a brief presentation of our notation, in section 1.1 we introduce the general context and
motivations of our work. Section 1.2 brings a more technical contextualisation, serving as a base
for an overview of our contributions in section 1.3. There, we successively motivate and present
the contributions of each chapter.

For the convenience of the reader, we grouped our works on the Subset Sum Problem (chap-
ters 2 and 3) and on the Strong Lottery Ticket Hypothesis (chapters 4 and 5), while our work in
circuit design (chapter 6) stands alone.

Finally, while the work (da Cunha, Natale, & Viennot, 2023) was produced during the years
this thesis reports, we judged it to be out of the scope of this document and subtracted it from the
manuscript.

1.0.2 Notation

Our notation is mostly standard and we revisit it periodically for convenience. We try to present
more intricate notations close to the point where we use them. In this way, the immediate applica-
tion of the definition serves as an example of its use and we avoid overloading the reader with too
much notation at once. In the following, we offer more formal versions of definitions contained in
the glossary (page 115).

Given n ∈ N, we denote the set {1, . . . , n} by [n]. Matrices, vectors, and scalars are con-
sidered tensors (of lower order). The symbol ⊙ refers to the entry-wise (Hadamard) product of
two tensors of the same shape. For p ∈ R≥0, the p-norms of tensors are denoted by ∥ · ∥p Those
behave as vector norms rather than operator norms. That is, for a tensor A, we have

∥A∥p =
(∑

i

|Ai|p
) 1

p

, (∗)

where i goes over all possible indices of A. We also consider the special cases p = 0 and p = ∞,
which are taken as the respective limits of equation (∗). Namely, ∥ · ∥0 represents the number of
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non-zero entries of a tensor while ∥ · ∥∞ denotes the maximum norm: the maximum among the
absolute value of each entry. The only operator norm we use is the spectral norm for matrices,
given by

∥M∥spectral = sup
x∈Rd:∥x∥2≤1

∥Mx∥2.

Finally, we represent the set of all possible sub-networks of f by Prune(f).
For the sake of formality, we detail the notation Prune a bit further. Given A ∈ Rshape, we

represent by Prune(A) the set tensors obtained by zeroing a subset of entries of A. Namely,

Prune(A) :−
{

m ⊙ A
∣∣∣m ∈ {0, 1}shape

}
.

Since we denote a neural network f( · ; θ) simply as f when θ is clear from the context, in this
situation we also write Prune(f) instead of the cumbersome {f( · ; θ′)}θ′∈Prune(θ).

Styles

a A scalar (integer or real)
a A vector
A A matrix
A A tensor
A A set
A A family (of sets)
A A scalar random variable
A A vector-valued random variable
A A matrix-valued random variable
A A tensor-valued random variable
A A set-valued random variable

Table 1.1: Font styles associated with mathematical types. Usual objects are typeset in italics
while their random variants use upright styles.

ai Element i of vector a, with indexing starting at 1
Ai,j Element i, j of matrix A
Ai,: Row i of matrix A
A:,i Column i of matrix A
Ai,j,k Element (i, j, k) of a 3-D tensor A
A:,:,i 2-D slice of a 3-D tensor
Ai Element i of the random vector or matrix A
Ai Element i of the random tensor A

Table 1.2: Notation for indexation. Usual objects are typeset in italics while their random variants
use upright styles.

Tables 1.1 and 1.2 are based on (Goodfellow, Bengio, & Courville, 2016, Notation).
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1.1 Pruning is all you need

Deep neural networks are rapidly becoming the state-of-the-art method in many tasks across a
wide range of domains, both by replacing previous techniques and by enabling new applications.
Such progress has come with an accordingly fast increase in network complexity, particularly in
parameter count, with modern networks often containing many millions or even billions of param-
eters. For example, from the AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) to the AlphaGO
Zero (Silver et al., 2017) milestones, the amount of computational power dedicated to training
increased by a factor of 300,000 (Amodei et al., 2018). This "scale is all you need" paradigm has
created an explosion in the overall computational cost of deep learning since larger models not
only are more expensive to train and run but have higher demand due to their better capabilities.
At the same time, the success of neural networks makes them increasingly desirable to deploy in
more platforms (Balas, Roy, Sharma, & Samui, 2019), including those with constrained resources,
such as mobile devices and embedded systems.

Fortunately, those models are known to be much larger than necessary. To such an extent
that they can easily fit randomly labelled data (C. Zhang, Bengio, Hardt, Recht, & Vinyals, 2017)
and that 5% of a model’s parameters can be used to predict the other 95% (Denil, Shakibi, Dinh,
Ranzato, & de Freitas, 2013). Perhaps the most striking example of this over-parameterization is
the empirical success of pruning, the process of removing weights from a network by setting them
to zero or completely erasing them from the architecture. Once the network is trained, pruning
techniques can commonly reduce its parameter count by more than 90% with little to no loss in
performance (Han, Pool, Tran, & Dally, 2015), and good accuracies have been reported even after
pruning 99.9% of the parameters (Lin, Stich, Barba, Dmitriev, & Jaggi, 2020). We refer the reader
to the surveys Hoefler, Alistarh, Ben-Nun, Dryden, and Peste (2021) and Blalock, Ortiz, Frankle,
and Guttag (2020) for a comprehensive overview of pruning methods.

This striking level of over-parameterization naturally puts into question the need for large
networks. The pragmatical reader could suspect that the cost of training is ultimately negligible
since it only happens once and the resulting model is used for countless inferences. However,
the sheer size of modern neural networks made the cost of training them difficult to offset. For
instance, between 2019 and 2021, the total energy dedicated to ML at Google was estimated
at 40% for training and 60% for inference (Patterson et al., 2022). The success of heavily over-
parameterized neural networks is also a challenge to the theory. Common deep architectures can be
trained to reach zero loss on train data and still perform significantly well on test data (C. Zhang et
al., 2017). This phenomenon subverts the classical understanding that “a model with zero training
error is overfit to the training data and will typically generalize poorly” (Hastie, Tibshirani, &
Friedman, 2009, page 221) and, more broadly, the central ML concept of bias-variance trade-off.

Yet, training large dense models still prevails. The belief that over-parameterization is nec-
essary for training has been supported by the influential information bottleneck theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017), even though the theory has been disputed (Saxe
et al., 2018). More decisively, the most natural approaches to training small networks have failed.
Han et al. (2015), H. Li, Kadav, Durdanovic, Samet, and Graf (2017), and See, Luong, and Man-
ning (2016) tried the general algorithm of

1. training an over-parameterized network;

2. pruning it to a smaller size;

3. re-initialising the weights remaining in the pruned network;
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4. re-training the pruned network;

where step (3) consists in sampling those weights again from the distribution used to initialise the
original network. The studies found that the resulting networks performed meaningfully worse
than the original pruned ones, obtained at step (2). Han et al. (2015), which was particularly
influential on modern pruning, concluded that “It is better to retain the weights from the initial
training phase for the connections that survived pruning than it is to reinitialize”.

1.1.1 The original Lottery Ticket Hypothesis

This context made it quite surprising when a slight variation of the above algorithm was found to
successfully produce trainable sparse networks. Instead of re-initialising the weights of the pruned
network in step (2), Frankle and Carbin (2019) proposed to rewind them to their initial values, i.e.,
to the values originally sampled when first initialising the full network. The authors provided
extensive empirical evidence that, on small-scale vision tasks, those rewound sparse sub-networks
are trainable: they can match (and sometimes even surpass) the performance of the original dense
network after training for at most the same number of iterations. This observation led the authors
to conjecture the generality of the phenomenon.

Conjecture 1.1.1 (Lottery Ticket Hypothesis (LTH) – Frankle & Carbin, 2019). Practical neural
networks contain sparse, trainable sub-networks at random initialization.2

Notably, the empirical method presented in Frankle and Carbin (2019) requires first training
the original network to completion, before pruning it3. Thus, this technique does not provide a
direct way to reduce the overall cost of training. However, it does prove the existence of sparse
sub-networks that “won the initialisation lottery”, receiving a combination of weights and structure
that makes them inherently trainable. Those sub-networks are called winning tickets. They can be
as sparse as networks obtained by pruning for efficiency only (Renda, Frankle, & Carbin, 2020,
Appendix E), so their occurrence implies that, in principle, successfully training small networks
is possible, after all.

The original LTH has, since, faced several challenges (Hoefler et al., 2021, subsection 8.3.2).
Primally, it has failed to generalise to large-scale settings (Frankle & Carbin, 2019), leading the
original authors to relax the hypothesis to allow for the existence of winning tickets in early steps
of training rather than at initialisation (Frankle, Dziugaite, Roy, & Carbin, 2020). Nonetheless,
the promise of making training much more efficient and the possibility of fresh insights into the
role of over-parameterization have motivated intense research on the LTH, as surveyed in Frankle
(2023, Chapter 5).

1.1.2 The Strong Lottery Ticket Hypothesis

“To attain knowledge, add things every day. To attain wisdom,
subtract things every day”

— Lao Tzu, Tao Te Ching.

2This is the phrasing chosen by the main author in Frankle (2023).
3Which demands multiple extra rounds of training to convergence, as the authors employ iterative magnitude prun-

ing (Janowsky, 1989; Han et al., 2015).
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1.1.2.1 Empirical motivations

Among the many investigations into the LTH, Zhou, Lan, Liu, and Yosinski (2019) brought some
empirical support to an even more staggering phenomenon: the existence, at initialisation, of
sub-networks that can perform unexpectedly well without any training. While analysing winning
tickets, the authors noticed that even without training they performed meaningfully better than
random (e.g., almost 40% accuracy on MNIST (LeCun, Cortes, & Burges, 2010)). Motivated by
this observation, the authors devised an algorithm dedicated to locating what they called super-
masks: sub-networks of random DNNs that achieve high performance before any optimisation of
their parameters.

Their proposed method consists of randomly initialising a dense network and associating a
score s to each weight w in the network. The core idea is to use the score s to decide whether
or not to prune w and to optimise s via Stochastic Gradient Descent (SGD) while w is never
modified. During the forward pass, keep w with probability σ(s), where σ is the sigmoid function.
That is, replace w with w · Bernoulli(σ(s)), where the sampling takes place at each forward
pass. For the backward pass, use the value of σ(s) to back-propagate (Rumelhart, Hinton, &
Williams, 1986a) the gradient through the Bernoulli sampling. Using this method, Zhou et al.
(2019) obtained untrained networks that could reach accuracies over 95% on MNIST and 65% on
CIFAR-10 (Krizhevsky & Hinton, 2009).

Suspecting that constantly sampling new networks might limit the performance of SGD,
Ramanujan, Wortsman, Kembhavi, Farhadi, and Rastegari (2020) proposed to simply keep a target
percentage of the weights with the highest score. More precisely, for each layer, each weight w
behaves as w · WTAk(s), where

WTAk(s) =
{

1 if s is among the k% highest scores of its layer,
0 otherwise.

The operator WTAk is called winner-takes-all. It is not differentiable so Ramanujan et al. (2020)
use the straight-through estimator (Bengio, Léonard, & Courville, 2013) for it, that is, it is treated
as the identity function in the backward pass.

With this method, named EDGE-POPUP, Ramanujan et al. (2020) discovered sub-networks
that could perform well without training within large-scale randomly initialised networks. Namely,
experimenting on ImageNet (Deng et al., 2009), the authors showed that a Wide ResNet-50
(Zagoruyko & Komodakis, 2016) contains, at initialisation, a sub-network that is smaller than,
but matched the performance of, a trained ResNet-34 (K. He, Zhang, Ren, & Sun, 2016). Sim-
ilarly, a randomly-weighted ResNet-101 (K. He et al., 2016) holds a sub-network that is much
smaller than VGG-16 (Simonyan & Zisserman, 2015) while performing better than it.

1.1.2.2 The hypothesis

Motivated by their empirical findings, the authors conjectured the generality of the phenomenon.
The conjecture was later named the Strong Lottery Ticket Hypothesis (SLTH) (Malach, Yehudai,
Shalev-Shwartz, & Shamir, 2020).

Conjecture 1.1.2 (Strong Lottery Ticket Hypothesis – Ramanujan et al., 2020). Within any suf-
ficiently over-parameterized neural network with random weights (e.g., at initialisation), there
exists, with high probability, a sub-network that performs well without any training. Specifically,
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the sub-network can match the test performance of a trained network with the same number of
parameters. (Rephrased)

We will later precise the concept of “sufficient over-parameterization” in different ways de-
pending on the context. For now, consider a generic measure of architecture complexity, provi-
sionally referred to as “size”.

Let Grandom be a randomly initialised network. Given a target (trained) network ftarget, Con-
jecture 1.1.2 associates to its architecture a size N such that if Grandom is larger than N , then there
exists, among all sub-networks of Grandom, a gsub that performs as well and has at most as many
parameters as ftarget. This is claimed with high probability on the sampling of the parameters of
Grandom, as it cannot hold deterministically.

In particular, the SLTH holds trivially if we allow for exponential over-parameterization since,
for any target network, one would be likely to find a tight approximation of each of its param-
eters among so many random ones. Under this light, this text only concerns arguments for the
hypothesis within polynomial bounds on N .

Even though the SLTH ensures the existence of sub-networks that do not require weight tuning,
Conjecture 1.1.2 is still tied to training: it uses a “trained network” as a reference for a “good
performance”. Since our theoretical understanding of training is still limited, this can be a major
hurdle in tackling the conjecture. Next, we will see that by making the hypothesis even stronger
we can sidestep training altogether, ultimately making it easier to prove.

1.1.2.3 The Stronger Lottery Ticket Hypothesis

Soon after Zhou et al. (2019) and Ramanujan et al. (2020) raised attention to the SLTH, Malach
et al. (2020) proved something even stronger. Section 1.2.1 provides a precise statement of their
result as well as an overview of its proof. For now, however, their main result can be distilled as
follows.

[Informal version of Theorem 1.2.1] For any desired confidence and accuracy, any
fully connected network can be approximated by pruning a random network which is
two times deeper and has polynomially more neurons per layer.

This claim is stronger than the SLTH in that it ensures approximations of any network with
a given architecture (width and depth). In particular, sufficiently over-parameterized networks
contain, at initialisation, a sub-network that approximates the best possible set of weights for a
given task, regardless of whether an optimisation process–no matter the kind–can find it. Thus, to
conclude a formal version of the LTH, it is enough to assume that the architecture associated with
the target network is sufficient to solve the task at hand optimally. This is the reason why we refer
to the additional size of the random network (here, the width and depth) as over-parameterization.

The version of the LTH that we obtain by completely trivialising the notion of training, as
above, diverges considerably from the essence of the original hypothesis. As an example that
aggravates the matter, the sub-networks found by the algorithm introduced by Ramanujan et al.
(2020) do not reach better performance when trained (Frankle, 2023). Hence, the two hypotheses
are currently perceived as distinct objects of research, with investigations on the original LTH
focusing on the dynamics of training while works on SLTH usually exploring the combinatorics
of large networks.
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1.1.2.4 The impact of the SLTH

Although definitely intriguing, the SLTH may first appear to be of little practical relevance. For
instance, the algorithm proposed by Ramanujan et al. (2020), EDGE-POPUP, comes with a signifi-
cant overhead when compared to usual training methods. Storing a score for each parameter of the
random network and repeatedly constructing sub-networks is computationally expensive. More-
over, the technique tends to perform best when searching for sub-networks with sparsity levels of
around 50%,4 which is too low for many use cases.

However, being a novel approach, techniques around the SLTH have much potential for im-
provement. Indeed, multiple studies have already built upon EDGE-POPUP to make it signifi-
cantly more efficient and produce sub-networks that perform better while also being sparser (Chen,
Zhang, & Wang, 2022; Koster, Grothe, & Rettinger, 2022; Y. Zhang et al., 2021).

Furthermore, by putting pruning as a sound alternative to training, the SLTH provides a fresh
perspective on neural network optimisation which is fertile ground for new ideas. As an exam-
ple, Diffenderfer and Kailkhura (2021) proposed a method based on EDGE-POPUP that can train
binary networks to match, and sometimes even surpass, the performance of their full-precision
counterparts, reaching state-of-the-art results on the CIFAR-10 and ImageNet. Binary networks
are the extreme case of quantised networks, as their weights are constrained to be either +1 or
−1. Besides vastly reducing the memory footprint of the network, binary weights also allow for
massive power savings and faster inference since the expensive multiply-accumulate operations
can be replaced by simple XNOR and bit counting instructions (Qin et al., 2020). Multiple works
have followed since with increasing success (Cheng et al., 2022; Gorbett & Whitley, 2023).

In another direction, the SLTH provides a promising way to overcome catastrophic forget-
ting, when DNNs experience a severe loss in performance on previously learned tasks upon be-
ing trained on a new one. In the context of the SLTH, however, the weights are not modified.
Wortsman et al. (2020) and Kang et al. (2022) leverage this property to discover, within a sin-
gle fixed random network, multiple sub-networks that are optimised for different tasks without
interfering with each other.

The hypothesis has also inspired methods for Federated Learning (Pase, Isik, Gunduz, Weiss-
man, & Zorzi, 2022; A. Li et al., 2021; Mozaffari, Shejwalkar, & Houmansadr, 2023; Vallapuram
et al., 2022) and in chapter 6 we will propose applications to the design of integrated circuits.

More generally, the SLTH has provided a reference point for investigating training dynamics
and over-parameterization. We can start by only allowing SGD to select which weights are kept,
as in EDGE-POPUP, and then gradually relax the constraints to study the optimisation process.
Before allowing for full control of the weights, we can, for instance, experiment with restricting
weights to a small set of random values (Aladago & Torresani, 2021), permitting signs to flip
(Koster et al., 2022; Chen, Zhang, & Wang, 2022), adding small amounts of noise (Xiong, Liao,
& Kyrillidis, 2023), or re-randomising weights (Chijiwa, Yamaguchi, Ida, Umakoshi, & Inoue,
2021).

Finally, the reader will notice that in our extensive theoretical discussion of the SLTH, we will
not deal with training whatsoever. There will be no references to gradients, backpropagation, or
loss functions. The discussion will instead have an (extremal/probabilistic) combinatorial flavour:
how large should the random network be to ensure a good probability of finding a sub-network
that approximates a target? In principle, knowledge about artificial neural networks is only needed

4This is, in principle, to be expected as the sparsity of a uniformly sampled sub-networks is concentrated around
50% sparsity.
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to relate the structure of the graphs to their behaviour as functions. This trait makes the SLTH a
particularly inviting object of study for mathematicians and computer scientists who want to step
into machine learning utilising their usual toolkit.

1.2 Technical context

In this section, we introduce the technical context in which our work took place. More precisely,
we overview the arguments that immediately predated ours. We present results in their full for-
mality, but we will only discuss the main ideas behind the proofs.

1.2.1 The original SLTH proof

In this section, we go over the main ideas behind the first result proving a version of the SLTH
with polynomial over-parameterization, which we already discussed informally in section 1.1.2.3.

Theorem 1.2.1 (Malach et al., 2020). Let ε, δ ∈ (0, 1). Given ℓ ∈ N, let d0, . . . , dℓ ∈ N. Let F
be the class of functions from [−1, 1]d0 to Rdℓ such that for each f ∈ F ,

f(x) = Wℓ relu(Wℓ−1 · · · relu(W1x)),

where for i ∈ [ℓ] we have that Wi ∈ Rdi×di−1 , ∥Wi∥∞ ≤ 1/
√

di, and ∥Wi∥spectral ≤ 1. Finally,
let G : Rd0 → Rdℓ be a 2ℓ-layered random network given by

G(x) = V2ℓ relu(V2ℓ−1 · · · relu(V1x)),

where the parameters of G are i.i.d. random variables following Uniform([−1, 1]) and for i ∈ [ℓ]
the weight matrices V2i−1 and V2i have shape dini × di−1 and di × dini, respectively, so that ni

is an integer over-parameterization factor.
Then, there exists a universal constant C > 0 such that if, for i ∈ [ℓ],

ni ≥ Cd4
i ℓ2

ε2 log d2
i ℓ

δ
, (1.1)

then, with probability at least 1 − δ,

sup
x∈[−1,1]d0

sup
f∈F

min
g∈Prune(G)

∥f(x) − g(x)∥∞ < ε. (1.2)

That is, considering a target network class F , suppose we have a random network G which
is two times deeper and polynomially wider than networks in F . Theorem 1.2.1 states that for
any given confidence and accuracy, one can prune G to approximate any network in F . It is
noteworthy that the event of Theorem 1.2.1 is over the random initialisation of G and ensures that
by pruning a single fixed network (usually a randomly initialised one) we can approximate any
network in F . For instance, in the context of figure 1.1, for a fixed set of parameters for G we can
approximate any f by deleting edges from G.

The approach underlying the proof of Theorem 1.2.1 is to leverage the extra neurons in G to
dedicate a substructure to each parameter w in the target network. As highlighted in figure 1.2, this
approach effectively provides a random gadget which we can control via pruning to approximate
the behaviour of w. The strategy is to first establish an upper bound on the size, n, of the gadget
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x Grandom(x)

Figure 1.1: Illustration a neural network f ∈ F with a 3-layered architecture (above) and the
structure of the associated random network G (below) as in Theorem 1.2.1. The activation of
filled nodes (in black) is computed via a non-linearity (relu).

that guarantees the approximation of w with specified confidence and accuracy. Then, we analyse
the relationship between the global error in equation (1.2) and the error in each approximation,
so we can ensure that the individual approximations are tight enough to yield the desired global
accuracy. Finally, by proceeding similarly for the confidence, we can conclude the proof by taking
a union bound over all parameters in the target network.

··
·

x y =
∑

i∈[n] Vi · σ(Uix)

U 1 V
1

U2 V
2

U3 V3
U

n−1 Vn−1

U
n V n

σ

x wxw

Figure 1.2: Illustration of the gadget used in the proof of Theorem 1.2.1. For each parameter
w (on the left) in the target network, we dedicate a substructure to approximate it (on the right).
Notice that w is a fixed given scalar, while the Uis and Vis are random variables. For the sake of
generality, here we consider an arbitrary activation function, σ.

Therefore, we can start by focusing on the approximation of a single parameter w ∈[
−1/

√
n, 1/

√
n
]
. To understand how to control the behaviour of the gadget represented in fig-

ure 1.2, we first consider the case where the activation function σ is the identity. As the left
diagram in figure 1.3 shows, in this case, by pruning all other edges in the gadget5 we can select

5One can effectively prune both edges by setting Ui = 0 or Vi = 0 (or both).
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i∗ such that Ui∗ ≈ w and Vi∗ ≈ 1 (or vice-versa), so that y =
∑

i∈[n] ViUix = Vi∗Ui∗x ≈ wx.
Given ε′ ∈ (0, 1), since U, V ∼ Uniform [−1, 1]n, we have that, for all i ∈ [n],

Pr
[
|w − Ui| ≤ ε′] ≥ ε′

2 , 6

and

Pr
[
|1 − Vi| ≤ ε′] = ε′

2 .

As the experienced reader may have anticipated, we can conclude that ensuring the existence of a
suitable i∗ with probability at least 1 − δ′ requires that

n = O
( 1

ε′2 log 1
δ′

)
.

··
·

x y ≈ wx≈ w ≈ 1

σ = identity
··

·

x y ≈ relu(wx) − relu(−wx)
≈ w ≈ 1

≈
−

w ≈
−1

σ = relu

Figure 1.3: Pruning scheme to approximate w for the cases where the activation function σ is the
identity (left) or relu (right).

Now, when the activation function σ is the relu, as in Theorem 1.2.1, we rely on the identity

x = relu(x) − relu(−x), (1.3)

which holds for all x ∈ R. To this end, as depicted in the right diagram in figure 1.3, we can select
indices i+, i− ∈ [n] that behave as i∗ depending on the sign of x. Namely, we seek Ui+ ≈ w and
Vi+ ≈ 1, and Ui− ≈ −w and Vi− ≈ 1.7 For such indices, assuming without loss of generality
that w is positive, if x > 0, we have that

Vi+ · relu(Ui+ · x) + Vi− · relu(Ui− · x) ≈ 1 · relu(wx) − 1 · relu(−wx)
= wx − 0
= wx

and, if x < 0, similarly,

Vi+ · relu(Ui+ · x) + Vi− · relu(Ui− · x) ≈ 0 − (−wx)
= wx,

6The probability is equal to ε′ if w ± ε′ ∈ [−1, 1].
7Once again, the order could be flipped.
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where, for the sake of simplicity, we assumed the approximation to be precise enough to preserve
signs. Since the cases x = 0 and w = 0 are trivial, the analysis above suffices to show that suitable
pruning can shape the gadget in figure 1.2 into emulating any parameter of the target network.

The rest of the argument consists of using the strategy to approximate progressively larger
structures from the target network: a neuron, then a layer, then multiple layers. Accordingly,
we require progressively smaller values of δ′ to keep the overall confidence within the threshold
guaranteed in the statement of Theorem 1.2.1. Effectively, a union bound is used at each step
of this process to ensure that the probability of failure is at most δ. In a similar way, each step
demands gradually smaller values of ε′ so that the accumulated error is below the threshold ε in
the statement. The restrictions on the norms of the weight matrices of f and its domain, [−1, 1]d0 ,
serve to constrain the error propagation. The following remark highlights that any approximation
result about ReLU networks must make some form of those hypotheses.

Remark 1.2.1 – The ReLU function is positive homogeneous, that is, relu(αx) = α relu(x) for all
α ≥ 0 and x ∈ R, thus, so are networks that have relu as the activation function. Therefore, if two
such ReLU networks f, g : Rd → R disagree to any extent, then the divergence of their outputs
can be made arbitrarily large. More precisely, if |f(x) − g(x)| = ε > 0 for some x ∈ Rn, then
|f(αx) − g(αx)| = αε for all α ≥ 0.

In particular, for the type of dense network considered in Theorem 1.2.1 we can apply the same
reasoning to the weight matrices (via linearity) and conclude that their norm must be bounded.
Though there is no need to specify which norm is used, as they are all equivalent in finite-
dimensional spaces, this context makes the use of the spectral norm more natural since

∥A∥spectral = sup
x∈Rd:∥x∥2≤1

∥Ax∥2.

1.2.2 Optimal bounds via Subset Sum Problem

By proving Theorem 1.2.1, Malach et al. (2020) obtained the first polynomial bound on the over-
parameterization required to ensure the SLTH. As is common for first results, the bound obtained
is not optimal and some of the steps may be somewhat overzealous. Mainly, when controlling the
gadget illustrated in figure 1.2 to approximate a target weight, we can be a bit less restrictive.

Let us once again assume the activation function σ to be the identity to simplify things. Later,
we can handle the actual case of σ = relu by leveraging identity equation (1.3) once more. As
figure 1.4 summarises, we wish to have

wx ≈ y

=
∑
i∈[n]

ViUix.

Setting T = V ⊙ U, we have that∑
i∈[n]

ViUix =
∑
i∈[n]

Tix

=
(∑

i∈[n]
Ti

)
· x.
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Moreover, by pruning U or V we can fully control which entries of T are set to zero. That is,
altogether, our goal is to find a subset S ⊆ [n] for which

w ≈
∑
i∈S

Ti.

··
·

x y =
∑

i∈[n] ViUix

U 1 V
1

U2 V
2

U3 V3
U

n−1 Vn−1

U
n V n

σ = identity

Figure 1.4: Random gadget for figure 1.2 with identity as activation function.

Orseau, Hutter, and Rivasplata (2020) takes advantage of this observation to obtain a better
bound than Theorem 1.2.1. Namely, instead of equation (1.1), they show that

ni ≥ Cdi log diℓ

ε
, (∗)

where C is a universal constant different from that in Theorem 1.2.1 and we omitted the term
on the confidence δ for simplicity. The main strategy behind this improvement is to select en-
tries Ti that approximate different powers of two, i.e., 2−s for s ∈ {1, 2, . . . , ⌈log 1/ε⌉}. In this
way, given any w we can approximate it by considering its binary representation and further prun-
ing T to leave only entries corresponding to the “on” bits.8To be exact, the authors obtain the
bound in equation (∗) using a “goldary” representation instead of a binary one: they employ a
decomposition in base 1/ϕ where ϕ = (1 +

√
5)/2 ≈ 1.62 is the golden ratio. Since the values

associated with most bits are quite small, the authors need the distribution of the random weights
to be concentrated around zero, so they assume each parameter of the random network to follow a
hyperbolic distribution.

The concurrent work Pensia, Rajput, Nagle, Vishwakarma, and Papailiopoulos (2020), how-
ever, achieved essentially optimal bounds by recognising the setup as a randomized instance of
the classical Subset Sum Problem (SSP). In the SSP, one is given as input a set of n integers
{x1, x2, . . . , xn} and a target value z, and wishes to decide if there exists a subset of S that sums
to z. That is, one is to reason about a subset S ⊆ [n] such that

∑
i∈S xi = z.

This problem is central to complexity theory, figuring among Garey and Johnson’s six basic
NP-hard problems (Garey & Johnson, 1979),9 and has found a wide range of applications in
computer science and beyond, which we summarise in section 2.1. Among the vast literature
on the subject, when studying the expected optimum of a randomised version of the SSP, Lueker
(1998) proved that

8Going back to an analogy from the first pages of the thesis, we could say the authors look for “LEGO® bricks” in
the sample.

9Albeit as a slight variation. Section 2.1 details this relationship.
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[Informal version of Theorem 2.1.1] For a wide class of distributions, given a set of n
independent random variables X = {X1, . . . , Xn}, it suffices for n to be of the order
of log 1/ε to ensure, with high probability, that for every z ∈ [−1, 1] there exists a
subset of X whose sum approximates z up to error ε.

This beautiful result fits our setup like a glove. To see its asymptotic optimality, notice that
there are 2n subsets of X . Each subset corresponds to a sum (of its elements). Intersections apart,
each sum can serve as a suitable approximation for all the values in an interval of radius ε around
the sum. Since covering [−1, 1] with intervals of radius ε takes at least ⌈2/2ε⌉ of them, we must
have

2n ≥ 1
ε

,

that is

n ≥ log 1
ε

.

Pensia et al. (2020) leveraged this optimality and other ideas to improve on Theorem 1.2.1,
obtaining the same thesis while, instead of equation (1.1), only requiring that

ni ≥ C log diℓ

min{ε, δ}
, (1.4)

again, for a different universal constant C. The authors were also able to lift one of the hypotheses
on the parameters of the target network. For i ∈ [ℓ], their result assumes only that ∥Wi∥spectral ≤
1 while Theorem 1.2.1 also needs ∥Wi∥∞ ≤ 1/

√
di. Finally, they carry the generality on the

choice of distribution from Lueker’s theorem. Namely, the weights of the random network may
follow any law that “contains some scale of the uniform”: a distribution whose probability density
function φ satisfies φ(x) ≥ α for all x ∈ [−β, β], where α and β can be any positive constants.

Pensia et al. (2020) also showed that the bound in equation (1.4) is essentially optimal. To be
more precise, let F be the family of linear networks whose spectral norm is at most one, i.e.,

F =
{

f( · ; W ) : [−1, 1]d → Rd, f(x; W ) = W x
∣∣∣ ∥W ∥spectral ≤ 1

}
.

The authors proved that given a random network G, regardless of the distribution of the weights,
if Prune(G) contains an approximation of each function in F up to error ε (as in equation (1.2)),
then G must have at least d2 log 1/ε parameters. In particular, if G is a 2-layer network, its
width must be at least d log 1/ε. That is, G has to be “over-parameterized” by at least a factor of
log 1/ε. The argument underlying this lower bound is essentially the one we provided above for
the optimality of Lueker’s result.

Lastly, we remark that both Orseau et al. (2020) and Pensia et al. (2020) require the random
network to be twice as deep as the target architecture.

1.3 Our contributions

With the technical context put in place in section 1.2, we now outline our contributions.

1.3.1 Simplified analysis of the Subset Sum Problem

In this section, we overview our alternative, simpler proof of Theorem 2.1.1.
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1.3.1.1 Motivation

We saw in section 1.2 that a result by Lueker on the SSP became a powerful tool in the context of
the SLTH. Its “rediscovery” by Pensia et al. (2020) was sure to spark a renewed interest in it, as the
theorem is not only strong but also has a simplicity that makes it remarkably easy to understand
and use.

This elegance turns out to be inherited from the SSP itself. Even though it is one of the
most classic NP-complete problems (Garey & Johnson, 1979), it is also known to lead to simple
analyses under many techniques, even the most intricate ones (Mertens, 2001). The problem has
a neat recursive structure that makes it easy to approach via dynamic programming. To illustrate
it, consider a set of values x1, . . . , xn. Then, we recursively define sets At to keep track of all
possible subset-sums using the first i numbers. Assuming that summing all elements in the empty
subset amounts to zero, we start with A0 = {0}. From there, we define

A1 = A0 ∪ {x1}
A2 = A1 ∪ {x2, x1 + x2}

and, more generally,

At+1 = At ∪ {a + xt+1 | a ∈ At},

for t ∈ [n − 1]. We can leverage this simple strategy to solve the SSP in polynomial time if ε is
fixed (Bellman, 1966).

The union of a tendency towards elegance and inherent algorithmic complexity motivated
Brian Hayes to name the SSP “the easiest hard problem” (Hayes, 2002).10 This property gives
the problem an important didactic role.

Upon exploring the original proof of Lueker’s result, we realised that the inherent simplicity
of the SSP does not hold on for long. Lueker (1998) approaches Theorem 2.1.1 through the under-
lying recursiveness that we touched above. The author uses it to keep track of random variables
Vt associated with the proportion of the values in the interval [−1, 1] that can be approximated by
the sum of some subset of the first t variables, X1, . . . , Xt.

However, this intuitive direction is quickly obscured by the need to tame the stochastic de-
pendencies of the process. Lueker (1998) does so by employing tools from martingale theory,
which only becomes possible after a non-linear transformation of Vt.11 This not only hinders any
intuition on the obtained martingale but also forces the argument into a somewhat cluttering case
analysis.

1.3.1.2 Our main result

Motivated by the elegance of the problem, in chapter 2 we present a simplified proof of Theo-
rem 2.1.1. We start in the same direction as the original argument, tracking the mass of values
with suitable approximations as we reveal the values of the random variables X1, . . . , Xn one by
one. However, we employ a random variable that maps more directly to the intuitive recursion of
the SSP, while Lueker (1998) requires some modifications to it. We proceed to directly analyse
this variable, without any transformations.

10More precisely, the variant where the value to be approximated is exactly half of the sum of all xis. This version
of the SSP is called the Number Partition Problem.

11The exact function is ψ(x) = log x− ln(1 − x) + x/2.
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As it is common in rumour spreading contexts (Doerr & Kostrygin, 2017), this analysis reveals
two expected behaviours: as we consider the first variables, the proportion of approximated values
grows very fast; then, after a certain point, the proportion of non-approximable values decreases
very fast. The rumour spreading framework allows us to deal with the stochastic dependencies of
the process with classical tools, such as Markov’s inequality and Hoeffding’s bounds. Ultimately,
this results in a substantially more elementary proof that is also more direct and attains itself to the
intuition of the problem.

We present the full discussion in chapter 2. The chapter is based on our work da Cunha,
d’Amore, et al. (2022), which was accepted at the Thirtieth European Symposium on Algorithms
(ESA), track S (dedicated to simplifications of existing results).

1.3.2 Generalisation of the SLTH to Convolutional Neural Networks

In this section, we overview our generalisation of the results on the SLTH by Malach et al. (2020);
Orseau et al. (2020); Pensia et al. (2020) to Convolutional Neural Networks (CNNs). To this end,
we need to extend our notation.

1.3.2.1 Notation

We denote slices of tensors by indexing them with colons. For example, the expression X :,:,i
represents a 2-D slice of a 3-D tensor. We refer to the axis of 4-D tensors as rows, columns,
channels, and filters, in this order.12 We reserve the term kernel to address entire 4-D tensors (a
vector of filters).

We only consider explicitly 2-dimensional convolutions with multiple channels, multiple ker-
nels and enough zero-padding to preserve the output shape. However, as we discuss in sec-
tion 4.2.1, our results can be generalised to many other variants.

