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Daniel Ruberman Brandeis University, Waltham, MA
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Julien Marché Sorbonne Université, Paris
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1 Introduction

The main goal of this manuscript is to present my contribution to the study of
surfaces in 4-manifolds, with an emphasis on symplectic surfaces in symplectic 4-
manifolds and their comparison to complex curves in complex surfaces. We will
especially work with surfaces with conical singularities in the 4-sphere and in the
complex projective plane. We will look at obstructions to the existence of surfaces
with certain properties, using a mixture of classical and modern invariants, and at
concrete examples, obtained using both local and global constructions.

Smooth 4-manifolds are wild

From the viewpoint of differential topology, dimension 4 is a unique source of all sorts
of bizarre phenomena. It is the smallest dimension in which exotica appear: there
are classes of smooth, closed 4-manifolds that are all homeomorphic, but not pairwise
diffeomorphic [Don87]. It is the only dimension in which these classes are allowed to
be infinite [OVdV86, FM88b, FM88a]. If we pass to non-compact manifolds, 4 is the
only dimension in which Rd admits exotic structures (see Casson’s notes in [GM86],
together with Freedman’s theory [Fre82] and Donaldson’s work [Don87])—not only
that, but it admits continuously many of them [Tau87].

One way of studying 4-manifolds is by looking at the surfaces they contain. For
instance, the key to untangling exotica in higher dimension is the Whitney trick,
which notably fails in dimension 4. The main character in the Whitney trick is a
smoothly immersed 2-disc. We know why the Whitney trick fails in dimension 4
(namely, because a self-transverse 2-disc need not be embedded), but understanding
by how much it fails can provide rich information about the topology of smooth
4-manifolds.

On the other hand, surfaces give us a useful way of probing or exhibiting exotica
in dimension 4. Consider two homeomorphic smooth 4-manifolds X and X ′ and fix
a homology class A ∈ H2(X) that is represented by a smoothly embedded genus-g
surface. Suppose that we are able to prove that for all isomorphism Φ: H2(X) →
H2(X ′) (as lattices endowed with a quadratic form), Φ(A) ∈ H2(X ′) cannot be
represented by a smoothly embedded genus-g surface. Then X and X ′ cannot be
diffeomorphic. This observation motivates the definition of the minimal genus g(A)
of a class A ∈ H2(X) and the minimal genus problem, which asks to compute the
function g : H2(X)→ Z≥0.

Constructing “interesting” 4-manifolds is, in many ways, hard. Constructing “in-
teresting” surfaces in 4-manifolds is also quite hard. This is where complex algebraic
geometry comes to rescue, providing us with plenty of examples both of 4-manifolds
(non-singular complex surfaces) and of surfaces therein (complex curves). These
can be often used as “seeds” for surgery operations to take place and produce new
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1 Introduction

4-manifolds (e.g. via Fintushel and Stern’s knot surgery [FS98]) or new surfaces in
4-manifolds (e.g. via Fintushel and Stern’s rim surgery [FS98]).

Detecting exotica is a different matter entirely: thanks to the pioneering work of
Donaldson [Don83], we understood that the study of moduli spaces of solutions of
certain PDEs are a very powerful, if hard-to-handle, tool to study smooth structures
on 4-manifolds: it was the birth of (mathematical) gauge theory. Since then, gauge
theory has expanded and the techniques have been refined and, to some extent,
simplified: among the many names that I should list here, let me mention Fintushel,
Stern, Kronheimer, Mrowka, Ozsváth, Szabó, Frøyshov, and Taubes.

It soon became clear that complex structures interact well with gauge theory,
and it was later realised that symplectic structures also do. At the same time,
symplectic geometry allows for a lot more flexibility than complex algebraic geometry
does in many aspects: surgery operations and local constructions can be always be
performed in symplectic geometry, while they are sometimes obstructed in algebraic
geometry. This way, symplectic geometry gives us a larger playground where we
have interesting constructions, both of closed 4-manifolds and of surfaces therein,
as well as a toolset to detect exotica.

The recurring theme of this manuscript is the comparison between these three
different worlds: smooth topology, symplectic topology, and complex algebraic ge-
ometry. Another recurring theme is how smooth or symplectic topology can inform
algebraic geometry, very much in the spirit of the work of Zariski, van Kampen,
Chisini, Moishezon, Ruberman, Catanese, and many, many more.

To be very concrete, it is rather striking that we do not yet understand how
non-singular symplectic surfaces compare to non-singular complex curves in the
“smallest” possible example, namely the complex projective plane CP2. This is the
challenge posed by the symplectic isotopy problem: is every smoothly embedded
symplectic surface in CP2 isotopic through symplectic surfaces in CP2? The answer
is known for surfaces of self-intersection at most 172 (i.e. curves of degree at most
17) [Gro85, Sik03, She00, ST05], but not beyond that.

A roadmap

In this manuscript, I tried to organise some of my past work on surfaces in 4-
manifolds within a coherent narrative, without aiming for historical or chronological
accuracy. This narrative has emerged naturally over time, rather than being my
initial motivation for thinking about certain problems. Therefore, the spirit of this
summary does not necessarily agree with that of the papers I am presenting.

Rather than giving all the preliminaries in a single batch at the beginning, I
preferred to introduce some of the concepts as I went along.

In Chapter 2 I will present some results concerning piecewise-linear (PL) surfaces
in 4-manifolds, with a strong focus on (arguably) the two simplest 4-manifolds,
namely the 4-sphere and the complex projective plane. Besides a very quick intro-
duction to the subject of surfaces in 4-manifolds, the chapter is roughly divided into
three parts.

First we discuss Heegaard Floer homology, and especially correction terms, with
some input from [BG18]. We then proceed to discuss PL surfaces in S4 or, more or
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less equivalently, smooth cobordisms between knots in the 3-sphere, mostly based
on [BCG17]. Finally, we introduce PL surfaces in CP2, and present work of [AG17]
and [AGLL20] for the case of spheres and of [BCG16] for the case of surfaces of
higher genus. We also lay the ground for the next chapter by stating some classical
results in this specialised context and sketching some of the proofs.

In Chapter 3 I will present some results about singular symplectic surfaces in
4-manifolds, essentially only focusing on the case of CP2. We start with a gentle
introduction to the aspects of this very broad subject which are relevant in the rest
of the chapter, especially to pseudo-holomorphic techniques, and define the central
object of investigation: symplectic curves.

We then present some results obtained in [GS22] (and partly in [GK23]) about
the existence and uniqueness (up to isotopy) of symplectic rational cuspidal curves
in CP2, with an eye towards the algebro-geometric aspects of the questions we are
investigating. As these are in particular PL spheres, ideas from Chapter 2 are quite
ubiquitous here. We explain in some detail the ideas entering the proof, but prefer
to prove things by example rather than in detail.

To close things up, we take a peek at the relative case: we both look at surfaces
with boundary, and especially symplectic hats [EG22], as well as at caps and fill-
ings of contact 3-manifolds, presenting some of the ideas developed in [EG22] and
in [GS22, GS21].

A final word of caution for the reader: proofs will only be sketched and sometimes
omitted entirely. Some statements are classical, but I decided to give an argument
where I felt the statements in the literature were too general and the proofs simplified
in the cases at hand.

Summary of results

The results I am presenting can be broadly split into two classes: results about
piecewise-linear surfaces in 4-manifolds, and results about symplectic 4-manifolds
and their symplectic submanifolds. As mentioned above, the common thread is
the relationship with complex algebraic geometry, and especially the comparison
between PL surfaces in smooth 4-manifolds, singular symplectic surfaces in sym-
plectic 4-manifolds, and singular curves in complex surfaces. This extends also to
the realm of singularity theory and deformations of singularities in dimension 1 (and
sometimes 2).

Piecewise-linear surfaces

A surface F in a smooth 4-manifold X is piecewise-linear if there is a compatible
triangulation of X such that F is a simplicial surface. In practice, this mean that
F is smooth away from a finite number of points that are not locally-flat. At these
non–locally-flat points, F has a conical singularity, i.e. F is a cone over a knot in
the 3-sphere: we call this knot the type (or sometimes the link) of the singularity of
F , or the type of F at that point. Examples of such surfaces are given by complex
curves with irreducible singularities. (One can also look at the case where F is a

9



1 Introduction

cone over a link, which approximately corresponds to passing from embeddings to
immersions in the case of smooth surfaces.)

Often times, the minimal genus problem for PL surfaces is rather dull: for in-
stance, in CP2 every homology class is represented by a PL 2-sphere (in fact, by
a singular complex curve). It becomes a lot more interesting if one restricts the
possible types of singularities of F .

The main result we present in Chapter 2 is obtained in collaboration with Aceto,
Larson, and Lecuona1 [AGLL20].

Theorem 1.1. There is an explicit list of sixteen families and four sporadic cases
of PL spheres in a rational homology CP2 with a unique non–locally-flat point whose
link is a positive torus knot.

The precise statement and the exact list are in Theorem 2.28 below. The question
was motivated by the analogous result in the case of rational cuspidal curves, i.e.
complex curves in CP2 that are PL-embedded and with a unique singularity whose
link is a torus knot [FLMN07]. (In this case the link is automatically a positive
torus knot.)

Theorem 1.1 result is based, among others, on earlier work of Borodzik and Liv-
ingston [BL14] and on work in collaboration with Aceto [AG17].

In collaboration with Bodnár and Celoria [BCG16], we also studied the case of
surfaces of higher genus. We give a non-technical version here, and defer to Theo-
rem 2.32 below for the precise statement.

Theorem 1.2. There are strong restrictions on the genus of a PL surface in a
homology CP2, once we fix its homology class and the types of its singularities. These
restrictions can be rephrased in terms of the Alexander polynomial if the singularity
types are positive torus knots (or, more generally, links of plane curve singularities).

It turns out that these obstructions are extremely effective if we look at cuspidal
curves in CP2 (i.e. complex curves which are PL-embedded).

In [BCG17], we used similar techniques (more on this below) for studying cobor-
disms between knots. In hindsight, these are just PL surfaces in S4 with two singu-
larities. We state here a simplified (and vague) version of the statement for links of
complex curve singularities (see Theorem 2.21 below).

Theorem 1.3. Let K0 and K1 be two knots in S3 that are the link of two complex
curve singularities in C2. Their Alexander polynomials give restrictions on the gen-
era of cobordisms from K0 to K1, or equivalently two PL surfaces whose only two
singularities have types K0 and m(K1). (Here m denotes mirroring.)

All three results mentioned here rely on Heegaard Floer homology and their proofs
are based on computations of correction terms for certain 3-manifolds obtained as
surgeries along knots in S3 or in connected sums of S1×S2. While introducing these
invariants and stating some of their relevant properties, below, we mention a result
obtained in collaboration with Behrens [BG18] about correction terms. In [BG18],

1Note that the paper is still under review. The results have been computationally verified for
degrees up to 500.
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we define fully twisted correction terms in Heegaard Floer homology and prove
some of their properties. Unlike ‘classical’ correction terms, or their ‘bottom-most’
and ‘top-most’ versions, fully twisted correction terms are defined uniformly for all
3-manifolds equipped with a torsion spinc structure.

The chapter ends with some more classical remarks about PL surfaces in CP2,
using branched covers and the Arf invariant. These will make an appearance in the
following chapter. The part using branched covers is essentially due to Gilmer [Gil81]
(see also [CG78]), and is close to some work in collaboration with Aceto and Lecuona
[AGL17]. Since I have not found the statement given here in the literature and since
extracting it from Gilmer’s work is not evident, I have spelled it out explicitly and
given a fairly detailed sketch of the proof.

Symplectic curves

If X is a complex projective surface (or, more generally, a Kähler 4-manifold), then
it admits a symplectic structure ω, i.e. a closed, non-degenerate 2-form, which
is compatible with the complex structure. A consequence of the compatibility is
the fact that non-singular complex curves in X are embedded surfaces on which ω
restricts to an area form—they are symplectic submanifolds.

Looking at the simplest possible complex surface, CP2, we have the Fubini–Study
symplectic form ωFS. Complex curves in CP2 are automatically ωFS-symplectic, so
one can ask whether all symplectic surfaces in CP2 arise in this way. Since being
symplectic is a C1-open condition and being complex is not, this cannot be true on
the nose. There is hope, however, that this is true up to symplectic isotopy, i.e. up
to an isotopy through symplectically embedded surfaces. This is the context of the
symplectic isotopy problem, mentioned above.

The bulk of the work about this question presented in this manuscript comes from
my collaboration with Starkston [GS22, GS21]. In [GS22] we propose a definition of
singular symplectic submanifolds of symplectic 4-manifolds, which we call symplectic
curves, and we lay the foundations for their study. This class comprises singular
symplectic surfaces that locally look like complex curves.

I say ‘a definition’ since there are many other definitions available, depending on
which singularities we want to allow; see Section 3.7 for a more detailed discussion
of this issue. We called them ‘curves’ to emphasise that we are thinking of them as
relatives of (possibly singular) curves in complex surfaces.

In [GS22] we formulate a singular version of the symplectic isotopy problem for
these curves and collect examples which show that there are two classes of symplectic
curves for which the problem is not known to be false: the non-singular case (i.e.
the ‘classical’ symplectic isotopy problem), and the case of rational cuspidal curves
(i.e. curves which are PL-embedded spheres).

The singular version of the symplectic isotopy problem had been considered in
the more restricted setting of curves with nodes and simple cusps (i.e. trans-
verse double points and curves locally modelled on {x2 − y3 = 0}) by several au-
thors [Moi94, Bar00, She04, Aur06, Fra05], especially in connection with Auroux’s
work on branched covers of CP2 [Aur00, ADK03].

It turns out that symplectic curves can be equivalently described as J-holomorphic
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1 Introduction

curves for some almost-complex structure J compatible with the symplectic struc-
ture. We choose to emphasise the symplectic, rather than the pseudo-holomorphic,
aspects, since this is a more natural framework for the symplectic isotopy problem.

In [GS22, GK23], we provide evidence for the symplectic isotopy problem for
rational cuspidal curves.

Theorem 1.4. The symplectic isotopy problem for rational cuspidal curves is true
in degrees up to 7.

The study of symplectic curves was motivated partly by the symplectic isotopy
problem, and partly by the question of the existence of exotic CP2s. It turns out
that rational cuspidal curves cannot help us find an exotic CP2.

Theorem 1.5. If X is a closed symplectic 4-manifold that has the same rational
homology as CP2 and that contains a symplectic rational cuspidal curve, then X is
diffeomorphic to CP2.

In the last part of the chapter we present some results about symplectic 4-
manifolds with boundary and their symplectic submanifolds.

In [GS21] we focus on the contact and symplectic aspects of symplectic curves,
by shifting the perspective from symplectic isotopies to divisorial contact struc-
tures, which are contact structures associated to symplectic curves of positive self-
intersection, and their fillings. The question we ask (and very partially answer)
is: given an abstract symplectic curve, that we think of as the data of its genus,
its singularity types, and its self-intersection, which symplectic 4-manifolds can it
live in? The answer was known for non-singular curves of sufficiently positive self-
intersection, due to work of McDuff for curves of genus 0 [McD90] and Kütle for
curves of positive genus [Küt21]. A sample result from [GS21], which we can phrase
in terms of fillings of certain divisorial contact structures, is the following.

Theorem 1.6. No closed symplectic 4-manifold can contain a symplectic surface of
genus 0 with a simple cusp and self-intersection larger than 9.

If X is a closed minimal symplectic 4-manifold that contains a symplectic curve
C of genus 0 with a simple cusp and self-intersection 9, then X is CP2 and C is
symplectically isotopic to the cuspidal cubic {x2z − y3 = 0}.

In [EG22] we look at properly embedded symplectic surfaces in symplectic 4-
manifolds with boundary, especially when the boundary is concave (i.e. the case
of symplectic caps). We focus on the case of P = CP2 \D, the complex projective
plane with a small open Darboux ball removed. The contact boundary of this 4-
manifold is the standard contact structure on the 3-sphere, (S3, ξst), and we look at
symplectic surfaces in P whose boundary is a transverse knot or link in the 3-sphere.
The main result of the paper is the following existence result.

Theorem 1.7. Every transverse link in (S3, ξst) bounds a properly embedded sym-
plectic surface in P . Moreover, every transverse knot bounds a properly immersed
disc in P with positive double points and a properly embedded disc in a blow-up of
P .
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This is in stark contrast with the existence of symplectic surfaces in any filling of
(S3, ξst): very few knots admit one. (Knots which do are called quasipositive.) We
then proceed to study the complexity of these surface for certain classes of knots, and
to use these surfaces to study restrictions on fillings of contact structures obtained
as branched covers of transverse knots.

Here we present an example which already showcases most of the general ideas
(and a bit more). Recall that the Brieskorn sphere Σ(2, 3, 7) is the link of the
Brieskorn–Pham singularity {x2 + y3 + z7 = 0} ⊂ C3 and let ξcan be the associated
canonical contact structure.

Theorem 1.8. A Stein filling W of (Σ(2, 3, 7), ξcan) always has H1(W ) = 0 and
either it is spin and H2(W ) ∼= E8 ⊕ 2H, or H2(W ) ∼= 〈−1〉. Both cases occur. By
contrast, ξcan has strong symplectic fillings with arbitrarily large b+

2 .

Looking ahead (and around)

As mentioned above, 4-manifolds are wild, which is exactly what makes them so
fascinating. In a way, most of my research is focused on the comparison between
three categories of 4-manifolds: smooth, symplectic, and complex. Part of my future
research is very much in continuity with the collaboration with Starkston, and deals
with various aspects of symplectic curves. This in turn leads naturally to studying
complex manifolds in broader generality, and to look at different algebro-geometric
objets, like singular surfaces with cyclic quotient singularities or singularities of
complex surfaces and their deformations. I am also thinking about special metrics
on 4-manifolds and associated decompositions (akin to the JSJ decomposition in
dimension 3).

In the next three sections, I will talk about some projects about symplectic
curves, embeddings of lens spaces in CP2, and some more geometric questions on
4-manifolds.

More symplectic curves

The true goal of this quest is the original symplectic isotopy problem. Singular sym-
plectic curves are a potential source of counterexamples for the symplectic isotopy
problem via their smoothings : given a singular symplectic curve C, we can smooth
out all of its singularities by surgering out neighourhoods of their singularities and
replacing them by their Milnor fibres. Certain configurations of cusps on a symplec-
tic rational cuspidal curve would lead to a counterexample to the symplectic isotopy
problem, if we could prove that these curves exist. I am actively working on this,
by trying to construct these curves.

Singular symplectic curves also have the potential to detect exotic CP2: if one
could produce a curve that exists in X, a symplectic homotopy CP2 (equipped with
some symplectic structure) but that cannot exist in the genuine CP2 (equipped with
the Fubini–Study form), then an aforementioned theorem of Taubes [Tau96] would
show that X is not diffeomorphic to CP2. Theorem 1.5 above, however, tells us that
rational cuspidal curves cannot do the trick. At the moment, I do not know of an

13



1 Introduction

effective way of constructing “interesting” examples of non-rational or non-cuspidal
symplectic curves. It would be interesting to explore these avenues in a farther
future.

More modestly, it would be very interesting to know whether rational cuspidal
curves can be somewhat exotic. For instance, complex rational cuspidal curves in
CP2 are known to have at most four cusps—in fact there exists exactly one complex
rational cuspidal curve in CP2 with exactly four cusps, up to biholomorphism [KP22].
Is this also true in the symplectic category? Are there interesting differences be-
tween equisingular isotopy classes of rational cuspidal curves, when comparing the
symplectic and the complex category? (This is related to Zariski pairs of curves,
mentioned below.) Can we classify symplectic rational cuspidal curves? This seems
to require developing a suitable logarithmic minimal model program, à la Palka–
Pe lka [PP17, PP20], which would also connect with the study of homology planes
(affine varieties which have trivial homology) [Pe l21].

In a different direction, with Hanine Awada we are studying fundamental groups
of complements of symplectic curves in CP2, generalising ideas of Zariski, van Kam-
pen, Chisini, Moishezon, and Libgober. In particular, we are working on prov-
ing Libgober’s divisibility conditions on the Alexander polynomial of a symplectic
curve [Lib82]. Libgober had defined the Alexander polynomial of a (say affine)
plane complex curve and proved that this polynomial always divides the product of
Alexander polynomials of the singularities of the curve (which are links in S3, so
they classically have an Alexander polynomial) as well as the Alexander polynomial
of the link at infinity of the curve (i.e. the intersection of the curve with a very
large sphere, which is again a link in S3). As a corollary, for instance, the roots of
the Alexander polynomial of a curve are roots of 1.

