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Abstract

Future generations of wireless networks face great expectations in terms of network ca-
pacity, system throughput, user density, all on a tight energy budget. In order to reach such
ambitious objectives, several emerging technologies, such as : cognitive radio, cooperative
communications, full-duplexing, and AI, etc. have been proposed, each of them focusing on
a specific improvement.

The objective of this PhD thesis is to jointly exploit these emerging technologies, in order
to investigate a constrained and non-convex Shannon rate maximization problem in a relay-
aided cognitive radio network. This network consists of a primary and a secondary user–
destination pair and a secondary full-duplex relay performing compress-and-forward (CF) or
decode-and-forward (DF). The primary communication is protected by a quality of service
(QoS) constraint expressed in terms of tolerated Shannon rate degradation. More precisely, we
tackle the non-convex power allocation problems under both perfect and imperfect channel
state information (CSI) and for CF and DF relaying. In the perfect CSI case, we derive
a closed-form solution for CF relaying. However, for DF relaying, no closed-form solution
seems feasible due to more complex achievable rate expressions and non-convex constraints.
To address this challenge, we propose an unsupervised deep learning-based power allocation
policy exploiting a fully connected architecture jointly with a custom cognitive radio-tailored
loss function that the deep neural network (DNN) learns to minimize. This custom loss
function relies on the relaxation of the QoS within the objective function by introducing an
hyperparameter to trade-off between a rate-driven and a QoS-driven optimization problem.
As such, only the channel gains are provided as the input of our proposed DNN.

When only an imperfect CSI is available at the transmitter side, we propose to build
on our proposed DNN by rendering it robust to channel gains estimation errors. Since our
closed- form solution under CF relies on the perfect CSI assumption, we propose to use our
DNN approach to optimize the power allocation policy under CF and imperfect CSI as well.



To cope with imperfect CSI, we turn to a self-supervised approach, where in the training
phase, error- free channel estimations are provided to the loss function, and only channel
gains impaired by estimation errors are provided at the input of the DNN. The robustness
of the proposed solution was validated through numerical simulations.

Once our robust DNN-based solution validated, we seek for more general DNN-based
policies, namely choosing among the best relaying scheme among CF and DF, as well as
generalizing over the network system parameters, such as the individual power budgets and
the level of tolerated primary degradation. Regarding the relaying scheme selection problem,
we again exploit a fully connected DNN with the cross-entropy loss function, especially well-
suited for classification problems. The latter exploits the power predicted by our previous
proposed DNN under both CF and DF. Regarding the generalization over the system pa-
rameters, we first generalize separately over each parameter and then we propose a DNN
able to generalize jointly over both the power budget and level of tolerated primary rate
degradation.
Keywords :Artificial intelligence, Deep learning, Full-duplex relaying, Cognitive radio, Im-
perfect CSI.



Résumé

Les futures générations de réseaux sans fil sont confrontées à de grands défis en termes
de capacité du réseau, de débit du système, de densité d’utilisateurs, le tout avec un budget
énergétique serré. Afin d’atteindre ces objectifs ambitieux, plusieurs technologies émergentes,
telles que la radio cognitive, les communications coopératives, le full duplex, l’intelligence
artificielle, etc. ont été proposées, chacune d’entre elles se concentrant sur une amélioration
spécifique.

L’objectif de cette thèse de doctorat est d’exploiter conjointement ces technologies émer-
gentes afin de maximiser le débit de Shannon sous contraintes et non convexe dans un
réseau de radio cognitive assisté par des nœuds relais. Ce réseau se compose d’une paire
utilisateur-destination primaire et secondaire et d’un relais secondaire full-duplex effectuant
la Compresser-et-Transférer (CF) ou Décoder-et-Transférer (DF). La communication pri-
maire est protégée par une contrainte de qualité de service (QoS) exprimée en termes de
dégradation tolérée du débit de Shannon.

Plus précisément, nous abordons les problèmes d’allocation de puissance non convexes
dans le cas d’information sur l’état du canal (CSI) parfaite et imparfaite et pour CF et
DF. Dans le cas d’une information parfaite sur l’état du canal, nous obtenons une solution
analytique pour CF. Cependant, pour DF, en raison de débits atteignables plus complexes
et des contraintes non convexes, aucune solution analytique ne semble possible. Pour relever
ce défi, nous proposons une politique d’allocation de puissance non supervisée basée sur
l’apprentissage profond qui exploite une architecture entièrement connectée conjointement
avec une fonction de coût adaptée à la radio cognitive que le réseau de neurones profond
(DNN) apprend à minimiser. Cette fonction de coût adaptée repose sur la relaxation de la
contrainte de QoS dans la fonction objectif en introduisant un hyperparamètre permettant
le compromis entre une optimisation axée sur le débit et une optimisation axée sur la QoS.
Ainsi, seuls les gains du canal sont fournis en entrée de notre DNN.



Lorsque seule une CSI imparfaite est disponible à l’émetteur, nous proposons d’exploiter
notre DNN en le rendant robuste aux erreurs d’estimation des gains du canal. Étant donné
que notre solution analytique pour le relais CF repose sur une CSI parfaite, nous proposons
également d’utiliser notre DNN pour optimiser la politique d’allocation de puissance pour
CF en présence de CSI imparfaite. Pour faire face à la CSI imparfaite, nous adoptons une
approche auto-supervisée où, dans la phase d’apprentissage, des estimations de canaux sans
erreur sont fournis à la fonction de coût, et seuls les gains de canaux altérés par des erreurs
d’estimation sont fournis à l’entrée du DNN. La robustesse de la solution proposée a été
validée par des simulations numériques.

Une fois notre solution robuste basée sur le DNN validée, nous recherchons des politiques
plus générales exploitant des DNN, à savoir le choix du meilleur schéma de relayage parmi CF
et DF, ainsi que la généralisation sur les paramètres du système de réseau, tels que les bud-
gets de puissance individuels et le niveau de dégradation primaire toléré. En ce qui concerne
le problème de sélection du schéma de relayage, nous exploitons à nouveau un DNN entière-
ment connecté avec la fonction de coût d’entropie croisée, particulièrement bien adaptée aux
problèmes de classification. Ce dernier exploite la puissance prédite par le DNN que nous
avons proposé précédemment, à la fois pour CF et DF. En ce qui concerne la généralisation
sur les paramètres du système, nous généralisons d’abord séparément sur chaque paramètre,
puis nous proposons un DNN capable de généraliser conjointement sur le budget de puissance
et le niveau de dégradation du débit primaire toléré.
Mots clés :Intelligence artificielle, Apprentissage profond, Relais full-duplex, Radio cogni-
tive, CSI imparfait.
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Chapter 1

Introduction

1.1 Background and motivation

As the number of wireless devices and network users continues to grow (see Figure 1.1), the
need to improve future generations of wireless networks has become increasingly important
[4–6]. This is due to the growing demand for system throughput and spectrum resources,
which pose significant challenges. To address these challenges, it has become necessary to
leverage not one but a combination of various technologies such as: artificial intelligence
(AI), cognitive radio, cooperative communications, full-duplexing, multi-antenna (MIMO)
devices, mmWave, etc. [7–9]. For example, in cooperative communications, it is possible to
utilize relaying scheme selection, which involves choosing the most suitable protocol between
decode-and-forward (DF), compress-and-forward (CF), and amplify-and-forward (AF), based
on specific requirements [10, 11]. By selecting the most appropriate relaying scheme, it is
possible to enhance the system efficiency. However, the effectiveness of all these technologies
is greatly influenced by resource allocation policies.

The allocation of resources, such as power, time, frequency, etc. plays a critical role
in optimizing the system efficiency and spectral utilization. An optimized resource alloca-
tion policy can enhance the system performance by minimizing the interference, increasing
throughput, and improving reliability. Conversely, a suboptimal allocation policy can lead
to an inefficient use of resources and lower system performance. Therefore, the optimization
of resource allocation policies is crucial for achieving optimal system performance in wireless
communication networks.

In this PhD thesis, we aim to integrate several promising technologies, including cognitive
radio, cooperative communications, full-duplexing, and AI, and investigate novel resource

1



Introduction

Figure 1.1: Cisco Annual Internet Report (2018–2023) White Paper, 2020 [1]

allocation policies under perfect and imperfect channel state information (CSI) that can
further enhance the performance of future wireless communication systems. In addition, we
also analyze and evaluate the selection of the most appropriate relay scheme to optimize the
system performance.

In the following Section, we will provide a comprehensive overview of the technologies
that have been utilized in this PhD thesis, outlining their key features and applications.

1.2 Main exploited technologies

To tackle the challenges arising from the growing number of connected users and devices,
as well as the heterogeneity of mobile applications, a large range of technologies has been
leveraged in this PhD thesis. A key technology that has been employed is cognitive radio,
which intelligently utilizes the available spectrum by detecting and adapting to changes in
the radio environment. Additionally, cooperative communications have been investigated to
improve the network capacity by making use of signals sent by a source, which are available to
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all receivers within range. Furthermore, deep neural networks (DNNs) have been increasingly
employed in various fields, including wireless systems, to achieve more consistent and more
reliable results [12–14]. The integration of these technologies has resulted in enhanced wireless
communication system capabilities in terms of improved spectrum utilization, better network
efficiency, as demonstrated by the promising results obtained in this PhD thesis.

Below, we discuss in further details the main technologies exploited in this PhD thesis.

1.2.1 Cognitive radio

The rapid growth of wireless technologies in the telecommunication industry has resulted in
an exponential increase in spectrum demands. Hence, the allocation of wireless spectrum
resources has become problematic [15–17]. Currently, wireless networks undergo a static
spectrum allocation policy, where government agencies allocate wireless spectrum to license
holders for large geographic regions over long time periods [18]. Unfortunately, this policy has
resulted in a shortage of available spectrum in certain frequency bands due to the increasing
demand for wireless communication. Additionally, a considerable portion of the assigned
spectrum is used only rarely, resulting in inefficient use of this valuable resource.

To address these spectrum inefficiency issues, dynamic spectrum access (DSA) techniques
have been proposed. Cognitive radio is the key technology that enables these techniques, and
its primary goal is to enhance the efficient utilization of limited spectrum while ensuring that
other users are not affected by interference [18, 19]. DSA enables cognitive radio systems to
exploit underutilized spectrum, which can in turn increase the overall spectrum efficiency and
enable new wireless applications. Moreover, cognitive radio systems can be used in a wide
range of applications, such as cellular networks, wireless medical networks and emergency
communication systems [8, 20,21].
Cognitive radio systems refer to wireless communication systems that can dynamically adjust
to their environment by using advanced signal processing, machine learning, and decision-
making algorithms [8, 18, 22]. This approach was first introduced by Joseph Mitola III in
1998, and was published in an article by Mitola and Gerald Q. Maguire, Jr. in 1999 [23]. By
dynamically sensing the radio frequency environment, cognitive radio systems can analyze
the spectrum usage and select the best frequency band and communication parameters, such
as power [19,24].

In cognitive radio, users who have obtained a license to use a particular frequency band
are referred to as primary users (PUs), while users who do not have a license are referred to
as secondary users (SUs) or opportunistic users. Cognitive radio networks can be classified
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Figure 1.2: Cognitive radio modes [2].

into three paradigms illustrated in Figure 1.2: interweave networks, underlay networks, and
overlay networks [25–27], which will be discussed below.

Interweave networks In the interweave DSA model, secondary users are only allowed to
access the frequency band of interest if it is not currently being used by a primary user. PUs
are given absolute priority over the spectrum band, and SUs must release the band if the PU
wants to access it. This model is also known as opportunistic spectrum access, as SUs exploit
spectrum holes in time, space, and/or frequency domains. To implement this model, SUs
sense the surrounding spectrum environment, identify idle spectrum bands, and switch to the
selected bands to ensure uninterrupted transmission. Reliable spectrum sensing mechanisms
are essential for SUs in this model.

Underlay networks The underlay paradigm requires that primary and secondary trans-
missions occur concurrently only if the interference generated by secondary transmitters at
primary receivers stays below a certain acceptable threshold. To meet this requirement, sec-
ondary transmitters can limit their power to stay within the interference constraints, which
restricts them to short-range and low-rate communications.
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Overlay networks These networks allow both PUs and SUs to transmit concurrently.
Furthermore, unlike underlay DSA, which limits the SU’s transmit power to constrain the
interference to PU, overlay DSA aims to maintain PU performance. In overlay DSA, SUs are
allowed to simultaneously transmit with PUs over the same band as long as no performance
degradation is inflicted on PUs. However, unlike underlay networks, SUs devices in overlay
networks must possess knowledge about the PUs transmitted data sequence (eg. messages),
including encoding methods or code book. This information can be utilized in two distinct
ways. Firstly, SUs receivers can use this knowledge to cancel out the PUs interference using
techniques such as dirty paper coding (DPC), which involves precoding transmitted data to
counteract interference effects. Secondly, SUs nodes can use this information to collaborate
with the primary network by relaying PUs messages.

This PhD thesis is focused on underlay cognitive radio networks, where spectrum sensing
is not considered. Indeed, we assume that primary and secondary transmissions can occur
simultaneously, and we utilize power control and interference management techniques to
ensure that the interference from secondary users remains below a given threshold.

In the following Subsection, we will provide an extensive discussion regarding another
technology that has been utilized in this thesis, namely cooperative communication.

1.2.2 Cooperative communications

In traditional point-to-point communication systems, the communication is established be-
tween a transmitter and a receiver directly. In cooperative communications, multiple devices
collaborate to transmit or receive the same message, leading to enhanced signal quality,
better coverage, and higher reliability [28, 29]. For example, in a relay-based cooperative
communication system (Figure 1.3), one device acts as a relay node that receives the signal
from the transmitter and forwards it to the receiver.

The concept of cooperative communications relies on a basic three-terminal relay channel
proposed by Van der Meulen [28,30,31]; Subsequently, it was demonstrated that a relay node
can provide assistance to both the transmitter and receiver nodes in enhancing the rate region
of the transmitter. Sendonaris et al. [32] later introduced the concept of cooperative com-
munications and provided evidence to support the claim that cooperative communications
enhances the achievable rate.

Cooperative communications can be used in a wide range of wireless applications, such
as cellular networks [33], sensor networks [34], and satellite communication systems [35].
Moreover, this smart promising technology has become an important research topic in wireless
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Figure 1.3: Cooperative communications system.

communication systems, and many researchers are exploring new techniques and algorithms
to optimize cooperative communication systems. These efforts aim to improve the efficiency
and reliability of wireless communication systems and enable new applications in areas such as
smart cities, internet of things (IoT), and vehicular networks [36,37]. Three primary methods
for relaying have been suggested in the literature. The first one is Amplify-and-Forward (AF),
where the relay amplifies the signal it receives [31]; the second one is Decode-and-Forward
(DF), where the relay receives the message from the transmitter, decodes it, re-encodes it,
and then sends it to the intended destination; the third one is Compress-and-Forward (CF),
where the relay sends a compressed version of its received signal [38].

In this PhD thesis, the AF relaying scheme is not considered due to its potential to am-
plify interference. This PhD thesis conducted several experiments to determine the optimal
relaying scheme between DF and CF in terms of the secondary achievable rate and primary
rate degradation based on the relay’s position in a cognitive radio setup. Our findings indi-
cate that CF outperforms DF when the relay is in proximity to the secondary destination,
while DF performs better when the relay is closer to the secondary user. The comprehensive
experiment details will be presented in Section 4.