Definition 1.3.1 (Convolution). Given a filter K ∈ Rd×d×c and an input tensor X ∈ RD×D×c, the
2-dimensional discrete convolution between K and X is the D × D matrix with entries given by

(K ∗ X )i,j =
∑

i′,j′∈[d],k∈[c]
Ki′,j′,k · Xi−i′+1,j−j′+1,k for i, j ∈ [D],

where X is suitably zero-padded so that the width and height of the output match those of the
input. As is usual for CNNs, this is not the case for the depth (number of channels) and, since we
assume the depth of the input and the kernel to be the same (c), this implies that the output has a
single channel.

For a kernel K ∈ Rd×d×c0×c1 we perform the convolution with each of the c1 filters indepen-
dently and stack the results along the channel axis, obtaining a D × D × c1 tensor. Hence, using
tensor slices, we can define K ∗ X as the D × D × c1 tensor such that

(K ∗ X ):,:,ℓ = K :,:,:,ℓ ∗ X for ℓ ∈ [c1].

Alternatively, K ∗ X is the tensor with entries given by

(K ∗ X )i,j,ℓ =
∑

i′,j′∈[d],k∈[c0]
Ki′,j′,k,ℓ · Xi−i′+1,j−j′+1,k for i, j ∈ [D], ℓ ∈ [c1].

12It is worth mentioning that Goodfellow et al. (2016) uses a different ordering since most of our notation comes
from that reference.
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A CNN is a neural network that uses convolutions (instead of the usual matrix multiplications)
in at least one of its layers.

Finally, to take advantage of the full generality of Lueker’s result in our statements, given
α, β > 0, let us define Pα,β to be the set of all probability distributions P over R such that

φP (x) ≥ α, for all x ∈ [−β, β],

where φP is the probability density function of P .

1.3.2.2 Motivation

All empirical works leading to the SLTH we mentioned so far performed their experiments with
CNNs, including the experiments of Frankle and Carbin (2019), which inaugurate the original
LTH. There is good reason for that.

The convolution operation is a generalisation of the matrix multiplication underlying fully-
connected layers, with convolutional layers being a regularised version of fully-connected ones.
The first form of regularisation is structured sparsity: instead of connecting each output neuron to
all input neurons, convolutional layers enforce a degree of spatial locality by only connecting to
clusters of input neurons (usually small square regions). This structure per se already makes the
network especially suited for processing visual data, as demonstrated by applications of Locally
Connected Networks (LCNs) (Gregor & LeCun, 2010; Huang, Lee, & Learned-Miller, 2012;
Taigman, Yang, Ranzato, & Wolf, 2014; Y. Sun, Liang, Wang, & Tang, 2015; Grönquist et al.,
2021). The second form of regularisation inherent to convolutional layers is parameter sharing:
unlike in LCNs, CNNs use the same set of weights for the connections to each input cluster.
Compared to fully-connected networks, or even to LCNs, the weight sharing dramatically reduces
the number of parameters in CNNs and makes it independent of the input size, which can be very
large for many applications. This makes CNNs more robust to overfitting and much more efficient
to train and evaluate. Those properties made CNNs central to the Renaissance of Deep Learning
in the 2010s, starting with AlexNet (Krizhevsky et al., 2012) and dominating the field until very
recently.

Correspondingly, all of the works we reviewed in section 1.2 suggest a generalisation of their
results to CNNs as a natural next step. This may be somewhat unexpected, since the convolution is
linear and, thus, can be encoded as a matrix multiplication. In fact, most implementations of con-
volutional layers in DL frameworks use matrix multiplications under the hood, a technique called
im2col (Chellapilla, Puri, & Simard, 2006). However, to cover the weight-sharing property of
the convolution this conversion usually requires a large number of redundant parameters. Hence,
applying the result by Pensia et al. (2020) without taking into account the convolutional structure
would lead to a polynomial bound instead of a logarithmic one.

On the other hand, to see a matrix-vector multiplication as a convolution, it suffices to con-
sider each row of the matrix as a filter and, perhaps, reshape the tensors involved, depending on
the convention used. Crucially, this is only a reduction to a special case and adds no overhead
whatsoever.

1.3.2.3 Our main result

Now we overview our generalisation of the results by Malach et al. (2020), Orseau et al. (2020),
and Pensia et al. (2020) to CNNs within logarithmic bounds on the over-parameterization.
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For the convenience of the reader, we also state our main result below.

Theorem (4.2.3). Let D, c0, ℓ ∈ N, and ε, δ, α, β ∈ R>0. For i ∈ [ℓ], let di, ci, ni ∈ N. Let F be
the class of functions from [0, 1]D×D×c0 to RD×D×cℓ such that, for each f ∈ F

f(X ) = K (ℓ) ∗ relu(K (ℓ−1) ∗ · · · relu(K (1) ∗ X )),

where, for i ∈ [ℓ], K (i) ∈ [−1, 1]di×di×ci−1×ci and ∥K (i)∥1 ≤ 1.
Finally, let G : [0, 1]D×D×c0 → RD×D×cℓ be a 2ℓ-layered random CNN given by

G(X ) = L(2ℓ) ∗ relu(L(2ℓ−1) ∗ · · · relu(L(1) ∗ X ))

where the parameters of G are i.i.d. random variables following a distribution P ∈ Pα,β and for
i ∈ [ℓ] the kernels L(2i−1) and L(2i) have shape di × di × ci−1 × cini and 1 × 1 × cini × ci,
respectively, so that ni is an integer over-parameterization factor.

Then, there exists Cα,β > 0, such that if, for i ∈ [ℓ],

ni ≥ Cα,β log ci−1cid
2
i ℓ

min{ε, δ}
, (1.5)

then, with probability at least 1 − δ, the following holds for all f ∈ F :

sup
X∈[0,1]D×D×c0

min
g∈Prune(G)

∥f(x) − g(x)∥∞ < ε,

where Prune(G) is the set of all networks that can be obtained by pruning G.

The theorem above bares a deep analogy with Theorem 1.2.1 and even more so with the result
by Pensia et al. (2020), given the logarithmic bound in equation (1.5). Accordingly, much of our
discussion from section 1.2 applies here as well. To minimise repetition, we use this opportunity
to assume a flipped perspective in our discussion this time. Instead of reasoning in terms of the
over-parameterization required to approximate a target architecture, we can see Theorem 4.2.3 as
a statement about the expressiveness of random CNNs.

Under this light, Theorem 4.2.3 establishes a lower bound on how much a “train by pruning”
algorithm such as EDGE-POPUP can, in principle, achieve. Given suitable hypotheses, the result
ensures that starting from a random CNN G, with high probability, it is possible to carve it to
reveal sub-CNNs g that approximate any sufficiently smaller CNN f . More precisely, any f with
half the number of layers of G and a channel/filter count that is smaller by a logarithmic factor. In
particular, given a specific task, by pruning G we can obtain a g that approximates a CNN f with
the best performance among all the networks in F . Therefore, we want the architecture associated
with F to be as expressive as possible, so that the best f is as good as possible. This is the reason
to seek small bounds in equation (1.5).

Remarkably, the properties of convolutions allow for a bound that is independent of the input
height and width D, which tend to be large in practice. There is, however, a weak dependency on
the number of channels of the input c0. This is unavoidable since we adopted the convention of
having the depth of the filters match the depth of the input. Nonetheless, this dependency should
cause little concern as it only applies to the first layer and the depth of the input tends to be small
in applications.
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Regarding the hypotheses of our result, the assumption that the kernel of every second layer
has shape 1 × 1 × . . . may seem restrictive, but it is a mere artefact of the proof. We chose to keep
it explicit in the statement for added generality since one can readily prune entries of an arbitrarily
shaped tensor to enforce the desired shape.13

Moreover, while previous results restrict the parameters in terms of the spectral norm of the
weight matrices, we employ the 1-norm of tensors. This choice is tied to our use of Young’s
Convolution Inequality to control the propagation of error through convolutions. We prove the
exact instance of the inequality required for our argument in appendix F. As we discussed in
Remark 1.2.1, the positive-homogeneity of ReLU networks demands a constraint on the norm
of the weights and of the input. The hypothesis of non-negativity of the input, however, is not
necessary. As we will bring in section 4.2.1, since the output of the ReLU activations is non-
negative, this restriction is only pertinent to the first layer of the network. Regardless, as noted by
the subsequent work Burkholz (2022a), one can easily adapt our original argument to allow for
negative inputs. It suffices to place the kernels with shape 1 × 1 × . . . before the ones with shape
di × di × . . . rather than after.

Finally, we note that with little modification, if any, it is possible to adapt our result to sup-
port other types of convolutional layers, such as those with different values of stride, padding, or
dilation, as well as other operations that can be reduced to convolutions, e.g., average pooling.

Chapter 4 provides a full discussion of the proof of Theorem 4.2.3, including sketches for the
arguments used to obtain each result (see section 4.2). That chapter is based on our work (da
Cunha, Natale, & Viennot, 2022), which was published in the proceedings of the Tenth Interna-
tional Conference on Learning Representations, (ICLR).

1.3.3 Subset-Sum Problem in multiple dimensions

In this section, we overview our work on a multidimensional analogous of Theorem 2.1.1. Our
discussion of the SSP so far should, ideally, persuade the reader that the importance of the problem
alone justifies any natural generalisation of it. Still, our overall history leads quite seamlessly to
some extra motivation.

1.3.3.1 Motivation

So far, we have only discussed pruning neural networks with complete freedom to remove any
weight, which is referred to as unstructured pruning. However, this type of pruning usually leads
to unstructured sparsity, which can be difficult to leverage in practice, as we will discuss further in
section 1.3.4 and its associated chapter 5. In short, common hardware is best suited to operate on
dense, regular patterns of data. This is also true on the software side, with DL frameworks often
supporting sparse computations to a lower degree if compared to dense operations.

Fortunately, can effectively overcome these issues by constraining the pruning to follow spe-
cific patterns. This is referred to as structured pruning. In the extreme, we can only consider
pruning whole neurons or even entire layers of the network. We can leverage both strategies to
obtain a smaller dense version of the original network rather than a sparse one of the same size.
Figure 1.5 illustrates this idea for the case of neuron pruning.

13In reality, our argument only needs the filters to have at most one non-zero entry per channel.
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Figure 1.5: On the left, we illustrate the effect of structured pruning of neurons in a weight matrix
of a fully-connected layer. The rows in white correspond to neurons pruned in this layer while the
columns in white are the effect of removing neurons from the previous layers. On the right, we
allude to the possibility of collapsing the pruned matrix into a smaller, dense one.

For those types of pruning, we end up with a network that not only has fewer parameters but
also a dense layout that can be leveraged as usual by hardware and software. This makes it trivial
to convert pruning into actual computational savings.

Therefore, it is only natural to consider a variant of the SLTH that handles structured pruning.
Unfortunately, however, our main tool to work with the SLTH, Theorem 2.1.1, can only handle
effectively individual random variables. That is, applying it to random vectors leads to exponential
bounds.

1.3.3.2 Our main results

For the convenience of the reader, we also state the main result of chapter 3 below.

Theorem (3.1.2). Given ε ∈ (0, 1) and d, n ∈ N, consider n independent d-dimensional standard
normal random vectors X1, . . . , Xn. There exists a universal constant C > 0 for which, if

n ≥ Cd3 log 1
ε

· log d

ε
,

then, with high probability, for all z ∈ [−1, 1]d there exists a subset Sz ⊆ [n] for which∥∥∥z −
∑
i∈Sz

Xi

∥∥∥
∞

≤ 2ε.

Moreover, the approximations can be achieved with subsets of size n
6
√

d
.

This result is quite similar to Theorem 2.1.1. The replacement of the uniform distribution with
a normal serves mainly to simplify the analysis, while the worse bounds on the sample size, as
well as the note on the size of the subsets,14 are by-products of our strategy.

We can infer a lower bound on the sample size required to achieve a given accuracy through
a counting argument analogous to the one we provided for the single-dimensional case in sec-
tion 1.2.2. Namely, in d dimensions, covering the set [−1, 1]d requires at least 2d log 1/ε hyper-
cubes of radius ε. Thus, since there are 2n possible subsets of sample of n vectors, we need that
n = Ω(d log 1/ε) to be able to approximate every vector in [−1, 1]d.

14Notice that Theorem 2.1.1 does not precise how many elements are summed to obtain the approximations. In
particular, results on the SLTH that leverage Theorem 2.1.1 cannot provide the exact sparsity of the resulting sub-
networks.
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Conversely, in expectation, having n = O(d log 1/ε) is sufficient even if we only consider
subsets of size n/2. There are

( n
n/2
)

≈ 2n−o(n) such subsets, each summing to a random vector
distributed as N (0, n

2 · Id). Hence, given any z ∈ [−1, 1]d, each of those sums has probability

approximately εd(n/2)− d
2 = 2−d log 1

ε
− d

2 log n
2 of being at most ε far from z. We can then conclude

that the expected number of approximations is 2n−o(n) ·2−d log 1
ε

− d
2 log n

2 , which is still of the order
of 2n−o(n) provided that n ≥ Cd log 1/ε for a sufficiently large constant C.

Therefore, the multidimensional version of the problem brings us to the same general chal-
lenge as the single-dimensional one: to provide sufficiently strong concentration bounds while
handling the stochastic dependency between subsets of the sample. Unfortunately, the approaches
used to obtain Theorem 2.1.1—both the original (Lueker, 1998) and the one we propose in chap-
ter 2—lead to exponential bounds if extended to multiple dimensions in any way we could envi-
sion.

Our argument goes in a different direction. We employ a second-moment approach and control
dependencies by restricting the analysis to a family of subsets with sufficiently small pairwise in-
tersections. We then proceed to carefully bound the contribution of these constrained intersections
to the second moment of our variables of interest.

Finally, we illustrate the applicability of our result by considering the Neural Network Evo-
lution (NNE) model recently introduced by Gorantla, Louis, Papadimitriou, Vempala, and Yadati
(2019). It is natural to wonder whether their model is universal, in the sense that, with high proba-
bility, it can approximate any dense feed-forward neural network. While applying Theorem 2.1.1
to this end would yield exponential bounds on the required over-parameterization, in section 3.6
we use Theorem 3.1.2 to prove the universality of the NNE model within polynomial bounds.

Chapter 3 provides a full discussion of the results overviewed in this section. That chapter is
based on our work (Becchetti et al., 2022).

1.3.4 Extension of the SLTH to structured pruning

In this section, we overview our proof of our extension of the SLTH to structured pruning.

1.3.4.1 Motivation

Wilkinson and Reinsch (1971) defines a sparse matrix as one that has enough zeros to make it
worth taking advantage of them. This pragmatic definition alludes to the fact that leveraging
sparse computations is not as straightforward as it might seem, as we previewed in section.

Regarding memory, saving the space otherwise occupied by zeros comes with the cost of
storing the location of the remaining entries. Moreover, there are many different ways to represent
sparse structures, each with trade-offs and overheads of its own (Pooch & Nieder, 1973). If the
degree of sparsity is not high enough, those costs may not pay off.

As for the computational side, the main issue is that current commodity hardware is optimised
for dense operations. For instance, experiments with GPU implementations by Han et al. (2017)
found that even at almost 90% sparsity, their pruned networks were slower than the original dense
ones. J. Yu et al. (2017) experimented extensively with sparse neural networks on both CPUs and
GPUs. They found that in most configurations they tried pruning worsens performance despite
an average sparsity of 80%. In particular, their CPU implementation of AlexNet ran 25% slower
when 89% of the parameters were pruned.
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Discussing the multiple reasons for hardware to have trended towards dense operations is be-
yond the scope of this thesis. However, for the sake of the next section, we remark that this
tendency traces back to the fact that memory access is the main bottleneck in modern hardware.
Moving memory takes orders of magnitude more time and energy than performing actual logi-
cal instructions. For example, in simpler architectures that cannot hide the latency of memory
accesses, such as microcontrollers, pruning consistently improves the performance of neural net-
works (J. Yu et al., 2017).

The underwhelming effectiveness of general neural network pruning in practice is also due to
software limitations. Sparse computations are historically targeted at scientific computing appli-
cations, where they are quite common (Davis & Hu, 2011). The levels of sparsity in those applica-
tions are typically higher than 99.9%, while network pruning usually achieves 50% to 99% (Gale,
Zaharia, Young, & Elsen, 2020). Since most classical libraries for sparse computations are de-
signed for scientific computing, implementing sparse neural networks with tools such as Sparse
BLAS (Duff, Heroux, & Pozo, 2002) or cuSPARSE (Naumov, Chien, Vandermersch, & Kapasi,
2010) generally leads to weak performance.

Taking into account the above considerations, it seems fair to say that sparse neural networks
are yet to win the Hardware Lottery: the phenomenon that some research ideas fail (thrive) not
necessarily because of their inherent flaws (virtues), but because they happen to align poorly (well)
with the hardware and software of the time (Hooker, 2021).

This situation might be changing, on both the hardware and software sides Nonetheless, until
then, one alternative is to prune large structures of the network, such as neurons or entire layers. As
we outlined in the previous section, this leads to smaller dense networks, which can directly run on
the same hardware as the original ones without penalties. This approach works well in many cases,
especially for CNNs when considering the pruning of entire filters (Kuzmin et al., 2019). However,
constraining pruning to such coarse-grained structures severely limits the space of possible pruned
networks and may prevent us from removing many parameters before performance degrades too
much.

Alternatively, one can always win the (hardware) lottery by “cheating”. While in the next
section we will touch on the idea of designing dedicated hardware, in the context of pruning we
can also “cheat” by removing structures in patterns tailored to specific devices. As it turns out,
weaker structural constraints such as strided sparsity (Anwar, Hwang, & Sung, 2017) (figure 5.1b)
or block sparsity (Siswanto, 2021) (figure 5.1b) are already sufficient to deliver the bulk of the
computational gains that structured sparsity can offer, so long as the patterns are chosen to match
the hardware. For example, Elsen, Dukhan, Gale, and Simonyan (2020) decides to prune blocks
of size 16 in order to match the 16-wide L1 cache (and SIMD units) of the ARM CPUs they target.

1.3.4.2 Our main result

Despite representing the whole counterpart of unstructured pruning, to the best of our knowledge,
there have been no previous results on structured pruning in the context of the SLTH. In chapter 5,
we leverage the techniques developed in chapter 3 to fill this gap.

Before stating the main result of chapter 5 again for the convenience of the reader, we need to
introduce versions of our notation Prune for the types of structured pruning we consider.

Given X ∈ Rh×w×c×f , we denote by FilterPrune(X ) the set of tensors obtained by zeroing
some of the filters of X . That is, setting to zero all entries of X :,:,:,i for all i in some S ∈ 2[f ].
Similarly, given a CNN f , we use the notation FilterPrune(f) to denote the set of CNNs obtained
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by zeroing some of the filters of some of the kernels of f . We remark that pruning a filter of a
convolutional layer makes the corresponding channel of the following layer futile, so it can also
be pruned without affecting the output of the network. The effect of neuron pruning we depicted
in figure 1.5 is an instance of this. Also, as in the figure, we can collapse the resulting CNN into a
smaller one by completely removing the pruned filters/channels.

Given a positive integer n, a tensor X ∈ Rh×w×c×cn is called n-channel-blocked if and only
if

Xi,j,k,l =

1 if
⌈

l
n

⌉
= k,

0 otherwise,

for all i, j ∈ [d], k ∈ [c], and l ∈ [cn].

Theorem (5.3.1). Let D, c0, ℓ ∈ N, and ε ∈ R>0. For i ∈ [ℓ], let di, ci, ni ∈ N. Let F be the
class of functions from [−1, 1]D×D×c0 to RD×D×cℓ such that, for each f ∈ F

f(X ) = K (ℓ) ∗ relu(K (ℓ−1) ∗ · · · relu(K (1) ∗ X )),

where, for i ∈ [ℓ], K (i) ∈ Rdi×di×ci−1×ci and ∥K (i)∥1 ≤ 1.
Let also H : [−1, 1]D×D×c0 → RD×D×cℓ be a 2ℓ-layered random CNN given by

H(X ) = L(2ℓ) ∗ relu(L(2ℓ−1) ∗ · · · relu(L(1) ∗ X ))

where the parameters of H are i.i.d. random variables following a standard normal distribution
and for i ∈ [ℓ] the kernels L(2i−1) and L(2i) have shape 1 × 1 × ci−1 × 2nici−1 and di × di ×
2nici−1 × ci, respectively.

Finally, let Hblock be the random network obtained by pruning H just enough to make each
L(2i−1) ni-channel-blocked, for i ∈ [ℓ].

Then, there exists a universal constant C > 0, such that if, for i ∈ [ℓ],

ni ≥ Cd13c6
i log3 d2cici−1ℓ

ε
,

then, with probability at least 1 − ε, for all f ∈ F , we have that

sup
X∈[−1,1]D×D×c0

min
h∈FilterPrune(Hblock)

∥f(x) − g(x)∥∞ < ε.

As expected, we prove the theorem above using a multidimensional variation of Theo-
rem 2.1.1. We cannot apply Theorem 3.1.2 directly because the weight-sharing property of CNNs
leads to stochastic dependencies between the random vectors while Theorem 3.1.2 assumes them
to be independent. Yet, we use techniques similar techniques in our argument, as hinted by the
normal distribution of the random parameters instead of the uniform one in Theorem 4.2.3.

In our proof, the pruning of filters takes place at layers 1, 3, . . . , 2ℓ − 1. If we completely
remove those filters and the corresponding channels in the next layer, the overall modification
yields a CNN with kernels L̃(1)

, . . . , L̃(2ℓ)
such that, for i ∈ [ℓ],

shape(L̃(2i−1)) = 1 × 1 × ci−1 × 2ci−1mi

and

shape(L̃(2i)) = di × di × 2ci−1mi × ci,
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where mi =
√

ni/(C1 log 1
ε ) for a universal constant C1. As we alluded to in section 1.3.3.2, we

can only specify the exact shape of the kernels because the strategy we employ to prove results on
the multidimensional Subset Sum Problem involves subsets with a specific size.

Finally, we have also integrated into our statement the tactic of placing the kernels with shape
1×1× . . . before the ones with shape di ×di × . . . to allow for negative inputs (Burkholz, 2022a).

Chapter 5 provides a full discussion of the results overviewed in this section. That chapter
is based on our work (da Cunha, d’Amore, & Natale, 2023), which was submitted to this year’s
Conference and Workshop on Neural Information Processing Systems (NeurIPS 2023).

1.3.5 Application to circuit design

In this section, we overview our proof of our extension of the SLTH to structured pruning.

1.3.5.1 Motivation: O(1) matrix multiplication

Multiplying two numbers in a digital computer involves a circuit with about a thousand transistors
(an electrically controlled switch, for our purposes). Analogically, on the other hand, Ohm’s law
tells us that applying a voltage v across a resistance r induces a current of magnitude v/r to flow
through it. Expressing it in terms of the inverse resistance, the conductance, we obtain the desired
product vg, where g = 1/r.

The analogue computation happens faster and especially more efficiently than the mere switch-
ing of a single transistor of the digital circuit. Moreover, in conventional computers, recovering
the value from memory to operate on it takes much more time and energy than performing the
actual computation. Analogically, however, the memory is built into the computing circuit. All of
this with a circuit based on a resistor, a component so simple that many times the challenge is to
avoid creating them unintentionally. Moreover, resistors are particularly small, even when com-
pared to transistors. Their exact area varies with the technology, but it is usually at least dozens of
times smaller than that of the smallest transistors. The surface area of an integrated circuit is quite
important since it is strongly correlated to the manufacturing cost, among other reasons.

Going one dimension up, we can accumulate the results of many parallel multiplications with
an even simpler analogue principle. We replicate the multiplier circuit n times to have a vector of
voltages v ∈ Rn and another of conductances g ∈ Rd. Then, we simply connect their outputs. By
Kirchhoff’s current law, the total current leads to a total current of

∑n
i=1 vg = v · g.

The next step is to distribute the n sources over n copies of the dot-product circuit. The final
arrange, known as resistive crossbar, can be neatly packed into an n×n grid of conductances (see
figure 6.2) with n outputs, y1, . . . , yn. Referring to underlying the matrix of conductances as G,
this circuit performs the matrix-vector product y = Gx in time O(1), approximately (Z. Sun &
Huang, 2021).

Since almost all of the astronomical computational costs of deep learning lie in matrix multi-
plications, there is surely great potential in this analogue approach. It does not take much consid-
eration to start noticing the challenges preventing it from becoming commonplace.

Initially, we note the conductances are static. They are manufactured with a fixed value and
cannot be changed. Still, having a static circuit is interesting as many applications, especially
for mobile and embedded systems, only execute a model that is trained beforehand elsewhere.
However, the imprecisions of the manufacturing process always reflect on analogue circuits. Even
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though large neural networks are remarkably robust to noise, with the current technology, fab-
ricating the resistors to the required precision, if it is even possible, would require prohibitively
expensive post-processing to calibrate each resistor.

In practice, actual implementations use alternative components as sources of conductance. The
potential analogue computing in deep learning has inspired many different technologies, each with
its own advantages and disadvantages. Discussing them fairly is beyond the scope of this work, so
we refer the reader to the surveys (T. P. Xiao, Bennett, Feinberg, Agarwal, & Marinella, 2020) and
(Chakraborty et al., 2020). What unifies them is that, in the search to implement programmable
and precise sources of conductance, they all introduce new challenges and overheads that prevent
implementations from harnessing most of the capabilities of the analogue computations.

Programmability seems quite essential in this context, though. Without it, we would be left
with many tiny static units with random properties. At this point, the plot twist might have become
apparent to the reader.

1.3.5.2 Our main result

We propose a method to combine standard, inaccurate resistors to obtain a precise and pro-
grammable source of conductance.

Starting with a set of resistors, we connect a transistor to each of them. We design the circuit
with its equivalent conductance in mind. If all transistors are on, the total conductance is the sum
of the individual conductances of the resistors. By controlling the transistors, we can select the
subset of the resistors that will take part in the sum.

In practice, we can measure the conductance of each resistor once and store it. Then, given a
target conductance, we can use the stored values to solve an instance of the SSP. It is possible to
do so by using general optimisation software, but if the number of problems is very high, dynamic
programming can be used. Theorem 2.1.1 ensures the number of resistors required scales loga-
rithmically with the desired precision of the approximations. As for measuring the conductances
in the first place, we can leverage the same circuitry that we already use for converting the outputs
to the digital domain.

Naturally, implementing devices in the real world is a complex endeavour with many chal-
lenges. While we propose some strategies to overcome them in the associated chapter 6, an ex-
haustive list would quickly scape the scope of this thesis.

Finally, for simplicity, we described the ideas behind our approach in the context of resistors
even though they apply to many other types of components. The same holds for the specific
application. The use of transistors to select resistors is particularly troublesome as it would make
the circuit much larger and, thus, much more costly. This issue can be avoided, for example, by
using highly non-linear ReRAM devices instead (Luo et al., 2016; Midya et al., 2017). Even within
the context of neuromorphic computing, there are many other possible applications. For instance,
we could easily rearrange the circuit to have each resistor implement a weight one weight in that
matrix. In this way, we could select weights via “train-by-pruning” strategies, ultimately replacing
the SSP solver with Stochastic Gradient Descent. More generally, our contribution hopes to bring
a new perspective to circuit design.

Chapter 5 provides a full discussion of the results overviewed in this section. That chapter is
based on the content submitted for patenting (Da Cunha, Natale, & Viennot, 2022).
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CHAPTER 2
Revisiting the Random

Subset-Sum Problem
The average properties of the well-known Subset Sum Problem can be studied by the
means of its random version, where we are given a target value z, random variables
X1, . . . , Xn, and an error parameter ε > 0, and we seek a subset of the Xis whose
sum approximates z up to error ε. In this setup, it has been shown that, under mild
assumptions on the distribution of the random variables, a sample of size O(log(1/ε))
suffices to obtain, with high probability, approximations for all values in [−1/2, 1/2].
Recently, this result has been rediscovered outside the algorithms community, enabling
meaningful progress in other fields. In this chapter, we present an alternative proof for
this theorem, with a more direct approach and resourcing to more elementary tools.
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2.1 Introduction

In the Subset Sum Problem (SSP), one is given as input a set of n integers X = {x1, x2, . . . , xn}
and a target value z, and wishes to decide if there exists a subset of X that sums to z. That is, one
is to reason about a subset S ⊆ [n] such that

∑
i∈S xi = z. The special case where z is half of the

sum of X is known as the Number Partition Problem (NPP). The converse reduction is also rather
immediate.1

Be it in either of these forms, the SSP finds applications in a variety of fields, ranging from
combinatorial number theory (Z.-W. Sun, 2003) to cryptography (Gemmell & Johnston, 2001;
Kate & Goldberg, 2011). In complexity theory, the SSP is a well-known NP-complete problem,
being a common base for NP-completeness proofs. In fact, the NPP version figures among Garey
and Johnson’s six basic NP-hard problems (Garey & Johnson, 1979). Under certain circumstances,
the SSP can be challenging even for heuristics that perform well for many other NP-hard problems
(Johnson, Aragon, McGeoch, & Schevon, 1991; Ruml, Ngo, Marks, & Shieber, 1996), and a
variety of dedicated algorithms have been proposed to solve it (Helm & May, 2018; Bringmann
& Wellnitz, 2021; Jin & Wu, 2019; Jin, Vyas, & Williams, 2021). Nonetheless, it is not hard to
solve it in polynomial time if we restrict the input integers to a fixed range (Bellman, 1966). It
suffices to recursively list all achievable sums using the first i integers: we start with A0 = {0}
and compute Ai+1 as Ai ∪ {a + xi+1 | a ∈ Ai}. For integers in the range [0, R], the search space
has size O(nR).

Studying how the problem becomes hard as we consider larger ranges of integers (relative to
n) requires a randomised version of the problem, the Random Subset Sum Problem (RSSP), where
the input values are taken as independently and identically distributed random variables. In this
setup, Borgs, Chayes, and Pittel (2001) proved that the problem experiences a phase transition in
its average complexity as the range of integers increases.

The result we approach in this chapter comes from related studies on the typical properties
of the problem. In Lueker (1998) the author proves that, under fairly general conditions, the
expected minimal distance between a subset sum and the target value is exponentially small. More
specifically, they show the following result.

Theorem 2.1.1 (Lueker, 1998). Let X1, . . . , Xn be independent uniform random variables over
[−1, 1], and let ε ∈ (0, 1/3). There exists a universal constant C > 0 such that, if n ≥ C log(1/ε),
then, with probability at least 1 − ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n] for which∣∣∣z −

∑
i∈Sz

Xi

∣∣∣ ≤ ε.

That is, a rather small number (of the order of log 1
ε ) of random variables suffices to have a

high probability of approximating not only a single target z, but all values in an interval.
Even though Theorem 2.1.1 is stated and proved for uniform random variables over [−1, 1],

it is not hard to extend the result to a wide class of distributions.2 With this added generality, the
theorem becomes a powerful tool for the analysis of random structures, and has recently proven to
be particularly useful in the field of Machine Learning, taking part in a proof of the Strong Lottery

1To find a subset of X summing to z, one only needs to solve the NPP for the set X ∪ {2z,
∑

i∈[n] xi}. By doing
so, one of the parts must consist of the element

∑
i∈[n] xi alongside the desired subset.

2Distributions whose probability density function φ satisfies φ(x) ≥ b for all x ∈ [−a, a], for some constants
a, b > 0 (see Corollary 3.3 from Lueker (1998)).
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Ticket Hypothesis (Pensia et al., 2020) and in subsequent related works (da Cunha, Natale, &
Viennot, 2022; Fischer & Burkholz, 2021; Burkholz, Laha, Mukherjee, & Gotovos, 2022), and in
Federated Learning (C. Wang et al., 2021).

Generalisations of the RSSP have played important roles in the study of random Knapsack
problems (Beier & Vöcking, 2003, 2004), and to random binary integer programs (Borst, Dadush,
Huiberts, & Tiwari, 2023; Borst, Dadush, Huiberts, & Kashaev, 2023). In particular, Becchetti
et al. (2022), Borst, Dadush, Huiberts, and Kashaev (2023), and Borst, Dadush, Huiberts, and
Tiwari (2023) recently provided an extension of Theorem 2.1.1 to multiple dimensions. As for
the equivalent Random Number Partitioning Problem, Chen, Jin, Randolph, and Servedio (2022)
recently generalised Borgs et al. (2001) and the integer version of the RSSP to non-binary integer
coefficients.

The simplicity and ubiquity of the SSP have granted the related results a special didactic place.
Be it as a first example of NP-complete problem (Garey & Johnson, 1979), a path to science
communication (Hayes, 2002), or simply as a frame for the demonstration of advanced techniques
(Mertens, 2001), it has been a tool to make important, but sometimes complicated, ideas easier to
communicate.

This chapter offers a substantially simpler alternative to the original proof of Theorem 2.1.1 by
following a general framework introduced in the context of the analysis of Rumour Spreading al-
gorithms (Doerr & Kostrygin, 2017). Originally, Lueker (1998) approaches Theorem 2.1.1 by con-
sidering the random variable associated to the proportion of the values in the interval [−1, 1] that
can be approximated up to error ε by the sum of some subset of the first t variables, X1, . . . , Xt.

After restricting to some specific types of subsets, they proceed to evaluate the expected per-
round growth of this proportion, conditioned on the outcomes of X1, . . . , Xt. Their strategy is
to analyse this expected increase by martingale theory, which only becomes possible after a non-
linear transformation of the variables of interest. Those operations hinder any intuition for the ob-
tained martingale. Nonetheless, a subsequent application of the Azuma-Hoeffding bound (Azuma,
1967) followed by a case analysis leads to the result.

The argument presented here starts in the same direction as the original one, tracking the mass
of values with suitable approximations as we reveal the values of the random variables X1, . . . , Xn

one by one. However, we quickly diverge from Lueker (1998), managing to obtain an estimation
of the expected growth of this mass without discarding any subset-sum. We eventually restrict the
argument to some types of subsets, but we do so at a point where the need for such restriction is
clear.

We proceed to directly analyse the estimation obtained, without any transformations. Follow-
ing Doerr and Kostrygin (2017), this estimation reveals two expected behaviours in expectation,
which can be analysed in a similar way: as we consider the first variables, the proportion of ap-
proximated values grows very fast; then, after a certain point, the proportion of non-approximable
values decreases very fast.

We remark that, while Theorem 2.1.1 crucially relies on tools from martingale theory such
as Azuma-Hoeffding’s inequality, which are not part of standard Computer Science curricula, our
argument makes use of much more elementary results3 which should make it accessible enough
for an undergraduate course on randomised algorithms.

3Namely, the intermediate value theorem, Markov’s inequality, and standard Hoeffding bounds.
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2.2 Our argument

In this section, we provide an alternative argument for proving Theorem 2.1.1. It takes shape much
like the pseudo-polynomial algorithm we described in the introduction. Leveraging the recursive
nature of the problem, we construct a process which, at time t, describes the proportion of the
interval [−1, 1] that can be approximated by some subset of the first t variables.

We will show that with a suitable number of uniform variables (proportional to log(1/ε)) a
factor of 1 − ε/2 of the values in [−1, 1] can be approximated up to error ε. This implies that any
z ∈ [−1, 1] which cannot be approximated within error ε is at most ε away from a value that can.
Therefore it is possible to approximate z up to error 2ε.

2.2.1 Preliminaries

Let X1, . . . , Xn be realisations of random variables as in Theorem 2.1.1, and, without loss of
generality, fix ε > 0. We say a value z ∈ R is ε-approximated at time t if and only if there exists
S ⊆ [t] such that |z −

∑
i∈S Xi| < ε. For 0 ≤ t ≤ n, let ft : R → {0, 1} be the indicator function

for the event “z is ε-approximated at time t”. Therefore, we have f0 = 1(−ε,ε), since only the
interval (−ε, ε) can be approximated by an empty set of values. From there, we can exploit the
recurrent nature of the problem: a value z can be ε-approximated at time t + 1 if and only if either
z or z − Xt+1 could already be approximated at time t. This implies that for all z ∈ R we have
that

ft+1(z) = ft(z) + (1 − ft(z))ft(z − Xt+1). (2.1)

To keep track of the proportion of values in [−1, 1] that can be ε-approximated at each step,
we define, for each 0 ≤ t ≤ n, the random variable

vt = 1
2

∫ 1

−1
ft(z) dz.

