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ii



depuis longtemps.
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Estë, dont la simple présence et les calins ont été si importants pour moi.
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Abstract

This thesis focuses on the question of robustness in machine learning, specifically exam-
ining two types of attacks: poisoning attacks at training time and evasion attacks at
inference time.

The study of poisoning attacks dates back to the sixties and has been unified under the
theory of robust statistics. However, prior research was primarily focused on classical data
types, mainly real-numbered data, limiting the applicability of poisoning attack studies.
In this thesis, robust statistics are extended to ranking data, which lack a vector space
structure and have a combinatorial nature. The work presented in this thesis initiates
the study of robustness in the context of ranking data and provides a framework for
future extensions. Contributions include a practical algorithm to measure the robustness
of statistics for the task of consensus ranking, and two robust statistics to solve this task.

In contrast, since 2013, evasion attacks gained significant attention in the deep learning
field, particularly for image classification. Despite the proliferation of research works on
adversarial examples, the theoretical analysis of the problem remains challenging and it
lacks unification. To address this matter, the thesis makes contributions to understanding
and mitigating evasion attacks. These contributions involve the unification of adversarial
examples’ characteristics through the study of under-optimized edges and information
flow within neural networks, and the establishment of theoretical bounds characterizing
the success rate of modern low-dimensional attacks for a wide range of models.

Resumé

Cette thèse se concentre sur la question de la robustesse en apprentissage automatique, en
examinant spécifiquement deux types d’attaques : les attaques de contamination pendant
l’apprentissage et les attaques d’évasion pendant l’inférence.

L’étude des attaques de contamination remonte aux années soixante et a été unifiée sous
la théorie des statistiques robustes. Cependant, les recherches antérieures se sont princi-
palement concentrées sur des types de données classiques, comme les nombres réels. Dans
cette thèse, les statistiques robustes sont étendues aux données de classement, qui ne
possèdent pas de structure d’espace vectoriel et ont une nature combinatoire. Les contri-
butions de la thèse comprennent notamment un algorithme pour mesurer la robustesse des
statistiques pour la tâche qui consiste à trouver un rang consensus dans un ensemble de
données de rangs, ainsi que deux statistiques robustes pour résoudre ce même problème.

En revanche, depuis 2013, les attaques d’évasion ont suscité une attention considérable
dans le domaine de l’apprentissage profond, en particulier pour la classification d’images.
Malgré la prolifération des travaux de recherche sur les exemples adversaires, le problème
reste difficile à analyser sur le plan théorique et manque d’unification. Pour remédier
à cela, cette thèse apporte des contributions à la compréhension et à l’atténuation des
attaques d’évasion. Ces contributions comprennent l’unification des caractéristiques des
exemples adversaires grâce à l’étude des paramètres sous-optimisés et à la circulation
de l’information au travers des réseaux de neurones, ainsi que l’établissement de bornes
théoriques caractérisant le taux de succès des attaques, récemment créées, de faible di-
mension.
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Resumé détaillé en français

Motivation : Comprendre l’Importance de la Robustesse en

Apprentissage Automatique

La robustesse constitue désormais un domaine essentiel de la recherche en apprentis-
sage automatique, et elle est devenue encore plus importante avec l’avènement des ap-
plications interactives basées sur l’apprentissage automatique. En effet, les algorithmes
d’apprentissage automatique sont utilisés dans une vaste gamme d’applications, notam-
ment la reconnaissance d’image, le traitement du langage naturel, la reconnaissance vocale
et les systèmes de recommandation. Ces applications basées sur de l’apprentissage au-
tomatique ont désormais envahi notre quotidien : qui n’a jamais entendu parler, vu ou
utilisé des véhicules autonomes, des systèmes de recommandation de films, des modèles
de langage génératif à grande échelle, etc. ? Toutes ces technologies ont rapidement été
déployées au cours des dernières années grâce aux progrès exceptionnels du domaine de
l’apprentissage automatique, qui a su produire des technologies très efficaces pour nous
assister au quotidien. Cependant, avec le nombre croissant d’applications critiques de
l’apprentissage automatique, disposer de technologies efficaces ne suffit plus. Nous avons
maintenant besoin d’applications d’apprentissage automatique non seulement efficaces,
mais aussi sûres et fiables, pour éviter des comportements défaillants graves résultant de
nos modèles.

De nombreuses situations mettent en lumière la vulnérabilité des données et des modèles
à une utilisation abusive, aux erreurs et aux biais. Par exemple, en 2016, le journal
Bloomberg a réalisé une analyse montrant qu’Amazon excluait principalement des zones
habitées par des personnes noires de certains de ses services de livraison. Bien que non
intentionnelle, cette exclusion était influencée par des facteurs raciaux qui n’avaient pas
été correctement pris en compte, entrâınant un biais d’équité. Un autre exemple concerne
les accidents causés par le système Autopilot des voitures autonomes de Tesla : en 2023, le
Washington Post a conclu que 736 accidents (et 17 décès) s’étaient produits depuis 2019,
probablement en raison de défauts du système qui ne reconnâıt pas correctement certains
obstacles tels que les motos ou les véhicules d’urgence stationnés sur le bord de route.

De telles situations illustrent les risques potentiels associés aux systèmes d’apprentissage
automatique. Garantir la sécurité de ces systèmes dans des conditions normales et anor-
males constitue un défi majeur pour la communauté de l’apprentissage automatique au-
jourd’hui et dans un avenir prévisible. Dans le contexte plus large de la construction
d’une IA digne de confiance, englobant divers domaines tels que l’équité, la confidential-
ité ou l’explicabilité, le domaine de la robustesse émerge comme un domaine d’intérêt
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particulièrement intrigant. La robustesse aborde des scénarios dans lesquels les modèles
d’apprentissage automatique rencontrent des entrées ou des données ayant été manipulées
de manière malveillante pour tromper la réponse du modèle. À mesure que les utilisa-
teurs interagissent plus fréquemment avec les systèmes d’apprentissage automatique, ces
tentatives d’exploiter les points faibles des modèles deviennent de plus en plus courantes.

Considérez l’exemple des véhicules autonomes, comme illustré par le travail de Eykholt
et al. (2018). Les auteurs ont démontré qu’ils pouvaient créer des patchs à coller sur
des panneaux de signalisation pour empêcher des modèles de reconnaissance d’images
de reconnâıtre correctement ces panneaux, ce qui met en lumière les risques d’accidents
énormes si de tels patchs étaient utilisés.

Pour faire face à de tels problèmes, le domaine de la robustesse s’est développé de manière
indépendante dans différentes zones de l’apprentissage automatique, comme le détaillera
la Section 1.2. Un aspect supplémentaire intéressant des études de robustesse est leur
relation avec les autres sujets de l’IA digne de confiance, qui revêtent tous une impor-
tance majeure. En particulier, la robustesse est liée à la question de l’explicabilité des
modèles d’apprentissage automatique, car comprendre pourquoi certains modèles sont si
vulnérables aux exemples adverses est une question prédominante dans le domaine.

Introduction à la Robustesse

L’intérêt pour la construction de méthodes statistiques robustes n’est pas nouveau. De
telles notions ont d’abord émergé dans le domaine de la physique, où, selon Huber and
Ronchetti (2009), de nombreux chercheurs tels que Simon Newcomb ou Arthur Eddington
avaient une bonne compréhension des concepts de robustesse à la fin du XIXe siècle.
Cependant, des travaux structurés autour de la robustesse ont été principalement initiés
par Huber dans les années soixante, avec, par exemple, Huber (1964), puis formulés sous
la forme d’un livre complet dans Huber and Ronchetti (2009). Ce que Huber appelait
”robustesse”dans ses travaux englobait en réalité la robustesse contre ce que nous appelons
aujourd’hui des attaques par empoisonnement : il abordait la robustesse des modèles
ou des statistiques contre la contamination des données d’entrâınement. Les notions
pertinentes sur la robustesse par empoisonnement de Huber seront détaillées dans la
Section 1.3.1.

En plus des travaux fondamentaux de Huber, de nouveaux types d’attaques ont également
émergé contre des algorithmes spécifiques : dans le domaine de l’apprentissage profond,
les problèmes de robustesse ont connu un regain d’intérêt indépendant en 2013, lorsque
les auteurs de Szegedy et al. (2013) ont découvert la notion d’exemples adverses dans le
contexte de la vision par ordinateur, comme détaillé dans la Section 1.4.1. Contrairement
à celles étudiées par Huber, de telles attaques ne visent pas à modifier le résultat des
algorithmes appris en ciblant les données d’entrâınement, mais se concentrent plutôt sur
le fait de tromper un bon algorithme préalablement entrainé en modifiant les données au
moment de l’inférence, ce que l’on appelle les attaques d’évasion.

La première partie de cette thèse sera consacrée à la robustesse contre les attaques par
empoisonnement. Bien que ce sujet ait déjà été traité dans la litérature, notamment par
Huber and Ronchetti (2009); Fox and Weisberg (2002); Ben-Tal and Nemirovski (2000);
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Møller et al. (2005) et bien d’autres, ces travaux se sont majoritairement concentrés sur
des types de données classiques, à savoir des données réelles ou multivariées. Les con-
cepts liés à des types de données plus complexes avec des topologies complexes ont été
peu étudiés auparavant : c’est notamment le cas pour les données de classement, où
seul le travail Agarwal et al. (2020) existait antérieurement à cette thèse. La Section 1.3
introduira donc les concepts pertinents pour les attaques par empoisonnement, les défis
spécifiques liés aux données de classement, ainsi que les contributions de la thèse à ce sujet.

La deuxième partie sera consacrée à la robustesse contre les attaques d’évasion. Comme
ce concept a émergé dans le domaine de l’apprentissage profond pour la vision par or-
dinateur mais reste largement obscur, la présente thèse se concentrera sur ce domaine
et fournira une meilleure compréhension de ce phénomène. Ce concept a été découvert
dans Szegedy et al. (2013), et a ensuite été largement étudié. De nombreux travaux ont
proposé différents algorithmes d’attaque, parmi lesquels Goodfellow et al. (2014); Madry
et al. (2018); Carlini and Wagner (2017); Moosavi-Dezfooli et al. (2016) sont de bons
exemples. Une quantité équivalente de travail a été consacrée à la robustification des al-
gorithmes d’apprentissage profond, avec différentes stratégies telles que celles présentées
dans Papernot et al. (2016); Hendrycks and Gimpel (2016); Ma et al. (2018); Madry et al.
(2018); Shafahi et al. (2019a) entre autres. Concomitamment à ces travaux visant à met-
tre en œuvre des attaques adverses ou des méthodes robustes en pratique, la littérature
s’est également concentrée sur une meilleure compréhension du phénomène. Un premier
ensemble de travaux a aboutis à des résultats théoriques sur l’existence d’exemples ad-
verses, tels que Tsipras et al. (2019); Fawzi et al. (2018b); Dohmatob (2019). Un deuxième
ensemble de travaux a examiné les caractéristiques des exemples adverses pour permettre
d’expliquer leur succès, bien que les caractéristiques exactes et les raisons sous-jacentes
de l’efficacité des exemples adverses restent obscures et encore débattues dans la commu-
nauté. La Section 1.4 introduira donc le concept d’attaques adverses plus en profondeur,
ainsi que les découvertes récentes sur leur fonctionnement et détaillera les contributions
de cette thèse sur ce sujet.

Les deux types d’attaques précédemment introduits peuvent être étudiés dans le même
contexte choisis par cette thèse : l’apprentissage automatique supervisé, où les tableaux
de données consistent généralement en des couples constitué des la donnée d’entrée et sa
classe associée.

Données. En apprentissage automatique, les données consistent généralement en les élé-
ments suivants:

• X = (X1, ..., Xm) ∈ Xm qui sont les données d’entrée, où X est l’espace des données
d’entrées et m est sa dimension.

• Y ∈ Y est la prédiction. Pour une tâche de classification à K classes Y est le label
et Y = J1, KK

• X et Y sont des variables aléatoires distribuées selon la loi jointe PX,Y ∈M1
+(X ,Y),

oùM1
+(X ,Y) est l’ensemble des mesures de probabilité sur X × Y

• Commes les variables aléatoires X et Y , et la distribution PX,Y ne sont pas connus
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en pratique, nous nous basons sur des observations empiriques. SN = {(xi, yi), i ∈
J1, NK} i.i.d.∼ PX,Y ∈ (X ,Y)N correspond au jeu de données disponible, qui définit

une distribution empirique: P̂N = ∑
x,y∈SN

δx,y, où δa est une distribution de Dirac

en a. Pour simplifier, nous identifions généralement P̂N et SN .

Modèle. Un modèle d’apprentissage automatique est défini avec les éléments suivants:

• F ⊆ (X → Y) correspond à la classe de modèles (supervisés).

• F : PX,Y ∈ M1
+(X ,Y) → f ∈ F est un algorithme qui apprend à partir d’une

distribution des données et qui retourne un modèle spécifique. Un modèle résultant
d’une algorithme d’apprentissage automatique sera généralement noté f .

Attaques Bien qu’une définition rigoureuse des attaques soit proposée en Definition 1.2.1,
concentrons nous sur une explications intuitive de ce qu’est une attaque, qu’elle soit fonc-
tionne par empoisonnement ou par évasion. Dans les deux cas, l’objectif d’une attaque est
de faire en sorte que l’évaluation d’un certain modèle (un modèle entrainé sur des données
corrompues dans le premier cas, ou un modèle entrainé normalement dans le second) sur
certaines données (des données normales dans le premier cas, des données corrompues
dans le second) soit significativement moins bonne que si le modèle normalement entrainé
avait été évalué sur des données normales. Tous ces éléments (la mesure d’évaluation, le
”budget” d’attaque et l’écart entre l’évaluation du modèle attaqué et du modèle normal)
sont des paramètres de ces attaques.

Attaques par Empoisonnement et Données de Préférence :

Notions, Difficultés et Contributions

Notions

Les attaques par empoisonnement ont été largement étudiées dans la litérature pour les
données multivariées notamment. Ce n’est cependant pas le cas lorsque l’espace des
données est moins pratique que l’espace des données réelles. Cette limitation s’applique
particulièrement à l’espace des données de préférence, qui présente deux défis majeurs :
le manque de structure d’espace vectoriel et la nature combinatoire de l’espace.

Une introduction détaillée à l’espace des données de préférence sera fournie dans le Chap-
ter 2, mais concentrons-nous sur une desciption brève de cet espace. L’espace des don-
nées de préférence est l’espace des permutations sur n éléments, c’est-à-dire le groupe
symétrique Sn. Une préférence est notée par σ ∈ Sn et représente la préférence (d’un
utilisateur) sur un ensemble de n éléments.

Dans le cadre des attaques par empoisonnement sur les données de préférence, cette thèse
se concentre sur la robustification de ce qu’on appelle la tâche d’estimation du paramètre
de position, comme expliqué plus en détail en Section 1.3.1.

Concrètement, l’objectif est de trouver une statistique T : P ∈ M1
+(Y) 7→ Y , dont

viii



l’élément de sorti doit correspondre au mieux au centre de la distribution P . Intuitivement,
il s’agit de trouver ”la moyenne” de P , sachant qu’une telle notion de moyenne n’est pas
défini dans le cadre de données de préférence. Dans la litérature sur les données de
préférence, cette ”moyenne” prend le nom de ”consensus”.

Trouver un bon ”consensus” est une problématique qui a été longuement traitée, et dont
la solution la plus classique consiste à résoudre le problème d’optimisation suivant :

T (P ) = argmin
σ∈Sn

E[l(σ, Σ)],

où l désigne une distance adéquate sur l’espace des données de préférence. Lorsque le choix
de l correspond à ce qu’on appelle la distance de Kendall, la solution obtenue s’appelle
le consensus de Kemeny et correspond à la méthode la plus connue pour résoudre ce
problème. Cependant, il doit être noté que plusieurs distances l ont été définies sur cet
espace, et qu’en fonction de celle utilisée, le résulat, c’est-à-dire le consensus, n’est pas le
même. A cela s’ajoute le fait que ce problème d’optimisation est difficile à résoudre dans
un cadre général. Malgré la formulation assez simple du problème qui nous occupe dans
cette partie de la thèse, trouver un bon consensus n’est donc pas aisé.

Difficultés

De ce fait, la question de trouver un consensus qui soit non seulement pertinent mais aussi
robuste est d’autant plus difficile. En effet, plusieurs défis se présentent:

• L’espace des données de préférence n’est pas un espace vectoriel. De ce fait, cer-
taines opération évidentes dans le cadre de données réelles telles que l’addition ou
la multiplication ne peuvent pas être définies entre deux préférences. Cela complex-
ifie l’étude de cette espace de deux manière. D’abord, parce que certaines procé-
dure qui peuvent tout de même être généralisées à cet espace deviennent très cou-
teuses en temps de calcul (comme ça peut être le cas de la résolution du problème
d’optimisation du consensus). Ensuite, parce que certains concepts ne peuvent pas
être facilement généralisés à cet espace (comme c’est le cas de la notion de quantile).

• L’espace des données de préférence est un espace combinatoire. C’est un espace fini
à n! éléments, ce qui signifie que pour appliquer certains algorithmes en pratique, il
faut être particulièrement vigilant au temps de calcul des algorithmes.

• La robustesse dans un espace de données aussi particulier et complexe que celui des
données de préférence n’est pas bien définie et est un sujet encore jamais abordé
dans la litérature. Les bases nécessaires à la résolution du problème du consensus
robuste sont donc manquantes.

Contributions

La première partie de cette thèse concerne la robustification de la tâche d’estimation du
paramètre de position (consensus) d’une distribution de données sur l’espace des données
de préférences.

Pour ce faire, cette thèse propose deux contributions majeures dans les Chapters 3 and 4
qui découlent de deux publications différentes. La première, appelée Statistical Depth
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Functions for Ranking Distributions: Definitions, Statistical Learning and Applications
par Morgane Goibert, Stéphan Clémençon, Ekhine Irurozki et Pavlo Mozharovskyi a été
publiée à la conférence AISTATS 2022, voir Goibert et al. (2022a). La seconde, appelée
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational
Issues par Morgane Goibert, Clément Calauzènes, Ekhine Irurozki et Stéphan Clémençon
a été publiée dans la conférence ICML 2023, voir Goibert et al. (2023).

Chapitre 3. Plus spécifiquement, le Chapter 3 qui reprend majoritairement l’article
Goibert et al. (2022a) s’attache à développer une procédure de robustification inspirée
de celles de Huber en construisant des statistiques de rangs sur les distributions sur les
données de préférence.

En effet, les statistiques basées sur les rangs sont très utiles pour définir des analogues
de quantiles, qui peuvent à leur tour fournir des caractéristiques beaucoup plus informa-
tives sur une distribution étudiée P que simplement la médiane, c’est-à-dire le consensus.
Le but de ce chapitre est de définir ces analogues de quantiles, de rangs et les procé-
dures statistiques pertinentes basées sur de telles quantités pour l’analyse des données de
préférence au moyen d’une notion de fonction de profondeur basée sur une métrique sur
le groupe symétrique.

En surmontant l’absence de structure d’espace vectoriel sur l’espace des données de
préférence, la fonction de profondeur proposée définit une notion d’ordre (du centre vers
l’extérieur) pour les préférences dans le support de P et étend la la recherche classique,
sans robustesse, du consensus.

Les propriétés axiomatiques que les fonctions de profondeur de sur l’espace des données
de préférence devraient idéalement posséder sont énumérées, et les problèmes computa-
tionnels et de généralisation sont étudiés en détail. Au-delà de l’analyse théorique réal-
isée, la pertinence des nouveaux concepts et méthodes est illustrée par la création d’une
stratégie de troncage pour renforcer le consensus de Kemeny, qui s’inspire des statistiques
de moyenne ou de médiane tronquées dans le contexte des données réelles.

Cette stratégie de troncage est démontrée comme étant plus performante que le consensus
de Kemeny en termes de robustesse, tant sur le plan théorique qu’empirique. De plus, il
est démontré que les procédures basées sur la profondeur sont pertinentes pour d’autres
tâches de statistique classique, ce qui met en évidence l’utilité et la flexibilité de ce concept
pour les données de préférence.

Pour résumer, les contributions de ce chapitre sont donc les suivantes :

• La profondeur statistique et les propriétés axiomatiques associées sont étendues aux
données de préférence afin d’étendre les notions de quantiles et de positions pour
des variables aléatoires évaluées dans l’esapce des données de préférence.

• Une analyse sur échantillon fini garantit la praticité d’utilisation de la notion de
profondeur de classement que nous venons d’introduire.

• Un algorithme d’une grande simplicité qui utilise la fonction de profondeur pour
construire des distributions de préférences empiriques stochastiquement transitives
(sur la base desquelles des tâches statistiques cruciales telles que le retrouver le
consensus de Kemeny sont simples) est proposé.
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• La fonction profondeur et ses régions de quantiles associées dans l’espace des don-
nées de préférence peuvent être utilisées pour l’analyse statistique des données de
préférence pour de nombreuses tâches : 1) une récupération rapide et robuste des
consensus, 2) des représentations graphiques informatives des données de préférence,
3) la détection d’anomalies et de nouveautés, 4) les tests d’homogénéité.

Chapitre 4. Ensuite, le chapitre Chapter 4 qui reprend majoritairement l’article Goibert
et al. (2023) s’attache à établir une évaluation complète du gain, en terme de robustesse,
apporté par une statistique robuste par rapport à une statistique usuelle comme le con-
sensus de Kemeny.

Dans ce chapitre, notre attention se porte sur l’introduction d’un algorithme d’approximation
spécifiquement conçu pour évaluer la robustesse de toute statistique en se basant sur la no-
tion de point de rupture, tout en abordant les défis computationnels associés. Cette méth-
ode d’évaluation de la robustesse constitue un outil précieux pour mesurer la résilience de
différentes statistiques face à des scénarios adverses.

De plus, nous présentons un plugin de statistique robuste capable d’améliorer la robustesse
de toute statistique classique utilisée pour résoudre le problème du consensus. Cette
méthode offre non seulement des gains significatifs en robustesse mais garantit également
une perte minimale de précision. Cette caractéristique montre l’intérêt de notre approche,
la positionnant comme une meilleure solution que les méthodes existantes telles que le
consensus de Kemeny pour résoudre cette tâche de manière précise et robuste.

En exploitant ces avancées, nous visons à fournir un cadre complet pour évaluer et
améliorer la robustesse des statistiques de consensus. À travers une analyse rigoureuse et
des évaluations empiriques, nous démontrons les avantages pratiques de notre méthode et
son potentiel à surpasser les approches traditionnelles.

Dans ce chapitre, nous complétons le Chapter 3 sur la question de la robustesse à la manip-
ulation des votes en examinant comment le concept de point de rupture peut s’appliquer
à la tâche du consensus.

L’une des principales difficultés dans ce contexte réside dans le fait que les consensus usuels
sont souvent obtenus en résolvant un problème d’optimisation et qu’aucune forme analy-
tique simple pour les solutions n’est généralement disponible. Par conséquent, le calcul
des points de rupture des statistiques sur les données de préférence constitue générale-
ment un défi computationnel. Notre proposition principale ici consiste à approximer ce
calcul en résolvant une version assouplie du problème d’optimisation du point de rupture
en utilisant une technique de lissage qui permet de calculer des gradients pertinents et
éventuellement d’effectuer une descente de gradient.

De plus, nous fournissons également un plugin robuste qui peut être ajouté à n’importe
quelle statistique de consensus. Au-delà du consensus de Kemeny tronquée présentée dans
le Chapter 4, nous tirons parti de la structure spécifique de l’espace de des données de
préférences pour fournir une méthode de robustification spécifique. L’idée est d’assouplir
la contrainte stipulant que le consensus d’une distribution sur les données de préférence
doit nécessairement être représenté par une préférence stricte qui ordonne tous les élé-
ments. Au lieu de cela, nous suggérons d’autoriser le consensus à être une préférence ”en
seau”, c’est à dire qu’autoriser la possibilité d’observer des ex-aequo entre les éléments, ce
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que s’avère avoir des avantages cruciaux en matière de robustesse.

Pour résumer, les contributions de ce chapitre sont donc les suivantes :

• Nous proposons une évaluation théorique de la robustesse, mesurée par la fonction
de rupture, des statistiques de consensus usuelles. Plus précisément, nous dévoilons
une borne inférieure générale pour leur fonction de rupture et une borne supérieure
pour le consensus de Kemeny.

• Nous fournissons un algorithme pratique qui approxime la fonction de rupture de
n’importe quelle statistique de consensus. Cet algorithme peut s’adapter aux statis-
tiques produisant une préférence stricte ou en seau.

• Nous proposons une extension des concepts pertinents (métriques et distances, fonc-
tion de rupture, etc.) pour les préférences en seau.

• Nous créons un plugin appelé le plugin de Fusion Descendante (Downward Merge)
qui fournit une couche robuste après avoir calculé un consensus usuel. Le plugin de
fusion descendante s’avère empiriquement très efficace pour renforcer le consensus
avec une perte minimale de précision : il constitue ainsi un meilleur choix par rapport
aux alternatives classiques comme le consensus de Kemeny.

Attaques par Evasion en Apprentissage Automatique : No-

tions, Difficultés et Contributions

Notions

Dans le cadre de l’apprentissage automatique, la robustesse prends une forme un peu
différente de celle que nous avons vu pour les données de préférence. Le phénomène
appelé ”attaques adversaires” dans la communauté a été découvert en 2013 dans Szegedy
et al. (2013), où les auteurs ont montré qu’il était très facile de tromper un réseaux
de neurones dont l’objectif est de faire de la classification d’images , et ce de manière
quasiment systématique.

Avant de se pencher sur ces attaques adversaires, résumons en un mot ce que sont les
modèles d’apprentissages automatiques, c’est-à-dire les réseaux de neurones. Dans le cadre
de la classification d’images, un réseau de neurones doit indiquer quel est l’objet représenté
par une image, parmi une liste d’objets possible définis à l’avance. Intuitivement, un
réseau de neurones est une fonction qui prend comme argument un vecteur, dans notre
cas un vecteur de grande dimension représentant une image, et qui en sort, pour chaque
objet de la liste la probabilité que l’image représente cet objet. La fonction qui définit
un réseau de neurones est assez simples : il s’agit simplement d’un mélange d’opérations
linéaires et d’activations non linéaires. La particularité d’un réseau de neurones réside
en fait dans le fait qu’il est paramétré par un très grand nombres de paramètres. Pour
trouver les ”bons” paramètres pour résoudre la tâche, un réseau de neurones doit être
entrainé : cette étape se fait grace à une fonction de perte, qui mesure l’eurreur que fait le
réseau dans sa réponse, et un algorithme de descente de gradients, qui permet d’améliorer
les paramètres (et les performances du réseau) étape par étape. De ce fait, il est très
complexe de comprendre quels sont les paramètres optimaux pour un réseau de neurone
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sur une tâche données, ou pour comprendre comment le réseau est arrivé à un ensemble
de paramètres une fois l’entrainement fini : on dit que les réseaux de neurones sont des
bôıtes noires.

Dans leur article Szegedy et al. (2013), les auteurs se sont rendus compte qu’il était pos-
sible de tromper systématiquement un réseau pourtant très bien entrainé sur une tâche
de classification d’images en rajoutant une perturbation imperceptible malveillante sur
les données. Ainsi, un réseau qui fait très bien la différence entre des images de chats et
de chiens pourra être trompé par une nouvelle image de chat à laquelle on rajoute cette
perturbation adversaire, alors que la différence n’est pas visible à l’oeil nu. Ces images
modifiés par une perturbation très minime et qui trompent très souvent un réseau de neu-
rones sont appelées des exemples adversaires. Pour les obtenir, depuis 2013, les chercheurs
de la communauté ont développé de nombreux algorithmes différents qui tentent de cal-
culer la meilleure perturbation, ce qu’on appelle les attaques adversaires. En parallèle,
d’autres travaux se sont concentrés sur tenter de rendre les réseaux de neurones plus ro-
bustes à ces exemples adversaires. Enfin, certains travaux se sont penchés sur l’analyse
des exemples adversaires pour tenter d’expliquer leur succès en répondant à ces questions
: quelles sont les caractéristiques des exemples adversaires qui les rendent si efficaces ?
Peut-on analyser théoriquement la robustesse ou la vulnérabilité des réseaux de neurones
contre certains types d’attaques adversaires ?

La compréhension du phénomène des exemples adversaires reste encore très parcellaire, et
les découvertes faites par les chercheurs dans ce domaine entrent parfois en contradiction.
Cette seconde partie de la thèse s’attache donc à éclaircir ce phénomène et à proposer une
meilleure compréhension des exemples adversaires.

Difficultés

Les réseaux de neurones sont très difficiles à analyser d’un point de vue théorique, à cause
notamment de la complexité de l’apprentissage d’un réseau de neurones, de sa dimension
aléatoire, et de sa très grande dimensionalité. De ce dait, il est tout aussi complexe
d’étudier le phénomène des exemples adversaires. Malgré les travaux entrepris depuis la
découverte du phénomène en 2013, sa compréhension reste très obscure. Deux limitations
principales peuvent êtres notées :

• Le manque de compréhension adéquate du phénomène des exemples adversaires. De
nombreux travaux ont cherché ce qui rend les exemples adversaires efficaces, et plus
généralement ont étudié les caractéristiques des exemples adversaires. Comme il
est très difficile d’étudier théoriquement les réseaux neuronaux, la grande majorité
des travaux reposent soit sur des méthodologies expérimentales, soit sur des travaux
théoriques sur des versions simplifiées des réseaux neuronaux. Dans les deux cas,
les découvertes sur ces sujets reposeent sur une accumulation de preuves, et tous les
articles ne sont pas d’accord sur les mêmes conclusions. Comme le domaine de la
robustesse adversaire est encore assez récent, de nombreuses hypothèses n’ont pas
encore été explorées et les méta-analyses sont rarement disponibles.

• Les réseaux de neurones sont peut-être intrinsèquement vulénrables. Un ensemble
de stravaux s’est concentré à étudié théoriquement la vulnérabilité des réseaux de
neurones. Ces travaux fournissent en général, des bornes sur le succès (ou l’échec)
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des exemples adversaires, mais sont limités par les hypothèses qu’ils doivent faire
sur les réseaux, sur la distribution des données, ou sur les méthodes d’attaque ad-
versaire poru parvenir à un résultat. Avec le développement de méthodes d’attaque
adversaire de plus en plus sophistiquées, de tels travaux doivent rester à jour avec
les avancées heuristiques les plus récentes des attaques. Très récemment, un change-
ment important a modifié le développement des exemples adversaires, avec la dé-
couverte des attaques universelles et des attaques de basse dimension. Ces attaques
se concentrent essentiellement sur la modification d’un petit sous-espace des images
fournies en entrées, contrairement aux attaques plus classiques qui sont condition-
nées uniquement sur un budget global, en modifiant par exemple un unique pixel.
De tels exemples adversaires n’opèrent pas sur la totalité de la dimensionnalité des
données, et donc les techniques de preuve traditionnellement utilisées dans le do-
maine, qui reposaient principalement sur le fléau de la dimensionnalité, ne peuvent
plus être utilisées.

Contributions

La seconde partie de cette thèse concerne l’étude des exemples adversaires contre les
réseaux de neurones pour la classification d’images.

Pour ce faire, cette thèse propose deux contributions majeures dans les Chapters 7
and 8 qui découlent de deux publications différentes. La première, appelée n Adver-
sarial Robustness Perspective on the Topology of Neural Networks par Morgane Goibert,
Thomas Ricatte et Elvis Dohmatob a été publiée dans le ML Safety Workshop de la
conférence NeurIPS 2022, voir Goibert et al. (2022b). La seconde, appelée Origins of
Low-dimensional Adversarial Perturbations par Elvis Dohmatob, Chuan Guo et Morgane
Goibert a été publiée à la conférence AISTATS 2023, voir Dohmatob et al. (2023).

Chapitre 7. Le Chapter 7 reprend majoritairement l’article Goibert et al. (2022b) et
fournit un cadre regroupant différentes caractéristiques des exemples adversaires exposés
dans la littérature, à travers l’étude d’un objet générique émergent des réseaux neuronaux,
le graphe. Plus précisément, ce chapitre étudie l’impact de la topologie du réseau neuronal
sur la robustesse adversaraire. Notre objectif principal est d’explorer la structure du
graphe qui émerge lorsqu’une image d’entrée traverse toutes les couches d’un réseau de
neurones. Nous découvrons des différences dans ces graphes en comparant les exemples
normaux aux exemples adversaires. Plus précisément, les graphes dérivés des exemples
normaux présentent une distribution plus centralisée autour de ce que nous appelons
les ”arêtes autoroutières”. D’autre part, les graphes associés aux exemples adversaires
affichent un motif plus diffus, exploitant stratégiquement les ”arêtes sous-optimisées”.

Pour établir l’intérêt de ces résultats, nous menons des expériences approfondies couvrant
divers ensembles de données et architectures. Les résultats montrent que les arêtes sous-
optimisées représentent une source de vulnérabilité pour les réseaux neuronaux, nous
découvrons leur utilité dans la détection des exemples adversaires. Au-delà de ces résultats
expérimentaux, nous fournissons un argument théorique corroborant l’importance des
arêtes sous-optimisées pour la vulnérabilité des réseaux neuronaux et suggérons que les
techniques d’élagage peuvent fournir plus de robustesse.

Pour résumer, les contributions de ce chapitre sont les suivantes :
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• Nous proposons et justifions une hypothèse, regroupant plusieurs caractéristiques
des adversaires, sur la manière dont la structure topologique des réseaux de neurones
et les paramètres sous-optimisés sont liés au phénomène des exemples adversaires.

• Nous proposons méthode principale pour extraire des caractéristiques topologiques
structurelles basées sur les diagrammes de persistance et les arêtes sous-optimisées.

• Nous menons des expériences pour valider notre hypothèse en utilisant nos carac-
téristiques nouvellement définies. Parmi les expériences réalisées, nous mettons au
point un détecteur pour les exemples adversaires qui donne de meilleurs résultats
que les méthodes de l’état de l’art.

Chapitre 8. Ensuite, le Chapter 8 se concentre sur les récents progrès dans la recherche
d’algorithmes d’attaques adversaraires plus pratiques. Ces nouvelles attaques, dites at-
taques universelles et de basse dimension, ont modifié le paradigme des algorithmes
d’attaques avec la création de perturbations adversaraires pouvant être trouvées par une
recherche en bôıte noire en utilisant étonnamment peu de requêtes, ce qui restreint essen-
tiellement la perturbation à un sous-espace de dimension bien plus petite que la dimension
de l’espace des images.

Les constatations empiriques du succès de ces attaques de basse dimension nous conduisent
à émettre l’hypothèse que des perturbations adversaraires existent avec une probabilité
élevée dans des sous-espaces de basse dimension, ce qui soulève la question : la vulnéra-
bilité aux attaques en bôıte noire de basse dimension est-elle inhérente ou pouvons-nous
espérer les éviter ? Plusieurs travaux ont abordé ces questions pour des types d’attaques
plus génériques (des attaques en pleine dimension), de tels résultats théoriques ne peu-
vent s’appliquer directement aux types d’attaques de basse dimension, car le principe de
la malédiction de la dimension ne peut pas être utilisé.

Dans ce chapitre, nous entreprenons une étude rigoureuse du phénomène des perturbations
adversariales de basse dimension. Nos résultats caractérisent précisément les conditions
suffisantes pour l’existence de ces perturbations, et nous montrons que ces conditions sont
satisfaites pour les réseaux neuronaux en pratique, y compris le régime dit ”paresseux” où
les paramètres du réseau entrâıné restent proches de leurs valeurs à l’initialisation. En
plus de cette contribution théorique, nos résultats sont confirmés par des expériences sur
des données synthétiques et réelles.

Notre analyse théorique des perturbations adversaraires de basse dimension repose princi-
palement sur la régularité du classifieur et sur les propriétés géométriques du sous-espace
d’attaque. Les bornes auxquelles nous aboutissons mettent en lumière le rôle de plusieurs
paramètres : 1) la régularité locale de la frontière de décision du classifieur, 2) l’alignement
du sous-espace d’attaque avec les vecteurs normaux unitaires à la frontière de décision
du classifieur, 3) la distribution de la marge ponctuelle du classifieur, 4) le budget de
l’attaquant.

Pour résumer, les contributions de ce chapitre sont donc les suivantes :

• Nous formalisons la notion de sous-espace adversaire viable, qui fournit une car-
actérisation des sous-espaces de basse dimension qui peuvent être pertinents pour
mener des attaques adversaires. Plus précisément, cette notion établit une con-
dition d’alignement entre le sous-espace d’attaque et le gradient du modèle pour
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que le sous-espace d’attaque soit utilisable en pratique pour élaborer des attaques
adversaires réussies.

• Nous présentons nos bornes théoriques pour les modèles ayant une frontière de dé-
cision Lipschitzienne. Cette caractéristique de régularité nous permet d’obtenir des
résultats généraux sur l’efficacité des perturbations adversariales de basse dimension,
ce qui est également illustré dans des cas où le modèle est linéaire ou hyperellipsöıdal,
par exemple.

• nNus présentons également nos bornes théoriques pour les modèles ayant des fron-
tières de décision localement presque affines. Cette caractéristique de régularité
nous permet d’obtenir des résultats similaires pour des modèles pratiques de pointe,
par exemple, les réseaux neuronaux avec des fonctions d’activation ReLU dans le
régime de caractéristiques aléatoires ou le régime paresseux.

• Nous réalisons des expériences pour illustrer la puissance informative de nos bornes
théoriques pour les réseaux de neurones génériques entrâınés. Nos bornes sont dé-
montrées comme étant applicables dans ce cas, même lorsque le réseau de neurones
est grand ou entrâıné de manière adversaire.

Conclusion

Cette thèse se concentre sur la question de la robustesse en apprentissage automatique. La
robustesse peut principalement être subdivisée en deux parties différentes : les attaques
par empoisonnement qui ciblent les modèles lors de l’entrâınement, et les attaques par
évasion qui ciblent les modèles lors de l’inférence.

Il est intéressant de noter que la recherche sur ces deux types d’attaques en est à des
stades très différents.

Les attaques par empoisonnement ont commencé à être étudiées dans les années 1960 et
ont été unifiées sous une théorie exhaustive, généralement appelée statistiques robustes.
Cependant, les principales limitations des études sur les attaques par empoisonnement
sont dues à la restriction de la recherche aux types de données classiques, principalement
les données réelles. Dans cette thèse, les statistiques robustes cont étendues aux données
de classement, surmontant le manque de structure d’espace vectoriel et la nature com-
binatoire de l’espace. La plupart des travaux fournis dans cette thèse consistent donc à
initier l’étude de la robustesse dans cet espace particulier et à fournir un cadre permettant
des extensions de ces travaux de manière structurée.

En revanche, les attaques par évasion suscitent un grand intérêt dans le contexte de
l’apprentissage profond pour la classification d’images depuis 2013. Ce domaine a été
largement reconnu, déclenchant une prolifération de travaux de recherche sur le sujet des
exemples adversaires. Ces travaux sont principalement expérimentaux en raison de la dif-
ficulté d’analyser théoriquement le problème et du manque d’unification. Pour résumer en
quelques mots, les contributions de cette thèse sur ce sujet sont une unification de certaines
caractéristiques des exemples adversaires à travers l’étude des arêtes sous-optimisées et
de la topologie des réseaux de neurones, ce qui permet de mieux comprendre le fonction-
nement des exemples adversaires et de créer une méthode de détection efficace; de plus,
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nous développons des bornes théoriques (grâce à l’utilisation de la géométrie de l’espace
adversaire et la régularité du modèle au lieu d’arguments basés sur la dimensionnalité)
pour caractériser le taux de succès des attaques de basse dimension pour une large classe
de modèles et illustrées par des expériences.
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Chapter 1

Introduction

It is a strange fate that we
should suffer so much fear and
doubt over so small a thing.
Such a little thing.

J.R.R Tolkien, Lord of the
Rings.
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1.1 Motivation: Understanding the Role of Robustness in

Machine Learning

Robustness is a critical aspect of machine learning research, and it has become even
more important with the rise of interactive machine learning-based applications. Indeed,
machine learning algorithms are used in a wide range of applications, including image
recognition, natural language processing, speech recognition, and recommender systems.
Machine learning systems have now flooded our daily lives: who has never heard about,
seen, or used autonomous vehicles, movie recommendation systems, generative large lan-
guage models, and so on? All of these technologies have rapidly been deployed in the
last few years thanks to the exceptional progress of the machine learning field, that have
been able to produce very efficient technologies to assist us daily. However, with the in-
creasing number of critical applications of machine learning, having efficient technologies
is not enough. We now need efficient, but also secure and trustworthy machine learning
applications to avoid critical misbehaviors stemming from our models.

Numerous instances highlight the vulnerability of data and models to misuse, errors, and
biases. For example, in 2016, the journal Bloomberg conducted an analysis showing that
Amazon excluded predominantly Black areas from some of its delivery services. Although
unintentional, this exclusion was influenced by racial factors that were not properly ac-
counted for, resulting in fairness bias. Another example is the accidents caused by the
Autopilot system of Tesla autonomous cars: in 2023, the Wahsington Post concluded that
736 accident (and 17 fatalities) occurred since 2019, probably due to defects of the system
that does not correctly recognize certain obstacles like motorcycles or parked emergency
vehicles.

Such situations exemplify the potential risks associated with machine learning systems.
Ensuring the security and safety of these systems under both normal and non-normal
conditions stands as a major challenge for the machine learning community today and
in the foreseeable future. Within the broader context of building trustworthy AI, which
encompasses diverse areas such as fairness, privacy, or explainability, the field of robustness
emerges as a particularly intriguing area of focus. Robustness addresses scenarios in which
machine learning models encounter inputs or data that have been maliciously manipulated
to deceive the model’s response. As users interact more frequently with machine learning
systems, these attempts to exploit blind spots in the models become increasingly common.

Consider the example of autonomous vehicles, as exemplified by the work of Eykholt et al.
(2018). The authors have shown their ability to create patches to stick on traffic signs that
prevent the models from recognizing these signs correctly. Figure 1.1 shows an illustration
of that, where a patch has been added to a stop sign, which is now predicted to be a 45
mph speed limit sign instead. The potential dangers of such attacks in the real world are
readily apparent.

To tackle such issues, the field of robustness has grown independently in different areas
of machine learning, as will be detailed in Section 1.2. An interesting additional aspect of
robustness studies is its relation with the other topics from trustworthy AI, which are all
of major importance. In particular, robustness is linked to the question of the explain-
ability of machine learning models, as understanding why some models are so vulnerable
to adversarial examples is a predominant question in the field. Moreover, robustness is

2

https://www.bloomberg.com/graphics/2016-amazon-same-day/
https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/


Figure 1.1: Adversarial attack against a real stop sign using black and white patches, from
Eykholt et al. (2018). The stop sign is misclassified by deep learning models as a 45 mph speed
limit sign.

closely linked to anomaly detection, as well as generalization to out-of-distribution data.
It can help to better understand and improve the generalization power of machine learning
models to unseen data. Robustness can thus help create models that can handle a wide
range of inputs and scenarios.

In conclusion, robustness is a critical aspect of machine learning research, and it has
become even more important with the rise of interactive machine learning applications.
By building robust models that can handle unexpected or adversarial inputs, researchers
can help to ensure that their models are reliable, fair, transparent, and safe for all users.

1.2 Introduction to the Robustness Studies

1.2.1 A Brief Overview

The interest in building statistical methods that are robust is not novel. Such ideas can be
traced back a long time ago, especially in the field of physics, where, according to Huber
and Ronchetti (2009), many researchers such as Simon Newcomb or Arthur Eddington
had a good understanding of the concepts of robustness in the late 1900s. But structured
work around robustness has in fact been initiated mainly by Huber in the sixties, with
e.g. Huber (1964), and then formulated in the form of a comprehensive book in Huber
and Ronchetti (2009). What Huber called ‘robustness’ in his works actually encompasses
robustness against what we now call poisoning attacks: it tackles the robustness of models
or statistical procedures against the contamination of training data. The relevant notions
about poisoning robustness from Huber will be detailed in Section 1.3.1.

In addition to Huber’s seminal works, novel types of attacks have also emerged against
specific types of algorithms: in the area of deep learning, robustness issues have known
an independent renewed interest in 2013, when the authors of Szegedy et al. (2013) un-
veiled the notion of adversarial examples in the context of computer vision, as detailed
in Section 1.4.1. Such attacks, contrary to the ones studied by Huber, do not focus on
modifying the outcome of the learned algorithms by targeting training data but rather
focus on fooling a good learned algorithm by modifying data at inference time, which is

3



Figure 1.2: Schema of where poisoning and evasion attacks operate in machine learning. Poi-
soning attacks occur during or before training and focus on the training data. Evasion attacks
occur at inference and target inputs submitted to an already trained model.

known as evasion attacks.

The functioning of both types of attacks is illustrated in Figure 1.2, and the present thesis
will explore both types of attacks in two different parts.

The first part will be dedicated to robustness against poisoning attacks. Of course, this
topic has been widely covered starting, as mentioned, from Huber in Huber (1964), for real-
numbered data and methods such as regression problems Fox andWeisberg (2002); Hubert
and Branden (2003), linear programming problems Ben-Tal and Nemirovski (2000), outlier
detection Rousseeuw and Leroy (1987), and multivariate data analysis Møller et al. (2005);
Zuo (2006), parameter estimation Diakonikolas et al. (2018, 2020), principal component
analysis Hubert et al. (2005), etc. The common factor of these works is their focus on
classical types of data, namely real numbered or multivariate data. Concepts with more
complex types of data with challenging topologies have scarsely been studied before: this
is specifically the case for ranking data, where only the work of Agarwal et al. (2020)
preexisted. Section 1.3 will thus introduce the relevant concepts for poisoning attacks,
the specific challenges related to ranking data, as well as the contributions of the thesis
on this matter.

The second part will be dedicated to robustness against evasion attacks. As this concept
has emerged in the field of deep learning for computer vision but is still largely obscure,
the present thesis will focus on this area and provide a better understanding of this phe-
nomenon. This concept was discovered in Szegedy et al. (2013), and deeply has been
studied afterward. Many works have proposed different attack algorithms, among which
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Goodfellow et al. (2014); Madry et al. (2018); Moosavi-Dezfooli et al. (2016); Carlini and
Wagner (2017); Moosavi-Dezfooli et al. (2018); Chen et al. (2022); Guo et al. (2019) are
good examples. An equivalent amount of work has been dedicated to robustifying deep
learning algorithms, with various strategies, such as defensive distillation Papernot et al.
(2016); Liang and Samavi (2023), detection methods Hendrycks and Gimpel (2016); Ma
et al. (2018); Lee et al. (2018); Li et al. (2019), and the famous adversarial training strate-
gies Madry et al. (2018); Pang et al. (2021); Zhang et al. (2019a); Shafahi et al. (2019b)
among others. Concurrent with these works that aim at implementing adversarial attacks
or robust methods in practice, the literature has also focused on better understanding the
phenomenon. A first stream of work has derived theoretical results on the existence of
adversarial examples, like Tsipras et al. (2019); Fawzi et al. (2018a); Dohmatob (2019). A
second stream of work has investigated characteristics of adversarial examples to account
for their success, even though the exact features and underlying reasons for adversarial
examples’ effectiveness remain unclear. For example, Papernot et al. (2017) demonstrated
that adversarial examples can transfer to other neural networks, Goodfellow et al. (2014)
proposed the local linearity of neural networks to justify the success of adversarial ex-
amples, but this was challenged by Tanay and Griffin (2016) with the opposite finding.
Similarly, Tsipras et al. (2019) suggested that there is a fundamental tradeoff between
robustness and accuracy, which is challenged by the opposite finding from Rozsa et al.
(2016); Cubuk et al. (2017). These examples illustrate how debated the characteristics of
adversarial examples are. In addition, Ilyas et al. (2019) showed that non-robust features
exist in the data distribution, Moosavi-Dezfooli et al. (2019) showed that large curvature
of the decision boundary negatively impacts robustness, Rice et al. (2020); Manoj and
Blum (2021); Wu et al. (2021) suggest that overfitting of neural networks may be a source
of vulnerability, etc. Section 1.4 will introduce the concept of evasion attacks through
the lens of adversarial examples in deep learning, explain more deeply the main findings
and challenges unveiled by the literature, as well as the contributions of the thesis on this
matter.

1.2.2 Framework and Setup

Even though the two types of attacks are different and require different notions, they both
operate on the same machine-learning setup as illustrated by Figure 1.2. In this thesis, we
study a general framework for supervised machine learning, where data usually consists
in inputs and associated labels.

Data. Machine learning data consists of the following elements:

• X = (X1, ..., Xm) ∈ Xm are the input features, where X is the input space and
m denotes the dimensionality of the input. For example, for a MNIST image (see
LeCun and Cortes (2010)), X = [0, 1] and m = 784.

• Y ∈ Y is the prediction. For a K-class classification tasks, Y is called the label and
Y = J1, KK

• X and Y are random variables distributed according to an unknown joint probability
distribution PX,Y ∈M1

+(X ,Y), whereM1
+(X ,Y) is the set of probability measures

on X × Y
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(a) Illustration of a poisoning attack

(b) Illustration of an evasion attack

Figure 1.3: Examples of a poisoning attack and an evasion attack.

• As the theoretical random variables X and Y , as well as the distribution PX,Y ,
are not available in practice, we rely on empirical observations. SN = {(xi, yi), i ∈
J1, NK} i.i.d.∼ PX,Y ∈ (X ,Y)N is then the available dataset. This dataset defines an

empirical distribution defined by P̂N = ∑
x,y∈SN

δx,y, where δa denotes the Dirac

distribution in a. To simplify the notation, we will usually identify P̂N with SN .

Model. A machine learning model can be defined using the following elements:

• F ⊆ (X → Y) denotes the (supervised) model class. It corresponds to all the
possible models after choosing a type of machine learning technique: for example,
choosing deep learning algorithms will result in a different model class than support
vector machines.

• F : PX,Y ∈ M1
+(X ,Y) → f ∈ F denotes the algorithm that learns from the data

distribution and outputs a specific model. When only the dataset SN drawn from
PX,Y is available, the algorithm can take as input the empirical distribution P̂N .