In the upcoming Subsection, we will provide a brief introduction on DNNs and the dif-
ferent types of learning employed in this PhD thesis.
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1.2.3 Deep Neural Networks

Deep learning is a subfield of machine learning that uses artificial neural networks with
multiple layers to process data and extract high-level features [39] as depicted in Figure 1.4
for instance. These models are trained using large datasets and algorithms that iteratively
adjust the weights and biases of the neural network to minimize errors in the output. Due
to their ability to handle complex data structures, deep learning methods have achieved
remarkable results in diverse fields and are considered state-of-the-art in many applications,
such as image and speech recognition, natural language processing, and computer vision.
Recently, they have also been implemented in the field of telecommunications due to their
capability to solve complex and non-convex optimization problems [40–42]. The term deep
refers to the multiple layers used in the neural network architecture, which enables the model
to learn increasingly complex representations of the input data.

input
layer

hidden layer

output
layer

Figure 1.4: Fully connected DNN architecture [3].

There are two primary types of machine learning approaches: supervised learning and
unsupervised learning [43]. These approaches differ in the way the models are trained and
the type of training data that is required. Due to their different training approaches and data
requirements, supervised and unsupervised learning models are usually applied to different
tasks or problems, based on their individual strengths, as we will see on later. In addition
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to these two approaches, there is another category known as reinforcement learning, which
involves training an agent to interact with an environment and learn from the feedback
received; this approach is not exploited in this PhD thesis.

Supervised learning Supervised learning is a machine learning technique that uses labeled
datasets in the learning algorithms, allowing the model to “learn” from the labeled data and
accurately classify new data or predict outcomes [44]. The labeled input and output data
enable the model to measure its accuracy and improve its performance over time during the
training phase.

Unsupervised learning Unlike supervised learning, unsupervised learning algorithms are
generally designed to work with datasets that do not have ground truth labels and only
consist of input data. In this case, the learning algorithm relies solely on input features to
identify patterns, similarities, and differences within the data to perform the desired task.
Since unsupervised learning aims to create a model without the help of labeled output data, it
mainly employs clustering algorithms like K-Means [44] to form clusters or groups of similar
examples.

Self-supervised learning Self-supervised learning is a form of unsupervised learning in
which inputs and targets are generated from the given data without the help of external
labels. In other words, training a model does not require separately labelled data because the
information needed is already present in the data. For instance, self-supervised autoencoder
is a type of neural network used in the field of image processing to learn effective coded
representations of input data, typically for dimensionality reduction or for tasks like denoising.
For instance, for the denoising task the autoencoder is trained to reconstruct a denoised image
from a noisy input. The benefit of this method is that denoising does not require a separate
labelled dataset; instead, the original data can be exploited to create noisy versions of it
to train the autoencoder. This is a typical instance of self-supervised learning in which the
training information is provided by the data itself [45].

Supervised vs. Unsupervised learning The key distinction between supervised and
unsupervised learning lies in the utilization of labelled versus unlabelled training data. Su-
pervised learning depends on labelled input and output data samples to teach the model
the relationship between the two. The model is fine-tuned until it can accurately predict
outcomes for unseen data. However, creating labelled training data is typically resource-
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intensive. Unsupervised learning, on the other hand, learns from raw unlabelled data to
identify inherent patterns and relationships within the dataset.

Unsupervised vs. self-supervised learning Self-supervised learning can be viewed as
a specific case of unsupervised learning since there is no manual labeling involved. However,
self-supervised learning generates its labels automatically from the data, whereas generic
unsupervised learning does not use labels and aims to find hidden patterns or structures in
the data.

To an in depth reading about deep learning methods, we refers the interested readers
to [43–49] and references within.

The following Section will provide a review of the state-of-the-art techniques used for
addressing power allocation problems in relay-aided cognitive radio networks considered in
this PhD thesis.

1.3 State of the art of resource allocation techniques in
relay-aided cognitive radio networks

Efficient management and allocation of resources, including transmit power, are crucial for
achieving high performance in wireless communication systems. As wireless communications
become more popular, the number of users is increasing, resulting in a higher density of users.
This highlights the growing importance of properly allocating wireless resources. Conse-
quently, researchers have extensively studied resource allocation, particularly transmit power
control [50–53], in various wireless communication systems such as device-to-device [51,54,55]
communication, vehicular communication [56–58] and cellular communication [52,59,60].

1.3.1 Traditional methods

Extensive research has been conducted on resource allocation problems in wireless networks;
it is literally impossible to be exhaustive on this literature. Below we only discuss some of
the most relevant papers.

The state of the art on resource allocation includes various works that can be classified
based on the network types (multiple-input multiple-output (MIMO), orthogonal frequency-
division multiplexing (OFDM), device-to-device (D2D), etc), their time variability (static,
fading, arbitrarily varying), the objectives to be optimized (maximization of rate or energy
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efficiency), etc. Additionally, these works may consider perfect or imperfect channel state
information, and may employ different types of algorithms.

Regarding the various types of algorithm used, the existing works include: closed-form so-
lutions [61–64]; exhaustive search [65,66]; iterative algorithms: iterative water-filling [67–71],
iterative weighted MMSE [72,73], adaptative online learning algorithms [74–79]; heuristic al-
gorithms: classical water-filling [80], genetic algorithms [81], particle swarm optimization [82].

We now focus on the most relevant works related to resource allocation policies in cognitive
radio networks and relay-aided cognitive radio networks, i.e., the focus of this PhD thesis.

Several studies have investigated power allocation in cognitive networks without cooper-
ative modes. For example, exhaustive search techniques are used to optimize the capacity
of SUs in OFDM based cognitive radio systems [66]. Moreover, iterative waterfilling is pro-
posed in [71] to maximize the sum-rate in multi-user networks, specifically in cognitive radio
networks that use OFDM. Furthermore, the authors of [82] employed the particle swarm
optimization technique to maximize signal-to-interference-plus-noise ratio utility, while en-
suring the quality of service (QoS) for both primary and secondary users in a cognitive radio
networks.

There have also been many research studies on relay-aided cognitive radio networks
[83–86]. For instance, the authors of [83] investigate the optimal power allocation policies for
the opportunistic user and the relay under an overall power constraint and a primary QoS
constraint protecting the primary users. They provide a closed-form solution for the optimal
power allocation policy in the case of CF relaying. In the context of DF the optimization
problem poses a greater challenge due to its non-convex nature. However, the authors suc-
cessfully demonstrate that finding the 3-dimensional optimal solution can be reduced to a
2-dimensional search. The authors of [84] proposed an alternative optimization algorithm for
a rate maximization problem in the presence of AF relay. Specifically, they investigate these
problems in two settings: half-duplex mode and when the direct link is neglected. Another
related study, similar to [84], can be found in [85]. In that work, the authors propose an
optimal approach utilizing dual methods for addressing rate maximization problems in AF
relay scenarios.

Furthermore, the authors in [86] focus on studying the resource allocation (specifically,
subcarrier and power allocation) in a relayed cellular cognitive radio network based on or-
thogonal frequency division multiple access and employing DF relaying. To optimize the
power allocation process, iterative waterfilling technique is employed. Finally, the authors
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of [87] present two approaches, an iterative algorithm and a genetic algorithm, with the
aim to maximize the sum rate of unlicensed users while respecting a tolerated interference
threshold in scenarios with both perfect and imperfect CSI.

Moving on to other techniques, relay selection and relaying scheme selection are important
considerations and aspects of cooperative wireless communication systems to improve the
performance and efficiency of such networks.

Various approaches can be found in the literature for relay selection and relaying scheme
selection. Relay selection is a widely employed strategy in which the most suitable relay
node is selected from a pool of multiple candidates based on criteria such as achievable rate
or spectral efficiency, etc. Several studies, such as [88–91], have investigated this approach.
For instance, the authors of [90] considered cognitive networks with multiple DF relays and
investigated the selection of the best relay using a strategy that maximizes the effective
capacity. The authors of [91] considered a cognitive underlay radio network with multiple
half-duplex DF relays. The selection approach for the best relay is the one that maximizes
the achievable rate for the secondary transmission while guaranteeing the QoS of the primary
network.

In contrast to relay selection, relaying scheme selection involves choosing the most suitable
relaying scheme out of several options, with the aim of achieving the best possible perfor-
mance, in terms of metrics such as achievable rate, spectral efficiency, outage, and other
relevant factors. For instance, studies such as [10] and [11] considered both AF and DF
relaying schemes, with the selection criteria based on maximizing the signal to noise ratio
in [10], while [11] utilized an outage-based and symbol error rate-based approach.

Overall, the resource allocation problems in relay-aided cognitive radio networks are gen-
erally complex and non-convex ones that require innovative tools and methods going beyond
traditional ones. The use of such methods, for instance based on deep learning techniques,
which will be presented in the following Subsection, can help to overcome the challenges
associated with resource allocation in relay-aided cognitive radio networks and improve the
performance of these networks [92–94].

1.3.2 DNN-based methods

Machine learning techniques have been used to address a range of resource allocation problems
[95–100], including optimizing the allocation of spectrum, power, and computing resources
in wireless networks.

These techniques have been extensively used in multi-user networks to maximize the
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achievable sum rate [95], improve the spectral efficiency [59,96,97,99], or enhance the energy
efficiency of the network [98, 100]. Moreover, the authors of [101], introduced a DNN to
optimize the sum rate of a non-orthogonal multiple access D2D network aided by a relay.

In cognitive radio networks DNN-based resource allocation policies have been proposed
to maximize the spectral efficiency while meeting power budget and QoS requirements and
ensuring the protection of primary users. These DNN-based resource allocation policies have
been proposed in several studies, including [92,102–106], to improve the overall performance
of the cognitive radio networks under study. By utilizing the advanced capabilities of DNNs,
these policies have the potential to adapt to dynamic network conditions and improve spec-
trum utilization, resulting in improved efficiency and performance. Other works focus on
minimizing power consumption while meeting a pre-determined signal-to-noise interference
ratio for both primary and secondary users [104]. The authors in [105] have suggested a deep
learning methodology for resource allocation problems in cognitive radio networks with the
goal of maximizing both spectrum and energy efficiency. Finally, in [106], a deep reinforce-
ment learning approach is implemented to address a distributed resource allocation problem
in cognitive radio networks. Despite the potential of DNN-based resource allocation policies
to adapt to dynamic network conditions and improve spectrum utilization, their effectiveness
can be limited by the lack of perfect CSI. As a result, several studies have explored the use
of DNNs to address this issue and improve the robustness of resource allocation processes in
cognitive radio networks [97,107].

In order to address the issue of robustness to imperfect CSI, the authors in [107], proposed
an autoencoder based on DNNs to improve channel estimation quality in the presence of CSI
imperfections. This was then utilized as input to a second DNN, which aimed to maximize
the achievable sum-rate of cognitive radio networks. Similarly, in [97], a power allocation
policy was proposed for underlay D2D communications that maximizes the average spectral
efficiency of the D2D user while maintaining the QoS of the cellular user equipment to
an allowable level, even under imperfect CSI. To handle this issue, DNN techniques were
employed to make the power allocation policy robust to channel estimation errors.

Regarding relay selection, previous studies have focused on the use of deep learning tech-
niques, as demonstrated in [89, 108, 109]. However, to the best of our knowledge, there
is currently no research that specifically investigates the application of DNNs for relaying
scheme selection.

Our work stands out from the existing literature by focusing on the utilization of DNN
techniques to develop optimal power allocation strategies for networks exploiting jointly co-
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operative communication and cognitive radio. We address both CF and DF relaying schemes,
in the presence of imperfect CSI, which, to the best of our knowledge, has not been previously
proposed.

Additionally, we explore the selection of the most suitable relaying scheme using DNN-
based techniques. To the best of our knowledge, this is the first study to consider DNN-based
methods for relay scheme selection. So far, only traditional approaches have been proposed
in this context. Furthermore, we introduce a novel DNN-based approach that enhances the
generalizability of the DNN across various system parameters. This approach, to the best of
our knowledge, has not been previously proposed in existing literature.

1.4 Manuscript contributions and organization

The main focus of this PhD manuscript revolves around the following topics:

• Resource allocation techniques for cognitive radio assuming perfect CSI;

• Deep learning based resource allocation techniques assuming imperfect CSI;

• Relaying scheme selection and generalized DNN solutions;

Chapter 2 of this PhD thesis is dedicated to investigating resource allocation techniques
for cognitive relay-aided networks, assuming perfect CSI. First, we present the system model
under study and formulate the non-convex optimization problem, with the goal of maximizing
the achievable secondary rate under a primary QoS constraint, when the relay and secondary
transmitter are also subject to maximum power budgets under both CF and DF relaying
scheme. We demonstrate also that closed-form solutions are feasible for CF relaying. This is
not the case for DF however. Hence, we introduce an unsupervised deep learning approach
that can efficiently address the constrained and non-convex power allocation problem under
DF relaying. Finally, we present simulation results that demonstrate the performance of the
DNN solution compared to the exhaustive search algorithm in terms of secondary user data
rate maximization and primary user QoS protection. The results confirm the potential of the
proposed approach to overcome the limitations of traditional optimization techniques and
provide practical solutions for power allocation in cognitive relay-aided networks.

Chapter 3 of this PhD thesis delves into the investigation of the resource allocation prob-
lem in the scenario where the channel static estimations are not perfect. Firstly, we introduce
the channel errors estimation model. Secondly, we present our novel unsupervised DNN-based
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solution for both CF and DF relaying schemes. Through numerous simulation experiments,
we demonstrate the superiority of our proposed approach by comparing it against exhaus-
tive search. The results illustrate the potential of our solution in achieving optimal resource
allocation, even under the presence of imperfect channels.

Chapter 4, first addresses the problem of relaying scheme selection in cognitive radio
networks. As both CF and DF relaying schemes have their advantages and limitations, we
propose two distinct approaches to choose between them. The first approach is a method
that relies on protecting the most the primary transmission, while the second one is a DNN-
based solution that can efficiently handle the relaying scheme selection problem in a more
optimized way. Second, while the previous Chapters (2 and 3) assumed fixed values for the
system parameters, the maximum allowed primary rate degradation and power budget within
the secondary network, in this Chapter, we propose a new DNN-based approach that can
generalize the optimal power allocation policy when either the maximum allowed primary
rate degradation or power budget in the secondary network are not predefined but can vary
within a given range.

In conclusion, Chapter 5 provides a comprehensive summary of the contributions of this
PhD thesis and discusses several open issues and perspectives for future investigation.

1.5 List of publications and invited talks

The research carried out in this PhD thesis has resulted in the following publications:

International journals

[J1prep] Y. Benatia, A. Savard, R. Negrel and E. V. Belmega, “Robust DNNs for power
allocation problems in cognitive relay networks,” in preparation for submission to IEEE
Transactions on Machine Learning in Communications and Networking, June, 2023.

International conferences

[C2] Y. Benatia, A. Savard, R. Negrel and E. V. Belmega, “Unsupervised deep learning
to solve power allocation problems in cognitive relay networks,” IEEE ICC Workshop on
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Data Driven Intelligence for Networks and Systems (DDINS), p. 1-6, Seoul, South Korea,
May 16-20, 2022.

[C1] Y. Benatia, R. Negrel, A. Savard and E. V. Belmega, “Robustness to imperfect
CSI of power allocation policies in cognitive relay networks,” IEEE 23rd International Work-
shop on Signal Processing Advances in Wireless Communication (SPAWC), July 4-6, Oulu,
Finland, 2022.

French national conferences

[CF1] R. Negrel, Y. Benatia, A. Savard and E. V. Belmega, “Sélection de relais robuste
aux canaux imparfaits pour la radio cognitive coopérative exploitant des réseaux profond”,
presented in GRETSI, Grenoble, France, Apr. 2023.

Invited talks

[S4] Robustness to imperfect CSI of power allocation policies in cognitive relay networks,
ETIS PhD student day, 25/05/2023 (Poster).

[S3] Robustness to imperfect CSI of power allocation policies in cognitive relay networks,
University of Oulu, Finland, 16/06/2022.

[S2] Unsupervised deep learning to solve power allocation problems in cognitive relay
networks, ETIS PhD student day, 10/03/2022 (Virtual).

