
HAL Id: tel-04437745
https://hal.science/tel-04437745

Submitted on 4 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Deep Learning : Navigating the Field of
Neural Architecture Search from Theory to Practice

Meyssa Zouambi

To cite this version:
Meyssa Zouambi. Optimizing Deep Learning : Navigating the Field of Neural Architecture Search
from Theory to Practice. Computer Science [cs]. Université de Lille, 2023. English. �NNT : �. �tel-
04437745�

https://hal.science/tel-04437745
https://hal.archives-ouvertes.fr

Université de Lille

Thèse

pour obtenir le grade de :
Docteur de l’Université de Lille

dans la spécialité Informatique

par

Meyssa Zouambi

Optimizing Deep Learning:
Navigating the Field of Neural Architecture Search

from Theory to Practice

Optimiser l’apprentissage profond:
Explorer la recherche d’architecture neuronale, de la

théorie à la pratique

Thèse soutenue le 8 décembre 2023 devant le jury composé de :

M. Philippe PREUX Professeur des universités (Examinateur - Président du Jury)
Université de Lille

M. Alexandre CAMINADA Professeur des universités (Rapporteur)
Polytech Nice Sophia

Mme Samira SADAOUI Full professor (Rapporteur)
University of Regina

M. Nicolas MONMARCHÉ Maître de conférences (Examinateur)
Université de Tours

Mme. Clarisse DHAENENS Professeur des universités (Directrice de Thèse)
Université de Lille

Mme. Julie JACQUES Maîtresse de conférences (Co-Encadrante de Thèse)
Université de Lille

Laboratoire CRIStAL
Université de Lille - Campus scientifique Bâtiment ESPRIT

Avenue Henri Poincaré 59655 Villeneuve d’Ascq France

Abstract

In the realm of deep learning, the design and optimization of neural architectures are crucial for
achieving high-performance models. This process, based on trial and error, has been done man-
ually for decades and is both time and resource-consuming. This thesis delves into the domain
of Neural Architecture Search (NAS), a promising technique that seeks to automate this process.
The research explores the complexities inherent in NAS, highlighting the challenges of navigating
the vast search space of potential architectures. It investigates methods based on Local Search and
proposes two efficient algorithms built around it, namely LS-Weight and LS-PON. Each method
offers a distinctive approach to integrate knowledge during the search to offer efficient and more
frugal strategies to NAS. Furthermore, as deep learning models are often governed by multiple
competing objectives such as accuracy, complexity, and computational efficiency, this research
also delves into multi-objective optimization within NAS. This ensures that the resulting archi-
tectures are not only performant for the task they are designed for but also aligned with multiple
criteria essential for real-world applications. For this purpose, this research offers an alternative
approach to multi-objective NAS that addresses certain issues found in strategies from the liter-
ature. On top of that, it also analyzes the complexity of moving from benchmarks to real data,
offering a protocol that guides practitioners in their usage of NAS for their applications. Lastly,
by recognizing the importance of domain applications, this work focuses on healthcare images to
validate these contributions. It also presents a detailed survey on the use of NAS for healthcare,
by analyzing more than 40 contributions in the literature and laying the ground for future works in
the field.

i

Résumé

Dans le domaine de l’apprentissage profond, la conception et l’optimisation des architectures
neuronales sont essentielles pour obtenir des modèles performants. Ce processus, basé sur une
démarche d’essais et d’erreurs, a été effectué manuellement pendant des décennies et consomme
beaucoup de temps et de ressources. Cette thèse explore le domaine de la recherche d’architectures
neuronales, ou Neural Architecture Search (NAS), une technique prometteuse visant à automatiser
ce processus. Elle aborde les complexités inhérentes aux NAS, mettant en lumière les défis liés à
l’exploration de l’immense espace de recherche des architectures. Cette thèse étudie des méthodes
basées sur la recherche locale et propose deux algorithmes efficaces construits autour de celle-ci, à
savoir LS-Weights et LS-PON. Chacune de ces méthodes offre une approche distincte pour intégrer
des connaissances pendant la recherche, afin d’obtenir une stratégie plus efficace et économe en
resources pour les NAS. Par ailleurs, puisque les modèles d’apprentissage profond sont souvent
régis par plusieurs objectifs, tels que la précision, la complexité, et l’efficacité de calcul, cette
recherche s’intéresse aussi à l’optimisation multi-objectifs au sein des NAS. Cela garantit que les
architectures résultantes ne sont pas seulement performantes pour la tâche pour laquelle elles sont
conçues, mais aussi alignées avec plusieurs critères essentiels pour des applications réelles. Pour
cela, une méthode alternative aux NAS multi-objectifs est proposée, résolvant certains problèmes
identifiés dans les approches existantes de la littérature. De plus, ce travail examine la complexité
du passage des benchmarks aux données réelles, offrant un protocole qui guide les praticiens dans
l’utilisation des NAS pour leurs applications. Enfin, reconnaissant l’importance des applications
dans des domaines spécifiques, ce travail met l’accent sur des tâches d’imagerie médicale pour
valider ces contributions. Il présente également une analyse approfondie de l’utilisation des NAS
dans le secteur de la santé, étudiant plus de 40 contributions de la littérature afin d’établir une base
pour des recherches futures dans ce domaine.

ii

Acknowledgements

I would like to express my deepest gratitude to my thesis supervisors, Clarisse DHAENENS and
Julie JACQUES, for their unwavering support and guidance throughout the research and writing
of this thesis. Their expertise and insightful advice have been invaluable in shaping this work. I
will always be grateful for their kindness, their patience, and their presence. They have made this
journey a wonderful experience.

My heartfelt thanks extend to the members of the jury, Alexandre CAMINADA, Samira SADAOUI,
Philippe PREUX, and Nicolas MONMARCHÉ, for their valuable insights, their feedback, and the
time they dedicated to evaluating my work.

I am profoundly thankful to the ORKAD team, particularly my fellow peers, for all the laughter
and the fun we had in the last three years. I will miss our gaming breaks, endless trips to the water
fountain, and all the cheerful moments we spent together.

To the people I met during my travels, who made every place feel special. I will eternally
cherish the peace and joy I found in foreign lands in your company.

To my dear friends, even miles away, you consistently managed to take care of me. I have yet
to find kindheartedness that could match yours. Thank you for everything.

To my ”home away from home,” the friends who have become like family to me here, your
presence in my life has been a source of immeasurable joy and comfort. I look forward to the
many adventures that await us in the future.

Last but not least, my deepest love and gratitude to my wonderful family. Their love, support,
relentless encouragement, and belief in me have been the backbone of my journey. They are my
constant source of motivation, and I carry their love with me in everything I do.

iii

Table of Contents

List of Figures . viii
List of Tables . x

General Introduction 1
Motivations . 1
Outline . 2

1 The Anatomy of Deep Learning: Foundations, Architectures, and Challenges 5
1.1 Introduction . 5
1.2 Demystifying deep learning . 6

1.2.1 The building blocks of neural networks 6
1.2.2 Training and evaluation . 7

1.3 Famous deep neural networks . 8
1.3.1 Convolutional neural networks . 8
1.3.2 Recurrent neural networks . 10
1.3.3 Autoencoders networks . 10
1.3.4 Restricted Boltzmann machines and Deep belief networks 11
1.3.5 Generative adversarial networks . 11
1.3.6 Transformers networks. 12

1.4 Deep learning challenges . 13
1.5 Conclusion . 15

2 The Tale of Neural Architecture Search 16
2.1 Introduction . 16
2.2 Automated machine learning . 17
2.3 Neural architecture search . 18

2.3.1 NAS as an optimization problem . 19
2.3.2 The building blocks of the NAS framework 20
2.3.3 NAS benchmarks . 31

2.4 Conclusion . 35

iv

3 A Quest for Efficiency: Building on Local Search for NAS 36
3.1 Introduction . 36
3.2 Local search for NAS . 38

3.2.1 Defining the important components . 38
3.2.2 How to make LS more efficient for NAS 40

3.3 LS-Weights: Local Search and the Weight of the Parameters 41
3.3.1 Determining the importance of architectural elements 42
3.3.2 Experiments . 42
3.3.3 Discussion . 44

3.4 LS-PON: Local Search and the Predicted Order of Neighbors 45
3.4.1 How it works . 46

3.5 Experiments . 48
3.5.1 Results . 50

3.6 Conclusion . 53

4 Multi-objectively, NAS 55
4.1 Introduction . 55
4.2 Multi-objective optimization in a nutshell . 56

4.2.1 Problem formulation . 56
4.2.2 Pareto dominance and Pareto optimality 56
4.2.3 Techniques in multi-objective optimization 56
4.2.4 Performance metrics . 59

4.3 The state of the literature in multi-objective NAS 60
4.3.1 Common objectives in neural network design 60
4.3.2 Approaches for multi-objective NAS . 61

4.4 Conclusion . 65

5 An Alternative Pareto-based Approach for Multi-objective NAS 66
5.1 Introduction . 66
5.2 Introducing dominance-based multi-objective local search 67
5.3 DMLS for NAS . 69

5.3.1 Solution encoding . 70
5.3.2 DMLS components . 70

5.4 Experimentation protocol . 72
5.5 Results and discussion . 73

5.5.1 Hypervolume results . 73
5.5.2 Analysis of Pareto points found . 74
5.5.3 Discussion . 76

5.6 Conclusion and future directions . 76

v

6 Bridging Barriers: from the Benchmarks to the Real World 77
6.1 Introduction . 77
6.2 The challenges of NAS in the real world . 77
6.3 Diving in with medical image classification . 79

6.3.1 Datasets . 79
6.3.2 Behind the scenes . 80
6.3.3 Experimental protocol . 82
6.3.4 Results . 83

6.4 Conclusion . 87

7 Neural Architecture Search in Healthcare: An Introductory Survey to Unlocking Op-
portunities 88
7.1 Introduction . 88
7.2 Context . 89
7.3 Lesion detection and classification . 89

7.3.1 Our takeaway . 90
7.4 Medical image segmentation . 93

7.4.1 2D segmentation . 93
7.4.2 3D segmentation . 97

7.5 Other medical-related tasks . 101
7.5.1 Our takeaway . 102

7.6 Global discussion and future research directions 104

General Conclusion 106
Contribution Summary . 106
Future Research . 108

Published and Submitted Works 110

Bibliography 111

vi

List of Figures

1 Thesis outline. 4

1.1 A multilayer perceptron is composed of multiple layers. Each layer contains a
number of perceptrons. We distinguish three types of layers: input, output, and
hidden layers. 6

1.2 Perceptron. 7
1.3 hierarchical learning in CNNs, figure taken from (LeCun et al., 2015). 9
1.4 Example of a CNN architecture. 9
1.5 RNN architecture. 10
1.6 composition of an RNN block. 10
1.7 Autoencoder. 11
1.8 DBN architecture. 12
1.9 GAN representation. 12
1.10 Transformer Architecture, figure inspired from (Vaswani et al., 2017). 13

2.1 The basic machine learning pipeline. 17
2.2 The NAS framework . 20
2.3 Examples of two architectures from a global search space 21
2.4 Example of a generic architecture in a cell-based search space 22
2.5 Constructing motifs in the hierarchical search space 23

3.1 Encoding of an architecture from NAS-Bench-201. The top represents the encod-
ing which contains the components of the cell that is present in the architecture
backbone in red (best seen in colors). Each cell has the same structure. 39

3.2 Neighbor generation with One exchange neighborhood function. 40
3.3 Neighbor generation with LS-Weights. * The mutation selects the new values

based on the given probabilities. 41
3.4 The evolution of the validation accuracy across the number of sampled architectures. 44
3.5 Representation of a simplified architecture and the corresponding values used for

the linear regression model. Smaller rank scores correspond to better architectures . 47
3.6 LS-PON Ordereing. 47
3.7 Main steps of LS-PON. 48

vii

3.8 Example of the evolution of the validation accuracy across the number of evaluated
architectures for a dataset of each benchmark. NAS201-IMNT, MNBench-C100,
and NAS301-C10 correspond to NAS-Bench-201 for ImageNet16-120, MacroNas-
Benchmark for Cifar100, and NAS-Bench-301 for Cifar10. Results are averaged
for 150 runs for all algorithms. The shaded region indicates the standard deviation
of each search method. 52

3.9 Box plots represent the distribution of distances between the validation accuracy of
a solution and its neighbors, and diamonds represent outliers. NAS201, MNBench,
NAS301 stand for NAS-Bench-201, MacroNasBenchmark and NAS-Bench-301.
C10, C100 and IMNT are respectively Cifar10, Cifar100 and ImageNet16-120. . . 53

4.1 Example of a Pareto-front for a bi-objective problem. 57

5.1 DMLS iteration . 68
5.2 Solution encoding . 70
5.3 Neighbor generation with the neighborhood function 71
5.4 Hypervolume using different initial sizes for the archive 73
5.5 Evolution of the hypervolume across the number of evaluated architectures for

CIFAR10 and CIFAR 100. Results are averaged for 30 runs for each algorithm. . . 74
5.6 Evolution of the percentage of Pareto optimal solutions found across the number

of evaluated architectures for CIFAR10 and CIFAR 100. Results are averaged for
30 runs for each algorithm. 75

6.1 Training curve of a sample of architectures from the NAS-Bench-201 search space.
The x-axis represents the number of epochs and the y-axis the accuracy. 81

6.2 Training curve of a sample of architectures from the NAS-Bench-301 search space.
The x-axis represents the number of epochs and the y-axis the accuracy. 81

6.3 Training curve of a sample of architectures from the NAS-Bench-301 search space
using different learning rates. The best learning rate is the one in orange as it gives
the smoothest curve with appropriate progress. 82

6.4 Experimental protocol . 83
6.5 Results on PneumoniaMNIST dataset . 84
6.6 Results on DermaMNIST dataset . 86

viii

List of Tables

2.1 Summary of famous NAS benchmarks. The highlighted benchmarks will be used
in our studies. 31

3.1 Number of convolution and pooling operations in popular CNN architectures. . . . 42
3.2 Parameter values, ranks, and probability of selection 43
3.3 The table indicates the mean and std of the test accuracy found at the end of the

search. The Optimal value is given by the benchmark and represents the highest
accuracy possible using this search space. 43

3.4 The table indicates the mean and std of the number of evaluated architectures be-
fore convergence. The Speedup represents how fast LS-Weights is compared to
LS. 44

3.5 Performance evaluation on the three benchmarks. Each algorithm uses the valida-
tion accuracy as a search signal. Optimal indicates the highest validation accuracy
provided by the benchmark. We report the mean and std deviation of 150 runs for
Random search, LS, LS-PON. † taken from Dong and Yang (2020). 50

3.6 Speed evaluation on the three benchmarks. The table indicates the mean and std
deviation of the number of evaluated architectures before convergence. Values in
bold mean statistically better (Wilcoxon’s test). 51

3.7 Results on all benchmarks. The table indicates the mean and std deviation of the
number of required evaluations before improving on the current solution during
the search. Values in bold mean statistically better (Wilcoxon’s test) 51

4.1 Illustrative work from the literature . 64

5.1 Table reporting the hypervolume (scaled for better readability) for each method
on CIFAR10 and CIFAR100. Results at presented for 500, 1000, 3000, and 6000
evaluations. Values in bold are statistically better (Mann-Whitney U rank test). . . 74

5.2 Table reporting the percentage of Pareto optimal solutions found for each method
on CIFAR10 and CIFAR100. The results at presented for 500, 1000, 3000, and
6000 evaluations. Values in bold are statistically better (Mann-Whitney U rank test) 75

ix

6.1 The table indicates the Area Under the Curve and the Accuracy on the Pneumonia
test set for each model. (28) or (224) corresponds to the size of the input image.
The images are resized to 224 x 224 by PIL.Image.NEAREST option using the
Pillow package. Results of the other methods are found in (Yang et al., 2023). . . . 85

6.2 The table indicates the Area Under the Curve and the Accuracy on the DermaM-
NIST test set for each model. (28) or (224) corresponds to the size of the input
image of the model. The images are resized to 224 x 224 by PIL.Image.NEAREST
option using the Pillow package. Results of the other methods are found in (Yang
et al., 2023). 87

7.1 Applications of lesion detection and classification papers 91
7.2 NAS details for Lesion detection and classification papers 92
7.3 Applications of 2D segmentation papers . 95
7.4 NAS details for 2D segmentation papers . 96
7.5 Applications of 3D segmentation papers . 99
7.6 NAS details for 3D segmentation papers . 100
7.7 Applications of healthcare supporting tasks papers 102
7.8 NAS details for healthcare supporting tasks papers 103

x

General Introduction

“Nanos gigantum humeris insidentes“

— Bernard of Chartres

Motivations

At the core of recent technological advancements, deep learning has emerged as a transforma-
tive power, enabling machines to interpret, learn from, and make predictions based on data. It can
solve complex problems across various domains, ranging from medical diagnoses and autonomous
vehicle navigation to financial forecasting and content recommendation. Advances in deep learn-
ing showcase an impressive ability to identify patterns in images, understand natural language,
recognize speech, and much more.

Unlike traditional machine learning models, deep learning employs neural networks, and the
effectiveness of the models heavily relies on its architecture. Neural networks are composed of
several layers through which the data is transformed. Designing these architectures is a meticulous
task. Layers, nodes, and connections need to be defined, a process that is mainly based on trial and
error and human intuition. It demands an in-depth understanding of deep learning, the data, and the
task at hand. The complexity of this design process, as well as the immense choice possibilities,
requires significant time and expertise. And with the ever-evolving possibilities and domains that
deep learning undertakes, the architecture of modern deep learning become significantly large and
complex, making this manual task even more challenging.

Neural Architecture Search (NAS) offers a solution to address these issues. While traditional
methods of designing neural network architectures relied heavily on human expertise, NAS au-
tomates this process. It leverages algorithms to discover high-performing architectures, cutting
down on manual effort and potentially leading to more innovative and efficient designs. However,
searching through the vast space of potential architectures is not easy, and many complex methods
were developed to facilitate it. One major challenge that NAS research encounters is the immense
computational costs, making it resource-intensive for small research teams or institutions. On top
of that, the task of tailoring complex NAS methods to new, unseen tasks presents another layer of
difficulty.

Local search is one technique that although simple has proven its superiority in optimization
problems for decades. Through this research, we want to shed light on its potential to provide a

1

straightforward and flexible approach to finding promising architectures. Our goal is to develop
an approach that is more time-efficient while still offering the simplicity for implementing to new
tasks and domains.

In real-world scenarios, optimizing multiple conflicting criteria is important, especially in mod-
ern applications. For instance, while we want a neural network that is highly accurate, we might
also desire it to be computationally efficient or to have a small memory footprint. Nowadays,
models can run on different platforms which adds new constraints to architecture design. This
introduces the realm of multi-objective NAS, where the goal is to find a set of architectures that
strike a balance among various objectives, offering a set of trade-offs for practitioners to choose
from. This area of research requires more attention to find approaches that are time-efficient and
easy to use.

Lastly, it is important to acknowledge the significance of application domains that can take
advantage of NAS, particularly healthcare. This sector is filled with challenges that require in-
novative and well-defined models. Achieving a high accuracy in diagnosing diseases, predicting
patient outcomes, and optimizing treatment plans is crucial. By applying NAS to healthcare, we
have the potential to enhance medical AI, improving patient care, reducing costs, and potentially
saving lives.

In this thesis, we embark on a journey to explore the field of NAS, local search, and multi-
objective optimization, with a focus on healthcare applications. Through this work, we aim to
contribute to the ever-evolving narrative of AI and hopefully, help in democratizing its usage.

Outline

Following this general introduction, this thesis is organized into 6 main chapters, Figure 1 presents
how these chapters are connected.

Chapter 1: The Anatomy of Deep Learning: Foundations, Architectures, and
Challenges

This chapter sets the stage by introducing the foundations of deep learning. It presents the princi-
ples governing deep learning from the simple perceptron to complex neural networks. This chapter
serves as an introduction to the field enabling readers to have the necessary knowledge to under-
stand this work. It also presents the different challenges that deep learning faces and motivates the
emergence of neural architecture search.

Chapter 2: The Tale of Neural Architecture Search

Chapter 2 highlights the complexities and challenges inherent in neural network design and intro-
duces neural architecture search as an automated solution to this task. The chapter first presents

2

AutoML, the field of automated machine learning that encapsulates NAS. It then explains in de-
tail the field of neural architecture search, providing a comprehensive overview of its framework,
components, and prominent benchmarks.

Chapter 3: A Quest for Efficiency: Building on Local Search for NAS

Building upon the foundation presented in Chapter 2, Chapter 3 focuses on using local search
strategies for NAS. Acknowledging the sometimes unnecessary complexities of prevalent NAS al-
gorithms, this chapter explores the potential of enhancing local search heuristics for NAS, offering
simpler yet effective approaches to navigating through the architectural search space. Contribu-
tions named LS-Weight and LS-PON are introduced, discussed, and validated through experiments
and results.

Chapter 4: Multi-objectively, NAS

Taking a closer look at the various aspects involved in designing a neural network, Chapter 4 delves
into multi-objective optimization within NAS. It underscores the importance of considering various
objectives, such as predictive accuracy, model complexity, and resource efficiency, particularly in
practical applications. A comprehensive exploration and classification of approaches within Multi-
objective NAS are provided, highlighting the trade-offs and benefits associated with balancing
multiple objectives in neural network design.

Chapter 5: An Alternative Pareto-based Approach for Multi-objective NAS

This chapter introduces and explores Dominance-based Multi-objective Local Search (DMLS)
as an alternative approach to navigating the multi-objective optimization space within NAS. The
design of this method in the NAS context is presented in detail, with a formulation of the multi-
objective NAS problem, the different components of DMLS, and the protocol used for its imple-
mentation. This study is backed by experiments showcasing its potential in effectively exploring
the multi-objective NAS landscape.

Chapter 6: Bridging Barriers: from Benchmarks to the Real World

Moving from benchmarks to practical applications, Chapter 6 identifies and navigates through the
challenges and considerations that emerge when applying NAS in real-world scenarios, particu-
larly in the healthcare domain. Through a careful design and experimental protocol, the chapter
validates the approaches proposed in previous chapters, offering insights into their applicability
and performance on real healthcare data.

3

Chapter 7: Neural Architecture Search in Healthcare: An Introductory Sur-
vey to Unlocking Opportunities

This chapter aims to bridge the gap between NAS and its practical implementation within the
healthcare sector. By providing a structured overview of the opportunities, challenges, and current
openings in leveraging NAS for healthcare. This chapter serves as a comprehensive guide for
researchers and practitioners. It synthesizes insights from studies that have explored automatically
designed neural networks in healthcare, offering a structured study into the potential of NAS within
this domain.

Conclusion and Future Work

Concluding the thesis, this section will encapsulate the key contributions derived throughout the
exploration of NAS, local search, and multi-objective optimization, particularly within the health-
care domain. It will also shed light on potential future research, exploring how the findings from
this thesis can be expanded upon, refined, or applied in new and innovative ways.

Figure 1: Thesis outline.

4

Chapter 1

The Anatomy of Deep Learning:
Foundations, Architectures, and Challenges

“What we want is a machine that can learn from
experience.“

— Alan Turing

1.1 Introduction

Deep Learning (DL) is a powerful technology that has the ability to learn complex patterns from
data. It has gained a lot of popularity in recent years due to its high performance in many tasks.
Deep learning can solve complex problems across various domains. Tasks such as object detection,
voice recognition, or natural language processing were once considered highly challenging for
computers. Nowadays, they have seen significant advances thanks to this technology. At the core
of deep learning lies the neural network, which represents the foundation of every deep learning
model. It is composed of multiple layers responsible for extracting knowledge from data. The
design of the neural network highly impacts the performance of its model, and Neural Architecture
Search (NAS) stands out as a promising direction for automating its design. However, before
delving into this topic and its implications in the next chapters, it’s essential to establish a solid
understanding of the foundational concepts and techniques that define deep learning.

This chapter serves as an introduction to this field. It enables readers to have a solid background
in deep learning to better understand the field of NAS and the contributions around it. It starts by
presenting the foundation of neural networks, how they are trained and evaluated, and presents the
most famous types of neural networks. Lastly, this chapter shows some of the most significant
challenges deep learning faces and places some of the motivation behind this thesis.

5

1.2 Demystifying deep learning

Machine Learning (ML) is a branch of artificial intelligence that enables computers to learn from
data. It relies on algorithms that learn from experience rather than being hard-coded to perform
certain tasks. Deep learning, a subset of machine learning, encapsulates techniques based on neural
networks which enable models to learn more complex structures in the data. Unlike shallow learn-
ing models, which might have just one or two layers, deep models have many layers. This depth
allows for feature extraction at various levels of abstraction, making them particularly powerful for
a range of applications. To understand how they work, this section presents the fundamentals of
neural networks.

1.2.1 The building blocks of neural networks

A neural network can be represented by a graph with interconnected nodes. This graph serves as
a function that enables the translation of the input data into the desired output. The quintessential
example of a neural network is the multi-layer perceptron (Figure 1.1). A perceptron (the basic
block of this network) represents a non-linear transformation, as illustrated in Figure 1.2. It is
associated with weights w, a bias b, and an activation function σ. It transforms the input x =

{x1, x2, ...xm} into the output y = σ (
∑m

1 wixi + b).

Figure 1.1: A multilayer perceptron is composed of multiple layers. Each layer contains a

number of perceptrons. We distinguish three types of layers: input, output, and hidden layers.

Stacking multiple perceptrons creates a more complex operation. The weights and biases of
these perceptrons represent the parameters of the function. Their values need to be adjusted by
training the network. Training a network enables the network to learn the values of these parame-
ters in order to get the desired outputs.

The Multi-Layer Perceptron (MLP) represents one of the most basic neural networks and is
useful for easy classification or regression tasks. It is, however, too simple for more advanced
problems or complex data. Different types of neural networks that are more suited for modern
applications have emerged as a consequence. Each of these types can have distinct architecture

6

Figure 1.2: Perceptron.

components that are more complex than simple perceptrons. The term neural architecture refers to
the specific layout, structure, or design of a neural network. It dictates how neurons are organized,
how they connect, and often includes specifics about other elements like activation functions, pool-
ing operations, skip connections, etc. More details will be provided on these elements when we
present prominent types of neural networks later in this chapter.

1.2.2 Training and evaluation

Training a neural network is an iterative process where the model fine-tunes its weights based on
the feedback it receives from its predictions. The objective is to minimize the difference between
its predictions and the actual values, often referred to as error or loss.

To compute this error, we need to define the loss function, a mathematical measure of how
far a network’s predictions are from the actual values. Different loss functions can be selected
depending on the task at hand. Examples of loss functions are Mean Squared Error, Cross-Entropy,
Categorical Cross-Entroy, etc.

In terms of its practical applicability, another metric is usually provided as well: the evaluation
metric. This metric, such as accuracy, precision, or recall, provides a more granular insight into
how well the model is performing in terms of its actual objective. For instance, while a loss
function might indicate how close predicted probabilities are to true labels, accuracy will directly
measure the fraction of predictions the model gets right.

Another important element for training is the Backpropagation. It is a method used for calcu-
lating how much each weight contributes to the loss to adjust it accordingly. This is achieved by
calculating the gradient of the loss function with respect to each weight.

While backpropagation calculates the necessary adjustments to the weights, optimization algo-
rithms dictate how those adjustments are made. Gradient Descent (GD) is the most straightforward
optimization method, where weights are updated in the direction of the negative gradient. Varia-
tions of gradient descent, like Stochastic Gradient Descent (SGD), Mini-batch Gradient Descent,
and more sophisticated optimizers like Adam, RMSprop, and Adagrad, introduce elements like
momentum and adaptive learning rates to speed up convergence and navigate the loss landscape
more effectively.

7

The weights of the network are updated several times before reaching the desired values. The
process of training includes multiple iterations often called epochs. For each epoch, predictions
are made, the loss is computed, gradients are calculated via backpropagation, and the weights are
updated by the optimizer. During this procedure, the loss typically reduces, indicating that the
model is learning the patterns in the data.

During training, we must be careful that the network is learning the correct patterns and not
just overlearning from the data used. This could be a symptom of extracting patterns that are too
specific to the data it trained on. This concept is referred to as overfitting, where the network is
more memorizing than learning. To monitor when this starts to happen, it is essential to validate the
performance on a separate set of data the network hasn’t seen during its training. If the performance
on the validation set starts to degrade while the training set performance improves, it is a sign of
overfitting. The size of the validation set usually represents a small fraction of the total dataset
(around 20%). At the end of the training, we assess the final performance using a test set. This
data is held out and not used during the whole training process and permits the true evaluation of
the model.

This approach is usually the same for most neural networks. Different types of networks are
available for different types of tasks. We will present the most famous deep neural networks in the
following paragraphs.

1.3 Famous deep neural networks

Numerous types of neural networks have been developed, each with unique architecture compo-
nents and suited to different kinds of tasks. Some of the most classical and widely-recognized
models include:

1.3.1 Convolutional neural networks

Convolutional Neural Networks (CNN) are popular methods often used for image analysis appli-
cations. They contain layers called convolutional layers that can detect patterns in images. Each
convolutional layer is made of filters (also called kernels) that can be seen as specialized pattern
detectors. In the early layers of the CNN, these filters detect simple patterns such as edges, shapes,
textures, etc., and output feature maps that highlight these patterns in the image. As the network
goes deeper, the filters detect more complex patterns using the outputs of the previous layers and
slowly combine them to detect high-level patterns such as eyes, noses, faces, etc. Figure 1.3, which
is taken from LeCun et al. (2015), illustrates the hierarchical learning of concepts inside a CNN.
It shows how the network sequentially builds information starting from pixels, then edges, then
shapes, until reaching the full information in its output.

Working with full-sized images is computationally expensive, so convolution layers process
images by small patches. Most CNNs use another type of operation called pooling. Their role is
to reduce the dimensions of the feature maps while keeping the important information they carry.

8

Figure 1.3: hierarchical learning in CNNs, figure taken from (LeCun et al., 2015).

This also enables deeper layers to look at larger portions of the image at a time. For an image
classification task, the final layer of a CNN is usually composed of a small multi-layer perceptron
that uses the final represented features as input and classifies them into the desired output. Figure
1.4 shows a classical composition of a CNN.

Figure 1.4: Example of a CNN architecture.

As classification CNNs became mainstream thanks to their performances, researchers devel-
oped other CNN configurations that are useful for tasks such as object detection or image seg-
mentation. Fully Convolutional Network (FCN) (Long et al., 2015) soon appeared as a variant
that replaces the fully connected layer with convolutional operations. It is popular for both object
detection and image segmentation. U-shaped FCN (Ronneberger et al., 2015) architectures are the
most known models for the latter task. They are composed of both a downsampling and an upsam-
pling path. The downsampling path, called the encoder, encapsulates the most important features
for the segmentation using convolutions and pooling operations. And the upsampling path, called
the decoder, uses the resulting vector of the previous path to reconstruct the image. The result will
be segmented by having its pixels classified into different categories.

9

1.3.2 Recurrent neural networks

Recurrent Neural Networks (RNN) (Williams and Zipser, 1989) are neural networks capable of
analyzing streams of data. This is important in several applications where the output depends on
previous computations, such as natural language processing, speech recognition, or stock forecast-
ing. A famous example to illustrate this is the task of predicting the next word in a sentence. When
making a prediction, the system doesn’t rely only on the last word it has seen but also keeps in
mind the previous ones contained in the stream of words. This simulation of memory is possible
due to a loop contained in the architecture. And with that, a previous context (called hidden state)
can be added to the current input to give more information for the prediction. A general structure
of an RNN is illustrated in Figure 1.5, as well as the function composing an RNN block in Figure
1.6.

Figure 1.5: RNN architecture.