For better readability, throughout the text we will refer to vt simply as “the volume.”
As we mentioned, it suffices to show that, with high probability, at time n, enough of the

interval is ε-approximated (more precisely, that vn ≥ 1 − ε/2) to conclude that the entire interval
is 2ε-approximated.

2.2.1.1 Expected behaviour

Our first lemma provides a lower bound on the expected value of vt.

Lemma 2.2.1. For all 0 ≤ t < n, it holds that

E[vt+1 | X1, . . . , Xt] ≥ vt

[
1 + 1

4(1 − vt)
]

.
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Proof. The definition of vt and the recurrence in equation (2.1) give us that

E[vt+1 | X1, . . . , Xt] = E
[1

2

∫ 1

−1
ft+1(z) dz

∣∣∣∣X1, . . . , Xt

]
=
∫ 1

−1

1
2

(1
2

∫ 1

−1
ft(z) + (1 − ft(z))ft(z − x) dz

)
dx

= 1
2

∫ 1

−1
ft(z) dz

∫ 1

−1

1
2 dx + 1

2

∫ 1

−1

1
2

∫ 1

−1
(1 − ft(z))ft(z − x) dz dx

= vt + 1
4

∫ 1

−1
(1 − ft(z))

∫ 1

−1
ft(z − x) dx dz

= vt + 1
4

∫ 1

−1
(1 − ft(z))

∫ z+1

z−1
ft(y) dy dz,

where the last equality holds by substituting y = z − x. For the previous ones we apply basic
properties of integrals and Fubini’s theorem to change the order of integration.

We now look for a lower bound for the last integral in terms of vt. To this end, we exploit that,
since all integrands are non-negative, for all u ∈ [−1/2, 1/2] we have that

∫ 1

−1
(1 − ft(z))

∫ z+1

z−1
ft(y) dy dz ≥

∫ u+ 1
2

u− 1
2

(1 − ft(z))
∫ z+1

z−1
ft(y) dy dz

≥
∫ u+ 1

2

u− 1
2

(1 − ft(z))
∫ u+ 1

2

u− 1
2

ft(y) dy dz.

Both inequalities come from range restrictions: in the first we use that u ∈ [−1/2, 1/2] implies
[u − 1/2, u + 1/2] ⊆ [−1, 1]; for the second, we have that [u − 1/2, u + 1/2] ⊆ [z − 1, z + 1]
for all z ∈ [u − 1/2, u + 1/2].[say this before showing the integrals... people are scared of them]
[Split into two inequalities.]

To relate the expression to vt explicitly, we choose u in a way that the window [u−1/2, u+1/2]
entails exactly half of vt. The existence of such u may become clear by recalling the definition of
vt. To make it formal, consider the function given by

h(u) = 1
2

∫ u+ 1
2

u− 1
2

ft(y) dy,

and observe that

min {h(−1/2), h(1/2)} ≤ vt

2 , and max {h(−1/2), h(1/2)} ≥ vt

2 .

Thus, by the intermediate value theorem, there exists u∗ ∈ [−1/2, 1/2] for which h(u∗) = vt/2,
that is, for which

1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy = vt

2 .
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Altogether, we can conclude that

E[vt+1 | X1, . . . , Xt] = vt + 1
4

∫ 1

−1
(1 − ft(z))

∫ z+1

z−1
ft(y) dy dz

≥ vt + 1
2

∫ u∗+ 1
2

u∗− 1
2

(1 − ft(z))
(1

2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy

)
dz

= vt +
(1

2 − vt

2

)
vt

2

= vt

[
1 + 1

4(1 − vt)
]

.

Lemma 2.2.1 tells us that, if vt were to behave as expected, it should grow exponentially
up to 1/2, at which point 1 − vt starts to decrease exponentially. The rest of the proof follows
accordingly, with section 2.2.2 analysing the progress of vt up to one half, and section 2.2.3
analogously following the complementary value, 1 − vt, starting from one half. By building on
the results from section 2.2.2, we obtain fairly straightforward proofs in section 2.2.3. Thus, the
following subsection comprises the core of our argument.

2.2.2 Growth of the volume up to 1/2

Arguably, the main challenge in analysing the RSSP is the existence of over-time dependencies and
deciding how to overcome it sets much of the course the proof will take. Our strategy consists in
constructing another process which dominates the original one while being free of dependencies.

Let τ1 be the first time at which the volume exceeds 1/2, that is, let

τ1 = min{t ≥ 0 : vt > 1/2}.

We just proved that up to time τ1 the process vt enjoys exponential growth in expectation. In
the following lemma we apply a basic concentration inequality to translate this property into a
constant probability of exponential growth for vt itself.

Lemma 2.2.2. Given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) . For all integers 0 ≤ t < τ1 it holds that

Pr[vt+1 ≥ vt(1 + β) | X1, . . . , Xt, t < τ1] ≥ pβ.

Proof. The result shall follow easily from reverse Markov’s inequality (Boyd, Ghosh, Prabhakar,
& Shah, 2006, Lemma 4) and the bound from Lemma 2.2.1. However, doing so requires a suitable
upper bound on vt+1 and, while 2vt would serve the purpose, such bound does not hold in general.

We overcome this limitation by fixing t and considering how much vt would grow in the next
step if we were to consider only values ε-approximated at time t that happen to lie in [−1, 1] after
being translated by Xt+1. Making it precise by the means of the recurrence in equation (2.1), we
define

ṽ = 1
2

∫ 1

−1

[
ft(z) + (1 − ft(z))ft(z − Xt+1) · 1[−1,1](z − Xt+1)

]
dz.

This expression differs from the one for vt+1 only by the inclusion of the characteristic func-
tion of [−1, 1]. This not only implies that ṽ ≤ vt+1, but also that ṽ can replace vt+1 in the bound
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from Lemma 2.2.1, since the argument provided there eventually restricts itself to integrals within
[−1, 1], trivialising 1[−1,1]. Moreover, as we obtain ṽ without the influence of values from outside
[−1, 1], we must have ṽ ≤ 2vt. Finally, using that t < τ1 implies vt < 1/2 and chaining the
previous conclusions in respective order[This region is quite bad. We need to split the following
align, but haven’t managed to], we conclude that

Pr[vt+1 ≥ vt(1 + β) | X1, . . . , Xt, t < τ1] ≥ Pr[ṽ ≥ vt(1 + β) | X1, . . . , Xt, t < τ1]

≥ E[ṽ | X1, . . . , Xt, t < τ1] − vt(1 + β)
2vt − vt(1 + β)

≥
9
8vt − vt(1 + β)
2vt − vt(1 + β)

= 1 − 7
8(1 − β) ,

where we applied the reverse Markov’s inequality in the second step.

The previous lemma naturally leads us to look for bounds on τ1, that is, to estimate the time
needed for the process to reach volume 1/2. As expected, the exponential nature of the process
yields a logarithmic bound.

Lemma 2.2.3. Let t be an integer and given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) and i∗ =⌈

log 1
2ε

log(1+β)

⌉
. If t ≥ i∗/pβ , then

Pr[τ1 ≤ t] ≥ 1 − exp

−
2p2

β

t

(
t − i∗

pβ

)2
 .

Proof. The main idea behind the proof is to define a new random variable which stochastically
dominates τ1 while being simpler to analyse. We begin by discretising the domain (0, 1/2] of the
volume into sub-intervals {Ii}0≤i≤i∗ defined as follows:

I0 = (0, ε],

Ii =
(
ε(1 + β)i−1, ε(1 + β)i

]
for 1 ≤ i < i∗,

Ii∗ =
(

ε(1 + β)i∗−1,
1
2

]
,

where i∗ is the smallest integer for which ε (1 + β)i∗
≥ 1/2, that is, i∗ =

⌈
log 1

2ε
log(1+β)

⌉
.

Now, for each i ≥ 0, we direct our interest to the number of steps required for vt to exit the
sub-interval Ii after first entering it. By Lemma 2.2.2, this number is majorised by a geometric
random variable Yi ∼ Geom(pβ). Therefore, we can conclude that τ1 is stochastically dominated
by the sum of such variables, that is, for t ∈ N, we have that

Pr[τ1 ≥ t] ≤ Pr
[

i∗∑
i=1

Yi ≥ t

]
. (2.2)

Let Bt ∼ Bin(t, pβ) be a binomial random variable. For the sum of geometric random vari-
ables, it holds that Pr[

∑i∗
i=1 Yi ≤ t] = Pr[Bt ≥ i∗]. Since E[Bt] = tpβ , the Hoeffding bound
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for binomial random variables (Dubhashi & Panconesi, 2009, Theorem 1.1) implies that, for all
λ ≥ 0, we have that Pr[Bt ≤ tpβ − λ] ≤ exp(−2λ2/t). Setting t such that tpβ − λ = i∗, we
obtain that

Pr
[

i∗∑
i=1

Yi ≥ t

]
≤ Pr[Bt ≤ i∗] ≤ exp

[
−2

t
(tpβ − i∗)2

]
= exp

−
2p2

β

t

(
t − i∗

pβ

)2
 ,

which holds as long as λ = tpβ − i∗ ≥ 0, that is, for all t ≥ 1
pβ

⌈ log 1
2ε

log(1+β)

⌉
.

The thesis follows by applying this to equation (2.2) and passing to complementary events.

2.2.3 Growth of the volume from 1/2

Here we study the second half of the process: from the moment the volume reaches 1/2 up to
the time it gets to 1 − ε/2. We do so by analysing the complementary stochastic process, i.e.,
by tracking, from time τ1 onwards, the proportion of the interval [−1, 1] that does not admit an
ε-approximation. More precisely, we consider the process {wt}t≥0, defined by wt = 1 − vτ1+t.

We shall obtain results for wt similar to those we have proved for vt. Fortunately, building on
the previous results makes those proofs quite straightforward. We start by noting that a statement
analogous to Lemma 2.2.1 follows immediately from the definition of wt+1 and Lemma 2.2.1.

Corollary 2.2.4. For all t ≥ 0, it holds that

E[wt+1 | X1, . . . , Xτ1+t] ≤ wt

[
1 − 1

4(1 − wt)
]

.

Let τ2 the first time that wt gets smaller than or equal to ε/2, that is, let

τ2 = min {t ≥ 0 : wt ≤ ε/2} .

The following lemma bounds this quantity, in analogy to Lemma 2.2.3.

Lemma 2.2.5. For all t > 0, it holds that

Pr[τ2 ≤ t] ≥ 1 − 1
ε

(7
8

)t

.

Proof. Applying that 1 − wt = vτ1+t > 1/2 to Corollary 2.2.4 gives the bound

E[wt+1 | X1, . . . , Xτ1+t] ≤ 7
8wt. (2.3)

Moreover, from the conditional expectation theory, for any two random variables X and Y, we
have E[E[X | Y]] = E[X]. From this and equation (2.3), we can conclude that

E[wt] = E[E[wt | X1, . . . , Xτ1+t−1]] ≤ 7
8 E[wt−1],

which, by recursion, yields that

E[wt] ≤
(7

8

)t

E[w0] ≤ 1
2

(7
8

)t

.

Finally, by Markov’s inequality,

Pr[τ2 ≥ t] ≤ Pr
[
wt ≥ ε

2

]
≤ 2E[wt]

ε
≤ 1

ε

(7
8

)t

,

and the thesis follows from considering the complementary event.
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2.2.4 Putting everything together

In this section we conclude our argument, finally proving Theorem 2.1.1. We first prove a more
general statement and then detail how it implies the theorem.

Let τ = τ1 + τ2, the first time at which the process {vt}t≥0 reaches at least 1 − ε/2.

Lemma 2.2.6. Let ε ∈ (0, 1/3). There exist constants C ′ > 0 and κ > 0 such that for every
t ≥ C ′ log 1

ε , it holds that

Pr[τ ≤ t] ≥ 1 − 2 exp
[
− 1

κt

(
t − C ′ log 1

ε

)2
]

.

Proof. Let β = 1
16 and pβ = 1− 7

8(1−β) = 1
15 . The definition of τ allows us to apply Lemmas 2.2.3

and 2.2.5 quite directly. Indeed if, for the sake of Lemma 2.2.3, we assume t ≥ 2
pβ

⌈ log 1
2ε

log(1+β)

⌉
, we

have that

Pr[τ ≤ t] = Pr[τ1 + τ2 ≤ t]
≥ Pr[τ1 ≤ t/2, τ2 ≤ t/2]
≥ Pr[τ1 ≤ t/2] + Pr[τ2 ≤ t/2] − 1

≥ 1 − exp

−
p2

β

t

(
t − 2

pβ

⌈
log 1

2ε

log(1 + β)

⌉)2
− 1

ε

(7
8

)t/2

= 1 − exp

− 1
152t

(
t − 30

⌈
log 1

2ε

log 17
16

⌉)2
− 1

ε

(7
8

)t/2
, (2.4)

where the second inequality holds by the union bound. The remaining of the proof consists in
computations to connect this expression to the one in the statement.

Consider the first exponential term in equation (2.4). Taking t ≥ 60
log 17

16
· log 1

ε , since ε < 1/3,

it follows that

exp

− 1
152t

(
t − 30

⌈
log 1

2ε

log 17
16

⌉)2
 ≤ exp

− 1
152t

(
t − 60

log 17
16

· log 1
ε

)2
 .

Now, consider the second exponential term in equation (2.4). It holds that

1
ε

(7
8

) t
2

= exp
[
log 1

ε
− t

2 log 8
7

]
≤ exp

[
log 1

ε
− t

15

]
= exp

[
− 1

15 · 1
t − 15 · log 1

ε

·
(

t − 15 · log 1
ε

)2
]

.

Moreover, for t ≥ 15 · log 1
ε ,

exp
[
− 1

15 · 1
t − 15 · log 1

ε

·
(

t − 15 · log 1
ε

)2
]

≤ exp
[
− 1

15t

(
t − 15 · log 1

ε

)2
]

≤ exp

− 1
152t

(
t − 60

log 17
16

· log 1
ε

)2
 .
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Altogether, we have that

exp

−
p2

β

t

(
t − 2

pβ

⌈
log 1

2ε

log(1 + β)

⌉)2
+ 1

ε
·
(7

8

)t/2
≤ 2 exp

− 1
152t

(
t − 60

log 17
16

· log 1
ε

)2
 ,

and the thesis follows by setting κ = 152 and C ′ = 60/ log(17/16).

The expression in the claim of Lemma 2.2.6 can be reformulated as

Pr
[
vt ≥ 1 − ε

2

]
≥ 1 − 2 exp

[
− 1

κt

(
t − C ′ log 1

ε

)2
]

;

hence, Theorem 2.1.1 follows by taking C ≥ 3C ′ and observing that once we can approximate all
but an ε/2 proportion of the interval [−1, 1], any z ∈ [−1, 1] either is ε-approximated itself, or is
at most ε away from a value that is, which implies that z is 2ε-approximated.





CHAPTER 3
Multidimensional

Random Subset-Sum
Problem

In the Random Subset Sum Problem, given n i.i.d. random variables X1, . . . , Xn,
we wish to approximate any point z ∈ [−1, 1] as the sum of a suitable subset
Xi1(z), . . . , Xis(z) of them, up to error ε. Despite its simple statement, this problem is
of fundamental interest to both theoretical computer science and statistical mechanics.
More recently, it gained renewed attention for its implications in the theory of Artifi-
cial Neural Networks. An immediate multidimensional generalisation of the problem is
to consider n i.i.d. d-dimensional random vectors and aim to approximate every point
z ∈ [−1, 1]d. In 1998, G. S. Lueker showed that, in the one-dimensional setting, having
n = O

(
log 1/ε

)
samples is enough to solve the problem with high probability.

In this chapter, we prove that to solve the d-dimensional version it suffices to have
n = O

(
d3 log(1/ε) log(d/ε)

)
. As an application highlighting the potential interest

of this result, we prove that a recently proposed neural network model exhibits univer-
sality: with high probability, the model can approximate any neural network within a
polynomial overhead in the number of parameters.
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3.1 Introduction

In the Random Subset Sum Problem (RSSP), given a target value z, an error parameter ε ∈ R>0
and n independent random variables X1, X2, . . . , Xn, one is interested in estimating the probability
that there exists a subset S ⊆ [n] for which∣∣∣∣∣z −

∑
i∈S

Xi

∣∣∣∣∣ ≤ ε.

Historically, the analysis of this problem was mainly motivated by research on the average
case of its deterministic counterpart, the classic Subset Sum Problem, and the equivalent Number
Partition Problem. These investigations lead to a number of insightful results, mostly in the 80s
and 90s (Lueker, 1982; Karmarkar, Karp, Lueker, & Odlyzko, 1986; Lueker, 1998). In addition,
research on the phase transition of the problem extended to the early 2000s, with interesting ap-
plications in statistical physics (Mezard & Montanari, 2009; Borgs et al., 2001; Borgs, Chayes,
Mertens, & Pittel, 2004).

More recently, one of the results on the RSSP has attracted quite some attention. A simplified
statement for it would be

Theorem 3.1.1 (Lueker, (Lueker, 1998)). Let X1, . . . , Xn be i.i.d. uniform random variables over
[−1, 1], and let ε ∈ (0, 1). There exists a universal constant C > 0 such that, if n ≥ C log2

1
ε ,

then, with high probability, for all z ∈ [−1, 1] there exists a subset Sz ⊆ [n] for which∣∣∣∣∣∣z −
∑
i∈Sz

Xi

∣∣∣∣∣∣ ≤ 2ε.

That is, a rather small number (of the order of log 1
ε ) of random variables suffices to have

a high probability of approximating not only a single target z, but all values in an interval. In
fact, this result is asymptotically optimal, since each of the 2n subsets can cover at most one of
two values more than 2ε apart and, hence, we must have n = Ω(log 1

ε ). Also, the original work
generalises the result to a wide class of distributions.

Those features allowed Theorem 3.1.1 to be quite successful in applications. In the field of
Machine Learning, particularly, many recent works, such as Pensia et al. (2020); da Cunha, Natale,
and Viennot (2022); Fischer and Burkholz (2021); Burkholz et al. (2022); Ferbach, Tsirigotis,
Gidel, and Bose (2022); C. Wang et al. (2021), leverage this result. We discuss those contributions
in more detail in section 3.2.

In this chapter, we investigate a natural multidimensional generalisation of Theorem 3.1.1.
Mainly, we prove

Theorem 3.1.2 (Main Theorem). Given ε ∈ (0, 1) and d, n ∈ N, consider n independent d-
dimensional standard normal random vectors X1, . . . , Xn. There exists a universal constant C >
0 for which, if

n ≥ Cd3 log2
1
ε

·
(

log2
1
ε

+ log2 d

)
,

then, with high probability, for all z ∈ [−1, 1]d there exists a subset sSz ⊆ [n] for which∥∥∥∥∥∥z −
∑
i∈Sz

Xi

∥∥∥∥∥∥
∞

≤ 2ε.
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Moreover, the approximations can be achieved with subsets of size n
6
√

d
.

We believe many promising applications of the RSSP can become feasible with this extension
of Theorem 3.1.1 to multiple dimensions. To illustrate this, we consider the Neural Network Evo-
lution (NNE) model recently introduced by Gorantla et al. (2019). It is natural to wonder whether
their model is universal, in the sense that, with high probability, it can approximate any dense
feed-forward neural network. While applying Theorem 3.1.1 to this end would yield exponen-
tial bounds on the required over-parameterization, in section 3.6 we prove the universality of the
model within polynomial bounds. To broaden the scope of our result, we additionally provide
some useful generalisations in appendix C. In particular, we extend it to a wide class of distribu-
tions, proving an analogous extension to the one (Lueker, 1998) given for Theorem 3.1.1. Finally,
in appendices D and E we discuss a discretization of our result and potential applications in the
context of nondeterministic random walks.

Organisation of the chapter. After discussing related works in section 3.2, we present a high
level overview of the difficulties posed by the problem and of our proof of Theorem 3.1.2 (sec-
tion 3.3). We then introduce our notation in section 3.4 in preparation for the presentation of our
analysis in section 3.5. We follow up with an application of our result to the NNE model (Gorantla
et al., 2019) and conclude with some notes on the tightness of our analysis in section 3.7. Finally,
generalisations of our results, further extensions, as well as all omitted proofs can be found in the
Appendix.

3.2 Related work

As remarked in the Introduction, the first studies of the RSSP were mainly motivated by average-
case analyses of the classic Subset Sum and Number Partition problems (Karmarkar et al., 1986;
Lueker, 1982, 1998). Both can be efficiently solved if the precision of the values considered is
sufficiently low relative to the size of the input set. In particular, Mertens (1998) applies methods
from statistical physics to indicate that this is a fundamental property of the problem: the amount of
exact solutions of the randomised version exhibits a phase transition when the precision increases
relative to the sample size. Borgs et al. (2001) later confirmed formally the existence of a phase
transition.

The work of G. S. Lueker on the RSSP dates back to Lueker (1982). In Lueker (1982), the au-
thor proves a weaker version of Theorem 3.1.1 and uses it as a tool to analyse the integrality gap of
the one-dimensional integer Knapsack problem, i.e., the additive gap between the optimal solution
of the integer problem and that of its linear programming relaxation, when the inputs are sampled
according to some probability distribution. Later, the same author provided a tighter result of the
RSSP in Lueker (1998), which we stated in Theorem 3.1.1. Recently, da Cunha, d’Amore, et
al. (2022) exhibited a simpler alternative to the original proof. Dyer and Frieze (1989) general-
ized the result of the RSSP from Lueker (1982) to tackle the multidimensional formulation of the
Knapsack problem. In particular, it is proved that if the number of input variables is Θ(d log 1

ε ),
then, with probability e− O(d), there exists a subset approximating a given target in Rd. Using
the latter result as a black box, it is easy to see that one would require eO(d) log 1

ε input variables
to increase the success probability to a constant value. The result in Dyer and Frieze (1989) has
recently been improved by Borst, Dadush, Huiberts, and Tiwari (2023), where tighter bounds on
the integrality gap of the multidimensional Knapsack problem were obtained. More specifically,
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Borst, Dadush, Huiberts, and Tiwari (2023) showed that, at the cost of an extra polynomial num-
ber of input random variables, the success probability of approximating a single target in the space
can be increased to a constant value: this probability is achieved whenever the number of vari-
ables n satisfies the following relations: n ≥ d

9
4 and n = Θ(d

3
2 log 1

ε ). Both the analyses in
Dyer and Frieze (1989) and Borst, Dadush, Huiberts, and Tiwari (2023) employ the second mo-
ment method to estimate the probability that at least one subset approximating the target value
exists. Following the same approach, in this chapter we refine the analysis for the second moment
method technique. In order to prove Theorem 3.1.2, we show that n = Θ(d2 log 1

ε ) variables yield
constant probability that a subset approximating a single target exists. Our bound is better than
that in Borst, Dadush, Huiberts, and Tiwari (2023) for all approximation errors ε which are not

exponentially small in the dimension of the space, that is, ε = e− O(d
3
4 ). We also remark that

the result in Borst, Dadush, Huiberts, and Tiwari (2023) is generalised to all distributions whose
convergence to a Gaussian is “fast enough”, which is a wider class of distribution with respect to
the one we provide in this chapter. Nevertheless, as we share the same approach of Borst, Dadush,
Huiberts, and Tiwari (2023), with the same arguments we can extend our results to a similar class
of distributions. In a recent follow-up (Borst, Dadush, & Mikulincer, 2023), weaker bounds on
the multidimensional RSSP are exhibited, which hold for an even wider class of distributions. 1

In Borst, Dadush, and Mikulincer (2023), the number of variables required to solve the problem is
Θ(d6 log 1

ε ). The discrete setting of a variant of the RSSP has also been recently studied in Chen,
Jin, et al. (2022) which proves that an integral linear combination (with coefficients in {−1, 0, 1})
of the sample variables can approximate a range of target values. .

In the last few years, Theorem 3.1.1 has been very useful in studying the Strong Lottery Ticket
Hypothesis, which states that Artificial Neural Networks (ANN) with random weights are likely
to contain an approximation of any sufficiently smaller ANN as a subnetwork. In particular, such
claim poses the deletion of connections (pruning) as a theoretically solid alternative to careful
calibration of their weights (training). Pensia et al. (2020) uses Theorem 3.1.1 to prove the hy-
pothesis under optimal over-parameterization for dense ReLU neural networks. da Cunha, Natale,
and Viennot (2022) extends this result to convolutional networks and Ferbach et al. (2022) fur-
ther extends the latter to the class of equivariant networks. Also, Burkholz et al. (2022) applies
Theorem 3.1.1 to construct neural networks that can be adapted to a variety of tasks with minimal
retraining.

3.3 Overview of our analysis

3.3.1 Insights on the difficulty of the problem

In d dimensions, since we need 2Θ(d log 1
ε

) hypercubes of radius ε to cover the set [−1, 1]d, we need
a sample of Ω(d log 1

ε ) vectors to be able to approximate (up to error ε) every vector in [−1, 1]d.
On the other hand, having n = O(d log 1

ε ) vectors is enough in expectation. To see it, it
is sufficient to consider subsets of the sample with n

2 vectors. There are
( n

n/2
)

≈ 2n−o(n) such
subsets, each summing to a random vector distributed as N (0, n

2 · Id). Thus, given any z ∈
1Borst, Dadush, Huiberts, and Tiwari (2023) considers Gaussian or uniform input random variables, and extends its

result to distributions that converge quickly to Gaussian ones. In Borst, Dadush, and Mikulincer (2023), the authors
solve the RSSP for input random vectors whose entries follow uniform distributions on finite, discrete sets, and for
input log-concave random vectors (i.e., when the density function of these vectors is a log-concave function).
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[−1, 1]d, each of those sums has probability approximately εd(n
2 )− d

2 = 2−d log 1
ε

− d
2 log n

2 of being
at most ε far from z. We can then conclude that the expected number of approximations is 2n−o(n) ·
2−d log 1

ε
− d

2 log n
2 , which is still of order 2n−o(n) provided that n ≥ Cd log 1

ε for a sufficiently large
constant C.

It would thus suffice to prove concentration bounds on the expectation. The technical challenge
is handling the stochastic dependency between subsets of the sample, as pairs of those typically
intersect, with many random variables thus appearing for both resulting sums. The original proof
of Theorem 3.1.1 (Lueker, 1998) and the simplified one (da Cunha, d’Amore, et al., 2022) address
dependencies in similar ways. Both keep track of the fraction of values in [−1, 1] that can be
approximated by a sum of a subset of the first i random variables, X1, . . . , Xi. Their core goal
is to bound the proportional increase in this fraction when an additional random variable Xi+1
is considered. As it turns out, the conditional expectation of this increment can be bounded by
a constant factor, regardless of the values of X1, . . . , Xi. Unfortunately, naively extending those
ideas to d dimensions leads to an estimation of this increment that is exponentially small in d. It is
not clear to the authors how to make the estimation depend polynomially on d without leveraging
some knowledge of the actual values of X1, . . . , Xi. In fact, even which kind of assumption on the
previous samples could work in this sense is not totally clear.

As for other classical concentration techniques that might appear suitable at first, we remark
our failed attempts to leverage an average bounded differences argument (Warnke, 2016). Specif-
ically, we could not identify any natural function related to the fraction of values that can be
approximated, which was also Lipschitz relative to the sample vectors. Moreover, both Janson’s
variant of Chernoff bound (Janson, 2004) and a recent refinement of it (Y. Wang, Ramon, & Guo,
2017) seem to capture the stochastic dependence of the subset sums too loosely for our needs.

3.3.2 Our approach

Our strategy to overcome the difficulties highlighted in the previous subsection consists in a
second-moment approach.

Unlike the proofs for the single dimensional case, our argument, at first, analyses the proba-
bility of approximating a single target value z ∈ [−1, 1]d. To this end, consider a sample of n
independent random vectors X1, . . . , Xn and a family C of subsets of the sample. Let Y be the
number of subsets in C whose sum approximates z up to error ε.

For a single subset, it is not hard to estimate the probability with which a subset-sum
∑

i∈S Xi

lies close to z. This allows us to easily obtain good bounds on E[Y].
We, then, proceed to estimate the variance of Y, circumventing the obstacles mentioned in the

previous section by restricting the analysis to families of subsets with sufficiently small pairwise
intersections. While this restriction limits the maximum amount of subsets that are available, a
standard probabilistic argument allows us to prove the existence of large families of subsets with
the desired property, ensuring that E[Y] can be large enough for our purposes.

For each pair of subsets, S and T , we leverage the hypothesis on the size of intersections to
consider partitions S = SA ∪ SB and T = T C ∪ T B, with SA and T C being large, stochastically
independent parts, and the smaller parts SB and T B containing S∩T . The bulk of our analysis then
consists in deriving careful bounds on their reciprocal dependencies and consequent contributions
to the second moment of Y.

The resulting estimate allows us to apply Chebyshev’s inequality to Y, obtaining a constant
lower bound on Pr[Y ≥ 1]. That is, we conclude that with at least some constant probability at



3.5 – Preliminaries 49

least one of the subsets yields a suitable approximation of z. Finally, we employ a probability-
amplification argument in order to apply a union bound over all possible target values in [−1, 1]d.

3.4 Preliminaries

Notation Throughout the text we identify the different types of objects by writing their symbols
in different styles. This applies to scalars (e.g., x), real random variables (e.g., X), vectors (e.g.,
x), random vectors (e.g., X), matrices (e.g., X). and tensors (e.g., X ). In particular, for d ∈ N,
the symbol Id represents the d-dimensional identity matrix, where N refers to the set of positive
integers. Let n ∈ N. We denote the set {1, . . . , n} by [n], and given a set S employ the notation(S

n

)
to refer to the family of all subsets of S containing exactly n elements of S. Let x ∈ Rd.

The notation ∥x∥2 represents the euclidean norm of x while ∥x∥∞ denotes its maximum-norm.
Moreover, given r ∈ R>0 we denote the set {y ∈ Rd : ∥y − x∥∞ ≤ r} by B∞(x, r). We
represent the variance of an arbitrary random variable X by σ2

X and its density function by φX.
Finally, the notation log(·) refers to the binary logarithm. Let d, n ∈ N and ε ∈ R>0, and consider
z ∈ [−1, 1]d and n independent standard normal d-dimensional random vectors X1, . . . , Xn.
Given S ⊆ [n] we define the random variable

YS,ε,z,X1,...,Xn =
{

1 if ∥z −
∑

i∈S∥∞ ≤ ε,

0 otherwise,

that we represent simply by YS when the other parameters are clear from context. Since we are
interested in studying families of subsets, we also define, for C contained in the power set of [n],
the random variable

YC,ε,z,X1,...,Xn =
∑
S∈C

YS ,

which we represent simply as Y.
For the sake of the analysis, let C be the family of subsets of [n] with size αn, for any α > 0.

Notice that the expected intersection size of two elements of C drawn uniformly at random is α2n.
By choosing α small enough and by using the probabilistic method, we can control the stochastic
dependency among subsets.

As
(n

k

)
∈ [(n

k )k, ( en
k )k], the following lemma holds.

Lemma 3.4.1. For all n ∈ N and α ∈ (0, 1
2), let C =

([n]
αn

)
. Then |C| =

( n
αn

)
∈
[(

1
α

)αn
,
(

e
α

)αn
]
.

Notice that, while |C| is still exponential, it already imposes, in expectation, n =
Ω
(

d
α log 1

α

log 1
ε

)
if we are to approximate a single point in [−1, 1]d up to error ε. Indeed, consider

a vector v of d Gaussian entries with variance αn, and a point x ∈ [−1, 1]d. The i-th entry of v
has probability O( ε

αn) = p < 1 to lie in the interval [−ε + xi, xi + ε] ⊆ [−ε − 1, 1 + ε]. Hence,
the vector itself has probability pd = O(( ε

αn)d) to approximate the given point up to error ε. As
we can dispose of at most ( e

α)αn such vectors, the expected number of vectors approximating x is

O
((

e

α

)αn

·
(

ε

αn

)d
)

,

that is at least one only if n = Ω
(

d
α log 1

α

log 1
ε

)
.
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3.5 Proof of the main result

As we frequently consider values relatively close to the origin, approximation of the normal dis-
tribution by a uniform one is sufficient for many of our estimations.

Lemma 3.5.1. Let d ∈ N, ε ∈ (0, 1), σ ∈ R>0, and z ∈ [−1, 1]d. If X ∼ N (0, σ2 · Id), then

e− 2d
σ2 · (2ε)d

(2πσ2)
d
2

≤ Pr[X ∈ B∞(z, ε)] ≤ (2ε)d

(2πσ2)
d
2

.

As a corollary, we bound the first moment of the random variable Y.

Corollary 3.5.2. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2), let X1, . . . , Xn be independent

standard normal d-dimensional random vectors. Then, for all z ∈ [−1, 1]d and C ⊆
([n]

αn

)
, it holds

that

e− 2d
αn

(2ε)d|C|
(2παn)

d
2

≤ E[Y] ≤ (2ε)d|C|
(2παn)

d
2

.

Proof. Let S ∈ C and, hence, |S| = αn. Since Xi ∼ N 0, Id for all i ∈ [n], we have
that

∑
i∈S Xi ∼ N 0, αn · Id. Therefore, as Pr[YS = 1] = Pr[

∑
i∈S Xi ∈ B∞(z, ε)], by

Lemma 3.5.1, we have that

e− 2d
αn

(2ε)d

(2παn)
d
2

≤ Pr[YS = 1] ≤ (2ε)d

(2παn)
d
2

,

and we can conclude the thesis by noting that E[Y] =
∑

S∈C Pr[YS = 1].

We proceed by estimating the second moment of Y.

Lemma 3.5.3. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . , Xn be independent d-

dimensional standard normal random vectors, z ∈ [−1, 1]d, and C =
([n]

αn

)
. If n ≥ 81

α(1−2α) ,
then

E[Y2] ≤ E[Y] +
(

n

αn

)2

· (2ε)2d

(2π)d
·
[

1
(αn)d

· (1 − 4α2)− d
2 + exp

[
−α2n

3

]]
.

Proof. We have

E[Y2] =
∑

S,T ∈C
E[YS · YT ]

=
∑

S,T ∈C
Pr[YS = 1, YT = 1]. (3.1)

Let (S, T ) ∈ C×C be a pair of subsets from C sampled uniformly at random, and let KS,T ∈ [αn]
be the size of their intersection. As Pr[YS = 1, YT = 1] depends only on the size of S ∩ T , we
may rewrite equation (3.1) as follows.

E[Y2] =
(

n

αn

)2

·
αn∑

k=0
Pr[KS,T = k]Pr[YS = 1, YT = 1 | KS,T = k]

= E[Y] +
(

n

αn

)2

·
αn−1∑
k=0

Pr[KS,T = k]Pr[YS = 1, YT = 1 | KS,T = k], (3.2)



3.5 – Proof of the main result 51

where the latter equality follows by observing that Pr[KS,T = αn] =
( n

αn

)−1.
The core of our argument is to upper bound the joint probability Pr[YS = 1, YT = 1 | KS,T = k].

For the sake of simplicity, assume the outcome of (S, T ) to be a pair of subsets (S, T ) ∈ C2 with
|S ∩ T | = k: as we argued before, this assumption is justified as Pr[YS = 1, YT = 1] depends
only on the cardinality of S ∩ T .

Let X1, · · · , Xn ∼ N (0, 1) and z ∈ [−1, 1]. Consider the partitions S = SA ∪ SB and
T = TC ∪ TB, with SB = TB = S ∩ T , and let

A =
∑

i∈SA

Xi, C =
∑

i∈TC

Xi, B =
∑

i∈S∩T
Xi.

In this way, we have
∑

i∈S Xi = A + B and
∑

i∈T Xi = C + B, with A, C independent random
variables distributed as N (0, σ2

A) and B ∼ N (0, σ2
B), with σ2

A = αn − k and σ2
B = k.

With this setup, we have,

Pr[YS = 1, YT = 1] = (Pr[A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)])d.