I am also working on configurations of curves, especially of lines, trying to gener-
alise ideas of Ruberman and Starkston [RS19] to study more symplectic line arrange-
ments. It is especially interesting to expand the types of covers one uses—Ruberman
and Starkston focused their efforts to a very clever use of cyclic covers: this is a
line of investigation that Hirzebruch exploited in the 80s, especially using Kummer
covers (which are a type of Abelian, non-cyclic covers). Hirzebruch then uses the
Bogomolov–Miyaoka–Yau inequality to give very general restrictions on the com-
binatorics of line arrangements: in the opposite direction, producing “interesting”
symplectic line arrangements (or curve configurations) would lead to counterexam-
ples to the Bogomolov–Miyaoka–Yau inequality for symplectic 4-manifolds. This is
a very exciting line of research that I am thinking about.

Codimension-1 embeddings in CP2

I have been interested in embeddings of 3-manifolds in 4-manifolds since, in col-
laboration with Aceto and Larson, we studied embeddings of 3-manifolds in spin
4-manifolds [AGL17]. With Brendan Owens we are studying embeddings of 3-
manifolds in CP2, with a focus on lens spaces. This also comes up in the project
with Aceto [AG17] and Aceto, Larson, and Lecuona [AGLL20], where in a way
we are answering the question for 3-manifolds that are obtained as positive integer
surgeries along torus knots.
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The first, quite standard obstruction is the following: if a lens space L embeds in
CP2, then L bounds a rational homology ball. (Lisca has classified lens spaces that
bound rational homology balls in [Lis07].) We have developed some further obstruc-
tions, based on Donaldson’s diagonalisation theorem, on Heegaard Floer homology,
on Pin(2)-Seiberg–Witten Floer homology, and constructed a number of examples.

We are especially interested in studying embeddings of pairwise disjoint rational
homology balls with lens space boundary in CP2. This is related to a theorem
in algebraic geometry (due to Hacking and Prokhorov [HP10]) and its symplectic
counterpart (due to Evans and Smith [ES18]), asserting that if these embeddings
come from (complex or symplectic) surface singularities (which are cyclic quotients,
since we are talking about lens spaces), then one cannot embed more than three lens
spaces. Moreover, all embeddings of this type are classified, and they are related to
solutions of the Markov equation x2 + y2 + z2 = 3xyz. We know that not all of this
rigidity is preserved when passing to the topological category, but so far we have no
example of an embedding of four disjoint lens spaces in CP2, nor do we have a proof
that such an embedding cannot exist.

In turn, this is related to the Montgomery–Yang problem on circle actions on S4

and to Seifert fibred homology 3-spheres that bound homology balls. (The connec-
tion is far from being apparent.)

An eye towards geometry

In collaboration with Luca Di Cerbo, I have started to think about ‘special’ met-
rics on 4-manifolds, and especially complex-hyperbolic surfaces and Einstein 4-
manifolds.

Complex-hyperbolic surfaces are obtained as quotients of the 4-ball (equipped
with the Bergmann metric) by a discrete and free group action. The 4-ball is akin
to Poincaré’s disc model for the hyperbolic plane, from which the name of “complex-
hyperbolic manifolds”. They are very interesting objects from the complex-geometric
perspective, since they are on the threshold of the Bogomolov–Miyaoka–Yau inequal-
ity.

Einstein metrics are a generalisation of metrics of constant sectional curvature on
3-manifolds. As the name suggest, they originate in general relativity, but they have
been studied for decades in more abstract context. For instance, in dimension 4 they
are the unique fixed points of the (renormalised) Ricci flow, hence they are a natural
class to study from the viewpoint of Thurston’s and Perelman’s geometrisation in
dimension 4.

With Di Cerbo, we are trying to study these metrics from a more topological
perspective. In [DCG23] we considered the problem of whether Einstein metrics
can be obtained as fillings of complex-hyperbolic metrics, much like hyperbolic 3-
manifolds can be produced by Dehn filling hyperbolic knot complements [Thu80],
and Einstein 4-manifolds can be obtained by Dehn filling hyperbolic 2-torus com-
plements [And06]. In [DCG23] we show that the answer is negative.

We are now exploring the connection between asphericity and signature. It is
conjectured that the ratio signature/Euler characteristic is bounded by 3 for closed
aspherical 4-manifolds. Kotschick [Kot98] proved this for surface bundles over sur-
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1 Introduction

faces which admit a complex structure (see also earlier work of Atiyah [Ati69] and
Kodaira [Kod67]) and for geometric 4-manifolds. The broader context is that of the
Singer conjecture on the L2 Betti numbers of aspherical manifolds. More specifi-
cally, we look at 4-manifolds with a geometric decomposition (in the sense of Hill-
man [Hil98]), which are a generalisation of higher graph manifolds, defined by Frige-
rio, Lafont, and Sisto [FLS15].
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2 Piecewise-linear surfaces

In this chapter, we will look at piecewise-linear surfaces in 4-manifolds, and espe-
cially in the 4-sphere and in the complex projective plane, CP2. The prototypical
example is a complex curve in CP2 with irreducible singularities. The main ques-
tion will be similar to the more famous minimal genus problem, which we will recall
shortly: if we know the singularities of a piecewise-linear surface in CP2, what can
we say about its genus? In this chapter we will mostly focus on obstructions, and
some constructions can be found in the next chapter. The main tools in this chap-
ter come from Heegaard Floer homology [OSz04b, OSz04a, OSz03], Donaldson’s
diagonalisation theorem [Don83], and branched covers.

After introducing the objects in Section 2.1 and the tools in Section 2.2, in Sec-
tion 2.3 we will present some results obtained in collaborations with Józsi Bodnár
and Daniele Celoria [BCG17] on knot cobordisms. Finally, in Section 2.4 will deal
with PL-embedded surfaces in homology CP2s, presenting some results obtained
in collaboration with Paolo Aceto [AG17], with Paolo Aceto, Kyle Larson, and
Ana Garçia Lecuona [AG17, AGLL20], and with Józsi Bodnár and Daniele Celo-
ria [BCG16].

2.1 Surfaces in 4-manifolds, a primer

Let X be a smooth 4-manifold and j : F ↪→ X be a C0 embedding. We gently abuse
the notation by denoting by F the image of j in X, as well as the source of j. We
say that F is:

• locally-flat if for every point x ∈ F , there exists a neighbourhood U 3 x and
a homeomorphism (U, F ∩ U)→ (R4,R2 × {0});

• piecewise-linear, or PL for short, if there exists a triangulation of X such that
F is isotopic to a triangulated submanifold of X;

• smooth if j is a C∞ immersion (i.e. dj has rank 2 at each point of F ).

A smooth surface is obviously both PL and locally-flat (by the implicit function
theorem), but the converse is not true, and there are no implications between being
locally-flat and PL.

One of the main questions in low-dimensional topology is the minimal genus
problem. Given a homology class A ∈ H2(X), it is well-known that there exists a
smoothly embedded surface in X whose homology class is A. The minimal genus
problem asks to find the minimal genus among all such representatives. This is a
notoriously hard question whose answer is known only in a handful of cases. The
most notable example is the minimal genus problem in CP2, also known as the Thom
conjecture, which was established by Kronheimer and Mrowka [KM94].
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2 Piecewise-linear surfaces

Theorem 2.1 (Kronheimer, Mrowka). When d 6= 0, the minimal genus of the class
dh ∈ H2(CP2) is 1

2
(|d| − 1)(|d| − 2).

PL surfaces are very closely related to smooth surfaces, but they allow for non–
locally-flat points. Let K ⊂ S3 be a knot. We say that a PL surface F in X
has a singularity of type K at p if there exists a neighbourhood U of p and a PL
homeomorphism (U, F∩U, p)→ (B4, C(K), 0), where we view B4 as the cone over S3

and C(K) is the cone over K. As mentioned above, complex curves with irreducible
singularities provide the first examples of such objects. In analogy with complex
algebraic geometry we will denote with Sing(F ) the set of non–locally-flat points of
F .

Remark 2.2. The minimal genus problem for PL surfaces in CP2 is much easier
than the smooth or locally-flat one: every homology class is represented by a PL
sphere. For instance, we can take F to be the complex curve defined by the equation
{xd−1z + yd = 0}, which is a PL sphere (it is parametrised by CP1 ∼= S2) with a
singularity of type T (d− 1, d).

Interestingly, there are examples of (open) 4-manifolds that are homotopy equiv-
alent to S2 but whose generator of the second homology is not represented by a
PL sphere. These examples were first found by Levine and Lidman [LL19] (see
also [GL20]).

With the notation and terminology set up, let us formulate the driving question
of the chapter.

Question 2.3. Given a class A ∈ H2(X), a non-negative integer g, and a collection
of knots K1, . . . , Kν , does there exist a PL surface in the homology class A of genus
g and with singularities of types K1, . . . , Kν?

Note that the corresponding algebro-geometric question for complex curves with
irreducible singularities in a complex surface has a long and rich history, and some
rather surprising answers: only to cite a few modern references [Ore02, FLMN07,
BL14, KP17, KP22].

A PL surface F in X has a regular neighbourhood N(F ), which is the PL analogue
of a tubular neighbourhood of a smoothly (or globally-flatly) embedded surface.
This is defined from the PL perspective by taking a sufficiently fine subdivision of
a triangulation of X in which F is polygonal, and taking the union of 4-simplices
having a facet on F . In practice, this means that N(F ) is a union of small balls,
each centred at a singularity of F , and a regular neighbourhood of the locally-flatly
embedded part of F . This viewpoint allows to give an explicit description of N(F )
as a 4-manifold. Let Hm be the boundary connected sum of m copies of S1×D3 or,
equivalently, the result of attaching m 1-handles to B4.

Proposition 2.4 (Borodzik, Hedden, Livingston [BHL17]; Bodnár, Celoria, G.).
If F has genus g, singularities K1, . . . , Kν, and self-intersection s = F · F , N(F )
is diffeomorphic to the 4-dimensional handlebody obtained by attaching a 2-handle
to H2g along the knot Bg#K with framing s, where Bg is the Borromean knot in
#2gS1 × S2 (see Figure 2.1) and K = K1# . . .#Kν.
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2.2 Some ideas from gauge theory

Figure 2.1: The Borromean knot in Bg ⊂ #2gS1 × S2, in dotted handle notation.
(There are 2g dotted handles in the picture.)

The knot K1# . . .#Kν will appear quite frequently, so we feel like it deserves its
own notation. Therefore, given a PL-embedded surface, we denote the connected
sum of its singularity types by KF .

In particular, note that if the PL surface F has genus 0, its regular neighbourhood
is the trace of the surgery along K, i.e. it is the 4-ball with a single s-framed 2-handle
attached along K.

The idea of the proof is rather simple. We sketch it for the case g(F ) = 0,
ν = 1, i.e. when F is a PL sphere with a unique singularity. In that case, a regular
neighbourhood of F is given by a regular neighbourhood of its singular point, which
is a 4-ball D, together with a regular neighbourhood of the rest of the curve, which
is a 2-disc. This neighbourhood is therefore a 4-ball D′, which is attached to the
boundary of B along a neighbourhood of F ∩ ∂D′, i.e. precisely along K. That
is, N(F ) is obtained by attaching D′ to D as a 2-handle. The framing is then
determined by the self-intersection of F .

The general case is very similar. We choose a cell decomposition of F that has the
singularities of F as 0-cells (we pick any cell decomposition if F is PL and locally-
flat). A regular neighbourhood of F is a thickening of this cell decomposition, which
is built by adding handles of the same index of the dimension of the corresponding
cell.

2.2 Some ideas from gauge theory

Quite indisputably, the birth of modern 4-dimensional topology dates to the be-
ginning of the 80s, when two major results have been proven, one by Freedman in
the topological category [Fre82, BKK+21], and one by Donaldson in the smooth
category [Don83]. We will not dwell on Freedman’s result, but rather talk about
Donadson’s work and one of its descendants, Heegaard Floer homology.

The diagonalisation theorem

First off, let us recall what the intersection form on a 4-manifold is. If X is a closed
and oriented (topological) 4-manifold, we can use Poincaré duality, the cup product,
and the orientation class to define a symmetric bilinear product QX on H2(X)/Tor,
with values in Z:

QX(A,B) = 〈PD(A) ∪ PD(B), [X]〉 ∈ Z.
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2 Piecewise-linear surfaces

If X is smooth, we can interpret QX as counting the (signed) intersection between
two transverse representatives of A and B. (Here the assumption that X is smooth
is added for convenience, but one can make sense of the same statement for topo-
logical 4-manifolds. We also note that the definition can be extended to oriented
4-manifolds that are not closed by first embedding H2(X) into H2(X, ∂X) and then
using Poincaré–Lefschetz duality.)

We can tensor QX with R and obtain a symmetric bilinear form over the reals,
which therefore has a well-defined signature, given by the difference between the
count of its positive and negative eigenvalues. We call this signature the signature
of QX and of X, and we denoted it by σ(X). We say that a 4-manifold is negative
definite (respectively, positive definite) if its intersection form is, that is if we have
σ(X) = − rkH2(X) = −b2(X) (resp. σ(X) = rkH2(X) = b2(X)).

We say that QX is diagonalisable (over Z) if there exists an integer orthonormal
basis of H2(X)/Tor. Note that there are many examples of non-diagonalisable forms
over the integers, like the hyperbolic form QS2×S2 (which is indefinite) or the E8-form
(which is definite) [MH73].

We can now state Donaldson’s diagonalisation theorem.

Theorem 2.5 (Donaldson). If X is a closed, smooth, negative definite 4-manifold,
then QX is diagonalisable.

Note that, as a corollary to Freedman’s results, the diagonalisation theorem fails
miserably when X is only assumed to be a topological 4-manifold.

Donaldson’s proof was based on the study of instantons, solutions to a certain
PDE on X. Since Donaldson’s pioneering work, the tools of gauge theory have been
refined and extended, and form now a rich, almost indispensable part of 3- and
4-dimensional topology. We will meet in the next section a grandchild of instanton
theory.

Heegaard Floer homology: rational homology spheres

Heegaard Floer homology was devised by Ozsváth and Szabó [OSz04b, OSz04a] as
a way to make Seiberg–Witten invariants of 3-manifolds more computable. In turn,
Seiberg–Witten theory [Wit94, KM07] was born as a friendlier cousin of instanton
theory [Don83].

It is an invariant of 3-manifolds which (almost) gives a (3+1)-dimensional TQFT.
Via Heegaard diagrams and Lagrangian Floer homology, it assigns to each spinc 3-
manifold (Y, t) four Q-graded, relatively–Z-graded module, HF◦(Y, t), where ◦ stands
for +, −, ∞, or for a hat. We will focus on the case of ◦ = +, when we obtain the
so-called ‘plus’ flavour of Heegaard Floer homology, HF+(Y, t). When talking about
Heegaard Floer homology, we will always work with coefficients over F = F2, the
field with two elements.

The theory is a bit simpler when Y is a rational homology sphere, i.e. when
b1(Y ) = 0, so we will start by discussing this case. For the rest of this section,
Y will therefore be a rational homology sphere. We introduce here also a class
of “small” 4-manifolds with boundary: a rational homology 4-ball is an orientable
compact 4-manifold W with H̃∗(W ;Q) = 0.
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2.2 Some ideas from gauge theory

Under this assumption, HF+(Y, t) fits in a short exact sequence of F[U ]-modules:

0→ F[U,U−1]/U · F[U ]→ HF+(Y, t)→ HFred(Y, t)→ 0,

where HFred(Y, t) has finite dimension over F. Let us consider the grading: the
module on the left, F[U,U−1]/U · F[U ] is also graded and each monomial Uk is
homogeneous, so the image of the injection has a well-defined minimal grading.
This minimal grading is called the correction term, or d-invariant, of (Y, t), and
is denoted by d(Y, t). The instanton and Seiberg–Witten analogues of correction
terms were first studied by Frøyshov [Frø96], and were shown to have many useful
properties with respect to cobordisms. The Heegaard Floer version was introduced
by Ozsváth and Szabó in [OSz03] and shown to agree with their Seiberg–Witten
counterparts by Ramos [Ram18].

Theorem 2.6 (Ozsváth, Szabó). Heegaard Floer correction terms satisfy the fol-
lowing:

(i) d(S3, t) = 0;

(ii) d(Y, t) = d(Y, t), where the bar denotes conjugation of spinc structures;

(iii) d(Y#Y ′, t#t′) = d(Y, t) + d(Y ′, t′);

(iv) if (W, s) is a negative definite spinc cobordism from (Y, t) to (Y ′, t′):

d(Y, t) +
c2

1(s)− b2(W )

4
≤ d(Y ′, t′),

and in particular d(Y, t) is a spinc rational homology cobordism invariant;

(v) combining the last two properties, we also have that d(−Y, t) = −d(Y, t).

We separately state a corollary of point (v) above. We will use this corollary over
and over again in this chapter.

Corollary 2.7. If the 3-manifold Y bounds a rational homology ball W , then, for
each spinc structure t on Y that extends to W , d(Y, t) = 0 .

The advantage of Heegaard Floer homology over its older cousins is computability.
A nice example of this feature is the following theorem due to Rasmussen [Ras04]
and Ni and Wu [NW15], who computed the correction term of positive, integer
surgeries along a knot K. We denote n-surgery along a null-homologous knot K in
a 3-manifold Y by Yn(K), and the unknot in Y by OY (or simply by O if there is
no ambiguity).

Theorem 2.8 (Rasmussen; Ni, Wu). Let K be a knot in S3. There exists a sequence
{Vi(K)}i≥0 of non-negative integers such that for every positive integer n:

d(S3
n(K), ti) = d(S3

n(O), ti)− 2 max{Vi(K), Vn−i(K)}.

Moreover, the sequence {Vi(K)}i≥0 is weakly decreasing, Vi(K)− Vi+1(K) ≤ 1, and
Vi(K) = 0 whenever i ≥ g(K).
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2 Piecewise-linear surfaces

The first instance where the invariants Vi(K) start vanishing is called ν+(K):
formally, ν+(K) = min{k | Vk(K) = 0} [HW16].

In the statement we are implicitly using Ozsváth and Szabó’s labelling of spinc

structures on S3
n(K): ti is the restriction of the spinc structure si on Xn(K), the

trace of the surgery (i.e. B4 with an n-framed 2-handle attached along K), and si
is defined by its Chern class, 〈c1(si), G〉 = n − 2i, where G ∈ H2(Xn(K)) is the
homology class of the PL 2-sphere obtained by capping off the cone over K with the
core of the 2-handle1.

The first summand in the formula above is independent of the knot K, and is
easily computed [OSz04a]:

d(S3
n(O), ti) = −1

4
+

(n− 2i)2

4n
.

The second term is computable for certain families of knots (including alternating
knots and links of complex curve singularities), and is in principle combinatorially
computable for all knots. We state explicitly the calculation for positive torus knots,
and a bit less explicitly for all algebraic knots. (See Chapter 3 for more details.)

Proposition 2.9 (Borodzik, Livingston [BL14]). Let p, q > 1 be coprime integers.
We write Γp,q for the semigroup generated by p and q: Γp,q = {hp+kq | h, k ∈ Z≥0}.
For each integer n, we define Rp,q(n) = #(Γp,q∩ (−∞, n]) and δp,q = 1

2
(p−1)(q−1).

(Note that Rp,q(n) = 0 if n < 0 and that δp,q is the genus of the (p, q)-torus knot.)
Then:

Vi(T (p, q)) = Rp,q(i+ δp,q)− i.

More generally, if K is the link of (the germ of) a complex curve singularity (C, 0),
then the same statement holds with Γp,q replaced by the semigroup Γ(C,0) of the
singularity.

Recall that the semigroup of a complex curve singularity (C, 0) is the set of multi-
plicities of intersection of germs of curve multi-branches with C at 0: more formally,

Γ(C,0) = {(D · C)0 | D is a union of curve branches} ⊂ Z≥0.

This is a semigroup of Z≥0 since it is closed under addition (just take the union
D∪D′ of two multi-branches). One can directly check that for (C, 0) = ({xp + yq =
0}, (0, 0)) this is the semigroup Γp,q defined in the proposition.

We will be interested in understanding which rational homology 3-spheres bound
rational homology 4-balls. This is a question that Casson posed, and is now a prob-
lem in Kirby’s list. We do not expect to be able to give a reasonable characterisation
of these 3-manifolds, but we will study the case of surgeries. A first, well-known
obstruction for a rational homology 3-sphere Y to bound a rational homology 4-ball
W is that the order of H1(Y ) has to be a square. This follows directly from inspect-
ing the long exact sequence in homology for the pair (W,Y ). If Y is n-surgery along
a knot K, this translates into n being a square.