RNN blocks were soon replaced with more sophisticated blocks such as Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho
et al., 2014) that have a better capacity at retaining information, especially in sequential data where
important events can be relatively far from the current input.

Figure 1.6: composition of an RNN block.

1.3.3 Autoencoders networks

Autoencoders (AE) (Kramer, 1991) are neural networks traditionally used for dimensionality re-
duction or data compression. The architecture of an AE has an input layer, an output layer of the

10

same size, and internally, a hidden layer h with a much smaller dimension. The network attempts
to compress the data in the encoder part (from the input to the hidden layer h) and then reconstructs
it with the decoder (from the hidden layer h to the output). To achieve a good data compression,
the goal is to obtain a decoder that recreates a good representation of the input, using only the
low-dimensional vector in the hidden layer created by the encoder.

Figure 1.7: Autoencoder.

Many variations of AE exist for tasks other than compression. Denoising AE (Vincent et al.,
2008) for example, can be used to extract features from a noisy dataset by keeping the essential
information from data and automatically discarding the noise from it. Variational AE (Kingma
and Welling, 2014), can recreate the data with variations that can be useful in tasks such as data
augmentation.

1.3.4 Restricted Boltzmann machines and Deep belief networks

Restricted Boltzmann Machines (RBM) (Salakhutdinov et al., 2007) are models capable of esti-
mating the probability distribution of the input data in a stochastic way. They are composed of two
layers, one layer of visible variables/nodes to represent observable data and one layer of hidden
variables to capture dependencies of the visible variables. They are usually used as building blocks
for Deep Belief Networks (DBN) (Hinton et al., 2006), which are other known generative mod-
els that can be also used in supervised tasks such as classification. Figure 1.8 illustrates a DBN
composed of stacked Restricted Boltzmann machines.

1.3.5 Generative adversarial networks

Another generative model that has gained a lot of popularity in recent years is the Generative
Adversarial Network (GAN) (Goodfellow et al., 2014). This model uses two networks pitted
against each other to create the most convincing data samples. The first network, called generator
(G), creates samples that would resemble the most to the real data. They are then fed to the second
network called discriminator (D), which tries to classify the data as being real or fake (generated).
The networks are trained simultaneously, where G aims to maximize the probability that D makes

11

Figure 1.8: DBN architecture.

a mistake while D aims for high classification accuracy (Figure 1.9). GANs are an exciting recent
innovation and are behind applications such as DeepFake (Schwartz, 2018), music composition
(Elgammal et al., 2017), and art generation (Dong et al., 2018).

Figure 1.9: GAN representation.

1.3.6 Transformers networks.

Transformers networks, introduced by Vaswani et al. (2017), have become the basic architecture
in many state-of-the-art models, particularly in the domain of natural language processing. The
architecture includes an attention mechanism, called ”self-attention”, which allows it to focus on
different parts of the input data with varying levels of emphasis. This facilitates the model’s ability
to understand intricate relations in the data, especially in sequences like text.

The transformer architecture is typically made up of a series of encoder and decoder stacks.
Within these stacks are multiple self-attention layers and Feed-Forward Networks (FFN). The at-

12

tention layers empower the model to weigh the importance of different input data points in relation
to each other, rather than in isolation. This is a key divergence from the recurrent or convolutional
nature of the architectures mentioned earlier.

Figure 1.10: Transformer Architecture, figure inspired from (Vaswani et al., 2017).

After its arrival, the transformer architecture produced a series of influential models in NLP.
BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018), GPT
(Generative Pre-trained Transformer) (Radford et al., 2018), and T5 (Text-to-Text Transfer Trans-
former) (Raffel et al., 2020) are among the noteworthy derivatives. Each of these models, based on
the transformer backbone, has set benchmarks across diverse tasks, ranging from text classification
and translation to generative text tasks.

1.4 Deep learning challenges

While architectures like CNNs, RNNs, and Transformers brought advancements in various do-
mains of deep learning, researchers and practitioners continue to push the boundaries of what
these models can achieve. They are often faced with many challenges that need addressing to
realize the full potential of deep learning.

Data and privacy

To train a reliable deep learning model, a large set of high-quality data is often required. In many
cases, this data also needs to be annotated and balanced to be usable for the given task. In certain
fields, these requirements are rarely met. Data can be scarce, imbalanced, and heterogeneous. The

13

reasons for that are numerous, including the difficulty to get hold of certain data, the differences in
instruments and practices used for data collection, or the annotation that can be expensive or time-
consuming. To address some of these problems, many techniques were developed to augment the
data and improve its quality, ranging from data augmentation and synthesis (Shin et al., 2018)
to image de-noising techniques (Gondara, 2016) and preprocessing frameworks (Lin and Haug,
2006). Additionally, domain adaptation and transfer learning techniques have been used to leverage
data from related domains to improve model performance when training data is limited.

Another significant challenge, especially in sectors like healthcare, finance, and social plat-
forms, is the concern of data privacy. Handling sensitive information comes with both ethical and
regulatory constraints. Privacy and data protection are often not just recommended but mandated
by laws like the General Data Protection Regulation (GDPR). This has led to an increasing focus
on AI privacy. The field includes the development of techniques to train neural networks with-
out exposing or compromising data integrity. Examples of such techniques are federated learning
(Yang et al., 2019), where models are trained across multiple devices or servers without central-
izing data, and differential privacy (Abadi et al., 2016), which adds a layer of randomness to data
queries, ensuring individual data points cannot be identified.

Computational resources

The time required for training modern DL models represents a significant challenge. Depending
on model complexity and dataset size, training can take days or even weeks, leading to higher elec-
tricity costs and increased carbon footprints. The prolonged training process slows down research
progress and the implementation of models in real-world applications.

In response to these challenges, researchers are exploring solutions to minimize training time.
Techniques such as model pruning (Molchanov et al., 2016), where the size of networks is re-
duced without significantly impacting performance, knowledge distillation (Hinton et al., 2015),
where smaller models are trained to mimic larger ones, or new training techniques to reduce com-
putational demands are being developed (Micikevicius et al., 2017). Designing resource-efficient
models is also a prominent research field, it includes designing networks that can run on edge
devices with very low computational power.

Many efforts are made to decrease the need for computational resources and it is becoming
increasingly important with the raising costs of GPUs and the quick widespread of large language
models that are specifically resource-demanding.

Explainability

Explainability is another significant challenge in deep learning. The black box nature of neural
networks makes it nearly impossible to interpret or understand the model’s output. This delays the
adoption of this technology in areas where interpretability is crucial, such as healthcare, finance,
and the judicial system. Practitioners need to understand the decision so they can argue with or
against the result of the AI system.

14

To address this issue, two approaches are currently being explored: the first is to explain ex-
isting black box models using different techniques such as linear approximations, saliency maps,
class activation functions, etc (Arrieta et al., 2020). The second approach is to design new neural
networks that are inherently interpretable (Chen et al., 2018). These systems usually provide an
explanation alongside their prediction.

Despite these advances, explainability remains a challenging problem. Striking a balance be-
tween model complexity, which often correlates with performance, and model interpretability is
an ongoing struggle in the deep learning community.

Architecture design

The architecture of a deep learning model plays a crucial role in its performance. The architecture
determines how the network will process input data, how it will represent learned information, and
its capacity to generalize to unseen data. A design that works well for one task or dataset might
not be optimal for another, and designing an architecture for a specific problem is challenging
and resource-intensive. The choice of layers, their connections, and their hyperparameters can
significantly impact a model. The number of possibilities is also enormous, even for modest-
sized networks. For example, for a simple network of 10 layers, where each layer can take 3
different options (either their type, activation functions, or other hyperparameters) the total number
of possibilities reaches almost 60 thousand, which is impractical to sort by exhaustive evaluations.

This task has for a long time been a manual effort guided by trial and error. Architecture
engineers can take several months to design a good architecture. Since it is impossible to try all
possibilities, they mostly rely on intuition gained through years of experience. The challenge is
further amplified by the evolving nature of the field. As new techniques and layers are developed,
the potential design space expands, making it even more difficult to find optimal architectures
manually. To alleviate this problem, Neural Architecture Search (NAS) is a prominent field that
includes techniques to find effective architectures automatically.

1.5 Conclusion

In this chapter, we have laid the foundation of deep learning so the reader can have a comprehen-
sive background for this thesis. We started by presenting the building blocks of neural networks,
followed by its training and evaluation process. Moreover, we presented famous types of neu-
ral networks and discussed how they function. Lastly, we presented some of the most prominent
challenges deep learning faces nowadays. Amongst those challenges, a notable one is presented
in architecture design. A task that is getting more impractical in modern DL models. With the
increasing size and complexities of the architectures, modern solutions are required to handle it.
A research field that tackles this problem is neural architecture search, a solution that promises to
alleviate the manual task of architecture design. In the next chapter, we will present in more detail
this concept and lay the ground for our future contributions to this field.

15

Chapter 2

The Tale of Neural Architecture Search

“The future of machine learning is automation.“

— Yoshua Bengio

2.1 Introduction

Deep learning has transformed countless domains in recent years, but despite its success in a wide
range of applications, using this technology effectively has faced some challenges. As we have
seen in the previous chapter, the design of the neural network architecture poses a significant one.
This task is crucial in developing deep learning models. It involves choosing a broad spectrum
of architectural features and their associated parameters and selecting them to suit a specific task
and dataset. Neural network architectures that are tailored to their task and dataset lead to better
model performances, as the most suitable architecture for one case might not necessarily be the
best fit for another. This process takes up a significant effort given the huge number of possibilities.
Researchers and engineers have done this manually for decades. Although it led to state-of-the-art
models in many deep learning applications (Alom et al., 2019), this procedure is driven by trial and
error and intuition acquired through years of experience. It is both time and resource-consuming
and can sometimes lead to sub-optimal architectures that underperform or are computationally
expensive.

Neural Architecture Search (NAS) offers an automated solution to network design. It has the
potential to reduce the time and cost of developing deep learning models and can help democratize
deep learning by allowing non-experts to use and apply them to their problems. NAS belongs to the
wider field of Automated Machine Learning or AutoML (He et al., 2021c), a domain that encloses
all the techniques that automate the process of machine learning engineering.

In this chapter, we learn more about NAS and its inner workings. We first introduce the concept
of AutoML and its connection to our topic, before explaining neural architecture search. We then
propose a formulation of NAS in the optimization taxonomy. Moreover, we present in detail the
different components defining the NAS framework and its famous benchmarks from the literature.

16

2.2 Automated machine learning

Building a machine learning model requires going through many steps. Starting from data collec-
tion and preprocessing all the way to model deployment and monitoring. This set of tasks requires
a variety of specialized skills and resources. AutoML is a set of techniques and tools that auto-
mate the process of building and deploying machine learning models. The goal of AutoML is
to enable non-experts to build high-quality machine learning models without requiring extensive
knowledge of ML algorithms, data preprocessing, or model optimization. AutoML is composed of
several subfields, each addressing different aspects of the machine learning pipeline. This pipeline
is composed of several stages as seen in Figure 2.1 and usually goes as follows: Initially, relevant
data is collected from various sources in the Data Collection phase. This data is then cleaned, pre-
pared, and possibly transformed during Data Processing to make it suitable for a machine learning
model. In the Feature Engineering phase, new features are created or extracted from the existing
data to improve the model’s performance. The model is then designed in the Model Development
stage, where a suitable ML algorithm or deep learning model is defined and its parameters are
chosen. The model’s performance is evaluated in the Model Evaluation phase, using metrics ap-
propriate to the task. Once it passes this phase, it is deployed into production in the Deployment
stage. Lastly, the deployed model is continuously monitored to ensure it continues to perform well
and to identify when it may need updating or retraining. This process is iterative, often requiring
backtracking to previous stages based on ongoing evaluations and changes in data or requirements.

Figure 2.1: The basic machine learning pipeline.

AutoML can interfere in automating one or several stages of this pipeline as well as other
peripheral tasks. In the following, we briefly explain the most relevant of its techniques. For a
more detailed description of the tools and techniques found in this field, the reader can refer to the
survey by He et al. (2021c).

• Automated data preprocessing: data preprocessing involves cleaning, transforming, and
normalizing raw data to make it suitable for machine learning algorithms. This can in-
clude handling missing values, encoding categorical variables, and scaling numerical fea-
tures. This subfield focuses on automating this process which is often a time-consuming and
error-prone process in traditional machine learning workflows.

• Automated feature engineering: Feature Engineering involves selecting or creating the
most relevant features for the task at hand. This can include extracting text features, creating

17

new features through mathematical transformations, or using domain knowledge to engineer
features. The goal of feature engineering is to improve the performance of machine learning
models by providing them with more relevant and informative data. Automated feature
engineering techniques can help streamline this process by automatically selecting relevant
features, extracting features from text or image data, and transforming the data into a format
that is suitable for machine learning.

• Automated model selection: Different machine learning algorithms perform differently on
different types of data, and selecting the best algorithm for a given task requires expertise
and trial and error. Automated model selection techniques can automate this process by
exploring a range of machine learning algorithms and selecting the best one for a given task,
based on the models’ performance metrics.

• Hyperparameter optimization: Hyperparameters are the configuration settings for ma-
chine learning models that are not learned from the data, such as the learning rate, regular-
ization parameters, and activation functions. Hyperparameter tuning involves selecting the
best values for the model hyperparameters, which can significantly impact model perfor-
mance. Hyperparameter optimization techniques can automate the process of selecting and
tuning these parameters, in order to optimize the performance of the model.

• Meta-learning: Meta-learning involves using machine learning algorithms to learn how to
optimize other machine learning algorithms. For example, a meta-learning algorithm could
learn how to select the best hyperparameters for a given dataset and model architecture or
learn how to combine different models to achieve better performance.

• Model Compression: Machine learning models can be large and complex, which can make
them difficult to deploy on resource-constrained devices such as smartphones or embedded
systems. Model compression automates the process of reducing the size and complexity of
a model, while maintaining its performance, by techniques such as pruning, which removes
unimportant connections in a neural network, or quantization, which reduces the precision
of the weights and activations in a network.

• Neural Architecture Search (NAS): Designing and optimizing neural network architec-
tures is a complex and time-consuming task that requires expertise in deep learning. Neural
architecture search techniques can automate this process by exploring a large search space
of possible neural network architectures and identifying the optimal architecture for a given
task. NAS has a significant overlap with hyperparameter optimization and meta-learning. It
is the main focus of our chapter and is presented in more detail in the following sections.

2.3 Neural architecture search

Neural architecture search refers to the automated process of searching for the best neural network
architecture for a specific task. Instead of manually designing a neural network, NAS automates

18

this process by exploring a vast space of possible architectures and identifying the ones that per-
form best for a given dataset or task. This technique first appeared more than three decades ago
(Tenorio and Lee, 1988) but only became popular in the last few years due to its increasing im-
portance and usability. NAS can potentially discover novel architectures that outperform manually
designed ones, leading to better performance in modern tasks. NAS is particularly useful for newer
tasks or datasets where standard architectures might not be optimal. The process behind NAS can
be formulated as an optimization problem, where the goal is to find the optimal neural network
architecture that maximizes a performance metric, such as accuracy, while potentially minimizing
other factors, such as computational complexity or latency. The size of the feasible solutions can
be very large in NAS, reaching an unbounded number of possibilities in certain cases.

2.3.1 NAS as an optimization problem

The optimization problem for NAS can be defined with the following components:

• Objective function: The objective function quantifies the performance of a neural network
architecture. Commonly, the performance metric is the validation accuracy (or its equiva-
lent) on a given task or dataset. In some cases, additional factors, such as model size or
inference time, can be included in the objective function to encourage the discovery of effi-
cient architectures.

• Decision Variables: The decision variables describe the possible neural network architec-
tures that can be considered during the search process. They are typically represented as a
discrete, combinatorial space encompassing various architectural components, such as layer
types, layer sizes, activation functions, and connectivity patterns. In the context of NAS, it
is usually referred to as the search space.

• Constraints: Constraints may be imposed on the optimization problem to ensure that the
discovered architectures meet specific requirements, such as computational resource limi-
tations, latency, or model size constraints. These constraints help guide the search process
towards architectures that are not only accurate but also efficient and practical for the in-
tended application.

• Optimization algorithm: The optimization algorithm is responsible for efficiently explor-
ing the search space and identifying high-performing architectures that satisfy the con-
straints. Several optimization techniques have been proposed for NAS, including evolu-
tionary algorithms, reinforcement learning, Bayesian optimization, gradient-based methods,
and others. In NAS terminology, these techniques are often referred to as search strategies

Given these components, the NAS optimization problem can be formally stated as finding an
architecture A* in the search space S that maximizes the objective function f(A) subject to the
constraints C.

A∗ = arg max
A∈S subject toC

f(A)

19

The main challenge in this optimization problem is foremost to define the search space of pos-
sible architectures. This search space is often vast and complex which makes exhaustive search
infeasible. Consequently, the second important step is to define the search strategy to efficiently
explore the search space and identify high-performing architectures while respecting the given
constraints. This process involves sampling and evaluating architectures. Training DNNs for eval-
uation can be time-consuming. It is considered to be the bottleneck of neural architecture search
as it can sometimes take several hours for a single evaluation. For this reason, techniques for
estimating the performance of DNN were developed.

With these puzzle pieces in mind, we can highlight the three main components that make up
a NAS framework: the search space, the search strategy, and the performance evaluation strategy
(see Figure 2.2). Each of these can have a high impact on the results of the framework. We further
explain each of these components in the following section.

2.3.2 The building blocks of the NAS framework

Figure 2.2: The NAS framework

The search space

The NAS search space defines the characteristics of neural architectures that can be considered
during the search process. In other words, it characterizes the set of possible solutions. The choice
of the search space has a critical impact on the final performance of the NAS algorithm. It directly
determines the NAS algorithm’s upper-performance limit to some extent. Depending on its design,
it can include a wide range of architectural choices, such as the number and size of layers, types of
activation functions, and connectivity patterns. The more flexibility is given by the search space,
the more freedom the NAS process has in discovering novel networks. However, allowing too
much freedom of design dramatically increases the size of the search space, and consequently,
the computational time required to find efficient architectures. Therefore, a trade-off needs to be
established between size and flexibility.

20

In the literature, different search spaces have been proposed with various sizes and design
principles. Three main types of search spaces can be extracted: the global search space, the cell-
based search space, and the hierarchical search space (Wistuba et al., 2019; Elsken et al., 2019).

1. The global search space: The less constrained type of search space is the global search
space. It allows the NAS process to search for architectures defined in a fine-grained manner.
It gives the freedom to choose every operation and connection in the neural network. The
chain-structured search space is the most known example of a global search space. Here,
the architectures are formed by stacking a number of layers, with the input of a layer being
the output of the previous layer. To define such search space, we need to specify certain
elements such as the maximum number of layers, the type of possible operations executed
by each layer (such as pooling, convolution, etc.), and the associated hyperparameters for
each operation (such as the number of filters, kernel size, strides, etc.). It’s worth noting that
the hyperparameters are dependent on the type of operation specified. For example, in (Baker
et al., 2016), the authors use this chain-structured search space to build a convolutional neural
network. The search space allows them to choose the type of operations of each layer with
its associated hyperparameter settings such as the number of filters, kernel size, stride, and
pooling size.

Other design choices can be added to broaden this type of search space, such as branches or
skip connections (He et al., 2016). These allow information to flow from one layer of the
network to another layer of the network that does not directly follow it. Figure 2.3 represents
two examples of architectures that can result from a global search space. On the left, is an
architecture that can result from a standard chain-structured search space. On the right, is an
architecture that can result from a search space that allows compositions using branches and
skip connections.

Figure 2.3: Examples of two architectures from a global search space

21

Global search spaces allow the discovery of novel networks, however, having such freedom
can result in longer times to find effective networks. Some constraints are added in practice
to make it more manageable. For example, discarding the evaluation of certain networks that
are known to perform badly (e.g., removing architectures that start with pooling operations
in CNNs), or are too computationally expensive. Similarly, enforcing choices on segments
of the network can generate solutions with good starting performances which can lead to
shorter search times. Nonetheless, global search spaces are still considered computationally
expensive and challenging to optimize due to their high dimensionality. To address this issue,
a more structured approach was proposed which is the cell-based search space.

2. The cell-based search space: In the cell-based search space, architectures are constructed
from smaller sub-structures often called cells or blocks, or modules. They are stacked to-
gether in a predetermined manner to form a larger network. This design approach is based
on the observation that many well-performing human-designed models are built by repeated
instances of fixed structures. The problem of searching for a full neural architecture is sim-
plified into searching for these structures. The search space becomes much smaller since
cells typically contain fewer layers than complete architectures. Figure 2.4 illustrates the
structure of architectures created from a cell-based search space. In this example, two types
of cells are stacked repeatedly, with each of them constructed differently.

Figure 2.4: Example of a generic architecture in a cell-based search space

An example of a notable early work that explores the cell-based search space can be found
in (Zoph et al., 2018). It uses two types of cells in neural architecture search: normal cells
and reduction cells. Normal cells extract advanced features and keep spatial resolution un-
changed, while reduction cells reduce spatial resolution. The final architecture is formed
by connecting several normal cells, followed by a reduction cell, and repeating this pat-
tern. The search process must find the cell structures of each type that makes the most per-
forming architectures. Notable speed-up has been achieved with this type of search space.
For instance, Zoph et al. (2018) reported better performance while estimating a seven-fold
speed-up compared to their prior work. Along with these improvements, the approach allows
for easy generalization across different datasets, as the discovered architectures constructed
from cells can be flexibly stacked to build larger or smaller networks. Zoph et al. (2018)

22

demonstrated this adaptability by transferring cells optimized for CIFAR-10 to ImageNet,
adjusting the number of cells and filters within a model, and still achieving state-of-the-art
performance.

Although it gained a lot of popularity, the cell-based search space suffers from the limited
diversity of the explored architectures. Since it primarily focuses on the cells within the
architecture, it overlooks other important factors that can impact the model’s performance,
such as the overall network topology or the interaction between cells. A more advanced
search space design known as the hierarchical search space tries to solve this problem.

3. The hierarchical search space: The hierarchical search space is an approach that supports
complex topologies in NAS. By breaking down the architecture into different levels of ab-
straction, it simplifies the search process. Each level contains a set of building blocks, which
can be either primitive operations or more intricate structures like cells in a cell-based search
space. This organization allows researchers to focus on optimizing structures at each level
of abstraction, which are then combined to create the overall architecture. Initially, a small
set of primitives, such as convolutional and pooling operations, forms the bottom level of
the hierarchy. Higher-level computation graphs or motifs are constructed using lower-level
motifs as their building blocks. At the top of the hierarchy, these motifs are stacked multiple
times to generate the final neural network. Figure 2.5 illustrates how different motifs can be
constructed at each level. In level one, simple operations are assembled to form a first-level
motif. In level two, these motifs (or cells) are in their turn assembled to form higher-level
structures.

Figure 2.5: Constructing motifs in the hierarchical search space

The hierarchical search space has been employed in various NAS methods demonstrating
its potential for discovering high-performance neural network architectures. In (Liu et al.,
2017a) for example, authors use an evolutionary algorithm to discover hierarchical archi-

23

tectures by optimizing the components within each level and combining them to form the
overall architecture.

Hierarchical search spaces represent a good trade-off between global and cell-based search
spaces. However, this type of search space leads to a more complex search process. To
handle this, researchers need to carefully choose the number of levels of abstractions in their
search space.

The search strategy

The search strategies employed in NAS determine how the algorithms navigate through the search
space and make decisions about which architectures to evaluate. These strategies differ in terms of
their exploration, exploitation, and optimization techniques. The most prominent search strategies
include:

1. Evolutionary Algorithms (EAs): Evolutionary algorithms are a class of optimization tech-
niques inspired by the principles of natural selection and evolution. In the context of NAS,
EAs have been employed to discover optimized neural network architectures by evolving a
population of architectures over multiple generations. These methods aim to gradually im-
prove the performance of the architectures in the population by favoring those with higher
fitness, typically measured as the validation performance (e.g., accuracy, F1 score) on the
target task. The main components of an EA-based NAS method are:

• The encoding scheme: Determines how the neural network architectures are repre-
sented within the evolutionary algorithm. Encoding translates architectural configura-
tions into genotypic representations that can be manipulated by the genetic operators.

• The population: which represents a set of neural network architectures.

• The fitness function: it quantifies the performance of an architecture, usually based
on its performance on the target task.

• The selection mechanism: the method for selecting architectures from the popula-
tion based on their fitness values (e.g., tournament selection, rank-based selection, or
truncation selection).

• The genetic operators: Functions that create new architectures by modifying existing
ones, such as mutation (e.g., adding or removing layers, changing activation functions)
and crossover (e.g., combining parts of two-parent architectures to create a new archi-
tecture).

In the literature, there are several examples of EA-based NAS methods for improving neu-
ral networks. Genetic CNN (Xie and Yuille, 2017) is an early work that applies a genetic
algorithm to evolve convolutional neural network (CNN) architectures for image classifica-
tion, using mutation and crossover operators. It has demonstrated competitive performance
on datasets such as CIFAR-10 and a subset of ImageNet from ILSVRC2012 (Deng et al.,

24

2012). Large-Scale Evolution (Real et al., 2017) is another EA-based NAS method that
evolves a population of architectures for image classification tasks, combining tournament
selection, mutation, and crossover with techniques like aging and transfer learning to en-
hance search efficiency and scalability. Regularized Evolution (Real et al., 2019) is another
notable work that employs an age-based tournament selection mechanism as an EA-based
NAS method. In subsequent research, several works continued to leverage evolutionary al-
gorithms for advancing NAS methods. In ”Evolving Deep Neural Networks”, Miikkulainen
et al. (2019) utilized evolutionary strategies to optimize various aspects of deep neural net-
works, including their topology, connections, and weights, demonstrating success on tasks
like object recognition and playing Atari games. Another work, ”NeuroEvolution of Aug-
mented Topologies” (NEAT) (Stanley and Miikkulainen, 2002), employs a genetic algorithm
to evolve both the weights and architectures of neural networks, introducing concepts like
speciation and genetic encoding to handle different topologies. Moreover, ”Hierarchical
Representations for Efficient Architecture Search” (Liu et al., 2017a), utilizes hierarchical
genetic representations in its evolutionary algorithm to improve the efficiency of the archi-
tecture search process.

EA-based NAS methods have proven effective at discovering high-performing neural net-
work architectures for a wide range of tasks. However, they can be computationally expen-
sive due to the need to evaluate and train a large number of architectures.

2. Reinforcement Learning (RL): RL-based methods tackle the problem of discovering op-
timal neural network architectures by formulating it as a sequential decision-making task.
In this approach, an RL agent generates architectures by making a series of decisions, in-
teracting with the search space, and receiving feedback in the form of a reward signal (e.g.,
validation accuracy). The RL agent’s policy is then optimized using RL algorithms to max-
imize the expected performance of the generated architectures. The general framework for
RL-based NAS includes:

• The action space: determines the set of possible actions the RL agent can take at each
step, such as selecting a specific layer type or operation.

• The state space: represents the current status of the architecture being generated, in-
cluding previously selected actions.

• The controller or agent: usually a neural network (e.g., a Recurrent Neural Network),
responsible for generating architecture configurations.

• The agent’s policy: A function that maps states to actions. The RL agent uses it to
decide which action to take given the current state.

• The reward signal: measures the performance of the generated architecture on a given
task (e.g., validation accuracy) and provides feedback to the RL agent. This function
helps guide the agent towards architectures with better performance.

25

• The RL algorithm: An algorithm to train the agent by optimizing its policy. This in-
volves generating architectures, evaluating their performance, and updating the agent’s
parameters based on the observed reward. Common RL algorithms include policy gra-
dients (e.g., REINFORCE), Q-learning variants (e.g., DQN), and actor-critic methods
(e.g., A3C).

A pioneering work that presents an RL-based NAS method can be found in (Zoph and Le,
2016). It utilizes a recurrent neural network controller to generate architectures. The method
applies the REINFORCE policy gradient algorithm to optimize the controller, demonstrating
competitive performance on datasets such as CIFAR-10 and Penn Treebank. In (Pham et al.,
2018), authors build upon the RL-based NAS approach and introduce weight sharing among
the generated architectures to reduce the search cost. By sharing weights among similar ar-
chitectures, this work significantly reduces the training time required for each architecture,
leading to faster convergence of the search process. Baker et al. (2016) employed Q-learning,
a value-based RL approach, for discovering optimized convolutional neural network archi-
tectures. Meanwhile, ”Progressive Neural Architecture Search” (PNAS) (Liu et al., 2018a)
leverages a sequential model-based optimization strategy, incorporating a predictor model to
guide the search process in a sample-efficient manner.

RL-based NAS methods have shown promising results in discovering high-performing neu-
ral network architectures for a wide range of tasks. However, they often require significant
computational resources to evaluate and train the generated architectures.

3. Bayesian Optimization (BO): Bayesian optimization is a popular global optimization tech-
nique that has been applied to neural architecture search to efficiently explore the space of
possible architectures. BO-based NAS methods typically model the relationship between
architectures and their performance using probabilistic models, which provide uncertainty
estimates that help guide the search process. BO-based NAS methods are usually composed
of:

• A surrogate model: A probabilistic model that captures the relationship between ar-
chitectures and their performance. Common surrogate models include Gaussian pro-
cesses and Tree-structured Parzen estimators.

• An acquisition function: A function that quantifies the utility of exploring a partic-
ular architecture based on the predictions and uncertainties provided by the surrogate
model. Popular acquisition functions include Expected Improvement, Upper Confi-
dence Bound, and Probability of Improvement.

• The optimization procedure: An algorithm for optimizing the acquisition function to
identify the next architecture to evaluate.

A few works in the literature employed Bayesian Optimization for NAS. For example,
Liu et al. (2018a) propose a method for learning convolutional neural network structures

26

through a sequential model-based optimization. Their approach is progressive, starting with
the simplest models and progressively expanding the search space.

BANANAS (White et al., 2021) is another Bayesian optimization method that employs a
graph convolutional network as a surrogate model to predict the performance of architec-
tures. By using graph-based representations, BANANAS captures the structural information
of the architectures, leading to improved search efficiency. Additionally, Cai et al. (2018)
integrate Bayesian optimization with gradient-based methods, allowing for a flexible, hybrid
search strategy that leverages the best of both worlds: the global, probabilistic search of BO
and the local, gradient-guided exploration of differentiable methods.

BO-based NAS methods have shown their effectiveness in discovering high-performing
architectures with relatively low computational costs compared to other search strategies.
However, they can be sensitive to the choice of surrogate models, acquisition functions, and
optimization procedures.

4. Gradient-based Optimization: Gradient-based optimization methods have been introduced
to neural architecture search to enable efficient search for high-performing neural network
architectures. These methods reformulate the architecture search problem as a continuous
optimization task by relaxing the discrete architectural decisions, which allows the use of
gradient-based optimization algorithms. The main components of such methods are:

• The continuous relaxation: To apply gradient-based optimization techniques, the ar-
chitecture search space must be converted from a discrete to a continuous domain.
Methods for continuous relaxations include the use of softmax functions (Goodfellow
et al., 2016), mixed-operation representation (Liu et al., 2018b), or Path-level relaxation
(Veniat and Denoyer, 2018).

• Differentiable architecture representation: This results from the relaxation of the
search space, the differentiable representation of the architecture allows the calculation
of gradients with respect to the architecture’s parameters.

• The objective function: Similar to the other approaches, this function evaluates the
performance of an architecture, usually based on its validation performance (e.g., ac-
curacy, F1 score) on the target task.

• Gradient-based optimization algorithm: an algorithm that updates the architecture
parameters using gradient information computed from the objective function. Common
algorithms include gradient descent (Ruder, 2016), stochastic gradient descent (Bottou
et al., 1991), and adaptive gradient methods (e.g., Adam (Kingma and Ba, 2014), RM-
SProp (Tieleman et al., 2012)).

