
HAL Id: tel-04430712
https://hal.science/tel-04430712

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Enhancement Effort Estimation Approach
using Machine Learning Techniques

Zaineb Sakhrawi

To cite this version:
Zaineb Sakhrawi. Towards an Enhancement Effort Estimation Approach using Machine Learning
Techniques. Computer Science [cs]. université de sfax, 2022. English. �NNT : �. �tel-04430712�

https://hal.science/tel-04430712
https://hal.archives-ouvertes.fr

DOCTORAL THESIS

For obtaining the title of Doctor in

Computer science

Towards an Enhancement Effort Estimation Approach

using Machine Learning Techniques

Presented and publicly supported by:

Zaineb SAKHRAWI

Defended on 24 September 2022 in front of the jury composed by:

Mrs. Ikram AMOUS Full Professor - ENET'Com-Sfax Chair

Mrs. Nadia BOUASSIDA Full Professor - ISIM-Sfax Supervisor

Mr. Ali IDRI Full Professor – ENSIAS- Mohammed V-

souissi, Rabat
Reviewer

Mr. Hatem HADJ KACEM Associate Professor- FSEG-Sfax Reviewer

Mr. Mounir MARRAKCHI Associate Professor- FS-Sfax Examiner

Mrs. Asma SELLAMI Assistant Professor - ISIM-Sfax Co-supervisor

Academic year: 2021-2022

UNIVERSITY OF SFAX

Faculty of Economics and Management of
Sfax

TUNISIAN REPUBLIC
Ministry of Higher Education

and Scientific Research

Dedicace

All praise is to ALLAH the most passionate and the merciful. May his Prophet be
blessed with peace and blessings. I am grateful to ALLAH for endowing me with the
ability to perform this thesis. I dedicate this work to my mother and father, whose

prayers and love never left me while I worked on this thesis away from home. When I
encountered difficulties, their prayers and encouragement made my work easier. It
would not have been possible for me to pursue higher education in Sfax without the
kind support and encouragement of my family. Special thanks to my two adorable
sisters « Awatef and Afef » for their assistance and love. Thank you for being sisters

who know how to make life more worthwhile. Thanks to my four kind brothers « Abdel
Sattar, Hassen, Abdel Raouf, and Abdel Latif » for their moral and financial support

and encouragement.

Zaineb SAKHRAWI

Acknowledgement

I want to thank everyone who helped make this thesis a reality. First and foremost, I
would like to express my gratitude to my two supervisors, Dr. Nadia Bouassida and Dr.
Asma Sellami, for providing me with the opportunity to complete this doctoral research.
Thank you for all of your suggestions and discussions that assisted me in completing this
work.

Thank you Dr. Nadia Bouassida, for your moral support in overcoming the Ph.D.
challenges, and I am grateful for your dedication to assisting me in making the most
of my Ph.D. I would also like to thank Dr. Asma Sellami for her advice, friendship,
understanding, and financial support as well as for teaching me how to be a successful
researcher.

Aside from my supervisors, I’d like to thank everyone on the jury who read and
commented on my thesis. I would like to express my gratitude to the members of the
thesis examining committee, Mrs. Ikram AMOUS, Mr. Hatem HADJ KACEM, Mr. Ali
IDRI and Mr. Mounir MARRAKCHI for the time they spent on reviewing my thesis.

I also want to thank all of the MIRACL team researchers for their assistance and
support. Finally, I’d like to express my gratitude to all of my friends, whose company
and unwavering support made this journey exciting and enjoyable.

Zaineb SAKHRAWI

Résumé

Vers une approche d’estimation de l’effort des changements dans les exigences
logicielles en utilisant les techniques d’apprentissage automatique

Zaineb SAKHRAWI

L’estimation a souvent été considéré comme l’un des défis les plus importants dans la
plupart des organisations logicielles. Plusieurs projets s’achèvent en retard, en dehors
des budgets, avec moins de fonctionnalités que prévues et sans aucune indication sur
leur degré de qualité. Des considérations comme celles de l’utilisation des estimations
inexactes influent fortement sur le succès des projets logiciels. En effet, des estimations
inexactes suscitent des attentes irréalistes et contribuent à l’insatisfaction du client. Des
estimations précises conviennent à des prises de décisions appropriées au moment oppor-
tun. D’autre part, des demandes d’améliorations pour ajouter de nouvelles exigences,
changer des exigences existantes ou même améliorer l’usage du produit logiciel constitue
une source d’erreurs dans ces estimations. Par conséquent, ils peuvent augmenter le
coût de développement ou de maintenance de logiciels, perturber le calendrier du projet
et même influencer la qualité du produit final. Plusieurs approches avec divers modèles
d’estimation sont proposées pour fournir une estimation plus précise de l’effort des projets
logiciels. Il existe trois grandes catégories de ces modèles tels que le jugement d’expert, les
modèles algorithmiques (exemple, COCOMO II) et les modèles non algorithmiques (tels
que les techniques d’apprentissage automatique). Plusieurs chercheurs s’entendent sur
l’efficacité de l’utilisation des techniques d’apprentissage automatique comparativement
aux autres techniques d’estimations.

Face aux problèmes ci-dessus énumérés, nous avons proposé les contributions suiv-
antes:

— La première contribution consiste à mener une étude d’arrimage systématique de
la littérature (SMS) sur l’estimation de l’effort requis pour compléter une amélio-
ration dans les projets logiciels en se basant sur « A Systematic Mapping Study –

IV

SMS in Software Engineering [1]». La revue a été réalisée en examinant les articles
pertinents durant la période de 1995 à 2020 pour déterminer les principaux facteurs
utilisés dans l’évaluation des améliorations et l’estimation de l’effort correspondant
à l’aide des techniques de ML. L’approche par SMS a pu sélectionner 30 études
pertinentes. 19 extraits de revues et 11 actes de conférence via quatre moteurs de
recherche (Google Scholar, IEEExplore, ACM Digital library, and ScienceDirect).
Cette revue supporte les chercheurs à identifier et à structurer les méthodes util-
isées dans le domaine d’estimation de l’effort dans les projets d’améliorations de
logiciels. Les résultats de l’étude SMS ont montré qu’il y a très peu d’investigation
dans l’estimation de l’effort requis pour implémenter une amélioration dans les pro-
jets d’améliorations de logiciels. La plupart des approches proposées utilisent les
techniques d’apprentissage automatique.

— La deuxième contribution est la proposition d’une nouvelle approche de prédiction
de l’effort d’une amélioration dans les exigences logicielles (SEEE). Cette approche
porte sur deux volets. Le premier volet consiste à proposer un nouveau modèle basé
sur l’ontologie pour la classification des demandes d’améliorations en des change-
ments fonctionnels et des changements techniques. Cette étude a été conduite en
se basant sur des résultats expérimentaux menés sur des projets réels provenant
de l’industrie du logiciel et sur le référentiel PROMISE. La classification permet
aux gestionnaires et aux intervenants d’être sélectifs dans l’utilisation des méth-
odes MTF (Mesure de taille fonctionnelle de logiciels). Ainsi, nous avons construit
notre ensemble de données en associant chaque demande d’amélioration fonction-
nelle avec son effort correspondant en utilisant le jugement d’expert. Le deuxième
volet porte sur la prédiction de l’effort d’améliorations des exigences logicielles en
utilisant l’ensemble de données construit dans le premier volet. Nous avons choisi
quatre méthodes d’apprentissage automatiques pour faire la prédiction: Ada Boost
Regression (ABR), Gradient Boosting Regression (GBR), Linear support Vecteur
Regression (Linear SVR) et Random Forest Regression (RFR). Les résultats ont
montré que le degré de précision de SEEE est meilleur en utilisant l’ontologie avec
l’algorithme RFR.

— La troisième contribution consiste à examiner l’utilisation des méthodes MTF du
logiciel de IFPUG et COSMIC pour vérifier l’impact de l’utilisation de la taille
fonctionnelle d’une amélioration logicielle sur la précision de l’estimation de l’effort
requis pour compléter cette amélioration. Cette contribution a abouti à l’efficacité
de la deuxième génération de MTF (COSMIC) comparativement à la première
génération (IFPUG) pour mesurer la taille des améliorations et son utilisation pour
prédire l’effort d’amélioration des exigences et celui de produit logiciel résultant.

V

— La quatrième contribution consiste à utiliser l’algorithme de sélection des caractéris-
tiques corrélées (CFS) pour sélectionner les attributs (features) les plus pertinents
en utilisant le référentiel ISBSG (International Software Benchmarking Standards
Group). L’application du CFS a montré qu’il y a une forte corrélation entre la
taille et l’effort d’amélioration logicielle. Nous avons utilisé l’algorithme M5P pour
prédire l’effort (SEEE). La performance de cet algorithme (M5P) a été comparée
par rapport à trois techniques de régression d’apprentissage automatique: Gradient
Boosting Regressor (GBRegr), Linear support Vector Regression (LinearSVR) et
Random Forest Regression (RFR). Les résultats ont montré que le degré de préci-
sion de SEEE est meilleur en utilisant l’algorithme CFS avec l’algorithme M5P.

— La cinquième contribution consiste à proposer une nouvelle approche qui a étudié
l’utilisation de la technique « Stacking Ensemble » pour accroitre le degré de préci-
sion de SEEE. Le modèle Stacking Ensemble que nous avons construit combine trois
modèles de régression: GBRegr, LinearSVR et RFR. Comparativement à l’approche
basée sur l’utilisation d’un seul modèle d’apprentissage (M5P), le modèle Stacking
Ensemble a donné des résultats plus précis.

— La sixième contribution consiste à développer une application web "ERWebApp"
pour obtenir rapidement le SEEE. L’application Web développée est destinée à
générer tout d’abord la taille fonctionnelle d’une amélioration, puis à estimer l’effort
correspondant à cette amélioration à l’aide du modèle « Stacking Ensemble ».

Mots-clés: Étude d’arrimage systématique (SMS), amélioration ou Changement fonc-
tionnel, Prédiction, Estimation, Effort, Apprentissage Automatique, Agile

Abstract

Towards a Software Enhancement Effort Estimation Approach Using Machine
Learning Techniques

Zaineb SAKHRAWI

Estimating has often been seen as one of the biggest challenges in most software orga-
nizations. Several projects are ending late, out of budget, with less functionality than
expected, and without any indication of their levels of quality. Considerations such as
the use of inaccurate estimates strongly influence the success of software projects. This
is because inaccurate estimates raise unrealistic expectations and contribute to customer
dissatisfaction. Accurate estimates are suitable for making appropriate decisions at the
right time. On the other hand, enhancement requests to add new requirements, improve
existing requirements or change the usage of software products are a source of errors
in these estimates. Therefore, they can increase the cost of software development or
Enhancement (maintenance) projects, disrupt the project schedule, and even influence
the quality of the final product. Many approaches with various estimation models are
proposed to provide a more accurate effort estimation of software development and en-
hancement projects. There are three main categories of these models such as expert
judgment, algorithmic models (e.g., COCOMO II), and non-algorithmic models (such as
Machine Learning techniques). Several researchers agree on the effectiveness of the use
of ML techniques compared to other estimation techniques.

To resolve those problems listed above, we proposed the following contributions:

— The first contribution consists in conducting a review on estimating the effort re-
quired to complete an enhancement in software projects based on “A Systematic
Mapping Study – SMS in Software Engineering [1]”. The SMS was carried out by
surveying relevant papers from 1995 to 2020 to determine the main factors used in

VII

evaluating ER and estimating the corresponding effort using ML techniques. The
SMS selects 30 relevant studies. 19 published journals and 11 conference proceed-
ings via four search engines (Google Scholar, IEEExplore, ACM Digital library,
and ScienceDirect). This review supports researchers in identifying and structuring
methods used in the field of effort estimation in software development and enhance-
ment projects. The results of the SMS showed that there is a very little investi-
gation on estimating the effort required to implement an enhancement in software
enhancement projects. Most of the proposed approaches used ML techniques.

— The second contribution consists in proposing a new approach for estimating the ef-
fort required to implement an enhancement in software requirements. This approach
has two phases. The first phase consists in proposing an Ontology-based Model
Classification (OMC) for classifying customer ER as either Functional Change or
Technical Change. This study was conducted based on experimental results carried
out on real projects from the software industry and on the PROMISE repository.
The classification allows managers and stakeholders to be selective in the use of
the FSM (Functional size measurement) method. Thus, we built a data set by
associating each Enhancement Request (ER) with its corresponding effort using
Expert judgment. The second phase deals with the prediction of Software enhance-
ment effort (SEEE) using the dataset built in the first part. Four machine learning
methods were selected to make the prediction: Ada Boost Regressor (ABR), Gra-
dient Boosting Regressor (GBR), Linear support Vector Regression (Linear SVR),
and Random Forest Regression (RFR). Results showed that the level of accuracy
of the SEEE is improved when using the ontology with the RFR algorithm.

— The third contribution consists in investigating the impact of an enhancement func-
tional size through the use of IFPUG and COSMIC FSM methods on the accuracy
of the SEEE. This contribution resulted in the effectiveness of the second gener-
ation COSMIC FSM method compared to the first generation IFPUG for sizing
an enhancement and its use to make an enhancement estimation, and that of the
resulting software product.

— The fourth contribution consists in using the Correlated Feature Selection (CFS)
algorithm to select the most relevant features using the ISBSG (International Soft-
ware Benchmarking Standards Group) repository. The application of CFS has
shown that there is a strong correlation between size and software enhancement
effort. The M5P algorithm was used to provide the SEEE. The performance of this
algorithm was compared against three ML regression techniques: Gradient Boosting
Regressor (GBRegr), Linear support Vector Regression (LinearSVR), and Random

VIII

Forest Regression (RFR). Results showed that the accuracy of SEEE was improved
when using the CFS algorithm with the M5P algorithm.

— The fifth contribution consists in proposing a new approach that investigates the use
of the “Stacking Ensemble” model to increase the level of accuracy of SEEE. Our
constructed Stacking Ensemble model combines three regression models: GBRegr,
LinearSVR, and RFR. Compared to the approach based on using a single learning
model (M5P), the Stacking Ensemble model gives more accurate results.

— The sixth contribution consists in developing a Web application named "ERWe-
bApp" to quickly make SEEE. The developed Web application is intended to first
generate the functional size of an enhancement, then estimate the effort correspond-
ing to this enhancement using the “Stacking Ensemble” model.

Keywords: Systematic Mapping Study (SMS), Enhancement Request (ER), Ontology,
Software Enhancement Effort Estimation (SEEE), Machine Learning (ML) techniques,
Agile (Scrum)

Glossary

CFP: COSMIC Function Point.

CFS: Correlation based Feature Selection.

COSMIC: Common Software Measurement International Consortium.

COCOMO: COnstructive COst MOdel.

CR: Change Request.

ER: Enhancement Request.

E: Entry.

FC: Functional Change.

TC: Technical Change.

FP: Functional Process.

FPA: Function Point Analysis.

FS: Functional Size.

FS(FC): Functional Size of a Functional Change.

FSM: Functional Size Measurement.

FUR: Functional User Requirements.

IFPUG: International Function Point Users Group.

ISBSG: International Software Benchmarking Standard Group.

ISO: International Organization for Standardization.

KSLOC: Kilo-Source Lines of Code.

LOC: Lines of Code.

ML: Machine Learning.

NFR: Non-Functional Requirements.

PRC: Project Requirements and Constraints.

X

R: Read.

SE: Software Engineering.

SF: Scale Factors.

SDLC: Software Development Life Cycle.

SMLC: Software Maintenance Life-Cycle.

SLOC: Source Lines of Code.

SEEE: Software Enhancement Effort Estimation.

SR: System Requirement.

SVR: Support Vector Regression.

SP: Software Process.

UML: Unified Modeling Language.

UC: Use Case.

US: User Story.

W: Write.

X: eXit.

Contents

INTRODUCTION 1
Context . 1

Research Problem Statement . 2

Objectives and Contributions . 3

Originality . 4

Research Design Methodology . 5

Thesis Structure . 6

1 Background: The nature of Software Maintenance, Measurement and Estimat-
ing 9
1.1 Introduction . 10

1.2 Software Maintenance . 11

1.2.1 Definition . 11

1.2.2 Software Maintenance Challenge 13

1.3 Software Measurement . 13

1.3.1 Software Size . 14

1.3.2 Source Lines of Code (SLOC) . 15

1.3.3 Functional Size Measurement Methods 16

1.3.3.1 IFPUG FSM Method 16

1.3.3.2 COSMIC FSM Method 16

1.3.4 Sizing software enhancement using COSMIC FSM Method 18

1.4 Software Project Estimation Models . 20

1.4.1 Algorithmic model . 20

1.4.2 Non-algorithmic model . 21

1.4.3 ML techniques for Regression problem 21

1.4.3.1 Data Preprocessing phase 21

XII CONTENTS

1.4.3.2 Prediction models phase 23

1.4.3.3 Decision-making phase 27

1.5 Estimating in the Context of Traditional and Agile Software Projects . . 27

1.5.1 Switching from Waterfall to Agile 27

1.5.2 The different Agile Approaches 28

1.5.2.1 eXtreme Programming 28

1.5.2.2 Scrum . 28

1.5.2.3 Kanban . 28

1.5.3 Differences between Traditional and Agile approaches 29

1.5.4 Estimating in the context of Scrum 29

1.6 Conclusion . 30

2 Systematic Mapping Study: Software Enhancement Effort Estimation using
Machine Learning Techniques 31
2.1 Introduction . 32

2.2 SMS Methodology for SEEE . 34

2.2.1 Defining the mapping questions 34

2.2.2 Conducting the search for primary studies 35

2.2.3 Screening studies . 35

2.2.4 Key wording of abstracts . 37

2.2.5 Data Extraction . 38

2.3 Mapping results . 38

2.4 Implication for research and practice . 50

2.5 Conclusion . 53

3 Ontology-based Classification of Enhancements with their corresponding Effort
Estimation 54
3.1 Introduction . 55

3.2 Research Work Process Overview . 56

3.3 Gathering Data . 56

3.4 Ontology based-Semantic Classification 57

3.4.1 Ontology Specification . 59

3.4.2 Ontology Conceptualization . 60

3.4.2.1 Populating Ontology with FC 62

3.4.2.2 Populating Ontology with Enhancement effort derived from
Expert judgment approach 62

3.4.3 Ontology Implementation . 63

3.5 Constructing Prediction Models and Evaluation 67

CONTENTS XIII

3.5.1 Simple split . 67

3.5.2 Cross validation . 68

3.6 Discussion and Comparison . 69

3.7 Conclusion . 70

4 Towards the use of COSMIC FSM method for improving SEEE within the
context of classical and Agile projects 71
4.1 Introduction . 72

4.2 On the use of FSM methods for more accurate Prediction in the traditional
software Enhancement projects . 73

4.2.1 Data Preprocessing . 73

4.2.2 Using the CFS algorithm . 75

4.2.2.1 Computation of Score P for the selected features from
COSMIC_dataset using Pearson’s correlation coefficient 76

4.2.2.2 Computation of Score P for the selected features from
IFPUG_dataset using Pearson’s correlation coefficient . 77

4.2.3 Constructing SEEE Models . 78

4.2.4 Empirical Results . 79

4.2.4.1 Performance Assessment when using COSMIC sizing . . 79

4.2.4.2 Performance Assessment when using IFPUG sizing . . . 80

4.2.5 Discussion and Comparison . 80

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 81

4.3.1 Data collection . 81

4.3.1.1 Effort generated from the application of Planning Poker
technique . 81

4.3.1.2 Enhancement Size generated form the application of COS-
MIC method . 83

4.3.1.2.1 Measurement strategy phase 83

4.3.1.2.2 Mapping Phase: US to COSMIC Functional Pro-
cess (FP) . 83

4.3.1.2.3 Measurement phase 85

4.3.1.3 Applying CFS algorithm 85

4.3.1.3.1 Identifying relevant features 86

4.3.1.3.2 Determining the correlation between the COS-
MIC Functional Size of an enhancement and its
corresponding effort 88

XIV CONTENTS

4.3.1.3.3 Determining the correlation between the SEEE
and the Actual effort 88

4.3.2 Creating Prediction Models . 89

4.3.3 Empirical Analysis Results . 90

4.3.3.1 Performance Assessment without the Enhancement size
feature . 90

4.3.3.2 Performance Assessment with the use of the Enhancement
size feature . 91

4.4 Discussion and Comparison . 92

4.5 Conclusion . 94

5 Software Enhancement Effort Estimation using Stacking Ensemble method 95
5.1 Introduction . 96

5.2 Research Process . 97

5.2.1 Data Collection . 97

5.2.2 Relevant Features Extraction based on the CFS algorithm 97

5.3 Constructing Individuals Estimation Models 99

5.3.1 Performance Assessment without using CFS algorithm 100

5.3.2 Performance Assessment using CFS algorithm 101

5.4 Constructing Estimation stacking ensemble model 101

5.4.1 Selecting estimators and meta-model 102

5.4.2 Constructing the SEEE model . 103

5.5 Discussion and Comparison . 104

5.6 Automatically SEEE through a ERWebApp 107

5.6.1 ERWebApp Users . 107

5.6.2 Product Owner Interface: Submit ER 108

5.6.3 Development Team Interface . 108

5.6.3.1 Enhancement Request Details 108

5.6.3.2 A Web page for SEEE 110

5.6.3.3 Scrum Master Web Page 111

5.7 Conclusion . 113

Conclusion and Perspectives 114
Recall Thesis Contributions . 114

Perspectives . 117

Bibliography 118

CONTENTS XV

Appendix A: Primary Studies 131

Appendix B: Example of Ontology’s class and its corresponding customer’s review132

Appendix C: User story Functional sizing example 133

Publications 136

List of Figures

1 Research Work Process . 7

1.1 Software Maintenance Process [26] . 12

1.2 Classification of software effort estimation models 20

2.1 Distribution of years for SEEE area . 39

2.2 The distribution of publication type . 39

2.3 The distribution of performance metrics used for evaluating SEEE 44

2.4 Percentage of studies using each type of datasets 47

2.5 The distribution of singles models used for enhancement effort prediction 49

3.1 Research Work Process Overview . 57

3.2 Semantic Classification with Ontology 58

3.3 Ontology-based Semantic Classification Model of ER 61

3.4 Functional Change DL Rule result . 65

3.5 Ontology with Reasoner . 66

3.6 Prediction analysis using MAE, MSE and RMSE 68

4.1 Research method design . 74

4.2 Pearson’s correlation heat map for COSMIC_dataset 76

4.3 Pearson’s correlation heat map for IFPUG_dataset 78

4.4 Research work process . 81

4.5 The COSMIC FSM method . 83

4.6 Pearson’s correlation heat map . 87

4.7 Performance Assessment without using the Enhancement size feature . . 91

4.8 Performance Assessment with the Enhancement size feature 92

4.9 Positive correlation curve . 93

5.1 Research method design . 98

LIST OF FIGURES XVII

5.2 Pearson correlation heat map . 99

5.3 ML techniques accuracy . 102

5.4 ML "estimators" and the average of their predictions 103

5.5 Regressor estimation score . 104

5.6 ML techniques Performance Assessment 106

5.7 ML techniques accuracy . 106

5.8 Login Page Product Owner . 109

5.9 Submit ER . 110

5.10 Development Team Interface . 110

5.11 ER Details . 111

5.12 Regulate ER page . 111

5.13 Estimating ER Effort . 112

5.14 Estimating ER Effort with Anvil . 112

5.15 Scrum Master . 112

List of Tables

1 Summary of the research problem . 8

1.1 Agile vs. Traditional software development 29

2.1 Mapping questions and objectives . 34

2.2 Selected journals and conference proceedings 36

2.3 Data Extraction Properties with their mapping questions 38

2.4 The distribution of years for SEEE area 39

2.5 Characteristics of a "good" Requirement 41

2.6 Software Maintenance type used for effort prediction 41

2.7 Criteria used for evaluating SEEE . 44

2.8 ML techniques and data sets used for SEEE 45

2.9 Independent variables used for SEEE . 48

2.10 Performance of MRE value for selected primary studies using ISBSG dataset 50

3.1 Ontology class specifications . 59

3.2 Ontology Inter-relationship description 60

3.3 Expert Judgement Experience . 62

3.4 Example: Enhancement Effort Estimation based on Expert Judgement . 63

3.5 Categorizing the Customer’s ER . 64

3.6 Rule 1 . 64

3.7 Prediction analysis using MAE, MSE and RMSE 68

3.8 10-Fold Cross Validation accuracy . 69

4.1 First Data of software enhancement projects from the ISBSG dataset . . 75

4.2 Selected Feature correlation when using COSMIC_dataset 77

4.3 Selected Feature correlation when using IFPUG_dataset 77

4.4 Parameters values for Grid Search . 79

LIST OF TABLES XIX

4.5 Prediction analysis using MAE, RMSE and SA for COSMIC_dataset . . 79

4.6 Prediction analysis using MAE, RMSE and SA for IFPUG_dataset . . . 80

4.7 Mapping of US in sprint 1 with COSMIC Functional Change 84

4.8 Sizing the “Add Custom Evidence Type” enhancement in CFP units . . 86

4.9 Description of Selected Features . 87

4.10 Selected Features . 88

4.11 Parameters values for Grid Search . 90

4.12 MAE and RMSE without sizing the “Functional change" feature 90

4.13 Prediction analysis using MAE, RMSE with the Enhancement size feature 91

5.1 Selected Feature correlation . 98

5.2 Parameters values for Grid Search . 100

5.3 Prediction analysis using MAE and RMSE 100

5.4 Prediction analysis using 10-folds Cross Validation methods 101

5.5 Prediction analysis using MAE, RMSE and SA 101

5.6 Stacking ensemble regression model parameters’ 102

5.7 Prediction analysis using R2 Score . 103

5.8 Parameters values for Grid Search . 104

5.9 Prediction analysis using MAE, RMSE and r2_score 105

INTRODUCTION

"I feel very strongly that any
introduction to a new subject
written by a competent person
confers a real benefit on the
whole science."

Ernest William Hobson

Context

Managing and planning software projects are regarded as one of the challenging problems
in software engineering. A software project may include three types of development: new
development, enhancement, and redevelopment [2]. Unlike software development which
is requirements driven [3], software maintenance is event-driven and it is categorized as
correction or enhancement [4]. Although most of the software projects are maintained [5],
Software maintenance has not received the same degree of attention that the other phases
have [6]. Among the major key issues of software maintenance is the cost estimation [6].
More accurate estimation of software maintenance effort or cost contributes to better
management and control for software maintenance [7]. The category of Software mainte-
nance used in our study is enhancement. The enhancement is defined as a change to an
existing software product to meet a new requirement [4]. Software maintenance is prob-
lematic if the software product is not developed for maintenance [8]. Software estimation
(also known as software prediction) is one of the key activities of software development
and maintenance project planning. According to a study on Software development effort
estimation [9], effort prediction is needed. However, only a few studies investigate the
importance of enhancement effort [5]. Accurate estimates reduced the costs of software
enhancement projects. However, inaccurate estimates have a significant impact on the

2 INTRODUCTION

success of software projects by creating unrealistic expectations and contributing to cus-
tomer dissatisfaction. Even in industries that use modern software development methods
such as agile methodology, software estimation is still a critical process. Regarding the
listed issues, this thesis looked at how to obtain an accurate estimate of software enhance-
ment effort when using ML techniques in both traditional and agile software projects. It
focused also on identifying the impact of the Functional Size (FS) of an Enhancement
Request (ER) generated from different standardized Functional Size Measurement (FSM)
methods on the effort estimation performance. It proposes an approach for estimating
software enhancement effort that is based on the use of the COSMIC FSM method as a
primary independent variable and Machine Learning (ML) techniques.

In this introduction, we will discuss the different research problems in Software En-
hancement Effort Estimation (SEEE). Then, we list the thesis objectives and contribu-
tions. Afterward, in comparison to previous studies, we present the originality of our
work. Following that, we provide an overview of the research process methodology. Fi-
nally, we outline the thesis’s structure.

Research Problem Statement

Customers may now share, post, and tweet their satisfaction or dissatisfaction with any
services, and as a result, they have the power to directly influence the software organiza-
tion’s vision. As Bill Gate said, “Your most unhappy customers are your greatest source
of learning” 1. Indeed, the ability to meet all customer requests should never be used
to determine the success of a software project. It can only be proven by its ability to
meet the customer’s requests over time [10]. Because enhancement requests are frequent
software project planning should be reviewed regularly. Thus, customers often expressed
their feedback or ER in natural language. These requests are most often ambiguous and
not well defined. In order to provide an accurate SEEE, an improved ER description is
needed. It is important to note that the accuracy of the SEEE model varies according to
the nature of the project and the type of software to be developed or maintained. When
compared to software development, the cost of software maintenance typically necessi-
tates more time and resources. Many models have been developed to help with estimation
[11]. Indeed, for some organizations, approximate estimates are sufficient to determine
the project’s required value. On the other hand, other organizations believe that accurate

1. https://www.oxfordreference.com/view/10.1093/acref/9780191826719.001.0001/q-oro-ed4-00012282

3

estimates are the foundation of good project management. Many approaches with vari-
ous estimation models are proposed to provide more accurate software effort estimation.
This mandate requires immediate attention to several Research Questions (RQ):

— RQ1: How should ER be identified and classified?

— RQ2: What is the most suitable FSM method to use for measuring the FS of an
enhancement?

— RQ3: What attributes (or features) influence estimate accuracy?

— RQ4: How can effort estimates be improved?

— RQ5: How assessing the performance or the accuracy of a model for estimating
software enhancement effort?

— RQ6: How important is the accurate estimate for improving both traditional and
Agile software project management?

Objectives and Contributions

In short, to meet the listed RQ, the objectives of this thesis are:

— Identify and classify ER using a semantic model.