A classical and broad type of algorithm is the Risk Minimization (RM) one, which
can be described as follows:

F ⋆
RM(PX,Y ) = argmin

f∈F
EX,Y ∼PX,Y

(l(Y, f(X))), (1.2.1)

where l : Y × Y → R is a loss function. Moreover, when P̂n is used instead of PX,Y

this is referred to as empirical risk minimization (ERM).
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• A model, as outputted by a machine learning algorithm, will generally be denoted
by f ∈ F . Reusing the previous example, the RM model would be denoted by
f ⋆

RM = F ⋆
RM(PX,Y ). Note that we will often drop the dependency in PX,Y (or SN for

the empirical version) in the notation whenever the context is clear.

Attacks. As mentioned in Section 1.2.1, two types of attacks can be considered: poi-
soning and evasion attacks, as illustrated by Figure 1.2. Both focus on different parts
of a machine learning model life and if both target the data, they don’t operate on the
same distributions. However, they have similarities in their concepts, which can be sum-
marized as follows: an attack is a modification of a data distribution (the train or the
test distribution) aiming at creating a small distribution shift between the train and test
distribution that would result in a large difference in their evaluation, which will be more
formally defined for each type of attack in Sections 1.3 and 1.4. Two practical examples
of such attacks are illustrated in Figure 1.3.

Definition 1.2.1. Attack. Let A be a measurable space, P ∈ M1
+(A) a distribution and

F a supervised algorithm. Let m be a (normalized) metric over distributions, ε ∈ [0, 1]
and δ > 0. Finally, let L :M1

+(A)×F → R be an evaluation metric to minimize for the
output of algorithm F on distribution P .

An attack over the distribution P and algorithm F with budget ε on m and amplitude
at least δ on L is a distribution Qm,L(F, P, ε, δ) whose goal is to fool model F (P ) while
satisfying a budget constraint depending on ε.

Thus, Qm,L(F, P, ε, δ) is defined as a distribution such that m(P, Qm,L(F, P, ε, δ)) ≤ ε and

(Poisoning) L(P, F (Qm,L(F, P, ε, δ))) ≥ L(P, F (P )) + δ (1.2.2)

(Evasion) L(Qm,L(F, P, ε, δ), F (P )) ≥ L(P, F (P )) + δ (1.2.3)

Whenever the context is clear, the attack distribution will be simply denoted as Qε, where
we drop the dependence in δ, m,L, P and F in the notation.

1.3 Poisoning Attacks and Ranking Data: Notions, Chal-

lenges, and Contributions

This Section will introduce the relevant concepts to study the robustness of poisoning
attacks: the attacks that target a model at training time, meaning that focus on changing
the model learned using training data. Section 1.3.1 will introduce the task at hand in the
present thesis, the poisoning attacks against the statistics that solve this kind of task, and
all the related concepts to evaluate the robustness of a statistic as well as different classical
methods that improve the robustness. Section 1.3.2 will detail the challenges associated
with studying robustness to poisoning attacks in spaces presenting similar difficulties to
those encountered in the ranking space. Finally, Section 1.3.3 will present a high-level
overview of the contributions of this thesis on this field.
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1.3.1 Huber’s Robustness Concepts on Poisoning Attacks

Location estimation task. As previously mentioned, a broad class of learning problems
can be defined as a Risk Minimization problem from Equation (1.2.1), which can be
re-written the following way to simplify the notation:

f ⋆
RM ∈ argmin

f∈F
EX,Y ∼PX,Y

(l(Y, f(X))) (1.3.1)

In Theorem 2.8 of Steinwart (2007), it has been shown that such a problem can be
equivalently mapped to a point-wise problem:

f ⋆
RM : x 7→ argmin

y∈Y
EY ∼PY |X=x

(l(Y, y)) (1.3.2)

The focus can thus be moved to the inner problem, that is argminy∈Y EY ∼PY |X=x
(l(Y, y)),

that leads to two remarks. First, in the context of poisoning attacks, where the attacker
has access to the training distribution or dataset to change the learned model, it is then
relevant to attack only the conditional distribution PY |X=x rather than the joint distri-
bution, as justified by Equation (1.3.2). Second, it is thus sufficient to solve the more
general related problem:

argmin
y∈Y

EY ∼P (l(Y, y)), for an arbitrary distribution P ∈M1
+(Y). (1.3.3)

Both remarks motivate our focus on the seminal work of Huber and Ronchetti (2009) and
the following works on robust statistics for the location estimation task. Simply put, a
location estimate is a statistic that is meant to estimate the average value of a dataset
or distribution. For real numbers, the mean or the median are two types of location
estimates which correspond to the formulation of Equation (1.3.3) when the metric l is
the L2-norm for the mean or the L1-norm for the median respectively.

Definition 1.3.1. Location Estimation Task. Solving the location estimation task
consists in finding a statistic T : P ∈ M1

+(Y) 7→ Y to define the center of a given
distribution.

It is often defined as:
T (P ) = argmin

y∈Y
EY ∼P (l(Y, f(X))), (1.3.4)

where l is a loss function.

Poisoning attacks on the location estimation task. As motivated by Definition 1.3.1, a
poisoning attack on a location estimation model, or statistic, will target the predictor part
of the data, meaning Y ∈ Y . Inspired from Definition 1.2.1, it is more precisely defined
as follows:

Definition 1.3.2. Poisoning attack on Location Estimation Statistics. Let Y
be the predictor set, T : P ∈ M1

+(Y) 7→ Y a statistic and P ∈ M1
+(Y) an arbitrary

distribution. Let ε and δ ∈ [0, 1], d be a metric on Y and m a metric onM1
+(Y). Then,

a poisoning attack of amplitude δ and of budget ε is defined as:
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d(T (P ), T (Qε,δ)) ≥ δ such that: m(P, Qε,δ) ≤ ε (1.3.5)

The notation Qε,δ of the attack distribution does not reveal its dependence in distribution
P , statistic T , and metrics d and m, as the context is clear.

Many poisoning attacks can be created for the same setup: usually, the robustness refers
to the robustness against the worst-case poisoning attacks. Such a notion is incorporated
into the definition of the different robustness measures.

Robustness measures. In the robustness literature, the main robustness measure of an
estimator is called the breakdown point. Quoting Huber and Ronchetti (2009), “the break-
down point is the smallest fraction of bad observations that may cause an estimator to take
on arbitrarily large aberrant values”. The classical notion of breakdown point has usually
been defined with an empirical finite sample version or an empirical asymptotic version,
but the present thesis will provide a more theoretical, distribution-based definition that
is more general and can be adapted easily in an empirical version.

Definition 1.3.3. Breakdown point. Let Y be a measurable space, P ∈ M1
+(Y) a

probability distribution, T : M1
+(Y) → Y a statistic, d : Y × Y → R and m : M1

+(Y) ×
M1

+(Y)→ R two metrics. The breakdown point for the statistic T on distribution P with
metrics m and d is defined by:

ε⋆(T, P, m, d) = inf
{

ε > 0
∣∣∣∣ sup

Q | m(P,Q)≤ε

d(T (P ), T (Q)) =∞
}

(1.3.6)

To obtain an empirical version of the breakdown point when one prefers to study a dataset
rather than a distribution, it is sufficient to replace the theoretical distribution P in the
above definition with its empirical counterpart P̂N .

The breakdown point is a powerful tool to quantify the robustness of different statistics.
In particular, the common sense observation that the median is more robust than the
mean can be demonstrated by computing their respective breakdown points.

Example 1.3.4. Let Y = R, P ∈ M1
+(R) be a distribution, Tmean : P ∈ M1

+(R) 7→
argminy∈R EY ∼P ((Y − y)2) the mean statistic and, similarly, Tmedian : P ∈ M1

+(R) 7→
argminy∈R EY ∼P (|Y − y|) the median statistic.

Let m = TV be the total-variation distance, and d = L2 the L2-norm. Then we have the
following results:

1) ∀ P ∈M1
+(R), ε⋆(mean, P, TV, L2) = 0.

2) ∀ P ∈M1
+(R), ε⋆(median, P, TV, L2) = 1/2.

The previous results can be obtained by observing that 1) a distribution Qa = (1−a)P +
aδb, where δb is the Dirac measure in b with b going to +∞, would have a mean of +∞
even when a is infinitely small, and 2) obtaining a median equal to +∞ requires allocating
at least half of the probability mass to a Dirac in +∞.
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Intuitively, having a very small probability mass on the value +∞ is enough to change the
mean from a finite to an infinite value, whereas it requires changing half of a distribution
to modify the median to infinity. The median is thus quantitatively much more robust
than the mean, as measured by the breakdown point.

Other measures of robustness have been proposed in the literature. This is the case, for
example, for the popular notion of the influence function.

Definition 1.3.5. Influence Function. Let Y be a measurable space, P, Q ∈ M1
+(Y)

two probability distributions, T :M1
+(Y)→ Y a statistic. The influence function for the

statistic T on distribution P in direction Q is defined by:

IF (T, P, Q) = lim
t→0+

T ((1− t)P + tQ)− T (P )
t

(1.3.7)

In particular, for y ∈ Y, when Q = δy is the Dirac measure in y, we have

IF (T, P, y) = lim
t→0+

T ((1− t)P + tδy)− T (P )
t

(1.3.8)

measures the influence in y.

The drawback of the influence function is that it focuses on measuring the influence of
specific data points on a statistic. It is therefore not directly meant to compare different
statistics between them, which is the reason why the present thesis will focus on the notion
of breakdown point.

Classical robustification procedures. The robustification of the location estimation task
has been treated in depth by the literature on robust statistics, in particular in the real
numbers case. The studied strategies can be divided into several categories.

The first category includes all the statistics known as M-estimators. Simply put, an
M-estimator is a statistic that generalizes the notion of maximum likelihood estimator.
More formally, an M-estimator location statistic T : SN ∈ YN 7→ Y is of the form:
T (SN) = argmint∈Y

∑
y∈SN

ρ(y, t), where ρ is an arbitrary and minimizable function. Such
estimators have gained a lot of interest in the robust statistics field as they can combine
high breakdown points and high computational efficiency. However, such robustness re-
sults highly depend on the choice of function ρ. For example, both the mean and the
median are M-estimators, but as has been shown previously, the mean is not robust at
all.

The second category includes strategies based on the rejection of outliers, more precisely
trimmed and winsorized statistics. They are particular cases of L-estimators, meaning
estimators based on a linear combination of order statistics (like quantiles).

Definition 1.3.6. Trimmed and winsorized statistics. Let Y be a Euclidean space,
SN ∈ YN a dataset, T : YN → Y a statistic and α ∈ (0, 1). Let us denote by qα(SN) the
α-quantile of dataset SN .

1) The α-trimmed statistic on SN is defined by: T trim
α (SN) = T ((SN)trim

α ), where (SN)trim
α =

{y ∈ SN | qα(SN) ≤ y ≤ q1−α(SN)}.

10



2) The α-winsorized statistic on SN is defined by: T win
α (SN) = T ((SN)win

α ), where (SN)win
α =

(SN)trim
α ∪ {qα(SN)}#{y∈SN | y<qα(SN )} ∪ {q1−α(SN)}#{y∈SN | y>q1−α(SN )}.

Simply put, the trimmed version of a statistic T consists in computing the same statistic on
a dataset where the rightmost and leftmost data points have been removed; the winsorized
version of the statistic T consists in computing the same statistic on a dataset where the
rightmost and leftmost data points have been replaced by the closest acceptable value.

The last category includes the minimax approaches, and more precisely Distributionally
Robust Optimization (DRO) problems.

Definition 1.3.7. Distributionally Robust Optimization Let Y be a measurable
space, P ∈ M1

+(Y) a probability distribution, and m : M1
+ ×M1

+ → R a metric. The
Distributionally Robust Optimization problem for distribution P of level ε consists in
solving the following problem:

TDRO(P, ε) = argmin
y∈Y

max
Q | m(P,Q)≤ε

EY ∼Q(l(Y, y)) (1.3.9)

The DRO statistic thus focuses on optimizing the worst distribution in a set sufficiently
close to the source distribution P , which is, optimizing an adversarial distribution. Notice
how closely related it is to the definition of the breakdown point in Definition 1.3.3.

1.3.2 Main Challenges in Extending Robustness Techniques Against

Poisoning Attacks for Ranking Data

The different concepts and results seen in Section 1.3.1 have been successfully applied to
real numbered data, as illustrated by the diversity of works on this topic, mentioned in
Section 1.2.1.

However, robustness has not been extensively studied whenever the data space is less
convenient than the space of real-numbered data. This limitation in the number of works
particularly applies to the space of ranking data, which accumulates two challenges: the
lack of vector-space structure, and the combinatorial nature of the space.

A proper introduction to the ranking space will be provided in Chapter 2. This Section
will only provide a high-level description of this space. The ranking space is the space
of permutations over n items, i.e. the symmetric group Sn of {1, ..., n}. A ranking is
denoted by σ ∈ Sn and represents the preference (of a user) over a set of n items. To
illustrate this concept, let’s give an example with morning drinks: a ranking over the set
of items {‘coffee’, ‘tea’, ‘orange juice’} would be an object σ representing the preference
of the sentence ‘I prefer orange juice over tea over coffee’.

The rankings, or preference data, are naturally used in recommender systems. With
the explosion of recommender system-based applications using user preferences (adver-
tisement, e-commerce with movies, music or books recommendation, dating applications,
social media and traditional media, etc.). The study of such data has recently become of
central interest. However, the nature of the ranking space is particular, and, as previously
mentioned, challenging.
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Lack of vector-space structure. The ranking space Sn is not a vector space. As a quick
reminder, a vector space is a set E equipped with two binary operations: the first one is
an internal binary operation which is, among other properties, commutative; the second
one is an external binary operation. The space of real numbered data R, as well as the
multivariate space Rn are two examples of vector spaces that are both equipped with the
traditional sum + and scalar multiplication × operations.

Thus, the ranking space cannot be equipped with these two operations. In fact, in addition
to metrics, the ranking space can only be equipped with an internal binary operation that
is usually denoted by ◦. The ◦ operation allows for the composition of rankings and is
not commutative. This characteristic of the ranking space prevents the straightforward
generalization of several concepts provided in Section 1.3.1, which can be divided into two
categories:

• Generalization is not convenient: some concepts can, in fact, be adapted to the
ranking space. It is, for example, the case for the notion of mean (as well as M-
estimators in general). For real-numbered data, the mean can be defined as xn =
1/n

∑n
i=1 xi, which necessitates the use of a (commutative) internal binary operation

and an external binary operation. But, as previously mentioned, the mean can also
be defined using a metric-based definition: xn = argminx∈R EX∼SN

((X−x)2), which
only requires the space to be equipped with a metric, which is possible for the
ranking space as it is finite. The challenge here does not necessarily comes from
defining the relevant concept for the ranking space, but rather in its computation,
which is deeply linked to the challenge related to the combinatorial nature of the
space.

• Generalization is difficult: some concepts cannot be adapted easily to the ranking
space. This is, for example, the case of the notion of quantile and related statistics
(the trimmed and winsorized ones in particular, and all L-estimators in general),
which stems from the absence of the notion of total order. Such a notion is achievable
for real-numbered data as it can be axiomatically defined using the two binary
operations from a vector space, even though it is not the only way, and a vector
space is not necessarily totally ordered (for example, the space of multivariate data
Rn is partially ordered but not totally ordered). Thus, these ordered-based notions
cannot be directly generalized to the ranking space (neither to the multivariate
space), and some additional tools are needed to replicate such concepts, as is the
case for depth functions, that will be addressed in Chapter 3.

Combinatorial nature of the space. The ranking space Sn is finite, and of known cardi-
nality: it has n! elements. As it is a finite space, every defined concept can be theoretically
computed in an exhaustive, brute-force manner.

For example, it is possible to compute the mean of a distribution over rankings P by
computing EΣ∼P (l2(Σ, σ)), where l2(σ1, σ2) = ∑n

i=1(σ1(i)−σ2(i))2, for all elements σ ∈ Sn,
and find the ranking associated with the smallest loss. However, such a computation would
require spanning the entire space of rankings of size n!, which is, in practice, unachievable
even for relatively small values of n. As an example, 10! = 3628800: let’s say that the
computation of the expected loss for one ranking takes 10−2 second (by looping over the
10! points of the theoretical distribution), it would take approximately 1 hours to finish
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the computation (repeat the computation of the expected loss over the same 10! points),
which is huge to ‘just’ compute a mean.

Considering that many applications using recommender systems deal with hundreds to
millions of items, such a strategy is simply not feasible. It is thus necessary to develop
methods that take this computational issue into account and are scalable, even if this
requires additional hypotheses on the type of data distribution that can be processed.

Drawbacks of embedded representations of ranking data. A main line of works that
circumvent the two limitations mentioned earlier (lack of vector space structure and com-
binatorial nature of the space) consists in embedding the rankings into a space that is
simpler to study. This idea was prominently introduced and studied by Diaconis (1988,
1989) with the spectral representation of ranking data.

It provides a mathematical framework for analyzing and understanding the structure of
rankings: in this representation, the rankings are transformed into a spectral space using
the tools of Fourier analysis.

This representation of ranking data has significantly contributed to the understanding and
analysis of rankings. However, such techniques come with limitations that we precisely
want to avoid for studying robustness for rankings. In particular, the spectral represen-
tation condenses the ranking data into a lower-dimensional space, which can lead to a
loss of detailed information. While it captures important global patterns, it may not fully
capture the nuances and finer-grained characteristics of individual rankings. Addition-
ally, the interpretability of the spectral components (eigenvalues and eigenvectors) may
be challenging. Extracting meaningful insights and translating spectral information into
actionable knowledge often requires careful analysis and domain expertise.

These limitations motivate our approach consisting of studying directly the ranking space,
rather than an embedded representation. Note, however, that even though this thesis stud-
ies the robustness of ranking data by analyzing complete orderings over a set of items,
meaning full rankings, most of our work can in fact be extended to partial rankings, where
only some ordering between items are observed.

Discarding the ‘embedding’ approach, the two specific types of challenges for the ranking
space explain the lack of work on the topic of robustness in this context. Part I of the
present thesis will thus present my work to initiate the study of robustness for ranking
data. The main contributions are developed in Section 1.3.3.

1.3.3 Main Contributions on Pioneering the Study of Robustness for
Ranking Data

The contribution of the present thesis on the field of robustness against poisoning attacks
focuses on overcoming the challenges mentioned in Section 1.3.2. More specifically, Part I
will be dedicated to my contribution to this field, and will be organized as follows:

• Chapter 2 will introduce more formally the ranking space, as well as the task of
Consensus Ranking, which is the equivalent of the location task using the specific
terminology of the literature on rankings. This Chapter will go through the classical
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approach to solving such a task without taking into account the issue of robustness,
present some results focusing specifically on computational efficiency, and then in-
troduce the vulnerability of the classical method to poisoning attacks. The first few
works on the topic of robustness in ranking will also be addressed as an introduction
to the problem.

• Chapter 3 will introduce an extension of the notion of total orders to the space
of ranking through the scope of a center-outward ordering function. This object
called a depth function, will be used to define analogs of quantiles, and thus a
trimming strategy to robustify the classical consensus ranking statistics on the space
of rankings. This strategy overcomes, in particular, the difficulty to define statistics
based on order to the ranking space, as mentioned in Section 1.3.2.

• Chapter 4 will focus on the evaluation of the robustness (in the sense of the break-
down point), as well as the evaluation of the precision (in the sense of the loss), of
all kinds of statistics for the consensus ranking task. This Chapter will additionally
provide a very efficient plugin method to robustify any statistics, which overcomes
the computational issue mentioned in Section 1.3.2. Finally, this Chapter will draw a
comparison between several consensus ranking methods and show that the proposed
plugin improves the robustness while not impairing the precision.

From a high-level perspective, the contribution of the present thesis is to initiate the
study of robustness to poisoning attacks to the ranking space. To do so, as motivated
in Section 1.3.1, the robustification of the location estimation task, namely Consensus
Ranking, will be at the core of Part I. Consequently, we will not only provide two different
robust statistics but also provide a way to evaluate and check the robustness of consensus
ranking statistics. Therefore, the present thesis provides not only ready-to-use solutions
to robustify the task of consensus ranking in an efficient way, but also the starting point
to robustify many recommender systems-based related tasks. It also provides a way to
thoroughly evaluate the robustness of any statistic, and thus facilitates the development
of novel statistics and establishes a framework for comparing diverse approaches, thus
serving as a cornerstone for the progression of future works.

1.4 Evasion Attacks and Adversarial Examples in Deep Learn-

ing: Notions, Challenges, and Contributions

The present Section introduces the concept of evasion attacks, which are the attacks led
at inference time, after having trained a convenient model, when users can interact with
the said model. Section 1.4.1 will provide the context and definition of evasion attacks,
specifically on deep learning models, which has yielded great success and massive interest
since 2013. Section 1.4.2 will present the current challenges identified by the literature
on this topic, as well as some relevant results. Section 1.4.3 will introduce a high-level
overview of the contribution of this thesis to this field.
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1.4.1 Neural Networks under the Threat of Adversarial Examples as
Evasion Attacks

Neural Network Classification Task. Before digging directly into the adversarial phe-
nomenon, the main concepts related to neural networks for classification tasks (such as
computer vision classification) will be recalled. Using the formalism introduced in Sec-
tion 1.2.2, a neural network (NN) can be simply described as a parametric model: denoting
FΘ : X → [[1, ...K]] the parametric model class for a K-classification problem, a neural
network can simply be described as a model fθ ∈ FΘ. More specifically, a neural net-
work consists of an interconnection of several layers, connected through linear operations
and non-linear activation functions, to produce a vector of scores of size K, associated
with each class of the problem. The predicted class is then chosen to be the one with
the highest score. Importantly, a neural network can be identified with its feature map,
which is the function outputting the aforementioned vector of scores of size K, also called
the logits vector. A prominent example of neural networks subclasses is called multilayer
perceptron and defined as follows:

Definition 1.4.1. Multilayer Perceptron (MLP). Let FΘ be a (parametric) model
class. fθ ∈ FΘ is a multilayer perceptron with L layers if and only if:

fθ(x) = argmax
k=1,...,K

gθ(x) ∀ x ∈ X , with (1.4.1)

gθ(x) = WLσL1 (WL−1σL−2(...σ1 (W1x + b1)) + ... + bL−1) + bL, (1.4.2)

where gθ : X → RK is the feature map, ∀ l ∈ [[1, ..., L]], σl is the activation function (e.g.
a ReLU function), and θ = (Wi, bi)1≤i≤L are the parameters.

The feature map gθ thus outputs a vector of size K. To transform this vector of scores into
a probability vector, the softmax function is usually used to define g̃θ(x) = softmax(gθ(x)),
where:

∀ z ∈ RK , softmax(z) =
(

exp(zk)∑K
i=1 exp(zi)

)
1≤k≤K

(1.4.3)

Similarly to the feature map gθ, the probability vector g̃θ can also be identified with the
neural network’s prediction fθ(x), since fθ(x) = argmaxk=1,...,K gθ(x) = argmaxk=1,...,K g̃θ(x).

In the context of supervised learning, the training phase of neural networks consists in
optimizing its parameters θ, in order to achieve the best results possible for the task at
hand. Informally, as there is only one ‘correct’ class for an input image, the goal is to
have all the images assigned to their corresponding correct class: this is the purpose of
the so-called 0-1 loss. However, since this loss is not differentiable, it is not possible to
directly optimize it, and so the training process replaces the 0-1 loss with a smoother loss
to perform the training, which is usually obtained via stochastic gradient descent (SGD),
even though other methods exists. More specifically:

Definition 1.4.2. Neural Networks Optimization Problem. Let PX,Y ∈M1
+(X ×

Y) be a distribution, fθ ∈ FΘ be a neural network on a K-classification problem and g̃θ its
corresponding probability vector function. Let ϕ : ∆Y × Y → {0, 1} be the 0-1 loss, where
ϕ(p, y) = 0 if argmaxk∈[[1,...K]] p(k) = y, and 0 else. The optimization goal of the neural
network is to find fθ⋆ where:

θ⋆ = argmin
θ∈Θ

Φ(θ, PX,Y ), (1.4.4)

15



with Φ(θ, PX,Y ) := EX,Y ∼PX,Y
(ϕ(g̃θ(X), Y )).

As previously mentioned, this optimization problem is intractable in practice. Fortunately,
as shown in Bartlett et al. (2006), smoother losses, called consistent surrogate losses, can
be used to approximate efficiently the 0-1 loss. One of their results is simplified here:

Theorem 1.4.3. Convergence of risks for consistent surrogate losses. Let
fθ be a neural network on a binary classification problem, associated with its feature map
gθ and probability vector g̃θ. Let ϕ : ∆{−1,+1} × ±1 → {0, 1} be the 0-1 loss and l :
∆{−1,+1} × {−1, +1} → R+ a loss. Suppose that l is a consistent surrogate loss, meaning
it satisfies some constraint that will not be restated here. Then for every sequence (θi)i≥0
and probability distribution PX,Y ∈M1

+(X × {−1, +1}), we have

EX,Y ∼PX,Y
(l(gθi

(X), Y )) −→
i→+∞

inf
θ∈Θ

EX,Y ∼PX,Y
(l(gθ(X), Y ))⇒

EX,Y ∼PX,Y
(ϕ(g̃θi

(X), Y )) −→
i→+∞

inf
θ∈Θ

EX,Y ∼PX,Y
(ϕ(g̃θ(X), Y ))

(1.4.5)

Theorem 1.4.3 means that optimizing over a consistent surrogate loss l boils down to
optimizing over the 0-1 loss. This is the reason why neural networks can be trained using
a surrogate loss l.

Definition 1.4.4. Neural Networks Training. Let PX,Y ∈M1
+(X ×Y) be a distribu-

tion, fθ ∈ FΘ be a neural network on a K-classification problem and gθ its corresponding
feature map. Let l : ∆Y×Y → R+ be a surrogate loss. The optimization goal of the neural
network is to find fθ⋆ where:

θ⋆ = argmin
θ∈Θ

L(θ, PX,Y ), with L(θ, PX,Y ) := EX,Y ∼PX,Y
(l(gθ(X), Y )). (1.4.6)

This optimization goal is traditionally achieved through stochastic gradient descent (SGD),
meaning that the parameters θ are optimized step by step following the opposite direction
of the gradient of the loss with respect to parameters θ.

The optimization problem objective described in Definition 1.4.2 and the training pro-
cedure defined in Definition 1.4.4 thus aims at obtaining an accurate neural network,
meaning a small expected 0-1 loss on the distribution PX,Y , or, alternatively, a high ac-
curacy, as defined by:

Definition 1.4.5. Accuracy. Let PX,Y ∈M1
+(X ×Y) be a distribution and fθ ∈ FΘ be a

neural network on a K-classification problem. The accuracy of fθ on PX,Y is defined as:

Acc(fθ, PX,Y ) = EX,Y ∼PX,Y
(1[fθ(X) = Y ]) (1.4.7)

A simple example of the computation of the accuracy is provided in Figure 1.4 as an
illustration.

Neural networks are popular in many fields and specifically in computer vision classifica-
tion because they are the class of models achieving the highest accuracy on several complex
datasets (for example, the ImageNet dataset Deng et al. (2009)), sometimes even better
than human classification, as shown in Geirhos et al. (2017). However, the performance
of neural networks on perturbed data has not been studied until recently.
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Figure 1.4: Computation of the accuracy: 3 points, highlighted in yellow, are wrongly classified
by the model, out of 20 points. Therefore, the accuracy of the model on this dataset is 17/20.

Figure 1.5: Illustration of an adversarial example creation and its (incorrect) classification.
Courtesy of Goodfellow et al. (2014).

Theory of Adversarial Example and the Robust Optimization Problem. In Szegedy
et al. (2013), the authors unveiled the concept of adversarial examples in the context of
deep learning for computer vision classification. In that field, adversarial examples are
clean images on which a malevolent perturbation has been added, that cannot be detected
by human eyes but, surprisingly, fool state-of-the-art deep learning classification models:
this coincides, in that case, to the notion of evasion attack.

From a high-level perspective, adversarial examples have surprised the community of
deep learning researchers because 1) they are able to fool models that are very good at
classification tasks and are able to generalize efficiently to unseen clean images, and 2) the
magnitude of perturbation needed to fool a model is so small that the difference between
a clean image and its adversarial counterpart is usually unnoticeable to the human eye.

Figure 1.5, extracted from the follow-up work Goodfellow et al. (2014), shows an instance
of an adversarial example crafted from a clean image of a panda: the resulting adversarial
image does not look different from the clean one by the human eye, yet is wrongly classified
as a gibbon by the neural network.

Since these seminal works, the adversarial example phenomenon has gained a huge interest
in the community, and the literature on the subject has become very large. This amount
of work has enabled the community not only to better understand mathematical limits to
the robustness of neural networks, typologies of adversarial examples, and characteristics
of such examples, but also to propose more and more efficient attack algorithms, defense,
and detection methods. Recent works have been developed to structure the knowledge
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around adversarial examples with surveys on the topic, with for example Chakraborty
et al. (2022); Akhtar and Mian (2018); Chen et al. (2020b); Han et al. (2023); Cabral Costa
et al. (2023). Here, the main ideas and notions from the literature will be introduced.

In theory, a perfect adversarial attack is a function that finds the perfect adversarial
counterpart of a clean input x ∈ X , which is the closest input to x that is classified
differently from x. Formally, this is defined as follows.

Definition 1.4.6. Perfect Adversarial Attack. Let fθ be a neural network model
and ||.|| a norm on X . The perfect adversarial attack, denoted by A : X × Y → X , is
defined by:

∀(x, y) ∈ X × Y , A(x, y) = argmin
x′∈X

||x− x′||, such that fθ(x′) ̸= fθ(x). (1.4.8)

The adversarial example corresponding to (x, y) ∈ X×Y is then denoted by xadv = A(x, y).

Remark 1.4.7. The perfect adversarial attack A from Definition 1.4.6 is made dependent
on the class label y because practical adversarial attacks do depend on y.

With the Definition 1.4.6, it is possible that for some inputs (x, y), the perfect adversarial
examples are far away from them, meaning that ||x−xadv|| is large. To get better control of
the size of the perturbation, this definition can be equivalently formulated as the following
dual problem.

Definition 1.4.8. Perfect Adversarial Attack - Dual Version. Let fθ be a neu-
ral network model, g̃θ its corresponding probability vector function, ϕ the 0-1 loss and
Φ(θ, PX,Y ) = EX,Y ∼PX,Y

(ϕ(g̃θ, Y )) the 0− 1 loss of the neural network on PX,Y and ||.||′ a
norm on X × Y → X . Let TA : (x, y) ∈ X × Y 7→ A(x, y), y ∈ X × Y.

The perfect adversarial attack A can be characterized:

A = argmax
A′

Φ(θ, TA′#PX,Y ) such that ||A′ − Id||′ ≤ ϵ̃, (1.4.9)

for some constant ϵ̃, where Id is the identity function and TA′#PX,Y the pushforward
distribution of PX,Y by TA′.

These adversarial attack formulations explore the attacker’s point of view on the more
general two-player game whose objective is to train a robust neural network. This generic
problem is at the core of the quest for the robustification of neural networks against
adversarial examples and can be theoretically formulated as follows.

Definition 1.4.9. Robust Neural Networks Optimization Problem. Let PX,Y ∈
M1

+(X ×Y) be a distribution, fθ ∈ FΘ be a neural network on a K-classification problem
and g̃θ its corresponding probability vector function.

Let ϕ : ∆Y × Y → {0, 1} be the 0-1 loss, ||.||′ a norm on X × Y → X , TA : (x, y) ∈
X × Y 7→ A(x, y), y ∈ X × Y and ε̃ ∈ [0, 1].

The robust optimization goal of the neural network is to find fθ⋆ where:

θ⋆ = argmin
θ∈Θ

max
A:||A−Id||′≤ε̃

Φ(θ, TA′#PX,Y ), with

Φ(θ, TA′#PX,Y ) := EX,Y ∼TA′ #PX,Y
(ϕ(g̃θ(X), Y )).

(1.4.10)
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Adversarial Examples in practice. The problem raised by Definition 1.4.6 or Defini-
tion 1.4.8 incorporated in the broader problem defined by Definition 1.4.9 is a very difficult
problem to study in general. To overcome this issue, the field has evolved either to modify
Equation (1.4.8) in the definition to solve a simpler problem (this is the case for the adver-
sarial attack method called L-BFGS 1, Szegedy et al. (2013)), or to propose heuristics to
craft adversarial examples to get Φ(θ, TA#PX,Y ) high, similarly to Equation (1.4.9) (this
is the case for the adversarial attack method called FGMS, Goodfellow et al. (2014)). In
both cases, a practical adversarial example thus results to be a perturbed version of a
clean input, with a controlled perturbation size, that aims to fool the neural network.
The adversarial attack A may, in such cases, vary, but for simplicity, the literature has
focused on additive attacks. Formally, this is defined as follows.

Definition 1.4.10. Adversarial Attack. Let fθ be a neural network, and ||.|| a norm
on X . Let ε ∈ [0, 1] be the perturbation budget. An ε-practical adversarial attack is a
function Aε : X × Y → X , defined by:

∀ (x, y) ∈ X × Y , Aε(x, y) = x + δε(x, y) such that ||δε(x, y)|| ≤ ε

with fθ(Aε(x, y)) ̸= fθ(x) as often as possible.
(1.4.11)

The adversarial example corresponding to (x, y) ∈ X × Y is generally denoted by xadv =
Aε(x, y).

Usually, δ(x, y) will be simply denoted by δ, and the norm used is in general the L1, L2 or
L∞ norm. This practical definition is thus at the core of the study of the adversarial phe-
nomenon: this is the one this thesis will refer to when mentioning ‘adversarial examples’,
without any additional specification. The most famous attack method and one of the
first since it was introduced by Goodfellow et al. (2014), is called the Fast Gradient Sign
Method, or FGSM. It is defined as follows.

Definition 1.4.11. FGSM attack. Let fθ be a (trained) neural network, gθ its corre-
sponding feature map, l : ∆Y × Y → R+ its training loss, and ε ∈ [0, 1] the perturbation
budget. The FGSM attack, denoted by FGSMε, is defined as follows:

∀ (x, y) ∈ X × Y , xadv
ε = FGSMε(x, y) := x + ε sign (∇xl(gθ(x), y)) , (1.4.12)

where ∇xl(gθ(x), y) denotes the gradient of l in x.

The FGSM attack method has laid the groundwork and provided a foundational model
for the development of the subsequent attack algorithms. Its tremendous success lies in
its simplicity associated with its success rate. More precisely, the FGSM attack is very
simple and approximate: the only deviation from the clean input it introduces is just the
addition of subtraction of a fixed constant to all the pixel values of an image. Moreover,
as explained in Goodfellow et al. (2014), when ε = 0.25, the adversarial accuracy (the
accuracy computed on adversarial examples only) of a multilayer perceptron trained on
the dataset ImageNet is reduced to 0.1%, which is impressive for such a simple method.

1The attack method is based on the optimization algorithm with the same name

19



1.4.2 Main Challenges in Exploring the Complexity of the Adversarial
Phenomenon in Deep Learning.

The field of adversarial robustness in the context of deep learning for computer vision
classification is quite recent, since the phenomenon was unveiled in 2013. However, such a
tremendous breach in the efficiency and security of deep learning algorithms has attracted
a lot of effort and attention from the research community to better understand and treat
the phenomenon. To give a proper illustration of the explosion of the field, here are some
statistics: one paper, Szegedy et al. (2013), was published on the subject in 2013; 4 papers
in 2014; 15 in 2015; 42 in 2016; 501 in 2018; 1221 in 2020 and 1949 in 2022, thanks to the
consolidation work from Nicolas Carlini to enumerate all the papers related to the field,
which can be found on his blog at the following address: https://nicholas.carlini.

com/writing/2019/all-adversarial-example-papers.html.

Thus, many findings about this phenomenon have been unveiled by the community in
recent years, and many are still largely open to debate. A proper introduction to some
of these papers and to the main concepts and findings on adversarial examples will be
provided in Chapter 6. However, this Section will provide a high-level overview of the two
main challenges in the field.

Indeed, the open questions that remain in the field of adversarial robustness can be ag-
gregated into two main categories of challenges. The first challenge is centered around
the important question ‘Why do adversarial examples exist in deep learning?’. As neural
networks provide great results in the field of computer vision classification, and since they
are able to generalize efficiently to unseen images, the question remains to know what is so
specific to adversarial examples that this generalization ability completely fails. The sec-
ond challenge is to understand under which conditions adversarial examples are inevitable,
meaning that neural networks will remain vulnerable. Such a question is obviously very
important for security reasons.

Lack of proper understanding of the adversarial phenomenon. Many works have fo-
cused on trying to better understand what makes adversarial examples succeed, and more
generally studying the characteristics of adversarial examples. As an illustration, a pa-
per as seminal as Goodfellow et al. (2014) has provided the so-called ‘linear or linearity’
hypothesis. This hypothesis aims at providing intuition and an assumption to explain
the adversarial phenomenon. The challenge here resides in the fact that it is very hard
to study theoretical neural networks, so a vast majority of works rely on either experi-
mental methodologies or theoretical works on simplified versions of neural networks. In
both cases, the discoveries on these subjects can rely on an accumulation of pieces of
evidence, and, of course, all papers do not agree on the same findings. As the adversarial
robustness field is still quite recent, still numerous hypotheses have not yet been explored
and meta-analyses are rarely available. Thus, the problem of understanding why adver-
sarial examples are so efficient on neural networks is still largely open, even though many
hypotheses have been proposed to explain it, as will be detailed in Section 6.2.

Potential intrinsic vulnerability of Neural Networks. A line of works has focused on try-
ing to explore under which conditions neural networks are, inevitably, vulnerable. These
works provide a theoretical analysis of neural networks and, in general, bounds on the
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success (or failure) of adversarial examples such as in Fawzi et al. (2018b,a); Mahloujifar
et al. (2019); Bubeck et al. (2019); Dohmatob (2019); Ford et al. (2019); Melamed et al.
(2023). These works are inherently limited by the hypotheses on the neural networks, the
data distribution, or the adversarial attack methods. With the development of more and
more sophisticated adversarial attack methods, such lines of work must remain up-to-date
with the most recent heuristics advances of attacks. Very recently, an important shift has
modified the development of adversarial examples, with the finding of so-called univer-
sal attacks Moosavi-Dezfooli et al. (2017) and low-dimensional attacks, as in Guo et al.
(2018a); Huang and Zhang (2019); Yan et al. (2019); Tu et al. (2019); Chen et al. (2020a).
These attacks basically focus on modifying only a small subspace of the input features,
contrary to more classical attacks that are conditioned only on an overall budget. To give
a simple example of a low-dimensional adversarial attack, modifying a unique pixel for all
images targeted by the attack is a relevant strategy that has been explored in Su et al.
(2019). Such adversarial examples do not operate on the full dimensionality of the data,
and thus the proofs’ techniques traditionally used in the field, which mostly relied on the
curse of dimensionality, cannot be used anymore.

These two challenges will be tackled separately in Part II, and the contributions of the
thesis are detailed in Section 1.4.3.

1.4.3 Main Contributions in Understanding and Unifying Recent Ad-
vances on Adversarial Robustness

The contribution of the present thesis on the field of robustness against evasion attacks
in the context of deep learning for image classification thus focuses on overcoming the
challenges mentioned in Section 1.4.2. More specifically, Part II will tackle this field and
will be organized as follows:

• Chapter 6 will provide an in-depth introduction to the adversarial robustness field,
and present more precisely the current state of the research on the subject. The
main current attack methods, defense algorithms, and detection strategies will be
presented, as well as their results on traditional image classification tasks. Moreover,
the theoretical findings on adversarial attacks will be summarized to provide an
overview of the proof strategies and the limits of such works. Finally, the findings
on the characteristics of adversarial examples will be discussed in depth.

• Chapter 7 will provide the study of a hypothesis to explain the adversarial phe-
nomenon, which takes into account both the main unveiled characteristics of ad-
versarial examples and the characteristics and architecture of neural networks. The
interaction of these two aspects leads to the hypothesis that an important reason for
the vulnerability of neural networks resides in their over-parametrization. This hy-
pothesis will be studied experimentally thanks to topological tools and theoretically
grounded, and an efficient detection method will be built upon these findings.

• Chapter 8 will provide a theoretical analysis of the very recent heuristics of universal
and low-dimensional attacks, using original proof strategies to provide bounds on
the success rate of such attacks under general conditions. This work enables ground
the aforementioned heuristics and provides a theoretical argument to advocate for
their wide sprayed adoption in the community.
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Part I

Pioneering the Study of Robustness for
Ranking Data
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Chapter 2

Introduction to Rankings

The best argument against
democracy is a five-minute
conversation with the average
voter.

Winston Churchill.
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As explained in Section 1.3, our study of poisoning attacks will focus on the location
estimation task of ranking data. In this Chapter, the most important notions for such a
task with such data will be clarified, and some results on the task at hand will also be
addressed.

2.1 Fundamentals of Ranking Data and Distributions

The space of rankings is, as mentioned in Section 1.3.2, of peculiar nature. This specificity
explains in part the different notations that exist in the literature and the different objects
that can be used in this context. This Section will thus not only introduce rankings but
also clarify the notation used in the rest of the thesis.

2.1.1 Basic Definitions for Rankings

The symmetric group over a set X, denoted by SX , is the space of permutations over X.
Mathematically, a permutation σ ∈ SX is a bijective function from X to X, meaning a
rearrangement of this set. Using the same example as Section 1.3.2, let’s suppose that
X = {‘coffee’, ‘tea’, ‘orange juice’}, then an example of permutation σ ∈ SX can be
defined by σ(‘coffee’) = ‘orange juice’, σ(‘tea’) = ‘coffee’, σ(‘orange juice’) = ‘tea’.

In the context of recommendation applications, permutations are interesting when they
are rankings, meaning when the space X is {1, ..., n}. In that case, the set X is simply
the set of n items {1, ..., n} (and the ranking space is denoted by Sn), which is useful to
consider the image space as ranks. A ranking is thus a bijective function that takes as
input an item and outputs its rank. This is denoted by σ(i) = r, where i ∈ [n] usually
denotes an item and r ∈ [n] a rank. Note that the literature is quite divided about this
formalism, and some works prefer to use σ(r) = i: throughout this thesis, a ranking will
always be a function that assigns a rank to an item, i.e. σ(i) = r.

Going back to the previous example, the morning drinks can therefore be assigned to a
number. For example, ‘coffee’=1, ‘tea’=2, ‘orange juice’=3. Then, an example of ranking
σ ∈ Sn can be given by σ(1) = 3, σ(2) = 2 and σ(3) = 1. This specific ranking thus
considers that the rank of ‘coffee’ is 3, and in general that ‘orange juice’ is better than
‘tea’, which is better than ‘coffee’.

To simplify this description of a ranking over a finite set, and considering that a ranking
gives an order between the items, we can use the following, simpler notation: σ = 3 ≻
2 ≻ 1, where ≻ denotes that an item is preferred over another.

A ranking can thus be considered at the same time as a bijective function and as a strict
total order. We can thus formally define a ranking as follows:

Definition 2.1.1. Ranking. A ranking σ ∈ Sn is:

1) A bijective function from [n] to [n] that takes as input an item i ∈ [n] and outputs its
rank r ∈ [n].

2) A strict total order, meaning a sequence of elements (σ−1(1), ..., σ−1(n)) such that
i ≻σ j ⇔ σ(i) < σ(j). Usually, ≻σ will be denoted as ≻ whenever the context is clear.
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As previously mentioned in Section 1.3.2, the space of rankings Sn is equipped with an
internal (non-commutative) binary operation. This operation, denoted by ◦, allows for
the composition of rankings σ ◦ ν, for any σ, ν ∈ Sn. This composition maps an element
k ∈ [n] to the value σ(ν(k)). In the present thesis, the composition of rankings will be
relevant, in fact, only to swap adjacent items thanks to the composition of a ranking σ
with a transposition τ ∈ Sn. Informally, a transposition is a ranking that is the identity
function, except on two elements.

Definition 2.1.2. Transposition. A transposition τ ∈ Sn is a ranking satisfying:
∃ i, j ∈ [n] with i ̸= j such that ∀k ̸= i, j, τ(k) = k, and τ(i) = j, τ(j) = i. In that
case, the transposed items are i and j.

Usually, a transposition of the items i and j will be simply denoted by τi,j.

Then, the ranking ν created by the composition of a ranking σ with a transposition τi,j,
meaning ν = σ ◦ τi,j, is the same ranking as σ except that the rank of item i is now the
rank of item j and vice versa. As an example, consider the ranking σ = 3 ≻ 4 ≻ 1 ≻ 2
and the transposition τ1,3. Then we have σ ◦ τ1,3 = 1 ≻ 4 ≻ 3 ≻ 2.

The most important use case of the composition of a ranking with a transposition is, as
previously mentioned, to swap adjacent items. Two items i and j are said to be adjacent
(by ranking σ) if σ(i) = σ(j)± 1. Thus, a ranking ν that coincides with σ except on the
adjacent items i and j can be defined by ν = σ ◦ τi,j. When only the rank r of one of the
items is known, it can be written ν = τr,r±1 = σ ◦ τσ−1(r),σ−1(r±1).

2.1.2 Metrics for Rankings

The ranking space Sn is, as a finite space, metrizable. In the literature, several distances
have been defined and used to evaluate all sorts of results in the field. The literature on
this topic is quite active, going from classical metrics to much newer ones, see Järvelin
and Kekäläinen (2000); Yilmaz et al. (2008); Carterette (2009); Kumar and Vassilvitskii
(2010), that rely not only on rankings but also on specific features that vary depending
on the specific task being addressed.

As the thesis focuses on the simple but core task of location estimation, as introduced in
Section 1.3.1, the relevant metrics are mainly the most classical ones. Among them, the
most relevant ones are the following:

Definition 2.1.3. Kendall Tau distance. The Kendall Tau distance, denoted as
dτ : Sn ×Sn → N is defined as:

∀σ1, σ2 ∈ Sn, dτ (σ1, σ2) =
∑
i<j

1[(σ1(i)− σ1(j))(σ2(i)− σ2(j)) < 0], (2.1.1)

Kendall Tau distance is the main distance used in various fields of rankings, including
ranking data analysis and social science, thanks to its well-established properties. It
counts the number of pairwise disagreements between the two rankings σ1 and σ2, as
illustrated by Figure 2.1: for example, suppose that σ1 = 1 ≻ 2 ≻ 3 and σ2 = 1 ≻ 3 ≻ 2,
then dτ (σ1, σ2) = 1 because the rankings disagree on the pairs (2, 3) but not on the pairs
(1, 2), (1, 3).
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Figure 2.1: Illustration of the computation of Kendall tau distance. σ1 and σ2 agree that 1 ≻ 2
and that 1 ≻ 3, but disagrees on items 2 and 3, because σ1 orders 2 ≻ 3 and σ2 orders 3 ≻ 2.
Therefore, the Kendall Tau distance between σ1 and σ2 is dτ (σ1, σ2) = 1.

1 ≻ 2 ≻ 3

1 ≻ 3 ≻ 2

3 ≻ 1 ≻ 2

3 ≻ 2 ≻ 1

2 ≻ 1 ≻ 3

2 ≻ 3 ≻ 1

Figure 2.2: Visualization of S3. Rankings linked by an edge are at distance 1 by Kendall Tau.

The distance is lower-bounded by 0 and upper-bounded by n(n − 1)/2. An important
remark to be made is that two rankings that are at distance 1 of each other according to
Kendall Tau distance are neighbors because one can be obtained from the other by just
swapping the two adjacent items on which they disagree. Equivalently, this means that
if dτ (σ, ν) = 1, then ∃ (i, j) ∈ [n]2, i ̸= j such that ν = σ ◦ τi,j. This allows for convenient
visualization of the ranking space, as illustrated by the case when n = 3 in Figure 2.2.

Definition 2.1.4. Spearman’s Footrule distance. The Spearman’s Footrule distance,
denoted as d1 : Sn ×Sn → N is defined as:

∀σ1, σ2 ∈ Sn, d1(σ1, σ2) =
n∑

i=1
|σ1(i)− σ2(i)|, (2.1.2)

Spearman’s Footrule distance is the equivalent of the L1-norm distance for the rankings.
It is lower-bounded by 0 and upper-bounded by n2/2 if n is even and (n− 1)(n + 1)/2 if
n is odd.

Definition 2.1.5. Spearman’s Rho distance. The Spearman’s Rho distance, denoted
as d2 : Sn ×Sn → R+ is defined as:

∀σ1, σ2 ∈ Sn, d2(σ1, σ2) =
(

n∑
i=1

(σ1(i)− σ2(i))2
)1/2

, (2.1.3)

Spearman’s Rho distance is the equivalent of the L2-norm distance for the rankings. It is
lower-bounded by 0 and upper-bounded by (n− 1)n(n + 1)/3.

All the aforementioned distances, when used in the thesis, will be normalized to ease the
comparisons. However, this short list is, of course, non-exhaustive: other distances, like
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the Hamming distance, the Cayley distance, or others in Bachmaier et al. (2015), can also
be considered, but the three aforementioned distances remain the most used ones. Each of
the distances exhibits features that make them useful for specific tasks. For example, the
Kendall Tau distance has a (naive) complexity of O(n2), contrary to the two Spearman’s
distances which have a complexity of O(n). But the Kendall Tau distance considers the
relative ordering of the items rather than specific values.

2.1.3 Classical Ranking Distributions

Probabilistic ranking models are an efficient tool to facilitate the development of statistical
models and to analyze ranking data, which have been studied in depth by the literature,
like Thurstone (1927, 1931) which introduced distributions based on ordering Gaussian
vectors or Bradley and Terry (1952); Luce (1959); Plackett (1975); Mallows (1957a) which
studied different variants of exponential family distributions.

The Mallows model, which is the most famous one, is a distance-based model defined with
respect to a central ranking. More specifically:

Definition 2.1.6. Mallows model. Let σ0 ∈ Sn be a central ranking, θ > 0 a dispersion
parameter and dτ Kendall Tau distance. The probability distribution P ∼M(σ0, θ) defined
by:

∀σ ∈ Sn, P (σ) = 1
Ψ(θ, dτ )e

−θdτ (σ0,σ) (2.1.4)

is referred to as the Mallows model (or distribution) of center σ0 and dispersion parameter
θ, where Ψ(θ, dτ ) is the normalization constant.