[S1] Cooperation, optimization and artificial intelligence for future communications, ETIS
PhD student day, 01/04/2021 (Virtual).
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Chapter 2

Resource allocation techniques for
cognitive radio assuming perfect CSI

2.1 Introduction

This Chapter focuses on studying resource allocation techniques for cognitive relay-aided
networks, assuming perfect CSI.

First, we present the system model and formulate the non-convex power optimization
problem under study. The cognitive relay-aided network under study consists of a primary
and a secondary user–destination pair and a secondary full-duplex relay performing CF and
DF. The primary communication is protected by a QoS constraint in terms of tolerated Shan-
non rate degradation. Because of the non-linear and complex relay operations, the resulting
power allocation problems in such relay-aided cognitive networks are non-convex and can be
solved in closed-form only in special cases, such as: negligible interference links [110], negli-
gible opportunistic direct links [111]. Outside these very specific cases, such power allocation
problems become difficult to tackle and even intractable using traditional techniques.

Second, we find the closed-form solution for CF relaying. Additionally, we present an
unsupervised deep learning approach that can efficiently address the power allocation problem
under DF relaying, for which a closed-form solution does not seem possible.

Finally, we evaluate the performance of our DNN solution through a series of experiments.
The outcomes of this Chapter have been published in two conference papers [112,113]. More
specifically, [112] presents the closed-form solution to the optimization problem under consid-
eration for CF relaying. On the other hand, [113] proposes a DNN-based solution to address
the power allocation problem under DF relaying.
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In the following Section, we describe the system model under study and formulate the
power allocation optimization problem.

2.2 System model and problem formulation

In this Section, we define the system model under study and formulate the non-convex power
allocation optimization problem, maximizing the constrained and non-convex Shannon rate
problem under primary QoS constraints and power budgets in a relay-aided cognitive radio
network.

2.2.1 System model

The system under study, depicted in Figure 2.1, is composed of a primary user or transmitter
UP and its destination DP ; a secondary full-duplex relay; and a secondary user or transmitter
US and its destination DS, similarly to [83,110–113]. The received signals at the relay, primary
and secondary destinations write as

YR = hP RXP + hSRXS + ZR (2.1)

Yi = hRiXR + hiiXi + hjiXj + Zj, (2.2)

where i ∈ {P, S}, j ∈ {P, S}\i; XP , XS and XR, of average power PP , PS and PR respectively,
denote the message send by the primary user, the secondary user and the relay respectively;
ZR and Zi denote the additive white gaussian noise (AWGN) at the relay and at destination
Di of variance NR and Ni respectively. Without loss of generality, we assume that all noise
processes are of unit variance NR = NS = NP = 1 or equivalently we consider channel gains
normalized by the receiver noise variance, defined as gij = h2

ij

Nj
. Furthermore, we assume that

the channel gains follow a common fading and path-loss model given as gij ∼ N (0,σ2
g)√

1+dγ
ij

, where
dij denotes the distance between the nodes i and j and γ is the path loss factor [114]. We
let g ≜ (gij, ∀i, ∀j) denote the vector collecting all channel gains in the network.

Furthermore, we consider a full-duplex relay which is assumed to cancel out any self-
interference [83, 110–113]. Both messages sent from the secondary network are treated as
additional noise at the primary destination; and the primary message is treated as additional
noise for all secondary receivers (relay and destination DS). Hence, we can consider equivalent
correlated Gaussian noises at the relay and secondary destination of variance ÑR = gP RPP +1
and ÑS = gP SPP + 1 respectively; where the correlation coefficient equals ρZ =

√
gP RgP SPP√

ÑRÑS

.
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Figure 2.1: The cognitive relay-aided network under study.

Also, the messages sent by the secondary user and the relay are treated as additional
noise at the primary destination; and the primary message is treated as additional noise
throughout the secondary network. Let Ri, i ∈ {P, S} denote the achievable rate of the
primary and secondary user respectively; and RP denote the primary achievable rate in the
absence of the secondary transmission:

RP = 1
2 log2(1 + gP P PP ).

The primary network allows the opportunistic communication provided that the following
minimum QoS constraint is met in terms of achievable primary rate [83,110,113]:

RP ≥ (1 − τ)RP , τ ∈ [0, 1]. (2.3)

Notations To simplify the presentation, the following notations will be used:
A= gP P PP

(1+gP P PP )1−τ−1 −1, x+=max{0, x} and C(x)= 1
2 log2(1+x) denotes the capacity of the

point-to-point AWGN channel. Let K1, K2 denote

K1 =gSRÑS +gSSÑR−2ρZ

√
gSRgSSÑSÑR, K2 = (1−ρ2

Z)ÑRÑS.

In the following Subsection, we formulate the power allocation problem under CF and DF
relaying.
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2.2.2 Problem formulation

Our main objective is to maximize the opportunistic achievable rate RS, when both the relay
and secondary user are constrained by a maximum power expressed as PR and PS respectively.
To sum up, the resulting generic form of the optimization problem under study for both CF
and DF writes as

(OP) max
PR,PS

RS(PS, PR)

s.t. RP ≥ (1 − τ)RP , (QoS)

0 ≤ PS ≤ PS, 0 ≤ PR ≤ PR, (TP)

where the secondary and primary achievable rates RS and RP depend on the specific relaying
scheme. The constraint (QoS) is the primary QoS constraint used to protect the primary
transmission, constraints (TP) correspond to the individual power constraint of the secondary
user and relay.

Next, we focus on the optimization problems specific to CF and DF relaying by substi-
tuting the achievable rate regions obtained in [83] into the original optimization problem
(OP).

Compress-and-Forward (CF): Under CF, exploiting the achievable rate region of [83]
leads to the following optimization problem

(OCF) max
PR,PS

RS(h, PS, PR)

s.t. Q(h, PS, PR) ≤ A, (QoS)

0 ≤ PS ≤ PS, 0 ≤ PR ≤ PR, (TP)

with, RS(h,PS,PR)=C

(
K1gRSPSPR + gSSPS(K1PS + K2)

K2gRSPR + ÑS(K1PS + K2)

)

Q(h,PS,PR)=gSP PS + gRP PR.

Although non-convex, this optimization problem can be solved in closed-form under perfect
CSI, as shown in the following.
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Decode-and-Forward (DF): Under DF, exploiting the achievable rate region of [83] leads
to the following optimization problem

(ODF) max
PR,PS ,α

RS(h, α, PS, PR)

s.t. Q(h, α, PS, PR) ≤ A, (QoS′)

0 ≤ PS ≤ PS, 0 ≤ PR ≤ PR, (TP)

0 ≤ α ≤ 1, with (ADF)

RS(h,α,PS,PR)=C(min{fR(h,α,PS,PR), fS(h,α,PS,PR)})

Q(h,α,PS,PR)=gSP PS + gRP PR + 2α
√

gSP gRP PSPR,

fR(h,α,PS,PR)= gSR(1 − α2)PS

ÑR

,

fS(h,α,PS,PR)= gSSPS + gRSPR + 2α
√

gRSgSSPSPR

ÑS

,

where the additional variable α ∈ [0, 1] trades-off between sending a new codeword and
repeating the previous one under the information-theoretic superposition coding scheme [83].
Despite its non-convex nature, this optimization problem can be effectively addressed using
DNN techniques under perfect CSI, as shown in Section 2.4.

In the following Section, we present the closed-form solutions for the power allocation
problem under study related to CF relaying.

2.3 Closed-form solution for CF

For CF relaying, in spite of (OCF) not being a convex problem, we provide below its closed-
form analytical solution. To simplify its derivation, we will use the following notations:

C1 = K1gRP (gSSgRP − gRSgSP )
C2 = K1gRSgSP A − 2K1gSSAgRP − gSSgRP gSP K2

C3 = gSSA(K1A + gSP K2)
C4 = K2gRSg2

SP − ÑSK1gRP gSP

C5 = ÑSgSP (K1A + K2gSP )

The objective function of the optimization problem (OCF) can be shown to be mono-
tonically increasing unilaterally as a function of PS for fixed PR, and as a function of PR

for fixed PS. This implies that the optimal power allocation lies on the Pareto boundary of
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the feasible set. Now, regarding the specific shape of the feasible set defining the solution of
(OCF), five cases can arise as depicted in Figure 2.2, depending on the relative position of
the QoS curve and the total power box-type constraints:

[H1] if A
gRP

< PR and A
gSP

< PS, (aside from positivity) only the QoS constraint restricts the
feasible set;

[H2] if A
gRP

< PR and A
gSP

> PS, the QoS constraint intersects the secondary user power
constraint;

[H3] if A
gRP

> PR and A
gSP

< PS, the QoS constraint intersects the relay’s power constraint;

[H4] if A
gRP

> PR and A
gSP

> PS and gSP PS + gRP PR < A, the QoS constraint intersects both
total power constraints;

[H5] if A
gRP

> PR and A
gSP

> PS and gSP PS + gRP PR ≥ A, only the total power constraints
define the feasible set.

Figure 2.2: Feasible set of (OCF).

A close analysis of these five cases and, since the optimal solution lies on the Pareto
boundary of the feasible set, leads us to the following result.
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Theorem 1 When the relay employs CF over the cooperative cognitive radio network, the
solution to (OCF) can be found analytically in closed form. Indeed, when [H5] is met,
the QoS constraint is not restrictive and the solution is simply P ∗

R = PR, P ∗
S = PS. In all

other cases, [H1]–[H4], the solution to (OCF) lies on the QoS constraint such that P ∗
R = x∗,

P ∗
S = A−gRP x∗

gSP
, where x∗ is the closed-form solution to the following single-value optimization

problem

(OCFx) max
x

f(x) ≜ C1x
2 + C2x + C3

C4x + C5
,

s.t. x ∈ [xℓ; xu]. (2.4)

The values of xℓ and xu defining the box-type constraints depend on the system parameters
and the specific case.

The complete proof is given in Appendix A and follows from the study of the equation
f ′(x) = 0, i.e., finding the critical points of f(x).

It is important to note that there is a difference between the problem formulation pre-
sented in Section 2.2.2 and those in [83] and [110]. The difference lies in the constraints
imposed on the transmit powers and the treatment of interference links. In [83], the problem
involves the sum of the relay and secondary powers as a constraint, which must be less than a
certain total budget. In contrast, in our case, we consider individual power constraints for the
relay and secondary transmitter. This means that our feasible set is distinct from that in [83]
and hence the solutions are also different. Furthermore, we do not make the assumption that
interfering links between licensed and opportunistic users are negligible. This contrasts with
the problem studied in [110], where the interfering links are considered negligible.

In the following Section, we present the proposed DNN-based solution to solve the power
allocation problem under study related to DF relaying. We provide a comprehensive descrip-
tion of the custom loss function employed and elaborate on the architecture of the DNN used
in our approach.

2.4 DNN-based solution for DF relaying

Regarding CF relaying, the presence of the ratio in the objective function of (OCF) leads to
its non-convexity. Despite the non-convex nature of (OCF) we could still solve it analytically.
One advantage compared to (ODF) is that the constraints in (OCF) are affine. Additionally,
CF relaying involves only PR and PS as optimizing variables. At last, due to the monotonicity
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proprieties of the objective function in (OCF), we could show that the solution lies on the
Pareto region of the feasible set which is a simple polyhedre.

A close analysis of the problem (ODF) reveals a non-concave objective function coupled
by a non-convex QoS constraint (QoS′), which is due to the non-linear operations performed
by the relay.

When compared to (OCF), the optimization problem (ODF) consists of an additional
optimizing variable α. Furthermore, the term involving a square root: α

√
PSPR that is

present both in the objective function via fS and in the QoS constraint, renders the (ODF)
problem not only non convex, but significantly more difficult compared to (OCF). Therefore,
finding a closed-form solution for (ODF) seems highly difficult and unlikely.

Instead, to solve (ODF) we propose an unsupervised approach based on deep neural
networks (DNN). The reason behind the unsupervised learning is that, a supervised approach
would require computing a labeled training dataset containing the solutions to the non-convex
problem (ODF) for a large number of sampled system parameters. This would be too
computationally heavy (via exhaustive search) and, henceforth, we opt for an unsupervised
approach relying on a training dataset composed of only samples of the inputs (i.e., system
parameters) of our DNN and exploiting a specifically tailored communication loss to perform
the training.

2.4.1 Custom loss function

A key component of our proposed approach is the loss function that the network will be
trained to minimize. Solving constrained optimization problems with DNNs is highly non-
trivial, unless the constraints are of box-type such as (TP, ADF). This is not the case of the
QoS constraint (QoS′) which is a difficult non-convex constraint. Nevertheless, as opposed to
the power constraints (TP), the primary QoS constraint is not a physical (hard) constraint
but rather a requirement, which can be relaxed and included as a penalty in the objective
function below

L =
N∑

ℓ=1

(
−RS(gℓ, α, PS, PR) + λ[Q(gℓ, α, PS, PR) − A]+

)
, (2.5)

with [x]+ = max{0, x} and N denoting the total number of channel realizations gℓ, ℓ ∈
{1, . . . , N} in the training dataset.

The hyperparameter λ denotes the unit price in bits/Watt of the primary QoS violation. A
small value of λ will result in maximizing the achievable opportunistic rate without taking into
account the primary QoS constraint; whereas large values of λ will strictly satisfy the primary
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Figure 2.3: Our proposed DNN architecture.

QoS constraint but at the cost of opportunistic rate. This tradeoff between opportunistic
rate and primary QoS will be further investigated via numerical results.

The concept of employing custom loss functions has already been explored in various
research studies, including [59,103,115–117].

2.4.2 Proposed DNN architecture

Our proposed DNN architecture to solve (ODF) is composed of four fully connected hidden
layers and is depicted in Figure 2.3. The input consists of the channel gains vector g which
is used to predict the outputs: (α̂, P̂R, P̂S), i.e., the solution of (ODF). The fully connected
architecture is justified because of its generality and given that there is no a priori struc-
tural or temporal information within the input vector g to be exploited via more specific
architectures such as convolutional or recurrent networks.

The four hidden layers are composed of M − 2M − 2M − 2M neurons with M = 128
and are followed by a rectified linear unit (ReLU) activation function due to its low compu-
tational complexity. This specific architecture has been chosen based on extensive empirical
experiments, as we discuss in the numerical Section.

The final layer is followed by sigmoid activation functions: a standard one sgmα(x) =
1/(1+e−x) to map the predicted α into its feasible set [0, 1], and two modified ones sgmPi

(x) =
Pi/(1 + e−x), i ∈ {S, R}, to map the predicted powers PR and PS into [0, PR] and [0, PS]
respectively. This final layer ensures that the hard constraints (TP), (ADF) are met.

In the following Section, we provide a comprehensive overview of our numerical results.
This Section encompasses a summary of various experiments conducted to evaluate the ef-
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fectiveness of our DNN-based solution.

2.5 Numerical results

Below, we discuss our numerical setup and DNN training procedure as well as the perfor-
mance evaluation of our approach. Complete details and source codes of our experiments are
available online at https://github.com/yacine074/.

Experimental setup: We consider a square cell of dimension 10×10 m in which the relay
is positioned in the center whereas both primary and secondary user positions are uniformly
distributed in the cell, unless specified otherwise. As described in Section 2.2, the channel
gains follow a common fading and path loss model given as, hij ∼ N (0,σ2

g)√
1+dγ

ij

, where dij is distance
between nodes i and j. The path loss factor is set to γ = 3 and the channel gain standard
deviation σg = 7. We assume that PP = PR = PS = 10 W and set the threshold τ = 0.25
for the maximum primary rate degradation. This means that the opportunistic network is
allowed to communicate over the licensed bands provided that the primary achievable rate is
not degraded below a fraction (1 − τ) of its achievable rate in the absence of the secondary
network.