By the law of total probability, it holds that

Pr[A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)]

=
∫
R

φB(x) · Pr[A + x ∈ (z − ε, z + ε), C + x ∈ (z − ε, z + ε)] dx

=
∫
R

φB(x) · Pr[A ∈ (z − x − ε, z − x + ε), C ∈ (z − x − ε, z − x + ε)] dx

=
∫
R

φB(x) · (Pr[A ∈ (z − x − ε, z − x + ε)])2 dx, (3.3)

where the last equality follows from the independence of A and C.
Since A is a normal random variable with 0 average, by Claim A.5, we have that∫

R
φB(x) · (Pr[A ∈ (z − x − ε, z − x + ε)])2 dx ≤

∫
R

φB(x) · (Pr[A ∈ (x − ε, x + ε)])2 dx

=
∫
R

φB(x) ·
(∫ x+ε

x−ε
φA(y) dy

)2
dx. (3.4)

As Pr[YS = 1, YT = 1] increases monotonically with |S ∩ T |, we devide the proof in two cases.
First case: KS,T ≤ 2α2n. As the joint probability Pr[YS = 1, YT = 1 | KS,T = k] increases

with k, we just bound Pr[YS = 1, YT = 1 | KS,T = 2α2n]. Hence, σ2
A = αn(1 − 2α) and σ2

B =
2α2n.

The hypothesis on n implies that 2σ2
a ≥ 162, so, by Claim A.6,

(∫ x+ε

x−ε
φA(y) dy

)2
≤

∫ x+ε

x−ε

exp
(

− (x+ε)2

2σ2
A

)
+ exp

(
− (x−ε)2

2σ2
A

)
2
√

2πσ2
A

· exp
(

ε2

2σ2
A

)
dy


2

= (2ε)2

2πσ2
A

·
exp

(
− (x+ε)2

σ2
A

)
+ exp

(
− (x−ε)2

σ2
A

)
+ 2 exp

(
−x2+ε2

σ2
A

)
4 · exp

(
ε2

σ2
A

)

= eε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

·
φA/

√
2(x + ε) + φA/

√
2(x − ε) + 2e−ε2/σ2

A · φA/
√

2(x)
4 .
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Moreover, it holds that∫
R

φB(x) ·
[
φA/

√
2(x + ε) + φA/

√
2(x − ε) + 2e−ε2/σ2

A · φA/
√

2(x)
]

dx

= (φB ∗ φA/
√

2)(ε) + (φB ∗ φA/
√

2)(−ε) + 2e−ε2/σ2
A · (φB ∗ φA/

√
2)(0)

= φB+A/
√

2(ε) + φB+A/
√

2(−ε) + 2e−ε2/σ2
A · φB+A/

√
2(0)

= 2e
−ε2/σ2

B+A/
√

2 + 2e−ε2/σ2
A√

2πσ2
B+A/

√
2

≤ 4 · e−ε2/σ2
A√

2πσ2
B+A/

√
2

,

here ∗ denotes the convolution operation, and the last inequality comes from the hypothesis α ≤ 1
6 ,

which implies that σ2
B+A/

√
2 ≤ σ2

A.
Altogether, we have

Pr[YS = 1, YT = 1] ≤

eε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· e−ε2/σ2
A√

2πσ2
B+A/

√
2

d

(3.5)

=

(2ε)2

2π
· 1√

2σ2
Aσ2

B+A/
√

2

d

= (2ε)2d

(2παn)d
· (1 − 4α2)− d

2 ,

where the last equality follows from recalling that σ2
B = 2α2n and σ2

A = αn(1 − 2α), and, thus,
σ2

B+A/
√

2 = 2α2n + αn
2 (1 − 2α).

Second case: KS,T > 2α2n. As
∫ x+ε

x−ε φA(y) dy ≤
∫+ε

−ε φA(y) dy for any x ∈ R, a trivial
application of Lemma 3.5.1 in equation (3.4) implies that

Pr[A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)] ≤ (2ε)2

(2πσ2
A)

∫
R

φB(x) dx

≤ (2ε)2

(2πσ2
A)

,

which is maximum when σ2
A = 1 (i.e., the intersection has size k = αn − 1). Hence,

Pr[YS = 1, YT = 1] ≤ (2ε)2d

(2π)d
. (3.6)

Consider now equation (3.2). KS,T follows a hypergeometric distribution H(n, αn, αn), and
its expectation is α2n. The common Chernoff bounds (Lemma A.2) hold also for hypergeometric
distributions (Doerr, 2011, Theorem 1.17). Hence, we have

Pr[KS,T ≥ 2α2n] ≤ exp
[
−α2n

3

]
. (3.7)
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By plugging equations (3.5) to (3.7) in equation (3.2) we obtain

E[Y2] ≤ E[Y] +
(

n

αn

)2

· (2ε)2d

(2π)d
·
[

1
(αn)d

· (1 − 4α2)− d
2 + exp

[
−α2n

3

]]
.

Remark 3.5.1 – In the proof of Lemma 3.5.3, after applying the law of total probability it is pos-
sible to employ Lemma 3.5.1 to estimate the joint probability. While this simplifies the argument,
doing so would ultimately weaken the bound in Theorem 3.5.5. In fact, in section 3.7 we argue
that the estimation we provide is essentially optimal.

We now apply the second moment method to estimate the probability that Y ≥ 1.

Lemma 3.5.4. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . , Xn be independent

d-dimensional standard normal random vectors, z ∈ [−1, 1]d, and C =
([n]

αn

)
. If α ≤ 1

6
√

d
, and

n ≥ max
{

18d log d
α

α2 ,
8d

α log 1
α

(
log d + log 1

ε
+ 1

)
+ 8

α

}
,

then

Pr[Y ≥ 1] ≥ 4
9 .

Proof. Since Y is an integer-valued random variable, by the second moment method, it holds that

Pr[Y > 0] = Pr[Y ≥ 1]

≥ E[Y]2

E[Y2] .

Using Lemmas 3.4.1 and 3.5.3 and Corollary 3.5.2, we obtain

E[Y2]
E[Y]2 ≤

exp
[

4d
αn

]
· (2παn)

d
2( n

αn

)
· (2ε)d

+ exp
[ 4d

αn

]
· (1 − 4α2)− d

2 + exp
[

4d

αn
− α2n

3

]
· (αn)d

≤
exp

[
4d
αn

]
· (2παn)

d
2

1
ααn · (2ε)d

+ exp
[ 4d

αn

]
· (1 − 4α2)− d

2 + exp
[ 4d

αn

]
· exp

[
−αn

3

(
α − d log αn

αn

)]
.

As 0 < α ≤ 1
2 and n ≥ 4d

α log 1
α

[
log 1

ε + log 2πd
]

+ 8
α , Claim A.3 implies that

exp
[

4d
αn

]
· (2παn)

d
2

1
ααn · (2ε)d

≤ ε.

At the same time, as n ≥ 68d
α and α ≤ 1

6
√

d
, by Claim A.4

e
4d
αn

(1 − 4α2)
d
2

≤ 1 + 1
8 .
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Furthermore, n ≥ 68d
α implies that

exp
[ 4d

αn

]
≤ exp

[ 1
16

]
≤ 1 + 1

8 .

Finally, as d log αn
αn decreases (in n) when n ≥ 6d log d

α
α2 and 0 < α ≤ 1

2 , we have

exp
[
−αn

3

(
α − d log αn

αn

)]
≤ exp

−αn

3

α −
α log

(
6d
α log d

α

)
6 log d

α



= exp

−αn

3

α −
α log

(
d
α log

((
d
α

)6
))

log
((

d
α

)6
)




≤ exp
[
−α2n

6

]
,

where for the last inequality we have used that, for α ≤ 1
6 ,

log
(

d
α log

((
d
α

)6
))

log
((

d
α

)6
) ≤ 1

2;

thus, for n ≥ 6 log 9
α2 ,

exp
[
−α2n

6

]
≤ 1

9 .

Hence, as ε ≤ 1, if α ∈ (0, 1
6
√

d
) and n ≥ max

{
18d log d

α
α2 , 8d

α log 1
α

(
log d + log 1

ε + 1
)

+ 8
α

}
, it

holds that

E[Y]2

E[Y2] ≥ 1
ε + 9

8 + 1
8

≥ 4
9 .

Applying an union bound, we amplify the last lemma to get our main result.

Theorem 3.5.5. Let ε ∈ (0, 1) and given d, n ∈ N let X1, . . . , Xn be independent standard nor-

mal d-dimensional random vectors, and let N = max
{

d2(1 + log d), d
3
2

log d

(
1 + log d + log 1

ε

)}
.

There exists a universal constant C > 0 such that, if n ≥ dCN log 1
ε , then, with probability at

least

1 − exp
[
− ln 2 ·

(
n − dCN log 1

ε

CN

)]
,
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for all z ∈ [−1, 1]d there exists a subset Sz ⊆ [n] for which∥∥∥∥∥∥z −
∑
i∈Sz

Xi

∥∥∥∥∥∥
∞

≤ 2ε.

Moreover, this remains true even when restricted to subsets of size n
6
√

d
.

Theorem 3.1.2 follows directly from Theorem 3.5.5.

3.6 Application to Neural Net Evolution

In this section, we present an application of our main result on the multidimensional RSSP (see
Theorem 3.1.2) to a neural network model recently introduced in Gorantla et al. (2019).

We first provide a description of their model in a setting relevant to our application. Then, we
prove that their model exhibits universality; namely, with high probability, it can approximate any
neural network within a polynomial overhead in the number of parameters.

3.6.1 The NNE model

The Neural Net Evolution (NNE) model (Gorantla et al., 2019) has been recently introduced as an
alternative approach to train neural networks, based on evolutionary methods. The aim is to pro-
vide a biologically inspired alternative to the backpropagation process behind ANNs (Rumelhart,
Hinton, & Williams, 1986b; Goodfellow et al., 2016), which happens in evolutionary time, instead
of lifetime.

The NNE model is inspired by a standard update rule in population genetics and, in Gorantla
et al. (2019), it is shown to succeed in creating neural networks that can learn linear classification
problems reasonably well with no explicit backpropagation.

To define the NNE model, we first need to define random genotypes. Given a vector
p ∈ [0, 1]n, a random genotype x ∈ {0, 1}n is sampled by setting xi = 1 with probability pi,
independently for each i. Each entry xi indicates whether or not a gene is active.

Then, for each i, a random tensor Θ(i) ∈ Rℓ×d×d is sampled. In the original version of the
model (Gorantla et al., 2019), each entry of the tensor is chosen independently and uniformly
at random from [−1, 1] with probability β, while it is set to 0, otherwise. For the sake of our
application, we here consider a natural variant where the entries of the tensor are independently
drawn from a standard normal distribution.

Now, given a genotype x ∈ {0, 1}n, we define

Θx =
∑

i : xi=1
Θ(i). (3.8)

Each genotype is then associated with a feed-forward neural network, represented by a weighted
complete multipartite directed graph. The graph is formed by layers {Li}ℓ

i=0 of d nodes and two
consecutive layers are fully connected via a biclique whose edge weights are determined by the
tensor Θx in the following manner: for every i ∈ [ℓ], the edge between the j-th node of layer Li−1
and the k-th node of layer Li has weight (Θx)ijk.

Equation (3.8) tells us that if a gene is active then it gives a random contribution to each weight
of the genotype network. equation (3.8)
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The learning process in the NNE model works by updating the genotype probabilities p ac-
cording to some standard population genetics equations (Bürger, 2000; Chastain, Livnat, Papadim-
itriou, & Vazirani, 2014). In Gorantla et al. (2019), it is proved that the adopted update rule
indirectly performs backpropagation and enables to decrease the loss function of the networks.

3.6.2 Universality and RSSP

Let f : Rd → Rd be a feed-forward neural network of the form

f(y) = Wℓ relu(Wℓ−1 . . . relu(W1 y)), (3.9)

where Wi ∈ Rd×d is a weight matrix.
The restrictions on the weight matrix sizes d × d aim only to ease presentation and can be

adapted to any arbitrary dimensions.
Let us construct a third-order tensor Θf ∈ Rℓ×d×d by stacking the weight matrices

W1, . . . , Wℓ. We correspondingly denote f by fΘ. Conversely, every tensor Θ ∈ Rℓ×d×d is
associated with a neural network fΘ in the form of equation (3.9) whose corresponding weight
matrices are the tensor slices, that is, Wm = (Θ) i=m

j,k∈[d]
for every m ∈ [ℓ].

We can use Theorem 3.1.2 to prove a notion of universality for the NNE model.

Theorem 3.6.1. Let ε > 0 and n, d, ℓ ∈ N. Let F be the class of neural networks f : Rd → Rd of
the form given in equation (3.9) such that their corresponding tensor satisfies maxijk|(Θf )ijk| <

1. A constant C > 0 exists such that, if n ≥ C(ℓ · d · d)3 log 1
ε ·
(
log 1

ε + log(ℓ · d · d)
)

, then, with

high probability, the tensors Θ(1), . . . , Θ(n) associated to each gene are such that, for any f ∈ F ,
there is a genotype x ∈ {0, 1}n which satisfies

max
i∈[ℓ]

j,k∈[d]

|(Θf )ijk − (Θx)ijk| < 2ε.

We note that standard techniques (e.g., Pensia et al. (2020); da Cunha, Natale, and Viennot
(2022)) can be used to provide bounds on the approximation of the output of neural networks,
as well as translating Theorem 3.6.1 for general network architectures (e.g., convolutional neural
networks).

3.7 Tightness of analysis

In Lemma 3.4.1 we prove the existence of a suitable family of subsets via a probabilistic argument,
sampling their elements uniformly at random. The same argument also implies that the pairwise
intersections of almost all subsets is at least α2n

2 . In the next result, we assume such lower bound
and prove that our estimation of the joint probability Pr[YS = 1, YT = 1] in Lemma 3.5.3
(specifically, in equation (3.5)), is essentially tight. Namely, the next lemma implies that it is not
possible to obtain a high-probability bound on Y in Lemma 3.5.4.

Lemma 3.7.1. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2), let X1, . . . , Xn be independent

standard normal d-dimensional random vectors and z ∈ [−1, 1]d. If any two subsets in C intersect
in at least α2n

2 elements and n ≥ 10
α(2−α) , then

α2n

2 ≤ |S ∩ T | ≤ 2α2n
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it holds that

Pr[YS = 1, YT = 1] ≥ (2ε)2d

(2παn)d
· (1 − α2

4 )− d
2 · exp

(
− 3d

αn

)
.

We can extend the above result by letting z lie in a wider range. This will be useful for the
generalisation section appendix C.

Remark 3.7.1 – If λ > 1 and z ∈ [−λ
√

n, λ
√

n]d, then we have

Pr[YS = 1, YT = 1] ≥ (2ε)2d

(2παn)d
·
(

1 − α2

4

)− d
2

· exp(−3λ2d

α
).
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CHAPTER 4
Convolutional Neural

Networks
The lottery ticket hypothesis states that a randomly-initialized neural network contains
a small subnetwork which, when trained in isolation, can compete with the performance
of the original network. Recent theoretical works proved an even stronger version: every
sufficiently over-parameterized (dense) neural network contains a subnetwork that, even
without training, achieves accuracy comparable to that of the trained large network.
These works left extending the result to convolutional neural networks (CNNs) as an
open problem. In this chapter, we provide such generalization by showing that, with high
probability, it is possible to approximate any CNN by pruning a random CNN whose size
is larger by a logarithmic factor.
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4.1 Introduction

Many impressive successes in machine learning are reached through neural network architectures
with a huge number of trainable parameters. Consequently, substantial research in the field aims
at reducing the size of such networks while maintaining good accuracy; e.g., for deployment in
resource constrained devices (Yang, Chen, & Sze, 2017).

A major empirical fact of such endeavour is the contrast between the initial model over-
parametrization, which appears necessary for effective training, and the extent to which the size
of the resulting model can be reduced through compression techniques. Among the latter, pruning
methods appear as a mature and efficient way of achieving significant compression, often without
incurring any accuracy loss (Blalock et al., 2020). Recently, the aforementioned contrast between
the initial and final number of parameters has been addressed by the lottery ticket hypothesis
(Frankle & Carbin, 2019), or LTH for short, which states that any randomly initialized network
contains lottery tickets; that is, sparse subnetworks that can be trained just once and reach the
performance of the fully-trained original network. This hypothesis was first verified experimen-
tally, leveraging pruning methods to identify the lottery tickets (Frankle & Carbin, 2019; N. Lee,
Ajanthan, & Torr, 2019).

Ramanujan et al. (2020) then proposed a stronger version of the hypothesis, named strong
lottery ticket hypothesis (SLTH) by Pensia et al. (2020): it stipulates that a network with random
weights contains, with high probability, sub-networks that can approximate any given sufficiently-
smaller neural network. In other words, a sufficiently large and randomly initialized network that
can be successfully trained for a task, could instead be suitably pruned to obtain a network that,
even without training, achieves good accuracy. Experimental support for this stronger version
were reported by Ramanujan et al. (2020); Zhou et al. (2019); Y. Wang et al. (2020), which find
lottery tickets in a range of architectures, including convolutional neural networks (CNNs). A first
rigorous proof of the SLTH was given by Malach et al. (2020) for the case of dense networks (i.e.,
consisting of fully connected layers). Pensia et al. (2020) and Orseau et al. (2020) successively
improved this result by showing that logarithmic over-parametrization is sufficient. Their results
are also restricted to dense networks and they leave as an open problem to extend it to CNNs.

Our contributions. We extend and complete the proof of the SLTH (and thus, also, of the LTH),
for classical network architectures which can combine convolutional and fully connected layers.
More precisely, we prove that any CNN with given weights can be approximated by pruning a
CNN with random weights (random CNN for short), with the latter being larger than the former
by a logarithmic factor. We also provide basic experiments showing that starting from a random
CNN which is roughly 30 times larger than LeNet5, it is possible to compute in few hours a
pruning mask that allows to approximate the trained convolutional layers of LeNet5 with relative
error 10−3, even when ignoring some hypothesis of our theoretical result. Our theoretical analysis
follows the approach of Malach et al. (2020) and make use of two layers to approximate one.
We borrow from Pensia et al. (2020) the use of random subset sum (RSS) (Lueker, 1998) to
approximate a given weight via the sum of a subset of a sample of random weights, and carefully
design instances of RSS via a combination of two convolutional layers. By controlling the error
accumulated by each layer with Young’s convolution inequality, we establish the following result.

Informal version of Theorem 4.2.3. Given ε, δ > 0, any CNN with k parameters
and ℓ layers, and kernels with ℓ1 norm at most 1, can be approximated within error
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ε by pruning a random CNN with O
(
k log kℓ

min{ε,δ}

)
parameters and 2ℓ layers with

probability at least 1 − δ.

This result generalizes those by Pensia et al. (2020), Orseau et al. (2020), and Malach et al.
(2020) as dense layers can be regarded as convolutional layers where kernel and input sizes match.

Roadmap. After discussing related work in the next section, we state our theoretical results
alongside a high-level idea of the proofs. Successively, we report our experimental results. Finally,
in section 4.4, we provide detailed proofs of our statements.

4.1.1 Related Work

Pruning methods are classical neural network compression strategies that date back to the 80s
(LeCun, Denker, & Solla, 1989; M. Mozer & Smolensky, 1988). We recommend the recent
survey Blalock et al. (2020) for an overview of the current state of research on these techniques.

As for the lottery ticket hypothesis, Lange (2020) summarizes the progress on the topic un-
til the results by Malach et al. (2020). In the following we briefly mention works which are not
discussed in Lange (2020). Cosentino, Zaiter, Pei, and Zhu (2019) shows that lottery tickets can
be adversarially trained, yielding sparse and robust neural networks. Soelen and Sheppard (2019)
shows that lottery tickets are transferable, in the sense of showing remarkable accuracy for tasks
other than the original one for which they have been found. Sabatelli, Kestemont, and Geurts
(2021) further shows that minimal retraining on a new task allows lottery tickets to often achieve
better generalization than models trained ad-hoc for the task. H. Yu, Edunov, Tian, and Mor-
cos (2020) empirically supports that the LTH holds also in the context of reinforcement learning
and natural language processing. Fischer and Burkholz (2021) extends works on the SLTH to
accommodate biases in practical settings. Diffenderfer and Kailkhura (2021) shows that lottery
tickets are robust to extreme quantization of the weights. Aladago and Torresani (2021) provides
a method to train networks where each initial weight is restricted to few possible random values.
An extreme case of the latter is to share only a single (random) value among all weights, and focus
the training solely on finding the best architecture (Gaier & Ha, 2019).

This chapter also relates to recent papers investigating properties of random CNNs, such as
Ulyanov, Vedaldi, and Lempitsky (2020) which observes that random CNNs already seem to cap-
ture some natural image statistics required for tasks such as de-noising and inpainting.

4.2 Theoretical Results

We start by introducing some of our notation.
Given n ∈ N, we denote the set {1, . . . , n} by [n]. The symbol ∗ represents the convolution

operation, ⊙ represents the element-wise (Hadamard) product, and σ represents ReLU activation
function. Finally, the notation ∥ · ∥1 refers to the sum of the absolute values of each entry in a
tensor while ∥ · ∥∞ denotes the maximum norm: the maximum among the absolute value of each
entry. Those are akin to vector norms and should not be confused with operator norms.

We restrict our setting to convolutional neural networks f : [0, 1]D×D×c0 → RD×D×cℓ of the
form

f(X ) = K ℓ ∗ σ(K ℓ−1 ∗ · · · σ(K 1 ∗ X )),
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where K i ∈ Rdi×di×ci−1×ci , and the convolutions have no bias and are suitably padded with zeros.
The restrictions on tensor sizes and the exclusion of bias terms1 aim only to ease presentation.

Our initial goal is to approximate a convolution with a single kernel, as depicted in figure 4.1,
using convolutions with (pruned) random kernels. We achieve this by the means of the structure
presented in figure 4.2, using two convolutions with random tensors.

D

D

c

X

∗

d

d

c

K

=

D

D

K ∗ X

Figure 4.1: Schematics of the convolution between an input X ∈ RD×D×c and a kernel K ∈
Rd×d×c resulting in a D × D matrix.

Lemma 4.2.1 asserts that, with high probability, we can prune this structure to approximate
the output of a convolution with any given kernel as long as the amount of random kernels is large
enough.

D

D

c

X

∗

d

d

c

...

U(1), . . . , U(n)

→

D

D

n

U ∗ X

∗

1
1

n

V

=

D

D

V ∗ (U ∗ X )

Figure 4.2: Schematics of the use of two convolutions to approximate the operation depicted in
figure 4.1. The elements of the set U = {U(1), . . . , U(n)} and V are random tensors. Notice that
the intermediate tensor U ∗ X has size D × D × n and yet the final output is a D × D matrix.

Lemma 4.2.1 (Single kernel). Let D, d, c, n ∈ N, and ε, C ∈ R>0, where n ≥ C log d2c
ε ,

U ∈ Rd×d×c×n, V ∈ R1×1×n×1, and S ∈ {0, 1}shape(U), where the entries of U and V are
i.i.d. Uniform([−1, 1]) random variables. Moreover, define the random CNN g : [0, 1]D×D×c →
RD×D×1 and its pruned version gS by

g(X ) = V ∗ σ(U ∗ X ) and gS(X ) = V ∗ σ((U ⊙ S) ∗ X ).

Then, we can choose constant C independently from other parameters so that, with probability
at least 1 − ε, for all K ∈ [−1, 1]d×d×c×1 with ∥K∥1 ≤ 1, there exists a pruning mask S such that

sup
X∈[0,1]D×D×c

∥K ∗ X − gS(X )∥∞ < ε.

1If biases are present, the structures used in the proofs also puts them in a RSS configuration. Thus the results can
be readily adapted by replacing the d2

i terms by d2
i + 1.
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Proof idea. We leverage the absence of negative entries in the input and an initial pruning of U
to bypass the ReLU non-linearity. This allows us to virtually replace the operations in g by a
single convolution with a random kernel obtained by combining U and V. Each entry of this
resulting kernel is the sum of n random variables, where we can choose to include/exclude each
term in the sum by choosing to keep/prune the relevant weights. We finish the proof by applying
Theorem H.2 to conclude that n variables suffice to approximate all entries, simultaneously, with
enough precision to ensure the thesis.

We now extend Lemma 4.2.1 to an entire layer. As before, a detailed proof is provided in
section 4.4.2.

Lemma 4.2.2 (Convolutional Layer). Let D, d, c0, c1, n ∈ N, and ε, C ∈ R>0, where n ≥
Cc1 log d2c0c1

ε , U ∈ Rd×d×c0×n, V ∈ R1×1×n×c1 , S ∈ {0, 1}shape(U) and T ∈ {0, 1}shape(V),
where the entries of U and V are i.i.d. Uniform([−1, 1]) random variables. Finally, define the
random CNN g : [0, 1]D×D×c0 → RD×D×c1 and its pruned version gT ,S(X ) by

g(X ) = V ∗ σ(U ∗ X ) and gT ,S(X ) = (V ⊙ T ) ∗ σ((U ⊙ S) ∗ X ).

Then, we can choose constant C independently from other parameters so that, with probability
at least 1 − ε, for all K ∈ [−1, 1]d×d×c0×c1 with ∥K∥1 ≤ 1, there exist masks S and T such that

sup
X∈[0,1]D×D×c0

∥K ∗ X − gT ,S(X )∥∞ < ε.

Proof Idea. The lemma follows by applying Lemma 4.2.1 to each kernel independently so that all
of them are approximated by a factor of at most ε/c1. Such approximation allows us to apply the
union bound so that the desired approximation holds simultaneously for all c1 output kernels with
probability at least 1 − ε.

Next, we extend Lemma 4.2.2 from a single layer to the entire network, thus proving our main
result. A detailed proof is given in appendix G.

Theorem 4.2.3 (Convolutional Network). Let D, d, c0, ℓ ∈ N, and ε, C, δ ∈ R>0. For
each i ∈ [ℓ], let ci, ni ∈ N, where ni ≥ Cci log ci−1cid

2
i ℓ

min{ε,δ} , and L2i−1 ∈ Rdi×di×ci−1×ni ,

L2i ∈ R1×1×ni×ci , S2i−1 ∈ {0, 1}shape(L2i−1), S2i ∈ {0, 1}shape(L2i), where the entries
of L1, . . . , L2ℓ are i.i.d. Uniform([−1, 1]) random variables and define the random 2ℓ-layer CNN
g : [0, 1]D×D×c0 → RD×D×cℓ and its pruned version gS1,...,S2ℓ(X ) by

g(X ) = L2ℓ ∗ σ(· · · σ(L1 ∗ X )) and gS1,...,S2ℓ(X ) = (L2ℓ ⊙ S2ℓ) ∗ σ[· · · σ[(L1 ⊙ S1) ∗ X ]].

Finally, let F be the class of functions from [0, 1]D×D×c0 to RD×D×cℓ such that, for each
f ∈ F

f(X ) = K ℓ ∗ σ(K ℓ−1 ∗ · · · σ(K 1 ∗ X )),

where, for each i ∈ [ℓ], K i ∈ [−1, 1]di×di×ci−1×ci and ∥K i∥1 ≤ 1.
Then, we can choose constant C independently from other parameters so that, with probability

at least 1 − δ, the following holds for every f ∈ F :

inf
∀i∈[2ℓ], Si∈{0,1}shape(Li)

sup
X∈[0,1]D×D×c0

∥f(X ) − gS1,...,S2ℓ(X )∥∞ < ε.
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Proof Idea. The proof leverages Lemma 4.2.2 in an analogous way to how the latter relied on
Lemma 4.2.1; namely, we apply Lemma 4.2.2 by requiring an approximation factor that guaran-
tees, with sufficient probability, that a suitable approximation is reached across all layers simulta-
neously. The latter requirement is responsible for the ℓ factor which appears in the logarithms of
the dimensions of each random tensor Li.

4.2.1 Discussion on Theorem 4.2.3

Size analysis. For each layer, we emulate a 4-D kernel K with size di × di × ci−1 × ci with
two 4-D kernels U and V with size di × di × ci−1 × n and 1 × 1 × n × ci respectively with
n ≥ Cci log ci−1cid

2
i ℓ

min{ε,δ} . Under the technical assumption ci = O(d2
i ci−1) for i ∈ [ℓ], the size

of V is within a constant factor of that of U, and the whole random network we prune has size
O
(
k log kℓ

min{ε,δ}
)
, where k is the size of the network we want to approximate. This technical

assumption is met for all classical convolutional networks used for image processing with a rea-
sonably small constant in the big O notation. We come back to this assumption below.

Limitations. The properties of convolutional layers require stronger hypotheses in Theo-
rem 4.2.3 when compared with the results for dense layers Malach et al. (2020) or Pensia et
al. (2020). First, we require non-negative inputs for all layers, however, since the output of the
ReLU function is never negative, this restriction is only relevant for the input of the first layer. The
mentioned works avoid this restriction by exploiting the identity a = σ(a) − σ(−a) to deal sepa-
rately with the positive and negative entries. The fact that each entry of the output of a convolution
is affected by potentially multiple input entries prevents us from employing a similar strategy.
Nonetheless, we remark that, while this is a relevant theoretical indication of the challenges im-
posed by the operation of convolution, in practice the inclusion of biases suffices to easily convert
any CNN with a domain including negative values into an equivalent CNN that takes only non-
negative inputs. Finally, the possibly multidimensional entries of convolutions also motivate the
restriction on the norm of the target weight tensors in terms of the 1-norm.

Generalizations. For the sake of simplicity, we state and prove Theorem 4.2.3 in a restricted
setting. It is worth remarking on a series of generalisations that can be obtained at the mere cost of
making the proofs more technically involved. First, the proof could also consider other parameters,
such as stride, padding, average pooling and other operations that can be seen as convolutions.
Moreover, we could consider more general convolutions, not necessarily 2-D, operating on tensors
of any sufficiently large dimension. In particular, it is not necessary to assume that V has size
1 × 1 × n × ci in the above analysis. Using a 5-D tensor with size d × d × ci−1 × (n/ci) × c1
for U, an appropriate convolution U ∗ X would result in a D × D × (n/ci) × ci tensor, and we
could use a 1 × 1 × (n/ci) × ci tensor for V without the need for the mask T by performing
in parallel ci appropriate convolutions. Note that the size of V is then smaller than the size of
U. The technical assumption used in the above size analysis is thus not necessary to guarantee
that logarithmic over-parametrization is sufficient. Finally, observe that our results generalize to
any probability distribution for the weights that contains a b-scaled Uniform([−a, a]) for some
constant a > 0 (in the sense of Definition H.1 in appendix H), where the parameters a and b only
impact the constants in the theorem.
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4.3 Experiments

As networks with higher parameter count tend to be more robust to noise, we stick to the small
CNN architecture used by Pensia et al. (2020), namely, LeNet5 (LeCun et al., 1989) with ReLU
activations. We conduct our experiments by first training a the network to 98.99% test accuracy
on MNIST dataset (Lecun, Bottou, Bengio, & Haffner, 1998). To avoid well-known limitations
of the MNIST dataset (in particular its large number of zero entries), we also trained it on the
Fashion-MNIST dataset (H. Xiao, Rasul, & Vollgraf, 2017) to 89.12% test accuracy. We adopted
Kaiming Uniform (K. He, Zhang, Ren, & Sun, 2015) for weight initialization, a batch size of 64
and trained for 50 epochs using ADAM optimizer (Kingma & Ba, 2015) with learning rate of
0.001, exponential decay of 0.9 and momentum estimate of 0.999, the default values in Flux.jl
(Innes et al., 2018) machine learning library.

Once the network is trained we change its weights for a random subset sum approximation of
them. More precisely, for each weight w we sample x from Uniform([−1, 1]n) and use Gurobi
optimization software (Gurobi Optimization, LLC, 2021) to solve the mixed-integer program

min
a1,...,an

∣∣∣∣∣w −
n∑

i=1
ai · xi

∣∣∣∣∣ s.t. ai ∈ {0, 1} ∀i ∈ [n],

where n is the sample size. Solving this subset sum problem with n = 30 for the 2572 parameters
in the convolutional layers of LetNet takes around 1 hour on 32 cores of a Intel® Xeon® Gold
6240 CPU @ 2.60GHz.
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Figure 4.3: Relative error of random subset sum approximation of the convolution weights of a
LeNet5 trained on MNIST (left) and on Fashion-MNIST (right). The error is given in logarithmic
scale as the maximum distance between a weight and its approximation for different sample sizes.

Figure 4.3 shows the accuracy of the approximation for different sample sizes. We start to
obtain good approximations (error smaller than 10−2) from sample sizes around 15-20. Also,
when comparing to the weights obtained for MNIST and for Fashion-MNIST, we have better
approximations for the smaller sample sizes for MNIST. We believe this is due to the fact that the
training on Fashion-MNIST resulted in filters with larger weights (up to a factor 2, roughly), since
a larger sample size is necessary to approximate a larger interval of values (see Theorem H.2).

The high precision in the approximation of most weights leads to negligible change in the
accuracy of the network. For this reason, we focus on studying the error at the output of the
convolutional section of LeNet5, right before the flattening. Also, at this point the activation
tensor has dimension 7 × 7 × 16 as opposed to the vector of size 10 at the end of LeNet5.
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Figure 4.4: Maximum relative output error for the convolutional portion of LeNet5 trained on
MNIST (left) and Fashion-MNIST (right) for different sample sizes. The maximum is computed
over all images in the dataset.

Figure 4.4 shows the maximum relative error for all approximated outputs compared to origi-
nal ones. The relative error of the output for an input image is computed as the maximum activation
error divided by the maximum original activation (both maxima are taken over all 7 × 7 × 16 ac-
tivations). Once again, MNIST leads to better precision for the smaller sample sizes. This can be
explained by the fact that weights are better approximated in that range with MNIST as seen in
figure 4.3. In both cases, we get a relative error close to 10−3 with sample size 20, and even better
with larger sample sizes. Within the settings of Theorem 4.2.3, this corresponds to expanding the
convolutional portion of the network by a factor of, roughly, 30 if we take into account kernel
sizes and number of channels. This high precision is achieved even though the trained weights
do not satisfy the norm restrictions of Theorem 4.2.3. Indeed, as we do not use any explicit regu-
larization, the 1-norms of the kernels obtained are quite high (from 50 to 15000 roughly for both
datasets).

4.4 Technical Analyses

4.4.1 Single Kernel Approximation (Proof of Lemma 4.2.1)

Our first goal is to bypass the non-linearity so we can combine the two convolutions in g(X ) =
V∗σ(U∗X ) into a single one. Given that the activation function under consideration is the ReLU,
it suffices to ensure that its input has no negative entry. Hence, we prune all negative entries of U,
obtaining the tensor U+ = max{0, U}, where the maximum is applied entry-wise. Since, by
hypothesis, the entries of the input X are non-negative, it follows that the entries of the tensor
U+ ∗ X are also non-negative. Therefore,

V ∗ σ(U+ ∗ X ) = V ∗ (U+ ∗ X ). (4.1)
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We now look at the first convolution on the right side of equation (4.1). By Definition (1.3.1),
we have

[V ∗ (U+ ∗ X )]r,s,1 =
n∑

t=1
V1,1,t,1 · (U+ ∗ X )r,s,t

=
n∑

t=1
V1,1,t,1 ·

 ∑
i,j∈[d],k∈[c]

U+
i,j,k,t · Xr−i+1,s−j+1,k


=

n∑
t=1

∑
i,j∈[d],k∈[c]

(
V1,1,t,1 · U+

i,j,k,t

)
· Xr−i+1,s−j+1,k

=
∑

i,j∈[d],k∈[c]
(

n∑
t=1

V1,1,t,1 · U+
i,j,k,t) · Xr−i+1,s−j+1,k.

The equation above shows that performing V ∗ (U+ ∗ X ) is equivalent to performing a single
convolution between X and a tensor L ∈ Rd×d×c×1 whose coordinates are given by

Li,j,k,1 =
n∑

t=1
V1,1,t,1 · U+

i,j,k,t.

This reveals a RSS configuration where we can choose to include/exclude each value V1,1,t,1 ·
U+

i,j,k,t in the sum by choosing to keep/prune U+
i,j,k,t. Since equation (4.1) continues to hold after

further pruning U+, we finish our proof by doing exactly that: we leverage Theorem H.2 to ensure
that, with high probability, we can solve this RSS problem for each entry of L to approximate the
respective entry of K .

To see that we can apply Theorem H.2 in this setting, for ε′ > 0, i, j ∈ [d], and k ∈ [c], denote
by Ei,j,k,ε′ the event{

∀z ∈ [−1, 1], ∃S ⊆ [n] :
∣∣∣∣∣z −

∑
t∈S

V1,1,t,1 · U+
i,j,k,t

∣∣∣∣∣ < ε′
}

.