Several gradient-based optimization NAS methods have been proposed in the literature:
DARTS (Liu et al., 2018b) introduces a continuous relaxation by using a softmax function
to represent the probabilities of selecting different operations (e.g., convolution or pooling)

27

at each layer. By defining a set of learnable architecture parameters, this work allows the use
of gradient descent to optimize the continuous representation of the architecture. In Prox-
ylessNAS (Cai et al., 2018), authors use a differentiable approach to search for hardware-
aware neural architectures. The method introduces a path-level binary gating mechanism
that allows efficient computation of gradients and enables the direct optimization of archi-
tectures on the target hardware (e.g., mobile devices). Authors in (Xie et al., 2018) extend the
DARTS framework by incorporating stochastic optimization techniques to enhance search
efficiency. Their method uses Gumbel-Softmax relaxation to sample architectures during
training. In FBNet (Wu et al., 2019), authors employ a differentiable masking technique and
leverage a hardware-aware loss function to guide the search towards architectures that are
not only accurate but also adhere to hardware efficiency constraints. Similarly, Stamoulis
et al. (2019) employ a one-shot model to facilitate a computationally efficient and memory-
friendly differentiable search, utilizing a uniform sampling strategy for pathway selection.
In ”Latency-aware Differentiable Architecture Search” (Xu et al., 2020a), authors integrate
latency considerations into a differentiable search framework, aligning the architecture opti-
mization process with practical deployment constraints.

Gradient-based NAS methods have shown the ability to find high-performing architectures
with reduced computational cost compared to other search strategies, such as reinforcement
learning or evolutionary algorithms. However, these methods can be sensitive to hyper-
parameters, initialization, or local optima, which may affect the quality of the discovered
architectures.

The evaluation strategy

In neural architecture search, performance evaluation can be time-consuming and computation-
ally expensive. Recent research has developed methods that can reduce the cost of performance
evaluation. The most common ones are:

1. Lower fidelity estimates: Lower fidelity estimates in neural architecture search are tech-
niques to approximate the performance of candidate neural network architectures using com-
putationally cheaper methods. For example:

• Learning curve extrapolation: In this technique, architectures are trained for only a
few epochs, and the learning curves are extrapolated to estimate the final performance.
This idea is explored in the work by (Klein et al., 2017). Authors use a Bayesian
Neural Network to estimate the learning curve based on the observed performance of
architectures trained on a few epochs.

• Subset of the dataset: Some NAS methods evaluate architectures on a smaller subset
of the dataset to reduce the training and evaluation time. For example, in the work by
Zoph et al. (2018), the authors used a smaller version of the ImageNet dataset, contain-
ing only 1000 images per class, to evaluate architectures during the search phase.

28

• Downsizing: Another approach is to downsize the input data by lowering the resolu-
tion or using fewer modalities from the input. For example in (Gessert and Schlaefer,
2019b), the authors used lower dimensional data to search for the most effective net-
work for image segmentation.

• Fewer training epochs: NAS methods may also reduce the number of training epochs
to save time during the architecture search process. At the end of the search, the best
networks are fully trained to get the final performances.

2. Weight inheritance: Weight inheritance is a technique that reuses or transfers weights from
previously trained architectures to newly generated ones during the search process. This
method accelerates the training of new architectures, allowing the NAS algorithm to explore
the search space more efficiently. Weight inheritance is often applied in combination with
other NAS techniques, such as evolutionary algorithms, where new architectures are gen-
erated through mutation operations. In these cases, weight inheritance can be leveraged to
reduce the training time required for the offspring architectures by initializing their weights
from their parent architectures. One example of weight inheritance in NAS is presented
in (Real et al., 2019) where authors employed an age-based tournament selection mecha-
nism for evolving a population of architectures. During the search process, the weights of
the parent architecture were inherited by the offspring. This weight inheritance allowed the
offspring to start training from a better initialization point.

3. Network Morphism: The idea behind network morphism is to modify an existing trained
neural network architecture into a new architecture while preserving the functionality and
performance of the original network as much as possible Wei et al. (2016). This is achieved
by applying certain morphing operations that maintain the previously learned knowledge and
allow the new network to start its training from a better initialization point using the previous
weights, ultimately reducing the training time and computational cost. An example of a
NAS method that utilizes network morphism is (Elsken et al., 2018). The method generates
child networks through mutation operators, guided by principles of Lamarckian inheritance.
It utilizes Network Morphisms (NM) and Approximate Network Morphisms (ANM) for
mutation. NM preserves the functionality of the network, ensuring the child has the same
initial error as its parent. On the other hand, ANM provides more architectural exploration
and the possibility of reducing network size, an important factor in multi-objective search.

4. One-shot models: One-shot models in NAS aim to accelerate the architecture search process
by training a single, large model containing many candidate architectures.

One of the most well-known one-shot NAS methods is the Efficient Neural Architecture
Search (ENAS) proposed by Pham et al. (2018). In ENAS, a large ”supernet” is constructed,
which contains many neural network architectures as its subgraphs. The key idea is that
many architectures within the search space can share weights with each other, reducing the
training time for each individual architecture. During the search phase, ENAS trains the su-

29

pernet and samples architectures from it, reusing the weights already learned by the supernet
to evaluate the sampled architectures.

5. Surrogate models: Surrogate models are used to provide a computationally efficient ap-
proximation of the true performance of candidate architectures. They are trained using a
limited set of evaluated architectures and their corresponding performance metrics. Based
on this training data, the surrogate model can predict the performance of unseen architec-
tures, guiding the search toward promising areas of the search space. There are various types
of surrogate models used in NAS, including:

• Gaussian Processes (GPs): Gaussian Processes are non-parametric probabilistic mod-
els that provide not only predictions but also uncertainty estimates. In NAS, GPs can be
used to model the relationship between architectures and their performance. This type
of surrogate model is usually found in conjunction with Bayesian optimization search
strategy (Kandasamy et al., 2018).

• Random Forests (RFs): Random Forests are an ensemble learning method that com-
bines multiple decision trees. RFs are used as surrogate models in NAS due to their
robustness and ability to handle high-dimensional and noisy data. In (Zela et al., 2018),
the authors utilize Random Forests for predicting the joint space of architectures and
hyperparameters.

• Neural Networks: Neural networks can also be employed as surrogate models in NAS,
learning to predict the performance of candidate architectures based on their structure
or encoded representation. A prominent example is found in (Siems et al., 2020), where
authors propose a surrogate model based on a feed-forward neural network for predict-
ing architecture performance.

6. Zero-cost proxies: It encapsulates all measures that can give an estimate of the performance
without any training. Some notable zero-cost proxies include:

• Random features: This approach assumes that randomly initialized networks can cap-
ture architectural properties before any training. The performance of a neural architec-
ture is approximated by measuring the similarity between features extracted from the
same network but with different random initializations. For example, Saxe et al. (2011)
demonstrate that random weights and architectures can often achieve decent perfor-
mance without training.

• Architectural priors: Architectural priors use the prior knowledge of architecture
characteristics and design principles to evaluate the performance of a neural architec-
ture without training. The evaluation is based on how well the architecture adheres to
the established architectural patterns. One such measure is presented in (Jiang et al.,
2018), where the authors propose a margin-based measure as a proxy for performance.
This measure helps assess how well an architecture generalizes by analyzing the distri-
bution of margin values.

30

2.3.3 NAS benchmarks

The importance of fair comparison, reproducibility, and unbiased evaluation in NAS research is
critical to drive progress and innovation in the field. NAS algorithms aim to discover optimal
neural network architectures for a given task, but the process can be computationally demanding
and time-consuming. Furthermore, variations in training setups, such as learning rate, weight ini-
tialization, and random seeds, can lead to inconsistencies in performance and affect the ability to
compare different NAS methods. Biases may also arise due to elements such as data augmenta-
tion techniques, regularization methods, and dataset handling. These factors can skew the NAS
algorithm’s ability to choose the optimal model, as the performance comparison may not be based
solely on the merits of the architectures themselves.

The purpose of NAS benchmarks is to provide a standardized framework for evaluating and
comparing different NAS algorithms. By offering consistent datasets, search spaces, and evalua-
tion metrics, they ensure reproducibility and validation of the results and facilitate fair comparison
among NAS algorithms. They also significantly reduce the computational cost and time associated
with NAS experiments by providing precomputed performance metrics for a large number of ar-
chitectures, enabling a broader range of researchers to participate in the field and contribute to its
development, even without access to large-scale training systems.

While in many optimization contexts, the word ”benchmark” is often synonymous with datasets,
in NAS, it not only provides the dataset but also a search space and a structured setting for testing
and comparison. Thus, when we refer to a benchmark in NAS, we are referring to both the dataset
and the standardized evaluation framework built around it.

Several NAS benchmarks have been proposed in the literature to facilitate the evaluation and
comparison of neural architecture search algorithms. A detailed survey about benchmarks can be
found in (Chitty-Venkata et al., 2023). Table 2.1 offers a list of prominent NAS benchmarks of
different categories. It is followed by a presentation of each of them. Extensive details are given
to the benchmarks that we will be using in our studies.

Table 2.1: Summary of famous NAS benchmarks. The highlighted benchmarks will be used in

our studies.

Benchmark Task Size Dataset(s) Metrics
NAS-Bench-101 Image classification 423k CIFAR-10 Val Acc
NAS-Bench-201 Image classification 15k CIFAR-10,

CIFAR-100,
ImageNet16-120

Train, Test, Val
Loss and Acc

NAS-Bench-301 Image classification 1018 CIFAR-10 Val Acc
Train Time
Num Params

MacroNAS Bench-
mark

Image classification 200k CIFAR-10,
CIFAR-100

Val Acc
MMACs

31

NAS-Bench-NLP Natural language
processing

14k TPT, Wiki-2-
Text

Val Perplex-
ity Train Time
Num Params

NAS-Bench-ASR Automatic Speech
Recognition

8k TIMIT Val, Test Acc
Flops.
Num Params

NAS-Bench-Graph Various graph-based
applications

26k 9 Graph dataset Train, Test Acc
Latency
Num Params

NAS-Bench-101 (Ying et al., 2019): NAS-Bench-101 is the first comprehensive benchmark
designed to evaluate and compare neural architecture search algorithms. It provides a fixed search
space, a dataset, and performance metrics for the image classification task. Its key components
are:

• Search Space: NAS-Bench-101 offers a search space of over 420,000 unique convolutional
architectures. Each architecture is built upon a fixed backbone starting with a convolution
operation and ending with max pooling followed by a fully connected layer. In between,
it contains three cells separated by downsampling blocks. Each architecture differs by the
choice of cell composition. A cell is comprised of 7 nodes. The first node is the input, and
the last node is the output. The remaining five nodes can be either 1 × 1 convolution, 3 × 3
convolution, or 3 × 3 max pooling. The cell can take on any directed acyclic graph structure
from the input to the output with at most 9 edges.

• Dataset: NAS-Bench-101 focuses on the CIFAR-10 dataset, which consists of 60,000 32x32
color images across 10 classes, with 6,000 images per class. The dataset is divided into a
training set of 50,000 images and a test set of 10,000 images. This dataset is widely used
for evaluating image classification algorithms due to its manageable size and diverse set of
images.

• Performance metrics: NAS-Bench-101 provides pre-computed results for all architectures
in the search space. The authors trained and evaluated each architecture three times with
different seeds and the same training setting (like learning rate) in each run to prevent bias.
The networks are trained on the CIFAR-10 dataset for a total of 108 epochs.

NAS-Bench-201 (Dong and Yang, 2020): NAS-Bench-201 is another comprehensive bench-
mark designed for image classification tasks. It provides a compact search space, multiple datasets,
and performance metrics. Its main elements are:

• Search Space: The search space of NAS-Bench-201 consists of 15,625 unique convolu-
tional architectures. Each architecture has a fixed backbone comprised of repeated cells.
Each cell contains 4 nodes and allows for five possible operations: zero operation (none),
skip connection, 1 × 1 convolution, 3 × 3 convolution, and average pooling.

32

• Dataset: NAS-Bench-201 provides performance metrics for three image classification datasets,
allowing researchers to assess their ability to generalize to different datasets:

– CIFAR-10: 60,000 32x32 color images in 10 classes, with 6,000 images per class.

– CIFAR-100: 60,000 32x32 color images in 100 classes, with 600 images per class.

– ImageNet16-120: A downsampled version of ImageNet (Deng et al., 2012), containing
120 classes and 16x16 resolution images.

• Performance metrics: NAS-Bench-201 provides several performance metrics for each ar-
chitecture in the search space, including training, validation, and test losses/accuracies on
the three mentioned datasets after 200 epochs. It also provides the number of parameters of
each model.

This benchmark was later extended into NATS-Bench (Dong et al., 2021) with another search
space that includes the macro-topology of the architectures. In this search space, the number of
channels in each cell of the network can vary, adding another level of complexity and flexibility to
the optimization process.

NAS-Bench-301 (Siems et al., 2020): NAS-Bench-301 is another benchmark for evaluating
and comparing NAS algorithms in the context of image classification tasks. It was introduced by
Siems et al. in 2020 and extends the ideas of NAS-Bench-101 and NAS-Bench-201 by providing
an even larger search space, as well as enabling the use of surrogate models to predict architecture
performance.

• Search Space: It’s a convolutional cell-based search space based on DARTS. It consists of
two types of cells: convolutional cells, and reduction cells, each type contains six nodes.
The architecture stacks k convolutional cells together with one reduction cell. For every cell,
the first two nodes are the outputs from the previous two cells in the hyper-architecture. The
next four nodes contain two edges as input, creating a DAG. Each edge can take on one of
seven operations. Since the DARTS search space is very large (approx 1018 architectures)
this benchmark only trains a subset of it and uses a surrogate model to predict the remaining
architectures.

• Dataset: Similar to NAS-Bench-101, this benchmark focuses on the CIFAR-10 dataset.

• Surrogate Models: NAS-Bench-301 introduces the use of surrogate models for predicting
the performance of architectures without requiring computationally expensive training. By
training surrogate models on the precomputed performance metrics of a large number of
architectures, it can estimate the performance of unseen architectures during the search pro-
cess. In this work, authors randomly sampled 60,000 architectures to train various surrogate
models. The best-performing surrogates were LGBoost, XGBoost, and Graph Isomorphism
Network (GIN).

33

• Performance metrics: NAS-Bench-301 provides training, test, and validation accuracy of
each architecture for the CIFAR-10 dataset. It also includes the number of parameters of
each architecture. Since only 60k architectures are trained in this benchmark. The accuracy
and training time provided are calculated using the surrogate models.

MacroNASBenchmark (Den Ottelander et al., 2021): A benchmark designed specifically
for evaluating multi-objective NAS methods.

• Search Space: The search space includes over 200,000 unique architectures. The architec-
tures consist of 14 unrepeated cells (x1 to x14). Each cell xi can take one of three options
(Identity; 3 3x3: MBConv1 with expansion rate 3 and kernel size 3; 6 5x5: MBConv with
expansion rate 6 and kernel size 5).

• Dataset: MacroNASBenchmark focuses on CIFAR-10 and CIFAR-100 datasets presented
previously.

• Performance metrics: MacroNASBenchmark provides for each architecture precomputed
accuracies for the two image classification datasets. It also provides a metric for complex-
ity (the Million Multiply Accumulate Operations MMACs) that can be used as a second
objective in multi-objective NAS.

NAS-Bench-NLP (Klyuchnikov et al., 2022): NAS-Bench-NLP is the first tabular NAS
benchmark designed specifically for natural language processing tasks. It comprises a combi-
nation of standard RNN architectures and modified LSTM and GRU cells. The authors generated
from a cell-based search space more than 14,000 architectures and trained it on The Penn Treebank
dataset. The best-performing 289 networks were further trainted on the larger WikiText-2 dataset.
This benchmark provides the number of parameters, training time, and validation perplexities at
several epochs for the used datasets.

NAS-Bench-ASR (Mehrotra et al., 2021): NAS-Bench-ASR is a NAS benchmark designed
for the Automatic Speech Recognition (ASR) task. It consists of 8,242 network architectures
defined on cell-based search space. The benchmark provides validation accuracy per epoch and
the final test accuracy on the TIMIT audio dataset. It also gives the number of parameters, FLOPs,
and latencies of these networks on diverse platforms such as desktop (Tesla 1080Ti) and embedded
GPUs (Jetson Nano) for different batch sizes. The networks performing very well on the TIMIT
dataset are transferred to the larger LibriSpeech dataset.

NAS-Bench-Graph (Qin et al., 2022): NAS-Bench-Graph is a benchmark designed for evalu-
ating Graph Neural Architecture Search (GNAS). It contains 26,206 unique Graph Neural Network
(GNN) architectures. The architectures are trained on nine diverse graph datasets. This benchmark
provides a variety of metrics for each architecture, including training, validation, and test accuracy
for every training epoch, latency, and the number of trainable parameters. Latency information is
provided for both Intel CPU and Nvidia GPU hardware platforms.

1Inverted Linear BottleNeck layer with Depth-Wise Separable Convolution

34

NAS-Bench-x11 (Yan et al., 2021): NAS-Bench-x11 is an advanced benchmark suite devel-
oped to enhance the granularity of performance tracking in NAS tasks. It was designed to over-
come the limitations of previous NAS benchmarks, which typically allowed either single-fidelity
or very limited multi-fidelity access to training metrics. Instead of providing performance metrics
only at specific epochs or at the final epoch, NAS-Bench-x11 uses a surrogate model to predict
the full training information at any random epoch during the training process. This allows for a
more detailed analysis of the training progression and can lead to more effective and efficient NAS
algorithms. The NAS-Bench-x11 suite includes three surrogate benchmarks—NAS-Bench-111,
NAS-Bench-311, and NAS-Bench-NLP11—that build on previous benchmarks like NAS-Bench-
101, NAS-Bench-301, and NAS-Bench-NLP. These new benchmarks estimate the full learning
curve information, providing a more comprehensive view of the performance of different architec-
tures throughout the training process.

2.4 Conclusion

In this chapter, we presented neural architecture search in detail. We first discussed AutoML, a
concept to automate the machine learning pipeline that includes the field of NAS. After that, we
introduced NAS in the combinatorial optimization taxonomy before discussing the details of its
components. We illustrated each component using examples from the literature and presented the
prominent NAS benchmarks.

We have seen how neural architecture search can be a key to the progress of deep learning. It of-
fers different techniques and many elaborate methods to alleviate the manual and time-consuming
process of architecture design. This trend forced a growing number of contributions in several di-
rections, especially within the search strategy for NAS. However, most of them demand a great deal
of design themselves to offer suitable performances in architecture search. Since we have seen how
interconnected this field is with optimization, we want to contribute by elaborating search strategy
that can be as efficient as complex state-of-the-art methods using a combinatorial optimization
technique. In the next chapter, we introduce our contribution to this field using approaches based
on local search.

35

Chapter 3

A Quest for Efficiency: Building on Local
Search for NAS

“Everything should be made as simple as possible,
but not simpler.“

— Albert Einstein

This chapter contains the work published in the international conference on machine Learn-
ing, Optimization, and Data science (LOD), and the work presented as a poster at the Northern
Lights Deep Learning Conference (NLDL) as well as the one presented at the national conference
Recherche opérationnelle et aide à la décision en France (ROADEF).

• Meyssa Zouambi, Julie Jacques, Clarisse Dhaenens. LS-PON: a Prediction-based Local
Search for Neural Architecture Search. The 8th Annual Conference on machine Learning,
Optimization and Data science LOD2022, Sep 2022, Siena, Italy.

• Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. LS-Weights: Local Search with Weighted
Neighborhood Sampling for Neural Architecture Search. NLDL2022, Jan 2022, Tromso,
Norway.

• Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. Improving Local Search for Neural Ar-
chitecture Search. 23ème congrès annuel de la Société Française de Recherche Opérationnelle
et d’Aide à la Décision, INSA Lyon, Feb 2022, Villeurbanne - Lyon, France.

3.1 Introduction

Neural architecture search has attracted a lot of attention in recent years. Researchers aim to de-
velop the most efficient algorithms to automate the task of architecture design. As a consequence,
many complex methods were proposed as we have seen in the previous chapter. However, the ne-
cessity of having intricate algorithms is sometimes questioned. Using neural networks as a search

36

strategy is especially troublesome since they need design and adjusting as well. The same applies
to other complex strategies that need tuning before they can be used in the NAS process. On top of
this, it has been demonstrated that methods as simple as random search are competitive baselines
when it comes to NAS (Yu et al., 2019). So creating efficient methods is possible without excessive
complexity. Therefore, it is important to consider the simplicity of a search method so it does not
take away the benefit of reducing human intervention. With this in mind, we want to explore the
use of local search (LS) in this area. Our choice is based on the many advantages of LS in the
realm of NAS, namely:

• The simplicity of the process: The local search process is quite straightforward. It involves
starting from an initial architecture and then incrementally adjusting it to improve its perfor-
mance. An easier understanding of the search process can help debug and maintain a clean
perspective on the inner workings of the algorithm.

• Easy solution encoding: Local search does not require a complex encoding of solutions in
the search process. This permits an easy generalization to other tasks and search spaces.

• Few or no-parameters: This characteristic of LS helps with a faster and more general usage
of this method. Since usually no tuning is required to adjust it, it can be utilized out of the
box for new tasks.

• Locality: The concept of locality is the key feature of local search. It is embodied by the
neighborhoods found in LS. This concept has its advantages in NAS as it permits the use of
certain evaluation strategies that speedup the search. For example network morphism (Wei
et al., 2016) or weight inheritance (Real et al., 2017).

• Less computational resources: Compared to other methods such as evolutionary algo-
rithms or reinforcement learning, local search requires fewer computational resources (both
in terms of memory and computational power), making it a more practical option for real-
world usage.

Although it is a promising search strategy, very few works investigated the efficiency of local
search for NAS. In (White et al., 2020), authors explore the theoretical characterization of the land-
scape and its effect on the performance of local search. They proved that LS is a very competitive
method when the noise in the evaluation pipeline is reduced to a minimum. Within this setting,
they demonstrate that hill-climbing -the most known form of LS- can outperform many popular
state-of-the-art algorithms on popular NAS benchmark datasets. These results are confirmed in
(Den Ottelander et al., 2021), where LS is employed in a multi-objective context. It shows that
local search competes with state-of-the-art evolutionary algorithms, even up to thousands of eval-
uated architectures in the multi-objective setting. LS is therefore a method that is very easy to
implement yet yields competitive performances against more complex algorithms.

Local search was also used in conjunction with network morphism as seen in (Elsken et al.,
2017; Kwasigroch et al., 2019). Network morphism is a popular method to rapidly search efficient

37

convolutional neural networks (Wei et al., 2016). This technique allows the expansion of the
network using function-preserving operations and prevents training the resulting architectures from
scratch. LS is a natural way of exploiting this method since its resulting architecture generates
“neighbors” of the current solution.

In this chapter, our goal is to enhance the use of local search for NAS. Our approach aims to
make this algorithm even more efficient by investigating new exploration strategies for LS while
keeping all the advantages previously mentioned. The remainder of this chapter starts with an
explanation of the local search heuristic and introduces how to define its different components
(solution encoding, neighborhood, and evaluation) for neural architecture search. It also explains
the intuition behind making LS more efficient as a search strategy in this field. In the following
sections, we introduce our two contributions LS-Weight and LS-PON both including experiments
and results discussions. We finally conclude the chapter with our insights and future directions.

3.2 Local search for NAS

Local search is a popular heuristic used to approximately solve NP-hard optimization problems.
It starts from an initial solution s0, chosen at random or by using another heuristic. It generates
neighbors of this solution by applying a neighborhood function N . This function applies small
changes to the current solution to create neighboring ones that are close to it. Different ways of
exploring the neighborhood lead to different variants of local search. The heuristic evaluates these
neighbors using a cost function f that assesses their quality. It substitutes the current solution s

with one from N(s) to explore the landscape.
The most popular form of LS is called hill-climbing. In this form, the search updates the current

solution with a better one from the neighborhood. After this update, it reiterates the process until
convergence. The search stops when no neighbor is better than the current solution, so we can no
longer improve it (the heuristic reaches a local optimum). Several exploration strategies can be
chosen: the first-improve updates the current solution with the first improving neighbor found. The
best-improve strategy updates the solution after evaluating all neighbors and picking the one that
improves it the most. The worst-improve strategy evaluates all neighbors and chooses the one that
improves the current solution the least.

In the context of NAS, local search can be used as a search strategy to find the most efficient
solutions (i.e., architectures). In our work, we will be using hill-climbing, with the first-improve
strategy, which allows exploring only a subset of the neighbors of each solution, as our purpose is
to evaluate the least number of architectures for a faster search.

3.2.1 Defining the important components

In order to describe our approach in using local search for NAS, different components must be
defined, namely; the solution encoding, the neighborhood function, and the solution evaluation.

38

Solution encoding

In the context of NAS, a solution s is the architecture of a neural network. To encode it, we
must use a representation that can be translated to a neural network. There are several ways to
encode an architecture. In our work, we use a list of categorical, discrete, and/or continuous values
to represent it. This list can determine the type of operations of each node in the network, the
connections between these nodes, the hyperparameters used for each operation, etc.

Figure 5.2, shows an example of a CNN encoding using the Nas-Bench-201 benchmark (Dong
and Yang, 2020). On the top, the encoding is represented, which is the list of operations applied to
the data and their hyperparameters (note that other hyperparameters not mentioned in the encoding
are fixed and not optimized during the search). On the bottom, the corresponding CNN with its
operations, as defined by the benchmark. In this case, our encoding contains a list of operations that
define a cell. This cell is then introduced in a predefined architecture backbone and is repeated N
number of times. The list of values used for the encoding is sufficient to represent any architecture
as defined by the search space of this benchmark.

Figure 3.1: Encoding of an architecture from NAS-Bench-201. The top represents the encoding

which contains the components of the cell that is present in the architecture backbone in red (best

seen in colors). Each cell has the same structure.

Solution evaluation

Evaluating an architecture is the most time-consuming step in NAS. It requires training the archi-
tecture using a training set and assessing its performance using a validation set.

Depending on the task, architecture, and hardware used, this step can take several hours for
a single evaluation. Therefore, in this part of our work, we will use NAS benchmarks that pro-
vide surrogate performance metrics on both the training set and validation set for all possible
architectures. Since these benchmarks deal with image classification, their evaluation is based on

39

classification accuracy and is calculated as the sum of well-classified images divided by the total
number of images of the set.

We will be using three different NAS benchmarks, NAS-Bench-201 (Dong and Yang, 2020),
MacroNasBenchmark (Den Ottelander et al., 2021), and NAS-Bench-301 (Siems et al., 2020).
Each benchmark defines its own set of operations and their corresponding parameters. This gives a
different number of possible solutions for each of them, which defines the size of the search space.
A more detailed explanation of each of these benchmarks can be found at the end of Chapter 2.

Neighborhood function

The neighborhood function N generates a neighborhood N(s) that contains the architectures close
to a given solution s. These architectures can defer by a single element such as an operation or an
edge from the original solution. In our work, we use the one exchange neighborhood as defined in
(Hutter et al., 2011).

In the studied NAS benchmarks, variables are all categorical. Hence, a neighbor is obtained
by modifying a single variable. The neighborhood of a solution is the set of solutions obtained
by selecting one by one each variable and enumerating all the possible values. The number of
neighbors for each solution in NAS-Bench-201, MacroNasBenchmark, and NAS-Bench-301 is
respectively 24, 28, and 136 neighbors. The size of the neighborhood is relatively small, but it is
important to consider that the evaluation of a solution is extremely costly. So with the size of the
neighborhood, it can quickly become impractical during the NAS process.

Figure 5.3 gives an example of a neighbor generation for a solution from NAS-Bench-201.
Generating one neighbor consists of randomly choosing one operation and changing it with an-
other, for example, here the Zero operation is replaced with a skip connection.

Figure 3.2: Neighbor generation with One exchange neighborhood function.

3.2.2 How to make LS more efficient for NAS

Evaluating architectures in NAS is the most time-consuming step of the search process. To be
more time-efficient, it is important to visit the least number of solutions possible. As previously
mentioned, our work is based on first-improve hill-climbing, which moves to a new solution as

40

soon as it finds a better one, decreasing the number of evaluated solutions is a synonym in this case
to evaluating fewer neighbors. To achieve that, mindfully exploring the neighborhood of a solution
can lead to a speed-up of this process. By evaluating the most promising neighbors first, we are
most likely to find improving solutions quickly and move on with the search. In the next section,
we explore this idea with a first approach that we named LS-Weights.

3.3 LS-Weights: Local Search and the Weight of the Parame-
ters

This section initiates our exploration into consciously navigating the neighborhood of a solution. In
order to avoid sampling too many neighbors that perform badly during the search, it is important
to notice that certain operations/edges are more relevant than others inside an architecture and
should appear more often. So focusing on evaluating architectures with more of the most important
operations can lead to a speed-up in our hill-climbing algorithm. As we have seen in the previous
section, the neighborhood function selects a parameter and then replaces its value with another
randomly to generate a neighbor. If we give a higher probability for a more important parameter
value to be chosen for replacement (i.e. certain operations, edges, etc.), it is more likely that we
end up with a better solution.

As an example, let’s consider a CNN with just four variables, each of which can take one of
three possible operations: Convolution, Pooling, or Identity. We rank these operations by im-
portance and calculate their probabilities for being selected as replacements during the mutation
process. Figure 3.3 highlights how the generation of a neighbor is altered when adding the proba-
bility factor.

Figure 3.3: Neighbor generation with LS-Weights. * The mutation selects the new values based

on the given probabilities.

41

Architecture Convolution Pooling
LeNet-5 2 2
AlexNet 5 3
VGG (VGG16) 16 5
GoogLeNet (Inception v1) 22 5
ResNet (ResNet-50) 49 1
DenseNet (D-121) 121 4
MobileNet V1 13 (Depthwise & Pointwise) 0 (strided convolutions)
EfficientNet (B0) 16 1

Table 3.1: Number of convolution and pooling operations in popular CNN architectures.

3.3.1 Determining the importance of architectural elements

Choosing the importance of an architectural element is an important step in this approach. It can
be done by understanding the role of each of them, or by observing state-of-the-art architecture in
the literature. We can notice in these architectures, which parts are most prevalent. To do so, we
can take several famous architectures for our targeted application and analyze their components.

Since we will be using benchmarks for image classification, the type of architectures defined
in our search space are convolutional neural networks (CNNs). In CNNs, the basic operations are
convolutional and pooling operations (refer to Chapter 2.2 for more details on CNNs). Table 3.1
gives an example of the number of occurrences of such layers in famous CNN architectures.

From this table, it is clear that, while there is no consistent ratio between the numbers of
convolutional and pooling operations, convolutional operations tend to be more numerous. This
insight informs our strategy for exploring the solution space, suggesting that convolutions should
be more frequent in the architecture. Other operations can also be present in CNNs, but since these
are usually very specific to the contributions they appear in, it is difficult to make assumptions
about their importance in a general sense. Such operations are for example skip connections.
These operations allow to transport of the information as it is without processing. They are usually
used to address problems such as the vanishing gradient.

3.3.2 Experiments

To assess our intuition behind the idea of LS-Weights, we conduct experiments using the NAS-
Bench-201 benchmark. Our choice of this benchmark is based on its small set of possible opera-
tions (around 15 thousand) which makes it easier to rank and experiment with. In the NAS-Bench-
201 architectures, each parameter allows for five possible operations: zero operation (none), skip
connection, 1 × 1 convolution, 3 × 3 convolution, and average pooling. We decide to rank these
possibilities based on their importance starting with the highest rank for the two convolutions,
followed by the average pooling, then the skip connection, and finally the zero operation.