Dataset: To the best of our knowledge, the majority of related works exploiting DNNs use
simulated data [102,105,115,116], given the lack of real data that is available and open access.
Thus, to train and test our proposed DNN architecture, we use a dataset composed of: i) a
training set containing 106 channel realizations gℓ, out of which 20 % is used for validation,
i.e., to evaluate the generalization capability of our proposed DNN during training; ii) a test
set containing 2×105 channel realisations gℓ, as well as the optimal resource allocation policy
(α∗, P ∗

R, P ∗
S) obtained by brute force (or exhaustive search) to evaluate the optimality gap of

our predicted solution.

DNN training: In our numerical simulations, we use the ADAM optimizer [118] to iter-
atively update the weights of our DNN. The batch size is set to 4096, the learning rate to
10−4; these values allows the DNN weights optimization to converge within 1000 epochs.

Benchmarks and performance metrics: We define here the relevant performance met-
rics used for the evaluation purpose. First, we define the relative gap between the predicted
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achievable rate via our DNN and the achievable rate obtained by brute force, our ideal
benchmark, as follows:

G =
1
N

∑N
ℓ=1 R̂S,ℓ − R∗

S,ℓ
1
N

∑N
ℓ=1 R∗

S,ℓ

(2.6)

where R̂S,ℓ = Rs(gℓ, α̂, P̂S, P̂R) denotes the secondary achievable Shannon rate obtained based
on our DNN prediction for the ℓ-th sample in the dataset and R∗

S,ℓ denotes the optimal rate for
the ℓ-th sample in the dataset obtained via brute force or exhaustive search. We choose brute
force as benchmark thanks to its implementation simplicity and because it approximates the
optimal solution with an adjustable precision. In our approach, we use a uniform grid with
a step size of 1

10 for each problem dimension (α, PR, PS).
Intuitively, if the value of G is zero, then the secondary achievable rate obtained from

our DNN model R̂S,ℓ is equal to R∗
S,ℓ obtained by the brute force. If G is positive, our

DNN solution outperforms the brute force, which can happen since the brute force must
always meet the primary QoS constraints, which is not necessarily true for the DNN method.
Conversely, if G is negative, the brute force performs better than our DNN, in terms of
achievable secondary rate.

Second, the degradation of the primary achievable rate caused by the opportunistic in-
terference is defined as:

∆ℓ = 1 − R̂P,ℓ/RP,ℓ, (2.7)

where R̂P,ℓ = RP (gℓ, α̂, P̂S, P̂R) denotes the achievable primary rate of our predicted policy,
and RP,ℓ is the obtained achievable primary rate without the secondary interference. If ∆ℓ is
equal to one, it implies that R̂P,ℓ is zero, indicating that the secondary communication cru-
cially degrades the primary communication. Conversely, if ∆ℓ is equal to zero, it means that
R̂P,ℓ is equal to RP,ℓ, signifying that the secondary communication has no detrimental impact
on the primary communication. In the figures presented in the numerical simulation section,
where we analyze the degradation of the primary network, the term “Average” corresponds
to the mean value of the primary rate degradation (∆ℓ).

Based on this metric, we can also define the maximum primary rate degradation (Max =
max(∆ℓ)), and the empirical outage as the proportion of samples in the dataset (or channel
settings) for which the target primary QoS constraint is not met:

Outage = 1
N

N∑
ℓ=1

I [∆ℓ > τ ] , (2.8)

where ℓ, denote the ℓ-th sample in the test set, and N is the total number of samples in our
test set. The summation is performed over each sample in the test set. Moreover, for every
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sample in the test set, we calculate ∆ℓ, which represents the degradation in the primary rate.
Then, we sum the samples where ∆ℓ exceeds the predetermined threshold τ , and divide this
sum by the total number of samples in our test set N .

A high value of the empirical outage (close or equal to one) indicates a poor performance of
the system, reflecting significant interference coming from secondary users. This interference
leads to a larger number of instances where the primary rate fails to meet the required level,
as indicated by the empirical outage. Furthermore, this interference contributes to a larger
number of ∆ℓ values surpassing the maintained threshold τ .

At last, we introduce the average primary rate degradation metric ∆out to measure the
level of degradation in the primary rate when the system is in an outage state, i.e., when the
interference from the secondary network exceeds the predefined threshold τ . It represents
the average impact on the primary rate specifically during these outage scenarios.

It is important to note that ∆out is consistently greater than the predefined threshold τ .
Consequently, the objective is to minimize the difference between ∆out and τ , aiming for a
∆out that is as close as possible to τ .

∆out =
∑N

ℓ=1( I [∆ℓ > τ ] × ∆ℓ )∑N
ℓ=1 I [∆ℓ > τ ]

, (2.9)

where I [x] equals 1 when x is true and 0 otherwise.
∆out represents the average of ∆ℓ values that exceed the maximum allowed primary degra-

dation threshold τ .
As previously explained for the Outage, the summation definition in ∆out is performed

over each sample in the test set, and ℓ, is the ℓ-th sample in the test set, and N is the total
number of samples in our test set.

DNN architecture choice: To choose the architecture in Figure 2.3, we have performed
extensive numerical simulations. In Figure 2.4, we report the most significant results. On the
left, we analyze the impact of the number of layers and compare four different architectures
composed of one up to four hidden layers as follows: M , M − 2M , M − 2M − 2M , and
M −2M −2M −2M , with M = 128. We see that there is a significant gain in secondary rate
when increasing the number of layers from 1 to 3; moving to 4 layers helps to decrease the out-
age. Including a fifth layer in the DNN architecture will result in an increased computational
time without any gain in secondary rate. Hence, a 4-layer architecture is a good compromise
between performance and computational cost. Now, on the right, we compare three different
such four-layer DNNs, by varying the number of neurons per layer M ∈ {64, 128, 256}. We
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Figure 2.4: Impact of the number of layers and number of neurons on the prediction perfor-
mance.

see that increasing M from 64 to 128 neurons leads to a significant gain in secondary rate;
increasing further the number of neurons does not seem justified given the incurred compu-
tational cost. For these reasons, we choose M = 128 coupled with the 4-layer architecture in
Figure 2.3 henceforth.

Performance on train and validation sets (No overfitting): In Figure 2.5, we plot
the evolution of our custom loss function L over the number of epochs within the training
and validation sets for λ ∈ {100.5, 102}. First, notice that the DNN training converges within
1000 epochs. The superposed performance obtained within the training and validation sets
highlights the high generalization capability of our proposed DNN. In addition, no overfitting
effects can be noticed, since the loss function does not increase within the validation set.
Finally, the convergence of optimizing the weights of the DNN is much faster for relatively
small values of λ. Indeed, when λ is small, the custom loss is mainly rate-driven and not
much emphasis is put on the primary QoS constraint; this leads to a much easier optimization
problem to solve without (QoS′). At the opposite, for larger values of λ, the custom loss puts
an emphasis on satisfying (QoS′), which leads to a more difficult problem. Of course, this
parameter needs to be tuned whenever the system parameters change significantly.
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Figure 2.5: Evolution of the loss function evolution over the training epochs over the training
and validation sets (no overfitting effects).

Prediction performance on the test set: Henceforth, we evaluate the performance of
our predicted solution (α̂, P̂R, P̂S) obtained with new samples (i.e., test data) unseen during
the training or validation phases.
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Figure 2.6: Relative average gap G and outage as functions of the hyperparameter λ over
the test set.
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Figure 2.7: Average secondary rate RS and outage as functions of the hyperparameter λ over
the test set.

Choice of the hyperparameter λ: In Figure 2.6, the relative gap in equation (2.6) and
the outage in (2.8) are depicted as functions of λ. For small values of λ (rate-driven custom
loss), the relative gap G is positive, which means that the secondary rates obtained via
the DNN are larger than the optimal ones via brute force. The reason is that the primary
QoS constraints are not necessarily met by our DNN solutions, as illustrated by the high
outage levels. At the opposite, for large values of λ (primary QoS-driven custom loss), the
outage goes to zero as expected at a cost in terms of secondary rates. Indeed, our predicted
secondary rates are smaller than the optimal ones (negative relative gain G), but this gap is
kept below 10%.

This observation is also supported by Figure 2.7, where the average of the secondary
rate and outage are plotted as functions of the hyperparameter λ. The main objective in
Figure 2.7 is to identify an optimal value of λ, without the need to compute the relative gap
as done in Figure 2.6, which requires the brute force method. The figure clearly illustrates
that a low value of λ leads to a higher secondary rate but an increased outage. Conversely,
a high value of λ results in a lower secondary rate but with a reduced number of outage.
An optimal choice of λ maximizes the secondary rate and satisfies the QoS of the primary
network as much as possible. Therefore, the value λ = 100.5 achieves a good tradeoff between
the achievable secondary rate and the primary QoS degradation in our setting and will be
used in the test phase below.

In Figure 2.8, we investigate closer the impact of λ on the primary rate degradation
within the test set. For this, we plot the average and maximum values of the primary rate
degradation as well as the average degradation when in outage ∆out in (2.9) in Figure 2.8a.
Also, in Figure 2.8b, we illustrate the histogram of the primary rate degradation (∆) for
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λ ∈ {100.5, 102}. Notice that the average primary rate degradation falls quickly below the
threshold τ = 25 %. For small values of λ, the worst case primary degradation can reach
up to 90 %. Nevertheless, such extreme degradation is obtained only for a small number
of out-layer data points. This is indicated by the curve ∆out hitting the 25 % threshold
reasonably fast as well as by the histogram of the degradation in Figure 2.8b.
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Figure 2.8: Impact of the hyperparameter λ.
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To sum up, the hyperparameter λ highlights the tradeoff between achievable secondary
rate and primary QoS degradation and has to be carefully tuned depending on the target
application and primary network tolerance. As already mentioned above, we choose λ = 100.5

due to its good compromise between the achievable secondary rate and the primary QoS
degradation.

Impact of the relay position: We now wish to investigate the effect of the relay position
relative to the other system nodes. For this, we consider three different scenarios with fixed
positions for the primary and secondary user/destination pairs.

• 1st scenario: symmetric positions,
US(5, 2.5), DS(7.5, 5), UP (2.5, 5), DP (5, 7.5), as depicted in the top plots of Figure 2.9.

• 2nd scenario: asymmetric positions,
US(3.2, 3), DS(6.5, 1), UP (2, 7), DP (6.5, 8.5), as shown in the middle plots of Figure 2.9.
We note that the direct links are stronger than the interfering ones, in this case.

• 3rd scenario: asymmetric and crossed positions among primary and secondary network,
US(3.2, 3), DS(6.5, 8.5), UP (2, 7), DP (6.5, 1), as depicted in the bottom plots of Fig-
ure 2.9. We note that the interfering links are stronger than the direct links, in this
case.

All simulation results are averaged over 104 channel realizations with λ = 100.5, as this
value achieves a good tradeoff between the achievable secondary rate and the primary QoS
degradation. In all scenarios, the relay position (xR, yR) varies within the entire cell. For
this, we generate 256 × 256 positions for the relay, hence the grid step is 10

256 m in each
2D axis. In Figure 2.9a, Figure 2.9b, and Figure 2.9c, we illustrate the average primary
rate degradation, the average predicted relay power P̂R and the average secondary rate R̂S,
respectively as functions of the relay position (xR, yR).

In Figure 2.9a, we see that for all scenarios, the average degradation in the primary rate
always falls below the fixed threshold of τ = 25 % irrespective from the relay position. When
the relay is very close to the primary nodes, the degradation drops below 20 %, since very
little power is allocated to the relay as shown in Figure 2.9b to meet the QoS constraints.
We remark that the worst degradation for DF occurs when the relay is close to the secondary
transmitter (see Figure 2.9a). This is also the case in which the relay is allocated more power
(see Figure 2.9b) and the secondary rate is maximized (see Figure 2.9c). Our observations
are consistent with information theoretic results; since the relay has to first decode the
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transmitted message before forwarding it, the relay is best located near the information
source.
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Figure 2.9: Impact of the relay position (xR, yR) for DF relaying. Top plots: symmetric
users’ positions; middle: non-symmetric users’ positions; bottom: crossed users’ positions.

The first two scenarios are somewhat similar. However, the third scenario is significantly
different. In the third scenario, the average primary rate degradation is slightly higher
compared to the other scenarios. Additionally, the average predicted relay power is lower,
indicating that the relay is utilized less frequently. Moreover, the average secondary rate is
also lower in this scenario. This observation can be explained by the fact that in the third
scenario, the positions are crossed among primary and secondary network and the secondary
transmitter is located close to the primary receiver. As a result, the interfering links are
stronger, hence cause more damage to the primary user, compared to the direct links.
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Figure 2.10: Impact of the relay position (xR, yR) for CF relaying. Top plots: symmetric
users’ positions; middle: non-symmetric users’ positions; bottom: crossed users’ positions.

In Figure 2.10, we illustrate the impact of the relay position on the system performance
under CF relaying, using our proposed closed-form solution. For this, we examine the same
three scenarios as for DF described above. All results are averaged across 104 channel re-
alizations. Figure 2.10a, Figure 2.10b, Figure 2.10c and Figure 2.10d represent the average
primary rate degradation, the average predicted secondary power P ∗

S , the average relay power
P ∗

R, and the average secondary rate R∗
S, respectively. These metrics are showcased as func-

tions of the relay position (xR, yR).
We note that the average primary rate degradation consistently remains below the pre-

defined threshold of τ = 25%, irrespective from the relay position and the scenario, as under
DF relaying. When the relay is positioned in close proximity to the primary destination, the
primary rate degradation is in the range 23% to 25%. This result is primarily attributed to
the high interference coming from the secondary communication, and the larger power allo-
cation to the secondary transmitter, as presented in Figure 2.10b. Furthermore, we can see
that in Figure 2.10c, more power is allocated to the relay when it lies between the secondary
transmitter and destination. Finally, we can see that the highest secondary achievable rates
are obtained when the relay is placed in between the secondary transmitter and receiver, in
particular when the relay is closer to the destination (see Figure 2.10d); results consistent

34



Resource allocation techniques for cognitive radio assuming perfect CSI

with information theoretic insights as for DF relaying.
In the next Section, we provide a summary of the current Chapter and outline the objec-

tives of Chapter 3.

2.6 Summary

In this Chapter, we present the cognitive relay-aided system under study and formulate a
non-convex power allocation problem at the secondary user. We derive the optimization
problem under both CF and DF relaying schemes, when perfect and global CSI is available
at the transmitters. The objective of the optimization problem under study is to maximize
the achievable secondary rate while satisfying a primary QoS constraint and a transmit power
budget.

The optimization problem is non-convex when considering CF and DF relaying schemes
because of the non-linear relaying operations. While a closed-form solution can be derived
under perfect CSI for CF, the same is not feasible for DF because of the more complex
expressions (including square root terms) of the non-convex objective function coupled with
a non-convex QoS constraint (as opposed to an affine one for CF) involving an additional
variable α under DF. To overcome this challenge and solve the problem, we propose an unsu-
pervised DNN-based method using a fully connected architecture. The method incorporates
a cognitive radio tailored loss function, which includes a hyperparameter that requires careful
tuning. This custom loss function effectively incorporates both the secondary rate and the
primary QoS constraint.

We conduct a series of experiments to fine-tune and evaluate our DNN-based solution.
The results demonstrate that our DNN performs effectively, yielding an outage level of ap-
proximately 5%. Moreover, the secondary rate predicted by our DNN closely matches with
the results obtained by the brute force method. These findings show the high generaliza-
tion capability of our DNN solution on unseen data. Furthermore, our study highlights the
tradeoff between the secondary rate and meeting the primary QoS constraint.