Another famous model is the Plackett-Luce model:

Definition 2.1.7. Plackett-Luce model. Let w = (w1, ..., wn) ∈ Rn
+ be a vector of

parameters. The probability distribution P ∼ PL(w) defined by:

∀σ ∈ Sn, P (σ) =
n∏

r=1

wσ−1(r)∑n
p=r wσ−1(p)

(2.1.5)

is referred to as the Plackett-Luce model (or distribution) of parameters w.

The Plackett-Luce distribution has become quite popular in the literature thanks to two
different characteristics:

Remark 2.1.8. The Plackett-Luce distribution enables a very fast and easy pairwise com-
parison of items because it satisfies the following property: if P ∼ PL(w), we have
P (Σ(i) < Σ(j)) = wi/(wi + wj).

Remark 2.1.9. The Plackett-Luce distribution is easy to simulate numerically using the
Gumbel trick, as it satisfies the following property: if G ∼ Gumbel(0, 1; n) is a ran-
dom vector of size n whose elements are independent standard Gumbel variables, then
argsort(G + log(w)) ∼ PL(w).

See for example Kool et al. (2019) for more details about this trick.
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2.2 Consensus Ranking

In the ranking literature, the location estimation task is usually referred to as Ranking
Aggregation, or Consensus Ranking. Usually, the location estimate is called the consen-
sus. The first works studying this problem trace back to social choice theory with, for
example, Condorcet (1785). This Section summarizes the main methods to solve this task
as explored by the literature.

2.2.1 Kemeny’s Consensus and Other Classical Methods

The main approach to solving the Consensus Ranking problem is metric-based and solves
a simple optimization problem. More specifically, it is defined as follows.

Definition 2.2.1. Classical Consensus Statistics. Let l : Sn × Sn → R+ be a
distance on rankings. A classical consensus statistics is a function Tl : M1

+(Sn) → Sn

solving the following optimization problem: ∀P ∈M1
+(Sn),

Tl(P ) ∈ argmin
σ∈Sn

EΣ∼P (l(Σ, σ)), (2.2.1)

The output of statistics Tl is usually denoted by σ⋆
l (where the dependence in P is dropped

when the context is clear) and is simply called the consensus.

In particular, when the distance l chosen is Kendall Tau, meaning l = dτ , then the
problem defined by Definition 2.2.1 is called Kemeny’s aggregation, Kemeny’s statistics is
thus denoted by Tdτ and the solution σ⋆

dτ
is called Kemeny’s consensus.

Kemeny’s aggregation method, based on Kendall Tau distance, is certainly the most
popular choice to solve the Consensus Ranking task, even though it has the following
major drawback: computing the consensus from an empirical distribution is an NP-hard
problem in the general case, meaning that it cannot be solved in polynomial time, given P
̸= NP. This popularity is explained by the fact that Kemeny’s aggregation method satisfies
numerous properties that are desirable for a consensus method, contrary to methods using
other distances like Spearman’s Footrule or Spearman’s Rho. These desirable properties
are too numerous to be exhaustively developed, but from a high-level perspective, they
reveal the characteristics that a good consensus should exhibit. For example, the main
one that is satisfied by Kemeny’s aggregation is the following.

Property 2.2.2. Condorcet Criterion. Let P ∈M1
+(Sn) be a distribution, and σ⋆(P )

be a consensus. Suppose that ∃ i0 ∈ [n] such that ∀i ∈ [n], P (Σ(i0) < Σ(i)) ≥ 1/2, then
σ⋆(P ) is said to satisfy Condorcet Criterion if σ⋆(P )−1(1) = i0.

A consensus satisfying Condorcet Criterion thus ensures that an item being preferred over
all other items in every head-to-head contest, meaning in pairwise comparison, must then
be the preferred item. Kemeny’s consensus satisfies this fundamental property, which is
not the case for the same metric-based method when using either Spearman’s footrule or
Spearman’s rho distances. Other properties satisfied by Kemeny’s consensus are ranking
consistency (which ensures that if the source dataset or distribution is divided into several
parts and all parts exhibit the same Kemeny’s consensus, then it must be Kemeny’s
consensus for the full problem), Pareto efficiency, and independence of Smith-dominated
alternatives, see for example Dwork et al. (2001a).
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For these reasons, even though different choices of distances can be considered in the
metric-based approach defined by Equation (2.2.1), Kemeny’s aggregation method re-
mains the most popular and studied choice.

However, other approaches can also be considered to solve the Consensus Ranking prob-
lem. Such choices include the Borda Count method, the Copeland method, the Mini-
max Condorcet method, or even Markov Chains-based methods. Among them, the Borda
Count remains a popular method thanks to its simplicity and its computational efficiency,
even though it does not satisfy several desirable properties like Condorcet Criterion.

Definition 2.2.3. Borda Count. Let P ∈M1
+(Sn) be a distribution. The Borda count

of an item i ∈ [n] for distribution P is defined by:

BP (i) =
∑

σ∈Sn

P (σ)σ(i) (2.2.2)

Then, the Borda statistics is given by:

TBorda(P ) ∈ argsort(BP ), (2.2.3)

where argsort(s) = {σ ∈ Sn,∀r ∈ [n− 1], sσ−1(r) ≤ sσ−1(r+1)}

An interesting property of the Borda Count is that it corresponds to a consensus statistics
when the metric l used is Spearman’s Rho, as shown in Calauzènes et al. (2013).

2.2.2 Practical Approaches on Solving Kemeny’s Consensus

As previsouly mentioned, Kemeny’s Aggregation method is NP-hard in the general case,
even for a small number of items such as n = 4, as proved by Dwork et al. (2001b).
Fortunately, Kemeny’s Consensus can be either approximated using Equation (2.2.1) with
the Spearman’s Footrule distance or local Kemenization as shown in Dwork et al. (2001b),
or, alternatively, can be efficiently computed with additional hypothesis on the distribution
under study.

This latter possibility has been investigated in Korba et al. (2017). They introduced the
important notion of stochastic transitivity, which is recalled here.

Definition 2.2.4. Pairwise Probabilities. Let P ∈ M1
+(Sn) be a distribution. Its

corresponding pairwise probability matrix, denoted by (pi,j)1≤i,j≤n is the matrix composed
of the pairwise probabilities as defined by:

∀(i, j) ∈ [n]2, pi,j = P (Σ(i) < Σ(j)). (2.2.4)

As a quick remark, it obviously holds that ∀(i, j) ∈ [n]2, pj,i = 1 − pi,j. As the Kendall
Tau distance computes the number of pairwise disagreements between two rankings, it has
a clear connection with the notion of pairwise probabilities. In fact, as stated in Korba
et al. (2017), the following result can be derived:

Property 2.2.5. Let P ∈ M1
+(Sn) be a distribution, and (pi,j)1≤i,j≤n its pairwise proba-

bility matrix. Then, ∀σ ∈ Sn:

EΣ∼P (dτ (Σ, σ)) =
∑
i<j

pi,j1(σ(i) > σ(j)) + (1− pi,j)1(σ(i) < σ(j)) (2.2.5)
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Figure 2.3: Illustration of stochastic transitivity. The two graphs represent the pairwise proba-
bilities associated with two different distributions. An arrow from i to j indicates that pi,j > 1/2.
The leftmost distribution corresponds to a case where p1,2 > 1/2, p2,3 > 1/2 and p1,3 > 1/2;
the corresponding graph is acyclic, and thus the distribution is ST. The rightmost distribution
corresponds to a case where p1,2 > 1/2, p2,3 > 1/2 but p1,3 < 1/2; the corresponding graph is
cyclic, and thus the distribution is non-ST.

Now, the aforementioned notion of stochastic transitivity is defined below, and illustrated
in Figure 2.3 for more clarity.

Definition 2.2.6. Stochastic Transitivity (ST). Let P ∈M1
+(Sn) be a distribution,

and (pi,j)1≤i,j≤n its pairwise probability matrix. P is said to be stochastically transitive
(ST) if it satisfies:

∀(i, j, k) ∈ [n]3, pi,j ≥ 1/2 and pj,k ≥ 1/2⇒ pi,k ≥ 1/2. (2.2.6)

Furthermore, P is said to be strictly ST (SST) if all the comparisons in the previous
Equation are strict.

The stochastic transitivity property, first explored in Davidson and Marschak (1959);
Fishburn (1973), is fulfilled by some widely used ranking distributions, such as the Mallows
distribution, and shown to facilitate various statistical tasks, see for example Shah et al.
(2015); Shah and Wainwright (2018). In particular, Korba et al. (2017) demonstrated this
important result:

Theorem 2.2.7. Let P ∈ M1
+(Sn) be a strictly stochastichally transitive (SST) distribu-

tion. Then,

σ⋆ = argsort(s), with ∀i ∈ [n], s(i) = 1 +
∑
i ̸=j

1(pi,j < 1/2) (2.2.7)

is the unique Kemeny’s consensus for distribution P .

Under the assumption that distribution P is SST, the computational cost of computing
Kemeny’s consensus is thus completely reduced. In an empirical case where a dataset
SN of size N is available, the computational cost of computing the pairwise probability
matrix is O(n2N), and afterward the computation of Kemeny’s consensus is O(nlog(n)),
which is computationally tractable.

In practice, this SST hypothesis is quite reasonable: not only most of the parametric
distributions, such as the Mallows distribution or the Plackett-Luce distributions, are
stochastically transitive, but ‘real-world’ datasets available, for example, in the preflib
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library, at https://www.preflib.org/, are also stochastically transitive. Of course,
non-stochastically transitive distributions or datasets can be constructed, for example
using mixtures of different distributions, or by contaminating a dataset with additional
adversarial inputs, as will be explored in Chapter 3.

2.2.3 Vulnerability of Consensus Median

Computing a consensus for any distribution P is thus not obvious. Not only several
methods, as stated in Section 2.2.1, can be derived and lead to very different results (for
example, Kemeny’s consensus and Borda’s consensus do not coincide in general, even when
the distribution is SST), but the aforementioned methods are not always guaranteed to
output unique results (Kemeny’s consensus is not necessarily unique when the distribution
is not SST). If, in addition, a probability or a dataset faces an adversarial attack, it can
be sometimes very easy to modify the consensus.

Let’s explore an example to better understand this limitation.

Suppose that n = 3 and distribution P0 is defined as follows: P0(1 ≻ 2 ≻ 3) = P (3 ≻ 2 ≻
1) = 1/2. Then, Kemeny’s consensus is the whole set S3, so any ranking is a consensus.
But now, if we have P1 defined by P1(1 ≻ 2 ≻ 3) = 0.501 and P (3 ≻ 2 ≻ 1) = 0.499; and
equivalently we have distribution P2 defined by P1(1 ≻ 2 ≻ 3) = 0.499 and P (3 ≻ 2 ≻
1) = 0.501, then Kemeny’s consensus is unique in both cases and is 1 ≻ 2 ≻ 3 for P1 and
3 ≻ 2 ≻ 1 for P2, even though the differences in the three distributions P0, P1 and P2 are
very small.

This example is typically an illustration of the vulnerability of Kemeny’s consensus to
perturbations, and in particular adversarial ones. Prior to the research presented in this
thesis, Agarwal et al. (2020) has identified and addressed the issue of robustness in a
similar context. Their work focuses on a pairwise comparison-based setup, where full
rankings are not available, only pairwise comparisons are. Notice that this can be equiv-
alently mapped to a full ranking problem when studying Kemeny’s consensus because, as
previously shown in Property 2.2.5, Kendall Tau necessitates only pairwise probabilities to
be computed. They study the problem of identifiability of the weights of a Bradley-Terry-
Luce distribution P , which is a generalization of the Plackett-Luce model. By formulating
the problem using graphs, they first derive a specific attack called Single Cut Corruption,
which modifies some pairwise probabilities. Then, they provide conditions under which
the true parameters can still be identified from a corrupted graph, and later they provide
an efficient algorithm to achieve this identification.

Their work has paved the way for the study of robustness in rankings, and the work pre-
sented in Chapters 3 and 4 extends theirs by considering a non-parametric approach and
non-constrained class of adversarial perturbations. To do so, two broad research direc-
tions can be identified. The first one is to derive new statistics or consensus methods, to
reach a more accurate representation of the studied distribution. The work presented in
Chapter 3 falls under this category by defining the concept of Depth functions for ranking
distributions. The second direction aims at robustifying an existing consensus method
like Kemeny’s consensus, to account for potential adversarial perturbations. The work
presented in Chapter 4 follows this idea by presenting a plugin that can be added to
Kemeny’s consensus to robustify it.
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Summary of contributions on poisoning attacks

Chapter 3 is inspired by the following article: Morgane Goibert, Stéphan Clé-
mençon, Ekhine Irurozki, Pavlo Mozharovskyi (2022). Statistical Depth Functions
for Ranking Distributions: Definitions, Statistical Learning and Applications. In
Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics (AISTATS 2022) . See Goibert et al. (2022a)

It presents an adaptation of the concept of depth function for ranking data,
which provides analogs of quantiles. It thus enables the computation of statistical
procedures based on ranks, and specifically, it develops a trimming algorithm
that aims at recovering a robust consensus for the consensus ranking task. This
strategy is shown to be theoretically and experimentally effective.

Chapter 4 is inspired by the following article: Morgane Goibert, Clément
Calauzènes, Ekhine Irurozki, Stéphan Clémençon (2023). Robust Consensus in
Ranking Data Analysis: Definitions, Properties and Computational Issues. In
Proceedings of the 40th International Conference on Machine Learning (ICML
2023). See Goibert et al. (2023)

It presents a rigorous framework for computing and evaluating the breakdown
function for any statistics devoted to the consensus ranking task. It also provides
a robustification plugin that can be added to the output of any statistics, based on
bucket rankings, which aims at incorporating undecidability for close items, which
is shown to provide much more robustness and almost no precision loss compared
to traditional statistics. These results are illustrated by experiments on synthetic
and real data.
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Chapter 3

Depth Functions for Ranking
Distributions

Guess if you can, choose if you
dare.

Pierre Corneille
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3.1 High-level Overview

3.1.1 Outline of the Rationales of the Chapter

As explained at length in Sections 1.3 and 2.2, the question of finding a consensus ranking
to solve the location estimation task, also called consensus ranking in the community, is
at the core of the training of a machine learning model on ranking data. Inspired by
Huber’s robustification procedures explored in Section 1.3, a first approach to provide
more robustness to the classical consensus statistics is to build statistics based on the
ranks of a ranking random variable.

Indeed, rank-based statistics are very useful to define analogs of quantiles, which in turn
can provide much more informative features about a studied distribution P ∈ M1

+(Sn)
than just the median, meaning the consensus. It is the purpose of this Chapter to define
these analogs of quantiles, ranks, and the relevant statistical procedures based on such
quantities for the analysis of ranking data by means of a metric-based notion of depth
function on the symmetric group.

Overcoming the absence of vector space structure on Sn, the proposed depth function
defines a center-outward ordering of the permutations in the support of P and extends
the classic metric-based formulation of consensus ranking. The axiomatic properties that
ranking depths functions should ideally possess will be listed, and computational and
generalization issues are studied at length. Beyond the theoretical analysis carried out,
the relevance of the novel concepts and methods are illustrated through the crafting of
a trimming trategy to robustify the classical Kemeny’s consensus, which is inspired by
the typical trimmed mean or trimmed median statistics in the context of real-numbered
data. This trimming strategy is shown to outperform Kemeny’s consensus in terms of
robustness both theoretically and empirically. Additionally, depth-based procedures are
shown to be relevant for other classical statistical tasks, which showcase the usefulness
and flexibility of this concept for ranking data.

3.1.2 Outline of the Main Contributions of the Chapter

This Chapter is devoted to defining quantities based on ranks for ranking data, as well as
defining more robust statistics than classical ones such as Kemeny’s statistics or Borda’s
statistics.

To do so, the concept of statistical depth function is first extended to the space of rankings.
Some basics in statistical depth theory are briefly recalled in Section 3.2, while Section 3.3
introduces an extension of the notion of depth function tailored to ranking data. Desirable
axioms for ranking depths are listed therein, and shown to hold under mild conditions,
e.g. stochastic transitivity.

In Section 3.4, statistical guarantees are provided for the ranking depth and its by-
products, in the form of non-asymptotic bounds for the deviations between the ranking
depth function and its statistical counterpart in particular.

Then, in Section 3.4.2, the trimming algorithm, based on the ranking depth concept is
proposed. One of its versions aims at recovering automatically a stochastically transitive
version of the empirical ranking distribution so that computing Kemeny’s consensus on
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this trimmed dataset is ensured to produce a unique relevant solution. Other versions of
the same algorithm, for example with a fixed proportion of the dataset to trim, are also
explored.

Finally, beyond the theoretical and algorithmic concepts introduced previously and an-
alyzed throughout the Chapter, the relevance of the notion of ranking depth for robus-
tification purposes is explored experimentally in Section 3.5. Furthermore, the depth is
also shown to be very interesting to solve a wide variety of statistical applications beyond
robustness.

The main contributions are thus summarized below:

• Statistical depth and related axiomatic properties are extended to ranking data, in order
to emulate quantiles/ranks for r.v.’s valued in Sn.

• A finite-sample analysis ensures the usability of the notion of ranking depth introduced.

• An algorithm of great simplicity that uses ranking depth to build stochastically tran-
sitive empirical ranking distributions (based on which, crucial statistical tasks such as
consensus ranking are straightforward) is proposed.

• The ranking depth, and its related quantile regions in Sn, can be used for the statistical
analysis of rankings: 1) fast and robust recovery of medians in consensus ranking, 2)
informative graphical representations of ranking data, 3) anomaly/novelty detection, 4)
homogeneity testing.

3.2 Background and Preliminaries

In this Section, the notion of depth function for multivariate data is thoroughly introduced
and explained. For completeness, some results on the classical consensus aggregation
techniques will also be recalled.

3.2.1 Depth Functions for Multivariate Data

In the absence of any ‘natural order’ on Rd with d ≥ 2, the concept of statistical depth
provides a mean to define a center-outward ordering of points in the support of a probabil-
ity distribution P on Rd, so as to extend the notions of order and (signed) rank statistics
to multivariate data, as explored in e.g. Mosler (2013).

A depth function DP : Rd → R+ relative to P should ideally assign the highest values
DP (x) to points x ∈ Rd near the ‘center’ of the distribution, which is one of its main
interest. Furthermore, the values DP (x) should ideally decrease as one moves away from
the center. Since both characteristics are desirable, they are the core components of two
out of a set of four axioms that defines depth functions. This axiomatic nomenclature has
been introduced in Zuo and Serfling (2000a), listing the four axioms that statistical depths
should ideally satisfy, even though different formulations of a statistically equivalent set of
axioms are also explored in Dyckerhoff (2004); Mosler (2013). These axioms are illustrated
in Figure 3.1 and defined as follows:

(i) (Affine invariance) Denoting by PX the distribution of any r.v. X taking its
values in Rd, it holds: DPAX+b

(Ax + b) = DP (x) for all x ∈ Rd, any r.v. X valued in
Rd, any d× d nonsingular matrix A with real entries and any vector b in Rd.
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(a) Illustration of the affine in-
variance axiom. When trans-
lating the distribution on the
upper-right corner, the depth
function does not change.

(b) Illustration of the maximal-
ity at center axiom. The deep-
est point corresponds to the
most central point for the dis-
tribution.

(c) Illustration of the mono-
tonicity axiom. The depth de-
creases along rays (shown in
red) when moving away from
the deepest point.

Figure 3.1: Illustration of the 3 main axioms relative to depth functions.

(ii) (Maximality at center) For any probability distribution P on Rd that possesses
a symmetry center xP (for different notions of center), the depth function DP takes
its maximum value at it, i.e. DP (xP ) = supx∈Rd DP (x).

(iii) (Monotonicity relative to deepest point) For any probability distribution
P on Rd with deepest point xP , the depth at any point x in Rd decreases as one moves
away from xP along any ray passing through it, i.e. DP (x) ≤ DP (xP + α(x− xP ))
for any α in [0, 1].

(iv) (Vanishing at infinity) For any probability distribution P on Rd, the depth
function DP vanishes at infinity, i.e. DP (x)→ 0 as ||x|| tends to infinity.

A depth function is thus a class of functions that satisfy the aforementioned axioms.
The first depth function, originally introduced in the seminal contribution Tukey (1975),
is called the half-space depth. Specifically, for a point x ∈ Rd relative to a distribution
P ∈M1

+(Rd), it computes the minimum of the mass P (H) taken over all closed half-spaces
H ⊂ Rd such that x ∈ H. Many alternatives have been proposed since then, see e.g. Liu
(1990); Liu and Singh (1993); Koshevoy and Mosler (1997); Chaudhuri (1996); Oja (1983);
Vardi and Zhang (2000); Chernozhukov et al. (2017); Zuo and Serfling (2000a).

As the distribution P of interest is generally unknown in practice, its analysis relies on the
observation of N ≥ 1 independent realizations X1, . . . , XN of P . A statistical version of
DP (x) can be built by replacing P with its empirical counterpart P̂N = (1/N)∑N

i=1 δXi
,

yielding the empirical depth function D
P̂N

(x). Its consistency and asymptotic normality
have been studied for various notions of depth, as explored in Donoho and Gasko (1992);
Zuo and Serfling (2000b), and concentration results for empirical depth and contours have
been recently proved in the half-space depth case in Burr and Fabrizio (2017); Brunel
(2019).
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3.2.2 Reminder on Consensus Ranking

The main approach to consensus ranking, introduced in Section 2.2.1, is recalled here:

Definition 2.2.1. Classical Consensus Statistics. Let l : Sn × Sn → R+ be a
distance on rankings. A classical consensus statistics is a function Tl : M1

+(Sn) → Sn

solving the following optimization problem: ∀P ∈M1
+(Sn),

Tl(P ) ∈ argmin
σ∈Sn

EΣ∼P (l(Σ, σ)), (2.2.1)

The output of statistics Tl is usually denoted by σ⋆
l (where the dependence in P is dropped

when the context is clear) and is simply called the consensus.

This definition presents the metric approach to solving the consensus ranking problem.
Intuitively, such an optimization problem finds one or several rankings σ ∈ Sn that have
the smallest ranking risk with respect to the studied distribution P ∈ M1

+Sn. The risk
of a ranking σ ∈ Sn is defined as follows:

LP (σ) = EΣ∼P (l(Σ, σ)) (3.2.1)

An important remark can be made here: the ranking consensus σ⋆
l is not necessarily

unique, even though it is, in all cases, an informative summary of P , and LP (σ⋆
l ) is an

informative dispersion measure.

A second important remark is that the choice of the (pseudo) distance l(., .) is crucial,
regarding the theoretical properties of the corresponding consensus and the computational
feasibility. Various distances have been considered in the literature (see e.g. Deza and
Huang (1998)): the most popular choices, introduced in Section 2.1.2, are the Kendall
Tau distance, the Spearman’s Footrule and Spearman’s Rho distance, which can be com-
pleted with the Hamming distance for example, defined by ∀ (σ1, σ2) ∈ S2

ndH(σ1, σ2) =∑n
i=1 1(σ1(i) ̸= σ2(i))

The literature has essentially focused on solving a statistical version of the minimization
problem Equation (2.2.1) in Definition 2.2.1, as in Hudry (2008); Diaconis and Graham
(1977); Bartholdi III et al. (1989). Assuming that N ≥ 1 independent copies Σ1, . . . , ΣN

of the generic random variables Σ are observed, a natural empirical estimate of LP (σ)
is L̂N(σ) = (1/N)∑N

s=1 d(Σs, σ) = L
P̂N

(σ), where P̂N = (1/N)∑N
i=1 δΣi

is the empirical
measure. The set Sn being of finite cardinality, an empirical ranking risk minimizer
always exists, just like a solution to Equation (2.2.1), not necessarily unique however.
Generalization guarantees and fast rate conditions for empirical consensus ranking have
been investigated in Korba et al. (2017).

3.3 Depth Functions for Ranking Data

In order to define relevant extensions of the concept of statistical depth to ranking data,
we define axiomatic properties that candidate functions on Sn should satisfy. We next
show that the metric-based ranking depths we propose for ranking distributions analysis
satisfy these axioms under mild conditions.
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3.3.1 Ranking Depth: Axioms

Just like in the multivariate setup (see Section 3.2.1), a list of key axioms that the ranking
depth function DP should ideally satisfy can be made. These axioms are essential to
emulate the information provided by quantiles (respectively quantile regions) of univariate
distributions (respectively multivariate distributions) in a relevant manner. Let P be a
ranking distribution, d a distance on Sn, the axioms desirable for any ranking depth
DP : Sn → R+ are listed below.

Axiom 3.3.1. Invariance. For any ν ∈ Sn, consider the ranking distribution νP defined
by: (νP )(σ) = P (σ ◦ ν−1) for all σ ∈ Sn. It holds that: DP (σ) = DνP (σ ◦ ν) for all
(σ, ν) ∈ S2

n.

Axiom 3.3.2. Maximality at center. For any probability distribution P on Sn that
possesses a symmetry center σP (in a certain sense, e.g. w.r.t. to a given metric d on Sn),
the depth function DP takes its maximum value at it, i.e. DP (σP ) = maxσ∈Sn DP (σ).

Axiom 3.3.3. Local monotonicity relative to deepest ranking. Assume that
the deepest ranking σ⋄ = argmaxσ∈Sn

DP (σ) is unique. The quantity DP (σ) decreases as
d(σ⋄, σ) locally increases, i.e. for any σ ∈ Sn and (i, j) ∈ [n]2 such that σ(j) = σ(i) + 1,
if d(σ⋄, σ ◦ τi,j) > d(σ⋄, σ), then we have DP (σ) > DP (σ ◦ τi,j).

Note that, insofar as Sn is of finite cardinality, there is no relevant analog of the
‘vanishing at infinity’ axiom for multivariate depth. The above three axioms thus com-
pletely characterize a ranking depth function. Among them, the local monotonicity axiom
is perhaps the most important one, as it provides exactly the ordering information we are
looking for.

3.3.2 Metric-based Ranking Depth Functions: Definition

Seeking to define a ranking depth that satisfies the axioms listed above and such that the
consensus σ⋆

l of P have maximal depth, the metric approach provides natural candidates,
just like for consensus ranking.

Definition 3.3.4. Metric-based ranking depth. Let l be a distance and P ∈M1
+(Sn)

a distribution on rankings. The ranking depth based on l is defined as: D
(l)
P : ∀ σ ∈ Sn,

D
(l)
P (σ) = EΣ∼P [||l||∞ − l(σ, Σ)] = ||l||∞ − LP (σ)

||l||∞
, (3.3.1)

with ||l||∞ = max(σ,ν)∈S2
n

l(σ, ν).

The shift induced by ||l||∞ ≥ L⋆ = maxσ∈Sn LP (σ) simply guarantees non-negativity,
in accordance with Definition 2.1 in Zuo and Serfling (2000a), while defining the same
center-outward ordering of the permutations σ in Sn as −LP .

Notice that metric-based ranking depths can be viewed as extensions of multivariate
depth functions of type A in the nomenclature proposed in Zuo and Serfling (2000a). For
simplicity, we omit the superscript (l) and rather write DP when no confusion is possible
about the distance considered. Moreover, the distances in rankings, such as Kendall Tau
and Spearman’s Footrule and Rho, are upper-bounded: to ease the comparison, the depth
will be normalized in the rest of the Chapter, meaning divided by ||l||∞.
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A ranking σ ∈ Sn is said to be deeper than another one ν relative to the ranking distribu-
tion P if and only if DP (ν) ≤ DP (σ) and we write ν ⪯DP

σ. The ranking depth ordering
⪯DP

is the preorder related to the depth function DP .

Equiped with this notion of depth on SN , a straightforward remark can be made.

Remark 3.3.5. Let P ∈ M1
+(Sn) be a distribution, l : Sn × Sn → R+ a distance and

D
(l)
P the depth defined as in Definition 3.3.4. Let us write the consensus the usual way:

σ⋆
l := argminσ∈Sn

EΣ∼P [l(Σ, σ)] and the deepest ranking: σ⋄
l := argmax D

(l)
P

σ⋆
l = σ⋄

l (3.3.2)

This remark is a natural consequence of the definition of the depth D
(l)
P , and allows for

a better appreciation of the importance of the choice of Definition 3.3.4 for the depth
function.

Also, if P is a Dirac mass δσ0 , the ranking depth then simply boils down to the measure
of closeness defined by the distance d chosen: DP (σ) = ||d||∞ − d(σ0, σ). In contrast, if
P is the uniform distribution, the ranking depth relative to a classic distance on Sn is
constant over Sn. The depth function also allows to partition the space Sn into subsets
of rankings with equal depth.

Definition 3.3.6. Depth regions/contours. For any u ∈ R, the region of depth u is
the superlevel set RP (u) = {σ ∈ Sn : DP (σ) ≥ u} of DP , while the ranking contour of
depth u is the set ∂RP (u) = {σ ∈ Sn : DP (σ) = u}.

Equipped with this notation, ∂RP (−LP (σ⋆)) is the set of medians of P w.r.t. the metric
l.

Definition 3.3.7. Depth survivor function. The ranking depth survivor function is
sP : u ∈ R 7→ sP (u) = P{DP (Σ) ≥ u}.

Based on the metric-based ranking depth, the quantile regions are defined as follows.

Definition 3.3.8. Quantile regions in Sn. Let α ∈ (0, 1). The depth region with
probability content α is the region of depth s−1

P (α) = inf{u ∈ R : sP (u) ≤ 1 − α}:
RP (α) = RP (s−1

P (α)). The mapping α ∈ (0, 1) 7→ s−1
P (α) is called the ranking quantile

function.

3.3.3 Metric-based Ranking Depth Functions: Main Axioms

As the object of depth functions, as well as by-products such as depth regions, contours,
survivor function, and quantile regions have been defined, we are now going to explore
related propositions that can be drawn from these. More precisely, we will provide condi-
tions under which our candidate depth function satisfies all the axioms to be considered
as such.

Invariance axiom.

We now state results showing that, under mild conditions and for popular choices of l, the
metric-based ranking depth introduced in Definition 3.3.4 satisfies the key axioms listed
in Section 3.3.1.
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Proposition 3.3.9. About Invariance. Suppose that l is right-invariant, i.e. l(ν ◦π, σ ◦
π) = d(ν, σ) for all (ν, π, σ) ∈ S3

n. Then, the ranking depth D
(l)
P satisfies the invariance

axiom Axiom 3.3.1.

We point out that Kendall tau, Spearman’s Footrule and Rho, Hamming, Ulam and
Cayley distances are all right-invariant. Hence, the invariance axiom is satisfied for any
ranking distribution in all situations involving a classical distance, which is always the
case in practice.

Proof of Proposition 3.3.9 (proposition on invariance).

Let ν ∈ Sn and P ∈ M1
+(Sn) be a distribution, such that νP is defined by ∀ σ ∈

Sn, (νP )(σ) = P (σ ◦ ν−1). Let l : Sn ×Sn → R+ be a right-invariant distance. Then we
have:

DνP (σ ◦ ν) = EΣ∼νP [||l||∞ − l(σ ◦ ν, Σ)] (3.3.3)

= ||l||∞ −
∑

π∈Sn

(νP )(π)l(σ ◦ ν, π) (3.3.4)

= ||l||∞ −
∑

π∈Sn

P (π ◦ ν−1)l(σ ◦ ν, π) (3.3.5)

= ||l||∞ −
∑

π∈Sn

P (π ◦ ν ◦ ν−1)l(σ ◦ ν, π ◦ ν) (3.3.6)

= ||l||∞ −
∑

π∈Sn

P (π)l(σ, π) (3.3.7)

= DP (σ) (3.3.8)

The two remaining axioms require more care to be satisfied. The maximality axiom is
mainly related to the notion of ‘center’, which is not a common object for ranking data,
and thus must be correctly defined. The monotonicity axiom is more complex, but also
at the core of the definition of a depth function.

Maximality axiom.

To better study both axioms, we need to recall the stochastic transitivity axiom that
characterizes smooth distributions on rankings, already introduced in Definition 2.2.6
that is restated here.

Definition 2.2.6. Stochastic Transitivity (ST). Let P ∈M1
+(Sn) be a distribution,

and (pi,j)1≤i,j≤n its pairwise probability matrix. P is said to be stochastically transitive
(ST) if it satisfies:

∀(i, j, k) ∈ [n]3, pi,j ≥ 1/2 and pj,k ≥ 1/2⇒ pi,k ≥ 1/2. (2.2.6)

Furthermore, P is said to be strictly ST (SST) if all the comparisons in the previous
Equation are strict.
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Then, the maximality axiom relies on the critical notion of ‘center’, which is not properly
defined for ranking distributions. We propose two notions of center in the following
paragraph, called the M -center and the H-center, which outline different properties of
the studied distribution. The M -center notion is inspired by the metric approach that is
common to the formulation of the consensus ranking task and our depth function, thus
providing a notion of center in line with our approach. The H-center is inspired by the
half-space symmetry, a classical notion from Tukey (1975); Zuo and Serfling (2000a) used
in the classical definition of half-space depth, which provides a clear connection between
our work and the seminal works on depth functions from the aforementioned contributions.

Definition 3.3.10. M-Center Let P ∈M1
+(Sn) be a distribution and l : Sn×Sn → R+

be a metric. σ0 ∈ Sn is said to be a M-center if:

∀ (σ1, σ2, σ3) such that d(σ0, σ1) = d(σ0, σ2) < d(σ0, σ3), we have:

P(Σ = σ1) = P(Σ = σ2) ≥ P(Σ = σ3)
(3.3.9)

Definition 3.3.11. H-Center Let P ∈M1
+(Sn) be a distribution and l : Sn×Sn → R+

be a metric. Let us call ’hyperplane’ the sets Hi,j = {σ : σ(i) < σ(j)}. σ0 ∈ Sn is said to
be a H-center if:

∀ (i, j) ∈ {(i, j) |σ0(i) < σ0(j)} we have:

P (Σ ∈ Hi,j) > P (Σ ∈ Hj,i)
(3.3.10)

Proposition 3.3.12. Maximality at the center. Let l : Sn×Sn → R+ be a distance
and P ∈M1

+(Sn) be a distribution. Then we have the following results:

1) If distribution P has a M-center and l is Kendall Tau, Spearman’s Footrule or Spear-
man’s Rho distance, then the maximality axiom Axiom 3.3.2 is satisfied.

2) If distribution P has a H-center and l is Kendall Tau distance then the maximality
axiom Axiom 3.3.2 is satisfied.

Proof of Proposition 3.3.12 (maximality proposition for M-center)

Let P ∈ M1
+(Sn) be a distribution. Let σ0 ∈ Sn be a M -center for P and (i, j) ∈ [n]2

be two items such that σ0(i) < σ0(j). Finally, let ν1 ∈ Sn be a ranking such that
ν1(i) < ν1(j) = ν1(i) + 1, τi,j be the transposition of i and j, and ν2 = ν1 ◦ τi,j. Thus, ν1
and ν2 are two neighboring rankings that differ only by swapping their adjacent items i
and j.

Kendall Tau distance. Let l = dτ be Kendall Tau distance. Proving Proposition 3.3.12
will follow by proving that D

(dτ )
P (ν1) > D

(dτ )
P (ν2)⇔ EΣ∼P [dτ (Σ, ν1)] < EΣ∼P [dτ (Σ, ν2)].

To do so, let us make two remarks.

First, for any σ ∈ Sn, dτ (ν2, σ)− dτ (ν1, σ) = 1 if σ(i) < σ(j) and = −1 if σ(i) > σ(j).

Second, let us write Sσ0(d) = {σ ∈ Sn | dτ (σ0, σ) = d} the sphere centered in σ0 and
of radius d, and #Sσ0(d) its cardinality. As σ0 is a M -center, we have that ∀ σ ∈
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Sσ0(d), P (Σ = σ) := Pd is constant. Moreover, the following remarks hold: if d ≤
⌊||dτ ||∞/2⌋, then #Sσ0(d) ∩ {σ|σ(i) < σ(j)} > #Sσ0(d) ∩ {σ|σ(i) > σ(j)}. Conversely,
d ≤ ⌈||dτ ||∞/2⌉, then #Sσ0(d)∩ {σ|σ(i) < σ(j)} < #Sσ0(d)∩ {σ|σ(i) > σ(j)}. Moreover,
if ||dτ ||∞ is even, then #Sσ0(||dτ ||∞/2) ∩ {σ|σ(i) < σ(j)} > #Sσ0(||dτ ||∞/2) ∩ {σ|σ(i) >
σ(j)}.

For easiness of read, let’s write #Sσ0(d) ∩ {σ|σ(i) < σ(j)} = #Sσ0(d, +) and #Sσ0(d) ∩
{σ|σ(i) < σ(j)} = #Sσ0(d,−)

Then:∑
σ

P(Σ = σ) [dτ (ν2, σ)− dτ (ν1, σ)] (3.3.11)

=
||dτ ||∞∑

d=0
Pd × (#Sσ0(d, +)−#Sσ0(d,−)) (3.3.12)

=
⌊||dτ ||∞/2⌋∑

d=0
Pd × (#Sσ0(d, +)−#Sσ0(d,−))

+
||dτ ||∞∑

d′=⌈||dτ ||∞/2⌉
Pd′︸︷︷︸

<P||dτ ||∞−d′

× (#Sσ0(d, +)−#Sσ0(d,−))︸ ︷︷ ︸
<0

(3.3.13)

>
⌊||dτ ||∞/2⌋∑

d=0
Pd × (#Sσ0(d, +)−#Sσ0(d,−))

+
⌊||dτ ||∞/2⌋∑

d=0
Pd × (#Sσ0(||dτ ||∞ − d, +)−#Sσ0(||dτ ||∞ − d,−)) by a change

of variable d← ||dτ ||∞ − d

(3.3.14)

>
⌊||dτ ||∞/2⌋∑

d=0
Pd×

[(#Sσ0(d, +)−#Sσ0(d,−)) + (#Sσ0(||l||∞ − d, +)−#Sσ0(||dτ ||∞ − d,−))]︸ ︷︷ ︸
=0

(3.3.15)

> 0, which ends the proof for Kendall Tau. (3.3.16)

Spearman’s Footrule. Let l = d1 be Spearman’s Footrule distance. Similarly to Kendall
Tau, notice the following: ∀σ ∈ Sn

d1(σ, ν2) =
N∑

k=1
|σ(k)− ν2(k)| (3.3.17)

=
∑

k ̸=i,j

|σ(k)− ν1(k)|+ |σ(i)− ν1(i)− 1|+ |σ(j)− ν1(j) + 1| (3.3.18)

=


d1(σ, ν1) if σ(i) < σ(j) ≤ ν1(i) < ν1(j) or ν1(i) < ν1(j) ≤ σ(i) < σ(j)

or σ(j) < σ(i) ≤ ν1(i) < ν1(j) or ν1(i) < ν1(j) ≤ σ(j) < σ(i)
d(σ, σ0) + 2 if σ(i) ≤ ν1(i) < ν1(j) ≤ σ(j) (A)

d(σ, σ0)− 2 if σ(j) ≤ ν1(i) < ν1(j) ≤ σ(i) (B)

(3.3.19)
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Then, we aim to compute:∑
σ

P(Σ = σ) [d1(ν2, σ)− d1(ν1, σ)]

= 2
 ∑

σ|σ∈(A)
P(Σ = σ)−

∑
σ|σ∈(B)

P(Σ = σ)
 (3.3.20)

Since the sets (A)={σ|σ(i) ≤ ν1(i) < ν1(j) ≤ σ(j)} and (B) = {σ|σ(j) ≤ ν1(i) <
ν1(j) ≤ σ(i)} are symmetric, we can pair each element of (A) with an element of (B) the
following way: let σ ∈ (A), then ν = σ ◦ τi,j ∈ (B). Thus, we have more broadly that
(A) = (B) ◦ τi,j = {σ ◦ τi,j|σ ∈ (A)}.

Futhermore, we have for any σ ∈ (A), and thus ν ∈ (B), that d1(σ0, σ) < d1(σ0, ν), which
implies, because σ0 is a M -center, that P (Σ = σ) ≥ P (Σ = ν). Thus,∑

σ

P(Σ = σ) [d1(ν2, σ)− d1(ν1, σ)] (3.3.21)

= 2
 ∑

σ|σ∈(A)
P(Σ = σ)−

∑
σ|σ∈(B)

P(Σ = σ)
 (3.3.22)

= 2
 ∑

σ|σ∈(A)
P(Σ = σ)−

∑
σ|σ∈(A)

P(Σ = σ ◦ τi,j)
 (3.3.23)

= 2
∑

σ|σ∈(A)
[P(Σ = σ)− P(Σ = σ ◦ τi,j)] (3.3.24)

≥ 0, which ends the proof for Spearman’s Footrule (3.3.25)

Spearman’s Rho. Let l = d2 be Spearman’s Rho distance. Similarly to previous obser-
vations, since σ0 is a M -center we have that ∀σ ∈ Sn such that σ(i) < σ(j), P (Σ = σ) ≥
P (Σ = σ ◦ τi,j). Thus,∑

σ

P(Σ = σ) [d2(ν2, σ)− d2(ν1, σ)] (3.3.26)

=
∑

σ|σ(i)<σ(j)
P(Σ = σ) [d2(ν2, σ)− d2(ν1, σ)] +

∑
σ|σ(i)>σ(j)

P(Σ = σ) [d2(ν2, σ)− d2(ν1, σ)]

(3.3.27)

=
∑

σ|σ(i)<σ(j)
P(Σ = σ) [d2(ν2, σ)− d2(ν1, σ)] +

∑
σ|σ(i)<σ(j)

P(Σ = σ ◦ τi,j)

 d2(ν2, σ ◦ τi,j)︸ ︷︷ ︸
=d2(ν1,σ) since ν2=ν1◦τi,j

− d2(ν1, σ ◦ τi,j)︸ ︷︷ ︸
=d2(ν2,σ)

 (3.3.28)

=
∑

σ|σ(i)<σ(j)
[P (Σ = σ)− P (Σ = σ ◦ τi,j)] [d2(ν2, σ)− d2(ν1, σ)] (3.3.29)

≥ 0, which ends the proof for Spearman’s Rho (3.3.30)
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Now, let’s delve into the maximality axiom related to H-center. First, we will relate the
notion of H-center to that of stochastical transitivity through the following proposition.

Proposition 3.3.13. Let P ∈ M1
+(Sn) be a distribution. We have the following equiva-

lence:

P possesses a H-center in σ0 ⇔ P is strictly stochastically transitive (3.3.31)

Proof First, let us suppose that P is SST. Thus, as shown in Korba et al. (2017),
Kemeny’s consensus can be defined by σ⋆

P = argsort(s), where ∀i ∈ [n], s(i) = 1 +∑
j ̸=i 1(pi,j < 1/2), and is unique. Thus, let (i, j) be two items such that σ⋆

P (i) < σ⋆
P (j).

Let’s show that P (Σ ∈ Hi,j) > 1/2 ⇔ pi,j > 1/2. We have:
∑

k ̸=j 1(pj,k < 1/2) −∑
k ̸=i 1(pi,k < 1/2) = ∑

k ̸=i,j 1(pk,j > 1/2) − 1(pi,k < 1/2) + 1 − 21(pi,j < 1/2). As P is
SST, this difference is equal to either of two solutions: A) 1×#{k|i ≻ k ≻ j}+ 1, or B)
−1×#{k|j ≻ k ≻ i} − 1. Solution A) is positive, and solution B) is negative, thus only
solution A) is possible since s(i) < s(j), which implies that pi,j > 1/2. Then, we indeed
have that σ⋆

P is a H-center for P .

Second, let us suppose that P possesses a H-center in σ0. Let (i, j, k) ∈ [n]3, pi,k > 1/2 and
pk,j > 1/2. Let us show that pi,j > 1/2. By definition of the H-center, σ0(i) < σ0(k) and
σ0(k) < σ0(j) so σ0(i) < σ0(j). This implies that P (Σ ∈ Hi,j) > 1/2⇔ pi,j > 1/2.

With this intermediary result, the maximality proposition relative to H-center and
Kendall Tau distance follows immediately from the previous result and Korba et al. (2017).

Proof of Proposition 3.3.12 (maximality proposition for H-center and Kendall Tau)

Let P ∈ M1
+(Sn) be a distribution with a H-center σ0 ∈ Sn. From Proposition 3.3.13,

P is thus SST, and from Korba et al. (2017), σ0 is it’s unique Kemeny’s consensus. Thus,

σ0 = argminσ∈Sn
EΣ∼P [dτ (Σ, σ)] = argmax D

(dτ )
P .

Monotonicity axiom.

Finally, the monotonicity axiom is the most important axiom for depth functions and also
the most restrictive. We provide here the conditions under which this axiom holds.

Proposition 3.3.14. Local Monotonicity.

Let l : Sn×Sn → R+ be a metric and P ∈M1
+(Sn) be a distribution. Then we have the

following results:

1) If distribution P is SST and l is Kendall Tau distance, then Axiom 3.3.3 is satisfied.
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2) If distribution P has a M-center and l is Kendall Tau, Spearman’s Footrule of Spear-
man’s Rho distance, then Axiom 3.3.3 is satisfied.

Proof of Proposition 3.3.14 (proposition on local monotonicity).

Let l : Sn ×Sn → R+ be a metric and P ∈M1
+(Sn) be a distribution

M -center version. The proof is the same as the one provided for the maximality axiom.
Indeed, when l is Kendall Tau, Spearman’s Footrule or Spearman’s Rho distance and σ0
is the M -center, we have shown that D

(l)
P (ν) > D

(l)
P (ν ◦ τi,j) for any ν ordering i and j the

same way as σ0: this is exactly the characterization provided by Proposition 3.3.14.

Kendall Tau/SST version. Suppose that P be is SST and let l be Kendall Tau distance.
Following results from Korba et al. (2017), let’s denote σ⋆ its unique Kemeny’s consen-
sus, which is also its deepest ranking using Proposition 3.3.12. Suppose, without loss of
generality, that (i, j) ∈ [n]2 are two items such that σ⋆(i) < σ⋆(j). Finally, let ν1 ∈ Sn

be a ranking such that ν1(i) < ν1(j) = ν1(i) + 1, τi,j be the transposition of i and j, and
ν2 = ν1 ◦ τi,j. Thus, ν1 and ν2 are two neighboring rankings that differ only by swapping
their adjacent items i and j, meaning that ∀k ̸= i, j, ν2(k) = ν1(k). We have:

D
(dτ

P (ν1) ≥ D
(dτ

P (ν2) (3.3.32)

⇔ EΣ∼P [dτ (Σ, ν1)] ≤ EΣ∼P [dτ (Σ, ν2)] (3.3.33)

⇔
∑
k<k′

pk,k′1[ν2(i) > ν2(j)] +
∑
k<k′

pk′,k1[ν2(i) < ν2(j)]−
∑
k<k′

pk,k′1[ν1(i) > ν1(j)]−
∑
k<k′

pk,k′1[ν1(i) > ν1(j)] ≥ 0
(3.3.34)

⇔
∑

k<k′∧k,k′ ̸=i,j

pk,k′1[ν1(i) > ν1(j)] +
∑

k<k′∧k,k′ ̸=i,j

pk′,k1[ν1(i) < ν1(j)] + pi,j

−
∑

k<k′∧k,k′ ̸=i,j

pk,k′1[ν1(i) > ν1(j)]−
∑

k<k′∧k,k′ ̸=i,j

pk,k′1[ν1(i) > ν1(j)]− pj,i ≥ 0

(3.3.35)

⇔ pi,j > 1/2 (3.3.36)

As P is SST and σ⋆(i) < σ⋆(j), it thus holds that pi,j > 1/2, which ends the proof.

Notice that the M -center condition is restrictive (though satisfied by Mallows distribu-
tions, as defined in Definition 2.1.6), and in addition, a distribution having a M -center is
ST. The SST condition, on the other hand, arises naturally in distributions computed on
real datasets. This explains why we focus on computing the depth for the more general
class of distributions being SST, rather than on those having a M -center.

3.3.4 Additional Results for Kendall’s Tau Distance

In the Kendall Tau case, additional useful results can be stated. In particular, the ranking
depth is then entirely determined by the pairwise probabilities pi,j = P{Σ(i) < Σ(j)},
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1 ≤ i ̸= j ≤ n.

Proposition 3.3.15. We have: ∀ σ ∈ Sn, D
(dτ )
P (σ) =

(
n
2

)
− ∑

i<j pi,j1(σ(i) > σ(j)) −∑
i<j(1− pi,j)1(σ(i) < σ(j)).

Proof The proof of Proposition 3.3.15 is a simple computation, remembering that ∀i ̸=
j, pi,j = P(Σ(i) < Σ(j)).

D
(dτ )
P (σ) = ||dτ || − EΣ∼P (dτ (Σ, σ)) (3.3.37)

=
(

n

2

)
−

∑
ν∈Sn

P (ν)
∑
i<j

1 ((σ(i)− σ(j))(ν(i)− ν(j)) < 0) (3.3.38)

=
(

n

2

)
−
∑
i<j

∑
ν∈Sn,ν(i)<ν(j)

P (ν)1(σ(i) > σ(j))−
∑
i<j

∑
ν∈Sn,ν(i)>ν(j)

P (ν)1(σ(i) < σ(j))
(3.3.39)

=
(

n

2

)
−
∑
i<j

pi,j1(σ(i) > σ(j))−
∑
i<j

(1− pi,j)1(σ(i) < σ(j)) (3.3.40)

This case is computationally attractive, the complexity being of order O(n2). In addition,
note that the computation of DP involves pairwise comparisons solely, which means an
alternative statistical framework can be considered, where observations take the form of
binary variables {Σ(i) < Σ(j)}, (i, j) being a random pair in {(i, j) : 1 ≤ i < j ≤ n},
independent from Σ.

Proposition 3.3.16. Let P ∈ M1
+(Sn) be a ST distribution.The following assertions hold

true.