After assigning the rank, we set the probabilities of selecting them during the creation of a
new neighbor accordingly. With the highest rank having the highest probability of selection. The

42

formula to calculate the probability of the operation i is n−Ranki +1∑n
j=1 Rankj +1

with rank n being the lowest
rank (ie. the highest number in the order). The following table summarizes the ranks and the
corresponding probability for the given example.

Table 3.2: Parameter values, ranks, and probability of selection

Parameter Value Rank Probability of Selection
Conv3x3 1 0.3243
Conv1x1 1 0.3243
Avg Pool 2 0.1622
Zeroize 4 0.0811

Skip Conn 3 0.1081

For the experimentation protocol, NAS-Bench-201 provides us with the validation and test
accuracy of each architecture in the search space for three datasets. We use the validation accuracy
provided by the benchmark as the search signal. We run the LS and the LS-Weights algorithms
150 times to ensure statistical relevance and compare them. Each run allows 1000 evaluations (the
algorithms restart if they reach convergence). We report the test accuracy found at the end of the
search as well as the number of evaluations needed to reach it. This number is usually a fair proxy
for the speed of the NAS process as the total time of evaluation usually represents the overall time
of the search process. The results and comparison are reported in Table 3.3 and Table 3.4, as well
as Figure 3.4.

Table 3.3: The table indicates the mean and std of the test accuracy found at the end of the

search. The Optimal value is given by the benchmark and represents the highest accuracy

possible using this search space.

Method Cifar10 Cifar100 ImageNet

LS 91.61±0.00 73.49±0.00 46.72±0.05

LS-Weights 91.61±0.00 73.49±0.00 46.73±0.02

Optimal 91.61 73.49 46.73

Table 3.3 shows that both LS and LS-Weights find the optimal solution inside the search space
provided by the benchmark. This proves that LS is indeed state-of-the-art in this benchmark as
stated in the literature. It also shows that by adding the LS-Weights mechanism we did not degrade
the quality of the best solution found during the search.

43

Table 3.4: The table indicates the mean and std of the number of evaluated architectures before

convergence. The Speedup represents how fast LS-Weights is compared to LS.

Method Cifar10 Cifar100 ImageNet

LS 82±56.27 71±48.35 588±408.58

LS-Weights 55±33.80 51±27.73 548±353.18

Speedup 49% 39% 7%

(a) Cifar10 (b) Cifar100 (c) ImageNet16-120

Figure 3.4: The evolution of the validation accuracy across the number of sampled architectures.

Table 3.4 shows the gains achieved using conscious exploration of the neighborhood. We
notice that LS-Weights takes a fewer number of evaluations across the three datasets. It achieves
a speedup ranging from 7 to 49 percent. This acceleration can be significant in a non-benchmark
setting where each evaluation can take several hours or more.

From this experiment, we conclude that both LS and LS-Weights converge toward the optimal
solution, but LS-Weights do so more quickly. This indicates that the modified exploration strategy
can improve search time without sacrificing solution quality.

3.3.3 Discussion

The LS-Weights method defines a very simple process to accelerate the search in LS and shows
us how the choice of operations has an impact on the speed of convergence. However, there are a
few problems that arise from it: First, it still needs a certain level of knowledge and expertise to
understand the role of each parameter and its values. This reduces the automation of this pipeline

44

and does not make it accessible to non-practitioners. Second, it needs to assign new probability
values each time the search space changes, requiring new analysis and adjustments every time.
More importantly, it does not take into account the other values already chosen in the architecture.
It treats each element as a standalone part of it and ignores the importance of certain combinations
of parameters. This method also becomes impractical as soon as we have many parameter values
to rank and can even lead to suboptimal solutions as it might get trapped in local optima quickly.

To solve all these issues, we thought of another solution where we let our algorithm decide dur-
ing the search which operations and combinations of operations are more likely to be a promising
solution. We rely on machine learning to find the appropriate rank of each architecture as a whole
rather than the values of its operators. The next section explains how this method works and the
results we obtained with it.

3.4 LS-PON: Local Search and the Predicted Order of Neigh-
bors

To solve the issues of our previous method LS-Weights, we design a solution that uses machine
learning to take care of selecting the architecture’s importance. This method will give the rank
of the entire architecture inside the neighborhood instead of just ranking standalone parameter
values. This solution permits taking into account the interaction between the values and alleviates
any human intervention or prior expertise for such ranking.

The objective is to still keep all of the benefits that LS offers while being more time-efficient
and easily usable. In this case, the speed-up is achieved by ordering the exploration of neighbors
of a solution using performance predictors.

Performance predictors help to identify good architectures using their characteristics only.
They vary from simple decision trees to deep neural networks (Luo et al., 2020; Liu et al., 2018a;
Baker et al., 2017). Recent works, however, opt for using complex models to accurately represent
the huge number of possible architectures of the search space (Wei et al., 2020; Li et al., 2020).
These methods usually require a pre-sampling step to gather enough architecture-performance
pairs for building the prediction model. To evaluate these NAS approaches, it is necessary to con-
sider the training time required to sample and train architectures for the predictor, as well as the
design and tuning of its hyperparameters. The latter task can be considered counterproductive in
this context, especially if the prediction models used are neural networks.

Wu et al. (2021) offer an interesting perspective on performance predictors. They state that
using multiple simple prediction models at different stages of the search can be more efficient
than using a single complex predictor to accurately predict the performance of the whole search
space. They emphasize that the goal of NAS is to sample the best architectures, and most of the
solutions in the search space will not be evaluated at all. So it is not necessary for a predictor to
accurately estimate the performance of all of them. Their work iteratively creates weak predictors
to determine which architecture is the best in the current subset of the search space. This aspect of
locality is important for prediction. As this work demonstrates, solutions close to each other in a

45

search space are more likely to fit well using a simple predictor.
This observation motivates our work to use multiple simple machine-learning predictors through-

out the search to determine the neighborhood order. Unlike most prediction-based NAS methods,
we design a method that does not require any pre-sampling or parameter-tuning.

The contributions of this part of our work are summarized as follows:

• We create a simple and parameter-free method for NAS based on a local search and machine
learning. This method is easy to implement and requires neither pre-sampling nor parameter-
tuning.

• We use three different NAS benchmarks (with small-scale and large-scale search spaces) to
validate the performance of our method. We confirm the competitiveness of LS and show
that our method gives similar results while being significantly faster in almost all cases.

3.4.1 How it works

The LS-PON is composed of multiple components. Most of these components are in common with
the standard LS algorithm. The solution encoding, neighborhood function, and solution evaluation
all remain unchanged and are described in section 3.2.1. The last element, i.e., the performance
prediction, is the key feature of this method. We will describe it in this section along with the full
process in detail.

Performance prediction

In a normal setting, the local search engine evaluates neighbors in a random order. In our proposed
approach, we aim to evaluate the most promising ones first by ordering them. To determine the
best order in which to evaluate neighborhoods, we use linear regression models. The models do not
need to be sophisticated or accurate to yield good performances, but just good enough to provide an
approximate ranking of the best neighbors quickly. We choose to work with linear regressions, as
they are simple, easy to implement, and do not require parameter tuning. This choice is also based
on the work presented in (Wu et al., 2021), which states that using simple predictors is sufficient
to estimate the performances of architectures that are close to each other.

As a reminder, linear regression is a method that assumes a linear relationship between a set of
variables X = (x1, . . . , xp) and an output variable y as follows:

y = β0 + β1x1 + β2x2 + . . .+ βpxp

Coefficients β = (β0, . . . , βp) are learned by minimizing the residual sum of squares between
the observed targets in the dataset, and the targets predicted by the linear approximation.

The linear models are trained on architecture-performance pairs. The y variable is the perfor-
mance we want to predict using the xi variables which are the list of values describing an archi-
tecture. Note that in this work, the predicted score corresponds to the ranking of a solution, more

46

specifically, the normalized value of its rank, i.e., rank−1
n−1

+ ε, with n being the number of archi-
tectures in the database. Since the encoding contains categorical data, we use one-hot-encoding to
create a binary column for each category and use it as a numerical value for the linear regression.
Figure 3.5 presents an example of 3 simplified architectures and their corresponding representation
used in the linear regression.

Figure 3.5: Representation of a simplified architecture and the corresponding values used for the

linear regression model. Smaller rank scores correspond to better architectures

This method does not require any pre-sampling to build the dataset for architecture-performance
pairs. The first models created can be random, which is equivalent to using a random order for the
neighbors. Each architecture evaluated during the search is added to a history database. They will
be used in future iterations to create more accurate prediction models. Figure 3.6 illustrates how
neighbors are ranked to select the most promising network architecture for the next evaluation.

Figure 3.6: LS-PON Ordereing.

The full process

The process of LS-PON is illustrated in Figure 3.7 and works as follows: after choosing an initial
solution, the method generates the neighborhood of this architecture in step one (1). In step two
(2), the method creates a linear regression model to predict the performance of architectures based
on their parameters. It predicts the ranking of the neighbors and evaluates them in that order in the
third step (3). Each evaluated architecture gets added to the database of architecture-performance

47

pairs (step 4). This database will later be used to create a new (more accurate) linear model in
the next iteration. If the solution is not better than the current one, it moves to the next one in the
neighborhood (step 5a), else, it updates the current solution and reiterates the process (step 5b).
If the search can no longer improve the current solution and the max budget of evaluations is not
reached, it samples a new random solution and restarts the search. Algorithm 1 gives a detailed
description of the proposed method.

Figure 3.7: Main steps of LS-PON.

3.5 Experiments

To test the performance of the proposed algorithm, three different benchmarks are used: NAS-
Bench-201 (Dong and Yang, 2020), NAS-Bench-301 (Siems et al., 2020), and MacroNASBench-
mark (Den Ottelander et al., 2021). Their search spaces contain around 15k, 200k, and 1018 solu-
tions respectively. The choice of the first two benchmarks is to test the algorithm in a cell-based
search space, with a small-scale and a large-scale setting. The last benchmark is for assessing the
performance in a macro search space.

For NAS-Bench-201 and MacroNasBenchmark, we use validation accuracy as the search met-
ric. Hence, the reference will be the best validation accuracy (Optimal) provided by the benchmark.
We compare the algorithm to a standard local search. We also add random search as it is a strong
baseline in NAS and can help us assess the speed of our method in a more general framework. For
NAS-Bench-201, we further compare the results to Regularized Evolution Algorithm (REA) (Real
et al., 2019), which is the best-achieving algorithm reported on the NAS-Bench-201 paper; results
on REA are taken as-is from this paper. We set the maximum number of evaluations for these two
benchmarks to 1500 evaluated architectures.

48

Algorithm 1 Local search with a predicted order of neighbors - LS-PON
Input: A: search space
N : neighborhood function
maxBudget: maximum number of evaluations
Initialization
Randomly pick an architecture a ∈ A
acc a, best acc← Evaluate(a)
D ← ∪{(a, acc a)}
nbEval ← 1
while nbEval ≤ maxBudget do

Create prediction model M and train it using D
Predict rank of each u ∈ N(a) using M
Order N(a) based on the predicted ranks
for u ∈ Ordered N(a) do
acc← Evaluate(u)
D ← D ∪ {(u, acc)}
nbEval ← nbEval + 1
if acc ≥ best acc then

Update current solution: a← u
Update best score: best acc← acc
Exit for loop

end if
if nbEval > maxBudget then

return best architecture
end if

end for
if best solution not updated, randomly sample a new one and continue searching

end while
Output: Best architecture found

For NAS-Bench-301, we report the validation accuracy given by the surrogate model provided
in the benchmark. In the literature, experiments conducted on this search space suggest that the
best architectures perform around 95% of validation accuracy (Siems et al., 2020). As previously,
we compare our algorithm against a local search and a random search. Since it has a larger search
space than the previous two benchmarks, we set the maximum number of evaluations to 3000
architectures.

For the prediction models, we use the linear regression model from the Scikit-learn library
v0.23 (sklearn.linear model.LinearRegression with default parameters).

For each benchmark, all experiments are averaged over 150 runs. LS and LS-PON start with the
same initial solution in every run. Note that the algorithms will restart after converging as long as
they have not exhausted the maximum number of evaluations budget. We compare the algorithms
from different standpoints: the mean accuracy, the convergence speed, and the dynamic of each

49

method.

3.5.1 Results

Table 3.5: Performance evaluation on the three benchmarks. Each algorithm uses the validation

accuracy as a search signal. Optimal indicates the highest validation accuracy provided by the

benchmark. We report the mean and std deviation of 150 runs for Random search, LS, LS-PON. †

taken from Dong and Yang (2020).

NAS-Bench-201 MacroNasBench NAS-Bench-301
Method Cifar10 Cifar100 ImageNet Cifar10 Cifar100 Cifar10

REA† 91.19±0.31 71.81±1.12 45.15±0.89 – – –

RS 91.48±0.09 72.93±0.38 46.39±0.23 92.22±0.06 70.22±0.08 94.52±0.08

LS 91.61±0.00 73.49±0.00 46.72±0.03 92.46±0.04 70.45±0.02 95.11±0.05

LS-PON 91.61±0.00 73.49±0.00 46.73±0.00 92.48±0.02 70.47±0.02 95.11±0.06

Optimal 91.61 73.49 46.73 92.49 70.48 ≈95

Table 3.5 reports the validation accuracy for random search (RS), local search (LS), and LS-
PON on the three benchmarks. It also reports the REA Real et al. (2019) method for NAS-Bench-
201 for comparison. We notice that LS and LS-PON give state-of-the-art results in all benchmarks.
Finding either optimal or close to optimal accuracy in all cases. With LS-PON slightly surpassing
LS in some cases. Both methods significantly surpass random search. For REA, despite being
the best-reported algorithm on the NAS-Bench-201 paper, random search still outperforms it in all
available datasets. This could suggest that the hyperparameters of REA are too specific to the NAS
problem it was designed for and did not generalize well. This also confirms that random search is
a strong baseline in NAS (Li and Talwalkar, 2020).

Since both algorithms, LS and LS-PON, give similar performances on data quality, to further
compare them, we need to analyze their speed. Indeed, in a non-benchmark setting, each sampled
architecture needs to be trained. Training an architecture takes significantly more time than running
a local search. For this reason, the number of sampled architectures is a strong indicator of the
speed of each method.

Table 3.6 reports the mean and standard deviation of the number of evaluated architectures
during the search. Both LS and LS-PON restart after convergence as long as the evaluation budget
is not reached. Since random search never surpasses these two methods after exhausting all of its
evaluation budget (1500 for the first two benchmarks and 3000 for the last one) it is omitted from

50

Table 3.6: Speed evaluation on the three benchmarks. The table indicates the mean and std

deviation of the number of evaluated architectures before convergence. Values in bold mean

statistically better (Wilcoxon’s test).

NAS-Bench-201 MacroNasBench NAS-Bench-301
Method Cifar10 Cifar100 ImageNet Cifar10 Cifar100 Cifar10

LS 82±56 71±48 588±408 622±414 628±393 1792±833

LS-PON 59±45 49±24 281±168 539±403 483±417 1880±835

Speedup 38% 44% 109% 15% 30% -4%

this table. The acceleration obtained using LS-PON is reported in the last line of the table. It shows
that in both NAS-Bench-201 and MacroNasBenchmark, there is a significant speedup ranging from
15% to up to 109%. In NAS-Bench-301, however, LS-PON shows less efficiency with a slower
convergence time. Figure 3.8 gives examples that illustrate the evolution of the validation accuracy
across the number of evaluated architectures for a different dataset in each benchmark. It shows
how LS-PON is faster than LS in NAS-Bench-201 and MacroNasBenchmark for ImageNet16-120
(IMNT) and Cifar100 respectively, and how it is slightly less efficient in NAS-Bench-301 for its
Cifar10 dataset.

Table 3.7: Results on all benchmarks. The table indicates the mean and std deviation of the

number of required evaluations before improving on the current solution during the search.

Values in bold mean statistically better (Wilcoxon’s test)
.

NAS-Bench-201 MacroNasBench NAS-Bench-301
Method Cifar10 Cifar100 ImageNet Cifar10 Cifar100 Cifar10

LS 4.66±4.38 4.69±4.43 4.55±4.34 5.45±5.70 5.49±5.70 18.16±26.08

LS-PON 2.22±3.06 2.05±2.86 1.94±2.62 2.50±3.12 2.48±2.90 18.66±26.78

Table 3.7 further shows the dynamic of these methods. It reports the number of evaluated neigh-
bors before improving on the current solution. In NAS-Bench-201 and MacroNasBenchmark, it
requires from 2 times to almost 3 times the number of evaluations for LS to find a better neigh-
bor compared to LS-PON. For this reason, LS-PON progresses more quickly during the search.

51

(a) NAS201-IMNT (b) MNBench-C100

(c) NAS301-C10

Figure 3.8: Example of the evolution of the validation accuracy across the number of evaluated
architectures for a dataset of each benchmark. NAS201-IMNT, MNBench-C100, and NAS301-C10
correspond to NAS-Bench-201 for ImageNet16-120, MacroNasBenchmark for Cifar100, and
NAS-Bench-301 for Cifar10. Results are averaged for 150 runs for all algorithms. The shaded region
indicates the standard deviation of each search method.

In NAS-Bench-301, however, it takes around 2% more neighbor evaluation for LS-PON to find a
better neighbor compared to LS, which makes LS-PON slightly slower in this case.

To investigate the reason behind this, and understand the effectiveness of this method in the
different benchmarks/datasets, an analysis of the distance between the current solution’s accuracy
and its neighbors’ accuracy is conducted. This analysis seeks to determine if the difference between
the neighbors’ accuracies affects the method’s effectiveness. To do this, the mean absolute error
between the current solution accuracy, and its neighbors’ accuracy is calculated for a sample of
solutions. Results of this are represented in Figure 3.9. We see that for the three datasets in
NAS-Bench-201, there is a notable difference between the neighbors’ performances. Hence, the
predictor can more easily classify them and identify the best ones. This difference is less visible
on MacroNasBenchmark but the benchmark still has a certain number of outliers (represented by

52

Figure 3.9: Box plots represent the distribution of distances between the validation accuracy of a solution
and its neighbors, and diamonds represent outliers. NAS201, MNBench, NAS301 stand for
NAS-Bench-201, MacroNasBenchmark and NAS-Bench-301. C10, C100 and IMNT are respectively
Cifar10, Cifar100 and ImageNet16-120.

diamonds in the Figure) that can be easily recognized by the predictor.
On the other hand, in NAS-Bench-301’s dataset, the difference between the accuracy of neigh-

bors is negligible (there is a mean of 0.14% difference in their accuracy) and there are also not
many noticeable outliers to recognize during the search. The search space of this benchmark is
mostly composed of good architectures with very close performances as presented in their paper
Siems et al. (2020).

This shows that the method is more efficient if the improvement to make is relatively observ-
able. This is expected in problems where the search space contains a diverse set of solutions.

LS-PON proved that it can be more than twice as fast as the LS without the ordering mecha-
nism. Its effectiveness relies on the diversity of solutions in the search space and works better if
there is an observable difference in terms of accuracy between neighbors.

3.6 Conclusion

In this chapter, we introduced two approaches to improve the time efficiency of local search. The
first LS-Weights, is based on ranking the importance of operations inside a network to effectively
guide the neighbor generation. It reduces the number of required evaluations without compromis-
ing on the quality of the final solution. However, this method still requires human expertise and
intervention. To improve on this, we have designed a second approach, called LS-PON, that is
based on performance predictors for neighborhood order. This method, on top of being also more
time efficient than the vanilla local search (from 30% to 109% faster in some datasets), is easy
to implement, does not require any hyper-parameter tuning, and yields state-of-the-art results on
three popular NAS benchmarks.

In the future, we will test other types of predictors and analyze their impact on the results. We
also aim to make this method more robust to search spaces that mostly contain solutions with very

53

close performances.
Now that we have implemented an efficient method in the single objective context, an interest-

ing next step is to find a similar parameter-free method that can compete with other works in the
multi-objective context, and see if it scales well with the growing objectives of architecture design,
such as the size of the network, the energy consumption, the inference times, etc. To do that, we
will study in the next chapter the problem of multi-objective NAS and its challenges.

54

Chapter 4

Multi-objectively, NAS

“The art of life lies in a constant readjustment to
our surroundings.“

— Kakuzo Okakura

4.1 Introduction

Balancing several competing factors is a crucial aspect of neural network design. While achiev-
ing high performances on a given task is important, other aspects are also essential in real-world
applications. Depending on the chosen task and targeted applications, several characteristics need
to be considered. For example, considering model complexity in the design process can lead to
neural networks that are less prone to overfitting. Similarly, considering the memory footprint or
energy consumption is critical for resource-constrained environments. Likewise, being mindful of
the inference time can be important for applications that have time-constrained predictions. These
examples illustrate the multifaceted nature of neural network architecture design. It highlights
the importance of a multi-objective (MO) approach that balances competing factors according to
the specific use case and constraints. For this reason, researchers have been exploring alternative
optimization approaches that incorporate more elements into network design. Multi-objective opti-
mization in NAS addresses this challenge by balancing trade-offs between predictive performance
and other metrics, leading to more practical models. By focusing on multiple objectives, NAS can
discover diverse architectures that cater to different needs, allowing practitioners to select the most
suitable architecture for their problem.

In this chapter, we explore how multi-objective optimization is used in neural architecture
search. To do that, we begin by briefly explaining multi-objective optimization and its key features.
Next, we present a classification of the approaches used in MO NAS with the most notable works
found in the literature. Lastly, we conclude with the challenges we identified that are left to address
in this area.

55

4.2 Multi-objective optimization in a nutshell

Multi-objective optimization is a branch of optimization that deals with problems involving several,
often conflicting, objectives. In these problems, the goal is to find a set of solutions that achieve an
optimal balance between the various objectives, rather than optimizing a single objective function.
The primary challenge in multi-objective optimization is navigating the trade-offs between the
objectives, as improving one objective might lead to the degradation of others.

4.2.1 Problem formulation

The problem formulation of multi-objective optimization involves defining the objectives, decision
variables, and the feasible region determined by constraints on the decision variables. Let us denote
the decision variables as x ∈ Rn and the k objective functions as fi(x), where i = 1, 2, . . . , k. The
multi-objective optimization (minimization) problem can be formulated as:

minimize F (x) = (f1(x), f2(x), . . . , fk(x)) subject to x ∈ X , (4.1)

Where F (x) is a vector of the k objective functions, and X is the feasible region determined
by constraints on the decision variables.

4.2.2 Pareto dominance and Pareto optimality

In Pareto dominance, a solution x1 is said to dominate another solution x2 if x1 is at least as good
as x2 in all objectives, i.e. (in a minimization context), fi(x1) ≤ fi(x2) ∀i = 1, 2, . . . , k. and
x1 is strictly better than x2 in at least one objective, i.e., fi(x1) < fi(x2) for at least one i (Deb,
2011).

Pareto optimality is a state where it is impossible to improve one objective function without
worsening at least one of the other objective functions. A solution is said to be Pareto optimal if
no other feasible solution dominates it.

The Pareto front is the set of all Pareto-optimal solutions in the solution space. These solu-
tions represent the trade-offs between the competing objectives, and decision-makers can choose a
solution from the Pareto front based on their preferences or other criteria. Figure 5.6 gives a rep-
resentation of a Pareto-front for a bi-objective problem with f1 and f2 the objectives to minimize.

4.2.3 Techniques in multi-objective optimization

Multi-objective optimization algorithms aim to discover a diverse set of solutions that lie on or
close to the Pareto front, representing the optimal trade-offs among the conflicting objectives.
In this section, we introduce a set of exact approaches, the scalarization approach, as well as
a selection of classical metaheuristic methods, each recognized for its usefulness in addressing
multi-objective optimization problems.

56

Figure 4.1: Example of a Pareto-front for a bi-objective problem.

The Scalarization approach (Marler and Arora, 2004):

Scalarization allows the transformation of multi-objective problems into single-objective problems
by combining the objectives into a scalar function (generally using weighted sum or product). This
enables the use of traditional single-objective optimization algorithms offering a straightforward
way to handle multiple objectives. In this scenario, exploring the Pareto-front requires adjusting
weights to discover a new solution for each setting.

Exact method:

Exact methods in multi-objective optimization serve as a solution for finding solutions that lie on
the Pareto front with a guarantee of optimality. Unlike heuristic and metaheuristic methods, which
seek approximations of the optimal solution, exact methods provide precise and accurate results,
ensuring that all the solutions are truly non-dominated. Prominent examples of exact methods
include:

• Epsilon-constraint (Haimes, 1971): The epsilon-constraint method is used to find Pareto
solutions by optimizing one objective while setting specified limits, or ”epsilon constraints,”
on the other objectives. The process involves systematically varying the constraints on one
objective, while optimizing another, to generate a set of solutions that form a part of the
Pareto front.

• The two-phase method (Ulungu and Teghem, 1995): The two-phase method is particu-
larly employed in bi-objective optimization. In the first phase, it identifies the two extreme
points of the Pareto front by optimizing each objective separately. In the second phase, it
explores between these extremes, utilizing scalarization techniques to find additional sup-

57

ported Pareto optimal solutions. A generalization to this method accounts for more than two
objectives and was proposed by Tenfelde-Podehl (2003)

• Parallel Partitioning Method (PPM) Lemesre et al. (2007): Another exact method de-
signed for bi-objective optimization. The method has three stages to determine the entire
Pareto front. Initially, it computes the Ideal and Nadir points, using extreme solutions in
the bi-objective case, to constrain the search space. Next, it seeks well-distributed efficient
solutions to segment the search space. Finally, it finds other efficient solutions by further nar-
rowing the search space using solutions from the second stage. PPM was later generalized
to K-PPM to account for more than two objectives in (Dhaenens et al., 2010)

Metaheuristic:

Metaheuristics offer an alternative approach to solving multi-objective optimization problems.
They are particularly useful when dealing with large-scale or computationally intensive scenar-
ios. These methods, while not guaranteeing optimality, provide a practical and efficient means
to approximate the Pareto front, balancing solution quality and computational effort in complex
optimization landscapes. The following is a selection of well-known algorithms in this category:

• The Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002): NSGA-
II is an evolutionary multi-objective optimization algorithm that iteratively generates and re-
fines a population of candidate solutions. It ranks solutions based on non-domination and
crowding distance, using these measures for selection. Genetic operators are applied to cre-
ate offspring, which are combined with parents and sorted to form the next generation. The
result is a diverse set of non-dominated solutions (an approximation of the Pareto optimal
solutions), each representing a unique trade-off among objectives.

• The Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) (Zhang
and Li, 2007): In MOEA/D, the multi-objective optimization problem is decomposed into
a number of scalar optimization subproblems that are solved simultaneously. Each subprob-
lem focuses on optimizing a specific region of the Pareto front. Solutions are evolved by
considering their own subproblem and those of neighboring subproblems, encouraging di-
versity. Like NSGA-II, this algorithm also provides an approximation of the Pareto optimal
solutions representing trade-offs among the objectives.

• The Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001): A multi-
objective optimization algorithm that works through an iterative process of evolving a popu-
lation of candidate solutions. It assigns fitness to solutions based on their degree of domina-
tion and density estimates. It employs binary tournament selection, crossover, and mutation
operators to generate offspring. Solutions from the combined offspring and parent popu-
lations are selected to update an external archive of non-dominated solutions, ensuring the

58

maintenance of quality and diversity. Similar to the previous approaches, the algorithm out-
puts an approximation of the set of non-dominated solutions upon meeting a termination
criterion.

• Dominance-based Multi-objective Local Search (DMLS) (Liefooghe et al., 2012): This
approach presents a comprehensive model that contains multi-objective strategies that it-
eratively improve a set of non-dominated solutions through local explorations. Its main
elements include a neighborhood function, a selection mechanism, an archive, and an ex-
ploration strategy. The most notable example of DMLS is the Pareto Local Search (Paquete
et al., 2004). As its name suggests, this method also returns an approximation of the set of
non-dominated solutions at the end of the search.

4.2.4 Performance metrics

To evaluate the quality of the obtained solutions and compare different multi-objective optimization
algorithms, various performance metrics can be used. Widely used performance metrics are:

• Spacing: Spacing is a performance metric used in multi-objective optimization to evaluate
the diversity of an approximation set of solutions. It provides a measure of how uniformly
the solutions are distributed along the Pareto front. A well-distributed set of solutions is
desirable, as it allows decision-makers to choose from a diverse set of alternatives that span
the trade-offs between objectives.

• Generational Distance (GD) and Inverted Generational Distance (IGD): These two met-
rics are distance-based performance indicators. GD quantifies the average distance from each
non-dominated solution in the approximation set to the closest point on the reference Pareto
front. On the other hand, IGD calculates the average distance from each point on the ref-
erence Pareto front to the nearest non-dominated solution in the approximation set. In both
cases, smaller values signify better convergence towards the reference front. IGD, in partic-
ular, accounts for both convergence and diversity in the approximation set, as it considers
the distances from the entire reference Pareto front to the obtained non-dominated solutions.

• Hypervolume Indicator: Also known as the S-metric, it measures the volume in the objec-
tive space that is dominated by the approximation set and is bounded by a reference point,
which is typically chosen to be worse than the worst values for each objective. A larger hy-
pervolume indicates a better approximation of the Pareto front. The hypervolume captures
two aspects of multi-objective optimization: how close the approximation set is to the true
Pareto front, and how evenly the solutions are distributed along the Pareto front. By consid-
ering the volume dominated by the approximation set, the hypervolume indicator provides a
single scalar value that accounts for both of these aspects.

59

4.3 The state of the literature in multi-objective NAS

Traditional NAS approaches generally focus on optimizing a single objective, such as minimizing
the error rate or maximizing the accuracy. However, real-world applications often require balanc-
ing multiple objectives. For example, it may be desirable to minimize the resources consumed
by the neural network or to have a neural network with reduced inference time. Multi-objective
NAS is an advanced approach in the field of neural architecture search that aims to optimize mul-
tiple objectives simultaneously. The most common objectives considered when designing a neural
network are presented in the next section.

4.3.1 Common objectives in neural network design

• Accuracy: The primary objective is often to maximize the accuracy of the model on a given
task, such as classification or regression. This can be measured using metrics like top-1
accuracy, top-5 accuracy, F1-score, etc.

• Computational complexity: Another common objective is to minimize the computational
complexity of the architecture. This can include reducing the number of parameters, FLOPs
(floating-point operations per second), or total model size (memory footprint).

• Latency: Minimizing the inference time, or latency, is crucial for many real-time applica-
tions. This can involve optimizing the architecture to reduce the number of layers, convolu-
tions, or other operations that impact the model’s latency.

• Energy efficiency: For edge devices and mobile applications, energy efficiency is an impor-
tant consideration. This objective aims to minimize the energy consumption of the neural
network during training and inference, often by reducing the number of operations or sim-
plifying the architecture.

• Robustness: Ensuring that a model is robust to adversarial attacks, noise, or other perturba-
tions is another objective in multi-objective NAS. This can involve optimizing the architec-
ture to improve the model’s generalization capability and resilience to various perturbations.

• Transferability: Some NAS methods aim to optimize architectures that can be easily trans-
ferred to other tasks or domains. This can involve searching for architectures with good
performance across a range of tasks or datasets, or optimizing for architectures that can be
fine-tuned with minimal additional training.

• Fairness: In applications where fairness is a concern, NAS can be used to optimize archi-
tectures that mitigate biases and ensure equitable performance across different demographic
groups. This may involve minimizing the disparity in performance metrics across different
subgroups of the data.

60

4.3.2 Approaches for multi-objective NAS

Many approaches have been used in the literature to tackle the problem of multi-objective NAS.
They can be found using different search strategies to fetch the best architectures. In this section,
we will give an overview of the literature for the most notable works found in each approach.