Additionally, we conduct experiments to investigate the impact of the relay position
under both CF and DF by exploiting respectively our closed-form solution or our DNN-
based method. Our results reveal that DF relaying performs well when the relay is located in
close proximity to the secondary transmitter. Regarding CF relaying scheme, we also study
the impact of the relay position using our closed-form solution; whereas CF relaying performs
well when the relay is close to the secondary destination. This information provides valuable
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insights into optimizing the relay position for an efficient performance.
In summary, our experiments demonstrate the effectiveness of our DNN-based solution

in achieving a low outage level and while maximizing the secondary rate. We highlight the
generalization capability of our DNN, the tradeoff between the secondary rate and primary
QoS constraint, and the favorable performance of DF relaying when the relay is positioned
near the secondary transmitter, which is consistent to the information theoritic results.

In the next Chapter, we investigate the problem by relaxing the knowledge of perfect CSI.
Under imperfect CSI, at the transmitters, we show the particular relevance and robustness of
our DNN-based approach compared to the traditional solutions requiring perfect CSI which
perform poorly when the channel estimations are not perfect.
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Chapter 3

Deep learning based resource
allocation techniques assuming
imperfect CSI

3.1 Introduction

This Chapter is dedicated to study the same power allocation problems as in the previous
Chapter, but where we now assume that the transmitters have only access to imperfect
CSI (denoted as CSIT), whereas the receivers have still access to perfect CSI (denoted as
CSIR). In the following and to simplify the reading, whenever we mention imperfect CSI, we
actually mean imperfect CSIT. To the best of our knowledge, DNN-based techniques have
not been used to address resource allocation problems in cooperative cognitive networks with
imperfect CSI. This suggests an opportunity for exploring the potential of DNNs in improving
the performance and efficiency of such networks through optimized resource allocation.

We begin this Chapter by introducing the model of estimation errors affecting the channel
gains. Secondly, since our obtained closed-form solution under CF presented in the previous
Chapter relies on perfect CSI, it is not well-suited for imperfect CSI. In order to address
this limitation, we propose a self-supervised DNN-based alternative solution with a robust
training strategy that leverages the unsupervised DNN we proposed for DF under perfect
CSI and described in the previous Chapter. We conduct a series of numerical experiments
to find the optimal value of the hyperparameter λ, which trades off between rate driven or
QoS driven optimization, for CF relaying under imperfect CSI. We then introduce a robust
training strategy specifically designed to tackle the challenges of imperfect CSI. Finally, we
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conduct numerical simulation experiments to evaluate the performance of our approach. The
outcomes of this Chapter have been published in the conference paper [112].

In the following Section, we introduce the channel errors estimation model used in this
study.

3.2 Imperfect CSI model

Whereas in the previous Chapter we assumed that all nodes, i.e. receivers and transmitters,
can access perfect CSI, we here propose to relax the later. Indeed, within the cognitive
radio framework, the assumption of perfect CSIT regarding links related to the primary
network is not very realistic. Nonetheless, we still assume that the receivers have access
to perfect CSIR, as usually assumed in the relevant resource allocation literature involving
information theoretic performance measure [119–122], in order to compute the data rates
to be optimized. In the remaining of this Chapter, imperfect CSIT is modeled as an ad-
ditive Gaussian noise, as considered in [107, 123]. Hence, ĥij = hij + εij, εij ∼ N (0, σ2

ij),
∀(i, j) ∈ {(P, P ), (S, P ), (R, P ), (P, R), and (P, S)} and the normalized estimated channel
gains are given as ĝij = (ĥij)2/Nj. In the above, the estimation error variance is assumed
to be of the form σ2

ij = Var[hij]/SNR, where Var[hij] denotes the variance of the true chan-
nels hij and SNR ∈ [−10, 20] dB represents the signal-to-noise ratio (SNR) of the estimator.
The normalized channel gains within the secondary network are on the other hand perfectly
known at both the transmitter and receiver and given as ĝij = (ĥij)2/Nj = h2

ij/Nj, ∀(i, j) ∈
{(S, S), (S, R), and (R, S)}. We henceforth let ĥ denote the vector collecting all the esti-
mated channel links.

The closed-form solution designed to solve the power allocation problem for CF relaying,
relies on perfect CSI and is not hence suitable under imperfect CSI. Indeed, our formulation
does not take into account explicitly the imperfect channel gain estimations, which would
require a complete reformulation of the optimization problem and, hence, a different solution
methodology. To overcome this, we propose a self-supervised DNN-based solution. In the
following Section, we present our self-supervised DNN-based solution under CF and DF
relaying to solve the power allocation problem under imperfect CSI.
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3.3 Robust training to imperfect CSI

In the following, we present the proposed self-supervised DNN architecture and the used loss
function, along with the training strategy employed to address the power allocation problem
under imperfect CSI and under both CF and DF relaying.

Self-supervised DNN: In the previous Chapter, during the training phase, the DNN re-
lied solely on perfect CSI both as its inputs and in the loss function. In the test phase, we
also had access to the perfect CSI. Therefore, there was no additional information introduced
in either the training or test phases. Consequently, the proposed DNN can be classified as
a generic unsupervised DNN [124]. In contrast, in this Chapter, during the training phase
error-free channel estimations are provided to the loss function, while channel gains impaired
by estimation errors are provided as input of the DNN, similarly to a self-supervised denois-
ing autoencoder [45, 125]. Hence, in the training phase both perfect and imperfect CSI are
exploited. In the test phase, we only have access to imperfect CSI. This approach is thus
characterized as a self-supervised DNN similarly to [117]. More precisely, self-supervised
learning is a specific case of unsupervised learning where the model generates its own su-
pervision signal from the input data. In our case, the perfect channel gains used in the loss
function act as a form of self-supervision, allowing the model to learn and optimize for the
task of predicting optimal allocated powers without the need for external ground truth labels.

DNN architecture and custom loss: Based on the numerous numerical simulations
conducted described in Section 2.5 of the previous Chapter, we choose to use the same DNN
architecture, namely 4 fully connected hidden layers, to solve the power allocation problem
under imperfect CSI. Our objective is to utilize this DNN architecture with a novel training
strategy to effectively address the challenges that arise from imperfect CSI. In addition, we
decide to reuse the previously developed custom loss function, which forms the fundamental
component of our self-supervised DNN-based solution for both CF and DF relaying schemes.

Under imperfect CSI, another performance metric to be considered is the outage proba-
bility defined as:

Pout = Pr [RS(h, α, PS, PR) < r] ,

where r denotes the fixed transmit rate and the probability is taken with respect to the ran-
domness in the system channels h. In our study, we propose a simplified approach compared
to minimizing the outage probability, where the training dataset contains perfect CSI, and
our DNN aims at maximizing the instantaneous rates, a term similar to that used in the
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context of minimizing outage probability:

L(hℓ, ĥℓ) =
N∑

ℓ=1

(
−RS(hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)) + λ

[
(1 − τ)RPℓ

(hℓ) − RPℓ
(P̂S(ĥℓ), P̂R(ĥℓ))

]+)
.

Therefore, we can conjecture that our approach should also perform well in terms of outage
probability.

To effectively address the power allocation problem under imperfect CSI, it is necessary to
adapt the DNN training method to incorporate the effects of imperfect CSI. In the following,
we present a detailed analysis, focusing on the necessary modifications that must be made
to the DNN training process to accommodate the presence of imperfect CSI.

DNN training: For the training phase, we assume that we have access to a dataset con-
taining perfect or high quality channel samples {hℓ}ℓ obtained offline, but that in the running
or test phase we only have access to erroneous channel estimations. We propose a new dif-
ferent training process to improve the robustness of our predictions to imperfect CSI. To this
aim, we build a different training dataset containing pairs of perfect and imperfect channel
estimations: (ĥℓ, hℓ)ℓ, obtained simply by adding Gaussian noise to the initial samples. The
perfect channels hℓ are exploited in the loss function L in equation (2.5), whereas the im-
perfect ones ĥℓ are used as inputs to the self-supervised DNN. To avoid overfitting effects,
we adopt an early-stopping method for both CF and DF, with a patience parameter of 20
epochs, which is selected after conducting several experiments.

In the following Section, we present our numerical results, which summarize the various
experiments conducted to investigate the optimal hyperparamter λ for CF, and evaluate our
self-supervised DNN-based solution for CF and DF under imperfect CSI.

3.4 Numerical results

Dataset: The simulation setup is the same as in our previous Chapter and described in
details at https://github.com/yacine074/Robustness_SPAWC22, where all source codes
can be found.

Benchmarks and performance metrics: Our comparison benchmarks are: the brute
force or exhaustive search for DF (due to its’ implementation simplicity), and our closed-
form solution for CF (due to its’ minimal computational cost).
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First, we define the relative gap between the predicted instantaneous rate with imperfect
CSI and the rate obtained by the benchmark with perfect CSI, as follows:

G =
1
N

∑N
ℓ=1 R̂S,ℓ − R∗

S,ℓ
1
N

∑N
ℓ=1 R∗

S,ℓ

(3.1)

where R̂S,ℓ denotes the secondary rate achieved by either our unsupervised or self-supervised
DNNs, or the benchmark when the corresponding power allocation policy relies on imperfect
CSI and R∗

S,ℓ denotes the ideal optimal rate via the benchmark obtained with perfect CSI,
both for the ℓ-th sample in the dataset.

In this Chapter, we exploit the same performance metrics to evaluate the QoS of the
primary network, as described in the previous Chapter, namely ∆ℓ, which represents the
primary rate degradation of the ℓ-entry of the dataset, the Outage and ∆out (see Section
2.5), denoting the average primary rate degradation when in outage. The only difference
regarding to the previous Chapter is that we here consider the primary rate obtained under
imperfect CSI in all these metrics computation.

In the following, we conduct a series of experiments to determine the optimal λ value
that balances between maximizing the secondary rate and satisfying the primary QoS under
DF when perfect CSI is available, for the CF relaying under imperfect CSI.

Choice of the hyperparameter λ for CF relaying under imperfect CSI: In Section
2.5, we performed multiple simulations to identify the λ hyperparameter.

In order to address the CF relay scheme, it is necessary to perform similar simulations
but this time using imperfect CSI when we have access to a very good estimator (SNR =
20 dB). The objective is to determine the value of λ that satisfies the QoS and achieves large
rates for CF relaying.
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Figure 3.1: Relative average gap G and outage as functions of the hyperparameter λ over
the test set (CF Relaying).

Figure 3.1 illustrates the relationship between λ and the relative gap of equation (3.1)
as well as the outage. We observe that for small λ values (rate-driven custom loss), the
relative gap G is positive. This indicates that the secondary rates obtained through the
self-supervised DNN are larger than the optimal rates obtained via brute force. The reason
behind this discrepancy is that our self-supervised DNN solutions may not necessarily meet
the primary QoS constraints, leading to higher outage levels, and higher secondary rates.
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Figure 3.2: Average secondary rate RS and outage as functions of the hyperparameter λ over
the test set (CF relaying).

Conversely, for large λ values (primary QoS-driven custom loss), the outage approaches
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zero as expected. However, this comes at the expense of secondary rates (negative relative
gain G). This observation is further supported by the results presented in Figure 3.2.
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Figure 3.3: Average and maximum primary rate degradation and average degradation when
in outage (∆out) as functions of λ over the test set (CF relaying).

In Figure 3.3, similarly to the analysis conducted in Section 2.5, we investigate further the
impact of λ on the primary rate degradation within the test set. For this, we plot the average
and maximum values of the primary rate degradation as well as the average degradation when
in outage ∆out given in (2.9) in Figure 3.3. When considering small values of λ, the primary
degradation can reach a maximum of 100%. However, it is important to note that such severe
degradation is observed only for a limited number of data points in the out-layer. This is
evident from the curve of ∆out, which is close to 25% threshold imposed by our chosen value
of τ = 25%.

Robustness analysis over the test set: We now evaluate the performance over new
data samples that have not been seen during the training phase and that are imperfect, i.e.,
{ĥℓ}ℓ. In Figure 3.4, we plot: the relative secondary rate gap G (top sub-figures), empirical
outage (middle) and average primary rate degradation ∆out (bottom) as functions of the
quality of the channel estimator SNR ∈ [−10, 20] dB and for both DF (left sub-figures) and
CF (right) relaying schemes. In each sub-figure we evaluate and compare the robustness to
imperfect CSI of the power allocation policy obtained by the benchmark (i.e., brute force for
DF, our closed-form solution for CF), by our unsupervised DNN trained with perfect CSI
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only, and by our self-supervised DNN trained with both perfect and imperfect CSI, i.e., our
robust training method described above. When searching for the λ value in the presence of
imperfect CSI, it is important to note that the value of λ may differ from that obtained when
using perfect CSI (in Section 2.5). This observation can be inferred from Figure 2.6 and
Figure 3.4, which depict the relative gap G under DF relaying. Indeed, with the same value
of λ = 100.5, the relative gap G under perfect CSI equals 0% whereas it drops to −38% under
imperfect CSI, meaning that the brute force achieves higher rates than the self-supervised
DNN. However, despite this discrepancy, we choose λ = 100.5 for the following simulations,
since it ensures better satisfaction of the primary QoS, also under imperfect CSI.
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Figure 3.4: Impact of imperfect CSI on our proposed solutions (via deep learning and in
closed form for CF) for DF and CF relaying over the test set.
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Notice that the performance of the unsupervised DNN trained with perfect CSI matches
almost perfectly that of the benchmark in all plots. This shows the high generalization capa-
bility of our unsupervised DNN approach, which was tuned (its architecture and choice of λ)
for DF relaying, and also exploited for CF relaying with almost no change in the architecture
beside removing the output corresponding to α, coming from the use of superposition coding
under DF, and by tuning the hyperparameter λ in a similar way as for DF. Nevertheless,
in the case of unsupervised DNN without robust training, having access to imperfect CSI
reduces the secondary rate and, most critically, highly damages the primary communication:
the primary QoS is violated in 20 − 40 % of cases (Outage) and the average degradation
when in outage (∆out) is of 35 − 60 %. Finally, the outage of the self-supervised DNN ap-
proach trained in a robust manner is much improved and stays below 5%. At the same time,
the average degradation ∆out is also reduced (in between 0 − 40%). All this comes at the
cost of secondary rate, which is acceptable in cognitive radio settings where the primary
communication must be protected.

Impact of the position of the relay for CF and DF relaying under imperfect CSI:
We start by investigating DF relaying and focus on the second scenario, which involves an
asymmetric positions configuration as described in Section 2.5.
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Figure 3.5: Impact of the relay position for DF relaying (second scenario). Top plots: average
total power (W); middle: average secondary rate (bpcu); bottom: average primary rate
degradation (%).
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Figure 3.5 depicts the average power transmitted by the secondary network, the average
secondary rate as well as the average primary rate degradation for four different channel esti-
mation SNRs under DF relaying. Each simulation result has been averaged over 104 random
channel realizations, not included in the test set. The channel gains for these simulations are
generated in the same manner as described in Section 2.2.1. Under poor channel estimation,
SNR ∈ {−10, 0} dB, the secondary network barely transmits at all, leading to almost no pri-
mary rate degradation and almost zero secondary rate. As the quality of the CSI increases,
i.e. SNR ∈ {10, 20} dB, one can note that DF performs well in terms of secondary rate when
the relay is close to the secondary user, as for the standard relay channel. Furthermore, in all
cases, one can see that the average primary rate degradation stays below the fixed threshold
value of τ = 25%.