— Investigate the effectiveness of using ISO Functional Size Measurement Methods
such as IFPUG ISO 20926 (first generation) and COSMIC ISO 19761 (second gen-
eration) as independent variables.

— Verify the impact of using FSM methods on the accuracy of SEEE in both tradi-
tional and modern (agile) enhancement projects.

— Identify the appropriate ML techniques for generating accurate SEEE.

— Provide automatically SEEE through a web application to help estimators quickly
and efficiently make SEEE.

To achieve these objectives, we have targeted the following contributions:

1. Conduct a Systematic Mapping Study (SMS) to identify the pertinent area in SEEE.

2. Develop an ontology-based model to identify and classify customer ER as either
Functional Change (FC) or Technical Change (TC).

3. Use the correlation-based feature selection (CFS) to select the relevant variables to
our estimate (SEEE).

4 INTRODUCTION

4. Construct SEEE model using ML techniques separately: M5P algorithm, Ada Boost
Regression (ABReg), Gradient Boosting Regression (GBReg), LinearSupport Vec-
tor Regression (LinearSVR), and Random Forest Regression (RFR).

5. Build a stacking ensemble model to predict the total enhancement effort in person-
hours for a software enhancement project. The constructed Stacking ensemble
model combines three different ML techniques (GBRegr, LinearSVR, and RFR).
Prediction results using the stacking ensemble model will be compared to the model
using only the M5P algorithm.

6. Develop a web application named "ERWebApp" to quickly and efficiently make
SEEE. The developed ERWebApp is intended to first generate the enhancement
size in CFP units, and then estimate its corresponding effort using the stacking
ensemble model.

Originality

Regarding the software maintenance effort prediction approaches proposed in the litera-
ture, a small number of researchers have considered the quality of the estimation inputs.
This thesis highlights the influence of dataset quality on estimate accuracy. Choosing the
appropriate model input with a good understanding of enhancement requests is neces-
sary for an accurate prediction of the effort required for their implementation. Besides,
classifying enhancement requests will provide an understanding of both the project level
(effect on the project) and the requirements level (effect on other requirements). This
thesis aims to improve estimation models inputs by:

— Exploring the use of Ontology for semantically identifying and classifying ER. On-
tologies have long been used in the life sciences to formally represent and reason
about domain knowledge. It has recently become more popular as a source of
background knowledge in similarity-based analysis and ML techniques.

— Identifying the relationship between the independent variables (e.g, Enhancement
FS) and the dependent variable (the enhancement effort) using the Feature Selection
methods, namely the CFS algorithm.

When improving the accuracy of software effort estimation models, research papers in-
vestigated the use of ML techniques. Compared to the existing estimation models that
are based on algorithmic and non-algorithmic, ML techniques have been successfully used

5

as effective models for an accurate estimation of software effort. In the field of SM, we
discovered that only single models were used to predict maintenance effort. In this con-
text, this thesis aims to improve the estimation model output by constructing a stacking
ensemble model. The built stacking ensemble model combines three different ML tech-
niques (GBRegr, LinearSVR, and RFR). Predictions made with the stacking ensemble
model will be compared to those made with different single algorithms separately.

Since agile methodology encourages changes, several estimation techniques have been
proposed. In practice, story point-based estimations are used. Even in the scrum context,
some ER are trivial while others pose serious threats to the software project’s success.
Consequently, software organizations need rigorous and structured approaches to evaluate
ER. In this context, this thesis aims to improve the estimation model by investigating:

— The effectiveness of COSMIC methods for describing ER and sizing User Story
(US) in CFP units within the Scrum context.

— The use of FS (generated by COSMIC) of ER (expressed in the form of US) as a
primary independent variable for predicting enhancement effort for a scrum software
project.

Consequently, this thesis proposes a new Enhancement effort estimation approach that
can be applied in traditional and agile projects as well.

Research Design Methodology

Figure 1 presents our research process, where:

— Phase 1: Reviews relevant papers in the field of SEEE using the SMS Methodology.
Phase 1 is detailed in Chapter 2. The results are published in [12].

— Phase 2: First, proposes an Ontology-based Classification Model (OCM) that dis-
tinguishes two types of ER associated with software enhancement projects which
are referred to as functional Change (FC) and technical Change (TC). The results
are reported in [13]. Second, it uses the proposed OCM and the Expert Judgment
estimation approach in order to construct a semantic dataset. This dataset is used
as input for constructing a ML-based SEEE model. The results are published in
[14]. Phase 2 is detailed in Chapter 3.

— Phase 3: Investigates the applicability of the CFS algorithm for making a compari-
son between the first and second FSM generations. IFPUG and COSMIC methods

6 INTRODUCTION

are used for measuring the size of functional changes. Therefore the measurement
results are used as input for predicting SEE. The findings are published in [15].
Phase 3 is detailed in Chapter 4.

— Phase 4: Investigates the applicability of the COSMIC FSM method for measuring
the size of functional changes within the scrum context and determining their impact
on enhancement effort prediction. The findings are published in[16]. Phase 4 is
detailed in Chapter 4.

— Phase 5: Improves the input (International Software Benchmarking Standards
Group (ISBSG) dataset) of the SEEE where a set of selected ML techniques are
trained on a dataset with relevant features using the CFS algorithm. Then, the use
of the stacking ensemble model for estimating the enhancement effort of software
projects is evaluated. The stacking ensemble model is used to improve prediction
accuracy over individual models. As using this model manually is time-consuming,
we developed an ERWebApp to quickly and efficiently make SEEE. The results of
this phase are published in [17] and [18]. Phase 5 is detailed in Chapter 5.

Thesis Structure

This thesis is divided into five chapters, where:

— Chapter 1 introduces the general concepts of effort estimation for software mainte-
nance projects and software size measurement.

— Chapter 2 presents an SMS on the use of ML techniques for SEEE. The SMS was
carried out by surveying relevant papers from 1995 to 2020. We followed well-known
procedures.

— Chapter 3 provides an OCM for classifying ER as FC or TC. The proposed ap-
proach is applied to real-world projects from the software industry (six software
development project datasets including functional requirements requests and the
PROMISE repository including ER). We constructed our dataset by associating
each ER classified as FC with its corresponding effort using Expert Judgement.
The constructed dataset is used as input for various ML techniques for SEEE.

— Chapter 4 Investigates the use of the first and second FSM generations (i.e., IF-
PUG and COSMIC FSM methods for respectively sizing ER). And also the use of
the CFS algorithm. Firstly, the obtained FS will be used as input for estimating

7

PROMISE, Web

application,

textuel

description, use

case diagramme

(1)Classify ER Using Ontology

Functional

Change

(FC)

Technical

Change

(TC)

(2)Associate each FC with its

corresponding Effort using

Expert Judgment

(3)Make a SEEE using a set of

ML models

ISBSG (1) Preprocess Data (2.2) Use COSMIC FSM method

as primary independent variables

compared to other numerical

features

(4) Evaluate The accuracy of

SEEE models: The use of M5P

model give more accurate

result

(2.1) Select either IFPUG or

COSMIC FSM method for sizing

ER.
(3) Construct SEEE

using a set of ML

techniques

(4)Evaluate The accuracy of

SEEE models: The use of RFR

model give more accurate

result

(2.2) Construct a SEEE based on COSMIC FSM and

stacking ensemble model

(2.1) Output of Phase 3: SEEE based on COSMIC FSM

method and Individuals ML techniques

(3)Evaluate The accuracy of SEEE

models: The use of stacking ensemble

model give more accurate result

(2) Construct a SEEE based on the use of

the SVR model within Scrum context using

COSMIC Functional Size as independent

variable

Phase

1

(1)Preprocess Data

 Google

Scholar,

EEExplore,

ACM Digital

library, and

ScienceDirect.

(1) Defining the

mapping questions

 (2) Conducting the

search for primary

studies

(3) Screening

studies

 (4) Key-wording of

abstracts
(5) Extracting Data

(6) Mapping

Results

Phase

2

Phase

3

Scrum projects

dataset
(1) Preprocess Data

(3) Evaluate The accuracy of

SEEE models: The use of

stacking ensemble model give

more accurate result

Phase

4

Phase

5

ISBSG (2)Construct

Prediction Models

(2) Apply the CFS

SN Computer Science (2),

2021

Software Enhancement

Effort Prediction Using

Machine-Learning

Techniques: A Systematic

Mapping Study

International Journal of

Computer Information

Systems and Industrial

Management

Applications (12), 2020

Software Enhancement

Effort Estimation using

Machine Learning

Regression Methods

 i) International Conference on Software

and Software Reuse, 2020, Investigating

the Impact of Functional Size

Measurement on Predicting Software

Enhancement Effort Using Correlation-

Based Feature Selection Algorithm and

SVR Method

ii) International Conference on

Computer Systems and Applications,

2020, An Improved Prediction of

Software Enhancement Effort using

Correlation-based Feature Selection and

M5P ML algorithm

i) Cluster Computing Journal (24),

2021

Software enhancement effort

estimation using correlation-based

feature selection and stacking

ensemble method

 Phases/Sub-Phases Outcomes

(4) Create a web application

ERWebApp to automate the SEEE

i) International Journal on

Innovations in Systems and

Software Engineering (17), 2021

Support vector regression for

enhancement effort prediction of

Scrum projects from COSMIC

functional size

(ii) International Conference on

Software Technologies(17),2022,

Software Enhancement Effort

Estimation using Stacking Ensemble

Model within the Scrum Projects: A

Proposed Web Interface

Figure 1 – Research Work Process

8 INTRODUCTION

software effort in traditional enhancement projects. Following that, a comparison of
IFPUG with COSMIC is conducted to provide which one is more effective. Second,
in this chapter, we also investigate the use of the COSMIC FSM method as an in-
dependent variable for software estimation using the SVR enhancement estimation
model within the Scrum context.

— Chapter 5 Investigates the use of the stacking ensemble model for estimating the
enhancement effort (EME) of software projects. The goal is to improve the accuracy
of the estimation model over the individual models’ ones as described in Chapter
4. We compare two ML-based approaches for predicting SEE: the M5P (as an indi-
vidual model) and the stacking ensemble model as an ensemble method combining
different regression models (GBRegr, LinearSVR, and RFR) on the ISBSG dataset.
Afterward, we develop the ERWebApp. The proposed ERWebApp is designed to
first generate the enhancement FS and then estimate its corresponding effort.

— Finally, we summarize our work, highlight the restrictions and outline some of its
prospective extensions.

Table 1.1 summarizes the research problem tackled in this thesis.

Table 1 – Summary of the research problem

Motivation Enable stakeholders in a software company (project management, de-
velopment team, scrum master, etc.) to be selective (1) in their use of
the appropriate measurement method (COSMIC or IFPUG) regard-
ing the customers’ ER and (2) using the suitable effort estimation
model that improves the accuracy of the results (or estimates). This
is useful for the software company to not only evaluate but also make
appropriate decisions regarding the effort required to implement an
ER.

Object/Inputs ER classified through an ontology model, FS measured through COS-
MIC FSM method, ML techniques

Purpose Explore the applicability of (1) the COSMIC FSM method for sizing
ER (2) identify the impact of using enhancement size on the estimated
effort that is required to implement this ER in both traditional and
agile software projects (3) use of ML techniques to provide more
accurate estimated effort (in the traditional and agile project)

Perspective The software company roles include customer, project manager, anal-
ysis and design team, implementation and validation team, etc.

Domain Requirements enhancement management, requirements engineering,
size measurement, effort estimation and ML techniques

Scope PROMISE dataset, ISBSG dataset, web application and Scrum en-
hancement projects dataset

Chapter 1
Background: The nature of Software
Maintenance, Measurement and Estimating

Contents
1.1 Introduction . 10

1.2 Software Maintenance . 11

1.3 Software Measurement . 13

1.4 Software Project Estimation Models . 20

1.5 Estimating in the Context of Traditional and Agile Software Projects . . 27

1.6 Conclusion . 30

For most software organizations, it is a challenge to produce high-quality software
product that meets user requirements and customer expectations within a specified
time, scope, and cost. Indeed, software organizations’ survival depends not only on
rapid development but also on the adaptability to the enhancement requests. This
thesis addresses the problem of enhancement requirements management including
enhancement identification, presentation, measurement, and effort estimation. We
start this chapter by describing three basic concepts which are: software mainte-
nance, software measurement, and software project estimation.

In Short

10 Background: The nature of Software Maintenance, Measurement and Estimating

1.1 Introduction

In software maintenance activity, responding to the user ER is a critical task. The
more ER are clear, precise, and well-defined, the better software developers/ maintainers
will understand the functionality to be enhanced. Oppositely, unclear, imprecise, and
inaccurate ER forces software maintainers to ask for more clarifications. Consequently,
this may slow down the software maintenance progress. Identifying ER is integrated into
the requirements management activity. According to various research studies, the main
cause of project failure is the inability to manage changes to requirements or ER [19]. As
a result, managing requirements is important for understanding the impact of ER on the
enhancement effort and the project progress.

Requirements management is one of the four main software requirements process ac-
tivities [20], which are requirements elicitation, requirements analysis, requirements ac-
ceptance, and requirements management. The requirements elicitation activity concerns
the identification of the users’ needs and customers’ expectations. During the require-
ments analysis phase, more details about the users’ needs and the customer’s expectations
are provided. Both activities (requirements elicitation/analysis) require negotiation with
the customer and users. The requirements acceptance activity concerns the requirements
verification. By the end of this phase, the requirements baseline is provided. Thereafter,
when an ER is proposed, a requirement management activity is required to analyze the
enhancement impact on the requirements baseline. Hence, some modifications can be
made. ER can be expensive in terms of the common predictable variables; that is, effort,
time, and size. The effort represents the number of hours needed to develop or maintain
a software product in terms of person-months [21]. Time also named software project
schedule, duration, etc [2]. Afterward, the software size is expressed in terms of lines of
code or Function points [22]. To make changes and deliver the enhanced software product
with respect to the estimated deadlines and budget, it is required to establish an effective
evaluation of every single ER. To address this issue, in this chapter, we will investigate
the importance of using formal representation tools (such as ontology) to provide a clear
understanding of the enhancement purpose and assess its impact on the software system
as well as the development and maintenance progress.

In the same context, we propose to improve the ER description (i.e., a detailed de-
scription of the ER that facilitates their sizing). Measuring the Functional Size (FSM)
of a given requirement or an enhancement is one of the most important factors influ-

1.2 Software Maintenance 11

encing the effort estimation associated with this requirement implementation. Thus, the
more accurate the measurement results, the fewer errors are detected, and better deci-
sions are made. Inadequate measurements, for example, can lead to overestimating or
underestimating.

Several FSM methods have been proposed since they can be used to estimate devel-
opment/maintenance (enhancement) efforts. There is only one second-generation FSM
method, the COSMIC, and four first-generation FSM methods, including the IFPUG.
Measurement methods that have been approved by the international community are re-
quired to provide accurate measurements and avoid errors. Several researchers observed
that the size variables are closely related to the required effort [23]. In particular, func-
tional sizing can be used to improve organizational performance, estimate the effort/cost
of new development, estimate the effort for enhancement, and control software develop-
ment, among other things [24, 25]. Nevertheless, the most difficult challenge for estimators
and other stakeholders is selecting how functional size is to be derived. In other words,
how determining the efficiency of an FSM method and its use in the SEEE model to
generate accurate estimates.

With a clear description of an ER, an appropriate software measurement, and an ac-
curate SEEE model, a high level of quality of software product can be achieved (i.e., sat-
isfying customers’ needs within a specified time, effort, and cost). This chapter provides
a quick overview of software maintenance activity, the Software Measurement methods
the most used, and the most common software effort estimation approaches.

1.2 Software Maintenance

Face a highly competitive market, software organizations must have the ability to
maintain software to meet the customer’s requests. Software maintenance is regarded
as an essential component of software development, but it has not received the same
attention as other Software Development Life Cycle (SDLC) fields [5].

1.2.1 Definition

Software maintenance is defined as « the totality of activities required to provide cost-
effective support to a software product » (ISO/IEC 14764) [4]. Software maintenance
activities are identified [11] as: « process implementation; problem and change analysis;

12 Background: The nature of Software Maintenance, Measurement and Estimating

change implementation; maintenance review/acceptance; migration; and retirement. »
Software maintenance is the field of Software Engineering which have been ignored over
the last period. It has not received the same degree of attention that the other phases
have [6]. Nevertheless, it is the most crucial field in software life [26]. In most software
organizations, software development is far more important than software maintenance.
Software maintenance begins when software development begins and continues until the
software system enters the retirement process, as shown in Figure 1.1. Software mainte-

Figure 1.1 – Software Maintenance Process [26]

nance is the general process of changing a system after it has been delivered. Typically,
the term "Software maintenance" refers to custom software in which separate develop-
ment teams are involved before and after delivery. Changes to the software may be
simple (e.g., correcting coding errors) complex (e.g., correcting design errors), or signifi-
cant (e.g., correcting specification errors) or accommodating new requirements. Changes
are made by altering existing system components and, if necessary, adding new ones.
The ISO 14764 standard defines enhancement maintenance as "a change to an existing
software product to meet a new requirement." According to ISO 14764, software mainte-
nance is categorized into four types: corrective, adaptive, preventive, and perfective [6].
ISO 14764 classifies adaptive and perfective maintenance as enhancements and corrective
and preventive maintenance as the correction. Adaptive maintenance is the modification
of a software product performed after delivery to keep a software product usable in a
changed or changing environment[4]. Perfective maintenance is defined as "modifying a
software product after delivery to detect and correct latent faults in the software product
before they manifest as failures"[4]. The same document defines corrective maintenance

1.3 Software Measurement 13

as "reactive modification of a software product performed after delivery to correct discov-
ered problems." Preventive maintenance is defined as "modifying a software product after
delivery to detect and correct latent faults in the software product before they become
operational faults."

1.2.2 Software Maintenance Challenge

Many issues that are related to software maintenance can be traced to the requested
changes [11]. It is difficult to predict how the system will respond if the software code
is changed for maintenance purposes, which can lead to overestimation. ER are welcome
when they provide a means for software improvement [19]. But, in some cases, they
are large in scope and create some challenges for maintainers. software maintenance is
difficult if the software product was not designed for it. One problem encountered in the
software development progress (including the maintenance phase) is how to provide an
accurate estimate? Hence, distinguishing FC from TC is a necessity. We believe that the
SEEE must take into account the (i) type of ER (i.e., either a FC or a TC. Another reason
could be that the organization is not concerned with perfection, but rather with getting
the system up and running as soon as possible [26]. Once the ER is identified, the software
project planner/manager must estimate: (i) how long will take the maintenance phase and
(ii) the required effort for each ER. This information is needed for the schedule planning
and resources (hardware and software) distribution. In the next sections, we describe the
estimations approaches the most used in practice. However, despite their popularity, they
have been widely criticized. For instance, Pressman considers that estimation models used
many variables (human, technical, environment, etc.) which can affect the estimation
results [27]. Whereas, the project managers prefer accurate estimates in terms of effort,
time, and cost. In addition, inaccurate measures of the software size lead to false effort
estimation and consequently late delivery. For this reason, instead of focusing only on
how to determine the effort estimation, we will also focus on the ER descriptions and
their corresponding sizing.

1.3 Software Measurement

Measuring is no longer restricted to a single area. It is critical in science, engineering,
and even everyday life. Measurement is used in all aspects of human activity, including

14 Background: The nature of Software Maintenance, Measurement and Estimating

social, medical, industrial, and academic activities. Measurement has been popular in
engineering fields since the 18Th century. It has been investigated in the Software En-
gineering (SE) literature to discover and mitigate various issues in software businesses,
such as missed time-to-market deadlines, negative cost trends, omissions in client needs,
and so on. As noted in [28], measuring software provide managers with valuable informa-
tion for improving communication, tracking specific project objectives, identifying and
correcting problems early, making crucial trade-off decisions, etc. Furthermore, practi-
tioners must understand the significance of software measurements. This requirement
is reflected in the IEEE definition of SE: "The application of a systematic, disciplined,
quantifiable approach to the development, operation and maintenance of software; that
is, the application of engineering to software" [6]. In addition, software measurement
enables project, product, and process management. DeMarco [29] depicted the following:
"You cannot control what you cannot measure". As a result, measuring has emerged as
a critical phase in the field of SE.

Two key reasons for measuring software size were summarized by Symons [30]:

— Measurement is fundamental to improving project management of software projects.
Software size helps managers to regulate both new software creation and the main-
tenance or upgrade of current software. Furthermore, the size of the program allows
managers to track performance metrics (project productivity, project speed, etc.).

— Measurement is used to estimate the time and effort needed to complete a software
project. In this situation, measuring the program size early in the SLC is critical
(requirements phase).

In the SE, software measurement is a crucial process. The interpretation and analysis of
measurement results help managers evaluate the software project’s progress and quality.
As a result, a great variety of measures, such as software size measurement methods have
been proposed over the last forty years.

1.3.1 Software Size

Software, like any other concept, can be measured in terms of its size. Even though size
measures do not convey external factors such as "coding difficulty," they are extremely
valuable. FSM methods measure the software size by quantifying the Functional User
Requirements (FUR). User requirements are classified into three categories: Functional

1.3 Software Measurement 15

User Requirements (FUR), Non-Functional Requirements (NFR) and Project Require-
ments and Constraints (PRC) [31]. Where:

— FUR express "what the software is expected to do in terms of tasks and services."
[31].

— NFR includes "any requirement for a hardware/software system or for a software
product, including how it should be designed and maintained, as well as how it
should perform in operation" [31].

— PRC describes "how a software system project should be managed and resourced,
as well as the constraints that affect its performance" [31].

Abran differentiated between two types of software size: technical (e.g., length measures)
and functional (e.g., functionality measures) [32]:

— The developer’s perspective is used to determine the technical size. It is based on
the number of elements such as the number of LOC, modules, components, etc.

— The user’s view is used to determine the functional size. It is measured in terms of
software functionality, regardless of any technological constraints or implementation
decisions.

1.3.2 Source Lines of Code (SLOC)

The amount of source instructions in the program to be produced is counted to determine
the software size in terms of SLOC. The comments and header lines are not included in
the count [33]. Managers break down the problem into modules to estimate the number
of Lines of Code (LOC) at the start of the SLC. Where each module can be subdivided
into a set of sub-modules, and so on, until the sizes of the various entities (modules,
submodules, etc.) can be approximated [33].

LOC counting like SLOC (Source LOC) and TLOC (Total LOC) is straightforward
and easy to count. Calculating LOC is quite popular since it is provided most simply
when compared to the available sizing. Furthermore, measurement results expressed in
terms of LOC can be used as an input to the vast majority of estimating models and
approaches. Despite their widespread use, the use of LOC can cause several difficulties.
Counting the number of LOCs in software is akin to counting the bricks in a structure,
although a building’s area is typically represented in terms of the number and size of
rooms [33]. Furthermore, LOC is related to the programming language used.

16 Background: The nature of Software Maintenance, Measurement and Estimating

1.3.3 Functional Size Measurement Methods

FSM methods have been developed to overcome the limitations of LOC measures. Many
standards have been developed over the years by various organizations. The sections that
follow provide a brief history as well as a detailed comparison of the most commonly used
FSM methods. FSM methods quantify the Functional User Requirements to determine
the size of the software. FURs express "what the software shall do in terms of tasks
and services" [31]. User needs are represented through a series of artifacts, releases, or
documentation across the SLC.

Several FSM methods have been proposed because they are useful when estimating
development/enhancement efforts. However, the most difficult challenge for managers
and other stakeholders in determining the effectiveness of an FSM method and selecting
an accurate SEEE model.

1.3.3.1 IFPUG FSM Method

IFPUG FSM methods were founded to foster and promote the evolution of the Func-
tion Point method [24]. Since then, the method has been renamed IFPUG Function Point
Analysis (or simply IFPUG) and has been standardized as ISO/IEC 20926:2009. The IF-
PUG sizing method is used to assess the functionality impacted by software development,
and maintenance, regardless of the technology used for implementation.

The size of an application is determined by IFPUG based on its Functional User
Requirements (or by other software artifacts that can be abstracted in terms of FURs).
Each FUR is functionally decomposed into Base Functional Components (BFC), and
each BFC is classified into one of five Data or Transactional BFC Types to identify the
software’s set of features [24].

1.3.3.2 COSMIC FSM Method

The COSMIC FSM method was proposed in 1999 to correct some of the structural defi-
ciencies of the first-generation FSM methods and overcome a number of their limitations.
It is widely used all over the world for a variety of purposes, the most common ones are:

— measure and compare projects performance with similar characteristics as the soft-
ware is being measured.

— estimates the project effort/cost in terms of hours.

1.3 Software Measurement 17

— drive decisions on the development project activities.

The COSMIC method was designed to be independent of any implementation decisions
embedded in the operational artifacts of the software to be measured. Each data move-
ment is measured as 1 COSMIC Function Point (CFP). The COSMIC measurement
process [25] includes three phases: Measurement strategy phase, Mapping phase, and
Measurement phase.

— The Measurement Strategy Phase: Before starting the measurement, it is required
to identify a set of parameters to ensure a correct interpretation of the measurement
results. These main parameters are measurement purpose, scope, level of decompo-
sition, functional users, and level of granularity. For instance, the Purpose identifies
why the measurement is needed and what the measurement results will be used for.
For example, measurement purpose can be "to estimate the effort of implementing
a change to manage the project scope creep" [34]. The Scope determines the set of
functionality to be measured. For example, the measurement scope can be "all the
changes required for a new release of a piece of existing software" [34].

— The Mapping Phase: At this phase, the FUR are mapped to the COSMIC "Generic
Software Model" components.

— The Measurement Phase: At this phase, one CFP is attributed for each identified
data movement. The Functional Size of a Functional Process (noted by FS(FP)) is
given by Equation 1.1:

FS(FPi) = Σsize(Ei)+Σsize(Xi)+Σsize(Ri)+Σsize(Wi) (1.1)

Where:

— FS(FPi): the functional size of the functional process FPi.

— Σsize (Ei): the functional size of entries in FPi.

— Σsize (Xi): the functional size of exits in FPi.

— Σsize (Ri): the functional size of reads in FPi.

— Σsize (Wi): the functional size of writes in FPi.

The functional size of software is obtained by performing an arithmetic addition of the
functional sizes of its functional processes, as given by Equation 1.2:

18 Background: The nature of Software Maintenance, Measurement and Estimating

FS(SW) =
n

∑
i=1

FS(FPi) (1.2)

Where:

— FS(SW) is the functional size of the software.

— FS(FPi) is the functional size of the functional process FPi.

— n is the number of the functional processes identified in the software.

1.3.4 Sizing software enhancement using COSMIC FSM Method

Compared to other FSM methods, COSMIC is designed to objectively measure the func-
tional size of a change to software as well as the size of the software that is added, modified,
or deleted [34]. Results showed that the COSMIC method has been successfully used in
the software industry. It contributes to exploring ways of increasing productivity, moni-
toring software progress, and performance specifications, while other measures have been
tried and were found to be lacking [34]. COSMIC FSM is used by many organizations
for agile projects due to its objectivity and ability to be used at all levels of aggregation
[34]. Before determining the effort required to implement the US, the functional size of
the US can be measured using the COSMIC method [34].

An ER that affects the FUR is called an FC. An FC may propose the addition of
new functionality or the deletion/modification of existing functionality. Measuring the
functional size of an FC (noted by FS(FC)) is needed to estimate the required cost/effort
to handle the change. COSMIC can be used to measure the size of an FC to software in
terms of CFP units and the size of the software that is added, changed, or deleted as well
[30]. COSMIC defines a FE as "any combination of additions of new data movements
or modifications or deletions of existing data movements" [34]. The FS(FC) is given by
the aggregation of the sizes of all the added, deleted, and modified data movements (see
Equation 1.3). The FS(FC) has at least a value of 1 CFP with no upper limits.

FS(FC)=ΣFS(addeddatamovements)+ΣFS(deleteddatamovements)+ΣFS(modi f ieddatamovements)

(1.3)

Where:

— FS(FC) is the functional size of the functional change.

1.3 Software Measurement 19

— ΣFS(addeddatamovements) is the functional size of the added data movements.

— ΣFS(deleteddatamovements) is the functional size of the deleted data movements.

— ΣFS(modi f ieddatamovements) is the functional size of the modified data move-
ments.

The software’s functional size after changing its functionality is measured as given by
Equation 1.4. Taking into account the original size, plus the functional size of all the
added data movements, minus the functional size of all the removed data movements [34].
Modifying data movements has no influence on the software functional size measured after
the FC since the modified data movements exist before and after the FC.

FS(SW) f inal = FS(SW)initial −ΣFS(deleteddatamovements)+ΣFS(addeddatamovements)

(1.4)

Where:

— FS(SW) f inal is the functional size of the software after the FE.

— FS(SW)initial is the functional size of the software before the FE.

— ΣFS(addeddatamovements) is the functional size of the added data movements.

— ΣFS(deleteddatamovements) is the functional size of the deleted data movements.

To illustrate how this works, let’s examine the example of a software with three functional
processes (FP1, FP2 and FP3), where: FS(FP1) = 10 CFP, FS(FP2) = 11 CFP, FS(FP3)
= 9 CFP and
FS(SW)initial = 10 CFP + 11 CFP + 9 CFP = 30 CFP.

We assume that a FE request proposes to:

— add one new functional process (FP4), where the FS(FP4) has value of 6 CFP;

— add one data movement to FP2;

— modify three data movements in FP3; and

— delete two data movements in FP1.

Hence, the total size of the FE is the sum of: 6 + 1 + 3 + 2 = 12 CFP. The software
size after the change is equal to: FS(SW) f inal = FS(SW)initial + 6 + 1 - 2 = 35 CFP. The
sizes of the functional processes after the FE are as follow: FS(FP1) = 10 - 2 = 8 CFP,
FS(FP2) = 11 + 1 = 12 CFP, FS(FP3) = 9 CFP and finally FS(FP4) = 6 CFP.