We now use the RSS result, (Lueker, 1998, Corollary 3.3) (Theorem H.2 in appendix H), to show
that there exists constants a, b such that

E
[

max
z∈[−n/32,n/32]

min
S⊆[n]

|z −
∑
t∈S

V1,1,t,1 · U+
i,j,k,t|

]
≤ ae−bn.

It is not hard to show that, since (V1,1,t,1)1≤t≤n and (U+
i,j,k,t)1≤t≤n are i.i.d. Uniform([−1, 1])

random variables, then the value of the density of (V1,1,t,1 · U+
i,j,k,t)1≤t≤n is at least log 2

2 on
[−1/2, 1/2], and, thus, it contains a log 2

2 -scaled Uniform([−1/2, 1/2]) (see Lemma H.1 in ap-
pendix H for details). In particular, setting X = V1,1,t,1 · U+

i,j,k,t, we have that µ− = E[1X≤0X] ≤
− log 2

8 < −1/16 and µ+ = E[1X>0X] ≥ log 2
8 > 1/16. Therefore, we can apply Theorem H.2

with ξ = 1/32: there exist constants a, b > 0 such that the expected value of the [−n/32, n/32]-
subset-sum gap for (V1,1,t,1 · U+

i,j,k,t)1≤t≤n is at most ae−bn. That is,

E
[

max
z∈[−n/32,n/32]

min
S⊆[n]

|z −
∑
t∈S

V1,1,t,1 · U+
i,j,k,t|

]
≤ ae−bn.
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Assuming n ≥ 32, Markov’s inequality yields Pr[Ei,j,k,ε′ ] ≤ ae−bn

ε′ . Setting ε′ = ε
d2c

and
C = 2

b + log a
b , and supposing without loss of generality that ε′ < e−1, the condition n ≥ C log 1

ε′

implies bn ≥ 2 log ε′ + log a and ae−bn

ε′ < ε′, and we get

Pr
[
Ei,j,k, ε

d2c

]
≥ 1 − ε

d2c
.

Now define the simultaneous event Eε′ =
⋂

i,j,k Ei,j,k,ε′ . By a union bound over the inequality
above for i, j ∈ [d], k ∈ [c], we have

Pr
[
E ε

d2c

]
≥ 1 − ε.

Finally, conditioning on E ε
d2c

, it holds that

sup
K∈[0,1]d×d×1×1

inf
S∈{0,1}shape(U)

sup
X∈[0,1]D×D×1

∥K ∗ X − V ∗ σ[(U ⊙ S) ∗ X ]∥∞

(a)= sup
K

inf
S

sup
X

∥K ∗ X − V ∗ (U+ ⊙ S) ∗ X∥∞

(b)= sup
K

inf
S

sup
X

∥[K − V ∗ (U+ ⊙ S)] ∗ X∥∞

(c)
≤ sup

K
inf
S

sup
X

(∥K − V ∗ (U+ ⊙ S)∥1 · ∥X∥∞)

(d)
≤ sup

K
inf
S

∥K − V ∗ (U+ ⊙ S)∥1

(e)
≤ d2c · sup

K
inf
S

∥K − V ∗ (U+ ⊙ S)∥∞

(f)
≤ d2c

ε

d2c
= ε,

where (a) follows from equation (4.1), (b) from the distributivity of the convolution operation, (c)
from proposition F.1, (d) from the fact that X ∈ [0, 1]D×D×1, (e) from the inequality ∥x∥1 ≤
m∥x∥∞ for x ∈ Rm, and (f) from the definition of E ε

cd2
.

4.4.2 Convolutional Layer Approximation (Proof of Lemma 4.2.2)

The general goal of this argument is to choose binary masks T and S so that (V⊙T )∗σ[(U⊙S)∗X ]
is a sufficiently close approximation of K ∗ X .

For ℓ ∈ [c1] let K (ℓ) be K ’s ℓ-th kernel. That is,

K (ℓ) = K :,:,:,ℓ.

Notice that K ∗X is the concatenation along the third dimension of each K (ℓ) ∗X , i.e., for ℓ ∈ [c1],
we have (K ∗ X ):,:,ℓ = K (ℓ) ∗ X .

We fix T a priori to be the block diagonal matrix B with entries given by B1,1,t,ℓ =
1(ℓ−1)n′<t≤ℓn′ for t ∈ [n], ℓ ∈ [c1], where n′ = n/c1. In the rest of the proof, we show how
to choose S, based on U and V, in order to approximate the kernels K (ℓ).
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We perform the approximation of each K (ℓ) using different sections of the tensors. To this
end, for ℓ ∈ [c1], let

Uℓ = U:,:,:,(ℓ−1)n′<t≤ℓn′ , Sℓ = S:,:,:,(ℓ−1)n′<t≤ℓn′ , and Vℓ = V:,:,(ℓ−1)n′<t≤ℓn′,:.

As we did in the proof of Lemma 4.2.1, we perform an initial pruning on U by restricting S to the
space of masks that prune all of its negative entries. This allows us to ignore the ReLU activation
and conclude that

(V ⊙ B) ∗ σ[(U ⊙ S) ∗ X ])r,s,ℓ

=
∑

(ℓ−1)n′<t≤ℓn′

V1,1,t,ℓ

∑
i,j∈[d],k∈[c]

(U ⊙ S)i,j,k,t · Xr−i+1,s−j+1,k

=
(
Vℓ ∗ [(Uℓ ⊙ Sℓ) ∗ X ]

)
r,s

=
(
Vℓ ∗ σ[(Uℓ ⊙ Sℓ) ∗ X ]

)
r,s

.

For ℓ ∈ [c1] and ε′ > 0, denote by Eℓ,ε′ the event sup
K (ℓ)∈[−1,1]d×d×c0×1

inf
Sℓ∈{0,1}shape(Uℓ)

sup
X∈[0,1]D×D×c0

∥∥∥K (ℓ) ∗ X − Vℓ ∗ σ[(Uℓ ⊙ Sℓ) ∗ X ]
∥∥∥

∞
< ε′

.

Consider the event Eε/c1 =
⋂

ℓ Eℓ,ε/c1 . Since n′ = n/c1 = C log d2c0
ε/c1

, for each ℓ ∈ [c1],
Lemma 4.2.1 ensures that Pr[Eℓ,ε/c1 ] ≥ 1 − ε/c1, which implies that Pr[Eε/c1 ] ≥ 1 − ε.

Finally, conditioning on Eε/c1 and using the fact that the output channels of a convolutional
layer are calculated independently, we conclude

sup
K∈[−1,1]d×d×c0×c1

inf
S∈{0,1}shape(U)

T∈{0,1}shape(V)

sup
X∈[0,1]D×D×c0

∥K ∗ X − (V ⊙ T ) ∗ σ[(U ⊙ S) ∗ X ]∥∞

≤ sup
K∈[−1,1]d×d×c0×c1

inf
S∈{0,1}shape(U)

sup
X∈[0,1]D×D×c0

∥K ∗ X − (V ⊙ B) ∗ σ[(U ⊙ S) ∗ X ]∥∞

= max
ℓ∈[c1]

sup
K (ℓ)∈[−1,1]d×d×c0

inf
Sℓ∈{0,1}shape(Uℓ)

sup
X∈[0,1]D×D×c0

∥∥∥K (ℓ) ∗ X − Vℓ ∗ σ[(Uℓ ⊙ Sℓ) ∗ X ]
∥∥∥

∞

< ε.



CHAPTER 5
Structured pruning

The Strong Lottery Ticket Hypothesis (SLTH) states that randomly-initialised neural
networks contain subnetworks that can perform well without any training. Although
unstructured pruning has been extensively studied in this context, its structured coun-
terpart, which can deliver significant computational and memory efficiency gains, has
been largely unexplored. One of the main reasons for this gap is the limitations of the
underlying mathematical tools used in formal analyses of the SLTH. In this chapter, we
overcome these limitations: we leverage recent advances in the multidimensional gen-
eralisation of the Random Subset-Sum Problem and obtain a variant that admits the
stochastic dependencies that arise when addressing structured pruning in the SLTH. We
apply this result to prove, for a wide class of random Convolutional Neural Networks,
the existence of structured subnetworks that can approximate any sufficiently smaller
network.
This is the first work to address the SLTH for structured pruning, opening up new av-
enues for further research on the hypothesis and contributing to the understanding of the
role of over-parameterization in deep learning.
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5.1 Introduction

Much of the success of deep learning techniques relies on extreme over-parameterization. While
such excess of parameters has allowed neural networks to become the state of the art in many
tasks, the associated computational cost limits both the progress of those techniques and their
deployment in real-world applications. This limitation motivated the development of methods for
reducing the number of parameters of neural networks; both in the past (Reed, 1993) and in the
present (Blalock et al., 2020; Hoefler et al., 2021).

Although pruning methods have traditionally targeted reducing the size of networks for in-
ference purposes, recent works have indicated that they can also be used to reduce parameter
counts during training or even at initialization without sacrificing model accuracy. In particular,
Frankle and Carbin (2019) proposed the Lottery Ticket Hypothesis (LTH), which conjectures that
randomly initialised networks contain sparse subnetworks that can be trained and reach the per-
formance of the fully-trained original network. Empirical investigations on the LTH (Zhou et al.,
2019; Ramanujan et al., 2020; Y. Wang et al., 2020) pointed towards an even more impressive phe-
nomenon: the existence of subnetworks that perform well without any training. This conjecture
was named the Strong Lottery Ticket Hypothesis (SLTH) by Pensia et al. (2020).

While the SLTH has been proved for many different classes of neural networks (see sec-
tion 5.2), those works are restricted to unstructured pruning, where the subnetworks are obtained
by freely removing individual parameters from the original network. However, this lack of struc-
ture can significantly reduce the main gains of pruning, both in terms of memory and computa-
tional efficiency. Removing parameters at arbitrary points of the network implies the need to store
the indices of the remaining non-zero parameters, which can become a significant overhead with
its own research challenges (Pooch & Nieder, 1973). Moreover, the theoretical computational
gains of unstructured sparsity can also be difficult to realize in standard hardware, which is opti-
mized for dense operations. Most notably, the irregularity of the memory access patterns can lead
to both data and instruction cache misses, significantly reducing the performance of the pruned
network.

The limitations of parameter-level pruning have motivated extensive research on structured
pruning, which constrain the sparsity patterns to reduce the complexity of parameter indexation
and, more generally, to make the processing of the pruned network more efficient. A simple ex-
ample of structured pruning is neuron pruning of fully-connected layers: deletions in the weight
matrix are constrained to the level of whole rows/columns. With this constraint, pruning results
in a smaller dense network, directly reducing the computational costs without any need for ex-
tra memory to store indices. Similarly, deleting entire filters in Convolutional Neural Networks
(CNNs) (Polyak & Wolf, 2015) or “heads” in attention-based architectures (Michel, Levy, & Neu-
big, 2019) also produces direct reductions in computational costs.

It is important to note that structured pruning is a restriction of unstructured pruning so, the-
oretically, the former is bound to perform at most as well as the latter. For example, by deleting
whole neurons one can remove about 70% of the weights in dense networks without significantly
affecting its performance. Through unstructured pruning, on the other hand, one can usually
reach 95% sparsity without accuracy loss (Alvarez & Salzmann, 2016). In practice, however, the
computational advantage of structured pruning can offset this difference. This trade-off between
sparsity and actual efficiency has motivated the study of less coarse sparsity patterns. Weaker
structural constraints such as strided sparsity (Anwar et al., 2017) (figure 5.1b) or block sparsity
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Unstructured sparsity

(a) No pattern.

Structured sparsity

(b) Strided pattern. (c) Block pattern.

Figure 5.1: Examples of different pruning patterns.

(Siswanto, 2021) (figure 5.1b) are already sufficient to deliver the bulk of the computational gains
that structured can offer.

Despite its benefits, there have been no results on structured pruning in the context of the
SLTH. We believe this gap can be attributed to the limitations of a central result underlying almost
all of the theoretical works on the SLTH: a theorem by Lueker on the Random Subset-Sum Problem
(RSSP).

Theorem 5.1.1 ((Lueker, 1998; da Cunha, d’Amore, et al., 2022)). Let X1, . . . , Xn be indepen-
dent uniform random variables over [−1, 1], and let ε ∈ (0, 1/3). There exists a universal constant
C > 0 such that, if n ≥ C log(1/ε), then, with probability at least 1 − ε, for all z ∈ [−1, 1] there
exists Sz ⊆ [n] for which ∣∣∣z −

∑
i∈Sz

Xi

∣∣∣ ≤ ε.

In general terms, the theorem states that given a rather small number of random variables,
there is a high probability that any target value (within an interval of interest) can be approximated
as a sum of a subset of the random variables. An important remark is that even though Theo-
rem 5.1.1 is stated in terms of uniform random variables, it is not hard to extend it to a wide class
of distributions.1

While Theorem 5.1.1 closely matches the setup of the SLTH, it only concerns individual ran-
dom variables, so it does not apply to entire random structures directly. Borst, Dadush, Huiberts,
and Tiwari (2023); Becchetti et al. (2022) reduced this gap by proving multidimensional versions
of Theorem 5.1.1. Still, the intricate manipulation of the network parameters in proofs around the
SLTH imposes restrictions that are not covered by those results.

Contributions

In this chapter, we close this gap by providing a version of Theorem 5.1.1 that allows us to prove
that networks in a wide class of CNNs are likely to contain structured subnetworks that approxi-
mate any sufficiently smaller CNN in the class. To the best of our knowledge, this is the first result
around the SLTH for structured pruning of neural networks of any kind. More precisely,

1Distributions whose probability density function φ satisfies φ(x) ≥ b for all x ∈ [−a, a], for some constants
a, b > 0 (see Lueker (1998, Corollary 3.3)).
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We prove a multidimensional version Theorem 5.1.1 that is robust to some dependencies
between coordinates, which is crucial for structured pruning (Theorem 5.3.2);

We use this result to show that, with high probability, a rather wide class of random CNNs
can be pruned (in a structured manner) to approximate any sufficiently smaller CNN in this
class (Theorem 5.3.1);

Additionally, our pruning scheme focuses on filter pruning, which, like neuron pruning,
allows for a direct reduction of the size of the original CNN.

5.2 Related Work

SLTH Put roughly, research on the SLTH revolves around the following question:

Question – Given an error margin ε > 0 and a target network architecture ftarget, how large must
an architecture frandom be to ensure that, with high probability on the sampling of parameters of
frandom, one can prune frandom to obtain a subnetwork that approximates ftarget up to output error
ε?

Malach et al. (2020) first proved that, for dense networks with ReLU activations, it was suf-
ficient for frandom to be twice as deep and polynomially wider than ftarget. Orseau et al. (2020)
showed that the width overhead could be greatly reduced by sampling parameters from a hyper-
bolic distribution. Pensia et al. (2020) improved the original result for a wide class of weight
distribution, requiring only a logarithmic width overhead, which they proved to be asymptotically
optimal. da Cunha, Natale, and Viennot (2022) generalised those results with optimal bounds
to CNNs with non-negative inputs, which Burkholz (2022a) extended to general inputs and to
residual architectures. Burkholz (2022a) also reduced the depth overhead to a single extra layer
and provided results that include a whole class of activation functions. Burkholz (2022b) ob-
tained similar improvements to dense architectures. Fischer and Burkholz (2021) modified many
of the previous arguments to take into consideration networks with non-zero biases. Ferbach et al.
(2022) further generalise previous results on CNNs to general equivariant networks. Diffenderfer
and Kailkhura (2021) obtained similar SLTH results for binary dense neural networks within poly-
nomial depth and width overhead, which Sreenivasan, Rajput, Sohn, and Papailiopoulos (2022)
improved to logarithmic overhead.

Structured pruning Works on structured pruning date back to the early days of the field of neu-
ral network sparsification with works such as M. Mozer and Smolensky (1988) and M. C. Mozer
and Smolensky (1989). Since then, a vast literature was built around the topic, particularly for the
pruning of CNNs. For a survey of structured pruning in general, we refer the reader to the asso-
ciated sections of Hoefler et al. (2021), and to Y. He and Xiao (2023) for a survey on structured
pruning of CNNs.

RSSP Pensia et al. (2020) introduced the use of theoretical results on the RSSP in arguments
around the SLTH, namely Lueker (1998, Corollary 3.3). da Cunha, d’Amore, et al. (2022) pro-
vides an alternative, simpler proof of this result. Borst, Dadush, Huiberts, and Tiwari (2023) and
Becchetti et al. (2022) prove multidimensional versions of the theorem. Theorem 5.3.2 diverges
from those results in that it supports some dependencies between the entries of random vectors.
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5.3 Preliminaries and contribution

Given n ∈ N, we denote the set {1, . . . , n} by [n]. The symbol ∗ represents the convolution opera-
tion, ⊙ represents the element-wise (Hadamard) product, and relu represents the ReLU activation
function. The notation ∥·∥1 refers to the sum of the absolute values of each entry in a tensor.
Similarly, ∥·∥2 refers to the square root of the sum of the squares of each entry in a tensor. ∥·∥∞
denotes the maximum norm: the maximum among the absolute value of each entry. Sometimes we
represent a tensor X ∈ Rd1×···×dn by the notation (Xi1,...,in)i1∈[d1],...,in∈[dn]. We denote the normal
probability distribution with mean µ and variance σ2 by N µ, σ2. We write U ∼ N d1×···×dn to
denote that U is a random tensor of size d1 × · · · × dn with entries independent and identically
distributed (i.i.d.), each following N 0, 1. We refer to such random tensors as normal tensors. Fi-
nally, we refer to the axis of a 4-D tensor as rows, columns, channels, and kernels (a.k.a., filters),
in this order.

For the sake of simplicity, we assume CNNs to be of the form N : [−1, 1]D×D×c0 → RD×D×cℓ

given by
N(X ) = K (ℓ) ∗ relu(K (ℓ−1) ∗ · · · relu(K (1) ∗ X )),

where K (i) ∈ Rdi×di×ci−1×ci for i ∈ [ℓ], and the convolutions have no bias and are suitably padded
with zeros. Moreover, when the kernels K (i) are normal tensors, we say that N is a random CNN.

Before we proceed to our main theorem, we introduce a definition that encompasses the spar-
sity structure underlying our proofs.

Definition 5.3.1 (n-channel-blocked mask). Given a positive integer n, a binary tensor S ∈
{0, 1}d×d×c×cn is called n-channel-blocked if and only if

Si,j,k,l =

1 if
⌈

l
n

⌉
= k,

0 otherwise,

for all i, j ∈ [d], k ∈ [c], and l ∈ [cn].

Theorem 5.3.1 (SLTH for kernel pruning). Let D, d, c0, c1 and ℓ be positive integers and let ε
and C be positive real numbers. For each i ∈ [ℓ], let L(2i−1) ∼ N 1×1×ci−1×2ci−1ni and L(2i) ∼
N di×di×2ci−1ni×ci with ni ≥ Cd12c6

i log3 d2cici−1ℓ
ε for some positive integers ni and ci. Let then

N0 : [−1, 1]D×D×c0 →D×D×cℓ be a random CNN of the form

N0(X) = L(2ℓ) ∗ · · · relu(L(1) ∗ X ).

Given 2ni-channel-blocked masks S(2i−1) ∈ {0, 1}1×1×ni×ci for each tensor L(2i−1), for i ∈ [ℓ];
let

N
(S(1),...,S(2ℓ−1))
0 = L(2ℓ) ∗ relu(· · · (L(2) ∗ relu((S(1) ⊙ L(1)) ∗ X))).

Finally, let F be the class of functions f : [−1, 1]D×D×c0 → RD×D×cℓ of the form

f(X ) = K (ℓ) ∗ · · · relu(K (1) ∗ X ),

where K (i) ∈ Rdi×di×ci−1×ci with ∥K (i)∥1 ≤ 1, for i ∈ [ℓ].
There exists a universal value of C such that, with probability 1 − ε, for every f ∈ F it is

possible to remove filters from N
(S(1),...,S(2ℓ−1))
0 to obtain a CNN Ñ0 for which

sup
X∈[−1,1]D×D×c0

∥f(X ) − Ñ0(X )∥∞ ≤ ε.
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The filter removals ensured by Theorem 5.3.1 take place at layers 1, 3, . . . , 2ℓ − 1 and imply
the removal of the corresponding channels in the next layer. The overall modification yields a
CNN with kernels L̃(1)

, . . . , L̃(2ℓ)
such that, for i ∈ [ℓ], L̃(2i−1) ∈ R1×1×ci−1×2ci−1mi and L̃(2i) ∈

Rdi×di×2ci−1mi×ci , where mi =
√

ni/(C1 log 1
ε ) for a universal constant C1. Moreover, the

kernels L̃(2i−1)
are structured as if pruned by 2mi-channel-blocked masks.

We remark that, from a broader perspective, the central aspect of Theorem 5.3.1 is that the
lower bound on the size of the random CNN depends only on the kernel sizes of the CNNs being
approximated.

In section 5.4.2 we discuss the proof of Theorem 5.3.1. It requires handling subset-sum prob-
lems on multiple random variables at once (random vectors). Furthermore, the inherent parameter-
sharing of CNNs creates a specific type of stochastic dependency between coordinates of the ran-
dom vectors, which we capture with the following definition.

Definition 5.3.2 (NSN vector). A d-dimensional random vector Y follows a normally-scaled nor-
mal (NSN) distribution if, for each i ∈ [d], Yi = Z · Z(i) where Z, Z(1), . . . , Z(d) are i.i.d. random
variables following a standard normal distribution.

A key technical contribution of ours is a Multidimensional Random Subset Sum (MRSS) result
that supports NSN vectors. In section 5.4.1 we discuss the proof of the next theorem, which
follows a strategy similar to that of (Borst, Dadush, Huiberts, & Tiwari, 2023, Lemmas 1, 15).

Theorem 5.3.2 (Normally-scaled MRSS). Let 0 < ε ≤ 1/4, and let d, k, and n be positive
integers such that n ≥ k2 and k ≥ Cd3 log d

ε for some universal constant C ∈ R>0. Furthermore,
let X(1), . . . , X(n) be d-dimensional i.i.d. NSN random vectors. For any z ∈ Rd with ∥z∥1 ≤

√
k,

there exists with constant probability a subset S ⊆ [n] of size k such that ∥(
∑

i∈S X(i))−z∥∞ ≤ ε.

While it is possible to naïvely apply Theorem 5.1.1 to obtain a version of Theorem 5.3.1, doing
so would lead to an exponential lower bound on the required number of random vectors.

5.4 Analysis

In this section, after proving our MRSS result (Theorem 5.3.2), we discuss how to use it to obtain
our main result on structured pruning (Theorem 5.3.1). Full proofs are deferred to the supplemen-
tary material (SM).

5.4.1 Multidimensional Random Subset Sum for normally-scaled normal vectors

Notation. Given a set S and a positive integer n, the notation
(S

n

)
denotes the family of subsets of

S containing exactly n elements of S. Given ε ∈ R>0, we define the interval Iε(z) = [z −ε, z +ε]
and the multi-interval Iε(z) = [z − ε1, z + ε1], where 1 = (1, 1, . . . , 1) ∈ Rd. Moreover, for any
event E , we denote its complementary event by E .

In this subsection, we estimate the probability that a set of n random vectors contains a subset
that sums up to a value that is ε-close to a given target. The following definition formalizes this
notion.
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Definition 5.4.1 (Subset-sum number). Given (possibly random) vectors X(1), . . . , X(n) and a
vector z, we define the ε-subset-sum number of X(1), . . . , X(n) for z as

Tk
X(1),...,X(n)(z) =

∑
S∈([n]

k )
1E(z)

S
,

where E(z)
S denotes the event ∥(

∑
i∈S X(i)) − z∥∞ ≤ ε. We write simply Tn,k when

X(1), . . . , X(n) and z are clear from the context.

To prove Theorem 5.3.2 we use the second moment method to provide a lower bound on the
probability that the subset-sum number Tn,k is strictly positive, which implies that at least one
subset of the random vectors can approximate the target value z. Hence, we seek a lower bound
on E[Tn,k]2/E[T2

n,k].
Our first lemma provides a lower bound on the probability that a sum of NSN vectors is ε-close

to a target vector, through which one can infer a lower bound on E[Tn,k].

Lemma 5.4.1 (Sum of NSN vectors). Let k ∈ N, ε ∈ (0, 1/4), z ∈ Rd such that ∥z∥1 ≤
√

k and
k ≥ 16. Furthermore, let X(1), . . . , X(k) be d-dimensional i.i.d. NSN random vectors with d ≤ k,
and let cd = min{ 1

d2 , 1
16}. It holds that

Pr
[

k∑
i=1

X(i) ∈ Iε(z)
]

≥ 1
16

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

.

Overview of the proof. The main technical difficulty lies in the fact that the random vectors
X(1), . . . , X(k) are NSN vectors. Bounds can be easily derived for the case where the X(i) are
i.i.d. normal random vectors by observing that the sum of normal random variables is also normal.

For i ∈ [k], each entry of X(i) can be written as Z(i) · Zi, j where Z(i) and Z(i,j) are i.i.d.
normal random variables. Conditional on Z(1), . . . , Z(k), the d entries of X =

∑k
i=1 X(i) are

independent and distributed as N (0,
∑k

i=1 Z2
i ). By noticing that (Z(i))2 is a chi-squared random

variable and employing standard concentration inequalities (Lemma I.4 in appendix I) combined
with the law of total probability, we can proceed as if the entries of X were normal, up to some
correction factors.

Bounding E[(T(n,k))2] requires handling stochastic dependencies. Thus, we estimate the joint
probability that two subsets of k elements of X(1), . . . , X(n) sum ε-close to the same target, taking
into account that the intersection of the subsets might not be empty. The next lemma provides an
upper bound on this joint probability that depends only on the size of the symmetric difference
between the two subsets.

Lemma 5.4.2 (Sum of NSN vectors). Let k, j ∈ N0 with 1 ≤ j ≤ k Furthermore, let
X(1), . . . , X(k + j) be i.i.d. d-dimensional NSN random vectors with k ≥ Cd3 log d

ε . Let
cd = min[ 1

d2 , 1
16 ], A =

∑j
i=1 X(i), B =

∑k
i=j+1 X(i), and C =

∑k+j
i=k+1 X(i).2 Then, it

holds that

Pr[A + B ∈ Iε(z), B + C ∈ Iε(z)] ≤ 3
( 4ε2

π
(
1 − 2√

cd

)
j

)d

.

2We adopt the convention that
∑0

i=1 X(i) = 0.
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Overview of the proof. We exploit once more the fact that, for all i ∈ [k], each entry X(i) can
be written as Z(i) · Z(i,j) where Z(i) and Z(i,j) are i.i.d. normal random variables. Conditional on
Z(1), . . . , Z(k), the d entries of A, B, and C are independent and distributed as N (0,

∑j
i=1(Z(i))2),

N (0,
∑k

i=j+1(Z(i))2), and N (0,
∑k+j

i=k+1(Z(i))2), respectively. Hence, by the concentration in-
equalities for the sum of chi-squared random variables (Lemma I.4 in appendix I) and by the law
of total probability, we can focus on the term

Pr
[
Ai + Bi ∈ Iε(zi), Bi + Ci ∈ Iε(zi)

∣∣∣ Z(1), . . . , Z(n)
]
,

where Ai, Bi, and Ci indicate the i-th entries of A, B, and C, respectively.
Another concentration argument for normal random variables (Lemma I.1 in appendix I), al-

low us to show that

Pr
[
Ai + Bi ∈ Iε(Z(i)), Bi + Ci ∈ Iε(zi)

∣∣∣ Z(1), . . . Z(n)
]

= EBi

[
Pr
[
Ai ∈ Iε(zi − Bi), Ci ∈ Iε(zi − Bi)

∣∣∣ Z(1), . . . , Z(n), Bi

]]
= EBi

[
Pr
[
Ai ∈ Iε(zi − Bi)

∣∣∣ Z(1), . . . , Z(n), Bi

]
Pr
[
Ci ∈ Iε(zi − Bi)

∣∣∣ Z(1), . . . , Z(n), Bi

]]
≤ EBi

[
Pr
[
Ai ∈ Iε(0)

∣∣∣ Z(1), . . . , Z(n), Bi

]
Pr
[
Ci ∈ Iε(0)

∣∣∣ Z(1), . . . , Z(n), Bi

]]
= Pr

[
Ai ∈ Iε(0)

∣∣∣ Z1, . . . , Z(n)
]

Pr
[
Ci ∈ Iε(0)

∣∣∣ Z(1), . . . , Z(n)
]
.

Thus, we have reduced our argument to the estimation of probabilities of independent normal
random variables being close to zero.

The following lemma provides an explicit expression for the variance of the ε-subset-sum
number.

Lemma 5.4.3 (Second moment of Tn,k). Let k, n be positive integers. Let S0, S1, . . . , Sk be
subsets of [n] such that |S0 ∩ Sj | = k − j for j = 0, 1, . . . , k. Let S, S ′ be two random variables
yielding two subsets of [n] drawn independently and uniformly at random. Let X(1), . . . , X(n) be
d-dimensional i.i.d. NSN random vectors. For any ε > 0 and z ∈ Rd, the second moment of the
ε-subset sum number is

E[T2
n,k] =

(
n

k

)2 k∑
j=0

Pr
[
|S ∩ S ′| = k − j

]
Pr
[
E(v)

S0
∩ E(v)

Sj

]
,

where E(z)
S denotes the event ∥(

∑
i∈S X(i)) − z∥∞ ≤ ε.
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Proof. Let S and S ′ be random variables yielding elements of
([n]

k

)
drawn independently and

uniformly at random. By the definition of Tn,k, we have that

E[T2
n,k] = E


 ∑

S∈([n]
k )

1E(z)
S


 ∑

S′∈([n]
k )

1E(v)
S′




= E
[ ∑

S,S′∈([n]
k )

1E(z)
S

1E(v)
S′

]

=
∑

S,S′∈([n]
k )

Pr
[
E(z)

S ∩ E(v)
S′

]

=
∑

S,S′∈([n]
k )

Pr
[
E(v)
S ∩ E(v)

S ′

∣∣∣ S = S, S ′ = S ′
]

Pr
[
S = S, S ′ = S ′]

=
(

n

k

)2 k∑
j=0

Pr
[
E(v)
S ∩ E(v)

S′

∣∣∣ |S ∩ S ′| = k − j
]

Pr
[
|S ∩ S ′| = k − j

]
,

as Pr
[
E(v)
S ∩ E(v)

S ′
]

depends only on the size of S ∩ S ′.

Overview of the proof of Theorem 5.3.2

We use the second moment method (Lemma I.2 in appendix I) on the ε-subset-sum number Tn,k

of X(1), . . . , X(n). Thus, we want to lower bound the right-hand side of

Pr[T > 0] ≥ E[Tn,k]2

E[T2
n,k]

.

Equivalently, we can provide an upper bound on the inverse,
E[T2

n,k]
E[Tn,k]2 . By Lemma 5.4.3,

E[T2
n,k] =

(
n

k

)2 k∑
j=0

Pr
[
|S ∩ S ′| = k − j

]
Pr
[
E(v)

S0
∩ E(v)

Sj

]

where S, S ′, Si and E(z)
S are defined as in the statement of the lemma. Observe also that

E[Tn,k] =
∑

S∈([n]
k )

E[1E(z)
S

] =
∑

S∈([n]
k )

Pr
[
E(z)

S

]
=
(

n

k

)
Pr
[
E(v)

S0

]
.

By using the two above observations, we have

E[Tn,k]2

E[T2
n,k]

=
(n

k

)2
E[Tn,k]2

k∑
j=0

Pr
[
|S ∩ S ′| = k − j

]
Pr
[
E(v)

S0
∩ E(v)

Sj

]

=
k∑

j=0
Pr
[
|S ∩ S ′| = k − j

]Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2 .
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Lemma 5.4.1 provides a lower bound on the term Pr
[
E(v)

S0

]
while Lemma 5.4.2 gives an upper

bound on the term Pr
[
E(v)

S0
∩ E(v)

Sj

]
.

In the full proof, we then show that Pr[|S ∩ S ′| ≥ k/d] can be bounded using the Chernoff
bound (Lemma I.3 in appendix I) even if we do not deal directly with Binomial random variables.
This allows us to discard the indices j for which Pr

[
E(v)

S0
∩ E(v)

Sj

]
is large, which leads to the result

after some technical manipulations.

5.4.2 Proving SLTH for structured pruning

To prove Theorem 5.3.1, we first show how to obtain the same approximation result for a single-
layer CNN. Then, we iteratively apply the same argument for all layers of a larger CNN and show
that the approximation error keeps small.

We define the positive and negative parts of a tensor.

Definition 5.4.2. Given a tensor X ∈ Rd1×···×dn , the positive and negative parts of X are respec-
tively defined as X +

i⃗
= X i⃗ · 1X i⃗>0 and X −

i⃗
= −X i⃗ · 1X i⃗<0, where i⃗ ∈ [d1] × · · · × [dn] points at

a generic entry of X .

Approximating a single-layer CNN

We first present a preliminary lemma that shows how to prune a single-layer convolution relu(V ∗
X ) in a way that dispenses us from dealing with the ReLU relu.

Lemma 5.4.4. Let D, d, c, n ∈ N be positive integers, V ∈ R1×1×c×2nc, and X ∈ RD×D×c. If
S ∈ {0, 1}shape(V ) is a 2n-channel blocked mask, then, for each (i, j, k) ∈ [D] × [D] × [2nc],(

relu((V ⊙ S) ∗ X )
)

i,j,k
=
(
(V ⊙ S)+ ∗ X + + (V ⊙ S)− ∗ X −

)
i,j,k

.

Overview of the proof. S ∈ {0, 1}shape(V ) is such that V = V ⊙ S contains only non-negative
edges going from each input channel t to the output channels (t − 1)n + 1, . . . , tn, and only non-
positive edges going from each input channel t to the output channels tn + 1, . . . , 2tn, while all
remaining edges are set to zero.

We approximate a single convolution K ∗ X by pruning a polynomially larger neural network
of the form U ∗ relu(V ∗ X ) exploiting only a channel blocked mask and filter removal: this is
achieved using the MRSS result (Theorem 5.3.2).

Lemma 5.4.5 (Kernel pruning). Let D, d, c0, c1, n ∈ N be positive integers, ε ∈ (0, 1
4), M ∈ R>0,

and C ∈ R>0 be a universal constant with

n ≥ Cd12c6
1 log3 d2c1c0

ε
.

Let U ∼ N d×d×2nc0×c1 , V ∼ N 1×1×c0×2nc0 and tS ∈ {0, 1}shape(V ), with S being a 2n-
channel-blocked mask. We define N0(X ) = U ∗ relu(V ∗ X ) where X ∈ RD×D×c0 , and its pruned
version N

(S)
0 (X ) = U ∗ relu((V ⊙ S) ∗ X ). With probability 1 − ε, for all K ∈ Rd×d×c0×c1 with

∥K :,:,t0,:∥1 ≤ 1 for each t0 ∈ [c0], it is possible to remove filters from N
(S)
0 to obtain a CNN Ñ

(S)
0

for which
sup

X :∥X∥∞≤M
∥K ∗ X − Ñ

(S)
0 (X )∥∞ < εM.
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Overview of the proof. Exploiting Lemma 5.4.4, for each (r, s, t1) ∈ [d]× [d]× [c1], one can show
that

(U ∗ relu((V ⊙ S) ∗ X ))r,s,t1 =
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ+
1,1,t0,k

 · X +
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ−
1,1,t0,k

 · X −
r−i+1,s−j+1,t0

.

Through a Chernoff bound, we show that Ṽ+
1,1,t0,: has at least n/3 non-zero entries. Up to re-

shaping the tensor as a one-dimensional vector, we observe that U:,:,k,:Ṽ+
1,1,t0,k is an NSN vector

(Lemma I.5 in appendix I). Hence, we can apply a boosted version of the MRSS result (Corol-
lary I.6 in appendix I) and show we can prune all but roughly

√
n/(C1 log 1

ε ) positive entries

of Ṽ+
1,1,t0,k, with C1 being a universal constant, such that

∑
k∈[nc0] U:,:,k,:Ṽ

+
1,1,t0,: approximates

the channels K :,:,t0,: up to error ε/(2d2c0c1). The same holds for
∑

k∈[nc0] U:,:,k,:Ṽ
−
1,1,t0,:. This

pruning can be achieved by further zeroing the entries of the mask S̃. Through some non-trivial
calculations and by applying the Tensor Convolution Inequality (Lemma I.7 in appendix I), one
can combine the above results to get the thesis.