At last, when SNR = 0 dB, we can observe that although the power of the secondary
communication is very small when the relay is in close proximity of the primary receiver,
such a configuration has a marginally degrading impact to the primary communication. This
is equivalent to the case of SNR = 10 dB, where the primary degradation is about 2% when
the relay is close to the primary receiver. To understand this counter-intuitive behavior, we
study in the top plots of Figure 3.6 the maximum primary rate degradation as a function
of the relay position for SNR = 0 dB and SNR = 10 dB, and we can note the presence of
a noise, corresponding to outliers where the primary rate degradation reaches 100%, when
computing this maximum. In order to mitigate the influence of this added noise, we apply a
median filter [126]. Interestingly, we observe that as we increase the radius of the disk-shaped
mask used for filtering, the noise progressively decreases, as shown in the bottom plots of
Figure 3.6 (maximum of primary degradation with median filter when disk is equal to 3),
and that the maximum of degradation is around the primary receiver.
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Figure 3.6: Impact of the relay position for DF relaying (maximum of primary degradation
(%)): Top plots: maximum of primary degradation without median filter; middle: maxi-
mum of primary degradation with median filter (disk = 2); bottom: maximum of primary
degradation with median filter (disk = 3).
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Figure 3.7: Impact of the relay position for DF relaying (third scenario). Top plots: average
total power (W); middle: average secondary rate (bpcu); bottom: average primary rate
degradation (%).
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Finally, we investigate in Figure 3.7 the impact of the relay positions for DF relaying
under imperfect CSI in the third scenario with the asymmetric and crossed positions among
primary and secondary network. We observe that even with the change in users positions,
the earlier conclusions remain unaffected. Specifically, DF yields better results when the
relay is near the secondary user.
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Figure 3.8: Impact of the relay position for CF relaying (second scenario). Top plots: average
of secondary network power (W); middle: average secondary rate (bpcu); bottom: average
primary rate degradation (%).

Regarding CF relaying, we conduct similar numerical experiments. Our investigation
focuses on the scenario with the asymmetric positions described in the previous Chapter.
The results showing the average power transmitted by the secondary network, the average
secondary rate, and the average primary rate degradation for four different channel estimation
SNRs are presented in Figure 3.8. Similar to DF, in the case of poor channel estimation
SNR ∈ {−10, 0} dB, the secondary network exhibits minimal transmission, resulting in no
primary rate degradation and nearly zero secondary rate. As the quality of the CSI improves
(SNR = 20 dB), we can observe that CF performs best when the relay is close to the secondary
destination. Furthermore, in all cases, the average degradation of the primary rate remains
below the predetermined threshold value of τ = 25%. These observations hold true across
all the simulations, each of which averages results over 104 channel realizations, as for DF
relaying.
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In Figure 3.8, it can be inferred that when SNR ∈ {−10, 0, 10} dB, indicating a significant
amount of estimation error, the utilization of the relay decreases. To investigate these cases,
further exploration of the self-supervised DNN performance and the hyperparameter λ are
necessary in order to improve the relay’s effectiveness under such conditions. We opt to
explore the impact of the hyperparameter λ variation to see whether a lower λ value results
in increased utilization of the relay.
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Figure 3.9: Impact of the relay position for CF relaying (λ = 10−0.5). Top plots: average
total power (W); middle: average secondary rate (bpcu); bottom: average primary rate
degradation (%).

When we modify λ from 100.5 to 10−0.5, as shown in Figure 3.9, its impact becomes
evident. We observe that as the value of λ decreases, the relay utilization increases, leading
consequently to an improved secondary rate, as expected. However, it is noteworthy that this
enhancement in throughput comes at the expense of significant degradation in the primary
communication, reaching up to 32%. This degradation exceeded our predefined threshold of
25%, indicating a notable decrease in the primary communication’s overall quality.

Similarly to DF relaying, we extend our investigation to see the effect of relay positions for
CF under imperfect CSI, specifically focusing on the third scenario with the asymmetric and
crossed positions among primary and secondary network as illustrated in Figure 3.10. Despite
the variations in user positions, we see that CF performs well even when using asymmetric
and crossed positions between the primary and secondary networks, especially when the relay
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is close to the secondary destination.

0 2 4 6 8 10
xR

0

2

4

6

8

10

y R

UP

US

DP

DS

SNR = -10 dB

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

SNR = 0 dB

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

SNR = 10 dB

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

SNR = 20 dB

0 2 4 6 8 10
xR

0

2

4

6

8

10

y R

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

y R

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

0 2 4 6 8 10
xR

0

2

4

6

8

10

UP

US

DP

DS

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.06

0.07

0.08

0.10

0.03

0.03

0.03

0.03

0.04

0.00

0.00

0.00

0.00

0.00

1.35

1.46

1.57

1.68

1.79

0.15

0.17

0.19

0.21

0.22

0.01

0.02

0.02

0.02

0.02

3.74

4.02

4.30

4.57

4.85

1.13

1.32

1.51

1.69

1.88

0.06

0.07

0.09

0.10

0.11

10.99

11.67

12.34

13.01

13.69

Figure 3.10: Impact of the relay position for CF relaying (third scenario). Top plots: average
total power (W); middle: average secondary rate (bpcu); bottom: average primary rate
degradation (%).

We end this Chapter by providing a summary and introduce briefly the objectives of the
next Chapter.

3.5 Summary

In the previous chapter, perfect CSI was the underlying working assumption; the primary
objective of this chapter is to relax this assumption. This Chapter starts by introducing
the channel estimation models assumed regarding the channel gains related to the primary
network. Secondly, we introduce a novel self-supervised DNN-based solution to address the
power allocation problem for both CF and DF relaying under imperfect CSI. The novelty
lies in our robust training technique used to tune the parameters of our DNN architecture
introduced in Chapter 2. This robust training is based on a new dataset containing pairs
of perfect and imperfect channel estimations. The perfect channels are exploited in the
loss function, whereas the imperfect ones are used as inputs to the self-supervised DNN.
This training technique makes our approach a self-supervised one, and renders our power
allocation solution robust against imperfect CSI.
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We then evaluate the performance of our proposed robust self-supervised DNN method
against imperfect CSI for both CF and DF relaying. To accomplish this, we conduct simu-
lations and compare our method with the closed-form solution for CF and exhaustive search
for DF. First, we demonstrate the impact of the hyperparameter λ which denotes the unit
price in bits/Watt of the primary QoS violation on the secondary rate by computing the
relative gap between the secondary rate obtained through the self-supervised DNN under CF
relaying and that obtained via exhaustive search. Additionally, we present the average sec-
ondary rate obtained via our self-supervised DNN approach under CF relaying as a function
of the hyperparameter λ. Furthermore, we assess the performance of our self-supervised DNN
approach by considering both the outage and the primary degradation metrics. Through our
investigation, we identify the best value of λ that maximizes the secondary throughput while
satisfying the QoS of the primary network for CF relaying. Our approach demonstrates a
close secondary rate to that obtained through exhaustive search. This remarkable perfor-
mance is achieved even in scenarios where channel estimation is not highly accurate.

In summary, our findings demonstrate that employing a self-supervised DNN with robust
training against imperfect CSI enables us to achieve noteworthy enhancements. Specifically,
we observe an improvement in outage performance that remains below 5% while simulta-
neously reducing the average degradation by 0 to 40%. However, it is important to note
that the utilization of self-supervised DNN-based solutions does result in a reduction in the
secondary rate. It is worth emphasizing that these results are obtained within the context of
cognitive radio, where the primary communication takes precedence.

We notice that CF relaying presents superior performance when the relay is located close
to the secondary destination. Conversely, DF relaying yield better results when the relay is
in close proximity of the secondary user.

In the next Chapter, we delve deeper into the application of DNNs for relaying scheme
selection. We explore the potential of DNNs by proposing a generalized DNN-based solution
to tackle the power allocation problem under study. This novel DNN-based approach aims
to provide an effective solution that can adapt to various scenarios, and generalize across
different values of system parameters.
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Chapter 4

Relaying scheme selection and
generalized DNN solutions

4.1 Introduction

In this Chapter, we delve further into the exploration of our resource optimization problem by
investigating the selection of an appropriate relaying scheme for our communication system.
Our focus lies on the evaluation of two different approaches to choose between CF and
DF relaying schemes. This choice plays an important role in the overall performance and
efficiency of our communication system. This analysis is followed by a sequence of numerical
simulation experiments to assess the effectiveness of the proposed methods.

Furthermore, we introduce our generalized self-supervised DNN solution, which enables
generalization over system parameters. Firstly, we propose two self-supervised DNNs capable
of generalizing over the maximum allowed primary rate degradation and the power budgets
(at the relay and secondary transmitter). Secondly, we propose a self-supervised DNN to
jointly generalize over all the aforementioned system parameters.

At last, we evaluate the performance of these self-supervised DNNs through numerous
experiments to validate the efficacy of our methods by using metrics such as outage, primary
rate degradation, and secondary rate under different channel estimation SNRs. The outcomes
of this Chapter will be submitted in the journal paper [127].

In the next Section, we present the relaying scheme selection methods used in this study.
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4.2 Relaying scheme selection

It is generally known that none of the two relaying schemes performs best for all network
parameters and configurations. In this section, we investigate the problem of selecting the
relaying scheme and we propose two different approaches to choose among CF and DF. In
our cognitive radio setting, we focus the relay scheme selection on protecting the primary
network, which of course may lead to a cost in terms of secondary instantaneous rate.

4.2.1 First relaying scheme selection

Usually, relaying scheme selection consists in choosing the relaying scheme achieving the
largest SNR [10,88]. Such a criterion is well-suited for many communication models but not
for cognitive radio networks where one should protect the primary transmission.

To simplify the presentation, let us denote by RCF
S , RDF

S the secondary rate achieved by
CF and DF respectively. We further let ∆CF

ℓ and ∆DF
ℓ denote the degradation of the primary

rate caused by the opportunistic transmission under CF and DF.

Algorithm 1 Relaying scheme selection baseline algorithm
Require: RCF

S , RDF
S , ∆CF

ℓ , ∆DF
ℓ , τ

if ∆CF
ℓ , ∆DF

ℓ ≤ τ or ∆CF
ℓ = ∆DF

ℓ then // If the two relaying schemes meet the primary QoS

// constraint then we select the one providing the larg-

// -est opportunistic rate.

if RDF
S >RCF

S then
return DF

else
return CF

end if
else

if ∆DF
ℓ < ∆CF

ℓ then // Otherwise, we select the relaying scheme that causes the least

// damage to the primary transmission.

return DF
else

return CF
end if

end if
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Figure 4.1: Diagram illustrating the operation of the proposed Algorithm 1 when used as
baseline.
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Figure 4.2: Diagram illustrating the ground truth generation process using Algorithm 1 for
training the proposed Extra-DNN.

In order to choose between CF and DF, we propose the following scheme. First we
compare the two degradations of the primary rate ∆CF

ℓ and ∆DF
ℓ . If both relaying scheme

meet the QoS constraint and are somewhat equivalent in terms of primary degradation, i.e.
they both meet the primary QoS constraints such that ∆CF

ℓ , ∆DF
ℓ ≤ τ , then we choose the

relaying scheme yielding the largest secondary rate. If only one of the relaying scheme meets
the QoS constraint, then we choose this scheme. At last, if neither relaying scheme meets the
QoS constraint, we then choose the one inflicting the least primary rate degradation. Hence,
we put more emphasis on meeting the primary QoS constraint, at the cost of the secondary
rate. This relaying scheme selection principle is summarized in Algorithm 1.

We will exploit this first relaying scheme selection both as a baseline, as illustrated in
Figure 4.1, where the block System model represents the mathematical equations allowing us
to compute RCF

S , RDF
S , ∆CF

ℓ , ∆DF
ℓ as detailed in Section 2.2.1. Additionally, we will also use

it to build ground-truth data for our second relaying scheme selection method (Figure 4.2),
described in the next subsection, which exploits the two self-supervised DNNs designed for
CF and DF as well as an additional supervised one to decide between CF and DF (Figure 4.3).

To build the new data used for our second relaying scheme selection method, we make
use of the perfect CSI to compute the instantaneous rates and the primary degradation but
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Figure 4.3: Diagram illustrating the operation of the Extra-DNN in the test phase based on
imperfect CSI and on the outputs of DNNCF and DNNDF .

given the predicted powers obtained with imperfect CSI as the self-supervised DNN inputs
(Figure 4.2). Indeed, we assume that for training purposes, we have access to high-quality
or perfect CSI estimations similarly to the training of the self-supervised DNNs predicting
the power allocations in Section 3.3.

More precisely, for the ℓ-th entry of our new dataset, we first compute the estimated
powers P̂R, P̂S under CF and DF obtained as outputs of the self-supervised DNNs with
the imperfect channel estimations as inputs. Once the estimated powers are obtained, we
compute the instantaneous rates and the primary rate degradations, under both CF and DF,
by using the true channel gains (perfect estimation). Finally, we use the first relaying scheme
selection method above to select between CF and DF for all CSI samples in our dataset
(Figure 4.2). As such, the ℓ-th entry of our dataset contains: the perfect and imperfect
channel gains estimations, the associated optimal powers obtained via the self-supervised
DNN described in Section 3.3 as well as the corresponding selected relaying scheme.

Note that while we can exploit perfect CSI to build a dataset for training purposes, perfect
CSI cannot be used to select the relaying scheme in the running phase. Indeed, making use
of this knowledge would imply first to transmit with DF and then CF, then to compute the
true rates at the receiver and feedback them to the transmitter, and finally to select the best
relaying scheme for the next transmission, which is not realistic.

When Algorithm 1 is used as baseline to compare the performance of our two proposed
methods, the rates and the primary QoS degradation are computed using the predicted
powers of CF and DF with imperfect CSI as the self-supervised DNN inputs as well as
imperfect CSI within the rate computations (Figure 4.1). Indeed, when predicting the optimal
power allocations and also when selecting the relaying scheme, the secondary user has access
only to an imperfect CSI (Figure 4.3).
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4.2.2 Second relaying scheme selection

In this section, we introduce a novel supervised DNN-based relaying scheme selection, where
a DNN takes as inputs the imperfect channel estimations as well as the corresponding opti-
mal power allocations under both CF and DF, computed by our previously presented self-
supervised DNN methods of Section 4.2.2, and outputs the best relaying scheme. Our in-
tuition is that, whereas the previously presented approach only exploits two self-supervised
DNNs specifically trained for either CF or DF, an additional supervised DNN could improve
the relay scheme selection by learning some correlation between the imperfect channel gains
and the best relaying scheme exploiting both imperfect CSI to predict the transmissions pa-
rameters and perfect CSI to select among CF and DF (the latter being available during its
training).

We hence consider a binary classification problem, for which the binary cross-entropy,
given below, is usually used as loss function [43,44]:

L = − 1
L

L∑
i=1

yi log ŷi + (1 − yi) log(1 − ŷi), (4.1)

where L is the number of available training data samples; yi ∈ {0, 1} corresponds to the
ground truth or the best relaying scheme (such that 0 stands for CF and 1 for DF) obtained
by the first selection method (Section 4.2.1), where the data rates and primary degradation
are computed given the true channels and predicted powers based on the imperfect CSI; and
ŷi ∈ [0, 1] is the probability of selecting DF computed by the supervised DNN.

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

ReLu ReLu ReLu ReLu

M 2M 2M 2M

sgm

Imperfect CSI

ĥ

α̂, P̂R, P̂S

Inputs

Hidden layers Activation
function

Outputs

DF, CF

Figure 4.4: Proposed DNN architecture to choose among CF and DF with a fixed decision
threshold at 0.5 (Extra-DNN).

The architecture of the considered supervised DNN for relaying selection, depicted in
Figure 4.4, is similar to the previous self-supervised DNNs for solving the power allocation
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Figure 4.5: Proposed DNN architecture to choose among CF and DF with a finely tuned
threshold (Extra-DNN-S).

problem. The decision to use the same DNN architecture for an entirely different problem can
be justified due to the similarities in data characteristics. Both problems involve imperfect
CSI as inputs, indicating a resemblance in the underlying data structure. Moreover, the
fully connected architecture is justified because of its generality and given that there is
no a priori structural or temporal information within the inputs to be exploited via more
specialized architectures such as convolutional or recurrent network. Therefore, it is intuitive
to conclude that changing the DNN architecture would not yield significant benefits, given
the similarities in data and the DNN’s proven effectiveness in related problems.