20 Background: The nature of Software Maintenance, Measurement and Estimating

1.4 Software Project Estimation Models

Based on the functional size of the software, estimators can provide estimates in terms of
effort, duration, and cost required to implement the software. In practice, after identifying
the user requirements, it is possible to generate the software functional size using an
FSM method. However, during the software development process, software size may
change when ER occurs. The impact on the software development progress may put off
the delivery of the final product. For this reason, researchers proposed to estimate the
effort required to handle an ER (or Functional change) to (i) evaluate if the available
resources (human and material) will be enough to implement the change or the original
budget needs to be maintained, and (ii) determine if the risks associated to the change
is increased or reduced.

Like the traditional project, agile projects also use an estimation-based approach to
predict the software maintenance effort in person-hours or to determine the actual working
hours required to complete development/maintenance tasks. As depicted in Figure 1.2,
there are three popular approaches or models: algorithmic, non-algorithmic, and ML
techniques that have been widely used to predict maintenance effort [35].

Figure 1.2 – Classification of software effort estimation models

1.4.1 Algorithmic model

Algorithmic models are used for statistical and mathematical formulations [36]. There
are several different algorithmic techniques in the software engineering literature. Many

1.4 Software Project Estimation Models 21

are known as regression analysis techniques. For example, COCOMO-II (COnstructive
COst MOdel), Putnam Software LIfe cycle Management (SLIM), SEER-SEM, and True
Planning. The primary input to these models is software size. Typically, the size is
measured in terms of function points, source lines of code (SLOC), or use case points
(UCP).

1.4.2 Non-algorithmic model

Non-algorithmic models are based on analytical assessments and interpretations for
estimating software effort [36]. These models analyze historical data from previously
completed projects. The expert judgment is also referred to as the expert opinion-based
process [31].

Several studies showed that the expert judgment approach is one of the most common
estimation techniques used in software project estimation [36]. Because of its simplicity
and flexibility, software development teams prefer to use this technique over formal es-
timation models [36]. However, there is no evidence in the consulted literature that the
results produced by this approach are completely accurate.

1.4.3 ML techniques for Regression problem

ML techniques are alternatives to algorithmic models [37]. ML is a subset of artificial
intelligence that focuses on the creation of models that can be trained on some data and
then used to predict new data in the future. An ML approach can be divided into three
parts: the Data Preprocessing phase, Prediction models phase, and Decision-making
phase.

1.4.3.1 Data Preprocessing phase

The data preprocessing phase in the knowledge discovery process is guided through
the data transformation activities from raw data to training and test data [38]. This
complex and multidisciplinary phase involves concepts and structured knowledge in dis-
tinct and specific ways in the literature and specialized tools, necessitating the services
of data scientists with appropriate expertise. Datasets including customers’ ERs must
be managed consistently to reduce the risk exposure and guarantee the software develop-
ment progress. The requirements process spans the whole software maintenance life cycle.
Change management and maintaining requirements in a state that accurately mirrors the

22 Background: The nature of Software Maintenance, Measurement and Estimating

software to be built, or that has already been built, are critical to the success of the soft-
ware engineering process [6]. Requirements Change Management (RCM) is concerned
with making rational decisions about whether or not to implement a requested change.
It is also concerned with justifying the decision for determining which information (such
as documents and other requirements) will be impacted by the proposed change. Even
in the best of circumstances, change management is difficult to execute, and it becomes
even more difficult when executed globally due to the nature of distributed develop-
ment projects and the diversity of stakeholders [20]. In this thesis, we will make focus
on semantically describing customer ER to facilitate the RCM process by proposing an
Ontology-based model. Ontology can be considered a useful data preprocessing technique
in ML are [39]. Recently, there has been a lot of interest in the design of ontologies for
data mining, resulting in a plethora of ontologies for various purposes. Instead of focusing
on the use of ontology, we will focus on another popular data preprocessing technique
named the CFS algorithm. According to Rashwan, ontology is a conceptual modeling
tool that describes information systems at the semantic and knowledge levels [40]. The
goal is to capture knowledge in related fields, identify commonly recognized terms in this
field, describe the semantics of concepts through conceptual relationships, and provide a
common understanding of field knowledge. Recently, there has been a lot of interest in
the design of ontologies for data mining, resulting in a plethora of ontologies for various
purposes. Ontologies [40] is a well-established tool for modeling knowledge in various
domains, and as such, they can play an important role in modeling the various steps of
a data mining application and supporting application design.

On the other hand, the goal of feature selection is to find the best feature in the data
set [41]. Data can be classified using ML techniques into a set of class features and targets.
ML techniques can classify data into a set of class features and targets. ML or pattern
recognition applications have variable or feature domains containing tens to hundreds
of variables or features. Several techniques have been developed to address the issue
of removing irrelevant and excessive variables. Feature selection (variable elimination)
aids in data comprehension, reduces computing requirements, reduces dimensional curse
effects, and improves performance. Filters, wrappers, and hybrid algorithms are the three
types of feature selection algorithms [41].

— Filter methods select features based on the characteristics of the dataset without
the use of any learning techniques. Following that, this subset of features is fed into

1.4 Software Project Estimation Models 23

a classification/prediction algorithm as input.

— Wrapper methods choose feature subsets based on the performance of a given learn-
ing technique, as measured by a performance metric.

— Embedded or hybrid methods combine filter and wrapper techniques to perform
the selection and model building steps simultaneously. Dependency measures are
one of the measures used in feature selection. There have been numerous proposals
for dependency-based algorithms.

In this thesis, we will use the main measure called CFS. CFS is selected since it
evaluates all the possible combinations [42]. It can update the subset of selected fea-
tures during the evaluation process. In contrast to greedy forward selection and greedy
backward elimination, they do not update the subset of features during the evaluation
process [41]. CFS uses correlation to evaluate a feature subset derived from the Pearson
correlation coefficient [42]. This method is a multivariate feature Filter, which means it
evaluates various feature subsets and selects the best one. Hall proposed the concept of
CFS which evaluates feature subsets using a heuristic evaluation function [42]. This the-
sis is based on the hypothesis “A good feature subset contains features highly correlated
with the class, yet uncorrelated with each other” [42]. The choice of feature selection
methods differs among various application areas [42, 41].

1.4.3.2 Prediction models phase

There are four types of ML algorithms: supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning. No method is thought to be su-
perior to the others, and their strengths and weaknesses are frequently complementary.
As a result, in our context, we used various experiment learning methods to determine
which one was best suited to our situation. Thus, we present in this section a number of
ML techniques to be used in this thesis. Each technique will be explained in detail next.

A. Supervised Learning Algorithm

Supervised learning is a labeling learning technique [38]. Supervised learning algorithms
are given a labeled training dataset (i.e., inputs and known outputs) to build the system
model representing the learned relationship between the input and output. When a new
input is fed into the system after training, the trained model can be used to obtain the
expected output [38]. Regression analysis falls under supervised ML, especially where the

24 Background: The nature of Software Maintenance, Measurement and Estimating

constructed model tries to predict a value for an input based on previous information.
The selected supervised learning algorithms used in this thesis are detailed as follows:

(a) Random Forest Regression (RFR)

Breiman created the RFR at first [43]. RFR is an improved classification and regression
tree method that has gained popularity due to its robustness and flexibility inappropri-
ately modeling the input-output functional relationship. A random forest is made up of
numerous decision trees. To reduce overfitting and improve accuracy, the random forest
method constructs each decision tree by randomly selecting a subset of the feature space.
The random forest method is used to classify a new data sample in three steps: (a) Assign
a data sample to each tree in the forest. (b) Each tree provides a classification result,
which serves as its "vote." (c) The data sample will be classified into the class with the
highest number of votes.

(b) Linear Support Vector Regression (LinearSVR)

Vapnik first introduced the SVR in 1995 [38]. To use the Support Vector algorithm for
regression estimation, an analog of the margin is constructed in the space of the target
values using Vapnik’s insensitive loss function [44]. To generalize the Support Vector
algorithm to regression estimation, an analog of the margin is constructed in the space
of the target values using Vapnik’s insensitive loss function [44]. Variables in the SVR
model structure belong to continuous space. The kernel function chosen is determined
by the training dataset. If the dataset is linearly separable, the linear kernel function
performs well. If the dataset cannot be separated linearly, polynomial and RBF kernel
functions are commonly used [44].

(c) Ada Boost Regression (ABReg)

Freund Schapire were the first researchers who proposed the AdaBoost algorithm [45].
This algorithm solved many of the problems encountered by previous boosting algorithms
[46]. The idea behind AdaBoost is to build a strong model by combining multiple weak
classifiers into a single strong classifier. A weak classifier is a classifier that performs
poorly but outperforms random guessing [47].

1.4 Software Project Estimation Models 25

(d) Gradient Boosting Regressor (GBReg)

GBR is an ML technique that is widely used today. The advantage of using GBR is that
it can solve almost all objective functions. It is also effective in many cases, and allows
for flexibility in the selection of loss functions [9].

(e) M5P algorithm

M5P is a powerful implementation of Quinlan’s M5 algorithm for inducing both Models
Trees and Regression Trees [48]. It is an extended work based on the M5 algorithm
[48]. M5 algorithm was originally developed by Quinlan and used in data mining which
combines the decision tree and multilinear regression. Decision trees are used to classify
input and output. The M5 tree development has three steps: tree construction, tree
pruning, and smoothing.

M5P is a modified version of the M5 tree algorithm. It is designed to handle enumer-
ated attributes and missing values. M5P is used in categorical and continuous variables
and missing values. It is based on surrogate splitting to deal with missing values. Af-
ter the splitting is done the missing values are converted by the average values of the
attributes of the training example.

(f) Ensemble learning

Ensemble learning techniques are types of ML techniques in which different base models
are combined to create a single best-fit predictive model. Ensemble learning has been
shown to outperform ensemble members [49]. It is successfully used in both supervised
and unsupervised learning tasks (regression, classification, and distance learning) (density
estimation). The three types of ensemble methods we employed in our research are as
follows [50]:

1. BAGGing is an abbreviation for Bootstrap AGGregating. BAGGing gets its name
from the fact that it combines Bootstrapping and Aggregation into a single en-
semble model. A given sample of data is used to generate multiple bootstrapped
subsamples. A Decision Tree is built on each of the bootstrapped subsamples. An
algorithm is used to aggregate the Decision Trees to form the most efficient predictor
after each subsample Decision Tree is formed.

26 Background: The nature of Software Maintenance, Measurement and Estimating

2. Boosting: The boosting ensemble also combines different types of classifiers. Boost-
ing is a sequential ensemble method in which each model or classifier is run based
on attributes that will be used by the following model. The boosting method dis-
tinguishes a stronger learner model from a weaker learner model by averaging their
weights. In other words, a stronger trained model is reliant on a number of weakly
trained models. A weak learner, also known as a weak trained model, has a low
correlation with true classification. In contrast, the next weak learner is slightly
more correlated with true classification. When such disparate weak learners are
combined, a strong learner is produced. It is highly correlated with the true classi-
fication.

3. Stacking: This method also employs a meta-classifier or meta-model to combine
multiple classifications or regression techniques. The combined model is trained
to use the outputs of the lower-level models, which are trained using the complete
training dataset. Unlike boosting, each lower-level model is subjected to parallel
training. The training dataset for the next model is the prediction from the lower-
level models, generating a stack in which the top layer of the model is more trained
than the bottom layer of the model. The top layer model has high prediction
accuracy and is built based on lower-level models. The stack grows until the best
prediction is carried out with the least amount of error. The combined models or
meta-prediction models are based on the predictions of the various weak models or
lower layer models. It aims to create a model with fewer biases.

(B) Unsupervised Learning Algorithm

Unlike supervised learning, an unsupervised learning algorithm uses a set of unlabeled
inputs (i.e., without labeled) [38]. An unsupervised learning algorithm seeks to discover
patterns, structures, or knowledge in unlabeled data by grouping sample data into differ-
ent groups based on their similarity. Unsupervised learning techniques are widely used
in data clustering and aggregation [38].

(C) Reinforcement Learning Algorithm

Reinforcement Learning is another well-known learning technique [38]. An agent, a State-
space S, and an Action space A are all involved in Reinforcement Learning. The agent is a
learning entity that interacts with its surroundings to determine the best course of action

1.5 Estimating in the Context of Traditional and Agile Software Projects 27

to maximize its long-term reward. The long-term reward is a discounted cumulative
reward that includes both immediate and future rewards.

1.4.3.3 Decision-making phase

For SEEE, there are various evaluation metrics used to evaluate and compare the
accuracy of the estimation model. The choice of the appropriate performance metric
and evaluation is consistently situated according to the problem type which can be a
regression, classification, or clustering [51].
The evaluation metrics used in this thesis can be summarized as follows: (1) AE: absolute
error (2) Pred (x): prediction level (3) MMER: mean magnitude of error relative to the
estimate (4) MMRE: mean magnitude of relative error (5) RMSE: root mean squared
error.

1.5 Estimating in the Context of Traditional and Agile Soft-
ware Projects

Since the year 2000, Agile Methodologies (Scrum) have grown in popularity. The
software maintenance phase of the software lifecycle is the most expensive and time-
consuming, and it makes extensive use of Agile methodologies [52]. It promotes flexibility
and adaptability to make software upgrades over time.

1.5.1 Switching from Waterfall to Agile

Since 1970, all software companies used the traditional waterfall model for software
development. If a particular phase is not completed and approved, moving to the next
phase or any other is not possible. Due to its shortcomings, the software development us-
ing the Waterfall model follows a linear, sequential design approach in which the project
is delivered throughout a set of phases. These should be completed one after another.
Even making changes is difficult. The maintenance cost associated with the use of this
approach was increasing. To address these issues, the Agile methodology in which all
the phases overlap and the requirements are gathered iteratively and incrementally, was
introduced. This minimizes the shortcomings of the waterfall model and hence improves
the software development process cost-efficiently. With agile, maintaining software be-
comes quite easy which enhances the quality as well as reduces the cost. Agile is based

28 Background: The nature of Software Maintenance, Measurement and Estimating

on its four factors which include: Cost, Schedule, Requirements, and Quality [52].

1.5.2 The different Agile Approaches

Many agile approaches implement the values and principles of Agile manifest differ-
ently. Most of these approaches are used in developing and maintaining the software at
a lower cost. The common Agile approaches are Scrum, XP, Kanban [52].

1.5.2.1 eXtreme Programming

eXtreme Programming is one of the most widely adopted agile methodologies which
was created by Kent Beck [53]. It primarily focuses on the development phase rather
than the managerial aspect of software projects [53]. A release plan is developed initially.
Users write user stories to describe what they want and are part of the developer team.
This ensures that all the requirements are being added in accordance with and presence
of a user. The team breaks the tasks into iterations and at the end of it.

1.5.2.2 Scrum

Ken Schwaber and Mike Beedle popularized Scrum in the 1990s [54]. Scrum is also one
of the most popular Agile approaches and is incremental and iterative. Scrum is based
not only on development but also on management [55]. Scrum divides work into sprints,
which are cycles of work. Requirements are prioritized and referred to as user stories
during each sprint.

1.5.2.3 Kanban

Kanban is described by Anderson as "an evolutionary change strategy that uses a kanban
(small k) pull system, visualization, and other tools to accelerate the adoption of Lean
principles [56]. It is an iterative and evolutionary process". The main goal of the Kanban
system is to maximize unit productivity by reducing the process idle time. When used
correctly, the Kanban system is a very cost-effective process [56].

Although there are a lot of similarities between Agile approaches, Scrum is used the most
in practice [55].

1.5 Estimating in the Context of Traditional and Agile Software Projects 29

1.5.3 Differences between Traditional and Agile approaches

The main advantage of agile over the traditional (waterfall) model is that it is based
on the concept of iterations. Following each iteration, users will be able to obtain a
working version of their project. Based on this, even after the design phase has begun,
the user can easily add or change the requirement. However, in the waterfall model, all
requirements must be submitted at the start of the project. With the involvement of the
user/customer in the agile process, the software product becomes most easy to enhance
and stay within the allocated budget [57].

Table 1.1 – Agile vs. Traditional software development

Waterfall model Agile development process
Linear, sequential design approach Iterative and incremental
Fixed scope Flexible scope
Late warning of risk Early warning of risk
Low uncertainty High uncertainty
Lack of customer involvement High customer interaction
Suitable for large project Not suitable for large project
Make changes Embrace change
Late and unpredictable delivery Early and predictable delivery

1.5.4 Estimating in the context of Scrum

Estimating is the process of predicting or approximating the effort required to com-
plete a particular US, including analysis, development, testing, and maintenance effort.
It is done at a high level and detailed level during release planning and iterative plan-
ning. Several estimation techniques are proposed. For instance, expert judgment-based
techniques and planning poker are commonly used in agile effort estimation studies [55].

(A) Planning Poker

Planning Poker is a widely used estimation technique. With the PP technique, the ag-
ile team used values that can be a Fibonacci sequence or any other choice progression.
The values represent the effort required to develop or maintain the particular US. Plan-
ning Poker operates based on team consensus [58]. Typically, the outcomes would be
acceptable, with fewer risks and errors [58]. Participants in this process will be given
special decks of Planning Poker cards. Basically, the numbers in the sequence reflect that
uncertainty grows proportionally with the story size. A high estimate means that the

30 Background: The nature of Software Maintenance, Measurement and Estimating

story is not well understood and should be decomposed into smaller stories (if possible).
The Fibonacci sequence is often utilized by software teams [59], even though there is no
consensus on these values.

(B) Expert Judgment

Expert is the most experienced person working in the software industry regarding the
estimation of various projects [60]. They have extensive knowledge, which has a significant
impact on development time and cost, as well as the deviation of actual costs from
estimates. As a result, experts’ advice is frequently sought when analyzing project costs
and timelines. Expert’s judgment method is influenced by a variety of subjective factors
such as bias, the influence of the work environment, the type of projects handled by
the concerned experts, and human errors [61]. It is a practical and efficient method for
estimating small and medium-sized projects [61].

1.6 Conclusion

In this chapter, we established a background on software maintenance (enhancement),
software measurement, and effort estimation in software projects within both traditional
and agile contexts. We presented an overview of FSM and a comparison between the
FSM methods supported by ISO standards. We showed that COSMIC ISO 19761 has
been widely used to measure the functional change size of any type of software. Finally,
we presented the techniques used when estimating effort in the context of traditional
and Scrum projects. We presented the most popular effort models used in software
development and enhancement projects, in particular algorithmic and non-algorithmic,
and ML techniques. In the next chapter, we will present an SMS on the use of ML
techniques for SEEE.

Chapter 2
Systematic Mapping Study: Software
Enhancement Effort Estimation using
Machine Learning Techniques

Contents
2.1 Introduction . 32

2.2 SMS Methodology for SEEE . 34

2.3 Mapping results . 38

2.4 Implication for research and practice . 50

2.5 Conclusion . 53

In the software industry, estimating is crucial for the success of software project
planning and management. Several approaches used ML techniques to anticipate
the software project effort to improve the accuracy of estimates. This second chap-
ter is about SEEE with the use of ML techniques. Its goal is to present an SMS on
the use of ML techniques for SEEE. The SMS was carried out by reviewing perti-
nent papers from 1995 to 2020. We followed well-known procedures. We found 30
relevant studies using four search engines: 19 from journals and 11 from conference
proceedings. Based on the results obtained in this SMS, estimators should be aware
that SEEE using ML techniques as part of a non-algorithmic model has demon-
strated high predictive accuracy compared to algorithmic models. The use of ML
techniques, in general, provides reasonable precision when using the enhancement
functional size as an independent variable.

In Short

32
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

2.1 Introduction

The software industry has been progressing over recent years. The cost of software main-
tenance is greater than that of software development [5]. Similar to software development,
software maintenance is also important. Among the cost drivers, human effort is the most
important. In software engineering, the expression "Effort estimation" is similar to "Cost
estimation" [62]. As a result, the majority of the proposed effort estimation is expressed
in terms of Person-Month [26]. Software effort estimation, also known as software effort
prediction, is regarded as the most important domain of both software development and
software maintenance projects [37]. In software industries, the development phase has
traditionally been valued more than the software maintenance phase [6]. Indeed, accord-
ing to a recent survey on the software maintenance process [63], software maintenance is
the longest and, in most cases, the most expensive phase of the software maintenance life
cycle. As a result, predicting software maintenance effort is an important task that, if
done correctly, can reduce the costs of software development and maintenance projects.
Consequently, accurate estimates of software maintenance effort have a positive impact on
project planning and management [64]. By reducing uncertainty and increasing customer
confidence.

Even with the use of modern software development approaches such as agile, software
industries have to revise and refine effort estimation when changes occur. It may be
necessary to make an accurate estimate based on relevant and standardized information.
This is a useful tool for project managers who want to improve their industries. Of
course, when the same definition and measurement standard are used as inputs to the
prediction process. However, predicting will be ineffective, or will damage future business
opportunities, if not done correctly (underestimate, overestimate). Many approaches with
various estimate models are presented to give more accurate software estimation. Expert
judgment, algorithmic models (such as COCOMO II), and non-algorithmic models are
the three types of models (such as ML techniques [37]). Many researchers claim that
applying ML techniques (as a non-algorithmic model) can increase estimation accuracy
[65].

Software development becomes more complex as the software project grows and
evolves. Some ER is required to improve software quality characteristics that are likely
to be transformed into functional requirements (e.g., perfective maintenance). Other
requests are used to implement new requirements (e.g., Adaptive maintenance). It is

2.1 Introduction 33

clear when managing the software maintenance process, particularly after the software
has been delivered, the estimated cost of which exceeds 70 percent of the total costs of
the software development process [10].

Consequently, Enhancement is a type of software maintenance that may necessitate
major project re-planning and improved implementation. Special attention is devoted
to evaluating ER (i.e., functional changes affecting user requirements) and predicting
their impact on the estimated effort. As a result, user ER appears not only during
the software maintenance phase but also throughout the software development project.
For these reasons, estimating the effort required to implement ER or functional changes
should be regarded as the key activity in managing a software project. Although there
are several methods for improving the accuracy of SEEE, the choice of suitable SEEE
is not only limited to the ability of software developers/maintainers to handle ER but
also to its evaluation. When assessing the performance of a prediction model, the choice
of a suitable one is based on the quality of its inputs, data sets, and, most importantly,
the use of international standards [32]. As a result, when managing a software project,
choosing the appropriate prediction model when the user’s requirements are subject to
change has become a significant challenge.

This chapter reports on the SMS of relevant research papers (journals and conference
proceedings papers) investigating the topic of SEEE using ML techniques. Our SMS in-
vestigates SEEE to identify research gaps, recommends future research avenues, obtains
a detailed overview of the proposed SEEE models, and identifies the ML technique most
commonly used for predicting enhancement maintenance effort. Between 1995 and 2020,
we looked for the most popular digital database libraries in computer science. We ex-
amined 30 related studies published in 19 journals and 11 conference proceedings. Our
primary goal is to examine the SEEE state, as well as its limitations and challenges. In
this chapter, we used the Petersen research method [66] [1]. SMS is beneficial to both
software engineering researchers and practitioners.

The remainder of this chapter is organized in the following manner. Section 2.2
describes the SMS’s research methodology. Section 2.3 displays the SMS results. Section
2.4 presents and discusses the SMS main findings. Section 2.5 concludes with limitations
and research gaps.

34
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

2.2 SMS Methodology for SEEE

A SMS identifies the nature and extent of empirical study data that is accessible to answer
a specific mapping research question in a systematic and objective manner [1].

According to [1], SMS is divided into six steps : (1) Defining the mapping questions,
(2) Finding primary studies, (3) Screening studies, (4) Abstract key-wording, (5) Data
extraction, and (6) Mapping Results.

2.2.1 Defining the mapping questions

The mapping questions (MQ) addressed in this SMS, as well as their associated ob-
jectives, are listed in table 2.1.

Table 2.1 – Mapping questions and objectives

ID Question Details Objective
MQ1 What are the trends in software

maintenance prediction research
from 1995 to 2020?

To ascertain the temporal trends in
SEEE publications.

MQ2 How can software enhancement
(i.e., functional changes) effort pre-
diction be improved?

To explain how to account for
changes in SEEE.

MQ3 How is enhancement effort pre-
dicted and assessed?

To describe the methods for mea-
suring and evaluating enhancement
effort prediction that have been pro-
posed.

MQ4 What type of ML problems ad-
dressed in SEEE fall into?

To investigate the different types of
ML problems: regression, classifi-
cation, and clustering.

MQ4.1 What are the proposed methods
for predicting software enhance-
ment effort?

To describe the proposed methods
used for predicting software en-
hancement effort.

MQ4.2 What are the SEEE datasets used to
build prediction models?

To identify various datasets com-
monly used in the SEEE domain.

MQ4.3 What are the independent variables
used to improve SEEE model per-
formance?

To assess the significance of using
the FSM method for evaluate the
accuracy of SEEE.

MQ4.4 Which single models are most fre-
quently used for SEEE?

To identify the most commonly
used single models for SEEE.

2.2 SMS Methodology for SEEE 35

2.2.2 Conducting the search for primary studies

We followed Kitchenham’s guideline for conducting SMS studies in order to have a clear
description of our search strategy. Following the steps discussed, the research was carried
out in four digital libraries:

— Google Scholar,

— IEEExplore,

— ACM Digital library, and

— ScienceDirect.

Table 2.2 contains relevant journal and conference proceedings in the SEEE field for
identifying search sources. The search was limited to articles published between 1995 and
2020. A review of various ML techniques for predicting SEEE revealed that estimation
accuracy can be achieved [67] [68]. However, we chose some studies that did not employ
ML techniques because they answered some of our MQs. The following is a list of search
strings: (Mapping OR literature) AND (context OR area OR field) AND (approach
OR method OR technique) AND (information OR requirement) AND (maintain OR
enhance OR modify OR change) (effort, cost, size, or time) AND (estimate, predict)
AND (software, system, application, or product) AND (project OR activity).

2.2.3 Screening studies

The following inclusion and exclusion criteria were used to select the most relevant
studies.
Studies that fulfill the following criteria are selected for inclusion:

— Studies including the keywords directly related to the Software enhancement main-
tenance field (adaptive/perfective maintenance, software change), effort predic-
tion/estimation.

— Studies that contain the exact keyword "effort prediction" or synonyms.

— For the period 1995-2020, studies written in English and including the most recent
publication are included.

Excluded studies are those that do not meet the inclusion criteria:

— Studies without the keywords “software enhancement effort prediction”

— Studies without the exact keyword “effort prediction”, or its synonym.

36
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

Table 2.2 – Selected journals and conference proceedings

Source Number of stud-
ies

Published by Impact factor/
Rank

Journal
Applied Soft Comput-
ing

1 Elsevier 4.873

Empirical Software En-
gineering

1 IEEE 4.457

IEEE Transactions on
software engineering

5 IEEE 3.92

Information and Soft-
ware Technology (IST)

6 Elsevier 2.76

Journal of Software
Maintenance and Evo-
lution: Research and
Practice

2 Wiley 1.320

Journal of Quality in
Maintenance Engineer-
ing

1 Emerald Group
Publishing Ltd.

1.46

Journal of systems and
software

1 Elsevier 1.352

International Journal
of Software Engineer-
ing and Knowledge
Engineering

1 World Scientific
Publishing Co.
Pte Ltd

0.644

International Arab
Journal of Information
Technology

1 Zarqa University 0.410

Conference
International Con-
ference on Software
Maintenance (ICSM)

5 IEEE A

Asia-Pacific Software
Engineering Confer-
ence (APSEC)

2 IEEE B

IEEE International
Conference on Soft-
ware Maintenance and
Evolution

2 IEEE A

— Studies without the combination of “software enhancement” and “effort prediction”,
or its synonym

2.2 SMS Methodology for SEEE 37

2.2.4 Key wording of abstracts

The following titles were chosen after screening the Paper’s title (30) [69, 70, 51,
67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 68, 87, 88, 89, 5, 90, 91,
92, 93] software quality effort prediction, software maintenance effort prediction, software
maintenance effort prediction using ML techniques, and software change effort prediction.

The following keywords appear in the paper’s keywords and abstract (25): software
maintenance, software enhancement, change request, software enhancement maintenance
effort prediction, ML techniques, evaluation metrics.

The number of studies chosen after screening Full Papers (21) taking into account
the models and approaches proposed in the area of software maintenance effort prediction;
the evaluation metrics used to perform the proposed models

Number of studies selected after screening Papers’ Inclusion and Exclusion Criteria
(14) taking into account the discussed inclusion and exclusion criteria.

Number of studies passed our quality assessment (14) The quality assessment follows
the defined quality checklist as proposed by Kitchenham [66]. The primary goal of the
quality assessment is to evaluate and select studies that answer our MQs, as well as to
support more in-depth analysis of inclusion and exclusion criteria. The quality assessment
questions scoring procedure

The scoring procedure for the quality assessment questions of our chosen primary
studies (see Table 2.6) is as follows [51]:

— 1 represents Yes.

— 1/2 represents Partly.

— 0 represents No.

The scores rank the papers into three categories [51]:

excellent(6.5 ≤ score ≤ 8)

good(2.5 ≤ score ≤ 6)

f air(1 ≤ score ≤ 2)

38
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

2.2.5 Data Extraction

When using the SMS, data extraction is an important step to take [94]. As a result,
in order to answer the mapping questions listed in Table 2.1, the data extraction was
designed to collect all relevant data from each chosen primary study, which would then
be used to answer our research questions. As shown in Table 2.3, the listed mapping
questions are associated with five major fields: software maintenance challenges, Software
enhancement (changes request), SEEE models, Software enhancement evaluation metric,
and Software enhancement single (individual) models.