(i) The largest ranking depth value is D⋆
P = ∑

i<j

{
1
2 +

∣∣∣pi,j − 1
2

∣∣∣}. The deepest rankings

relative to P and dτ are the permutations σ ∈ Sn such that: ∀i < j s.t. pi,j ̸= 1/2,
(σ(j)− σ(i)) · (pi,j − 1/2) > 0.

(ii) The smallest ranking depth value is DP = ∑
i<j

{
1
2 −

∣∣∣pi,j − 1
2

∣∣∣}. The least deep
rankings relative to P and dτ are the permutations σ ∈ Sn such that: ∀i < j s.t.
pi,j ̸= 1/2, (σ(j)− σ(i)) · (pi,j − 1/2) < 0.

(iii) If, in addition, P is SST, then we have ∂RP (D⋆
P ) = {σ⋆} and ∂RP (DP ) = {σ},

where σ⋆(i) = 1 +∑
j ̸=i I{pi,j < 1/2} = n − σ(i) for i ∈ {1, . . . , n}. We also have

D⋆
P − DP (σ) = 2∑i<j |pi,j − 1/2| + DP (σ) − DP = 2∑i<j |pi,j − 1/2| · I{(σ(j) −

σ(i))(pi,j − 1/2) < 0}.

These three results can be obtained in a straightforward manner.
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Proof Observing that n(n − 1)/2 = EΣ∼P [dτ (Σ, σ)] + EΣ∼P [dτ (Σ, σR)] for all σ ∈ Sn,
where σR is the reverse of σ, the result is essentially a reformulation of Theorem 5 in Korba
et al. (2017) in terms of ranking depth, insofar as DP (σ) = n(n−1)/2−EΣ∼P [dτ (Σ, σ)].

Let us recall some classical results about the Mallows distribution. Taking l = dτ , the
Mallows model introduced in Mallows (1957b) and defined in Definition 2.1.6, is recalled
here:

Definition 2.1.6. Mallows model. Let σ0 ∈ Sn be a central ranking, θ > 0 a dispersion
parameter and dτ Kendall Tau distance. The probability distribution P ∼M(σ0, θ) defined
by:

∀σ ∈ Sn, P (σ) = 1
Ψ(θ, dτ )e

−θdτ (σ0,σ) (2.1.4)

is referred to as the Mallows model (or distribution) of center σ0 and dispersion parameter
θ, where Ψ(θ, dτ ) is the normalization constant.

One may easily show that the normalization constant Ψ(θ, dτ ) is independent from σ0 and
that Z0 = ∏n−1

i=1
∑i

j=0 e−jθ. When θ > 0, the permutation σ0 of reference is the mode of
distribution P ∼M(σ0, θ), as well as its unique Kemeny’s consensus. Observe in addition
that the highest the parameter θ, the spikiest the distribution P . In contrast, P is the
uniform distribution on Sn when θ = 0.

A closed-from expression of the pairwise probabilities pi,j is available (see e.g. Theorem 2
in Busa-Fekete et al. (2014)). Setting h(k, θ) = k/(1− e−kθ) for k ≥ 1, one can then show
the following:

Proposition 3.3.17. Let σ0 ∈ Sn and θ ≥ 0. Let P ∈M1
+(Sn) be a distribution such that

P ∼ M(σ0, θ) Then: ∀ σ ∈ Sn, D
(dτ )
P (σ) =

(
n
2

)
−∑σ(i)>σ(j) H(σ0(j) − σ0(i), θ), where

H(k, θ) = h(k + 1, θ)− h(k, θ) and H(−k, θ) = 1−H(k, θ) for k ≥ 1.

Proof Theorem 2 in Busa-Fekete et al. (2014) states that for the Mallows model and
using our notations, ∀i ̸= j, pi,j = H(σ0(j) − σ0(i), θ). The results follow from direct
application of Proposition 3.3.15

3.4 Statistical Issues

The ranking depth DP is generally unknown, just like the ranking distribution P , and
must be replaced by an empirical estimate based on supposedly available ranking data in
practice. Here we establish nonasymptotic statistical guarantees for the empirical coun-
terpart of the ranking depth and other related quantities. We also propose an algorithm,
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based on the ranking depth, that permits to build, from any ranking dataset, an empir-
ical ranking distribution fulfilling the crucial (strict) stochastic transitivity property, see
Section 3.3.3.

3.4.1 Generalization: Learning Rates Bounds

Based on the observation of an i.i.d. sample Σ1, . . . , ΣN drawn from P with N ≥ 1,
statistical versions of the quantities introduced in Section 3.3.2 can be built by replacing
P with the empirical distribution P̂N . The empirical ranking depth is thus given by:
∀σ ∈ Sn, D̂N(σ) = D

P̂N
(σ) = ||d||∞ − EΣ∼P̂N

[l(Σ, σ)].

Similarly, the empirical ranking depth regions are R̂N(u) = {σ ∈ Sn : D̂N(σ) ≥ u} for
u ≥ 0. In order to build an estimator of the ranking depth survivor function SP (u) with
a tractable dependence structure, a 2-split trick can be used, yielding the statistic

ŜN(u) = 1
N − ⌊N/2⌋

N∑
i=1+⌊N/2⌋

I{D̂⌊N/2⌋(Σi) ≥ u}. (3.4.1)

As the random variable DP (Σ) is discrete, the use of smoothing/interpolation procedures
is required to ensure good statistical properties for the survivor function estimator and for
the empirical quantiles it defines, see Sheather and Marron (1990); Ma et al. (2011). For
instance, a kernel smoothed version of SP can be computed by means of a non-negative
differentiable Parzen-Rosenblatt kernel K : R → R+ s.t. ||K ′||∞ = supu∈R |K ′(u)| < ∞
and

∫
R K(u)du = +1 and a smoothing bandwidth h > 0, namely: S̃P (u) = Kh ∗ SP ,

which can be estimated by S̃N(u) = Kh ∗ ŜN , where Kh(u) = K(u/h)/h for u ∈ R. One
may then define a smooth estimate of the ranking depth region with probability content
α ∈ [0, 1] as well: R̂N(α) = R̂N(S̃−1

N (α)). The result below provides bounds of order
OP(1/

√
N) for the maximal deviations between DP (resp. S̃P ) and its empirical version.

Proposition 3.4.1. Statistical Bounds on Depth and Survivor Function. The
following assertions hold true.

1) For any δ ∈ (0, 1), we have with probability at least 1− δ: ∀N ≥ 1,

sup
σ∈Sn

|D̂N(σ)−DP (σ)| ≤ ||d||∞

√
log(2 n!/δ)

2N
. (3.4.2)

2) For any δ ∈ (0, 1) and h > 0, we have with probability at least 1− δ: ∀N ≥ 1,

sup
u≥0
|S̃N(u)− S̃P (u)| ≤

√
log(4/δ)

2N
+ ||d||∞

√
log(4n!/δ)

2N
. (3.4.3)

Proof Hoeffding inequality combined with the union bound yields: ∀t > 0,

P

{
sup

σ∈Sn

∣∣∣D̂N(σ)−DP (σ)
∣∣∣ > t

}
≤

∑
σ∈Sn

P

{
1
N

∣∣∣∣∣
N∑

i=1
{l(Σi, σ)− EP [l(Σ, σ)]}

∣∣∣∣∣ > t

}
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≤ 2n! exp
(
−N2t2

||l||2∞

)
, (3.4.4)

which establishes assertion (i).

Turning to the proof of assertion (ii), we introduce

S̄P (u) = PΣ{D̂⌊N/2⌋(Σ) ≥ u}, u ≥ 0. (3.4.5)

By triangular inequality, we have with probability one:

sup
u≥0

∣∣∣(Kh ∗ ŜN)(u)− (Kh ∗ SP )(u)
∣∣∣ ≤ sup

u≥0

∣∣∣(Kh ∗ ŜN)(u)− (Kh ∗ S̄P )(u)
∣∣∣+

sup
u≥0

∣∣∣(Kh ∗ SP )(u)− (Kh ∗ S̄P )(u)
∣∣∣ . (3.4.6)

Observe that we almost surely have:

sup
u≥0

∣∣∣(Kh ∗ ŜN)(u)− (Kh ∗ S̄P )(u)
∣∣∣ ≤ sup

u≥0

∣∣∣ŜN(u)− S̄P (u)
∣∣∣ . (3.4.7)

By virtue of Dvoretsky-Kiefer-Wolfovitz inequality, we have, for all t ≥ 0,

P

{
sup
u≥0

∣∣∣ŜN(u)− S̄P (u)
∣∣∣ ≥ t

}
= E

[
P

{
sup
u≥0

∣∣∣ŜN(u)− S̄P (u)
∣∣∣ ≥ t | Σ1, . . . , Σ⌊N/2⌋

}]
≤ 2 exp(−2nt2). (3.4.8)

Let s > 0, we introduce the event, independent from Σ,

EN,s =
{

sup
σ∈Sn

∣∣∣D̂⌊N/2⌋(σ)−DP (σ)
∣∣∣ ≤ s

}
. (3.4.9)

We almost-surely have: ∀u ≥ 0,

S̄P (u) = PΣ{DP (Σ) ≥ u + DP (Σ)− D̂⌊N/2⌋(Σ)}. (3.4.10)

Consequently, on the event EN,s, it holds that: ∀u ≥ 0,

(Kh∗SP )(u+s)−(Kh∗SP )(u) ≤ (Kh∗S̄P )(u)−(Kh∗ŜN)(u) ≤ (Kh∗SP )(u)−(Kh∗SP )(u−s),
(3.4.11)

as well as
sup
u≥0

∣∣∣(Kh ∗ SP )(u)− (Kh ∗ S̄P )(u)
∣∣∣ ≤ ||K ′||∞(s/h), (3.4.12)

since the mapping Kh ∗ SP is differentiable, with derivative bounded by ||K ′||∞/h in
absolute value. Hence, using the union bound, combining Equation (3.4.6) with assertion
(i) and Equation (3.4.8)-Equation (3.4.12), we get that for all δ ∈ (0, 1), with probability
larger than 1− δ:

sup
u≥0

∣∣∣(Kh ∗ ŜN)(u)− (Kh ∗ SP )(u)
∣∣∣ ≤ (√log(4/δ) + ||l||∞

√
log(4n!/δ)

)
/
√

2N. (3.4.13)

This proves assertion (ii).
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3.4.2 Trimming Algorithm for Consensus Ranking

As discussed in Section 3.3.3, stochastic transitivity greatly facilitates the computation
of Kemeny’s consensus, as shown in Proposition 3.3.16, as well as the verification of the
maximality or monotonicity axioms, discussed in Propositions 3.3.12 and 3.3.14. How-
ever, although this occurs with a controlled probability (see Proposition 14 in Korba et al.
(2017)), the empirical counterpart P̂N of a (strictly) stochastically transitive ranking dis-
tribution P can be of course non (S)ST. We propose below a trimming strategy based on
the empirical ranking depth to recover a close (S)ST empirical ranking distribution and
overcome this issue.

Algorithm 3.1: Ranking Depth Trimming

Input : Ranking dataset DN = {Σ1, ...ΣN} and distribution P̂N = (1/N)∑N
i=1 δΣi

.
Output: Dataset D ⊂ DN of size ND ≤ N and (S)ST ranking distribution

P̂D = (1/ND)∑σ∈D δσ

- Initialize: D = DN ;

while P̂D is not (S)ST do
- Determine the least deep rankings in D: OD := arg minσ∈D DP̂N

(σ);
- Update the ranking dataset D \ OD → D

Based on the ranking dataset D output by Algorithm 3.1, a (S)ST empirical distribu-
tion P̂D can be computed, whose Kemeny consensus is obtained in a straightforward
manner (Proposition 3.3.16) avoiding the search of solutions of an NP-hard minimization
problem of type Definition 2.2.1, see Hudry (2008). As empirically supported by the ex-
periments displayed in the next Section, this procedure allows for a fast, accurate, and
robust recovery of consensus rankings. Indeed, the time complexity of Algorithm 3.1 is
in n log(n)N2η, where n is the number of items, N is the number of samples. Indeed,
n log(n) is the complexity of computing Kendall Tau distance for a pair of data using e.g.
Merge Sort algorithm and N2 to recompute the expected value of Kendall Tau to the
whole dataset for every point of the dataset, and η is the (unknown) number of iterations
required to obtain an SST dataset from a non-SST one.

Beyond the use of Algorithm 3.1 to recover an SST dataset from a noisy dataset, the im-
portant application of our trimming strategy arises when the said dataset is malevolently
contaminated. When adding adversarial poisoning attacks to a natural, SST dataset, it is
much more likely to be non-SST, as will be illustrated in Section 3.5.1.Under such kinds
of attacks, the trimming algorithm described in Algorithm 3.1 becomes very handy to
recover a robust consensus ranking in a tractable manner.

3.5 Applications

In order to illustrate the relevance of the ranking depth notion in the context of the robust
consensus ranking task, we now show that our trimming strategy applied to the depth
function can be used to find accurate and robust consensus, even in non-smooth settings.
We provide both experiments and theoretical results demonstrating the robustness of
medians based on depth.

52



In addition to that, this Section also illustrates the efficiency of using the depth function
to perform additional tasks, including the following:

• Detection of outlying rankings: we can identify the least deep rankings and thus
accurately distinguish anomalies in a dataset.

• Ranking data visualization: depth function can be used to visually make the differ-
ence between distributions or to get visual intuition e.g. on their shape.

• The two-sample (homogeneity) problem in Sn: depth can be used to distinguish
distributions in a non-parametric way.

More generally, the depth function comes in very handy for usual applications involving
rank statistics. The code for the experiments has been made publicly available here:
github.com/RankingDepth/Ranking depth function.

3.5.1 Fast and Robust Consensus Rankings

(a) The trimming process removes 82 clean points and 430 adversarial points (out of 10000).

(b) The trimming process removes 85 clean points and 457 adversarial points (out of 10000).

Figure 3.2: Illustration of the trimming strategy: the blue points (resp. red points) correspond
to the clean (resp. adversarial) points. For each row, the first plot (resp. second plot) shows the
depth of points in the (contaminated) dataset before (resp. after) the trimming process. The
third plot shows that the consensus computed after each trimming step gets closer and closer to
the real consensus. In each case, the clean points are sampled from M(σ0, 0.1) and adversarial
points from M(σR

0 , 1). The adversarial points represent 13% of the dataset (which has a total
of 10000 points).

The trimming strategy proposed in Section 3.4.2 shows that we can recover smooth SST
distributions from any empirical data, and solve the consensus ranking task by simply
identifying the deepest ranking, which corresponds to Kemeny’s consensus in the SST
case: this procedure is fast, straightforward, and robust, in the sense that we can re-
cover accurate medians even in contaminated settings. We support this claim with both
experiments and a theoretical proposition below.
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Figure 3.3: Trimming strategy when the contamination represents 25% of the dataset. The
clean points are sampled from M(σ0, 0.4) and the adversarial ones from M(σR

0 , 2). The leftmost
plot and the middle plot represent the depth of the points in the full dataset before and after
trimming respectively. The rightmost plot shows how the consensus computed at each trimming
step grows closer to σ0 during the process. No clean point was removed during the trimming,
whereas 1613 adversarial points were removed (out of 10000).

(a) The clean dataset is sampled from a Plackett-Luce (PL) distribution with random (but spread)
parameters and σ0 as consensus; the adversarial one is sampled from another PL distribution with random
(but peaked) parameters and σR

0 as consensus. The contamination represents 25% of the full dataset.
215 clean points were trimmed, and 2411 adversarial ones (out of 10000).

(b) The clean dataset is sampled from a Plackett-Luce (PL) distribution with random (but spread)
parameters and σ0 as consensus; the adversarial one is sampled from another PL distribution with random
(but very peaked) parameters and σR

0 as consensus. The contamination represents 10% of the full dataset.
1601 clean points were trimmed, and 965 adversarial ones (out of 10000).

Figure 3.4: Illustration of the ‘fixed’ trimming strategy: the blue points (resp. red points)
corresponds the clean (resp. adversarial) points. For each row, the first plot (resp. second
plot) shows the depth of points in the (contaminated) dataset before (resp. after) the trimming
process. The third plot shows that the consensus computed after each trimming step gets closer
and closer to the real consensus. The trimming process removes 1% of the dataset at each step
of the trimming, which is fixed to 15 steps for Figure 3.2a, 20 steps for Figure 3.2b.
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(a) The clean dataset is sampled from a Plackett-Luce (PL) distribution with random parameters and σ0
as consensus; the adversarial one is sampled from a similar PL distribution with σR

0 as consensus. The
contamination represents 48% of the full dataset. 4976 clean points were trimmed, and 4800 adversarial
ones (out of 10000).

(b) The clean dataset is sampled from a Plackett-Luce (PL) distribution with random parameters and
σ0 as consensus; the adversarial one is sampled from another PL distribution with random (but quite
peaked) parameters and σR

0 as consensus. The contamination represents 40% of the full dataset. 1553
clean points were trimmed, and 4000 adversarial ones (out of 10000).

(c) The clean dataset is sampled from a Mallows distribution M(σ0, 0.1); the adversarial one is sampled
from M(σ0, 0.1). The contamination represents 48% of the full dataset. 5079 clean points were trimmed,
and 4785 adversarial ones (out of 10000).

Figure 3.5: Illustration of the ‘fixed’ trimming strategy in extreme cases: the blue points (resp.
red points) corresponds the clean (resp. adversarial) points. For each row, the first plot (resp.
second plot) shows the depth of points in the (contaminated) dataset before (resp. after) the
trimming process. The third plot shows that the consensus computed after each trimming step
gets closer and closer to the real consensus. The trimming process removes 1% at each step out
of 400 steps (for Figures 3.5a and 3.5c) or 5% out of 15 (for Figure 3.5b).
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Figure 3.2 illustrates the effectiveness of the trimmed-based consensus procedure in a
reasonable contamination case. In this experiment, we consider a clean dataset drawn
from a Mallows distribution M(σ0, 0.1) with n = 8 items, meaning that the distribution
is quite spread. This clean dataset is contaminated with another Mallows distribution
with opposite center, and which is less spread: M(σ0, 1). The clean and the adversarial
datasets are merged together to form a general dataset of 10000 points, which is not SST.
In the leftmost plots of Figure 3.2, the depth of each point is shown, and illustrates that if
the adversarial dataset has a smaller depth in average, it is however not possible to clearly
separate the two datasets using a unique depth threshold. This is where our recursive
trimming procedure described in Algorithm 3.1 comes handy: it primarily removes adver-
sarial points, and even if the number of points that are removed is small (approximatively
5% in each case), the trimmed-based consensus recovered after the trimming process is
much closer to the real consensus σ0 that the classical Kemeny’s consensus, as illustrated
by the rightmost plot in Figure 3.2.

Moreover, our trimming strategy can also apply to more extreme contamination setups.
In Figure 3.3 for example, the adversarial dataset represents 25% of the full dataset.
In that case, the clean dataset is sampled from M(σ0, 0.4) and the adversarial dataset
from M(σR

0 , 2) with n = 8 items, meaning that the adversarial distribution is much more
peaked, which thus explains the difference in depth that is clearly observable between the
clean and adversarial points.

Figures 3.2 and 3.3 both illustrated the effectiveness of our trimming approach as defined
by Algorithm 3.1. However, this version of the trimming procedure is restricted to cases
where the full dataset is not SST, and the goal of the trimming procedure is to remove
the least deep points until the recovered dataset is SST. However, we can in fact extend
this procedure and trim any dataset to remove a fixed number of points. This strategy
is also very effective to robustify a dataset and recover a better consensus than Kemeny’s
consensus. To provide an illustration of this version of our trimming procedure, we con-
ducted experiments under various setups. In Figure 3.4, Plackett-Luce distributions were
used to generate the clean and adversarial datasets. In both cases, the ‘fixed’ trimming
strategy, which removed 1% of the dataset at each step (during 15 or 20 steps), led to the
great improvement of the computed consensus.

Furthermore, this ‘fixed’ strategy also proves efficient in trickier, extreme cases where the
contamination is very high. This situation is illustrated in Figure 3.5, where Figures 3.5a
and 3.5c show the efficiency of the trimming strategy for Plackett-Luce and Mallows
distribution when the contamination represents up to 48% of the dataset. In this case,
when removing almost all the points when using the ‘fixed’ trimming procedure, the
recovered consensus is once again much better than the classical Kemeny’s consensus.
The same conclusion can be drawn from Figure 3.5b, where ‘only’ 40% of the dataset is
contaminated, but more points are removed at each step (5% instead of 1%) but fewer
points are removed overall.

In all the setups presented in the experiments, the trimming procedure, either using the
recursive SST version or the ‘fixed’ version, is very efficient to improve the consensus.
This experimental result can be completed with a theoretical one, which provides an
explanation for the efficiency of our method.
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Theoretical robustness result. We derive specific robustness results when using depth-
based trimming by computing the breakdown point, as defined in Definition 1.3.3 for
classical versus trimmed statistics.

From a high-level perspective, we will consider the classical Borda count statistic previ-
ously defined in Definition 2.2.3 and studied in Dwork et al. (2001b); Fligner and Verducci
(1988); Caragiannis et al. (2013); Collas and Irurozki (2021)) and a depth-trimmed Borda
count statistic based on the scores Bµ(i) = ∑

σ∈SN
w(σ)σ(i), where w(σ) = I(DN(σ) > µ)

(only the rankings with depth higher than µ are kept). Our goal will be to assess the ro-
bustness, via a sample version of the breakdown point, of these two statistics to compare
them.

Here, we state that the classical Borda count statistic is less robust than the depth-
trimmed one on generic distributions.

Proposition 3.5.1. Let µ > 0 be the trimming threshold and P ∈ M1
+(Sn) a distribution

such that EΣ∼P [DP (Σ)] > µ. Let σ⋆ = arg maxσ∈Sn DP (σ) be the deepest ranking and
π = arg maxσ|dτ (σ⋆,σ)=δ D(σ) the ranking with highest depth among those at distance δ
from the deepest ranking σ⋆. Then, the breakdown points for Borda and depth-trimmed-
Borda on P are related as follows,

ϵBδ (P )
ϵDT-B

δ (P ) <
DP (π)

µ
< 1. (3.5.1)

Proposition 3.5.1 refers to the robustness of the depth-trimmed-Borda compared to the
classical Borda. In the following pages, we will in fact prove some auxiliary results as well
as a generalization of this proposition.

Let us first recall some definitions and results about the Borda estimators. Borda is an
approximation to the barycentric ranking median (which is NP-hard for n > 4, see for
example Dwork et al. (2001b)) for a sample of complete rankings drawn from a Mallows
model, as shown in Fligner and Verducci (1988). Moreover, Borda is quasi-linear in
time and outputs the correct median with high probability with a polynomial number of
samples, as shown in Caragiannis et al. (2013). A robust aggregation procedure for top-k
rankings in very noisy settings is proposed in Collas and Irurozki (2021).

As a reminder, the Borda count statistic is defined as follows in Section 2.2.1:

Definition 2.2.3. Borda Count. Let P ∈M1
+(Sn) be a distribution. The Borda count

of an item i ∈ [n] for distribution P is defined by:

BP (i) =
∑

σ∈Sn

P (σ)σ(i) (2.2.2)

Then, the Borda statistics is given by:

TBorda(P ) ∈ argsort(BP ), (2.2.3)

where argsort(s) = {σ ∈ Sn,∀r ∈ [n− 1], sσ−1(r) ≤ sσ−1(r+1)}

We define the depth-weighted-Borda as a generalization of the classic and depth-trimmed-
Borda in which there exists a weight associated with each ranking. It generalizes Borda in
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the following way: For each item i, the Borda score is computed as B(i) = ∑
σ∈X w(σ)σ(i).

The final estimator for the median is the ranking that orders the items by their Borda
score. The depth-weighted-Borda is equivalent to replicating the rankings proportionally
to their weight. This analysis generalizes to any weights that correspond to an increasing
function of the depths. In particular, the depth-trimmed-Borda is the case of depth-
weighted-Borda in which w(σ) = I{D(σ) > µ}.

We settle here the notation for the following lines. We denote by SN ∼ P a sample of
rankings (of size N) and A an adversarial sample.

Definition 3.5.2. Let P ∈ M1
+(Sn) be a distribution, l : Sn ×Sn → R+ be a metric and

T : P ∈ M1
+(Sn) 7→ Sn be a statistic. Let us write SN ∼ P a sample drawn from P of

size N and σT
SN

the consensus based on the estimator method T on sample SN .

The estimator T is said to be δ-broken on P, l and for sample size N if for any SN ∼ P
of size N , there exists an adversarial sample A such that l(σT

SN
, σT

SN ∪A) ≥ δ.

The next result characterizes the cardinality of a sample that breaks the Borda estimator
of a sample SN distributed according to P . This is an auxiliary result for Proposition 3.5.1.

Proposition 3.5.3. Let P ∈ M1
+(Sn) be a distribution and SN ∼ P . Let A− be the

adversarial sample that δ-breaks the Borda estimator on Kendall Tau distance dτ for
sample size N such that A− is of minimal cardinality.

Let r̄N(i) = N−1∑
σ∈SN

σ(i) and r̄(i) = (#A−)−1∑
σ∈A− σ(i) be the average ranking

of item i in SN and A− respectively. Finally, let R̄ be the ordered vector composed of
r̄N (j)−r̄N (i)

r̄(i)−r̄(j) for all (i, j) such as both the numerator and denominator are positive. Then

#A− =
⌈
N
[
R̄
]

(δ)

⌉
(3.5.2)

where [x](δ) denotes the δ-th quantile1 of a vector x.

Proof By definition, A− δ-breaks Borda if and only if the following holds.

d(σB
SN

, σB
SN ∪A−) = δ (3.5.3)

⇔ δ = #{(i < j) :
∑

σ∈SN

σ(i) +
∑

σ∈A−

σ(i) ≥
∑

σ∈SN

σ(j) +
∑

σ∈A−

σ(j)} (3.5.4)

⇔ δ = #{(i < j) :
∑

σ∈SN

σ(i)− σ(j) ≥
∑

σ∈A−

σ(j)− σ(i)} (3.5.5)

⇔ δ = #{(i < j) :
∑

σ∈SN

σ(j)− σ(i) ≤
∑

σ∈A−

σ(i)− σ(j)} (3.5.6)

⇔ δ = #{(i, j) : 0 <
∑

σ∈SN

σ(j)− σ(i) ≤
∑

σ∈A−

σ(i)− σ(j)} (3.5.7)

From a statistical perspective, we can bound the cardinality of A− as follows: let (i, j) be
a pair of indexes belonging to the set defined just above.∑

σ∈SN

σ(j)− σ(i) ≤
∑

σ∈A−

σ(i)− σ(j) (3.5.8)

1the δ-th quantile of vector x is the smallest element of x that is larger than (or equal to) δ% of the
elements of x. For example, the 0.2-th quantile of (1, 2, 3, 4, 5, 6, 7, 9, 10) is 2.
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⇔ N (r̄N(j)− r̄N(i)) ≤ #A−(r̄(i)− r̄(j)) (3.5.9)

⇒ #A− ≥ N (r̄N(j)− r̄N(i))
r̄(i)− r̄(j) , (3.5.10)

which holds for exactly δ pairs of items (i, j). We conclude the proof by recalling that A−

is of minimal cardinality.

The next auxiliary result shows that provided certain conditions, if a sample breaks the
depth-weighted-Borda then it breaks Borda.

Proposition 3.5.4. Let P ∈ M1
+(Sn) be a distribution and SN ∼ P . Let A− (resp. A−

w)
be the adversarial sample that δ-breaks the Borda (resp. depth-weighted Borda) estimator
on Kendall Tau distance dτ for sample size N such that A− (resp. A−

w) is of minimal
cardinality.

Let r̄N(i) = N−1∑
σ∈SN

σ(i) and r̄w(i) = (#A−
w)−1∑

σ∈A−
w

σ(i) be the average ranking of
item i in SN and A−

w respectively. Let πw = arg maxσ∈A−
w

w(σ) and µ = w(πw) be the
weight of maximum depth for adversarial rankings.

Finally, suppose P̂N and w satisfy: EP̂N
(w(Σ)) > w(πw) = µ and ∀ (i, j) s.t. EP̂N

(Σ(i) <
Σ(j)), EP̂N

[w(Σ)(Σ(j)− Σ(i))] ≥ EP̂N
[w(Σ)]EP̂N

[Σ(j)− Σ(i)] (these two assumptions en-

force the use of a weight function that is in accordance with P̂N). Then, the cardinality
of A− and A−

w are related as follows:

#A−
w ≥

N−1∑
σ∈SN

w(σ)
µ

#A−. (3.5.11)

Proof Since A−
w δ-breaks the depth-weighted-Borda, we can follow the same proof outline

as for Proposition 3.5.3 and bound the cardinality #A−1
w as follows,∑

σ∈SN

w(σ)(σ(j)− σ(i)) ≤
∑

σ∈A−
w

w(σ)(σ(i)− σ(j)) (3.5.12)

⇒ N × N−1 ∑
σ∈SN

w(σ)(σ(j)− σ(i)) ≤ #A−
ww(π)(r̄w(i)− r̄w(j)) (3.5.13)

⇒ #A−
w ≥

N (r̄n(j)− r̄N(i))
r̄w(i)− r̄w(j)

N−1∑
σ∈SN

w(σ)
µ

(3.5.14)

Since
N−1

∑
σ∈SN

w(σ)
µ

is independent of i, j and A−
w also δ-breaks the Borda estimator:

#A−
w ≥ #A− N−1∑

σ∈SN
w(σ)

µ
. (3.5.15)

We are finally ready to prove a generalization of our Proposition 3.5.1. Let us first define
our notion of δ-breakdown point, which extends the classical concept.
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Definition 3.5.5. Sample Breakdown Point. P ∈ M1
+(Sn) be a distribution, let

T : P ∈ M1
+(Sn) 7→ Sn be a statistic and l : Sn × Sn → R+ a metric. The δ-sample

breakdown point for statistic T with respect to distribution P and metric l is defined as the
smallest cardinality of an adversarial sample that δ-breaks T in the limit when N → ∞
for distribution P .

More specifically, ϵT
δ,l(P ) = min #A s.t. limN→∞ l(σT

SN
, σT

SN ∪A) = δ

In the following proposition, we write ϵB
δ (P ) (resp. ϵDW −B

δ (P )) the δ-breakdown point
for the Borda (resp. depth-weighted Borda) estimator with respect to distribution P and
l = dτ the Kendall Tau distance.

Proposition 3.5.6. Breakdown points ratio. Let P ∈ M1
+(Sn) be a distribution

and w : P ∈ M1
+(Sn) → R+ a weight function. Suppose that EP [w(Σ)] > w(π), where

π = arg maxσ | dτ (σ⋆,σ)=δ w(σ) and σ⋆ = arg maxσ∈Sn DP (σ).In addition, suppose that the
following condition holds: ∀(i, j) s.t. EP (Σ(j) − Σ(i)) > 0, EP (w(Σ)(Σ(j) − Σ(i))) ≥
E(w(Σ))E(Σ(j)− Σ(i)). Then,

lim
N→∞

ϵB
δ (P )

ϵDW −B
δ (P )

<
w(π)

EP [w(Σ)] < 1. (3.5.16)

Proof We start by noting that for SN to be δ-broken then the adversarial sample has to
be at least at distance δ regardless of the distribution for the weights. Then, we denote
z = EP [w(Σ)]/w(π) = limN→∞ N−1∑

σ∈SN
w(σ)/w(π) (by the law of large numbers) and

take Proposition 3.5.4 to write the limiting ratio of the breakdown points when the number
of samples tends to infinity as follows.

lim
N→∞

ϵB
δ (P )

ϵDW −B
δ (P )

= lim
N→∞

#A−

#A−+N

#A−
w

#A−
w+N

< lim
N→∞

#A−

#A−+N

#A−·z
#A−·z + N

<
1
z

= w(π)
EP [w(Σ)] < 1 (3.5.17)

This is the main result related to the robustness of the Borda median estimator. It
shows that the breakdown point of Borda is smaller than the breakdown point for the
depth-trimmed-Borda provided certain conditions. We denote by µ the threshold of the
depth-trimmed-Borda.

Then, our Proposition 3.5.1 is straightforward when we choose the weight function w so
that w(σ) = I(DP (σ) ≥ µ) in Proposition 3.5.6.

3.5.2 Other Applications

Outlier detection in ranking data.

We now place ourselves in a situation where a single sample of rankings is observed. For
simplicity, we consider the case where the underlying ranking distribution is an unbalanced
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(a) (b)

(c) (d)

Figure 3.6: Depth plots (a,c) and DD-plots (b,d) for a mixture of Mallows-Kendall distributions.
(a)-(b): distant centers and different sizes for the two components of the mixture. (c)-(d): closer
centers and same size.

mixture of two Mallows distributions (for n = 10), strongly differing in size (N1 = 35 and
N2 = 215), with distant centers (dτ (σ⋆

1, σ⋆
2) = 15) and parameters θ1 = 0.5 and θ2 = 2.5.

Figure 3.6 (a) shows the ranking depth (relative to Kendall Tau) of each observation
computed with respect to the entire sample. We observe, that despite the unavailability
of labels, the ranking depth clearly distinguishes the two different components. It thus
permits to perform a typical anomaly detection task in the context of ranking data, where
the differing minority of permutations are viewed as abnormal rankings. The diagnostic
ranking DD-plot (b) based on the identified information about the components confirms
the differences.

Consider next the case of a mixture with closer centers (dτ (σ⋆
1, σ⋆

2) = 11) and equal sizes
(N1 = N2 = 125), with parameters θ1 = 0.25 and θ2 = 2.5. The depth plot (c) w.r.t. to the
entire sample reflects how easily we can cluster the ranking dataset into two components
(we deliberately shuffle the indices and keep colors for illustrative purposes), and we
suggest a separating threshold (on the level of depth = 0.71), which in this particular
case allows for two mistaking assignments. For the diagnostic ranking DD-plot (d), we
honestly include this mistake and change the colors to underline this impurity.

Graphical methods and visual inference.

The analysis of rankings suffers from the lack of graphical displays and diagrams, such as
probability plots or histograms, for gaining insight into the structure of the data. Ranking
depths can be readily used to design a visual diagnostic tool for ranking data, extending
the Depth vs. Depth plot (DD-plot in abbreviated form) were originally introduced by
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Position dτ (σ⋆
1, σ⋆

2) θ1 θ2 N1 N2
(a) 15 1 1 250 250
(b) 0 0.5 2 250 250
(c) 15 0.5 2 250 250
(d) 15 0.5 2 400 100

Table 3.1: Parameters for pairs of samples drawn from Mallows-Kendall distribution used for
Figure 3.7.

(a) (b)

(c) (d)

Figure 3.7: Ranking DD-plot corresponding to Mallows distributions with parameters described
in Table 3.1.

Liu et al. (1999) for multivariate data. For two samples of rankings Σ1 = {σ1
1, . . . , σ1

N1}
and Σ2 = {σ2

1, . . . , σ2
N2}, with corresponding empirical measures P̂ 1

N1 and P̂ 2
N2 , the

ranking DD-plot is obtained by plotting in the Euclidean plane the points:{(
D

P̂ 1
N1

(σ), D
P̂ 2

N2
(σ
)

: σ ∈ Σ1 ∪Σ2
}
. (3.5.18)

Depending on the distance d chosen, such a plot allows to reflect the location and scatter
of two distributions onSn, and their mutual position. To illustrate its diagnostic capacity,
we plot in Figure 3.7 the ranking DD-plots relative to the Kendall Tau distance and four
pairs of samples stemming from Mallows distribution with parameters defined in Table 3.1.
In this and subsequent figures, the depth is re-scaled to [0, 1] by diving by ∥dτ∥∞. A few
remarks can be made: For distributions differing in: 1) location only (a), the ranking DD-
plot is symmetric with respect to the diagonal, 2) scatter only (b), observations from one
distribution will be attributed systematically higher depth values, 3) both location and
scatter (c), the distributions can be distinguished and 4) the number of the observations,
it does not influence the general picture (d).
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γ = 0.5 γ = 0.75

γ = 1 p-values

Figure 3.8: DD-plots of a pair of P-L distributions with gradually decreasing difference between
them based on parameter γ and the corresponding average p-values for the test of homogeneity.

Rankings - Homogeneity testing.

Depth can further be used to provide a formal inference, which we exemplify as a non-
parametric test of homogeneity between two Plackett-Luce distributions (Critchlow et al.,
1991) with n = 10. The first one (red in Figure 3.8) is generated using the parame-
ters w1 = (e9, ..., e0), the second one represents its changed version w2 = (eγ9, ..., eγ0).
We gradually increase γ from 0.5 (substantial difference) to 1 (equal in distribution),
and provide the p-values of the Wilcoxon rank-sum test averaged over 100 repetitions
in Figure 3.8. The test is performed using the reference sample (of size 500) from the
first distribution, with tested sample sizes being equal (= 50) for both distributions (see
Lafaye De Micheaux et al. (2020) for details on the testing procedure and Liu and Singh
(1993) for more details). Figure 3.8 shows how the p-values detect very well the difference
between the two distributions when it is the case, giving a formal inference to the ranking
DD-plot visualization, whereas, remarkably, the (parametric) nature of the underlying
ranking models is not used at all by the procedure. We also underline that, in a similar
way, ranking depth-based goodness-of-fit statistics could be computed, in order to evaluate
how well a specific ranking model fits a ranking dataset.

Student dataset. We now explore our homogeneity testing machinery on a real dataset
(available at https://github.com/ekhiru/students-dataset) composed of rankings
from students (with a ground truth answer) before (red) and after (blue) taking the
related course. The diagnostic DD-plot of the two cohorts together with p-values over
1000 random repetitions and the asymptotic density under H0 are indicated in Figure 3.9:
they illustrate the improvement of the students’ knowledge after the class.
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Figure 3.9: Left: DD-plot for ’before class’ (red) and ’after class’ (blue) students. Right: p-values
of the homogeneity test.

3.6 Conclusion

In this Chapter, our focus has been on extending the concept of statistical depth to the
domain of ranking data. By doing so, we aimed to overcome the inherent challenges
posed by the absence of natural order and vector space structure in Sn, as well as the
NP-hardness of solving the consensus ranking task using Kemeny’s aggregation procedure
in a general and adversarial setting.

We began by outlining the essential properties that a ranking depth should possess in or-
der to effectively capture quantiles, order statistics, and ranks. Through our exploration,
we discovered that using a metric-based approach, commonly used in consensus rank-
ing, allows us to construct depth functions on Sn that fulfill these properties in various
scenarios. Moreover, we established theoretical results that demonstrate the accurate es-
timation of ranking depths and related quantities through empirical versions, with reliable
guarantees.

To enhance the robustness of the consensus ranking problem in practical applications, we
devised an efficient trimming strategy. This strategy enables us to recover a more robust
consensus under adversarial conditions. Empirical evaluations on different datasets, as
well as theoretical analyses applied to the Borda count statistic, showcased the positive
impact of our trimmed statistic on enhancing robustness. Additionally, we highlighted the
versatility of depth functions in various tasks, such as ranking data visualization, outlying
ranking detection, and homogeneity testing.

While our findings have provided promising results in bolstering the robustness of the
consensus ranking problem, there is still a need for further analysis of the robustness of-
fered by different statistics. While we demonstrated the higher robustness of the trimmed
Borda count statistic compared to the classical Borda count statistic through theoretical
means, the extent of this improvement and its generalizability to other statistics remain
unknown. This limitation serves as a primary focus for the next chapter, where we aim
to address and explore this aspect in greater depth.
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Chapter 4

Evaluating and Enhancing Robustness in
Consensus Ranking

Once is happenstance. Twice is
coincidence. Three times is
enemy action

Ian Flemming
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4.1 Introduction and High-level Overview of the Contribu-

tions

In Chapter 3, we introduced the trimmed Kemeny’s aggregation statistic as the initial
solution to tackle the lack of robustness in the consensus ranking task. Extensive experi-
mentation demonstrated the effectiveness of this method in practical scenarios. However,
a comprehensive evaluation is still needed to precisely quantify the robustness gained by
robust statistics compared to classical statistics.

In this chapter, our focus is on introducing an approximation algorithm specifically de-
signed to assess the robustness of any statistic based on its breakdown point, while also
addressing the associated computational challenges. This robustness evaluation method
provides a valuable tool for measuring the resilience of different statistics in the face of
adversarial scenarios.

Furthermore, we present a robust statistic plugin that can enhance the robustness of any
classical statistic employed in solving the consensus ranking problem. Importantly, our
proposed method not only offers significant gains in robustness but also ensures minimal
loss in precision. This characteristic sets our approach apart, positioning it as a superior
alternative to existing methods such as Kemeny’s aggregation to solve the consensus
ranking task in both a precise and robust manner.

By leveraging these advancements, we aim to provide a comprehensive framework for
evaluating and improving the robustness of consensus ranking statistics. Through rigorous
analysis and empirical evaluations, we demonstrate the practical benefits of our proposed
methods and their potential to outperform traditional approaches.

4.1.1 Outline of the Rationales of the Chapter

In the literature devoted to robustness for rankings, the well-known Gibbard-Satterthwaite
theorem Gibbard et al. (1973); Satterthwaite (1975) states that every reasonable voting
rule (in social choice theory, consensus medians are identified with voting rules) can be
manipulated. We point out that there has been a wide body of research devoted to
characterizing the complexity of computing manipulations, NP-hardness result on manip-
ulation being considered as a guarantee for robustness Bartholdi III et al. (1989); Davies
et al. (2011); Brandt et al. (2016). However, beyond-worst-case analysis shows that the
problems are easy in practice Zuckerman et al. (2009), as illustrated in Sections 2.2.3
and 3.5.1.

In the Chapter, we complement Chapter 3 on the issue of robustness to vote manipulation
by investigating how the concept of breakdown point may apply to consensus ranking in
practice. As will be shown, one of the main difficulties faced in the considered context lies
in the fact that consensus rankings are often obtained by solving an optimization problem
and that no closed analytical form for the solutions is available in general. Consequently,
the computation of breakdown points of ranking statistics is generally a computational
challenge. Our main proposal here consists in approximating this computation by solving
a relaxation of the breakdown point optimization problem by using a smoothing technique
that allows for computing relevant gradients and eventually perform gradient descent.
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Moreover, we also provide a robust plugin that can be added on top of any consensus
ranking statistic. Beyond the trimmed Kemeny’s statistic provided in Chapter 3 that
stems from the classical trimmed mean or median from the literature on robustness for
real-numbered data, as presented in Definition 1.3.6, we take advantage of the specific
structure of the ranking space, namely the symmetric group Sn, to provide a specific
robustification method. The idea is to relax the constraint stipulating that the summary
of a ranking distribution should be necessarily represented by a single ranking (i.e. a strict
order on the set of items indexed by i ∈ {1, . . . , n}), or equivalently by a point mass
on Sn. Instead, we suggest summarizing a ranking distribution by a bucket ranking (i.e.
a weak order on the set {1, . . . , n}), the possibility of observing ties in the considered
orderings being shown to have crucial advantages regarding robustness.

4.1.2 Outline of the Main Contributions of the Chapter

In order to provide the approximation algorithm for the breakdown point and the robusti-
fication plugin based on bucket rankings, Section 4.2 will first recall the necessary concepts
in consensus ranking and robustness, as well as the previous results from the literature
on this topic. Section 4.3 focuses on robustness, by detailing our theoretical results on
the breakdown functions for the classical consensus ranking statistics and extending this
concept to bucket rankings. In Section 4.4, we provide an optimization algorithm to esti-
mate the breakdown function in practice. Section 4.5 is dedicated to the definition of our
robust plugin, called the Downward Merge statistic. Finally, experiments are conducted
in Section 4.6 to highlight the usefulness of our Downward Merge plugin for solving robust
consensus ranking tasks.

The main contributions are summarized below:

• A theoretical evaluation of the robustness, measured by the breakdown function,
of classical consensus ranking statistics is provided. More precisely, we uncover a
general lower-bound for their breakdown function, and an upper-bound for Kemeny’s
consensus.

• We provide a practical algorithm that approximates the breakdown function of any
consensus ranking statistics. This algorithm can adapt to statistics outputting a
single ranking or a bucket ranking.

• We provide an extension of the relevant concepts (metrics and distances, breakdown
function, etc.) for bucket rankings. Notably, we provide two relevant Hausdorff-
based extensions of the classical metrics such as Kendall Tau to the space of weak
orders.

• We create a plugin called the Downward Merge plugin that provides a robust layer on
top of classical consensus ranking statistics. The Downward Merge plugin is shown
to be empirically very effective in robustifying consensus ranking with minimal loss
in precision: it thus provides a more advantageous choice of statistics compared to
classical alternatives.
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4.2 Framework and Problem Statement

We start with a reminder of key concepts in ranking data analysis and robust statistics,
mainly using concepts introduced in Chapter 1, which can be completed with Alvo and
Yu (2014); Huber and Ronchetti (2009) for more details. Recall that a ranking over a
set of n ≥ 1 items is represented as a permutation σ ∈ Sn where Sn is the symmetric
group. By convention, the rank r of an item i ∈ [n] is r = σ(i). For any measurable space
X ,M1

+(X ) is the set of probability measures on X , TV(p, q) the total variation distance
between p and q inM1

+(X ).

4.2.1 Ranking Data and Summary Statistics

The descriptive analysis of probability distributions, or datasets for their empirical coun-
terparts, is a fundamental problem in statistics. For distributions on Euclidean spaces
such as Rd, this problem has been widely studied and covered by the literature, with the
study of statistics ranging from the simplistic sample mean to more sophisticated data
functionals, such as U/L/R/M -statistics or depth functions, see for instance van der Vaart
(1998).

Defining similar notions for probability distributions on Sn, the space of rankings, is
challenging due to the absence of vector space structure and to the combinatorial nature
of the space. However, fueled by the recent surge of applications using preference data,
such as e.g. recommender systems, the statistical analysis of ranking data has recently
regained attention and certain classic problems have been revisited, as for instance those
related to consensus rankings and their generalization ability (see for example Korba et al.
(2017) and the references therein), or to the extension of depth functions to ranking data
as developed in Chapter 3.

Location Estimation Task. Statistics measuring centrality, such as the mean (or the me-
dian for univariate distribution), can be seen as barycenters of the sampling observations
w.r.t a certain distance. Consensus ranking extends this idea to probability distributions
on Sn, as in Deza and Deza (2009). As a reminder, this consensus ranking task is defined
as follows:

Definition 2.2.1. Classical Consensus Statistics. Let l : Sn × Sn → R+ be a
distance on rankings. A classical consensus statistics is a function Tl : M1

+(Sn) → Sn

solving the following optimization problem: ∀P ∈M1
+(Sn),

Tl(P ) ∈ argmin
σ∈Sn

EΣ∼P (l(Σ, σ)), (2.2.1)

The output of statistics Tl is usually denoted by σ⋆
l (where the dependence in P is dropped

when the context is clear) and is simply called the consensus.

The most famous instance of this problem is Kemeny’s consensus, which corresponds to
the situation where l is the Kendall Tau distance:

Definition 2.1.3. Kendall Tau distance. The Kendall Tau distance, denoted as
dτ : Sn ×Sn → N is defined as:

∀σ1, σ2 ∈ Sn, dτ (σ1, σ2) =
∑
i<j

1[(σ1(i)− σ1(j))(σ2(i)− σ2(j)) < 0], (2.1.1)
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Another common choice is the Borda count when l is the Spearman’s Rho distance, and
recalled here:

Definition 2.2.3. Borda Count. Let P ∈M1
+(Sn) be a distribution. The Borda count

of an item i ∈ [n] for distribution P is defined by:

BP (i) =
∑

σ∈Sn

P (σ)σ(i) (2.2.2)

Then, the Borda statistics is given by:

TBorda(P ) ∈ argsort(BP ), (2.2.3)

where argsort(s) = {σ ∈ Sn,∀r ∈ [n− 1], sσ−1(r) ≤ sσ−1(r+1)}

Moreover, the Borda count is a O(n log n), 5-approximation of the Kemeny ranking as
shown in Caragiannis et al. (2013); Jiao et al. (2016); Coppersmith et al. (2010), which
is NP-hard to compute as shown in Dwork et al. (2001a). Here are recalled Spearman’s
Rho, as well as Spearman’s Footrule distances.

Definition 2.1.4. Spearman’s Footrule distance. The Spearman’s Footrule distance,
denoted as d1 : Sn ×Sn → N is defined as:

∀σ1, σ2 ∈ Sn, d1(σ1, σ2) =
n∑

i=1
|σ1(i)− σ2(i)|, (2.1.2)

Definition 2.1.5. Spearman’s Rho distance. The Spearman’s Rho distance, denoted
as d2 : Sn ×Sn → R+ is defined as:

∀σ1, σ2 ∈ Sn, d2(σ1, σ2) =
(

n∑
i=1

(σ1(i)− σ2(i))2
)1/2

, (2.1.3)

In this Chapter, we will focus on Kendall Tau distance as it better captures pairwise item
comparisons in its formulation.

4.2.2 Robust Statistics

To evaluate the robustness of a statistic, the notion of breakdown function has been
introduced in the seminal work of Huber (1964) and exposed in Section 1.3.1. Informally,
the breakdown function for a statistic T on a distribution P measures the minimal attack
budget required for an adversarial distribution to change the outcome of the statistic T
by an amount at least δ > 0. Here we recall the classical definition of the breakdown
function provided in Definition 1.3.3.

Definition 1.3.3. Breakdown point. Let Y be a measurable space, P ∈ M1
+(Y) a

probability distribution, T : M1
+(Y) → Y a statistic, d : Y × Y → R and m : M1

+(Y) ×
M1

+(Y)→ R two metrics. The breakdown point for the statistic T on distribution P with
metrics m and d is defined by:

ε⋆(T, P, m, d) = inf
{

ε > 0
∣∣∣∣ sup

Q | m(P,Q)≤ε
d(T (P ), T (Q)) =∞

}
(1.3.6)
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In the context of rankings, since the symmetric group is a finite and discrete space, the
distance between any rankings is finite. To address this shortfall in the definition of the
breakdown point, we define formally what we call the breakdown function, as we informally
did in Section 3.5.1.