For the relaying scheme selection, we increase the number of neurons to M = 256 (in-
stead of value M = 128 used for the power allocation prediction) as we empirically found
that this value achieves good performance. Also, the final layer consists here in a sigmoid
activation function outputting the probability ŷi of selecting DF; the later is then compared
to a threshold, set either to 0.5 or to a cognitive radio-tailored one allowing to minimize the
average primary degradation when in outage ∆out, to decide whether CF or DF should be
selected (Figure 4.5).

The threshold is essential to take into account because its choice can significantly impact
the performance of the supervised DNN model. This cognitive radio-tailored threshold is
obtained by exhaustive search for each value of the channel estimation quality. In Table 4.1,
we present the best obtained thresholds used for Extra DNN-S as a function of SNRs. If the
predicted output value of the supervised DNN is below the threshold, the selected relaying
scheme is CF; otherwise, the selected relaying scheme is DF.
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Table 4.1: Best threshold as a function of the SNR

SNR (dB) −10 −5 0 5 10 15 20
threshold 0.09 0.01 0.01 0.02 0.04 0.06 0.10

4.2.3 Numerical results

Before we present the experimental result of the our proposed relay selection scheme, we
describe the dataset construction and the supervised DNN training (for the second method).

Dataset: The channel gains follow the same common fading and pathloss model as in
Section 3.4 and are impaired by channel estimation errors, as in Section 3.3. The training set
contains 107 samples of perfect and imperfect channel estimation hℓ and ĥℓ, the associated
optimal powers obtained via the self-supervised DNN described in Section 3.3 as well as the
corresponding best relaying scheme obtained via the first selection method (where the data
rates and primary degradation are computed with the true channels and power predicted
with imperfect CSI).

The validation set is obtained as an excluded (20%) subset of the training set and our test
set contains 2 × 106 samples of imperfect channel estimation with the corresponding optimal
powers and the best relaying scheme as ground truth, enabling to assess the performance of
our proposed approach.

To simplify the presentation of our numerical simulations, we will use the following ter-
minology: “Two-DNN” refers to the baseline selection method where imperfect CSI is used
both to predict the transmission parameters (i.e., power allocation policies and relay selec-
tion scheme) and to compute the rates and primary degradation used in our first selection
scheme, as described in Algorithm 1. “Extra-DNN” refers to the second relaying scheme
selection method, where the threshold is set to 0.5 (Figure 4.4), and “Extra-DNN-S” refers
to the second relaying selection method with the cognitive-radio tailored threshold given in
Table 4.1 to the cognitive radio network under study (Figure 4.5).

DNN training In the training phase, the optimal relaying scheme, computed via the Two-
DNN method, where the rates and primary degradation are computed using the true channels
but with powers predicted using the imperfect channels (Figure 4.2), is fed to our loss function
in (4.1), whereas the imperfect channel estimations and the corresponding optimal powers
under both CF and DF, obtained with the self-supervised DNN methods of Section 3.3
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are given as the input of our additional supervised DNN. Note that the training process is
restarted for each value of the considered SNR of the CSI estimator. Here, we adopt an
early-stopping method for both CF and DF to avoid any overfitting effect, and the patience
parameter is set to 10 epochs.
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Figure 4.6: The selected relaying scheme between CF and DF. Top figures: Two DNN,
middle: Extra DNN, bottom: Extra DNN-S.

Figure 4.6 shows the selected relaying scheme as a function of the relay position for the
methods: Two-DNN, Extra-DNN and Extra-DNN-S, and assuming different levels of CSI
estimation quality. Here, we assume that the position of the primary and secondary users
and destinations are fixed, whereas the relay can be positioned anywhere. First, we can note
that, regardless of the quality of the CSI estimation, CF is selected more often than DF
under all approaches, which is to be expected since DF is limited by the fact that the relay
needs to be able to decode the message from the secondary transmitter.
Furthermore, as also expected from a cooperative communications point of view, DF is more
efficient when the relay is close to the secondary transmitter, which can be observed for a
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CSI estimation quality between 0 − 20 dB under the fixed-threshold Extra-DNN and the
Two-DNN methods.

Remarkably, for the Extra-DNN-S method, the set of relay positions where DF outper-
forms CF also contains positions where the relay is close to the secondary destination, for
which the instantaneous rate under DF is not expected to be large. The intuition is that our
relay selection methods prioritizes the primary degradation over the instantaneous secondary
rate. For these relay positions, CF achieves higher rates than DF by also consuming more
transmit power, leading hence to larger primary degradation. We can observe that as the
channel quality increases (10 − 20) dB, the region in which DF relaying scheme is selected
first expands (10 dB), but then contracts again when SNR = 20 dB. This phenomenon can be
justified by the fact that, with an SNR of the channels estimation of 10 dB, the DNN chooses
the relaying scheme that maximizes throughput and exhibits less sensitivity to imperfect CSI,
favoring DF as can be confirmed from Figure 3.5 and Figure 3.8. Conversely, at higher SNR
levels (20 dB), CF relaying displays lower sensitivity to imperfect CSI and outperforms DF
in terms of throughput in more regions (Figure 3.5 and Figure 3.8), resulting in a preference
for CF relaying in more regions.

Finally, under all approaches and irrespective from the position of the relay, CF is almost
always chosen in very poor CSI estimation conditions −10 dB. DF seems indeed to be more
sensitive to imperfect CSI, since the relay needs to correctly decode the secondary message;
while it only quantizes the received signal under CF relaying.
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SNR over the test set.
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In Figure 4.7, we compare the three methods: Two-DNN, Extra-DNN and Extra-DNN-S,
in terms of primary rate degradation when in outage ∆out, percentage of outage and secondary
rate as functions of the CSI estimation SNR. First, we notice that Two-DNN and and Extra-
DNN achieve more or less the same performance, meaning that there was little additional
information to be learned between the channel gains and the best relaying scheme. This
highlights the strength of our proposed self-supervised DNN-based power allocation policy
for a fixed relaying scheme. This can also be explained by fact that each of the two relaying
schemes (CF and DF) perform best for disjoint relay positions.

Second, tuning the threshold which minimizes the primary rate degradation when in
outage, as performed for Extra-DNN-S, significantly increases the performance in terms of
primary degradation: the number of outage is divided by a factor of almost 2 for all values of
SNR ∈ [−10, 20] dB, whereas the primary degradation when in outage is decreased by up to
8% especially under poor channel estimation conditions. Of course, the prioritized primary
protection comes at the cost of secondary rate, which is decreased as shown in Figure 4.7.

At last, using an additional supervised DNN enables us to generalize over which criterion
the relaying scheme should be selected. Indeed, here, the relay scheme selection was decided
based on the minimization of the primary rate degradation when in outage. One could
consider any tradeoff weighting between the secondary rate and primary protection instead,
which is not feasible under the two DNN-based method.

4.3 Generalized DNN solution

So far the maximum allowed primary rate degradation τ , as well as the power budget
within the secondary network PR and PS were fixed. We propose here to generalize our
self-supervised DNN approach in terms of the system parameters: τ , PR, and PS assuming
that they lie within specified ranges.

4.3.1 Proposed generalized DNN solution

Although the system parameters are no longer fixed, the loss function to be minimized by the
self-supervised DNN remains essentially the same as in Section 3.3. The main difference with
the case of fixed parameters is that the values of τ , PR, PS have to be provided as inputs of
both the self-supervised DNN and the loss function. First, we start by generalizing over either
τ or the power budgets separately. Then, we explore the capabilities of a self-supervised DNN
to generalize over all these network parameters jointly. Figure 4.8 and Figure 4.9 present the
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architecture of our new self-supervised DNNs that are capable to generalize our approach
over the system parameters: τ , and the power budgets PR, PS respectively.

The architecture of the self-supervised DNN able to generalize over τ , denoted as DNNτ ,
remains the same as in the previous Chapter, with the changes outlined above (see Figure 4.8).
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Figure 4.8: DNNτ : Proposed DNN-based generalization over the maximum allowed primary
rate degradation.
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Figure 4.9: DNNP : Proposed DNN-based generalization over the power budget.

On the contrary, when generalizing over the power budgets PS and PR, which is denoted
as DNNP , another architectural change is required aside from the inputs: the new DNNP

has to output the fractions γ̂R ∈ [0, 1] and γ̂S ∈ [0, 1] of the relay and secondary power to be
consumed, instead of directly the estimated powers P̂R and P̂S computed as P̂i = Pi γ̂i, i ∈
{R, S}, as illustrated in Figure 4.9. This a direct consequence of the fact that the maximum
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power budgets are no longer fixed but input changing parameters. The remaining inner self-
supervised DNN architecture, i.e., the number of layers and the number of neurons par layer,
remains the same as in the previous Chapter.
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Figure 4.10: DNN†: Proposed DNN-based generalization over both the maximum allowed
primary rate degradation and the power budgets.

Finally, in order to address the joint generalization over the power budgets and τ , we
propose a new self-supervised DNN architecture in Figure 4.10. This architecture represents
the most generic DNN†, which blends the two aforementioned self-supervised DNNs able to
generalize either over τ or the power budgets.

4.3.2 Computational cost analysis

In this subsection, we compare the three approaches (DNNτ , DNNP , and DNN†) in terms of
number of trainable parameters and FLOPs (Floating Point Operations). For the test phase,
the three DNNs differences in computational cost are minimal because they all share a very
similar architecture and only differ in the first layer of the DNN. Therefore, during the test
phase, we only compare the memory cost.

For the training phase, the trainable parameters refer to the learnable parameters: weights
and biases, within a neural network model that are updated during the training process.
These parameters are the variables that the model learns from the training data to make
predictions or perform specific tasks. It is important to note that the number of trainable
parameters is not the same for the DNNτ , DNNP , and DNN†, because for DNNτ we have
2 inputs, namely ĥ and τ , and for DNNP we have 3 inputs, namely ĥ, PR and PS, and for
DNN† we have 4 inputs, namely ĥ, τ , PR and PS.
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FLOPs specifically refer to the number of floating-point operations, which include ad-
dition, subtraction, multiplication, and division operations on floating-point numbers. The
number of FLOPs is commonly used to measure the computational complexity or cost of
a model. The higher the number of FLOPs a model requires, the more computationally
intensive it is.

In Table 4.2 and Table 4.3, we present the total number of FLOPs and trainable param-
eters for CF and DF relaying using three different DNNs.

Table 4.2: FLOPs and Parameters as functions of DNNs for CF Relaying

DNNs DNNτ DNNP DNN†

FLOPs 331, 908 332, 162 332, 418
Parameters 166, 402 166, 530 166, 658

Table 4.3: FLOPs and Parameters as functions of DNNs for DF Relaying

DNNs DNNτ DNNP DNN†

FLOPs 332, 421 332, 675 332, 931
Parameters 166, 659 166, 787 166, 915

In the training phase, it is recommanded to use DNN† due to its efficiency, rather than
DNNτ , and DNNP . This choice is advantageous for several reasons. In Table 4.2, when
comparing the number of trainable parameters and the number of FLOPs, we note that
regardless of the used DNN architecture, whether it involves two or multiple inputs, it is
primarily the first layer that costs slightly more per inputs. This is why, in terms of the
number of FLOPs and number of parameters, we do not have a significant difference that
would make one DNN excessively more complex or simpler than the other.

In the test phase, the memory cost is not the same for the three DNNs, because if we
want to generalize over 10 values of τ and 10 values of power budgets exploiting both DNNτ

and DNNP , we would need to train and store 100 DNNs, which is expensive in terms of both
computation and storage. In contrast, for DNN†, we would need to train and store it only
once, and it can generalize for any given values of τ and power budgets. Furthermore, we
achieve almost the same communication performance (in terms of instantaneous rate, outage,
etc.) with DNN†, than with DNNτ and DNNP without increasing the size of the dataset.
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4.3.3 Numerical results

Dataset: As in the previous sections, we assume that only imperfect CSI samples are
available in the test set, whereas pairs of both perfect and imperfect CSI are available in the
training and validation sets. In order to ease the presentation, we will separate the three
datasets used for the self-supervised DNN able to generalize over τ , over the power budget
and over all system parameters respectively.
i) The training set assessing the generalization over the primary degradation τ is composed of
106 samples of {hℓ, ĥℓ, τℓ}, where each of the realization τℓ is within the range τℓ ∈ [0.1, 0.5].
The corresponding test set contains 2 × 105 samples of {ĥℓ, τℓ}.
ii) The training set assessing the generalization over the power budget is composed of 2×106

samples of {hℓ, ĥℓ, PS,ℓ, PR,ℓ}, where each of the realization PS,ℓ, PR,ℓ is within the range
PS,ℓ, PR,ℓ ∈ [1, 10] × [1, 10], and that the powers are interdependent, such as PS,ℓ = PR,ℓ. The
corresponding test set contains 4 × 105 samples of {ĥℓ, PS,ℓ, PR,ℓ}.
iii) The training set assessing the generalization over the three system parameters is composed
of 2×106 samples of {hℓ, ĥℓ, τℓ, PS,ℓ, PR,ℓ}, where each of the realization τℓ is within the range
τℓ ∈ [0.1, 0.5] and PS,ℓ, PR,ℓ is within the range PS,ℓ, PR,ℓ ∈ [1, 10] × [1, 10], with PS,ℓ = PR,ℓ.
The corresponding test set contains 4 × 105 samples of {ĥℓ, τℓ, PS,ℓ, PR,ℓ}.
In all cases, the validation set is obtained as an excluded (20%) subset of the training set.

DNN training: As in the previous sections, the self-supervised DNNs are provided {ĥℓ, τℓ}
or {ĥℓ, PS,ℓ, PR,ℓ, }, or {ĥℓ, τℓ, PS,ℓ, PR,ℓ} as inputs, whereas the perfect CSI hℓ and the
values of τ or PR, PS are only fed to the loss function as {hℓ, τℓ} or {hℓ, PS,ℓ, PR,ℓ, }, or
{hℓ, τℓ, PS,ℓ, PR,ℓ}. The training process is restarted for each value of the considered channel
estimation SNR, and the patience parameter is set to 10 epochs under both DF and CF to
avoid any overfitting effects.

In the following, we present the performance obtained with CF and DF relaying.
First, we evaluate the self-supervised DNNs generalizing separately either over τ or over

the power budgets PR = PS under CF relaying. In Figure 4.11, we illustrate the outage, the
average primary rate degradation (∆ℓ), the average and maximum primary rate degradation
when in outage (∆out and ∆max) as well as the mean of the secondary rate and the mean
plus and minus the standard deviation of the secondary rate for different qualities of channel
estimator SNR ∈ [−10, 20] dB, when the generalization is done over τ . The power budgets
were set to PR = PS = 10 W. We can note that our proposed DNNτ generalizes over
different values of τ ∈ {10, 20, 30, 40}% since the average primary degradation stays below
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Figure 4.11: Generalization over the maximum allowed primary rate degradation τ , for fixed
secondary power budget PR = PS = 10 W with DNNτ and under CF relaying.

the threshold of τ , regardless of its value for a fixed secondary power budget. Furthermore,
the percentage of outage and the secondary rate increase with the value of τ , as expected
since the secondary network is allowed to transmit with higher levels of power. Nonetheless,
even if the percentage of outage increases, the average primary rate degradation when in
outage keeps close to the threshold of τ , especially for moderate to good channel estimations.

In Figure 4.12, we illustrate the same performance metrics as in Figure 4.11 for different
qualities of channel estimator SNR ∈ [−10, 20] dB and for the DNNP generalizing over the
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Figure 4.12: Generalization over the secondary power budgets, for fixed maximum allowed
primary degradation τ = 0.25 with DNNP and under CF relaying.

power budgets under CF relaying by fixing τ = 25%. Note that similar conclusions carry
over for the generalization over the power budgets varying within PR = PS ∈ {2.5, 5, 7.5, 10}
W.