Table 2.3 – Data Extraction Properties with their mapping questions

Research Questions Field Research question
software maintenance challenges MQ1,MQ2,MQ4
Software enhancement (changes request) MQ2
SEEE models MQ4, MQ4.1, MQ4.2,

MQ4.3
Software enhancement evaluation metric MQ3
Software enhancement single (individual) models MQ4, MQ4.4

2.3 Mapping results

This section discusses the mapping questions to be addressed.
MQ1: What are the trends in software maintenance prediction research from 1995

to 2020? This mapping study will be conducted between 1995 and 2020 (see table
2.4). The distribution of research over the years is shown in Figure 2.1. Although a
large number of predictive models have been proposed for development projects, few
predictive models have been proposed for software enhancement maintenance projects.
Since most of the research is published in trusted impact factor journals and leading
software engineering conferences, the importance of this mapping research has increased.

From 2005 to 2010, highly ranked publications were recorded. Six studies are retrieved
from the IEEE Explore Digital Library during this time period, and six studies are
retrieved from Science Direct. High-quality papers are published in the IEEExplore
Digital Library and Science Direct. This emphasizes the challenge of SEEE using ML
techniques to researchers. 65 percent of the 30 primary studies were published in journals,

2.3 Mapping results 39

Table 2.4 – The distribution of years for SEEE area

Year/DataBase IEEE Xplore
Digital Library

Google Scholar ACM Digital li-
brary

Science Di-
rect

1995-2000 3 3 1 1
2000-2005 3 7 5 2
2005-2010 6 11 6 6
2010-2015 5 6 2 1
2015-2020 7 11 3 4

Figure 2.1 – Distribution of years for SEEE area

and 35 percent were presented at conferences (see Figure 2.2).

Figure 2.2 – The distribution of publication type

MQ2: How can SEEE be improved ? Enhancement is related to operational (error
correction) or technical purposes (goal modification) requested by the user after project
completion. It is critical to classify the Requirement ER. As a result, ER can be further
classified based on their origin (internal or external), type (add, modify, or delete), etc.

40
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

When estimating the effort of a software enhancement project, identifying only the types
of changes requested is effective. In other words, in order to provide an accurate effort
estimation in software projects, the characteristics of each type of requirements ER must
be identified [95]. Therefore, effort estimates must be performed before maintaining soft-
ware products. Furthermore, it is critical to meet and satisfy the changing needs of the
customer. In the same context, Basri et al. [19] assume that the effort required in the
maintenance phase (after the software product is delivered) is less than the effort required
in the development phase. As a result, software managers must make sound decisions
when dealing with changes during software development or maintenance. The predic-
tion of the change effort produced by the changes is one type of information that assist
decision-making. Predicting the effort of implementing an ER is not an easy task for
both the manager and the development team when the software is being developed. An
accurate effort prediction can prevent software projects from going over or under budget.
Overestimation can lead to financial failure for the organization, while underestimation
can lead to exhausted software quality and, as a result, software project failure. Esti-
mates may be inaccurate because there is not enough information on the project at the
start, and requirements are almost always poorly described. The 2018 study by PMI’s
Pulse of the Profession puts the average number of the primary causes of those failures.
The main causes of software project failures are changes in requirements (such as organi-
zational priorities, project objectives, and so on), inaccuracy in requirements gathering,
and inaccurate estimates (in terms of costs or time) [20].

The amount of information required to develop a detailed cost/effort estimate is fre-
quently missing in the early stages of the SLC. A poorly defined requirement is a big
obstacle to project success. Furthermore, requirements are represented in many formats.
Software requirements, for example, might be expressed by a textual description of a
UML use case or the US within the scrum process. Table 2.5 lists the quality criteria
for requirements. To assist in identifying business opportunities and facilitating system
design, the quality requirement should be correct, feasible, necessary, unambiguous, com-
plete, consistent, testable, clear, and traceable. A detailed description of requirements
throughout the SLC helps to predict their size more precisely. Following that, it con-
tributes to a more precise estimation of the change effort, resulting in better-informed
decisions. This is in contrast to many other prediction models, which do not take quality
requirements into account.

2.3 Mapping results 41

Table 2.5 – Characteristics of a "good" Requirement

Criteria [96] Explanation
Correct Each requirement must accurately describe the functionality

to be delivered.
Feasible Implement each requirement within the known capabilities

and limitations of the system and its environment.
Necessary Each requirement should document something the cus-

tomers really need.
Unambiguous Write each requirement in simple straightforward language

of the user domain.
Complete No requirements or necessary information should be miss-

ing.
Consistent Consistent requirements do not conflict with other software

requirements or with higher level requirements.
Testable Testers should be able to verify whether the requirement is

implemented correctly.
Clear concise, simple, precise
Traceable Linking each requirement to its source is essential, to

achieve it, each requirement must be written in a structured
and precise way

In [97], effort was predicted based only on software functional size. In [98] model, the
quality requirements attributes have increased software effort by 30 percent.

MQ3: How is enhancement effort predicted and assessed? There are four types
of software maintenance classified as correction maintenance including corrective main-
tenance and preventive maintenance, and enhancement maintenance including adaptive
maintenance and perfective maintenance. The main study selected for this SMS (see
Table 2.6) includes two types of software enhancement effort prediction. For each type of
maintenance, we provide more detailed information on the definitions and methods used
to predict the software effort.

Table 2.6 – Software Maintenance type used for effort prediction

Study Type of Maintenance Description
S1 [67] Enhancement Applying ML technique: a radial Basis Func-

tion Neural Network (RBFNN), Support
Linear Regression (SLR), Multiplier Linear
Perceptron (MLP), and Gradient Regression
Neural Network (GRNN).

42
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

S2 [68] Adaptive, Corrective,
preventive

Contributing the employment of use-cases for
predicting the effort software maintenance

S3 [99] Corrective, En-
hancive, Reductive

Evaluating the software maintenance effort
during the three maintenance types, particu-
larly the effort spent by the programmer on
maintenance activities.

S4 [89] Adaptive; Corrective;
perfective

Representing software maintenance effort us-
ing some determined software measures

S5 [92] Adaptive Performing the prediction of adaptive main-
tenance based on the prediction of lines of
codes to be changed.

S6 [100] Corrective, Perfective Proposing a maintenance effort model that
is based on the function point measure and
new maintenance productivity factors.

S7 [71] Enhancement, correc-
tive

Proposing a maintenance prediction effort
method based on an improved version of
analogy with Virtual Neighbor.

S8 [93] Adaptive, Corrective,
Perfective, preventive

Applying Function-point based regression
models for the maintenance effort prediction.

S9 [72] Adaptive Presenting a model and metrics for the adap-
tive maintenance effort estimation/predic-
tion.

S10 [73] Adaptive, Corrective,
Perfective, preventive

Implementing, evaluating and improving
software maintenance effort prediction model
based on expert judgment approach.

S11 [74] Adaptive, Corrective,
Perfective, preventive

Proposing six models based on eight different
indicators of evolution activity, their predic-
tive power is examined and compared to that
of two baseline models.

S12 [90] Enhancement Applying stochastic gradient boosting (SGB)
algorithm to predict software maintenance
effort. make a comparison between the pre-
diction performance of the SGB algorithm
and statistical regression, neural network,
SVR , decision trees, and association rules.

2.3 Mapping results 43

S13 [5] Enhancement Proposing an enhancement prediction model
based on the use of two types of SVR (-SVR
and -SVR).

S14 [91] Enhancement Proposing a prediction software enhance-
ment maintenance model based on the use
of ANN (Artificial Neural Network): Multi-
Layered Feed Forward Neural Network and
trained with Back Propagation training.

The two current models algorithmic and non-algorithmic models are widely used for
estimating enhancement effort. The algorithmic model predicts maintenance effort using
mathematical formulas. Non-algorithmic models predict using past project experiences.

Table 2.6 shows that ML techniques (or non-algorithm models) are most commonly
used for enhancement effort prediction. Various ML techniques including RBFNN, neural
network (NN), the rule engine (RE), multi-regression, a multilayer feed-forward neural
network (MFFNN) with back-propagation algorithm and Bayesian regularization train-
ing, stochastic gradient boosting (SGB) model, Virtual Neighbor (VN), and SVR, are
used in the selected primary studies (SVR). It is worth noting that COCOMO II is one
of the most widely used algorithmic models in the industry for estimating effort [91] [21].

From table 2.6, the main questions to answer are: Is there any relationship between
the techniques used? Is it possible to use a combination of several techniques? To be
clear about the first question, the choice of ML Techniques is dependent on the situation
surrounding the project taking for example the first study [67] the author used case-
based reasoning and decision trees because they are intuitive and easy to understand.
The neural networks algorithm can learn non-linear functions. There is evidence here
that the situation, or more specifically the nature of the historical dataset to be used for
such a learning problem. It has a significant impact on selecting the ML technique that
best meets the accurate prediction. Regarding the second question, it should be noted
that no works have proposed the use of Ensemble models which explore the combination
of two or more ML techniques to predict effective enhancement effort. Many researchers
assessed the performance of their proposed model using various error metrics such as
MRE, Pred, etc. The metrics used to evaluate the accuracy of SEEE are listed in Table
2.7. Table 2.7 also reveals that the majority of the selected primary studies were used for
performance evaluation of the Magnitude of Relative Error (MRE). The mean absolute

44
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

Table 2.7 – Criteria used for evaluating SEEE

Study Prediction accuracy criterion
S1 [67] Absolute Residuals Friedman statistical
S2[68], S3 [99], S7 [71], S8 [93],
S9 [72], S10 [73], S11 [74], S13
[5], S14 [91]

Mean Relative Error (MRE)

S4 [89] Correlation coefficient
S6 [100] Coefficient of determination (r2)
S5 [92] Standard error of the estimate, MMRE - Mean

Magnitude of Relative Error, MdMRE - Median
Magnitude of Relative Error, PRED(25)

S12 [90], S13 [5] Absolute Residuals (AR), Mean of Absolute
Residuals(MAR)

S4 [89], S8 [93] Pred(25)
S10 [73] Pred(50)
S11 [74] MdMRE - Median Magnitude of Relative Error,

Pred(10) and Pred(50)
S14 [91] Mean-Square-Error (MSE)

error (MAE) is the average of the absolute value differences between the actual and
predicted effort. N denotes the total number of projects. It is calculated as follows: MRE
equals (actual effort - estimated effort / actual effort). The distribution of evaluation
metrics used by selected primary studies is depicted in Figure 2.3. The MRE is the
most widely used evaluation metric for predicting enhancement effort (48%) followed by
Absolute Residuals and PRED (25%) (12 percent).

Figure 2.3 – The distribution of performance metrics used for evaluating SEEE

2.3 Mapping results 45

MQ4: What type of ML problems addressed in SEEE fall into? Several performance
metrics are used to evaluate and compare the performance or the accuracy of the SEEE
model. The appropriate performance evaluation metric is consistently selected based on
the problem type which can be a regression, classification, or clustering problem [51]. In
terms of what is used to provide a more accurate SEEE model, we find that regression
problems outnumber those of ML (see Table 2.6). The regression models used in the
selected studies were statistical regressions [89, 91, 73], General Regression [67], Support
Linear Regression models [67], SVR [5], and decision trees stochastic gradient boosting
[90]. The purpose of regression models is to construct a function f(x) that adequately
maps a set of independent variables (X1, X2,..., Xn) into a dependent variable Y [37].

MQ4.1: What are the proposed models for SEEE? Many researchers proposed de-
veloping SEEE models in order to obtain more accurate estimates. The findings of a
literature review for which various ML techniques are investigated in terms of their abil-
ity to generate accurate prediction models are presented. Between 1995 and 2020, 14
studies proposing SEEE models were published. Table 2.8 displays the techniques and
data sets used for SEEE.

Table 2.8 – ML techniques and data sets used for SEEE

Study Used Techniques Source
S1 [67] Radial Basis Function Neural

Network, SLR, MLP and GRNN
ISBSG Release 11

S2 [68] Linear Regression Analysis Commercial software Process
Management tool.

S3 [99] Three LOC metrics: LOC added,
modified, and deleted.

24 projects from 23 graduate stu-
dents and one senior majoring in
computer science.

S4 [89] Linear Regression 200 software projects maintained
in the NASA Goddard Space
Flight Center

S5 [92] Multiple Regression, Simple Re-
gression

32 projects and an industrial
project developed in Lexington,
Kentucky.

S6 [100] Regression analysis with Func-
tional Points

26 maintained software projects

46
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

S7 [71] Analogy with Virtual Neighbor
compared to The normal-
ized dimension value (NDE)
method, the closest neighbor
(CN) method, and the original
COCOMO81 method

24 projects from a Hong Kong
branch office of an international
financial institution

S8 [93] Function-point based regression
models

145 maintenance and develop-
ment projects

S9 [72] Multilinear regression analysis 145 software projects of a single
outsourcing company.

S10 [73] Regression analysis, neural net-
works and pattern recognition

109 tasks from a Norwegian orga-
nization

S11 [74] Univariate Regression, Multivari-
ate Regression

121 observations from 1981 to
1998

S12 [90] Statistical regression (SR), NN,
SVR, Decision Tree (DT) and
Stochastic Gradient Boosting
(SGB)

Five SIS data sets selected from
the ISBSG Release 11.

S13 [5] SVR, Decision Tree (DT) Software enhancement projects
were obtained from ISBSG Re-
lease 11

S14 [91] Artificial Neural Network COCOMO data-set

Table 2.8 shows that the majority of the primary studies used regression methods
such as Statistical Regression (SR), SVR, and Stochastic Gradient Boosting (SGB) for
SEEE. Table 2.8 also demonstrates that the Artificial Neural Network (ANN) was used
in a large number of the primary studies.

MQ4.2: What are the SEEE datasets used to build prediction models? Table 2.6
highlights the variety of datasets used for SEEE. A dataset is a "collection of connected
sets of data that may be utilized to run ML-based models, and it is regarded as the
foundation for developing prediction models" [101]. When constructing a learning model,
the dataset is divided into two parts: a training set for model input and a testing set for
evaluating the built model [101].

Table 2.8 depicts a summary of the various types of datasets used in the selected
primary studies. Primary study datasets are classified into two types.

2.3 Mapping results 47

— Public dataset: The dataset can be found as an appendix or table in a published
paper or in a publicly accessible repository [51], such as the ISBSG Release 11 in
S1[67], S13 [5], and S12 [90]. The ISBSG maintains a Development and Enhance-
ment Repository [2] (also known as the "ISBSG dataset"). In S14 [91] and S7 [71],
we additionally acknowledged the use of the COCOMO II dataset, as well as the
NASA Goddard Space Flight Center dataset in S4 [89].

— Private dataset: The dataset is not publicly available and was obtained from a
private software system, such as in S8 [93], S10 [73], S6 [100], S9 [72] and S5 [92].

Figure 2.4 – Percentage of studies using each type of datasets

Figure 2.4 shows the percentage of studies using the different types of datasets. It is also
a difference in the number of studies using public versus private datasets. The majority of
the selected primary studies were conducted using private datasets, as opposed to public
datasets. This explains the lack of studies addressing SEEE with public datasets. As
a result, we observed a lack of comparative studies among researchers’ effort prediction
results in the field of software maintenance. This is since each dataset’s features are
unique.

As stated in MQ3, one of the important factors influencing one choice over another
is the dataset used for learning. In other words, the selection of the datasets’ features is
critical for more accurate prediction. Some research studies focused on feature selection
[102] in order to select the relevant features and provide the best configuration. Other
research studies, on the other hand, focused on the use of independent variables (that we
detailed in the next question). As a result, several factors, such as the size of the dataset,
can have an impact on the prediction results [103]. Therefore, many research studies used
a single dataset [67]. However, we observed the use of more than one dataset in other
research studies [92].

48
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

MQ4.3: What are the independent variables used to improve performance of SEEE
model? The data features derived from the ISBSG dataset are used for three distinct
purposes in SEEE [23]:

— Filtering features [23]: The filtering phase is carried out in order to identify the
most relevant set of projects.

— Dependent features [23]: The dependent variable in effort prediction models is
usually ’Effort’. The dependent variable representing the output is the one that
must be predicted.

— Independent features [23]: A large number of the 118 features in the ISBSG dataset
are most likely considered effort factors. As a result, the criteria for selecting
appropriate independent variables are not standardized. It all depends on the area
of study. In most cases, the independent variable displays the most significant data
values [23].

Table 2.9 lists the independent variables used in the primary studies to predict mainte-
nance effort. Table 2.9 shows that there is a broader range of using functional size (in

Table 2.9 – Independent variables used for SEEE

Study Independent Variables
S1 [67], S6 [100], S8 [93],
S13 [5], S12 [90]

Function Points Size

S2 [68] Size Parameter (use cases)
S4 [89] Lags time (Lag time), the number of LOC changed

(LOC change), and the number of modules changed
(Module change)

S5 [92] Percentage of operators changed and the number
of lines of codes changed edited, added or deleted
(DLOC)

S9 [72] Size and complexity
S10 [73] Size of the changed application
S11 [74] SubsysInclCreations, SubsysChanged, SubsysHan-

dled, ModulesCreated, ModulesHandled, Mod-
ulesChanged, TotalHandlings, Modiflandlings

S14 [91] KLOC

terms of function points) as independent variables. The authors [23] assume that the size
features are solely related to the amount of effort required. Sizing is considered one of

2.3 Mapping results 49

the most accepted methods which have a greater impact on predicting software project
effort [94]. The Size metric and effort estimations are the most intriguing metrics which,
if correct, have a positive impact on software project planning and management [64].

Nowadays, FSM methods, including the first generation (e.g., IFPUG) and second-
generation (i.e., COSMIC) are widely used in the software industry to the size software
product. The obtained functional size is identified as an independent variable in the pre-
diction models. The IFPUG software size is frequently used as an independent variable
for estimating software effort. Furthermore, the COSMIC functional size is used to ap-
propriately estimate software size as well as the size of an ER (add, modify, delete)[15].
Industry results assume that the COSMIC sizing method is successfully used in the soft-
ware industry estimating process.

MQ4.4: Which single models are most frequently used for SEEE? When investi-
gating the primary selected studies, Table 2.6 reveals that all studies used only single
prediction models (i.e., individual models). The most commonly used single models for
predicting maintenance effort are SVR (including linear and multi regression) and ANN
(see Figure 2.5). The evaluation metrics used to compare and evaluate the prediction

Figure 2.5 – The distribution of singles models used for enhancement effort prediction

accuracy of the single prediction models employed in each study are used to determine
which model is the best (see table 2.7). Table 2.10 enumerates the set of single prediction
models used in each investigation, along with the performance of the MRE value when
using the ISBSG dataset, and the best model in each study. Figure 2.5 indicates that
Radial Basis Function Neural Network (RBFNN), Stochastic Gradient Boosting (SGB),
and PK-SVR are close to meeting the MAR criteria to build an accurate SEEE model
when using ISBSG dataset.

50
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

Table 2.10 – Performance of MRE value for selected primary studies using ISBSG dataset

Study Used Techniques The best accuracy predic-
tion model

MRE

S1 [67] Radial Basis Function Neu-
ral Network (RBFNN), SLR,
MLP and GRNN

Radial Basis Function Neural
Network (RBFNN)

0.46

S12 [90] Statistical regression (SR),
NN, SVR, DT and Stochastic
Gradient Boosting (SGB)

Stochastic Gradient Boosting
(SGB)

0.36

S13 [5] SLR, MLP, DT, ARU, -SVR
and -SVR

PK-SVR 0.49

2.4 Implication for research and practice

Understanding and defining the product to be predicted is one of the first steps in any
estimate. However, predicting is difficult because a software system is intangible, invisible,
and intractable [20]. Understanding and predicting a product or process that cannot be
seen or touched is inherently more difficult. Furthermore, software grows and changes as
it is written. As a result, the stakeholders and manager must make good decisions when
managing requirements changes during software development or maintenance.

Because underestimation is the more prevalent trend, it is critical to consider factors
(i.e., project size, team maturity, etc.) that may cause project delays. Identifying and
taking into account these factors can help to reduce overestimation. Some researchers
argue that because change is frequent, it is difficult to provide an accurate estimate and
predict the future (it is a waste of time). However, the effort required to implement a
change must be determined. This is to avoid failures and make appropriate decisions.
There are numerous software cost/effort estimation/prediction models/techniques in the
literature, including algorithmic models and non-algorithmic models. Recent research
on software maintenance effort prediction has focused on comparing the accuracy of ML
techniques as non-algorithmic for effort prediction.

A review of various ML techniques (such as regression learning models) used in pre-
dicting effort revealed that estimate accuracy can be achieved. No model is necessarily
superior to another. Strengths and weaknesses are frequently complementary to one an-
other. Which prediction models should be used for a specific project based on the project’s
environment? As a result, having a good understanding of requirements changes is re-

2.4 Implication for research and practice 51

quired for predicting the effort required to rework them. However, no standard method
for classifying requirements changes exists that can provide an understanding of both the
project level (effect on the project progress) and the requirements level (effect on other
requirements).

Size in software engineering datasets can refer to "the physical size of the program,
measured in lines of code (LOC); or the functional size of the problem, measured in Func-
tion Points."[23]. FSM is especially useful when development/maintenance effort must
be predicted. Despite the fact that COSMIC FSM method [2] is the most widely used
standard of the FSM method, we discovered that none of the primary studies datasets
used for SEEE used it, only the ISBSG dataset. The COSMIC FSM method [34] can also
be used to approximate software size at the start of the software life-cycle. The COS-
MIC FSM method has been used successfully to size data manipulation-rich software as
well as some scientific/engineering software [34]. Recently, research papers looked at the
use of an ensemble of learning machines to improve software effort estimation [104]. An
ensemble of learning machines is defined as "a group of learners who have been trained
to perform the same task and have been combined to improve predictive performance."
[104]. According to our mapping study findings, only single models have been used to
predict maintenance effort. According to the findings of our mapping study, only single
models have been used to predict maintenance effort. Even when considering ensemble,
Leandro et al. [104] conclude that there is very unlikely to be a universally best model.

The estimation process of a software project is divided into three major parts in
the software industry: estimation inputs, estimation model, and estimation output [32].
Frequently, the first section, known as estimation inputs, includes all three types of
software requirements: functional and non-functional requirements, as well as project
constraints. However, there is no standardized method for ensuring the quality of each of
these parts. No agreement has been reached on the quality of each part of the estimation
process. The software industry is frequently plagued by a number of poor estimation
practices [32]. The majority of researchers are focused on developing new prediction
models. A minority of researchers, however, have considered the quality of estimation
input [32].

Finally, it is important to note that the inability to assess the quality of prediction
models influences the selection of the best model. Indeed, employing the prediction
process will help in the elimination of common research errors (i.e., focusing on the

52
Systematic Mapping Study: Software Enhancement Effort Estimation using Machine

Learning Techniques

improvement of prediction models, instead of focusing on improving the input to these
prediction models). As a result, using common terminology and measurement standards
in the same context is essential for improving estimate quality (the output). Then, how
estimates are gathered and used can have an impact on their usefulness for planning and,
as a result, the success of a software project. The main goal of this chapter is to investigate
and bring to light the major shortcomings of SEEE models involved in literature reviews.
Results showed a lack of studies dealing with the SEEE using ML techniques. Based on
the use of SMS, the findings of the mapping research questions were as follows:

— MQ1: The time frame for this mapping study has been set between 1995 and 2020.
Although many prediction models have been proposed for development projects,
few have been proposed for software maintenance.

— MQ2: It is critical for Software Managers to (1) make effective decisions when
managing changes during software maintenance and (2) focus on software system
aspects that are likely to change.

— MQ3: The majority of selected primary studies used regression methods such as Sta-
tistical Regression (SR), SVR, and Stochastic Gradient Boosting (SGB) to predict
software maintenance (enhancement) effort. Whereas the majority of the primary
studies used the Magnitude of Relative Error (MRE) to evaluate performance.

— MQ4: When it comes to the use of ML techniques for SEEE models, regression
problems are more common than other ML problems.

— MQ4.1: Enhancement (including adaptive and perfective maintenance) is not well
considered for effort prediction. ML techniques are the most frequently non-algorithm
method used for enhancement effort prediction.

— MQ4.2: For SEEE, two types of datasets were used: public datasets and private
datasets. The majority of the primary studies chosen were conducted using private
datasets rather than public datasets.

— MQ4.3: There is a wide range of using software functional size (in terms of CFP)
as independent variables.

— MQ4.4: When using the ISBSG dataset, the results show that SVR is the most
commonly used model, and Stochastic Gradient Boosting (SGB) is closer to meeting
the MAR criteria (=0.36) for building an accurate SEEE model.

2.5 Conclusion 53

2.5 Conclusion

As this chapter was designed as an SMS, our analysis was limited to a broad overview
of the software maintenance (enhancement) effort prediction research field. When propos-
ing a new ML prediction technique in the field of software maintenance, this mapping
review takes an unbiased approach to decision-making. This chapter investigated some
of the most important issues that should be addressed in the context of SEEE. The first
review used 30 studies from 1995 to 2020. Then we chose 14 studies to be examined.
This study enables researchers and practitioners to determine what needs to be done in
the field of SEEE. In the next chapter, we discuss the effectiveness of using both ontology
and ML techniques to improve the accuracy of SEEE models.

Chapter 3
Ontology-based Classification of
Enhancements with their corresponding
Effort Estimation
Contents

3.1 Introduction . 55

3.2 Research Work Process Overview . 56

3.3 Gathering Data . 56

3.4 Ontology based-Semantic Classification 57

3.5 Constructing Prediction Models and Evaluation 67

3.6 Discussion and Comparison . 69

3.7 Conclusion . 70

This chapter outlines how ontology knowledge representation including semantic
similarity measures can improve the accuracy of ML techniques. First, an ontology-
based Model (OMC) is designed to specify, present, and classify enhancement re-
quests. Next, each enhancement request classified as Functional Change will be as-
sociated with its corresponding enhancement effort using Expert Judgment. Finally,
the constructed ontology model is populated with a historical dataset to predict the
required SEEE to complete an effort for software enhancement using ML techniques.

In Short

3.1 Introduction 55

3.1 Introduction

Software enhancement is regarded as one of the critical activities in the software main-
tenance life cycle. It is defined as changes made to an existing application in which new
functionality is added or existing functionality is modified or deleted. This would include
adding a module to an existing application, regardless of whether any of the existing
functionality is changed or removed [105]. Given that effort estimation is one of the pri-
mary activities of software project planning, it is necessary to define the components of
an estimation process. The quality of an estimation process’s outcome is determined by
the quality of its inputs (such as product requirements, software development process,
and project constraints) [32]. Requirements are the foundation of any software project.
Identifying complete and clear requirements throughout the SLC is a difficult task. As
a result, adjustments are required. ER can occur during the development of software
or even after it has been delivered. To effectively evaluate enhancements and the effort
required to complete these enhancements, the use of both an appropriate measurement
method and an accurate estimation model is required. However, choosing an appropriate
measurement method will depend on the type of ER.

ER are most commonly expressed in natural language, accounting for up to 90 percent
of all specifications [40]. ER expressed in natural language are difficult to analyze and may
result in confusion, inefficient distinction of requirement types, ambiguity, etc. According
to [20], each proposed ER has to be analyzed to determine whether it is "in-scope" or
"out-of-scope". "In-scope" ER fall within the scope of the project so that they can be
implemented with little or no disruption to the planned activities. They involve minor
adjustments to an existing requirement. They usually have a minor effort within the
project process. While "out-of-scope" ER falls outside the scope of the project and must
be accompanied by an adjustment to project planning with significant effort impact [6].

As mentioned in chapter 1, requirements for software system projects are divided into
three categories [6]: functional user requirements (FUR), non-functional requirements
(NFR), and project requirements and constraints (PRC). In this chapter, we propose to
classify ER into two categories they affect. Using ontology, ER that affect Functional
User Requirements are classified as FC. ER that affects NFR or PRC is classified as
TC. The classification of ER allows stakeholders to be selective in the use of the appro-
priate measurement method. As a result, they can evaluate the impact of ER on the
effort required for their implementations. This is useful when they need to improve their

56
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

understanding of management decisions.
In this chapter, we first propose an OMC which will be used for classifying ER into

FC or TC. Therefore, every effort is made based on this categorized ER using Expert
Judgement (which serves as input to the SEEE model). A detailed description of the
enhancement request will be presented in this chapter. Next, We estimate the software
enhancement effort based on the use of four ML techniques. We evaluate how well FC is
correlated to the SEEE. We also present which of the selected ML techniques provides
more accuracy for estimating.

The remainder of this chapter is organized as follows: section 3.2 gives a detailed de-
scription of our research work process. Section 3.3 presents the gathering data phase. Sec-
tion 3.4 presents the Ontology based-Semantic Classification model. Section 3.5 presents
the experiments and results and addresses the threats to validity. Section 3.6 presents
the discussion and the limitations of our contribution. Finally, section 3.7 provides our
conclusions.

3.2 Research Work Process Overview

In order to ensure that results are generally valid, the empirical evaluation of the pro-
posed models must cover a wide range of conditions. These conditions include various
parameter settings and datasets of varying size, skewness, and noisiness, as well as var-
ious preprocessing approaches. Our research work process (see Figure 3.1) includes the
following three steps:

1. Gathering Data

2. Ontology Semantic Classification

3. Constructing Prediction Models and Evaluation

3.3 Gathering Data

Many scientific disciplines make extensive use of public experiment repositories to
facilitate the sharing of experiment data. On the other hand, unambiguous description
languages which are based on a careful examination of the concepts are created to be used
within a domain and its relationships. This is formally represented by ontologies, which
are machine-manipulable domain models that clearly describe each concept (class).