1Strictly speaking, this requires orienting K. Changing the orientation corresponds to changing
sign to G, which in turn corresponds to conjugating the spinc structure. This has no effect on
correction terms, so we can afford to be a bit sloppy here.
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2.2 Some ideas from gauge theory

In light of Corollary 2.7, we need to understand which spinc structures on a 3-
manifold potentially extend to a rational homology ball. The following proposition
shows that, if the 3-manifold is an integer surgery along a knot in S3, then the
spinc structures that extend are independent of the rational ball.

Proposition 2.10 (Borodzik, Livingston [BL14], Aceto, G. [AG17]). Suppose that
S3
m2(K) bounds a rational homology ball W . The spinc structure ti extends to W if

and only if i = 1
2
m(m− 2k − 1) for some integer k satisfying −m

2
≤ k ≤ m

2
.

Heegaard Floer homology: other 3-manifolds, I

The structure of Heegaard Floer homology becomes more complicated when b1 is
positive, i.e. when the 3-manifold is not a rational homology sphere. For simplicity,
we will make two assumptions:

• we will assume that t is a torsion spinc structure, i.e. c1(t) ∈ H2(Y ) is torsion;

• we will assume that the triple cup product on Y is trivial; that is, for each
triple α, β, γ ∈ H1(Y ), α ∪ β ∪ γ = 0.

Note that both assumptions are automatic when, for example, Y is a rational ho-
mology sphere.

HF+(Y, t) has the structure of a module over Λ[U ] = F[U ]⊗Z
∧∗H1(Y ). (If Y is

a rational homology sphere, Λ[U ] = F[U ]).
Under the assumptions above, HF+(Y, t) fits into an exact sequence:

0→M → F[U,U−1]⊗F[U ] Λ[U ]→ HF+(Y, t)→ HFred(Y, t)→ 0,

where HFred(Y, t) has finite dimension over F, and M is an Λ[U ]-submodule of
F[U,U−1] ⊗F[U ] Λ[U ] that contains UN · Λ[U ] for some integer N . That is to say,
in HF+(Y, t) every element is U -torsion. Inside F[U,U−1] ⊗F[U ] Λ[U ] we have two

distinguished copies of F[U,U−1], one corresponding to
∧0H1(Y ) ∼= Z and another

to
∧b1(Y ) H1(Y ) ∼= Z. We call these copies Ttop and Tbot, respectively.
We can now use the degree to define two numerical invariants associated to (Y, t),

called the top-most and bottom-most correction term of (Y, t):

dtop(Y, t) = min
x∈Ttop

deg x;

dbot(Y, t) = min
x∈Tbot

deg x.

Note that these definitions agree when b1(Y ) = 0, and that they both agree with the
definition of d(Y, t). An important difference is the lack of symmetry with respect
to orientation-reversal: it is not true that dbot(Y, t) = −dbot(−Y, t). For instance
dbot(S

1 × S2) = −1
2
.

Nevertheless, the top-most and bottom-most correction term of Y satisfy proper-
ties that analogous to those of the ordinary correction terms. We give two statements
that mirror Theorem 2.6(iv) and Corollary 2.7.

Theorem 2.11 (Ozsváth, Szabó). Let (W, s) be a spinc 4-manifold with boundary
(Y, t) such that:
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2 Piecewise-linear surfaces

• W is negative semidefinite;

• the restriction map H1(W )→ H1(Y ) is the zero map;

• t is torsion;

• Y has vanishing triple cup product.

Then the following inequality holds:

c2
1(s) + b−2 (W ) ≤ 4dbot(Y, t) + 2b1(Y ).

Note that the third and fourth assumptions are necessary to even ensure that the
inequality makes sense: if t is not torsion, c2

1(s) is not defined, and if Y has non-zero
triple cup product or t is not torsion, then dbot(Y, t) is not defined either.

We say that a 4-manifold has null intersection form if it is both negative semi-
definite and positive semi-definite. In other words, if it contains no surfaces of
non-zero self-intersection. Note that 4-manifolds with the same rational homology
as a connected sum of S1 × S3 are the only closed 4-manifolds with this property.

Corollary 2.12. Let W be a compact, orientable 4-manifold with null intersection
form, whose boundary ∂W = Y has vanishing triple cup product. Suppose further-
more that the map H1(W )→ H1(Y ) induced by the inclusion is the zero map. Then
for each torsion spinc structure t on Y that extends to W ,

dbot(±Y, t) + 2b1(Y ) ≥ 0

We now give some relevant examples of 3-manifolds that have (or do not have)
vanishing triple cup product.

Example 2.13. If F is an orientable surface of positive genus, then F × S1 does not
have vanishing triple cup product. This is easily seen, since the orientation class
in H2(F ) is a wedge of two classes in H1(F ), and the generator of H1(S1) pairs
non-trivially with the orientation class in H2(F ).

Example 2.14. If Y is a 3-manifold with vanishing triple cup product and K ⊂ Y
is a null-homologous knot, then Yn(K) has vanishing triple cup product for each
n 6= 0. In fact, up to torsion, H∗(Yn(K)) and H∗(Y ) are isomorphic as rings. This
can be seen, for instance, by considering intersections of triples of surfaces in Yn(K):

since the dual knot K̃ to K in Yn(K) is rationally null-homologous, each surface in

Yn(K) can be made disjoint from K̃ by tubing (an operation that does not affect
the homology class), so each class in H2(Yn(K)) is represented by a surface which

lives in Yn(K) \ K̃ = Y \ K, and triples of surfaces in Y intersect trivially (with
signs).

Heegaard Floer homology: other 3-manifolds, II

The assumption on the triple cup product of the 3-manifold being trivial is a rather
annoying one, for instance because it excludes products of circles and surfaces, as
we have seen in Example 2.13. In terms of neighbourhoods of PL surfaces, more
generally we are excluding embedded surfaces of positive genus and self-intersection
0.
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This gap in the literature was fixed in a collaboration with Behrens [BG18] by pass-
ing to fully-twisted coefficients. (We note that other refinements of bottom-most and
top-most correction terms have been developed by Levine and Ruberman [LR14].)
That is to say, instead of working with coefficients in F[U ], we work over RY [U ],
where RY = F2[H2(Y ;Z)]. The resulting Heegaard Floer chain complexes come
with a (non-trivial!) action by H2(Y ;Z), and their homology groups are the so-
called fully-twisted Heegaard Floer homology groups of Y , denoted with HF◦(Y, t).
Ozsváth and Szabó first considered these groups and proved that HF+(Y, t) fits into
a short exact sequence of RY [U ]-modules:

0→ F[U,U−1]/U · F[U ]→ HF+(Y, t)→ HFred(Y, t)→ 0,

where the RY -action on the left-hand side is trivial (i.e. h acts as the identity for
every h ∈ H2(Y ;Z) ⊂ R∗Y ) and the group HFred(Y, t) is annihilated by UM for some
M ≥ 0. (Note that this does not imply that the latter group is finite-dimensional
over F!) As in the case of ordinary correction terms, the image of the left-most map
has a minimal degree.

Definition 2.15 (Behrens, G.). The minimal grading of any element in the image
of the map F[U,U−1]/U ·F[U ]→ HF+(Y, t) is called the fully-twisted correction term,
or d-invariant, of (Y, t), and is denoted by2 d(Y, t).

This invariant turns out to be additive, like the ordinary correction terms for
rational homology spheres, but not orientation-reversal symmetric, like the bottom-
most correction terms for 3-manifolds with trivial triple cup product. The key result
we proved in [BG18] is an analogue of Theorem 2.6(iv) for fully-twisted correction
terms.

Theorem 2.16 (Behrens, G.). Let (W, s) be a negative semidefinite spinc cobordism
between torsion spinc 3-manifolds (Y, t) and (Y ′, t′) such that the inclusion Y ↪→ W
induces an injection H1(Y ;Q)→ H1(W ;Q). Then

c2
1(s) + b−2 (W ) ≤ 4d(Y ′, t′)− 4d(Y, t) + 2b1(Y ′)− 2b1(Y ).

In particular, d is a spinc rational homology cobordism invariant.

We also computed the invariant in the case of 0-surgeries along knots in S3 and
of products.

Proposition 2.17. Let K be a knot in S3. Then

d(S3
0(K), t0) = dbot(S

3
0(K), t0) = −1

2
− 2V0(−K).

If F is a closed orientable surface of genus g, then

d(S1 × F ) =

 −
1
2

if g is even,

1
2

if g is odd.

2Rather unfortunately, the notation d is also used for one of the two correction terms of rational
homology 3-spheres coming from involutive Heegaard Floer homology [HM17]. We keep the
notation as in [BG18], which will certainly not cause any confusion in this manuscript.
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2 Piecewise-linear surfaces

As a byproduct, for instance, one can give strong restrictions on QW whenever
W is a negative semi-definite 4-manifold whose boundary is T 3 or F × S1, where F
is a surface of genus 2. For instance, if W is additionally supposed to be spin, then
QW/ kerQW is either −E8 or trivial.

2.3 PL surfaces in S4 and knot cobordisms

We start by analysing PL surfaces in the simplest 4-manifold: the 4-sphere. We
phrase results mostly in terms of knot cobordisms, which one can think of as what
remains when one removes the singularities of a PL surface in S4. (This is essentially
precise when the PL surface has two singularities, less so when it has one or at least
three.) Most results we state will actually hold in (rational or integral) 4-spheres,
but we state them in the simpler context of S4.

Knot cobordisms

A smooth cobordism between two oriented knots K0, K1 ⊂ S3 is a properly embed-
ded, oriented compact surface B ⊂ S3× [0, 1] whose boundary is K1×{1}∪Kr

0×{0}
(here r means orientation reversal). We say that two knots are smoothly concordant
if there exists a smooth cobordism of genus 0 between them. Smooth concordance
is an equivalence relation, and the set of knots up to smooth concordance, endowed
with the connected sum of knots #, is an Abelian group C known as the smooth con-
cordance group. The inverse of a knot K is then the mirror of K with the reversed
orientation, which we denote with −K; that is, (S3,−K) is orientation-preserving
diffeomorphic to −(S3, Kr).

We will drop the adjective ‘smooth’ and only talk about cobordism and concor-
dance. (The locally-flat counterparts of the concepts are usually called locally-flat
cobordisms and topological concordance, and they are a rich area of study of their
own as well as in comparison with their smooth cousins.)

The basic question we try to address here is the following version of the minimal
genus problem.

Question 2.18. Given two knots K0, K1, what is the minimal genus of a cobordism
between them?

The minimal genus of a cobordism induces a distance dC on C, called the cobordism
distance:

dC(K0, K1) = min{g(F ) | F is a smooth cobordism from K0 to K1}.

It is easy to see that dC is indeed a distance on C, whereas it is only a pseudo-distance
if viewed as a function on the set of isotopy classes of knots. It is sub-additive with
respect to the connected sum.

The connection between cobordisms and Section 2.1 is given in the following
statement.

Proposition 2.19. The cobordism distance between K0 and K1 is g if and only if
there exists a genus-g PL surface in S4 with two singularities whose links are K0

and −K1 respectively.
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2.3 PL surfaces in S4 and knot cobordisms

The proof is evident3: given a cobordism, we can cap off its ends with the cones
over the two knots, and given a PL surface as in the statement we can remove a
regular neighbourhood of its singularities. The mirror of K1 appears because we are
viewing S3 × {1} as the boundary of S3 × [0, 1] when looking at a cobordism, and
as the boundary of the regular neighbourhood of the singular point when looking at
a PL surface, and the two orientations are opposite.

We have already presented, albeit without explicit mention, a number of concor-
dance invariants and lower bounds for genera of cobordisms. A special place among
concordance invariants is occupied by Levine–Tristram signatures, which are both
very efficient and easily computable. From our perspective, their only shortcoming
is that they are locally-flat obstructions, so they cannot see the difference between
the topological and smooth concordance groups.

Once again, cobordisms between knots naturally arise in complex algebraic ge-
ometry, this time in the context of deformations of singularities, which we define
presently.

Let {Fs}s be an analytic family of polynomials in C[x, y] parametrised by s in the
unit disc ∆ ⊂ C and let Cs = {Fs = 0} ⊂ C2. Suppose that Fs(0, 0) = 0 for every
s. For each s� 1 we say that (Cs, 0) is a deformation of (C0, 0).

Proposition 2.20. If (Cs, 0) is a deformation of (C0, 0), there is a cobordism of
Euler characteristic µ(C0, 0)− µ(Cs, 0) between the links of (Cs, 0) and (C0, 0).

Here µ(Cs, 0) denotes the Milnor number of the curve singularity (Cs, 0): this is
defined as b1 of the Milnor fibre of (Cs, 0), which in turn is M = {Fs = ε} ∩ B4

η for
ε � η � 1. Milnor studied isolated higher-dimensional hypersurface singularities.
He proved that for a hypersurface singularity in Cn+1, the Milnor fibre M (defined
as in the curve case we just mentioned) has the homotopy type of a wedge of n-
spheres [Mil68], so its middle-dimensional Betti number µ, called the Milnor number
of the singularity, is the only homotopy invariant needed to describe M . (Note that
this is obvious for curve singularities in C2, since open surfaces are automatically
homotopy-equivalent to wedges of circles.)

Sketch of proof. Choose a radius ε > 0 such that S3
ε ⊂ C2 is transverse to the curve

F0 and the intersection S3
ε ∩ C0 defines the link of the singularity of (C0, 0).

Choose another radius δ > 0 such that for every |s| < δ, Cs is also transverse to
S3
ε . In particular, S3

ε ∩ Cs is isotopic to S3
ε ∩ C0.

Now, for each s choose η < ε such that S3
η is transverse to4 Cs. By (suitably)

perturbing the family Fs if necessary, we can make Cs smooth inside the cylinder
B4
ε \ B4

η . Alternatively, we can replace the link K of each singularity of Cs (away
from the origin) with MK , to obtain a surface F in the cylinder B4

ε \B4
η . The surface

F is the desired cobordism.

When the links of (C0, 0) and (Cs, 0) above are two knots, K0 and K1, the propo-
sition produces for us a cobordism of genus g(K0) − g(K1). As a corollary of the
proof of the Thom conjecture (Theorem 2.1), this cobordism has minimal genus.

3Modulo sweeping under the rug the fact that every locally-flat PL surface can be smoothed,
which is far from evident, but classical.

4We could choose a value of η which works for every |s| < δ, but we do not need it here.
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2 Piecewise-linear surfaces

The driving question of my joint work with Bodnár and Celoria [BCG17] was to
compute the minimal genus of cobordisms between algebraic knots and determine
when this minimal genus is |g(K0)−g(K1)|—these cobordisms are sometimes called
optimal. In particular, if there is no optimal cobordism between two algebraic knots,
then there can be no deformation of one of the two singularities to the other.

Cobordisms and correction terms

The following theorem gives a lower bound on the cobordism distance between two
knots, expressed in terms of the invariants Vi of Theorem 2.8.

Theorem 2.21 (Bodnár, Celoria, G. [BCG17]). If there is a genus-g cobordism
between two knots K0 and K1, then for each k ≥ 0:

Vk+g(K0) ≤ Vk(K1) and Vk+g(K1) ≤ Vk(K0).

We draw several corollaries from this statement. First, given that for the link of a
singularity the Vis are computed in terms of the semigroup of the singularity, we can
extract from the theorem a lower bound for the genus of a cobordism of two algebraic
knots in terms of their semigroups. We phrase it in terms of the enumeration function
of the semigroup: given a set Γ ⊂ Z≥0, the function Γ: Z≥0 → Z≥0 is the unique
strictly increasing function whose image is Γ. (We give the function the same name
as the semigroup, but this will not create any confusion.)

Corollary 2.22. Let K0 and K1 be the links of two complex curve singularities with
semigroups Γ0 and Γ1, respectively. Then

d(K0, K1) ≥ g(K0)− g(K1) + max
n≥0
{Γ1(n)− Γ0(n)}.

The same inequality holds by swapping the roles of K0 and K1.

Note that the expression on the right-hand side makes sense: Γi(n) = g(Ki) + n
for n ≥ g(Ki), so the last summand is bounded.

We also give more knot-theoretic applications to the cobordism distance and the
Gordian distance, via the invariant ν+ defined above. The latter measures how
many crossing changes one has to do to pass from (a projection of) a knot K0 to
(that of) a knot K1.

Corollary 2.23. The invariant ν+ can be used to give lower bounds on the concor-
dance distance

|ν+(K0)− ν+(K1)| ≤ dC(K0, K1)

and on the signed Gordian distance:

ν+(K ′) ≤ ν+(K) ≤ ν+(K ′) + 1

whenever K is obtained from K ′ by changing a negative crossing of a projection of
K ′ into a positive one.
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2.3 PL surfaces in S4 and knot cobordisms

Contrarily to many other Floer-theoretic knot invariants, ν+ is not a homomor-
phism, and does not change sign when taking the inverse in concordance. So it could
(and does) happen that one gets interesting information by considering a knot and
its mirror (or a pair of knots and their mirrors) in the theorem and in the corollaries
above. (However, see below for a constraint on the behaviour of ν+ under connected
sums.)

Sketch of proof of Theorem 2.21. Suppose that F is a genus-g cobordism between
K0 and K1. The main idea is to construct a sequence of PL surfaces in a sequence
of 4-manifolds and apply the Ozsváth–Szabó machinery to extract an inequality on
correction terms.

The 4-manifolds we use are the traces Xn(K1) of surgeries along K1. Recall that
this manifold is obtained from the 4-ball B4 by attaching a single 2-handle along
K1 ⊂ S3, with framing n.

Within Xn(K1) we find a PL surface of genus g, self-intersection n, with a sin-
gularity of type K0. Indeed, the cobordism F can be capped off with a cone over
(S3, K0), and give a surface in B4 of genus g and with a singularity of type K0,
whose boundary is K1. When we attach the 2-handle to obtain Xn(K1), we can cap
off this latter surface with the core of the 2-handle, obtaining a surface that we call
Fn.

The complement of Fn has null intersection form and torsion H1, so we can apply
the Ozsváth–Szabó inequality of Theorem 2.11. Some bookkeeping yields the desired
inequality.

In the same paper, we also proved the following result about ν+.

Theorem 2.24 (Bodnár, Celoria, G. [BCG17]). The concordance invariant ν+ is
subadditive. That is,

ν+(K0#K1) ≤ ν+(K0) + ν+(K1).

〈2m0〉 〈2m1〉

K0 K1

0

Figure 2.2: The surgery diagram for the upside-down cobordism W from
S3

2m0
(K0)#S3

2m1
(K1) to S3

2(m0+m1)(K0#K1). The coefficients in brack-
ets represent the negative boundary ∂−W .

Sketch of proof. Once again, we construct a suitable cobordism W between two 3-
manifolds associated to K0 and K1: if we turn it upside-down, we get the cobordism
W shown in Figure 2.2. W goes from the surgeries along K0 and K1 with framings
2m0 and 2m1 to the surgery along K0#K1 with framing 2m0 + 2m1. A careful
analysis of the inequality induced on the correction terms by a spin structure on W
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2 Piecewise-linear surfaces

yields the inequality Vm0+m1(K0#K1) ≤ Vm0(K0) + Vm1(K1), from which the state-
ment readily follows. Interestingly, for the case m0 = m1 = 0 the inequalities given
above do not suffice, and we need to work with fully-twisted coefficients and apply
Theorem 2.16. (The case where m0 and m1 are both positive uses Theorem 2.6(iv),
while the case where only one of them vanishes uses Theorem 2.11.)

2.4 PL surfaces in CP2

The next simplest 4-manifold after S4 is probably CP2. While our primary objective
is the study of PL surfaces in CP2, we will emphasise when statements hold for 4-
manifolds with the same integer, rational, or Z/2Z-homology as CP2.

PL spheres

In this section, we will focus on PL spheres in smooth 4-manifolds, and especially
in the complex projective plane CP2. This is motivated by the study of rational
cuspidal curves in algebraic geometry, which we will discuss in more detail in the
next chapter.

Given a rational homology CP2, X, and a closed, orientable surface F embedded
in X, we say that F has degree d if F has self-intersection d2. Equivalently, F has
degree d if and only if there exist a class H ∈ H2(X) that generates H2(X)/Tor and
a class τ ∈ Tor(H2(X)) such that [F ] = dH + τ . This notion generalises the notion
of degree for complex curves in CP2.

The first observation we make is the following.