Evolutionary algorithms

The broad field of multi-objective NAS has seen a variety of evolutionary algorithm-based ap-
proaches. Each of these approaches offers unique strategies and techniques to optimize multiple
objectives simultaneously. For instance, LEMONADE (Elsken et al., 2018), a multi-objective
NAS method, optimizes for predictive performance, inference time, and the number of parame-
ters. It maintains a population of trained networks that form an approximate Pareto front. The
method generates child networks through mutation operators, guided by principles of Lamarckian
inheritance. It utilizes Network Morphisms (NM) and Approximate Network Morphisms (ANM)
for mutation (Kwasigroch et al., 2019). An alternative evolutionary algorithm-based approach is
implemented by NSGA-Net (Lu et al., 2019). It leverages the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) for maintaining a diverse set of solutions across objectives. This tech-
nique concurrently optimizes for classification error and computational complexity, quantified by
the number of floating-point operations during a forward pass. NSGA-Net applies a three-stage
process: it initializes a population based on hand-crafted architectures, explores through genetic
operations (crossover and mutation), and exploits the knowledge from previously evaluated archi-
tectures using a Bayesian Network. Further, Lu et al. (2020) present another example of these types
of algorithms. This method considers both classification performance and computational cost in
the architecture design process. To progressively modify architectural components, it uses genetic
operations for recombination and mutation. To improve computational efficiency, it employs two
strategies: down-scaling of architectures during the search phase and reinforcement of patterns
common among successful past architectures through Bayesian model learning.

Evolutionary algorithm-based approaches exhibit a shared principle: evolving populations of
network architectures to achieve optimal trade-offs between objectives. These methods make use
of mutation operators and genetic operations, introducing variability in architecture design. This
variability, coupled with methodologies for retaining desirable traits (e.g., Lamarckian inheritance,
Bayesian model learning), results in an efficient exploration-exploitation balance across the archi-
tecture search space. However, it is important to consider the potentially high computational cost
associated with these methods due to the necessity of training a multitude of child networks.

Swarm optimization

In the context of multi-objective NAS, swarm optimization-based approaches have also been ex-
plored, with different methods presenting unique strategies to optimize various objectives concur-
rently. One such example is MOCS-Net (Zhang et al., 2020), this method applies a multi-objective
cuckoo search algorithm to NAS, with a specific focus on mobile device network architecture. It

61

operates within a compact and flexible search space using block-wise efficient mobile CNNs. It
leverages Lévy flights as mutations to enhance the search for optimal architectures. MOCS-Net
aims to balance classification accuracy and computational resources. The parameters it consid-
ers include inference latency, the number of parameters, and floating-point operations (FLOPs).
Another method, MOCNN (Wang et al., 2019), employs Multi-Objective Particle Swarm Opti-
mization (MOPSO) to evolve deep convolutional neural networks. It targets the trade-off between
classification accuracy and computational cost, with the latter quantified by Floating Point Op-
erations (FLOPs). This measure reflects both training and inference costs. MOCNN automates
the tuning of hyperparameters of DenseNet, focusing on parameters such as the number of dense
blocks, growth rate, and the number of layers in each dense block. By applying an optimized
MOPSO algorithm to these encoded dense blocks, MOCNN optimizes the two objectives. The
algorithm retrieves non-dominant solutions, which represent a Pareto front of optimized CNN ar-
chitectures. Users can then select the most suitable architecture from these non-dominant solutions,
considering their specific needs and resource availability.

With their unique mutation mechanisms, swarm optimization-based methods present an inter-
esting approach to multi-objective NAS. However, the complexity of their operators may introduce
challenges in tuning the search process, and, similar to evolutionary algorithms, they may result in
high computational costs.

Reinforcement learning

Reinforcement learning approaches have also been popular in multi-objective NAS. For instance,
MONAS (Hsu et al., 2018) utilizes a reinforcement learning framework guided by an RNN con-
troller. The controller generates a sequence of tokens, with each representing a different aspect
of the architecture and hyperparameters of a convolutional neural network. After the controller
generates an architecture, it is trained and its performance on the validation set provides the reward
signal, which is a combination of multiple reward functions. The latter may include a weighted
sum of accuracy and energy cost or a hard constraint on either. The same paper also introduces
MONAS-S, which uses a weight-sharing technique. This technique allows architectures sampled
by the controller to share weights, reducing the computational cost of training each sampled archi-
tecture individually.

MnasNet (Tan et al., 2019) is another approach that uses a reinforcement learning framework,
incorporating real-world latency into the main objective of the architecture search. It aims to op-
timize the trade-off between accuracy and latency. This method is composed of an RNN-based
controller and a mobile phone-based inference engine. The controller generates new neural net-
work architectures which are then trained and executed on mobile phones to measure their actual
latency. A reward, defined by a customized weighted product between accuracy and latency, is
computed for each model and used to update the parameters of the controller via Proximal Policy
Optimization. MnasNet also employs a novel factorized hierarchical search space to balance the
flexibility and size of the search space while promoting layer diversity.

Reinforcement learning is a powerful method that has also been tailored for multi-objective

62

NAS. It uses reward signals, often based on the scalarization of objectives, allowing the account
of objective trade-offs. However, such an approach is considered sub-optimal in multi-objective
optimization (Deb, 2011).

Gradient-based optimization

Gradient-based optimization is another approach that has been used in multi-objective NAS. It
enables efficient and direct optimization of the architecture. This approach utilizes gradient infor-
mation to guide the search, optimizing architecture parameters in a continuous space. An example
is ProxylessNAS (Cai et al., 2018), a gradient-based algorithm aimed at optimizing network archi-
tectures for specific tasks and target hardware without relying on proxy tasks. The design of Prox-
ylessNAS includes path-level binarization to manage memory consumption during the architecture
search process. It also incorporates a latency regularization loss to consider hardware-specific con-
straints in the optimization process. ProxylessNAS has been evaluated on large-scale datasets, like
CIFAR-10 and ImageNet, across different hardware platforms, including GPUs, CPUs, and mobile
devices.

Another instance is FBNet (Wu et al., 2019), which employs a differentiable neural architec-
ture search framework for the design of convolutional neural networks. By using gradient-based
methods to optimize the architecture, it eliminates the need to enumerate and train each individ-
ual architecture separately. Its loss function includes the latency of the architecture on the target
hardware, using a weighted product with the cross-entropy. Furthermore, an exponent coefficient
is added to modulate the magnitude of the latency term, allowing for a more flexible and hardware-
aware network design.

Gradient-based methods for multi-objective NAS provide significant advantages, such as com-
putational efficiency, flexibility, and scalability, making them suitable for large-scale tasks. How-
ever, these methods have their limitations. They can fall into local optima due to the complexity of
NAS search spaces, and the requirement of discretizing the continuous optimization space can lead
to sub-optimal solutions. Additionally, designing suitable regularization terms or loss functions to
balance multiple objectives can be challenging, adding to the complexity of the problem.

Bayesian optimization

Bayesian optimization is another approach that was used to efficiently navigate the search space
and optimize objectives. We find it in SpArSe (Fedorov et al., 2019) which utilizes this strategy to
optimize convolutional neural networks for microcontrollers with limited resources (often used in
Internet of Things (IoT) devices). The method in SpArSe combines neural architecture search and
pruning in a unified framework to balance three competing objectives: inverse validation accuracy,
model size in bits, and maximum working memory across all CNN layers. The process includes
sampling a set of configurations, which are either generated by a multi-objective Bayesian op-
timizer (MOBO) or selected randomly, to ensure broad coverage of the search space. MOBO
evaluates changes to previously sampled configurations, yielding both new and reference configu-

63

rations. Subsequently, the new configuration inherits parameters from the reference, followed by
retraining and pruning. This approach provides an efficient and flexible method to optimize CNNs,
even under tight resource constraints, making it especially suited for IoT applications.

Bayesian optimization gives a different approach to multi-objective NAS and can exploit pre-
vious information during the search process. Nonetheless, this approach is challenged by the high
dimensionality of the NAS search spaces.

Table 4.1: Illustrative work from the literature

Name Paper Search Strat-
egy

MO Approach Objectives

LEMONADE (Elsken et al.,
2018)

Evolutionary
Algorithm

Scalarization
Pareto-based

Accuracy, Infer-
ence time, Num param-
eters, Num Operations

NSGA-Net (Lu et al.,
2019)

Evolutionary
Algorithm

Pareto-based Classification error,
floating-point opera-
tions (FLOPs)

MOCNN (Wang et al.,
2019)

Swarm Opti-
mization

Pareto-based Accuracy,
floating-point opera-
tions (FLOPs)

MOCS-Net (Zhang et al.,
2020)

Swarm Opti-
mization

Pareto-based Accuracy, in-
ference latency, num-
ber of parameters, and
floating-point opera-
tions (FLOPs)

ProxylessNAS (Cai et al.,
2018)

Differentiable
NAS

Scalarization Accuracy, La-
tency on different hard-
ware

MONAS (Hsu et al.,
2018)

Reinforcement
Learning

Scalarization Accuracy,
Energy

MnasNet (Tan et al.,
2019)

Reinforcement
Learning

Scalarization
(weighted prod-
uct)

Accuracy,
Latency

FBnet (Wu et al.,
2019)

Differentiable
Strategy

Scalarization
(weighted prod-
uct)

Cross-entroypy,
Latency

SpArSe (Wu et al.,
2019)

Bayesian Op-
timization

Scalarization Validation Accuracy,
Model size in bits, max-
imum working memory

64

4.4 Conclusion

The landscape of MO NAS methods is diverse, it employs various strategies such as evolution-
ary algorithms, reinforcement learning, or gradient-based optimization to balance critical factors
in neural network design. Each method offers a distinctive trade-off between performance, com-
putational efficiency, and resource utilization, and presents a set of strengths and potential chal-
lenges. For example, evolutionary and swarm optimization-based approaches excel at exploring a
wide range of architectures and optimizing multiple objectives concurrently. However, they often
require substantial computational resources and time due to the necessity of training numerous
networks.

Reinforcement learning and gradient-based optimization methods introduce efficient ways of
exploring the search space and directly optimizing network architectures, reducing the computa-
tional load compared to their evolutionary and swarm optimization counterparts. However, these
methods can face challenges with the scalarization of objectives and maintaining a broad explo-
ration of the search space.

Bayesian optimization also provides a unique approach to the problem. However, the high-
dimensional nature of the search space in NAS may pose a challenge, as it traditionally works best
in lower-dimensional spaces.

We summarize this with a set of illustrative works in Table 4.1. This table presents the search
strategy used, its multi-objective approach to optimization, and the objectives.

One particular problem that is shared between these different approaches is the complex de-
sign required for these approaches to transfer to the NAS problem. This challenge is particularly
counter-productive if our goal is to minimize the manual labor required in designing neural net-
works.

In the next chapter, we will present a different approach that tries to solve the above issues with
a dominance-based multi-objective local search. This chapter will include our reasoning behind
this choice as well as a detailed explanation of how to adapt this method to neural architecture
search.

65

Chapter 5

An Alternative Pareto-based Approach for
Multi-objective NAS

“The whole is greater than the sum of its parts.“

— Aristotle

This chapter contains the work presented as a workshop in the International Joint Conference
on Artificial Intelligence (IJCAI) and published as a conference paper at the Congress on Evolu-
tionary Computation (CEC).

• Meyssa Zouambi, Julie Jacques, Clarisse Dhaenens. Dominance-Based Local Search for
Neural Architecture Search, DSO Workshop, IJCAI 2022, Vienna, Austria.

• Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. An Alternative Pareto-based Approach
to Multi-objective Neural Architecture Search. IEEE 2023 Congress on Evolutionary Com-
putation, Jul 2023, Chicago, United States.

5.1 Introduction

The challenge of balancing competing objectives in neural architecture search continues to re-
quire innovative solutions. As we have seen in the previous chapter, approaches to multi-objective
optimization in NAS have primarily centered around two main approaches. The first is the use of
population-based methods such as evolutionary algorithms or swarm optimization. These methods,
although effective, require substantial computational resources and often complex mechanisms.
The second is to introduce a scalarization approach to the search process that permits the account
of multiple objectives simultaneously. This approach simplifies the transition to a multi-objective
context in NAS using traditional search strategies. However, in multi-objective optimization, the
scalarization of objectives is considered suboptimal. The need for less complex algorithms that
consider a Pareto-based approach is still present.

66

In this chapter, we will look at a new way of handling these competing objectives that will
address the previous challenges. Our focus will be on the use of Dominance-based Multi-objective
Local Search (DMLS) in NAS. This approach is an extension of the well-established Local Search
(LS) and presents itself as a promising solution to these challenges. It capitalizes on the strengths of
LS while incorporating the flexibility to accommodate multiple objectives. It’s easy to implement,
efficient (Liefooghe et al., 2012), and similar to LS, capable of leveraging advanced techniques
like weight inheritance and network morphism which reduce the training time for architecture
evaluation. It has also been effective in other machine-learning contexts as seen in (Jacques et al.,
2015) which makes it a great candidate for our study.

In this chapter, we will go into detail about how DMLS works and explain its benefits for NAS.
We will propose a formulation of the NAS problem for a resolution with DMLS and back our
discussion with practical examples and evidence from experiments. We will show that DMLS can
effectively navigate the complex world of multi-objective neural architecture search.

5.2 Introducing dominance-based multi-objective local search

As seen in Chapter 2, local search methods are known to provide good-quality solutions for
many hard combinatorial optimization problems. Dominance-based multi-objective local search
(DMLS) is an adaptation of the single-objective local search for multi-objective optimization prob-
lems (Liefooghe et al., 2012). It defines a unified model that includes all multi-objective ap-
proaches that iteratively improve a set of non-dominated solutions based on local explorations.
Such methods include Pareto Archived Evolution Strategy (PAES) (Knowles and Corne, 1999)
or Pareto Local Search (Paquete et al., 2004) (PLS). The main components that form a DMLS
approach are:

• Problem Representation: This includes the objectives to be optimized, the constraints, and
the decision variables that form a solution.

• Initialization Strategy: The algorithm can start off with a single solution or a set of solu-
tions, generated randomly or through a problem-specific heuristic.

• Neighborhood Function: This defines which solutions are considered ”neighbors” of a
given solution. The definition of a neighbor depends on the problem representation. For
instance, in a binary decision variable problem, a neighbor could be obtained by flipping one
bit.

• Dominance relation: Different dominance relations can be used to create a DMLS method
(Pareto, weak, strict, etc.). The most common one is Pareto dominance.

• Evaluation Process: This involves the objective functions and the dominance comparison.
The algorithm evaluates the objective functions and checks if the solution dominates or not
the solutions from the archive.

67

• Selection Mechanism: This is the process of choosing the next solution in the search. In
PLS for example, if a neighbor dominates the current solution, it becomes the new current
solution.

• Exploration Strategy: Can be similar to the exploration strategies found in single-objective
local search. It defines how the neighborhood of a solution is explored and how the next
solution can be selected.

• Archive Management Strategy: This involves the methods used to maintain the archive
(data structure used to store the non-dominated solutions found during the search). For
instance, when the archive becomes too large, some solutions might need to be removed.
This could be done based on crowding distance, hypervolume contribution, clustering, or
other criteria.

• Stopping Criterion: This is the condition that determines when the algorithm stops. It could
be based on a maximum number of iterations, a time limit, or a condition on the quality or
diversity of the solutions in the archive.

Figure 5.1: DMLS iteration

Algorithm 2 describes the full process of a DMLS method. It starts with an archive of one or
several initial solutions that are non-dominated by one another. The algorithm then proceeds to
explore this archive by iteratively evaluating the neighbors of unvisited solutions and adding the
non-dominating ones. The archive gets pruned automatically of dominated solutions each time.
The process ends once the stopping criterion is met. Figure 5.1 describes a standard iteration of a
DMLS method with f1 and f2 representing the two objectives to minimize. In step 1, the iteration
starts by selecting one or more unvisited solutions from the archive (in this case solution C). In
step 2, the algorithm explores the neighborhood of the selected solution(s). This typically involves
generating a set of solutions using the neighborhood function. In this case, two neighboring solu-
tions, CN1 and CN2, are generated from C. In step 3, if a neighboring solution dominates a solution
in the archive, the dominated solution is removed from the archive, and the dominating solution
is added. Finally, the algorithm starts a new iteration, selecting one or more unvisited solutions
from the updated archive for exploration. If there are no more unvisited solutions in the archive,
the algorithm stops.

68

Algorithm 2 Dominance-based Multi-objective Local Search
DMLS
solution← initial solution
archive← initial set (possibly empty)
while not stopping criterion and unvisited solutions available do

neighbors← generate neighbors(solution)
for neighbor ∈ neighbors do

if neighbor is not dominated by any solution in archive then
archive← archive ∪ neighbor
remove dominated solutions from archive
if archive exceeds its maximum capacity then

prune archive with archive management strategy
end if
Mark solution as visited
solution← select new solution from archive
Break

end if
end for
Mark solution as visited
solution← select new solution from archive

end while
Output: archive

5.3 DMLS for NAS

Considering the importance of multi-objective neural network design, we explore the use of local
search for multi-objective NAS. Our goal is to design a search algorithm that requires the least
amount of human intervention that comes through tuning and parameter selection. With the LS
advantages that we highlighted in the previous chapters, we want to explore how this plays out
in this context. While a previous work has explored the use of LS in this multi-objective NAS
(Den Ottelander et al., 2021), their method is based on the scalarization of objectives. However, as
this can give suboptimal solutions, we want our approach to use Pareto dominance and generate a
set of non-dominated solutions.

Since evaluating the quality of a neural architecture is very costly (can even take hours for a
single evaluation in certain tasks), we base our work on a pre-defined benchmark to simplify exper-
imentation and assess the quality of our approach. We focus on using the MacroNASBenchmark
(Den Ottelander et al., 2021), a benchmark designed specifically for evaluating multi-objective
NAS methods. It includes a search space of over 200,000 unique architectures, along with their
predictive performance on image classification for two popular datasets: CIFAR10 and CIFAR100.
In addition, each architecture is assigned a metric for complexity. Unlike the other benchmarks,
this one also provides the optimal Pareto front for the two objectives (complexity and accuracy)
which will help assess the performance of our multi-objective method.

69

Figure 5.2: Solution encoding
.

In the following, we explain the different components of the DMLS for NAS and give a detailed
description of our proposed approach. The different components are adapted to MacroNasBench-
mark, but our approach can nonetheless be adapted for other search spaces, datasets, or metrics by
following the same encoding and procedures.

5.3.1 Solution encoding

The encoding used in our method is a list of values. This list contains the different parameters
chosen that uniquely define an architecture in the search space. For the MacroNASBenchmark
(Den Ottelander et al., 2021), as we have presented it in Chapter 2, each solution consists of 14
unrepeated cells (x1 to x14). Each cell xi can take one of three options (Identity; 3 3x3: MBConv1

with expansion rate 3 and kernel size 3; 6 5x5: MBConv with expansion rate 6 and kernel size 5).
Figure 5.2 shows an example of a solution from this search space. The vector x1 to x14 contains
the values of each selected option. The components in blue are immutable and only the options
in green can change from one solution to another. They represent the encoding of the solution. In
total, there are more than 200,000 unique solutions available (after removing duplicates).

5.3.2 DMLS components

Neighborhood function

Similar to what we have presented in the previous chapters, in our work, we define the neighbor-
hood of a solution as the set of solutions that differs by exactly one cell from the current one. The
set of neighbors is obtained by selecting each cell and enumerating all the possible values. For the
used benchmark, there are 28 possible neighbors for each solution (2 other alternative values for
the 14 cells). Figure 5.3 shows an example of a neighbor generation of a solution in this bench-
mark. For example, here a neighbor is obtained by modifying the operation in cell x2 (6 5x5) by
the Identity operation.

1Inverted Linear BottleNeck layer with Depth-Wise Separable Convolution

70

Figure 5.3: Neighbor generation with the neighborhood function

Solution evaluation

To evaluate an architecture, we chose two objectives, one representing the predictive performance
of the model (to maximize) and one for the model’s complexity (to minimize). Optimizing the
model’s complexity along with the predictive performance is usually useful when we want a
lightweight model or a model that is easier to interpret, it also makes it less prone to overfit-
ting. MacroNASBenchmark provides for each architecture precomputed accuracies (sum of well-
classified images divided by the total number of images) for two image classification datasets
(CIFAR10 and CIFAR100). It also provides a metric for complexity (the Million Multiply Accu-
mulate Operations MMACs) that is used as the second objective. To compare between solutions,
we use the Pareto-based dominance as defined in the previous chapter. In this case, the objectives
to minimize are f1 = 1− accuracy and f2 = MMACs. We store the non-dominated solutions in
an archive that will represent the approximate Pareto-front throughout the search.

Solution initialization

We initialize the archive with a trivial solution (containing all Identity operations) which is the
optimal solution for the MMACs metric. We sample different solutions uniformly at random from
the search space. When meeting a solution that is not dominated by other solutions from the
archive, we add it until we reach the desired initial size. Any solution that becomes dominated is
automatically removed.

The initial archive size is the only parameter that needs to be tuned for this approach, the impact
of its choice will be studied in the experiment section. We propose to set the maximum size of the
archive is set to infinity (unbounded).

Selection strategy

During the search, solutions from the archive get selected for exploration. Different approaches for
selecting these solutions are available. Examples include selecting multiple solutions to explore
simultaneously or using ranking methods to select which ones to start with. In our approach, we
explore one solution at a time. This solution is chosen randomly from the archive. This way we
reduce the number of evaluations required during the search process and favor diversification by
using randomness during selection.

71

Exploration strategy

For the exploration strategy, we opt for the first improve approach. Once a neighboring solution
is found to dominate the current one, the search immediately uses that solution without exploring
the rest of the neighbors. This strategy offers a balance between intensive and extensive search.
While it might not guarantee that the best neighbor is always selected, it considerably reduces the
computational overhead by cutting down the number of evaluations.

5.4 Experimentation protocol

To assess the performance of the proposed algorithm, we run it for the CIFAR10 and CIFAR100
image classification datasets provided by the MacroNASBenchmark (Den Ottelander et al., 2021).
We chose this benchmark because it is specifically designed for evaluating bi-objective NAS, as
stated in their paper. CIFAR10 and CIFAR100 are also the two most popular datasets in NAS
benchmarks for this task (Ying et al., 2019; Dong and Yang, 2020; Siems et al., 2020).

We compare our work with two other methods previously tested in (Den Ottelander et al.,
2021). Both of these use different approaches: a population-based method with NSGA-II and a
scalarization-based approach using a customized local search2. The two methods are described as
state-of-the-art for this benchmark (Den Ottelander et al., 2021).

We use accuracy and MMACs as the two objectives for the architecture search. Both of them
are provided by the benchmark. We limit the number of evaluations to 6000 evaluated architectures
(approx 3% of the size of the search space). We fix this number because in a non-benchmark
setting evaluating architectures is very costly. If an algorithm stops before the evaluation budget is
reached, it restarts the search. The best solutions are kept for each restart.

The benchmark provides the globally optimal solutions (Pareto optimal). It is the set of solu-
tions that are non-dominated by the whole search space. They are obtained by exhaustive search
and will be a point of comparison to the approximate Pareto-front obtained by other methods.

The setup of each method is as follows:

• For the NSGA-II algorithm, it uses a 2-point crossover, a single-variable mutation with prob-
ability pm = 1/l, tournament size of 2, and population size npop = 100. As suggested in
(Den Ottelander et al., 2021) for this problem.

• For the local search algorithm, a random scalarization of the objectives is used in this single-
objective search algorithm, meaning that random weights are assigned for each objective.
This compensates for having to choose weights for each objective a-priori. An archive is
maintained to keep the non-dominated solutions from each iteration.

• For our method (DMLS), the only parameter to choose is the initial size of the archive.
We run our tests for multiple archive sizes ranging from 2 to 10 and compare the results.

2Two more algorithms are presented for this benchmark. Unfortunately, we were not able to run them for com-
parison using the provided code.

72

Figure 5.4: Hypervolume using different initial sizes for the archive

Figure 5.4 shows that all archive sizes seem to reach the same point after a certain number
of iterations. However, bigger sizes of the archive tend to give the method a slower start. We
choose to work with an archive size of 7 as it gives a larger hypervolume in the early stages
of the search.

• Following the protocol in (Den Ottelander et al., 2021), we also add the trivial solution to
the archive (or population) to each method before starting the search. This solution contains
all identity cells and represents the lower bound for the second objective.

For each method, all experiments are averaged over 30 runs. We compare the algorithm from
several standpoints: the hypervolume that should be maximized (we normalized the objectives,
turned them into a minimization problem, and calculated the hypervolume with (1,1) as a reference
point) and the percentage of exact Pareto optimal solutions found.

We use the Mann-Whitney U rank test to assess the statistical significance of our results.

5.5 Results and discussion

5.5.1 Hypervolume results

Table 5.1 reports the hypervolume of each method for CIFAR10 and CIFAR100 at different evalu-
ation steps (500, 1000, 1500, 3000, and 6000). We notice the three approaches showing very close
values at each step, with DMLS seemingly taking the lead. In the early stage of the search, at
500 evaluations, the NSGA-II seems to give a slightly lower hypervolume than LS before quickly
catching in the 1000 evaluations mark. Figures 5.5.a and 5.5.b show the quick evolution of the
hypervolume across the number of evaluations for CIFAR10 and CIFAR100, respectively. Here
we see that in the first evaluations, LS briefly gives the highest hypervolume. This can be explained
by the time it takes to initialize the archive of DMLS and the population for NSGA-II. But since
NSGA-II requires a larger population, it takes it more time to surpass LS.

73

(a) Hypervolume (CIFAR10) (b) Hypervolume (CIFAR100)

Figure 5.5: Evolution of the hypervolume across the number of evaluated architectures for CIFAR10 and
CIFAR 100. Results are averaged for 30 runs for each algorithm.

EVALUATIONS DMLS NSGA-II LS

CIFAR10 500 90.16±0.08 89.84±0.14 90.10±0.05
1000 90.28±0.05 90.24±0.05 90.17±0.03
3000 90.37±0.039 90.33±0.04 90.24±0.03
6000 90.39±0.02 90.37±0.03 90.29±0.03

CIFAR100 500 67.69±0.10 67.30±0.22 67.66±0.05
1000 67.82±0.05 67.76±0.08 67.73±0.04
3000 67.94±0.03 67.89±0.04 67.81±0.04
6000 67.98±0.01 67.93±0.03 67.84±0.03

Table 5.1: Table reporting the hypervolume (scaled for better readability) for each method on

CIFAR10 and CIFAR100. Results at presented for 500, 1000, 3000, and 6000 evaluations. Values

in bold are statistically better (Mann-Whitney U rank test).

The very close hypervolume results suggest that the solutions composing the approximate
Pareto-front are spread in an equivalent manner. For this reason, another metric should be used
to better compare these methods. Here we will use the number of optimal Pareto points found for
each of them.

5.5.2 Analysis of Pareto points found

Table 5.2 presents the percentage of Pareto optimal solutions found for each method on CIFAR10
and CIFAR100. For this metric, there is a more significant difference between each method, and
this is true for both datasets as well. When the search budget is reached, DMLS finds statistically
more Pareto optimal solutions. In CIFAR10, for example, DMLS ends the search with more than

74

(a) % of Pareto optimal solutions found
(CIFAR10)

(b) % of Pareto optimal solutions found
(CIFAR100)

Figure 5.6: Evolution of the percentage of Pareto optimal solutions found across the number of evaluated
architectures for CIFAR10 and CIFAR 100. Results are averaged for 30 runs for each algorithm.

EVALUATIONS DMLS NSGA-II LS

CIFAR10 500 29.07±8.89 6.52±2.79 22.90±4.45
1000 51.27±6.29 34.39±7.31 27.94±5.37
3000 76.73±5.49 65.31±5.49 39.07±3.08
6000 82.41±4.39 77.58±4.78 49.71±6.17

CIFAR100 500 25.49±6.67 7.45±2.83 22.22±3.99
1000 43.92±7.93 33.07±6.49 27.90±5.22
3000 70.19±2.69 65.55±4.31 37.71±5.69
6000 77.58±3.74 72.41±3.64 44.37±4.42

Table 5.2: Table reporting the percentage of Pareto optimal solutions found for each method on

CIFAR10 and CIFAR100. The results at presented for 500, 1000, 3000, and 6000 evaluations.

Values in bold are statistically better (Mann-Whitney U rank test)

82% of the Pareto optimal solutions, followed by NSGA-II with 77.6% of solutions, and lastly, LS
with only 49.7% of optimal solutions. Similarly, for CIFAR100, DMLS takes the lead with 77.6%
Pareto optimal solutions found at the end of the search, against 74.6% and 44.4% for NSGA-II
and LS, respectively. It is clearly shown in Figure 5.6 as well, which represents the percentage of
Pareto points found across the number of evaluations. Here we can see that DMLS has performed
much better since the beginning of the search, even if it has a lower hypervolume than LS, as seen
previously.

75

5.5.3 Discussion

To sum up, results show that even if our proposed DMLS for NAS is only slightly higher in hy-
pervolume than other methods, it can find significantly (and statistically) more Pareto optimal
solutions compared to them. Which gives more architecture choices at the end of the search for
a limited evaluation budget. On top of that, DMLS is easy to implement and requires only one
parameter to adjust (the size of the archive). This method has also the potential to exploit local
properties to speed up network training (which is the most time-consuming task), such as weight
inheritance (Real et al., 2017) or network morphism (Wei et al., 2016). This would further reduce
the time needed to search for architectures in a non-benchmark setting.

5.6 Conclusion and future directions

The goal of this chapter is to propose an alternative multi-objective resolution method for NAS
using dominance-based multi-objective local search (solution encoding, neighborhood, and evalu-
ation function). Unlike other multi-objective NAS strategies, it does not require defining weighted
preferences between objectives like scalarization methods, nor is it complex to tune like other
Pareto-front-based methods. It requires only one parameter to tune (the initial archive size), which
makes it easily reusable for new tasks without much tuning. Since it is based on local search, it has
the potential to exploit the local property-based evaluation strategies for NAS that will speed up
the global search time. The experiments on a specialized MO benchmark show that our approach
obtains statistically better Hypervolume and finds significantly more Pareto optimal solutions than
NSGA-II and LS. As a perspective, we will compare this method using datasets for other types of
tasks, such as natural language processing or image segmentation. Another interesting approach
would be to study the effect of using it in conjunction with the weight inheritance strategy to assess
the speed up it can obtain.

76

Chapter 6

Bridging Barriers: from the Benchmarks to
the Real World

“You never know ahead of time what something’s
really going to be like“

— Katherine Paterson, Bridge to Terabithia

6.1 Introduction

While benchmarks offer standardized datasets and tasks to evaluate the performance of NAS meth-
ods, using neural architecture search in real-world scenarios presents several challenges that bench-
marks dismiss. In order to carry out an end-to-end NAS process, multiple elements need to be
regarded and carefully crafted to get the best out of neural architecture search. The goal of this
part is to step out of the benchmark zone and identify the different issues that arise from it. In
this study, we take a step toward real-world applications using healthcare data. Our aim is also to
validate the method proposed in Chapter 3 while navigating new properties such as search spaces
and training protocols.

The chapter is organized as follows: it first starts by providing a list of considerations that need
to be handled when moving to real data. Next, it presents the design choices and experimental
protocol used in our study. Finally, it presents the results obtained and discusses new perspectives.