3.4 Ontology based-Semantic Classification 57

Figure 3.1 – Research Work Process Overview

Accordingly, in this step, we collect a set of data from two types of databases. The first
database contains requirements for software projects including ER described in natural
language and collected from use case diagrams, class diagrams, and project tutorials from
previously developed real projects in the software industry. The second database contains
ER collected from customers’ reviews in PROMISE 1. These sources provide the system
contextual requirements including system purpose, system scope, and system overview.
Our research study takes into account the ER as an input, (1) identifies its types (add,
modify or delete), (2) measures the actual effort corresponding to each ER classified as
FC derived from experts’ opinions, uses the outputs of (1) and (2) as an input to construct
an SEEE based ML techniques.

3.4 Ontology based-Semantic Classification

As shown in Figure 3.2, this phase proposed an OCM where we focused on the impact of
semantic classification for improving the performance of ML experiment results.

An ontology consists of the following elements: (i) a set of concepts; (ii) a set of
relations describing concept hierarchy or taxonomy; (iii) a set of relations linking concepts
non-taxonomic; and (iv) a set of axioms, usually expressed in a formal language—for a

1. http://promise.site.uottawa.ca/SERepository/datasets-page.html

58
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

Figure 3.2 – Semantic Classification with Ontology

formal definition of ontology [40]. The main goal of our proposed ontology is to semantic
classify the gathered ER into FC or TC. TC is further classified into one of the eight ISO
25010 quality characteristics and Project Requirements and Constraints.

The Pellet Reasoner and a set of DL queries are implemented to accomplish data
cleaning based on the knowledge expressed in the ontology domain. The Pellet Reasoner
uses ontology constraints to consistently detect data inconsistencies. The reasoners’ in-
consistencies are then detected and corrected by a SPARQL query. Therefore, queries are
used to explore the data and build constraints for detecting and correcting inconsisten-

3.4 Ontology based-Semantic Classification 59

cies. Thus, we carry out the ontology development through three main steps: Ontology
Specification, Ontology Conceptualization, and Ontology Implementation.

3.4.1 Ontology Specification

This step usually includes analyzing concepts to determine whether they are classes or
entities, as well as the relationship between classes. This is to identify their categories (as
either FC or TC). The classification of ER is intended to identify the type of enhancement
to be made, the actions to be taken and the appropriate service to be implemented. Table
3.1 lists the main classes of our proposed ontology. Table 3.2 depicts the interrelationships
between classes (domain/range).

Table 3.1 – Ontology class specifications

Class Description
System ERs Customers ER from PROMISE repository.
FC Customers ERs are changes that affect FUR
TC Customers ERs are changes that affect either NFR or

PRC
System ER Domain Enhancement communicators (internal or external). Ex-

amples of some of the internal change communicators are
business analysts, development team, designers, testers,
etc. Examples of some of the external communicators
are users, customers, managers, Product owner, etc.

Internal TC TC derived from Internal stakeholders
External TC TC derived from External stakeholders
Internal FC FC derived from Internal stakeholders
External FC FC derived from External stakeholders
Internal FC Modification Internal FC to be modified
Internal TC Modification Internal FC to be modified
Delete in Internal FC Internal FC to be deleted
Delete in Internal TC Internal TC to be deleted
Add in Internal TC Internal TC to be created
Add in Internal FC Internal FC to be created
External FC Modification External FC to be modified
External TC Modification External TC to be modified
Delete in External FC External FC to be created
Delete in External TC External TC to be created

60
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

Add in External TC External TC to be created
Add in External FC External FC to be created

Table 3.2 – Ontology Inter-relationship description

Inter-relationship
among classes

Domain Range

is composed of System ER FC, TC
Decomposed in TC External TC, Internal TC.
Decomposed in FC External FC, Internal FC
Decomposed in External FC Modify in External FC, Delete in

External FC, Add in External FC
Decomposed in Internal FC Modify in Internal FC, Delete in In-

ternal FC, Add in Internal FC
Decomposed in Internal TC Modify in Internal TC, Delete in In-

ternal TC, Add in Internal TC
Decomposed in External TC Modify in External TC, Delete in

External TC, Add in External TC
Is Equivalent to TC Non-FC, Projects ER and constraint

3.4.2 Ontology Conceptualization

Using the Protégé 4.3 ontology editor, we create an ontology-based on the enumerated
concepts in table 3.1 and table 3.2. The conceptual model entails a set of domain concepts
and their relationships. Of course, concepts such as class, attributes, objects property,
data property, and their relationships must be defined. Figure 3.3 depicts the various
classes of the proposed ontology model:

— The main class is named “System Requirements Enhancement Request".

— The classes named “Functional Enhancement Request" and “Technical Enhance-
ment Request" are subclasses of the class “System Requirements Enhancement Re-
quest".

— The classes named “Non-Functional Enhancement Request" and "Project Enhance-
ment Requirement and Constraints" are subclasses of the class “Technical Enhance-
ment Request".

3.4 Ontology based-Semantic Classification 61

— The classes named “External Functional Enhancement Request" and "Internal Func-
tional Enhancement Request" are subclasses of the class “Functional Enhancement
Request".

— The classes named “External Technical Enhancement Request" and "Internal Tech-
nical Enhancement Request" are sub-classes of the class “Technical Enhancement
Request".

— The classes named “Modify in External Technical Enhancement Request", "Delete
in External Technical Enhancement Request" and "Add in External Technical En-
hancement Request" are sub-classes of the class “External Technical Enhancement
Request".

— The classes named “Modify in Internal Technical Enhancement Request", "Delete
in Internal Technical Enhancement Request" and "Add in Internal Technical En-
hancement Request" are sub-classes of the class “Internal Technical Enhancement
Request".

— The classes named “Modify in Internal Functional Enhancement Request", "Delete
in Internal Functional Enhancement Request" and "Add in Internal Functional En-
hancement Request" are sub-classes of the class “Internal Functional Enhancement
Request".

— The classes named “Modify in External Functional Enhancement Request", "Delete
in External Functional Enhancement Request" and "Add in External Functional En-
hancement Request" are sub-classes of the class “External Functional Enhancement
Request".

Figure 3.3 – Ontology-based Semantic Classification Model of ER

62
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

3.4.2.1 Populating Ontology with FC

This step includes populating the ontology using the PROMISE repository (an ex-
ample of Ontology’s class and its corresponding customer’s review (i.e., Customer ER)
is listed in appendix 5.7). Ontology population is accomplished by creating an instance
of each class and providing links based on the inter-relationships between classes (do-
main/range). We chose one software requirements specification document with a total of
832 non-functional requirements (NFR) and 93 functional requirements (FUR).

Manipulation of instances is a critical step in our ontology model. There are many
approaches used by ontology management systems: OWL schema 2 and object-oriented
development 3. We used OWL schema and Jena to populate automatically our ontology
with ER (i.e., users’ reviews) derived from the PROMISE repository. These requests are
conducted on implemented software and previous software development projects. The
collected data (ER) is used to complete the task of the Ontology population.

3.4.2.2 Populating Ontology with Enhancement effort derived from Expert judgment
approach

In this step, we employ Expert Judgment to identify each FC of an ER with its cor-
responding effort. When a company does not have any historical data in its database
[106], the Expert Judgment will be useful. Here, the estimates have been updated and
calibrated based on the organization’s past expert experience. In our study, as shown
in Table 3.3, we asked seven estimators with at least three years of experience. As

Years of software Experience Numbers of estimators
3 years 2
4 years 3
10 years 2

Table 3.3 – Expert Judgement Experience

shown in Table 3.4, each ER is associated with its corresponding estimated effort based
on Expert judgments. The outcomes are based on information provided by estimators
such as the product’s previous history (i.e., previous changes), the functional size of the
new function, similar previous implementations, the amount of new code, the deadline
pressure, and the product’s expected lifetime.

2. https://www.w3.org/OWL/
3. https://www.w3.org/TR/sw-oosd-primer/

3.4 Ontology based-Semantic Classification 63

Project ER ER Type Estimated
effort

Mobile
game
application

Personalize Infor-
mation

Modify 3h/per

Add notification
For localization

Add 7h/per

SOCOMENIN Personalize Infor-
mation

Modify 3h/per

Personalize In-
formation for
invoice

Add 3h/per

Table 3.4 – Example: Enhancement Effort Estimation based on Expert Judgement

3.4.3 Ontology Implementation

In our contribution, we proposed a set of Semantic Web Rules Language (SWRL) 4

and Description Logic Query (DL query) 5 based on the definition of the ISO 25010
software quality characteristics and the description of the users’ reviews within PROMISE
repository. The first step is to choose a set of terms that are relevant to the domain, which
can be done manually or automatically. It is associated with the recognition of subject,
object, and relationships. The linguistic motivation for this identification is that the
meaning of common terms is hidden in their relationships with other terms. These terms
are organized into classes using the Protégé 4 editor. And then, converted into a set
of rules. These concepts can be used to quickly identify the required Instances. Table
3.5 lists our proposed classes and their corresponding key concepts (i.e., users’ reviews
from PROMISE repository). The following steps are required for our proposed ontology
solution: (A) Implementation of the rules, (B) Queries about the knowledge using DL
query, (C) Invoke a pellet reasoner that builds a knowledge-based ontology domain, and
(D) Ontology output and solution discussion.

4. https://www.w3.org/Submission/SWRL/
5. https://github.com/stardog-union/DLQuery

64
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

Table 3.5 – Categorizing the Customer’s ER

Classes Key concepts
Functional En-
hancement

must contain, play, view, select, manage, operate

Technical En-
hancement

maintain, produce, corporate, load, upload, synchro-
nize, appearance, transaction

External-
Enhancement

Cannot, please, doesn’t, none, problems, no access,
bugs, stopped working

Internal-
Enhancement

Product must, product shall, administrators must, sys-
tem must, application parameters, change

Create Add, build, design, generate, organize, set up, pro-
duce,

Delete Delete, black out, destroy, exclude, cut out, eliminate,
cancel.

Modify adapt, revise, modify, correct, rework, repair

A. Implementation of rules

Following the conceptualization step, we propose a set of rules for our Ontology. With the
explanation of the first rule, Table 3.6 includes four columns: the name of class (class),
the attribute (Data property), the instances (individuals) and the result (output). One
line including the proposed rules. This table is applicable to the following rules (R1, R2,
and R3).

— R1: SystemRequirementsChangeRequest(?F), Change Value(?F, ?V), contains(?V,
"stopped played ") — External Change(?F)

Table 3.6 – Rule 1

class Data property individuals output
System Require-
ments Change
Request

Change_Value stopped
played

External En-
hancement

R1 is used to determine the source of ER. An ER may come from multiple stakeholders,
each with its own set of priorities. The reviews of users are classified as either external
ER or internal ER. External ER is related to the users’ perspectives. For example, "I
loved the app, but since I installed iOS7 and updated it, it no longer works; please fix it".
External ER help to identify and define internal ER (from the developer’s perspective).

3.4 Ontology based-Semantic Classification 65

It is critical to distinguish internal ER from external ER to better prioritize ER and
determine the role of stakeholders.

— R2: SystemRequirementsChangeRequest(?F), Change Value(?F,?V), contains(?V,
“events”), contains(?V, “update”)- Functional Change(?F)

R2 is used to identify FE that affect functional requirements (FUR).

— R3: SystemRequirementsChangeRequest(?F), Change Value(?F,?V), contains(?V,
"resources"), contains(?V, "update")- Technical Change(?F)

R3 is used to identify TC that affect quality requirements including both (NFR and
PRC).

B. Queries about the knowledge using DL query

The reasoning features of the proposed rules specified in the DL Query were used to verify
and validate the ontology. For searching a classified ontology, DL includes a powerful
and simple feature. The query language (class expression) supported by the plugin is
built on the Manchester OWL syntax, a user-friendly OWL-DL syntax. Because of its
expressiveness and power, we selected OWL to represent our ontology-based approach.
Figure 3.4 illustrates a query for FC. As a result, a list of inferred individuals related to

Figure 3.4 – Functional Change DL Rule result

FC is considered (as explained earlier in rule R2).

66
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

C. Invoking a pellet reasoner that builds a knowledge-based ontology domain

To illustrate the use of our ontology, we used the DL Query tab in conjunction with
the reasoner pellet to retrieve all of the corresponding class instances. The reason why
ontology is used is for reasoning. In Protégé, there are two types of models: asserted
and inferred (Figure 3.5). Test results are displayed in the form of inferred individuals.

Figure 3.5 – Ontology with Reasoner

The ontology reasoner may discover significant connections and implications among the
various components (concepts, relations, and properties) used to construct our ontology.

D. Ontology output and solution discussion

For a more appropriate response to an ER, we identify three types of requirements ER,
which are categorized by FC and TC: Addition (), Deletion (), and Modification ().

— If the ER is an "Addition of a new requirement," it will produce more information.

— If the ER is a "Deletion of an existing requirement," deletion output will be provided.

— If the ER is for a "Modification of an Existing Requirement," the sources of the
modification types must be identified (Refine or Replace).

As an example of rule R1, "the system must be able to display student information," and
ER means "the system must be able to display student information: full name and grade
level."

To make ontology information available as background knowledge for ML techniques,
it is required to use a statistic and semantic-based approach to process textual data.

3.5 Constructing Prediction Models and Evaluation 67

One of the most widely used techniques to process textual data is TF-IDF [107]. A
common phrase (or non-unique phrase) that appears frequently in a document may not
be important if it also appears in many other documents. To consider the uniqueness of
key phrases, the Term Frequency and Inverse Document Frequency (TF-IDF) approach is
recommended [107]. As its name implies, TF-IDF vectorizes/scores a word by multiplying
the word’s Term Frequency (TF) with the Inverse Document Frequency (IDF), where:

— Term Frequency (TF) is the number of times a term or word appears in a document
in comparison to the total number of words in the document.

— Inverse Document Frequency: IDF of a term reflects the proportion of documents
in the corpus that contain the term.

3.5 Constructing Prediction Models and Evaluation

In this section, the chosen ML techniques are trained and tested for a variety of ex-
periments. Our prediction model was created using the Google Colaboratory Python
programming language. Google Colaboratory, also known as Google Colab, is an open-
source service that Google offers to anyone with a Gmail account. Google Colab 6 provides
GPU for research to the people who do not have enough resources or cannot afford one.

Six software development projects were used to test our proposed SEEE model. In
this section, two types of experiments are carried out. In the first set of experiments, the
dataset is randomly divided into two subsets, a training set, and a test set. The second
set of experiments is carried out using the widely used tenfold cross-validation method.

3.5.1 Simple split

For the first set of experiments, we used the classic approach that is to do a simple 70%-
30%. We frequently divide our data into two sets: training and validation/test. The
training set is used to train the model, and the validation/test set is used to validate
data that it has never seen before. The results of our built SEEE models are compared
to a widely used set of evaluation metrics such as mean square error (MSE), root mean
square error (RMSE), and mean absolute error (MAE) as demonstrated in Table 3.7. All
error metrics indicate quite values. It is evident from the results (see Figure 3.6) that the
RFR method delivers the best performance when compared with the other three MLRM.

6. https://colab.research.google.com/notebooks/welcome.ipynb

68
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

Method/parameters MAE MSE RMSE
ABReg 0.450 0.263 0.513
GBReg 0.108 0.070 0.265
RFR 0.040 0.045 0.215
LinearSVR 0.100 0.479 0.190

Table 3.7 – Prediction analysis using MAE, MSE and RMSE

It shows evidence of its powerful predictive capacity. In addition, the GBReg presents
good results. However, the bad results are presented by the ABReg method.

Figure 3.6 – Prediction analysis using MAE, MSE and RMSE

3.5.2 Cross validation

In cross-validation, we do more than one split. We used 10-fold cross-validation in our
model. It has been used in a variety of experiments to assess the performance of four
MLRM. We can obtain more metrics and draw important conclusions about our algorithm
and data by employing Cross-Validation. One of the most obvious reasons for performing
cross-validation is that it allows us to make better use of our data and provides us with a
lot more information about the performance of our algorithms. Table 3.8 illustrates the
results of using these two metrics (accuracy/prediction) for Cross-validation method.

3.6 Discussion and Comparison 69

Techniques ABReg GBReg RFR LinearSVR
Accuracyl f 0.8203498 0.8634263 0.8836048 0.7168095
Cross-
Predicted(K-Fold
)

0.8066543 0.8496022 0.8175633 0.8011495

Table 3.8 – 10-Fold Cross Validation accuracy

3.6 Discussion and Comparison

The use of Ontology with ML techniques improves the accuracy of the SEEE. The ad-
vantage of using Ontology is its ability to categorize ER from simple classification to
semantic classification. As stated in section 3.4, the data quality (models input) was
improved using an ontology-based classification approach. Furthermore, this approach
necessitates that the request for enhancements is clearly and completely defined.

From Figure 3.6, we can confirm the validity of ML techniques as an alternative to
the traditional estimation approaches (such as Expert Judgement). This estimation will
help experts make decisions on whether to accept, defer or deny an ER.

All the participants in the software project recognize the importance of developing an
accurate SEEE since it plays a key role in the success of the software project planning and
management. The main idea of our research is to present an effective model for SEEE.
We focused on the importance of semantic classification, and therefore we investigate
their impacts for a good prediction.

The proposed SEEE model is quite effective and demonstrates the minimum MAE of
0.040 using a real dataset project. After learning, the ML techniques were able to produce
reasonably accurate predictions. This study and experiment were done to evaluate four
ML methods ABR, GBR, LinearSVR, and RFR. These methods are used to predict effort
for an ER that occurs in the software development project. The RFR is established to
be the more effective algorithm when compared with the other three methods.

We used two methods for evaluation. The first method used a simple split. The
second method used 10-fold cross-validation. In addition, we used the R2 score for cross-
validation. Based on the obtained results, we noted small values of MSE, MRE, and
RMSE when applying a simple method alone. It demonstrates the effectiveness of the
used methods. Good accuracy of 90% is obtained when the 10-fold cross-validation with
an R2 score in the best scenario is used. To identify the effective determinants of the

70
Ontology-based Classification of Enhancements with their corresponding Effort

Estimation

SEEE, we calculate the importance of each feature. Furthermore, a model that uses
Actual effort and ER features delivers superior performance as compared to a model
that uses all proposed features. In addition, a model that incorporates a combination of
10-fold cross-validation and R2 score demonstrates better performance when compared
with a model that uses a simple split (train/test). As a result, we can conclude that the
RFReg and GBReg techniques improve estimate accuracy.

3.7 Conclusion

In this chapter, we investigated the problem of providing accurate SEEE. We designed
an OCM for classifying ER as FC or TC. We populate the OCM with real-world projects
from the software industry where we associate each ER with its corresponding effort using
Expert Judgement. The output of the OCM (dataset) is used as input to make SEEE
using ML techniques. Four ML techniques (ABR, GBR, LinearSVR, and RFR.) are used
for estimation. The RFR gives a more accurate SEEE compared to the others selected
ML techniques. In the next chapter, we discuss the effectiveness of using the COSMIC
FSM method as a primary independent variable for improving the accuracy of SEEE.

Chapter 4
Towards the use of COSMIC FSM method
for improving SEEE within the context of
classical and Agile projects

Contents
4.1 Introduction . 72

4.2 On the use of FSM methods for more accurate Prediction in the tradi-
tional software Enhancement projects . 73

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 81

4.4 Discussion and Comparison . 92

4.5 Conclusion . 94

One of the most important factors influencing effort estimation is the software size.
Several FSM methods have been proposed to be used as input for estimating devel-
opment/maintenance effort. There is only one second-generation FSM method, the
COSMIC, and four first-generation FSM methods, including the IFPUG. There are
two main contributions to be investigated in this chapter: (1) investigate the effec-
tiveness of the first and second FSM generations for sizing functional changes and
examining their impact on predicting software enhancement effort in traditional and
agile projects, (2) the applicability of COSMIC sizing as an independent variable
in scrum projects. The use of the CFS algorithm in conjunction with the Support
Vector Regression (SVR) model.

In Short

72
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

4.1 Introduction

The majority of the well-known estimation models, techniques, and tools use the soft-
ware size as an input for their estimations [2]. As we mentioned in Chapter 1, the software
size can be expressed in SLOC or function points units. Effort or cost estimations using
functional size measures are gaining more and more attention since the software func-
tional size can be generated at any phase of the SLC compared to the SLOC. Moreover,
the obtained measurement results using FSM methods are independent of any technical
criteria. These two advantages motivated the researchers to use the FSM methods for
more accurate effort estimation.

Despite a large number of proposals interested in finding accurate estimates, there
is no clear evidence in determining which model is the best for estimating enhancement
effort (the factors to be considered when choosing one model over others). As a result, it
is critical to identify and assess the inputs to estimation models. Customer dissatisfaction
and project failure are the results of inaccurate estimates. On the other hand, accurate
estimates reduce uncertainty and facilitate more effective software project management
[6].

In this context, software size is widely recognized as a major cost driver for the effort
and cost required for software projects. Researchers believe that the size variables are
closely related to the required effort [23]. It is important to note that functional size is
the only standardized way to measure the software size [106]. As sensitivity to changes
in functional size has a greater impact on project effort [94], knowing the functional
size of the software to be developed/redeveloped or maintained is useful. Software size
can be used for many purposes such as: improve organizational performance, estimate
the effort of new development, estimate the enhancement effort, and control software
development, and so on [24, 25]. Several studies used the IFPUG and COSMIC sizing to
predict the effort in software development project. However, only a few research studies
investigated the efficiency and the impact of using FSM on predicting the effort is software
enhancement project. On the other hand, predicting effort for managing scrum projects
is performed differently compared to the traditional ones [55]. There are many prediction
techniques such as Expert opinion, Planning Poker, and a few more [55]. A Survey of
five studies conducted on Basic Estimation techniques showed that the most popular
effort prediction technique used in Scrum projects is the Planning Poker (PP) technique
[55]. The basis of the PP technique is practitioners’ opinions that are expressed in terms

4.2 On the use of FSM methods for more accurate Prediction in the traditional software
Enhancement projects 73

of Story Points. In practice, it is used for predicting the effort required to complete
software requirements or User Stories. In scrum, enhancements that are categorized
as Functional User Requirements are represented in the form of US at a high level of
detail. The US is a brief description of the user’s request [108]. Besides the need of
PP, several international standards provide well-documented methods for measuring or
approximating the US functional size, such as the COSMIC FSM method. Indeed, there
is a growing body of work on the use of the CFP [25] for prediction and performance
measurement of software development projects, which can be adapted for predicting agile
software enhancement effort as well.

In this chapter, we make two contributions. The first contribution is for making
comparison between the most popular FSM methods (IFPUG and COSMIC) when they
are used as independent variables in predicting SEEE in the context traditional project.
The second contribution is to investigate the application of the best SEEE model (the
results of the first contribution) in the Agile (scrum) enhancement project). For both
contributions, we used the CFS algorithm, SVR model and ISBSG dataset.

The rest of this chapter is organized as follows: Section 4.2 describes the first contri-
bution. Section 4.3 describes the second contribution. Section 4.4 provides the results
and discussion. Section 4.5 presents the conclusion.

4.2 On the use of FSM methods for more accurate Prediction
in the traditional software Enhancement projects

In this section, we carry out two experiments setting up two regression-based models: one
using the IFPUG and the other using the COSMIC. Then, we compare their prediction
accuracy to determine whether the COSMIC method provides more accurate results than
the IFPUG for the SEEE. We use a training dataset to predict the total effort for the
software enhancement projects in man-hours. Our research methodology is depicted in
Figure 4.1.

4.2.1 Data Preprocessing

The ISBSG Release 12 dataset was used to train and test the prediction model [23].
The ISBSG dataset is widely used for estimating software projects [23]. It maintains a
repository of finished software projects, including new, improved, and redeveloped ver-

74
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

Figure 4.1 – Research method design

sions. The ISBSG dataset contains a variety of information about finished software
projects, including methods, tools, and methodologies, as well as process and product
data, that may be used for benchmarking, monitoring, quality control, and performance
management [23]. The ISBSG dataset is the largest available for effort estimating re-
search, and it has already been used in several publications. It has been thoroughly
examined for its suitability in the construction of effort estimation models, including the
effects of outliers and missing data [109]. We selected the data regarding « enhancement »
as the « development type » where « count approaches » were IFPUG and COSMIC meth-
ods. In addition, we consider only data with soundness and high level of integrity (i.e.,
records having « Data Quality Rating » of « A » or « B »). Table 4.1 shows the data
fields, the values assigned to them in this study, and the number of projects. Follow-
ing the preprocessing phase, we chose 17 attributes/features for COSMIC data and 13
attributes/features for IFPUG data.

4.2 On the use of FSM methods for more accurate Prediction in the traditional software
Enhancement projects 75

Table 4.1 – First Data of software enhancement projects from the ISBSG dataset

ISBSG
data field

Selected
Values for
COSMIC
_dataset

Selected
Values for
IFPUG
_dataset

Discarded
Values

Projects
for COS-
MIC
_dataset

Projects
for IFPUG
_dataset

Data qual-
ity rating

A, B A,B C,D 4000 4000

Count Ap-
proach

COSMIC IFPUG NESMA,
FISMA,
etc.

449 3104

development
Type

Enhancement Enhancement New devel-
opment and
Redevelop-
ment

302 1084

4.2.2 Using the CFS algorithm

Following the selection of a project with high-quality data (after the preprocessing
phase), we propose using the CFS algorithm to select the features that are relevant for
predicting effort for a software enhancement project. That is, after building the CFS
algorithm, we determine which features appear in the optimal set of features globally
and consistently. The Pearson’s Correlation Coefficient algorithm is one of the most
commonly used algorithms, which is used to filter the data in this step [110]. The Pearson
correlation coefficient is a single number that expresses the strength and direction of a
linear relationship between two continuous variables. The range of possible values is -1
to +1, with 0 indicating no correlation, 1 indicating total positive correlation, and - 1
indicating whole negative correlation [110]. We will use the Pearson correlation heat
map in our example. Each attribute is sorted according to the p correlation score (See
Equation 4.2).

p =
cov(Xi,Y)√

var(Xi)var(Y)
(4.1)

Where var(Xi) and cov(Xi,Y) represent the variance of feature Xi and the covariance
between a feature Xi and the target class Y, respectively.

76
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

4.2.2.1 Computation of Score P for the selected features from COSMIC_dataset using
Pearson’s correlation coefficient

Following the preprocessing phase, we chose 17 attributes, 16 of which are independent
variables and one of which is a dependent variable (NormalizedWorkEffort). Pearson’s

Figure 4.2 – Pearson’s correlation heat map for COSMIC_dataset

correlation coefficient is used to generate a list of attributes that are sorted according to
their degree of correlation to the module class (i.e., NormalizedWorkEffort). In our case,
only features with a correlation greater than 0.4 (taking absolute value into account) are
chosen for the output variable. The use of CFS algorithm selects 37.5 percent (6 out of
16 features) (see Figure 4.2).
COSMIC sizing is an effective FSM method for determining the functional size of an en-
hancement (i.e., functional change size) that has been identified within the enhancement
projects. Table 4.2 illustrates the selected features and their corresponding correlation

4.2 On the use of FSM methods for more accurate Prediction in the traditional software
Enhancement projects 77

Table 4.2 – Selected Feature correlation when using COSMIC_dataset

Selected Features Value - Round(Correlation target)
CHANGEWorkEffort 0.4
UnrecordedWorkEffort 0.5
FunctionalSize 0.5
EffortTest 0.4
SummaryWorkEffort 0.8
NormalizedWorkEffortLevel1 1

coefficients (score greater than 0.4) between functional change size (FunctionalSize) and
enhancement effort, estimated using COSMIC_dataset (NormalizedWorkEffort). When
compared to other features, the correlation coefficient value of 0.5 indicates an adequate
correlation of functional change size with enhancement effort (such as CHANGEWorkEf-
fort and UnrecordedWorkEffort). As a result, the size of the functional change is chosen
as the key independent variable.

4.2.2.2 Computation of Score P for the selected features from IFPUG_dataset using
Pearson’s correlation coefficient

Following the preprocessing phase, we chose a total of 13 features, 12 of which are
independent variables and one of which is a dependent variable (NormalizedWorkEffort).
Only features with a correlation greater than 0.4 (taking into account absolute value) are
chosen for the output variable. The CFS algorithm selects 33.3 percent of the IFPUG
dataset (4 out of the 12 features) (see Fig. 4.3). The correlation coefficient between

Table 4.3 – Selected Feature correlation when using IFPUG_dataset

Selected Features Value -Round(Correlation target)
EffortBuilt 0.8
EffortTest 0.9
SummaryWorkEffort 1
NormalizedWorkEffortLevel1 1

Functional change size and enhancement effort when using data from the ISBSG dataset
is 0.1 (see Fig. 4.3). When compared to other features, this number suggests a rela-
tively poor correlation between functional change size and enhancement effort (such as

78
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

Figure 4.3 – Pearson’s correlation heat map for IFPUG_dataset

EffortBuilt and EffortTest). The findings suggest that using a functional change size
derived from IFPUG sizing as the key independent variable may not give an appropriate
estimate of enhancement effort. On the other hand, a close examination of the Pearson’s
correlation algorithm’s feature list (see Table 4.3) reveals that the EffortTest, Effort-
Built, SummaryWorkEffort, and NormalizedWorkEffortLevel1 were the most important
features in predicting effort.

4.2.3 Constructing SEEE Models

This section investigated the use of the SVR method through a series of experiments.
The traditional method for conducting experiments is to divide the sample into two parts:
70 percent and 30 percent. The ISBSG dataset is divided into two parts: training and
validation/test. The « test_size » argument specifies the size of the split. In our model,

4.2 On the use of FSM methods for more accurate Prediction in the traditional software
Enhancement projects 79

30 percent of the dataset is allocated to the test set, while 70 percent is allocated to the
training set. The training set is used to train the model, and the validation/test set is
used to validate it on new data. Following that, the CFS algorithm and the validation
test prediction of the SVR method were carried out using Google Colab. Table 4.4 lists
the predefined range of parameters values of the SVR method.