Proposition 2.25 (Borodzik, Livingston [BL14]). Let X be a rational homology
CP2 and F ⊂ X a PL sphere of degree d > 0. Then S3

d2(KF ) bounds a rational
homology ball.

Recall that KF is the connected sum K1# . . .#Kν , where K1, . . . , Kν are the
types of the singularities of F .

Proof. By definition, since F has degree d, F · F = d2. By Proposition 2.4, F has a
regular neighbourhood diffeomorphic to the knot trace T = Xd2(KF ). By the long
exact sequence of the pair (X,T ), we get:

0→ H4(X;Q)→H4(X,T ;Q)→ 0,

0→ H3(X,T ;Q)→ H2(T ;Q)→ H2(X;Q)→H2(X,T ;Q)→ 0,

0→H1(X,T ;Q)→ 0.

From these and from the fact that the map H2(T ;Q)→ H2(X;Q) is non-zero (since
[F ] 6= 0 ∈ H2(X;Q)), we quickly see that H∗(X,T ;Q) = Q(4). By excision, if we
let W to be the closure of X \ T , H∗(W,∂W ;Q) = H∗(X,T ;Q) = Q(4), and by
Poincaré–Lefschetz duality W is a rational homology ball. The boundary of −W is
the boundary of T , which is exactly S3

d2(KF ).

An immediate corollary of the proposition and of Corollary 2.7 is the following.
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2.4 PL surfaces in CP2

Theorem 2.26 (Borodzik, Livingston [BL14]; Aceto, G. [AG17]). Let X be a ra-
tional homology CP2 and F ⊂ X a PL sphere of degree d > 0. Then for every
0 ≤ k < d

2
:

V d(d−2k−1)
2

(K) =
k(k + 1)

2
.

Corollary 2.27 (Aceto, G. [AG17]). For each knot K, there exist at most two values
of d > 0 such that there exists a PL sphere of degree d in a homology CP2 with a
unique singularity of type K.

The corollary is easily proven using the invariant ν+(K). From Theorem 2.26,

choosing k = 0 and k = 1 one sees that d(d−3)
2

< ν+(K) ≤ d(d−1)
2

. One easily proves
that there are at most two values of d satisfying both inequalities, and furthermore
if there are two, they are consecutive. (Whenever ν+(K) is not a triangular number,
there exists a unique solution to the two inequalities, and hence at most one value
of d.)

In [AG17] and [AGLL20] we used Theorem 2.26 in combination with Donaldson’s
diagonalisation theorem (Theorem 2.5) to completely classify for which torus knots
T (p, q) there is a PL sphere in a homology CP2 whose unique singularity is of type
T (p, q). (This is a topological analogue of a unicuspidal curve with one Puiseux pair
in CP2, objects which were studied in [FLMN07] and which will be discussed in the
next chapter.)

Theorem 2.28. There is a PL sphere of self-intersection n 6= 0 and with a unique
singularity of type T (p, q) in some rational homology CP2, X, and degree d, if and
only if the triple (p, q; d) belongs to a set of triples G ∪ R ∪ L, defined below.

We now define the three sets G, R, and L. Recall the definition of the Fibonacci
sequence {Fk}: Fk+1 = Fk + Fk−1, with F0 = 0 and F1 = 1. We also define three
auxiliary sequences5 {Rk}, {Sk}, and {Tk}. Note that we use the same recursive
relation and only change the initial values.

R0 = 1,
R1 = 3,
Rk+1 = 6Rk −Rk−1;


S0 = 1,
S1 = 1,
Sk+1 = 6Sk − Sk−1;


T0 = 0,
T1 = 1,
Tk+1 = 6Tk − Tk−1.

The set G contains the following four families and two exceptional cases:

(1) (p, q; d) = (p, p+ 1; p2) for some p ≥ 2;

(2) (p, q; d) = (p, p+ 1; (p+ 1)2) for some p ≥ 2;

(3) (p, q; d) = (p, 4p± 1; (2p)2) for some p ≥ 2;

(4) (p, q; d) = (Rk, Rk+1; RkRk+1 − 2) for some k ≥ 1;

(5) (p, q; d) ∈ {(3, 22; 64), (6, 43; 256)}.

The set R comprises the following seven families and two exceptional cases:

(6) (p, q; d) = (r2, (r + 1)2; r2(r + 1)2) for some r ≥ 2;

5These sequences are in fact well-known: Rk is the 2kth half-companion Pell number; Sk is the
(2k − 1)th Pell number; 2Tk is the 2kth Pell number.
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−p+1
p

0

−p2

−1
p

+1 0

0

−1
p

0+1

Figure 2.3: From left to right: the double of X−p2(−T (p, p + 1)), its (anti-
holomorphic) blow-up, and a handle decomposition of CP2, obtained
by doing a zero-dot surgery in the blow-up X−p2(−T (p, p + 1)). Thus
CP2 contains Xp2(T (p, p+ 1)).

(7) (p, q; d) = (r2, (2r ± 1)2; r2(2r ± 1)2) for some r ≡ 2 (mod 4) and r ≥ 2;

(8) (p, q; d) = (r2, (2r ± 2)2; r2(2r ± 2)2) for some r ≡ ∓3 (mod 8) and r ≥ 5;

(9) (p, q; d) = (F 2
k , F

2
k+1; F 2

kF
2
k+1) for some k ≥ 3;

(10) (p, q; d) = (F 2
2k−1, F

2
2k+1; F 2

2k−1F
2
2k+1) for some k ≥ 2;

(11) (p, q; d) = (S2
k , 4T

2
k ; 4T 2

kS
2
k) for some k ≥ 2;

(12) (p, q; d) = (4T 2
k , S

2
k+1; S2

k+14T 2
k ) for some k ≥ 2;

(13) (p, q; d) ∈ {(92, 142; 92 · 142), (112, 142; 112 · 142)}.

Finally, the set L comprises the following five families:

(14) (p, q; d) = (2r − 1, 2r + 1; 4r2) for some r ≥ 2;

(15) (p, q; d) = (F2k, F2k+2; F2kF2k+2 + 1) for some k ≥ 1;

(16) (p, q; d) = (F2k+1, F2k+3; F2k+1F2k+3 − 1) for some k ≥ 1;

(17) (p, q; d) = (F2k+1, F2k+5; F2k+1F2k+5 − 1) for some k ≥ 1;

(18) (p, q; d) = (Sk+1, Sk+2; Sk+1Sk+2 − 1) for some k ≥ 1.

The subdivision into three families is due to the topology of the boundary of a
tubular neighbourhood of F : triples in G correspond to surgeries that are Seifert
fibred 3-manifolds with three singular fibres, those in R correspond to connected
sums of two lens spaces, and those in L correspond to lens space surgeries.

We can also say that some of the embeddings above can be realised for X = CP2.

Proposition 2.29. For (p, q;n) in families (1), (2), (3), and (5) above, the embed-
ding can be realised in CP2. That is, for those triples there exists a PL sphere of
self-intersection n whose unique singularity is of type T (p, q).

In fact, families (2), (3) when the sign is negative, and (5) are known to be realised
by rational cuspidal curves in CP2 [FLMN07]. In Figure 2.3 we draw an explicit
handle decomposition of CP2 containing Xp2(T (p, p+ 1)).

The proof of Theorem 2.28 is lengthy and technical. We only briefly sketch some
of the ideas that go into it.
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2.4 PL surfaces in CP2

Sketchy sketch of proof. Three main ideas go into the proof of this theorem. The
first two serve to prove that the list is complete, while the third to show that every
element in the list is realised.

Let us suppose that there exists F with a unique singularity of type T (p, q) and
degree d.

The first idea is to use correction terms, and specifically combining Theorem 2.26
with the computation of Proposition 2.9, to obtain the inequality p < 8q. The
inequality p < 9q was obtained in [AG17] and the refinement p < 8q was obtained
in [AGLL20], building on the same ideas appearing in the proof of Corollary 2.27.
By Corollary 2.27, we can also pin down the possible degrees d once we fix p and q.

The second idea is to use Donaldson’s diagonalisation theorem, as pioneered by
Lisca [Lis07]: the trace N(F ) of an integer surgery along T (p, q) has the same
boundary as a definite plumbing of spheres P (which can be positive or negative
definite, depending on the exact values of d, p, and q). Surgering out N(F ) and
replacing it by P yields a smooth, closed, definite 4-manifold, whose intersection
form contains the intersection form of P as an embedded sublattice. By Theorem 2.5,
the intersection form of P embeds isometrically in a definite diagonal form. A
lengthy combinatorial analysis can be carried out to exclude all triples that are not
in the list above.

Finally, the third input is the construction of the rational homology balls that
we can use to cap off the traces above. For the families L and R, the necessary
rational homology balls were constructed by Lisca [Lis07], who had classified all
lens spaces which bound rational homology balls (using Donaldson’s diagonalisation
theorem). As mentioned above, for the family G, some examples were known from
complex algebraic geometry (this also holds for families (10) and (17)). For the other,
the lattice embeddings produced using Donaldson’s theorem guided our handle-by-
handle construction of the rational homology ball6.

Remark 2.30. In fact, a posteriori we know that the use of Donaldson’s theorem
should not be necessary, and that the Heegaard Floer obstruction contains the same
amount of information. This is because surgeries along torus knots are small Seifert
fibred spaces or lens spaces or connected sums of lens spaces. Either way, they
bound sharp 4-manifolds, and for these manifolds the two obstructions, the one
coming from Donaldson’s diagonalisation theorem and the other one coming from
correction terms, are equivalent. This is spelled out in [Lar21].

PL surfaces of higher genus

It turns out that many ideas presented in the previous section can be extended to
surfaces of higher genus. As mentioned above, this was done, independently, by
Borodzik, Hedden, and Livingston [BHL17] and in a collaboration with Bodnár and
Celoria [BCG16].

We start with the analogue of Proposition 2.25, whose proof is essentially identical
to the one given above.

6This idea had been developed and advertised by Owens, see [OS21].
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Proposition 2.31 (Borodzik, Livingston [BL14]). Let X be a rational homology
CP2 and F ⊂ X a PL surface of degree d > 0. Then S3

d2(KF ) bounds a 4-manifold
with vanishing b1 and null intersection form.

Recall that having null intersection form means that the intersection form is iden-
tically zero. The 4-manifold complement, however, has positive b2 (in fact, b2 is
2g(F )). Also, observe that since b1(X \F ) = 0, the map induced on cohomology by
the inclusion H1(∂N(F ))→ H1(X \N(F )) automatically vanishes.

After determining which spinc structures on ∂N(F ) extend to X \ N(F ), which
is similar to Proposition 2.10 above, one readily obtains the following analogue of
Theorem 2.26.

Theorem 2.32 (Borodzik, Hedden, Livingston [BHL17]; Bodnár, Celoria, G.). Let
X be a rational homology CP2 and F ⊂ X a PL surface of degree d > 0 and genus
g. Then, for every h = −d−1

2
,−d−3

2
, . . . , d−1

2
and every k = 0, . . . , g we have:

−g ≤ Vg−2k+hd(KF )− (d− 2h)2 − 1

8
− k ≤ 0,

where KF is the connected sum of all links of singularities of F .

It is quite remarkable that the condition above is very restrictive when combined
with the adjunction formula (which we will discuss in the next chapter), which
asserts that 2g+2g(KF ) = (d−1)(d−2). We will call a PL surface in CP2 satisfying
this formula adjunctive. For instance, we will see in the next chapter that complex
and symplectic curves are adjunctive, which can be viewed as a strong justification
for considering this class.

For every integer k > 0, let us define a sequence {Akn}n∈Z by
Akn+1 = 3Akn − Akn−1,
Ak0 = 1,
Ak1 = k.

(Note that the sequence is also defined backwards, for n < 0.)

Theorem 2.33 (Bodnár, Celoria, G.). Fix a positive integer g > 0. Let F ⊂ CP2

be an adjunctive PL surface of genus g and degree d � 0, with a unique singular
point, which is of type T (a, b). Then:

a+ b = 3d and (7b− 2a)2 − 45b2 = 36(2g − 1).

It follows that if g ≡ 2, 4 (mod 5), there are only finitely possibilities for a, b, and
d. If g = 1

2
k(k − 1) for some k ≡ 2 (mod 3) and 2g − 1 is a prime power, then the

only possibilities for a, b, and d � 0 are (a, b, d) = (Ak2n, A
k
2n+2, A

k
2n+1), and they

are all realised.

The first part of the theorem follows from a very careful analysis of the restrictions
imposed by Theorem 2.32 and the combinatorics of the semigroup generated by a
and b (which in turn controls the sequence {Vk(T (a, b))}k).

The second half is an analysis of the Pell equation in the statement, whose set of
solutions depends exactly on the prime factorisation of 2g − 1.

Finally the existence part is given by a generalisation of a construction due to
Orevkov, which we will discuss in some detail in Section 3.6 below.
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Branched covers and signatures

There is a much more classical approach to studying PL surfaces in a 4-manifold X,
which is especially effective when the 4-manifold X is an integer homology CP2 (that
is, H∗(X) ≡ H∗(CP2) over the integers, and σ(X) = 1). This makes most classes
in H2(X) divisible, which in turns allows one to use branched covers and signatures
to study surfaces. This method was studied by Casson and Gordon [GM86] in the
context of slice knots, and later by Gilmer [Gil81] in the context of surfaces in
4-manifolds. Here we only give a hint of their ideas in our more restricted setting.

The main construction is the topological analogue of the Milnor fibre of a curve
singularity. Given a knot K in S3, choose a surface MK ⊂ B4 of minimal genus such
that MK is smoothly7 and properly embedded, transverse to ∂B4, and ∂MK = K.
This allows to minimally smoothen a PL surface in a 4-manifold.

Definition 2.34. A smoothing sm(F ) of a PL surface F ⊂ X is obtained by re-
placing a regular neighbourhood (Up, F ∩Up) ∼= (B4, C(Kp)) of the singular point p
of F with (B4,MKp) for each singular point p of F .

Note that we say a smoothing and not the smoothing. In this context, without
any restriction on K, we do not have a preferred choice for MK , so the surface sm(F )
is not unique. If K is an algebraic knot, then we do have a preferred choice, namely
the Milnor fibre of the singularity whose link is K. If that is the case, we choose
MK to be the Milnor fibre, and if all the singularities of F are algebraic we have a
preferred smoothing, unique up to isotopy. We keep the notation sm for this unique
smoothing, but we invite the reader to keep this ambiguity in mind. (This preferred
smoothing is going to be relevant in the next chapter.)

We now locally have a surface MK in B4, and we can consider its cyclic covers.
We have a classical result of Viro [Vir75] (see also Kauffman and Taylor [KT76] for
the case of double covers), asserting that the equivariant signatures of this branched
cover (with respect to the cyclic group action given by its deck transformations) are
the Levine–Tristram signatures of the knot K.

We first start with two baby cases, which showcase some phenomena that we will
generalise later.

Example 2.35. We claim that there is no PL sphere of degree 6 in a Z/2Z-homology
CP2 X, with a unique singularity of type T (2, 21). Suppose that such an F exist.
Then its smoothing smF has genus g(T (2, 21)) = 10, which incidentally minimises
the genus in its homology class. From the long exact sequence of the pair (X, smF )
we deduce that the meridian of smF generates H1(X \ smF ;Z/2Z) ∼= Z/2Z, so

there exists a double cover X̃ → X branched over smF . By a direct computation,
X̃ has Euler characteristic 24 and, since H1(X \ smF ) is cyclic, the Goldschmidt

lemma [HS71] implies that b1(X̃) = 0. By the G-signature theorem (see below), X̃

has signature −16. Since b2(X̃) = 22, we obtain b−2 (X̃) = 19.
However, the double cover of B4 branched over MT (2,21) is the Milnor fibre M of

the A20-singularity, so it is negative definite, and therefore it has b−2 (M) = 20. This

gives a contradiction since M cannot embed in X̃ as b−2 (M) > b−2 (X̃).
7Most of the discussion below works if we choose MK to be locally-flat, but this requires a deep

theorem of Quinn that ensures that locally-flat compact surfaces in 4-manifold are globally-
flat [FQ90, Section 9.3], [Qui82, Theorem 2.5.1], [BKK+21, Section 21.4.8].
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Example 2.36. We claim that there is no PL sphere of degree 5 in a Z/5Z-homology
CP2, X, with six singularities of type T (2, 3). Suppose that such a surface F exists.

As above, using the long exact sequence of the pair (X, smF ) we can show that
H1(X \ smF ;Z/5Z) is generated by the meridian of smF , so there exists a 5-fold

cover X̃ → X branched over F . The G-signature theorem tells us that σ(X̃) = −35.

The Euler characteristic of X̃ is easily calculated since g(smF ) = 6, and by the

Goldschmidt lemma b1(X̃) = 0, so that b2(X̃) = 53 and b−2 (X̃) = 44. Now, the
5-fold cover M of B4 branched over MT (2,3) is the Milnor fibre of the E8-singularity,
whose intersection form is −E8, so we have b−2 (M) = 8. But this implies that six

copies of M cannot be embedded in X̃.

Before going on to the general case, we set up some notation. Given an action
of the cyclic group Cd = Z/dZ on a 4-manifold M , we can look at the eigenspaces
of the induced Cd-action on H2(M ;C). More precisely, let g ∈ Diff+(M) be a
fixed generator of the action. Since g has order d, the eigenvalues are dth roots of
unity. H2(M ;C) has a Hermitian product QC

M coming from QM , and the eigenspace
decomposition of H2(M ;C) is QC

M -orthogonal. We can therefore define the signature
of QC

M restricted to the λ-eigenspace for every dth root of unity λ, which we denote
with σλ(g,M).

On the other hand, to a knot (or a link) K ⊂ S3 we can associate a Seifert form V ,
and we can define the Levine–Tristram signature of K as the function σK : S1 → Z
assigning to λ ∈ S1 the signature of (1− λ)V + (1− λ)V .

Theorem 2.37 (Viro). Fix a positive every integer d. Let K ⊂ S3 be a knot and
F ⊂ B4 be a compact, smoothly and properly embedded surface whose boundary is
K. Let g be the generator of the automorphism group of the cyclic branched cover
p : Σd(B

4, F ) → B4 that acts as rotations by 2π/d around p−1(F ). Then, for every
dth root of unity ω:

σω(Σd(B
4, F ), gk) = σK(ωk).

Viro’s statement becomes very powerful when combined with the G-signature the-
orem. We state the G-signature theorem only in the case of cyclic actions whose
fixed point set is a connected surface. Recall that if g ∈ Diff+(X) is a diffeomor-
phism of order d whose fixed-point set is a connected surface F , then it acts by
rotations in the normal direction (namely, dgx is a rotation on TxX/TxF for every
x ∈ F ). Call φ(g) this angle of rotation. As above, we have a well-defined eigenspace
decomposition of H2(X;C) and we can define the g-signature of X to be:

σ(g,X) =
∑
ωd=1

ω · σω(g,X)

Theorem 2.38 (Atiyah, Singer [AS68]; Gordon [Gor86]). Let g be a finite-order
diffeomorphism of X whose fixed-point set is a connected surface S. Then

σ(g,X) =
S · S

sin2(φ(g)/2)

Combining Viro’s theorem and the G-signature theorem, we obtain the following.
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Theorem 2.39 (Gilmer). Let F ⊂ X be a PL surface of degree d and genus g in
a smooth homology CP2. For a prime power q dividing d, let ωq = e2πi/q. Then for
every prime power q dividing d and any 0 ≤ r < q we have:∣∣∣σKF

(ωrq)− 1 + 2
(
d
q

)2
r(q − r)

∣∣∣ ≤ 1 + 2g.

Sketch of proof. The surface F induces a decomposition of X into a neighbourhood
N of F and its complement, W . This also induces a decomposition of the cyclic
q-fold cover X̃ of X, ramified over sm(F ) into the preimages Ñ and W̃ of N and
W , respectively.

Since the cover has prime power order, we know that b1(X̃) = b1(Ñ) = b1(W̃ ) = 0,

b1(∂W̃ ) = 2g, and b3(X̃) = b3(Ñ) = b3(W̃ ) = 0. This is a corollary of the Gold-
schmidt lemma [HS71], for instance, but it also follows from looking at equivariant
homology as in [TW74, Gil81].

Note that the cover W̃ → W is an honest (non-branched) cover, and in particular

we know that the equivariant Euler characteristics of W̃ agree with those of W .
Since b1(W̃ ) = b1(W̃ ) = 0, and the equivariant b0 vanishes as soon as the action is

non-trivial, we know that b2(W̃ ) = (2g+ 1)q− 1 = (2g+ 1)(q− 1) + 2g and that the

(non-trivial) eigenspaces of the Cq-action of H2(W̃ ;C) are all 2g + 1-dimensional.
This gives a signature inequality

|σω(g, W̃ )| ≤ 1 + 2g

for each ω-eigenspace. To prove the statement, we just need to compute σω(g, W̃ ).