Definition 4.2.1. Breakdown Function. Let Y be a measurable space, p ∈ M1
+(Y) a

probability distribution, T : M1
+(Y) → Y a statistic, d : Y × Y → R and m : M1

+(Y) ×
M1

+(Y)→ R two metrics. For any level δ ≥ 0, the breakdown function of the statistic T
on distribution P with metrics m and d is defined by:

ε(δ, T, P, m, d) = inf
{

ε > 0
∣∣∣∣∣ sup

q:TV(p,q)≤ε

d(T (p), T (q)) ≥ δ

}
. (4.2.1)

When the context is clear, the breakdown function will be simply denoted by ε(δ).

In the extreme case, when T is the identity and δ = 0+, ε⋆ quantifies the budget of attack
under which identifiability of the distribution is possible (which requires the additional
knowledge that P belongs to some family).

Application to Ranking Data. In Agarwal et al. (2020) such a study on identifiability
is provided for the Bradley-Terry-Luce Bradley and Terry (1952); Luce (1959) model
under a budget constraint on pairwise marginals rather than the Total Variation, and
Jin et al. (2018) on the Heterogeneous Thurstone Models Thurstone (1927). However,
summary statistics, such as consensus statistics, are generally harder to break than the full
distribution itself, so the breakdown function provides a finer quantification of robustness
than the identifiability of the distribution. Since the distances on Sn are bounded, in
general, the full breakdown function needs to be considered and one cannot focus only on
a particular level such as δ = 0+ or δ = +∞. From here and throughout, the distance d
and the attack amplitude δ are normalized to lie between 0 and 1.

The robustness of the median statistic when an adversary is allowed to attack with any
strategy a pairwise model has also been studied in Datar et al. (2022). They characterize
the robustness of two statistics in terms of the L2 distance on distributions. We propose
in Definition 4.2.1 a more general and natural measure for robustness as a function of the
distance between the true and a corrupted statistic.

Bucket Rankings as a robustness candidate. In rankings, adversarial attacks often target
pairs of items that are ‘close’ in some sense, like in Agarwal et al. (2020): consecutive
ranks, a pairwise marginal probability close to 1

2 , . . . Thus, a simple and efficient way to
robustify a ranking median is to accept ties, rather than being restricted to a strict order.

4.2.3 More Details about Contributions

There is a wide number of median statistic studies motivated by the lack of analytical
expression and the computational and statistical challenges that arise in the estimation
process. However, robustness results for ranking statistics are rare and not rigorous enough
for comparing different estimators.

70



Contribution 1. Using Definition 4.2.1 with the Kendall tau distance provides a straight-
forward measure of robustness for ranking medians. In Section 4.3.1 we provide a lower-
bound on the breakdown function for a ranking median (Theorem 4.3.3) and a tight upper-
bound for the Kemeny consensus (Theorem 4.3.3).

Moreover, slight perturbations in the pairwise relations of items that are similar to each
other can imply breaking a median estimator, showing a lack of robustness. It is natural to
propose more robust estimators by allowing pairs of items to be “equally ranked”, i.e., by
considering bucket ranking statistics. However, generalizations of the breakdown function
for bucket rankings require the use of Kendall tau for buckets, which is computationally
impractical.

Contribution 2. In Section 4.3.2 we propose an extension of the breakdown function for
bucket rankings which is built upon a Hausdorff generalization of the Kendall tau distance.
We also develop an optimization algorithm to approximate this breakdown function that
overcomes the computational issue of having a piece-wise constant objective function.

We illustrate and show empirically that bucket rankings are more robust median estima-
tors than rankings. However, finding the optimal bucket order statistic requires exhaus-
tively searching the space of bucket rankings Πn, which is even larger than the space of
permutations, of factorial cardinality, and therefore, it is totally infeasible.

Contribution 3. In Section 4.5 we propose a general method for robustifying medians:
given a ranking median, our algorithm successively merges “similar” items together into
the same bucket. We evaluate this statistic in Section 4.6, showing an improvement of
robustness w.r.t. Kemeny’s median without sacrificing its precision.

4.3 Robustness for Rankings

This Section first details how to apply the notion of breakdown function ε⋆. This allows
providing insights into the robustness of classical location statistics such as the Kemeny
consensus. These results advocate for the introduction of a more robust type of statistics
based on bucket orders that are also developed in this Section.

4.3.1 Breakdown Function for Kemeny’s Consensus

For a general distribution P ∈ M1
+(Sn), we explore the robustness of ranking medians

σ⋆
l (P ) as defined in Definition 2.2.1 for different metrics l over Sn. The said robust-

ness is explored using the breakdown function with the Kendall Tau distance, namely
ε⋆(., dτ , P, T ). In particular, it is possible to tightly sandwich the breakdown function for
the Kemeny’s consensus.

Theorem 4.3.1. Let P ∈ M1
+(Sn) be a distribution, σ⋆

P = σ⋆
dτ

(P ) be its Kemeny’s con-
sensus and δ ≥ 0.

If ε+(δ) ≤ 2P (Σ = σ⋆
P ) then ε⋆(δ, dτ , P, σ⋆) ≤ ε+(δ) with

ε+(δ) = min
σ∈Sn

dτ (σ,σ⋆
P )≥δ

max
ν∈Sn

dτ (ν,σ⋆
P )<δ

EΣ∼p [dτ (Σ, σ)− dτ (Σ, ν)]
dτ (σ⋆

P , σ)− dτ (σ⋆
P , ν) . (4.3.1)
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Proof Sketch. The detailed proof is provided after this high-level sketch. The proof
relies on showing that, for ε > 0, the attack distribution Q̄ε = P − ε

21[·=σ⋆
P ] + ε

21[·=σ⋆,R
P ],

where σ⋆,R
P is the reverse of σ⋆

P , is in the feasible set of the optimization problem provided
by Definition 4.2.1 supq:tv(P,Q)≤ε dτ (σ∗

P , σ∗
Qε

).

Using Q̄ε provides a way to link ε and δ. The condition ε+(δ) ≤ 2P (Σ = σ⋆
P ) ensures Q̄ε

is well-defined.

The detailed proof is provided here, with the following remark that holds for the rest
of the proofs of the Chapter. For the sake of clarity of the proofs, we switch to matrix
notation as defined in the following proof.

Proof We fix an arbitrary indexation {σ(1), . . . , σ(n!)} of Sn. Using this indexation, given
a metric l on Sn, we can define the (symmetric) metric matrix L = (l(σ(i), σ(j)))i,j∈[n!].
Identifying a ranking σ with its corresponding basis vector ei s.t. σ = σ(i), we write for
any rankings σ, σ′, ν ∈ Sn,

ν⊤Lσ := l(ν, σ) or ν⊤L(σ − σ′) := l(ν, σ)− l(ν, σ′) (4.3.2)

Further, a distribution P ∈M1
+(Sn) on permutation can now be seen as a n!-dimensional

vector in Rn!, which we write, for clarity reasons, p ∈ Rn!. This allows to write, for
P ∈M1

+(Sn), σ ∈ Sn,

p⊤Lσ := EΣ∼P [l(Σ, σ)] (4.3.3)

We re-state the theorem with the matrix notation defined above.

Theorem 4.3.2. Let P ∈ M1
+(Sn) be a distribution, σ⋆

P = σ⋆
dτ

(P ) be its Kemeny’s con-
sensus and Sδ = {σ ∈ Sn|dτ (σ, σ⋆

P ) ≥ δ}.

If ε+(δ) ≤ 2P (Σ = σ⋆
P ), then ε⋆(δ, dτ , P, σ⋆

P ) ≤ ε+(δ).

ε+(δ) = min
σ∈Sδ

max
ν∈Nδ

p⊤Dτ (σ − ν)
σ⋆

P
⊤Dτ (σ − ν)

, (4.3.4)

where Dτ is the metric matrix L when the distance used l = dτ is Kendall Tau.

Then, the proof is provided by the following.

ε⋆(δ, dτ , P, σ⋆
P ) = inf

{
ε > 0

∣∣∣∣∣ sup
Q:tv(P,Q)≤ε

dτ (σ⋆
P , σ⋆

Q) ≥ δ

}
(4.3.5)

= inf
{
ε > 0

∣∣∣∃Q, s.t.tv(P, Q) ≤ ε and dτ (σ⋆
P , σ⋆

Q) ≥ δ
}

(4.3.6)
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= inf
{

ε > 0
∣∣∣∣∣∃Q, s.t.tv(P, Q) ≤ ε and argmin

σ∈Sn

q⊤Dτ σ ⊆ Sδ

}
︸ ︷︷ ︸

=:E

, (4.3.7)

with Sδ = {σ ∈ Sn|dτ (σ, σ⋆
p) ≥ δ}

Further, we define Nδ = Sn \ Sδ, σ⋆,R
P the reverse of σ⋆

P , i.e., σ⋆,R
P (i) = σ⋆

P (n− i− 1) and
the attack distribution Q̄ε = P − ε

21[·=σ⋆
P ] + ε

21[·=σ⋆,R
P ] that removes the probability mass

from the median to put it on the farthest point.

We also define the aforementioned two sets: E =
{
ε| argminσ∈Sn

q̄⊤
ε Dτ σ ⊆ Sδ

}
and

Ẽ =
{
0 < ε ≤ 2P (Σ = σ⋆

P )
∣∣∣argminσ∈Sn

q̄⊤
ε Dτ σ ⊆ Sδ

}
⊆ E ∩ (0, 2P (Σ = σ⋆

P )].

Let ε > 0 be such that ε ≤ 2P (Σ = σ⋆
P ). Then

ε ∈ Ẽ ⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, q̄⊤
ε Dτ σ ≤ q̄⊤

ε Dτ ν (4.3.8)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, p⊤Dτ (σ − ν)+
ε

2
(
σ⊤Dτ σ⋆,R

P − σ⊤Dτ σ⋆
P + ν⊤Dτ σ⋆

P − ν⊤Dτ σ⋆,R
P

)
≤ 0

(4.3.9)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, p⊤Dτ (σ − ν) ≤ ε

2

(
(σ⋆

P − σ⋆,R
P )⊤

Dτ (σ − ν)
)

(4.3.10)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, p⊤Dτ (σ − ν) ≤ ε
(
σ⋆

P
⊤Dτ (σ − ν)

)
as σ⋆,R

P

⊤
Dτ · = ∥Dτ∥∞ − σ⋆

P
⊤Dτ ·

(4.3.11)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ,
p⊤Dτ (σ − ν)

σ⋆
P

⊤Dτ (σ − ν)
≤ ε (4.3.12)

⇔ min
σ∈Sδ

max
ν∈Nδ

p⊤Dτ (σ − ν)
σ⋆

P
⊤Dτ (σ − ν)

≤ ε (4.3.13)

Now, denoting ε+(δ) = minσ∈Sδ
maxν∈Nδ

p⊤Dτ (σ−ν)
σ⋆

P
⊤Dτ (σ−ν) , by definition ε+(δ) satisfies Equa-

tion (4.3.13), which means ε+(δ) ∈ Ẽ iff ε+(δ) ≤ 2P (Σ = σ⋆
P ). Thus, if ε+(δ) ≤ 2P (Σ =

σ⋆
P ), then

ε+(δ) = inf Ẽ ≥ inf E = ε⋆(δ, dτ , P, σ⋆
P ). (4.3.14)

It is also possible to provide a lower bound on the breakdown function for any generic
ranking consensus, which corresponds to the ranking having the smallest average distance
with respect to the studied distribution when using any distance l.

Theorem 4.3.3. Let P ∈ M1
+(Sn) be a distribution, d and l be two metrics on Sn,

σ⋆
P = σ⋆

l (P ) be the consensus using metric l, and δ ≥ 0, we have ε⋆(δ, d, P, σ⋆
P ) ≥ ε−(δ)

with

ε−(δ) = min
σ∈Sn

d(σ,σ⋆
P )≥δ

max
ν∈Sn
ν ̸=σ

EΣ∼P [l(Σ, σ)− l(Σ, ν)]
maxσ′∈Sn l(σ′, σ)− l(σ′, ν) (4.3.15)
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Proof We re-state the theorem with the matrix notation defined above.

Theorem 4.3.4. For P ∈M1
+(Sn), d and l two metrics on Sn and σ⋆

P = σ⋆
l (P ), we have

ε⋆
δ,d,P,σ⋆

P
≥ min

σ∈Sδ

max
ν∈Sn:ν ̸=σ

p⊤L(σ − ν)
∥L(σ − ν)∥∞

, (4.3.16)

where Sδ = {σ ∈ Sn|d(σ, σ⋆
p) ≥ δ}.

Let Nδ = Sn \ Sδ, E =
{
ε| argminσ∈Sn

q̄⊤
ε Lσ ⊆ Sδ

}
, and Ẽ ={

0 < ε ≤ 2P (Σ = σ⋆
P )
∣∣∣argminσ∈Sn

q̄⊤
ε Lσ ⊆ Sδ

}
⊆ E ∩ (0, 2P (Σ = σ⋆

P )].

ε⋆
δ,d,P,σ⋆

P
= inf

{
ε > 0

∣∣∣∣∣ sup
Q:tv(P,Q)≤ε

d(σ⋆
P , σ⋆

Q) ≥ δ

}
(4.3.17)

= inf
{
ε > 0

∣∣∣∃Q, s.t.tv(P, Q) ≤ ε and d(σ⋆
P , σ⋆

Q) ≥ δ
}

(4.3.18)

= inf
{

ε > 0
∣∣∣∣∣∃Q, s.t.tv(P, Q) ≤ ε and argmin

σ∈Sn

q⊤Lσ ⊆ Sδ

}
︸ ︷︷ ︸

=:E

(4.3.19)

Now, ε ∈ E ⇔ ∃Q, s.t.tv(P, Q) ≤ ε and argmin
σ∈Sn

q⊤Lσ ⊆ Sδ (4.3.20)

⇔ ∃Q ∈ ∆Sn ,tv(P, Q) ≤ ε and ∃σ ∈ Sδ,∀ν ∈ Sn, q⊤Lσ ≤ q⊤Lν (4.3.21)

⇔ ∃Q ∈ ∆Sn ,tv(P, Q) ≤ ε and ∃σ ∈ Sδ,∀ν ∈ Sn

p⊤L(σ − ν) ≤ (q− − q+)⊤L(σ − ν)
where q+ = (q − p)+ and q− = (p− q)+

(4.3.22)

⇒ ∃Q ∈ ∆Sn ,tv(p, Q) ≤ ε and ∃σ ∈ Sδ,∀ν ∈ Sn,

p⊤L(σ − ν) ≤ ∥q+ − q−∥1∥L(σ − ν)∥∞
(4.3.23)

⇒ ∃σ ∈ Sδ,∀ν ∈ Sn, p⊤L(σ − ν) ≤ ε∥L(σ − ν)∥∞

as ∥q+ − q−∥1 ≤ ε
(4.3.24)

⇒ ∃σ ∈ Sδ,∀ν ∈ Sn, s.t.σ ̸= ν,
p⊤L(σ − ν)
∥L(σ − ν)∥∞

≤ ε (4.3.25)

⇒ min
σ∈Sδ

max
ν∈Sn:ν ̸=σ

p⊤L(σ − ν)
∥L(σ − ν)∥∞

≤ ε. (4.3.26)

Finally, ε⋆
δ,d,P,σ⋆

P
= inf E ≥ min

σ∈Sδ

max
ν∈Sn:ν ̸=σ

p⊤L(σ − ν)
∥L(σ − ν)∥∞

. (4.3.27)
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Figure 4.1: An illustration of ε+(δ) and ε−(δ) (from Theorem 4.3.1 and Theorem 4.3.3) for a
distribution on permutations of 4 items. For Borda count and the consensus associated with
Spearman’s footrule, only the lower bound is displayed.

Figure 4.1 shows that no choice of metric l makes the consensus uniformly more robust
than an other. Then, unfortunately, it also illustrates the fragility of consensus statistics
against the corruption of the distribution. In this example, impacting the distribution P
by less than 5% allows changing the Kemeny’s consensus by flipping more than half item
pairs (δ ≥ 0.5).

Sensitivity to similar items. To further illustrate the fragility of Kemeny’s consensus,
Figure 4.2 shows its breakdown function on specific distributions. As could be expected,
if all items are almost indifferent (uniform distribution - purple curve), then a ranking
consensus is very fragile: a small nudge on P is enough to change the Kemeny’s consensus
from one ranking to its reverse. On the contrary, when P is a point mass at a given
ranking (blue curve), it requires a large attack on P to impact the consensus.

The green curve shows a weakness in the consensus: despite P being concentrated on
two neighboring rankings (identical up to a pair of adjacent items), the robustness is
very low for δ ≤ 0.2. This highlights a mechanism underlying adversarial attacks in
real-world recommender systems (ex: fake reviews...): at a small cost, it is possible to
be systematically ranked on top of close alternatives. This calls for using the natural
alternative to (strict) rankings, which incorporates indifference between items: bucket
rankings.
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Figure 4.2: Breakdown function for Kemeny’s median for different distributions P . ”Uniform”
denotes an almost uniform distribution; ”Point mass” an almost point mass distribution, and
”Bucket” an almost point mass distribution on two neighboring rankings.
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Figure 4.3: Illustration of the difference between a ranking 1 ≻ 2 ≻ 3 and a bucket ranking
1 ∼ 2 ≻ 3.

4.3.2 Bucket Ranking

Intuitively, bucket rankings are rankings with ties allowed. Formally, they can equiva-
lently be defined as a total preorder – i.e. a homogeneous binary relation that satisfies
transitivity and reflexivity (preorder) in which any two elements are comparable (total)
– or as a strict weak ordering – i.e. a strict total order over equivalence classes of items
(buckets), as illustrated in Figure 4.3.

Definition 4.3.5. Bucket ranking. A bucket order π is a strict weak order defined
by an ordered partition of [n], i.e. a sequence (π(1), . . . , π(k)) of k ≥ 1 pairwise disjoint
non-empty subsets (buckets) of [n] such that:

(i) i ≺π j ⇔ ∃l < l′ ∈ [k], (i, j) ∈ π(l) × π(l′),

(ii) i ∼π j ⇔ ∃l ∈ [k], (i, j) ∈ π(l) × π(l),

We denote Πn the set of bucket rankings, which is of size
∑n

k=1 k!S(n, k)1 (vs n! for Sn).

The indifference between items that bucket rankings can incorporate is an interesting
feature to gain robustness, because the statistic can output alternatives between several
strict orders, making it harder to attack.

As sets of permutations. A bucket ranking π ∈ Πn can be equivalently mapped to a
subset of permutations, generated through the different ways to break ties. We say that
a permutation σ ∈ Sn is compatible with a bucket ranking π ∈ Πn – denoted σ ∈ π – if
for any i, j ∈ [n], σ(i) < σ(j) ⇔ i ≺π j or i ∼π j. For two bucket orders π1, π2, we say
that π1 is stricter that π2, denoted π1 ⊆ π2, iff for any σ ∈ Sn, σ ∈ π1 ⇒ σ ∈ π2.

As a distribution. Being a set of permutations, a bucket order π ∈ Πn can also be seen as
a uniform distribution with restricted support. This point of view is particularly intuitive
from a robustness perspective: a randomized output is generally harder to attack for an
adversary.

Distances between bucket rankings. A key to applying the breakdown function from
Definition 4.2.1 to bucket orders statistics is to have a metric on Πn that extends those
defined on Sn. To this end, we use the previous remark that weak orders are sets of

1S(n, k) are Stirling numbers of the second kind.
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rankings as well as a classical Hausdorff extension of metrics to sets. More precisely, we
define:

Definition 4.3.6. Non-symmetric Hausdorff. Let l be a metric on Sn. The non-
symmetric Hausdorff pseudoquasi-metric between two bucket rankings π1, π2 ∈ Πn is

Hns
l (π1, π2) = max

σ2∈π2
min
σ1∈π1

l(σ1, σ2) . (4.3.28)

Even though it is not a metric, Hns
l is well-suited to ranking with ties. Intuitively, its lack

of symmetry allows differentiating adversarial attacks whose effect is on the strict part
of the bucket order (e.g. swapping two items that are strictly ordered) from those whose
effect is ‘only’ to disambiguate a tie. More precisely, if π2 ⊆ π1, then Hns

l (π1, π2) = 0.
Depending on the application, one may want to focus on the first type of attacks, in which
case Hns

l is a suitable choice to define the breakdown function as ε⋆(., Hns
l , P, T ).

Otherwise, it is possible (and usual) to symmetrize the Hausdorff metric.

Definition 4.3.7. 1/2-symmetric Hausdorff. Let l be a metric on Sn. The 1/2-
symmetric Hausdorff metric between two bucket rankings π1, π2 ∈ Πn is defined by

H
(1/2)
l (π1, π2) = 1

2

(
Hns

l (π1, π2) + Hns
l (π2, π1)

)
. (4.3.29)

Usual symmetrization of the Hausdorff metric uses a maximum rather than an average,
see for example Fagin et al. (2006). However, under the Kendall Tau distance, the average
version is computationally simpler.

Proposition 4.3.8. For any π1, π2 ∈ Πn, the computation cost of Hns
dτ

(π1, π2) and

H
(1/2)
dτ

(π1, π2) is O(n2).

The average Hausdorff distance can be expressed with various expressions, necessitating
the following notations (see Fagin et al. (2006)):

1. ∀ i ∈ [[1, n]] π̄(i) = ∑
σ∈π σ(i) is the rank of item i according to weak order π.

2. S(π1, π2) = {(i < j) | π̄1(i) ̸= π̄1(j), π̄2(i) ̸= π̄2(j), [π̄1(i)− π̄1(j)][π̄2(i)− π̄2(j)] < 0}
is the set of item pairs (i < j) that are in different buckets in both π1 and π2, and
that are in different orders in π1 and π2.

3. S(π1 \ π2) = {(i < j) | π̄1(i) = π̄1(j) and π̄2(i) ̸= π̄2(j)} is the set of item pairs
(i < j) such that both items are in the same bucket in π1 but in different ones in
π2.

4. prof(π) = (prof(π)i,j)i<j, where ∀ i < j, prof(π)i,j = 1/2 if π̄(i) < π̄(j), = 0 if
π̄(i) = π̄(j) and = −1/2 if π̄(i) > π̄(j). prof(π) is called the profile vector of π.

We have the following equivalent expressions for the average Hausdorff distance:

Proposition 4.3.9. Average Hausdorff distance.

H
(1/2)
dτ

(π1, π2) := #S(π1, π2) + 1
2 (#S(π1 \ π2) + #S(π2 \ π1)) (4.3.30)

=
∑
i<j

1 ([π̄1(i)− π̄1(j)][π̄2(i)− π̄2(j)] < 0) +
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1
21 ([π̄1(i) = π̄1(j)]) 1 ([π̄2(i) ̸= π̄2(j)]) +
1
21 ([π̄2(i) = π̄2(j)]) 1 ([π̄1(i) ̸= π̄1(j)]) (4.3.31)

= ∥prof(π1)− prof(π2)∥1 (4.3.32)

Proof of Average Hausdorff distance.

Let π1, π2 be two weak orders associated with buckets (B1
1 , ...B1

t1) and (B2
1 , ...B2

t2) respec-
tively. Such buckets are sets of items i forming a partition of [n] such that i ∈ B1

k if and

only if π̄1(i) = ∑
k′<k #B1

k′ + #B1
k+1
2 (see Fagin et al. (2006) for a more formal definition).

Let’s define as in Critchlow (2012); Fagin et al. (2006):
∀ i ≤ t1,∀ j ≤ t2, ni,j = #(B1

i ∩B2
j ).

Then, from Chapter IV of Critchlow (2012), we have the following relation:

H
(1/2)
dτ

(π1, π2) = 1
2

(∑
i<i′,j≥j′ ni,jni′,j′ +∑

i≤i′,j>j′ ni,jni′,j′

)
.

By noting that 2#S(π1, π2) = ∑
i<i′,j>j′ ni,jni′,j′ and 2#S(π1 \π2) = ∑

i=i′,j>j′ ni,jni′,j′ , we
derive our first equality. The second equality directly comes from re-expressing the first
one. The third equality comes from Fagin et al. (2006).

4.4 Estimation of the Breakdown Function

Definition. Putting all the pieces together, from now on, the statistic T :M1
+(Sn)→ Πn

summarizes a distribution over Sn by a bucket ranking in Πn. Then, we use either
H

(NS)
dτ

(π1, π2) (see Definition 4.3.6) or H
(1/2)
dτ

(π1, π2) on Πn where dτ is the Kendall Tau
distance (see Definition 2.1.3).

Finally, the breakdown function ε⋆(δ, H
(NS)
dτ

, P, T ) is the result of the following optimiza-
tion problem

inf
{

ε > 0
∣∣∣∣∣ sup

Q:TV(P,Q)≤ε

H
(NS)
dτ

(T (P ), T (Q)) ≥ δ

}
(4.4.1)

The Empirical Breakdown Function. Computing a closed-form expression for the break-
down function for any statistic T and distribution P is challenging in general. However, it
can be estimated empirically: the extended expression of the breakdown function in Equa-
tion (4.4.1) can be simplified so that it is the solution to the following Lagrangian-relaxed
optimization problem.

inf
q∈∆Sn

sup
λ≥0

1/2∥p− q∥1 + λ(δ −H
(NS)
dτ

(T (P ), T (Q))) (4.4.2)

where, as before, we identified distribution P ∈ M1
+(Sn) with p ∈ Rn!, a n!-dimensional

probability vector, thanks to an arbitrary indexation of {σ(1), ..., σ(n!)} of Sn.
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Smoothing. As H
(NS)
dτ

(T (P ), T (Q))) is piece-wise constant as a function of Q (with a
combinatorial number of pieces), Equation (4.4.2) cannot directly be solved using standard
optimization techniques. To solve this issue, we used a smoothing procedure by convolving
this function with a smoothing kernel kγ with scale γ. Thus, after the relaxation, the
optimization Equation (4.4.2) becomes:

inf
q∈∆Sn

sup
λ≥0

1/2∥p− q∥1 + λ(δ − ρT (p, q)), (4.4.3)

with

ρT (p, q) = H
(NS)
dτ

(T (p), T (q)) ⋆ kγ(q) (4.4.4)

=
∫

u
H

(NS)
dτ

(T (p), T (u))× kγ(q − u)du, (4.4.5)

On a practical note, a simple way to build a convolution kernel kγ on a simplex like
M1

+(Sn), is to use a convolution kernel κγ on the whole Euclidean space – for instance

an independent Gaussian density κγ(x) = 1√
(2πγ)n!

exp (−xTx
2γ2 ) – and set kγ to be the

density of the push-forward through a softmax function. We denote εγ
p,T (δ) the limiting

value of ∥p − q∥1/2 at the solution of Equation (4.4.3). Note the bias induced by such
a definition of kγ fades away when γ goes to 0 in the same way as the bias induced by
the convolution. This smoothing ensures ρT is a continuous, differentiable function with
respect to q. Moreover, it can easily be estimated using a Monte-Carlo sampling, using
the following remark: ρT (p, q) = Eu∼k(p,γ)(H

(NS)
dτ

(T (u), T (q)).

Optimization. When using Monte-Carlo estimation for ρT , Equation (4.4.3) is a stochas-
tic saddle-point problem. To solve such problems, gradient/ascent has a rate of conver-
gence of O(t1/2) for its ergodic average (t being the number of steps) as shown in Ne-
mirovski and Rubinstein (2002). Our empirical optimization algorithm for computing
the breakdown functions relies on stochastic gradient descent and is able to provide good
approximations, as illustrated in Figure 4.5.

We denote ε̂γ
p,T (δ) = ∥p − q̄t∥1, where q̄t is the ergodic average of the iterates (qs)s≤t

obtained during the optimization.

Let’s make a couple of remarks on the empirical breakdown function ε̂γ
p,T . First, it is a

noisy estimate of εγ
p,T as ρT , and its gradients are estimated via Monte-Carlo. Thus, the

choice of γ and t should trade-off the variance of ε̂γ
p,T and the bias |εγ

p,T − ε⋆(., dτ , P, T )|.
Second, as the term ∥p − q∥1 is minimized in Equation (4.4.3), it is expected ε̂γ

p,T over-
estimates εγ

p,T .

4.5 Robust Consensus Ranking Statistics

As proved by Theorem 4.3.1, the classical consensus statistics as defined by Definition 2.2.1
can be easily broken, which motivates defining more robust statistics, based on bucket
rankings. As illustrated by Figure 4.2, the weakness of consensus statistics comes from
being ‘forced’ to rank all items, even those which are (almost) indistinguishable. Bucket
rankings seem to be a natural solution to this problem, but what is a good way to build a
bucket order statistic?
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Figure 4.4: Left: Directed Graph that summarizes a pairwise marginal probability matrix. (i-iv)
Graph representations of bucket orders that are compatible with merging items whose pairwise
preference probability is below 0.52 (i, ii) and below 0.7 (iii,iv).

As H
(NS)
dτ

defines a (pseudoquasi-) distance on Πn, we could adapt the idea of a consensus
as in Definition 2.2.1 for bucket rankings. However, contrarily to the Borda count statistic
which can be computed in a scalable way as in Caragiannis et al. (2013), Hausdorff-based
consensus would require to optimize over Πn. As its cardinality is larger than Sn this
problem can be more computationally challenging than Kemeny’s aggregation procedure.

A more scalable approach is to start from a consensus such as the Kemeny’s consensus or
Borda’s consensus and to robustify it using a plug-in method based on merging items that
are close into buckets. Figure 4.4 illustrates this idea. The left graph describes pairwise
marginal probabilities for which the Kemeny’s consensus is A ≺ B ≺ C ≺ D. Intuitively,
merging either C and D (as P(C ≺ D) = 0.51) or B and C (as P(B ≺ C) = 0.52) leads to
bucket rankings (i) and (ii), which will be harder to attack. However, this example also
highlights that there is no unique way of merging items. For instance, if the constraint is
to only merge items whose pairwise preference probability is in [0.4, 0.6], it is possible to
merge B, C or C, D, but not B, C, D as P(B ≺ D) = 0.7: pairwise indistinguishability is
not transitive.

4.5.1 Naive Merge

In order to formalize the latter intuition and to derive a first (naive) plug-in rule, we
restate the pairwise preference probability between two items, which provides a relevant
notion of closeness between items.

Definition 2.2.4. Pairwise Probabilities. Let P ∈ M1
+(Sn) be a distribution. Its

corresponding pairwise probability matrix, denoted by (pi,j)1≤i,j≤n is the matrix composed
of the pairwise probabilities as defined by:

∀(i, j) ∈ [n]2, pi,j = P (Σ(i) < Σ(j)). (2.2.4)

By convention, in the rest of the Chapter, ∀i ∈ [n], pi,i = 0.5.

Then, given a bucket ranking π ∈ Πn, we formalize the notion that two buckets can be
merged, with the constraint of not changing the strict order between buckets. To this end,
we define p̄i(π), the strongest deviation from indifference between any two items within
the ith bucket π(i).

p̄i(π) = max
{
|pl,l′ − 0.5| : (l, l′) ∈ π(i)

}
(4.5.1)
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Then, one needs to quantify the value of p̄i(π) that would result from merging bucket i
to bucket j,

p̄i,j(π) = max

|pl,l′ − 0.5| : (l, l′) ∈
⋃

l∈[n]
i≤l≤j

π(l)

 (4.5.2)

Finally, given a threshold θ ∈ [0, 0.5] on the acceptable deviation from indifference, we
define the set of pairs of buckets that can be merged while keeping p̄ below θ,

G(π, θ) =
{
(i, j) ∈ [n]2 : p̄i,j(π) ≤ θ

}
(4.5.3)

The first intuition is to merge buckets iteratively, starting with the most indifferent ones,
as described in Algorithm 4.1. More precisely, the idea is to iteratively look for pairs of
items with a pairwise probability the closest to 1/2, merge them, update the pairwise
probabilities and continue until there are no items left to be merged together.

Algorithm 4.1: Naive Merge Plugin

Input : Pairwise matrix (pi,j), ranking consensus σ, threshold θ ∈ [0, 0.5].
π ← σ // σ as a bucket ranking

while G(π, θ) ̸= ∅ do
(i∗, j∗) = argmin(i,j)∈G(π,θ) p̄i,j(π)
update π by merging all buckets between i∗ and j∗

π(i) ← π(i) for i < i∗

π(i∗) ← ⋃
l∈[n],i∗≤l≤j∗ π(l)

π(i−j∗+i∗) ← π(i) for i > j∗

Output: π

Termination of Algorithm 4.1 is guaranteed by the fact that the number of buckets in π
strictly decreases at each iteration. Then, by definition of G(π, θ), the resulting bucket
ranking π is such that any of its bucket i satisfies p̄i(π) ≤ θ – i.e. no two items with
higher deviation than θ have been merged.

Despite being very natural, this algorithm suffers from an important limitation: when
changing the threshold θ, its output only spans a limited subset of valid bucket rankings.
In the example provided by Figure 4.4, the naive merge method plugged-in on the Ke-
meny’s consensus can only output (i) and (iii). Whatever the value of θ, it can never
output (ii) or (iv). This limitation is induced by its output being a monotonic (with
respect to inclusion) function of θ – i.e. for θ1 ≤ θ2, the resulting bucket rankings satisfy
πθ1 ⊆ πθ2 .

4.5.2 Downward Merge

Overcoming this limitation only requires a small change to the algorithm which results in
our main plug-in method named Downward Merge, shown in Algorithm 4.2. Downward
Merge algorithm selects the two buckets (i∗, j∗) whose deviation from indifference p̄ij(π)
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is maximal (and not minimal!) among those p̄ij(π) ≤ θ. Thus, intuitively, instead of
taking the most similar buckets, as in the previous statistic, we take the most different
pair among those that are ‘similar enough’. Then, all the buckets l such that i∗ ≤ l ≤ j∗

are merged. This process is repeated while there exist pairs of buckets whose deviation
from indifference p̄ij(π) ≤ θ and thus termination is guaranteed.

Algorithm 4.2: Downward Merge Plugin

Input : Pairwise matrix (pi,j), ranking consensus σ, threshold θ ∈ [0, 0.5].
π ← σ // σ as a bucket ranking

while G(π, θ) ̸= ∅ do
(i∗, j∗) = argmax(i,j)∈G(π,θ) p̄i,j(π)
update π by merging all buckets between i∗ and j∗

π(i) ← π(i) for i < i∗

π(i∗) ← ⋃
l∈[n],i∗≤l≤j∗ π(l)

π(i−j∗+i∗) ← π(i) for i > j∗

Output: π

The Downward Merge method is thus able to span a larger set of bucket orders when vary-
ing θ. In the example from Figure 4.4, the Downward Merge method plugged-in on the Ke-
meny’s consensus can generate all four bucket rankings (i-iv) for θ ∈ {0.51, 0.52, 0.69, 0.7)}.

The next experimental Section illustrates the robustness improvement brought by this
plug-in method over a ranking median.

4.6 Experiments

In this Section, we illustrate the relevance of the statistic outputted by our Downward
Merge plug-in on Kemeny’s consensus (called our Downward Merge statistic for short)
by running several illustrative experiments for various settings and comparing with the
baseline provided by the usual Kemeny’s consensus. The code is available https://

github.com/RobustConsensusRanking/RobustConsensusRanking.

4.6.1 Empirical Robustness

Our Downward Merge plug-in aims at providing a robustified statistic. To illustrate its
usefulness, we ran experiments computing the approximate breakdown functions ε̂γ

p,T (δ)
for the Kemeny’s consensus as a baseline and our statistic when varying δ. Figure 4.5
shows the robustness as a function of attack amplitude δ and for a hand-picked distribution
P that is almost a point mass on a bucket ranking.

When the threshold is set to a sensible value (here θ = 0.05), the Downward Merge algo-
rithm outputs a bucket order as a statistic: thus, the robustness increases very strongly to
reach nearly optimal values even for very small values of δ, which illustrates its efficiency.
When θ = 0.5, the statistic is the bucket order regrouping all items. In this case, the statis-
tic cannot be broken, and provide optimal values for the breakdown function. However,
such a statistic does not provide any information about the distribution under analysis:
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Figure 4.5: Breakdown function ε̂γ
p,T (δ) as a function of attack amplitude δ for a bucket distri-

bution P (almost a point mass on two neighboring rankings) with n = 4. The plain blue line
denotes the theoretical value for Kemeny’s consensus ε⋆(δ, P ), blue crosses (resp. red dots) the
empirical approximation ε̂γ

p,T for Kemeny’s consensus (resp. Down. Merge statistic for different
thresholds θ).

Figure 4.6: Loss/Robustness tradeoffs for different P with δ = 1. Pairs of points linked by
a black line denote results for Kemeny’s consensus and Down. Merge statistics on the same
distribution P with n = 4. ”Buckets” are hand-picked distributions generated to be almost a
point mass on a bucket order, ”Uniform” (resp. ”Point mass”) ”is an almost uniform (resp. point
mass) hand-picked distribution, and ”PL distribs.” are random Plackett-Luce distributions.

its precision, or its accuracy of location, is very poor. Formally, the precision or accuracy
of location of a statistic T is defined by its closeness (under the same metric l used in
its definition) to the whole ranking distribution: ALl,P (T ) := ∥dl∥∞−EΣ∼P (d(T (P ), Σ)),
which is the opposite of the loss, as simply defined by Lossl,P (T ) = EΣ∼P (d(T (P ), Σ)). By
definition, under metric l = dτ , Kemeny’s consensus has the highest accuracy of location,
i.e. the smallest loss. On the other hand, the Downward Merge statistic when θ = 0.5
has a very high loss, which makes it irrelevant in most cases. These observations justify
the analysis of the loss/robustness tradeoff of our Downward Merge statistic compared to
Kemeny’s median.

4.6.2 Tradeoffs between Loss and Robustness

We ran experiments for various distributions P and computed the loss and the break-
down function of Kemeny’s consensus and our Downward Merge algorithm to show the
loss/robustness tradeoff for each statistic. Figure 4.6 shows the results for different choices
of distribution P when the number of items n = 4, and for δ = 1/6 (normalized value of
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Figure 4.7: Loss/Robustness tradeoffs for different real-world datasets with δ = 1. Pairs of
points linked by a black line denote results for Kemeny’s median and Down. Merge statistics on
the same dataset.

δ that requires at least a switch between two items to break the statistic).

The point mass (resp. the uniform) distribution represents the extreme case for which
Kemeny’s consensus is very robust (resp. not robust at all) and for which we expect no
improvement from using the Downward Merge statistic. This intuition is verified in both
cases, and we can see that the Downward Merge statistic yields the same results (in loss
and in robustness) as Kemeny’s consensus.

The bucket distributions (for which the gap between the probabilities for two rankings in
the bucket order is respectively 0.1 and 0.01) represent the settings to which our Down-
ward Merge is best suited. As expected, the improvement in robustness when using our
Downward Merge statistic is high, and the increase in loss is negligible.

Finally, the Plackett Luce distributions (for which the parameters were generated ran-
domly) represent a random setting. The results are interestingly very similar to those for
the bucket distributions: the gain in robustness is high and the increase in loss is negli-
gible. This random setting illustrates the usefulness of our Downward Merge statistic in
general cases and shows that, overall, it yields a much better compromise than Kemeny’s
consensus.

To corroborate these findings in more practical settings, we also ran experiments using
real-world datasets from the preflib library that can be accessed here: https://www.

preflib.org/. We used two Netflix Prize datasets (resp. with n = 3 and n = 4 items), a
Debian dataset (with n = 5 items), and an Apa dataset (with n = 5 items). The results
are shown in Figure 4.7, and corroborate the synthetic results: our plugin always provides
much better robustness, while the increase in the loss stays minimal.

4.7 Conclusion

In this Chapter, we developed a framework to study practical robustness in rankings:
not only defined breakdown functions for rankings, extended it to bucket rankings, and
created an optimization algorithm to approximate its value in practice. In addition to
this experimental setting, we provided theoretical bounds on the breakdown function of
classical consensus rankings such as Kemeny’s consensus.
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Further, we developed our Downward Merge statistic as a plug-in to the classical Kemeny’s
consensus to provide, as confirmed by our experiments, not only improved robustness but
also a better compromise between centrality and robustness. By enforcing undecidability
between close items and constructing a bucket ranking as an output, our Downward Merge
plugin leverage not only the structure of the symmetric group, but also the randomness
as a strategy to improve robustness. Indeed, a bucket ranking can also be seen as a set of
rankings: in this case, if one requires a unique ranking as consensus, a simple strategy is
to sample uniformly a ranking in the bucket ranking set. This random strategy illustrates
the difficulty for an adversarial attack to fool the bucket ranking, because it is harder to
attack a random strategy compared to a fully deterministic one.

In addition to the robustness provided by our plugin, we ensured our Downward Merge
algorithm can be used in practice as it is scalable to most practical settings. However, the
evaluation of the breakdown function remains challenging because of the use of the Total-
Variation distance as a metric for the budget constraint, which requires computing the L1-
norm on a vector of size n!, where n is the number of items. Thus, our approximation is not
scalable to large values of n: the definition and study of further scalable approximations
of the breakdown function remains to be done.
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Chapter 5

Conclusion about Robustness in
Rankings

Do you know the problem with
a disguise? However hard you
try, it’s always a self-portrait.

Irene Adler, Sherlock
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In this Part, the topic of robustness against poisoning attacks, specifically in the
context of the consensus ranking task for ranking data, was tackled. As introduced in
Section 1.3, poisoning attacks target models at training time. Though deeply studied for
real-numbered data (or multivariate data), the robustness against poisoning attacks was
not introduced for more complex data space, namely ranking data, which aggregate a
lack of vector space structure and combinatorial nature.

To initiate the study of robustness for the consensus ranking task, Chapter 3 adapted the
concept of depth functions to rankings. Depth functions give a way to assign a score to
data points in order to provide a notion of centrality of a data point. This centrality score
enables to construct equivalents of ranks to ranking data in order to build equivalents
of quantiles. Thanks to the theoretical definitions and the statistical bounds provided,
depth functions were used to construct a trimming algorithm to filter out adversarial or
outlier points into a dataset. This trimming algorithm mimics the notion of trimmed
mean to robustify traditional consensus statistics. This strategy is shown to be very
relevant through experimental illustrations, but also through theoretical analysis.

In addition to this first strategy, Chapter 4 provided a clearer way to evaluate empirically
the robustness of a statistic solving the consensus ranking task, via an algorithm
approximating the breakdown function, which is a measure of robustness introduced in
the classical robust statistics literature. Moreover, a plugin to improve the robustness
of any statistics was proposed. The idea is to introduce bucket rankings, which allows
a form of undecidability between items that are close to each other according to the
dataset. This plugin can be added on top of any statistic and is shown to provide much
more robustness (via increased breakdown function values) and almost no precision loss
(via almost no decrease of the location precision).

In conclusion, these two works initiated the systematic study of robustness against poi-
soning attacks for rankings. By focusing on the basic task of consensus ranking, these
works allow for a simple extension to the current tasks involving ranking data, which are
essential in recommender systems (top-k rankings, etc.). In addition, our work focused
on robustifying consensus statistics from a general, theoretical point of view, meaning
that these works do not depend on specific attack algorithms. As the problem has almost
not been studied before, extensions of the present works are needed to adapt to specific
settings and to provide other robustification strategies. However, this thesis is essential
for building a framework for more the studies on robustness in rankings.

A limitation of the present work relies in the scalability of the methods. If the robust
statistics presented in Chapters 3 and 4, in particuler the Downward Merge plugin, are
indeed scalable and can be computed on distributions and datasets on the symmetric group
for large number of items, this is not the case for the practical evaluation of the robustness
of consensus statistics, which does not fully overcome the challenge of the combinatorial
nature of the ranking space. This limit is mitigated by the theoretical bounds provided in
Chapter 4, but the robustness of different statistics in complex settings is not achievable
via our methodology. Providing practical evaluation of robustness in a scalable way is, in
our point of view, the main requirements for future perspective on the subject.
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Part II

Understanding and Unifying Recent
Advances on Adversarial Robustness

88



Table of Contents

List of notations 90

6 Introduction to Adversarial Examples on Deep Learning Models 92
6.1 Robustness in Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Exploring the Complexity of Adversarial Behavior . . . . . . . . . . . . . . 98

7 Adversarial Robustness Perspective on the Topology of NNs 103
7.1 Introduction and High-level Overview . . . . . . . . . . . . . . . . . . . . . 105
7.2 Unification of Adversaries Characteristics: Our Hypothesis . . . . . . . . . 109
7.3 Introduction to Topological Data Analysis . . . . . . . . . . . . . . . . . . 111
7.4 Extraction of Topological Features – Methods . . . . . . . . . . . . . . . . 116
7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.7 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Existence of Low-Dimensional Adversarial Attacks 132
8.1 Introduction and High-level Overview . . . . . . . . . . . . . . . . . . . . . 134
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 Adversarially Viable Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 140
8.4 Model with Lipschitz Decision Boundary . . . . . . . . . . . . . . . . . . . 142
8.5 Model with Locally Almost-Affine Decision Boundary . . . . . . . . . . . . 150
8.6 Experimental Application to Trained Neural Networks . . . . . . . . . . . 154

9 Conclusion about Robustness in Deep Learning 159



List of Notations

Neural Networks

fθ A neural network
gθ The feature map corresponding to neural network fθ

g̃θ The probability vector outputted by the neural network fθ

l the training loss for the neural network

Data

x An input data, usually an image
y A label
δ Usual notation for an adversarial perturbation
xadv The adversarial example corresponding to input x

Metrics and Norms

||x||2 The L2-norm of vector x
||A||op The operator norm of real matrix A

Topology and Graphs

G(x, gθ, x) Induced graph from feature map gθ and input x
ΦPD The PD feature extraction method
KPD The Sliced-Wasserstein Kernel

Geometric Objects

Sd−1 The unit sphere of Rd

Bd The unit ball of Rd

ΠAx The orthogonal projection of vector x on space A

90



Generic Objects

[k] The set {1, ..., k} of integers from 1 to k
#E Cardinality of set E
1(E) Indicator function of event E
t+ The max between t and 0, ie max(t, 0)

Asymptotic Comparisons

f(a) = O(g(a)) ∃c, b > 0 such that ∀a ≥ b, f(a) ≤ cg(a)
f(a) ≍ g(a) f(a) = O(g(a)) and g(a) = O(f(a))

91



Chapter 6

Introduction to Adversarial Examples on
Deep Learning Models

A prince being thus obliged to
know well how to act as a beast
must imitate the fox and the
lion, for the lion cannot protect
himself from traps, and the fox
cannot defend himself from
wolves. One must therefore be a
fox to recognize traps, and a lion
to frighten wolves.

Niccolò Machiavelli.
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In this Chapter, the main concepts and notions about adversarial examples against neural
networks for image classification will be introduced. Some findings on adversarial examples
will be particularly highlighted.

6.1 Robustness in Deep Learning

Since the seminal work of Szegedy et al. (2013), adversarial robustness has become a
sub-field of deep learning research. In particular, the field has gained some structure and
good practices to ease collaboration and facilitate the comparison of different works. In
this Section, the most important definitions, notions, and typologies will be introduced.

6.1.1 Definition of Adversarial Robustness

Figure 6.1: Different types of neural networks architectures. Courtesy of Baccour et al. (2022).

As illustrated with the definition of a multilayer perceptron in Definition 1.4.1, a Neural
Network is a class of algorithms inspired, historically, by the functioning of the brain. It
consists in a computational architecture where layers of artificial neurons are connected
by weighted edges, enabling the network to apply linear transformations before using non-
linear activation functions, which facilitates complex pattern recognition and information
processing.

Historically, neural networks have gained a renewed interest and have become the standard
type of machine learning algorithm for computer vision tasks starting from LeCun et al.
(1989). In addition to enabling efficient training of neural networks through backprop-
agation of the gradient, these papers popularized Convolutional neural networks, CNNs,
meaning neural networks whose some layers are convolutional. Since then, the success of
neural networks in solving image classification tasks on more and more complex datasets
has been unmatched. Concurrently, more sophisticated architecture types, or layers types,
were introduced to tackle the complexification of the datasets, as illustrated by Figure 6.1,
from Baccour et al. (2022).

Adversarial examples, as defined in Section 1.4.1 target all these types of architectures. To
assess the robustness (or the vulnerability) of a neural network, the concept of adversarial
accuracy is used.

Definition 6.1.1. Adversarial Accuracy against an Attack. Let PX,Y ∈
M1

+(X × Y) be a distribution, fθ be a neural network on a K-classification problem and
A : X × Y → X an adversarial attack. The adversarial accuracy of fθ on distribution
PX,Y against attack A is defined by

Acc(fθ, PX,Y , A) = EX,Y ∼PX,Y
(1[fθ(A(X, Y )) = Y ]) (6.1.1)
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The adversarial accuracy simply computes the probability that the neural network predicts
the correct class for adversarial examples. It highly depends on the adversarial attack used,
which explains the richness of works on creating different attacks. For example, the FGSM
attack introduced in Definition 1.4.11 is very efficient on MLPs and small CNNs that do
not incorporate any robustness strategy, but it is, eventually, quite simple to robustify a
neural network against FGSM via different defense techniques. The goal of an attacker
is, of course, to drag the adversarial accuracy towards 0. Alternatively, a neural network
is robust when the adversarial accuracy is sufficiently high.

6.1.2 Adversarial Attacks in Practice: Categories of Adversarial Exam-
ples

As the development of adversarial attacks is mainly experimental, the large number of
adversarial attack models crafted so far can be classified into various typologies. The com-
mon classification of adversarial examples relies on the capacity of the attack (white-box
and black-box setting, subspace selection, etc.), the general type of method used (gradient-
based, query-based, etc.), and the objective of the attack (targeted or untargeted). Ad-
ditional categories can be discussed, for example, the computational requirements of the
attacks (single-step or iterative attacks), or the scenario covered by the attacks (real-world
attack versus ‘laboratory’ attack).

This Section will present the main typologies of adversarial examples to better explain
the scope of the contribution, as well as introduce first intuitions about the phenomenon.

Targeted and Untargeted attacks. Adversarial examples aim at fooling a neural net-
work, but how the network should be fooled can be different. Targeted attacks aim to
deceive the neural network by driving it to incorrectly predict a specific class that has
been predetermined in advance. They are thus more precise, and so with a lower suc-
cess rate than untargeted attacks: such attacks just aim to deceive the neural network,
whatever the prediction. More specifically, the definition of a practical attack provided in
Definition 1.4.10 defines in fact an untargeted attack, which is recalled below.