Table 4.4 – Parameters values for Grid Search

ML Technique Parameters
SVR Kernel=Linear; Complexity=1, 2; epsilon=0.2; Devi-

ation=0.001, 0.0001

4.2.4 Empirical Results

This section assesses the prediction performance of the SVR used in this study, which
includes two types of experiments using the CFS algorithm. We used a variety of evalua-
tion metrics [111] to assess the accuracy of the SEEE models, including root mean square
error (RMSE) and mean absolute error (MAE). We also used the Standardized Accuracy
(SA) metric based on the MAE as described in [111].

4.2.4.1 Performance Assessment when using COSMIC sizing

The CFS algorithm selects features for SVR to be trained and tested. When the
Functional Change Size is utilized as the independent variable, using CFS algorithms
with the SVR approach can lead to a more accurate SEEE (see Table 4.5). Using the
SVR approach, error measurements (such as MAE and RMSE) indicate quite values
(MAE=0.0382; RMSE=0.1082).

Table 4.5 – Prediction analysis using MAE, RMSE and SA for COSMIC_dataset

Method/ parameters MAE RMSE SA(%)
SVR 0.0382 0.1082 98%

80
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

4.2.4.2 Performance Assessment when using IFPUG sizing

The CFS algorithm selects features for SVR training and testing. The selected features
(i.e., features selected by CFS and the IFPUG feature) combined with the SVR method
provide an accurate SEEE (see Table 4.6). Error metrics (such as MAE and RMSE) show
relatively low values (MAE=0.0734; RMSE=0.1950).

Table 4.6 – Prediction analysis using MAE, RMSE and SA for IFPUG_dataset

Method/ parameters MAE RMSE SA(%)
SVR 0.0734 0.1950 98%

4.2.5 Discussion and Comparison

Using the ISBSG dataset, we notice that the prediction accuracy increases when
the COSMIC method is selected as « count approaches » for « enhancement projects »
in comparison with the IFPUG method (see Table 4.5 and 4.6). The key reason for
selecting software functional size as an independent variable in our study is that it is
highly correlated to software project effort. The sensitivity to the functional change size
has a stronger impact on Software project effort [112]. The relevance of each feature
is identified using the CFS algorithm in order to discover the effective determinants for
SEEE. When software is being maintained, the SVR model is used to predict the effort to
implement an enhancement. When compared to the IFPUG FPA method, the COSMIC
FSM method is deemed to be the most effective. It is obvious from the results, which
show a minimal MAE of 0.0382 and a 98 percent accuracy rate for accurate predictions.

Furthermore, the CFS algorithm results demonstrate the significance of the Func-
tional Change Size feature when employing the COSMIC FSM method. As expected, the
CFS algorithm in our case has significantly contributed not only to reducing the number
of features required to achieve prediction performance but also to improving such per-
formance. To summarize the findings of this study, software organizations interested in
planning and managing software enhancement projects should select the appropriate siz-
ing method based on their objectives and capabilities. As a result, a good measurement
program is an investment for project success because it allows for an accurate evaluation
of an enhancement and the effort required to complete this enhancement.

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 81

4.3 On the use of COSMIC method for more accurate SEEE
in Scrum

sThe research process adopted in this contribution is depicted in Fig. 4.4. Our
work is divided into four steps: data collection, applying the CFS algorithm, creation of
prediction models, and evaluation (empirical results). Each step is described next.

Figure 4.4 – Research work process

4.3.1 Data collection

The data collection in our study is based on real projects developed using the Scrum
framework and derived from industry. The dataset is called “Example Application Func-
tional Specification" 1 founded in 2007. It was published by Tony Heap, a Business Ana-
lyst on the HMRC API Platform team, who has 25 years of experience in IT 2 (indexed by
Google in June 2013). The selected dataset specifies an example of software maintenance
Enhancement where the functional specifications can be considered as an enhancement.

4.3.1.1 Effort generated from the application of Planning Poker technique

An enhancement can be requested by one of the stakeholders (e.g., the product owner,
the development team, etc.) and described in the form of “US". The US can be quantified
and estimated using Planning Poker (expressed in Story Points). It is also sized using

1. https://fr.scribd.com/
2. http://www.its-all-design.com/

82
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

COSMIC FSM method [113].
Several factors (Technical/Non-technical factors) can affect the prediction results such as
the size of the database (technical factor) [11]. For this reason, several research studies
used a single dataset while other research studies used more than one dataset [92]. Some
data set attributes still missing in certain data sets [114]. Some other research studies
focused on the use of independent variables [102].
Accordingly, the choice of features in the dataset is important for more accurate predic-
tions [41]. The dataset used in our study includes 93 US that is executed by the same
team on the same application within a set of eight iterations. The effort devoted to im-
plementing the US is expressed in terms of Story Points. It consists of four worksheets:
summary, details, actors, and stats.

1. The “Summary" focuses on the kinds of information used in the Stories such as the
status of each US. This means each US status can range from “being elaborated"
right through to “gone live". Since our work focus on enhancement, to exclude trivial
projects, the following filters are applied: Actual Development Time (man_days),
full life cycle effort for a project is greater than 80 man-hours, and "Stats" other
than "implement" were excluded.

2. The “Details" provide the detailed information for each US. In the selected dataset
the US involves determining: Who will do the US or find it valuable < Actor >,
What it can be used for < Goal >, and Why it is valuable or important <value or
expected benefit>. In scrum, the description of a US is most often described as
follows:

As an <Actor>
I want to <Goal>

so that <value or expected benefit>

3. The “Actors" specifies all actors (Human users or external systems).

4. The “Stats" show the development progress for individual increments in the form of
the “burndown chart". The release burndown chart is presented daily to the Scrum
Master to monitor progress toward completion of the increments [115]. When the
US is completed, the development team may use the Planning Poker technique
to generate the actual effort expressed in terms of story points. Thereafter, the
estimated effort will be compared against the actual effort to determine how well
the project is progressing.

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 83

4.3.1.2 Enhancement Size generated form the application of COSMIC method

The enhancement functional size of the same set of 93 US were measured using the
COSMIC FSM method. It was carried out by examining the four worksheets documen-
tation of each US. As described in chapter 1, the COSMIC FSM process includes three
phases: the measurement strategy, the mapping of concepts, and the measurement of the
identified concepts (see Figure 4.5).

Figure 4.5 – The COSMIC FSM method

4.3.1.2.1 Measurement strategy phase The main parameters that must be identified
in this phase are detailed as follows:

— The purpose: Predicting Effort for implementing an enhancement (i.e., FC).

— Overall scope: Generating the functional size of an ER and predicting its corre-
sponding effort.

— Functional users: are human users in this case.

— Layer: An industrial dataset (eight sprints).

— Level of granularity: one level of granularity

4.3.1.2.2 Mapping Phase: US to COSMIC Functional Process (FP) The US exhibits a
high-level requirement description. There is no general standard for the US representation
[113]. The level of granularity for sizing requirements (or enhancements) in the form of
a US must be that of the COSMIC FP [108]. For that reason, the mapping of a US to
a COSMIC FP necessitates the identification of the following concepts (see Table 4.7)
[116].

84
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

Table 4.7 – Mapping of US in sprint 1 with COSMIC Functional Change

US Id US description COSMIC
Functional
Change
description

As an
. . . (actor)

I can . . . (Goal) Story
Points
effort

Change
Type

FC description

1 Organization
User

Add a custom evidence
type to an assessment
criterion (because the
standard evidence types
are not appropriate for
me)

4 ADD() Add Custom Evi-
dence Type

2 XYZ ABC
User

Create bulk emails to be
sent to users

5 ADD() Create Bulk
Email

4 Organisation
User

Add an improvement
action against a specific
attainment criterion

5 ADD() Add Improve-
ment Action

5 Assessment
Completer

Add and amend general
comments for my re-
quirement response

3 ADD() Add Widget
Comments

6 General
User

View an organisa-
tion’s Assessment
Report with various
enhancements

4 MODIFY(
)

View Improved
Assessment
Report

7 Organisation
User

Create, amend and
delete users within
my organisation user
(using the simplified
interface)

3 MODIFY(
)

Maintain Users
(Simplified
Interface)

8 XYZ ABC
User

Delete a pending bulk
email

1 DELETE() Delete Bulk
Email

9 General
User

View Improved Assess-
ment Report - HTML
Version

3 ADD() Create an HTML
version of the as-
sessment report

— <Actor>represents the user of the US referred to as the functional user in COSMIC.

— <Goal>represents the ER of the US referred to as an enhancement or a FP in
COSMIC.

Functional Changes are mainly classified into three types: add (new requirements to be
created), delete (existing requirements to be deleted), and modify (existing requirements

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 85

to be modified) [13]. Several stakeholders find it useful to evaluate rapidly a change and
improve their understanding and managing decisions [13].

— Each US is typically written using the following template (As an actor. . . I can).
The effort required to implement a US (representing a ER) is estimated using PP
technique (story points).

— For each US, the corresponding COSMIC FP is presented and classified by type
(add, delete, modify).

4.3.1.2.3 Measurement phase According to [117], the data movements can be identified
based on some common word cases (such as create, select, delete, add, share, display, etc.).
Using the identified data movement types that are repeatedly executed by the user will
facilitate the measurement process.

The table in Appendix 5.7 shows that there is a perfect size-effort relationship. When
sizing increases, the level of total effort increases. This information can be explained
by the ability of the COSMIC FSM method on detailing the Functional change process
(from process to sub-process) as presented in Table 4.8, which exposes more iterations
and therefore more data movements.
Once the dataset for estimating is created, the question is how well the Functional Size
of the change is correlated to the SEEE in the scrum context?

4.3.1.3 Applying CFS algorithm

The Pearson’s Correlation Coefficient algorithm, the most commonly used algorithm,
is used for filtering in this step. Pearson’s correlation coefficient is a single number
that indicates the strength and direction of a linear relationship between two continuous
variables. The values can range from -1 to +1, where -1 represents a total negative
correlation, 0 represents no correlation, and 1 represents a total positive correlation. We
will create a Pearson correlation heat map in this case. Each feature is ranked according
to the correlation score obtained (See Equation 4.2) [110]:).

p =
cov(Xi,Y)√

var(Xi)var(Y)
(4.2)

where, cov(Xi, Y) represent the covariance between a feature Xi and the target class Y,
and var(Xi), var (Y) represents the variance of feature Xi, feature Y, respectively. The

86
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

Table 4.8 – Sizing the “Add Custom Evidence Type” enhancement in CFP units

FP De-
scription

Functional
User

Description of
Sub-FP

Data Group Object of
interest

Data mou-
vement
type

CFP

Add Cus-
tom Ev-
idence
Type

Organisation
User

Request to view a
specific widget

Custom
Evidence
type

Custom
Evidence
type

Entry 1

Add a “custom"
evidence type
against a spe-
cific attainment
criterion

Custom
Evidence
Type

Custom
Evidence
type

_ _

Organisation
User

Add a custom ev-
idence type and
give it a name
(free form text)

Custom
Evidence
Type

Custom
Evidence
type

Entry 1

Verify changes Custom
Evidence
Type

Custom
Evidence
type

Read 1

Save change Custom
Evidence
Type

Custom
Evidence
Type

Write 1

The custom ev-
idence type is
saved

Custom
Evidence
Type

Custom
Evidence
type

eXit 1

The custom ev-
idence type is
saved

Custom
Evidence
Type

Custom
Evidence
type

eXit 1

Total 6

expression of statistical results with effect sizes (such as Pearson correlation) and confi-
dence intervals provides a more comprehensive method of statistical result interpretation
in terms of not only statistical significance but also the size of treatment effects [118].

4.3.1.3.1 Identifying relevant features After the preprocessing phase, we selected a
total of five attributes where four are independent variables and one is the dependent
variable. The use of Pearson’s correlation coefficient provides a list of features that are
sorted based on their degree of correlation to the module class (i.e., the actual value in
Story Points).
Table 4.9 illustrates the definition of the features used to facilitate the interpretation of

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 87

the Pearson correlation heat map. Following the advice of Field [119], we selected only

Table 4.9 – Description of Selected Features

Selected Features Description
Man-days(Today) Effort-cumulative
StoryPoints(Actualtoday) Effort-actual-today
FunctionalSize(COSMIC FP) Functional Size using COSMIC
StoryPoints(Actual) Effort-actual-cumulative calculated based

on the use of Story Point
StoryPoints(Estimated) Effort-estimated-cumulative calculated

based on the use of Story Point

the correlated features having a coefficient larger than 0.4 with the output variable. Of
course, when taking into account absolute value. The use of the CFS algorithm selects
80% (4 out of 5 features) (see Figure 4.6).

Figure 4.6 – Pearson’s correlation heat map

Table 4.10 shows the selected features with their corresponding correlation coeffi-
cient value, computed using a real dataset from industry within the context of the
Scrum software project. The selected features are “StoryPoints(Actualtoday), Functional-

88
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

Size(COSMIC), StoryPoints(Estimated), and enhancement effort “StoryPoints(Actual)".

Table 4.10 – Selected Features

Selected Features Correlated
with StoryPoints(Actual)

Correlation target

StoryPoints(Actualtoday) 0.495189
FunctionalSize(COSMIC) 0.618766
StoryPoints(Estimated) 0.445416
StoryPoints(Actual) 1.000000

4.3.1.3.2 Determining the correlation between the COSMIC Functional Size of an en-

hancement and its corresponding effort Determining the correlation between the COS-
MIC Functional Size of an enhancement and its corresponding effort answer the question
of what is the key factor that impacts the enhancement effort prediction? From the re-
sults, the correlation coefficient (score P) has a value of 0.6 which indicates an acceptable
correlation of the enhancement Functional Size with its corresponding enhancement effort
expressed in terms of Story Points (see Figure 4.6). The use of Functional size (COS-
MIC) can significantly improve the prediction of an enhancement effort when compared
to other features (e.g., StoryPoints(Estimated)). Therefore the enhancement functional
Size is chosen as the primary independent variable. It has been observed that COSMIC
sizing is an efficient standardized method for measuring not only software size but also
the functional size of an enhancement that may occur during the scrum enhancement
project. The resulted enhancement sizes are objective and well correlated to the actual
effort.

4.3.1.3.3 Determining the correlation between the SEEE and the Actual effort With
the determination of the correlation coefficient, the deviation between the predicted en-
hancement effort and the actual enhancement effort in terms of Story points can be
identified. As shown in table 4.10, the correlation (Score P) has a value of 0.4, which
indicates a weak correlation of the predicted enhancement effort with the actual enhance-
ment effort. It has been observed that the use of Story Points is only practicable when
measuring the actual effort of USs. However, Story Points cannot help in predicting the
total software effort early in a project where usually a cost/benefit analysis is needed

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 89

before committing to the project. Thus, it is recommended for software organizations to
adopt the COSMIC FSM method for sizing enhancement and providing accurate effort
of the enhancement. The main reason for using COSMIC is its objectivity and it can be
used at any phase of the SLC, and at all levels of aggregation, [117].

4.3.2 Creating Prediction Models

This section conducted a series of empirical analyses to investigate the use of the
SVR ML techniques. For empirical analysis, we have used the hold-out method. The
main reason for using the hold-out method (70%-30% split) compared to Leave-one-out
cross-validation is because it is good to use for a very large dataset. Nevertheless, the
Leave-one-out cross-validation, which is a special case of k-fold cross-validation is used
when a data set or for a class value is small [120]. The data split ratio for training and
testing is one of the most important factors to consider when using the retention method.
This is a particularly difficult decision to make, and even a minor error in selecting the
check size can result in over or under adjustment [120]. The retention method, on the
other hand, works well when we have a very large data set or when starting to build an
initial model in a data science project. We split data into training (70%) and test sets
(30%). The training set is used to train the model, and the test set is used to validate
it on data it has never seen before. Thereafter, to carry out the empirical analysis,
the CFS algorithm and validation test prediction of the SVR model were performed
using the Google Colab python programming. Table 4.11 lists the predefined range of
parameter values of the SVR model. An important factor affecting SVR performance is
how to correctly select model parameters which play an important role in obtaining good
performance:

— Kernel=linear: It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or
a callable. If none is given, ‘rbf’ will be used. The most suitable one to use in our
model is the linear kernel.

— Complexity (C): The larger C is, the better performance SVR has. However, if C is
too large, then the goal is only to minimize the empirical risk, without considering
the complexity of the model in the optimization formula. In our situation, we
achieve good performance when using 1,2.

— epsilon=0.2: A larger epsilon value results in fewer SVs selected and in more “flat”
(less complex) regression estimates. The selected value in our situation gives an

90
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

accurate estimation.

— Deviation=0.001, 0.0001; The smaller deviation value is the best performance of
SVR.

Table 4.11 – Parameters values for Grid Search

ML Technique Parameters
SVR Kernel=Linear; Complexity=1,

2; epsilon=0.2; Deviation=0.001,
0.0001

4.3.3 Empirical Analysis Results

This section evaluates the prediction performance of the SVR model used in this
study. We conduct two types of empirical analysis: with and without the use of the
enhancement Size. The appropriate performance evaluation metric is always chosen based
on the problem type, which can be regression, classification, or clustering [120]. In our
situation which is a regression problem, we used two types of evaluation metrics. The
root mean square error (RMSE) and the mean absolute error (MAE) to evaluate the
accuracy of our prediction models.

4.3.3.1 Performance Assessment without the Enhancement size feature

Table 4.12 shows that the Error metrics (such as MAE and RMSE) provide quite
better results using the SVR model (MAE=0.6174; RMSE=0.6763). Using the SVR

Table 4.12 – MAE and RMSE without sizing the “Functional change" feature

Algorithm/ parame-
ters

MAE RMSE

SVR 0.6174 0.6763

model, we observed that the SEEE is more accurate when the effort is estimated using
story points (see Figure 4.7).

4.3 On the use of COSMIC method for more accurate SEEE in Scrum 91

Figure 4.7 – Performance Assessment without using the Enhancement size feature

4.3.3.2 Performance Assessment with the use of the Enhancement size feature

Performance Assessment when using COSMIC sizing and SVR is trained and tested
using features selected by the CFS algorithm. Using the CFS algorithm with the SVR
model can lead to a more accurate SEEE when the enhancement Size is used as the
independent variable (see Figure 4.8). Table 4.13 illustrates that error metrics (such as
MAE and RMSE) are quite better results using the SVR model (MAE=0.2402; RMSE=
0.6469).

Table 4.13 – Prediction analysis using MAE, RMSE with the Enhancement size feature

Model/ parameters MAE RMSE
SVR 0.2402 0.6469

92
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

Figure 4.8 – Performance Assessment with the Enhancement size feature

4.4 Discussion and Comparison

In this chapter, we demonstrated the effectiveness of the COSMIC FSM method not
only for sizing the functional changes but also when it is used as an independent variable
to estimate the effort required to complete an enhancement in both traditional and agile
software enhancement projects contexts. The SVR model is used to predict the effort of
a new enhancement when it occurs throughout the scrum process. The results showed
a minimum MAE of 0.2402 and a Standardized Accuracy (SA) metric of 98% which
indicates an accurate prediction. The main reason behind selecting COSMIC sizing is its
accurate measurement results compared to the IFPUG method.

Besides, the CFS algorithm is also applied to identify the significant drivers of effort
in the enhancement project with Scrum. The correlation between the enhancement size
measured using the COSMIC FSM method and the actual effort expressed in terms of
Story Points is provided. Consequently, the COSMIC functional size of an enhancement
is evaluated to be an effective significant feature, since it increases the accuracy of the

4.4 Discussion and Comparison 93

SEEE. This is demonstrated by the results, which have a Score P of 0.6. Using a burn-

Figure 4.9 – Positive correlation curve

down chart which is the popular method of reporting progress when using Agile Project
Management [57]. We illustrate in Figure 4.9 that the feature “actual effort” increases
when the feature “Functional size” increases. The feature “actual effort” decreases as
the feature “Functional size” decreases. It means that the two discussed features are
positively correlated. A positive correlation exists as is illustrated by the CFS algorithm.
The feature “Functional change size” will impact the feature “actual effort”. A positive
correlation is a relationship between two variables (or features) in which both variables
move in tandem—that is, in the same direction 3. It is also noted that the curve present-
ing the effort required to implement an enhancement having a size derived from the use
of the COSMIC FSM method is higher than the curve presenting the enhancement effort
derived from the use of the PP technique. This explains that sizing a US (representing
an enhancement) expressed in terms of COSMIC Functional Points gives more details
than sizing the US expressed in terms of Story Points. Consequently, the COSMIC FSM
method is evaluated to be the most effective when compared to the use of the PP tech-
nique. It is evident from the results with the minimum MAE of 0.06. To summarize,
the benefits of this study are oriented to the software organizations focusing on planning
and managing software enhancement projects in the scrum context. Predicting the effort
required to implement an enhancement (described in the form of US) is important to help
in managing software enhancement projects successfully. It is preferred to be sized using
a standardized method such as COSMIC FSM. Accurate estimates reduce uncertainty
and support software project management more effectively. Therefore, it is necessary
to use COSMIC enhancement size as an independent variable for the SEEE within the
scrum project.

3. https://www.investopedia.com/terms/p/positive-correlation.asp

94
Towards the use of COSMIC FSM method for improving SEEE within the context of

classical and Agile projects

4.5 Conclusion

The findings of our empirical study investigated in this chapter were as follows:

— The correlation score between COSMIC enhancement size and enhancement effort
has a value of 0.6 which denotes a good correlation as compared to the estimated
Story Points. Therefore, choosing the COSMIC enhancement size as the primary
independent variable provides a more accurate SEEE.

— The estimated effort that results from the SVR model provides good accuracy.
Consequently, COSMIC can be considered as an effective measurement method
for sizing an enhancement within a Scrum project and thereafter predicting its
corresponding effort.

— It was found that the SVR enhancement effort-based prediction model is more ac-
curate with small MAE and RMSE values results and with quite good performance
when the enhancement Functional size is used as the independent variable.

In the next chapter, we discuss the effectiveness of using the stacking ensemble model for
improving the accuracy of the SEEE.

Chapter 5
Software Enhancement Effort Estimation
using Stacking Ensemble method

Contents
5.1 Introduction . 96

5.2 Research Process . 97

5.3 Constructing Individuals Estimation Models 99

5.4 Constructing Estimation stacking ensemble model 101

5.5 Discussion and Comparison . 104

5.6 Automatically SEEE through a ERWebApp 107

5.7 Conclusion . 113

In software project management, estimating software enhancement efforts has be-
come a difficult task. Recent studies have concentrated on identifying the best ML
algorithms for software project estimation. The majority of the research papers
looked at the use of ensemble learning to improve the accuracy of software project
estimates. Intending to increase the estimation accuracy over individual models,
this chapter investigates the use of the stacking ensemble method for SEEE. We
make a comparison between two ML-based approaches for SEEE: The M5P (as an
individual model) and the stacking as an ensemble method combining different re-
gression models (GBRegr, LinearSVR, and RFR) using the ISBSG dataset. The
CFS algorithm is used to achieve efficient data reduction. The selected two experi-
ments models were trained and tested on the dataset with relevant features leading
to the improvement of the SEEE accuracy.

In Short

96 Software Enhancement Effort Estimation using Stacking Ensemble method

5.1 Introduction

The benefits of using SEEE models are numerous: Estimation models, for example, can
help in making decisions about when to restructure or re-engineer a software component
to make it more maintainable, or in understanding the underlying causes of the difficulty
in correcting specific types of errors [121]. ML techniques are widely used in this field
to improve the accuracy of SEEE. ML techniques are best suited for dealing with high-
dimensional problem modeling [121]. However, there is no agreement among researchers
on the technique that can achieve better estimation [122]. Case-based reasoning, neural
networks (NN), decision trees (DT), Bayesian networks, support vector machines (SVM),
genetic algorithms, genetic programming, and association rules are all examples of sta-
tistical regressions or ML-based models that have been proposed for SEEE (ARU) [122].
More recently, research publications investigated the use of ensemble learning for improv-
ing the accuracy of the software effort estimation [50]. Consequently, various ensemble
methods, such as those presented in chapter 1 are considered [50].

The main motivation for this research study comes from the fact that existing sin-
gle techniques for SEEE have several limitations, while other innovative approaches for
estimating, such as the ensemble method, have yet to be adopted in the industry [123].
In this chapter, we have set up two SEEE models. Regarding the first model, the SEEE
is carried out by applying four individuals ML techniques (M5P, GBRerg, LinearSVR,
and RFR). Constructing the first model, we have also made the focus on the selection
of optimal feature set in the ISBSG dataset using the CFS algorithm investigating the
impact of the COSMIC FSM method on improving SEEE performance. Three different
ML-based models (GBRegr, LinearSVR, and RFR) are combined in the second SEEE
model named Stacking ensemble model.

Following that, we make a comparison between the two SEEE based on ML ap-
proaches. We highlight the impact of using individuals and the stacking ensemble model
for improving the accuracy of SEEE. The four chosen ML techniques were trained and
tested using industrial projects from the ISBSG Release 12 dataset [2]. Staking estimation
results will be compared to those obtained using an individual algorithm (M5P).

The rest of this chapter is organized as follows: In Section 5.2, we present an overview
description of our research methodology process consisting for achieving better SEEE. In
section 5.3, the results of using individuals ML techniques are evaluated and discussed. In
section 5.4, the results of using the stacking ensemble model are evaluated and discussed.

5.2 Research Process 97

In Section 5.5, we intend to discuss the experimental results. Section 5.6 proposes SEEE
automation through the development of a web application named "ERWebApp". Finally,
in Section 5.7, we conclude the chapter.

5.2 Research Process

Our research process set up two models to predict SEEE (see Figure 5.1). The first
model is constructed using four selected regression ML techniques (M5P, LinearSVR,
GBRegr, and RFR) separately. The second model constructs a stacking ensemble method
(that combines LinearSVR, GBRegr, and RFR). For this second model, the meta-model
provided via the “final_estimator” argument (LinearSVR) is trained to combine the
estimation of the chosen regression ML techniques provided via the "estimators" argument
(GBReg, RFR). Finally, we make a comparison of the estimation accuracy of the two
mentioned models.

5.2.1 Data Collection

The dataset used to train and test the SEEE model is from ISBSG Release 12. The de-
scription of the used dataset is already detailed in chapter 4 (section 4.2.1) with the same
filter considering only "enhancement" as the "development type", the "count approach"
was the COSMIC FSM method, and data with a high level of integrity and soundness
(i.e., Records with a "Data Quality Rating" of "A" or "B").

5.2.2 Relevant Features Extraction based on the CFS algorithm

We applied the CFS algorithm to determine which features globally and consistently
appear in the optimal set of features. A correlation matrix is extracted using Pearson
correlation. Matrix results are presented in Figure 5.2. The use of CFS algorithm selects
37.5% (6 out of 16) of features (see Table 5.1). The CFS algorithm is used not only to
select features, but also to evaluate the impact of the enhancement size feature on the
accuracy of the SEEE.

As described in Chapter 4, it has been observed that COSMIC sizing is an effective
method for measuring not only software size but also the functional size of the ER that will
occur throughout the maintenance life cycle [124]. Figure 5.2 shows that the correlation
coefficients between enhancement functional size and enhancement effort have a value of

98 Software Enhancement Effort Estimation using Stacking Ensemble method

Figure 5.1 – Research method design

Table 5.1 – Selected Feature correlation

Features Selection
Methods

Selected Features with value
(Round(Correlation target))

Pearson correlation CHANGEWorkEffort=0.4; UnrecordedWork-
Effort=0.5; Functionalsize=0.5; EffortTest=0.4;
SummaryWorkEffort=0.8; NormalizedWorkEf-
fortLevel1=1

0.5 which is adequate. This investigation indicates a suitable correlation when put next
to other features (such as CHANGEWorkEffort and UnrecordedWorkEffort). Change
functional Size was therefore chosen as the primary independent variable.

5.3 Constructing Individuals Estimation Models 99

Figure 5.2 – Pearson correlation heat map

5.3 Constructing Individuals Estimation Models

This section carried out a series of experiments to investigate the performance of the
chosen ML techniques (M5P, GBRegr, LinearSVR, and RFR). We divided the data into
two sets: training and validation/test (70 percent-30 percent split respectively). Following
that, various tools were used to carry out the experiments.

The new M5P model (tree-based model) was created with the help of Weka software 1.
It is widely used in education, research, and industrial applications. It includes a plethora
of built-in tools for common ML tasks. The Google Colab Python programming was used
to perform 10-fold cross-validation and validation test prediction of the GBRegr, SVR,
and RFR models for the feature selection methods. Table 5.2 lists the selected ML
techniques with their corresponding predefined range of parameters values. The selected
ML techniques are trained and tested using (1) dataset without filter and (2) features

1. https://www.cs.waikato.ac.nz/ml/weka/

100 Software Enhancement Effort Estimation using Stacking Ensemble method

Table 5.2 – Parameters values for Grid Search

ML Techniques Parameters
M5P Instances=5
GBRegr random_state=0; min_samples_split=2
LinearSVR Kernel=Linear; Complexity={1,2}; ep-

silon={0.2}; Deviation={0.001, 0.0001}
RFR random_state=0; min_samples_leaf={1,2,3};

Max_depth={2,4,6}; min_samples_split={2}

selected during the preprocessing phase (CFS).