From the G-signature theorem, we know σ(gs, X̃) for each s. We can do an inverse

discrete Fourier transform to use all these signatures to compute σω
r
q (g, X̃) for each

r. The computation is elementary, but tricky, [CG78] and yields:

σω
r
q (g, X̃) = 2

(
d
q

)2
r(q − r) + 1.

From Viro’s theorem and Novikov’s addivity of the (equivariant) signatures, we
obtain:

σω
r
q (g, W̃ ) = σω

r
q (g, X̃)− σωr

q (g, Ñ)

=
(
d
q

)2
2r(q − r) + 1− σKF

(ωrq).

Together with the signature inequality above, this proves the theorem.

The Arf invariant

There is another classical obstruction, also studied by Kervaire and Milnor in the
context of embedded spheres, coming from the Arf (or Arf–Robertello) invariant
[Rob65, Lic97]. This involves spin structures and only applies for surfaces of odd
degrees. We only state it for PL spheres.

Suppose that X is now a Z/2Z-homology CP2; that is, the homology of X satisfies
H∗(X;Z/2Z) = H∗(CP2;Z/2Z) and σ(X) = 1. Let F be a PL sphere in X of odd
degree d. In this case W = X \ N(F ) is a spin rational homology ball (see, for
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instance, [BHS18, Section 4]). Since W is a rational homology ball, it has signature
0. It follows that the Rokhlin invariant µ(∂N(F )) of its boundary vanishes modulo8

16. Note that, since d is odd, H1(∂N(F );Z/2Z) = 0 and thus ∂N(F ) has a unique
spin structure.

Since N(F ) is the trace of d2-surgery along a knot K, the Rokhlin invariant of its
boundary is determined by d and by the Arf invariant Arf(K) of K. Recall that the
Arf invariant is a knot invariant which takes values in Z/2Z, which encodes the type
of the Z/2Z-valued quadratic form associated to any Seifert form of the knot. It is
additive with respect to connected sums and it can be computed from the Alexander
polynomial of the knot: Arf(K) ≡ 0 if ∆K(−1) ≡ ±1 (mod 8), and Arf(K) ≡ 1 if
∆K(−1) ≡ ±3 (mod 8). For instance, for torus knots T (p, q):

Arf(T (p, q)) =


0 if p, q are both odd,
0 if p is even and q ≡ 1, 7 (mod 8) or vice-versa,
1 if p is even and q ≡ 3, 5 (mod 8) or vice-versa.

Gordon proved in [Gor75] that µ(S3
n(K)) ≡ n − 1 + 8 Arf(K) (mod 16). In the

case of embedded PL spheres, combining Gordon’s Rokhlin invariant computation
with the observation that µ = 0, we obtain the following obstruction, which is both
easily computable and surprisingly strong.

Proposition 2.40. If F ⊂ X is a PL sphere of odd degree d in a Z/2Z-homology
CP2, then

Arf(KF ) ≡ d2 − 1

8
(mod 2).

8Here we think of the Rokhlin invariant as an element in Z/16Z, rather than an element in Z/2Z.
This is more convenient when dealing with rational homology spheres as opposed to integer
homology spheres.
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In this chapter we will talk about a particular class of (configurations of) PL sur-
faces, namely (singular) symplectic curves, mostly in CP2 and its blow-ups. Most
of the ideas in this chapter come from Gromov’s theory of pseudo-holomorphic
curves [Gro85] and from McDuff’s work [McD90, McD92]. Wendl’s book [Wen18] is
a great compendium on the subject.

We start the chapter with some generalities on symplectic 4-manifolds and in-
troduce symplectic curves and the (singular or non-singular) symplectic isotopy
problems. In Section 3.2 we discuss some of Gromov’s ideas on pseudo-holomorphic
curves. In Section 3.3 we show how symplectic rational cuspidal curves do not help
us finding exotic CP2. In Sections 3.4, 3.5, and 3.6 we discuss the symplectic isotopy
problem, starting with obstructions (in continuation with the previous chapter), the
statements of the main results from [GS22, GK23], and some ideas coming from
algebraic geometry which enter in the proofs.

Finally, Section 3.7 discusses the relative case, presenting ideas from [GS21]
and [EG22]: symplectic fillings and caps of contact 3-manifolds, and symplectic
cobordisms between transverse knots.

3.1 Symplectic 4-manifolds and their symplectic
submanifolds

A symplectic form on a 4-manifold is a 2-form ω on X that satisfies two properties:

• ω is closed: dω = 0,

• ω is non-degenerate: (ω ∧ ω)x 6= 0 for each x ∈ X.

A 4-manifold equipped with a symplectic form is a symplectic 4-manifold. Note
that a symplectic form ω on a 4-manifold X induces an orientation via the volume
form ω ∧ ω. Darboux’s theorem asserts that the local model for all symplectic 4-
manifolds is the standard R4, i.e. R4 equipped with the symplectic form ωst =
dx1 ∧ dy1 + dx2 ∧ dy2.

Cotangent bundles of real surfaces (with the derivative of the Liouville form q dp)
and non-singular complex projective surfaces (with the restriction of the Fubiny–
Study form of the CPN in which they are embedded) are the first and most important
examples of symplectic 4-manifolds. The main example we will consider is the
complex projective plane, CP2, endowed with the Fubini–Study symplectic form
ωFS; in complex coordinates, it is defined by:

ωFS = ∂∂ log(|z0|2 + |z1|2 + |z2|2).
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A deep theorem of Taubes asserts that ωFS is the unique symplectic structure on
CP2, up to symplectomorphisms and rescaling [Tau96].

An immersion ι : F # X of a real surface into X is called ω-symplectic, or just
symplectic if there is no danger of confusion, if ι∗ω is an area form on F . In this
case we also say that the image of ι is an (immersed) symplectic surface in X.

Again, the prototypical example comes from complex algebraic geometry: if X
is a complex projective surface and C ⊂ X is a nodal complex curve, then C is
an immersed symplectic surface in X. The statement can be further generalised by
considering complex curves in Kähler surfaces.

Let us focus on the case of embeddings, first. The main problem that remains
open to this day is the symplectic isotopy problem.

Question 3.1. Is every embedded symplectic surface in CP2 symplectically isotopic
to a complex curve?

Here by a symplectic isotopy we mean a smooth isotopy {Ft}t∈[0,1] such that at each
time t ∈ [0, 1] the surface Ft is symplectic. Since it is well-known that every two non-
singular complex curves of the same degree are isotopic among complex curves1, the
question asks whether any two symplectically embedded curves of the same degree
in CP2 are isotopic. The answer is known for degrees up to 17: Gromov first proved
the statement for d = 1, 2 [Gro85], Sikorav for degree 3 [Sik03], Shevchishin pushed
it to degree 6 [She00], and finally Siebert and Tian reached the current limit [ST05].

The main difference between generic immersed symplectic surfaces and nodal
complex curves is the possible (local) signs of intersections: the sign of intersection
of the two branches of a complex curve is always positive, whereas this is no longer
true symplectically. Concretely, the two planes:

{x2 = y2 = 0}, {x2 = 2x1, y2 = −2y1} ⊂ (R4, ωst)

are, by direct verification, both symplectic and they intersect transversely and neg-
atively at the origin of R4.

If we want to define what a singular symplectic surface in a symplectic 4-manifold
is, we are at a crossroad: what singularities should we allow? From the discussion
above, positive and negative double points look reasonable, but then we weaken the
connection with the complex world. It is also possible for a symplectic surface to
have non-isolated singularities: the planes {x2 = y2 = 0}, {x2 = 0, y2 = 1

2
y1}, are

both symplectic, but they intersect along a line. On the other hand, if we restrict
the singularities too much, then we might have a theory that is not sufficiently rich.

As we will see in Section 3.7, in a suitable sense, symplectic surfaces in CP2 can
have isolated singularities of arbitrary type, where the type of a singularity is a
transverse link in the standard contact 3-sphere (S3, ξst).

A more restrictive definition would be to allow for smoothable singularities. These
are the singularities for which there exists a symplectic smoothing MK . In turn, this
class of singularities corresponds to a well-studied class of (transverse) links in the

1The key point of the argument is the following. The discriminant is a complex codimension-1
subvariety of the space of all degree d-curves. Since the latter is an irreducible, non-singular
variety, the discriminant does not disconnect it.
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standard contact 3-sphere: closures of quasipositive braids. We will talk about this
class of knots and links in more detail in Section 3.7.

For the moment, we focus on the class of singular surfaces for which there is a
singular analogue of the symplectic isotopy problem as stated above. To emphasise
that we are restricting to a very special class of singular symplectic surfaces that
mimics complex curves, we borrow the terminology from algebraic geometry and
we will talk about symplectic curves. We will see in the next section an equivalent
definition in pseudo-holomorphic terms.

Definition 3.2 ([GS22]). A symplectic curve in a symplectic 4-manifold (X,ω) is
an immersed PL surface C ⊂ X such that:

• C \ Sing(C) is a smooth symplectic surface in X (i.e. ω restricts to an area
form on C \ Sing(C));

• for every q ∈ Sing(C) there are an open neighbourhood U ⊂ X and a symplec-
tomorphism (U,C ∩ U, q)→ (V,D ∩ V, 0), where V ⊂ C2, and D is a complex
algebraic curve with a non-trivial singularity at 0.

As we did for the PL surfaces, we call each point in Sing(C) the a singularity (or
singular point) of C.

We say that C is cuspidal if all its singularities are cusps (i.e. if the curve D in (b)
above is locally irreducible at 0 for every q ∈ Sing(S)) and nodal if all its singularities
are transverse double points. A symplectic cuspidal curve is called rational if it is a
PL-embedded 2-sphere.

The definition in particular implies that a symplectic cuspidal curve is a PL-
embedded surface, whose singularity types are algebraic knots (i.e. links of irre-
ducible curve singularities). As a symplectic object, the link is the unique transverse
representative of that algebraic knot with maximal self-linking number. (More on
this in Section 3.7.)

The definition above takes care, for instance, of the issues with negative double
points, and it allows to formulate the singular version of Question 3.1.

Question 3.3. Is every symplectic curve in CP2 symplectically and equisingularly
isotopic to a complex curve?

By a symplectic equisingular isotopy we mean the symplectic analogue of equi-
singular deformations in algebraic geometry: we want a family {Ct}t of symplectic
curves such that Ct has the same singularity types as Ct′ for every t, t′.

I would like to stress that, as was mentioned in the introduction, similar versions
of the question were considered by several authors in the case of curves with simple
nodes (i.e. positive transverse double points) and simple cusps (i.e. singularities of
type T (2, 3)). We will shortly talk about Moishezon’s work on the problem [Moi94],
dating back to the 90s. More recently, a lot of interest on symplectic isotopy prob-
lem was sparked by Auroux’s work on branched covers: in [Aur00], he proved that
every symplectic 4-manifold is a cover of CP2 branched over a symplectic curve
whose singularities are both positive and negative double points and simple cusps.
Partly motivated by Auroux’s work, Barraud [Bar00], Shevchishin [She04], and Fran-
cisco [Fra05] obtained several results on symplectic equisingular isotopies of nodal,
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cuspidal, and nodal-cuspidal curves. In the last decade, Ruberman and Starkston
also studied symplectic line arrangements [RS19]: their paper was a source of inspi-
ration for part of the work I am presenting here.

In a sense, Question 3.3 is more multi-faceted than Question 3.1. On the one hand,
it is no longer true that complex curves have a unique singular representative in each
degree: for instance, the collection of types of singularities of C is not determined
by the degree. On the other hand, we do not even have a classification of complex
curves in all degrees, neither up to isotopy nor up to equisingularity.

An extra layer of complexity is that singular curves could be reducible (i.e. C
could be a PL immersion of a disconnected surface), and their singularities could be
reducible (i.e. C might not be PL-embedded, but just PL-immersed).

A final layer of complexity is the phenomenon of Zariski pairs, which shows that
there exist equisingular complex curves of the same degree that are not isotopic. The
first example is due to Zariski, who constructed two sextics, known as the Zariski
sextics, whose complements are not even homeomorphic (they have non-isomorphic
fundamental groups).

Example 3.4 (Zariski sextics). In [Zar29], Zariski described two curves C,C ′ in CP2,
both of degree 6, genus 4, with six singular points that are simple cusps (i.e. their
link is a right-handed trefoil, T (2, 3)).

The first sextic, C, has its six singularities lying on a conic. In this case, the
fundamental group of its complement is C2 ∗ C3, which is non-Abelian. One can
explicitly write down an equation in this case: take a generic cubic polynomial P
and a generic quadratic polynomial Q, and let F = 27P 2 − 4Q3. Then F passes
through the six intersections of the cubic defined by P and the conic defined by Q,
and has a simple cusp at each of these points.

The second sextic has its six singularity that do not line on the same conic. The
fundamental group of its complement is C6, which is clearly Abelian. So C ′ cannot
be isotopic to C.

Question 3.3 is known to have a negative answer in many cases: if C is reducible,
if C is irreducible of positive genus, and if C is irreducible, of genus 0, with reducible
singularities. This leaves out the case of irreducible curves of genus 0 with irreducible
singularities: these are rational cuspidal curves, and they will be the focus of this
chapter.

Example 3.5. We get one example of a reducible symplectic curve (i.e. a symplectic
configuration of curves) that is not equisingular to (and in particular not equisin-
gularly isotopic to) a complex curve whenever we have a pseudo-line arrangement
that does not have the combinatorial type of any complex arrangement [RS19]. For
instance the pseudo-Pappus arrangement, shown in Figure 3.1, is obtained from
the classical Pappus arrangement of nine lines in CP2 by C∞-perturbing one of the
triple points of intersection. The classical Pappus theorem tells us that this config-
uration is not realised by a collection of complex lines. The fact that the symplectic
condition and that positivity of intersections for transverse intersections are both
open conditions guarantees that the arrangement we obtain is a symplectic line
arrangement, which is therefore not isotopic to a complex one.
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Figure 3.1: The pseudo-Pappus arrangement.

Example 3.6. In [Moi94], Moishezon produced infinite families of equisingular sym-
plectic curves with nodal and simply-cuspidal singularities (i.e. their links are posi-
tive Hopf links and right-handed trefoils, respectively) in each degree in an infinite
sequence, every two of which have complements with non-isomorphic fundamental
groups. In every given degree d there are at most finitely many isotopy classes of
complex curves, since the singularity types induce an algebraic stratification of the
space of all degree-d curves, which is a projective space. Therefore, infinitely many
among Moishezon’s example are not isotopic to a complex curve.

Example 3.7. Orevkov has an example of a rational symplectic curve with three ir-
reducible singularities, each of which has the same link as the curve {y(x3 +y5) = 0}
at the origin of C2 [GS22]. This is obtained from a pseudo-Desargues configuration
(similar to the pseudo-Pappus mentioned above) by means of birational transforma-
tion. Such a curve cannot exist over the complex numbers, since one could construct
the pseudo-Desargues configuration starting from it, and the Desargues theorem for-
bids this.

3.2 Some pseudo-holomorphic ideas

As mentioned in the previous section, symplectic 4-manifolds are a more flexible
version of complex projective surfaces. Not all symplectic 4-manifolds are com-
plex: the first examples were produced by Thurston (the Thurston–Kodaira man-
ifold) [Thu76], and then Gompf proved that every finitely presented group is the
fundamental group of a symplectic 4-manifold [Gom95]. However, all symplectic
4-manifolds are almost-complex.

Recall that an almost-complex structure J on X is a vector bundle automorphism
J : TX → TX such that J2 = − idTX . An almost complex structure J is tamed
by a symplectic structure ω if ω is positive on J-lines, i.e. if ω(v, Jv) > 0 for
each non-zero v ∈ TX. J is compatible with ω if furthermore ω is J-equivariant,
i.e. ω(v, w) = ω(Jv, Jw) for every v, w ∈ TX. (These notions appear naturally in
Kähler geometry, where J is integrable.) It is a classical result that the set of almost-
complex structures on X tamed by (or compatible) with a given ω is contractible
(and in particular non-empty).

Gromov’s key insight was to use J-holomorphic curves in X for a non-integrable J
compatible with ω to probe (X,ω). This lead to the development of Gromov–Witten
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theory (enumerative geometry) and Floer homology/symplectic field theories. Here
we will only scratch the surface of Gromov’s ideas.

It turns out that symplectic curves, as defined in the previous section, are exactly
J-holomorphic curves for some J .

Proposition 3.8 (Micallef, White [MW95]; McDuff [McD92]; G., Starkston [GS22]).
Suppose C ⊂ (X,ω) is a symplectic curve. Then there exists an almost-complex
structure J on X, compatible with ω, such that C is J-holomorphic. Conversely, if
C is J-holomorphic then C is a symplectic curve.

In particular, C = ι(Σ) for some Riemann surface (Σ, j) and some map ι which is
(j, J)-holomorphic. We can suppose that Σ is simple (i.e. that ι does not multiply
cover C), and in that case we call g(Σ) the genus of C. (Σ is what algebraic
geometers call the normalisation of C, and g(Σ) is the geometric genus of C.)
The bulk of the proof is the local characterisation of J-holomorphic singularities
as actual complex curves singularities, which is due to Micallef and White and to
McDuff. In [GS22] we simply adapted the classical, well-known non-singular version
of the proposition, and globalised the construction.

A very useful corollary of the local part of the theorem is positivity of intersections
for J-holomorphic curves.

Theorem 3.9 (McDuff [McD94]). Let C, C ′ be two symplectic curves. Then for
every point p ∈ C ∩ C ′ there is a positive integer (C · C ′)p such that

C · C ′ =
∑

p∈C∩C′
(C · C ′)p.

In particular, |C ∩ C ′| ≤ C · C ′. The quantity (C · C ′)p measures the number of
signed intersections of a generic perturbation of C with C ′, and in particular it is
+1 if and only if C and C ′ intersect transversely at p.

We can also prove the adjunction formula for symplectic curves.

Theorem 3.10. If C = ι(Σ) ⊂ (X,ω) is an irreducible symplectic curve and J is a
compatible almost-complex structure with respect to which C is J-holomorphic, then
the adjunction formula holds:

〈c1(J), [C]〉 − C · C = χ(Σ)−
∑

p∈Sing(C)

µ(C, p).

In the formula above, c1(J) is the first Chern class of J , which is independent of
J within the class of ω-tame (or ω-compatible) almost-complex structures, and so is
a discrete topological invariant of ω. The invariant µ(C, p) is the Milnor invariant
of the singularity of C at p, which is b1 of its Milnor fibre; for cuspidal singularities,
µ is twice the Seifert genus of its link. In particular, the genus of a non-singular
symplectic curve only depends on its homology class. (Either side of the equation
is what algebraic geometers refer to as the arithmetic genus of C.)
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Sketch of proof. The smoothing smC of C is a non-singular symplectic surface, since
at each singular point we are gluing two symplectic surfaces, namely C \ Sing(C)
and MK(C,p)

, along the same transverse knot. Since the difference in b1 between
Σ and smC is exactly

∑
p∈Sing(C) µ(C, p), it is enough to prove the formula for a

non-singular surface.
If C is non-singular, then the restriction TX|C of the tangent bundle of X splits as

a complex rank-2 vector bundle as the sum of the tangent bundle to C (whose first
Chern class is e(C), so it evaluates on C as χ(C)) and the normal bundle (whose first
Chern class evaluates on the orientation class as C · C). Using Whitney’s formula
for the first Chern class of a direct sum of bundles, we conclude the proof.

We will not use it, but we mention here a generalisation of Kronheimer and
Mrowka’s solution to the Thom conjecture, Theorem 2.1 above.

Theorem 3.11 (Morgan, Szabó, Taubes [MST96], Ozsváth, Szabó [OS00]). A non-
singular symplectic curve in a symplectic 4-manifold is genus-minimising in its ho-
mology class.

Among the first, and for us most useful, striking results one can prove with pseudo-
holomorphic techniques, we have Gromov’s and McDuff’s theorems on the complex
projective plane. The first theorem is about lines in CP2.

Theorem 3.12 (Gromov [Gro85]). Fix an almost complex structure J on CP2 com-
patible with ωFS. Given any two points on CP2, there exists a unique J-holomorphic
line passing through them. Given any point, the set of lines through the point forms
a pencil.

In particular, this implies that the answer to symplectic isotopy problem in degree
1 is positive.