Definition 1.4.10. Adversarial Attack. Let fθ be a neural network, and ||.|| a norm
on X . Let ε ∈ [0, 1] be the perturbation budget. An ε-practical adversarial attack is a
function Aε : X × Y → X , defined by:

∀ (x, y) ∈ X × Y , Aε(x, y) = x + δε(x, y) such that ||δε(x, y)|| ≤ ε

with fθ(Aε(x, y)) ̸= fθ(x) as often as possible.
(1.4.11)

The adversarial example corresponding to (x, y) ∈ X × Y is generally denoted by xadv =
Aε(x, y).

On the other hand, a targeted one is defined as follows:

Definition 6.1.2. Targeted Attack. Let fθ be a neural network on a K-classification
problem, and ||.|| a norm on X . Let ε ∈ [0, 1] be the perturbation budget, and t ∈ [[1, K]]
the target class. An (ε, t) adversarial attack is a function Aε,t : X × Y → X , defined by:

∀ (x, y) ∈ X × Y , Aε,t(x, y) = x + δ(x, y) such that ||δε,t(x, y)|| ≤ ε

with fθ(Aε,t(x, y)) = t as often as possible.
(6.1.2)
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The adversarial example corresponding to (x, y) ∈ X × Y is generally denoted by xadv =
Aε,t(x, y).

In the scope of this thesis, the focus is directed towards exploring and studying the
phenomenon of adversarial examples as a whole, so untargeted attacks because they cor-
respond to the most generic form of adversarial attacks.

Capacities of the attack. Szegedy et al. (2013) started to study the adversarial phe-
nomenon from a conceptual perspective, thus, at the early stage of the field, adversarial
attacks were not necessarily meant to be used in practice. Later, the literature started
to explore attacks that could be implemented on deployed available models, for example,
through API. This has led the field to consider what an attacker can have access to: the
main categories of adversarial attacks in that regard are white-box attacks and black-box
attacks.

Simply put, a white-box attack has full access to the neural network, for example, it has
access to the weights of a neural network, to the loss used, to the gradients, etc. The
FGSM attack uses the gradient of the loss of the model with respect to the input in its
formulation, meaning it is a white-box attack. On the contrary, black-box attacks suppose
no knowledge whatsoever about the neural network and are thus meant for ‘real-world’
scenarios. Examples of black-box attacks are the Boundary attack Brendel et al. (2017)
and the SimBA attack Guo et al. (2019), which will be used and detailed later. The
capacities of the attack methods have, in fact, a deep influence on the kind of methodology
used. Gradient-based methods are natural for white-box attacks, since, in this setting,
an adversarial objective (similar to Equation (1.4.8)) can be directly optimized. On the
other hand, query-based methods are traditionally used by black-box attacks to gather
sufficient information from a neural network to perform the attack.

Interestingly, another type of category can be explored in the context of differences in
capacities for adversarial attacks. If an adversarial attack has generally a magnitude or
budget constraint on the perturbation size to ensure that the attack is imperceptible, how
to allocate this budget is not constrained. This has led some works to define original
attacks that operate only on a specific subspace of the features space, with for example
Su et al. (2019) which creates an attack that changes only one pixel of the clean images, or
Moosavi-Dezfooli et al. (2017) which creates an attack that is the same for all images. Such
work can be regrouped under the terminology of low-dimensional adversarial perturbations
(LDAPs) and will be thoroughly analyzed in Chapter 8.

6.1.3 Adversarial Defense in Practice: the Variety of Attributes to Ro-
bustify

Concurrently with the development of new and more efficient attacks, many works have
focused on developing defense mechanisms to robustify neural networks. Since it is very
difficult to provide a practical and general optimization problem for adversarial examples
(which explains why so many different attack methods exist), it is also very difficult to
provide such a general framework for defending neural networks that would be solvable
in practice. For that reason, numerous different defense strategies also exist, which have
been developed alongside the progress of adversarial attacks, similar to a cat-and-mouse
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game. The defense strategies developed so far have thus focused on different parts of the
data, the neural network model, or the training procedures, and can therefore be divided
into several categories.

Data Modifications. A first line of work has focused on modifying the input data. For
example, JPEG compression has been used in Dziugaite et al. (2016) with the idea to
push back the adversarial examples near the natural data manifold. Similarly, Guo et al.
(2018b) uses several data compression techniques (among which JPEG compression) at
the same time before feeding the images to the classifier. Alternatively, Samangouei et al.
(2018) uses a generative adversarial network (GAN) that reconstructs a similar image
from an input: it is used before they are fed to the neural network classifier. All these
works focus on eliminating the adversarial noise before it is exposed to the neural network,
but even though these defense strategies have been shown to be efficient on some attacks,
other attack methods provide perturbations that are not filtered out by these techniques.

Model Optimization. A large number of papers have been devoted to directly modifying
the neural network to take into account robustness. The strategies proposed in this
category can in fact be quite different. One of the first ideas was proposed in Papernot
et al. (2016) and called Defensive Distillation: a teacher model is trained on the source
distribution, and its probability vector outputs are then fed to a student model to replace
the ground-truth label. Though robust to the FGSM attacks and some others, this defense
has been bypassed by Carlini and Wagner (2017) and their attack called CW. Other
strategies include regularization techniques like in Ma et al. (2020); Ross and Doshi-Velez
(2018) or providing stochasticity in the neural network at inference time, like Gao et al.
(2017); Wang et al. (2018b); Liu et al. (2018).

Part of these works relies in fact on gradient masking, which incorporates all techniques
that hide the gradient of the loss to the attacker: this effect has been shown to be inef-
fective to defend against adversarial attacks in general, see Athalye et al. (2018).

Training modification. The most famous and preferred approach to robustify neural
networks is adversarial training. It consists in modifying the training procedure to take
into account both clean and adversarial inputs. Contrary to data modification strate-
gies, adversarial training thus aims at exposing the network to a broader set of inputs
and namely adversarial ones, to help it better understand adversarial examples and thus
correctly classify them. Adversarial training was introduced as early as Goodfellow et al.
(2014) and many works have followed afterward to improve the process, with for example
Madry et al. (2018); Shafahi et al. (2019b); Zhang et al. (2019a). Adversarial training
seems to be the most efficient and generic approach to robustification, even though it is
not robust to every type of attack.

External Networks and Detection. A different line of work has focused on adding an
extra network devoted not to the classification task, but to the detection of adversarial
examples, like in Xu et al. (2017); Metzen et al. (2017); Ma et al. (2018); Lee et al.
(2018). Rather than concentrating on preserving model accuracy when confronted with
adversarial examples, these works have focused on detection mechanisms to identify and
reject adversarial examples, irrespective of the classification made by the neural network.
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These detection methods operate by studying and uncovering atypical patterns induced
by adversarial perturbations, such as deviations in model behavior, anomalies in data
distribution, and irregularities in learned features.

6.1.4 Current Limitations and Research Questions

Beyond the ongoing cat-and-mouse dynamics between adversarial attack and defense re-
search, the fundamental intricacy of solving the optimization problem engendered by
the adversarial phenomenon, and exposed in Definitions 1.4.6 and 1.4.8, has propelled the
field to advance incrementally in both the generation and mitigation of such phenomenon.
These advancements, akin to those expounded in Sections 6.1.2 and 6.1.3, have shed light
on the limitations they have unveiled. These limitations are described below.

Neural Networks may be inherently vulnerable. Some works have focused on studying
the robustness of neural network classifiers under a theoretical perspective, mainly to pro-
vide theoretical bounds on the robustness (or alternatively on the vulnerability) inherent
to neural networks. More specifically, if Definition 6.1.1 describes the adversarial accu-
racy of a classifier with respect to a specific adversarial attack, the (general) adversarial
accuracy of a model can be defined as follows:

Definition 6.1.3. Adversarial Accuracy. Let PX,Y ∈ M1
+(X × Y) be a distribution

and fθ be a neural network on a K-classification problem, d a distance on X and Bε,d(x) =
{x′ ∈ X | d(x, x′) ≤ ε} the ε-ball around x with respect to d. The (ε, d)-adversarial
accuracy of fθ on distribution PX,Y is defined by

Accadv(fθ, PX,Y ) = EX,Y ∼PX,Y
(1[∀ X ′ ∈ Bε,d(X), fθ(X ′) = Y ]) (6.1.3)

The study of the adversarial accuracy of a neural network provides information on its
intrinsic robustness. Several works have focused on establishing bounds on this quantity,
with informal statements such as the following: either the adversarial accuracy is upper-
bounded by some function depending on the neural network and/or the data distribution, or
the average distance between a data point and its closest adversarial counterpart is lower-
bounded by some functions depending on the neural network and/or the data distribution.
Both formulations are, in fact, equivalent.

Prominent works in this field include Fawzi et al. (2018b,a); Mahloujifar et al. (2019);
Bubeck et al. (2019); Dohmatob (2019); Ford et al. (2019); Melamed et al. (2023). They
all provide analysis and bounds on the aforementioned adversarial accuracy with similar
constraints or hypothesis on the data distribution or on the studied models. Some works
suppose quite specific or small models (linear or quadratic models), but more importantly
they usually rely on a form of curse of dimensionality to prove their result (for example,
most of the aforementioned work use the Gaussian isoperimetric inequalities). The curse
of dimensionality traditionally refers to the fact that the volume of a space increases
exponentially fast with its dimension. In the context of adversarial robustness, this means
that the volume of the adversarial space is very big, leading to inherent vulnerability.

These works thus tend to show that even when the perturbation size is small, adversarial
examples are likely to exist for all types of neural networks.
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Recent and practical adversarial attacks rely on heuristics. Recent advances in ad-
versarial attacks have focused on more practical settings, like the black-box setting, to
craft adversarial attacks that are at the same time usable in real-world scenarios (when
interacting with neural networks through API for example), sufficiently computationally
effective (not necessitating too many queries for example) and imperceptible not only to
the human eye but also to concurrent defense strategies. Stemming from the seminal work
of Moosavi-Dezfooli et al. (2017), different attacks have been developed that modify only
a small subspace of the data space, like Guo et al. (2018a); Huang and Zhang (2019);
Yan et al. (2019); Tu et al. (2019); Chen et al. (2020a). These attacks are based on effec-
tive intuitions and heuristics, for example, using an external neural network to select the
relevant subspace to attack, or approximating the gradient of the loss via Monte-Carlo
sampling. These attacks have been highly successful (for example, SimBA attack achieves
a success rate of 98.6% using as few as 1232 queries on ImageNet). However, there is no
theoretical study explaining the success of these methods: as mentioned previously, theo-
retical work generally relies on the curse of dimensionality to provide theoretical bounds
on the adversarial robustness of neural networks, but such an argument is not possible
for low dimensional adversarial perturbations.

Chapter 8 will be devoted to providing an in-depth theoretical analysis of these adversarial
attacks to overcome the lack of understanding relative to their recent success.

6.2 Exploring the Complexity of Adversarial Behavior

Despite the development of adversarial attacks and defense methods, as well as the proven
existence of adversarial examples, as discussed in Sections 6.1.2 to 6.1.4, a comprehensive
understanding of the underlying interpretation and explanation of this phenomenon re-
mains incomplete. This Section focuses on reviewing the current research advances on this
important question, as well as exposing their limitations. Broadly speaking, understand-
ing how and why adversarial examples succeed in fooling neural networks is a research
question that can be investigated by concentrating either on the adversarial examples
per se, meaning taking a data-centric approach, or on the vulnerable neural networks,
meaning a model-centric approach. Research advances on the former approach will be
presented in Section 6.2.2, and the latter in Section 6.2.1.

6.2.1 Hypothesis on the Neural Network

Based on a comprehensive review of publications by Han et al. (2023), approximately 40%
of the works focus on exploring the interpretation of the adversarial phenomenon from a
model-centric perspective. However, a significant variation exists in the specific aspects
investigated within the models themselves, whose main results per main categories (as
defined by Han et al. (2023)) are recalled below.

On properties of neural networks (linear hypothesis and architecture). As initiated
very early by Goodfellow et al. (2014), the linearity hypothesis has received a lot of
attention, but the conclusion remains open. Following Goodfellow et al. (2014), which
have notably introduced the FGSM attack based on this hypothesis, some works have
provided additional evidence supporting the fact that the local linear behavior of neural
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networks may explain their vulnerability, with for example Li et al. (2021a) or Taghanaki
et al. (2019). However, other works challenge this conclusion, in particular, the work of
Tanay and Griffin (2016) which also introduces another hypothesis based on the behavior
of the decision boundary. The linear hypothesis thus remains quite open to new evidence
and is not enough to provide a clear explanation of the success of adversarial examples.

Quite recently, many works have proposed to study adversarial examples through the lens
of the architecture of neural networks. More precisely, some structural elements like skip
connections found in ResNet-like architectures, the width and the depth of the different
layers of the networks, and the overall density of the architecture of a neural network were
studied in Guo et al. (2020); Huang et al. (2021); Li et al. (2021b); Wu et al. (2020). These
works aim at finding ingredients to design more robust neural networks through carefully
crafting their architectural components and have paved the way for the use of architectural
search for robustness purposes. Interestingly, contrary to popular belief, increased width
and depth of neural networks have not been found to improve the robustness in general,
and reducing width and depth specifically in the last layers has in fact been shown to be
associated with better robustness.

On the training procedure (loss functions, evolutionary stalling hypothesis, and deci-
sion boundary). If adversarial training has received a lot of attention to improve the
robustness of neural networks (see Goodfellow et al. (2014); Zhang et al. (2019b); Shafahi
et al. (2019b); Zhang et al. (2019a); Wang et al. (2020b); Wong et al. (2020); Sitawarin
et al. (2021)), other topics related to training procedures have been studied to explain
the adversarial phenomenon. Among these topics, the question of the loss function is
fundamental: Nar et al. (2019) shows that the cross-entropy loss, massively used in con-
volutional neural networks for image classification, can lead a trained model to output
very small margins between the data points and the decision boundary. Recently, several
theoretical works have shown that there is no convex surrogate loss that is calibrated
for the adversarial optimization problem as formulated in Definition 1.4.9, as explored in
Bao et al. (2020); Awasthi et al. (2021); Meunier et al. (2022), which open the debate for
training truly robust neural networks in practice.

In addition to the study of the loss function, a phenomenon called the evolutionary stalling
hypothesis from Rozsa et al. (2016) has conjectured to explain the vulnerability of neural
networks. This hypothesis states that the gradient of correctly classified data points
becomes small so that they do not participate anymore in the model update during the
training phase of the neural network, and thus, the data points are likely to be very close
to the decision boundary.

The aforementioned evolutionary stalling hypothesis has also paved the way for more
studies on the decision boundary of neural networks. As previously mentioned, Tanay
and Griffin (2016) explained the success of adversarial examples with the boundary tilting
hypothesis stating that the vulnerability of neural networks may come from the position
of the decision boundary: close to the sub-manifold of the data, but tilted with respect
to it. Following this work, Fawzi et al. (2016, 2018c); Moosavi-Dezfooli et al. (2019) have
focused on studying the curvature of the decision boundary and its link with robustness:
they tend to show that less curvature is associated with higher robustness.
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On the behavior of Neural Networks (identification of critical neurons and layers).
Surprisingly, few works have studied the behavior of the information flow inside neural
networks with a robustness perspective: according to Han et al. (2023), only approxi-
matively 10% of the papers focusing on model-centric explanations have explored this
topic. Among the few publications about it, Cantareira et al. (2021) developed a visual
framework to observe the paths taken by clean and adversarial inputs into neural net-
works. Similarly, Qiu et al. (2019) studied the difference between effective paths taken by
clean and adversarial inputs to detect adversarial examples. A simpler strategy consists
in using only the distribution of the activations of specific layers to differentiate clean and
adversarial examples, as in Zheng and Hong (2018); Aigrain and Detyniecki (2019).

6.2.2 Hypothesis on the Adversarial Examples

Concurrently with the analysis of neural networks to better understand their flaws, ad-
versarial examples are also studied to understand their strengths.

On the manifold of the data. In addition to theoretical works already mentioned in
Section 6.1.4 that are based on the dimensionality of the data, some works have explored
the geometry of the data and, more generally, the manifold where it lies. Stutz et al.
(2019) showed that most adversarial examples deviate from the data manifold in a nearly
orthogonal way, whereas some other adversarial examples stay on the data manifold but
are supposed to be generalization errors. Similarly, Ilyas et al. (2019) proposed two possi-
bilities about adversarial examples: 1) they use irrelevant directions for the classification
and thus do not follow the data distribution, and 2) they use relevant directions for the
classification and thus follow the data distribution. Ilyas et al. (2019) showed that the
second option is likely to characterize adversarial examples, but Nakkiran (2019) also
showed that there are adversarial examples following the first option. Then, on-manifold
and off-manifold adversarial examples coexist.

On the features extracted from the data. The analysis of the features learned by the
intermediate layers of neural networks has also been leveraged to understand adversarial
examples and differentiate them from clean inputs. Among other works, Ilyas et al. (2019)
also make the case for the existence of robust features versus non-robust ones, and Agarwal
et al. (2019); Mustafa et al. (2019) show that the difference between classes is small in
the feature space, meaning that a small perturbation can change the prediction.

6.2.3 Limitations on the Current Understanding of Adversarial Exam-
ples

As illustrated in Sections 6.2.1 and 6.2.2, many works have focused on interpreting the
adversarial phenomenon, taking very different paths, strategies and perspectives to do
so. However, the question of why and how adversarial examples succeed in fooling neural
networks remains an open problem, mainly because of the following two limitations.

Lack of theoretical understanding. Numerous studies have addressed the theoretical
limits of robustness for neural networks under specific sets of constraints. These studies
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tend to demonstrate that neural networks are inherently susceptible to adversarial at-
tacks when the neural networks and the studied attacks conform to predefined conditions.
However, with the emergence of new types of attacks that better meet the requirements
of real-world applications, these conditions are often not satisfied. Consequently, there
is still a lack of theoretical investigation into the robustness or vulnerability of general
classes of models in modern and practical settings. The work presented in Chapter 8
tackles this limitation by providing a theoretical analysis of the vulnerability of a large
class of models under the threat of modern low-dimensional attacks.

Absence of unification between the investigated categories explaining adversarial exam-
ples. In the wide variety of works dedicated to understanding why adversarial examples
succeed, some hypotheses emerge as popular in the community, such as the linear hypoth-
esis. However, even for those lines of work, gathering enough evidence to fully support
a specific result is hard, leading to hypotheses that are not formally accepted as a full
explanation in the community. This lack of consensus is easily explained by the evident
difficulty to derive theoretical arguments when studying neural networks in general, and
specific characteristics of neural networks such as adversarial examples, which is mostly
experimental phenomenon, due to the difficulty in solving the robust optimization prob-
lem from Definition 1.4.9. Thus, as illustrated by the sub-division of Section 6.2 into
several categories, many aspects of neural networks and data impact (or are impacted by)
the robustness of neural networks. This leads to a high division of the efforts in the field,
which explains that it is hard to concatenate research findings and avenues into more
global and consistent systems. Still, this aggregation step is essential to get a broader and
more systematic view of the phenomenon.

The work presented in Chapter 7 tries to overcome this limitation. First, using topological
tools to study under-optimized edges stems precisely from an effort to aggregate several
preexisting research directions from the literature. Notably, it incorporates the previous
manifold inquiries (on and off-manifold adversarial examples), characteristics of features
(robust and non-robust features), neural networks’ architectural properties (related to
over-parametrization), and the behavior of neural networks (existence of under-optimized
edges after training). Furthermore, even though it’s first and foremost an experimental
work, it incorporates a theoretical avenue to ground the proposed hypothesis.
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Summary of contributions on evasion attacks

Chapter 7 is inspired by the following article: Morgane Goibert, Thomas Ricatte,
and Elvis Dohmatob (2022). An Adversarial Robustness Perspective on the
Topology of Neural Networks. In ML Safety Workshop, 36th Conference on
Neural Information Processing Systems (NeurIPS 2022). See Goibert et al.
(2022b)

It presents how the topology of neural networks impacts adversarial robustness
through the in-depth study of how the information flow from an adversarial
example traverses specific paths, called under-optimized edges, in neural networks.
It shows that the passing of the information flow from adversarial inputs is struc-
turally different from the one of clean inputs, suggesting 1) that the topological
structure of neural networks should be taken into account to improve adversarial
robustness and 2) that detecting adversarial examples as they are going through
a neural network is an effective strategy.

Chapter 8 is inspired by the following article: Elvis Dohmatob, Chuan Guo, and
Morgane Goibert (2023). Origins of Low-dimensional Adversarial Perturbations.
In Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics (AISTATS 2023). See Dohmatob et al. (2023)

It presents a rigorous theoretical study of the success of heuristics based on low-
dimensional attacks. It provides lower bounds on the success of such attacks under
specific conditions, which are shown to be satisfied by neural networks under prac-
tical settings. The tightness of the bounds is also experimentally studied with
various experiments.
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Chapter 7

Adversarial Robustness Perspective on
the Topology of NNs

Who knows where inspiration
comes from. Perhaps it arises
from desperation. Perhaps it
comes from the flukes of the
universe, the kindness of the
muses.

Amy Tan.
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7.1 Introduction and High-level Overview

Following the limitation unveiled in Section 6.2.3, this Chapter is devoted to providing a
framework gathering different characteristics about adversarial examples unveiled in the
literature, through the study of a generic object arising neural networks, graph. More
precisely, this Chapter delves into a comprehensive investigation of the impact of neural
network topology on adversarial robustness. Our primary focus is on exploring the struc-
ture of the graph that emerges as an input traverses through all the layers of a neural
network. Remarkably, we discover distinct differences in these graphs when comparing
clean inputs to adversarial inputs. Specifically, we observe that graphs derived from clean
inputs exhibit a more centralized distribution around what we refer to as ‘highway edges’.
On the other hand, graphs associated with adversarial inputs display a more diffuse pat-
tern, strategically leveraging ‘under-optimized edges’.

To establish the significance of these findings, we conduct extensive experiments encom-
passing various datasets and architectures. The results consistently demonstrate that
these under-optimized edges represent a notable source of vulnerability within neural net-
works. Furthermore, we uncover their potential utility in detecting adversarial inputs,
thus highlighting their multifaceted role in the realm of adversarial robustness. Beyond
these experimental findings, we provide a theoretical argument corroborating the impor-
tance of under-optimized edges for the vulnerability of neural networks and suggest that
pruning techniques can provide more robustness.

By unraveling the intricate relationship between neural network topology, graph structure,
and vulnerability, this Chapter provides valuable insights into the underlying mechanisms
driving the susceptibility of neural networks to adversarial attacks.

7.1.1 Outline of the Rationales of the Chapter

Reminders about Adversarial Examples

Adversarial examples, as previously introduces, are perturbed versions of clean inputs
destined to fool neural networks.More precisely, they have been defined in Definition 1.4.10
and is recalled here:

Definition 1.4.10. Adversarial Attack. Let fθ be a neural network, and ||.|| a norm
on X . Let ε ∈ [0, 1] be the perturbation budget. An ε-practical adversarial attack is a
function Aε : X × Y → X , defined by:

∀ (x, y) ∈ X × Y , Aε(x, y) = x + δε(x, y) such that ||δε(x, y)|| ≤ ε

with fθ(Aε(x, y)) ̸= fθ(x) as often as possible.
(1.4.11)

The adversarial example corresponding to (x, y) ∈ X × Y is generally denoted by xadv =
Aε(x, y).

Classical state-of-the-art (SOTA) attacks include PGD Kurakin et al. (2017), CW Carlini
and Wagner (2017) for the white-box setting (the attacker has full knowledge of the neural
network), or Boundary Brendel et al. (2017) for the black-box setting (the attacker has
no access to the model), which will be used later in the Chapter.
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Topological Data Analysis

Topological Data Analysis (TDA), initiated by Edelsbrunner et al. (2000); Zomorodian
and Carlsson (2005), is a burgeoning field at the intersection of mathematics, statistics,
and computer science that offers a powerful framework for analyzing complex and high-
dimensional datasets. With the ever-increasing availability of data from diverse domains,
traditional data analysis techniques often struggle to capture the inherent structure and
relationships embedded within the data. TDA provides a novel approach to tackle this
challenge by leveraging concepts from algebraic topology to extract topological features
and capture the global and local geometric properties of the data.

At its core, TDA aims to uncover the underlying shape and connectivity of data by con-
structing topological representations, such as simplicial complexes, persistent homology
diagrams, or mapper graphs. By examining the topological features of these represen-
tations, such as the presence of loops, voids, or connected components, TDA provides
insights into the global structure, clusters, and patterns within the data that may not be
apparent through traditional statistical analysis or dimensionality reduction techniques.

TDA is a flexible and versatile framework that can be applied to a wide range of data
types, including point clouds Collins et al. (2004); Beksi and Papanikolopoulos (2019),
networks Serrano and Gómez (2020); Taylor et al. (2015), shapes Li et al. (2014); Carrière
et al. (2015); Turner et al. (2014), time series Umeda (2017), and even textual Gholizadeh
et al. (2018) or categorical Wu and Hargreaves (2021) data. This versatility has led to its
successful application in various fields, including biology Chan et al. (2013); Amézquita
et al. (2020); Skaf and Laubenbacher (2022), neuroscience Xu et al. (2021); Yamanashi
et al. (2021), social sciences Almgren et al. (2017), image analysis Bernstein et al. (2020);
Hu and Chung (2021), and materials science Hiraoka et al. (2016), among others.

One of the key strengths of TDA lies in its ability to handle noisy and incomplete data,
making it particularly useful in domains where data quality and reliability are major
concerns. In the context of adversarial robustness, as adversarial perturbation is clearly
different from random or noisy perturbations, this characteristic of TDA is very useful.
This Chapter critically relies on persistence diagrams, a TDA object able to summarize the
topological structure of weighted graphs that will be properly introduced in Section 7.3.

High-level overview of the idea of the Chapter. This Chapter is devoted to showing
that under-optimized edges are a main source of vulnerability for neural networks. These
under-optimized edges represent parameters that are not sufficiently relevant to be fully
optimized by the neural network during the training and thus represent a blind spot for
the neural network. We postulate in Section 7.2 that adversarial examples target the
parameters and induce a very different behavior of the information flow on their edges:
namely, the information flow disperses like scattered fragments, branching out in myriad
directions, before adding up to create a major change in the last layer to fool the neural
network. To study and confirm the relevance of this hypothesis we create a feature ex-
traction method detailed in Section 7.4. We first select the under-optimized edges from
a neural network. Then, we use topological data analysis (and more precisely, persistent
diagrams, abbreviated dgms) to extract structural information from these edges for each
input that traverses the neural network. Finally, we compare the persistent diagrams
associated with clean inputs and adversarial ones to uncover their differences. In our
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experiments, in Section 7.5, not only do we notice simple qualitative and quantitative dif-
ferences in the persistent diagrams, but also a detector built on these features is shown to
be able to outperform state-of-the-art adversarial detection methods. These experimental
results confirm the relevance of our hypothesis and are also backed up by a theoretical
argument showing that over-parametrization can be a source of vulnerability, presented
in Section 7.5.4.

7.1.2 Related Works

Topological data analysis and neural networks. Though some works have explored the
use of TDA tools to study neural networks, e.g. Naitzat et al. (2020); Zhao and Zhang
(2021); Zia et al. (2023), the body of works applying topological techniques to neural
networks remains limited. In particular, only the work of Gebhart et al. (2019) has ex-
plored the use of topological tools to study adversarial examples in neural networks. Our
work is thus inspired by theirs and overcomes their limitations. Namely, they reconstruct
subgraphs based on the main topological structure extracted from graphs computed on
neural networks traversed by inputs. These subgraphs thus represent different highway
edges inside the neural network for each input. Then, they compare metric-based sim-
ilarities or classical summary statistics (e.g. number of edges) between subgraphs from
clean and adversarial inputs. Their conclusion is that differences exist in the subgraphs
between clean and adversarial inputs. The key takeaways from Gebhart et al. (2019) is
that topological tools can indeed be very relevant to study adversarial examples. However,
their work has the following limitations:

• 1) Uninterpretable results: they detect differences in the topology of clean vs adver-
sarial induced graphs, but are not able to provide an explanation stating why such
differences are visible. On the contrary, in our work, we first provide a hypothe-
sis about how adversarial examples operates, and verify this hypothesis thanks to
topological tools. Our work is then aligned with the objective of improving our un-
derstanding of adversarial examples. Furthermore, contrary to Gebhart et al. (2019),
we study the same edges from the neural network for all inputs, which enables us
to provide information on the specific behavior of adversarial examples.

• 2) Scalability: computing a persistence diagram depends on the number of edges and
neurons in the graph, which is very large even for quite small neural networks like
LeNets. As Gebhart et al. (2019) compute persistence diagrams for each input on the
entire NN, the computation complexity is much too high to study larger networks,
and indeed, the experiments focus on 4-layer convolutional neural networks. Their
method does not apply to larger networks. On the contrary, by selecting only under-
optimized edges in the induced graph before computing the persistence diagram, our
PD method is more scalable.

Characteristics of adversarial examples. Beyond the use of topological tools to study
and enhance adversarial robustness, our work is dedicated to unifying some unveiled
characteristics of adversarial examples, as found by previous work in the literature. These
works are detailed in Section 7.2.1, and are briefly introduced here.

Xu et al. (2019) shows that adversarial perturbations exploit the vulnerabilities of neural
networks through various strategies called ‘suppressing’ or ‘promoting’ strategies based
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on the input features it targets before cascading through the network. The input features
perturbed by adversaries can also be divided into two categories depending on the nature
of the adversarial example, as studied mainly by Ilyas et al. (2019); Nakkiran (2019);
Stutz et al. (2019): targeting useful and non-robust features characterize on-manifold
adversaries, and targeting non-useful features characterize off-manifold adversaries. Ad-
ditionally, over-parametrization in neural networks, characterized by an excessive number
of parameters, can exacerbate vulnerability to adversarial attacks by introducing under-
optimized and non-useful parameters, as shown in Rice et al. (2020); Manoj and Blum
(2021); Wu et al. (2021).

Understanding the interplay between these factors is crucial for comprehending and miti-
gating adversarial vulnerabilities in neural networks. Our work aims at unifying all these
characteristics to provide a better understanding of adversarial examples.

Detection methods for adversarial robustness. To corroborate our findings, namely that
under-optimized edges are a source of vulnerability for neural networks, we propose to
build a detector of adversarial examples based on the topological features extracted from
said under-optimized edges. Of course, we compare our experimental results with state-of-
the-art adversarial detection methods and show that our method outperforms or matches
previous detectors.

The detection of adversarial examples is distinct from robustification methods: while ro-
bustification techniques aim to improve the model’s resilience against adversarial attacks,
detection focuses on identifying the presence of adversarial inputs. Detecting adversar-
ial examples offers several advantages. Firstly, it provides an additional layer of defense
by identifying potential threats before they can cause any harm. Secondly, it allows for
the monitoring and analysis of adversarial attacks, aiding in the understanding of attack
patterns and techniques, which is exactly our purpose here. The goal of an adversarial
detector is thus not to improve the adversarial accuracy of a neural network, but rather
to report accurately if an input is a clean or an adversarial one. The evaluation of such
methods is thus based on performance metrics for 2-class classification problems, such as
the False Positive Ratio or the Area under the ROC Curve.

The sub-field of the detection of adversarial examples has evolved parallelly to robusti-
fication methods, and many works have proposed efficient detectors. In this Chapter,
we chose as baseline two very popular methods. The first one, Ma et al. (2018), investi-
gates the properties of adversarial subspaces in machine learning models. They propose a
method based on Local Intrinsic Dimensionality (LID) to analyze the local geometry of
the data space and identify regions where adversarial examples are likely to occur. They
demonstrate that adversarial subspaces exhibit a lower intrinsic dimensionality compared
to the overall data space, allowing for effective detection. Their methods will be called
LID in the rest of the Chapter. The second one, Lee et al. (2018), proposes to detect both
adversarial and out-of-distributions inputs that leverage the observation that such exam-
ples tend to be overly confidently classified by neural networks. They thus model that
the class-conditional distribution of the neural network follows a Gaussian distribution,
and then compute a confidence score between an input and its closest class-conditional
Gaussian distribution using the Mahalanobis distance. This confidence score is then fed
to a threshold-based detector to differentiate adversarial (or out-of-distribution) examples
from clean ones with great success. Their method will be called Mahalanobis in the rest
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of the Chapter.

7.1.3 Outline of the Main Contributions

The main aim of this paper is to demonstrate that the analysis of the topological structure
of neural networks is highly relevant to better understand, detect, and defend against the
adversarial phenomenon. We pave the way for this new line of work in this paper, which
is organized as follows:

• In Section 7.2, we justify and propose a hypothesis, gathering several characteris-
tics of adversaries, on how the topological structure of neural networks and under-
optimized parameters are related to the adversarial phenomenon.

• In Section 7.4, we propose the main method to extract structural topological features
based on persistence diagrams and under-optimized edges.

• In Section 7.5, we conduct experiments to validate our hypothesis using our newly-
defined features.

7.2 Unification of Adversaries Characteristics: Our Hy-

pothesis

7.2.1 Some Characteristics of Adversarial Examples

Adversarial perturbations are small and yet result in sufficient variation of the output
to change the predicted class. What happens inside a neural network to obtain this
variation? We recall here three characteristics of adversaries and link them together to
suggest an answer to this question and motivate the use of graphs and topological tool to
study adversaries.

Strategies used by adversaries.

Xu et al. (2019) shows that adversarial perturbations can be categorized into suppressing
ones, meaning perturbations that focus on reducing the true label score, or promoting
ones, meaning perturbations that focus on increasing the target label score. Adversaries
can (and usually do) output a mixed behavior. Interestingly, the suppressing/promoting
nature of an adversary comes from the set of input features (e.g. pixels for images) it
perturbs: modification in one input neuron cascades through the whole neural network
and results in a suppressing/promoting relative behavior.

What features are used by adversaries?

Using Ilyas et al. (2019); Nakkiran (2019) terminology, the features of the data distribution
can be divided into 1) useful and robust, 2) useful and non-robust, 3) non-useful ones.
Both of these works show the existence of two types of adversaries (see also Stutz et al.
(2019)), even though one can expect that most adversaries lie on a scale between these
two extremes:
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Figure 7.1: Adversarial inputs characteristics. Full (dashed) lines denote positive (negative)
weights.

• Adversaries leveraging useful and non-robust directions: e.g. when an image from
the class ”dog”is perturbed to be classified as a ”cat”, the perturbation has something
to do with the class ”cat”. Then, the adversary is on-distribution (the direction of
the perturbation is parallel to the data manifold, thus the adversary does not leave
the data manifold).

• Adversaries leveraging non-useful directions: e.g. the image from class ”dog” is
perturbed with a perturbation that has nothing to do with class ”cat”. Then, the
adversary is off-distribution because the perturbation can occur in any arbitrary
direction (the direction of the perturbation is perpendicular to the data manifold,
thus the adversary leaves the manifold).

Over-parametrization.

The link between over-parametrization and robustness is still not completely under-
stood. However, some works (e.g. Rice et al. (2020); Manoj and Blum (2021); Wu et al.
(2021)) have shown that neural networks vulnerability may increase when they are over-
parametrized. It occurs when a neural network has too many parameters: after training
with e.g. SGD, parameters in excess still have non-zero values, and thus are used for
prediction.

It enables highly curved decision boundaries Liu and Shen (2022) and can lead to over-
fitting the training data. Thus, over-parametrization can translate into having a neural
network with many under-optimized and non-useful parameters for the classification task
at hand. These non-useful parameters can be leveraged to build adversarial attacks (e.g.
via promoting behaviors). Such a behavior is the most expected one for standard neural
networks, because they usually are over-parametrized, and most attacks (e.g. PGD)
use non-useful directions to perturb clean inputs Stutz et al. (2019). In the alternative
case where under-optimized and non-useful parameters are removed (by e.g. pruning),
adversarial perturbations can still leverage useful but non-robust parameters to create
on-distribution adversarial examples.

Figure 7.1 illustrates these characteristics, leading the neural network to classify the clean
input (resp. adversarial input) as a positive (negative).
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Figure 7.2: Blueprint of structural differences between graphs from clean vs adversarial inputs.

7.2.2 The Under-optimized Edges Hypothesis

Based on the observations from Section 7.2.1, and the fact that most neural networks
are over-parametrized (i.e parameter count exceeds training dataset size) and that
pruning away most parameters after training induces smaller models without degrading
accuracy, as explored in Frankle and Carbin (2019), we hypothesize that only a small
set of parameters are critically used for inference of clean inputs, while the rest of
the parameters do not carry meaningful information. Considering a neural network
as a graph, and parameters as edges of that graph, this means that information
from clean inputs flows through highway edges, while information from adversarial
inputs is more diffuse, and uses so-called under-optimized edges (i.e. useless edges
not well optimized during training). This results in structural differences in graphs
induced by clean and adversarial inputs, as simply illustrated by Figure 7.2. Using the
notion of induced graph, which is a weighted graph representing the information flow
from an input in a neural network/graph, and defined later, we can sum up our hypothesis:

Our Hypothesis. Clean and adversarial inputs induce differences in the topological
structure in their respective induced graphs, because under-optimized edges are used
by adversaries, but not by clean inputs. Such edges are thus a source of adversarial
vulnerability.

7.3 Introduction to Topological Data Analysis

Here, we only provide a simple overview and some intuitions about the concepts we use,
but the interested reader can find more details in Chazal and Michel (2017).

Simplicial complexes.

A simplicial complex is a topological object generalizing the notion of triangulation, com-
posed of vertices and edges, as illustrated by Figure 7.3. Up to some constraints, it is a set
of simplexes, where a n-simplex is a triangle in dimension n. We can smoothly compute
their homology groups, whose elements, homology classes, represent different structural
”holes” and are our relevant topological information. A graph, like our induced graphs, is
of course composed of vertices and edges and thus can be seen as a simplicial complex.
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Figure 7.3: Illustration of simplices and simplicial complex. Courtesy of Zhang et al. (2020).

Figure 7.4: Illustration of a filtration. Each point is associated with a same-sized sphere whose
diameter t is growing: this diameter is the filtration parameter. When two spheres intersect,
the two vertices connect to form a new simplicial complex: this creates a nested inclusion of
simplicial complexes

Persistence diagrams.

Intuitively, persistent homology aims to capture the essential topological features of a
simplicial complex at multiple scales. To do so, persistent homology examines the evo-
lution of homology groups as a parameter, typically known as the ‘filtration parameter’,
varies. The filtration parameter encodes the notion of scale or proximity in the data set
and basically enables the creation of an increasing sequence of simplicial complexes based
on the inclusion order, as illustrated by Figure 7.4.

To understand how persistent homology works, let’s consider a point cloud data set in
a two-dimensional space, as in Figure 7.4. Initially, at a very low filtration parameter,
each data point is considered as a separate component, and the homology groups are
trivial. As the filtration parameter increases, the data points start to form clusters, and
the homology groups detect the presence of connected components or holes. These groups
are algebraic constructs that quantify the number and nature of connected components,
holes, voids, and higher-dimensional voids in a simplicial complex.

The concept of persistence comes into play by tracking the birth and death of topological
features as the filtration parameter increases. A feature is considered ‘born’ when it
first appears in the data set and considered ‘dead’ when it merges or disappears. The
persistence of a feature measures how long it exists over a range of filtration parameter
values. Persistent homology captures these birth and death events and provides a way to
visualize and quantify the longevity of topological features.
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Figure 7.5: Illustration of a persistent diagram.

Persistent homology is often represented using a persistence diagram. In a persistence
diagram, each topological feature, such as a connected component or a hole, is represented
by a point in a two-dimensional plot. The x-coordinate represents the filtration value at
which the feature is born, and the y-coordinate represents the filtration value at which it
dies. For example, the persistent diagrams (of 0th-dimension) of the filtration in Figure 7.4
is presented in Figure 7.5, where the dashed line corresponds to infinity. As can be seen,
the points farthest from the diagonal correspond to data points that are far from the rest
of the points, whereas those close to the diagonal correspond to close points. This means
that in a persistent diagram, points close to the diagonal can be identified with noise,
while points far from the diagonal can be identified with important features. Persistent
diagrams thus offer a concise representation of the evolution of topological features in a
simplicial complex.

Intuitions and illustrative example for neural networks.

As our graphs are feedforward and do not represent 3-d objects, we focus our analysis on
the 0th-dimensional persistence diagrams. The sub-complex for parameter t thus is the
sub-graph composed of edges with weights smaller than t (and corresponding neurons).
The filtration is the collection of sub-complexes from t = 0 (empty graph) to t = +∞
(whole graph). Intuitively, the persistence diagram then represents how the connected
components of the sub-complexes evolve through different spatial scales given by the
weights of the graph. Highly connected subsets of edges (with small edge weights) will
form a connected component during many sub-complexes: it will create a point in the
persistence diagram with a long lifetime, far from the diagonal, representing an important
structural feature for the whole graph. An illustration is given in Figure 7.6. Notice
that with this natural definition of sub-complexes, a small-weighted edge corresponds
to an important edge, as it connects two neurons with close spatial proximity. In an
induced graph G(x, g), edge weight denotes information flow, not spatial proximity: a
high-weighted edge thus corresponds to an important edge. To circumvent this issue, we
replace the weight w > 0 with its opposite −w.

Difference between adversarial and noisy perturbations in persistent diagrams. Per-
sistence diagrams can identify the structural properties of points clouds or graphs. In
dimension 0, as previously stated, points in persistence diagrams represent the lifetime of

113



(a) A regular graph and its persistent diagram (b) A structured graph and its persistent diagram

Figure 7.6: Two graphs with different topological structures and their corresponding persistent
diagrams (dashed lines correspond to infinity). In (a), the weights are similar: the only important
subgraph is the whole graph, thus one point is far from the diagonal. In (b), there are two edges
with much smaller values than the others (red): they form two important subgraphs, thus two
points far from the diagonal.

(a) Noisy circle 1 (b) Noisy circle 2 (c) Adv. circle

Figure 7.7: Persistence diagrams are stable to random noise, not to adversarial noise.
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(a) Toy
dataset

(b) Dgms of four inputs illustrating transition phase (c) KDE plots of clean vs adv dgms

Figure 7.8: Persistence diagrams from clean vs adv inputs are highly dissimilar.

connected components. An interesting property of persistence diagrams is that they are
robust to noise. It means that two noisy circles (the points in the dataset were generated
following a circle equation to which a Gaussian noise with mean= 0 and different standard
deviations) will output very similar persistence diagrams. However, non-random noise,
such as adversarial noise, can deeply modify the persistence diagram. We illustrate this
feature in Figure 7.7. In the ‘adversarial’ circle, we see that even though there is only one
adversarial point in the dataset, its position induces the presence of an abnormal point
in the corresponding persistence diagram (emphasized with a red circle), whereas the two
versions of the noisy circle dataset on the left output very similar diagrams.

The robustness to noise property of persistence diagrams should result in having similar
clean persistent diagrams (especially for inputs from the same class), but different from
adversarial persistent diagrams because adversarial perturbations are non-random. Stem-
ming from these non-random shifts in the structure of the induced graphs, we also expect
a clear transition phase from the clean regime to the adversarial one. Since persistent
diagrams from classical tasks such as MNIST / LeNet have way too many points to be
visually understandable, we trained a classical NN with one convolutional layer and two
dense layers on a toy dataset. The dataset is a binary classification task on 3x3 images,
where each pixel of an input conditionally to its class is drawn independently from a
normal distribution with standard deviation= 0.05, and means as shown in Figure 7.8a.
Our simple model outputs a standard accuracy of 0.99. Now, let us explore what persis-
tent diagrams from clean vs adversarial inputs look like. We generated adversaries using
PGD with ε = 0.1. In such a small setting, all persistent diagrams have very few points.
However, even in this simple setting, we can illustrate that our hypotheses hold.

Figure 7.8b shows that persistent diagram from an adversary (created from a class 0 input,
predicted as class 1) outputs a different behavior than the two clean ones: in addition
to having larger birth dates, there is a particular point with a birth date and death date
that do not correspond to any other point from either class 0 or class 1 diagrams. This
behavior leads to a high distance between the adversarial diagrams and the clean diagrams
from both classes. Figure 7.8c clearly shows, through a density estimation of points in the
persistent diagrams from adversarial and clean inputs, that clean diagrams points lie in
two very specific spots, whereas adversarial diagrams points are more dispersed, meaning
that clean persistent diagrams (event from the two different classes) are quite similar,
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contrary to adversarial persistent diagrams.

7.4 Extraction of Topological Features – Methods

As Sections 7.2 and 7.3 have introduced both the main goal of the Chapter and the tools
from topological data analysis we will use, we now explore our methodology to extract
the persistent diagrams from neural networks and inputs.

7.4.1 Retrieval of the Induced Graph

Definition and intuition.

Let X = Rn0 be the feature space, where n0 is the input dimension. For any input
x ∈ X , the induced graph (also called the activation graph) is a graph on the neurons of
the network, whose edges depend both on the parameters of the network and the inner
activations induced by the forward pass of x.

Formally, a neural network on a K-classification problem is a function fθ : X → [[1, K]] of
the form fθ(x) = argmaxk=1,...,K gθ(x) where gθ : X → RK is the feature map. In the case
of a multilayer perception, it can be more precisely defined as follows:

Definition 1.4.1. Multilayer Perceptron (MLP). Let FΘ be a (parametric) model
class. fθ ∈ FΘ is a multilayer perceptron with L layers if and only if:

fθ(x) = argmax
k=1,...,K

gθ(x) ∀ x ∈ X , with (1.4.1)

gθ(x) = WLσL1 (WL−1σL−2(...σ1 (W1x + b1)) + ... + bL−1) + bL, (1.4.2)

where gθ : X → RK is the feature map, ∀ l ∈ [[1, ..., L]], σl is the activation function (e.g.
a ReLU function), and θ = (Wi, bi)1≤i≤L are the parameters.

With a slight abuse of notation, we denote by gθ,l(x) ∈ Rnl the output value of layer l.

Combining information from the feature map gθ, identified with the neural network fθ,
and an input x ∈ X , we construct the so-called induced graph.

Definition 7.4.1. Induced Graph. Let gθ be the feature map of a MLP with parameters
(Wi, bi)1≤i≤L, x ∈ X be an input. The induced graph corresponding to gθ and x is denoted
by G(x, gθ) and defined by:

G(x, g) = (V, E), with V = {1, 2, . . . , n0 + . . . + nL}
and E = {(ul, vl+1, wl

u,v)} ⊆ V 2 × R,

where wl
u,v = | [gθ,l(x)]u × (Wl)v,u + bl |

In this simple case, the edge weights are the value of the parameter weight of the neural
network between neurons u and v multiplied by the activation of neuron u (plus the bias,
which we will discard in general to simplify the notations): this definition of wl

u,v is meant
to mimic how neural networks operate to transfer information from a layer to the next.
It applies to feedforward neural networks, and can also be generalized to other structures
like ResNet. Moreover, the wu,v’s can also be obtained for convolutional layers or others
as will be explained afterward.
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(a) Trained neural network (b) Induced graph

Figure 7.9: A trained neural network (a) and its corresponding induced graph for an input x
(b). We highlighted the activation values at each layer (blue), i.e. the values of the neurons. We
also provided the weights for two edges (red), which denotes the information flow from input x
carried by the edge.

Figure 7.9 provides a simple illustration of the way an induced graph is computed for
a dense layer. Figure 7.9a shows a trained neural network, with the weights for each
layer written in the matrices. For an input x = (1, 2,−1, 3), Figure 7.9b shows the
corresponding induced graph.

Practical computation.

We explore more into details how to compute the induced graph, for simple dense layers
as well as convolutional ones.

Step 1: Get the activations by layer. As described before, the induced graph depends
both on the parameters of the networks and on the inner activations induced by x. There-
fore, the first step is to perform a forward pass through our network and save all the
intermediate activations (note that, in practice, we only focus on a subset of the layers
as detailed in Figure 7.12). For layer l, recall that by gθ,l(x) ∈ Rnl denotes the the inner
activation.

Step 2: Matrices per layer. To compute the induced graph, we need to weight the acti-
vations by the strength of the connection between neurons. For a linear layer parametrized
by a weight matrix Wl ∈ Rnl+1×nl , this is straightforward and we can write:

wl = Wlgθ,l(x) .

For a convolutional layer, we need first to compute an equivalent weight matrix Wl from
the kernels Kl (the ‘sparse fully connected counterpart’). When padding= 0, stride= 1
and nb channels= 1, we can notice that the equivalent matrix is simply composed of
Toeplitz matrices based on each row of Kl stacked by block. Here is an example.

gθ,l(x) is the stacked version of

1 2 3
4 5 6
7 8 9

 so that gθ,l(x) =
[
1 2 3 4 5 6 7 8 9

]T
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and Kl =
[
10 20
30 40

]
. Then

Wl =


10 20 0 30 40 0 . . .
0 10 20 0 30 40 . . .
. . . 10 20 0 30 40 0
. . . 0 10 20 0 30 40



where the Toeplitz matrices are T1 =
[
10 20 0
0 10 20

]
and T2 =

[
30 40 0
0 30 40

]
The reasoning is similar in the general case where nb channels ≥ 1, stride ̸= 1 and padding
≥ 0. In practice, we leverage the sparseness of these matrices when we build them and
use the Numba package to accelerate the computations.

Note that the weight matrices per layer are computed once at the beginning of the process
so that we can simply multiply Wl and gθ,l(x) to assemble the induced graph.

Step 3: Get the induced graph. The induced graph is represented by its adjacency
matrix A ∈ Rn1...nL×n1...nL . For neural networks without any shortcuts (unlike ResNets for
example), A can be obtained by constructing a diagonal matrix by block, where the l-th
block is simply the induced matrix of layer l.