5.3.1 Performance Assessment without using CFS algorithm

The prediction errors (MAE and RMSE) are calculated for each prediction. The
predicted values are compared against the actual target values. It is evident from the
results that M5P method gives better performance when compared to other three ML
techniques (with MAE=0.4035, RMSE=0.4002). We also used cross-validation method

Table 5.3 – Prediction analysis using MAE and RMSE

Method/
parame-
ters

MAE RMSE

M5P 0.4035 0.4002
GBRerg 0.6635 0.7501
LinearSVR 0.6331 0.7267
RFR 0.5445 0.5646

(10-fold cross-validation) [120]. Cross-validation methodology is used to compare models
by dividing data into two segments: one used to learn or train a model and the other
used for testing to validate the model [120]. The accuracy of prediction models can be
increased as the model predicts new data that were not used in its prediction. Cross-
validation strives to measure the generalization power of a model: how well it will predict
new data [120]. In this study, we used 10-fold cross-validation. Since it is the most
used for experiments and to analyze the performance of ML techniques [120]. Table 5.4
illustrates the results of using these metrics.

5.4 Constructing Estimation stacking ensemble model 101

Table 5.4 – Prediction analysis using 10-folds Cross Validation methods

Method/
param-
eters

MAE RMSE SA(%)

M5P 0.0612 0.3381 97.25%
GBRegr 0.1846 0.3634 50.55%
SVR 0.2407 0.3379 54.30%
RFR 0.1738 0.3300 56.42%

5.3.2 Performance Assessment using CFS algorithm

Table 5.5 shows that error metrics (such as MAEs and RMSEs) reveal relatively low
values when using M5P (MAE=0.0571; RMSE=0.2514). The results show that the M5P
method outperforms the other three ML techniques, with a SA of 99 percent (See Figure
5.3). Using the CFS algorithm with the selected ML techniques leads to more accurate
SEEE when the enhancement Size is used as the independent variable (see Table 5.5).

Table 5.5 – Prediction analysis using MAE, RMSE and SA

Method/
param-
eters

MAE RMSE SA(%)

M5P 0.0571 0.2514 99.36%
GBRegr 0.2625 0.3447 85.43%
LinearSVR0.1110 0.3020 89.69%
RFR 0.1665 0.3187 87.54%

5.4 Constructing Estimation stacking ensemble model

Our stacking ensemble technique is based on the idea that "when weak models are
correctly aggregated, the strength of the union leads to higher performance and more
accurate SEEE." To construct the staking model it is important to (1) choose which
models to use as "estimators" and which models to use as "meta-models," and (2) then
generate estimates by the feeding estimator predictions into the selected meta-model.

102 Software Enhancement Effort Estimation using Stacking Ensemble method

Figure 5.3 – ML techniques accuracy

5.4.1 Selecting estimators and meta-model

The main parameters of the stacking ensemble regression model are defined in scikit-
learn 2 as follows: StackingRegressor(estimators, final_estimator=None, *) explained in
Table 5.6. Thus, we try to identify which technique from the three ML techniques can

Table 5.6 – Stacking ensemble regression model parameters’

Parameters Description
estimators Base estimators which will be stacked together.
final_estimator An estimator which will be used to combine the

base estimators

be used as "final_estimator" and which ones should be used as "estimators". In this case,
we selected the r2_score evaluation metric 3 to evaluate the overall performance of the
selected prediction model to provide an adequate combination. Table 5.7 illustrates the
r2_score results where the best possible score stands at 1.0. Figure 5.4 shows the ML
"estimators" and the average of their predictions.

2. https://scikit-learn.org/.../sklearn.ensemble.StackingRegressor.html
3. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

5.4 Constructing Estimation stacking ensemble model 103

Table 5.7 – Prediction analysis using R2 Score

Method/ parameters R2 Score
GBRegr 0.981
LinearSVR 0.956
RFR 0.980

Figure 5.4 – ML "estimators" and the average of their predictions

5.4.2 Constructing the SEEE model

Each ML regression technique is trained on the ISBSG dataset with relevant features
filtered using the CFS algorithm allocated for training (see section 5.2.2). The outputs of
"estimators" are therefore fed into the "final_estimator" which combines each regression
estimator model with a weight and delivers the final estimation. Regarding Table 5.7,
LineanrSVR is selected to be used as the final_estimator. Table 5.8 shows the stacking
ensemble method parameter that defines the best combination.

When the enhancement functional Size is utilized as the independent variable (see
Table 5.9), the CFS algorithm combined with the constructed stacking ensemble approach
yields an appropriate SEEE. When the findings are compared to the other three ML
techniques, it is clear that the stacking ensemble method outperforms them all. The r2
score now stands at 0.987 (See Figure 5.7).

104 Software Enhancement Effort Estimation using Stacking Ensemble method

Table 5.8 – Parameters values for Grid Search

ML Techniques Parameters
Stacking model estimators=[(GBRegr,RFR)], final estimator=

LinearSVR()
GBRegr alpha=0.9, ccp_alpha=0.0, crite-

rion=’friedman_mse’, init=None, learn-
ing_rate=0.1, loss=’ls’, max_depth=3

LinearSVR C=1.0, cache_size=200, coef0=0.0, degree=3,
epsilon=0.1, gamma=’scale’, max_iter=-1,
shrinking=True, tol=0.001, verbose=False

RFR max_depth=3, max_features=1,
max_leaf_nodes=None,
min_samples_leaf=25, min_samples_split=2,
min_weight_fraction_leaf= n_estimators=25

Figure 5.5 – Regressor estimation score

5.5 Discussion and Comparison

The first experimental model was conducted to evaluate the accuracy of four ML tech-
niques (M5P, GBRerg, LinearSVR, and RFR) separately. The selected ML techniques
are used to provide the SEEE when software is being maintained. M5P is the most ef-
fective of the ML algorithms tested. The results back this up, with a minimum MAE of

5.5 Discussion and Comparison 105

0.0612. The results achieved when using a simple method demonstrate M5P’s efficiency.
It has small MAEs and RMSEs values. A good accuracy (SA) of 99% is obtained when
using the 10-fold cross-validation.

The relevance of each feature is computed using the CFS algorithm to discover the
effective determinants for SEEE. Furthermore, when compared to the model that used
all of the selected features, the model utilizing the CFS method performs better (17
features). As a result, adopting the M5P ML technique enhances the SEEE accuracy.

In the second experiment model, we studied the possibility of adopting a stacking
ensemble method by merging the weak ML techniques to secure the above results (GBR-
erg, LinearSVR, and RFR). The M5P algorithm is used to compare the experimental
outcomes (see Table 5.9). The results demonstrate the usefulness of the stacking ensem-
ble method (see Figure 5.6 and Figure 5.7). This is supported by the results with the
minimum MAE of 0.0383, RMSE of 0.1973, and a good r2_score of 0.987.

Table 5.9 – Prediction analysis using MAE, RMSE and r2_score

Method/ parameters MAE RMSE r2_score
M5P 0.0612 0.2514 0.985
Stacking Regressor 0.0383 0.1973 0.987

In this chapter, we have used the CFS algorithm for selecting the attributes from one
of the well-known historical software project datasets (the ISBSG dataset that contains
many attributes). Since we restricted the study to numerical attributes only 17 features
have been selected which constitutes 17% of all the attributes in the ISBSG dataset after
the phase of prepossessing data. Six features have been selected after using the CFS
algorithm that constitutes 6% of all the attributes in the ISBSG dataset. This is why
the findings of this work may differ from other studies that use other types of data.
Indeed, conducting more experiments with other kinds of datasets that present quality
characteristics are required. Although the experiments were performed using CFS, it is
still compulsory to test other FS algorithms with different ML techniques.

The SEEE in our study is provided based on the independent variable (i.e., the
enhancement size). Even the results about the performance accuracy of the selected
ML techniques provide good accuracy with 99%, the correlation coefficients computed
between enhancement functional size and enhancement effort is still a moderate value,
this is because enhancement functional size is identified at a high level of abstraction

106 Software Enhancement Effort Estimation using Stacking Ensemble method

Figure 5.6 – ML techniques Performance Assessment

Figure 5.7 – ML techniques accuracy

of the Functional Process. Indeed, using the existing approximation size measurement
method is useful in this situation [33][34].

5.6 Automatically SEEE through a ERWebApp 107

5.6 Automatically SEEE through a ERWebApp

Recall that our research goal is to help estimators efficiently estimate the effort of
an enhancement in both traditional and scrum projects. Regarding this goal, we found
that using the stacking ensemble model is the most accurate approach. However, using
this approach manually is time-consuming. Manual solutions are not practical. For this
reason, we propose to develop an ERWebApp to rapidly make SEEE. The proposed ER-
WebApp is designed to first generate the enhancement functional size and then estimate
its corresponding effort. To create a user-friendly interface, we follow human-computer
interaction design guidelines [125]. The ERWebApp is developed using Bootstrap 4, Anvil
Platform 5, and Python 6. Python is used in the backend to create the prediction model
that maps the input and output data based on the ensemble model, while Anvil’s Plat-
form and Bootstrap are used in the frontend to display content. In order to transfer
content between the ERWebApp and the prediction model, the use of the Anvil platform
appeared to be beneficial. It is used to help in the visualization of the prediction model
by creating and hosting the prediction web page, which is entirely written in Python
using predictable and minimal resources (CPU, memory, threads). The ERWebApp is
styled using Bootstrap, which adds responsiveness to the interface as well as cross-browser
compatibility.

5.6.1 ERWebApp Users

The ERWebApp is designed to meet the needs of the three Scrum roles: Product
Owner, Scrum Master, and Development team members. It will enable estimators to
express the ER in the form of the US. Of course, described in the textual form. Based
on the description of a US, its functional size will be generated in terms of CFP units.
The estimator then receives the estimated effort based on ontology and ML techniques
without extensive knowledge beforehand. This implies that the three scrum roles would
be able to perform the following actions in the web interface:

1. The Scrum Master: is responsible for the revised planning and deciding on the
execution of the ER.

2. The Product Owner: Submit the ER description.

4. https://getbootstrap.com/
5. https://anvil.works/open-source
6. https://www.python.org/

108 Software Enhancement Effort Estimation using Stacking Ensemble method

3. The Development Team: reformulate the ER in three steps: (1) specify a formal
description of the ER, (2) generate the Functional size of the ER in CFP units, and
(3) estimate the effort required to implement the ER.

The main part of the ERWebApp is described throughout three pages of interfaces in-
cluding a projects overview (for Scrum Master), a submit ER form (for Product owner)
and regulate ER form (for the development team). Focusing on making the ERWebApp
easy to use, we created three sessions for the three scrum roles. Indeed, we created three
login sessions/profiles for the three roles. Figure 5.8 displays an example of the Product
owner login session page.

5.6.2 Product Owner Interface: Submit ER

When a new enhancement occurs in an existing project, the ER description must be
submitted by the Product owner. As shown in Figure 5.9, ER have to be implemented
by the Development team. Once the ER was approved, a detailed description can be
developed (in other words, going from an informal to a formal ER description). Using
this interface page, the Product Owner can express and submit an enhancement requested
in natural language.

5.6.3 Development Team Interface

We concentrated on the development team session because that is the team in charge
of managing and implementing the enhancement. The development team will provide
the COSMIC sizing of an enhancement as well as an estimate of the corresponding effort.
Figure 5.10 depicts the output via the user interface.

5.6.3.1 Enhancement Request Details

The web interface page of the Development team includes the enhancement details.
Figure 5.10, contains two buttons: the blue-button downloads the ER description val-
idated by the Product Owner, and the green button generates a formal explanation of
a specific ER. An ER’s formal description is written as described in section 4.3.1.1 of
Chapter 4.

As an <Actor>
I want to <Goal>

5.6 Automatically SEEE through a ERWebApp 109

Figure 5.8 – Login Page Product Owner

so that <value or expected benefit>

Figure 5.11 shows a full formal description of a selected ER. The functional size of the
specified ER is also represented in terms of the CFP units. A button was created to
illustrate how the functional size of an enhancement, noted as FS(FC), can be found and
used to estimate the effort required to complete this enhancement. When the button
"click to reveal in detail" in Figure 5.11 is selected, the details of FS(FC) are generated
as shown in Figure 5.12 (details of FSM are provided in section 4.3.1.2.3 of Chapter 4).

110 Software Enhancement Effort Estimation using Stacking Ensemble method

Figure 5.9 – Submit ER

Figure 5.10 – Development Team Interface

5.6.3.2 A Web page for SEEE

As shown in Figure 5.14 using the Anvil platform, we created a web page for SEEE.
Through the Anvil platform, we can share a private link to the web page. Therefore,
in the Bootstrap template, we included this link to be used by the Development team
(see Figure 5.13). The Anvil platform is also used to connect the model built-in Google
Collab to the input variable, which is the functional size of the ER. The SEEE web page
interface includes two sessions: the train session constructed on the backend with the
Goggle Collab and the prediction session designed for the Developer team with the Anvil
platform. As shown in Figure 5.14, the Development team needs to select the model to
estimate the effort of the ER. The team can choose one of the two SEEE models: A model

5.6 Automatically SEEE through a ERWebApp 111

Figure 5.11 – ER Details

Figure 5.12 – Regulate ER page

based on the SVR algorithm which gives the accurate estimation results as described in
chapter 4 within the scrum context. Or a model based on the ensemble model that uses
the SVR algorithm as the final estimator. Also, the Development teams have to provide
the ER Functional size (approximated) in CFP units as an input. So that the developed
ERWebApp generates the SEEE.

5.6.3.3 Scrum Master Web Page

Figure 5.15 depicts the Scrum Master’s web page interface. We did not put much
emphasis on the role of the Scrum master because the estimation process is handled by

112 Software Enhancement Effort Estimation using Stacking Ensemble method

Figure 5.13 – Estimating ER Effort

Figure 5.14 – Estimating ER Effort with Anvil

the Developer team. However, it will be improved in the future.

Figure 5.15 – Scrum Master

5.7 Conclusion 113

5.7 Conclusion

The following are the results of the experiment studies investigated in this chapter:

— The correlation coefficient calculated between enhancement functional size and en-
hancement effort has a value of 0.5 indicating that there is a strong relationship. As
a result, the enhancement functional size was selected as the primary independent
variable.

— M5P is more accurate with small MAEs= 0.0612 and with quite good performance
of 99% compared to GBRerg, LinearSVR, and RFR.

— The stacking ensemble method (combining GBRerg, LinearSVR, and RFR) is more
accurate with small MAEs= 0.0383 and R2 Score=0.987 compared to M5P algo-
rithm.

We also built an ERWebApp for SEEE. The main purpose of the ERWebApp is to fa-
cilitate the prediction of the effort required to complete an enhancement. Of course, it
will evolve re-actively in response to competition across many organizations by building
a web application.

Conclusion and Perspectives

This chapter highlights the research’s contributions, addresses some of its limitations,
and offers future research directions based on the findings.

Recall Thesis Contributions

This thesis proposed an approach for estimating software enhancement effort. It as-
sessed and analyzed the impact of using the COSMIC FSM method on the accuracy of
SEEE. The proposed approach is intended to help stakeholders in effectively managing
Enhancement Requests.

For this purpose, we started by an SMS, presenting our first contribution, which is
divided into six steps: (1) Defining the mapping questions, (2) Finding primary studies,
(3) Screening studies, (4) Abstract key-wording, (5) Data extraction, and (6) Mapping
Results. Based on the findings obtained in this SMS, estimators should be aware that
SEEE using ML techniques as part of non-algorithmic models demonstrated increased
accuracy prediction over the algorithmic models. When employing the enhancement
functional size as independent variables, ML techniques often achieve a reasonable level
of accuracy. In the SMS, we proved that the majority of the research studies using
FSM methods focused mainly on the development phase. In addition, we investigated
the use of FSM methods (IFPUG and COSMIC) to identify their impact on improving
SEEE performance. The results of this investigation showed that the functional size of
an enhancement is useful when it is used as an independent variable for SEEE. Our main
proposal in this thesis is to investigate the use of the powerful FSM method, which is
the COSMIC ISO 19761 method. Taking into account the enhancement size, we estimate
the software enhancement effort using ML techniques. The result of this contribution is

115

published in [12].
Our second contribution is split into two parts. First, we proposed to develop an

ontology-based model for classifying ER as either FC or TC. We used the Protégé editor
to classify ER (user reviews) from the PROMISE repository and create a comprehensive
representation of the ER. Thus, each ER classified as FC is associated with its corre-
sponding effort using expert judgment. Second, considering the output of the first part,
we investigate the effectiveness and performance of four ML techniques: ABR, GBR,
LinearSVR, and RFR to provide an accurate SEEE. The results of this contribution are
published in [13] and [14].

Our third contribution investigated the impact of using the first and second FSM gen-
erations (i.e., IFPUG and COSMIC FSM methods) on the accuracy of SEEE. The CFS
algorithm is used to select the appropriate features. The enhancement FS is used as an
independent variable to the SEEE model in the context of traditional projects. Following
that, a comparison of IFPUG with COSMIC is conducted to provide the effectiveness of
the FSM method. In this contribution, we also select the use of the appropriate FSM
method, that is COSMIC sizing. In this case, we used the SVR model to provide a more
accurate SEEE not only in traditional projects but also in software agile (scrum) projects.
The results of this contribution are published in [15] and [16].

Our fourth contribution evaluated and analyzed the use of the stacking ensemble
method over the individual models in improving the accuracy of the SEEE within the
scrum context. We compared two ML-based models for SEEE: the M5P (as an individual
ML technique) and stacking as an ensemble method combining different regression models
(GBRegr, LinearSVR, and RFR) using the ISBSG dataset. Regarding experimental
results, we found that using the stacking ensemble model is the most accurate model.
However, using this model manually is time-consuming. Of course, manual solutions
are not practical. For this reason, we propose to develop an ERWebApp to rapidly and
automatically make SEEE. The ERWebApp is designed to first generate the enhancement
functional size and then estimate its corresponding effort. The results of this contribution
are published in [17] and [18].

Threats to Validity

This thesis proposed an approach to provide a more accurate SEEE using ML techniques
and taking into account the COSMIC functional size of an ER as an independent variable.

116 Conclusion and Perspectives

The validity of this thesis’s results is pertinent to internal validity and external validity.

— The internal validity threats are related to three issues:

— The first issue affecting the internal validity of our approach is its dependence
on a detailed description of the ER classified as FC. Such information may
not always be available. There are so many different styles of writing US
today that each company has its own. In this thesis, enhancement requests
are identified and classified using an Ontology model. Nonetheless, the FSM
method used in this thesis is independent of the used format to describe the
enhancement request (use cases, activities, user stories, etc.).

— The second issue, affecting the internal validity, is the use of a high-level
ontology model. Some COSMIC functional processes may appear to be imple-
mented as a new requirement while others do not implement new requirements
(adaptive maintenance) and need existing software (perfective maintenance).
As a result, all the measurement results must be always updated following the
identified functional processes as an enhancement.

— The third issue is that the scope of this study is limited to the ER classified as
FC. While the FUR is more likely to change during the SMLC, the NFR and
PRC may also change. For example, technical debt can result in more time
spent developing per functional process. As a result, dealing with technical
debt may necessitate a significant amount of effort in terms of code restructur-
ing. In this thesis, however, we used the COSMIC FSM method to measure
the functional size of an ER. COSMIC method, in general, measures the func-
tional size of software based on the FUR. Whereas, some software engineering
researchers’ used COSMIC FSM to measure the NFR size as well. Especially,
when NFR evolves into FUR.

— The fourth issue is related to the use of the CFS algorithm. In fact, even
though the selected CFS algorithm gives improved experiment results, it is
still compulsory to test other CFS algorithms.

— On the other hand, external validity threats deal with the possibility to generalize
the results of this study.

— The first issue is the limited number of both traditional and agile software
projects to test the proposed SEEE approach. In fact, for the traditional

117

development method, only six private projects and a single PROMISE dataset
containing enhancement requests are used to evaluate enhancement requests
semantically. A single popular ISBSG dataset containing measurement in
COSMIC Function Points is used to investigate the impact of using an ER
size in order to improve the accuracy of the SEEE. For Scrum projects, we
used a single public dataset to measure the FS of an ER and estimate the
corresponding enhancement effort. This limited number of software projects is
insufficient to generalize the results of our study. Thus, testing the proposed
approach in an industrial environment is required.

— Concerning the SEEE, we used individual and ensemble ML techniques, and
also the Expert judgment approach. Regarding the scrum context, the experts’
judgment estimation is the closest one to reality. Expert-based estimation
taking into consideration if the changed functionality is implemented or not
does not have a major value. However, experts’ estimation may cause less
transparency about how they found their results. In our study, we showed
that it is possible to use ML models for estimating the desired ER Effort. The
problem is that the choice of the estimation model depends on many factors
like the dataset, and therefore the software company domains, etc. Using a
given SEEE model, software stakeholders can make acceptable decisions that
will contribute to ultimate project success.

Perspectives

The perspectives of this work can be summarized in the following main points:

— Sizing enhancement request at different levels of detail so that SEEE can be deter-
mined at different levels of accuracy. We believe that approximate and rapid ER
evaluation is required, particularly for an urgent ER (i.e., emergency maintenance).
When there was not enough time to carry out the entire COSMIC measurement
process. As a result, we propose that for future work, we use an approximation
method to measure the enhancement size as proposed by the enhancement requester
in natural language.

— For future work, we propose to focus not only on the different types of software
maintenance, but also on an in-depth analysis of ER using the structural size mea-

118 Conclusion and Perspectives

surements, as proposed by Hakim et al. [126].

— Analyze the use of different feature selection algorithms. We are currently working
on analyzing and evaluating the relationship between dataset attributes using the
OLS regression algorithm. The results of this study have been accepted in the
Innovation and system and software engineering Journal 2021 [127].

— Investigate the enhancement which is categorized as TC. Even though most of NFR
evolves into FUR, we believe that the conjunction of both the ISO 25000 series of
software quality model and the COSMIC ISO 19761 can be used to control and
evaluate the software enhancement project progress.

— Analyze SEEE in depth. SEEE can be presented through five attributes: Plan
effort, Specify Effort, Design Effort, Implement Effort, and Test effort. Hence, we
are currently working on identifying the significant drivers (one of the five sub-
step effort) of the total required effort for SEEE. We assume that estimating the
enhancement (or test cases) effort for testing activity (regression testing) is also a
key activity of software enhancement project.

Bibliography

[1] Petersen, Kai, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. "Systematic
mapping studies in software engineering." In 12th International Conference on Evalu-
ation and Assessment in Software Engineering (EASE) 12, pp. 1-10. 2008.

[2] Cheikhi, Laila, and Alain Abran. "PROMISE and ISBSG Software Engineering data
repositories: A survey." In 2013 Joint Conference of the 23rd International Workshop
on Software Measurement and the 8th International Conference on Software Process
and Product Measurement, pp. 17-24. IEEE, 2013.

[3] P. Tripathy, K. Naik, Software Evolution and Maintenance, Wiley, 2014

[4] ISO/IEC (2022) ISO/IEC/IEEE international standard for software engineering -
software life cycle processes - maintenance. ISO/IEC/IEEE 14764:2022(E) IEEE 2022.

[5] García-Floriano, Andrés and López-Martín, Cuauhtémoc and Yáñez-Márquez, Cor-
nelio and Abran, Alain. Support vector regression for predicting software enhancement
effort, Information and Software Technology,97, pp. 99–109, 2018.

[6] Bourque, Pierre, and Richard E. Fairley. "Guide to the Software Engineering-Body of
Knowledge. 2014." Online in Internet: URL: http://www. swebok. org [Stand: 12.01.
2005].

[7] Aljamaan, H., Elish, M.O. and Ahmad, I., An ensemble of computational intelligence
models for software maintenance effort prediction. In International Work-Conference
on Artificial Neural Networks, Springer, pp.592-603, 2013.

[8] Ali, Syed Sarmad and Zafar, Muhammad Shoaib and Saeed, Muhammad Tallal, “Ef-
fort Estimation Problems in Software Maintenance – A Survey”, 2020 3rd International
Conference on Computing, Mathematics and Engineering Technologies (iCoMET),
2020

120 BIBLIOGRAPHY

[9] ERTUĞRUL, EGEMEN and Baytar, Zakir and ÇATAL, ÇAĞATAY and MURATLI,
ÖMER CAN. Performance tuning for machine learning-based software development
effort prediction models, Turkish Journal of Electrical Engineering & Computer Sci-
ences,27, pp. 1308–1324, 2019.

[10] Rahaman, Syed Mujib, and V. Valli Kumari. "A Model for Corrective Software
Maintenance Effort Estimation after Privacy Leak Detection in Social Network."
In 2020 International Conference on Artificial Intelligence and Signal Processing
(AISP),IEEE,pp.1-10, 2020.

[11] Singh, Chamkaur, Neeraj Sharma, and Narender Kumar. "Analysis of software main-
tenance cost affecting factors and estimation models." International Journal of Scientific
and Technology Research 8, no. 9 ,pp. 276-281, 2019.

[12] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Software Enhancement Ef-
fort Prediction Using Machine-Learning Techniques: A Systematic Mapping Study."
SN Computer Science 2, no. 6, pp.1-15, 2021.

[13] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Requirements Change Re-
quests Classification: An Ontology-Based Approach." In International Conference on
Intelligent Systems Design and Applications, pp. 487-496. Springer, Cham, 2019.

[14] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Software Enhancement Ef-
fort Estimation using Machine Learning Regression Methods."V 12,pp. 412-423, 2020.

[15] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Investigating the Impact
of Functional Size Measurement on Predicting Software Enhancement Effort Using
Correlation-Based Feature Selection Algorithm and SVR Method." In International
Conference on Software and Software Reuse, pp. 229-244. Springer, Cham, 2020.

[16] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Support vector regression
for enhancement effort prediction of Scrum projects from COSMIC functional size."
Innovations in Systems and Software Engineering, pp. 1-17, 2021.

[17] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "An Improved Prediction of
Software Enhancement Effort using Correlation-based Feature Selection and M5P ML
algorithm." In 2020 IEEE/ACS 17th International Conference on Computer Systems
and Applications (AICCSA), pp. 1-8, IEEE, 2020.

BIBLIOGRAPHY 121

[18] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Software enhancement effort
estimation using correlation-based feature selection and stacking ensemble method."
Cluster Computing pp. 1-14, 2021.

[19] Basri, Sufyan and Kama, Nazri and Ibrahim, Roslina, «A Novel Effort Estimation
Approach for Requirement Changes during Software Development Phase,» Interna-
tional Journal of Software Engineering and Its Applications, pp. 237-252, 2015.

[20] Fairley, Richard E. Managing and leading software projects. John Wiley Sons, 2011.

[21] Boehm, Barry W and Abts, Chris and Brown, A Winsor and Chulani, Sunita and
Clark, Bradford K and Horowitz, Ellis and Madachy, Ray and Reifer, Donald J and
Steece, Bert, «Software Cost Estimation with COCOMO II,» Prentice Hall PTR, 2000.

[22] S.D. Sheetz, D. Henderson and L. Wallace, "Understanding developer and manager
perceptions of function points and source lines of code", The Journal of Systems and
Software, Elsevier, vol. 82, pp. 1540-1549, 2009.

[23] González-Ladrón-de-Guevara, Fernando and Fernández-Diego, Marta and Lokan,
Chris. The usage of ISBSG data fields in software effort estimation: A systematic
mapping study, Journal of Systems and Software,113, pp.188–215, 2016.

[24] IFPUG International Function Point Users Group, A Functional Size Measurement
Method,COSMIC and IFPUG Glossary of terms,2011.

[25] IFPUG International Function Point Users Group, Common Software Measurement
International Consortium, COSMIC and IFPUG Glossary of terms,2015.

[26] Ali, Syed Sarmad, Muhammad Shoaib Zafar, and Muhammad Tallal Saeed. "Effort
Estimation Problems in Software Maintenance–A Survey." In 2020 3rd International
Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp.
1-9. IEEE, 2020.

[27] Pressman, Roger S. Software engineering: a practitioner’s approach. Palgrave
macmillan, 2005.

[28] Hugo, Dionisio Ramón. "Practical software measurement. Objective information for
decision makers." Journal of Computer Science and Technology 3, no. 2, p.70, 2003.

[29] Rook, Paul. "Controlling software projects." Software engineering journal 1, no. 1,
pp. 7-16, 1986.

122 BIBLIOGRAPHY

[30] Symons, C. "A comparison of the key differences between the IFPUG and cosmic
functional size measurement methods." Common Software Measurement International
Consortium, 2011.

[31] Alain Abran, Jean-Marc Desharnais, Barbara Kitchenham, Dylan Ren, Charles
Symons,Steve Woodward, Diana Baklizky, Peter Fagg, Arlan Lesterhuis, Luca San-
tillo, Frank Vogelezang, Carol Buttle, Cigdem Gencel, Roberto Meli, Hassan Soubra,
and Chris Woodward, Guideline on Non-Functional and Project Requirements: How
to Consider non-functional and Project Requirements in Software Project Performance
Measurement, Benchmarking and Estimating,2015.

[32] Abran, Alain. Software project estimation: the fundamentals for providing high
quality information to decision makers, Information and Software Technology, 2015.

[33] Mall, Rajib. Fundamentals of software engineering. PHI Learning Pvt. Ltd., 2018.

[34] Alain Abran, Bernard Londeix , Marie O’Neill, Luca Santillo, Frank Vogelezang,
Jean-Marc Desharnais, Pam Morris et al. "The cosmic functional size measurement
method." Measurement Manual, Version 4, no. 1, 2015.

[35] Mahmood, Yasir, Nazri Kama, Azri Azmi, Ahmad Salman Khan, and Mazlan Ali.
"Software effort estimation accuracy prediction of machine learning techniques: A sys-
tematic performance evaluation." Software: Practice and Experience 52, no. 1, pp.
39-65, 2022.

[36] Nerkar, L. R., and P. M. Yawalkar. "Software Cost Estimation using Algorithmic
Model and Non-Algorithmic Model a Review." Int J Comput App 2, pp. 4-7, 2014.

[37] Sangwan, Om Prakash. "Software effort estimation using machine learning tech-
niques." In 2017 7th International Conference on Cloud Computing, Data Science
Engineering-Confluence, pp. 92-98. IEEE, 2017.