Corollary 3.13. Every symplectic curve in CP2 of degree 1 is symplectically isotopic
to a complex line.

Note that, crucially, when we have a symplectic isotopy, the almost-complex struc-
ture which is compatible with the curves along the isotopy is allowed to change with
the parameter t, and we have to take that into account.

Sketch of proof of the corollary. Choose a symplectic curve L in degree 1 in CP2.
Then L is a sphere and it cannot be singular, by the adjunction formula. Choose
a J0 that makes the curve J0-holomorphic, and choose a path Jt of almost-complex
structures from J0 to J1 = Jst. Fix two points p 6= q on L. By Gromov’s theorem
above, for each Jt there exists a unique Jt-holomorphic line passing through p and
q. One can prove that the space of degree-1 curves that are Jt-holomorphic and
pass through p and q forms a manifold, which in this case has to be an interval (i.e.
the solutions vary continuously with time). This gives an isotopy Lt from L to the
unique Jst-holomorphic line through p and q.

The second theorem, in a sense conversely, classifies symplectic 4-manifolds which
can contain lines. Very strikingly, only the standard CP2 can. (This is a theorem
of Castelnuovo in complex algebraic geometry, and follows quite easily from the
Enriques–Kodaira classification of compact complex surfaces.) We will refer to it as
McDuff’s theorem.
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Theorem 3.14 (McDuff [McD90]). Suppose (X,ω) is a symplectic 4-manifold that
contains an embedded symplectic sphere S of self-intersection +1, and no embed-
ded symplectic sphere of self-intersection −1. Then (X,ω) is symplectomorphic to
(CP2, λωFS) for some λ > 0. Moreover, we can choose the symplectomorphism so
that S is sent to a complex line.

McDuff proves something stronger in [McD90]: she proves that every symplectic
4-manifold X that contains a symplectically embedded sphere S of non-negative
self-intersection is, up to blow-ups and blow-downs, either CP2 (or S2 × S2) or a
symplectic S2-bundle over a surface. Moreover, if the self-intersection is at least 5
and the 4-manifold is minimal (i.e. it contains no symplectic (−1)-spheres) then X
fibres over S2 and S is a section.

I would like to mention here the main result from Fabien Kütle’s thesis, which is
a generalisation of the latter statement above and of an algebro-geometric result of
Hartshorne [Har69].

Theorem 3.15 (Kütle [Küt21]). If S is a symplectically embedded surface in (X,ω)
and (X,S) is relatively minimal (i.e. X \S is minimal) and either S ·S > 4g(S)+4
and g(S) 6= 1 or S · S > 4g(S) + 5, then X is a fibre bundle over a surface of genus
g(S) and S is a section.

3.3 Rational cuspidal curves cannot detect an exotic
CP2

A useful probe to detect exotic smooth structures on a topological 4-manifold X
is the genus function, assigning to a homology class in H2(X) the minimal genus
among its embedded representatives. This is an effective way of detecting exotica—
for example, a minimal exotic CP2#9CP2 has no class of self-intersection −1 that
is represented by a sphere.

More generally, one can wonder whether curves in a symplectic 4-manifolds can
detect exotica. For instance: could there exist a symplectic 4-manifold (X,ω) where
X is homeomorphic to CP2, but X contains a rational cuspidal curve that cannot
be contained in CP2?

In [GS22] we proved that rational cuspidal curves cannot do this for us.

Theorem 3.16 (G., Starkston [GS22]). If X is a rational homology CP2 that con-
tains a rational cuspidal curve C, then X is symplectomorphic to CP2.

Remark 3.17. There exist rational homology CP2s that admit a symplectic struc-
ture. In fact, there are even complex projective surfaces that are rational homology
CP2s, and they are known as fake projective planes. The first example is due to
Mumford [Mum79], and they have since been classified [PY07, CS10]. These are all
ball quotients (i.e. quotients of the complex hyperbolic plane) [Yau77], so their uni-
versal cover is contractible, and in particular they cannot contain rational cuspidal
curves. That is, the algebraic version of the theorem above was well-known.

Sketch of proof. If X is a rational homology CP2 with a symplectic structure, the
existence of an almost-complex structure J implies that c1(ω)2 = 9. Up to torsion,
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there are now two possibilities for c1(ω): either it intersects [ω] positively, or it
intersects it negatively.

If c1(ω) ∪ [ω] > 0, Taubes proved that X is the standard CP2 [Tau96]. If c1(ω) ∪
[ω] < 0, then we can compute the Euler characteristic of smC from the adjunction
formula: χ(smC) = −d2 − 3d. This implies that g(KC) = d2+3d+2

2
. Since KC is a

connected sum of algebraic knots, ν+(KC) = g(KC).
Corollary 2.27 (or rather the exact computation in the paragraph below the state-

ment) tells us that 2ν+(KC) would need to be in the interval (d(d − 3), d(d − 1)],
which gives us a contradiction.

An interesting remark is that, thanks to a theorem of Taubes, every symplectic
4-manifold contains symplectic curves: more precisely the homology class (that is
Poincaré dual to) c1(ω) or −c1(ω) is always represented by a symplectic curve. For a
fake projective plane FP2, c1(FP2)2 = 9. For many FP2s, it is currently not known
whether a generator of H2(FP2)/Tor can be represented by a complex curve. Note
also that we currently do not know of any symplectic rational homology CP2 that
does not admit a complex structure.

3.4 Pseudo-holomorphic obstructions for cuspidal
curves

In the previous section we learnt that, if we are to look for symplectic rational
cuspidal curves in a rational homology CP2, we only have to look for them in the
standard CP2. Since a rational cuspidal curve is in particular an embedded PL
sphere, all the obstructions that we developed in the previous section help us in our
search for (mostly rational) cuspidal curves.

We are going to discuss three more obstructions here: one coming from the adjunc-
tion formula, one from branched covers of real surfaces and the Riemann–Hurwitz
formula, and one from cobordisms and Levine–Tristram signatures. We also briefly
discuss a potentially new obstruction coming from positivity of intersections and
Bézout’s theorem, only to discover that it is in fact something we already knew.

These are all well-known obstructions in the complex algebro-geometric setting,
and the proofs adapt almost verbatim to the setting of symplectic curves, as we
observed in [GS22].

Remark 3.18. With some more technology, one can even recover Plücker formulae
in the symplectic setup. The crucial point is that, contrarily to what happens in
the complex case, there is no natural symplectic or almost-complex structure on the
dual to an almost-complex projective plane. Nevertheless, Sikorav used Gromov’s
elliptic structures on the dual projective plane to recover Plücker’s formulae [Sik04].

Adjunction

This is the easiest one—in fact we already used it in the proof of Theorem 3.16.
Consider an irreducible (but not necessarily rational nor cuspidal) symplectic

curve C = ι(Σ) ⊂ (X,ω). Then from the adjunction formula we know that the sum
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of the Milnor numbers of the singularities of C is determined by χ(Σ) and [C]. More
precisely, ∑

p∈Sing(C)

µ(C, p) = C · C + χ(Σ)− 〈c1(ω), C〉.

Specialising to X = CP2 and calling d the degree of C, we obtain the following
proposition.

Proposition 3.19. If C is a singular symplectic curve in CP2 of degree d and genus
g, ∑

p∈Sing(C)

µ(C, p) = (d− 1)(d− 2)− 2g(Σ),

and further specialising to rational curves, we have:∑
p∈Sing(C)

µ(C, p) = (d− 1)(d− 2),

This imposes restrictions on rational cuspidal curves that are not purely topolog-
ical. For instance, Family (1) in Theorem 2.28 violates this inequality: in this case,
the PL surface F of degree p with a unique singular point of type (p, p+ 1) cannot
be realised as a symplectic curve.

What is perhaps unexpected is that the only cases in Theorem 2.28 that satisfy
adjunction all arise as symplectic (in fact, even complex algebraic) rational cuspidal
curves. We will talk about this in more detail in the next section.

Riemann–Hurwitz formulae

The Riemann–Hurwitz obstruction also uses symplectic information in global way.
Fix an almost complex structure J on CP2 such that C = ι(Σ) is J-holomorphic.
Fix a point p0 ∈ CP2, and consider the pencil of J-holomorphic lines through p0,
and the associated projection π0 : CP2 \ {p0} → P(Tp0CP2) ∼= CP1. Restricting this
projection to πC : C → CP1, and pre-composing with the map ι gives a ramified
covering map π = πC ◦ ι : Σ→ CP1. A priori, if p0 ∈ C, the map is not well-defined
at p0. If p0 is a cuspidal point in C, π has a unique continuous extension defined by
sending p0 to the image of the J-holomorphic line through p0 which is tangent to C
at p0.

The fact that the only singularities of π are complex ramification points follows
from positivity of intersections between J-holomorphic curves and from McDuff’s
and Micallef and White’s work on singularities of J-holomorphic curves [McD92,
MW95]. Ramification points arise from tangencies between lines in the pencil with
C and from singular points of C.

For a point q 6= p0, the ramification index of π at q is equal to the multiplicity of
intersection of the J-holomorphic line Lq through q with C. For a smooth point q,
this is just the order of tangency between Lq and C at q. These numbers are bounded
from below by the multiplicity and the second multiplicity of the singularity, which
in turn are encoded in the semigroup Γ(C,p) of the singularity of C at the point p. If
there is no ambiguity, we drop C from the notation and just use the subscript p.
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3.4 Pseudo-holomorphic obstructions for cuspidal curves

Recall that the semigroup of a singularity is the set of possible multiplicities of
intersections of curves D with C at p: Γp always contains 0 (for a curve D that does
not contain p), then the first non-zero element is the multiplicity mp of p, and the
second non-zero element is mp + m′p. mp is a lower bound for the multiplicity of
intersection at p between C and and a curve passing through p, whereas, if p is a
cusp, mp +m′p is a lower bound for the multiplicity of intersection at p of C with a
curve tangent to C at p.

The Riemann–Hurwitz formula is the calculation of the Euler characteristic of
the branched covering in terms of the ramification indices and degree of the cover.
If π : Σ → CP1 is a k-fold ramified cover with ramification points x1, . . . , x` and
ramification indices eπ(xj) then

χ(Σ) = k(2− `) +
∑̀
j=1

(k + 1− eπ(xj)) = 2k −
∑̀
j=1

(eπ(xj)− 1).

Suppose d is the degree of C. If we choose p /∈ C, then a generic line through p
intersects C, d times, so the degree of the cover is d. Therefore the above equation
specialises to

2d− χ(Σ) =
∑̀
j=1

(eπ(xj)− 1).

If instead, we choose p ∈ C, where p has multiplicity mp (where mp is the first entry
of the multiplicity sequence if p is a singular point and is 1 if p is a smooth point
of C), then a generic line through p intersects C at d−mp other points. Therefore
π is a (d − mp)-fold cover. This gives the following equation and inequality. The
inequality is particularly useful as an obstruction to symplectically realising certain
cuspidal curves in CP2.

2(d−mp)− χ(Σ) =
∑̀
j=1

(eπ(xj) − 1) ≥
∑
q 6=p

(mq − 1) + (m′p − 1).

We summarise the discussion above in the following proposition.

Proposition 3.20. If C is a symplectic cuspidal curve of degree d and genus g, for
each p ∈ Sing(C) we have:

2d− 2mp + 2g ≥ 2 +
∑
q 6=p

(mq − 1) + (m′p − 1).

In particular, if C is a rational cuspidal curve,

2d− 2mp ≥ 2 +
∑
q 6=p

(mq − 1) + (m′p − 1).

Example 3.21. Let us consider the configurations of cusps on a symplectic curve
of degree 5 in CP2: {(3, 5), 2(2, 3)}, {(3, 4), 3(2, 3)}, and {(2, 5), 4(2, 3)}. (We are
using the shorthand notation k(2, 3) to denote k cusps of type (2, 3).) We can apply
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Riemann–Hurwitz to exclude all of them: In the first case, we project from the
(3, 5)-cusp, and we obtain the following contradiction.

2 · 5− 2 · 3 ≥ 2 + 1 + 1 + 1.

In the second, we project from the (3, 4)-cusp:

2 · 5− 2 · 3 ≥ 2 + 1 + 1 + 1.

In the third case we project from the (2, 5)-cusp:

2 · 5− 2 · 2 ≥ 2 + 1 + 1 + 1 + 1 + 1.

Thus, in each of the three cases, we get a contradiction. The last example can
also be obstructed smoothly by taking the 5-fold branched cover and computing
the contributions to b−2 coming from each of the five singularities, as we did in
Section 2.4.

Levine–Tristram signatures

We will derive an inequality based on the Levine–Tristram signature and nullity
functions of the links, σ•, η• : S1 → Z. It is related to, but not completely equiv-
alent to, the algebro-geometric spectrum semicontinuity, formulated in terms of
Hodge-theoretic data, and then recast in more topological terms by Borodzik and
Némethi [BN12, Corollary 2.5.4].

Proposition 3.22. Let C be a symplectic cuspidal curve of degree d and genus g in
CP2. Then for every ζ in a dense subset S1

! of S1 we have:

|σT (d,d)(ζ)− σK(ζ)|+ |ηT (d,d)(ζ)− ηK(ζ)| ≤ 2g + d− 1.

From a J-holomorphic curve rational cuspidal C, a generic J-holomorphic line `
gives us a genus-0 cobordism in S3× [0, 1] from KC to the torus link T (d, d). Here by
generic we mean that we want ` to intersect C transversely—analogously to what
happens in algebraic geometry, a J-holomorphic curve has finitely many tangent
lines, so we have lots of choice for `.

This cobordism is obtained by removing a neighbourhood of a path connecting
all singularities of C, and a neighbourhood of the line `. The fact that we obtain
a cobordism to T (d, d) is a corollary of positivity of intersections, so we are indeed
using the almost-complex structure J . If we did not have positivity of intersections,
we would only obtain a cobordism to a link that (as an unoriented link) is isotopic
to T (d+ 2a, d+ 2a), but that has a components oriented in one direction and d+ a
in the other.

Suppose now that C is a cuspidal curve of genus g and degree d. Then KC is a
knot, and for every ζ ∈ S1

! ⊂ S1 we have:

|σT (d,d)(ζ)− σK(ζ)|+ |ηT (d,d)(ζ)− ηK(ζ)| ≤ d− 1 + 2g.

We have a concrete description of the set S1
! : it is the unit circle with all Knoten-

nullstellen (roots of integer polynomials such that p(1) = 1) removed; that is,

S1
! = S1 \ {α | ∃p(t) ∈ Z[t], p(1) = 1, p(α) = 0}.
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The inequality above was essentially proved by Nagel and Powell [NP17], who also
introduced the notation and terminology for S1

! (see also [Con21, Theorem 2.12]).
To be concrete: all transcendental complex numbers of norm 1 belong to S1

! , so
the set of Knotennullstellen has measure 0. A root of unity belongs to S1

! if and only
if its order is a prime power; for this it suffices to evaluate cyclotomic polynomials
at 1: Φpr(1) = p for every prime p and positive integer r, while Φn(1) = 1 whenever
n has at least two distinct prime factors.

Example 3.23. The spectrum semicontinuity obstructs the existence of a symplec-
tic quintic with two cusps of type (2, 7): at ζ = e2πi/6 we have σT (6,6)(ζ) = −9,
σT (2,7)(ζ) = −2, ηT (6,6)(ζ) = 4, and ηT (2,7)(ζ) = 4, so

|σT (6,6)(ζ)− 2σT (2,7)(ζ)|+ |ηT (6,6)(ζ)− ηT (2,7)(ζ)| = 9 6≤ 5 = d− 1 + 2g.

Remark 3.24. There is a relation between the inequality above and the branched
cover obstruction from the previous chapter. In the notation of Theorem 2.39, we
let ωd = e2πid. One can verify that

σT (d,d)(ω
r
q) = 1− 2r(d− r), and ηT (d,d) = d− 2.

If d/r is a prime power, then ωrd ∈ S1
! . If C is a rational cuspidal curve, the inequality

from Proposition 3.22 at ωrd reduces exactly to the inequality of Theorem 2.39. This
should not be too surprising, since the inequality on the Levine–Tristram signature
which underpins Proposition 3.22 can be interpreted, at roots of unity of prime
power order, in terms of cyclic branched covers, à la Viro [Vir75]

Bézout’s theorem

There is another observation of algebro-geometric nature, coming from Bézout’s
theorem, that we can adapt to the pseudo-holomorphic setup and use as an ob-
struction. Suppose C is an irreducible symplectic curve in CP2 of degree d, and J
a compatible almost-complex structure for which C is J-holomorphic. Then every
other J-holomorphic curve D of degree d′ < degC in CP2 intersects C in at most
dd′ points. Counting with multiplicity, C and D will intersect exactly dd′ times.
(Note that here we are using both assumptions: C has to be irreducible and d′ has
to be strictly less than d, for otherwise we could choose D to be a component of C.)
By positivity of intersection, however, all intersections are positive, as they are in
complex algebraic geometry.

Rather than trying to build the general theory, we give the most basic example.
First we choose D to have degree 1, i.e. it is a line. We know that for every two
singularities p, q ∈ Sing(C) the J-holomorphic line through p and q intersects C
with multiplicity at least mp at p and mq at q, so by Bézout’s theorem we have that
mp+mq ≤ d. Similarly, the tangent line to a singular point p ∈ Sing(C) intersects C
at p with multiplicity at least mp+m′p, so by Bézout’s theorem we have mp+m′p ≤ d.

In complex algebraic geometry, we can look at curves of degree d′ and impose
1
2
d′(d′ + 1) − 1 linear conditions at various points of the curve, and this gives an

inequality that we can express in terms of the semigroup of the curve. For symplectic
curves this is not as easy to do, since we do not have equations.

However, it turns out that this obstruction is implied by the Heegaard Floer
obstruction of Theorem 2.26. This was observed by Borodzik [Bor17].
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3.5 The symplectic isotopy problem for rational
cuspidal curves

At last, we go back to Question 3.3: the symplectic isotopy problem for singular
curves. Motivated by Examples 3.4–3.7 above, we restrict to the case of rational
cuspidal curves. The question can be split into two sub-questions: the first concerns
the equisingularity type, the second the isotopy classes within a given equisingularity
class.

Question 3.25. Is every symplectic rational cuspidal curve in CP2 equisingular to
a complex curve?

In plain words: suppose that C is a symplectic rational cuspidal curve, does there
exist a complex curve C ′ of the same degree with the same singularities? If the
answer is no, clearly C cannot be isotopic to any complex curve.

There are many (non-obvious) restrictions on the possible configurations of sin-
gularities of complex rational cuspidal curves. The most striking is probably the
four-cusp theorem, proved by Koras and Palka [KP22].

Theorem 3.26 (Koras, Palka). A complex rational cuspidal curve in CP2 has at
most four singularities. If it has four, then it is isomorphic to the unique 4-cuspidal
quintic.

Thus, a very simple way of showing that the answer to Question 3.25 is negative
would be to produce a symplectic rational cuspidal curve with more than 4 cusps,
or any curve of degree larger than 5 with four cusps.

As a side note, we had mentioned above that the equisingular classification of
singular curves in CP2 is not known. For instance, we do not even know how many
simple cusps a degree-d curve can have (except when d is small). For complex
rational cuspidal curves, there is a proposed classification result due to Palka and
Pe lka [PP17, PP20]. Their result depends on the negativity conjecture [Pal19], which
is currently open.

The second, more subtle, question to come out of Question 3.3 is the isotopy
problem properly said.

Question 3.27. Suppose C and C ′ are equisingular symplectic rational cuspidal
curves in CP2. Are they equisingularly symplectically isotopic?

As far as I know, the answer to the question is not even known to algebraic
geometers if we restrict to rational cuspidal curves. That is, we do not know of any
Zariski pair of rational cuspidal curves.

In collaboration with Starkston and with Kütle, we proved that the answer to the
symplectic isotopy problem is true for small degrees and “small complexity”.

Theorem 3.28 (G., Starkston [GS22] for deg ≤ 5, G., Kütle [GK23] for deg = 6, 7).
If C and C ′ are two equisingular symplectic rational cuspidal curves in CP2 of degree
degC = degC ′ ≤ 7, then C and C ′ are equisingularly symplectically isotopic, and
their symplectic isotopy class contains a complex curve.
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We list here all singularity types that occur.