Remark 5.4.1 – From the proof of Lemma 5.4.5, we can see that the overall modification yields
a pruned CNN Û ∗ relu(V̂ ∗ X ) with V̂ ∈ R1×1×c0×2mc0 and Û ∈ Rd×d×2mc0×c1 , where m =√

n/(C1 log 1
ε ) for a universal constant C1. Moreover, the kernel V̂ is structured as if pruned by a

2m-channel-blocked mask.

Overview of the proof of Theorem 5.3.1

We iteratively apply Lemma 5.4.5 to each layer while carefully controlling the approximation
error via tools such as the Lipschitz property of ReLU and the Tensor Convolution Inequality
(Lemma I.7). More precisely, we show that (i) the approximation error does not increase too
much at each layer; and (ii) all layer approximations can be combined to approximate the entire
target network.

5.5 Limitations and future work

In previous works (da Cunha, Natale, & Viennot, 2022; Burkholz, 2022a) the assumption that
the kernel of every second layer has shape 1 × 1 × . . . is only an artifact of the proof since one
can readily prune entries of an arbitrarily shaped tensor to enforce the desired shape. In our case,
however, the concept of structured pruning can be quite broad, and such reshaping via pruning
might not fit some sparsity patterns, depending on the context. The hypothesis on the shape can be
a relevant limitation for such use cases. The constructions proposed by Burkholz (2022a, 2022b)
appear as a promising direction to overcome this limitation, with the added benefit of reducing the
depth overhead.

The convolution operation commonly employed in CNNs can be cumbersome at many points
of our analysis. Exploring different concepts of convolution can be an interesting path for future
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work as it could lead to tidier proofs and more general results. For instance, employing a 3D
convolution would spare a factor c in Theorem 5.3.1.

Another limitation of our results is the restriction to ReLU as the activation function. Many
previous works on the SLTH exploit the fact that ReLU satisfies the identity x = relu(x) −
relu(−x). Burkholz (2022a) leverages that to obtain an SLTH result for CNNs with activation
functions f for which f(x) − f(−x) ≈ x around the origin. Our analysis, on the other hand,
does not rely on such property, so adapting the approach of Burkholz (2022a) to our setting is not
straightforward.

Finally, we remark that the assumption of normally distributed weights might be relaxed.
Borst, Dadush, Huiberts, and Tiwari (2023) provided an MRSSP result for independent random
variables whose distribution converges “fast enough” to a Gaussian one.3 We believe our argu-
ments can serve well as baselines to generalise our results to support random weights distributed
as such.

3The required convergence rate is higher than that ensured by the Berry-Esseen theorem.
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The high energy demands of modern Artificial Intelligence not only imply huge costs
to run it at scale, but also constrains its deployment on edge devices. While analog
computing offers a way to run those algorithms with orders of magnitude more efficiency,
most proposals for its actual implementation require very high precision components
and would depend on non-standard manufacturing. We propose a new method that uses
a few inaccurate components to build accurate and programmable resistors, allowing
analog neuromorphic devices to be manufactured with standard processes. It leverages
the possibility of approximating any target value by summing a subset of given random
values.
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6.1 Problem Solved

Integrated resistors suffer from poor accuracy, with variations in resistance as large as 20%
(Talebbeydokhti, Hanumolu, Kurahashi, & Moon, 2006). The need for better accuracy motivates
the inclusion of additional trimming bits, post-fabrication testing, and circuitry resulting in higher
cost, larger silicon area, and longer test times (Talebbeydokhti et al., 2006; McLaren & Martin,
2001). Moreover, resistors are a non-programmable component: their resistance is essentially
fixed, having no controllable and precise way to change its value.

This chapter draws inspiration from theoretical results on the Random Subset-Sum Problem
and Random Number Partitioning Problem. In analogy to those setups, we embrace the inaccuracy
of components to obtain not only programmable properties but also higher degrees of accuracy in
a stable manner.

6.2 Prior Solutions

The use of memristors as programmable resistive elements has features similar to those of the
invention here disclosed. Nonetheless, our proposal distinguishes from memristors in many ways,
as we leverage more classical components to achieve programmability and accuracy. Moreover,
memristors suffer from innate instability in the sense that the current flow it influences also changes
its resistivity. This is not the case for the circuits we present. We also remark that many memris-
tor technologies suffer from low endurance (Merced-Grafals, Dávila, Ge, Williams, & Strachan,
2016), allowing for a limited amount of rewriting, whilst the basic blocks of the device proposed
here have no such limitations. Further comparisons would be highly dependent on the physical
implementation of the devices.

X. Zhang, Ni, Mukhopadhyay, and Apsel (2012) uses optimization methods to reduce inaccu-
racy in integrated resistors. It proposes combining different types of resistors to obtain an equiv-
alent resistance with smaller expected variability. Among others, X. Zhang et al. (2012) differs
from our approach in that we leverage component variability instead of avoiding it.

Forgoing the programmability of the circuit reduces our discussion to known techniques for
programming (statically) accurate resistances. One way of realizing this approach would be to
replace the transistors in the circuits by fuses/anti-fuses and selectively blowing them in a post-
processing step (after solving MIP (6.1)). We stress that, whilst our proposal offer indefinite
programmability, fuse/anti-fuse blowing can be done only once.

6.3 Description

In the following, we discuss the details of a possible implementation of our idea, as depicted in
figure 6.1.

The device has an analog input V (as voltage relative to the output), n digital inputs
s1, s2, . . . , sn and an analog output y (as current). By sustaining a voltage V at the analog in-
put, each transistor ti determines whether current can flow through the correspondent vertical
connection in the schematic. Thus, the i-th binary input si controls the contribution of the respec-
tive resistor to the final current. If si is set to 1, that is, if it provides sufficient current to saturate ti,
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t1 t2 t3 tn

g1 g2 g3 gn

s1
s2
s3

sn

· · ·

· · ·

V

V ·
∑n

i=1 sigi

y

Figure 6.1: An implementation of the device proposed. The resistors shown have conductances
g1, g2, . . . , gn that can be inaccurate. Given a target conductance, one can set the transistors
t1, t2, . . . , tn through a binary signal {s1, s2, . . . , sn} to get an equivalent conductance that ap-
proximates the target value.

by Ohm’s law1 the current flowing through the resistor with conductance gi is giV . On the other
hand, if si is set to 0, that is, the current is low enough to cutoff ti, the current flow is blocked.

The binary nature of the variables s1, s2, . . . , sn allows us to express the flow of current
through the resistor with conductance gi as

sigiV.

Therefore, by Kirchhoff’s current law, the total current in the analog output y is given by
n∑

i=1
sigiV = V ·

n∑
i=1

sigi.

That is, the circuit has an equivalent conductance
n∑

i=1
sigi.

Hence, its value can be controlled by setting the binary inputs si.
This configuration is an instance of a Subset Sum Problem. Given a target conductance G, we

want to solve the mixed-integer program (MIP)

min
s1,...,sn

∣∣∣G −
n∑

i=1
sigi

∣∣∣,
s.t. si ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}.

(6.1)

1Here we ignore the transistor’s influence on the resulting current as those can be set to be negligible in comparison
to the contributions of the resistors.
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This is a well known problem, sometimes discussed in the literature under the equivalent version
of Number Partitioning Problem. We highlight the following result on the random version of the
problem. equation (6.1)

Theorem 6.3.1 (Lueker (1998)). Given n ∈ N, let x1, x2, . . . , xn be independently and identically
distributed random variables from a uniform distribution over [−1, 1]. Given ε, δ > 0, there exists
a constant C for which, if

n ≥ C log
( 1

min{ε, δ}

)
,

then, with probability at least 1 − δ,

∀z ∈ [−1, 1], ∃S ⊆ {1, 2, . . . , n} :
∣∣∣z −

∑
i∈S

xi

∣∣∣ < ε.

While Theorem 6.3.1 can be enunciated in more general terms, we state it here without aiming
to satisfy its hypothesis, but rather to illustrate the good behaviour of the problem. Given a target
accuracy, one can expect that a small resistor count (relative to the accuracy) suffices to approxi-
mate any value within a range up to a tolerable error. Furthermore, this should be expected even if
the resistors have inaccurate conductances.

Once the conductance values g1, . . . , gn are known, one can solve MIP (6.1) using generic
mathematical optimization software like Gurobi (Gurobi Optimization, LLC, 2021). In our exper-
iments, this software managed to do so tenths of thousands of times in just a few minutes.

6.4 Possible Applications

More accurate resistors can benefit many types of integrated circuits, such as bias networks (Wu
& Chou, 2001; Talebbeydokhti et al., 2006), references (Sengupta, Carastro, & Allen, 2005;
E. K. F. Lee, 2010), and filters (Vasilopoulos, Vitzilaios, Theodoratos, & Papananos, 2006). How-
ever, the combination of stability, accuracy, and programmability of the proposed solution makes
it most promising when applied to “in-memory computing”. In particular, as resistance units of
resistive crossbars, such as the one depicted in figure 6.2.

While the diagram in figure 6.2 shows actual resistors as the sources of conductance for resis-
tive crossbars, in practice other components or circuits are usually employed. Chakraborty et al.
(2020) provides a deep review of the current status of this technology and discusses many of its
limitations. Regarding the properties offered, the use of memristors as resistance units in crossbars
resembles the most our proposal. Ankit et al. (2019) illustrates well such use.

6.5 Design Around

One can discuss the same ideas presented in this document in terms of resistances instead of con-
ductances. The analogous circuit is a version of the one represented in figure 6.1 with connections
in series rather than in parallel. Figure 6.3 represents an implementation of this analogy.

Including negative values in MIP (6.1) might be of interest. While resistances and conduc-
tances cannot be negative, one can achieve similar effect by feeding the opposite of the input
voltage to a second instance of the proposed circuits and connecting the outputs of both instances.
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Figure 6.2: A resistive crossbar. Given voltage inputs v1, . . . , vn, by Ohm’s law, the resistor with
conductance gi,j contributes with a current of vigi,j to the j-th vertical connection. By Kirchhoff’s
current law, those currents are added and amount to

∑n
i=1 vigi,j at yj . In effect, this accomplishes

an analog calculation of the matrix-vector product between a matrix with entries gi,j and a vector
with entries vi resulting in a vector with entries yj .

Muralimanohar, Feinberg, and Shafiee-Ardestani (2018) discusses the same idea in terms of resis-
tive crossbars.

If we keep restricted to positive conductance values (that is, not using negative voltage copies
as we just mentioned), one can benefit from extra constraints on MIP (6.1). For example, if the
variation in conductance values is small relative to the mean, one might benefit from solving the
problem restricted to subsets of a fixed size.

We remark the ideas presented here in terms of resistors have immediate analogous based in
other types of components, such as capacitors.

Finally, the circuit could integrate a map of conductance values and the respective binary
inputs.
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t1 t2 t3 tn

r1 r2 r3 rn

· · ·V y

s1 s2 s3 sn· · ·

Figure 6.3: An analog of the circuit in figure 6.1 in terms of resistances r1, . . . , rn. An input
voltage V (relative to the output) results in a current V

/∑n
i=1 siri at the output y.
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Symbols

[n] {1, 2, . . . , n}
2S Power set: {T | T ⊆ S}(S

n

)
{T ⊆ S | |T = n|}

relu(x) Rectified Linear Unit: x 7→ max{0, x}
relu(T ) Entry-wise relu
shape(T ) Shape of a tensor: given T ∈ Rd1×···×dn , we have

shape(T ) = d1 × · · · × dn

⊙ Entry-wise (Hadamard) product

∗ Convolution (see Definition 1.3.1)

Id d × d identity matrix

I Identity matrix with dimensionality implied by the context

∥T∥p p-norm:
(∑

i|Ti|p
) 1

p

∥T∥∞ Maximum norm: maxi |Ti|
∥M∥spectral Spectral norm: supx∈Rd:∥x∥2≤1∥Mx∥2

B∞(x, r) d-dimensional hypercube of radius r centred at x: {y ∈
Rd : ∥y − x∥∞ ≤ r}

B∞(r) B∞(0, r)
Unif(D) Uniform distribution over a set D
Bern(p) Bernoulli distribution with probability of success equal to

p

N (µ, σ2) Normal distribution with mean µ and variance σ2

N (µ, Σ) Multivariate normal distribution with mean µ and covari-
ance matrix Σ

φX Probability density function of X
f( · ; · ) Neural network f without specific parameterization (archi-

tecture)

f( · ; θ) Neural network f with parameters θ

f( · ) Neural network f with parameters implied by the context

Prune(f) Class of all subnetworks of f (see page 5)

FilterPrune(f) Class of all neuron/filter-subnetworks of f (see page 24)
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Appendices of Chapter 3

A Tools

Below we list some standard tools we use, and prove some inequalities.

A.1 Concentration bounds

Theorem A.1 (Chebyshev’s inequality). Let X be a random variable with finite expected value µ
and finite non-zero variance σ2. Then for any real number k > 0, it holds that

Pr[|X − µ| ≥ k] ≤ σ2

k2 .

Lemma A.2 (Chernoff-Hoeffding bounds (Doerr, 2011)). Let X1, X2, . . . , Xn be independent
random variables such that

Pr[0 ≤ Xi ≤ 1] = 1

for all i ∈ [n]. Let X =
∑n

i=1 Xi and E[X] = µ. Then, for any δ ∈ (0, 1] the following holds:

1. Pr[X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ+

3

)
;

2. Pr[X ≤ (1 − δ)µ] ≤ exp
(
− δ2µ+

2

)
.

A.2 Claims

Claim A.3. Let d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2 ]. If n ≥ 4d

α log 1
α

[
log 1

ε + log 2πd
]

+ 8
α , then

ααn · exp
[

4d
αn

]
· (2παn)

d
2

(2ε)d
≤ ε.

Proof. Consider the function

f(n) = α
αn
2 · (2παn)

d
2 .

We have that

f ′(n) = α
αn
2 · α ln α

2 · (2παn)
d
2 + α

αn
2 · (2παn)

d
2 −1 · παd

= α
αn
2 · (2παn)

d
2 −1 · (πα) · [αn ln α + d] ,
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which is non-positive for n ≥ d
α ln 1

α

. Let n̄ = d
α ln 1

α

; it holds that f(n) ≤ f(n̄) for n ≥ n̄. Hence,

for n ≥ n̄,

α
αn
2 · exp

[
4d
αn

]
f(n)

(2ε)d
≤

α
αn
2 · exp

[
4d
αn

]
f(n̄)

(2ε)d

=
α

αn
2 · exp

[
4d
αn − d

2

]
(2ε)d

·
[

2πd

ln 1
α

] d
2

≤ α
αn
2

(2ε)d · α4 · (4πd)
d
2 ,

where the latter inequality holds since ln 1
α ≥ 1

2 . Now, it holds that α
αn
2

(2ε)d·α4 ·(4πd)
d
2 ≤ ε whenever

n ≥
2 ln (2ε)dε·α4

(2πd)
d
2

−α ln 1
α

=
2
(
−d ln 2 + (d + 1) ln 1

ε + 4 ln 1
α + d

2 ln(2π) + d
2 ln d

)
α ln 1

α

.

The latter condition is achieved for

n ≥ 4d

α log 1
α

[
log 1

ε
+ log 2πd

]
+ 8

α
.

Claim A.4. Let d, n ∈ N and α ∈ R>0. If n ≥ 68d
α and α ≤ 1

6
√

d
, then

e
4d
αn · 1

(1 − 4α2)
d
2

≤ 1 + 1
8 .

Proof. Since ex ≤ (1 − x)−1 for x ≤ 1, for n ≥ 4d
α , it holds that

e
4d
αn ≤ 1

1 − 4d
αn

= 1 + 4d

αn − 4d
.

Thus, having n ≥ 68d
α implies that

e
4d
αn ≤ 1 + 1

16 .

Moreover, by Bernoulli’s inequality, since α < 1
2 , it holds that,

1
(1 − 4α2)

d
2

≤ 1
1 − 2dα2 .

Altogether, we need that

1 + 1
16

1 − 2dα2 ≤ 1 + 1
8 ,

which holds for α ≤ 1
6
√

d
.
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Claim A.5. Let A, B be two centred normal random variables, and let φB(x) be the density
function of B. Then, for any z ∈ R, for any ε > 0, it holds that∫

R
φB(x) [Pr[A ∈ (z − x − ε, z − x + ε)]]2 dx ≤

∫
R

φB(x) [Pr[A ∈ (−x − ε, −x + ε)]]2 dx.

Proof. For any x, z ∈ R, let

h(x, z) = φB(x) [Pr[A ∈ (z − x − ε, z − x + ε)]]2 dx,

and let
H(z) =

∫
R

h(x, z) dx.

Let φA(x) be the density function of a. Since

|∂h(x, z)
∂z

| = 2|φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε))|

≤ 2φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) + φA(z − x − ε)) ,

h(x, z) meets the hypothesis of the Leibniz integral rule and we can write

dH(z)
dz

=
∫
R

∂h(x, z)
∂z

dx

= 2
∫
R

φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

If we prove that such a function is zero in z = 0, positive for z < 0 and negative for z > 0, then
we have that the maximum of H is reached in z = 0.

First case: z = 0. Then

dH(0)
dz

= 2
∫
R

φB(x) Pr[A ∈ (x − ε, x + ε)] (φA(x − ε) − φA(x + ε)) dx (A.2)

= 2
∫
R

φB(x) Pr[A ∈ (x − ε, x + ε)]φA(x − ε) dx

− 2
∫
R

φB(x) Pr[A ∈ (x − ε, x + ε)]φA(x + ε) dx

= 2
∫
R

φB(x) Pr[A ∈ (x − ε, x + ε)]φA(x − ε) dx

− 2
∫
R

φB(y) Pr[A ∈ (y − ε, y + ε)]φA(y − ε) dx (A.3)

= 0,

where in equation (A.2) we exploited the symmetry of the integrand functions, equation (A.3) we
substituted in the second integral y = −x and used again symmetry.
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Second case: z > 0. Then

dH(z)
dz

= 2
∫
R

φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

= 2
∫ −z

−∞
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

+ 2
∫ +z

−z
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

+ 2
∫ +∞

+z
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

= 2
∫ +∞

+z
φB(x) Pr[A ∈ (z + x − ε, z + x + ε)] (φA(z + x + ε) − φA(z + x − ε)) dx (A.4)

+ 2
∫ +∞

+3z
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

+ 2
∫ +3z

+z
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

+ 2
∫ +z

−z
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

= 2
∫ +∞

+z
φB(x) Pr[A ∈ (z + x − ε, z + x + ε)] (φA(z + x + ε) − φA(z + x − ε)) dx

− 2
∫ +∞

+z
φB(2z + x) Pr[A ∈ (z + x − ε, z + x + ε)] (φA(z + x + ε) − φA(z + x − ε)) dx(A.5)

− 2
∫ +z

−z
φB(x − 2z) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx(A.6)

+ 2
∫ +z

−z
φB(x) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx

= 2
∫ +∞

+z
(φB(x) − φB(2z + x)) Pr[A ∈ (z + x − ε, z + x + ε)] (φA(z + x + ε) − φA(z + x − ε)) dx(A.7)

+ 2
∫ +z

−z
(φB(x) − φB(x − 2z)) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx,

(A.8)

where in equation (A.4) we substituted x′ = −x and used the symmetry of the integrand functions,
in equations (A.5) and (A.6) we substituted x′ = x − 2z and x′ = 2z − x, respectively, and used
again the symmetry. The expression in equation (A.7) is negative as φB(x) > φB(2z + x) and
φA(z + x + ε) < φA(z + x − ε) for x ≥ z; the expression in equation (A.8) is negative as
φB(x) > φB(x − 2z) and φA(z − x + ε) < φA(z − x − ε) for x ∈ (−z, z).
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Third case: z < 0. This case is similar to the previous one: with the same arguments, we obtain

dH(z)
dz

= 2
∫ +z

−∞
(φB(x) − φB(2z + x)) Pr[A ∈ (z + x − ε, z + x + ε)] (φA(z + x + ε) − φA(z + x − ε)) dx(A.9)

+ 2
∫ −z

+z
(φB(x) − φB(x − 2z)) Pr[A ∈ (z − x − ε, z − x + ε)] (φA(z − x + ε) − φA(z − x − ε)) dx.

(A.10)

The expression in equation (A.9) is positive as φB(x) > φB(2z + x) and φA(z + x + ε) >
φA(z + x − ε) for x ≤ z; the expression in equation (A.10) is positive as φB(x) > φB(x − 2z)
and φA(z − x + ε) < φA(z − x − ε) for x ∈ (z, −z).

Claim A.6. For all x ∈ R, c ∈
(
0, 1

162

)
, and ε ∈ (0, 1), it holds that

(∫ ε

−ε
e−c(x+s)2 ds

)2
≤
(∫ ε

−ε

e−c(x+ε)2 + e−c(x−ε)2

2 ecε2 ds

)2

.

Proof. Let

fx(s) = e−c(x+s)2
.

Since ∫ ε

−ε

e−c(x+ε)2 + e−c(x−ε)2

2 ecε2 ds =
∫ ε

−ε
ms + e−c(x+ε)2 + e−c(x−ε)2

2 ecε2 ds

for any m ∈ R, we choose it to be the angular coefficient of the line passing through fx(−ε) and
fx(ε), and prove the stronger result

e−c(x+s)2 ≤ e−c(x+ε)2 − e−c(x−ε)2

2ε
s + e−c(x+ε)2 + e−c(x−ε)2

2 ecε2
(A.11)

for all s ∈ (−ε, ε). In fact, the right-hand side of equation (A.11) is the equation for the line
passing by the extrema of fx in (−ε, ε) lifted by a factor of ecε2

. Therefore, the results holds
trivially if fx is convex in the entire range (−ε, ε), which is true when |x| > 1 + 1√

2c
. Moreover,

the factor ecε2
ensures the result for x = 0, so, we follow with the analysis of the case x ∈(

0, 1 + 1√
2c

]
and the remaining case x ∈

[
−1 − 1√

2c
, 0
)

follows by symmetry.

Dividing both sides of equation (A.11) by e−c(x+s)2
, we obtain

1 ≤ e2csx+cs2
[

e−cε2
s

ε
· e−2cεx − e2cεx

2 + e−2cεx + e2cεx

2

]
(A.12)

= e2csx+cs2
[
−e−cε2

s

ε
sinh(2cεx) + cosh(2cεx)

]
.
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Let g(x) be the right-hand side of this inequality. Then

g′(x) = 2csg(x) + 2cεe2csx+cs2
[
−e−cε2

s

ε
cosh(2cεx) + sinh(2cεx)

]

= 2ce2csx+cs2
[
cosh(2cεx)

(
s − se−cε2)+ sinh(2cεx)

(
ε − s2

ε
e−cε2

)]
.

If s ∈ [0, ε), then s ≥ se−cε2
and ε ≥ ε2

ε e−cε2 ≥ s2

ε e−cε2
, hence g′(x) ≥ 0. Since g(0) ≥ 1, this

ensures equation (A.12).
The sub-case s ∈ (−ε, 0) offers much more resistance. To analyse it we exploit that x ∈(

0, 1 + 1√
2c

)
implies that cx ≤

√
2c for c < 1

2 and make extensive use of Taylor’s theorem to
approximate the exponential functions.

We start by rewriting equation (A.12) as

εe−2csx−cs2 ≤ e2cεx
(

ε

2 − s

2e−cε2
)

+ e−2cεx
(

ε

2 + s

2e−cε2
)

. (A.13)

By Taylor’s theorem, there exist λ1, λ2 ∈ [0, 2cεx] ⊆ [0, 2
√

2cε], λ3 ∈ [0, −2csx] ⊆ [0, 2
√

2cε],
λ4 ∈ [0, cs2], λ5 ∈ [0, cε2] such that

e+2cεx = 1 + 2cεx + 2c2ε2x2 + 4
3c3ε3x3eλ1 ,

e−2cεx = 1 − 2cεx + 2c2ε2x2 − 4
3c3ε3x3eλ2 ,

e−2csx = 1 − 2csx + 2c2s2x2 − 4
3c3s3x3eλ3 ,

e−cs2 = 1 − cs2 + c2s4

2 e−λ4 , (A.14)

e−cε2 = 1 − cε2 + c2ε4

2 e−λ5 , (A.15)

where we used second order approximations for the first three terms and first order approximations
for the last two. Plugging those in equation (A.13) we obtain

εe−cs2(1 − 2csx + 2c2s2x2 − 4
3c3s3x3eλ3

)
≤
(
1 + 2cεx + 2c2ε2x2 + 4

3c3ε3x3eλ1
)(ε

2 − s

2e−cε2)
+
(
1 − 2cεx + 2c2ε2x2 − 4

3c3ε3x3eλ2
)(ε

2 + s

2e−cε2)
.

The latter becomes

ε
(
1 − e−cs2)+ 2csεx

(
e−cs2 − e−cε2)+ 2c2εx2

(
ε2 − s2e−cs2)

+ 4
3c3εx3

(
ε2eλ1

(
ε

2 − s

2e−cε2
)

− ε2e−λ2

(
ε

2 + s

2e−cε2
)

+ s3eλ3−cs2
)

≥ 0

Now, notice that

ε2eλ1

(
ε

2 − s

2e−cε2
)

− ε2e−λ2

(
ε

2 + s

2e−cε2
)

≥ 0,
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as ε
2 − s

2e−cε2 ≥ ε
2 + s

2e−cε2
since −ε ≤ s < 0, and ε2eλ1 ≥ ε2 ≥ ε2e−λ2 . Furthermore, observe

that s3eλ3−cs2 ≥ 2s3 as s < 0 and λ3 ≤ 2
√

2cε ≤ 1
2 if c ≤ 1

32 . Thus, the inequality is true if

ε
(
1 − e−cs2)+ 2csεx

(
e−cs2 − e−cε2)+ 2c2εx2

(
ε2 − s2e−cs2)+ 8

3c3s3εx3 ≥ 0.

Applying equations (A.14) and (A.15), the latter inequality yields that

ε

(
cs2 − c2s4

2 e−λ4

)
+ 2csεx

(
cε2 − cs2 − c2ε4

2 e−λ5 + c2s4

2 e−λ4

)

+ 2c2εx2
(

ε2 − s2 + cs4 − c2s6

2 e−λ4

)
+ 8

3c3s3εx3

= εcs2 − c2s4ε

2 e−λ4 − c3sε5xe−λ5 + c3s5εxe−λ4 +
(
2c3s4εx2 − c4s6εx2e−λ4

)
+ 8

3c3s3εx3

+ 2c2εx
(
ε2 − s2

)
(x + s).

Now observe that (
2c3s4εx2 − c4s6εx2e−λ4

)
≥ 0

as c < 1, s ≤ ε ≤ 1, e−λ4 < 1; −c3sε5xe−λ5 > 0 as s < 0;

εcs2 − c2s4ε

2 e−λ4 + c3s5εxe−λ4 + 8
3c3s3εx3 ≥ cs2ε − c2s2ε3

2 − c2√
2cs2ε4 − 8

3c3s2ε2x3

> cs2ε − c2s2ε3

2 − c2√
2cs2ε4 − 6c

√
2cs2ε2(A.16)

= cs2ε

(
1 − cε2

2 − c2√
2cε3 − 6

√
2cε

)

≥ cs2ε

(
1 − c

2 − c2√
2c − 6

√
2c

)
(A.17)

≥ cs2ε

5 , (A.18)

where in equation (A.16) we used that cx ≤
√

2c, in equation (A.17) that ε ≤ 1, and in equa-
tion (A.18) we used i) c2√

2c ≤ c
2 when c ≤ 1

3√2
, ii) c <

√
2c since c < 1 and iii) 1 − 7

√
2c ≥ 1

5 ,

whenever c ≤ 1
162 .

Going back to the inequality, we now have that

cs2ε

5 + 2c2εx
(
ε2 − s2

)
(x + s).

If x ≥ |s| the latter is positive, otherwise it becomes

cs2ε

5 + 2c2εx
(
ε2 − s2

)
(x + s) ≥ cs2ε

5 + 2c2εx2
(
ε2 − s2

)
− 2c2εs2

(
ε2 − s2

)
≥ cs2ε

5 − 2c2εs2 + 2c2εx2
(
ε2 − s2

)
≥ cs2ε

(1
5 − 2c

)
,

which is positive for c < 1
10 .
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Claim A.7. For all x ∈ R, c ∈
(
0, 1

10

)
, and ε ∈ (0, 1), it holds that

(∫ x+ε

x−ε
exp

(
−cy2

)
dy

)2
≥
∫ x+ε

x−ε
exp

(
−c(x − ε)2

)
dy ·

∫ x+ε

x−ε
exp

(
−c(x + ε)2

)
dy.

(A.19)

Proof. We can express equation (A.19) as[∫ x+ε

x−ε
exp

(
−cy2

)
dy

]2
−
[∫ x+ε

x−ε
exp

(
−c(x2 + ε2)

)
dy

]2

=
[∫ x+ε

x−ε
exp

(
−cy2

)
− exp

(
−c(x2 + ε2)

)
dy

]
·
[∫ x+ε

x−ε
exp

(
−cy2

)
+ exp

(
−c(x2 + ε2)

)
dy

]
≥ 0,

which holds if and only if∫ +ε

−ε
exp

(
−c(x + s)2

)
ds ≥

∫ +ε

−ε
exp

(
−c(x2 + ε2)

)
ds. (A.20)

The result is immediate for x = 0, so we assume x > 0 and the claim follows by symmetry. Let

fx(s) = exp(−c(x + s)2).

We provide distinct arguments depending on whether x is small or large.

Case x ∈ (0, 1). Since we assume c < 1
8 and ε < 1, we have for any x ≤ 1 that fx is concave in

(−ε, ε). That is,

fx(s) ≥ fx(ε) − fx(−ε)
2ε

s + fx(ε) + fx(ε)
2 ,

for all s ∈ (−ε, ε). Thus,∫ ε

−ε
fx(s) ds ≥

∫ ε

−ε

fx(ε) − fx(−ε)
2ε

s + fx(ε) + fx(−ε)
2 ds

=
∫ ε

−ε

fx(ε) + fx(−ε)
2 ds

=
∫ ε

−ε
exp

(
−c(x2 + ε2)

)
· exp (−2cxε) + exp (2cxε)

2 ds

≥
∫ ε

−ε
exp

(
−c(x2 + ε2)

)
ds.

Case x ≥ 1. The integral on the right-hand side of equation (A.20) has the same value for any
affine integrand rx for which rx(0) = exp

(
−c(x2 + ε2)

)
. Thus, proving that fx(s) ≥ rx(s), for

all s ∈ (−ε, ε), concludes the proof.
In particular, we can choose

rx(s) = f ′
x(0) · s + exp

(
−c(x2 + ε2)

)
.
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Since

f ′
x(s) = −2c(x + s) exp

(
−c(x + s)2

)
,

we aim to show that

exp
(
−c(x + s)2

)
≥ −2csx exp

(
−cx2

)
+ exp

(
−c(x2 + ε2)

)
for s ∈ (−ε, ε). Dividing by exp(−c(x2 + s2)) and rearranging, we obtain

exp(−2csx) + 2csx exp
(
cs2
)

− exp
(
−c
(
ε2 − s2

))
≥ 0. (A.21)

Now, if s ≥ 0, we have that

exp(−2csx) + 2csx exp(cs2) − exp(−c(ε2 − s2)) ≥ 1 − 2csx + 2csx(1 + cs2) − exp(−cε2)(A.22)

= 1 + 2c2s3x − exp(−cε2)
≥ 2c2s3x

≥ 0,

where in equation (A.22) we used that ey ≥ 1 + y.
Now consider the sub-case s < 0. By Taylor’s theorem,

exp(y) = 1 + y + y2

2 + exp(ξ1) · y3

6
and

exp(y) = 1 + y + exp(ξ2) · y2

2 ,

for some ξ1, ξ2 ∈ [0, y]. Letting ℓ = −s ∈ (0, 1), we have

exp(2cℓx) ≥ 1 + 2cℓx + (2cℓx)2

2 + (2cℓx)3

6
and

exp(cℓ2) ≤ 1 + cℓ2 + exp(cℓ2)(cℓ2)2

2

≤ 1 + cℓ2 +
(
1 + 3(cℓ2)

)
(cℓ2)2

2 .

since ey ≤ 1 + 3y for 0 ≤ y ≤ 1. Finally, applying this to equation (A.21), we have

exp(−2csx) + 2csx exp
(
cs2
)

− exp
(
−c
(
ε2 − s2

))
≥ exp(2cℓx) − 2cℓx exp

(
cℓ2
)

− 1

≥ 1 + 2cℓx + (2cℓx)2

2 + (2cℓx)3

6 − 2cℓx

(
1 + cℓ2 + c2ℓ4(1 + 3cℓ2)

2

)
− 1

= 2c2ℓ2x2 + 4
3c3ℓ3x3 − 2cℓx

(
cℓ2 + c2ℓ4(1 + 3cℓ2)

2

)

= 2c2ℓ2x(x − ℓ) + c3ℓ3x

(4
3x2 − ℓ2(1 + 3cℓ2)

)
.

The latter is non negative for x ≥ 1 and c ≤ 1
9 , since ℓ = −s ≤ ε < 1, so that 4

3x2−ℓ2(1+3cℓ2) ≥
4
3 − 1 − 1

3 = 0.
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B Proofs omitted

B.1 Proof of Lemma 3.5.1

By the distribution of X,

Pr[X ∈ B∞(z, ε)] =
∫
B∞(z,ε)

1
(2πσ2)

d
2

· exp
(

−∥x∥2
2

2σ2

)
dx.

Since B∞(z, ε) ⊆ B∞(0, 2) and for all x ∈ Rd it holds that ∥x∥2 ≤
√

d · ∥x∥∞, and, thus,

exp
(

−2d

σ2

)
≤ exp

(
−∥x∥2

2
2σ2

)
≤ 1.

The thesis follows by noting that the hypercube B∞(z, ε) has measure (2ε)d.

B.2 Proof of Lemma 3.7.1

Inheriting the setup from the proof of Lemma 3.5.3 and proceeding analogously we obtain that
σ2

A = αn
(
1 − α

2
)

and σ2
B = α2n

2 . We diverge from that argument after equation (3.3). Preserving
equality for a bit longer, we have that

(Pr[YS = 1, YT = 1])
1
d =

∫
R

φB(x) · (Pr[A ∈ (z − x − ε, z − x + ε)])2 dx

=
∫
R

φB(x) ·
(∫ z−x+ε

z−x−ε
φA(y) dy

)2
dx.

The hypothesis on n implies that 2σ2
a ≥ 10, so, by Claim A.7,(∫ z−x+ε

z−x−ε
φA(y) dy

)2
≥ (2ε)2 · φA(z − x − ε) · φA(z − x + ε)

= (2ε)2

2πσ2
A

· exp
(

−(z − x − ε)2

2σ2
A

)
· exp

(
−(z − x + ε)2

2σ2
A

)

= e−ε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· 1√
πσ2

A

· exp
(

−(z − x)2

σ2
A

)

= e−ε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· φA/
√

2(z − x).

Then, as before, we can reduce the main integral to a convolution. Namely, it holds that∫
R

φB(x) · φA/
√

2(z − x) dx = φB+A/
√

2(z)

= 1√
2πσ2

B+A/
√

2

· exp

− z2

2σ2
B+A/

√
2

 .
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Altogether, we have that

(Pr[YS = 1, YT = 1])
1
d ≥ (2ε)2

2π
· 1√

2σ2
Aσ2

B+A/
√

2

· exp

− ε2

σ2
A

− z2

2σ2
B+A/

√
2


= (2ε)2

2παn
· 1√

1 − α2

4

· exp
(

− 1
αn

·
(

2ε2

2 − α
+ 2z2

2 + α

))
.

where the last equality follows from recalling that σ2
B = α2n

2 and σ2
A = αn

(
1 − α

2
)
, which

implies that σ2
B+A/

√
2 = α2n

2 + αn
2
(
1 − α

2
)
. Finally, the hypotheses z ∈ [−1, 1], ε ∈ (0, 1), and

α ∈
(
0, 1

2

)
imply that 2ε2

2−α + 2z2

2+α < 3.