7.4.2 Selection of Under-Optimized edges

As classical neural networks have a huge number of parameters (even for small ones as
LeNet), it is necessary to reduce dimensionality and select a sub-graph of the induced
graph. Moreover, as we expect adversaries to leverage under-optimized edges, we select
only these edges for our analysis. As defined and studied in Frankle and Carbin (2019);
Zhou et al. (2019), an edge (u, v) is under-optimized if the Magnitude Increase (MI)
quantity |(Wl)u,v| − |(W init

l )u,v| is small, (W init
l )u,v being the parameter’s initialization

value. An edge (u, v) of layer l is kept in the thresholded induced graph if and only if:

|(Wl)u,v| − |(W init
l )u,v| < quantile(q) , (7.4.1)

where q is the target fraction of edges to keep. We denote the thresholded induced graph as
Gq(x, gθ). Note that no assumption is made over the initialization of the neural network
and that the selection criterion of under-optimized edges does not depend on the input x,
but only on the neural network g.

7.4.3 Computation of Persistent Diagrams

We use Dionysus, developed in Morozov (2017), to compute the Persistent Diagram from
a custom filtration where each edge (u, v) appears at time −|wl

u,v| (strongest links appear
first). An illustration of this process is given in Figure 7.10. The persistence diagram we
obtain is just a vector of tuples, containing the birth and death dates of every point in
the persistence diagram. More practically, we used the following simplified Algorithm 7.1
to compute persistent diagrams. Our feature extraction method that we just described
will be often referred to as the PD method.
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(a) Trained neural network (b) Induced graph (c) Under-optimized in-
duced graph

(d) Filtration. Corresponding persistent diagram: {(−5,∞), (−3,∞)}.

Figure 7.10: Persistence Diagram illustration - If we have a simple linear neural network with
its trained parameters in Figure 7.10a (for simplicity, the initial values of the parameters were
set to 0) and the selection parameter q = 0.5, then: 1) we select only the thin edges, not the
thick ones, in Figure 7.10a. 2) An example x flows through the graph so that we obtain the
corresponding induced graph in Figure 7.10b. 3) Applying our selection parameter q = 0.5, we
restrain ourselves to the under-optimized induced graph in Figure 7.10c. 4) The corresponding
filtration is given by Figure 7.10d.

Algorithm 7.1: Persistence Diagram embedding algorithm

Input : a feature map gθ with parameters W (after training) and W init (at
initialization); a dataset D; a parameter q; the SW kernel KPD.

Output: An embedding dataset F = {ΦPD(x, gθ) | ∀x ∈ D}
for each x ∈ D do

for each pair of connected layers (l, l′) do
/* 1 - Adjacency matrices */

- Get Wl,l′ (parameter matrix) and gθ,l(x) (output of layer l);
- Compute ∀ i, j [Al,l′(x)]i,j = |[gθ,l(x)]i ∗ [Wl,l′ ]i,j| ;
/* 2 - Selecting under-optimized */

for each matrix indexes (i, j) do
if |[Wl,l′ ]i,j| − |[W init

l,l′ ]i,j| ≥ quantile(q) then
[Al,l′(x)]i,j ← 0;

/* 3 - Global adjacency matrix */

Create A(x) by stacking by block the Al,l′(x);
/* 4 - Persistence Diagram */

- Compute ΦPD(x, gθ) = PD(A(x));
- Add ΦPD(x, gθ) to F ;
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7.4.4 A Simpler Method Based on Raw Graphs

In addition to our main PD method, we also explore a much simpler one. Thus the
purpose of this method, called Raw Graph (RG) is to use the simplest features from the
induced graphs, namely just the weights of the edges of the thresholded induced graph
Gq(x, gθ). This leads to a feature mapping

ΦRG(x, gθ) = Vec(W ), (7.4.2)

where W is the matrix of weights of the thresholded induced graph Gq(x, gθ).

The goal of Raw Graph is to compare our PD method to a simpler setting where the
information from the induced graph is not looked at from a structured or topological point
of view. Therefore, Raw Graph will help us understand how much the structural properties
of the information flow are important, compared to the raw information flow in itself. If the
Raw Graph method does not match the PD method to differentiate clean and adversarial
examples, it would mean that not only under-optimized edges are an important source of
vulnerability, but also that adversarial examples exhibit complex behavior that does not
just perturb the under-optimized edges, but also target their structural organization.

7.5 Experiments

7.5.1 Qualitative Differences in a Simple Setting

When the induced graphs are sufficiently small, differences in their persistent diagrams
can be easily observable based on the number of points in the diagrams extracted from
our PD method. Figure 7.11 shows this is the case for a classical MNIST / LeNet,
where adversaries were computed using PGD Kurakin et al. (2017) with ε = 0.1. More
precisely, in this simple setting, even for an attack of a small size, a perfectly accurate
difference can be made between clean and adversarial inputs by just counting the number
of points in their respective persistent diagrams. Thus, this can be an efficient strategy to
differentiate adversarial inputs from clean ones in this simple setting, but it is not enough
in more complex settings, as will be illustrated in Section 7.7.1.

7.5.2 Detecting Adversarial Examples – Method

While differences in persistent diagrams are easily observable on simple setups, it is nec-
essary to extend our analysis to more complex, state-of-the-art setups. Even though not
as easily observable in these cases, we derived a detection framework based on PDs, which

(a) Distribution of all PD points. (b) Distribution of infinitely-lived PD points.

Figure 7.11: persistent diagram points computed on MNIST / LeNet
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can be used for any dataset and architecture, whose success shows that adversarial per-
sistent diagrams (and thus adversarial inputs) are indeed different from clean ones, for a
variety of SOTA attacks (PGD Kurakin et al. (2017) and CW Carlini and Wagner (2017)
for the white-box setting, Boundary Brendel et al. (2017) for the black-box one) and
datasets (MNIST, Fashion MNIST, SVHN, CIFAR10), using LeNets and ResNets archi-
tectures. Our code is available at: https://github.com/detecting-by-dissecting/

detecting-by-dissecting.

Training details.

The usual procedure was used for training, by separating the datasets into training, val-
idation, and test sets and using an Adam optimizer (for LeNets) and an SGD optimizer
(for ResNets). The learning rate was set to 0.001 for the LeNets, and a one-cycle policy
(see Smith (2017)) with varying learning rates in the range [0.008, 0.12] for SVHN and
CIFAR10 ResNets. The number of epochs was set to 50 for MNIST LeNet and 100 for
the others.

Note that the ResNet32 model used for CIFAR100 was a pre-trained model
without further training, downloadable here: https://github.com/chenyaofo/

pytorch-cifar-models/releases/download/resnet

We ran all our experiments on a computer equipped with 1 GPU (Tesla V100-PCIE-16GB)
and 60Gb of RAM.

Attacks details.

Recall that PGD attack (Kurakin et al., 2017) is defined by: xadv
0 = x and xadv

t+1 =
Clipx,ε

(
xadv

t + εiter sign (∆xl(θ, x, y))
)

. for each t ∈ [[1, T ]], where l denotes the loss. In

our experiments, we set T = 50 and εiter = 2 ∗ ε/50 and different ε values (reported in
the results).

The objective of CW (Carlini and Wagner, 2017) is to find δ∗ = argminδ||δ||2 + cf(x + δ)
with f a well-chosen function. In our experiments, we set the number of binary search
steps to find c to 15; the number of iterations to optimize the objective function to 50
(Adam optimizer).

Experimental pipeline.

There are 3 steps in the detection pipeline:

• 1) Pre-processing. We create first a (successful) adversarial dataset by running an
attack on the neural network and clean inputs. For the clean dataset, we keep only
examples that were not involved in the creation of the adversarial dataset.

• 2) Feature extraction. We apply our methods (or state-of-the-art baselines) to the
clean and adversarial datasets (see Algorithm 7.1 for PD).

• 3) Detector. An SVM is trained with the features of each method, and its outputs
enable us to compute any detection metric (namely the AUC).

Moreover, we ran unsupervised and supervised experiments. Supervised ones use adver-
sarial data during training: by assuming something about the type of attack, they are
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uninformative about the generalization ability of the method (they give a false sense of
security). The unsupervised experiments are using a one-class SVM trained only on clean
data: it is a better setting to evaluate detection methods. We only show unsupervised
results in this Section (see Section 7.7.2 for supervised results, where our method still
outperforms state-of-the-art methods). Note then that state-of-the-art results are not as
high in this unsupervised setting compared to the results reported in other papers.

Computing the AUC.

As a reminder, when computing the AUC, the attack method (and the attack strength)
and the detection parameters (like the parameter q for our method) are given. To compute
this score, the SVM needs to have a kernel as input. To compute distances between
different PDs extracted using our method with ΦPD(x, gθ) := PD(Gq(x, gθ)), we used the
Sliced Wasserstein Kernel, defined in Carriere et al. (2017) by:

KPD(x, x′) = exp
(
− 1

2σ2 SW(ΦPD(x, g), ΦPD(x′, g))
)

,

where SW(·, ·) is the Sliced-Wasserstein distance between persistence diagrams.

For the three other methods (RG, LID and Mahalanobis), the kernel used was just the
classical Radial Basis Function (RBF) kernel, defined as:

KΦ(x, x′) = exp
(
− 1

2σ2∥Φ(x)− Φ(x′)∥2
)

, (7.5.1)

where Φ denotes the features for each method, e.g. ΦRG(x) := ΦRG(x, gθ) =
Vect(W q(x, gθ)), where W q(x, gθ) is the matrix of weights of the under-optimized induced
graph Gq(x, gθ).

SVM outputs scores for each input: if it is above a discrimination threshold, the input is
flagged as clean (otherwise, flagged as adversarial). The ROC curve is a plot representing
the True Positive Rate (TPR) as a function of the False Positive Rate (FPR) when the
discrimination threshold varies. The AUC is the integral of the ROC function (so that
the discrimination threshold is integrated out), and represents how well the detector can
separate the two classes (the higher the AUC, the better).

Confidence Interval. The main source of variability of a run comes directly from the
variability of the dataset. For a fixed detector, we denote by PX,Y the distribution of the
images. We want [p, q] that satisfies (80%-confidence interval)

PPX,Y
{AUC < q} = 0.1 and PPX,Y

{AUC > p} = 0.1

To estimate [p, q], we use resampling and estimate the AUC on 100 bootstraps of size
n//2 (where n is the total number of samples). It can be shown (see for instance Johnson
(2001)) that a good approximation of [p, q] is given by

[2 ˆAUC − c90, 2 ˆAUC − c10] ,

where ˆAUC is the AUC estimated on the n samples, c10 (resp. c90) is the 10-th percentile
(resp. 90-th percentile) of the 100 bootstrapped AUCs.
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Models Max percentile q List of layers

MNIST LeNet 0.025 All layers
Fashion MNIST Lenet 0.05 All layers

SVHN ResNet 0.275 Last conv. and linear layers
CIFAR10 ResNet 0.3 Last conv. and linear layers

Figure 7.12: Selection parameter used for PD and RG methods in the experiments

Models Nearest Neigh. % Batch size

MNIST LeNet 0.08 250
Fashion MNIST Lenet 0.02 250

SVHN ResNet 0.05 150
CIFAR10 ResNet 0.1 50

Figure 7.13: LID parameters used in the experiments

Selection of hyperparameters.

We cross-validated the parameter values for all parameters presented below, and kept only
the best ones that were used afterward in our experiments.

Selection parameter for PD and RG methods. Recall that the parameter used for our
PD and RG methods is denoted by q: it is the proportion of edges kept for the construction
of the induced graph. We use the same value q for selected layers (uniform selection),
thus we have to identify the layers kept in the analysis, and then find the parameter to
use for all these layers. Note that the parameter was optimized on the PD method, and
kept the same for the RG method. These parameters are shown in Figure 7.12.

Hyperparameters for the LID method. LID has two parameters that we cross-validated,
and are shown in Figure 7.13.

Hyperparameters for Mahalanobis method. Mahalanobis has two parameters: the first
one, ϵpreprocessing, controls the size of the noise added to the input, in order to make in- and
out-of-distribution samples more separable. We set this parameter to 0.0. The second
one is the layer selected for the analysis. When it was available (for the two setups using
ResNet), we used the same layers as the one used by the authors of Mahalanobis in Lee
et al. (2018). For the experiments using LeNet, we kept the last two linear layers. The
parameters are thus shown in Figure 7.14.

Models Selected leyers

MNIST LeNet Last two linear layers
Fashion MNIST Lenet Last two linear layers

SVHN ResNet Last layer of each four ResNet block
CIFAR10 ResNet Last layer of each four ResNet block

Figure 7.14: Mahalanobis parameters used in the experiments
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Figure 7.15: Detection AUC (up) and time (down) as a function of q (CIFAR10 ResNet vs PGD
ε = 0.05).

In addition, note a substantial difference between our experiments and theirs when eval-
uating against PGD attack: the ε parameter in Lee et al. (2018)’s implementation cor-
responds to εiter in our paper: thus, when they run a PGD attack with strength ε, the
resulting perturbation is much higher, of size ε × number of iteration for PGD. This
leads to better detection results since they evaluate on much stronger attacks.

Details on time complexity.

Figure 7.15 illustrates the fact that the time complexity of our PD methods grows linearly
with parameter q. However, one can see that even small values of q yield great detection
results, with almost no compromise on the AUC (green star). Note that Mahalanobis
requires the estimation of large precision matrices (one for each considered layer, of size
nb neurons x nb neurons), which makes it substantially slower than LID.

7.5.3 Detecting Adversarial Examples – Results

Based on this PD-based feature extraction method and a kernel, we can build a detector
using a simple SVM. We compare our method, called PD, to state-of-the-art detection
baselines: Mahalanobis created in Lee et al. (2018) and Local Intrinsic Dimension (LID)
created in Ma et al. (2018). For the sake of comparison, we also compare our PD method
with our very simple one called Raw Graph (RG), whose features are just a vector whose
elements are the weights of the thresholded induced graphs Gq(x, gθ).

Figure 7.16 presents the AUC detection results for the different methods, against our three
attacks and four setups. PD has better AUC results than state-of-the-art methods on the
four datasets and architectures and on all attacks, except on CIFAR10 ResNets, where
the results are similar. RG remains competitive with the two baselines on the (small)
LeNet architectures. The main takeaways of these experiments are:

• RG’s performances indicate that useful information can indeed be found in the
thresholded induced graph, thus in the under-optimized edges. However, such a
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(a) LeNeT/MNIST (b) LeNet/F-MNIST (c) ResNet/SVHN (d) ResNet/CIFAR10

Figure 7.16: Showing detection AUC for different detection methods (legend) against different
kinds of adversarial attacks (rows) and model architectures and datasets (columns). We see that
our proposed method based on PD outperforms the state-of-the-art methods, except for one tie.

simple method is only efficient on simple models or attacks.

• PD’s performances are overall significantly better than those of previous SOTA de-
tectors, LID, and Mahalanobis. We have succeeded in constructing a very effective
detector. Additionally, structural topological information extracted from induced
graphs does contain discriminative information about adversarial examples, regard-
less of the task complexity. Overall, the success of PD validates our main hypothesis.

The results on the Boundary black-box attack show that our methods (and also the
baselines LID and Mahalanobis) do not rely on gradient masking and can generalize well.
More experiments on PDs and under-optimized edges are provided in Section 7.7.

7.5.4 Relation between Pruning and Robustness

We have shown that structural information flow in under-optimized edges is different for
clean vs adversarial inputs: these edges represent a vulnerability for neural networks. A
natural robustification idea would stem from pruning, i.e. exactly removing these under-
optimized edges during training. We present a theoretical argument showing how having
less active paths, e.g. by pruning, can help robustness. For an input example x ∈ X ,
let P(x) be the set of all weighted paths in the activation graph G(x, gθ) of x as defined

in Section 7.4.1. Each α ∈ P(x) can be identified with a schema u0(α) w1(α)−→ u1(α) w2(α)−→
. . .

wL−1(α)−→ uL(α), where ul(α) ∈ [[1, nl]] is the index of the neuron through which the path
traverses the lth layer of the network, and wl(α) is the weight of edge weight connecting
the former neuron to the next neuron on the path. The subset A(x) of paths which are
active for the input example x is given by A(x) := {α ∈ P(x) | wl(α) ̸= 0 ∀l ∈ [[1, L]]}.
Information from input to output only flows along such paths. Finally, let W (α) :=
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Figure 7.17: Adversarial accuracy of pruned MNIST LeNet models against PGD.

ΠL
l=1(Wl)ul−1(α),ul(α) be the product of all the parameters of the neural network along the

path α. We have the following result:

Proposition 7.5.1. For every class label k ∈ [[1, K]] and input feature index j ∈ [[1, n0]], we
have: ∂[gθ(x)]k

∂xj
= ∑

α W (α), where the sum runs over all active paths α ∈ A(x) such that

u0(α) = j and uL(α) = k, i.e., active paths which start at the jth input neuron and end
at the kth output neuron.

Note that it holds for the ReLU activation.

Proof Let zl := gθ,(x) ∈ Rnl be the output of the lth layer of the neural network. Note
that zl = σl(Wlzl−1). By the chain rule, we have

∂[gθ(x)]k
∂xj

=
nL−1∑
k′=1

∂[zL]k
∂[zL−1]k′

· ∂[zL−1]k′

∂xj

. (7.5.2)

On the other hand, for ReLU activation we have (still via the chain rule)

∂[zL]k
∂[zL−1]k′

= [Wl]k,k′σ′(Wlzl−1) = [Wl]k,k′

1, if [Wl]⊤k zk′ > 0,

0, else.

Thus the claim follows directly from Section 7.5.4 by recurring on the depth L.

Note that the (Frobenius) norm of the jacobian matrix J(x) = (∂gθ(x)k

∂xj
)j,k is a proxy for

the robustness to perturbations on input x, as it is related to the distance to the closest
adversarial example for x (see Jakubovitz and Giryes (2018) and Section 7.5.4). Thus,
decreasing this sum improves robustness: we could 1) decrease/remove large W (α) (but it
would likely hinder the standard accuracy) or 2) reduce the cardinality of A(x), i.e., have
very few active paths: this can be achieved by pruning a neural network and suggests
that under-optimized edges may be a problem for robustness because of their quantity.

Illustration.

Some works have focused on the link between adversarial robustness and sparsity (Guo
et al., 2018c; Wang et al., 2018a, 2020a) but the conclusion remains unclear. We pruned a
MNIST LeNet model (following Frankle and Carbin (2019)’s protocol and our definition of
under-optimized edges and ran PGD attacks to measure each model’s adversarial accuracy.
Figure 7.17 shows that some degree of under-optimized edges pruning might be helpful
for adversarial robustness (e.g. 67% seems to be desirable).
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About the Jacobian matrix and its relation with robustness.

In Sokolić et al. (2017), authors have shown that the Frobenius norm of the Jacobian
matrix is related to the generalization error: regularizing it induces smaller generalization
errors. Following this work, Jakubovitz and Giryes (2018) have linked the Jacobian matrix
to adversarial robustness. For an input x, the Froebenius norm of the Jacobian matrix
at point x is related to the distance to its closest adversarial example (more precisely,
their proposition 3 shows it is an upper bound for the L2-norm of distance to the closest
adversary of x): minimizing this norm thus leads to improved robustness.

7.6 Conclusion

Following an in-depth analysis of the characteristics exhibited by adversaries, we have first
established a unifying hypothesis, suggesting that adversarial examples leverage under-
optimized edges in neural networks in a structured manner. To verify this hypothesis, we
have conducted several experiments, among which we have successfully devised a highly
efficient detection method named Persistent Diagram (PD) that leverages the inherent
structural properties of the under-optimized edges in neural networks. By harnessing the
rich topological information that traverses the network, our approach enables the accurate
identification of adversarial instances. This success confirms the solidity of our hypoth-
esis and paves the way for a more systematic study of the topology of neural networks
from a robustness perspective. Additionally, we have complemented our experimental
findings with a theoretical argument that also advocates for reducing the widespread
over-parametrization prevalent in neural networks. To fortify models against such vulner-
abilities, a potential avenue involves imposing constraints on the network’s complexity,
for instance, through pruning techniques.

As our work remains mainly experimental, additional investigations are necessary to fully
establish our hypothesis as an explanation for the adversarial vulnerability of neural net-
works. Importantly, even when selecting a relatively few number of under-optimized edges,
our method is based on the computation of nested graphs and thus struggles to scale to
very large neural network architectures and datasets. For example, additional work on the
ImageNet dataset and on larger versions of ResNets, or different models such as Vision
Transformers, would be appreciable. To do so, faster algorithms to compute persistent
diagrams (or approximation) would be necessary.

Another interesting venue for future extensions is the study of the intricate relationship
between pruning strategies, or sparse networks, and the resultant robustness of the models,
which has started to be studied, as previously mentioned, but is not yet fully understood.

127



7.7 Additional Results

To complement the experiments presented in Section 7.5, we conducted additional exper-
iments that shed light on specific aspects of our PD method.

7.7.1 Quantitative Differences in a Simple Setting

(a) LeNeT/MNIST (b) LeNet/F-MNIST (c) ResNet/CIFAR

Figure 7.18: Unsupervised detection results using number of points only.

We have shown in Section 7.5.1 that counting the number of points in the persistent
diagrams can be an efficient strategy to differentiate adversarial inputs from clean ones.
To emphasize these results, we created two very simple detectors based on the number of
points in persistence diagrams (one for all points, one for infinitely-lived points) using an
SVM with an RBF kernel. The results are shown in Figure 7.18. It illustrates the fact
that indeed, the number of points in diagrams provides relevant information, even enough
to match our PD method in the two simplest settings. When the task is more difficult,
however (in CIFAR10 / ResNet setting), it is not enough to yield as good results as when
using directly all information from persistence diagrams, like in our PD method.

7.7.2 Supervised Results

As mentioned before, supervised results can give a false sense of security because, in prac-
tice, one cannot anticipate which algorithm will be used to craft an adversarial example
(see Figure 7.19): for LID and Mahalanobis, the supervised AUCs are noticeably better
than the unsupervised ones, with confidence intervals for these almost not overlapping;
on the contrary, PD is more stable between these settings (the difference is around six
times smaller). We report results from this unsupervised setting. To compare with the
literature (where most of the results are reported under the supervised setting) we also
provide supervised results in the Appendix. Keep in mind that great results on supervised
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Sup. Unsup. Diff

PD 0.884 [0.858, 0.910] 0.873 [0.851,0.902] 0.011
LID 0.835 [0.799, 0.870] 0.776 [0.744, 0.817] 0.059
Maha 0.772 [0.737, 0.811] 0.712 [0.664, 0.748] 0.06

Figure 7.19: Supervised vs unsupervised detection of adversarial examples. Showing AUC for
ResNet / SVHN subject to PGD attacks with ε = 0.01. Smaller diff. is better.

(a) LeNeT/MNIST (b) LeNet/F-MNIST (c) ResNet/SVHN (d) ResNet/CIFAR10

Figure 7.20: Supervised results - Showing detection AUC for different detection methods (leg-
end) against different kinds of adversarial attacks (rows) and model architectures and datasets
(columns)

experiments are easier to achieve than on unsupervised experiments because, obviously,
the task is harder.

However, results using the supervised setting are quite similar to those obtained under
the unsupervised setting (the AUC are overall higher, because the task is simpler): the
hierarchy between the detection methods is identical, with Persistence Diagram providing
the best results, followed by LID and Mahalanobis. Note that, as mentioned in the main
paper, some AUC results are significantly higher in the supervised setting (Raw Graph,
Mahalanobis, etc.), illustrating the false sense of security we can get by studying only
supervised results.

We also ran experiments using transferred attacks on MNIST and Fashion MNIST LeNets,
reported in Figure 7.21. Transferred attacks were generated on control models (using the
same LeNet architecture), and successful adversaries on these control models were saved.
Then, these attacks were submitted to our original target models, and detection methods
were launched to flag these adversaries. The results reported here correspond to a black-
box setting.

The results are quite similar to those observed for the white-box setting, with our PD
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(a) LeNeT/MNIST (b) LeNet/F-MNIST

Figure 7.21: Transferred attacks results - Detection AUC for different detection methods (leg-
end) against different kinds of adversarial attacks (rows) and model architectures and datasets
(columns).

(a) LeNeT/MNIST (b) LeNet/F-MNIST

Figure 7.22: Adversarial accuracy (against PGD) of adversarially trained vs standard neural
networks.

method still better than LID and Mahalanobis. As mentioned in Section 7.5.2, the three
main methods (PD, LID, Mahalanobis) seem to generalize well in this black-box setting.

We illustrated in the main paper the fact that by being a structural method, PD can
generalize to all sorts of adversaries. Successful adversaries on adversarially trained (AT)
neural networks are unusual adversaries by nature because they can fool a robust model
trained to resist the usual adversaries. As such, running our detection methods on AT
neural networks is a good way to check the generalization ability of said methods: if there
is no drop in performance compared to the classical setting, then the method is highly
generalizable; if there is one, maybe the method was built on too strong assumptions
about adversaries that are not satisfied by all of them.

Figure 7.22 shows the standard and adversarial accuracy against PGD of the AT neural
networks compared to the standard ones. Figure 7.23 shows the detection results’ dis-
crepancies between standard and AT neural networks using PGD attacks, for all methods.
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(a) LeNeT/MNIST (b) LeNet/F-MNIST

Figure 7.23: Unsupervised detection results (on PGD) of adversarially trained (dashed lines) vs
standard neural networks (full lines)

Figure 7.24: Impact of edge-selection methods on AUC (ResNet / CIFAR10).

Our PD method outputs almost no performance gap, contrary to LID and Mahalanobis,
meaning that our method is more general and that all types of adversaries do leverage
under-optimized edges.

7.7.3 Informative Power of Under-optimized Edges

We provide here an experimental illustration of the impact of edge-selection by compar-
ing the use of under-optimized edges to detect adversarial inputs with our PD method,
instead of ”well-optimized” edges. The results shown in Figure 7.24 indicate that the
detection AUC is better when using under-optimized edges vs well-optimized ones, which
also supports our hypothesis stating that these edges contain more information about
adversaries.
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Chapter 8

Existence of Low-Dimensional
Adversarial Attacks

Fool me once, fool me twice.

Billie Eilish.
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8.1 Introduction and High-level Overview

In Chapter 7, we introduced a hypothesis explaining the presence of successful adversarial
examples in deep learning models whatever the type of adversarial examples, meaning
that on-manifold and off-manifold adversaries were both considered. Our hypothesis was
backed with experiments showing that, based on our methodology, an efficient detector
can be built to flag such adversarial examples.

Our experiments concentrated on classical adversarial attacks, meaning attacks that tar-
get the full-dimensional space of the input features, even though the perturbations are
controlled in size by a L2 or L∞ norm. However, recent advances in the search for more
practical adversarial attacks have changed this paradigm with the creation of adversarial
perturbations that can be found by black-box search using surprisingly few queries, which
essentially restricts the perturbation to a subspace of dimension k, much smaller than
the dimension d of the image space. More precisely, methods such as Boundary Attack,
introduced in Brendel et al. (2017), NES in Ilyas et al. (2018), SimBA in Guo et al. (2019)
and HopSkipJump in Chen et al. (2020a) approximate the full gradient of the model’s loss
via a Monte-Carlo finite-difference estimate which sub-samples the coordinates randomly.
Surprisingly, existing black-box attacks can be carried out using a very small number of
queries, which suggests that adversarial examples are abundant in low-dimensional sub-
spaces. This intuition is confirmed by subsequent works that also performed adversarial
search in a fixed subspace such as the low-frequency subspace, as in Yin et al. (2019);
Guo et al. (2018a), or by selecting the subspace in a distribution-dependent manner using
an independently-trained neural network, as in Tu et al. (2019); Yan et al. (2019); Huang
and Zhang (2019).

These empirical findings lead us to hypothesize that adversarial perturbations exist with
high probability in low-dimensional subspaces, which raises the question: Is the vulner-
ability to black-box, low-dimensional attacks inherent or can we hope to prevent them?
As previously mentioned in Section 6.2.3, even though several works have tackled this
questions for more generic types of attacks (meaning full-dimensional attacks), such the-
oretical results cannot apply directly to low-dimensional types of attacks, as the principle
of curse of dimensionality cannot be used.

In this Chapter, we initiate a rigorous study of the phenomenon of low-dimensional adver-
sarial perturbations (LDAPs). Our result characterizes precisely the sufficient conditions
for the existence of LDAPs, and we show that these conditions hold for neural networks
under practical settings, including the so-called lazy regime wherein the parameters of the
trained network remain close to their values at initialization. We thus provide rigorous
explanations for the empirical success of some powerful heuristics that have appeared in
the literature, such as Moosavi-Dezfooli et al. (2017); Khrulkov and Oseledets (2018);
Guo et al. (2018a); Yin et al. (2019); Chen et al. (2020a). In addition to this theoretical
contribution, our results are confirmed by experiments on both synthetic and real data.

8.1.1 Outline of the Rationales of the Chapter

Our theoretical analysis of the low-dimensional adversarial perturbations is mainly based
on the smoothness of the classifier and on geometrical properties of the attack subspace
V . More precisely, we derive bounds that reveal the role of:
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• the local smoothness of the classifier’s decision-boundary,

• the alignment of the subspace V with the unit-normals at the classifier’s decision-
boundary,

• the distribution of classifier’s pointwise margin,

• the attacker’s budget ε (measured in Euclidean norm).

We formalize a notion of alignment in Section 8.3.

For random subspaces of sufficiently high dimension (Guo et al., 2019) and subspaces ob-
tained via SVD on the gradients (Moosavi-Dezfooli et al., 2017; Khrulkov and Oseledets,
2018), our results provide transparent lower-bounds on the fooling rate, which explain
the empirical success of the very efficient heuristic methods that have been proposed in
the literature for constructing LDAPs; see Section 8.6.1. Moreover, the lower-bounds
only depend on the distributions of the predictions and the gradients of the model and so
can be empirically estimated on held-out data, making them a practical predictor for the
adversarial vulnerability of classifiers. Our theoretical results are confirmed by numerous
experiments on real and simulated data (Section 8.6). In all cases, the bounds can be
easily evaluated and are close to the actual fooling rates.

8.1.2 Literature Overview

Earlier experiments, as in Moosavi-Dezfooli et al. (2017); Khrulkov and Oseledets (2018),
showed that adversarial attacks based on a single direction of feature space, called Univer-
sal Adversarial Perturbations (UAPs) can be designed to effectively fool neural networks.
UAPs are often more transferable across datasets and architectures than classical attacks,
making them interesting for use in practice. Their theoretical analysis has been initi-
ated in Moosavi-Dezfooli et al. (2018), where the authors established lower bounds for
the fooling rate of UAPs under certain curvature conditions on the decision boundary.
The aforementioned work has two fundamental limitations. First, the notions of curva-
ture used are stated in terms of unconstrained optimal adversarial perturbation (i.e. the
closest point) for an arbitrary input point and thus are not easy to verify in practice.
Also, the existence of the UAP is only guaranteed within a subspace which is required to
satisfy a global alignment property with the gradients of the model. In contrast, we use
a more flexible curvature requirement (refer to Definition 8.3.1), which is adapted to any
subspace under consideration, and we prove results that are strong enough to provide a
satisfactory theory of LDAPs, and UAPs in particular, under very general settings.

Guo (2020) studied LDAPs when the attacker is constrained to a uniformly random k-
dimensional subspace. For classifiers whose decision regions are half-spaces and spheres
in Rd, they established the existence of low-dimensional adversarial subspaces under a
Gaussian concentration assumption on the data. Our work considers more general de-
cision regions (e.g. of certain neural networks) and more general data distributions and
subspaces. Our results recover the findings of Guo (2020) as special cases.
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8.1.3 Outline of the Main Contributions of the Chapter

Classical theoretical works on understanding adversarial examples, like Tsipras et al.
(2019); Shafahi et al. (2019a); Mahloujifar et al. (2019); Gilmer et al. (2018); Dohmatob
(2019), focus on the case of adversarial attacks on the full feature space. They use the
concentration property of certain high-dimensional (e.g. multivariate Gaussians, distri-
butions satisfying log-Sobolev inequalities, etc.), to establish that an imperfect classifier
will admit adversarial examples. However, such techniques cannot be used directly when
we add the constraint that the attacks only live in a low-dimensional subspace. Thus,
new techniques are needed. Such techniques were initiated in Guo (2020) for the case of
linear models, and are extended in our paper to non-linear models.

More precisely, our contributions are the following:

• In Section 8.3, we formalize the notion of adversarially viable subspace, which pro-
vides a characterization of the low-dimensional subspaces that can be relevant to
conduct adversarial attacks. More precisely, this notion provides an alignment con-
dition between the attack subspace and the gradient of the model for the attack
subspace to be usable in practice to craft successful low-dimensional adversaries.

• In Section 8.4, we provide our theoretical bounds for models that have a Lipschitz
decision boundary. This smoothness characteristic allows us to provide general
results on the efficiency of LDAPs, which is also illustrated in cases when the model
is linear or hyper-ellipsoidal for example.

• In Section 8.5, we also provide our theoretical bounds for models with locally almost
affine decision boundaries. This smoothness characteristic allows us to provide sim-
ilar results for practical, state-of-the-art models, for example, neural networks with
ReLU activation functions in the random feature regime or the lazy regime.

• In Section 8.6, we conduct experiments to illustrate the informative power of our
theoretical bounds for generic, trained neural networks. Our bounds are shown to
hold in this case, even when the neural network is large or adversarially trained.

8.2 Preliminaries

In this Section, we clarify the context of this theoretical study, which is binary classifica-
tion. We also recall some notions related to adversarial examples.

8.2.1 Binary Classification and Adversarial Examples

We consider a binary classification setup, where X = (X1, ..., Xd) ∈ Rd denotes an input of
dimension d (e.g. for the MNIST dataset, d = 784) drawn from a probability distribution
PX on Rd. We will denote by gθ : Rd → R generic feature map with parameters θ, and
fθ = sign◦gθ the corresponding classifier, with the arbitrary convention that sign(0) = −1.

For example, for neural networks, gθ(x) would be the predicted logit for input x; for a
closed ball of radius r > 0 in Rd, gr(x) := (∥x∥2 − r2)/2; and for a half-space (linear
classifier), gθ(x) := x⊤w − b with θ = (w, b).
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The binary classifier fθ can be unambiguously identified with a measurable subset of Rd,
formally defined as follows:

Definition 8.2.1. Negative decision region. Let X = Rd be the input feature space,
gθ : Rd → R be a feature map, and fθ = sign ◦ gθ its corresponding classifier. The negative
decision region of fθ is defined by:

C = {x ∈ Rd | fθ(x) = −1} = {x ∈ Rd | gθ(x) ≤ 0} (8.2.1)

and its complement, C ′ := Rd \ C, is the positive decision region

Of course, the terms ‘negative’ or ‘positive’ are interchangeable, as we can always consider
the classifier −h instead. Therefore, without loss of generality, we shall focus our attention
on adversarial attacks on the positive decision region C ′.

Given an input x ∈ C ′ classified by fθ as positive, an adversarial perturbation for x is a
vector δ ∈ Rd of size ∥δ∥2 such that x + δ ∈ C. The goal of the attacker is to move points
from C ′ to C with small perturbations. Note that we are not interested in the true labels
of the inputs, just the robustness of the classifier with respect to its own predictions.
However, note that this distinction is not important for classifiers which are already very
accurate in the classical sense.

The notion of margin will be important in the sequel.

Definition 8.2.2. Margin at a point. Let X = Rd be the input feature space and
gθ : Rd → R be a feature map. Let x ∈ Rd be an input.

If gθ is differentiable at x and x is non-critical, the the margin of gθ at x, denoted mgθ
(x),

is defined by:
mgθ

(x) := (gθ(x))+/∥∇gθ(x)∥2 (8.2.2)

For example, if gθ(x) ≡ x⊤w− b for some scalar b ∈ R non-zero and w ∈ Rd, as in the case
where the classifier is a half-space, then mgθ

(x) = (x⊤w− b)+/∥w∥2. In this case, mgθ
(x)

also corresponds to the distance of x from the negative decision region of the classifier.

8.2.2 Low Dimensional Adversarial Perturbations

In this paper, we focus on low-dimensional perturbations (LDAPs), as in Guo et al. (2018a,
2019); Tu et al. (2019); Yan et al. (2019); Huang and Zhang (2019); Guo (2020), meaning
that the perturbations δ are limited to a k-dimensional subspace V of Rd whose choice is
left to the attacker. Here, k can be much smaller than d. The special case where k = 1
corresponds to the scenario where the attacker is allowed to operate in one dimension
only (e.g. modify the same pixel in all images of the same class), also famously known as
universal adversarial perturbations (UAPs), as studied in Moosavi-Dezfooli et al. (2017);
Khrulkov and Oseledets (2018).

Definition 8.2.3. Attackable region. Let X = Rd be the input feature space, C the
negative decision region, V ⊆ Rd be a subspace, and ε > 0.

The set of all points in Rd which can be pushed into the negative decision-region C by
adding a perturbation of size ε in V is defined by:

Cε
V := {x ∈ Rd | ∃v ∈ V with ∥v∥2 ≤ ε s.t x + v ∈ C}, (8.2.3)
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Figure 8.1: Illustration of an attackable region. Considering the negative decision region C is
an octagon, and following the blue attack subspace V , the corresponding attackable region Cε

V

corresponds to the red area.

where BV := V ∩Bd is the unit-ball in V .

The concept of attackable region is illustrated in Figure 8.1. Note that by definition,
x ∈ Cε

V if and only if (x+ εBV )∩C ̸= ∅. In the particular case of full-dimensional attacks
where V = Rd, the set Cε

V corresponds to the usual ε-expansion Cε of C, i.e., the set of
points in Rd which are at a distance at most ε from C. This case has been extensively
studied in Shafahi et al. (2019a); Fawzi et al. (2018a); Mahloujifar et al. (2019); Dohmatob
(2019). Also, note that it always holds that C ⊆ Cε

V ⊆ Cε.

Definition 8.2.4. Fooling rate of a subspace. Given an attack budget ε ≥ 0, the
fooling rate FR(V ; ε) of a subspace V ⊆ Rd is the proportion of test data which can be
moved from the positive decision-region C ′ to the negative decision-region C by moving a
distance ε along V , that is

FR(V ; ε) := PX(X ∈ Cε
V | X ∈ C ′). (8.2.4)

Note that by definition of Cε
V , the fooling rate FR(V ; ε) is a supremum over all pos-

sible attackers operating in the subspace V , and with L2-norm budget ε. In particular,
FR(Rd; ε) is the usual optimal fooling rate of an adversarial attack with budget ε, without
any subspace constraint, and already studied extensively in the literature, for example in
Shafahi et al. (2019a); Fawzi et al. (2018a); Mahloujifar et al. (2019); Dohmatob (2019).

8.2.3 Illustration with a linear model

We start with the simple case of a linear binary classifier on Rd, for which the negative
decision-region C (and therefore the positive decision region too) is a half-space given by

Hw,b := {x ∈ Rd | x⊤w − b ≤ 0}, (8.2.5)

with unit-normal vector w ∈ Rd and bias parameter b ∈ R. This corresponds to taking
f(x) := x⊤w − b in Definition 8.2.1. The following result generalizes a result of Guo
(2020) (see Lemma 2.2 therein) which was only established in the case where the marginal
distribution of the features PX is the standard Gaussian distribution on Rd.

Proposition 8.2.5. Let C be the half-space Hw,b defined in Equation (8.2.5).
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For any subspace V of Rd and ε ≥ 0, it holds FR(V ; ε) ≥ PX(X⊤w − b ≤ ∥ΠV w∥ε | X ∈
C ′).

In particular, if V is a uniformly random k-dimensional subspace of Rd, then for any

t ∈ (0,
√

k/d) it holds with probability 1− 2e−t2d/2 over V that:

FR(V ; ε) ≥ PX(X⊤w − b ≤ (
√

k/d− t)ε | X ∈ C ′). (8.2.6)

Interpretation of Proposition 8.2.5. To understand the power of the the above proposi-
tion, consider the cause where PX = N (0, Id) and b = 0 so that PX(C) = PX(C ′) = 1/2.
Note that a typical x ∼ PX has a norm of order E[∥x∥2] ≍

√
d. Thus a random perturba-

tion of dimension k =
√

d ≪ d and of L2-norm ε =
√

d/k = d1/4 ≪ E[∥x∥2] is sufficient
to change the decision of the classifier on a proportion

FR(V ; ϵ) ≥ PX(X⊤w ≤ 1 | X⊤w ≥ 0) = (Φ(1)− Φ(0))/(1/2) ≈ 68% (8.2.7)

from negative to positive.

Proof of Proposition 8.2.5.

Indeed, one computes

FR(V ; ε) := PX(X ∈ Cε
V | X ∈ C ′) (8.2.8)

≥ sup
v∈V

PX(X ∈ Cε
v | X ∈ C ′) (8.2.9)

= sup
v∈V ∩Sd−1

PX(X⊤w + εv⊤w − b ≤ 0 | X ∈ C ′) (8.2.10)

= PX(X⊤w − b ≤ ε∥ΠV w∥2 | X ∈ C ′), (8.2.11)

which proves the first part of the claim. The second part follows from the first part
combined with the fact that

∥ΠV w∥2 ≥
√

k/d− t with proba. 1− 2e−t2d/2, (8.2.12)

by basic concentration arguments.

Lifting the Core Ideas to the Non-Linear Setting. In the results of this Section, we will
emulate the lower-bound from Proposition 8.2.5, for the case of non-linear classifiers. In
this direction, first observe that, since the margin for the linear classifier is mgθ

(x) :=
max(gθ(x), 0)/∥∇f(x)∥2 = (x⊤w + b)+, the lower-bound from Proposition 8.2.5 can be
written in expectation-form as

EV [FR(V ; ε)] ≥ P (mgθ
(x) ≤ αε | X ∈ C ′)− β, (8.2.13)

with α =
√

k/d − t and β = 2e−t2d/2. The pair of scalars (α, β) capture the alignment
between the random subspace V , and the gradients of the linear classifier at a random
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point X ∈ C ′, i.e with the normal vector η(X) = ∇gθ(x)/∥∇gθ(X)∥2 = w, in the sense
that

PX,V (∥ΠV η(X)∥2 ≥ α | X ∈ C ′) ≥ 1− β. (8.2.14)

Since η(X) = w here, and is independent of the feature vector X, Equation (8.2.14) is
just a restatement of Equation (8.2.12). In the general case of non-linear models gθ (e.g
neural nets) and arbitrary subspaces V , inequalities such as Equation (8.2.14) will be the
basis of so-called adversarially viable subspaces, studied in detail in Section 8.3.

8.3 Adversarially Viable Subspaces

8.3.1 Definition of Adversarially Viable Subspace

We will formalize the notion of an adversarially viable subspace which is a subspace V
that has a non-negligible inner product with the classifier’s gradient, hence it is possible
to significantly alter the value of f(x) by moving strictly within V . Intriguingly, such
subspaces are pivotal to the empirical success of LDAPs, and we show that popular
heuristics lead to adversarially viable subspaces.

Then, we prove that when the classifier satisfies certain smoothness conditions, adversari-
ally viable subspaces allow the attacker to follow the gradient direction within V to reach
the decision boundary of C for most points x ∈ C ′, hence achieving a high fooling rate.

Restricting the adversarial perturbation to a given subspace V presents a particular chal-
lenge to the attacker. If dim(V ) < d and x ∈ C ′ := Rd \C ̸= ∅, it is possible that x ̸∈ Cε

V

for all ε > 0. In particular, if f is convex and the subspace V is orthogonal to the gradient
of f at a point x ∈ Rd, then no amount of perturbation within V will make x closer to
the boundary of C, in an effort to flip its predicted class label.

This intuition is illustrated by Figure 8.2. In this case, it is possible to perturb the
input x such that its adversarial counterpart crosses the decision boundary when adding
a perturbation from V1, but it is not the case if the perturbation is in V2. Thus, we can
hope to establish nontrivial fooling rates only for certain subspaces.

Figure 8.2: Illustration of adversarial viability: a perturbation from V1 can push xadv on the
other side of the decision boundary than x, but it is not the case for V2.

Our first contribution is a crisp characterization of subspaces for which we can hope to
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achieve a nonzero fooling rate. These are so-called adversarially viable subspaces and are
a generalization of the subspaces considered in Moosavi-Dezfooli et al. (2018); Moosavi-
Dezfooli et al. (2017); Guo (2020).

Definition 8.3.1. Adversarially viable subspace. Let α ∈ (0, 1] and β ∈ [0, 1), and
let V ⊆ Rd be a possibly random subspace. V is said to be adversarially (α, β)-viable if:

PX,V (∥ΠV η(X)∥2 ≥ α | X ∈ C ′) ≥ 1− β, (8.3.1)

where η(x) := ∇gθ(x)/∥∇gθ(x)∥2 is the gradient direction at x.

The above definition captures the essence of Equation (8.2.12), which was the crucial piece
in the proof of Proposition 8.2.5. To see that this is a generalization of Equation (8.2.12),
note that η(x) ≡ w when C is a half-space (i.e when gθ is a linear function gθ(x) ≡ x⊤w−b).

We now provide some important examples of adversarially viable subspaces.

8.3.2 Random Subspaces

Consider the case of a uniformly random k-dimensional subspace V of Rd. Such subspaces
have been proposed in the literature, see for example Moosavi-Dezfooli et al. (2017); Guo
(2020), for constructing low-dimensional adversarial perturbations.

Lemma 8.3.2. The random subspace as given in Proposition 8.2.5 is (
√

k/d− t, 2e−t2d/2)-
viable for any t ∈ (0,

√
k/d).

Indeed, this is just a restatement of Equation (8.2.12), in the language of Definition 8.3.1.

8.3.3 Eigen-subspace

Let Ση ∈ Rd×d be the covariance matrix of the gradient direction η(X) conditioned on
X ∈ C ′.

Theorem 8.3.3. For any k ∈ [d], let sk ∈ (0, 1] be the sum of first the k eigenvalues of
Ση. Then, for any α ∈ (0,

√
sk), the (deterministic) subspace Veigen,k of Rd corresponding

to the top k eigendirections of Ση is adversarially (α, (1− sk)/(1− α2))-viable.

Thus, if the histogram of eigenvalues of Ση is ‘spiked’ in the sense that sk ≥ s = Ω(1)
for some k = o(d), then Veigen,k is a o(d)-dimensional adversarially (Ω(1), O(1− s))-viable
subspace. Combined with the results established in the following Sections, the preceding
observation provides a rigorous justification for the heuristic in Moosavi-Dezfooli et al.
(2017); Khrulkov and Oseledets (2018) which proposed UAPs based on eigenvectors of
the covariance matrix Ση. Our experiments in Section 8.6 also support this.

Proof of Theorem 8.3.3

Let Ση = USU⊤ be the singular value decomposition (SVD) of Ση, where S is a diagonal
matrix containing the nonzero eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr > 0 of Ση, r ∈ [d] is the
rank of Ση, and U is a d × r matrix with orthonormal columns. Then, the orthogonal
projector for the subspace V := Veigen,k is given explicitly by ΠV = U≤kU⊤

≤k, where U≤k
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is the d × min(k, r) orthogonal matrix corresponding to the first min(k, r) columns of
U . Consider the r.v Z := ∥ΠV η(X)∥2. By a standard formula for the expectation of a
quadratic form, one computes

E[Z2 | X ∈ C ′] = E[η(X)⊤ΠV η(X) | X ∈ C ′] (8.3.2)

= tr(ΠV Ση) = tr(U≤kU⊤
≤kΣη) (8.3.3)

= tr(U⊤
≤kΣηU≤k) =

min(k,r)∑
i=1

λi (8.3.4)

:= sk. (8.3.5)

On the other hand, conditioned on X ∈ C ′ we have 0 ≤ Z ≤ ∥η(X)∥2. Thus, for any
α ∈ (0,

√
sk), we have

X ∈ C ′ =⇒ 1(Z ≥ α) ≥ Z2 − α2

1− α2 , (8.3.6)

with equality on the event Z2 ∈ {α2, 1}. The claim then follows upon taking expectations
on both sides of the above inequality conditioned on the event X ∈ C ′.

8.4 Model with Lipschitz Decision Boundary

Consider a binary classifier on Rd for which the negative decision-region C of the classifier
is given by Definition 8.2.1, where gθ : Rd → R is a differentiable function. Let us start
by observing that, thanks to a classical result from optimization theory (see Proposition
3.2 of Azé and Corvellec (2017)), if the following condition is satisfied, then any x ∈ C ′ is
at a distance dC(x) at most f(x)/γ from C.

Condition 8.4.1. Uniformly Strong Gradients. The feature map gθ is said to have
uniformly strong gradients if there exists a constant γ > 0 such that ∥∇gθ(x)∥2 ≥ γ for
all x ∈ C ′ ’

Intuitively, under Condition 8.4.1, the gradient of gθ at any point x ∈ C ′ is strong enough:
gradient-flow started at x then escapes the region C ′ after traveling a distance O(gθ(x)).
This is formalized in the following result which will be extended to the case of subspace
attacks in the rest of this Section.

Theorem 8.4.2. If a feature map gθ satisfies Condition 8.4.1, it holds for any ε ≥ 0 that
the fooling rate of full-dimensional attacks is lower-bounded as follows

FR(Rd; ε) ≥ PX(gθ(X) ≤ γε | X ∈ C ′). (8.4.1)

As an illustration, if we consider gθ to be a randomly initialized 1 finite-depth ReLU
neural-network, one can show, as in Daniely and Shacham (2020); Bubeck et al. (2021);
Bartlett et al. (2021), that with high probability over the weights: gθ(x) = O(∥x∥2/

√
d)

and ∥∇gθ(x)∥2 = Ω(1) for all x ∈ Rd. The above theorem immediately predicts the
existence of adversarial examples of size

√
d times smaller than the typical L2-norm of a

data point.

1With layer widths within poly(log d) factors of one another, and weights initialized in the standard
way.

142



8.4.1 Main result on the Lower Bound

We will extend Theorem 8.4.2 to the case of subspace attacks, under the following smooth-
ness condition.

Condition 8.4.3. Lipschitz Gradients. The feature map gθ is said to have Lipschitz
gradients if there exists a constant L ≥ 0 such that

∥∇gθ(x′)−∇gθ(x)∥ ≤ L∥x′ − x∥2, for all x, x′ ∈ Rd. (8.4.2)

This condition stipulates that the gradient of gθ varies smoothly on the positive decision-
region C ′ = Rd\C of the classifier Definition 8.2.1. Note that when gθ is twice-differentiable
on C ′, Condition 8.4.3 holds with L = supx∈C′ ∥∇2gθ(x)∥op, where ∇2f(x) ∈ Rd×d is the
Hessian of gθ at x. For example, a feed-forward neural net with bounded weights and
twice-differentiable activation function with bounded Hessian (e.g. sigmoid, quadratic,
tanh, GELU, cos, sin, etc.) will satisfy Condition 8.4.3.