Degree 3 (2, 3)
Degree 4 (3, 4) (2, 7) (2, 5), (2, 3)

3(2, 3)
Degree 5 (4, 5) (3, 5), (2, 5) (3, 4), (2, 7)

(3, 4), (2, 5), (2, 3) (2, 13) (2, 9), (2, 5)
(2, 7), 3(2, 3) 3(2, 5)

Degree 6 (5, 6) (2, 3; 2, 17) (2, 3; 2, 15), (2, 3)
(2, 3; 2, 13), (2, 5) (4, 5), (2, 9) (4, 5), (2, 7), (2, 3)
(4, 5), 2(2, 5) (3, 11) (3, 10), (2, 3)
(3, 8), (3, 4) (3, 7), (3, 5)

Degree 7 (6, 7) (5, 7), (2, 7) (5, 6), (2, 11)
(5, 6), (2, 9), (2, 3) (5, 6), (2, 7), (2, 5) (4, 7), (3, 7)
(4, 5), (3, 10) (2, 3; 2, 15), (3, 7) (2, 3; 2, 13), (3, 8)
(2, 3; 2, 13), (3, 7), (2, 3) (3, 13), (2, 7)

Before stating the second theorem, let us define what we mean by “small com-
plexity”. We say that a curve C is 1-unicuspidal if C has only one singularity and
the link of this singularity is a torus knot T (p, q). (The number 1 refers to the
number of Puiseux pairs of the singularity or, equivalently, of cabling parameters of
the link.)

Theorem 3.29 (G., Starkston [GS22]). If C and C ′ are two symplectic rational 1-
unicuspidal curves in CP2, then C and C ′ are equisingularly symplectically isotopic,
and their symplectic isotopy class contains a complex curve.

We can explicitly list the degrees and singularity types of the previous theorem:

• degree d and singularity of type (d− 1, d) (for d ≥ 3);

• degree 2m and singularity of type (m, 4m− 1) (for m ≥ 2);

• degree F2k+1 and singularity of type (F2k−1, F2k+4) (for k ≥ 2);

• degree F2k−1F2k+1 and singularity of type (F 2
2k−1, F

2
2k+1);

• degree 8 and singularity of type (3, 22);

• degree 16 and singularity of type (6, 43).

These were known to algebraic geometers, thanks to fairly recent work of Fernández
de Bobadilla, Luengo, Melle Hernández, and Némethi [FLMN07]. It is worth noting
that they, too, used some topological ideas (spectrum semicontinuity, related to the
Levine–Tristram signature obstruction described above) to heavily narrow down the
possibilities. By contrast, we mostly used Heegaard Floer homology and correction
terms: as observed in [BCG16] and [Liu14] the semigroup obstruction combined
with the adjunction formula already suffices to pin down the list above.

Observe that this theorem is the symplectic counterpart of Theorem 2.28 in the
next section: a rational 1-unicuspidal curve is a PL sphere with one singular point
of type T (p, q) for some p and q.

The proofs of Theorems 3.28 and 3.29 are similar, and they both essentially involve
a case-by-case analysis: first we list all unobstructed configurations of singularities
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a curve can have (using the obstructions we discussed in this and in the previous
chapter) and then we try to construct all the cases that are remaining.

One might want to proceed and classify curves degree by degree, extending the
results of Theorem 3.28. Unfortunately, the number of possible configurations grows
quite fast with the degree, and even after testing all of the obstructions we are left
with a respectable number of constructions to attempt. In [GK23], when dealing
with curves of degree 7, we had 718 possible configurations of singularities satis-
fying the adjunction formula, of which 28 passed all the obstructions we tested2,
11 of which are realised by symplectic curves. For the remaining 17, we had to
work case by case. A driving reason to think about sextics and septics was not so
much the classification in and of itself (although it is interesting to know that no
exotic phenomena can appear in degree at most 7), but rather a way of testing the
obstructions we know of and the constructions we could do. (Already from [GS22]
to [GK23] we had found or rediscovered some more powerful invariants.)

The main idea underpinning the constructive part of both proofs is that of bira-
tional transformations, to which we dedicate the next section.

3.6 Birational transformations

Birational transformations are a well-known tool in algebraic geometry, used to com-
pare varieties that are “mostly” isomorphic. Formally, a birational transformation is
an isomorphism defined on a Zariski open subset of a variety onto an open subset of
the target. It is the central equivalence relation used in the classification of algebraic
varieties. In the case of complex surfaces, birational transformations amount to a
sequence of blow-ups and blow-downs.

In theory

A birational equivalence φ : X 99K Y between two varieties X and Y is a morphism
φ : U → Y where U ⊂ X is Zariski open and φ is an isomorphism onto a Zariski
open subset of Y . As mentioned above, if X and Y are complex surfaces, then every
birational equivalence factors into a compositions of blow-ups and blow-downs.

Suppose that X is non-singular and connected. Let φ : X 99K Y be a birational
equivalence and choose a maximal open subset U ⊂ X such that φ is a morphism on
U and an φ : U → Y is an isomorphism onto its image. If C ⊂ X is a configuration
of curves, then in Y we have two configurations of curves associated to φ and C:
one is the complement of φ(U) ⊂ Y , and the other is the closure of φ(C ∩ U).

We will now try to extend the definition of birational equivalence to the sym-
plectic setting, and to consider what happens to symplectic curves under birational
transformations.

First, we need to know that blow-ups and blow-downs exist in the symplectic
category. This was essentially done by McDuff [McD91], ensuring that if X ′ =
X#CP2 and b : X ′ → X is the usual blow-down (i.e. contracting a −1-sphere E

2When writing [GK23], we were not entirely aware of Theorem 2.39 and had a weaker version
of Proposition 3.22. With these more refined tools, there are 19 configurations that pass all
obstructions.
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generating H2(CP2) ⊂ H2(X ′)) and ω is a symplectic structure on X, then there is a
symplectic structure ω′ on X ′ that “agrees with ω” and for which E is a symplectic
sphere. This means that b∗ω = ω′ outside the preimage of a ball in X, containing
b(E). A subtle difference between the blow-up in complex and symplectic geometry
is that the complex blow-down contracts a curve to a single point, whereas the
symplectic blow-down “contracts” a curve to a closed 4-ball.

This translates into some more work if one wants to carefully lift curves under
blow-ups as one does in the complex set-up. This is what we do in [GS22], and that
we can state loosely as follows.

Proposition 3.30. If (C, 0) the germ of a complex curve in X = C2, then the
the preimage b−1

C (C) of C in the complex blow-up bC : X ′C → X and b−1
ω (C) in the

symplectic blow-up bω : X ′ω → X (both at the origin) have deformation-equivalent
neighbourhoods.

We call b−1(C) (in either setup) the total transform of C, denoted with C, and

b−1(C \ {0}) the proper transform of C, denoted with C̃.
The consequence of the proposition is that we can use (embedded) resolution of

(curve) singularities in the symplectic setup, which will be crucial to our study.

Definition 3.31 (G., Starkston [GS22]). Let C0 ⊂ (X0, ω0) and C1 ⊂ (X1, ω1) be
two (configurations of) symplectic curves. We say that:

• they are birationally equivalent if there exist blow-ups X ′0 → X0 and X ′1 → X1

and a symplectic deformation-equivalence Φ: X ′0 → X ′1 such that Φ(C0) is
isotopic to C1;

• C1 is birationally derived from C0 if there exists blow-ups X ′0 → X0, b1 : X ′1 →
X1, and a symplectomorphism Φ: X ′0 → X ′1 such that C1 = b1(Φ(C0)).

The key point is that birational transformations can (and often do) allow us to
simplify a configuration, often reducing to configurations of lines and conics. The
key results we proved in [GS22] are the following.

Proposition 3.32. If C0 is a configuration in (X0, ω0), and C1 in (X1, ω1) is bira-
tionally derived from C0, then any subconfiguration of C1 symplectically embeds into
(X1, ω1).

This statement is immediate from the definition, but its usefulness comes from its
contrapositive. Namely, we can show that certain configurations C0 cannot be sym-
plectically realised in a closed symplectic manifold (X0, ω0), using the non-existence
of a subconfiguration of symplectic curves that can be birationally derived from C0.

Proposition 3.33. Suppose a configuration C1 in (X1, ω1) is birationally derived
from C0 in (X0, ω0), and suppose C1 has a unique (non-empty) equisingular sym-
plectic isotopy class in (X1, ω1). Then C0 also has a unique (non-empty) symplectic
isotopy class in (X0, ω0). If (X0, ω0) = (X1, ω1) = (CP2, ωFS) and C1 can be realised
by a complex curve, then C0 can also be realised by a complex curve.
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Sketch of proof. Suppose any two symplectic embeddings of C1 into (X1, ω1) are
symplectically isotopic. Let Q0

0 and Q1
0 be two symplectic embeddings of C0 into

(X0, ω0). By definition of birational derivation, there is a sequence of blow-ups of
Qk

0 to Qk
0 and a sequence of blow-downs that contract Qk

0 to Qk
1 for k = 0, 1, where

Q0
1 and Q1

1 are symplectic realisations of C1 into (X1, ω1).
By assumption, there exists an equisingular isotopy {Qt

1}t∈[0,1] which connects
Q0

1 and Q1
1. For each Qt

1, perform the sequence of blow-ups along the appropriate
smooth or singular points in Qt

1 to obtain Qt
1. By definition of birational derivation,

there is a distinguished subset of the components Et ⊆ Qt
1 for t ∈ [0, 1], agreeing

with E0 and E1 for t = 0, 1. Contracting Et for each t ∈ [0, 1] gives the required
equisingular symplectic embeddings Qt

0 of C0 into (M0, ω0).
Since complex curves are preserved under birational transformations, the last

statement follows from the same proof.

If C0 and C1 are birationally equivalent, they are each birationally derived from
the other, yielding the following corollary.

Corollary 3.34. Suppose C0 in (X0, ω0) and C1 in (X1, ω1) are birationally equiv-
alent. There is a unique equisingular symplectic isotopy class for C0 in (X0, ω0), if
and only if there is a unique equisingular symplectic isotopy class for C1 in (X1, ω1).
If (X0, ω0) = (X1, ω1) = (CP2, ωFS) and if the equisingular symplectic isotopy class
contains complex representatives for one configuration, it contains complex repre-
sentatives for the other.

Finally, we state a proposition that allows to deduce the existence and uniqueness
of more complex configurations starting from simpler ones. We call this the add-a-
line lemma.

Proposition 3.35. Suppose C1 is a configuration of singular symplectic curves in
(CP2, ωFS) obtained from C0 by adding a single symplectic line L. Suppose that in
the configuration C1 either:

1. L intersects the curves of C0 transversally and the intersection points of L
with C0 contain at most two singular points, P i and P j, of C0, or

2. L has a simple tangency to a subset of the components of C0, {Bi1 , . . . , Bik}
at a single point P i in C0 (P i may be either a smooth or singular point of B`

and it can be a singular point of C0 in which case it uses the existing label, or
a smooth point of C0 in which case it takes a new label index) and all other
intersections of L with C0 are transverse double points. Further assume in
this case that in C1, there are no other intersections of L with the components
Bi1 , . . . , Bik outside of the tangent point (but L may intersect other components
in transverse double points).

Then there is a bijection between the isotopy classes of realisations of C0 and those
of C1. In particular, C0 has a unique equisingular symplectic isotopy class if and
only if C1 does.

For instance, the pseudo-Pappus configuration is unique up to isotopy. This can
be seen by adding lines in the order given by Figure 3.2.
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0

1

2 3 4 5
6 7

8

Figure 3.2: The pseudo-Pappus configuration is unique up to isotopy. Just add lines
in the order indicated by the numbers and apply Proposition 3.35.

In practice

Instead of sketching the whole proof of the classification theorems stated above, we
look at a few simple examples that showcase the main ideas of the proofs.

Proposition 3.36. There is a symplectic rational cuspidal curve S, unique up to
isotopy, of degree 4 with three simple cusps as singularities. This is isotopic to the
complex curve known as the Steiner quartic.

+1
h−1

h−e1−e2

−2
h−e3−e4−e5

−1

h−e1−e3

−2
h−e2−e4−e6

−1 −2

h−e2−e3
h−e1−e5−e6

Figure 3.3: The total transform of the tricuspidal quartic and its homological em-
bedding.

Sketch of proof. Blow up S twice at each of its singular points. The total transform
S ⊂ CP2#6CP2 of S is shown in Figure 3.3. In particular, the proper transform S̃ is
a symplectically embedded +1-sphere. By McDuff’s theorem, there is a symplectic
deformation auto-equivalence of CP2#6CP2 taking S̃ to a symplectic line (i.e. to a
line in CP2#6CP2 which is away from the blow-ups).

We want to analyse what becomes of the total transform S under these blow-
downs. The configuration we obtain is birationally derived from S in the sense of
the previous section.

Once we impose that S̃ is a line, i.e. it is in the homology class h ∈ H2(CP2#6CP2)
with respect to the basis h1, e1, . . . , e6 given by the blow-ups, the homology classes
of the components of S are the ones exhibited in Figure 3.3. This is a bit trickier
than it looks, as it requires using both positivity of intersections and the adjunction
formula.

Blowing down the exceptional divisors in the homology classes e1, . . . , e6 (whose
existence is guaranteed by McDuff’s theorem, and whose uniqueness was also proved
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3

0

2

1 4

5

6

Figure 3.4: The configuration L of seven lines birationally derived from the Steiner
quartic.

+1
h

−1

3h−2e1−e2−···−e7

−1h−e1−e2 −1h−e1−e3 −1h−e1−e4

−2h−e3−e4−e5 −2h−e2−e4−e6 −2h−e2−e3−e7

Figure 3.5: The unique homology classes of an embedding of the blow-up of a cus-
pidal curve with one cusp of type (3, 4) and three of type (2, 3).

by McDuff [McD91]), one obtains a configuration L of seven lines meeting at six
triple points (the three shown in the figure and the contractions of e1, e2, and e3)
and three double points (the contractions of e4, e5, and e6), shown in Figure 3.4.
This configuration can be shown to exist and to have a unique symplectic isotopy
class thanks to Proposition 3.35, adding the lines one by one in the order given in
Figure 3.4.

In summary, the quartic S birationally derives the configuration L, which has a
unique symplectic isotopy class, so by Proposition 3.33 S exists and is unique up to
isotopy. Since L exists as a complex line arrangement, then S exists as a complex
curve.

Proposition 3.37. There is no symplectic rational cuspidal curve of degree 5 in
CP2 with one cusp of type (3, 4) and three of type (2, 3).

Sketch of proof. Suppose that there is such a curve C. Blow up once at the first
singularity and twice at each simple cusp. The proper transform C̃ of C is a sym-
plectically embedded +1-sphere, and we can again apply McDuff’s theorem and find
the homological embedding shown in Figure 3.5.

Contracting the −1-spheres in the homology classes e1, . . . , e7, one obtains a cubic
plus the Fano configuration as a configuration birationally derived from C. But the
Fano configuration cannot be realised symplectically in CP2 [RS19], so we reach a
contradiction.
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Ruberman and Starkston’s proof of the non-existence of the Fano configuration
is a clever branched cover argument. One of the themes of [GK23] was to exploit
birational transformations in conjunction with branched covers to give obstructions.

Two birational transformations

The simplest birational transformation one can write down is the Cremona invo-
lution on CP2: φ : (x : y : z) 7→ (xy : yz : zy). This is not well-defined at the
three points (0 : 0 : 1), (0 : 1 : 0), and (1 : 0 : 0), and its image misses the
three lines {x = 0}, {y = 0}, and {z = 0}. It is a (birational) involution, since
φ(φ(x : y : z)) = (λx : λy : λz) = (x : y : z), where λ = xyz. (In particular, it is
defined on the complement of the three coordinate lines above and it is an isomor-
phism there.) Geometrically, φ is a composition of three blow-ups (at (0 : 0 : 1),
(0 : 1 : 0), and (1 : 0 : 0)) and three blow-downs (of the proper transforms of the
three coordinate lines).

Example 3.38. It is very easy (and pretty) to prove the existence of the Steiner
quartic using φ: just take any non-singular conic Q that is tangent to the three
coordinate lines (which in particular will avoid their pairwise intersections), and
look at its image under φ. We are blowing up away from Q, and we are contracting
three exceptional divisors that are (simply) tangent to Q: this creates a simple cusp
at each of the points that the lines contract to.

There is a very nice construction of Orevkov that uses a birational transformation
ψ which starts from a nodal cubic (instead of a triangle, as we did for the Cremona
involution above). Let C be a nodal cubic, and blow up at seven points infinitely
close to the node of C. (Here we mean that we successively blow up at a node of
the total transform of C that is on the proper transform of C, and always “on the
same side”.) The proper transform of C is a −1-curve, that we can then contract,
and we can keep contracting components of the total transform of C until we get
back to CP2.

This birational transformation ψ is defined away from the cubic, and has as image
the complement of another nodal cubic C ′ in CP2. It is an isomorphism CP2 \C →
CP2 \ C ′. We can then iterate the construction and play with it.

Here is Orevkov’s construction.

Example 3.39 (Orevkov). Suppose that C is a nodal cubic and D is a curve of degree
d with a singularity of type T (a, b), such that a + b = 3d and the multiplicity of
intersections of D with the branches of C are a and b. (In particular, C intersects
D only at its node, by Bézout’s theorem.)

Since ψ is an isomorphism away from C, and D only intersects C once, its re-
striction to D extends as a morphism to D which induces an isomorphism onto its
image. That is, ψ(D) is again a curve with a cusp at the node of C ′. Moreover,
following the definition of ψ through, one sees that ψ(D) has a singularity of type
(b, 7b− a) at the node of C ′, and that it has degree (b+ 7b− a)/3. (Note that if Fn
are the Fibonacci numbers, then Fn+4 = 7Fn − Fn−4 and Fn+2 = 3Fn − Fn−2.)

We can now play with D.

• If D is a line tangent to one of the branches of C at its node, then have
d = 1 = F1, a = 1 = F−1, b = 2 = F3, and iterating ψ starting from this D we
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get all rational cuspidal curves with a singularity of type T (F4k−1, F4k+3) and
of degree 1

3
(F4k−1 + F4k+3) = F4k+1.

• If D is a conic tangent to order 5 to one of the branches of C at its node, then
have d = 2 = F3, a = 1 = F1, b = 5 = F5, and iterating ψ starting from this D
we get all rational cuspidal curves with a singularity of type T (F4k+1, F4k+5)
and of degree 1

3
(F4k+1 + F4k+5) = F4k+3.

That is, we retrieve all the Fibonacci rational cuspidal curves in the third family in
Theorem 3.29 above.

In [BCG17] we generalised this construction to curves of triangular genus. (The
case g = 1 also appears in [BHL17].)

Example 3.40 (Bodnár, Celoria, G.). We continue in the setup above, by taking
curves of higher degree as the initial seed of the construction. First, we claim that
for each d there exists a non-singular curve of degree d that intersects the two
branches of a nodal cubic with multiplicities 1 and 3d − 1 respectively. We prove
that such a curve exists by Bertini’s theorem on general elements in linear systems.
First we produce a (possibly singular) curve that has the desired property, and then
we take a pencil containing this curve. Bertini’s theorem says that most curves in
this pencil are non-singular.

We therefore find the aforementioned examples of curves of triangular genus and
a unique cusp of type defined by the recursion An+1 = 7An−An−1 with A0 = 1 and
A1 = 3d− 1.

3.7 The relative case

Contact structures and symplectic cobordisms

A contact structure on an oriented 3-manifold Y is an orientable and co-orientable
2-plane field ξ that is maximally non-integrable. That is, ξ is the kernel of a 1-form
α that satisfies α ∧ dα > 0. We call the pair (Y, ξ) a contact 3-manifold3.

Suppose that Y is a boundary component of a 4-manifold W , equipped with a
symplectic structure ω. We say that Y is strongly convex (respectively, strongly
concave) with respect to ω if there exists a Liouville vector field on W defined near
Y that is transverse to Y and pointing outwards (resp., inwards). Here, a Liouville
vector field is a vector field V that expands the symplectic form exponentially:
LV ω = ω, where L is the Lie derivative. A Liouville vector field along a convex
(respectively, concave) boundary component Y induces a contact structure ξ on Y
(respectively, on −Y ). We drop the adverb strongly (and the adjective strong), as
these are the only boundary conditions we will meet here.

We say that (W,ω) is a symplectic filling (respectively, a symplectic cap) of (Y, ξ)
if (Y, ξ) is the convex (resp., concave) boundary of (W,ω). (W,ω) is a symplectic

3Technically we have defined a co-orientable contact structure here, but these are the only contact
structures we will encounter, so we drop the adjective “co-orientable” altogether.
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cobordism from (Y−, ξ−) to (Y+, ξ+) if (Y−, ξ−) is the concave boundary4 of W and
(Y+, ξ+) is the convex boundary of (W,ω).