B.3 Proof of Theorem 3.5.5

Let δ = 1396 · log 9
5 . Observe that, if α = 1

6
√

d
, then

δN ≥ max
{

18d log d
α

α2 ,
8d

α log 1
α

(
log d + log 1

ε
+ 1

)
+ 8

α

}
.

Hence, δN input variables suffice to apply Lemma 3.5.4. Let n = k · δN with k ∈ N. By
Lemma 3.5.4, for any z ∈ [−1, 1]d, the probability than no subset-sum is sufficiently close to z is

at most
(

5
9

)k
. Leveraging the fact that it is possible to cover [−1, 1]d by 1

εd hypercubes of radius
ε, we can ensure that the probability of failing to 2ε-approximate any z is, by the union bound, at
most

1
εd

·
(5

9

)k

= 2−k log 9
5 +d log 1

ε

= exp

− ln 2
n − dδN

log 9
5

log 1
ε

δN
log 9

5

 .

Thus, we can conclude the result for C = δ
log 9

5
= 1396.

C Generalisation of our result

If the target value z lies in the hypercube [−λ
√

n, λ
√

n]d, for some λ > 1√
n

, we have slightly
different bounds for the expectation and for the variance of Y. In particular, Corollary 3.5.2 would
give

e− 2λ2d
α

(2ε)d|C|
(2παn)

d
2

≤ E[Y] ≤ (2ε)d|C|
(2παn)

d
2

. (C.23)

On the other hand, as the proof of Lemma 3.5.3 never uses that z ∈ [−1, 1]d but only exploits
the bound on the expectation, it would yield

Var(Y) ≤ (2ε)2d|C|2

(2παn)d

[
(1 − 4α2)− d

2 −e− 4λ2d
α

]
+ (2ε)d|C|

(2παn)
d
2

. (C.24)
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We focus on the case λ = 1
2

√
α

17d when n > 68d
α (which implies λ

√
n > 1). Thus, we have a

new estimation for the probability of hitting a single value.

Lemma C.1. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . , Xn i.i.d. following N 0, Id,

z ∈ [−λ
√

n, λ
√

n]d, with λ = 1
2

√
α

17d , and C ⊆
([n]

αn

)
. If any two subsets in C intersect in at most

2α2n elements, α ≤ 1
6
√

d
, and

n ≥ 144d

α2

(
log 1

ε
+ log d + log 1

α

)
,

then

Pr[Y ≥ 1] ≥ 1
3 .

Proof. By Chebyshev’s inequality, it holds that

Pr[Y ≥ 1] ≥ Pr[|Y − E[Y]| <
E[Y]

2 ]

≥ 1 − 4 · Var(Y)
E[Y]2 .

Notice that 4λ2d
α = 1

17 . Hence, using equations (C.23) and (C.24), we get that

4 · Var(Y)
E[Y]2 ≤ 4 · e

1
17 · (2παn)d

(2ε)2d|C|2
·
[

(2ε)2d|C|2

(2παn)d
·
[
(1 − 4α2)− d

2 − e− 1
17
]

+ (2ε)d|C|
(2παn)

d
2

]

= 4 ·
(

e
1

17

(1 − 4α2)
d
2

− 1
)

+ 4e
1

17 · (2παn)
d
2

(2ε)d|C|
.

Note that Claim A.4 holds exactly as it is for the ratio

e
1

17

(1 − 4α2)
d
2

obtaining the same bound for n ≥ 68d
α and α ≤ 1

6
√

d
, which yields

4 ·
(

e
1

17

(1 − 4α2)
d
2

− 1
)

≤ 1
2 .

Furthermore, also Claim A.3 is true replacing e
4d
αn by e

1
17 . Thus, as n ≥ 144d

α2

(
log 1

ε + log d + log 1
α

)
and α ≤ 1

6 , Claim A.3 implies that

4e
1

17 · (2παn)
d
2

(2ε)d|C|
≤ ε.
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We remark that we cannot let λ be asymptotically greater than
√

α
d otherwise our method fails.

Indeed, by Remark 3.7.1, the term 4 Var(Y)
E[Y]2 is at least

4 ·

e
4λ2d

α
− 3λ2d

α(
1 − α2

4

) d
2

− 1

 .

The latter is greater than or equal to 1 if λ ≥
√

α
d since e

λ2d
α ≥ 1 + λ2d

α .
We are ready to state our first generalised version of Theorem 3.5.5.

Theorem C.2. For given d and ε ∈ (0, 1), let X1, . . . , Xn be n independent standard normal d-
dimensional random vectors and let α ∈ (0, 1

6
√

d
]. There exist two universal constants C > δ > 0

such that, if

n ≥ C
d2

α2

(
log 1

ε
+ log d + log 1

α

)2
,

the following holds with probability at least

1 − exp

− ln 2 ·

 n

δ d
α2

(
log 1

ε + log d + log 1
α

) − d log 1
ε

 :

for all z ∈ [−λ
√

n, λ
√

n]d, with λ = 1
2

√
α

17d , there exists a subset Sz ⊆ [n], such that

∥∥z −
∑
i∈Sz

Xi

∥∥
∞ ≤ 2ε.

Moreover, the property above remains true even if we restrict to subsets of size αn.

Proof. Let n
144d
α2 (log 1

ε
+log d+log 1

α ) = k ≥ 1 with k ∈ N. By Lemma C.1, for any z ∈

[−λ
√

n, λ
√

n]d, the probability than no subset-sum is sufficiently close to z is at most
(

2
3

)k
.

Leveraging the fact that it is possible to cover [−λ
√

n, λ
√

n]d by
(

λ
√

n
ε

)d
hypercubes of radius ε,

we can ensure that the probability of failing to 2ε-approximate any z is, by the union bound, at
most(

λ
√

n

ε

)d

·
(2

3

)k

= 2−k log 3
2 +d(log 1

ε
+ 1

2 log n+log λ)

= exp

− ln 2 ·
n − 144d2

α2 log 3
2

(
log 1

ε + 1
2 log n + log λ

) (
log 1

ε + log d + log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d + log 1
α

)


≤ exp

− ln 2 ·
n − 144d2

α2 log 3
2

(
log 1

ε + 1
2 log n

) (
log 1

ε + log d + log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d + log 1
α

)

(C.25)
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since λ < 1. Consider n
2 − 144d2

2α2 log 3
2

log n
(
log 1

ε + log d + log 1
α

)
. Let k =

k′
(
log 1

ε + log d + log 1
α

)
, which means that n = 144k′d

α2

(
log 1

ε + log d + log 1
α

)2
. Then

n

2 − 144d2

2α2 log 3
2

log n

(
log 1

ε
+ log d + log 1

α

)
= 144d

2α2

(
log 1

ε
+ log d + log 1

α

)[
k′
(

log 1
ε

+ log d + log 1
α

)
− d

log 3
2

(
log 144

log 3
2

+ log k′ + log d + 2 log 1
α

+ 2 log
(

log 1
ε

+ log d + log 1
α

))]

≥ 144d

2α2

(
log 1

ε
+ log d + log 1

α

)[
k′
(

log 1
ε

+ log d + log 1
α

)
−2d

(
8 + log k′ + log d + 2 log 1

α
+ 2 log

(
log 1

ε
+ log d + log 1

α

))]
If k′ = 17d, we have that

k′
(

log 1
ε

+ log d + log 1
α

)
− 2d

(
8 + log k′ + log d + 2 log 1

α
+ 2 log

(
log 1

ε
+ log d + log 1

α

))
≥ 4d

(
log 1

ε
+ log d + log 1

α
− log

(
log 1

ε
+ log d + log 1

α

))
+ 13d log d + 13d log 1

α

− 16d − 2d log c − 3d log d − 4d log 1
α

= 10d log d + 9d log 1
α

− 16d − 2d log 17 ≥ 0,

as α ≤ 1
6 . Thus, for n ≥ 17·144d2

α2

(
log 1

ε + log d + log 1
α

)2
, we have that the expression in

equation (C.25) is at most

exp

− ln 2 ·
n − 288d2

α2 log 3
2

log 1
ε

(
log 1

ε + log d + log 1
α

)
288d

α2 log 3
2

(
log 1

ε + log d + log 1
α

)
 .

We have the thesis by setting δ = 288
log 3

2
and C = 17 · 144.

Our analysis, which relies on fixed subset sizes, easily extends Theorem C.2 for non-centred
and non-unitary normal random vectors.

Corollary C.3. Let σ > 0 and ε ∈ (0, σ). Given d, n ∈ N let X1, . . . , Xn be independent normal
d-dimensional random vectors with Xi ∼ N (v, σ2 · Id), for any vector v ∈ Rd. Furthermore, let
α ∈

(
0, 1

6
√

d

)
. There exist two universal constants C > δ > 0 such that, if

n ≥ C
d2

α2

(
log σ

ε
+ log d + log 1

α

)2
,

then, with probability

1 − exp

− ln 2 ·

 n

δ d
α2

(
log σ

ε + log d + log 1
α

) − d log σ

ε

 ,
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for all z ∈ [−σλ
√

n, σλ
√

n]d + αnv, with λ = 1
2

√
α

17d , there exists a subset Sz ⊆ [n] for which∥∥z −
∑
i∈Sz

Xi

∥∥
∞ ≤ 2ε.

Moreover, this remains true even when restricted to subsets of size αn.

Proof. Simply apply Theorem C.2 to the random vectors Xi−v
σ with error ε

σ .

Following the line of Lueker (1998), we also observe that our results extend to a wider class
of probability distributions.

Definition C.1. Consider any two random variables X and Y having the same codomain, and let
φX(x), φY(x) be their probability density functions. We say that X contains Y with probability p
if a constant p ∈ (0, 1] exists such that φX(x) = p · φY(x) + (1 − p)f(x) for any function f(x).

If X contains Y with probability p, we can describe the behaviour of X as follows: with
probability p, draw Y; with probability 1 − p, draw something else. An adapted version of our
result holds for random variables containing Gaussian distributions.

Corollary C.4. Let σ > 0, ε ∈ (0, σ), and let p ∈ (0, 1] be a constant. Given d, n ∈ N
let Y1, . . . , Yn be independent d-dimensional random vectors containing d-dimensional normal
random vectors X ∼ N (v, σ2 · Id) with probability p, where v is any vector in Rd. Furthermore,
let α ∈

(
0, 1

6
√

d

)
. There exist two universal constants C > δ > 0 such that, if

n ≥ 2C
d2

pα2

(
log σ

ε
+ log d + log 1

α

)2
,

then, with probability

1 − 2 exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d + log 1
α

) − d log σ

ε

 ,

for all z ∈
[
−σλ

√
pn
2 , σλ

√
pn
2
]d + αpn

2 v, with λ = 1
2

√
α

17d , there exists a subset Sz ⊆ [n] for
which ∥∥z −

∑
i∈Sz

Xi

∥∥
∞ ≤ 2ε.

Moreover, this remains true even when restricted to subsets of size αpn
2 .

Proof. With a simple application of the Chernoff bound, we have that at least pn
2 random vectors

are normal random vectors with probability 1 − e− pn
8 . Conditional on this event, we can apply

Corollary C.3 to the pn
2 normal random vectors. Since Pr[A, B] ≥ Pr[A | B] Pr[B] for any two

events A, B, and 2δ d
α2

(
log σ

ε + log d + log 1
α

)
≥ 8, the thesis holds with probability at least

1 − exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d + log 1
α

) − d log σ

ε

− exp
[
−pn

8

]

≥ 1 − 2 exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d + log 1
α

) − d log σ

ε

 .
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D Discrete setting

We believe that it should not be hard to adapt our proof to several discrete distributions, in order
to obtain results similar to those discussed in the Related Work section. We also note that our
Theorem 3.1.2 already implies an analogous discrete result. Suppose that we quantise our random
vectors by truncating them to the ⌊log 1

δ ⌋-th binary place, obtaining vectors X̂i such that ∥X̂i −
Xi∥∞ < δ. For any z ∈ [−1, 1]d, Theorem 3.1.2 guarantees that w.h.p. there is a subset of
indices I ⊆ [n] such that ∥z −

∑
i∈I Xi∥∞ < ε and, hence, by the triangular inequality, ∥z −∑

i∈I X̂i∥∞ < nδ + 2ε. As a special case (δ = 2ε), we have the following:

Corollary D.1 (Discretization of Theorem 3.1.2). Given d ∈ N, ε ∈ (0, 1), let X̂1, . . . , X̂n

be independent standard normal d-dimensional vectors truncated to the ⌊log 1
ε ⌋-th binary place.

There exists a universal constant C > 0 such that, if n ≥ Cd3 log 1
ε

(
log 1

ε + log d
)

, then, with
high probability, for all vectors ẑ with entries in {kε}⌈− 1

ε
⌉≤k≤⌊ 1

ε
⌋ there exists a subset Sz ⊆ [n]

for which ∥∥ẑ −
∑
i∈Sz

X̂i

∥∥
∞ ≤ 2ε(n + 1).

Moreover, the approximation can be achieved with subsets of size n
6
√

d
.

E Connection with non-deterministic random walks

Consider a discrete-time stochastic process whose state space is Rd which starts at the origin. In
the first step, the process “branches” in two processes, one of which keeps still, while the other
moves by the vector X1. Recursively, given any time i and any process, at the next time step
the process branches in two other processes, one of which keeps still, while the other moves by
the vector Xi+1. In this setting, when Xi+1 are sampled from a standard multivariate normal
distribution, our results imply that the resulting process is space-filling: the process eventually
gets arbitrarily close to each point in Rd. This should be contrasted with the fact that a Brownian
motion is transient in dimension d ≥ 3 (Mörters & Peres, 2010). The above process can also be
interpreted as a multi-dimensional version of nondeterministic walks as introduced in Panafieu,
Lamali, and Wallner (2019) in the context of the analysis of encapsulations and decapsulations of
network protocols, where the i-th N -step is {Xi, 0⃗}.
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F Bound on the Norm of a Convolution

The following proposition can be seen as a special case of Young’s Convolution Inequality for
functions over Zn where the norms in the inequality are the ℓ1 and ℓ∞ norms.

Proposition F.1 (Tensor Convolution Inequality). Given K ∈ Rd×d×c0×c1 and X ∈ RD×D×c0 ,
we have

∥K ∗ X∥max ≤ ∥K∥1 · ∥X∥max.

Proof. We have

∥K ∗ X∥max ≤ max
i,j∈[D],ℓ∈[c1]

∑
i′,j′∈[d],k∈[c]

∣∣Ki′,j′,k,ℓXi−i′+1,j−j′+1,k

∣∣
≤ max

i,j,ℓ

∑
i′,j′,k

∣∣Ki′,j′,k,ℓ

∣∣∥X∥max

≤ max
i,j,ℓ

( ∑
i′,j′,k

∣∣Ki′,j′,k,ℓ

∣∣)∥X∥max

≤ max
i,j,ℓ

∥K∥1∥X∥max = ∥K∥1 · ∥X∥max.

G CNN Approximation (Proof of Theorem 4.2.3)

Since Lemma 4.2.2 provide bounds in terms of the output of a layer, the study of the propagation
of this error through the network is mostly independent of the layer type. Hence, the next proof
follows the structure of (Pensia et al., 2020, Theorem 1), where our Lemma 4.2.2 assumes the role
of their Lemma 3, and where we leverage our proposition F.1 in order to address the problem of
bounding the maximum norm of a convolution.

Proof (of Theorem 4.2.3). For the sake of brevity, in the proof we denote the max-norm simply
by ∥·∥. Let X i be the input of the i-th layer of the network f . Thus,

1. X 1 = X ,

2. X i+1 = σ(K i ∗ X i) for 1 ≤ i ≤ ℓ − 1 and

3. f(X ) = K ℓ ∗ X ℓ.

By applying Lemma 4.2.2 to each layer, we choose masks S2i and S2i−1 so that

sup
X

∥∥∥K i ∗ X − (L2i ⊙ S2i) ∗ σ[(L2i−1 ⊙ S2i−1) ∗ X ]
∥∥∥ <

ε

2ℓ
(G.26)
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with probability at least 1 − ε
2ℓ .

Since the ReLU function is 1-Lipschitz with respect to the max norm, the above event implies
the following for all i ∈ [ℓ − 1]:

sup
X

∥∥∥σ(K i ∗ X ) − σ[(L2i ⊙ S2i) ∗ σ[(L2i−1 ⊙ S2i−1) ∗ X ]]
∥∥∥ <

ε

2ℓ
. (G.27)

By a union bound, with probability 1 − ε, equations (G.26) and (G.27) hold for all layers
simultaneously. In the rest of the proof, we implicitly condition on the latter event.

For any fixed function f , let g be the pruned network constructed layer-wise, by pruning with
binary masks which satisfy equations (G.26) and (G.27). Let these pruned tensors be L̃i

, and let
X̃ i

be the input to the (2i − 1)-th layer of g.
We note that X̃ i

satisfies the recurrence relation

1. X̃ 1 = X ,

2. X̃ i+1 = σ(L̃2i ∗ σ(L̃2i−1 ∗ X i)) for 1 ≤ i ≤ ℓ − 1.

Because ∥X∥ ≤ 1, equation (G.27) implies that ∥X̃ i∥ ≤
(
1 + ε

2ℓ

)i−1
. To see this, note that

equation (G.27) implies, for 1 ≤ i ≤ ℓ − 1,

∥∥∥σ(K i ∗ X̃ i)
∥X̃ i∥

− X̃ i+1

∥X̃ i∥

∥∥∥ ≤ ε

2ℓ
,

thus
∥σ(K i ∗ X̃ i) − X̃ i+1∥ ≤ ε

2ℓ
∥X̃ i∥.

By the reverse triangle inequality, the last inequality implies

∥X̃ i+1∥ ≤ ε

2ℓ
∥X̃ i∥ + ∥σ(K i ∗ X̃ i)∥

≤ ε

2ℓ
∥X̃ i∥ + ∥K i ∗ X̃ i∥

≤ ε

2ℓ
∥X̃ i∥ + ∥K i∥1 · ∥X̃ i∥

≤ ε

2ℓ
∥X̃ i∥ + ∥X̃ i∥

≤
(
1 + ε

2ℓ

)
∥X̃ i∥.

Applying this inequality recursively, we get that ∥X̃ i∥ ≤
(
1 + ε

2ℓ

)i−1
for 1 ≤ i ≤ ℓ − 1. This

allows us to bound the error between X i and X̃ i
. For 1 ≤ i ≤ ℓ − 1, we have

∥X i+1 − X̃ i+1∥ = ∥σ(K i ∗ X i) − σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃ i))∥

≤ ∥σ(K i ∗ X i) − σ(K i ∗ X̃ i)∥ + ∥σ(K i ∗ X̃ i) − σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃ i))∥

≤ ∥K i∥1∥X i − X̃ i∥ + ∥σ(K i ∗ X̃ i) − σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃ i))∥

≤ ∥X i − X̃ i∥ + ∥σ(K i ∗ X̃ i) − σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃ i))∥

≤ ∥X i − X̃ i∥ +
(
1 + ε

2ℓ

)i−1 ε

2ℓ
, (G.28)
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where for the last inequality we use equation (G.26). Unrolling equation (G.28) we get

∥X ℓ − X̃ ℓ∥ ≤
ℓ−1∑
i=1

(
1 + ε

2ℓ

)i−1 ε

2ℓ
.

Finally, this last inequality leads, with probability at least 1 − ε, to

∥f(X ) − g(X )∥ = ∥K ℓ ∗ X ℓ − L̃2ℓ ∗ σ(L̃2ℓ−1 ∗ X̃ ℓ)∥

≤ ∥K ℓ ∗ X ℓ − K ℓ ∗ X̃ ℓ∥ + ∥K ℓ ∗ X̃ ℓ − L̃2ℓ ∗ σ(L̃2ℓ−1 ∗ X̃ ℓ)∥

≤ ∥K ℓ∥1∥X ℓ − X̃ ℓ∥ + ∥K ℓ ∗ X̃ ℓ − L̃2ℓ ∗ σ(L̃2ℓ−1 ∗ X̃ ℓ)∥

≤ ∥X ℓ − X̃ ℓ∥ + ∥K ℓ ∗ X̃ ℓ − L̃2ℓ ∗ σ(L̃2ℓ−1 ∗ X̃ ℓ)∥

≤ ∥X ℓ − X̃ ℓ∥ +
(
1 + ε

2ℓ

)ℓ−1 ε

2ℓ

≤
(

ℓ−1∑
i=1

(
1 + ε

2ℓ

)i−1 ε

2ℓ

)
+
(
1 + ε

2ℓ

)ℓ−1 ε

2ℓ

≤
ℓ∑

i=1

(
1 + ε

2ℓ

)i−1 ε

2ℓ

=
(
1 + ε

2ℓ

)ℓ
− 1

< eε/2 − 1
< ε,

where the last inequality holds because ε < 1.
Replacing ε in this proof with min{ε, δ} concludes the proof of the theorem.

H Random Subset-Sum Theorem

For the sake of completeness, in this section we recall a result by Lueker (1998) together with the
necessary definitions.

Definition H.1. Given two positive constants a and b, we say that a distribution with density φ
contains a b-scaled Uniform([−a, a]) distribution if for each x ∈ [−a, a] it holds φ(x) ≥ b. We
simply say that a distribution F contains a uniform distribution if there exist positive constants a
and b such that F contains a b-scaled Uniform([−a, a]) distribution.

The following is a weaker version of Corollary 1 in the Appendix of Pensia et al. (2020).

Lemma H.1. Let X1 and X2 be two independent random variables following a Uniform([−1, 1])
distribution. Then X1 · X2 contains a log 2

2 -scaled Uniform([−1
2 , 1

2 ]) distribution.

We say that z is 2η-subsetsum-approximated with S = {X1, . . . , Xn} if there exists a subset
Iz ⊆ [n] such that |

∑
i∈Iz

Xi − z| ≤ 2η.

Definition H.2. The [a, b]-subset-sum gap of S = {X1, . . . , Xn} is the smallest value of η such
that each z ∈ [a, b], can be 2η-subsetsum-approximated with S.
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Theorem H.2 (Corollary 3.3 in Lueker (1998)). Let S = {X1, . . . , Xn} be n i.i.d. bounded ran-
dom variables and ξ > 0 any constant. Suppose that the distribution of X1 contains a uniform
distribution. Let µ− = E[1X≤0X], µ+ = E[1X≥0X], µabs = E[|X|] = µ+ − µ−. The expected
value of the [(µ− + ξ)n, (µ+ − ξ)n]-subset-sum gap of S is exponentially small with respect to n.



Appendices of Chapter 5

I Technical tools

I.1 Concentration inequalities

Lemma I.1 (Most-probable normal interval). Let X follow a zero-mean normal distribution with
variance relu2. For any z, ε ∈ R

Pr[X ∈ [z − ε, z + ε]] ≤ Pr[X ∈ [−ε, ε]].

Proof. Let φX(x) denote the probability density function of X . Then,

Pr[X ∈ [−ε, ε]] − Pr[X ∈ [z − ε, z + ε]] =
∫ ε

−ε
φX(x) dx −

∫ z+ε

z−ε
φX(x) dx.

If z − ε ≥ ε or z + ε ≤ −ε, the thesis is trivial as φX(|x|) decreases in x. W.l.o.g., suppose z is
positive and z − ε < ε. Then, −ε < z − ε < ε < z + ε. It follows that∫ ε

−ε
φX(x) dx −

∫ z+ε

z−ε
φX(x) dx =

∫ z−ε

−ε
φX(x) dx −

∫ z+ε

ε
φX(x) dx

=
∫ z−ε

−ε
φX(x) − φX(x + 2ε) dx

which is non-negative as φX(x) ≥ φX(x + 2ε) for x ≥ −ε.

Lemma I.2 (Second moment method). If Z is a non-negative random variable then

Pr[Z > 0] ≥ E[Z]2

E[Z2] .

Lemma I.3 (Chernoff-Hoeffding bounds (Dubhashi & Panconesi, 2009)). Let X1, X2, . . . , Xn be
independent random variables such that Pr[0 ≤ Xi ≤ 1] = 1 for all i ∈ [n]. Let X =

∑n
i=1 Xi

and E[X] = µ. Then, for any δ ∈ (0, 1) the following holds:

1. if µ ≤ µ+, then Pr[X ≥ (1 + δ)µ+] ≤ exp
(
− δ2µ+

3

)
;

2. if 0 ≤ µ− ≤ µ, then Pr[X ≤ (1 − δ)µ−] ≤ exp
(
− δ2µ+

2

)
.

Lemma I.4 (Corollary of (Laurent & Massart, 2000, Lemma 1)). Let X ∼ χ2
d be a chi-squared

random variable with d degrees of freedom. For any t > 0, it holds that

1. Pr
[
X ≥ d + 2

√
dt + 2t

]
≤ exp(−t);

2. Pr
[
X ≤ d − 2

√
dt
]

≤ exp(−t).
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I.2 Supporting results

Lemma I.5 (NSN with positive scalar). If a d-dimensional random vector Y is such that, for
each i ∈ [d], Yi = Z̃ · Z̃ i, where Z̃ 1, . . . , Z̃ n are identically distributed random variables fol-
lowing a standard normal distribution, Z̃ is a half-normal distribution,2 and Z̃ , Z̃ 1, . . . , Z̃ n are
independent, then Y follows an NSN distribution.

Proof. By Definition 5.3.2, Y is NSN if, for each i ∈ [d], Yi = Z · Zi where Z, Z1, . . . , Zn

are i.i.d. random variables following a standard normal distribution. If Z̃ = |Z|, we can rewrite
Z̃ i = sign(Z) sign(Zi)|Zi| for each i = 1, . . . , n, where Z, Z1, . . . , Zn are i.i.d. standard normal
random variables, as sign(Z) sign(Zi) is independent of sign(Z) and of sign(Z) sign(Zj) for
i ̸= j. Then,

Yi = Z̃ · Z̃ i

= |Z| · sign(Z) sign(Zi)|Zi|
= sign(Z)|Z| · sign(Zi)|Zi|
= Z · Zi,

implying the thesis.

Corollary I.6 (of Theorem 5.3.2). Let d, k, and n be positive integers with n ≥ C1k2 log
(

1
ε

)
and

k ≥ C2d3 log d
ε for some universal constants C1, C2 ∈ R>0. Let X1, . . . , Xn be d-dimensional

i.i.d. NSN random vectors. For any 0 < ε ≤ 1
4 and z ∈ Rd with ∥z∥1 ≤

√
k it holds

Pr
[
∃S : |S| = k, ∥

(∑
i∈S

Xi

)
− z∥∞ ≤ ε

]
≥ 1 − ε.

Proof. Let s =
⌈
C1 log

(
1
ε

)⌉
and let us partition the n vectors X1, . . . , Xn in s disjoint sets

G1, . . . , Gs of at least k2 vectors each. By Theorem 5.3.2, there is a constant c ∈ (0, 1) such that
for each group Gi (i ∈ [s])

Pr
[
∃S ⊂ Gi : |S| = k, ∥z −

∑
i∈S

Xi∥∞ ≤ ε

]
≥ c. (I.29)

It follows that

Pr
[
∃S : |S| = k, ∥

(∑
i∈S

Xi

)
− z∥∞ ≤ ε

]

≥ Pr
[
∃i ∈ [s], ∃S ⊂ Gi : |S| = k, ∥

(∑
i∈S

Xi

)
− z∥∞ ≤ ε

]

= 1 − Pr
[
∀i ∈ [s], ∀S ⊂ Gi : |S| = k, ∥

(∑
i∈S

Xi

)
− z∥∞ > ε

]

≥ 1 − (1 − c)⌈C1 log( 1
ε )⌉,

2I.e., Z̃ = |Z| where Z is a standard normal distribution.
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where the latter inequality comes from equation (I.29) and the independence of the variables across
different Gi. By choosing C1 large enough,

1 − (1 − c)⌈C1 log( 1
ε )⌉ ≥ 1 − ε.

Lemma I.7 (Tensor Convolution Inequality). Given real tensors K and X of respective sizes
d × d′ × c0 × c1 and D × D′ × c0, it holds

∥K ∗ X∥∞ ≤ ∥K∥1 · ∥X∥∞.

Proof. We have

∥K ∗ X∥∞

≤ max
i,j∈[D],ℓ∈[c1]

∑
i′,j′∈[d],k∈[c]

∣∣Ki′,j′,k,ℓXi−i′+1,j−j′+1,k

∣∣
≤ max

i,j∈[D],ℓ∈[c1]

 ∑
i′,j′∈[d],k∈[c]

∣∣Ki′,j′,k,ℓ

∣∣ ∥X∥∞

≤ max
i,j∈[D],ℓ∈[c1]

∥K∥1 · ∥X∥∞

= ∥K∥1 · ∥X∥∞.

J Omitted proofs and results

J.1 Multidimensional Random Subset Sum for normally-scaled normal vectors

Proof of Lemma 5.4.1. By Definition 5.3.2, the j-th entry of each vector Xi is (Xi)j = Zi ·
Zi,j where each Zi and Zi,j are i.i.d. random variables following a standard normal distribution.
Let E(↕) be the event that k

(
1 − 2√

cd

)
≤
∑k

i=1 Z2
i ≤ k

(
1 + 2√

cd + 2cd

)
, and denote X =∑k

i=1 Xi. By the law of total probability, it holds that

Pr[X ∈ Iε(z)] = EZ1,...,Zn [Pr[X ∈ Iε(z) | Z1, . . . , Zk]].

As, conditional on Z1, . . . , Zk, the d entries of X are independent, it follows that

EZ1,...,Zn [Pr[X ∈ Iε(z) | Z1, . . . , Zk]]

= EZ1,...,Zn

 d∏
j=1

Pr[(X)j ∈ Iε(zi) | Z1, . . . , Zk]


≥ EZ1,...,Zn

 d∏
j=1

Pr
[
(X)j ∈ Iε(zi)

∣∣∣ Z1, . . . , Zk, E(↕)
]Pr

[
E(↕)

]
, (J.30)

where the inequality in equation (J.30) holds by applying again the law of total probability.
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Conditional on Z1, . . . , Zk, we have that (X)j ∼ N 0,
∑k

i=1 Z2
i . Hence,

EZ1,...,Zn

 d∏
j=1

Pr
[
(X)j ∈ Iε(zi)

∣∣∣ Z1, . . . , Zk, E(↕)
]Pr

[
E(↕)

]

≥ EZ1,...,Zk

 d∏
j=1

 2ε√
π
(∑k

i=1 Z2
i

) exp
(

− (|zi| + ε)2

2
∑k

i=1 Z2
i

)
∣∣∣∣∣∣∣∣ Z1, . . . , Zk, E(↕)


· Pr

[
E(↕)

]
Notice that the term

∑
i Z2

i is a sum of chi-square random variables, for which there are known
concentration bounds (Lemma I.4). By definition of E(↕) and by applying Lemma I.4 to estimate
the term Pr

[
E(↕)

]
, we get that

EZ1,...,Zk

 d∏
j=1

 2ε√
π
(∑k

i=1 Z2
i

) exp
(

− (|zi| + ε)2

2
∑k

i=1 Z2
i

)
∣∣∣∣∣∣∣∣ Z1, . . . , Zk, E(↕)


· Pr

[
E(↕)

]
≥

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−
∑

i |zi|2 + 2ε
∑

i |zi| + dε2

2
(
1 − 2√

cd

)
k

)
Pr
[
E(↕)

]

=

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−∥z∥2
2 + 2ε∥z∥1 + dε2

2
(
1 − 2√

cd

)
k

)
Pr
[
E(↕)

]

≥

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−∥z∥2
2 + 2ε∥z∥1 + dε2

2
(
1 − 2√

cd

)
k

)(
1 − 2e−cdk

)
.

As cdk ≥ 1 by hypotheses, 1 − 2e−cdk ≥ 1/4. Then,
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 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−∥z∥2
2 + 2ε∥z∥1 + dε2

2
(
1 − 2√

cd

)
k

)(
1 − 2e−cdk

)

≥ 1
4

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−∥z∥2
2 + 2ε∥z∥1 + dε2

2
(
1 − 2√

cd

)
k

)

≥ 1
4

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−k + 2ε
√

k + dε2

2
(
1 − 2√

cd

)
k

)
(J.31)

= 1
4

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp

−
1 + 2ε√

k
+ dε2

k

2
(
1 − 2√

cd

)


≥ 1
4

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

exp
(

−
1 + 1

8 + 1
16

2
(
1 − 2√

cd

)) (J.32)

≥ 1
16

 2ε√
π
(
1 + 2√

cd + 2cd

)
k

d

, (J.33)

where we have used that ∥z∥2 ≤ ∥z∥1 ≤
√

k in equation (J.31), that k ≥ 16, k ≥ d, that ε < 1/4
in equation (J.32), and that

exp
(

−
1 + 1

8 + 1
16

2
(
1 − 2√

cd

)) ≥ exp

−
1 + 1

8 + 1
16

2
(
1 − 2

√
1
16

)
 ≥ 1

16

in equation (J.33).

Proof of Lemma 5.4.2. Since the Xis are NSN random vectors, for each i ∈ [n] and j ∈ [d]
we can write the j-th entry of Xi as (Xi)j = Zi · Zi,j where the variables in {Zi}i∈[n] and in
{Zi,j}i∈[n],j∈[d] are i.i.d. random variables following a standard normal distribution. By the law of
total probability, we have

Pr[A + B ∈ Iε(z), B + C ∈ Iε(z)]
= EZ1,...,Zn [Pr[A + B ∈ Iε(z), B + C ∈ Iε(z) | Z1, . . . , Zn]]

= EZ1,...,Zn

[
d∏

i=1
Pr[Ai + Bi ∈ Iε(zi), Bi + Ci ∈ Iε(zi) | Z1, . . . , Zn]

]
, (J.34)

where the latter equality holds by independence.
Then,

Pr[Ai + Bi ∈ Iε(zi), Bi + Ci ∈ Iε(zi) | Z1, . . . , Zn]
= EBi [Pr[Ai ∈ Iε(zi − Bi), Ci ∈ Iε(zi − Bi) | Z1, . . . , Zn, Bi]]
= EBi [Pr[Ai ∈ Iε(zi − Bi) | Z1, . . . , Zn, Bi] Pr[Ci ∈ Iε(zi − Bi) | Z1, . . . , Zn, Bi]],
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where the latter inequality holds by independence of Ai and Ci. By Lemma I.1, it holds that

EBi [Pr[Ai ∈ Iε(zi − Bi) | Z1, . . . , Zn, Bi] Pr[Ci ∈ Iε(zi − Bi) | Z1, . . . , Zn, Bi]]
≤ EBi [Pr[Ai ∈ Iε(0) | Z1, . . . , Zn, Bi] Pr[Ci ∈ Iε(0) | Z1, . . . , Zn, Bi]]
= Pr[Ai ∈ Iε(0) | Z1, . . . , Zn] Pr[Ci ∈ Iε(0) | Z1, . . . , Zn]

≤ 2ε√
π
(∑j

r=1 Z2
r

) · 2ε√
π
(∑k+j

r=k+1 Z2
r

) , (J.35)

where the latter inequality comes from the fact that, conditioned on Z1, . . . , Zn, we have that
Ai ∼ N 0,

∑j
r=1 Z2

r , Bi ∼ N 0,
∑k

r=j+1 Z2
r , and Ci ∼ N 0,

∑k+j
r=k+1 Z2

r for each i ∈ [d].
We now proceed similarly to the proof of Lemma 5.4.1. We denote the event that(

1 − 2√
cd

)
j ≤

∑j
i=1 Z2

i ,
∑k+j

i=k+1 Z2
i by E(↓). Then, by equation (J.34) and the law of total

probability, we have that

Pr[A + B ∈ Iε(z), B + C ∈ Iε(z)]

= EZ1,...,Zn

[
d∏

i=1
Pr[Ai + Bi ∈ Iε(zi), Bi + Ci ∈ Iε(zi) | Z1, . . . , Zn]

]

≤ EZ1,...,Zn

[
d∏

i=1
Pr
[
Ai + Bi, Bi + Ci ∈ Iε(zi)

∣∣∣ Z1, . . . , Zn, E(↓)
]]

+ Pr
[
E(↓)

]
.