To obtain simplified and more transparent lower bounds for the fooling rate of adversarial
subspaces, we will also need the following natural condition which ensures that there is
a strong descent direction at a constant fraction of points in the positive decision region
C ′, to allow for gradient-based attacks.

Condition 8.4.4. Strong Gradients. The feature map gθ is said to have strong
gradients if there are some constants γ > 0 and λ ∈ [0, 1) such that PX(∥∇gθ(X)∥2 ≥ γ |
X ∈ C ′) ≥ 1− λ.

Note that Condition 8.4.1 is a special case of Condition 8.4.4 corresponding to λ = 0.

Now, the following theorem is one of our main results. It generalizes both Proposition 8.2.5
and Theorem 8.4.2.

Theorem 8.4.5. Let gθ be a feature map that satisfies the Lipschitz gradient condition from
Condition 8.4.3, and let V be a possibly random adversarially (α, β)-viable subspace of Rd.
Then,

(A) For any ε ≥ 0, the average fooling rate of V is lower-bounded as follows:

EV [FR(V ; ε)] ≥ PX

(
mgθ

(X) ≤ min
(
αε/2, α2∥∇gθ(X)∥2/(2L)

)
| X ∈ C ′

)
− β. (8.4.3)

(B) If in addition, gθ satisfies the strong gradient condition from Condition 8.4.4, then
for any 0 ≤ ε ≤ αγ/L,

EV [FR(V ; ε)] ≥ PX (mgθ
(X) ≤ αε/2 | X ∈ C ′)− β − λ. (8.4.4)

Remark 8.4.6. Note that the condition ‘0 ≤ ε ≤ αγ/L’ in part (B) of the theorem cannot
be removed in general, as is seen in the case where C = Bd, and considering any subspace
V with dim(V ) < d.
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8.4.2 Proof of the Main Result

We first give a vivid sketch of the proof before digging into it with more details.

Proof Sketch. of Equation (8.4.3).

It is an elementary fact in optimization theory that a function gθ : Rd → R which has the
structure stated in Condition 8.4.3 admits the following first-order approximation: for all
x, x′ ∈ Rd,

|gθ(x′)− gθ(x)−∇gθ(x)⊤(x′ − x)| ≤ L

2 ∥x
′ − x∥2

2. (8.4.5)

Now, starting at a point x ∈ C ′, let us move a distance ε in the direction ΠV∇gθ(x)
to arrive at a point x′ = x − εΠV∇gθ(x) ∈ Rd, the above inequality gives the quadratic
approximation:

gθ(x′) ≤ gθ(x)− ε∥ΠV∇gθ(x)∥2
2 + L

2 ε2∥ΠV∇gθ(x)∥2. (8.4.6)

After some calculations, the right-hand side of Equation (8.4.6) can be made ≤ 0 by
guaranteeing that

(1) Alignment: ∥ΠV∇gθ(x)∥2 ≥ α∥∇gθ(x)∥2.

(2) Small Margin: mgθ
(x) ≤ min(αε/2, α2∥∇gθ(x)∥2

2L
).

The requirement (1) holds because the subspace V is assumed to be (α, β)-viable (see
Definition 8.3.1). (2) is obtained from (1) and a careful analysis of Equation (8.4.6).
In particular, if 0 ≤ ε ≤ αγ/L, then conditioned on ∥∇gθ(x)∥2 ≥ γ the ‘small margin’
condition reduces to: mgθ

(x) ≤ αϵ/2.

Let’s now provide the full proof. To do so, we will need some auxiliary lemmas that are
stated and proved below.

Lemma 8.4.7. Auxiliary lemma (1). For any ρ, r > 0 and b ∈ Rd, we have the identity

sup
z∈ρBn

b⊤z − 1
2r
∥z∥2

2 =

r∥b∥2
2/2, if ∥b∥2 ≤ ρ/r,

ρ∥b∥2 − ρ2/(2r), otherwise.
(8.4.7)

Proof of Lemma 8.4.7.

Since the quadratic function z 7→ (1/2)∥z∥2 is unchanged upon taking the Fenchel-
Legendre transform, we have

sup
z∈ρBd

b⊤z − 1
2r
∥z∥2

2 = sup
∥z∥2≤ρ

b⊤z − 1
r

(
sup
u∈Rd

z⊤u− 1
2∥u∥

2
2

)
(8.4.8)
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(∗)= inf
u∈Rd

(
1
2r
∥u∥2

2 + sup
∥z∥2≤ρ

z⊤(b− u/r)
)

(8.4.9)

= inf
u∈Rd

( 1
2r
∥u∥2

2 + ρ∥b− u/r∥2

)
(8.4.10)

= inf
v∈Rd

(
r

2∥v − b∥2
2 + ρ∥v∥2

)
, by change of variable v := b− u/r

(8.4.11)

= ρ inf
v∈Rd

(
1

2ρ/r
∥v − b∥2

2 + ∥v∥2

)
, by factoring out ρ (8.4.12)

(∗∗)= ρ

∥b∥2
2/(2ρ/r), if ∥b∥2 ≤ ρ/r,

∥b∥2 − ρ/(2r), else
(8.4.13)

=

r∥b∥2
2/2, if ∥b∥2 ≤ ρ/r,

ρ∥b∥2 − ρ2/(2r), else,
(8.4.14)

where (∗) uses Sion’s Minimax Theorem, and in (∗∗) we have recognized a rescaledMoreau
envelope of the Euclidean norm, which is the Huber function evaluated at ∥b∥2.

We will also need the following auxiliary lemma.

Lemma 8.4.8. Auxiliary lemma (2). For any r, ρ > 0 and b ∈ Rd, we have the identity

sup
z∈ρBn

b⊤z − 1
r
∥z∥2 = ρ(∥b∥2 − 1/r)+. (8.4.15)

Proof of Lemma 8.4.8.

By direct computation, we have

sup
∥z∥2≤ρ

b⊤z − 1
r
∥z∥2 = sup

∥z∥2≤ρ
b⊤z − sup

∥u∥2≤1
z⊤u/r (8.4.16)

= inf
∥u∥2≤1

sup
∥z∥2≤ρ

z⊤(b− u/r) (8.4.17)

= ρ inf
∥u∥2≤1

∥b− u/r∥2 (8.4.18)

= ρ(∥b∥2 − 1/r)+, (8.4.19)

where, in the last step, we have recognized the well-known block soft-thresholding opera-
tor.

Finally, we will need the following lemma.

Lemma 8.4.9. Auxiliary lemma (3). Suppose R1, R2, R3 are random variables and
ϕ : R→ [−∞,∞] is a possibly random nondecreasing function. If P(R2 ≥ R3) ≥ 1− δ

P(R1 ≤ ϕ(R2)) ≥ P(R1 ≥ ϕ(R3))− δ. (8.4.20)
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Proof of Lemma 8.4.9.

Indeed, consider the events E1 := {R1 ≤ ϕ(R3)}, E2 := {R3 ≤ R2}, E3 := E1 ∩ E2 and
E4 := {R1 ≤ ϕ(R2)}. It is clear that E3 ⊆ E4. One then easily computes

P(R1 ≤ ϕ(R2)) = P(E4) ≥ P(E3) = P(E1 ∩ E2) (8.4.21)

= P(E1) + P(E2)− P(E1 ∪ E2) (8.4.22)

≥ P(E1) + P(E2)− 1 (8.4.23)

≥ P(E1)− δ (8.4.24)

= P(R1 ≤ ϕ(R3))− δ, (8.4.25)

as claimed.

Proof of Theorem 8.4.5: Lipschitz decision-boundary.

We are now ready to prove Theorem 8.4.5. First, we restate it for convenience

Theorem 8.4.5. Let gθ be a feature map that satisfies the Lipschitz gradient condition from
Condition 8.4.3, and let V be a possibly random adversarially (α, β)-viable subspace of Rd.
Then,

(A) For any ε ≥ 0, the average fooling rate of V is lower-bounded as follows:

EV [FR(V ; ε)] ≥ PX

(
mgθ

(X) ≤ min
(
αε/2, α2∥∇gθ(X)∥2/(2L)

)
| X ∈ C ′

)
− β. (8.4.3)

(B) If in addition, gθ satisfies the strong gradient condition from Condition 8.4.4, then
for any 0 ≤ ε ≤ αγ/L,

EV [FR(V ; ε)] ≥ PX (mgθ
(X) ≤ αε/2 | X ∈ C ′)− β − λ. (8.4.4)

Proof of Theorem 8.4.5.

Let x ∈ C ′ := Rd \ C and let v(x) := ΠV∇gθ(x)/∥ΠV∇gθ(x)∥2 ∈ Sd−1 ∩ V .

Define pV (x) := ∥ΠV∇gθ(x)∥2, the L2-norm of the orthogonal projection of the gradient
vector ∇gθ(x) onto the subspace V . It is clear that ∇gθ(x)⊤v(x) = ∥ΠV∇gθ(x)∥2 =
pV (x). Let dV (x) ∈ (0,∞] be the distance of x from C along the subspace V (see
Equation (8.4.48)). By definition, dV (x) is no larger than the distance between x and the
point where the line x + Rv(x) := {x + sv(x) | s ∈ R} first meets C (if it meets it at all!).

Thus, with the convention inf ∅ =∞, we have

dV (x) ≤ inf
s∈R
|s| subject to x + sv(x) ∈ C (8.4.26)
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Figure 8.3: Graphical illustration of the RHS of Equation (8.4.30), denote here as G(x). In this
illustration, p(x) = pV (x) and L are fixed to 5 and 1 respectively. Here, d̃(x) is shorthand for
dV (x), the distance of x from C along the subspace V .

= inf
s∈R
|s| subject to gθ(x + sv(x)) ≤ 0 (8.4.27)

≤ inf
s∈R
|s| subject to gθ(x) + s∇gθ(x)⊤v(x) + Ls2/2 ≤ 0 (8.4.28)

= inf
s∈R
|s| subject to gθ(x) + pV (x)s + Ls2/2 ≤ 0, (8.4.29)

where we have invoked the right-hand side of Equation (8.4.5) with x′ = x + sv(x) to
arrive at the third line.

gθ(x) ≥ sup
|s|<dV (x)

−pV (x)s− Ls2/2 =

pV (x)2/(2L), if pV (x) ≤ LdV (x),
pV (x)dV (x)− LdV (x)2/2, otherwise,

(8.4.30)

where the second step is an application of Lemma 8.4.7 with n = 1, b = −pV (x), r = 1/L
and ρ = dV (x).

Now, if gθ(x) < pV (x)2/(2L), we deduce from Equation (8.4.30) that dV (x) < pV (x)/L
and gθ(x) ≥ pV (x)dV (x)− LdV (x)2/2 (see Figure 8.3 for geometric intuition), and so

dV (x) ≤ pV (x)/L−
√

(pV (x)/L)2 − 2gθ(x)/L (8.4.31)

= 2gθ(x)
pV (x) +

√
pV (x)2 − 2gθ(x)L

(8.4.32)

≤ 2gθ(x)
pV (x) = 2mgθ

(x)
αV (x) , (8.4.33)

where αV (x) = pV (x)/∥∇gθ(x)∥2 = ∥ΠV∇gθ(x)∥2/∥∇gθ(x)∥2 = ∥ΠV η(x)∥2.
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Now, because Cε
V = {x ∈ Rd | dV (x) ≤ ε}, we deduce that{

x ∈ C ′ | mgθ
(x) ≤ min

(
αV (x)ε

2 ,
αV (x)2∥∇gθ(x)∥2

2L

)}
⊆ Cε

V \ C. (8.4.34)

Now, define sV (x) := αV (x)2∥∇gθ(x)∥2/(2L) and s(x) := α2∥∇gθ(x)∥2/(2L). Since the
subspace V is an adversarial (α, β)-viable by hypothesis, it follows from Definition 8.3.1
that

PX,V (min(αV (X)ϵ/2, sV (X)) ≥ min(αϵ/2, s(X)) | X ∈ C ′)
≥ PX,V (∥ΠV η(X)∥2 ≥ α | X ∈ C ′) ≥ 1− β.

(8.4.35)

The Fubini-Tonelli Theorem then gives,

FR(V ; ε) := EV [PX(X ∈ Cε
V | X ∈ C ′)] (8.4.36)

= EX [PV (X ∈ Cε
V | X ∈ C ′)] (8.4.37)

≥ EX [PV (mgθ
(X) ≤ min(αV (X)ε/2, sV (X)) | X ∈ C ′)] (8.4.38)

≥ EX [PV (mgθ
(X) ≤ min(αε/2, s(X)) | X ∈ C ′)− β], (8.4.39)

where the last step is obtained thanks to Lemma 8.4.9 with R1 = mgθ
(X), R2 =

min(αV (x)ϵ/2, sV (X)), R3 = min(αϵ/2, s(X)), and ϕ = Id, and recalling Equa-
tion (8.4.35). This proves the first part of the theorem.

For the second part, gθ also satisfies Condition 8.4.4 so we have P (∥∇gθ(X)∥2 ≥ γ |
X ∈ C ′) ≥ 1 − λ. On the other hand, if 0 ≤ ϵ ≤ αγ/L, then conditioned on the event
∥∇gθ(x)∥2 ≥ γ, we have min(αϵ/2, s(X)) ≥ min(αϵ/2, α2γ/(2L)) = αϵ/2, and the result
follows from the first part and Lemma 8.4.9.

8.4.3 Some Applications

We provide a non-exhaustive list of examples to illustrate the power of Theorem 8.4.5.

Linear models.

Proposition 8.2.5 which is a generalization of Lemma 2.2 of Guo (2020) is itself a special
case of part (B) of Theorem 8.4.5. Indeed the linear function gθ(x) ≡ x⊤w + b has margin
mgθ

(x) = (x⊤w + b)+ and verifies Conditions 8.4.3 and 8.4.4 with γ = ∥w∥, L = 0, and
λ = 0. Also, thanks to Lemma 8.3.2, for any k ∈ [d] and t ∈ (0,

√
k/d), a random

k-dimensional subspace V of Rd is adversarially (α, β)-viable with α =
√

k/d − t and

β = 2e−t2d/2.

Hyper-ellipsoids.

We now generalize another result of Guo (2020), namely, Lemma 2.3 therein. Indeed,
consider the case where gθ(x) := (x⊤Bx− r2)/2, where B is a d× d positive semi-definite
matrix and r > 0 is a scalar, so that the negative decision-region C of the classifier is the
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hyper-ellipsoid gθ ≤ 0. In particular, C is a solid sphere of radius r when B = Id. One
computes ∇gθ(x) = Bx, ∇2gθ(x) = B, hence Conditions 8.4.3 and 8.4.4 are satisfied with
λ = 0 and

L = sup
x∈Rd

∥∇2gθ(x)∥op = ∥B∥op, (8.4.40)

∥∇gθ(x)∥2 = ∥Bx∥2, for all x ∈ Rd, (8.4.41)

γ = inf
x∈C′
∥∇gθ(x)∥2 = inf

x⊤Bx>r2
∥Bx∥2 = smin(B)1/2r, (8.4.42)

where smin(B) is the smallest singular / eigenvalue of B, and ∥B∥op is the operator norm
of B, i.e, its largest eigenvalue (since B is positive semi-definite).

Moreover, the margin of gθ at a any point x ∈ Rd is given by

mgθ
(x) = max(gθ(x), 0)

∥∇gθ(x)∥2
= (x⊤Bx− r2)+

2∥Bx∥2
. (8.4.43)

In particular, if B = Id, then we deduce L = 1, γ = r, Moreover, for any x ∈ C ′, then the
distance of x from C, i.e d(x) = ∥x∥2 − r and we have

mgθ
(x) = ∥x∥

2
2 − r2

2∥x∥2
= 1

2(∥x∥2 − r)(1 + r

∥x∥2
) ∈ (d(x)/2, d(x)), for all x ∈ C ′ (8.4.44)

Applying Theorem 8.4.5 with B = Id (corresponding to a solid sphere) then recovers, as
is expected, exactly the bounds established in Lemma 2.3 of the work from Guo (2020)
as a special case.

8.4.4 Matching Upper-Bound under Convexity Assumption

We now show that the lower-bound given in Theorem 8.4.5 is tight by establishing a cor-
responding upper-bound for the case where C is convex (e.g., half-spaces, balls, ellipsoids,
etc.).

Theorem 8.4.10. Suppose gθ is convex differentiable, and let V be a subspace of Rd satis-
fying:

∥ΠV η(x)∥2 ≤ α̃, for some α̃ ∈ [0, 1] and ∀x ∈ C ′. (8.4.45)

Then, for any ε ≥ 0, we have

FR(V ; ε) ≤ PX(mgθ
(X) ≤ α̃ε | X ∈ C ′). (8.4.46)

Proof of Theorem 8.4.10. Let d(x) ∈ [0,∞) be the distance of x from C and let dV (x) ∈
[0,∞] be the distance of x from C along the subspace V , i.e.,

d(x) := inf
v∈Rd
∥v∥2 subject to x + v ∈ C, (8.4.47)
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dV (x) := inf
v∈V
∥v∥2 subject to x + v ∈ C, (8.4.48)

with the convention that inf ∅ = ∞. By definition of the (ε, V )-expansion Cε
V of C as

defined in Definition 8.2.3, we have:

Cε
V = {x ∈ Rd | dV (x) ≤ ε}. (8.4.49)

Also, it is clear that dV (x) ≥ d(x), attained when V = Rd. By definition of dV (x),
it is clear that x − dV (x)v ∈ C, where v = ΠV∇gθ(x)/∥ΠV∇gθ(x)∥2. Observe that
∇gθ(x)⊤v = ∥ΠV∇gθ(x)∥2. Now, thanks to the convexity of gθ, we have

gθ(x′) ≥ gθ(x) +∇gθ(x)⊤(x′ − x), (8.4.50)

for all x′ ∈ Rd. Thus,

x− dV (x)v ∈ C =⇒ gθ(x− dV (x)v) ≤ 0 (8.4.51)

=⇒ gθ(x)− dV (x)∇gθ(x)⊤v ≤ 0 thanks to Equation (8.4.50) (8.4.52)

=⇒ mgθ
(x) ≤ dV (x)∇gθ(x)⊤v

∥∇gθ(x)∥2
≤ dV (x)∥ΠV∇gθ(x)∥2

∥∇gθ(x)∥2
≤ α̃dV (x).

(8.4.53)

We deduce that {x ∈ C ′ | mgθ
(x) ≤ α̃ε} ⊇ {x ∈ C ′ | dV (x) ≤ ε} =: Cε

V \C, and the result
follows.

8.5 Model with Locally Almost-Affine Decision Boundary

8.5.1 Main result on the Lower Bound

We now consider the following smoothness condition for the classifier Definition 8.2.1.

Condition 8.5.1. Gradients Vary Smoothly. The feature map gθ is said to have
gradients that vary smoothly if there exists 0 < R ≤ ∞ and τ ≥ 0 such that

∥∇gθ(x + ∆x)−∇gθ(x)∥2 ≤ τ for all x ∈ supp(PX), ∆x ∈ Rd with ∥∆x∥2 ≤ R. (8.5.1)

Examples of functions that satisfy this condition include half-spaces and wide feedforward
ReLU neural networks with randomly initialized intermediate weights, where τ = o(1)
with high probability over the intermediate weights, as will be seen in Section 8.5.3. The
following theorem is one of our main contributions.

Theorem 8.5.2. Suppose that the feature map gθ satisfies Conditions 8.5.1 and 8.4.4 with
parameters γ ∈ (0,∞), R ∈ (0,∞] and τ ≥ 0 are in order. Let V be a possibly random
adversarially (α, β)-viable subspace of Rd with α > τ/γ. Then, for any 0 ≤ ε ≤ R, the
average fooling rate of V is lower-bounded as follows:

EV [FR(V ; ε)] ≥ PX(mgθ
(X) ≤ αε | X ∈ C ′)− β − λ, (8.5.2)

where α := α− τ/γ > 0.
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Remark 8.5.3. Tightness. Theorem 8.5.2 is tight, as can be seen by considering the case
where C is a half-space in which case gθ(x) = x⊤w − b, for some unit-vector w ∈ Rd and
b ∈ R; take V = Rw. N.B.: ∇gθ(x) ≡ w, and so Conditions 8.5.1 and 8.4.4 hold with
α = γ = 1, τ = λ = 0, and R =∞.

8.5.2 Proof of the Main Result

We first provide a quick proof sketch before providing a full proof.

Proof Sketch. of Theorem 8.5.2

The core of the proof is similar to that of Theorem 8.4.5, but with Equation (8.4.5) re-
placed by the following inequality which holds under Condition 8.5.1 for all x ∈ supp(PX)
and ∆x ∈ Rd with ∥∆x∥2 ≤ R

−τ∥∆x∥2 ≤ gθ(x + ∆x)− gθ(x)−∇gθ(x)⊤∆x ≤ τ∥∆x∥2. (8.5.3)

Now, let’s dig into the full proof.

Proof of Theorem 8.5.2

Under Condition 8.5.1, it is easy to establish the classical inequality

−τ∥x′−x∥2 ≤ gθ(x′)−gθ(x)−∇gθ(x)⊤(x′−x) ≤ τ∥x′−x∥2, for all ∥x′−x∥2 ≤ R. (8.5.4)

Now, let x ∈ C ′ := Rd \ C and let dV (x) be the distance of x from V along the subspace
V . Let v(x), pV (x), αV (x), sV (x), and s(x) be as defined in the proof of Theorem 8.4.5.
By an argument analogous to the beginning of the proof of Theorem 8.4.5 but with
Equation (8.5.4) used in place of Equation (8.4.5) and the restriction that |s| ≤ R so
that Equation (8.5.4) is valid for every x′ on the line x + Rv(x), it is straightforward to
establish that

dV (x) ≤ inf
s∈R
|s| subject to x + sv(x) ∈ C, |s| ≤ R

≤ inf
s∈R
|s| subject to gθ(x) + pV (x)s + τ |s| ≤ 0, |s| ≤ R

≤ inf
s∈R
|s| subject to gθ(x) + pV (x)s + τ |s| ≤ 0, |s| ≤ R.

(8.5.5)

We deduce that

gθ(x) ≥ sup
|s|<min(dV (x),R)

−pV (x)s− τ |s| = min(dV (x), R) · (pV (x)− τ)+, (8.5.6)
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where the equality is thanks to Lemma 8.4.8 applied with n = 1, b = −pV (x), r = 1/τ ,
and ρ = min(dV (x), R). Thus, we deduce from Equation (8.5.6) that

min(dV (x), R) ≤ gθ(x)
(pV (x)− τ)+

= cV (x)mgθ
(x), (8.5.7)

with cV (x) := ∥∇gθ(x)∥2/(αV (x)∥∇gθ(x)∥2 − τ)+. One the event αV (x) ≥ α > τ/γ, we
have 1/cV (x) ≥ α := α − τ/γ. Thus, if mgθ

(x) ≤ αε and 0 ≤ ε < R, then dV (x) ≤ ε.
That is, if 0 ≤ ϵ < R:

{x ∈ C ′ | mgθ
(x) ≤ αε} ⊆ Cε

V \ C. (8.5.8)

The rest of the proof is analogous to the end of the proof of the first part of Theorem 8.4.5
(starting from the set-inclusion Equation (8.4.34)), and is thus omitted.

8.5.3 ReLU Networks in the Random Features Regime

Consider a feed-forward neural net with M ≥ 2 layers with parameters matrices W1 ∈
Rd0×d1 , W2 ∈ Rd1×d2 , . . . , WM = a ∈ RdM−1×dM , where d0 = d and dM := 1. Each dℓ is
the width of the ℓ layer, and the matrices W1, . . . , WM−1 are the intermediate weights
matrices, while WM = a is the output weights vector. For an input x ∈ Rd, the output of
the neural net is

gθ(x) = zM := a⊤zM−1 ∈ R, with z0 := x,

zℓ := σ(W ⊤
ℓ zℓ−1) ∈ Rℓ, ∀ℓ ∈ [M − 1].

(8.5.9)

Here, σ is the activation function and is applied entry-wise. We will focus on the case
of ReLU neural networks, where σ(t) ≡ (t)+. The matrices W1, . . . , WM are randomly
initialized as follows:

[Wℓ]i,j iid∼ N(0, 1/dℓ−1), for all ℓ ∈ [M ], i ∈ [dℓ], j ∈ [dℓ−1]. (8.5.10)

The output weights vector a ∈ RdM−1 can be arbitrary, for example:

• (1) random, as in Daniely and Shacham (2020); Bartlett et al. (2021)

• (2) optimized to fit training data, as in the so-called random features (RF) regime
as in Rahimi and Recht (2008, 2009), with L2-regularization on a.

Let dmin := min0≤ℓ≤M−1 dℓ and dmax := max0≤ℓ≤M−1 dℓ be respectively, the minimum and
maximum width of the layers. As in Bartlett et al. (2021), assume the following condition:

Condition 8.5.4. Genuinely Wide, Finite-Width. The neural network is said to be
genuinely wide and finite-width if its architecture satisfies the two conditions:

(i) Bounded depth, i.e., M = O(1) layers.

(ii) Genuinely wide, i.e., dmin ≳ (log dmax)40M and dmin →∞.

Then, we have the following corollary to Theorem 8.5.2.
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Corollary 8.5.5. Consider the case where the marginal distribution of the covariates X is
supported on the sphere of radius

√
d in Rd, and gθ is the ReU neural network defined in

Equation (8.5.9) with random intermediate weights W1, . . . , WM−1 sampled according to
Equation (8.5.10).

Suppose that gθ satisfies Condition 8.5.4. Let V be a possibly random (α, β)-viable subspace
of Rd, with α = Ω(1). Then, for 0 ≤ ε ≲ (log dmax)40M , it holds with high probability over
W1, . . . , WM−1 that :

EV [FR(V ; ε)] ≳ PX(mgθ
(X) ≤ ε | X ∈ C ′)− β. (8.5.11)

In particular, at initialization, we have EV [FR(V ; ε)] ≳ 1 − β for all ε ≥ ε0, where ε0 is
an absolute constant.

The second part of the result implies that the subspace V contains adversarial pertur-
bations of size

√
d times smaller than the norm of a typical data point. Thus, it is a

generalizes Daniely and Shacham (2020); Bartlett et al. (2021) to subspaces.

Proof of Corollary 8.5.5.

The first part is obtained as a consequence of Theorem 8.5.2, by combining Lemma 2.2
and Lemma 2.8 of Bartlett et al. (2021) and Lemma 8.5.6 that is provided below.

The second part follows because with high probability over intermediate weights, it holds
that

mgθ
(x) ≤ |gθ(x)|/∥∇gθ(x)∥2 ≲ ∥a∥2∥zL−1(x)∥2/∥a∥2 = ∥zL−1(x)∥2 ≤ ∥x∥2/

√
d = 1,

where the last inequality is because zL−1(x) is (∥x∥2
2/d)-subGaussian.

Lemma 8.5.6. Suppose PX is supported on the sphere
√

dSd−1 and suppose gθ satis-
fies Condition 8.5.4. Then, with high probability over the random intermediate weights
W1, . . . , WM−1, the ReLU neural network gθ defined in Equation (8.5.9) satisfies Condi-
tions 8.5.1 and 8.4.4 with:

λ = 0, R =
√

dmin

(log dmax)80M
= Ω((log dmax)40M), τ = ∥a∥2

(log dmax)M
, γ = ∥a∥2. (8.5.12)

8.5.4 ReLU Networks in the Lazy Regime

At the moment, we are not able to extend our theoretical results to fully-trained neural
networks. An exception is when the model is in the lazy regime, whereby the parameters
of the network stay close to their value at definition. More, precisely

Definition 8.5.7. Lazy Regime. The neural network gθ from Equation (8.5.9) is said to
be in the lazy regime if:

sup
j∈[dℓ]

∥Wℓ,j −W 0
ℓ,j∥2

∥W 0
ℓ,j∥2

≲
1√
dℓ

for all ℓ ∈ [M − 1], (8.5.13)

where W 0
ℓ is the initialization for the parameter matrix Wℓ of the ℓth layer.
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Note that the lazy regime as defined above subsumes both ReU neural networks at ini-
tialization and in the random features regime (studied in Section Section 8.5.3). Now, in
Wang et al. (2022), it was shown that if M = 2 (i.e two-layer ReLU neural network), then
there exist absolute positive constants c1, c2, c3, and c4 such that: if the neural network
is in the lazy regime, then with high probability over the initialization, the following hold
simultaneously for all x ∈

√
dSd−1 and ∆x ∈ Rd with ∥∆x∥2 ≤ c1:

(Small Outputs) |gθ(x)| ≤ c2, (8.5.14)

(Strong Gradients) ∥∇gθ(x)∥ ≥ c3, (8.5.15)

(Bounded Gradient Oscillations) ∥∇gθ(x + ∆x)−∇gθ(x)∥ ≤ c4. (8.5.16)

See Lemma B.5, Lemma B.7, and Lemma B.9 (resp.) of Wang et al. (2022). We deduce
that in the lazy regime, with high probability over initialization, Conditions 8.5.1 and 8.4.4
hold with R = c1 and γ = c3, τ = c4, and with λ = 0. On the same event, we also deduce
the following margin bound:

mgθ
(x) = (gθ(x))+

∥∇gθ(x)∥2
≤ |gθ(x)|
∥∇gθ(x)∥2

≤ c2

c3
=: c5, (8.5.17)

for all x ∈
√

dSd−1. Combining with Theorem 8.5.2, we obtain the following important
corollary.

Corollary 8.5.8. Suppose gθ is a two-layer neural network defined as in Equation (8.5.9)
which is in the lazy regime. Also, suppose the marginal distribution of the features X
is supported on the sphere

√
dSd−1. If V is an adversarially (α, β)-viable subspace of Rd,

then for any 0 ≤ ε ≤ R = c1 then with high probability over the initial weights, the average
fooling rate of V is lower-bounded as in Equation (8.5.2), with γ = c3, τ = c4, and λ = 0.

In particular, if c5 ≤ ε ≤ c1, it holds that EV [FR(V ; ε)] ≥ 1− β.

8.6 Experimental Application to Trained Neural Networks

Our results are empirically verified in Figure 8.4 for random subspace attacks and Fig-
ure 8.5 for singular subspace attacks. Given a binary classifier fθ : x 7→ sign(gθ(x)) on Rd,
for example a neural net, with negative decision-region C := {x ∈ Rd | ftheta(x) = −1}.
For a subspace V ⊆ Rd and a (Euclidean) attack budget ε, refer to Definition 8.2.4 for
the fooling rate of V on the classifier fθ.

8.6.1 Consequence of Our Results

Before studying the aforementioned results, let us now outline some consequences for
practical classifiers, neural networks. First, we recall the general form of our results.
Given a possibly random adversarially (α, β)-viable subspace V of Rd, we have established
in Theorems 8.4.5 and 8.5.2 lower-bounds on the fooling rate of the form

EV [FR(V ; ε)] ≳ P(mgθ
(X) ≤ αε | X ∈ C ′)− β − λ. (8.6.1)

Here, the scalar α ∈ (0, 1] depends on α, γ and the smoothness of gθ as in Condition 8.4.4.
Importantly, the generic bound Equation (8.6.1) explicitly highlights the dependence of
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(a) 2-layer ReLU NN at init.: input dim. d = 784, width d1 = 100. Simulated data.

(b) 2-layer ReLU NN in RF regime: input dim d = 784, width d1 = 100. Simulated data.

(c) Full-trained LeNet (conv layers + dense layers + ReLU activation) on MNIST.

Figure 8.4: (Random subspace attack) Empirical confirmation of our results. Broken lines
correspond to our theoretical lower-bounds Equation (8.6.1), for different neural network regimes.
k is the dimension of the random subspace from which the perturbations are constructed. In the
first two rows, d1 is the width of the network. Solid curves correspond to empirically computed
fooling rates, with error bars accounting for randomness in the initialization of the network, over
5 independent runs. Our theoretical lower bounds are confirmed in all cases.
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Figure 8.5: (Eigen-subspace attack). Same experimental setting in Figure 8.4. Leftmost plot:
Showing a histogram of the eigenvalues of empirical covariance matrix Σ̂η of gradient directions
(computed on 1000 examples). Notice how the largest eigenvalue for each model is much larger
than the other eigenvalues. Second to fourth (rightmost) plot: Notice how the fooling rate rises
rapidly.

the fooling rate on the pointwise margin of the classifier and on the alignment of the given
subspace with the gradients of gθ.

The L2-norm of a typical data point is of order
√

d, while the margin mgθ
(X) is typically of

order O(1), as (i) observed empirically observed in Jiang et al. (2019) for general trained
neural networks (ii) formally proved in Daniely and Shacham (2020); Bartlett et al. (2021)
for the case of ReLU networks at initialization and in Wang et al. (2022) for the case of lazy
regime where the intermediate parameters of the network stay close to their initial values
throughout training (see Equation (8.5.17)). Also, as observed in Moosavi-Dezfooli et al.
(2017), the singular values of the gradient covariance matrix Ση are typically long-tailed.

Thus, combining with Theorem 8.3.3, our results predict that for sufficiently large k ≪ d,
the subspace spanned by the top k singular-vectors of Ση has a nonzero fooling rate with
attack budget ε ≍ 1/α̃ = O(1) which is

√
d/ε = Ω(

√
d) times smaller than E(||X||2), the

L2-norm of a typical data point, for ReLU neural networks in the lazy regime.

8.6.2 Random Subspace Attacks

In Figure 8.4 (first and second row), the distribution PX of the features is N(0, Id), and
the training labels are given from a simple linear model: yi = xij. For a classical LeNet
convolutional neural network trained on MNIST data (see LeCun and Cortes (2010))
(third row), we construct a binary classification dataset n = 2×10K = 20K by restricting
it to the digits 0 and 8. As in Guo et al. (2018a), we run PGD (see Madry et al. (2018))
attacks on a randomly chosen subspace V (of different dimensions) of the feature space
Rd, and report the fooling rates (solid lines) and compare them with our proposed lower-
bounds Equation (8.6.1), from Theorem 8.5.2 with R = ∞ and τ = 0 (these extremal
values work for our experiments). As we can see from the figure, in all the cases, the lower
bounds (broken lines) are verified.

8.6.3 Eigen-Subspace Attacks

In Figure 8.5, we consider the same experimental setting in Figure 8.4. We use n = 1000
random examples x1, . . . , xn, and compute the empirical covariance matrix of the gradient
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Figure 8.6: Results for adversarially trained model. We consider a LeNet convolutional neural
network on MNIST dataset, trained with adversarial training Madry et al. (2018).

directions, i.e

Σ̂η := 1
n− 1

n∑
i=1

(ηi − η)(ηi − η)⊤,

where ηi := η(xi), with η := (1/n)∑n
i=1 ηi. As in Khrulkov and Oseledets (2018), we

extract the top eigenvector of Σ̂η and use it as a universal perturbation vector for a
separate test set. In the leftmost subplot, we show a histogram of eigenvalues. Notice how
the largest eigenvalue for each model is much larger than the other eigenvalues. Thanks to
Theorem 8.3.3, this means that the principal eigenvector v spans an adversarially viable
subspace. This is confirmed in the 2nd, 3rd, and 4th subplots where we see that the
fooling rate rises rapidly as a function of the attack budget ε. We see from the figure that
our predicted lower bounds (broken lines) are satisfied in all cases.

Remark 8.6.1. The gap in Figures 8.4 and 8.5 between experiments (solid curves) and
our theoretical results (broken ones) is due to the fact that our established lower bounds
Equation (8.6.1), though sufficient to explain the success of low-dimensional adversarial
perturbations, might be too conservative for obtaining exact quantitative estimates for the
fooling rate in the case of random adversarial subspaces on neural networks, because we
only use first-order information (see Conditions 8.5.1, 8.4.3 and 8.4.4) on the neural net
gθ. However, in the specific scenario where the target decision region is a half-space or
hyper-ellipsoid, this gap disappears because the aforementioned first-order information is
sufficient in such cases, and our estimates for the fooling rate are exact.

8.6.4 Additional Experiments

We empirically observe in Figure 8.6 that our results remain valid both on normally and
adversarially trained (AT) neural networks, and on more complex neural networks and
datasets like Resnet on CIFAR10 , as shown in Figure 8.7. Compared with the last row of
Figure 8.4, notice how adversarial training slightly helps to slightly decrease the fooling
rate.

In this Chapter, we have conducted a rigorous analysis of the phenomenon of low-
dimensional adversarial perturbations and derived tight lower bounds for the fooling rate
along arbitrary adversarial subspaces based on the geometry of the target decision-region,
and the alignment between the subspace and the gradients of the model, i.e., the adver-
sarial viability of the subspace, as defined by Definition 8.3.1.

Our work provides rigorous foundations for explaining intriguing empirical observations
from the literature on the subject, like (Moosavi-Dezfooli et al., 2017; Khrulkov and
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Figure 8.7: Results on larger models. Here we consider Resnet on CIFAR10 dataset.

Oseledets, 2018; Yin et al., 2019; Guo et al., 2018a). For the case of compact decision
regions, we have shown the existence of universal adversarial perturbations. We believe
our work will further generate fruitful research in this area.

In this Chapter, our analysis has focused on the case of binary classification. A non-
trivial extension of our work would be the case of multi-class problems. It would also be
interesting to extend our treatment of neural networks, as in Section 8.5.3, to general case,
(i.e beyond the lazy regime). This would likely require the development of new theoretical
tools.
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Chapter 9

Conclusion about Robustness in Deep
Learning

The winner plots one step
ahead of the opposition and
plays her trump card just after
they play theirs. It’s about
making sure you surprise them,
and they don’t surprise you.

Miss Sloane.
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In this Part, the topic of robustness against evasion attacks, specifically in the field of deep
learning for image classification, was tackled. As introduced in Section 1.4, evasion attacks
target already trained models at inference time. When considering neural networks for
image classification, evasion attacks were rediscovered in 2013 and led to the explosion of
the field called adversarial robustness, which studies evasion attacks named adversarial
attacks by the community.

The field of adversarial robustness exploded after the seminal work of Szegedy et al. (2013).
It turned out to be mainly an experimental field because of the difficulty of theoretically
studying the core problem defined in Definition 1.4.9. Consequently, the field split into
two distinct branches:

• Approximating the theoretical problem in Definition 1.4.9 by sequentially construct-
ing better and better adversarial attack algorithms and defense methods in a cat-
and-mouse game.

• Providing a better understanding of the adversarial phenomenon via intuitions and
explanations.

In the first branch, recent breakthroughs in adversarial attack crafting methods have
led to the development of low-dimensional adversarial perturbations. Their specificity
is that they tackle only a small subspace of the image data space, contrary to most
of the previously studied attacks. If theoretical works exist to justify the success of
‘classical’ adversarial attacks, relying on curse of dimensionality arguments, there wasn’t
any theoretical analysis explaining the success of low-dimensional attacks.

In Chapter 8, this type of attack was rigorously studied from a theoretical perspective.
This thesis contributes to explaining their success by providing a lower bound on
their success rate based on conditions on the model and the attack subspace. These
assumptions are made on the local smoothness or linearity of the decision boundary
defined by the classifier and the alignment of the attack subspace with the gradient of
the model. The bounds that can be obtained based on these conditions then depend on
the pointwise margin of the model, the attack budget, and the aforementioned alignment
coefficient and smoothness criteria. These conditions are in fact quite general: they
allow to apply the results to a large category of models, including neural networks in the
random features regime and the lazy regime. Furthermore, experiments conducted on
fully trained neural networks show that these bounds experimentally hold in this setting.
This contribution plays a crucial role in advancing the understanding of low-dimensional
attacks, which are very promising settings to apply adversarial attacks to real-world
scenarios.

In the second branch, a large amount of work has been devoted to studying one aspect of
neural networks or adversarial examples to better understand the phenomenon (includ-
ing, for example, works on the architecture of neural networks, loss functions, decision
boundary geometry, feature space, etc.).

This thesis, in Chapter 7, contributes to unifying several hypotheses that have been
proposed in the literature and several characteristics of adversarial examples unveiled by
previous works. More specifically, the proposed hypothesis is the following: adversarial
examples leverage under-optimized edges in neural networks to transport adversarial per-
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turbations to, in the end, fool the model. Indeed, neural networks are over-parameterized,
meaning they have much more parameters than the number of features in the task at
hand. Thus, some parameters are not properly optimized during training because the
network does not need them to solve the task: this constitutes a blind spot for neural
networks, that adversarial examples leverage. This hypothesis is consistent with many
findings from the literature: promoting and suppressing strategies of adversarial exam-
ples, the existence of off-manifold adversarial examples, the relation between the size of
neural networks and robustness, the relation between the architecture of neural networks
and robustness, etc. To validate this hypothesis, Chapter 7 introduced a methodology
based on topological data analysis to extract topological features from neural networks,
and compared the topology induced by clean inputs and adversarial ones. This original
methodology provides very interesting results, not only to confirm the hypothesis
(through in-depth experimental results on diverse neural networks, datasets, and adver-
sarial attacks) but also to introduce a useful tool to study neural networks and robustness.

In conclusion, this thesis has explored the two main branches of adversarial attacks stud-
ies in the context of deep learning for image classification. The two contributions have
provided interesting tools and research directions to provide a better theoretical under-
standing of adversarial robustness. Indeed, adversarial phenomenon, current adversarial
attacks, and defense methods still remain partially understood. Continuing to provide
theoretical analysis or unifying unveiled characteristics that explain the phenomenon re-
mains crucial for the quest of more robust, safe and secure applications based on neural
networks.
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Chapter 10

General Conclusion

Don’t adventures ever have an
end? I suppose not. Someone
else always has to carry on the
story.

J.R.R Tolkien, Lord of the
Rings.
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10.1 Wrap-up of the thesis

This thesis focused on the question of robustness in machine learning. As explained
in Chapter 1, robustness can mainly be subdivided into two different parts: poisoning
attacks which tackle models at training time, and evasion attacks which tackle models at
inference time.

Interestingly, the research on these two types of attacks is at very different stages.

Basically, poisoning attacks started to be studied in the sixties and were unified under an
exhaustive theory, usually called robust statistics. However, the main limitations of the
studies about poisoning attacks are due to the restriction of the research work on classical
types of data, mostly real-numbered data. In this thesis, robust statistics were extended to
ranking data, overcoming the lack of vector space structure and the combinatorial nature
of the space.

Most of the works provided in this thesis thus consisted in initiating the study of robustness
in this particular space and providing a framework to allow for extensions of my works in
a structural way. To summarize in a nutshell, Chapters 3 and 4 provided the following
contributions.

• a practical algorithm to measure the robustness of any statistics solving the consen-
sus ranking task.

• the definition of depth functions for ranking data to allow for defining quantile-based
objects in this space.

• a trimming algorithm strategy to mimic the behavior of trimmed mean and provide
more robust statistics for the consensus ranking task, that is shown to be effective
experimentally and theoretically.

• a plugin based on bucket rankings to allow for undecidability between close items
that can be added on top of every statistic, and is shown to be effective empirically
at scale.

On the other hand, evasion attacks gained a large amount of interest in the context of deep
learning for image classification around 2013. This field witnessed widespread recognition,
triggering a proliferation of research works on the subject of adversarial examples. These
works are mainly experimental, due to the difficulty of analyzing theoretically the problem,
and lack of unification. To summarize in a nutshell, the contributions Chapters 7 and 8
on this topic are the following.

• a unification of some characteristics of adversarial examples unveiled by the liter-
ature through the study of under-optimized edges and information flow from the
inputs passing through neural networks., which provides a better understanding of
the adversarial phenomenon.

• the use of topological tools to better study neural network structure and adversarial
robustness, which is new in the deep learning field and unlocks fresh avenues for
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investigating neural networks.

• a very efficient detection method based on the two previously mentioned elements.

• theoretical bounds to characterize the success rate of low-dimensional attacks for a
large class of models and illustrated with experiments.

• the use of the geometry of the adversarial space (and the smoothness of the model)
to come up with relevant bounds instead of dimensionality-based arguments.

10.2 Extensions and perspectives

The field of robustness in machine learning holds immense promise, as numerous challenges
and open problems remain to be addressed. Throughout this thesis, we have delved
into some of these problems while also laying the groundwork for further exploration.
Although it is impossible to cover the vast array of captivating research directions within
this conclusion, there are several areas that warrant particular interest and offer intriguing
possibilities for future investigations.

Firstly, our work on poisoning attacks within the realm of ranking data opens up ex-
citing avenues for practical and prominent applications. The study of robustness can
be extended to tackle typical problems encountered in the field, such as top-k ranking
or information retrieval. However, it is crucial to carefully consider the computational
challenges associated with real-world applications, where dealing with billions of items
becomes a necessity. In particular, the evaluation of robustness (via a more efficient ap-
proximation of the breakdown function for example) seems necessary to the development
of the field. While our thesis provides a preliminary exploration of this field, it is our
hope that subsequent studies will delve deeper into this dimension and offer additional
insights, notably on the conditions under which some statistics may be better than others.
Furthermore, our approach to robustness in non-traditional data spaces, such as ranking
data, holds the potential to benefit other types of extensively studied data, including
graphs and time series.

Secondly, in the context of evasion attacks on deep learning models, significant efforts
are still required to gain a comprehensive understanding of this phenomenon. There is
a compelling opportunity to further explore the training phase of neural networks and
investigate how the decision boundaries evolve during the learning process. This intricate
endeavor is closely intertwined with the challenge of solving the adversarial optimization
problem and deriving consistent surrogate losses. One intriguing idea worth exploring is
the utilization of sequences of losses instead of a singular loss function throughout the
training phase. This approach could potentially offer novel insights and help to address
the complexities associated with this problem.

Furthermore, an intriguing direction for the study of robustness lies in exploring its inter-
play with other crucial aspects of trustworthy machine learning, such as fairness, privacy,
interpretability, and domain generalization. While these fields share common goals in
building reliable and ethical machine learning systems, their interaction and integration
have not been extensively explored, and they become more and more strategic nowadays.
For example, investigating how robustness and interpretability intersect can contribute
to the development of transparent and trustworthy models. Robustness considerations
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can guide the identification of influential features and decision-making factors, enabling
models to provide explanations that align with their resilient behavior. This integration
can enhance the interpretability of models and in return helps provide guidance to un-
derstand vulnerability issues. A nice example comes from Cantareira et al. (2021), which
uses visualization techniques to identify vulnerable layers or neurons in neuraal networks.

Additionally, exploring the robustness of machine learning models in the context of multi-
modal data is an intriguing research direction. With the increasing prevalence of multi-
modal data, such as combining text and images, understanding the robustness of models
to attacks across different modalities becomes crucial. Strategies such as developing robust
fusion techniques, and investigating the vulnerabilities and defense mechanisms specific
to such data combinations could provide insightful information to enhance the robustness
of today’s popular models.

This interdisciplinary approach holds great potential to advance the field of trustworthy
machine learning, paving the way for the development of more robust, ethical, and re-
liable AI systems that address real-world challenges while preserving critical values and
principles.
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Résumé: Cette thèse se concentre sur la ques-
tion de la robustesse en apprentissage automa-
tique, en examinant spécifiquement deux types
d’attaques : les attaques de contamination pendant
l’apprentissage et les attaques d’évasion pendant
l’inférence.
L’étude des attaques de contamination remonte aux
années soixante et a été unifiée sous la théorie des
statistiques robustes. Cependant, les recherches
antérieures se sont principalement concentrées sur
des types de données classiques, comme les nom-
bres réels. Dans cette thèse, les statistiques ro-
bustes sont étendues aux données de classement,
qui ne possèdent pas de structure d’espace vecto-
riel et ont une nature combinatoire. Les contributions
de la thèse comprennent notamment un algorithme
pour mesurer la robustesse des statistiques pour la
tâche qui consiste à trouver un rang consensus dans
un ensemble de données de rangs, ainsi que deux

statistiques robustes pour résoudre ce même prob-
lème.
En revanche, depuis 2013, les attaques d’évasion
ont suscité une attention considérable dans le do-
maine de l’apprentissage profond, en particulier pour
la classification d’images. Malgré la prolifération des
travaux de recherche sur les exemples adversaires,
le problème reste difficile à analyser sur le plan
théorique et manque d’unification. Pour remédier à
cela, cette thèse apporte des contributions à la com-
préhension et à l’atténuation des attaques d’évasion.
Ces contributions comprennent l’unification des car-
actéristiques des exemples adversaires grâce à
l’étude des paramètres sous-optimisés et à la cir-
culation de l’information au travers des réseaux
de neurones, ainsi que l’établissement de bornes
théoriques caractérisant le taux de succès des at-
taques, récemment créées, de faible dimension.

Title: Statistical Understanding of Adversarial Robustness

Keywords: Machine Learning, Robustness, Deep Learning, Rankings, Neural Networks

Abstract: This thesis focuses on the question of ro-
bustness in machine learning, specifically examining
two types of attacks: poisoning attacks at training
time and evasion attacks at inference time.
The study of poisoning attacks dates back to the
sixties and has been unified under the theory of
robust statistics. However, prior research was pri-
marily focused on classical data types, mainly real-
numbered data, limiting the applicability of poisoning
attack studies. In this thesis, robust statistics are ex-
tended to ranking data, which lack a vector space
structure and have a combinatorial nature. The work
presented in this thesis initiates the study of robust-
ness in the context of ranking data and provides a
framework for future extensions. Contributions in-
clude a practical algorithm to measure the robust-

ness of statistics for the task of consensus ranking,
and two robust statistics to solve this task.
In contrast, since 2013, evasion attacks gained sig-
nificant attention in the deep learning field, particu-
larly for image classification. Despite the proliferation
of research works on adversarial examples, the the-
oretical analysis of the problem remains challenging
and it lacks unification. To address this matter, the
thesis makes contributions to understanding and mit-
igating evasion attacks. These contributions involve
the unification of adversarial examples’ characteris-
tics through the study of under-optimized edges and
information flow within neural networks, and the es-
tablishment of theoretical bounds characterizing the
success rate of modern low-dimensional attacks for
a wide range of models.
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