6.2 The challenges of NAS in the real world

When using neural architecture search outside the familiarity of benchmarks, many issues can arise
from different sources, most commonly from data, training pipelines, and search space design. The
following explains different challenges and how they can affect the NAS process:

• Data preparation: Real-world data is often not as cleanly distributed as the datasets con-
tained in NAS benchmarks. The real-world data might have class imbalances, noise, and

77

other irregularities. This directly affects the assessment of an architecture’s true performance
during evaluation. This problem is more critical during NAS evaluations as it could lead the
search to non-efficient regions of the search space. On top of this, data volume poses an-
other significant challenge. While benchmark datasets have fixed sizes, real-world datasets
can vary widely in volume. Small datasets might not provide enough information for a NAS
method to discern between architectures, while very large datasets might be computationally
prohibitive. It is important to notice the specificities of the real-world dataset used and pro-
cess it accordingly. A pre-step of data cleaning and preparation is essential before moving to
the NAS process. Some solutions in data processing include normalization, denoising, data
augmentation, automated feature selection, using specialized loss functions, etc.

• Network capacity: Benchmarks usually provide a search space containing architectures
that are mostly suitable for their specific datasets, in terms of their type (e.g., CNNs, RNNs,
etc.) and their capacity. The network capacity refers to the ability of a neural network to
fit a given function, and it is typically associated with the complexity of the network. High
capacity within the search space translates to more parameters and deeper or wider architec-
tures. Evaluating these architectures requires more computational resources, both in terms
of memory and processing power. A search space containing high-capacity architectures is
also more prone to overfitting. Conversely, a search space with architectures of low capacity
might underfit, causing poor performances for the given dataset. Searching in a space with
lower capacity networks might be faster but could miss out on potentially more performant
architectures. It is possible to include both types in the search space, but this makes the NAS
process computationally more intensive and time-consuming. Designing the right search
space that fits the datasets is essential and the results of the NAS highly depend on it.

• Noisy evaluation: An architecture that seems slightly better in one evaluation might be
worse in another due to random fluctuations. This noise during evaluation poses significant
challenges when comparing and ranking various architectures. It can also lead to the early
termination of potentially good architectures or the continuation of poor-performing ones,
especially when incorporating techniques like early stopping or population-based methods.
If architectures are ranked based on noisy validation performance, the NAS process might
prioritize architectures that just happened to perform well due to random fluctuations but
might not generalize well to new data.

Several factors contribute to this variability. For instance, model initialization. Different
initial weights can set off diverse convergence paths, leading to fluctuating validation per-
formances, especially during the early stages of training. Additionally, regularization tech-
niques, including dropout, data augmentation, and stochastic depth, introduce intentional
randomness into the training process. On top of this, using a high learning rate or training
data in a network with low capacity can cause such fluctuations.

To meet these challenges, it is beneficial to adopt certain strategies. Conducting multiple
evaluations of the same architecture and averaging the results can offer a more trustworthy

78

performance estimate.

• Computational resources: Running neural architecture search outside of benchmarks re-
quires training the architecture for evaluation, this step can take hours for a single evaluation.
On top of this, real-world datasets might be large and complex, making the search process
more computationally intensive and requiring more resources and time. To overcome the
noise and obtain more reliable estimates of architecture performance, we might also need
to perform multiple evaluations or longer training, increasing the computational cost. This
is one of the most significant problems and the main reason why benchmarks were crafted.
Many methods that reduce the computational cost are available, they are commonly known
in NAS as evaluation strategies. For detailed examples of this, you can refer to Chapter 2.

6.3 Diving in with medical image classification

Now that we are familiar with some of the prominent challenges in applying NAS to real use cases,
we will try to use our previous contribution LS-PON for a further study. In this section, we walk
through the steps needed to prepare the experiments. We start by presenting the dataset, and how
we tailored different NAS components to it. We will also explain our experimental protocol before
presenting the results and their discussion.

Disclaimer: The experiments of this chapter were conducted on limited resources (using a
single RTX 2080 GPU). Although it lays out a good foundation on using NAS on real data, a more
throughout study could be carried out to provide even more insights and investigations for this
niche.

6.3.1 Datasets

For our experiments, we will use the MedMNIST (Yang et al., 2023) as our primary data source
for experimentation. MedMNIST is a large-scale repository of standardized biomedical images. It
consists of a total of 708,069 2D images and 9,998 3D images, distributed across 12 datasets for
2D images and 6 datasets for 3D images. The images are pre-processed and are formatted as 28 x
28 pixels for 2D images, and 28 x 28 x 28 voxels for 3D images. Each image is labeled with the
corresponding classification. All the datasets have the same pre-processed format, with standard
train-validation-test splits. This repository also offers the performance obtained for a set of models
for each of the provided datasets. The models available are the well-known and state-of-the-art
ResNet models, models automatically designed with the open-source solutions Auto-sklearn and
AutoKeras, and finally, a model created from the commercial Google AutoML Vision tool.

Our experiment limits its focus to two particular datasets, PneumoniaMNIST and DermaM-
NIST. These datasets were chosen because they are lightweight and represent two different classi-
fication tasks that are prominent in healthcare. Both of these datasets offer specific challenges and
opportunities relevant to our study, from the binary nature of diagnosing pneumonia in Pneumoni-

79

aMNIST to the more complex multi-class categorization in DermaMNIST. Details of each dataset
are as follows:

• PneumoniaMNIST: This dataset consists of Chest X-ray images with a binary classification
task, labeling images as either indicative or non-indicative of pneumonia. It contains a total
of 5,856 samples, distributed across training (4,708), validation (524), and test (624) sets.

• DermaMNIST: This dataset is composed of dermatoscopy images with a multi-class classi-
fication task involving seven categories. The dataset comprises 10,015 samples, subdivided
into training (7,007), validation (1,003), and test (2,005) sets.

6.3.2 Behind the scenes

Before running experiments, multiple aspects must be considered. These aspects, detailed here-
after, are often disregarded when using benchmarks as they are usually included in the framework
that created the benchmark. Nonetheless, these elements are important and heavily affect the effi-
ciency of any NAS framework. Every element in this should be tailored to the task and dataset that
it will be used for. For time efficiency, we choose to tune these elements using PneumoniaMNIST,
which is the smallest of the two selected datasets. We will use the same parameters selected here
for DermaMNIST and see if they will transfer well.

Selecting the appropriate search space

One of the first steps when using NAS is picking the right search space. It defines the range
of architectural possibilities that the search can investigate. This choice should be informed by
the specific requirements of the domain and the computational feasibility of exploring the space.
While the search space should be expansive enough to capture potential optimal architectures, it
shouldn’t be so vast that it becomes computationally prohibitive.

Designing a search space takes significant expertise and a considerable amount of time. To
avoid this process, researchers usually use search spaces previously defined either in benchmarks or
in prominent works such as DARTS (Liu et al., 2018b). For our work, we test two different search
space options provided in NAS-Bench-201 and NAS-Bench-301. Both of these search spaces
were used in NAS for general domain image datasets. Picking either one for our experiments
should be validated first. For this reason, we trained several randomly sampled architectures from
each search space on the PneumoniaMNIST dataset and observed the training plots for the train
set, test set, and validation set. Figure 6.1 gives a representative sample of the plots obtained
from architectures of the NAS-Bench-201 search space. We observed a lot of fluctuations during
training which indicates a mismatch between the complexity of the architectures and the dataset.
It is worth mentioning that we fixed a small learning rate (0.0001) to rule out the possibility of the
fluctuations being caused by big weight updates. In contrast, and using the exact same training
protocol, the plots obtained from architectures of the NAS-Bench-301 behaved differently. As we

80

can see in Figure 6.2, the train curve is much smoother and we can see notable progress across
epochs. Going forward we will use this search space.

Figure 6.1: Training curve of a sample of architectures from the NAS-Bench-201 search space. The x-axis
represents the number of epochs and the y-axis the accuracy.

Figure 6.2: Training curve of a sample of architectures from the NAS-Bench-301 search space. The x-axis
represents the number of epochs and the y-axis the accuracy.

Optimizing the learning rate

With the search space defined, the next consideration is setting the right Learning Rate (lr). This
factor influences the training dynamic and heavily affects both the time of the search and the
ability to rank architectures. A learning rate that is too high causes big noisy evaluations and
makes it difficult to measure the true potential of various architectures. On the other hand, a
learning rate that is too low could lead to slow convergence or to the model becoming trapped in
local minima. To choose the right learning rate, we sample random architectures from our selected
search space and plot their training curves for various lr values. The values we picked for the
learning rate range from 0.01 to 1e − 5, as they are the most found in the literature. Figure 6.3
gives a representative sample of the architectures trained with different lr values. As it is shown,
low values of the learning rate (1e− 4 and 1e− 5) either trap the performance in a local minimum
or barely progress for several epochs. On the other hand, the highest value of the learning rate
(0.01) creates fluctuations in the training curve which might create biases in ranking architectures
during the search process. The smoothest training curve with appropriate progress of performances
is found with the lr value of 0.001. It is this value that we will set for training during our work.

81

Figure 6.3: Training curve of a sample of architectures from the NAS-Bench-301 search space using
different learning rates. The best learning rate is the one in orange as it gives the smoothest curve with
appropriate progress.

Choosing the right epoch for a significant proxy

When evaluating architectures during the NAS process, it is usually very computationally pro-
hibitive to fully train each of them (for example, training one architecture for 200 epochs on der-
maMNIST takes around 4 hours on our GPU). As we have seen in the first chapter, many techniques
are available to reduce the time required for evaluation. The most straightforward approach is using
a small number of epochs to estimate the performance. This shortened training offers a quick esti-
mate of an architecture’s potential. The choice of the right number of epochs for this evaluation is
important. It should be long enough to offer a meaningful insight into the architecture’s potential,
yet brief enough to maintain efficiency. Using strategies like monitoring validation performance
trends can aid in making this decision. To find this value, we also ran several randomly sampled
architectures and monitored their trainings. We have set to use the value of 5 epochs for each
evaluation. The result obtained after this shortened training will help us determine the potential
performance of the architectures during the search.

6.3.3 Experimental protocol

The last part is to run a NAS search algorithm with the previously set components. In this section,
we outline our experimental protocol. It describes the methodology we adopted, the steps we took
for each evaluation, and the criteria we used to compare and assess the performance during our
NAS process. The protocol (summarized in Figure 6.4) includes the following key steps:

• Runs & Evaluations:

– Ten runs are conducted to achieve statistical significance.

– 1,000 architecture evaluations are performed during each run.

– For each evaluation, the network is trained for five epochs using the training set.

– The accuracy of the validation set is recorded after training. This accuracy serves as an
indicator of potential full-training performance and is used by the search strategy.

82

Figure 6.4: Experimental protocol

• Post-Evaluation Training:

– After the algorithm stops, the top three architectures are selected and trained for 200
epochs. After that, they are assessed on the test set and the best of the three is kept at
the end.

– These architectures undergo full training at four evaluation milestones: 200, 500, 750,
and 1,000 evaluations. This permits an insight on how the test performance progresses
on the fully trained networks.

– A mean Accuracy (ACC) and Area Under the Curve (AUC) 1 is calculated using the
best architecture of each run at 1000 milestone. These metrics are compared to the ones
of other models provided by the MedMNIST repository.

6.3.4 Results

PneumoniaMNIST dataset

For the PneumoniaMNIST dataset, we run two NAS algorithms using the protocol mentioned
above (For time efficiency, we will only do the Post-Evaluation step for the best algorithm). The
first is a simple local search (the same used in the comparison in Chapter 2), and the second is our

1This metric quantifies the overall ability of a model to distinguish between positive and negative classes, with a
value of 1 indicating perfect classification and 0.5 representing a random classifier

83

proposed approach LS-PON presented in Chapter 2. We compare these two algorithms to validate
the efficiency of our approach outside the scope of benchmarks.

(a) Evolution of the validation accuracy of the
best architecture found during the NAS
process (with 5 epochs of training)

(b) Results on the test accuracy after full training
and selecting the best architecture at different
milestones during the LS-PON

Figure 6.5: Results on PneumoniaMNIST dataset

Figure 6.5 shows the results of this study. On the left (Figure 6.5.a), we plotted the progress
of the validation accuracy (after 5 epochs training) across the number of evaluations for both LS-
PON and LS, it represents the mean and standard deviation of the 10 runs of each method. We
see in the beginning that the two methods are similar, with LS slightly surpassing LS-PON in
the first 200 evaluated architectures. After that, LS-PON seems to be finding better architectures
throughout its search compared to LS. With this result, we validate that LS-PON can be more
efficient than LS even when using real-world data. We take the top three architectures from the
LS-PON algorithm at different milestones and fully train them. After assessing their performance
on the test set, we keep the best architecture of the three. The boxplot in Figure 6.5.b shows how
the values of test accuracy of the best architectures (fully trained) progress at different milestones.
We use boxplots to represent the results from the 10 runs. These results further confirms that our
search is indeed finding better architectures with time. Finally, we compare the best architecture at
the last milestone with the provided models from the MedMNIST dataset. Table 6.1 presents this
finding.

84

Table 6.1: The table indicates the Area Under the Curve and the Accuracy on the Pneumonia test

set for each model. (28) or (224) corresponds to the size of the input image. The images are

resized to 224 x 224 by PIL.Image.NEAREST option using the Pillow package. Results of the

other methods are found in (Yang et al., 2023).

Method AUC ACC

ResNet-18 (28) 0.944 0.854

ResNet-18 (224) 0.956 0.864

ResNet-50 (28) 0.948 0.854

ResNet-50 (224) 0.962 0.884

Auto-sklearn 0.942 0.855

AutoKeras 0.947 0.878

Google AutoML Vision 0.991 0.946

Our best architecture 0.968 0.891

Aside from the commercial solution Google AutoML Vision which is superior, the best ar-
chitecture found surpasses all the other models in both AUC and Accuracy. Whether they were
carefully handcrafted by experts such as ResNet architectures, or automatically created from li-
braries such as Auto-sklearn and AutoKeras. This proves that even using a pre-defined search
space from a benchmark, we were able to achieve good results using our method and protocol for
this dataset.

DermaMNIST dataset

In this part, we investigate the result obtained on a new dataset without changing the search space
and other metrics we tailored for the previous one. For time efficiency, we only run the LS-PON al-
gorithm and assess the performance of the obtained architectures. The goal of this experiment is to
see if the elements adjusted for pneumoniaMNIST can be generalized to dermaMNIST, with good
convergence and results in line with the literature. This will help us determine the transferability
of certain components when we change the nature of the medical images in terms of modality
and associated tasks. Figure 6.6 shows the results of our experiment. On the left (Figure 6.6.a),

85

presents the progress of the validation accuracy (after 5 epochs of training) across the number of
evaluations for LS-PON. This plot shows an increase in the validation accuracy across the evalu-
ations. On the right (Figure 6.6.b) we see the test accuracies slowly increasing at each milestone
in the fully trained architectures. As seen in Table 6.2, we were able to obtain comparable results
to the literature. This shows that there is still some level of transferability for this framework. A
better adaptation could be possible, but due to the limited computing power we had, tailoring for
this larger and more difficult task is time-consuming.

(a) Evolution of the validation accuracy of the
best architecture found during the NAS
process (with 5 epochs of training)

(b) Results on the test accuracy after full training
and selecting the best architecture at different
milestones during the LS-PON

Figure 6.6: Results on DermaMNIST dataset

86

Table 6.2: The table indicates the Area Under the Curve and the Accuracy on the DermaMNIST

test set for each model. (28) or (224) corresponds to the size of the input image of the model. The

images are resized to 224 x 224 by PIL.Image.NEAREST option using the Pillow package.

Results of the other methods are found in (Yang et al., 2023).
.

Method AUC ACC

ResNet-18 (28) 0.917 0.735

ResNet-18 (224) 0.920 0.754

ResNet-50 (28) 0.913 0.735

ResNet-50 (224) 0.912 0.731

Auto-sklearn 0.902 0.719

AutoKeras 0.915 0.749

Google AutoML Vision 0.914 0.768

Our best architecture 0.918 0.754

6.4 Conclusion

In this chapter, the challenge was to extend our contribution to real-world applications, specifically
in the realm of healthcare data. The transition from benchmark scenarios to real applications re-
quired new considerations and did not allow the use of pre-calculated results. And these elements
have been proven as crucial determinants in the efficiency of any NAS framework. The compu-
tational resources when making this chapter were very limited. For this reason, a more extensive
study is possible to try to tailor the different components to other datasets and extract any patterns
noticed in the nature of the task or dataset. Our method, LS-PON, was validated as more efficient
than LS for the context of PneumoniaMNIST, and was able to find results that are comparable to
state-of-the-art models. When moving to another real-world dataset with different modalities and
tasks, the NAS framework was also found efficient in moving to better areas in the search space.
This highlights a certain transferability of the fine-tuned elements of the NAS framework. A per-
spective to this work is to create a meta-learning approach that automatically selects the appropriate
parts, starting from a dynamic search space to an adaptive learning rate and epochs setting.

87

Chapter 7

Neural Architecture Search in Healthcare:
An Introductory Survey to Unlocking
Opportunities

“Study the past if you would define the future.“

— Confucius

This chapter contains the work under review in the journal Artificial Intelligence Review

• Meyssa Zouambi, Clarisse Dhaenens, Louis Rousselet, Julie Jacques. Neural Architecture
Search for Healthcare: a Comprehensive Survey. Journal paper submitted to Artificial Intel-
ligence Review.

7.1 Introduction

After discussing the approach of using NAS in real-world scenarios, the best strategy to contribute
to a new field using NAS is to study its literature for domain applications. In this thesis, we chose
to focus on the healthcare sector. The unique nature of healthcare data as well as its prominent use
created the need for tailored deep learning models. This makes it a high-potential domain that can
greatly benefit from the use of NAS. The purpose of this chapter is to provide a structured starting
point for those new to the field or considering leveraging NAS for healthcare applications. We
highlight not only the potential of NAS in healthcare but also underscore the current gaps, setting
the stage for future exploration and contribution.

This chapter delves into the literature, drawing insights from over 40 different contributions
that have used automatically designed neural networks in healthcare applications. Using the com-
prehensive paper database of neural architecture search found in (Freiburg-Hannover, 2021a), we
made a thorough review process. We started by selecting studies related to healthcare and ex-
amined their titles and abstracts. This allowed us to narrow down our focus and ensure that the

88

contributions we discuss are most relevant to the field.

7.2 Context

The growth of data in the healthcare sector, driven by electronic health records, wearable devices,
medical imaging, and various other sources, has made utilizing advanced machine learning tech-
niques a promising path. It has the potential to improve patient care, prognosis, and medical re-
search. Traditional deep learning models, which have achieved significant successes in tasks such
as medical image classification, segmentation, and anomaly detection, are generally hand-crafted
by human experts. However, these manual designs often do not optimize for domain-specific
characteristics found in medical data, which may differ significantly from other data types. The
potential of neural architecture search in modern machine learning applications is vast, but its ex-
ploration within healthcare holds particular promise. Given the domain’s sensitive nature, tailoring
neural networks to the challenges of healthcare datasets is important.

To structure our literature review, the following sections group three main application areas:
lesion detection and classification, image segmentation, and healthcare-supporting tasks. This
structure helps readers quickly understand the primary avenues of NAS application in healthcare
and identify specific areas they might be interested in.

7.3 Lesion detection and classification

The application of neural architecture search has made significant progress in various healthcare
challenges, most notably in lesion detection and classification. Starting with skin conditions,
Kwasigroch et al. (2020) used a hill-climbing algorithm for the detection of malignant melanoma
from dermoscopic images. Their approach starts from a base architecture and then builds on it
using function-preserving transformations. This specific NAS algorithm was later applied to a
Chest-X ray classification model in (Radiuk and Kutucu, 2020), leveraging the CheXpert (Irvin
et al., 2019) benchmark. In a similar domain, for skin disease classification, He et al. (2021b)
introduced a NAS method anchored in an evolutionary algorithm. Their approach was tested on a
real-world skin disease image dataset to verify its effectiveness.

Branching out to other medical imaging challenges, we found that several works have focused
on pulmonary nodule classifications. Jiang et al. (2021) refined an initial neural network with the
Partial Order Pruning method and integrated an Angular Softmax loss function to enable better
learning of discriminative representations (Liu et al., 2017b). The authors also used Convolutional
Block Attention Modules (CBAM) (Woo et al., 2018) for explainability. Similarly, in (Hu et al.,
2021), differentiable NAS was combined with an attention mechanism in CNNs for improved
feature representation in pulmonary classification.

With the onset of the Covid-19 pandemic, there was increased attention to diagnosing infec-
tions. He et al. (2020) tackled this challenge by searching for an effective 3D CNN model using
differentiable NAS, further adding Class Activation Map for explainability. Building on their prior

89

work, they later integrated a multi-objective evolutionary method for enhanced efficiency (He et al.,
2021a).

Some NAS research has dived into more intricate medical challenges. In (Jiang et al., 2020), the
detection and delimitation of lesions in CT scans were tackled using a differentiable NAS strategy.
This task is similar to object detection but is much more complex in the context of medical imagery.
The authors’ approach was augmented by modules to address data imbalance and enhance network
generalization.

Additionally, NAS has been used to find networks for diagnosing neurological and genetic
conditions. Lee et al. (2021) employed a genetic algorithm to determine the best CNN architecture
for Alzheimer’s disease diagnosis in amyloid brain images. Meanwhile, in (Miahi et al., 2019), a
genetic algorithm was adopted to find the best network for sperm abnormality detection.

Heart-related anomalies have also been an important research application. In (Lv et al., 2021),
the Darts algorithm was utilized for irregular heartbeat classification. Similarly, Odema et al.
(2021) used a NAS algorithm to detect myocardial infarction on wearable devices.

Lastly, some unique applications include the work of Wang et al. (2020) which introduced a
teleoperated ultrasound system for Hepatic Echinococcosis diagnosis, enhancing it with Darknet53
for lesion detection.

7.3.1 Our takeaway

The previously presented works illustrate the versatility of NAS across a wide variety of lesion
detection and classification tasks. These studies include a broad range of data types, ranging from
image data from scans and microscopic snapshots, to sequential data formats like ECG signals and
rsfMRI time series. Specific challenges related to class imbalance and data quality are tackled in
certain contributions (Lin et al., 2017; Miahi et al., 2019). Notably, a few researchers (Jiang et al.,
2021; He et al., 2021a) have also emphasized the importance of explainability, a crucial factor in
high-stakes domains like healthcare.

To further illustrate the extent of NAS applications in healthcare, we summarized the tasks
within this category in Table 7.1. This table extracts important information about the data utilized
and additionally notes the availability of the code for potential adopters. It showcases a broad
spectrum of healthcare tasks and the data types associated with them.

Meanwhile, Table 7.2 dives deeper into the technical aspects of NAS. It outlines the deep learn-
ing tasks and corresponding architectures, in addition to detailing the search strategies, optimized
parameters, and NAS execution times where available. A significant observation from this table
reveals the predominance of CNNs, confirming the image-centric nature of most data in this cate-
gory. Most researchers also seem to gravitate towards evolutionary algorithms or gradient descent
as their primary search strategy. On top of that, several works incorporated objectives like energy
consumption, model size, or inference time (Odema et al., 2021; He et al., 2021a; Jiang et al.,
2021).

90

Table 7.1: Applications of lesion detection and classification papers

Paper Healthcare Task Type of
Data

Dataset Dataset Specifications Code
available

Kwasigroch
et al.
(2020)

Skin lesion
classification
(malignant
melanoma)

Dermoscopic
images

International
Skin Imaging
Collaboration

12500 benign instances; 1100
malignant instances; Images
annotated by experts.

No

Radiuk and
Kutucu
(2020)

Chest X-Ray
Classification
(various
diseases)

Chest
X-Ray

CheXpert
benchmark

224,316 chest Xrays, 65,240
patients; Size 320×320 pixels;
Images labeled for 14
diseases as negative, positive,
or uncertain.

Yes (final
architec-
ture only)

Dai et al.
(2020)

Classification of
fMRI signals

rsfMRI
time series

Autism Brain
Imaging Data
Exchange
(ABIDE II)

MRI Scan of 58 subjects No

He et al.
(2021b)

Skin disease
classification

Clinical
images

XiangyaDerm
Dataset

150,223 clinical images, 543
categories of skin diseases

No

Jiang et al.
(2021) Hu
et al.
(2021)

Classification of
pulmonary
nodules

Thoracic
CT scans

LIDC-IDRI
database

CT scans with marked-up
annotated lesions containing
1018 cases

Yes

He et al.
(2020) He
et al.
(2021a)

COVID-19
Detection

3D CT
Chest
Scans

Clean-CC-CCII
MosMedData
COVID-CTset

526 scans of 377 patients with
244 COVID-19 positive
scans; 1110 scans of 1110
patients with 856 COVID19
positive scans; 4356 scans of
2778 patients with 1578
COVID19 positive scans

Yes

Jiang et al.
(2020)

Lesion Detection CT scans DeepLesion 876,934 axial CT slices (size
512 × 512) from 10,594 CT
studies of 4,427 patients;
32,120 axial slices with
bounding boxes annotation;
1–3 lesions in each axial slice;
total 32,735 lesions.

No

Kits19 71,423 CT slices of 210
unique patients

Lee et al.
(2021)

Alzheimer’s
disease diagnosis

PET/CT
amyloid
brain
images

Private dataset Images of 414 patients
diagnosed as Normal Control,
Mild Cognitive Impairment,
and Alzheimer’s disease.

No

Miahi et al.
(2019)

Sperm
abnormality
detection

microscope
images

MHSMA
dataset

1, 540 sperm images from
235 patients with infertility
problems

No

91

Lv et al.
(2021)

Arrhythmia
detection

ECG
signals

MIT-BIH
arrhythmia
database and
INCART and
QT databases

Heartbeats are classified into
five classes: Normal beats,
Supraventricular ectopic
beats, Ventricular ectopic
beats, Fusion beats, and
Unclassified beats.

No

Odema
et al.
(2021)

Myocardial
Infarction
Detection

ECG
signals

PTB diagnostic
ECG database

200 subjects, 148 with
Myocardial Infarction.

No

Wang et al.
(2020)

Hepatic
Echinococcosis
diagnosis

ultrasound Private dataset 9112 Hepatic Echinococcosis
ultrasound images from 5028
patients

No

Table 7.2: NAS details for Lesion detection and classification papers

Paper Task Network
Searched

Parameters searched Search
strategy

Objective(s) Search
time

Kwasigroch
et al.
(2020)
Radiuk
and
Kutucu
(2020)

Image
classification

CNN Number and type of layers,
number of filters in Conv
layers, and network structure
(add and concatenation
schemes and skip
connections).

Hill
climbing

Validation
Loss

18 GPU
hours and
28 GPU
hours

Dai et al.
(2020)

1D
classification

CNN Number of layers, type of
operation in each layer

Gradient
descent
optimization

Accuracy -

He et al.
(2021b)

Image
classification

CNN Parameters of three types of
layers (convolutional,
pooling, and fully connected
layers)

Evolutionary
algorithm

Classification
error rate

-

Jiang
et al.
(2021)

Image
classification

3D CNN Number of residual blocks
and number of channels in
each of them

Partial
Order
Pruning

Accuracy
inference
time

-

Hu et al.
(2021)

Image
classification

CNN Operations composing
normal and reduction cells

Gradient
descent
optimization

Validation
Loss

-

He et al.
(2020)

Image
classification

3D CNN Kernel size and expansion
ratio of convolution
modules, inside each of the
cells composing the
backbone architecture.

Gradient
descent
optimization

Validation
Loss

8 GPU
hours

He et al.
(2021a)

Image
classification

3D CNN Cell structure Evolutionary
algorithm

Accuracy
Model size

8 GPU
hours

92

Jiang
et al.
(2020)

Object
detection

CNN Operations composing
normal and reduction cells

Gradient
descent
optimization

Accuracy
and L1

-

Lee et al.
(2021)

Image
classification

CNN Network structure and
hyperparameters

Evolutionary
algorithm

Accuracy -

Miahi
et al.
(2019)

Image
classification

CNN Number of filters, filters
height and width, stride size
of each convolutional cell

Evolutionary
algorithm

Cross-
entropy

310, 162,
and 240
GPU
hours

Lv et al.
(2021)

Classification CNN Composition of normal and
reduction cells

Gradient
descent
optimization

Validation
Loss

-

Odema
et al.
(2021)

Classification CNN Number of blocks, number
of filters, kernel length and
stride

Gradient
descent
optimization

Detection
error
Energy
consumption

-

Wang
et al.
(2020)

Image
classification

CNN Composition of normal and
reduction cells

Gradient
descent
optimization

Accuracy -

7.4 Medical image segmentation

Medical image segmentation is the process of highlighting regions or structures of interest within
an image, such as tumors, organs, or vessels. Given the unique characteristics of medical images,
including the subtle distinction between the region of interest and its background, the task becomes
especially complex. This complexity is amplified when the data extends beyond two dimensions.
Researchers increasingly leverage NAS to discover architectures tailored for 2D and 3D medical
segmentation.

7.4.1 2D segmentation

Many architectures have been developed for 2D medical image segmentation using NAS. In a
pioneering study by Gessert and Schlaefer (2019a), the authors developed a network for 2D depth
OCT retinal segmentation using 1D depth data. Their objective was to demonstrate that NAS on
lower-dimensional data could produce architectures that generalize well on higher-dimensional
data. Their findings revealed that networks optimized using 1D depth OCT scans could match the
performance of those developed using 2D depth scans, but with an 87.5% speed advantage. The
ENAS framework Pham et al. (2018) underpinned their search strategy, aiming to discover optimal
building blocks for a U-shaped architecture.

Several other works have contributed to the domain of retinal segmentation. For instance,
Fan et al. (2020) used an evolutionary-based NAS paired with a focal loss (Lin et al., 2017) to
address data imbalance. The resulting architecture was evaluated on the DRIVE, STARE, and
CHASEDB 1 datasets. In another notable work, Gheshlaghi et al. (2020) employed Proxyless NAS

93

(Cai et al., 2018) to determine the optimal U-shaped architecture for 2D OCT retinal segmentation.
This was preceded by a data enhancement phase where OCT images underwent super-resolution
transformations, leveraging algorithms like Enhanced Deep Residual Super Resolution (Lim et al.,
2017), among others.

Outside the area of retinal imaging, Mortazi and Bagci (2018) proposed a NAS approach op-
timized by a policy gradient reinforcement learning for cardiac MR image segmentation. Their
framework refined a densely connected encoder-decoder structure (Huang et al., 2017) and was
tested using the Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017 dataset.

In the realm of electron microscopy segmentation, Xu et al. (2020b) proposed a NAS frame-
work. This approach sought to explore the best architecture using a recurrent neural network-based
NAS, taking inspiration from ENAS (Pham et al., 2018). As part of their search space consider-
ations, the authors included operations that make up the upsampling, downsampling, and bridge
cells of the network as well as intra and inter connections between cells.

Another intriguing work by Dong et al. (2019) delved into the task of chest organ segmentation
using adversarial networks. This technique hinged on discriminating segmentation maps derived
from either the ground truth or the segmentation network. This iterative comparison propelled
improvements in the segmentation process at every step. To enhance efficiency, the process of
designing the discriminator’s architecture was automated using differentiable NAS.

Moving further, Liu et al. (2021) introduced a generalized segmentation architecture tailored
for multi-domain medical data, integrating multiple small-scale datasets. Such an approach was
envisaged to counteract the challenge of data scarcity and to craft a versatile segmentation network,
aptly aligning with the broad variations inherent in multi-domain data. After curating this mixed
dataset, the architecture search was bifurcated for both the macro and micro structures of the
network, with differentiable NAS being the method of choice. The outcomes were remarkable as
the resulting network outperformed the established U-Net network across various tests, spanning
dermoscopic images, gastroscopy images, and CT scans.