In the following, we investigate the performance obtained with our DNN† able to gener-
alize jointly over both the secondary power budgets and the maximum allowed primary rate
degradation τ under CF relaying.

In Figure 4.13, we present the same metrics as before, i.e., the outage, the average primary
rate degradation (∆l), the average and maximum primary rate degradation when in outage
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Figure 4.13: Joint generalization over the secondary power budget and the maximum allowed
primary degradation with DNN† and under CF relaying: impact of secondary power budget
when τ = 0.25.

(∆out and ∆max respectively) as well as the mean of the secondary rate and the mean plus
and minus the standard deviation of the secondary rate, for different qualities of channel
estimator SNR ∈ [−10, 20] dB with the DNN† and for CF relaying. These results were
obtained for τ = 0.25 and PR = PS ∈ {2.5, 5, 7.5, 10} W. Our objective is to concentrate on
a certain measure, either to test the DNN† ability to generalize on τ or to test its ability to
generalize on power budgets. Therefore, in order to achieve this, we must either fix power
budgets and vary τ , or vary power budgets while keeping τ fixed. Changing all parameters
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Figure 4.14: Joint generalization over the secondary power budgets and the maximum
allowed primary degradation with DNN† and under CF relaying: impact of the maximum
allowed primary degradation when PR = PS = 10 W.

simultaneously can make it challenging to interpret the results, as we cannot discern whether
the DNN† is generalizing well on τ or the power budgets.

Note that, the performance obtained by the DNNP generalizing over the secondary
power budget for a fixed value of τ , presented in Figure 4.12, and the one obtained by the
DNN† jointly generalizing over all the system parameters when choosing the specific value of
τ = 0.25, given in Figure 4.13, are very close to each other, validating hence our more general
proposed self-supervised DNN-based approach. Similar conclusions also hold when the sec-
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ondary power budgets are PR = PS = 10 W and study the impact of τ ∈ {0.1, 0.2, 0.3, 0.4}
on the performance obtained by the DNN† generalizing jointly over all system parameters in
Figure 4.14 compared with Figure 4.11 for a DNNτ generalizing only over τ .
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Figure 4.15: Generalization over the maximum allowed primary rate degradation τ , for fixed
secondary power budget PR = PS = 10 W with DNNτ and under DF relaying.

In order to compare our self-supervised DNN solution to our earlier results obtained for
CF relaying, and have a better understanding of how well our self-supervised DNN solution
performs, the simulations previously discussed and shown for CF in Figure 4.11 and Fig-
ure 4.12 are repeated for DF in Figure 4.15 and Figure 4.16, using the same performance
metrics and different channel estimator qualities. We note that the suggested self-supervised

70



Relaying scheme selection and generalized DNN solutions

DNN can generalize whatever the given value of τ (Figure 4.15). It can also generalize what-
ever the given value of the power budgets (Figure 4.16), and also for all different qualities of
channel estimator.
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Figure 4.16: Generalization over the secondary power budgets, for fixed maximum allowed
primary degradation τ = 0.25 with DNNP and under DF relaying.

Figure 4.17 and Figure 4.18 present the results obtained from using DNN† generalizing
jointly over all system parameters for DF relaying. These results demonstrate the gener-
alization capabilities of the self-supervised DNN across various parameters, including the
maximum allowed primary rate degradation and power budget. Furthermore, employing a
single DNN† to address the generalization task yields similar outcomes compared to using
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two separate self-supervised DNNs for individual parameter generalization. Moreover, this
unified approach offers the advantage of reduced computation time, aligning with the findings
from previous evaluations conducted for CF relaying.
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Figure 4.17: Joint generalization over the secondary power budget and the maximum allowed
primary degradation with DNN† and under DF relaying: impact of secondary power budget
when τ = 0.25.
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Figure 4.18: Joint generalization over the secondary power budgets and the maximum
allowed primary degradation with DNN† and under DF relaying: impact of the maximum
allowed primary degradation when PR = PS = 10 W.

73



Relaying scheme selection and generalized DNN solutions

To sum up, we have shown that our self-supervised DNN-based power allocation policy
under imperfect CSI in Section 3.3 can generalize well over various system parameters for
CF and DF relaying, by simply adding them as input features with little change in the
architecture of the DNN and its training procedure (w.r.t. the custom loss function and
datasets).

4.4 Summary

In this Chapter, we investigate the challenge of selecting the appropriate relaying scheme
and propose two distinct approaches to choose between CF and DF relaying. We start by
introducing the first method, which is based on the comparison of the primary rate degra-
dation under the two relaying schemes. Then, we present the second method for selecting
the relaying scheme, which is based on an supervised DNN, where this DNN is trained using
optimal powers obtained via the self-supervised DNN described in the previous Chapter. We
elaborate the architecture of this DNN and the novel loss function employed to determine the
suitable relay choice between CF and DF. Additionally, we showcase numerical results that
highlight the new proposed dataset used for DNN training, the DNN training process itself,
and the evaluation of both approaches using diverse metrics such as primary rate degradation,
and secondary rate metrics across various channel estimation SNRs.

Furthermore, our study in this Chapter provides a comprehensive investigation of a novel
robust self-supervised DNN solution addressing power allocation challenges within cognitive
relay networks under imperfect CSI. This solution is capable of generalizing over critical
system parameters, such as the maximum allowed primary rate degradation τ and power
budgets (PR, PS), thus proving to be also a flexible solution.

Our approach to the generalization involves two phases: initially, we generalize over the
maximum allowed primary rate degradation or power budgets independently. Subsequently,
we extend our self-supervised DNN solution to jointly generalize over all system parameters.
The proposed self-supervised DNN solutions are validated through numerical results. The
presented results illustrate the self-supervised DNN’s efficacy in effectively generalizing over
the specified parameters, ensuring excellent performance under diverse conditions.

Our study demonstrates that our proposed self-supervised DNN-based power allocation
policy under imperfect CSI scenarios, showcases robust generalization capabilities. The archi-
tectural design, combined with well-suited training strategies, facilitates efficient adaptation
to diverse system parameters, consequently contributing to enhanced power allocation solu-
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tions in cognitive relay networks.
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Chapter 5

Conclusions and Perspectives

5.1 Summary of the manuscript contributions

In this PhD thesis, we investigate the constrained and non-convex Shannon rate maximiza-
tion problem of a relay-aided cognitive radio network. This network consists of a primary and
a secondary user-destination pair and a secondary full-duplex relay performing CF and DF.
The primary communication is protected by a QoS constraint in terms of tolerated Shannon
rate degradation. The relaying operation leads to non-convex objective and primary QoS
constraint. To address the power allocation problem, we propose to use deep learning tech-
niques, and we show that our DNN-based solutions can be rendered robust against imperfect
CSI with a modified training strategy. Then, we investigate DNN solutions for selecting the
best relaying scheme for our communication system. Finally, we demonstrate that our deep
learning solutions can generalize to the system parameters with a modification in the training
strategy.

More precisely, the contributions of this PhD thesis are as follows.

• Closed-form solution for CF relaying: Despite that the power allocation problem
under CF relaying is not a convex one, we derive a closed-form solution for it under per-
fect CSI based on the monotonicity of the objective function and the specific structure
of the feasible set.

• Unsupervised DNN-based power allocation for DF relaying: We tackle the
power allocation problem with perfect CSI and under DF relaying, where a closed-form
solution is not achievable. Instead, we employ the unsupervised DNN-based approach
that incorporates a cognitive radio tailored loss function. This approach relies solely on
perfect CSI, provided at the input of the DNN and of the loss function, during both the
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training and test phase. Our numerical results show that our unsupervised DNN-based
solution is able to maximize the secondary rate while minimzing the number of outage.

• Robust self-supervised DNN solution for imperfect CSI: A novel self-supervised
DNN-based solution is proposed to handle the power allocation problem under imper-
fect CSI. In the training phase of this self-supervised method, error-free channel estima-
tions are provided to the loss function, and only channels gains impaired by estimation
errors are provided at the input of the DNN. This approach demonstrated superior
robustness compared to the bruteforce method. Moreover, our results show that the
outage is much improved and stays below 5%, compared to the DNN trained with per-
fect CSI only, and our benchmark (i.e., brute force for DF, our closed-form solution for
CF).

• Combining self-supervised and supervised DNNs for relaying scheme selec-
tion: We investigate the problem of selecting the best relaying scheme for our com-
munication system. The first proposed method only exploits our robust DNN-based
power allocation policies under CF and DF and compares the two obtained primary
rate degradations: the relaying scheme exhibiting the smallest one is selected. We then
propose to add an extra DNN to learn to select the best relaying scheme. This extra
DNN solution exploits our robust DNN-based power allocation policies under CF and
DF, and employs a second supervised DNN for relaying scheme selection. The perfor-
mance of our communication system such as primary rate degradation, are improved
by selecting the best relaying scheme.

• Generalized self-supervised DNN-based solution: We study a novel robust self-
supervised DNN approach to solve power allocation problems in cognitive relay net-
works with imperfect CSI, with a generalization capability on system parameters. This
solution provides a more adaptable solution because it can generalize over important
system parameters such as power budgets and the maximum allowed primary rate
degradation. We adopt a two-step approach to the generalization. First, we generalize
over either the maximum primary rate degradation or the power budgets. Then, our
self-supervised DNN solution is expanded so that it can jointly generalize across all
system parameters.

Overall, the contributions of this work lie in the successful application of supervised,
unsupervised and self-supervised deep learning techniques, particularly DNN-based methods,
to optimize power allocation in cognitive relay-aided networks. These solutions proved to be
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effective, adaptable, and robust even in the presence of imperfect CSI, making them valuable
tools for resource allocation in future communication systems.

5.2 Perspectives

In this section, we will discuss some possible future research directions related to our work.

• In depth analysis of the secondary outage probability for imperfect CSI. Our study
introduces a simplified methodology, differing from the approach of minimizing outage
probability. The training dataset used in our study contains perfect CSI, and our
proposed DNN is designed with the objective of maximizing instantaneous rates, a term
similar to that used in the context of minimizing outage probability. It is expected that
this new strategy will show promising results in terms of outage probability. Moving
forward, our focus will delve deeper into the performance of our DNN specifically with
respect to outage probability. This further examination aims to provide validation and
a more thorough understanding of the effectiveness of our proposed DNN in addressing
the challenges posed by imperfect CSI.

Figure 5.1: Primary Transmitter-Receiver scenario using Sionna: blue antenna for transmit-
ter, green antenna for receiver.

• Investigating the efficacy of our proposed DNNs using realistic complex-gain chan-
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nels obtained from Sionna [128]. Sionna is an open-source GPU-accelerated link-level
simulator that utilizes Ray-tracing capabilities to simulate wireless 5G/6G networks,
developed by NVIDIA. By employing these real-world channel conditions, we can eval-
uate the performance of our DNNs-based solutions in a practical and realistic setting.
When applying our proposed DNN solution to solve the power allocation problem with
complex wireless channels, a modification of the DNN architecture and a custom loss
function is required when using complex channel gains. This work is already under
study. We are currently designing a realistic setup, and the first numerical results are
under investigation. Furthermore, given the complex channel gains in such realistic
settings, for which the achievable Shannon rate regions have been derived in [129], we
can explore another perspective: investigating the feasibility of a closed-form solution
for the power allocation problem under complex channels and CF relaying.

• Considering more complex multi-user networks composed of an increased number of cel-
lular, opportunistic users and helping relays. Then, moving towards distributed deep
learning, where each of the users and relays computes locally it’s own transmission’s
parameters (optimal relaying schemes and parameters as well as power allocation). For
that, we can exploit tools from distributed deep learning (e.g., federated learning) to
propose new resource allocation algorithms for cooperative multi-tier networks. These
approaches can enhance the efficiency of resource allocation in complex network sce-
narios.

• Application of few-shot learning, which is indeed a promising approach when dealing
with limited data scenarios, such as the case of channel gain estimation in Sionna. In
our study, it was observed that channel gain computation and building a large dataset
was time-consuming. However, few-shot learning can help alleviate these challenges
by enabling a DNN to learn with only a small amount of data. Additionally, one
application of few-shot learning is for classification problems. Since we have a relaying
selection problem, which is essentially a classification problem that requires training
with multiple data, we can apply few-shot learning techniques to select the best relaying
scheme.

These future research directions can pave the way for innovative solutions and advance-
ments in cooperative wireless networks, addressing the evolving demands of modern commu-
nication systems.
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Appendix A

Proof of Theorem 1

Proof In [H1]–[H4], the search for the optimal solution is reduced to the candidate points
meeting the QoS constraint with equality. Hence, by setting P ∗

R = x, P ∗
S = A−gRP x

gSP
, the

original problem (OCF) is reduced to (OCFx).

Proposition 1 By studying the different cases in Fig. 2.2, the values of xℓ and xu defining
the feasible set of (OCFx) are

[xℓ; xu] =



[
0; A

gRP

]
, if [H1] is met,[

A−gSP PS

gRP
; A

gRP

]
, if [H2] is met,[

0; PR

]
, if [H3] is met,[

A−gSP PS

gRP
; PR

]
, if [H4] is met.

Now, the derivation of the closed-form solution x∗ to the reduced problem (OCFx)
amounts simply to the analysis of the first order derivative of the objective, denoted by f ′(x),
and the critical points, which are the solutions to f ′(x) = 0. The latter reduces to a second-
order equation, whose roots are given by −C1C5±

√
∆′

C1C4
, where ∆′ = C2

1C2
5 −C1C4(C2C5 −C3C4)

represents the corresponding reduced discriminant. Ultimately, the analytical expression of
x∗ depends on the sign of the dominant coefficient C1C4 (of f ′(x) = 0), the sign of ∆′, and
on the relative position of the critical points (when they exist) w.r.t. the feasible set [xℓ; xu]
given in Proposition 1. The next Theorem, although tedious presents the optimal relay power
solving the optimization problem given in (2.4).

Theorem 2 When the relay employs CF over the cooperative cognitive radio network, the
optimal relay power allocation under cases [H1] to [H4] is given as follows in closed form:
If ∆′ > 0 and C1C4 ̸= 0, then the optimal value of P ∗

R = x is given in the Table A.1.
If ∆′ ≤ 0, then the optimal value P ∗

R is P ∗
R = xu if C1C4 > 0; P ∗

R = xl if C1C4 < 0.



A Proof of Theorem 1

xm ≥ xu xm ∈ [xl; xu] xm ∈ [xl; xu] xm < xl xm < xl xm < xl

xM ≥ xu xM > xu xM ∈ [xl; xu] xM ≤ xu xM ∈ [xl, xu] xM < xl

C1C4 > 0 xu x1 arg max{f(x1); f(xu)} xl arg max{f(xl); f(xu)} xu

C1C4 < 0 xl arg max{f(xl); f(xu)} arg max{f(xl); f(x1)} xu x1 xl

Table A.1: Optimal relay allocation under cases [H1] to [H4] when ∆′ > 0.

If C1C4 = 0, the optimal relay power is given as
1) if C1C5 > 0,
i) if xu ≤ x0, then P ∗

R = xl

ii) if xl ≤ x0 < xu, then P ∗
R = arg max{f(xl), (xu)}

iii) if x0 < xl, then P ∗
R = xu.

2) if C1C5 < 0,
i) if xu ≤ x0, then P ∗

R = xu

ii) if xl ≤ x0 < xu, then P ∗
R = x0

iii) if x0 < xl, then P ∗
R = xl.

3) if C1C5 = 0, P ∗
R = xu if C2C5 − C3C4 ≥ 0; P ∗

R = xl otherwise. In all these cases, the
optimal secondary power is given as P ∗

S = A−gRP P ∗
R

gSP
.

Under [H5], the optimal power allocation policy is given as P ∗
R = PR, P ∗

S = PS.
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