Equation (J.35) implies that equation (J.35)

EZ1,...,Zn

[
d∏

i=1
Pr
[
Ai + Bi, Bi + Ci ∈ Iε(zi)

∣∣∣ Z1, . . . , Zn, E(↓)
]]

+ Pr
[
E(↓)

]

≤ EZ1,...,Zn

 d∏
i=1

2ε√
π
(∑j

r=1 Z2
r

) · 2ε√
π
(∑k+j

r=k+1 Z2
r

)
∣∣∣∣∣∣∣∣ E

(↓)

+ Pr
[
E(↓)

]

= EZ1,...,Zn


 4ε2

π

√(∑j
r=1 Z2

r

) (∑k+j
r=k+1 Z2

r

)


d ∣∣∣∣∣∣∣∣ E
(↓)

+ Pr
[
E(↓)

]
.

By independence of
∑j

r=1 Z2
r and

∑k+j
r=k+1 Z2

r and by Lemma I.4, we obtain that
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EZ1,...,Zn


 4ε2

π

√(∑j
i=1 Z2

i

) (∑k+j
i=k+1 Z2

i

)


d ∣∣∣∣∣∣∣∣ E
(↓)

+ Pr
[
E(↓)

]

≤
(

4ε2

πj
(
1 − 2√

cd

))d

+ Pr
[
E(↓)

]

≤
(

4ε2

πj
(
1 − 2√

cd

))d

+ 2 exp(−cdj)

= exp
(

−d log
πj
(
1 − 2√

cd

)
4ε2

)
+ 2 exp(−cdk)

≤ 3
(

4ε2

π
(
1 − 2√

cd

)
k

)d

.

Finally, for a large enough constant C, the hypothesis on k implies that k ≥
2 d

cd
log πk(1−2√

cd)
4ε2 . Hence,

exp
(

−d log
πj
(
1 − 2√

cd

)
4ε2

)
+ 2 exp(−cdk) ≤ 3

(
4ε2

π
(
1 − 2√

cd

)
k

)d

.

Proof of Theorem 5.3.2. We use the second moment method (Lemma I.2) on the ε-subset-sum
number Tn,k of X1, . . . , Xn. Thus, we aim to provide a lower bound on the right-hand side of

Pr[T > 0] ≥ E[Tn,k]2

E[T 2
n,k]

. (J.36)

Equivalently, we can provide an upper bound on the inverse
E[T 2

n,k]
E[Tn,k]2 . By Lemma 5.4.3

E[T 2
n,k] =

(
n

k

)2 k∑
j=0

Pr
[
|S ∩ S ′| = k − j

]
Pr
[
E(v)

S0
∩ E(v)

Sj

]
(J.37)

where S, S ′, Si and E(z)
S are defined as in the statement of the lemma. Observe also that

E[Tn,k] =
∑

S∈([n]
k )

E[1E(z)
S

] =
∑

S∈([n]
k )

Pr
[
E(z)

S

]
=
(

n

k

)
Pr
[
E(v)

S0

]
. (J.38)

By equations (J.37) and (J.38), we have

E[T 2
n,k]

E[Tn,k]2 =
(n

k

)2
E[Tn,k]2

k∑
j=0

Pr
[
|S ∩ S ′| = k − j

]
Pr
[
E(v)

S0
∩ E(v)

Sj

]

=
k∑

j=0
Pr
[
|S ∩ S ′| = k − j

]Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2 . (J.39)
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As for the denominator of the second term in equation (J.39), by Lemma 5.4.1 we have

Pr
[
E(v)

S0

]2
≥ 1

256

(
4ε2

π
(
1 + 2√

cd + 2cd

)
k

)d

. (J.40)

As for the numerator of the second term in equation (J.39), Lemma 5.4.2 implies that we have

Pr
[
E(v)

S0
∩ E(v)

Sj

]
≤ 3

(
4ε2

π
(
1 − 2√

cd

)
j

)d

. (J.41)

By plugging equations (J.40) and (J.41) in equation (J.39), for j ≥ k
(
1 − 1

d

)
and d > 1 we

can upper bound the factor
Pr
[

E(v)
S0

∩E(v)
Sj

]
Pr
[

E(v)
S0

]2 of the summation as follows:

Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2 ≤
3
(

4ε2

π(1−2√
cd)j

)d

1
256

(
4ε2

π(1+2√
cd+2cd)k

)d

= 768
((

1 + 2√
cd + 2cd

)
k(

1 − 2√
cd

)
j

)d

.

As j ≥ k
(
1 − 1

d

)
with d > 1, then

768
((

1 + 2√
cd + 2cd

)
k(

1 − 2√
cd

)
j

)d

≤ 768

 (
1 + 2√

cd + 2cd

)(
1 − 2√

cd

) (
1 − 1

d

)
d

≤ 768
(

2 + 7√
cd

2 − 7√
cd

)d

≤ 270801, (J.42)

because
(

(1+2√
cd+2cd)

(1−2√
cd)(1− 1

d )

)d

is maximized or d = 4. Let C ′ = 270801. If d > 1, by plugging

equation (J.42) in equation (J.39), we have that

E[T 2
n,k]

E[Tn,k]2 =
⌈k− k

d ⌉−1∑
j=0

Pr
[
|S ∩ S ′| = k − j

]Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2
+

k∑
j=⌈k− k

d
⌉

Pr
[
|S ∩ S ′| = k − j

]Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2
≤

⌈k− k
d ⌉−1∑

j=0
Pr
[
|S ∩ S ′| = k − j

]Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2 + C ′.



ANNEXE 149

As Pr
[
E(v)

S0
∩ E(v)

Sj

]
≤ Pr

[
E(v)

S0

]
, then

⌈k− k
d ⌉−1∑

j=0
Pr
[
|S ∩ S ′| = k − j

]Pr
[
E(v)

S0
∩ E(v)

Sj

]
Pr
[
E(v)

S0

]2 + C ′

≤ 1
Pr
[
E(v)

S0

] ⌈k− k
d ⌉−1∑

j=0
Pr
[
|S ∩ S ′| = k − j

]
+ C ′

≤
Pr
[
|S ∩ S ′| > k

d

]
Pr
[
E(v)

S0

] + C ′. (J.43)

Notice that, if d = 1, the same bound holds as Pr
[
|S ∩ S ′| > k

d

]
= 0. We now observe that, by

the law of total probability

Pr
[
|S ∩ S ′| ≥ k

d

]
=

∑
S̃∈([n]

k )
Pr
[
S = S̃

]
Pr
[
|S ∩ S ′| ≥ k

d

∣∣∣∣ S = S̃
]
. (J.44)

Conditional on S = S̃, |S ∩ S ′| is a hypergeometric random variable with

E[|S ∩ S ′| | S = S̃] =
∑
i∈S̃

Pr
[
i ∈ S ′] = k Pr[1 ∈ S] = k2

n
.

Since n ≥ k2, then k2

n ≤ 1. Hence, since Chernoff bounds holds for the hypergeometric distribu-
tion (Doerr, 2020, Theorem 1.10.25)

Pr
[
|S ∩ S ′| ≥ k

d

∣∣∣∣ S = S̃
]

≥ Pr
[
|S ∩ S ′| ≥ k2

n
+
(

k

d
− 1

) ∣∣∣∣∣ S = S̃
]

≤ exp

−2

(
k
d − 1

)2

k


≤ exp

(
−2 k

d2

(
1 − d

k

)2)
. (J.45)

Substituting equation (J.45) in equation (J.44) we get

Pr
[
|S ∩ S ′| ≥ k

d

]
≤ exp

(
−2 k

d2

(
1 − d

k

)2)
. (J.46)

We can now keep bounding from above
E[T 2

n,k]
E[Tn,k]2 by plugging equation (J.46) in equation (J.43):

Pr
[
|S ∩ S ′| ≥ k

d

]
Pr
[
E(v)

S0

] + C ′ ≤
exp

(
−2 k

d2

(
1 − d

k

)2
)

Pr
[
E(v)

S0

] + C ′.
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By Lemma 5.4.1, and since 1 + 2√
cd + 2cd ≤ 2, we have

exp
(

−2 k
d2

(
1 − d

k

)2
)

Pr
[
E(v)

S0

] + C ′

≤
16 exp

(
−2 k

d2

(
1 − d

k

)2
)

(
2ε√
π2k

)d
+ C ′

= 16 exp
(

−2 k

d2

(
1 − d

k

)2
+ d log

(√
π2k

2ε

))
+ C ′.

By the hypothesis, since k ≥ Cd3 log d
ε for a large enough C, it holds that

16 exp
(

−2 k

d2

(
1 − d

k

)2
+ d log

(√
π2k

2ε

))
+ C ′

≤ C ′ + 16 exp
(

−d log d

ε

)
< C ′ + 16

e
, (J.47)

where the latter inequality holds as ε ≤ 1/4.
Plugging the inverse of the expression in equation (J.47) in equation (J.36) we obtain the

thesis.

J.2 Kernel Pruning

Proof of Lemma 5.4.4. S ∈ {0, 1}shape(V ) is such that V = V ⊙ S contains only non-negative
edges going from each input channel t to the output channels (t − 1)n + 1, . . . , tn, and only non-
positive3 edges going from each input channel t to the output channels tn + 1, . . . , 2tn, while all
remaining edges are set to zero. Let us define some convenient notations before proceeding with
the proofs. By [n, m] we denote the set {n, n + 1, . . . , m} for each pair of integers n ≤ m ∈ N.
In formulas, we obtain a tensor V such that, for each (t, k) ∈ [c], ×[2nc]:

(V ⊙ S)1,1,t,k =


V 1,1,t,k · 1V 1,1,t,k>0 if k ∈ [(2t − 2)n + 1, (2t − 1)n],
V 1,1,t,k · 1V 1,1,t,k<0 if k ∈ [(2t − 1)n + 1, 2tn],
0 otherwise.

(J.48)

To simplify the notation, we define the following indicator functions: for any (t, k) ∈ [c] × [2nc],

1 k
2n

∈(t−1,t− 1
2 ] = 1 iff k ∈ [(2t − 2)n + 1, (2t − 1)n], and

1 k
2n

∈(t− 1
2 ,t] = 1 iff k ∈ [(2t − 1)n + 1, 2tn]. (J.49)

3We consider 0 to be both non-negative and non-positive.
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For each (i, j, k) ∈ [D] × [D] × [2nc], applying equation (J.48) and Definition 5.4.2, it then holds

(relu ((V ⊙ S) ∗ X))i,j,k

= relu
(

c0∑
t=1

V1,1,t,kXi,j,t

)

= relu
( c0∑

t=1

(
V1,1,t,kXi,j,t · 1V 1,1,t,k>01 k

2n
∈(t−1,t− 1

2 ]

+ V1,1,t,kXi,j,t · 1V 1,1,t,k<01 k
2n

∈(t− 1
2 ,t]
))

= relu
(

c0∑
t=1

(
V +

1,1,t,kXi,j,t1 k
2n

∈(t−1,t− 1
2 ] − V −

1,1,t,kXi,j,t1 k
2n

∈(t− 1
2 ,t]
))

= relu
( c0∑

t=1

(
V +

1,1,t,k(X+
i,j,t − X−

i,j,t)1 k
2n

∈(t−1,t− 1
2 ]

+ V −
1,1,t,k(X−

i,j,t − X+
i,j,t)1 k

2n
∈(t− 1

2 ,t]
))

. (J.50)

Observe that only one term survives in the summation in equation (J.50), as there exists only one
t ∈ [c0] such that k ∈ [(2t − 2)n + 1, 2tn], say t⋆. Moreover, out of the four additive terms in the
expression

V +
1,1,t⋆,k(X+

i,j,t⋆ − X−
i,j,t⋆)1 k

2n
∈(t⋆−1,t⋆− 1

2 ] + V −
1,1,t⋆,k(X−

i,j,t⋆ − X+
i,j,t⋆)1 k

2n
∈(t⋆− 1

2 ,t⋆],

at most one is non-zero, due to Definition 5.4.2. The ReLU cancels out negative ones, implying
that equation (J.50) can be rewritten without the ReLU as a sum of only non-negative terms (out
of which, at most one is non-zero) as follows

relu
( c0∑

t=1

(
V +

1,1,t,k(X+
i,j,t − X−

i,j,t)1 k
2n

∈(t−1,t− 1
2 ]

+ V −
1,1,t,k(X−

i,j,t − X+
i,j,t)1 k

2n
∈(t− 1

2 ,t]
))

=
c0∑

t=1

(
V +

1,1,t,kX+
i,j,t1 k

2n
∈(t−1,t− 1

2 ] + V −
1,1,t,kX−

i,j,t1 k
2n

∈(t− 1
2 ,t]
)

. (J.51)

Finally, by equations (J.48) and (J.49), V+
1,1,t,k = 0 if k

2n ̸∈
(
t − 1, t − 1

2

]
, and V−

1,1,t,k = 0 if
k

2n ∈
(
t − 1

2 , t
]
, which means that in equation (J.51) we can ignore the indicator functions and
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further simplify the expression as

c0∑
t=1

(
V +

1,1,t,kX+
i,j,t1 k

2n
∈(t−1,t− 1

2 ] + V −
1,1,t,kX−

i,j,t1 k
2n

∈(t− 1
2 ,t]
)

=
c0∑

t=1

(
V+

1,1,t,kX+
i,j,t + V−

1,1,t,kX−
i,j,t

)
=
(

c0∑
t=1

V+
1,1,t,kX+

i,j,t +
c0∑

t=1
V−

1,1,t,kX−
i,j,t

)
=
(
V+ ∗ X+ + V− ∗ X−

)
i,j,k

.

Proof of Lemma 5.4.5. Adopting the same definitions as in Lemma 5.4.4 (and equation (J.48)),
for each (r, s, t1) ∈ [d] × [d] × [c1] we have, by Lemma 5.4.4,

(U ∗ relu ((V ⊙ S) ∗ X))r,s,t1

=
(
U ∗

((
Ṽ + ∗ X +

)
+
(
Ṽ − ∗ X −

)))
r,s,t1

=
∑

i,j∈[d],k∈[2nc0]
Ui,j,k,t1 ·

((
Ṽ + ∗ X +

)
+
(
Ṽ − ∗ X −

))
r−i+1,s−j+1,k

=
∑

i,j∈[d],k∈[2nc0]
Ui,j,k,t1 ·

∑
t0∈[c0]

(
Ṽ +

1,1,t0,k · X +
r−i+1,s−j+1,t0

+ Ṽ −
1,1,t0,k · X −

r−i+1,s−j+1,t0

)
=

∑
t0∈[c0]in[d],k∈[2nc0]

(
Ui,j,k,t1 · Ṽ +

1,1,t0,k

)
· X +

r−i+1,s−j+1,t0

+
∑

t0∈[c0]

∑
i,j∈[d],k∈[2nc0]

(
Ui,j,k,t1 · Ṽ −

1,1,t0,k

)
· X −

r−i+1,s−j+1,t0

=
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[2nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

 · X +
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[2nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

 · X −
r−i+1,s−j+1,t0

.
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Define L+
i,j,t0,t1

=
∑

k∈[nc] Ui,j,k,t1 · Ṽ +
1,1,t0,k and, similarly, L−

i,j,t0,t1
=
∑

k∈[nc] Ui,j,k,t1 · Ṽ −
1,1,t0,k.

Then,

∑
i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

 · X +
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

 · X −
r−i+1,s−j+1,t0

=
∑

i,j∈[d],t0∈[c0]
L+

i,j,t0,t1
· X +

r−i+1,s−j+1,t0
+

∑
i,j∈[d],t0∈[c0]

L−
i,j,t0,t1

· X −
r−i+1,s−j+1,t0

.

We now show that, for each t0 ∈ [c0], K:,:,t0,: can be ε-approximated by L+
:,:,t0,: by suitably

pruning Ṽ +, i.e., by further zeroing entries of S, and that such pruning corresponds to solving an
instance of MRSS according to Theorem 5.3.2. The same reasoning applies to K − and L−.

For each t0 ∈ [c0], let

I
(t0)
+ = {k ∈ {(2t0 − 2)n + 1, . . . , (2t0 − 1)n} : S1,1,t0,k = 1} .

Observe that I
(t0)
+ consists of the strictly positive entries of Ṽ +

1,1,t0,:.
4 Since the entries of V follow a

standard normal distribution, each entry is positive with probability 1/2. By a standard application
of Chernoff bounds (Lemma I.3 in appendix I), we then have

Pr
[∣∣∣I(t0)

+

∣∣∣ >
n

3

]
≥ 1 − ε

4 ,

provided that the constant C in the bound on n is sufficiently large.
For each k ∈ I

(t0)
+ , up to reshaping the tensor as a one dimensional vector, U:,:,k,: · Ṽ +

1,1,t0,k

is an NSN vector (Definition 5.3.2) by Lemma I.5 (appendix J). Thus, for each t0 ∈ [c0] and a
sufficiently-large value of C, since the target filter K is such that ∥K:,:,t0,:∥1 ≤ 1 and we have n ≥
Cd12c6

1 log3 d2c1c0
ε , then we can apply an amplified version of Theorem 5.3.2 (i.e., Corollary I.6

in appendix J with vectors of dimension d2c1) to show that, with probability 1 − ε
4c0

there exists

a way to zero the entries indexed by I
(t0)
+ of S (and thus Ṽ +

1,1,t0,:), so that the pruned version of
L+

:,:,t0,: =
∑

k∈[nc0] U:,:,k,: · Ṽ +
1,1,t0,k approximates K:,:,t0,:. In particular, there exists another binary

mask Ŝ+ ∈ {0, 1}shape S̃ such that L̂+
:,:,t0,: =

∑
k∈[nc0] U:,:,k,: · V̂ +

1,1,t0,k approximates K:,:,t0,:,
where V̂ + = Ṽ + ⊙ Ŝ+. An analogous argument carries on for a binary mask Ŝ− and −L̂−

:,:,t0,:.
5

More formally, let

E(kernel)
t0,+ =

{
∃Ŝ+ ∈ {0, 1}shape S̃ ∥L̂+

:,:,t0,: − K:,:,t0,:∥∞ ≤ ε

2d2c1c0

}
,

E(kernel)
t0,− =

{
∃Ŝ− ∈ {0, 1}shape S̃ ∥L̂−

:,:,t0,: + K:,:,t0,:∥∞ ≤ ε

2d2c1c0

}
, and

E(kernel) =

 ⋂
t0∈[c0]

E(kernel)
t0,+

⋂ ⋂
t0∈[c0]

E(kernel)
t0,−

 .

4Notice that excluding zero entries implies conditioning on the event that the entry is not zero. However, such an
event has zero probability and thus doesn’t impact the analysis.

5The negative sign in front of L̂−
:,:,t0,: does not affect the random subset sum result as each entry is independently

negative or positive with the same probability.
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Then, by Corollary I.6,

Pr
[
E(kernel)

t0,+

∣∣∣∣ |I(t0)
+ | >

n

3

]
≥ 1 − ε

4c0
, and

Pr
[
E(kernel)

t0,−

∣∣∣∣ |I(t0)
− | >

n

3

]
≥ 1 − ε

4c0
.

By the union bound, we have the following:

Pr
[
E(kernel)

∣∣∣∣ |I(t0)
+ |, |I(t0)

− | >
n

3

]

= 1 − Pr

 ⋃
t0∈[c0]

E(kernel)
t0,+

⋃ ⋃
t0∈[c0]

E(kernel)
t0,−

 ∣∣∣∣∣∣
∣∣∣I(t0)

+

∣∣∣ , ∣∣∣I(t0)
−

∣∣∣ >
n

3


≥ 1 −

∑
t0∈[c0]

[
Pr
[
E(kernel)

t0,+

∣∣∣∣ ∣∣∣I(t0)
+

∣∣∣ , ∣∣∣I(t0)
−

∣∣∣ >
n

3

]
+ Pr

[
E(kernel)

t0,−

∣∣∣∣ ∣∣∣I(t0)
+

∣∣∣ , ∣∣∣I(t0)
−

∣∣∣ >
n

3

]]
≥ 1 − 2

∑
t0∈[c0]

ε

4c0

≥ 1 − ε

2 .

Since Pr
[∣∣∣I(t0)

+

∣∣∣ , ∣∣∣I(t0)
−

∣∣∣ > n
3

]
≥ 1 − ε

2 , then we can remove the conditional event obtaining

Pr
[
E(kernel)

]
≥ Pr

[
E(kernel)

∣∣∣∣ ∣∣∣I(t0)
+

∣∣∣ , ∣∣∣I(t0)
−

∣∣∣ >
n

3

]
Pr
[∣∣∣I(t0)

+

∣∣∣ , ∣∣∣I(t0)
−

∣∣∣ >
n

3

]
≥
(

1 − ε

2

)2

≥ 1 − ε. (J.52)

To rewrite the latter in terms of the filter K and a mask S, we notice that pruning L+
:,:,t0,: and

L−
:,:,t0,: separately, with two binary masks, is equivalent to say that there exists a single binary

mask Ŝ ∈ {0, 1}shape S̃ such that, L̂:,:,t0,: can be written as L̂:,:,t0,: =
∑

k∈[nc0] U:,:,k,: · V̂1,1,t0,k,
where V̂ = Ṽ ⊙ Ŝ. Equation (J.52) implies that, with probability 1 − ε, such Ŝ exists and hence,
equation (J.52)

∥K − L̂+∥∞ + ∥K + L̂−∥∞ ≤ ε

d2c1c0
. (J.53)

Let S = S̃ ⊙ Ŝ: S is a 2n-channel blocked basks. Furthermore, for such an S, notice that the
following holds.

sup
X:∥X∥∞≤M

∥K ∗ X − N
(S)
0 (X)∥∞

= sup
X:∥X∥∞≤M

∥K ∗ X − U ∗ relu ((V ⊙ S) ∗ X)∥∞

= sup
X:∥X∥∞≤M

∥K ∗ X − U ∗ relu
(
(V ⊙ S̃ ⊙ Ŝ) ∗ X

)
∥∞

= sup
X:∥X∥∞≤M

∥K ∗
(
X + − X −

)
− U ∗

(
(V̂ + ∗ X +

)
+
(
V̂ − ∗ X −

)
∥∞,
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where the latter holds by Lemma 5.4.4.6 Then, by the distributive property of the convolution and
the triangle inequality,

sup
X:∥X∥∞≤M

∥K ∗
(
X + − X −

)
− U ∗

(
(V̂ + ∗ X +

)
+
(
V̂ − ⊙ Ŝ ∗ X −

)
∥∞

= sup
X:∥X∥∞≤M

∥K ∗ X + − U ∗
(
V̂ + ∗ X +

)
− K ∗ X − − U ∗

(
V̂ − ∗ X −

)
∥∞

≤ sup
X:∥X∥∞≤M

∥K ∗ X + − U ∗
(
V̂ + ∗ X +

)
∥∞

+ sup
X:∥X∥∞≤M

∥K ∗ X − + U ∗
(
V̂ − ∗ X −

)
∥∞.

One can now apply the Tensor Convolution Inequality (Lemma I.7) and obtain

sup
X:∥X∥∞≤M

∥K ∗ X + − U ∗
(
V̂ + ∗ X +

)
∥∞

+ sup
X:∥X∥∞≤M

∥K ∗ X − + U ∗
(
V̂ − ∗ X −

)
∥∞

≤ sup
X:∥X∥∞≤M

∥X +∥∞ · ∥K − U ∗ V̂ +∥1

+ sup
X:∥X∥∞≤M

∥X −∥∞ · ∥K + U ∗ V̂ −∥1

= M · ∥K − U ∗ V̂ +∥1 + M · ∥K + U ∗ V̂ −∥1.

Now, observing that the number of entries of the two tensors in the expression above is d2c1c0,
and using equation (J.53) (which holds with probability 1 − ε), we get that

M · ∥K − U ∗ V̂ +∥1 + M · ∥K − U ∗ V̂ −∥1

≤ d2c1c0
(
∥K − U ∗ V̂ +∥∞ + ∥K − U ∗ V̂ −∥∞

)
≤ d2c1c0M

ε

d2c1c0
= εM.

proving the thesis.

Proof of Theorem 5.3.1. In order to bound the error propagation across layers, we define the lay-
ers’ outputs

X (0) = X,

X (i) = relu
(
K (i) ∗ X (i−1)

)
for 1 ≤ i ≤ ℓ. (J.54)

Notice that X (ℓ) is the output of the target function, i.e., f(X) = X (ℓ).
For brevity’s sake, given masks S(1), . . . , S(2ℓ), let us denote

L̃(i) = L(i) ⊙ S(i).

6The presence of Ŝ does not influence the proof of Lemma 5.4.4.
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Since the ReLU function is 1-Lipschitz, for all X (i−1) it holds

∥relu
(
K (i) ∗ X (i−1)

)
− relu

(
L̃(2i) ∗ relu

(
L̃(2i−1) ∗ X (i−1)

))
∥∞

≤ ∥K (i) ∗ X (i−1) − L̃(2i) ∗ relu
(

L̃(2i−1) ∗ X (i−1)
)

∥∞. (J.55)

The key step of the proof is that, for each layer i, since ni ≥ Cd12c6
i log3 d2cici−1ℓ

ε for a suitable
constant C, we can apply Lemma 5.4.5 to get that, with probability at least 1− ε

2ℓ , for all X (i−1) ∈
RD×D×c0 it holds

∥K (i) ∗ X (i−1) − L̃(2i) ∗ relu
(

L̃(2i−1) ∗ X (i−1)
)

∥∞ <
ε

2ℓ
· ∥X (i−1)∥∞. (J.56)

Hence, combining equations (J.55) and (J.56) we get that, with probability at least 1 − ε
2ℓ , for all

X (i−1) ∈ RD×D×c0 ,

∥relu
(
K (i) ∗ X (i−1)

)
− relu

(
L̃(2i) ∗ relu

(
L̃(2i−1) ∗ X (i−1)

))
∥∞

<
ε

2ℓ
· ∥X (i−1)∥∞. (J.57)

By a union bound, we get that equation (J.57) holds for all layers with probability at least 1 − ε.
Analogously, we can define the pruned layers’ outputs

X̃ (0) = X,

X̃ (i) = relu
(

L̃(2i) ∗ relu
(

L̃(2i−1) ∗ X̃ (i−1)
))

for 1 ≤ i ≤ ℓ. (J.58)

Notice that X̃ (ℓ)
is the output of the pruned network, i.e., N

(S(1),...,S(2ℓ))
0 (X) = X̃ (ℓ)

.
By the same reasoning employed to derive equations (J.56) and (J.57) we have that, with

probability 1 − ε, the output of all pruned layers satisfies

∥relu
(

K (i) ∗ X̃ (i−1)
)

− relu
(

L̃(2i) ∗ relu
(

L̃(2i−1) ∗ X̃ (i−1)
))

∥∞

<
ε

2ℓ
· ∥X̃ (i−1)∥∞. (J.59)

Moreover, for each 1 ≤ i ≤ ℓ − 1, by the triangle inequality and by equation (J.59),

∥X̃ (i)∥∞ = ∥X̃ (i) − relu
(

K (i) ∗ X̃ (i−1)
)

+ relu
(

K (i) ∗ X̃ (i−1)
)

∥∞

≤ ∥X̃ (i) − relu
(

K (i) ∗ X̃ (i−1)
)

∥∞ + ∥relu
(

K (i) ∗ X̃ (i−1)
)

∥∞

≤ ε

2ℓ
· ∥X̃ (i−1)∥∞ + ∥relu

(
K (i) ∗ X̃ (i−i)

)
∥∞.
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By the Lipschitz property of relu and Lemma I.7

ε

2ℓ
· ∥X̃ (i−1)∥∞ + ∥relu

(
K (i) ∗ X̃ (i−i)

)
∥∞

≤ ε

2ℓ
· ∥X̃ (i−1)∥∞ + ∥K (i) ∗ X̃ (i−i)∥∞

≤ ε

2ℓ
· ∥X̃ (i−1)∥∞ + ∥K (i)∥1∥X̃ (i−i)∥∞

= ∥X̃ (i−1)∥∞

(
1 + ε

2ℓ

)
.

By unrolling the recurrence, we get that, with probability 1 − ε,

∥X̃ (i)∥∞ ≤ ∥X̃ (0)∥∞

(
1 + ε

2ℓ

)i

. (J.60)

Thus, combining equations (J.59) and (J.60), with probability 1 − ε we get that, for each i ∈ [ℓ],

∥K (i) ∗ X̃ (i−1) − L̃(2i) ∗ relu
(

L̃(2i−1) ∗ X̃ (i−1)
)

∥∞

<
ε

2ℓ
·
(

1 + ε

2ℓ

)i−1
∥X̃ (0)∥∞. (J.61)

We then see that with probability 1 − ε, for 1 ≤ i ≤ ℓ and all X ∈ [−1, 1]D×D×c0 , by
equations (J.54) and (J.58), and by the triangle inequality,

∥X (ℓ) − X̃ (ℓ)∥∞

= ∥relu
(
K (ℓ) ∗ X (ℓ−1)

)
− relu

(
L̃(2ℓ) ∗ relu

(
L̃(2ℓ−1) ∗ X̃ (ℓ−1)

))
∥∞

≤ ∥relu
(
K (ℓ) ∗ X (ℓ−1)

)
− relu

(
K (ℓ) ∗ X̃ (ℓ−1)

)
∥∞

+ ∥relu
(

K (ℓ) ∗ X̃ (ℓ−1)
)

− relu
(

L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
))

∥∞.

Again by the 1-Lipschitz property of the ReLU activation function, and by the distributive property
of the convolution operation,

∥relu
(
K (ℓ) ∗ X (ℓ−1)

)
− relu

(
K (ℓ) ∗ X̃ (ℓ−1)

)
∥∞

+ ∥relu
(

K (ℓ) ∗ X̃ (ℓ−1)
)

− relu
(

L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
))

∥∞

≤ ∥K (ℓ) ∗ X (ℓ−1) − K (ℓ) ∗ X̃ (ℓ−1)∥∞

+ ∥K (ℓ) ∗ X̃ (ℓ−1) − L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
)

∥∞

= ∥K (ℓ) ∗
(

X (ℓ−1) − X̃ (ℓ−1)
)

∥∞

+ ∥K (ℓ) ∗ X̃ (ℓ−1) − L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
)

∥∞.
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Lemma I.7 and the hypothesis ∥K (ℓ)∥1 ≤ 1 imply that

∥K (ℓ) ∗
(

X (ℓ−1) − X̃ (ℓ−1)
)

∥∞

+ ∥K (ℓ) ∗ X̃ (ℓ−1) − L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
)

∥∞

≤ ∥K (ℓ)∥1 · ∥
(

X (ℓ−1) − X̃ (ℓ−1)
)

∥∞

+ ∥K (ℓ) ∗ X̃ (ℓ−1) − L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
)

∥∞

≤ ∥
(

X (ℓ−1) − X̃ (ℓ−1)
)

∥∞

+ ∥K (ℓ) ∗ X̃ (ℓ−1) − L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
)

∥∞.

Now, we first apply equation (J.61) and then we unroll the recurrence for all layers (as, with
probability 1 − ε, equation (J.61) holds for all layers), obtaining

∥
(

X (ℓ−1) − X̃ (ℓ−1)
)

∥∞

+ ∥K (ℓ) ∗ X̃ (ℓ−1) − L̃(2ℓ) ∗ relu
(

L̃(2ℓ−1) ∗ X̃ (ℓ−1)
)

∥∞

≤ ∥X (ℓ−1) − X̃ (ℓ−1)∥∞ + ε

2ℓ
·
(

1 + ε

2ℓ

)ℓ−1

≤
ℓ∑

j=1

ε

2ℓ
·
(

1 + ε

2ℓ

)j−1
.

By summing the geometric series and observing that ε < 1, we conclude that

ℓ∑
j=1

ε

2ℓ
·
(

1 + ε

2ℓ

)j−1
=
(

1 + ε

2ℓ

)ℓ

− 1

≤ e
ε
2 − 1

≤ ε.

Hence, with probability 1 − ε, for all X ∈ [−1, 1]D×D×c0 , for all ℓ ∈ [c] it holds that

∥X (ℓ) − X̃ (ℓ)∥∞ ≤ ε,

yielding the thesis.





Élagage des structures aléatoires

Arthur Carvalho Walraven da Cunha

Résumé

La Strong Lottery Ticket Hypothesis (SLTH) stipule que les réseaux de neurones contiennent,
lors de l’initialisation aléatoire, des sous-réseaux qui fonctionnent bien sans aucun entraîne-
ment. Le réseau aléatoire doit cependant être sur-paramétré : avoir plus de paramètres qu’il
n’en aurait besoin. La SLTH a d’abord été prouvée pour les réseaux entièrement connectés
et suppose une sur-paramétrisation polynomiale. Puis, cela a été amélioré pour ne nécessiter
qu’un surplus logarithmique, ce qui est essentiellement optimal. Ce fort résultat a tiré parti
d’un beau théorème sur le Subset Sum Problem (SSP). Il considère une version aléatoire du
SSP dans laquelle on cherche à approximer une valeur cible en sommant des sous-ensembles
d’un échantillon aléatoire donné. Le théorème affirme que garantir l’existence d’une solution
avec une haute probabilité ne nécessite qu’une taille d’échantillon logarithmique par rapport
à la précision des approximations. Nous présentons une preuve plus simple et plus directe
pour ce résultat. Ensuite, en tirant parti du théorème sur le SSP, nous étendons le SLTH aux
Convolutional Neural Networks (CNNs) : nous montrons que les CNN aléatoires contiennent
des sous-CNN clairsemés qui n’ont pas besoin d’entraînement pour obtenir de bonnes per-
formances. Nous avons également obtenu le résultat en supposant une sur-paramétrisation
logarithmique. Bien que le surplus imposé par le SLTH puisse être compensé par la rareté des
sous-réseaux obtenus, exploiter la rareté en pratique est très difficile si elle n’est pas structurée.
Étendre les résultats sur le SLTH pour produire des sous-réseaux structurés nécessiterait une
version multidimensionnelle du théorème sur le SSP. Nous prouvons la véracité d’une telle
version et nous l’utilisons pour montrer que le SLTH est toujours valable pour les CNN si nous
exigeons que les sous-réseaux soient structurés. Enfin, nous proposons une application des
idées de cette thèse à la conception de circuits : nous exploitons l’aléatoire inhérent aux spéci-
fications des composants électroniques intégrés pour obtenir des composants programmables
hautement précis à partir de composants statiques de faible précision.

Mots-clés : Réseau de neurones, Algorithmes des graphes, Compression de modèles, Élagage

Abstract

The Strong Lottery Ticket Hypothesis (SLTH) states that neural networks contain, at random
initialisation, sub-networks that perform well without any training. The random network
needs, however, to be over-parameterized: to have more parameters than it would otherwise
need. The SLTH was first proved for fully-connected networks and assumed polynomial over-
parameterization. Soon after, this was improved to only require a logarithmic overhead, which
is essentially optimal. This strong result leveraged a theorem on the Subset Sum Problem
(SSP). It considers a randomised version of the SSP in which one seeks to approximate a target
value by summing subsets of a given random sample. The theorem asserts that ensuring the
existence of a solution with high probability only requires a logarithmic sample size relative
to the precision of the approximations. We present a simpler, more direct proof for this re-
sult. Then, leveraging the theorem on the SSP, we extend the SLTH to Convolutional Neural
Networks (CNNs): we show that random CNNs contain sparse sub-CNNs that do not require
training to achieve good performance. We also obtained the result assuming a logarithmic
over-parameterization. Even though the overhead imposed by the SLTH could be offset by the
sparsity of the sub-networks obtained, exploiting sparsity in practice is very difficult if it is
not structured. Extending the results on the SLTH to produce structured sub-networks would
require a multidimensional version of the theorem on SSP. We prove such a version and use
it to show that the SLTH still holds for CNNs if we require the sub-networks to be structured.
Finally, we propose an application of the ideas in this thesis to the design of circuits: We har-
ness the inherent randomness in the specs of integrated electronic components to obtain highly
accurate programmable components from low-precision static ones.

Keywords: Neural network, Graph algorithms, Model compression, Pruning
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