More 2D segmentation networks are proposed and tested in diverse datasets, for example,
Weng et al. (2019) uses ProxylessNAS algorithm to search for a segmentation architecture using
the PASCAL VOC 2012 dataset and evaluates it on various medical data types: CT scans, MRI,
and ultrasounds. In (Yan et al., 2020), authors use a multi-scale search space to include both the
architecture backbone and cell operations in their search, including connections to fuse features
with different sizes. This work also tests their resulting model across with CT and MRI scans of
PROMISE12 Litjens et al. (2014), SILVER07, and CHAOS Kavur et al. (2021) datasets.

Our takeaway

Researchers show that there are many challenges when searching for optimal segmentation net-
works. Data volume was addressed in Gessert and Schlaefer (2019a) by working with lower dimen-
sional data. In Gheshlaghi et al. (2020), authors pre-processed the scans with multiple techniques
to enhance the data quality of medical images. In Liu et al. (2021), authors deal with data scarcity
using multi-domain medical data. This shows that in healthcare, segmentation is challenging and

94

requires additional efforts compared to segmentation for regular images.
Table 7.3 and Table 7.4 summarize the same details mentioned in the previous tables of this

section. Table 7.3 covers application details for 2D segmentation papers, underscoring that organ
segmentation remains a prominent application focus. Table 7.4 gives more technical details re-
garding NAS. It confirms that U-shaped CNNs are the most used network for segmentation. It also
shows that gradient descent is extensively used as a search strategy.

Table 7.3: Applications of 2D segmentation papers

Paper Healthcare Task Type of Data Dataset Dataset Specifications Code
available

Gessert
and
Schlaefer
(2019a)

OCT Image
Segmentation

SD-OCT scans (Farsiu et al.,
2014)

Individual SD-OCT images
and marking: 38400 BScans
from 269 AMD patients and
115 normal subjects. Layer
boundaries provided for the
inner limiting membrane,
retinal pigment epithelium
drusen complex and Bruchs
membrane.

No

Fan et al.
(2020)

Retinal Vessel
Segmentation

OCT scans Drive 40 fundus images with 768 x
584 pixels resolution

No

Stare 20 color fundus images of 700
× 605 pixels

Chase DB1 28 eye fundus images with
1280 x 960 pixels resolution.

Gheshlaghi
et al.
(2020)

Retinal layer
segmentation

OCT scans Private dataset 19 OCT scans of 45 subjects No

Mortazi
and Bagci
(2018)

Segmentation of
cine cardiac MR
images

Cine Cardiac
MR

Automated
Cardiac
Diagnosis
Challenge
MICCAI 2017

150 cine-MR images: 30
normal cases, 30 myocardium
infarction, 30 dilated
cardiomyopathies, 30
hypertrophic
cardiomyopathies, and 30
abnormal right ventricles.

No

Xu et al.
(2020b)

Segmentation of
neuronal
processes in EM
images

Serial section
Transmission
Electron
Microscopy
data

Dataset of larva
ventral nerve
cord from the
ISBI Challenge

30 sections from a serial
section Transmission Electron
Microscopy (ssTEM).
Microcube measures 2 x 2 x
1.5 microns approx., with a
resolution of 4x4x50
nm/pixel. The labels given are
fully annotated binary masks.

No

Dong
et al.
(2019)

Chest organ
segmentation

Chest X-ray CX-SEG 259 Chest X-ray images;
pixel-wise ground truth labels
of left lung

No

95

JSRT-DB 247 Chest X-ray images;
pixel-wise ground truth labels
of left lung, right lung and
heart; 2048 × 2048 pixels
resolution

Liu et al.
(2021)

Segmentation of
multiple types of
medical images

Dermoscopic
images

ISIC 2,594 dermoscopic images Yes

gastroscopy
images

CVC Bernal
et al. (2017)

612 still images from 29
different sequences

CT scans CHAOS-CT –
Weng
et al.
(2019)

Organs and nerves
segmentation

MRI Scans Promise12 50 cases; include a transversal
T2-weighed MR images of
the prostate.

Yes

Chaos-MR Liver, kidneys and spleen CT
scan; 1270 images; 20
training cases

Ultrasound Ultrasound
nerve dataset
ner (2016)

11270 images with binary
mask showing the Brachial
Plexus segmentations.

Yan et al.
(2020)

Organ
segmentation

CT scans
MRI scans

Sliver07
Promise12
Chaos-MR

8318 Liver CT scans
1377 Prostate MRI scans
1270 images of: Liver,
kidneys and spleen MRI scans

No

Table 7.4: NAS details for 2D segmentation papers

Paper Task Network
Searched

Parameters searched Search
strategy

Objective(s) Search
time

Gessert
and
Schlaefer
(2019a)

Image
segmentation

U-shaped CNN Properties of 2 cells
each containing 2
subcells (operations
and connections)

Reinforcement
learning

Dice score 1.5 GPU
hours

Fan et al.
(2020)

Semantic
image
segmentation

U-shaped CNN Operations of the
upsampling and down
sampling cells,
activation functions,
shortcut connections
inside the cells, and the
skip connections with
the preceding cells

Evolutionary
algorithm

F1-score -

Gheshlaghi
et al.
(2020)

Image
segmentation

U-shaped CNN Operations of the
upsampling and down
sampling cells

Gradient
descent
optimization

Dice
Similarity
Coefficient

24 GPU
hours

96

Mortazi
and Bagci
(2018)

Image
Segmentation

Densely
connected
encoder-
decoder CNN

Number of filters, filter
height, and filter width
for each layer, type of
pooling layer.

policy
gradient
reinforcement
learning

Dice index 3600
GPU
hours

Xu et al.
(2020b)

Image
segmentation

U-shaped CNN Operations of
upsampling and
downsampling and
bridge cells and
intra-cell and inter-cell
skip connections

Recurrent
neural
network

IoU score 8.75 GPU
hours

Dong
et al.
(2019)

Image
segmentation

Adversarial
network

Structure of the cells
composing the
discriminator

Gradient
descent
optimization

Cross
entropy
loss/
adversarial
loss

144 GPU
hours

Liu et al.
(2021)

Image
segmentation

U-shaped CNN Operations of
upsampling,
downsampling and
normal cells and
aggregations

Gradient
descent
optimization

Weighted
sum of
cross
entropy
loss and
Dice loss

45.6 GPU
hours

Weng
et al.
(2019)

Image
segmentation

U-shaped CNN Operations of the
upsampling and down
sampling cells

Gradient
descent
optimization

Dice
Similarity
Coefficient

8 GPU
hours

Yan et al.
(2020)

Image
segmentation

U-shaped CNN Network structure and
cells composition

Gradient
descent
optimization

Accuracy 48 GPU
hours

7.4.2 3D segmentation

In deep learning, working on the segmentation of volumetric data is often problematic. Because
of their size, they require a lot more computational power for processing. Most approaches for
segmentation either use 2D FCN, which does not fully exploit the 3D context of the data, or use
3D FCN, which is more appropriate but requires a lot more computational resources.

Addressing this, Zhu et al. (2019) introduced a NAS method that dynamically selects between
2D, 3D, or Pseudo-3D (Qiu et al., 2017) convolutions for each layer. By doing so, the network
combines the strengths of both 2D and 3D architectures. The algorithm relies on differentiable
neural architecture to search for the best encoder and decoder blocks for the network architecture.
The result was validated on lung and pancreas segmentation tasks, focusing on organs and tumors.

Taking a different approach, Baldeon Calisto and Lai-Yuen (2020) revealed an adaptive 2D-3D
multi-objective evolutionary algorithm. It tailors its segmentation strategy according to the nature
of input data (2D or 3D). It also optimizes both accuracy and network efficiency. The framework
is tested on the task of prostate segmentation and cardiac segmentation using the PROMISE12
Litjens et al. (2014) and MICCAI ACDC datasets. A subsequent iteration of this work (Baldeon

97

Calisto and Lai-Yuen, 2021) introduced a Random Forest surrogate function to enhance the search
process.

In the area of cardiac interventions, Zeng et al. (2020) designed a strategy that finds the most
suitable architecture for real-time 3D cardiac segmentation. The resulting architecture must yield
good performances while avoiding any visual lag during the real-time segmentation. This was
achieved using a differentiable NAS that incorporated a latency-driven regularization component.

In Wang (2020), the focus is on glioma segmentation using a patching strategy for multi-model
MRI scans, leveraging a back-propagation algorithm on the BraTS 2019 dataset. Building on
segmentation themes, Guo et al. (2020) addresses organ at risk in the head and neck. By adopting
the clinical organ at risk (OAR) delineation approach, they segment organs into anchor, mid-level,
and small and hard (S&H) categories, optimizing their transitions with differentiable NAS and 2D,
3D, or P3D convolutions.

Highlighting the importance of understanding data specifics, Bae et al. (2019) pinpoints varia-
tions in 3D shapes across medical images. Their NAS approach, influenced by ENAS Pham et al.
(2018), permits dynamic input selection and downsampling, ensuring efficiency as child networks
inherit parent weights. Testing this, they benchmarked their results on the medical segmentation
decathlon challenge.

Further exploring this challenge, Ji et al. (2020) delves into brain, heart, and prostate datasets.
Their innovative approach uses multi-level feature aggregation in a U-shaped network combined
with gradient-descent optimization to maximize data insights. On the other hand, Yu et al. (2020)
introduces a fresh perspective with a two-stage search. First, the network maps out the over-
all structure, aiming beyond the ubiquitous U-shape, then refines the internal cellular structure.
This duality uses an evolutionary strategy and a single-path one-shot NAS, with findings validated
across several datasets.

In a quest for flexibility, He et al. (2021d) pursues a 3D segmentation design that deviates
from the conventional U-shape. They integrate topology loss for optimization and ensure GPU
adaptability. Concluding this discourse, Kim et al. (2019) present a scalable gradient descent
method that zeroes in on neural connectivity in both encoders and decoders, a technique further
validated on tasks like the MSD challenge Freiburg-Hannover (2021b).

Our takeaway

These works emphasize the distinct challenges presented by 3D healthcare segmentation. Most
significantly its computational demands. To deal with this, most authors use NAS for building
hybrid models containing 2D, 3D, and Pseudo-3D convolutions. Although some scans can be of
the same nature, the difficulty of segmentation differs depending on the target organ/tumor. Some
work mimics the practices of health professionals for segmentation and translates that into a DL
model. Some authors also use multi-objective approaches to optimize memory usage or inference
time which are important in certain tasks and settings in segmentation (He et al., 2021d; Zeng et al.,
2020).

Tables 7.5 and 7.6 encapsulate the nuances of the discussed papers, reproducing the earlier ta-

98

bles. From the 3D segmentation research, it is evident that organ segmentation remains a prominent
area of focus. The Medical Segmentation Decathlon (MSD) challenge is a recurring benchmark,
with most models incorporating Fully Convolutional Networks (FCN) featuring an amalgamation
of 2D, 3D, and Pseudo-3D modules.

Table 7.5: Applications of 3D segmentation papers

Paper Healthcare Task Type of Data Dataset Dataset Specifications Code
available

Zhu et al.
(2019)

Organ and tumor
segmentation

3D CT scans NIH Pancreas
Dataset

82 normal abdominal CT volumes
(size 512 x 512 x D); D ranging in
[181, 466]

No

MSD Lung
Tumors

96 3D CT volumes from the MSD
challenge of small tumors
segmentation task.

MSD Pancreas
Tumors

420 3D Portal venous phase CT
volumes

Baldeon
Calisto and
Lai-Yuen
(2020)
Baldeon
Calisto and
Lai-Yuen
(2021)

Segmentation of
cine cardiac MRI
and Prostate
segmentation

MRI scans Cardiac
Diagnosis
MICCAI 2017
PROMISE12

150 cine-MR images: 30 normal
cases, 30 myocardium infarction,
30 dilated cardiomyopathies, 30
hypertrophic cardiomyopathies, 30
abnormal right ventricle (RV).
50 transverse T2-weighted MR
images of the prostate and their
corresponding reference
segmentations

No

Zeng et al.
(2020)

Real-time MRI
segmentation

Cine Cardiac
MRI

Cardiac
Diagnosis
MICCAI 2017

150 cine-MR images: 30 normal
cases, 30 myocardium infarction,
30 dilated and 30 hypertrophic, 30
abnormal right ventricle (RV).

No

Wang
(2020)

Brain tumor
segmentation
(Gliomas)

Multimodal
volumetric
MRI scans.

BraTS 2019
dataset

4D Scans containing high grade
glioma (HGG) or low grade
glioma (LGG) from 19
institutions. MRI modalities:
T1-weighted, T2-weighted,
FLAIR and T1Gd. Ground truth
labels of 259 HGG and 76 LGG

Yes

Guo et al.
(2020)

Organ at risk
segmentation in
head and neck

CT scans - 142 RTCT images with 42
annotated OARs

No

Bae et al.
(2019) Ji
et al.
(2020)

Brain tumor,
heart and
prostate
segmentation

MRI scans MSD Brain

MSD Heart

MSD prostate

750 4D volume with modalities:
FLAIR, T1w, T1gd,T2w
30 3D volumes
48 4D volumes: Prostate central
gland and peripheral zone

No

99

Yu et al.
(2020) He
et al.
(2021d)

Medical image
segmentation

MRI and CT
scans

All tasks of the
MSD
Challenge

Refer to (Freiburg-Hannover,
2021b) for full details

No

Kim et al.
(2019)

Brain tumor,
heart and lung
segmentation

MRI and CT
scans

MSD Brain
MSD Heart
MSD Lung

484 labeled images, 3 classes
20 labeled images, 1 class
20 labeled images, 1 class

No

Table 7.6: NAS details for 3D segmentation papers

Paper Task Network
Searched

Parameters searched Search
strategy

Objective(s) Search
time

Zhu et al.
(2019)

Volumetric
Image
Segmentation

Hybrid 2D,
3D and
Pseudo-3D
(P3D) FCN

Type of encoder (resp.
decoder): 2D, 3D or Pseudo
3D inside a fixed
architecture

Gradient
descent
optimization

Dice-
Sørensen
Coefficient

28.8
GPU
hours

Baldeon
Calisto
and
Lai-Yuen
(2020)

Volumetric
Image
Segmentation

2D or 3D
FCN

Number of cells, number of
filters, type of operation,
and connections, learning
rate, dropout probability,
merge operations,
activation functions.

Multiobjective
evolutionary-
based
algorithm

Weighted
sum of
multiple
indicators

117.6 for
2D and
208.8 for
3D
(GPU
hours)

Baldeon
Calisto
and
Lai-Yuen
(2021)

Volumetric
Image
Segmentation

2D or 3D
FCN

Number of encoder-decoder
cells, number of filters, type
of operation, and
connections in each cell,
and learning rate.

Multiobjective
evolutionary
based
algorithm

273.6
GPU
hours

Zeng
et al.
(2020)

Real-time 3D
segmentation

3D FCN Cell operations and
connections and
architecture backbone
search

Gradient
descent
optimization

Latency
Dice score

-

Wang
(2020)

Volumetric
semantic
segmentation

U-shaped
CNN

Structure of upsampling
and downsampling cells

Gradient
descent
optimization

multi-class
Dice loss

-

Guo et al.
(2020)

Multi-stage
segmentation

Hybrid 2D,
3D and
Pseudo-3D
(P3D) FCN

Layers structure within a
fixed backbone

Gradient
descent
optimization

Dice score -

Bae et al.
(2019)

Volumetric
Image
Segmentation

3D FCN Input patch size, size of 3D
pooling and 3D conv
operations, skip
connections, activation
functions

Reinforcement
learning

Dice loss 33.36
GPU
hours

100

Ji et al.
(2020)

Volumetric
Image
Segmentation

U-shaped
CNN

Operations of each cell type
and multi-stage
aggregations

Gradient
descent
optimization

Dice loss 74.4 h

Yu et al.
(2020)

Volumetric
Image
Segmentation

Hybrid 2D,
3D and
Pseudo-3D
(P3D) FCN

Network structure, and cell
operations (2D, 3D or
Pseudo 3D)

Evolutionary
+ Gradient
descent
optimization

Dice loss
Cross
entropy
loss

7952
GPU
hours

He et al.
(2021d)

Volumetric
Image
Segmentation

FCN Operations of each cell Gradient
descent
optimization

Dice-
Sørensen
score
Topology
loss

139.2
GPU
hours

Kim et al.
(2019)

Volumetric
Image
Segmentation

U-shaped
CNN

Operations of each cell Gradient
descent
optimization

Jaccard
distance

-

7.5 Other medical-related tasks

In the vast expanse of medical research, Neural Architecture Search NAS has been employed in
addressing an array of complex challenges and niche domains. In terms of medical prediction, the
use of NAS has been explored. Balaprakash et al. (2019) focus on cancer research by proposing a
method that takes into account characteristics specific to cancer data. Their algorithm is based on
reinforcement learning to search for the best architecture to predict drug response based on molec-
ular features of tumor cells and drug descriptors. They use three benchmarks from the CANcer
Distributed Learning Environment (CANDLE) project (can, 2021).

In (Lin et al., 2021), authors work on the 3D radiotherapy dose prediction. This is a complex
task because of the conflicting objectives it carries: the target dose prescription, and normal tissue
sparing. Their method integrates neural architecture search with knowledge distillation to reduce
inference time.

Beyond predictive models, tasks supporting healthcare applications, such as feature extraction,
are also important. A notable study by Peng et al. (2020) employed NAS to develop a model to
automatically perform this task on multi-modality medical data. This requires a lot of effort in
selecting the relevant features and combining them. Their work focuses on the fusion of PET-CT
and CT radiomics using an automatically searched network that provides more options for finding
and integrating the complementary PET and CT features.

Further expanding on data modeling, Qiang et al. (2020) introduced a deep belief network tai-
lored for modeling task-based fMRI data. Their NAS approach uses particle swarm optimization.
The model they developed categorizes seven classes of behavioral tasks, including emotions and
language, among others. In parallel, research by Li et al. (2020) utilized an evolutionary algorithm
to create a deep sparse recurrent auto-encoder (DSEAE) for a similar purpose.

Li et al. (2021) tackled the challenge of decomposing the brain’s spatial/temporal function
networks from 4D MRI scans. They incorporated a Recurrent Neural Network (RNN) whose ar-

101

chitecture was refined using differentiable NAS. They also embedded an early stopping mechanism
to address overfitting challenges.

Quality of medical images is also very important, and Liu et al. (2019) acknowledged this in
their work on medical image denoising. Their unique NAS-based approach automatically identifies
the optimal model for denoising. Their method leans on a genetic algorithm, augmented with an
experience-based greedy strategy. Transfer learning is also interwoven to hasten the optimization
process, tested specifically for computed tomography perfusion denoising.

Moreover, Huang et al. (2020) ventured into the realm of MRI data reconstruction from under-
sampled inputs. Their methodology, grounded in differentiable NAS, was meticulously tested on
both brain and cardiac MRI datasets.

Lastly, computer-assisted interventions represent a promising frontier in medical technology.
Kügler et al. (2020) explored pose estimation for surgical instruments during minimally invasive
temporal bone surgery. They employed NAS to optimize an auto-encoder’s architecture blocks
using gradient ascent. The scarcity of real-world data led them to develop a synthetic dataset,
leaving real-world data for validation only. Their findings are based on the i3PosNet Dataset
Kügler et al. (2018), which offers real radiographs of surgical instruments.

7.5.1 Our takeaway

The diverse landscape of healthcare data, ranging from gene signatures to radiomics, demands
customized architectures. This section underscores that NAS has been used outside traditional
data types, adapting unconventional ones like drug descriptors. Whether it is in data modeling,
feature extraction, or predictive analytics.

Tables 7.7 and 7.8 provide detailed summaries of the discussed applications and their respec-
tive NAS methodologies. These tables highlight the versatility of NAS approaches across varied
healthcare tasks, underscoring the wide range of network types.

Table 7.7: Applications of healthcare supporting tasks papers

Paper Healthcare Task Type of Data Dataset Dataset Specifications Code
available

Balaprakash
et al.
(2019)

Predicting tumor
cell line response

Cell line
molecular
features and drug
descriptors

COMBO
benchmark

- No

Predicting tumor
dose response

Cancer drug
screening data

Uno benchmark -

Classifying
RNA-seq gene
expressions

Gene-expression-
level tumor
signatures

NT3 benchmark -

102

Lin et al.
(2021)

Radiotherapy
Dose Prediction

CT scans OpenKBP dataset 340 CT scans with 7 organs
at risk and 3 planning target
volumes: gross disease,
intermediate-risk, and
elective

No

Peng et al.
(2020)

Fuse and derive
the optimal
PET-CT image
features

PET-CT
radiomics

PET-CT dataset
from the cancer
imaging archive

51 multi-modality PET-CT
scans derived from 51
patients with
pathology-proven STSs

No

Qiang
et al.
(2020); Li
et al.
(2020,
2021)

Modeling
task-based fMRI
data

fMRI Human
Connectome
Project Q3 tfMRI
dataset

1,678,100 volumes of 865
patients with 7 behavioral
tasks

No

Liu et al.
(2019)

Medical image
denoising

CT scans - 10,775 cerebral perfusion
CT images (512 × 512
gray-scale images) .

No

Huang
et al.
(2020)

Medical image
reconstruction

MRI scans Brain and Cardiac
datasets

4480 cardiac real-valued
MR images from 33
subjects; T1-weighted
Brain MR of 35
fully-sampled subjects.
(images of size 256 × 256
for both datasets)

No

Kügler
et al.
(2020)

Instrument pose
estimation

X-ray i3PosNet Dataset 10000 synthetic images and
540 real X-ray images of
medical screws on a
phantom head; captured
with a Ziehm c-arm
machine

No

Table 7.8: NAS details for healthcare supporting tasks papers

Paper Task Network
Searched

Parameters searched Search
strategy

Objective(s) Search
time

Balaprakash
et al.
(2019)

Prediction DNN DNN components that
take into account
characteristics specific
to cancer data

Reinforcement
Learning

Accuracy -

Lin et al.
(2021)

Prediction U-shaped
CNN

Operations of 3 types of
cells and connections

Gradient
descent
optimization

Dose error -

Peng et al.
(2020)

Feature
extraction
and fusion

3D CNN Cell operations Gradient
descent
optimization

Cross-
entropy loss

6.16
GPU
hours

103

Qiang et al.
(2020)

Data
modeling

DBN Number of layers and
number of neurons in
each layer

Particle
swarm
optimization

Mean
Squared
Error

30 GPU
hours

Li et al.
(2020)

Data
modeling

DSRAE Number of layers and
number of neurons in
each layer

Evolutionary
algorithm

Mean
Squared
Error

-

Li et al.
(2021)

Data
modeling

RNN Number of layers and
number of neurons in
each layer

Gradient
descent
optimization

Mean
Squared
Error

2-6 GPU
hours

Liu et al.
(2019)

Image
denoising

CNN Number of layers,
number of neurons in
each layer, activation
function and optimizers

Genetic
Algorithm

Peak Signal-
to-Noise
Ratio

540 GPU
hours

Huang
et al.
(2020)

Image recon-
struction

FCN Operations and
connections in each cell

Gradient
descent
optimization

L2 loss 12 GPU
hours

Kügler
et al.
(2020)

Pose
estimation

AE Layer operations and
typology

Gradient
descent
optimization

Cross-
Entropy and
MSE

100 GPU
hours

7.6 Global discussion and future research directions

This chapter discusses the different trends in the area of NAS in healthcare. It includes the ad-
vances, shortcomings, and possible contributions in this field.

In terms of healthcare tasks, the most addressed ones are medical image applications. This re-
flects the trend of the general research on NAS that is mostly applied to images. More specifically,
it is shown that medical image segmentation (in 2D or 3D form) is the most prevalent here.

The most searched architectures are U-shaped fully convolutional networks. This type of ar-
chitecture has many parameters and needs to be well-adjusted. Optimizing this type of architecture
often depends on the data type as well as the task itself, which can get notably complex in some
areas such as 3D segmentation.

Most search strategies use differentiable NAS for gradient descent optimization, which is often
reported as less time-consuming than evolutionary approaches. A lot of contributions rely on
already existing frameworks, such as ENAS (Pham et al., 2018) and ADANET (Cortes et al.,
2017), and others propose their own search strategies. It is also shown that the data used for these
contributions are mainly from public datasets such as the Automated Cardiac Diagnosis Challenge
(ACDC) dataset, Autism Brain Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014),
CheXpert benchmark dataset (Irvin et al., 2019), etc.

In the papers presented in this review, some shortcomings are identified. Explainability and
interpretability are both very important in healthcare but very few works include them in their
research (Jiang et al., 2021) (He et al., 2021a).

There are also very few contributions for applications involving sequential data like data ex-

104

tractions in medical reports and other NLP tasks. Only some of them use this type of data as seen
in (Lv et al., 2021) for ECG signals, and (Qiang et al., 2020; Li et al., 2020, 2021) for fMRI signals.

Finally, contributions to medical predictions using NAS are rare. This category of tasks usually
involves tabular data or sequential data that is also lacking as a type of data generally used in NAS
research.

In light of these observations, interesting directions in this research would include more appli-
cations related to non-image data. Medical report analysis, medical prognosis, and tasks related
to public health are all important areas that could benefit from NAS. Moreover, employing inter-
pretability or explainability when developing healthcare applications can help practitioners in their
decision-making.

Another interesting direction is using federated learning with NAS. This technique enforces
privacy by allowing model training without revealing data to unauthorized users (Zhu et al., 2021).
This could give more access to private datasets and allow the widespread of healthcare applications.

105

General Conclusion

“Second star to the right and straight on ’til
morning.“

— J.M. Barrie, Peter Pan

In this thesis, the exploration of Neural Architecture Search (NAS) has brought several insights
and contributions across different aspects of neural network design and application. The journey
transited from understanding the complex mechanisms of NAS, simplifying and optimizing its
processes through local search heuristics, addressing the multi-objective nature of neural network
design, and finally to the application of these principles in real-world scenarios, particularly in
healthcare. The contribution summary of this thesis is as follows:

Contribution Summary

Introducing the concept of neural architecture search

Initially, the thesis underscored the pivotal role of NAS in automating and optimizing the design
of neural network architectures, highlighting its potential to democratize and enhance the devel-
opment of deep learning models across various domains. We explored how NAS, despite being an
effective solution for automating model design, has its share of challenges and complexity. In our
analysis, we highlighted how new design methods could benefit from straightforward approaches,
fighting the overly complex strategies prevalent in the literature.

Exploring simplicity while maintaining efficiency with LS-Weight and LS-
PON

The thesis then focused on the search for simplicity while maintaining efficiency in the NAS pro-
cess. We explored various approaches like Local Search (LS), LS-Weights, and LS-PON, each to
optimize the design process by reducing the necessity for extensive human expertise and interven-
tion, while also maintaining or enhancing efficiency and quality.

In the first method, called LS-Weights, we incorporated human knowledge in the search process
to guide it to better solutions. We initiated this by analyzing state-of-the-art manually-designed ar-
chitectures to extract insights and knowledge. After that, we added a mechanism to incorporate

106

these insights and see their effect on the speed and quality of the obtained architectures. Based on
our tests on benchmarks, we achieved significant speedup (from 7% to 49%) with a simple modi-
fication of the neighborhood function while maintaining state-of-the-art results on benchmarks.

In our second method, LS-PON, our approach added an online learning module using machine
learning to automate the knowledge extraction. This module automatically learns which architec-
ture has more potential and guides the neighbor exploration. This alleviates the human intervention
for knowledge extraction and gives more autonomy to the method. Upon testing this on multiple
benchmarks, we confirmed a significant speedup compared to vanilla local search in most cases,
achieving from 15% to 109% speedup on these datasets.

With these two approaches, we emphasized the significance of maintaining simplicity in search
methods to ensure that they do not negate the benefits of NAS automation. We confirmed that even
with approaches with no parameters tuning, we were still able to achieve state-of-the-art results in
reduced time.

Tackling Multi-objective NAS

Furthermore, we presented the multi-objective approach to neural network architecture design. We
highlighted the importance of balancing several competing factors, such as predictive performance,
computational efficiency, and resource utilization, which are crucial for application in real-world
scenarios. We presented different approaches to multi-objective optimization in NAS, classifying
them and highlighting the benefits and challenges each of them offers. This enabled us to identify
new paths for improvements that our contribution could focus on.

A new framework with dominance-based multi-objective local search

In light of the insights gained from our study of multi-objective NAS, we proposed a new ap-
proach using dominance-based multi-objective local search (DMLS). Our method addresses the
challenges previously discovered in existing strategies. In this contribution, we presented a for-
mulation of the NAS problem, as well as the design of each DMLS component adapted to solve
it. Our method required minimal tuning to allow flexibility. We ran experiments on specialized
benchmarks to optimize both accuracy and complexity. We proved our method’s efficiency and
superiority compared to other classical multi-objective NAS methods. Our approach, while requir-
ing minimal tuning, leverages the strengths of LS and introduces the flexibility to accommodate
multiple objectives, thereby, providing a promising solution to navigate the complexities of multi-
objective NAS.

Transitioning to real-world applications

We transitioned from benchmark scenarios to real-world applications with a use case in healthcare.
We highlighted the challenges and considerations essential for implementing NAS effectively in
practical contexts. Our approach followed a meticulous protocol to select the best components at

107

each step of our implementation when using real data. We showcased using practical examples,
how each of these components interferes with the results of the NAS framework. Starting from
selecting the appropriate search space to fine-tuning the training parameters, we backed every step
with empirical studies.

After setting these components, we also validated the effectiveness of LS-PON in real-world
datasets, illustrating its potential to fit different modalities and tasks. Using this framework, we
achieved results comparable with the state-of-the-art on two distinct healthcare tasks.

NAS in Healthcare: opportunities and challenges

Lastly, we explored the use of NAS in the healthcare domain. In this part, we presented a com-
prehensive review of over 40 contributions, highlighting the potential of NAS in this domain. Our
work provided a structured starting point for those new to the field or considering leveraging NAS
for healthcare applications. It highlights the potential of NAS in healthcare and underscores the
current gaps and research opportunities.

Future Research

During this thesis, the exploration of neural architecture search has revealed a range of opportu-
nities, challenges, and methodologies that combine the fields of deep learning, optimization, and
practical applications. Based on the insights gained and the gaps identified during this research,
several paths can be highlighted for future research.

• Expanding to Other Data Types: A noticeable gap exists in applying NAS to non-image
data such as sequential, tabular, or text data. Future research could explore NAS frameworks
specifically designed for these data types, especially for healthcare tasks like medical report
analysis or patient prognosis based on health records.

• Interpretability and Explainability: There is a need to develop NAS methodologies that
not only target performance metrics but also ensure the models are interpretable by domain
experts. This can be achieved by designing search spaces with interpretable architectures or
by developing explainability metrics to be optimized during the search process.

• Expanding Multi-Objective Approaches: There is an opportunity to explore and create
more strategies for multi-objective NAS. These strategies can weigh and balance modern
objectives, such as fairness and robustness, which are becoming increasingly important in
practical applications.

• NAS for Non-Traditional Architectures: Modern architectures, like quantum neural net-
works and spiking neural networks, among others, can also benefit from NAS. Investigating
NAS methods specifically designed for these innovative architectures can significantly ex-
pand their practicality.

108

• Dynamic and Adaptive NAS: Instead of a one-size-fits-all approach, future NAS method-
ologies could be dynamic and adaptive, adjusting the search based on the differences of the
specific task and data at hand.

109

Published and Submitted Works

The following works have been either published and/or presented at conferences during this thesis
in chronological order:

• Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. LS-Weights: Local Search with Weighted
Neighborhood Sampling for Neural Architecture Search. NLDL2022, Jan 2022, Tromso,
Norway.

• Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. Improving Local Search for Neural Ar-
chitecture Search. 23ème congrès annuel de la Société Française de Recherche Opérationnelle
et d’Aide à la Décision, INSA Lyon, Feb 2022, Villeurbanne - Lyon, France.

• Meyssa Zouambi, Julie Jacques, Clarisse Dhaenens. Dominance-Based Local Search for
Neural Architecture Search, DSO Workshop, IJCAI 2022, Vienna, Austria.

• Meyssa Zouambi, Julie Jacques, Clarisse Dhaenens. LS-PON: a Prediction-based Local
Search for Neural Architecture Search. The 8th Annual Conference on machine Learning,
Optimization and Data science LOD2022, Sep 2022, Siena, Italy. Page 108-122.

• Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. An Alternative Pareto-based Approach
to Multi-objective Neural Architecture Search. IEEE 2023 Congress on Evolutionary Com-
putation, Jul 2023, Chicago, United States.

• Meyssa Zouambi, Clarisse Dhaenens, Louis Rousselet, Julie Jacques. Neural Architecture
Search for Healthcare: a Comprehensive Survey. Journal submitted to Artificial Intelligence
Review.

110

Bibliography

Kaggle Ultrasound Nerve Segmentation, $http://fhtagn.net/prog/2016/08/19/kaggle-uns.html$,
2016.

Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer, $https://candle.
cels.anl.gov/$, 2021.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L.:
Deep learning with differential privacy, in: Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pp. 308–318, 2016.

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M.,
Van Essen, B. C., Awwal, A. A., and Asari, V. K.: A state-of-the-art survey on deep learning
theory and architectures, electronics, 8, 292, 2019.

Arrieta, A. B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcı́a,
S., Gil-López, S., Molina, D., Benjamins, R., et al.: Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion,
58, 82–115, 2020.

Bae, W., Lee, S., Lee, Y., Park, B., Chung, M., and Jung, K. H.: Resource Optimized Neural
Architecture Search for 3D Medical Image Segmentation, Lecture Notes in Computer Science,
11765 LNCS, 228–236, 2019.

Baker, B., Gupta, O., Naik, N., and Raskar, R.: Designing neural network architectures using
reinforcement learning, arXiv preprint arXiv:1611.02167, 2016.

Baker, B., Gupta, O., Raskar, R., and Naik, N.: Accelerating neural architecture search using
performance prediction, arXiv:1705.10823, 2017.

Balaprakash, P., Egele, R., Salim, M., Wild, S., Vishwanath, V., Xia, F., Brettin, T., and Stevens,
R.: Scalable reinforcement-learning-based neural architecture search for cancer deep learning
research, in: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–33, 2019.

Baldeon Calisto, M. and Lai-Yuen, S. K.: AdaEn-Net: An ensemble of adaptive 2D–3D Fully
Convolutional Networks for medical image segmentation, Neural Networks, 126, 76–94, 2020.

111

Baldeon Calisto, M. G. and Lai-Yuen, S. K.: EMONAS: efficient multiobjective neural architecture
search framework for 3D medical image segmentation, 1159607, 3, 2021.

Bernal, J., Tajkbaksh, N., Sanchez, F. J., Matuszewski, B. J., Chen, H., Yu, L., Angermann, Q.,
Romain, O., Rustad, B., Balasingham, I., et al.: Comparative validation of polyp detection
methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge,
IEEE transactions on medical imaging, 36, 1231–1249, 2017.

Bottou, L. et al.: Stochastic gradient learning in neural networks, Proceedings of Neuro-Nımes,
91, 12, 1991.

Cai, H., Zhu, L., and Han, S.: Proxylessnas: Direct neural architecture search on target task and
hardware, arXiv preprint arXiv:1812.00332, 2018.

Chen, C., Li, O., Tao, C., Barnett, A. J., Su, J., and Rudin, C.: This looks like that: deep learning
for interpretable image recognition, arXiv preprint arXiv:1806.10574, 2018.

Chitty-Venkata, K. T., Emani, M., Vishwanath, V., and Somani, A. K.: Neural Architecture Search
Benchmarks: Insights and Survey, IEEE Access, 11, 25 217–25 236, 2023.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Ben-
gio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation, arXiv preprint arXiv:1406.1078, 2014.

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and Yang, S.: Adanet: Adaptive structural
learning of artificial neural networks, in: International conference on machine learning, pp.
874–883, PMLR, 2017.

Dai, H., Ge, F., Li, Q., Zhang, W., and Liu, T.: Optimize CNN Model for FMRI Signal Classifica-
tion Via Adanet-Based Neural Architecture Search, Proceedings - International Symposium on
Biomedical Imaging, 2020-April, 1399–1403, 2020.

Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction, in: Multi-
objective evolutionary optimisation for product design and manufacturing, pp. 3–34, Springer,
2011.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE transactions on evolutionary computation, 6, 182–197, 2002.

Den Ottelander, T., Dushatskiy, A., Virgolin, M., and Bosman, P. A.: Local search is a remarkably
strong baseline for neural architecture search, in: Evolutionary Multi-Criterion Optimization:
11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings
11, pp. 465–479, Springer, 2021.

Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., and Fei-Fei, L.: Imagenet large scale visual
recognition competition 2012 (ILSVRC2012), See net. org/challenges/LSVRC, 41, 2012.

112

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805, 2018.

Dhaenens, C., Lemesre, J., and Talbi, E.-G.: K-PPM: A new exact method to solve multi-objective
combinatorial optimization problems, European Journal of Operational Research, 200, 45–53,
2010.

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf,
M., Bookheimer, S. Y., Dapretto, M., et al.: The autism brain imaging data exchange: towards
a large-scale evaluation of the intrinsic brain architecture in autism, Molecular psychiatry, 19,
659–667, 2014.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang, Y.-H.: Musegan: Multi-track sequential gener-
ative adversarial networks for symbolic music generation and accompaniment, in: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

Dong, N., Xu, M., Liang, X., Jiang, Y., Dai, W., and Xing, E.: Neural Architecture Search for
Adversarial Medical Image Segmentation, vol. 2, Springer International Publishing, 2019.

Dong, X. and Yang, Y.: Nas-bench-201: Extending the scope of reproducible neural architecture
search, arXiv preprint arXiv:2001.00326, 2020.

Dong, X., Liu, L., Musial, K., and Gabrys, B.: Nats-bench: Benchmarking nas algorithms for
architecture topology and size, IEEE transactions on pattern analysis and machine intelligence,
44, 3634–3646, 2021.

Elgammal, A., Liu, B., Elhoseiny, M., and Mazzone, M.: Can: Creative adversarial networks,
generating” art” by learning about styles and deviating from style norms, arXiv preprint
arXiv:1706.07068, 2017.

Elsken, T., Metzen, J.-H., and Hutter, F.: Simple and efficient architecture search for convolutional
neural networks, arXiv preprint arXiv:1711.04528, 2017.

Elsken, T., Metzen, J. H., and Hutter, F.: Efficient multi-objective neural architecture search via
lamarckian evolution, arXiv preprint arXiv:1804.09081, 2018.

Elsken, T., Metzen, J. H., Hutter, F., et al.: Neural architecture search: A survey., J. Mach. Learn.
Res., 20, 1–21, 2019.

Fan, Z., Wei, J., Zhu, G., Mo, J., and Li, W.: Evolutionary neural architecture search for retinal
vessel segmentation, arXiv, 2020.

Farsiu, S., Chiu, S. J., O’Connell, R. V., Folgar, F. A., Yuan, E., Izatt, J. A., Toth, C. A., Group,
A.-R. E. D. S. . A. S. D. O. C. T. S., et al.: Quantitative classification of eyes with and without
intermediate age-related macular degeneration using optical coherence tomography, Ophthal-
mology, 121, 162–172, 2014.

113

Fedorov, I., Adams, R. P., Mattina, M., and Whatmough, P.: Sparse: Sparse architecture search
for cnns on resource-constrained microcontrollers, Advances in Neural Information Processing
Systems, 32, 2019.

Freiburg-Hannover: literature on neural architecture search, $https://www.automl.org/automl/
literature-on-neural-architecture-search/$, 2021a.

Freiburg-Hannover: Medical Segmentation Decathlon (MSD) challenge tasks, $http://
medicaldecathlon.com/$, 2021b.

Gessert, N. and Schlaefer, A.: Efficient neural architecture search on low-dimensional data for
OCT Image Segmentation, arXiv, pp. 1–5, 2019a.

Gessert, N. and Schlaefer, A.: Efficient neural architecture search on low-dimensional data for
OCT image segmentation, arXiv preprint arXiv:1905.02590, 2019b.

Gheshlaghi, S. H., Dehzangi, O., Dabouei, A., Amireskandari, A., Rezai, A., and Nasrabadi, N. M.:
Efficient Oct Image Segmentation Using Neural Architecture Search, Proceedings - Interna-
tional Conference on Image Processing, ICIP, 2020-Octob, 428–432, 2020.

Gondara, L.: Medical image denoising using convolutional denoising autoencoders, in: 2016 IEEE
16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246, IEEE, 2016.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT press, 2016.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y.: Generative adversarial networks, arXiv preprint arXiv:1406.2661, 2014.

Guo, D., Jin, D., Zhu, Z., Ho, T. Y., Harrison, A. P., Chao, C. H., Xiao, J., and Lu, L.: Organ
at risk segmentation for head and neck cancer using stratified learning and neural architecture
search, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 4222–4231, 2020.

Haimes, Y.: On a bicriterion formulation of the problems of integrated system identification and
system optimization, IEEE transactions on systems, man, and cybernetics, pp. 296–297, 1971.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

He, X., Wang, S., Shi, S., Chu, X., Tang, J., Liu, X., Yan, C., Zhang, J., and Ding, G.: Benchmark-
ing deep learning models and automated model design for COVID-19 detection with chest CT
scans, medRxiv, 2020.

He, X., Wang, S., Ying, G., Zhang, J., and Chu, X.: Efficient Multi-objective Evolutionary 3D
Neural Architecture Search for COVID-19 Detection with Chest CT Scans, arXiv preprint
arXiv:2101.10667, 2021a.

114

He, X., Wang, Y., Wang, X., Huang, W., Zhao, S., and Chen, X.: Simple-Encoded evolving con-
volutional neural network and its application to skin disease image classification, Swarm and
Evolutionary Computation, 67, 100 955, 2021b.

He, X., Zhao, K., and Chu, X.: AutoML: A survey of the state-of-the-art, Knowledge-Based
Systems, 212, 106 622, 2021c.

He, Y., Yang, D., Roth, H., Zhao, C., and Xu, D.: DiNTS: Differentiable Neural Network Topology
Search for 3D Medical Image Segmentation, arXiv preprint arXiv:2103.15954, 2021d.

Hinton, G., Vinyals, O., and Dean, J.: Distilling the knowledge in a neural network, arXiv preprint
arXiv:1503.02531, 2015.

Hinton, G. E., Osindero, S., and Teh, Y.-W.: A fast learning algorithm for deep belief nets, Neural
computation, 18, 1527–1554, 2006.

Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural computation, 9, 1735–1780,
1997.

Hsu, C.-H., Chang, S.-H., Liang, J.-H., Chou, H.-P., Liu, C.-H., Chang, S.-C., Pan, J.-Y., Chen,
Y.-T., Wei, W., and Juan, D.-C.: Monas: Multi-objective neural architecture search using rein-
forcement learning, arXiv preprint arXiv:1806.10332, 2018.

Hu, L., Liu, Q., Zhang, J., Jiang, F., Liu, Y., and Zhang, S.: A-DARTS: attention-guided differ-
entiable architecture search for lung nodule classification, Journal of Electronic Imaging, 30,
013 012, 2021.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.: Densely connected convolutional
networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4700–4708, 2017.

Huang, Q., Xian, Y., Wu, P., Yi, J., Qu, H., Metaxas, D., et al.: Enhanced MRI Reconstruction
Network Using Neural Architecture Search, in: International Workshop on Machine Learning
in Medical Imaging, pp. 634–643, Springer, 2020.

Hutter, F., Hoos, H. H., and Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration, in: International conference on learning and intelligent optimization,
pp. 507–523, Springer, 2011.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B.,
Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph dataset with uncertainty la-
bels and expert comparison, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 590–597, 2019.

115

Jacques, J., Taillard, J., Delerue, D., Dhaenens, C., and Jourdan, L.: Conception of a dominance-
based multi-objective local search in the context of classification rule mining in large and im-
balanced data sets, Applied Soft Computing, 34, 705–720, 2015.

Ji, Y., Zhang, R., Li, Z., Ren, J., Zhang, S., and Luo, P.: Uxnet: Searching multi-level feature
aggregation for 3d medical image segmentation, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12261
LNCS, 346–356, 2020.

Jiang, C., Wang, S., Xu, H., Liang, X., and Xiao, N.: ElixirNet: Relation-aware network architec-
ture adaptation for medical lesion detection, arXiv, 2020.

Jiang, H., Shen, F., Gao, F., and Han, W.: Learning efficient, explainable and discriminative repre-
sentations for pulmonary nodules classification, Pattern Recognition, 113, 2021.

Jiang, Y., Krishnan, D., Mobahi, H., and Bengio, S.: Predicting the generalization gap in deep
networks with margin distributions, arXiv preprint arXiv:1810.00113, 2018.

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. P.: Neural architecture
search with bayesian optimisation and optimal transport, Advances in neural information pro-
cessing systems, 31, 2018.

Kavur, A. E., Gezer, N. S., Barış, M., Aslan, S., Conze, P.-H., Groza, V., Pham, D. D., Chatterjee,
S., Ernst, P., Özkan, S., et al.: CHAOS challenge-combined (CT-MR) healthy abdominal organ
segmentation, Medical Image Analysis, 69, 101 950, 2021.

Kim, S., Kim, I., Lim, S., Baek, W., Kim, C., Cho, H., Yoon, B., and Kim, T.: Scalable neural
architecture search for 3d medical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 220–228, Springer, 2019.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M.: Stochastic gradient VB and the variational auto-encoder, in: Sec-
ond International Conference on Learning Representations, ICLR, vol. 19, 2014.

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F.: Learning curve prediction with Bayesian
neural networks, in: International Conference on Learning Representations, 2017.

Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Filippov, A., and Burnaev,
E.: Nas-bench-nlp: neural architecture search benchmark for natural language processing, IEEE
Access, 10, 45 736–45 747, 2022.

Knowles, J. and Corne, D.: The pareto archived evolution strategy: A new baseline algorithm
for pareto multiobjective optimisation, in: Proceedings of the 1999 congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), vol. 1, pp. 98–105, IEEE, 1999.

116

Kramer, M. A.: Nonlinear principal component analysis using autoassociative neural networks,
AIChE journal, 37, 233–243, 1991.

Kügler, D., Stefanov, A., and Mukhopadhyay, A.: i3PosNet: Instrument pose estimation from
X-ray, arXiv preprint arXiv:1802.09575, 2018.

Kügler, D., Uecker, M., Kuijper, A., and Mukhopadhyay, A.: AutoSNAP: Automatically Learning
Neural Architectures for Instrument Pose Estimation, Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
12263 LNCS, 375–384, 2020.

Kwasigroch, A., Grochowski, M., and Mikolajczyk, M.: Deep neural network architecture search
using network morphism, in: International Conference on Methods and Models in Automation
and Robotics, pp. 30–35, IEEE, 2019.

Kwasigroch, A., Grochowski, M., and Mikolajczyk, A.: Neural architecture search for skin lesion
classification, IEEE Access, 8, 9061–9071, 2020.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, nature, 521, 436–444, 2015.

Lee, S., Kim, J., Kang, H., Kang, D.-Y., and Park, J.: Genetic Algorithm Based Deep Learning
Neural Network Structure and Hyperparameter Optimization, Applied Sciences, 11, 744, 2021.

Lemesre, J., Dhaenens, C., and Talbi, E.-G.: Parallel partitioning method (PPM): A new exact
method to solve bi-objective problems, Computers & operations research, 34, 2450–2462, 2007.

Li, L. and Talwalkar, A.: Random search and reproducibility for neural architecture search, in:
Uncertainty in artificial intelligence, pp. 367–377, PMLR, 2020.

Li, Q., Zhang, W., Lv, J., Wu, X., and Liu, T.: Neural Architecture Search for Optimization
of Spatial-Temporal Brain Network Decomposition, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 377–386, Springer, 2020.

Li, Q., Wu, X., and Liu, T.: Differentiable neural architecture search for optimal spatial/temporal
brain function network decomposition, Medical Image Analysis, 69, 101 974, 2021.

Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., and Talbi, E.-G.: On dominance-based
multiobjective local search: design, implementation and experimental analysis on scheduling
and traveling salesman problems, Journal of Heuristics, 18, 317–352, 2012.

Lim, B., Son, S., Kim, H., Nah, S., and Mu Lee, K.: Enhanced deep residual networks for single
image super-resolution, in: Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 136–144, 2017.

117

Lin, J.-H. and Haug, P. J.: Data preparation framework for preprocessing clinical data in data min-
ing, in: AMIA annual symposium proceedings, vol. 2006, p. 489, American Medical Informatics
Association, 2006.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.: Focal loss for dense object detection, in:
Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

Lin, Y., Liu, Y., Liu, J., Liu, G., Ma, K., and Zheng, Y.: LE-NAS: Learning-based Ensenble with
NAS for Dose Prediction, arXiv preprint arXiv:2106.06733, 2021.

Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., Vincent, G.,
Guillard, G., Birbeck, N., Zhang, J., et al.: Evaluation of prostate segmentation algorithms for
MRI: the PROMISE12 challenge, Medical image analysis, 18, 359–373, 2014.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang,
J., and Murphy, K.: Progressive neural architecture search, in: Proceedings of the European
conference on computer vision (ECCV), pp. 19–34, 2018a.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K.: Hierarchical representa-
tions for efficient architecture search, arXiv preprint arXiv:1711.00436, 2017a.

Liu, H., Simonyan, K., and Yang, Y.: Darts: Differentiable architecture search, arXiv preprint
arXiv:1806.09055, 2018b.

Liu, L., Wen, Z., Liu, S., Zhou, H.-Y., Zhu, H., Xie, W., Shen, L., Ma, K., and Zheng, Y.:
MixSearch: Searching for Domain Generalized Medical Image Segmentation Architectures,
XX, 1–10, 2021.

Liu, P., El Basha, M. D., Li, Y., Xiao, Y., Sanelli, P. C., and Fang, R.: Deep Evolutionary Networks
with Expedited Genetic Algorithms for Medical Image Denoising, Medical Image Analysis, 54,
306–315, 2019.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L.: Sphereface: Deep hypersphere embedding
for face recognition, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 212–220, 2017b.

Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic segmentation,
in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–
3440, 2015.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf, W.: Nsga-net:
neural architecture search using multi-objective genetic algorithm, in: Proceedings of the genetic
and evolutionary computation conference, pp. 419–427, 2019.

118

Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E. D., Banzhaf, W., and Boddeti, V. N.: Mul-
tiobjective evolutionary design of deep convolutional neural networks for image classification,
IEEE Transactions on Evolutionary Computation, 25, 277–291, 2020.

Luo, R., Tan, X., Wang, R., Qin, T., Chen, E., and Liu, T.-Y.: Accuracy Prediction with Non-neural
Model for Neural Architecture Search, arXiv:2007.04785, 2020.

Lv, J., Ye, Q., Sun, Y., Zhao, J., and Lv, J.: Heart-Darts: Classification of Heartbeats Using
Differentiable Architecture Search, arXiv preprint arXiv:2105.00693, 2021.

Marler, R. T. and Arora, J. S.: Survey of multi-objective optimization methods for engineering,
Structural and multidisciplinary optimization, 26, 369–395, 2004.

Mehrotra, A., Ramos, A. G. C., Bhattacharya, S., Dudziak, Ł., Vipperla, R., Chau, T., Abdelfattah,
M. S., Ishtiaq, S., and Lane, N. D.: Nas-bench-asr: Reproducible neural architecture search for
speech recognition, in: International Conference on Learning Representations, 2021.

Miahi, E., Mirroshandel, S. A., and Nasr, A.: Genetic Neural Architecture Search for automatic
assessment of human sperm images, arXiv preprint arXiv:1909.09432, 2019.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B.,
Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training, arXiv preprint
arXiv:1710.03740, 2017.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad,
H., Navruzyan, A., Duffy, N., et al.: Evolving deep neural networks, in: Artificial intelligence
in the age of neural networks and brain computing, pp. 293–312, Elsevier, 2019.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.: Pruning convolutional neural networks
for resource efficient inference, arXiv preprint arXiv:1611.06440, 2016.

Mortazi, A. and Bagci, U.: Automatically designing CNN architectures for medical image seg-
mentation, in: International Workshop on Machine Learning in Medical Imaging, pp. 98–106,
Springer, 2018.

Odema, M., Rashid, N., and Al Faruque, M. A.: Energy-aware design methodology for myocar-
dial infarction detection on low-power wearable devices, in: 2021 26th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 621–626, IEEE, 2021.

Paquete, L., Chiarandini, M., and Stützle, T.: Pareto local optimum sets in the biobjective traveling
salesman problem: An experimental study, in: Metaheuristics for multiobjective optimisation,
pp. 177–199, Springer, 2004.

Peng, Y., Bi, L., Fulham, M., Feng, D., and Kim, J.: Multi-modality Information Fusion for
Radiomics-Based Neural Architecture Search, Lecture Notes in Computer Science (including

119

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12267
LNCS, 763–771, 2020.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J.: Efficient neural architecture search via
parameters sharing, in: International Conference on Machine Learning, pp. 4095–4104, PMLR,
2018.

Qiang, N., Dong, Q., Zhang, W., Ge, B., Ge, F., Liang, H., Sun, Y., Gao, J., and Liu, T.: Modeling
task-based fMRI data via deep belief network with neural architecture search, Computerized
Medical Imaging and Graphics, 83, 101 747, 2020.

Qin, Y., Zhang, Z., Wang, X., Zhang, Z., and Zhu, W.: NAS-Bench-Graph: Benchmarking Graph
Neural Architecture Search, arXiv preprint arXiv:2206.09166, 2022.

Qiu, Z., Yao, T., and Mei, T.: Learning spatio-temporal representation with pseudo-3d residual
networks, in: proceedings of the IEEE International Conference on Computer Vision, pp. 5533–
5541, 2017.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding
by generative pre-training, mikecaptain, 2018.

Radiuk, P. and Kutucu, H.: Heuristic architecture search using network morphism for Chest X-Ray
classification, CEUR Workshop Proceedings, 2623, 107–121, 2020.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P. J.: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A.:
Large-scale evolution of image classifiers, in: International Conference on Machine Learning,
pp. 2902–2911, PMLR, 2017.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V.: Regularized evolution for image classifier
architecture search, in: Proceedings of the aaai conference on artificial intelligence, vol. 33, pp.
4780–4789, 2019.

Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image
segmentation, in: International Conference on Medical image computing and computer-assisted
intervention, pp. 234–241, Springer, 2015.

Ruder, S.: An overview of gradient descent optimization algorithms, arXiv preprint
arXiv:1609.04747, 2016.

Salakhutdinov, R., Mnih, A., and Hinton, G.: Restricted Boltzmann machines for collaborative
filtering, in: Proceedings of the 24th international conference on Machine learning, pp. 791–
798, 2007.

120

Saxe, A. M., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., and Ng, A. Y.: On random weights and
unsupervised feature learning., in: Icml, vol. 2, p. 6, 2011.

Schwartz, O.: You thought fake news was bad? Deep fakes are where truth goes to die, The
Guardian, 12, 2018.

Shin, H.-C., Tenenholtz, N. A., Rogers, J. K., Schwarz, C. G., Senjem, M. L., Gunter, J. L., Andri-
ole, K. P., and Michalski, M.: Medical image synthesis for data augmentation and anonymization
using generative adversarial networks, in: International workshop on simulation and synthesis
in medical imaging, pp. 1–11, Springer, 2018.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, F.: Nas-bench-301 and the
case for surrogate benchmarks for neural architecture search, arXiv preprint arXiv:2008.09777,
2020.

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., and Marculescu,
D.: Single-path nas: Designing hardware-efficient convnets in less than 4 hours, in: Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases, pp. 481–497,
Springer, 2019.

Stanley, K. O. and Miikkulainen, R.: Evolving neural networks through augmenting topologies,
Evolutionary computation, 10, 99–127, 2002.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V.: Mnasnet:
Platform-aware neural architecture search for mobile, in: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 2820–2828, 2019.

Tenfelde-Podehl, D.: A Recursive Algorithm for Multi-Objective Combinatorial Optimization
Problems with q-Criteria, unpublished, 2003.

Tenorio, M. and Lee, W.-T.: Self organizing neural networks for the identification problem, Ad-
vances in Neural Information Processing Systems, 1, 1988.

Tieleman, T., Hinton, G., et al.: Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude, COURSERA: Neural networks for machine learning, 4, 26–31, 2012.

Ulungu, E. L. and Teghem, J.: The two phases method: An efficient procedure to solve bi-objective
combinatorial optimization problems, Foundations of computing and decision sciences, 20,
149–165, 1995.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I.: Attention is all you need, Advances in neural information processing systems,
30, 2017.

121

Veniat, T. and Denoyer, L.: Learning time/memory-efficient deep architectures with budgeted su-
per networks, in: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 3492–3500, 2018.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.: Extracting and composing robust
features with denoising autoencoders, in: Proceedings of the 25th international conference on
Machine learning, pp. 1096–1103, 2008.

Wang, B., Sun, Y., Xue, B., and Zhang, M.: Evolving deep neural networks by multi-objective
particle swarm optimization for image classification, in: Proceedings of the genetic and evolu-
tionary computation conference, pp. 490–498, 2019.

Wang, F.: Neural Architecture Search for Gliomas Segmentation on Multimodal Magnetic Reso-
nance Imaging, arXiv, 2020.

Wang, H., Li, R., Chen, X., Duan, B., Xiong, L., Yang, X., Fan, H., and Ni, D.: Remote Intelligent
Assisted Diagnosis System for Hepatic Echinococcosis, in: Medical Ultrasound, and Preterm,
Perinatal and Paediatric Image Analysis, pp. 3–12, Springer, 2020.

Wei, C., Niu, C., Tang, Y., Wang, Y., Hu, H., and Liang, J.: Npenas: Neural predictor guided
evolution for neural architecture search, arXiv:2003.12857, 2020.

Wei, T., Wang, C., Rui, Y., and Chen, C. W.: Network morphism, in: International Conference on
Machine Learning, pp. 564–572, PMLR, 2016.

Weng, Y., Zhou, T., Li, Y., and Qiu, X.: NAS-Unet: Neural architecture search for medical image
segmentation, IEEE Access, 7, 44 247–44 257, 2019.

White, C., Nolen, S., and Savani, Y.: Exploring the Loss Landscape in Neural Architecture Search,
arXiv:2005.02960, 2020.

White, C., Neiswanger, W., and Savani, Y.: Bananas: Bayesian optimization with neural archi-
tectures for neural architecture search, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 10 293–10 301, 2021.

Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent neural
networks, Neural computation, 1, 270–280, 1989.

Wistuba, M., Rawat, A., and Pedapati, T.: A survey on neural architecture search, arXiv preprint
arXiv:1905.01392, 2019.

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S.: Cbam: Convolutional block attention module, in:
Proceedings of the European conference on computer vision (ECCV), pp. 3–19, 2018.

122

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K.:
Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search,
in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10 734–10 742, 2019.

Wu, J., Dai, X., Chen, D., Chen, Y., Liu, M., Yu, Y., Wang, Z., Liu, Z., Chen, M., and Yuan, L.:
Weak NAS Predictors Are All You Need, arXiv:2102.10490, 2021.

Xie, L. and Yuille, A.: Genetic cnn, in: Proceedings of the IEEE international conference on
computer vision, pp. 1379–1388, 2017.

Xie, S., Zheng, H., Liu, C., and Lin, L.: SNAS: stochastic neural architecture search, arXiv preprint
arXiv:1812.09926, 2018.

Xu, Y., Xie, L., Zhang, X., Chen, X., Shi, B., Tian, Q., and Xiong, H.: Latency-aware differentiable
neural architecture search, arXiv preprint arXiv:2001.06392, 2020a.

Xu, Z., Zuo, S., Lam, E. Y., Lee, B., and Chen, N.: AutoSegNet: An Automated Neural Network
for Image Segmentation, IEEE Access, 8, 92 452–92 461, 2020b.

Yan, S., White, C., Savani, Y., and Hutter, F.: Nas-bench-x11 and the power of learning curves,
Advances in Neural Information Processing Systems, 34, 22 534–22 549, 2021.

Yan, X., Jiang, W., Shi, Y., and Zhuo, C.: Ms-nas: Multi-scale neural architecture search for
medical image segmentation., Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12261 LNCS, 388–397,
2020.

Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., and Ni, B.: MedMNIST v2-A
large-scale lightweight benchmark for 2D and 3D biomedical image classification, Scientific
Data, 10, 41, 2023.

Yang, Q., Liu, Y., Chen, T., and Tong, Y.: Federated machine learning: Concept and applications,
ACM Transactions on Intelligent Systems and Technology (TIST), 10, 1–19, 2019.

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F.: Nas-bench-101: To-
wards reproducible neural architecture search, in: International Conference on Machine Learn-
ing, pp. 7105–7114, PMLR, 2019.

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M.: Evaluating the search phase of neural
architecture search, arXiv preprint arXiv:1902.08142, 2019.

Yu, Q., Yang, D., Roth, H., Bai, Y., Zhang, Y., Yuille, A. L., and Xu, D.: C2FNAs: Coarse-to-
fine neural architecture search for 3D medical image segmentation, Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4125–4134,
2020.

123

Zela, A., Klein, A., Falkner, S., and Hutter, F.: Towards automated deep learning: Efficient joint
neural architecture and hyperparameter search, arXiv preprint arXiv:1807.06906, 2018.

Zeng, D., Jiang, W., Wang, T., Xu, X., Yuan, H., Huang, M., Zhuang, J., Hu, J., and Shi, Y.:
Towards Cardiac Intervention Assistance: Hardware-aware Neural Architecture Exploration
for Real-Time 3D Cardiac Cine MRI Segmentation, IEEE/ACM International Conference on
Computer-Aided Design, Digest of Technical Papers, ICCAD, 2020-Novem, 2020.

Zhang, N., Wang, J., Yang, J., Qu, X., and Xiao, J.: Multi-objective cuckoo algorithm for mobile
devices network architecture search, in: Artificial Neural Networks and Machine Learning–
ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava, Slo-
vakia, September 15–18, 2020, Proceedings, Part I 29, pp. 312–324, Springer, 2020.

Zhang, Q. and Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition,
IEEE Transactions on evolutionary computation, 11, 712–731, 2007.

Zhu, H., Zhang, H., and Jin, Y.: From federated learning to federated neural architecture search: a
survey, Complex & Intelligent Systems, 7, 639–657, 2021.

Zhu, Z., Liu, C., Yang, D., Yuille, A., and Xu, D.: V-NAS: Neural Architecture Search for Volumet-
ric Medical Image Segmentation, Proceedings - 2019 International Conference on 3D Vision,
3DV 2019, pp. 240–248, 2019.

Zitzler, E., Laumanns, M., and Thiele, L.: SPEA2: Improving the strength Pareto evolutionary
algorithm, TIK report, 103, 2001.

Zoph, B. and Le, Q. V.: Neural architecture search with reinforcement learning, arXiv preprint
arXiv:1611.01578, 2016.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V.: Learning transferable architectures for scalable
image recognition, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8697–8710, 2018.

124

	73f9e17b997669c4dd89d68d16ea608093c0e65d8bcbb1573264e4eb05f2cb60.pdf
	blank595x841
	3a0a7605fd7d5cd94cd3afbcc140498f98df92adfb7905f52fd18ebb538ff1c8.pdf