Example 3.41. The prototypical examples of a filling, a cap, and a cobordism are:

• The unit 4-ball in (R4, ωst) is a filling of (S3, ξst).

• The complement of a small Darboux ball in any closed symplectic 4-manifold
is a cap of (S3, ξst).

• The difference between two concentric 4-balls in (R4, ωst) is a cobordism from
(S3, ξst) to (S3, ξst).

In all three cases, the radial vector field is a Liouville vector field witnessing the
convexity/concavity of the boundary components.

More generally, given any contact structure ξ = kerα on Y , we can look at its
symplectisation, i.e. R×Y endowed with the symplectic structure d(etα), where t is a
coordinate on R. Then ∂

∂t
is a Liouville vector field and any portion [a, b]×Y ⊂ R×Y

is a symplectic cobordism from (Y, ξ) to (Y, ξ).
Convexity and concavity give the right gluing conditions for symplectic manifolds

with boundary: if (Y, ξ) is a convex boundary component of (W−, ω−) and a concave
boundary component of (W+, ω+), then we can glue W− and W+ along Y , and there
is a symplectic structure on the gluing that agrees with ω− on W− and with λω+ on
W+, for some λ > 0.

Fillability is a strong restriction on the contact structure, and we now have
many ways of obstructing it: for example, overtwisted discs [EG91], Giroux tor-
sion [Gay06], contact invariants in gauge theory [OSz05]). However, there is no
criterion that tells whether any given contact structure is fillable. By contrast,
every contact 3-manifold has a symplectic cap [Etn04].

If (Y, ξ) is a fillable contact manifold, the classification of its fillings has poten-
tial applications to the construction of exotic 4-manifolds. (This is a consequence
of the good interaction between gauge theory and symplectic/contact structure.)
This idea was first pioneered by Fintushel and Stern with their rational blow-down
operation [FS97].

Divisorial contact structures

There is a second way of interpreting both McDuff’s theorems (Theorem 3.14 and
its generalisations from [McD90]) and the classification results for rational cuspidal
curves (Theorems 3.28 and 3.29), which is in terms of divisorial contact structures.

Suppose that C is a symplectic curve in a symplectic, not necessarily closed, 4-
manifold (X,ω). Suppose that C is connected (but possibly reducible) and that the
subspace in H2(X) generated by the components of C is not negative semi-definite—
that is, there a linear combination of components of C whose self-intersection is
strictly positive. Under these assumptions, we can resolve the singularities of C and
apply a result of Li and Mak on plumbings of symplectic surfaces [LM19]: this gives

4The orientation on Y− is opposite to the one induced as the boundary of W . This is consistent
to make ξ− oriented and co-oriented.
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us a family of neighbourhoods of C with concave boundary, with an induced contact
structure ξC on the 3-manifold we call YC . These neighbourhoods all deformation-
retract onto C. The 3-manifold YC is the boundary of a regular neighbourhood of
C, and ξC is called the divisorial contact structure associated to C. Any concave
neighbourhood of C in X given by the Li–Mak theorem is a cap of (YC , ξC).

Moreover, the Li–Mak theorem mentioned above produces a symplectic cap for ev-
ery possible combinatorial type of C, i.e. for every possible collection of singularities,
(positive) self-intersection, and genus.

For instance, if the curve C is a sphere of self-intersection s > 0, then (YC , ξC)
is the universally tight contact structure on L(s, 1). When s = 1, this is just the
standard contact structure on S3. McDuff’s theorem can be rephrased as saying that,
up to blow-ups and symplectic deformation, (S3, ξst) has a unique filling, which is the
complement of a line in CP2, i.e. a 4-ball. (This was known to Eliashberg [Eli90].)

Theorem 3.42 (G., Starkston [GS22]; G., Kütle [GK23]). Let C be a symplectic
rational cuspidal curve that has the combinatorial type of a curve of degree at most
7 in CP2. Then the associated divisorial contact 3-manifold (YC , ξC) has a rational
homology ball filling if and only if C has the combinatorial type of a complex curve.
Moreover, in this case the filling is unique up to symplectic deformation.

This statement above is not quite equivalent to the that of Theorem 3.28 since
it does not take into account the possible symmetries of (YC , ξC) nor those of
(CP2, ωFS). That is, we are ignoring the contactomorphism group of (YC , ξC), which
measures the different ways one can glue the filling with the neighbourhood cap. The
possible symmetries of (CP2, ωFS), on the other hand are not a problem: Gromov
had proved that the symplectomorphism group of (CP2, ωFS) deformation retracts
onto PU(2), which is connected. Translated into the setting of curves, if C and C ′

in (CP2, ωFS) are symplectomorphic then they are also isotopic.
In a different direction, in [GS21] we turn the problem of finding curves on its head.

More precisely, suppose that we fix the singularities and the genus of a curve, and
we consider the self-intersection s ∈ Z as a variable—recall that we had called the
triple comprising the genus, the collection of singularities, and the self-intersection
of a curve its combinatorial type. So, we have a family of combinatorial types of
curves {Cs}s∈Z>0 . We ask whether Cs lives in a compact symplectic 4-manifold for
all s. The answer is yes if Cs is non-singular, i.e. if the collection of singularity
is empty: there are symplectic (in fact, even Kähler) ruled surfaces with sections
of arbitrary self-intersections. These are CP1-bundles over curves. Over curves of
genus 0, these are known as Hirzebruch surfaces.

As mentioned above, a collection of results by Castelnuovo, Hartshorne [Har69]
(in the complex setup), McDuff [McD90], and Kütle [Küt21] proved that, for s
sufficiently large (with respect to the genus), ruled surfaces are the only possible ex-
amples (up to blow-ups). By contrast, the situation changes as soon as we introduce
singularities, as the next theorem shows.

Theorem 3.43 (G., Starkston [GS21]). Let C be the combinatorial type of a singular
symplectic curve. If the self-intersection C · C is sufficiently large, then C does not
embed in any closed symplectic 4-manifold.
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If C embeds in a closed symplectic 4-manifold, then all curves C ′ with the same
singularities and genus as C and lower self-intersection embed as well.

The exact bound can be computed on a case-by-case analysis, and it can be
expressed in terms of the singularities of C if g(C) = 0. We can choose a uniform
bound for all curves: if C ·C > 4pa(C) + 5, then C does not embed. (Here pa is the
arithmetic genus of C, i.e. the genus of the smoothing smC of C.) Very concretely,
for instance, a rational curve C with a singularity of type T (2, 3) does not embed
in any closed symplectic 4-manifold if C · C > 9.

The second part of the statement follows easily by blowing up at smooth points
of C: the self-intersection of the proper transform decreases by 1 at each step.

The statement can be rephrased in terms of fillability of the associated cuspidal
contact structure: ξC is not fillable whenever C · C is too large5.

Transverse knots and relative symplectic cobordisms

The knot cobordisms arising from deformations of complex surface singularities,
mentioned in Section 2.3, automatically come as symplectic cobordisms: that is,
those surfaces in C2 are Jst-holomorphic, and hence ωst-symplectic. The boundary
conditions are a bit delicate, so we spell out the definition in detail.

An oriented knot K in a 3-manifold Y is transverse to a contact structure ξ on
Y if K intersects transversely and positively ξ at each point.

Suppose that (W,ω) is a strong symplectic cobordism from (Y, ξ−) to (Y, ξ+).
Given two transverse knots K± in (Y±, ξ±), we say they are symplectically cobordant
if there are:

(1) an ω-symplectic surface Σ of W such that ∂Σ = Kr
−∪K+ (where Σ is oriented

by ω, and Kr
− is K− with its orientation reversed), and

(2) there there are Liouville vector fields V± for (W,ω) near Y± that restrict to be
Liouville vector fields for (Σ, ω|Σ) near K±.

We call Σ a relative symplectic cobordism. We note that since the symplectic struc-
ture on Σ comes from the restriction of the symplectic structure on X, Condition (2)
simply means that the Liouville vector fields for (X,ω) are tangent to Σ near C±.
We note that while Condition (2) is convenient to include in the definition, it may
be replaced with

(2’) Σ is transverse to the boundary of X

if one is willing to deform the symplectic structure.
Much like contact structures (arising as strongly convex and strongly concave

boundary components of symplectic 4-manifolds) are the correct boundary condi-
tions for gluing symplectic cobordisms, transverse knots (arising as boundaries of
relative symplectic cobordisms) glue well to give larger symplectic cobordisms, or
closed symplectic surfaces.

5Starkston and I suspect that these contact structures are tight, possibly even universally tight,
so the fact that they are non-fillable is not trivial.
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Lemma 3.44 (Hayden [Hay21]; Etnyre, G. [EG22]). If K is a transverse link in
(Y, ξ) and a portion of K in a Darboux ball is as shown on the left of Figure 3.6,
then there is a symplectic cobordism Σ in a piece of the symplectisation of (Y, ξ) from
K to the knot K ′ obtained from K by replacing the tangle on the left of Figure 3.6
by the one on the right.

If K ′′ is obtained by adding another positive crossing on the same two strands,
then there is a symplectic cobordism Σ+ in a piece of the symplectisation of (Y, ξ)
which is a union of annuli with a single positive double point.

Figure 3.6: Front diagrams for transverse tangles in a Darboux ball.

We can apply Lemma 3.44 to construct cobordisms between transverse knots
obtained as braid closures. Recall that if β is a braid, its closure Kβ is a link in S3

that is transverse to the open book on S3 with disc pages. (The axis of the braid is
the binding of the open book.) In particular, we can suppose that Kβ is transverse
to the standard contact structure on S3 (which is supported by the open book
with disc pages), so we can associate to each braid a well-defined transverse knot.
From this perspective, adding a positive generator to a braid gives a symplectic
cobordism between the two braid closures, and adding the square of a generator
gives an immersed, genus-0 cobordism.

Hats, fillings, and singularities of symplectic surfaces

As in the case of (contact or smooth) manifolds, there are two interesting classes of
relative symplectic cobordisms that are of special interest, namely those where one
of the two ends is empty.

Definition 3.45. Let (W,ω) be a symplectic 4-manifold whose convex boundary
is (Y, ξ). A symplectic filling of a transverse knot K ⊂ (Y, ξ) in W is a properly
embedded ω-symplectic surface properly embedded in W whose boundary is K.
(This surface cannot intersect the concave boundary components of (W,ω), if there
are any.)

Much like in the case of contact 3-manifolds and their symplectic fillings, fillability
imposes strong restrictions on a transverse knot. In fact, transverse knots in (S3, ξst)
that admit a symplectic filling in any filling of (S3, ξst) are classified: these are
the closures of quasipositive braids. A braid is quasipositive if it is a product of
conjugates of the standard generators.

In [EG22], we introduced the concave version of the previous definition.

Definition 3.46. Let (W,ω) be a symplectic 4-manifold whose concave boundary is
(Y, ξ). A symplectic hat of a transverse knot K ⊂ (Y, ξ) in W is a properly embedded
ω-symplectic surface properly embedded in W whose boundary is K. (This surface
cannot intersect the convex boundary components of (W,ω), if there are any.)
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The main result in [EG22] is the existence of projective hats for transverse knots
in (S3, ξst), which is a relative counterpart of the existence of caps for symplectic
structures [Etn04].

Theorem 3.47. Every transverse knots K ⊂ (S3, ξst) has a symplectic hat in the
cap (P, ω) = (CP2\D,ωFS|CP2\D), where D is a small Darboux ball. Every transverse
knot has a symplectic hat of genus 0 in a blow-up of (P, ω).

Sketch of proof. Given a transverse knot K, pick a braid β whose closure is trans-
versely isotopic to K. We can stabilise the braid and add positive generators to β
until we get to a full twist on d strands for some large d, whose closure is the torus
link T (d, d) (more precisely, its transverse representative which is algebraic). This
gives a symplectic cobordism from K to T (d, d). We can cap off cobordism with a
piece of a complex surface (e.g. by gluing in the neighbourhood of a complex line
in CP2 intersecting a degree-d curve transversely).

The second part of the statement follows by refining the strategy above: we can
stabilise and add squares of generators until we get to a braid whose closure is the
torus knot T (d − 1, d) (more precisely, its transverse representative which is alge-
braic). This gives an immersed cobordism which we cap off with the neighbourhood
of a line that is tangent to order d to a degree-d curve. We then blow up at each of
the double points of the cobordism to get an embedded surface.

In [EG22] we then proceed to study the complexity of such cobordisms for some
classes of knots. We refer to the paper for the precise results. We would like to point
out a relation with singularities and symplectic curves as defined above instead. This
connection/comparison was hinted at at the beginning of the chapter.

Suppose that (X◦, ω◦) is a symplectic cap of (S3, ξst) and that H ⊂ (X◦, ω◦) is
a symplectic hat for K ⊂ (S3, ξst). We can cap X◦ off to a closed symplectic 4-
manifold (X,ω) by gluing in a 4-ball B with the standard symplectic structure6. If
we cone off H into B, we obtain a PL surface F with a singularity of type K at a
point p (the origin of B). Moreover, this surface F is symplectic away from p, which
is its unique non–locally-flat point.

In this sense, Theorem 3.47 above tells us that symplectic surfaces with isolated
singular points can have arbitrary links, even in (CP2, ωFS), where we think of the
link as a transverse knot in (S3, ξst). We do not call these surfaces symplectic curves.

There is another class of curves, however, which might deserve the name of sym-
plectic curves. Suppose that F is a PL surface (possibly immersed), and that the
link of its of each singularity of F is a quasipositive link (as a transverse link). Then
F admits a (non-unique) smoothing smF which is also symplectic. Perhaps this
class would deserve the name of smoothable (singular) symplectic surfaces.

Going back to symplectic curves as we defined them in Section 3.1: they are
smoothable, since links of algebraic singularities are closures of positive braids, but
on top of that they are J-holomorphic for some compatible almost-complex structure
J , and as such they admit a resolution by blow-ups. These are the most important
features of symplectic curves that we used in all results above.

6The volume of this ball is determined by ω◦. Equivalently, we can glue in the unit 4-ball up to
rescaling.
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Hats and fillings of branched covers

As an application of hats, in [EG22] we considered fillings of branched covers. We
will be interested in two types of fillings we have not defined yet.

A strong symplectic filling (W,ω) of (Y, ξ) is exact if ω is exact. It is Stein if there

exist a proper holomorphic submanifold Ŵ ↪→ CN for some integer N , such that Ŵ
is transverse to the unit sphere, W = BN

1 ∩ Ŵ , and ω = ωst|W . (In particular, Stein
fillings are exact.)

If K is a transverse knot in (S3, ξst) and n is a positive integer, there is a contact
structure on Σn(K), the n-fold cyclic cover of S3 branched over K induced by K
and ξst [Gon87]. This contact structure, that we denote with ξK,n, is isotopic to the
pull-back of ξst away from K, and the preimage of K is transverse to it.

For instance, the canonical contact structure ξcan on the link of the n-suspension
{zn + f(x, y) = 0} of a curve singularity {f(x, y) = 0} is the n-fold cyclic cover of
ξst branched over the link of {f(x, y) = 0}.

We give two sample results. First, recall that the Brieskorn sphere Σ(2, 3, 7),
which is the link of the Brieskorn–Pham singularity {x2 +y3 +z7 = 0} ⊂ C3, admits
exactly two tight contact structures, namely the canonical one ξcan (coming from
the singularity) and its conjugate [MT18]. The following theorem concerns fillings
of ξcan, but note that each filling of ξcan corresponds to one of ξcan (by changing sign
to the symplectic form), so the statement actually holds for ξcan as well.

Theorem 3.48. Let (W,ωW ) be a Stein filling of (Σ(2, 3, 7), ξcan). Then H1(W ) = 0
and either W is spin and H2(W ) ∼= E8 ⊕ 2H, or H2(W ) ∼= 〈−1〉, and both cases
occur. By contrast, ξcan has strong symplectic fillings with arbitrarily large b+

2 .

Let us reverse the orientation and look at −Σ(2, 3, 7). By work of Tosun [Tos20],
on −Σ(2, 3, 7) there is exactly one tight contact structure up to isotopy. Let us
denote it with ξ0.

Theorem 3.49. Let (W,ωW ) be an exact filling of (−Σ(2, 3, 7), ξ0). Then W is
spin, H1(W ) = 0, and QW = E8 ⊕ H. Moreover, ξ0 has strong symplectic fillings
with arbitrarily large b+

2 .

The proofs of Theorems 3.48 and 3.49 share many similarities, so we sketch them
together.

Sketch of the proofs of Theorems 3.48 and 3.49. The Brieskorn manifold Σ(2, 3, 7)
is the double cover of S3 branched over the positive torus knot T (3, 7), and−Σ(2, 3, 7)
is the double cover of S3 branched both over the negative torus knot m(T (3, 7)) and
over the pretzel knot P (−2, 3, 7) = 12n242. Both knots T (3, 7) and P (−2, 3, 7) are
closures of quasipositive braids, so they have transverse representatives whose cyclic
branched covers are Stein fillable [Pla06]. By the classification of tight contact
structures on ±Σ, the contact structures ξcan and ξ0 are both double covers of ξst.

Moreover, the double covers of B4 branched over the quasipositive surfaces for
T (3, 7) and P (−2, 3, 7) give Stein fillings of ξcan and ξ0 with the required topology.
The other Stein filling of Σ(2, 3, 7) is the minimal resolution of the Brieskorn–Pham
singularity, which is a regular neighbourhood of a rational curve with a simple cusp
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and self-intersection −1. (The branched cover above is the Milnor fibre of the same
singularity.) This proves that all cases in the statement are realised geometrically.

To show the last part of the statement, it suffices to exhibit a 4-manifold W with
two convex boundary components, one of which is (Y, ξ). (This is an observation
originally due to McDuff.) −Σ(2, 3, 7) is the convex boundary of the E10-plumbing
W0 of Lagrangian spheres, as well as the boundary of the plumbing of E10-plumbing
of symplectic (−2)-spheres. We can pass from one to the other by deforming the
contact structure in the interior. Since E10 is not negative definite, by Li and Mak’s
result we can find a concave neighbourhood C of the symplectic spheres within
the plumbing W0. The difference W0 \ Int(C) is the desired 4-manifold W , whose
boundary is actually (Σ(2, 3, 7), ξcan)t(−Σ(2, 3, 7), ξ0). Capping off either boundary
component (which we can do by adding arbitrarily large topology [Etn04]) gives a
filling of the other with large topology.

In what follows, K will be the transverse closure of a quasipositive braid, and it
will be of type either T (3, 7) or P (−2, 3, 7), Y will be the double cover of K, and ξ
will be ξcan if Y = Σ(2, 3, 7) or ξ0 if Y = −Σ(2, 3, 7).

To give restrictions on fillings of (Y, ξ), we will construct a suitable cap. In [EG22],
we produced an explicit hat of K in P of degree 6. This means that, when we
symplectically fill K in B4, we obtain a symplectic surface in CP2 = P ∪ B4 of
degree 6 (or, equivalently, of self-intersection 36). The cap (C, ω) we consider is the
double cover of P branched over this degree-6 hat.

We claim that (C, ω) is a Calabi–Yau cap, in the sense of Li, Mak, and Ya-
sui [LMY17], and that its intersection form is −E8⊕H if K = T (3, 7) and −E8⊕2H
if K = P (−2, 3, 7). If (W,ω) is an exact filling of (Y, ξ), then X = C ∪ W is a
Calabi–Yau symplectic 4-manifold. Furthermore, if either K = P (−2, 3, 7) or W
is not negative definite, then b+

2 (X) > 1 and b−2 (X) > 3. Calabi–Yau symplectic
4-manifolds have been classified by Li [Li06]: they are either T 2-bundles over T 2, or
an Enriques surface, or a K3 surface. In this case, since b+

2 (X) > 1 and b−2 (X) > 3,
the only possibility is that X is a K3 surface. Then W is spin and (since Y is a
homology 3-sphere) H1(W ) = 0. The intersection form of W is then the orthogonal
complement of the intersection form of C in X, which leaves as the only possibility
the one given in the statement.

The only case that is left to analyse is the case when K = T (3, 7) and W is
negative definite. This is where the Stein assumption comes in. W cannot be a
rational homology ball: since a Stein filling induces a surjection H1(Y ) → H1(W ),
W would be an integral homology ball, but the Rokhlin invariant of Y is non-zero.
So b2(W ) > 0. Using the contact invariant in Heegaard Floer homology and a
result of Plamenevskaya [Pla04], one can prove that W cannot have b2(W ) > 1, by
carefully analysing the behaviour of the cobordism maps W \B : −Y  −S3 on
HF+(Y ).
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