Fragmentation mechanisms in coaxial two-fluid atomization - Archive ouverte HAL Accéder directement au contenu
Hdr Année : 2024

Fragmentation mechanisms in coaxial two-fluid atomization

Résumé

The destabilization and subsequent fragmentation of a liquid phase by a turbulent gas phase is at the core of many applications that aim at producing high-quality sprays. Certain underlying physical mechanisms of spray formation remain unresolved, hindering process efficiency and control. I will present a multiscale characterization of these mechanisms in a two-fluid atomizer, where a round liquid jet is fragmented by a turbulent annular gas jet. The interfacial instabilities, and resulting large-scale dynamics, are experimentally characterized using two high-speed imaging methods, back-lit optical imaging and synchrotron X-ray radiography. A spatial characterization of the flapping dynamics of the liquid jet indicates that the flapping dimensionality is related to the change between shear break-up to bag break-up. At higher gas velocities, the scaling laws of the transport of the interfacial instabilities highlight the change to fiber-type atomization. Similarly, studying statistics and temporal dynamics of the length of the liquid jet in a broad parameter space poses a framework to quantitively describe changes in fragmentation mechanisms. In addition, I will show how introducing angular momentum (swirl) in the gas jet dramatically changes the topology and dynamics of the atomized liquid jet, resulting in drastic changes in the spray.
Fichier principal
Vignette du fichier
machicoane_HDR_2024_HAL.pdf (41.9 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY - Paternité

Dates et versions

tel-04433460 , version 1 (01-02-2024)

Licence

Paternité

Identifiants

  • HAL Id : tel-04433460 , version 1

Citer

Nathanaël Machicoane. Fragmentation mechanisms in coaxial two-fluid atomization. Engineering Sciences [physics]. Université Grenoble Alpes, 2024. ⟨tel-04433460⟩

Collections

UGA CNRS OSUG LEGI
27 Consultations
1 Téléchargements

Partager

Gmail Facebook X LinkedIn More