[38] Zhang, Xian-Da. "Machine learning." In A Matrix Algebra Approach to Artificial
Intelligence, pp. 223-440. Springer, Singapore, 2020.

[39] Kulmanov, Maxat, Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. "Semantic
similarity and machine learning with ontologies." Briefings in bioinformatics 22, no. 4,
pp. bbaa199, 2021.

[40] Rashwan, Abderahman, Olga Ormandjieva, and René Witte. "Ontology-based clas-
sification of non-functional requirements in software specifications: a new corpus and

BIBLIOGRAPHY 123

svm-based classifier." In 2013 IEEE 37th Annual Computer Software and Applications
Conference, pp. 381-386. IEEE, 2013.

[41] Blessie, E. Chandra, and E. Karthikeyan. "Sigmis: A feature selection algorithm
using correlation based method." Journal of Algorithms Computational Technology 6,
no. 3, pp. 385-394,2012.

[42] Hall, Mark Andrew, "Correlation-based feature selection for machine learn-
ing",Citeseer,113, pp.1–8, 1999.

[43] Breiman, Leo. Random forests, Machine learning,45, pp. 5–32, 2019.

[44] Cortes, Corinna and Vapnik, Vladimir. Support-vector networks, Machine learn-
ing,20, pp.273–297, 1995.

[45] Freund, Yoav and Schapire, Robert E. A desicion-theoretic generalization of on-
line learning and an application to boosting, European conference on computational
learning theory,5, pp. 23–37, 1995.

[46] Freund, Yoav and Schapire, Robert and Abe, Naoki. A short introduction to boost-
ing, Journal-Japanese Society For Artificial Intelligence,14, pp. 771-780, 1999.

[47] Hidmi, Omar and Sakar, Betul Erdogdu, Robert and Abe, Naoki.Software develop-
ment effort estimation using ensemble machine learning, International Journal Com-
puter Communication and Instrument Engineering,no. 4, pp. 143–147, 2017.

[48] Quinlan, John R, "Learning with continuous classes," I5th Australian joint conference
on artificial intelligence, vol. 92, pp. 343–348, 1992.

[49] Idri, Ali and Hosni, Mohamed and Abran, Alain, Systematic literature review of
ensemble effort estimation,Journal of Systems and Software, vol.118, pp.151–175,2016

[50] Shukla, Suyash and Kumar, Sandeep, A Stacking Ensemble-based Approach for
Software Effort Estimation, ENASE, pp.205–212, 2021

[51] Alsolai, Hadeel, and Marc Roper. "A systematic literature review of machine learning
techniques for software maintainability prediction." Information and Software Technol-
ogy 119, pp. 106214, 2020.

[52] Devulapally, Gopi Krishna, Agile in the context of Software Maintenance A Case
Study, Thesis no: MSSE-2015-12,2015.

[53] Choudhari, Jitender, and Ugrasen Suman. "Iterative maintenance life cycle using
extreme programming." In 2010 International Conference on Advances in Recent Tech-
nologies in Communication and Computing, pp. 401-403. IEEE, 2010.

124 BIBLIOGRAPHY

[54] Merzouk, Soukaina, Abdessamad Cherkaoui, Abdelaziz Marzak, Nawal Sael, and
Fatima-Zahra Guerss. "The proposition of Process flow model for Scrum and eXtreme
Programming." In Proceedings of the 4th International Conference on Networking,
Information Systems Security, pp. 1-6. 2021.

[55] Arora, Mohit and Verma, Sahil and Chopra, Shivali and others, A Systematic Litera-
ture Review of Machine Learning Estimation Approaches in Scrum Projects, Cognitive
Informatics and Soft Computing, pp.573-586, 2020.

[56] David J. Anderson, Kanban: Successful Evolutionary Change for Your Technology
Business,Blue Hole Press, 261 pages, 2010.

[57] Cervone, H Frank, Understanding agile project management methods using Scrum,
OCLC Systems and Services: International digital library perspectives, 2011

[58] Choudhari, Jitender and Suman, Ugrasen, points based effort estimation model for
software maintenance, Procedia Technology, 4, pp.761–765,2012.

[59] Grenning, James, Planning poker or how to avoid analysis paralysis while release
planning, Hawthorn Woods: Renaissance Software Consulting, 2002.

[60] Lavazza, Luigi, and Sandro Morasca. "On the evaluation of effort estimation models."
In Proceedings of the 21st International Conference on Evaluation and Assessment in
Software Engineering, pp. 41-50. 2017.

[61] Richardson, Gary L. Project management theory and practice. Crc Press, 2010.

[62] Nassif, Ali Bou, Mohammad Azzeh, Ali Idri, and Alain Abran. "Software develop-
ment effort estimation using regression fuzzy models." Computational intelligence and
neuroscience 2019 (2019).

[63] Ulziit, Bayarbuyan, Zeeshan Akhtar Warraich, Cigdem Gencel, and Kai Petersen.
"A conceptual framework of challenges and solutions for managing global software
maintenance." Journal of Software: Evolution and Process 27, no. 10 pp. 763-792,
2015.

[64] Heričko, Marjan and Živkovič, Aleš, The size and effort estimates in iterative devel-
opment, Information and Software Technology, vol. 50, no. 7, pp. 772-781, 2008.

[65] Malhotra, Ruchika, A systematic review of machine learning techniques for software
fault prediction, Applied Soft Computing, vol. 27, pp. 504-518, 2015.

[66] Kitchenham, Barbara, O. Pearl Brereton, David Budgen, Mark Turner, John Bai-
ley, and Stephen Linkman. "Systematic literature reviews in software engineering–a

BIBLIOGRAPHY 125

systematic literature review." Information and software technology 51, no. 1, pp. 7-15,
2009.

[67] López-Martín, Cuauhtémoc. Predictive accuracy comparison between neural net-
works and statistical regression for development effort of software projects, Applied
Soft Computing, 27, pp. 434–449 , 2015.

[68] Ku, Yan, Jing Du, Ye Yang, and QingWang. "Estimating software maintenance effort
from use cases: An industrial case study." In 2011 27th IEEE International Conference
on Software Maintenance (ICSM), pp. 482-491. IEEE, 2011.

[69] Wu, Hong, Lin Shi, Celia Chen, Qing Wang, and Barry Boehm. "Maintenance effort
estimation for open source software: A systematic literature review." In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp. 32-43.
IEEE, 2016.

[70] De Lucia, Andrea, Eugenio Pompella, and Silvio Stefanucci. "Assessing effort esti-
mation models for corrective maintenance through empirical studies." Information and
Software Technology 47, no. 1, pp. 3-15, 2005.

[71] Leung, Hareton KN. "Estimating maintenance effort by analogy." Empirical Software
Engineering 7, no. 2, pp. 157-175, 2002.

[72] Fioravanti, Fabrizio, and Paolo Nesi. "Estimation and prediction metrics for adap-
tive maintenance effort of object-oriented systems." IEEE Transactions on software
engineering 27, no. 12, pp. 1062-1084, 2001.

[73] Jorgensen, Magne. "Experience with the accuracy of software maintenance task effort
prediction models." IEEE Transactions on software engineering 21, no. 8, pp. 674-681,
1995.

[74] Ramil, Juan F and Lehman, Meir M, "Metrics of software evolution as effort predic-
tors—a case study," Proceedings International Conference on Software Maintenance:
IEEE Computer Society Press: Los Alamitos CA, pp. 163-172, 2000

[75] Agrawal, Manish and Chari, Kaushal, "Software effort, quality, and cycle time: A
study of CMM level 5 projects," IEEE Transactions on software engineering, vol. 33,
n1IEEE, pp. 145–156, 2007.

[76] Riaz, Mehwish and Mendes, Emilia and Tempero, Ewan, "A systematic review of
software maintainability prediction and metrics," 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, pp. 367-377, 2009.

126 BIBLIOGRAPHY

[77] Quah, Tong-Seng and Thwin, Mie Mie Thet, "Application of neural networks for
software quality prediction using object-oriented metrics," Journal of systems and soft-
ware, vol. 76, pp. 147–156, 2005.

[78] Zhou, Yuming and Leung, Hareton, "Predicting object-oriented software maintain-
ability using multivariate adaptive regression splines," Journal of systems and software,
vol. 80, pp. 1349–1361, 2007.

[79] Shukla, Ruchi and Misra, AK, "Ai based framework for dynamic modeling of soft-
ware maintenance effort estimation," 2009 International Conference on Computer and
Automation Engineering, IEEE, pp. 313–317, 2009.

[80] Bhatnagar, Roheet and Bhattacharjee, Vandana and Ghose, Mrinal Kanti, "Soft-
ware development effort estimation–neural network vs. regression modeling approach,"
International Journal of Engineering Science and Technology, pp. 2950–2956, 2010.

[81] Stojanov, Zeljko and Dobrilovic, Dalibor and Stojanov, Jelena and Jevtic, Vesna,
"Estimating software maintenance effort by analyzing historical data in a very small
software company," Scientific Bulletin of The Politehnica University of Timioara, Trans-
actions on Automatic Control and Computer Science, p. 2, 2013

[82] Malhotra, Ruchika and Chug, Anuradha, "Software maintainability prediction using
machine learning algorithms," Software Engineering: An International Journal (SEIJ),
2012.

[83] Ahmed, Moataz A and Al-Jamimi, Hamdi A, "Machine learning approaches for pre-
dicting software maintainability: a fuzzy-based transparent model," IET software, pp.
317–326, 2013.

[84] Malhotra, Ruchika and Lata, Kusum, "An exploratory study for predicting main-
tenance effort using hybridized techniques," Proceedings of the 10th Innovations in
Software Engineering Conference, pp. 26–33, 2017

[85] Malhotra, Ruchika and Lata, Kusum, "On the Application of Cross-Project Valida-
tion for Predicting Maintainability of Open Source Software using Machine Learning
Techniques," 2018 7th International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions)(ICRITO), pp. 175–181, 2018.

[86] Shukla, Ruchi and Shukla, Mukul and Misra, Arun Kumar and Marwala, Tshilidzi
and Clarke, WA, "Dynamic software maintenance effort estimation modeling using

BIBLIOGRAPHY 127

neural network, rule engine and multi-regression approach," International Conference
on Computational Science and Its Applications, vol. 15, p. 157–169, 2012.

[87] Shukla, Ruchi and Misra, Arun Kumar, "Estimating Software Maintenance Effort - A
Neural Network Approach," Proceedings of 1st India Software Engineering Conference,
pp. 107-112, 2008.

[88] Song, Tae-Hoon and Yoon, Kyung-A and Bae, Doo-Hwan. An approach to prob-
abilistic effort estimation for military avionics software maintenance by consider-
ing structural characteristics, 14th Asia-Pacific Software Engineering Conference
(APSEC’07), pp. 406–413, 2007.

[89] Yu, Liguo,"Indirectly predicting the maintenance effort of open-source software,"
Journal of Software Maintenance and Evolution: Research and Practice,vol. 18, pp.
311–332,2006.

[90] Cerón-Figueroa, Sergio and López-Martín, Cuauhtémoc and Yáñez-Márquez, Cor-
nelio. Stochastic gradient boosting for predicting the maintenance effort of software-
intensive systems, IET Software,pp. 99–109 , 2019.

[91] Rijwani, Poonam and Jain, Sonal, "Enhanced Software Effort Estimation using Multi
Layered Feed Forward Artificial Neural Network Technique," Twelfth International
Multi-Conference on Information Processing-2016 (IMCIP-2016), pp. 307–312, 2016.

[92] Jane Huffman Hayes, Sandip C. Patel, Liming Zhao,A Metrics-Based Software Main-
tenance Effort Model, Proceedings of IEEE Eighth European Conference on Software
Maintenance and Reengineering (CSMR’04), pp. 254-258, 2004.

[93] Kitchenham, Barbara and Pfleeger, Shari Lawrence and McColl, Beth and Ea-
gan, Suzanne, "An empirical study of maintenance and development estimation ac-
curacy,"The Journal of Systems and Software, Elsevier, pp. 57-77, 2002.

[94] Abdallah, Ammar and Abran, Alain, Enterprise Architecture Measurement: An Ex-
tended Systematic Mapping Study, I.J. Information Technology and Computer Science,
9, pp. 9-19, 2019.

[95] Chua, Bee Bee and Bernardo, Danilo Valeros and Verner, June, "Criteria for Esti-
mating Effort for Requirements Changes," conf/eurospi/2008, pp. 36-46, 2008.

[96] Zielczynski, Peter, "Requirements Management Using IBM Rational RequisitePro,"
IBM Press, 2007.

128 BIBLIOGRAPHY

[97] De Andrés, Javier and Landajo, Manuel and Lorca, Pedro, "Using Nonlinear Quantile
Regression for the Estimation of Software Cost," HAIS2018, Oviedo, Spain, June 20-22,
2018, Proceedings, pp. 422–432, 2018.

[98] Nassif, Ali Bou, Luiz Fernando Capretz, and Danny Ho. "Analyzing the non-
functional requirements in the desharnais dataset for software effort estimation." arXiv
preprint arXiv:1405.1131, 2014.

[99] Nguyen, Vu and Boehm, Barry and Danphitsanuphan, Phongphan, "A controlled
experiment in assessing and estimating software maintenance tasks",Information and
software technology,53,6,pp. 682–691,2011.

[100] Ahn, Yunsik and Suh, Jungseok and Kim, Seungryeol and Kim, Hyunsoo, "The soft-
ware maintenance project effort estimation model based on function points," Journal
of Software Maintenance and Evolution: Research and Practice, p. 71–85, 2003.

[101] Sammut, Claude and Webb, Geoffrey I, "Encyclopedia of machine learning,"
Springer Science and Business Media, 2011.

[102] Jović, Alan, Karla Brkić, and Nikola Bogunović. "A review of feature selection
methods with applications." In 2015 38th international convention on information and
communication technology, electronics and microelectronics (MIPRO), pp. 1200-1205.
Ieee, 2015.

[103] Elmidaoui, Sara and Cheikhi, Laila and Idri, Ali and Abran, Alain, "Machine learn-
ing techniques for software maintainability prediction: Accuracy analysis", Journal of
Computer Science and Technology, V.35,Num.5,pp.1147–1174,2020

[104] Minku, Leandro L and Yao, Xin, "A Principled Evaluation of Ensembles of Learn-
ing Machines for Software Effort Estimation," Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, pp. 1–10, 2011.

[105] Group, International Software Benchmarking Standards, "Glossary of terms for
software project development and enhancement," version 5.17, vol. 113, pp. 188–215,
2018.

[106] Bajwa, Sohaib-Shahid. Investigating the nature of relationship between software
size and development effort, International Journal of Computer Applications,2008.

[107] Jones, Karen Sparck. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation 28(1), pp. 11-20, 1972.

BIBLIOGRAPHY 129

[108] Desharnais, Jean-Marc and Buglione, Luigi and Kocatürk, Buǧra, Using the COS-
MIC method to estimate Agile user stories, Proceedings of the 12th International Con-
ference on Product Focused Software Development and Process Improvement, pp.68-73,
2011

[109] Bala, Abdalla and Abran, Alain, "Use of the multiple imputation strategy to deal
with missing data in the ISBSG repository",Journal of Information Technology & Soft-
ware Engineering, vol.6, pp. 171, 2016.

[110] Biesiada, Jacek and Duch, Wlodzisław, Feature selection for high-dimensional
data—a Pearson redundancy based filter, Computer recognition systems, pp.242-249,
2007.

[111] ,Shepperd, Martin, and Steve MacDonell. "Evaluating prediction systems in soft-
ware project estimation." Information and Software Technology 54, no. 8, pp. 820-
827,2012.

[112] Bhardwaj, Mridul and Ajay, Rana, Estimation of Testing and Rework Efforts for
software Development Projects, Asian Journal of Computer Science and Information
Technology, 5, 5, pp.33-37, 2015

[113] Sellami, Asma, Mariem Haoues, Nour Borchani, and Nadia Bouassida. "Towards
an Assessment Tool for Controlling Functional Changes in Scrum Process." In IWSM-
Mensura, pp. 34-47. 2018.

[114] ,Moritz, Steffen and Bartz-Beielstein, Thomas, time series missing value imputation
in R, The R Journal, 9, 1, pp.1-12,2017

[115] Cooper, Robert G and Sommer, Anita F, Agile-Stage-Gate: New idea-to-launch
method for manufactured new products is faster, more responsive,Industrial Marketing
Management,59, pp.167–180,2016

[116] Angara, Jayasri and Prasad, Srinivas and Sridevi, Gutta, Towards Benchmarking
User Stories Estimation with COSMIC Function Points-A Case Example of Participant
Observation, International Journal of Electrical and Computer Engineering (IJECE),
pp. 3076-3083, 2018.

[117] Charles Symons, Alain Abran, Christof Ebert,Frank Vogelezang, Measurement of
Software Size: Advances Made by the COSMIC Community, International Conference
on Software Process and Product Measurement (IWSM-MENSURA), 2016.

130 BIBLIOGRAPHY

[118] Yohannese, Chubato Wondaferaw, Tianrui Li, and Kamal Bashir. "A three-stage
based ensemble learning for improved software fault prediction: an empirical compara-
tive study." International Journal of Computational Intelligence Systems 11, no. 1, pp.
1229-1247,2018

[119] Field, Andy. Discovering statistics using IBM SPSS statistics. sage, 2013.

[120] Yadav, Sanjay and Shukla, Sanyam, Analysis of k-fold cross-validation over hold-
out validation on colossal datasets for quality classification,2016 IEEE 6th International
conference on advanced computing (IACC), vol.6, pp.78–83, 2016.

[121] Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Machine Learning for Pre-
dictive Maintenance:A Multiple Classifier Approach, ieee transactions on industrial
informatics,pp. 812-820 , 2015.

[122] Wen, Jianfeng, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. "System-
atic literature review of machine learning based software development effort estimation
models." Information and Software Technology 54, no. 1, pp.41-59, 2012.

[123] Wang, Leizhi and Zhu, Zhenduo and Sassoubre, Lauren and Yu, Guan and Liao,
Chen and Hu, Qingfang and Wang, Yintang, Improving the robustness of beach water
quality modeling using an ensemble machine learning approach,Science of The Total
Environment, vol.765, pp.142-760,2021

[124] Haoues, Mariem and Sellami, Asma and Ben-Abdallah, Hanêne,"Towards functional
change decision support based on COSMIC FSM method,"Information and Software
Technology, vol. 110, pp.78–91,2019.

[125] Guney, Zafer.Considerations for human-computer interaction: user interface design
variables and visual learning in IDT." Kıbrıslı Eğitim Bilimleri Dergisi 14, no. 4 pp.
731-741,2019

[126] Sellami, Asma, Hela Hakim, Alain Abran, and Hanêne Ben-Abdallah. "A measure-
ment method for sizing the structure of UML sequence diagrams." Information and
Software Technology 59, pp. 222-232, 2015

[127] Labidi Taher, Sakhrawi Zaineb, Sellami Asma, Achraf Mtibaa and Bouassida Na-
dia, “On the Use of OLS regression algorithm and Pearson correlation algorithm for
improving the SLA establishment process”, Innovations in Systems and Software En-
gineering, pp.1-15, 2022

Appendix A: Primary Studies

Appendix A - Quality assessment results

Study MQ
1

MQ
2

MQ
3

MQ
4

MQ
4.1

MQ
4.2

MQ
4.3

MQ
4.4

Total
score

Rating

S1
[93]

Y Y Y Y Y Y P P 7 Excellent

S2
[68]

Y P N Y P P P N 4 Good

S3
[99]

Y N N Y P N Y N 3.5 Good

S4
[89]

Y P Y Y P P N P 5 Good

S5
[92]

Y P Y Y P P P P 5.5 Good

S6
[100]

Y Y P P P P Y Y 6 Good

S7
[71]

Y P P P P P N N 3.5 Good

S8
[72]

Y N P P Y P P N 4 Good

S9
[73]

Y P Y P Y P P P 5.5 Good

S10
[74]

Y P P P P Y P P 5 Good

S11
[90]

Y P Y Y Y P Y Y 7 Excellent

S12
[5]

Y P Y Y Y P Y Y 7 Excellent

S13
[91]

Y P Y Y Y P Y Y 7 Excellent

Appendix B: Example of Ontology’s class
and its corresponding customer’s review

Appendix B - Example of Ontology’s class and its corresponding customer’s review
from PROMISE

Class Customer Enhancement Request (from PROMISE Review)
FUNCTIONAL product shall update existing conference rooms
FUNCTIONAL product able delete conference rooms
FUNCTIONAL product shall able delete room equipment
FUNCTIONAL product shall maintain list players
CONSTRAINT product must comply Sarbanes Oxley
CONSTRAINT product shall comply estimatics laws relating recycled parts usage
CONSTRAINT product shall comply insurance regulations regarding claims pro-

cessing
CONSTRAINT System shall meet applicable accounting standards final version

System must successfully pass independent audit performed cer-
tified auditor

COMPATIBILITY Dont waste money installed threeGs took forever load tap blank
white screen pissed

MAINTAINABILITY product shall expected operate least five years customer installation
PERFORMANCE System shall administrator add remove categories website five min-

utes
PORTABILITY product shall interface ChoiceParts system day approximately
RELIABILITY movies shall streamed demand time
SECURITY updates data files database must initiated Disputes System
USABILITY product shall make users want use eighty percent users surveyed

report regularly using product first two weeks

Appendix C: User story Functional sizing
example

Appendix C - COSMIC functional change Size and its corresponding effort in terms of
Story points

US
Id

User Story description COSMIC Functional Change description

As an
ac-
tor. . .)

I can
. . . (Goal)

Effort
(Story
Points)

Type
(add,
delete,
or
modify)

FC
descrip-
tion

E R W X Total
Size
(CFP)

1
O-User

User
Add a
custom
evidence
type to an
assessment
criterion
(because
the stan-
dard
evidence
types are
not appro-
priate for
me)

4 ADD Add
Custom
Evi-
dence
Type

2 1 1 2 6

134 Appendix C: User story Functional sizing example

2 XYZ
ABC
User

Create
bulk
emails to
be sent to
users

5 ADD Create
Bulk
Email

2 1 1 2 6

4 O-User Add an im-
provement
action
against a
specific
attainment
criterion

5 ADD Add Im-
prove-
ment
Action

3 1 1 2 7

5 Assessment
Com-
pleter

Add and
amend
general
comments
for my re-
quirement
response

3 ADD Add
Widget
Com-
ments

1 1 1 2 5

6 General
User

View an
organi-
sation’s
Assess-
ment Re-
port with
various
enhance-
ments

4 MODIFY View
Im-
proved
Assess-
ment
Report

4 1 0 3 8

135

7 O-User Create,
amend
and delete
users
within my
organisa-
tion user
(using the
simplified
interface)

3 MODIFY Maintain
Users
(Sim-
plified
Inter-
face)

2 1 1 2 6

8 XYZ
ABC
User

Delete a
pending
bulk email

1 DELETE Delete
Bulk
Email

2 1 0 2 5

9 General
User

View Im-
proved
Assess-
ment
Report
- HTML
Version

3 ADD Create
an
HTML
version
of the
assess-
ment
report

2 1 0 2 5

Sprint
1 to-
tal
effort

28 Sprint
1 total
Func-
tional
change
size

48

*Note: O-User refers to as Organisation User

Publications

[1] Labidi, Taher, Zaineb Sakhrawi, Asma Sellami, and Achraf Mtibaa. "An Ontology-
based approach for preventing incompatibility problems of quality requirements during
cloud SLA establishment." In International Conference on Computational Collective In-
telligence, pp. 663-675. Springer, Cham, 2019. Rank B

[2] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Requirements Change Re-
quests Classification: An Ontology-Based Approach." In International Conference on
Intelligent Systems Design and Applications, pp. 487-496. Springer, Cham, 2019. Rank
C

[3] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Software Enhancement Effort
Estimation using Machine Learning Regression Methods." Volume 12, 2020, pp. 412 -
423. SJR: Q4

[4] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "An Improved Prediction of
Software Enhancement Effort using Correlation-based Feature Selection and M5P ML
algorithm." In 2020 IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA), pp. 1-8. IEEE, 2020. Rank C

[5] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Investigating the Impact of
Functional Size Measurement on Predicting Software Enhancement Effort Using Correlation-
Based Feature Selection Algorithm and SVR Method." In International Conference on
Software and Software Reuse, pp. 229-244. Springer, Cham, 2020. Rank B

[6] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Software Enhancement Ef-
fort Prediction Using Machine-Learning Techniques: A Systematic Mapping Study." SN
Computer Science 2, no. 6, pp. 1-15, 2021. RANK 2020; indexed dblp and google scholar

137

[7] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Support vector regression
for enhancement effort prediction of Scrum projects from COSMIC functional size." In-
novations in Systems and Software Engineering, pp. 1-17,2021. RANK 2021; SJR:Q3

[8] Sakhrawi, Zaineb, Asma Sellami, and Nadia Bouassida. "Software enhancement ef-
fort estimation using correlation-based feature selection and stacking ensemble method."
Cluster Computing, pp.1-14,2021. RANK 2021; SJR:Q2,IF:1.8

[9] Labidi Taher, Sakhrawi Zaineb, Sellami Asma, Achraf Mtibaa and Bouassida Nadia,
“On the Use of OLS regression algorithm and Pearson correlation algorithm for improving
the SLA establishment process”, Innovations in Systems and Software Engineering, pp.
1-15, 2022. RANK 2021; SJR:Q3

[10] Sakhrawi, Z.; Sellami, A. and Bouassida, N. "Software Enhancement Effort Estima-
tion using Stacking Ensemble Model within the Scrum Projects: A Proposed Web In-
terface". In Proceedings of the 17th International Conference on Software Technologies,
ISBN 978-989-758-588-3, ISSN 2184-2833, pages 91-100, 2022. Rank B

	 INTRODUCTION
	Context
	Research Problem Statement
	Objectives and Contributions
	Originality
	Research Design Methodology
	Thesis Structure

	 Background: The nature of Software Maintenance, Measurement and Estimating
	Introduction
	Software Maintenance
	Definition
	Software Maintenance Challenge

	Software Measurement
	Software Size
	Source Lines of Code (SLOC)
	Functional Size Measurement Methods
	IFPUG FSM Method
	COSMIC FSM Method

	Sizing software enhancement using COSMIC FSM Method

	Software Project Estimation Models
	Algorithmic model
	Non-algorithmic model
	ML techniques for Regression problem
	Data Preprocessing phase
	Prediction models phase
	Decision-making phase

	Estimating in the Context of Traditional and Agile Software Projects
	Switching from Waterfall to Agile
	The different Agile Approaches
	eXtreme Programming
	Scrum
	Kanban

	Differences between Traditional and Agile approaches
	Estimating in the context of Scrum

	Conclusion

	 Systematic Mapping Study: Software Enhancement Effort Estimation using Machine Learning Techniques
	Introduction
	SMS Methodology for SEEE
	Defining the mapping questions
	Conducting the search for primary studies
	Screening studies
	Key wording of abstracts
	Data Extraction

	Mapping results
	Implication for research and practice
	Conclusion

	 Ontology-based Classification of Enhancements with their corresponding Effort Estimation
	Introduction
	Research Work Process Overview
	Gathering Data
	Ontology based-Semantic Classification
	Ontology Specification
	Ontology Conceptualization
	Populating Ontology with FC
	Populating Ontology with Enhancement effort derived from Expert judgment approach

	Ontology Implementation

	Constructing Prediction Models and Evaluation
	Simple split
	Cross validation

	Discussion and Comparison
	Conclusion

	 Towards the use of COSMIC FSM method for improving SEEE within the context of classical and Agile projects
	Introduction
	On the use of FSM methods for more accurate Prediction in the traditional software Enhancement projects
	Data Preprocessing
	Using the CFS algorithm
	Computation of Score P for the selected features from COSMIC_dataset using Pearson's correlation coefficient
	Computation of Score P for the selected features from IFPUG_dataset using Pearson's correlation coefficient

	Constructing SEEE Models
	Empirical Results
	Performance Assessment when using COSMIC sizing
	Performance Assessment when using IFPUG sizing

	Discussion and Comparison

	On the use of COSMIC method for more accurate SEEE in Scrum
	Data collection
	Effort generated from the application of Planning Poker technique
	Enhancement Size generated form the application of COSMIC method
	Measurement strategy phase
	Mapping Phase: US to COSMIC Functional Process (FP)
	Measurement phase

	Applying CFS algorithm
	Identifying relevant features
	Determining the correlation between the COSMIC Functional Size of an enhancement and its corresponding effort
	Determining the correlation between the SEEE and the Actual effort

	Creating Prediction Models
	Empirical Analysis Results
	Performance Assessment without the Enhancement size feature
	Performance Assessment with the use of the Enhancement size feature

	Discussion and Comparison
	Conclusion

	 Software Enhancement Effort Estimation using Stacking Ensemble method
	Introduction
	Research Process
	Data Collection
	Relevant Features Extraction based on the CFS algorithm

	Constructing Individuals Estimation Models
	Performance Assessment without using CFS algorithm
	Performance Assessment using CFS algorithm

	Constructing Estimation stacking ensemble model
	Selecting estimators and meta-model
	Constructing the SEEE model

	Discussion and Comparison
	Automatically SEEE through a ERWebApp
	ERWebApp Users
	Product Owner Interface: Submit ER
	Development Team Interface
	Enhancement Request Details
	A Web page for SEEE
	Scrum Master Web Page

	Conclusion

	 Conclusion and Perspectives
	Recall Thesis Contributions
	Perspectives

	Bibliography
	 Appendix A: Primary Studies
	 Appendix B: Example of Ontology's class and its corresponding customer's review
	 Appendix C: User story Functional sizing example
	 Publications

